
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Bell, Marek (2007) Guidelines and infrastructure for the design and
implementation of highly adaptive, context-aware, mobile, peer-to-peer
systems.

PhD thesis

http://theses.gla.ac.uk/4393/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4393/

A$

ý 's

ý+ ``,
i

UNIVERSITY
Of

GLASGOW

Guidelines and infrastructure for the design and
implementation of highly adaptive, context-

aware, mobile, peer-to-peer systems

Marek Bell

Doctor of Philosophy

Department of Computing Science

Faculty of Information and Mathematical Sciences

University of Glasgow

2007

C Marek Bell 2007

w t

Abstract
This work investigates why much of the mobile software available today largely fails to fulfil earlier

ubicomp visions of over a decade ago. Despite the fact that modern hardware is more than capable of

delivering the systems detailed in early ubicomp visions, modern mobile software is found to be

generally static and inflexible, rather than adaptive and context-aware as ubicomp had expected. As a

result, this work attempts to answer two research questions:

RQI How can mobile developers design and develop more flexible and context-aware

mobile systems?

RQ2 Are there software components lacking in the mobile field, hindering the

development offlexible, context-aware mobile systems?

Through a thorough review of existing literature, and extensive study of two large ubicomp systems,

problems are identified with current mobile design practices, infrastructures and a lack of required

software. From these problems, a set of guidelines for the design of mobile, peer-to-peer, context-

aware systems are derived.

Four key items of software infrastructure that are desirable but currently unavailable for mobile

systems are identified. Each of these items of software are subsequently implemented, and the thesis

describes each one, and at least one system in which each was used and trialled. These four items of

mobile software infrastructure are:

An 802.11 wireless driver that is capable of automatically switching between ad hoc and infrastructure

networks when appropriate, combined with a peer discovery mechanism that can be used to identify
peers and the services running and available on them.

A hybrid positioning system that combines GPS, 802.11 and GSM positioning techniques to deliver
location information that is almost constantly available, and can collect further 802.11 and GSM node
samples during normal use of the system.

A distributed recommendation system that, in addition to providing standard recommendations, can
determine the relevance of data stored on the mobile device. This information is used by the same
system to prioritise data when exchanging information with peers and to determine data that may be

culled when the system is low on storage space without greatly affecting overall system performance.

An infrastructure for creating highly adaptive, context-aware mobile applications. The Domino

infrastructure allows software functionality to be recommended, exchanged between peers, installed,

and executed, at runtime.

3

Table of Contents
1 Introduction 14

1.1 Research Questions 17

1.2 Scope and Approach 17

13 Thesis Walkthrough 18

2 Initial investigation of mobile, peer-to-peer systems 21

2.1 Mobile context-aware systems 21

2.2 Communication technologies 29
2.2.1 802.11 31
2.2.2 Bluetooth 34
2.2.3 GSM/GPRS/3G 37

2.3 Network topologies 38

2.4 Positioning 42
2.4.1 Early indoor location systems 43
2.4.2 GPS 45
2.4.3 802.11 47
2.4.4 Bluetooth 50
2.4.5 Mobile Phone Cell 51
2.4.6 Combinations 55
2.4.7 Identifying important locations 60

2.5 Recommendations and adaptation 61

2.6 Seamful design 65

2.7 Conclusion 66

3 Investigation of two mobile applications 69
3.1 The Lighthouse 69

3.1.1 System overview 70
3.1.2 Novel Infrastructure 74
3.1.3 Factors influencing the mobility of the system 78
3.1.4 Conclusions 84

3.2 George Square 87
3.2.1 System overview 88
3.2.2 Blog system overview 90
3.2.3 Improvements from the Lighthouse 92
3.2.4 New issues 99
3.2.5 Re-experienced issues 101
3.2.6 Categorising mobile, peer-to-peer systems 103

3.3 Conclusions 108

4A network driver for mobile, peer-to-peer systems 111
4.1 Selection of an underlying technology 112

4.1.1 802.11 112
4.1.2 Bluetooth 115
4.1.3 GSM/GPRS 116
4.1.4 Trial 117
4.1.5 Conclusions 121

4.2 The wireless driver 122
4.2.1 Treasure 123

4

4.2.2 Seamful Design 126
4.2.3 Wireless driver in Treasure 129

4.3 Switching networks and discovering peers 130
4.3.1 Improvements to the wireless driver to support peer-to-peer 130
4.3.2 A peer discovery mechanism 134
4.3.3 Enhanced wireless driver and SDS in a mobile, peer-to-peer game 137

4.4 Conclusion 141

5A hybrid positioning system for mobile, peer-to-peer applications 144

5.1 Review of positioning systems 144

5.2 Place Lab 148

5.3 A comprehensive positioning solution for mobile, peer-to-peer devices 152
5.3.1 Using Navizon 157
5.3.2 High adaptability to support new technologies 160
5.3.3 Sharing of information between users 163

5.4 Performance 165
5.5 Conclusion 180

6 Distributing data in mobile, peer-to-peer applications 183
6.1 Epidemic distribution of data 183
6.2 A mobile, peer-to-peer file-sharing application 189
6.3 A novel method for distributing data in mobile, peer-to-peer environments 192

6.3.1 Recer _ 193
6.3.2 Samara 197

6.4 Conclusions 199

7 Adaptation in mobile software 201
7.1 System adaptation based on users' context 206

7.1.1 Adaptation 208
7.1.2 Example use 212

7.2 Applications of Domino 215
7.3 Castles 216

7.3.1 Game description 217
7.3.2 Gainer's perspective 217
7.3.3 Technical perspective 219
7.3.4 Trial 222
7.3.5 Findings 223

7.4 Conclusion 227
8 Conclusions 230

8.1 Summary of thesis 230
8.2 Contributions 231
8.3 Limitations and Future Work 234

9 References 239
10 Appendix 248

10.1 Appendix A- Bluetooth and 802.11 peer discovery and transfer tests 248
10.1.1 Peer Discovery 248
10.1.2 Data transfer 251

5

10.2 Appendix B- Access point positioning in Navizon 253
10.2.1 Conclusion 258

10.3 Appendix C- Domino example components
10.3.1 Example 1: Building from Castles
10.3.2 Example 2: Map from Example application_

259
259
266

10.4 Appendix D- Navizon availability testing 269
10.5 Appendix E- code to convert from latitude and longitude (WGS84) to OSGB
coordinates 270

6

List of Figures
FIGURE 1: VISITOR USING THE LIGHTHOUSE SYSTEM IN THE MACKINTOSH ROOM

...................................
71

FIGURE 2: THE PDA WITH ATTACHED POSITIONING EQUIPMENT USED BY THE PHYSICAL VISITOR
71

FIGURE 3: THE WEB INTERFACE TO THE LIGHTHOUSE SYSTEM ...
73

FIGURE 4: THE 3D VIRTUAL ENVIRONMENT OF THE MACKINTOSH ROOM
...

74

FIGURE 5: GEORGE SQUARE USER WITH TABLET PC
..

88

FIGURE 6: GEORGE SQUARE INTERFACE ...
89

FIGURE 7: THE GEORGE SQUARE POST-VISIT BLOG INTERFACE ..
91

FIGURE 8: DIAGRAM OF ONE OF THE PROBLEMS EXPERIENCED IN GEORGE SQUARE
...............................

100

FIGURE 9: OVERVIEW OF THE DESIGN SPACE RELATING TO CONTENT TYPES OF PURE PEER-TO-PEER

SYSTEMS IN THE MOBILE ENVIRONMENT ..
106

FIGURE 10: 802.11 AND BLUETOOTH TRIAL DEVICE SETUP ..
1 19

FIGURE 11: THE TREASURE INTERFACE ..
125

FIGURE 12: PLAYER RUNNING THROUGH TREES AND BUSHES WHILST PLAYING TREASURE
....................

126

FIGURE 13: DIAGRAM OF DEVICE BEHAVIOUR WHEN MULTIPLE ACCESS POINTS ARE IN RANGE
133

FIGURE 14: DIAGRAM OF DEVICE BEHAVIOUR WHEN AN INTERNET CONNECTION IS AVAILABLE THROUGH

AN ACCESS POINT WHICH IS IN RANGE ..
133

FIGURE 15: MAP SCREEN OF FEEDING YOSHI GAME ...
138

FIGURE 16: YOSHI SCREEN OF FEEDING YOSHI GAME ...
139

FIGURE 17: ONE TECHNIQUE USED IN POSITIONING BY DIFFUSION ...
150

FIGURE 18: PATH OF NAVIZON USER PASSING A BEACON ...
154

FIGURE 19: NAVIZON WEB INTERFACE SHOWING COVERAGE IN A SMALL AREA OF PARIS
......................

159
FIGURE 20: NAVIZON POSITIONING MODULES ...

161
FIGURE 21: MAP OF LOCATIONS DETERMINED BY NAVIZON'S THREE POSITIONING TECHNIQUES FOR

LOCATION 1
..

166
FIGURE 22: MAP OF LOCATIONS DETERMINED BY NAVIZON'S THREE POSITIONING TECHNIQUES FOR

LOCATION 2
..

167

FIGURE 23: MAP OF LOCATIONS DETERMINED BY NAVIZON'S THREE POSITIONING TECHNIQUES FOR
LOCATION 3

..
16 7

FIGURE 24: MAP SHOWING GPS POSITIONS RECORDED WHILST WALKING ROUTE IN ERSKINE
170

FIGURE 25: MAP SHOWING 802.11 POSITIONS RECORDED WHILST WALKING ROUTE IN ERSKINE
170

FIGURE 26: MAP SHOWING GSM POSITIONS RECORDED WHILST WALKING ROUTE IN ERSKINE
171

FIGURE 27: FINAL LOCATIONS OUTPUT FROM NAVIZON FOR ROUTE IN ERSKINE
....................................

172
FIGURE 28: MAP OF GPS POSITIONS RECORDED WHILST WALKING THE FIRST ROUTE IN GLASGOW

173
FIGURE 29: MAP OF 802.11 POSITIONS RECORDED WHILST WALKING THE FIRST ROUTE IN GLASGOW.. 173
FIGURE 30: MAP OF GSM POSITIONS RECORDED WHILST WALKING THE FIRST ROUTE IN GLASGOW

....
174

FIGURE 31: FINAL LOCATIONS OUTPUT FROM NAVIZON FOR FIRST ROUTE IN GLASGOW
.......................

175
FIGURE 32: MAP OF GPS POSITIONS RECORDED WHILST WALKING THE SECOND ROUTE IN GLASGOW.. 176
FIGURE 33: MAP OF 802.11 POSITIONS RECORDED WHILST WALKING THE SECOND ROUTE IN GLASGOW

.. 177
FIGURE 34: MAP OF GSM POSITIONS RECORDED WHILST WALKING THE SECOND ROUTE IN GLASGOW 177
FIGURE 35: FINAL LOCATIONS OUTPUT FROM NAVIZON FOR SECOND ROUTE IN GLASGOW

...................
178

FIGURE 36: THE FARCRYUSER INTERFACE ..
190

FIGURE 37: OVERVIEW OF THE RECER ALGORITHM USED TO IDENTIFY CONTEXT
194

FIGURE 38: OVERVIEW OF THE RECER ALGORITHM FOR GENERATING RECOMMENDATIONS
194

FIGURE 39: OVERVIEW OF THE DOMINO SYSTEM ..
207

FIGURE 40: OVERVIEW OF A DOMINO TEST APPLICATION ...
212

FIGURE 41: CASTLES MAIN GAME INTERFACE ...
218

FIGURE 42: RECOMMENDATION POP-UP IN THE CASTLES GAME ...
220

7

List of Tables
TABLE 1: POSSIBLE PEER-TO-PEER AND CONTENT COMBINATIONS .. 107
TABLE 2: BLUETOOTH CLASSES, POWER CONSUMPTION AND RANGE ...

116
TABLE 3: PEER DISCOVERY TIMES AND SUCCESS RATES ...

120
TABLE 4: TRANSFER TIMES BETWEEN PEERS EXCHANGING 1 MB OF DATA ...

121
TABLE 5: TABLE OF WHICH UNDERLYING POSITIONING SUBSYSTEM NAVIZON USES TO CALCULATE A

FINAL USER POSITION .. 162
TABLE 6: MINIMUM AND MAXIMUM LEVELS OF ERROR, MEAN, VARIANCE AND STANDARD DEVIATION,

FOR POSITIONS DETERMINED BY NAVIZON FOR LOCATION I
... 168

TABLE 7: MINIMUM AND MAXIMUM LEVELS OF ERROR, MEAN, VARIANCE AND STANDARD DEVIATION,
FOR POSITIONS DETERMINED BY NAVIZON FOR LOCATION 2

... 168
TABLE 8: MINIMUM AND MAXIMUM LEVELS OF ERROR, MEAN, VARIANCE AND STANDARD DEVIATION,

FOR POSITIONS DETERMINED BY NAVIZON FOR LOCATION 3
... 168

TABLE 9: AVAILABILITY OF EACH POSITIONING TECHNOLOGY NAVIZON USES DURING A NORMAL
SHOPPING TRIP IN TOWN .. 179

8

Acknowledgements
As my research is part of the Equator group I have been fortunate to have met and worked closely with

an extremely large number of excellent and respected researchers whilst undertaking my Ph. D. I would

like to thank all those in Equator that I have worked with on projects or who have been kind enough to

give advice and guidance on my research.

As is clear from the thesis text, the majority of my work has been conducted with my colleagues at the

University of Glasgow and I thank all of them, including those who have since moved on from

Glasgow, for their high levels of commitment and dedication at every stage of each project.

In addition to his work in coding systems and writing papers, I would like to thank Barry Brown for

offering consistently sound advice in focusing my research on particular areas, and for always making

time to offer this advice when I needed it.

Thanks to my second supervisor, Phil Gray, who has been an invaluable mentor; always providing

extremely concise and logical opinions on my ideas and work as well as clearly identifying the most
important aspects of my research.

Throughout the entire duration of my research for this thesis two people, Malcolm Hall and Matthew

Chalmers, have provided more help and advice than I could reasonably have expected. As can be seen
from the work in this thesis, Malcolm, a fellow Ph. D. student, has worked equally with me on almost

every single application and project described. He is the finest coder I know and an excellent and
determined researcher; as well as a trusted and valued friend.

Finally, my supervisor, Matthew, has been a great inspiration and adviser at every level of my work.
His devotion to his own research and his enthusiasm for others' work in the field is the greatest
inspiration a student could have.

With the exception of the Navizon application, the work described within this thesis has been funded

by EPSRC grant GR/N 15986/01.

9

Declaration
The contents of this thesis are the author's personal work. However, many of the systems discussed

within this thesis have been designed and implemented as part of the Equator group at the University of
Glasgow and have been accomplished, in part, with contributions from others in the Equator IRC,

particularly Malcolm Hall.

The author has attempted to make clear when and by whom systems have been designed and
implemented with others. However, the author has been one of the main designers and programmers of

every system developed by the University of Glasgow Equator group, with the exceptions of the
Lighthouse and FarCry. Moreover, contributions from others have been made only to system design

and implementation - the work and research related to the thesis itself are entirely the author's own.

The concept of Seamful Design, discussed in section 4.2.2 of Chapter 4, is primarily that of Matthew
Chalmers and not the author's. The author's work did not lead to the idea of Seamful Design, rather the
author merely applies it in the mobile environment and highlights its importance within the mobile
area.

I0

List of Publications
The following is a list of publications for which the author has been either a primary author or a co-

author, and which are related to, or have influenced, the work in this thesis.

Marek Bell, Malcolm Hall, Matthew Chalmers, Phil Gray and Barry Brown, Domino: Exploring

Mobile Collaborative Software Adaptation, Proc. Pervasive 2006, Dublin, Ireland, pp. 153-168

Bell, M., Chalmers, M., Barkhuus, L., Hall, M., Sherwood, S., Tennent, P., Brown, B., Rowland, D.,

Benford, S., Capra, M. & Hampshire, A., Interweaving Mobile Games with Everyday Life, Proc. ACM

CHI 2006, Montreal, 2006, pp. 417-426

Malcolm Hall, Marek Bell & Matthew Chalmers, Domino: Trust Me I'm An Expert, Workshop on

Software Engineering Challenges for Ubiquitous Computing 2006, Lancaster, UK.

Matthew Chalmers, Marek Bell, Barry Brown, Malcolm Hall, Scott Sherwood & Paul Tennent,

Gaming on the Edge: Using Seams in Ubicomp Games Proc. ACM Advances in Computer

Entertainment (ACE) 2005

Brown, B., Chalmers, M., Bell, M., MacColl, I., Hall, M. & Rudman, P., Sharing the square:

collaborative leisure in the city streets, Proc. Euro. Conf. Computer Supported Collaborative Work

(ECSCW), Paris, 2005

Matthew Chalmers, Marek Bell, Barry Brown, Malcolm Hall, Scott Sherwood & Paul Tennent, Using

Peer-to-Peer Ad Hoc Networks for Play and Leisure, 3rd UK-UbiNet Workshop, 2005, Bath, UK.

Barkhuus, L., Chalmers, M., Hall, M., Tennent, P., Bell, M., Sherwood, S. & Brown, B., Picking
Pockets on the Lawn: The Development of Tactics and Strategies in a Mobile Game, Proc. Ubiquitous
Computing (Ubicomp), Tokyo, LNCS 3660, pp. 358-374,2005

Bell, M., Chalmers, M., Brown, B., MacColl, I., Hall, M. & Rudman, P., Sharing photos and

recommendations in the city streets, Pervasive Workshop on Exploting Context Histories in Smart

Environments (ECHISE), 2005

Barry Brown and Marek Bell, CSCW at play: 'There' as a collaborative virtual environment, Proc.

CSCW 2004, Chicago IL, ACM Press

Chalmers, M., Bell, M., Hall, M., Sherwood, S. & Tennent, P., Seamful Games, Adjunct Proc. 6th

International Conference on Ubiquitous Computing, UbiComp 2004, Nottingham, England

Barry Brown and Marek Bell Social Interaction in 'There' Proc. CHI 2004, Vienna, Austria, p1465-
1468, ACM Press

Matthew Chalmers, Ian MacColl and Marek Bell, Showing the Seams in Wearable Computing, Proc.

IEEE Eurowearable 2003, Birmingham, pp. 11-17

Brewster, S., Lumsden, J., Bell, M., Hall, M. and Tasker, S., Multimodal `eyes free' interaction

techniques for wearable devices, Proc. CHI 2003, Florida, USA

12

13

Chapter 1: Introduction

I INTRODUCTION
Throughout the last decade, mobile and embedded digital devices have begun to proliferate among

average users, becoming part of their everyday lives. While less than a decade ago it was uncommon
for the average person to carry any digital device with them-other than perhaps a watch-today it is

not at all surprising to find people carrying digital cameras, music players and PDAs. Not only are

these items becoming far more common, many in the western world view them as necessities and

would not travel without their digital devices. A modern mobile phone typically has significantly more

processing power than the average desktop machine of less than a decade ago whilst many of today's
PDAs are more powerful than the desktop systems of less than five years ago.

Just as the devices we carry have vastly improved and multiplied, the digital infrastructure that

surrounds us has grown exponentially. At any location in a high street of modern city it is common for

twenty to thirty digital devices to be in range-many capable of transmitting and receiving data to
other devices. These may be others' digital devices carried on their person, 802.11 access points, GSM

cell towers or Bluetooth beacons.

Along with the spread of mobile and embedded devices have come vast improvements in the methods
through which such devices communicate. Wireless 802.11 has experienced an almost unbelievable
jump in speed, and the current version is over 100 times faster than the original 1997 version while the
impending 802.11n, already available in draft versions, is planned to be over 500 times faster.
Bluetooth is now available on nearly every mobile phone and PDA; embedded in everything from

standard desktop computers to in-ear headphones, it can provide a relatively low power communication
solution to body or room sized environments.

Mobile and embedded devices are continually using their communication devices to scan the area-
they are capable of detecting and communicating with the multitude of different device types that
surround them. They are often synchronised with an owner's email, files and schedule and, through
GPS, wireless or cell positioning techniques, can be aware of their location as they are carried
throughout the day.

The modern mobile device-be it a powerful phone or a PDA-is in a unique and novel position. It is

capable of sensing more of its surroundings than any other type of computer has previously been,
loaded with its owner's schedule, email and files, it is able to detect, and more importantly,

communicate with the other devices it passes, and it is able to find its own position in the world. With

this wealth of contextual information about itself, its owner and its surroundings, the modern mobile
device might have brought about a vast change in the manner in which we interact with technology in

our work lives, social encounters and daily travels.

14

Chapter 1: Introduction

However, despite huge improvements in the digital devices we carry and those embedded in the

environment around us-and the remarkable amount of context information these devices are capable

of gathering-the applications that run on the mobile devices are commonly just reduced versions of

desktop software. They remain static and inflexible, often completely unaware of the mobile device's

environment or a user's current situation. As these devices do not bring anything particularly unique or

novel further to anything a desktop machine does, they do not affect our lives to any great extent. For

example, on the latest version of the Pocket PC, the most widely used mobile operating system, the

installed applications include Calculator, Excel, Notes, PowerPoint, Tasks and Word - all of which are

just cut-down versions of desktop applications rather than location or context-aware applications.

A standard PDA is capable of detecting other PDAs, phones and computers nearby. Why then, should
it not interact with these devices? If, for example, a user wishes to find the latest news but cannot

connect to the Internet why can their device not communicate with those nearby to find this
information? Similarly, if a user requires a certain software codec or module to play an audio file, why
can their device not request and obtain a module from a nearby peer? With the exception of a cut down

version of the desktop MSN messaging client and a very basic file `beam' utility, there are no
applications included as standard with the majority of mobile devices that even allow the discovery of
other devices or communication with peers.

As mobile devices can now be almost constantly aware of their surroundings and constantly connected
to the Internet, why is it not an easy task to locate a friend who is currently carrying his or her mobile
device? If a user has been to a particularly good restaurant in the past but can not remember its
location why can their mobile device not remind him or her? Mobile systems, and mobile applications,
have failed to fulfil earlier promises of ubiquitous computing, which envisioned that mobile devices

and software would learn a user's context, adapt and behave appropriately within that context, and
remain unobtrusive until functionality was desired or apt.

Barkhuus and Dourish seem to be aware of the current situation and describe both opportunities and
problems with current mobile devices [5]:

Amongst the problems are the difficulties of managing power, locating people, devices

and activities, and managing interactions between mobile devices. Amongst the

opportunities is the ability to adapt to the environment. Recognizing that different places
and settings have different properties and are associated with different activities,
researchers have become interested in how computational devices can respond to
aspects of the settings within which they are used, customizing the interfaces, services,
and capabilities that they offer in response to the different settings of use.

Dourish later considers, along with Genevieve Bell, that perhaps early visions of ubicomp will never be
fulfilled, or that we should now accept that ubicomp is evident in the world today, but that it has taken

15

Chapter 1: Introduction

a form distinct from that imagined previously [56]. Dourish and Bell argue that if, as they propose,

ubicomp is already present in the world today, developers and designers should concentrate more on

solving problems evident now-rather than continually planning for a proximate ubicomp future that

may never come. That is, rather than assuming problems such as communication between mobile

devices, context-sensing, or adaptation will become insignificant in the future, we should attempt to

address such problems now. The work in this thesis generally aligns with this view, and attempts to

analyse and address many current issues experienced with mobile devices.

It seems that we are on the edge of a paradigm shift in how mobile devices are used. There is no

hardware lacking for us to achieve a large number of tasks that account for a user's context and would

make his or her mobile life much easier by providing timely and suitable information in the many

different situations he or she may encounter whilst mobile. Indeed, many in the western world are

already familiar with or already own the devices that could run these types of applications. However,

as current hardware is indeed capable of supporting flexible, context-aware mobile applications there

must be problems which remain in software, business models or in the development community that

are obstructing the creation of such applications.

While the progress in IDEs and compilers for desktop machines has almost matched the progress of

mobile device hardware over the last decade, developing for mobile devices remains a struggle, and the
knowledge and infrastructure to do so is often lacking. The design space of the mobile device has not
been fully explored, and the software tools and libraries that would aid developers in writing powerful

and flexible mobile applications simply do not yet exist. There are few guidelines aimed specifically at

the mobile developer, and many software libraries and techniques that are well documented and easily
implemented on desktop machines have not even been attempted on mobile devices. Without the
knowledge and software infrastructure to utilise the potential of the mobile device fully, developers are
left with little choice but to take existing desktop applications and squeeze them down to fit onto

mobile devices. This leaves mobile device applications rather bland and far less useful than they could
be. Currently, the mobile device-and the information it carries-becomes redundant whenever a
desktop machine is available and this should not be the case if the mobile device were providing a

uniquely novel service.

This thesis aims to identify what particular failures in design and infrastructure have led to the situation

where the majority of mobile applications largely neglect the opportunities to utilise the full spectrum

of contextual information available on mobile devices. By identifying previous failures and
investigating the current state of the mobile research field, the thesis hopes to provide suitable

guidelines and infrastructure that address existing problems and lead to the design and implementation

of more flexible, context-aware, mobile, peer-to-peer systems.

16

Chapter 1: Introduction

1.1 Research Questions
In order to support the future development of mobile applications that are more mobile, make better use

of the sensing technologies they have and communicate well with their peers this thesis investigates

two issues. These are:

RQl How can mobile developers design and develop more flexible and context-aware

mobile systems?

RQ2 Are there software components lacking in the mobile field, hindering the

development offlexible, context-aware mobile systems?

Through a study of existing literature, the thesis attempts to address the first research question by

identifying why mobile applications have failed to develop in unique and novel ways, distinct from

desktop systems. By identifying current problems and why they exist, it is possible to suggest

solutions or alternative design strategies for mobile development that may lead to the design and

implementation of more flexible and context-aware mobile applications. This process is aided by the

analysis of one existing mobile system and the implementation and analysis of a second mobile system.
Through practical experience of developing and trialling mobile systems in this way, further issues may

be identified and addressed which, in turn, contribute to addressing the first research question.

The same process of reviewing existing literature and implementing and analysing mobile systems
helps to identify software components and infrastructure that may be lacking currently in the mobile
field. After identifying missing components they are implemented and trialled to demonstrate their

benefit and their applicability to the second research question.

1.2 Scope and Approach
Many of the strengths of the research within this thesis are the result of work that has been conducted

as part of the Equator IRC'. Equator has been fortunate in that it has an extremely large number of

resources and researchers, with numerous and varied skills. Equator provides a unique environment for

a student, one in which a pragmatic approach to a wide variety of systems is possible, and in many

ways necessary.

A substantial understanding of the design process, user experience, and system context of mobile

systems has been gained over the course of many systems and trials, which facilitates a holistic

approach to issues within the mobile field. Since core goals of this thesis are to explore the mobile

peer-to-peer field, offer guidelines for the development of mobile systems, and identify and implement

infrastructure that may benefit the field, a broader scope and holistic approach are indeed applicable.
The approach of this thesis to mobile peer-to-peer systems spans architectural, interactional and user

acceptance issues-rather than focusing solely on one single aspect of technology or infrastructure.

' http: //www, equator. ac. uk/

17

Chapter 1: Introduction

Each of the individual systems described, and studies thereof, contribute an important but partial

understanding of the mobile field. However, when analysed together, a clearer holistic view

develops-one in which issues that apply to mobile systems generally become more readily apparent.

This broader view contributes a solid basis for subsequent work, allowing issues to be identified more

clearly, and generally applicable solutions to be generated.

The author believes that a holistic approach, spanning many systems and examining them

pragmatically, is necessary in order to gain the insight and experience required to establish general

guidelines, and identify and implement required infrastructure, as this thesis does. The research in this

thesis aims to tackle the problem within modern mobile systems of applications and systems generally
failing to fulfil earlier expectations related to ubiquitous computing. The majority of modern mobile

systems remain generally static reduced functionality versions of desktop applications, rather than

providing appropriate and novel functionality to the mobile user based on his or her current task and

context. It is unlikely that research focused on only one system, or a single aspect of technology, could
adequately identify the range of issues that have contributed to this situation in the course of a single
thesis. Rather, the thorough investigation and testing of a large number of mobile systems, exploring
many varied issues, is more appropriate, providing a more complete answer to why modern mobile
systems still suffer from problems of inflexibility and immobility.

Whilst a broad holistic approach has been of great benefit to the research described in the thesis, in

retrospect, it may also have been a necessity of any work conducted within the Equator Glasgow group.
Equator's rapid progress and large number of researchers result in an environment in which many
systems and ideas are implemented, tested and analysed in relatively short periods of time.
Consequently, this continual flux of systems means that it has been challenging to maintain an in-depth
focus on only a single aspect of design or implementation within one system, or across several systems.
The Equator environment favours a holistic approach in general, and the research presented here relies
on the pragmatic testing of an extensive number of systems to drive such an approach.

1.3 Thesis Walkthrough
The thesis starts with a review of existing literature primarily based in the field of mobile, peer-to-peer
systems. However, where necessary literature from context-aware computing and legal fields are
presented and discussed. The findings of the literature review highlight several problems remaining in
the mobile, peer-to-peer field; including design problems and problems in rapidly and efficiently
developing applications due to the lack of several key infrastructure components for mobile devices.

Chapter 3 uses the results from the literature review to focus the analysis of two mobile systems. This

analysis results in the confirmation and strengthening of many of the findings of the literature review,

as well as the formation of several guidelines that aim to address some of the failings in existing mobile
systems.

18

Chapter 1: Introduction

After Chapter 3 the focus of the thesis changes from investigating mobile systems and extracting

guidelines to the actual implementation and trialling of four key pieces of infrastructure which appear

to be required for the creation of adaptive, context-aware mobile peer-to-peer systems but are currently

missing from the field. However, when experience with or trials of this infrastructure do raise or draw

attention to new issues further guidelines are still drawn out where appropriate. Each of the following

four chapters (4-7) details the implementation and demonstration of one of the pieces of infrastructure

identified as important from the first half of the thesis.

Finally, Chapter 8 reviews the thesis and the contributions it has made, as well as contemplating

possible future work in the field.

19

Chapter 1: Introduction

20

Chapter 2: Initial investigation of mobile, peer-to-peer systems

2 INITIAL INVESTIGATION OF
MOBILE, PEERMTOMPEER SYSTEMS

Although there have been numerous research-based mobile systems-many of which are referenced

throughout this thesis-there have been relatively few attempts to analyse or categorise the features

that led to successful mobile systems or to categorise the possible types of mobile systems. The lack of

material that directly contrasts and compares the infrastructure and technology used in mobile systems,

rather than discussing a single, isolated system, makes it challenging to identify the areas that

contribute to a mobile, peer-to-peer system's success or failure. Although an investigation and trials

related to these issues are part of this thesis and are described in Chapter 3, it is prudent to begin the

investigation by examining existing systems and attempting to discover factors that led to their

success-even if authors often do not explicitly state or discuss these issues themselves.

This review of existing work attempts to pull together isolated mobile, peer-to-peer systems into some
high-level categories in the hope of identifying some clear topics that affect a mobile system's
performance.

2.1 Mobile context-aware systems
One of the aims of the work in this thesis is to address the problem that mobile device applications are
often static, reduced functionality versions of applications available for desktop computers. It has been

stated that the primary way to achieve this is to take advantage of the greatly increased level of context
information available on mobile devices. Therefore, this section reviews some of the literature in

context-aware systems.

The use of context is common in many desktop applications - perhaps the most well-known being

systems which make people aware of each other's context, such as Portholes [53] and RAVE [67].
However, Schilit et al. were among the first to examine the value of context in mobile computing
[149J:

One challenge of mobile distributed computing is to exploit the changing environment
with a new class of applications that are aware of the context in which they are run.
Such context-aware software adapts according to the location of use, the collection of

nearby people, hosts, and accessible devices, as well as to changes to such things over
time. A system with these capabilities can examine the computing environment and react
to changes to the environment.

It is clear from the onset of the work involving context in mobile environments that a system which is

reactive and flexible is desirable. Schilit et al. propose several methods in which a mobile system can
react to context such as proximate selection in which a device's location is used to filter a list of
possible choices [149]:

21

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Proximate selection is a user interface technique where the located-objects that are

nearby are emphasized or otherwise made easier to choose. In general, proximate

selection involves entering two variables, the "locus" and the "selection. " However, of

particular interest are user interfaces that automatically default the locus to the user's

current location.

Proximate selection demonstrates how contextual information can be employed to filter a list to a more

manageable size or adapt the interface to provide a simpler, and more efficient experience to the end

user.

Hull et al. similarly discuss the importance of context-awareness for mobile devices, and highlight how

correct adaptation is often not just desirable but necessary in many situations [90]:

Situation awareness is particularly valuable for wearable devices. Desktop computers
live in a very static environment. Even notebooks mostly only make the trek to office to
home and back However, wearable computers will (potentially) go everywhere with
their owners, into a wide variety of situations in which appropriate behaviour for a given

situation might be essential

The quote reveals that in many circumstances it is both appropriate and necessary for mobile devices to
be actively sensing their environment and reacting to it. Although Hull et al. 's research on the subject
is almost a decade old, many of the statements they made seem extremely prophetic given the current

state of mobile applications [90]:

The potential for wearable computers is to be perceived not only as a physical extension
of the user, but also as a mental extension. The difference between the two is whether the

wearable computer is able to share our awareness of our surroundings and thus operate
within a shared context, or whether the device remains "a stranger in the dark", albeit
one that you are taking everywhere.

Examining the majority of current mobile devices and applications, it is apparent that they have failed

to become a `mental extension' as defined and do instead remain "strangers in the dark". Modem

mobile devices have the technology to sense their environment, track their owner's context and adapt
appropriately but they fail to utilise these features. Instead, nearly all functionality on modern devices

is presented statically. The idea of a 'mental extension' seems to conform to Weiser's ubicomp vision
of invisible computing [172]:

Hundreds of computers in a room could seem intimidating at first, just as hundreds of

volts coursing through wires in the walls did at one time. But like the wires in the walls,

22

Chapter 2: Initial investigation of mobile, peer-to-peer systems

these hundreds of computers will come to be invisible to common awareness. People will

simply use them unconsciously to accomplish everyday tasks.

If, as Hull et al. state, mobile computing is unable to employ context-awareness to adapt reactively and

reconfigure, it will always fail to become an invisible mental extension. Thus, it is clear that if mobile

devices are to achieve Weiser's vision for ubicomp then it is crucial that they become more adaptive

and flexible than they currently are.

Hull et al. identify that one of the crucial items of context to sense is the presence of other people using

the system. They identify a requirement of `a small, low-powered detector that will fit into a wearable

computer' as well as stating that size, cost, power-consumption and range are among the most
important factors in selecting a technology for achieving this. They implement a prototype system

using an external radio tag that is sensed by detector units. Whilst modern mobile devices have

evolved to contain 802.11 and/or Bluetooth capabilities that may more appropriately fill the sensing
role, the assertion that discovering peer devices is crucial remains valid, as do the important factors
identified in selecting a sensing technology. These issues are discussed again later in this chapter as
well as in Chapter 4.

While Hull et al. foresaw the problem of mobile devices failing to utilise context in 1997, Messeter et
al. provide a more current description of the problem that still exists today [116]:

Even if connectivity and location-based services receive a lot of attention in the mobile
technology industry, the dominating rhetoric still revolves around providing the
functionality of the conventional ofce environment 'anytime and anywhere', regardless
of contextual factors. The nomadic user handles multiple contexts, not by adapting to the

particularities of each use situation, but simply by disregarding contextual factors.... The

user becomes nomadic not by adapting to context but rather by detaching from it - 'the

context free user. '

Messeter et at. are essentially claiming that because modern systems still fail to adapt to the current

context, mobile users are forced into the possibly uncomfortable and inefficient situation of simply
ignoring context if they are to complete their task. They identify that the majority of mobile

applications simply attempt to recreate the functionality found in the standard office environment rather

than adapting to integrate smoothly with the varying contexts a mobile device encounters. Messeter at

al. describe an ideal system as adapting around the user in this way:

However, an ideal context aware system would account for five contextual factors... In

this perspective, the vision of the nomadic user is based on continuous adaptation of
technology to the specific needs of the current situation. The user becomes nomadic by

the system's capability of adapting to constantly changing contexts.

23

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Messeter et al. have realised that the onus for adaptation is not solely on the user. Instead they make it

clear that the system should continually monitor the external environment and adapt around the user.

Pascoe points out that context-aware systems should not make the mistake of concentrating solely on

observing the external environment [132]:

Context-awareness is the ability of a program or device to sense various states of its

environment and itself.

If a system is to make the correct decisions and adaptations for its current environment then it must
monitor not only the external environment but also itself; it must be aware of its current state and its
history of use. Pascoe also reiterates the sentiments of Hull et al. on the potential value of context
information to mobile devices [1321:

The intimate association of user and computer in a wearable system leads to the

computing resources being accessed in a diverse array of situations, unlike a static desk-
bound computer. It is this multitude of dynamic contextual factors that allows context-

awareness to be exploited particularly well in wearable computers.

Pascoe goes on to define a set of core generic capabilities that he views as vital to context-aware
systems. These are:

" Contextual sensing: the ability of a system to detect various environmental states and to feed
information about the current state or changes to it back to the user.

" Contextual adaptation: the ability of a system to tailor itself to the current situation.
" Contextual resource discovery: the ability of a system to detect and to take advantage of the

resources it discovers in its environment (e. g. peer devices).

" Contextual augmentation: the augmentation of additional information to elements in the

environment. For example, this might be embodied in a tour system which provides additional
information on interesting buildings or statues in the environment.

These four key generic elements of context-aware systems are highly relevant to the work in this thesis

and are discussed throughout. Specifically, context sensing and resource discovery with respect to the
location of users and the discovery of other devices is discussed later in this chapter in sections 2.2 and
2.4. The discussion therein leads to much of the implemented work discussed further in the thesis.
Contextual augmentation is an inherent part of many of the systems implemented as part of this thesis
such as George Square and Feeding Yoshi discussed in Chapters 3 and 4 respectively.

Pascoe believes contextual adaptation to be of core importance:

24

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Applications can leverage this contextual knowledge by adapting their behavior to

integrate more seamlessly with the user's environment. Rather than providing a uniform

service regardless of the user's circumstances, the context-aware computer can tailor

itself to the current situation. For example, adapting behaviour for a particular user...

The user experience in a context-aware, mobile system is directly linked to the adaptation of the

underlying computer system. Mobile devices can, and should, adapt to both the current situation and

the current user. Whilst Pascoe implemented a trial system-which uses some context features such as

contextual sensing-for supporting ecologists conducting fieldwork and found that `the context-aware
features were attributed as a critical part of the system's success', it proved too difficult to implement

contextual adaptation in the first iteration. Pascoe explains:

[Contextual adaptation was] Not used at all in the current prototype, this capability
could provide the fieldworker with assistance by automating actions in certain contexts.

In short, Pascoe believes contextual adaptation can be of great value but did not have time to
implement it in his prototype.

In 1999, Dey and Abowd conducted a survey of existing literature on context-aware systems [501 and
attempted to make clearer definitions of what context is, as well as re-examining the categories that are
most vital to context-aware systems. They started by reiterating why context-awareness is of
fundamental importance to mobile systems:

The increase in mobility creates situations where the user's context, such as the location

of a user and the people and objects around her, is more dynamic. Both handheld and
ubiquitous computing have given users the expectation that they can access information

services whenever and wherever they are. With a wide range of possible user situations,
we need to have a way for the services to adapt appropriately, in order to support the
human-computing interaction.

As with the previous literature, an emphasis seems to be on the system services adapting based on the

user's current scenario and past usage habits. This is reinforced after Dey and Abowd review and
merge the existing definitions of context to come up with their own [50]:

Context is any information that can be used to characterize the situation of an entity. An

entity is a person, place, or object that is considered relevant to the interaction between

a user and an application, including the user and applications themselves.

25

Chapter 2: Initial investigation of mobile, peer-to-peer systems

As with previous literature, the authors feel it necessary to state specifically that it is not just external

factors, but also the application and system itself, which forms the context.

Dey and Abowd additionally identify what they believe are normally the most imperative items of

context [50]:

There are certain types of context that are, in practice, more important than others.

These are location, identity, activity and time.

The authors later identify, and show in a table, which of these context types much of the previous work

in the field has utilised-allowing readers to make assumptions about how this has affected the

systems. It is clear that in the general case the more of these types of context a system makes use of the

more it can adapt to a specific user's needs. These findings are important as they allow developers of

context-aware systems to focus their efforts on these particular areas.

Dey and Abowd also give their own definition of context-aware [50]:

A system is context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user's task.

As will be apparent later in this thesis, the George Square and Domino systems, produced as part of the

work for this thesis, both fit this definition well-and make appropriate use of the four context types

identified. Specifically, George Square makes use of context to provide relevant information to the

user whilst Domino uses context information to deliver both relevant information and services.

In 2001, Burrell et al. specifically highlight that context information is highly relevant in the mobile

environment [25]:

The ability to detect context seems especially relevant to mobile and ubiquitous

computing systems which may be used in a variety of different locations, by d erent

users, and/or for different purposes.

The fact that Burrell et al. identify that mobile systems can be used by different users and for different

purposes is of relevance later in the thesis, since an investigation of the Lighthouse in Chapter 3 leads

to the proposal of a guideline concerning the roles mobile users may assume.

Burrell et al's reminder that context is vital to mobile systems seems to have been heeded and in 2002
there was an increase in the number of context-aware mobile systems being researched. Gellersen et

al. examined the viability of augmenting everyday objects with context sensors, and subsequent fusion

26

Chapter 2: Initial investigation of mobile, peer-to-peer systems

of the data from such sensors [69]. From their work, the finding most relevant to this thesis is perhaps

that of two types of awareness, direct and indirect.

Devices may have direct or indirect awareness of context. In the case of indirect

awareness, the entire sensing and processing occurs in the infrastructure while the

mobile device obtains its context by means of communication. In contrast, a device has

direct awareness if it is able to obtain context autonomously, (more or less) independent

of any infrastructure. We will not further consider indirect awareness in this article, as

the reliance on sensing infrastructure limits mobile device use to specifically designed

smart environments.

As this thesis is concerned only with mobile devices operating in a mobile environment it is prudent for

it to consider primarily devices with direct awareness, for the same reason Gellersen et al. specify.
Gellersen et al. also point out that many of the context-aware systems discussed earlier, such as Active
Badge, all relied on indirect awareness. However, they also state that direct-awareness applications are
becoming rapidly more prevalent [69]:

However, these pioneering projects all employed indirect awareness with sensors located
in the infrastructure, listening for beacons sent out from the mobile devices.

More recent work has increasingly considered the embedding of direct awareness in

mobile devices. This has been boosted by rapid advances in sensor technologies...

It is indeed clear that recently there has been a drive toward devices that are "all-in-one" and come with
many sensing technologies. It is now not surprising to find mobile devices that have Bluetooth,
802.11, GSM/GPRS, GPS, IR and a camera all built-in on a single device. Each one of these sensing
technologies can detect different information about the surrounding environment and, in addition,
much of the user's data, such as calendar information, is likely to be available on the device. In short,
the technology has now advanced so that there is little or no need to rely on indirect awareness for most
systems. This is yet another reason for this thesis to concentrate primarily on direct awareness systems.

To support direct-awareness, there is a drive in the research community to embed sensors into everyday
artefacts and clothing [89], [159], [94], [103], [142]. Randell and Muller describe the Well Mannered
Wearable Computer which is a jacket with embedded GPS unit and accelerometer. The additional
sensors allow behaviour suitable for the user's current context to be exhibited [142]:

... we control the media rendering to ensure that the presentation of information is

appropriate to the user's activity and consistent with the sensed event. For example, we
do not wish to render any information if the user is running; we also know that if the user
is not moving then an event triggered by a change in location cannot be generated. A

27

Chapter 2: Initial investigation of mobile, peer-to-peer systems

simple set of rules can thus be formulated to form an etiquette for our wearable

computer.

Whilst it is apparent that sensors are indeed being increasingly embedded into everyday devices the

work in this thesis concentrates primarily on PDAs and phones - utilising only their inbuilt sensor

functionality or that of upgrades that can be easily applied to augment them. Whilst Randell and

Muller demonstrate just how appropriate adaptation facilitated by increased embedded sensors can be

in aiding a system in selecting appropriate behaviour for the user's current context, the basic concepts

are certainly applicable to the mobile devices used throughout this thesis and do not rely on embedded

sensors specifically.

An example of a system that makes good use of context information made available by the increased

number of sensing technologies available in a mobile environment was developed by Baus et al. in

2002 [8]. Their system attempts to provide a seamless changeover of both UI and sensing technologies

in a way-finding application when a user crosses from an indoor to an outdoor environment or vice

versa. The authors detail the ways in which their system must adapt:

When a change of the means of transportation is detected, the system has to adapt its

interface to the new situative constraints. One essential issue in this context is the switch

between different positioning technologies... the presentation of the way description has

to be adapted to different output devices that may be used. This includes adaptations to

the screen size, resolution, and colour capabilities of mobile and stationary devices.

It is clear that the level of system adaptation is extensive, yet this seemingly extreme level of

adaptation may be common and necessary in the mobile environment where context changes can often
be extreme. For example, users can easily and quickly move from a quiet, isolated office environment

to a noisy, busy street, and any mobile devices they are carrying should rapidly sense and adapt to the

context change if they are to behave appropriately in the new environment.

For over a decade the literature has almost unanimously agreed that context-aware systems can be of

significant value in the mobile environment. It is apparent that any context-aware system must be

capable of continually monitoring not only the external environment but also its own state and history

of use. In order to integrate smoothly in the many differing contexts a mobile device may be used in,

the level of adaptation a system must be capable of is often extremely extensive. Thus, mobile

applications should be highly dynamic, at the core system level if they are to prove successful in such

an environment.

Context, context-awareness, and the benefits context awareness may provide to mobile and ubiquitous

systems have been thoroughly investigated in previous work. However, it is clear that there are few

mobile systems that are actually able to achieve both the awareness and flexibility required to succeed.

28

Chapter 2: Initial investigation of mobile, peer-to-peer systems

As Hull et al. warned, and Messeter et al. agree, this is borne out today in that most mobile applications

remain static, inflexible versions of desktop applications-forcing mobile users simply to ignore

contextual factors if they wish to use those applications.

If truly mobile systems are to gain popularity, this problem must be addressed, and an infrastructure

which allows extreme adaptation of a system's core functionality to suit the user's activity must be

implemented. The literature points out that such a system must have sensing, adaptation and resource
discovery capabilities, and that location, identity, activity and time are vital pieces of information to

base such a system around. The work in this thesis attempts to make initial, but useful, steps in

investigating and implementing such an infrastructure. The implementation, an example game, and

trial are presented in Chapter 7.

Whilst it is apparent that there are many researchers who have investigated context and context

awareness, it is clear that there remains a tension between two main views of how context may be

interpreted. Both Dey and Abowd [50] and Schilit et al. [149] seem to perceive context as a now of
static elements that can be sensed as they occur but, as time passes, remain constant in definition. Both
Dourish [55] and Chalmers [30] take an alternative view that whilst contextual information can be

sensed, it may be continually reinterpreted as time passes and new activities and information occur. In

this view context at any specific time is not static in meaning and may require re-examination if it is to
be used at a later date. Later work in this thesis, particularly that in Chapter 7, relies more on the latter

view that contextual information must be continually reinterpreted if it is to be reused as users often

extend and redefine contexts with updated information. This view results in the Domino infrastructure,

described subsequently, that accounts for such reinterpretation, as well as opening the possibility of
future work that attempts to support the use of context in this way even further.

2.2 Communication technologies
Perhaps the most surprising omission in the previous research in mobile peer-to-peer systems is in the

topic of communication technologies. Although every mobile, peer-to-peer system must employ some
form of communication technology to discover and communicate with peers, most work simply states
the type used for the particular implemented system without stating the benefits or failings of the
technology-or giving detailed reasons for selecting it above other possibilities. Whist much previous
work covers many technical issues involved in mobile systems, few apply or discuss the effects or
problems of specific technologies or infrastructures in implemented, demonstrable mobile systems.
Furthermore, there has been little work in directly comparing the various technologies available with
one another. To understand this problem, it may be beneficial to give some examples.

For example, whilst Bassoli et al. generally describe their tunA system in great detail, they briefly gloss
over the choice of communication technology used in tunA [7], stating that:

29

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Nevertheless among the existing technologies [802.11] Wi-Fi seemed the most suited to

obtain the ad-hoc connectivity between devices, allowing a higher bandwidth and range

compared to other wireless standards (i. e. Bluetooth).

This single sentence description of the communications technology used is insufficient to

explain the advantages and disadvantages that arose in the system as a result of this choice.

Furthermore, although it states 802.11 has a higher bandwidth and greater range than Bluetooth,

it does not examine any of the other factors that might have led to the decision, such as peer

discovery rates or reliability of the connection.

Similarly, although Flintham et al. provide a generally thorough investigation of the Can You See Me

Now game, go into much depth about the positioning technology used, and the use of audio and the

strategies employed by players of the game, the actual description of the communication infrastructure

is extremely brief and does not provide a clear picture of the setup used [64]. Indeed, the only

references to communications on the devices themselves within the paper are: `... talk was then

digitally encoded and streamed to the players over the Internet' and The runners' interface was

delivered to them... from a server in a nearby building over a 802.1 lb wireless local area network'.

This short description poses many questions about the communication infrastructure and setup. For

example, basic issues like reliability and the density of coverage required to allow smooth operation of

the system are left unanswered. Furthermore, it is impossible to tell from the paper whether existing

802.11 infrastructure already present was used in the game area or if it was necessary to install

additional equipment.

These examples are typical of the problem where work applying certain technologies to useable mobile

systems is thorough in many areas but makes sparse commentary on the communication technologies,

or other technologies, that drive them. As most authors omit details about the communications
infrastructure and technology they use to implement mobile peer-to-peer systems, it is extremely
difficult to draw comparisons between them in order to discover which are most suitable for use in

peer-to-peer environments. For this reason, a direct comparison is conducted as part of this thesis in

Chapter 4.

Obviously, as the mobile area is already extremely popular and continues to grow, with so many papers

and articles being written there are exceptions. Cheverst et al. provide uncommonly detailed

descriptions and opinions on the communications technology they used in [37] and [38] - both papers

on the GUIDE system. The papers describe the 802.11 setup used, stating that 6 APs had to be

installed in the target area and that each provided bandwidth of 2MB/s. They also give diagrams of the

network setup and explain that a centralised server was required to drive the system. This level of
detail on underlying mobile technology and infrastructure, and how it affects a real system is,

unfortunately, rare. The majority of work on mobile applications is either purely technical and theory

30

Chapter 2: Initial investigation of mobile, peer-to-peer systems

based or concentrates solely on the user experience of a finished system-ignoring discussion of

infrastructure and how it affects the development and use of a finalised system.

The GUIDE system is an appropriate topic within this thesis for other reasons - namely that it has a

similar setup to the George Square system with a central server and installed access points and that it

suffered from the same issues in user positioning. These topics are discussed further in Chapters 3 and

5.

Despite the fact that there is a lack of research into the use of communications technologies actually

employed within working mobile systems and their effects, there are a great number of mobile, peer-

to-peer systems using numerous different communication technologies. The main two technologies

primarily considered are 802.11 and Bluetooth, so these are discussed first.

2.2.1 802.11
Much of the recent leading research in applications which employ 802.11 as a communication medium
in mobile systems has come from researchers at The Interactive Institute in Stockholm: such as
HocMan, Sound Pryer and Road Rager. Hocman [62] is a system that plays audio notifications to

bikers as their vehicles pass on the road. Hocman faced challenges as the bikes are likely to be

travelling at high speed and thus the connection time available may be extremely short -a matter of

seconds. This short connection time imposed the necessity of pre-configuring each device to be

constantly in ad hoc mode with a predefined static IP address and constantly associated with a specific

network SSID. This configuration has become known as a Mobile Ad Hoc Network or MANET. The

authors point out that ̀ although the technology for achieving MANET is well studied, applications of it

are rare'. Indeed, Hocman is one of the first widely known systems to utilise 802.11 MANETs

successfully as the communication technology of a mobile, peer-to-peer system. The authors also state
that `Operation without an infrastructure fits well with biking since traffic encounters can take place

anywhere'. However, this statement can be extended to any mobile system as the location of devices,

and that they will be near an infrastructure node when they encounter one another, can never be known.

Whilst the MANET configuration worked well in the Hocman system the research does reveal one of
the weaknesses of MANETs: `MANETS are limited to device-to-device operation, they cannot rely on
an infrastructure at any level of networking, such as base stations, routers, or servers'. Another

problem with the MANET configuration in Hocman which was not described in published work but is
known to exist from conversations with the authors was that the reliability of devices being able to

communicate successfully with one another in the trials was lower than expected. It is likely that this

was due to constraints in the wireless device drivers that existed at the time Hocman was trialled.
Devices at that time commonly had to be in range of one another when they were first set to ad hoc

mode or they would not be able to meet. This constraint was caused by the fact that setting a device to
ad hoc mode actually created a hidden BSID that was used as a fake infrastructure node two peers in
range could both address. As this BSID was created randomly if the two devices were not in range
when set in ad hoc mode they would be forced to generate separate IDs and thus not be able to

31

Chapter 2: Initial investigation of mobile, peer-to-peer systems

communicate over the same ID when in range. The problems raised from Hocman - that mobile

encounters can take place anywhere, that MANETs limit communication only to peers and the BSID

problem - are addressed later in this thesis in Chapter 4.

Sound Pryer [128] is another system that was implemented and trialled almost alongside Hocman, and

the two clearly share much of the same design, code and infrastructure. Sound Pryer allowed car

drivers to "listen in" to music that was being played in a proximate vehicle. Thus, the drivers of two

cars travelling in the same direction or waiting in traffic could be aware of the musical tastes of one

another. As well as the music delivered over the audio system, Sound Pryer also displayed the colour

and silhouette of the nearby car the music was being received from in order to allow users to identify

which of the nearby vehicles contained the peer Sound Pryer system the data was coming from.

Sound Pryer primarily differs from Hocman in the average length of time peers were connected to one

another. The system was designed to take advantage of the longer connection times by transferring far

more data than Hocman did. If time allowed, entire music MP3s could be streamed in addition to the

basic information about the peers (such as the car colour and type). The Sound Pryer system
demonstrated that `wireless ad hoc networking is a promising technology for streaming MP3 music
files'. Thus, the Hocman and Sound Pryer systems in combination offer preliminary evidence that
802.11 is a suitable choice for both small and large data transfers between peers in mobile, peer-to-peer

communities. The fact that Hocman and Sound Pryer are very similar systems, yet differ greatly in the
length of time peers are connected to one another, raises an interesting issue: the length of connection
time mobile, peer-to-peer systems should be designed to utilise or how they can be designed to make

efficient use of both long and short connections. The appropriateness of 802.11 for mobile systems is

discussed in greater detail in Chapter 4.

Examining the user experience in Sound Pryer, the authors note that ̀ an impression of the source of
music through vehicle shape and colour gives is satisfying. Many users did understand and use the
hints in their attempts to identify the source. ' This reveals that users can experience tangible benefits

by revealing information to the user about the sources of data and how the infrastructure of the system

operates. For example, rather than attempting to create a seamless experience in which the music being

delivered from a peer continued to play after the peer moved out of range, Sound Pryer instead

provided the information for a user to identify the source of the music. Such information allowed a

user to track and identify the original source of the music they were listening to and to accept and,

perhaps most importantly, understand why music stopped playing (having identified a peer they would

not be surprised that the music stopped when they moved out of range). This revealing of information

about infrastructure and data sources can prove more beneficial to the user experience than the

alternative of attempting to hide the infrastructure, as when the system fails it can leave the user
frustrated and confused as they do not have the necessary information to understand the failure or the
knowledge required to rectify it, or to avoid it in the first place. This topic is discussed later in section
2.6 and again in Chapter 4 (section 4.2.2).

32

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Road Rager [22] [23] builds on the Hocman and Sound Pryer systems, creating what is perhaps the

most complex 802.11 mobile, peer-to-peer system to come from The Interactive Institute. Road Rager

is a game child car passengers can play whilst travelling in the back-seat. They carry PDAs disguised

as wands and augmented with rows of LEDs. When players in nearby vehicles are in range, the LEDs

light up to alert the player that others are nearby and to give some basic directional information about

where they may be located. Various gestures can then be made with the wand that represent various

types of attack that can be launched against the peers. Whilst information in both Hocman and Sound

Pryer was not time critical, the data transferred in Road Rager is. The authors report a typical game

scene observed in their trials that lasts only seven seconds but consists of several data transfers. One

second after a connection is made the player has already been notified and responded by making an

attack gesture. After another six seconds, he sees the attack has succeeded and begins to discuss his

next attack move with another traveller in the same vehicle. In many mobile peer-to-peer applications,

such rapid interaction between peer devices is likely to be necessary, and it is clear that 802.11 over

MANETs performs extremely well in this scenario to support smooth interaction of this type. Systems

like Hocman and Road Rager would not be possible without extremely fast and reliable peer discovery,

and this is clearly one of the most important features the underlying communication technology must

support. Again, this feature is discussed later in Chapter 4.

The three systems from The Interactive institute discussed here all use 802.11 in ad hoc mode but

mobile, peer-to-peer systems can also elect to use infrastructure mode 802.11. Returning to the

GUIDE system discussed earlier it is clear from its thorough description of the communications used

therein that it relied on an infrastructure 802.11 setup. Traditionally, mobile systems tend to rely on

infrastructure 802.11 rather than ad hoc when a large data store is required, as having a permanent

server connected to the infrastructure may appear to be the simplest way to provide such a store.

However, the GUIDE authors describe some severe disadvantages that result from such a

configuration.

Primarily, most areas do not have the required density of coverage to support a continual connection to

the server and so must be augmented with additional access points that the system developers install

themselves. This problem is repeatedly encountered and was seen in the GUIDE and Can You See Me

Now [64] research systems, as well as being common in commercial systems such as Ekahau

(www. ekahau. com). The problem occurs due to a heavy reliance on a central server which results in

individual devices providing little or no functionality when the server is unavailable, even if there is a
large community of peer devices in range. Furthermore, this requirement constrains all these systems
to a predefined area - seriously limiting their mobility. In both GUIDE and Can You See Me Now, the

access points used had to be adapted with larger and more powerful antennae as well as undergoing
time-consuming calibration and range testing. Similarly, the Ekahau system requires that users

purchase and install a large number of new access points if the system is to work accurately. However,

33

Chapter 2: Initial investigation of mobile, peer-to-peer systems

such augmentation is costly and the improvements are relatively small, increasing the useable area only

marginally.

Mitchell et al. employ a similar 802.11 configuration to that used in GUIDE for their Six in the City

game [118], which builds on much of the work conducted in GUIDE. As with GUIDE, the authors

elect to install their own infrastructure:

... a major thrust of the work has been the deployment of a series of wireless 802.11 b

networks around the University campus and city centre.

The fact that many developers and designers do go through the costly and time-consuming process of

constructing their own 802.11 infrastructure when trialling a system is indeed likely due to the reliance

on centralised architectures - Six in the City, like GUIDE, does require a central server. Whilst

alternatives to centralisation may negate the use of infrastructure access points altogether, and are

discussed in section 3.2.6, a secondary cause of designers being forced to implement their own 802.11

networks may be that of the configuration required. In order to use public access points to access

central servers, devices must be able to detect public networks, join them and configure their network

settings appropriately. Currently, this process is not automated and requires much input from the user

at every stage. As the process can be quite complex it is not viable to require trial participants to have

the knowledge to enter such details. Furthermore, even if users could potentially achieve the task, it is

distracting and time-consuming. Thus, it can be cumbersome in a system which the user is actively

interacting with, and can lead to the system failing due to not having a connection if it is designed to be

carried in a pocket, periodically providing notifications through audio or vibration alerts. This

requirement of continual configuration, often by the user, frequently makes the use of public access

points infeasible when relying on the current hardware and software available for 802.11 networking.

As part of the investigatory work for this thesis, two systems which do rely on 802.11 infrastructure

setup were studied in detail, the Lighthouse and George Square systems, and are discussed in Chapter

3. Subsequently, a solution to configuration problems of centralised 802.11 mobile systems is

presented as part of a peer discovery method in Chapter 4.

2.2.2 Bluetooth
Bluetooth was originally conceived as a system for communication between mobile devices, by

creating small networks between devices called piconets. It is now extremely common in mobile
devices, being shipped within 2 million products every week [861. However, whilst Bluetooth is

widely discussed as a possibility for systems, such as for the Jabberwockies in the Familiar Stranger

system [134], it is actually rarely implemented into mobile, peer-to-peer systems. Four of the rare

research mobile systems that were implemented using Bluetooth are MobiTip, DigiDress, Social Net

and BlueAware.

34

Chapter 2: Initial investigation of mobile, peer-to-peer systems

In MobiTip, users are able to share recommendations and comments with peers on locations such as

shops or museums [1461. When peer devices discover one another they exchange `tips' which users

are immediately notified of but can browse at any subsequent time. Thus users are notified of

interesting locations. For example, after encountering a peer in a shopping mall the user may be

notified of comments referring to a particular shop or restaurant such as "Great sale on here" or "Serves

excellent coffee". MobiTip was initially designed as a direct peer-to-peer system but the addition of

permanent Bluetooth stations was later made. This was because it was found that the initial

configuration did not seem to exchange enough information during chance peer encounters, and so it

was hoped the addition of permanent stations which would collect and share data to all those passing

by would aid this situation. Users were told the location of such stations and so, if they found they

were not receiving as many tips as they would like, they could actively seek out a station from which to

gather a large number of new tips. However, having to make such an addition may lead to many of the

problems experienced with infrastructure 802.11 - such as investment in additional nodes, increased

setup time due to configuration and calibration of the nodes, and a greatly reduced area in which the

system provides full functionality.

DigiDress aims to support social interactions by allowing users to share personal profile information

before actually meeting face-to-face [136]. For example, in a bar or a club, DigiDress users can search
for peers and, if any are found, view personal information about the owner such as their preferences
(favourite music, food, etc). Bluetooth was selected as it is widely available on phones (Nokia phones

were used in the trials) and consumes little power when compared to other technologies. DigiDress

proved to be extremely successful and gained over 35% of its users through direct peer-to-peer transfer

of the application itself using Bluetooth. However, users did report that the Bluetooth was a "barrier"

to smooth interaction due to the long scan times and unreliable scan results. Additionally, users rarely

made use of the Bluetooth messaging system DigiDress provided, which worked much like an instant

messaging client. Instead, after using DigiDress to view a profile of other users, they would normally

elect to approach others immediately and interact face-to-face rather than send any messages, even
simple ones, over Bluetooth. Unfortunately, it is unclear whether the avoidance of the messaging

system was purely due to slow or problematic Bluetooth performance, or was simply because face-to-
face interaction is much richer and a more desirable way to introduce oneself.

Terry et al. describe another system that attempts to use Bluetooth to support social interactions. Social
Net attempts to identify users' proximity to one another in order to identify opportunities for
introducing friends who are commonly in range of one another, but do not yet know one another.
Unfortunately, work presented on Social Net, both in [162] and [163] is extremely vague on the
technology used to enable peer discovery and communication to occur. However, it is clear that users
had to be extremely physically close and stay together for some time before an encounter was recorded.
Therefore, it can be assumed that Bluetooth was neither rapid nor robust in discovering peers within the
system.

35

Chapter 2: Initial investigation of mobile, peer-to-peer systems

BlueAware [57] uses Bluetooth to provide similar functionality to the Social Net application.

BlueAware periodically scans for peers in Bluetooth range, and notifies a server when it encounters

one. The server maps the Bluetooth MAC addresses to user profiles, checks if the owners have any

similar interests based on their profiles, and notifies both users if they have shared interests. The

BlueAware application does a scan for peers once every 5 minutes. Obviously, such a low scan rate

results in BlueAware missing most instances when users come into Bluetooth proximity of one another.

However, it is adequate to detect when users are together over longer periods; such as students in

lectures, customers in a cafe, or colleagues or friends travelling together. The use of Bluetooth in the

BlueAware application highlights Bluetooth's suitability to lower, rather than higher, scan rates.

Ritter et al. provide an analysis of the advantages and failings of Bluetooth before making the unusual

move of augmenting standard Bluetooth with EWS (a 433MHz RF system commonly found in

automotive remote controls) to create a dual-wireless communications system [145]. A game,

tipspromenad is described in which multiple-choice questions are posted around the environment and

players must search for the questions and answer them when found. The questions are presented on
displays connected to small units with both Bluetooth and EWS capability, and the players' mobile
devices have both Bluetooth and EWS capability. When players answer questions on their devices the

answer is transferred to the nearby question unit using Bluetooth. The unit then uses its EWS unit,

which has a longer range than Bluetooth, to transfer the answer to a more distant central server. EWS

is also used to limit the play area and detect players attempting to leave (which is considered cheating

as whilst outside the game area they are unobserved and may attempt to search for answers from an

outside source).

The game configuration allowed the authors to experiment with Bluetooth for diverse communication

needs. The authors state that they first considered Bluetooth as it `is attractive for ad-hoc gaming since
it is both available on modern PDAs and mobile telephones, and because it `facilitates the formation of

ad-hoc networks'. However, they find it disadvantageous as it only allows 'a maximum of eight
devices' to be used in any one Bluetooth network and as it only has a transmission range of 10 metres.
Whilst the range and low number of supportable devices can be overcome with the use of scattemets

which combine and bridge Bluetooth piconets, the authors correctly identify problems with scatternet

configurations. Firstly, scatternet support must exist both in the hardware and firmware of all
Bluetooth devices involved and it is, unfortunately, still quite rare to find off-the-shelf versions that
have this support. Secondly, the density of Bluetooth devices required to cover any substantial area

would be high, costly and prone to subnets of the network becoming isolated if any one device failed.

The problems the authors encounter also negate some of the advantages of Bluetooth that they initially

identify. For example, they state that [1451:

36

Chapter 2: Initial investigation of mobile, peer-to-peer systems

While Bluetooth facilitates the formation of ad-hoc networks, its time-consuming inquiry

operation leads to long handover times. These handover times restrict the types of games

this architecture is suitable for.

Thus, it is their opinion that Bluetooth requires some form of augmentation if it is to be used over large

distances or in mobile applications or games.

2.2.3 GSM/GPRS/3G
GSM/GPRS and 3G are extremely rare in mobile, peer-to-peer systems-although they are common in

mobile systems which are not peer-to-peer.

A typical non peer-to-peer system which uses GPRS is that described by Hallberg et at. In their

system, designed to examine the enhanced experience of sports events, skiers wore sensors to track

their activity levels and the data was sent to a central server over GPRS using a phone they carried

[81]. Whilst GPRS is effective since it generally provides a high availability rate due to having a high

level of coverage, its low bandwidth makes it unsuitable for continual transference of high levels of

data. Hallberg et al's system worked well with GPRS as the sensors generated extremely small

amounts of data (only pulse rate, position and speed), which were gathered and updated to the server

relatively infrequently.

A research system that uses 3G communication is I Like Frank [61] which used ̀ ... a 3G mobile phone,

a Motorola A835, rather than a PDA' [13]. 1 Like Frank was similar to Uncle Roy [26] in that it

involved two types of player. Online players using a web browser were able to search a map to find the

location of clues scattered around the city and then had to enlist a street player to visit the location

physically to reveal the content of the clue.

3G communication technology was used in I Like Frank as it provides a reliable, always-on connection

which was required in order for players on the street to be always contactable. Again, as with Hallberg

et al's system, 1 Like Frank did not suffer from the reduced bandwidth 3G has when compared to

802.11 or Bluetooth as only textual information and map coordinates were transferred frequently and

the information was not time-critical. It is important to note that all communication in I Like Frank

was conducted via a central server and so was not peer-to-peer, although it may have appeared as such

to users. Indeed, it is impossible for GSM/GPRS or 3G devices to "discover" one another without a

central server - one of the primary reasons it is simply not suitable for, or intended for, peer-to-peer

configurations.

Having examined the existing literature, it is clear that although the majority of theoretical systems

seem to assert that Bluetooth is a prime choice for communications technology as it provides low

power consumption, is built-in on virtually all mobile devices and has been designed for mobile

communications, the fact remains that most implemented mobile, peer-to-peer systems rely on 802.11

37

Chapter 2: Initial investigation of mobile, peer-to-peer systems

rather than Bluetooth. This contradiction may leave a developer or designer of mobile systems unclear

on which is the most suitable communications technology to employ in his or her system.

In order to identify the true performance of these technologies for peer-to-peer systems in mobile

environments a study of peer discovery times, bandwidth, power consumption and reliability is

conducted and described in Chapter 4. In addition, to overcome the problems in power consumption

and reliable peer discovery, a wireless driver is designed and implemented and is also described in the

same chapter.

2.3 Network topologies
Once a communication technology (e. g. 802.11 or GPRS) has been selected for use in a mobile device,

there are often still many possibilities for the type of routing and routing algorithms to employ on that

technology, in order to allow connections to peers or other devices. The selection of a network

topology and routing methods can greatly affect the performance and user-experience of mobile

systems. Whilst many mobile systems, such as that described in [42], simply assume network

connectivity will be easily available, high bandwidth and uninterrupted, this is particularly short-

sighted when it comes to the mobile environment.

The effects that choices on networks and network topologies may have is analysed as part of the design

and testing process in the Six in the City system [118]. Six in the City is a game in which players must

use PDAs, modified to look like guns, to work together in hunting down virtual monsters that exist
digitally. Players wander around the physical environment but use their PDA screens to "see" the

digital monsters in order to know where to aim their guns. Mitchell et al. identify that there are several

possibilities and that the choices will affect the game [118]:

A number of possible architectures exist which are suitable for supporting distributed

multi player gaming environments in fixed networks. We surveyed various groupware

and online multiplayer gaming architectures in order to define a suitable model for

sharing and communicating data between distributed sets of users. ... we focus on the

centralized server, peer-to-peer and mirrored server based architectures

Although the authors find both advantages and disadvantages in centralised and mirror-server

architectures, they suggest that P2P architectures are the most suitable in a mobile environment [118]:

In summary, both client and mirrored server approaches are not well suited to mobile

environments, as the network topology is too dynamic to efficiently predict effective
locations for those servers. P2P approaches are far more applicable as they can be

dynamically reconfigured to suit the current topology.

38

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Simply, mobile devices are unable to rely on infrastructure configurations, as a constant connection

cannot be guaranteed. Mitchell et al. explicitly state this [118]:

... since state is stored on the server [in centralized and mirrored server architectures]

clients have no support for continued operation upon disconnection from the network

which may be fairly frequent in a wireless setting.

It is apparent that mobile devices must either operate in an isolated way or make use of P2P

connections if they are to provide continued functionality.

In the same year as the paper on Six in the City was published, Triantafillou et al. described NanoPeers

- an architecture for peer-to-peer communications on lightweight devices [165]. As part of their

research they draw attention to the fact that many aspects of designing for mobile devices, including

the unique network constraints, are often ignored or overlooked [165]:

However, what researchers usually take for granted (i. e. average
processing/storage/network capacities and power supply of modern computers) may not

exist when we take a step further and deal with devices other than personal computers.

Triantafillou et al. attempt to address this problem and, as part of their work, categorise peer-to-peer

systems into three distinct groups-pure, centralised and hybrid-and apply them to the mobile

environment. They define each as follows [165]:

Pure P2P systems are systems in which all peers are of the same stature and execute the

same algorithm; no peer exposes any special functionality and the operation of the

system is fully decentralized.

In Centralized control systems, peers are of the same stature and execute the same
algorithms, like in the Pure P2P case. However, specific operations are executed in a
centralized manner (e. g. central authentication, indexing and searching server...)

Hybrid P2P systems are a median between these two architectures. Peers are not all
equal; a subset of the peers' population implementations is assigned special tasks.
Selection of such peers is usually based on processing capabilities and available network
bandwidth.

These definitions are extremely useful to many of the systems in this thesis, as the majority of them
have a peer-to-peer architecture. Although Triantafillou do define the three types, they do not advocate
the use of any particular one over the others or state appropriate application types where each might be

39

Chapter 2: Initial investigation of mobile, peer-to-peer systems

used. Re-examining the Six in the City system and applying these categorisations, it is clear that Six in

the City is a hybrid peer-to-peer system [118]:

Within each peer group, there exists a super-node which has the added responsibility of

forwarding highly consistent events which effect state outside a peer group...

It is also apparent that a centralised peer-to-peer system was considered and rejected for use with Six in

the City. Again, although Mitchell et al. do give more detail about their reasoning for selecting hybrid

peer-to-peer over centralised, they do not fully explore the area - nor do they consider or discuss the

possibility of using pure peer-to-peer.

The concept of pure peer-to-peer predates the work of Triantifillou. Although Tveit does not use the

terminology ̀ pure peer-to-peer' it is clear that his mobile recommendation system from 2001 does have

a pure peer-to-peer architecture. He describes the system as follows [1661:

In this paper an approach for making a scalable recommendation system for mobile

commerce using a Peer-to-Peer (P2P) [sic] is considered.

It seems that the high scalability of this particular system is a result of the pure peer-to-peer

architecture employed. There is no requirement for proximity to a central server and no need for

devices to have a current connection for the application to provide its functionality. In essence, data in

the system can spread between devices limitlessly.

A more recent system that has already been discussed in section 2.2.2, DigiDress, takes even greater

advantage of the pure peer-to-peer architecture it employs [1361. DigiDress users are not only able to

exchange the information that drives the application in a peer-to-peer manner but also the application

itself. This ability for code or functionality to be spread through peer-to-peer encounters is novel and is

enabled by peer-to-peer communication technologies such as Bluetooth. The authors of DigiDress

view the ability as a great benefit in growing the community of users, stating that [1361:

DD application also allowed users to distribute the software to non-DD users via

Bluetooth or infrared. This was thought to facilitate the uptake of the application which

was critical to the success of DD.

By the end of the short trial 36.7% new users had received the application from this method. It is clear

that the transfer of functionality or code itself can aid in rapidly growing user-base - the size of which

is crucial to many peer-to-peer systems. The success of DigiDress led to it being renamed Nokia

Sensor and being used as a commercial product for Nokia [137].

40

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Korteum et al. express strong opinions on the network and peer-to-peer topology a mobile system

should employ, as well as agreeing with many of the other authors mentioned in this chapter on the

state of current systems [l001:

In some sense, an ad hoc mobile information system is the ultimate peer-to-peer system.

It is self-organizing, fully decentralized, and highly dynamic. However, current peer-to-

peer systems... are designed for stationary hosts connected to an Internet-like

infrastructure.

Korteum et al. make the bold claim that mobile ad hoc information systems are, by definition, fully

decentralized, negating the use of hybrid and centralised peer-to-peer topologies. Whilst this is perhaps

a little narrow, it does highlight the importance of that particular topology as a target in design.

Korteum et al. list the advantages a peer-to-peer system inherits by utilising an ad hoc network

topology in a pure peer-to-peer environment [100]:

" Self-organizing: as side effect of the movement of devices in physical space, the

topology of a mobile peer-to-peer system constantly adjusts itself by discovering new

communication links.

" Decentralized: each peer in a mobile peer-to-peer system is equally important and no

central node exists.

" Highly dynamic: Since communication end-points can move frequently and

independently of one another, mobile peer-to-peer systems are highly dynamic.

Whilst the decentralized architecture is powerful, as will be seen later in this thesis, it is not appropriate

for every mobile scenario.

As the literature reveals, the type of peer-to-peer architecture (pure, hybrid or centralised) employed by

a mobile system has a significant impact on both its usability and scalability. However, there has been

little, if any, research into the types of architectures that are best suited to particular peer-to-peer

applications or, indeed, peer-to-peer in general.

Kortuem et al. voice strong opinions that mobile systems should be pure peer-to-peer in topology but

the use of "super-nodes", and hence hybrid systems, appears to have been necessary and of benefit in

the Six in the City game. Certainly, the use of hybrid and decentralized systems cannot be easily
dismissed.

The choice of peer-to-peer network type is discussed further in Chapter 3.

41

Chapter 2: Initial investigation of mobile, peer-to-peer systems

2.4 Positioning

Given that a fundamental characteristic of any mobile system is that it can be in any location at any

time, it is hardly surprising that Mantoro and Johnson [113] believe awareness of a device's location to

be the most vital element of context in a mobile system:

Location-awareness is the most important part of context-awareness for mobile

computing systems.

This is highly relevant to the work of this thesis which has as an aim of investigating how mobile, peer-

to-peer systems can take greater advantage of the context information mobile devices provide.

LaMarca et al. concur that location is of core importance to a mobile device's context [105]:

Location has long been established as a key element of a mobile device's context.

Similarly, Bahl and Padmanabhan [3] believe that location is a distinguishing feature of any context-

aware mobile application:

A key distinguishing feature of such systems is that the application information and/or

interface presented to the user is, in general, a junction of his or her physical location.

Jiang and Steenkiste seem to concur, claiming at the beginning of their paper on location models [93]:

Location information is critical contextual information for ubiquitous computing and

mobile computing applications.

Jiang and Steenkiste go on to categorise location models into two classes: hierarchical and coordinate,

and claim that neither model is directly suited to context-aware mobile applications. For example, they

claim purely hierarchical models are disadvantageous as they often rely on self-defined names, which
can be misleading to other users or the same user at a later date, and do not allow accurate distance

calculations to be made. They state that the only negative aspect of a coordinate model is that it hides

hierarchical relationships and thus needs extra specification to enable spatial relationships to be

deduced. Whilst the hybrid model they present may be useful in certain applications, their dismissal of
coordinate systems seems harsh. Indeed, most hierarchical models must rely on coordinate positioning

systems to drive them. Furthermore, there are many successful context-aware applications for mobile
devices that do rely on only coordinate systems such as the Road Rager and GUIDE systems
previously discussed.

42

Chapter 2: Initial investigation of mobile, peer-to-peer systems

[153] presents a study of the mobility levels of email users and discovers that 70% of users access their

email from only one or two locations, which most often correspond to their home and office. However,

they present this finding in a negative way claiming that this demonstrates users are less mobile than

we may believe. The study does show that at least 30% of users check email at more than just their

home and office and this figure may actually be higher. The research overlooks the fact that many

users now check email using mobile devices. Such devices frequently use push email over GPRS or

3G and with this configuration the device is normally assigned a static IP regardless of its location.

Thus, if one was accessing email this way it would appear to be from a single location despite the fact

that one may actually use it in many locations.

It is clear, however, that regardless of the current mobility of users, the mobile market is rapidly

growing, and both Mantoro and Johnson, and Jiang and Steenkiste believe sound location technologies

to be of fundamental importance to any applications that will be context-aware in the mobile

environment. Thus, an investigation of previous research in the use of location in mobile systems is

appropriate.

Zeimpekis et al., realising that mobile devices are increasingly being used in new ways, and that a

mobile device's wireless capability promises to `enable the development of advanced mobile location

services', investigate the currently available mobile indoor and outdoor positioning systems [174].

They state that if new mobile application types are to be enabled it must be noted that:

... a key factor that has been identified towards this perspective is the need for accurate
knowledge of mobile terminal position.

They go on to deliver a taxonomy of existing technologies, and an attempt is made to match specific

categories of mobile positioning system to particular types of mobile applications. The positioning

techniques are split into the two main categories of self-positioning and remote positioning. For

example, self-positioning might be achieved through the use of a built-in GPS unit whilst remote-

positioning might be achieved when a phone service provider uses its network of cell towers to locate

the position of a handset on its network. It is clear that systems that fall under the remote positioning

category of this taxonomy must rely on an external server or service to obtain a location for a mobile
device. To subsequently deliver the location from the remote service to the device itself requires an
infrastructure connection. As many mobile services do not have a constant connection to this kind of
infrastructure or to the Internet, particularly those based primarily in peer-to-peer communities, it is felt

that for the work in this thesis the self-positioning systems and techniques are most relevant. Thus, the

remainder of this section examining the literature on positioning techniques leans more heavily towards

self-positioning rather than remote-positioning techniques.

2.4.1 Early indoor location systems
One of the seminal location systems is undoubtedly the Active Badge system [169]. At the time, the
closest system for locating people was the then standard pager system, which caused an audible beep

43

Chapter 2: Initial investigation of mobile, peer-to-peer systems

on the pager device and displayed a phone number for the receiver to call. Thus, it relied on action

taken by both the requester and receiver to reveal a user's location successfully. It was also extremely

slow and obviously not automated. The Active Badge system directly aimed to improve location

finding by making this process automatic and constantly available within a building.

Users wore Active Badges which contained a small IR transmitter broadcasting a unique signal every
15 seconds. Receiver stations embedded throughout the building could detect these beacons and thus
identify when an Active Badge was within 6 metres. Obviously, by modern standards accuracy was

poor as a user's location could only be determined as being in range of a pre-installed receiver.
Furthermore, as the badges only broadcast beacons every 15 seconds, it was possible for users to walk
through a receiver's range without being detected at all. Each sensor station was wired to a central
server that tracked and logged the users' locations. Users could then locate others by querying the

server from their own workstations connected to the server through standard wired Ethernet, or by

clicking on the badge's button to prompt the display of names and locations on a nearby video monitor
[126].

Despite its limitations, the Active Badge system proved extremely popular with its users when it was
set up at four sites in Cambridge. The setup was considerable, reportedly containing 100 badges and
200 sensors, and actively used over many years. The ability to locate others easily at any time was

considered a great benefit, and the system has been referenced as the inspiration and source of nearly
every location system since.

In 1997, Ward et at. recognised that none of the current position technologies was ̀ well suited to the
task of generating fine-grain location information for use in context-aware computing' [171] and began

creating a location system they hoped would be accurate to within 15cm. The system they created was
called the ORL positioning system (after the Olivetti and Oracle Research Laboratory where the work
was carried out) and used ultrasonic signals to locate devices. The detectable devices were small
(10cmx6cmx2cm) transmitters and were detectable within a single room. The room had to be

augmented with an array of receivers placed into the ceiling at 1.2m intervals. Every 200ms the
transmitters would broadcast a beacon that would be subsequently detected by the receivers in the
ceiling. By analysing the arrival times of the beacon signal at different receivers, distances from the
transmitter to multiple receivers could be determined. The positions of the receivers and the distances
from these to the transmitter could then be used to triangulate the position of the transmitter.

Whilst the ORL system achieved 95% accuracy at 14cm, it is clear that it requires a vast amount of
equipment, calibration and commitment if it is to be used. The authors report that in their trials they
required 16 ceiling units to cover a 75m3 area. Whilst the ORL system achieved new levels in

accuracy, it could still not be used as the basis of a mobile system which aimed to be used in any
location as the expensive setup costs meant it could only be deployed in extremely constrained areas.

44

Chapter 2: Initial investigation of mobile, peer-to-peer systems

The ORL system was later upgraded with smaller transmitters (5cmx3cmx2cm) and reused to explore

the concept of Follow-me applications [85]. At this point the transmitters were also renamed Active

Bats and the system is now more commonly referred to as the Bat Location System. One of the

motivations for continuing the development and upgrade ORL to Bats was that the authors of Follow-

me identify, as others subsequently have, that [85]:

Radio-based location techniques (e. g. GPS), which are successful in the wide area, are

afflicted by severe multipath effects within buildings.

It has long been clear, as is subsequently discussed, that GPS is not a good choice for indoor

environments. However, it is conversely true, because of the setup requirements listed previously, that

ultrasonic positioning systems such as ORL and Bat are poorly suited to outdoor environments.

Priyantha et al. built upon the work in ORL and Bats in an attempt to significantly reduce the

deployment costs of ultrasonic positioning techniques. They realise the power of location to drive

mobile context-aware applications, stating [1391:

A compelling set of applications enabled... are context-aware, location dependent ones,

which adapt their behavior and user interface...

Their Cricket system [139] is, unlike previous ultrasonic positioning systems, completely
decentralized. The Cricket system puts the onus on users to install "beacons" in areas they control.
For example, it would be the responsibility of the occupants of an office to install a beacon if they

wanted the system to be available there. Beacons can be installed anywhere throughout a building and
do not have to confirm to the strict 1.2m spacing the Bat system required. The Cricket system provides
benefits at the cost of accuracy as it is typically accurate to within a few feet - far less accurate than
Bat. However, Cricket remains one of the most appealing indoor positioning techniques due to its

reduced setup costs, decentralised (and therefore more scalable) architecture and easier manageability.

2.4.2 GPS
One of the most readily available and widely used positioning systems for mobile devices in the

outdoors environment is GPS. GPS, originally designed in 1978 for military use, was made available
to civilians in 1996 when Bill Clinton declared it a US national asset and created an executive board to

manage it as such. Since then, a plethora of commercial GPS units have become available and GPS
functionality has recently started to be built-in in modern PDAs and cell phones (for example, in the
HP iPaq hw6515 and the BenQ-Siemens SXG75). GPS has long been used with mobile applications -
systems which rely on GPS include Cyberguide [1], GUIDE [36], Opportunity Knocks [133], FIASCO
[32], WatchMe [115] and CampusAware [25]. A detailed description of GPS, its history and future

plans for upgrading the network of GPS satellites is presented by Lammertsma in [106].

45

Chapter 2: Initial investigation of mobile, peer-to-peer systems

In 1997, the Cyberguide [1] system relied on GPS, augmented with an electronic compass to provide

orientation information, to locate the tourists using the application. This system was used in three

outdoor areas around a campus where it proved effective and positioning failures were not reported as

an issue in any of the trials. However, GPS failed to work indoors as the authors found that `GPS

signals are weak or not available'. This is the most widely known problem with the GPS system and it

is commonly believed that GPS is a good solution whilst outdoors but does not work when indoors.

The authors summarise this belief when they write [1]:

GPS is unreliable indoors and the IR-based beacon system is impractical for us to
implement outdoors.

The GUIDE system demonstrated that GPS is not only unsuitable for indoor use but that GPS

reliability outdoors is not always guaranteed [36]. GPS was seriously considered and tested as a
positioning system for GUIDE but the authors finally decided not to use it for several reasons. The

main problem was that GPS is often extremely unreliable in city environments. As the authors say:
`the position of tall buildings can prevent the GPS system from 'seeing' a sufficient number of satellites
to obtain a fix on location. ' This problem, as well as multipath GPS problems in which satellite signals
are bounced off high buildings, can often make GPS a poor choice for any systems which are targeted
for use in large cities. Indeed, this problem was experienced during the work on this thesis and is
described in Chapter 3 (section 3.2.5.3).

A secondary problem is that GPS is not as yet commonly found in mobile devices and so external units
must be used. This negative feature becomes more severe if standard GPS is found to be unreliable in
the target location and must be supported by DGPS (Differential GPS). The GUIDE authors found that
alternative positioning systems were more attractive as they worked `without requiring bulky
differential GPS equipment'.

Enge et al concisely describe many of the current problems with GPS-including obstructions, indoor

use and multipath. The quote that follows is rather lengthy, but is necessary as multipath problems are
indeed common and are experienced in systems described later in the thesis. Therefore, it is prudent to
explain fully now so that the problem is understood subsequently. In the quote, SNR refers to Signal-
to-noise Ratio, which is a measure of the ratio between the signal containing the information that is

actually desired to be transmitted and the background noise or interference [60]:

Under foliage, many satellites have SNRs below 25 dB-Hz even when they are 40 degrees

above the horizon. Inside a hotel, the SNRs really suffer... The urban and indoor

challenge is compounded by multipath. As the name implies, the signal from the satellite
has followed multiple paths to the receiver. In addition to the direct path, the signal has

arrived after one or more reflections. In open environments, the reflected signals are
almost always weaker than the direct signals, but this is not always the case in cities and

46

Chapter 2: Initial investigation of mobile, peer-to-peer systems

indoors. Reflections from buildings and other structures are commonplace, and this

multipath can have any of the three undesired effects. The reflected ray may

destructively interfere with the direct ray and fade the composite signal power. The

reflected ray may have approximately the same power as the direct ray and distort the

correlation peak used by the receiver to make the GPS measurements. The reflected ray

may be much stronger than the direct ray and cause the receiver to assume that the

reflected ray is the direct ray.

Multipath is indeed an inherent problem with GPS and there is no completely effective solution.

Whilst, Enge et al. propose novel algorithms for further filtering GPS data to increase the sensitivity of

receivers, they openly state that the algorithms have yet to be formally assessed and that there is a great

deal of work yet to be done before GPS will be reliable in urban environments.

Rakkolainen et al. propose a system in which a 3-dimensional model of a city can be used to predict

where multipath may occur and to attempt to correct for the errors it may introduce, mainly by using

the model to work out the height of the receiver [141]. Again, whilst such a technique can reduce the

errors inherent in GPS due to multipath it cannot eliminate them completely. Furthermore, the

technique requires a considerable amount of storage for the model of the city, or alternatively a wide

connection to a server to stream the model from and is thus not generally suitable for mobile devices.

It is clear that despite attempts at improving GPS, GPS alone cannot yet offer a comprehensive

positioning solution for outdoor environments.

Whilst future upgrades to GPS, such as Galileo and GNSS [106], are likely to improve accuracy and

reduce signal interference by the end of the decade, it seems clear that GPS will continue to suffer from

signal loss and dropout in built-up or indoor locations.

2.4.3 802.11
The first use of 802.11 wireless as a positioning system may be that of the RADAR system [31. By

sampling the strength of the signals to the 802.11 base stations and calculating the mean, standard

deviation and median, the RADAR system is later able to use that information to triangulate a position
based on the strengths to multiple base stations. One important point that the authors discovered was

that the orientation of a mobile user can greatly affect the signal strengths recorded to access points.
Variation of up to 5dBm is possible with the user standing on the same spot depending on whether or

not their body mass (containing mostly water which is particularly obstructive to wireless signals) is

between the access point and the mobile device. RADAR successfully managed to track both

stationary and mobile users indoors with an accuracy of approximately 2-3 metres.

In the same year work on RADAR was published, Small et al. published similar work. They describe

two positioning techniques they trialled at Carnegie Mellon University [155]:

47

Chapter 2: Initial investigation of mobile, peer-to-peer systems

The first approach consists of discovering the active access point for a mobile client and

mapping that information onto a two-dimensional campus map. An access point covers a

sphere of approximately 75 feet in diameter. The second approach improves resolution

by triangulation based on measured signal strength from several nearby nodes.

Just as Bahl et al. discovered earlier, Small et al. found the same 5dBm variation in sampled signal

strengths but also found that accuracy fell as distance from the access point grew. This leads them to

suggest that [155]:

... it may be advantageous to place a higher degree of confidence in stronger signals and

weight them accordingly.

As will be clear later in the thesis, this suggestion is an appropriate one and is built in to the positioning

system, Navizon, developed as part of the thesis.

Small et al. describe a similar problem in their work as the RADAR system exhibits, that of requiring

an extremely large number of samples to determine adequately the location of the nodes [155]:

To cover an area of one acre at one sample every 10 feet, we would require 441 samples.

If we were to generate a table to determine a user's location in a large area such as

Carnegie Mellon's 103 acres, we would require 44,100 samples. This introduces two

problems. The first is the problem of taking these samples. This averages to

approximately 110 samples per access point. The second of these problems is searching

through all of the samples to determine the location.

The requirement for such a large number of samples to be collected before the system can be used
introduces substantial set up cost in using systems such as RADAR and that described by Small et al.

and makes them unattractive for mobile systems. Furthermore, the search through such a large sample

set can subsequently be time consuming if not efficiently implemented, particularly on a mobile device

where processing power is often low.

High set up cost is also seen in commercially available 802.11 positioning technologies. InStory [40]

is a system that provides interactive cinematographic narratives and entertainment related activities to

mobile devices. As part of this process involved `real persons and virtual characters that perform

actions and also move in physical and virtual spaces' and as the trials were built to run in a council

owned palace in Sintra, Portugal, a position system that worked indoors was required to support the

system. The authors elected to use the commercial Ekahau software which is a position system based

on 802.11 wireless. They state that [40]:

48

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Mobile networks combined with positioning techniques provide a new channel for a

radically new form of cinematographic narratives that are navigable in space.

Although the authors do not state so themselves, Ekahau requires a lengthy calibration period during

which the calibrator must repeatedly scan for access points, rotate 90 degrees, scan again until a full

circle is completed and then move forward one metre and start the process again. This must be done

for each square metre that is to be covered by the positioning system. It is clear that the Ekahau system

is a direct descendent of RADAR, as the requirement of the same sampling in 90 degree orientations is

discussed in earlier RADAR work [31:

In one orientation, the mobile host's antenna may have line-of-sight (LoS) connectivity to

a base station's antenna while in the opposite orientation, the user's body may form an

obstruction.

Furthermore, if the network setup is changed at all, such as a single access point being removed or

added, the process must be repeated from scratch for the entire area. If Ekahau is calibrated correctly

in an area with a sufficiently high density of access points it can provide positioning accuracy to within

a few metres.

Thus, although 802.11 can be used to triangulate a position in this way, it requires an extremely lengthy

and costly setup process. The fact that 802.11 positioning of this type is not available unless an area is

calibrated means that it cannot provide a global, generic positioning system if used in this way.

After rejecting GPS for the reasons detailed previously, the authors of GUIDE also elected to utilise
802.11 positioning but in a different manner. Instead of attempting to triangulate a position, they

simply coupled each unique infrastructure access point MAC address to a name rather than geographic

coordinates. This equates to the selection of a discrete model over a continuous coordinate one, as
described in [93]. This proved extremely effective within GUIDE as, although it was not as accurate,
GUIDE did not require information to be delivered at fine-grained locations. Furthermore, the location

was guaranteed to be known whenever the system was connected to an access point.

A similar setup to that used in GUIDE was employed in ActiveCampus, specifically the ActiveCampus
Explorer [77]:

ActiveCampus currently detects location through the PDA's report of currently sensed
802.1lb access points. Their reported signal strengths and known locations are used to
infer the user's location by a least-squares fit.

The location services available through this nearest-beacon positioning, which results in reduced
accuracy when compared to methods used in RADAR or Ekahau, are a subset of those available in

49

Chapter 2: Initial investigation of mobile, peer-to-peer systems

more accurate systems. Such systems are identified by Sood et at. as Low-fidelity location based

information systems [157] - these are discussed further in section 2.4.5.

When using 802.11 for positioning it is apparent that previous systems either suffer from an extremely

high set up cost, such as in RADAR and Ekahau, or suffer from substantially reduced accuracy, as in

GUIDE and ActiveCampus.

2.4.4 Bluetooth
Madhavapeddy and Tse conducted an in-depth study into the viability of using Bluetooth for a position

system [I 11]. In their trials they rely on the Active Bat system [85] previously discussed as a `location

oracle' to compare their Bluetooth position techniques to. Early on in the paper the authors correctly

draw attention to one of the main disadvantages of using 802.11 for positioning [I I 11:

Bluetooth is especially important due to its ubiquitous and "always-on" presence... in

contrast to the more power-hungry WiFi, which is generally only switched on in

stationary devices.

However, their methodology section is quick to point out the difficulties that exist in the Bluetooth

protocol [l l l]:

[Bluetooth] chipsets make no guarantees about the accuracy of the magnitude.
Therefore the only source of signal strength information we can rely on for Bluetooth

devices is the link quality.

The problem is compounded by the fact that the link quality reading is only reported as an average over

the length of the Bluetooth scan rate which is, by default, ten seconds on most devices. Thus, raw
RSSI strengths are not available and the average reading is updated far too infrequently to be of much

use in discovering distances to access points to use in position triangulation.

This is later reinforced when the authors state (I I I]:

Compared to WiFi, none of the reported link quality values give high enough accuracy

and dependability to enable location-sensing based on signal strength alone.

This problem of not having direct access to accurate, timely signal strength information is perhaps the

largest obstacle to using Bluetooth for positioning as it results in any form of triangulation being based

on unreliable sampling.

Despite conducting their experiments in a quiet building after normal working hours, and taking care to

ensure there was always a clear line-of-sight between the Bluetooth device and the Bluetooth access

points being used to triangulate positions, one of Madhavapeddy and Tse's early discoveries is that the

50

Chapter 2: Initial investigation of mobile, peer-to-peer systems

BER (Bit Error Rate) between two Bluetooth devices is too high for communications to be of use when

one of the devices is being moved at a brisk walking pace [1111:

... users walking around a building at a normal walking pace would have an adverse

impact on their link quality and available bandwidth. This is of concern to location-

based services deployed in public buildings such as shopping malls - in order to push

high-bandwidth content reliably, the user would have to be relatively stationary rather

than walking through the Bluetooth zone.

This is a crucial discovery as it immediately negates Bluetooth positioning for use in any form of

transport other than a slow walking pace. Indeed, after this early finding the rest of Madhavapeddy and

Tse's research for the paper was gathered from devices being moved at below average walking pace or

being held completely stationary.

Madhavapeddy and Tse also examine the useable range of Bluetooth communications, finding [111):

the Bluetooth transmitter has a practical range of around 2 rooms, after which the

BER exceeds 2% and the bandwidth on the connection drops below useful levels.

Compared to 802.11 this range seems extremely low and thus means that if Bluetooth position

triangulation were possible it would require an extremely high-density of nodes to operate efficiently.

In any event, the authors also point out that most Bluetooth devices can only detect and connect to one

other device at a time and thus triangulation from multiple nodes is simply not feasible.

Madhavapeddy and Tse are quite clear that Bluetooth, in its current form, is not viable as a means of

locating mobile users, summing up by giving a list of enhancements to the Bluetooth protocol that

would be required before it were [111]:

(i) expose a fine-grained RSSI dBm value via HCI (similar to 802.11); (ii) accept

multiple simultaneous Bluetooth connections in order to assist triangulation; and (iii)

update RSSI values per-packet without a significant time lag.

The results Madhavapeddy and Tse gather are in many ways relevant to the use of Bluetooth as a

general mobile, peer-to-peer communications system and concur with many of the findings from other
literature in section 2.2.2. The use of Bluetooth is further investigated in this thesis in Chapter 4

(section 4.1.2).

2.4.5 Mobile Phone Cell
As with Bluetooth, positioning that relies on mobile phone cells has not yet become widely popular and
it is difficult to find any research systems that employ it as the sole technology to drive a positioning
system in the literature. Whilst there are commercial systems that use mobile phone cell information to

51

Chapter 2: Initial investigation of mobile, peer-to-peer systems

locate a mobile phone2, they are not widely used due to the fact that they are often expensive and

extremely inaccurate. Certainly, they are currently far less accurate than the systems discussed in this

section. Furthermore, virtually all of the commercial systems require that one user must actively

request the location of another, and the location is normally returned in a proprietary format in an SMS

message. Perhaps most importantly, all these services rely on information delivered from the

operator-resulting in an external dependency on the operator's servers and resulting in a system in

which the end user has little or no control over the privacy of their location. These problems negate the

use of these commercial services to provide a continual and automatically delivered location, which is

often required to drive a location-aware application.

Despite mobile phone cell positioning being a relatively new area and not implemented into many

research systems, Trevisani and Vitaletti do provide an investigation into the limits and benefits of

positioning using cell-ID [164]. Trevisani and Vitaletti examine cell-ID performance in urban,

suburban and highway areas in both the U. S. A. (New York) and Italy (Rome). At the beginning of the

paper they point out [164]:

Studying Cell-ID's performance by simulation requires operators to provide information

on network planning. This data is not made public by operators. ...
We remark that our

experiments do not try to be complete...

This is perhaps one of the largest inhibitors to research in the area and, as the authors themselves

remark, it has hampered their own work. Another inhibitor, not directly stated in their work but

implicit throughout, is that the phone developers, possibly at the behest of the network operators, do

not provide APIs or expose the functionality to allow other developers to gain access to the full

information about what cell towers a phone can currently detect. Most mobile phones continually scan

and analyse the signal strength to six cell towers in order to make decisions about which is the most

appropriate to use. However, there is currently no phone on the market for which there is a generally

available API which exposes any more than the cell-ID of the single cell-tower the phone is connected

to. Thus, in Trevisani and Vitaletti's research, they concentrate only on identifying which is the

currently connected cell-ID in order to locate a user within a particular cell.

After collecting over 6000 samples of cell-ID and location (tracked using a GPS unit), Trevisani and
Vitalitti discover that the average distances in metres from the mobile device to the nearest cell towers
in Italy and the U. S. A. are as follows:

URBAN SUBURBAN HIGHWAY

ITALY 480 750 1000

U. S. A. 790 490 2910

'Such as htto: //www. lmceamobile. com/, httn: //www. followus. co. uký and htto: //www. maDemobile. com/.

52

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Higher densities of cell towers are, unsurprisingly, generally placed by operators in dense population

areas, thus the Italy results demonstrate the expected fall in average distance from urban to suburban

and to highway. According to the authors, the discrepancy in the U. S. A. results, where the suburban

average distance to the nearest cell tower is lower than the urban, may be due to several reasons. The

main two are that in the New York area the high-density of large buildings often obscure the signal to

the nearest cell-tower and so cell-phones may spend longer periods of time connected to more distant

towers and that suburban cells in the U. S. A. are more closely packed at high-population areas rather

than spread more uniformly as in Europe.

Whilst the authors are in no doubt that the 500m and 800m levels of positioning accuracy gained from

identifying which is the nearest cell in U. S. A. and Italy respectively are not suitable for the use of all

mobile applications in general, they do identify a sub-group where it may be convenient to rely on cell-

sized accuracy [164]:

... in our opinion there is a set of significant services, the so called resource discovery

services, for which Cell-ID's accuracy might be sufficient. Resource discovery services

answer questions like: "Which Chinese restaurants are in my vicinity? "

As the size of a phone cell is rarely greater than 2km, any services found in the cell are highly likely to

be within walking distance.

Sood et al. further discuss how this type of inaccurate location information may still be of value in

some application areas [157]:

In many cases, we are able to use cell information to obtain longitude and latitude

information down to a one block radius. Our efforts in the area of low fidelity (Low-Fi)

location information is aimed at using this less than perfect data to still provide users

with services that are more powerful, effective, and easy to use than those that lack any
location information at all.

Sood et at. describe a phone application called StickyNotes in which users are able to leave notes about
the location they are currently at. As the position granularity is approximately the size of a city block

the relatively large imprecision can, in some situations, actually prove beneficial in allowing the system
to search quickly and identify all the markers available within this short walking distance.

The most accurate phone cell location technique in published work is likely that of Otsason et al. [129].
They begin by listing a number of reasons they believe GSM positioning is advantageous over other
forms of positioning, particularly for use indoors where a location from GPS is normally not available
[129]:

53

Chapter 2: Initial investigation of mobile, peer-to-peer systems

GSM-based indoor localization has several benefits: (i) GSM coverage is all but

pervasive, far outreaching the coverage of 802.11 networks; (ii) the wide acceptance of

cellular phones makes them ideal conduits for the delivery of ubiquitous computing

applications. A localization system based on cellular signals, such as GSM, leverages the

phone's existing hardware and removes the need for additional radio interfaces; (iii)

because cellular towers are dispersed across the covered area, a cellular-based

localization system would still work in situations where a building's electrical

infrastructure has failed. Moreover, cellular systems are designed to tolerate power

failures. ...
(iv) GSM, unlike 802.11 networks, operates in a licensed band, and therefore

does not suffer from interference from nearby devices transmitting on the same frequency

(e. g., microwaves, cordless phones); and (v) the significant expense and complexity of

cellular base stations results in a network that evolves slowly and is only reconfigured

infrequently. While this lack of flexibility (and high configuration cost) is certainly a

drawback for the cellular system operator, it results in a stable environment that allows

the localization system to operate for a long period before having to be recalibrated.

Otsason et al. achieve accuracy ranging between 20 to just under 5 metres depending on the density of

buildings in the area (the buildings in downtown areas create more reflections and interference than

suburban areas). However, the system they implement does not work on standard phones and they are
instead forced to use specialised hardware rather than standard phones in order to sample the GSM

beacon data they require to drive their system [129]:

We collected 802.11 and GSM fingerprints using a laptop running Windows XP.

.. We collected GSM fingerprints using a Sony/Ericsson GM28 GSM modem, which

operates as an ordinary GSM cell phone, but exports a richer programming interface.

... To collect the measurements, we placed the laptop on an office chair and moved the

chair around the building.

Furthermore, Otsason et al. rely on a specific Sony/Ericsson API and thus the technique only works

with their proprietary hardware. Clearly, Otsason et al's system is not yet ready for use in small mobile

devices such as PDAs or phones in general. However, they do clearly demonstrate that a much higher

accuracy, improved from earlier work, is indeed possible using GSM technology.

Despite the high accuracy achieved, Otsason et al. realise that GSM is not accurate enough in all

situations and briefly discuss a technique for using a combination of GSM and 802.11 to achieve higher

accuracy and availability. Combinations of positioning technologies of this nature are discussed in the

next section.

54

Chapter 2: Initial investigation of mobile, peer-to-peer systems

The phone positioning techniques discussed in this section so far have relied primarily on triangulation

of a phone's position based on information on detected signal strengths and cell identification numbers,

using centroid algorithms to achieve this. Chen et al. report on an alternative method known as

`fingerprinting' [34]. This technique assumes that detected cell identification numbers and signal

strengths at a given location are stable over time. By recording this information a single time, along

with a text label to name the location, the device can later be identified as being at that location

whenever the cell identification numbers and signal strengths match in the future. Thus, the

fingerprinting technique constructs a record of text labels matched to cell identification numbers and

signal strengths, and by searching this can ascertain if the current information matches any of the stored

locations. Chen et al. find that fingerprinting techniques provide an accuracy of 94-313 metres,

depending on the density of cell towers in the area and whether information from cell towers owned by

providers other than the one the phone is contracted to can be used.

Fingerprinting techniques are employed in the Whereabouts Clock [151]. The Whereabouts Clock

aims to display the current status of all the members of a family through a clock-shaped display

mounted in an often-used room within the family's home. Information about the current location of

each member of the family is determined through fingerprinting techniques used on the mobile phones

owned by each family member. Fingerprinting is applicable to such an application as the vague

information about location that it provides through simple text labels-such as "Home", "School" or

"Work"-is more desirable to display to family members than map coordinates. However, such vague

information is not generally applicable to all mobile applications. Whereas a text label can be assigned

to a region if map coordinates are known, map coordinates cannot be determined from the information

fingerprinting algorithms store. Therefore, whilst the Whereabouts Clock demonstrates that

fingerprinting techniques are suitable in some mobile situations, a coordinate-based system is more

generally desirable, as it can be used to drive a larger number of location-aware, mobile applications-

and can be augmented with text labels similar to that provided by fingerprinting if required.

As will be shown later in Chapter 5, accurate GSM positioning of the nature Otsason et al. described,

which primarily calculates coordinate-based locations, is implemented within a system called Naivon

as part of this thesis.

2.4.6 Combinations
Whilst it is obvious that there are a large number of positioning technologies, it is also clear that no

single one manages to provide mobile applications with an accurate, always-available location service.
Furthermore, even those developed solely for outdoor use, such as GPS, do not manage to provide a
location in every outdoors scenario (for example, as has been discussed, GPS performs poorly within

cities).

Reviewing the existing literature in 2002, Baus et al. realise that [81:

55

Chapter 2: Initial investigation of mobile, peer-to-peer systems

None of the discussed systems allows for a seamless switching from indoor (passive

location sensitivity) to outdoor (active location sensitivity)...

This leads them to create one of the first, if not the first, system that works both indoors and outdoors

by combining GPS and IR positioning into a single system [8] which seamlessly switches between the

outdoor ARREAL and indoor IRREAL systems without requiring interaction from the user. A more

advanced system that follows an almost identical concept is later presented by Kruger et al. [101).

Their system again uses GPS outdoors and infrared positioning indoors and, unsurprisingly, their

system suffers the same accuracy and high-cost problems encountered by Baus et al. 's earlier work.

In 2004, Benford et at. describe the problem with existing positioning technologies as follows [131:

.. there is currently no universal tracking system that can provide reliable, accurate and

extensive coverage across a city with the result that game developers and players have to

cope with considerable uncertainty with regard to location.

The fact that reliable and accurate positioning is unavailable does have clear implications for the types

of mobile systems that can be developed and the experiences can be provided to users. The fact that

current positioning technology cannot be relied upon leads Benford et al. to create a system that relies

purely on the user's own direct input. Instead of relying on an external device or hardware to locate a

user, the user's position is inferred as the centre of any map they are currently viewing or explicitly

marked by the user through clicking on the map. Surprisingly, this works extremely well in a game
Benford et al. describe, Uncle Roy is All Around You. The fact that self-reported positioning in this

way proves better or equal to existing positioning technologies does not necessarily demonstrate that

self-reported positions are a successful strategy. Rather, it further emphasises that existing positioning

technologies are simply not viable solutions in mobile systems. Indeed, Benford et al. make clear the

problems in self-reported positioning [131:

Two potential limitations of self-reported positioning are that the mobile player has to
know where they are and/or where they are heading, and that they may cheat, that is

deliberately choose to lie about their position.

... A further issue for self-reported positioning is that it demands the constant engagement

of the user in order to maintain an up to date position, and even then remote users may
be frustrated at the low frequencies of updates. While this may be acceptable for tasks

that are highly fore-grounded - such as playing an absorbing game - it may be less

suited to more background tasks, for example where a context aware system

spontaneously interrupts the user.

56

Chapter 2: Initial investigation of mobile, peer-to-peer systems

lt is apparent that when a system with these severe problems outperforms or equals existing

technologies, the existing technologies require substantial improvement. A potential solution is the

combination of several existing technologies in order to reduce or negate the problems of any one

system

it was not until 2005 that concentrated effort began in combining many positioning technologies into

one system in order to provide a more comprehensive solution. Virtually all of the published work in

this area has been as a result of the Place Lab initiative whose authors echo the problem stated by Baus

et al. earlier [104]:

... current location systems do not work where people spend most of their time: coverage

in current systems is either constrained to outdoor or environments or limited to a

particular building or campus with installed sensing infrastructure.

They also describe a secondary problem in that:

... existing location technologies have a high cost of entry to both users and application

developers. Many location systems require expensive infrastructure, time-consuming

calibration, or special tags, beacons, and sensors.

To overcome both the problems that no single positioning system provides a comprehensive solution

and that many have a high cost of entry, Place Lab aims to combine several existing positioning

technologies in the hope of greatly increasing the percent of time location fixes are available whilst

also reducing the cost of entry. Place Lab's goals are most succinctly asserted in the Place Lab home

page's introductory text [1381:

Place Lab is software providing low-cost, easy-to-use device positioning for location-

enhanced computing applications. Place Lab tries to provide positioning which works

worldwide, both indoors and out (unlike GPS which only works well outside). Place Lab

clients can determine their location privately without constant interaction with a central

service (unlike badge tracking or mobile phone location services where the service owns

your location information).

LaMarca et al. 's research shows that for three types of user (an immunologist, home-maker and retail

clerk) location fixes in Place Lab using GPS are available for only 4.5% of their day, GSM for 99.6%

and 802.11 for 94.5% [104]. However, it is found that by fusing the three technologies a location fix is

available for 100% of the day.

57

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Interestingly, measurements with Bluetooth positioning were trialled but omitted from the research

results [1041:

... non-mobile Bluetooth devices have not reached sufficient density where they are

eminently useful for beacon-based location estimation in the wild. ...
Although our results

do not report Bluetooth beacon densities, we did scan for them during our data

collection and we saw virtually no fixed Bluetooth in any of our test locales. The

sparseness of Bluetooth beacons is further exacerbated by the fact the each scan for

nearby Bluetooth beacons takes approximately 10 seconds to complete.

The initial statements here provide further reasons why Bluetooth is generally a poor choice for

positioning techniques whilst the last, referring to the long scan time, echoes findings revealed earlier

in the literature review. LaMarca et al. go on to provide their view on the future of mobile context-

aware systems, which emphasises the need for a more reliable and available positioning system 11041:

We believe that many emerging location-aware computing [sic] application are going to

require 100% availability of location information in real people's lives, similar to the

way cellular phones are held to a 100% availability standard.

Despite Place Lab's success as a fusion of multiple location technologies, one of the main problems it

has is that the location of the nodes it relies on to drive its 802.11, GSM and Bluetooth positioning

must be pre-sampled in an area before any of these forms of positioning is available. In another paper

from the Place Lab authors, LaMarca et al. themselves describe the problem as severe (1051:

Both the initial mapping and subsequent re-mappings are time consuming and represent

the biggest cost in deploying and maintaining the system.

They attempt to generate a solution in the form of 'self-mapping' that allows new node positions to be

automatically calculated from only a few initially known nodes. When a new node is detected a scan
for known nodes may result in successful hits. If this is the case then the newly discovered node's

location can be estimated by analysing the signal strengths to the known nodes and attempting to

triangulate the mobile device's current, and therefore possibly the newly detected node's, location. The

authors' tests demonstrate that, from a 101/9 seed set of beacons, self-mapping methods can build up

coverage to between 87-90% of an area. They compare this to war driving, which involves the
detection of access points in the area by a person, or people, systemically driving through as much of
the area as possible whilst carrying a PDA or laptop with a wireless card capable of detecting 802.11

networks in order to discover the location of access points in the area. The authors also make the claim
[105]:

58

Chapter 2: Initial investigation of mobile, peer-to-peer systems

With as little as 50% of the beacon locations, self mapping can produce a radio map that

estimates a user's location as well as a war driving database. Further, we showed that

when new beacons are introduced, self-mapping estimates their positions nearly as

accurately as war driving.

Kim et al. conduct a study of the accuracy and reliability of war-driving techniques which are relied

upon to gain the node locations, or seed node locations, to drive the systems described. They describe

the need for such information 1971:

... researchers have started using 802.11 beacon frames from access points (APs) to

locate wireless network users. Intel's Place Lab provides software that can track users

both indoors and outdoors. Skyhook Wireless provides a similar commercial solution for

locating Wi-Fi users. These approaches require knowledge of the (actual or estimated)

location of APs. In addition to user-location tracking, researchers also use the location

of APs to analyze wireless network characteristics such as the coverage range of APs or

interference among APs.

Whilst not directly relevant to this particular section, it should be noted that the technology which
drives the Skyhook Wireless system referred to in the quote directly stems from work carried out for

this thesis and was developed by myself and Malcolm Hall as part of Skyhook's Bertha application.

Kim et al. discover that the method of transport used whilst war-driving can greatly affect the quality of
the results, finding that war-driving an area detected 38% of the previously known access points with a

median error of 40.8m whilst war-walking detected 59% with a median error of 31.6m. They state of
both war-driving and war-walking 1971:

We observed that estimated AP locations are often biased towards the war-driving paths,
which makes the maximum signal range of APs to appear shorter and the interference

among APs to appear more severe than in reality.

This is a strong caution against using normal war-driving techniques and placing discovered nodes at
the exact location they are discovered. This problem is addressed later by the work in this thesis and a
possible improvement is discussed in Chapter 5.

As mentioned, some of the work referred to was conducted as part of this thesis. The work in this
thesis resulted in similar position combinations and was built into the now commercially available
product named Navizon3. Although similar to Place Lab in many ways, the research and work for the
positioning technology Navizon utilises was conducted and implemented completely independently of
the Place Lab software. Indeed, during the research, design and implementation stages of the

www. navizon. com

59

Chapter 2: Initial investigation of mobile, peer-to-peer systems

technology both Malcolm Hall and myself were not aware of the work by Place Lab. The first use of

our technology in a system outside our own, Skyhook's Bertha4 application, was in early 2004 whilst

the majority of Place Lab research was published in 2005.

The positioning technology we developed, which now drives the Navizon system, is discussed in far

more detail in Chapter 5.

2.4.7 Identifying important locations
A good positioning system can locate mobile devices and provide the location to end-users but this

information, such as latitude and longitude coordinates, is often not enough to prove useful to the user.

Marmasse and Schmandt sum up the problem [1141:

... coordinates must be translated into positions that are relevant to the user, and these

obviously vary greatly from person to person. Users neither know nor care about such

coordinates; rather they identify "home"; "work" "school"; "post office" etc. Although a

map could be used to specify such points, why should users spend valuable time filling

out detailed property lists for a system which has yet to prove its value to them?

They describe a system they implemented called comMotion in which the system attempts to discover

locations that may be of importance to the user automatically. The system relies on GPS for its raw

location data and uses a simple algorithm to identify if locations are salient. If the GPS signal is lost it

is assumed that this is because the user has entered a building. If this occurs three times at

approximately the same location then the system identifies the location as possibly important. It is

hoped that over a short period of time this method will be able to identify the majority of buildings that

are of importance to the user in their daily lives. Users are notified when a location is identified as

important and can enter their own label for the location immediately or wait until a more convenient

time and enter it by selecting it from a list of recently identified locations. Whilst this technique is

simple, it proves extremely effective and has been implemented into other systems such as that

described in [1601.

Hightower et al. build on the work in comMotion - stating almost the exact same motivation for their

work [88]:

Many emerging location-enhanced applications, however, want colloquial place names

like "Home, " "Work, " "Movie Theater, " or "Tony's Pizzeria" instead of latitude and
longitude coordinates.

`Bertha is an application that Malcolm Hall and myself developed for Skyhook Wireless. The application was designed to be
used inside vehicles as they travel around, in order to map out the locations of access points they pans. The application
continually scans for 802.11 access points, attempts to work out their approximate location, and uploads all recently scanned
access points to a central server whenever an access point Skyhook Wireless are permitted souse is in range. Bertha is still used
by Skyhook Wireless, who pay delivery drivers to carry the application with them during their normal working day.

60

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Hightower et al. implement an infrastructure, BeaconPrint, which identifies salient places by

continually monitoring the 802.11 and GSM beacons currently in range, which many of these

positioning systems already do. If a preset amount of time passes with the set of beacons remaining the

same, or almost the same, then the location is marked as being of possible importance. Hightower et

al. claim a 90% success rate in identifying locations of importance to users when employing this

technique. One of the most significant improvements of this technique over the one used by

comMotion is its success rate in identifying locations visited infrequently. While comMotion required

a minimum of 3 visits to the same location before being capable of identifying it as salient, Hightower

et al. claim [88]:

BeaconPrint patches this deficiency by demonstrating an accuracy rate of over 63% even
for places someone returns to only once or visits for less than 10 minutes, increasing to

80% accuracy for places visited twice.

Both these techniques prove useful, and slight variations have been built into a few of the systems later

described in this thesis.

Thus, it is clear from the review of literature that accurate and always available positioning is a
fundamental requirement for mobile, context-aware systems. It is also apparent that although there are

extremely good solutions for either indoor or outdoor positioning, there exists no single positioning

technique which can provide the required availability to drive such systems.

The work carried out on the Place Lab project begins to address this problem but, as described later in

Chapter 5 (section 5.2), still has several deficiencies that hinder its widespread adoption and use in the

mobile environment. Therefore, this thesis will explore the issue of providing accurate and highly

available positioning for mobile applications. As will be shown, this research leads to the creation of
the Navizon system described in Chapter 5.

2.5 Recommendations and adaptation
Recommendation, or collaborative filtering, techniques can be employed to select the most relevant
subset of data to present to a user or system in order to provide a focus and improve efficiency [144],
[72], [65], [167], [152]. Such techniques seem appropriate for use in mobile environments where, as
has been shown, there is a greatly increased level of context information and thus a greater density of
data in general. In a mobile environment new data may continually be arriving from sensors, peers and
servers and without filtering techniques this data can quickly overload a user or application. As early
as 1994, Schilit et al. proposed adaptive techniques based on context information for mobile devices
[149]:

Reconfiguration is the process of adding new components, removing existing
components, or altering the connections between components... In the case of context-

61

Chapter 2: Initial investigation of mobile. peer-to-peer systems

aware systems, the interesting aspect is how context of use might bring about different

system configurations and what these [sic] adoptions are.

Whilst Schilit et al. recognise that, as previously discussed, location is likely the most important item of

contextual information for mobile devices, other contextual information is still often vital [1491:

Reconfiguration could be based on other information in addition to location, for

example, the people present in a room.

As has been discussed previously, the level of adaptation required for mobile systems to behave

appropriately may be considerably higher than that of desktop systems as mobile systems experience a

wider range of contexts. It seems suitable, therefore, that a system for filtering data or employing it to

drive adaptation on mobile devices should be primarily based around the context information available.

Many previous mobile systems have attempted to filter or recommend data in differing methods. In

Tveit's work on recommendations in the mobile environment, discussed earlier in section 2.3, he

theorises how a pure peer-to-peer recommendation system could be constructed but fails to implement

it and is aware that there are many unanswered questions [166]:

How to deal with fraudulent behaviour? How to maintain consistent and unique

identification of products and services in the voting vectors used in the queries? How to

keep cache consistency? How to deal with privacy and encryption of queries and the

results? Where are the bottlenecks for true scalability? Is a true P2P-based system [sic]

for recommendations or is a hybrid approach like Napster or Gnutel/a with

Gnutellahosts needed?

Some of these questions relate back to issues already discussed. For example the last question clearly

refers to the problem of deciding which type of peer-to-peer architecture to use (pure, hybrid or

centralised). However, it is obvious from this list of unanswered questions that there are many issues

yet to be addressed in mobile recommendation systems.

The MobiTip system, described earlier in section 2.2.2, aims to provide recommendations to users

about interesting locations such as restaurants, shops, theatres or sporting venues. MobiTip was

originally planned as a pure peer-to-peer system but was augmented with specialised statically placed

caching nodes, as in the trials not enough users were encountering one another and thus there was a low

turnover of new recommendations arriving on users' devices. In MobiTip 'tips' are exchanged
between peers. The authors identify a particularly powerful feature that mobile recommendation

applications can take advantage of [1461:

62

Chapter 2: Initial investigation of mobile, peer-to-peer systems

If the user is in a shopping mall, tips will be influenced by others in the mall. In a
different setting - such as a conference - MobiTip will produce a different set of tips,

based on another group of people.

It is to be expected that users co-present in a location are likely to share similar interests. Thus, mobile

recommendation systems can take advantage of this information simply by realising that information

delivered from co-present peers is more likely to be of interest than information delivered second-hand

or from a statically placed infrastructure server.

The idea that location alone can be used to activate recommendations is common in existing systems.

For example, Newcomb et al. describe a mobile shopping assistant which recommends items of interest

when the user is proximate to them [121]. In the system Newcomb et al. describe, items which are on

sale and which the user has previously purchased are brought to the attention of the shopper through

the use of audio notifications. Systems in which the only trigger for information is location have been

referred to as `walk-up, pop-up' (a term introduced by Brown and Chalmers [19], [31]) and are

common in the literature [161], [102]. Whilst the form of recommendation employed by Newcomb et

al. uses some background information about the user's history, it cannot be said to be purely walk up,

pop up and thus is perhaps more a form of mobile recommendation. However, this system and the

many which do rely on just walk-up, pop-up techniques highlight the power of location alone in the

mobile environment. This is, of course, reinforced by many of the statements in section 2.4. Thus, it is

apparent that in pure peer-to-peer recommendation systems location, and in particular its proximity to

other devices, may become one of the greatest weighting factors to the recommendations delivered.

However, this should be viewed as a benefit rather than a problem as the large crossover in proximate

users further focuses the recommendation data.

Whilst recommendations seem an appropriate technology in the mobile environment, few systems have

managed to implement them successfully and even fewer have successfully managed to utilise
successful desktop recommendation techniques in the mobile environment. For example, the
MovieLens Unplugged system [117] attempts to provide the same functionality of the MovieLens web-
based recommender [143] in a mobile environment. However, whether it can be termed mobile is

questionable since the system simply generates and caches recommendations on a desktop machine and
copies this data to a mobile device when synchronised through a wire. When in the movie rental store,
the mobile device simply displays these previously generated recommendations. The system fails to be
highly dynamic, one of the requirements necessary to the success of mobile systems previously
identified. The failure of MovieLens Unplugged system to adapt to the environment it is in may be due

to the complexities involved in moving a large database onto a mobile device. Certainly, no single
mobile device has the storage required to hold the entire MovieLens database. It is apparent that
mobile devices must employ novel database techniques to those of desktop systems if they are to
provide recommendations generated from significantly sized data stores.

63

Chapter 2: Initial investigation of mobile, peer-to-peer systems

Want et al. also make the requirement for a novel storage technique and management of storage space

in mobile systems clear. They propose the Personal Server, which is a mobile device that stores all of

a user's data and continually monitors their activity. Obviously, such a device requires a substantial

amount of storage and although Want et al. envision such storage to be available on the device itself,

they realise that there are substantial benefits of a data store, which is essentially distributed throughout

a community of mobile devices [1701:

Although a Personal Server device can potentially store a user's entire personal data

collection, a distributed storage system such as Coda or Bayou would be very useful in

case of theft, loss, damage, or concurrent access. Using such a system, the user could

modify their mobile data while disconnected, and automatically transfer changes to the

infrastructure when able. Such a capability would allow easy recovery in the case when

a device becomes inaccessible. Similarly, these systems would allow data to be directly

modified in the infrastructure, eventually propagating to the mobile device. Without such

a capability, the user would be required to manually manage their data backup and

migration, which would significantly detract from the user experience.

The work discussed as a result of Want et al's Persona! Server is of relevance elsewhere to this thesis

as the envisioned uses and usage environment of the device raise questions relating to usage models,

adaptive user interfaces and device discovery-all topics which are discussed in this thesis in sections

3.2.3.1,7.1.1 and 4.3.2 respectively.

Later work by Goren-Bar and Kuflik reinforces the view that mobile recommendations can and should

be highly adaptive. They identify that previous work came to the same conclusion and cite some of the

benefits the adaptation can provide for mobile recommendation systems [74]:

Previous studies have shown that adaptive mobile devices are more effective than non

adaptive ones. Billsus et al. (2000) found that adaptation reduces the amount of

information that needs to be transmitted, and helps users access relevant information

with minimal effort.

Goren-Bar and Kuflik also study the user experience and find that 90% of users prefer an adaptive

mobile recommendation system to a non-adaptive one. This further strengthens the requirement for

highly-dynamic mobile recommendation systems.

Mobile recommendations are later used in this thesis to drive a mobile adaptive infrastructure, Domino,

described in Chapter 7.

64

Chapter 2: Initial investigation of mobile, peer-to-peer systems

2.6 Seamful design
One interesting element of mobile systems is often the unexpected methods users employ when using

them. Such behaviour was observed during trials of Can You See Me Now [64]. The game consists of

two types of participant: runners, who are physically present within a city, and online players who

utilise a web interface to interact with the game. The runners must chase and capture the online players

by moving their slow-moving avatar over the online player avatars on a map presented to them through

their web browser. The runners' positions are tracked using GPS units connected to PDAs which they

carry.

Whilst GPS inaccuracy is often thought to be a problem, the runners in Can You See Me Now found it

advantageous [641:

Over the course of the two days play the runners became increasingly aware of the

effects of GPS inaccuracy and also where on the city streets it was most likely to be

experienced. By the second day's play, they had begun to exploit this knowledge as part

of their tactics...

Such use of inaccuracies or shortcomings in the underlying infrastructure of a system are often more

apparent or more exploitable in the mobile environment, simply because mobile infrastructure is

generally less reliable than desktop infrastructure. It is interesting to note that whilst knowledge of the

GPS infrastructure and its drawbacks was advantageous to the runners in Can You See Me Now, lack of
knowledge of the same items set online players at a significant disadvantage; as is evident from the

drop in success rates from the first day to the second. Flintham et al. pose an interesting question [64]:

As we have seen, this ended up placing online players at a disadvantage as runners in

the street exploited this difference. This raises the question as to whether the technology

should have made them more aware of the characteristics of GPS?

If the online players had knowledge of GPS inaccuracies, it is likely they would have been able to

predict better how the runners' avatars might move, as well as identifying likely areas on the map

which had almost no GPS coverage and so were possible "hiding spots" for runners.

The concept of deliberately revealing information about physical and software infrastructure is a
powerful one, particularly in the mobile environment, that can be exploited to allow users to overcome

or take advantage of problems or drawbacks when they occur. Gayer et al. realise similar benefits
found when approaching ambiguity from a similar angle [681:

Ambiguity can be frustrating, to be sure. But it can also be intriguing, mysterious, and
delightful. By impelling people to interpret situations for themselves, it encourages them

65

Chapter 2: Initial investigation of mobile, peer-to-peer systems

to start grappling conceptually with systems and their contexts, and thus to establish

deeper and more personal relations with the meanings offered by those systems.

Although Gaver et al. are concerned with ambiguity, they make an important point related to Seamful

Design - that systems can be designed to encourage users actively to understand better the concepts

and infrastructure behind them and thus, in turn, to understand better how they come together to

provide a working system.

This is particularly relevant in the mobile environment as mobile devices frequently use an extensive

amount of sensors, and often rely on peers and infrastructure to complete tasks. This leads to an

increased chance of breakdowns which can leave a user frustrated or confused if a suitable level of

information about the underlying technology has not been delivered previously. Flintham et al. and

Gayer et al. both theorise that users can be trusted to understand and appropriate information about

infrastructure to allow them to overcome breakdowns in novel or known ways.

This topic, Seamful Design, is later discussed in Chapter 4 (section 4.2.2) when, after experimenting

with it in a mobile system, it becomes apparent that its application can positively influence mobile

systems.

2.7 Conclusion
The review of literature presented here makes it clear that many researchers share a belief that mobile

computing has failed to fulfil expectations of mobility, flexibility and usefulness that were common in

the early nineties. There is a shared belief throughout much of the work discussed that modern mobile

systems fail to be reactive to users' context, and to adapt appropriately to the many situations mobile

users may find themselves in. This failure prohibits devices and applications from being used as

mental extensions of the form Hull et al. propose [90], or from becoming invisible as in Weiser's vision

of ubicomp [172]. Instead, most modern mobile devices and applications are inflexible versions of

standard desktop applications, incapable of sensing context and thus forcing users to alter their

behaviour and work around the application's failure to adapt to social and situational context.

Much of the existing literature points out that the level of adaptation required to allow mobile

applications to have the flexibility to behave appropriately in the many situations in which they may
find themselves is extensive. Adaptation must be a reaction to not only the external context sensed by

the device, but also the system's own state. The topic of adaptation in mobile systems is discussed

throughout the thesis but is primarily addressed in Chapter 7.

It was found that previous work has identified a user's or device's location as being the most critical
item of context information to mobile systems. However, it has also been shown that reliable, accurate

and available position information has not yet been achieved. Without a positioning system that can
determine a user's location in all mobile situations, both inside and outside, the number of possible

66

Chapter 2: Initial investigation of mobile, peer-to-peer systems

useful mobile applications is severely reduced. As position is so fundamental to mobile systems it is

discussed in detail in Chapter 5.

The literature review also identified that peer discovery is important for mobile systems which operate

within peer communities on a frequent basis or periodically enter the range of peer devices. However,

it is clear that there is, as yet, no standard or robust way of discovering peer devices in mobile

environments. Furthermore, it is also apparent that mobile developers often fail to consider the

advantages and disadvantages of underlying communication infrastructure and often make poor choices

that may later hinder the system and the user experience. For example, this was experienced with the

DigiDress system in which users reported that the reliance on Bluetooth was a barrier to smooth
interaction with other users. Peer discovery and appropriate selection of communication technologies

is discussed further in Chapter 4.

Whilst previous work draws attention to the failure of mobile applications to be flexible and adaptive,

and does highlight issues that may be tackled to aid this problem, it rarely addresses the issue of

mobility itself. It is clear that the majority of mobile applications actually fail to be available or useful
in many situations and locations. Whilst failures in context-awareness and subsequent reaction to

context can account for some of these problems, there are many systems that seem to fail to be useful
in many mobile environments for other reasons. For example, the GUIDE system is only available at
locations where information has previously been authored for it and at which special GUIDE network

nodes have been placed.

In the following chapter a more in-depth investigation and analysis of two systems is presented for two

reasons. Firstly, to verify that the findings of the literature review are valid and actually do occur in,

and influence, mobile systems and secondly, to identify other issues not found in the literature review

which may affect mobility, availability and flexibility in mobile systems.

67

Chapter 2: Initial investigation of mobile, peer-to-peer systems

68

Chapter 3: Investigation of two mobile applications

INVESTIGATION OF TWO MOBILE
APPLICATIONS

As an initial examination of whether the findings from the literature review are indeed applicable and

relevant to improving the context-awareness and mobility of mobile, peer-to-peer systems, two mobile

systems were examined. The first, the Lighthouse, is a system that was designed to have a degree of

mobility and, although tested at one particular location, was hoped to be re-deployed. The second,

George Square was trialled in the city of Glasgow but was designed to be useable in any city without

requiring any setup whatsoever.

By studying the infrastructure and technologies each of these systems depended on, a summary of key

findings and features important to mobile, peer-to-peer systems are extracted.

3.1 The Lighthouse
An important point to note is that the Lighthouse project was designed, implemented and trialled before

any research for this thesis had begun. Indeed, most of the papers published about the Lighthouse had

already been submitted. The author did not personally contribute in any way to the design or

implementation of the system. However, as it was apparent that the system suffered from a number of

deficiencies and problems typical of mobile systems, it proved a prime opportunity. Analysing the

results of the trial, inspecting the positive and negative aspects of the system and deciding on how to

improve them was fundamental in identifying many of the key issues on which this thesis concentrates.

In short, although it was not designed to be a mobile system, analysing it as such quickly uncovered

some of the areas that it is vital to take into consideration when attempting to create a flexible and

useful mobile system.

The Lighthouse system was the first ever, and today still remains the only, museum co-visiting system

that allows a user who is physically present in a museum to share their visit with multiple remote users

who utilise either a web browser interface or a three-dimensional, virtual reality interface. The system

was designed for a specific exhibition: the Mackintosh Interpretation Centre in The Lighthouse-

Scotland's Centre for Design, Architecture and the City. The Interpretation Centre is devoted to the

life and work of Charles Rennie Mackintosh (1868-1928)-an architect, designer and artist. Although

the exhibit room itself is rather compact (less than 10x20 metres), it manages to contain a surprisingly

large amount of information about Mackintosh. This is partly due to the fact that many different types

of media are used to deliver the information. In addition to the drawings, models, furniture, paper
documents and pictures on display; there are over twenty screens (some of which are touch sensitive)

presenting video and interactive material through which a visitor can navigate a substantial amount of

information on Mackintosh.

Although creating accurate and detailed copies of the many individual exhibits in the museum was an
important part of designing and implementing the system, after a thorough analysis of how people

69

Chapter 3: Investigation of two mobile applications

ordinarily visit museums, it was decided that the most critical aspect to concentrate on was providing

tools to enable smooth interaction in the communication channels that all the visitors used. Whilst the

exhibits within the museum provide great interest, our studies found that it is often discussing them

with friends or colleagues that provides the most enjoyable aspect of a museum visit. In order to

support this smooth communication in the Lighthouse, a substantial effort was made to provide three

main resources for awareness and interaction that would aid the visitors in interacting with one another.

These were: a shared audio channel, awareness of others location and orientation, and a common

information space. As each of the three visitors in the system would be using a different resource for

interaction through which to conduct their visit, it was necessary to provide each of these three features

in a unique way to each type of user.

Whilst the other primary goals of the Lighthouse system were to experiment with co-visiting and

delivering a heterogeneous range of information to the users, the system also provided vital insight in

determining the weaknesses a mobile system may suffer from and ultimately led to attempts to create

techniques that would overcome these problems in future systems. In particular, much of the core

design and infrastructure was reused in later mobile systems with only slight variations on how they

were used within the Lighthouse project. For example, the George Square system, discussed in a later

chapter, directly built on the majority of the components that composed the Lighthouse system.

Therefore, it would be remiss not to investigate what these system components were originally

designed for, how their original use and findings helped improve them in subsequent systems, and how

they were later altered and adapted to be more generic in order to allow them to fit into a greater

number of mobile environments.

3.1.1 System overview
The Lighthouse co-visiting system allowed three people to visit the Interpretation Centre

simultaneously: one physically at the location and two situated at remote locations and relying solely

on the technology we provided as their means to visit the museum. The physical visitor is in the

Interpretation Centre itself and carries a PDA equipped with wireless headphones and microphone

(Figure 1).

70

Chapter 3: Investigation of two mobile applications

Figure I: Visitor using the Lighthouse stem in the Mackintosh Room

As this visitor is physically located in the museum he or she does not rely on the system to provide the

entirety of the visit experience. That is, he or she does not need to rely on it to view or interact with the

exhibits, but does rely on the system to stay in contact with, and keep awareness of, his or her co-

visitors. The PDA he or she carries includes a sensor package that is part of an ultrasonic positioning

system that allows his or her own location and orientation to be tracked (Figure 2). This information is

displayed on a map of the Centre on their PDA, along with the locations and orientations of the other

two visitors. This, along with the audio channel shared through the wireless headset to the other

visitors, allows the physical visitor to determine if their co-visitors are nearby in their respective

representations of the museum space and whether or not they are currently viewing the same exhibit.

This continual awareness of what the remote visitors are doing in the museum space permits a free-

flowing and smooth discussion of the exhibits as all the participants wander around the museum.

Figure 2: The PDA with attached positioning equipment used by the ph) sical N isitor.

71

Chapter 3: Investigation of two mobile applications

The web visitor may use any standard PC and in our trials a laptop was used. Their visit is entirely

conducted through a web browser and, again, an audio channel, which they shared through a headset.

Any standard web browser that supports Java can be used, and in the trials Internet Explorer was

employed simply because it was the most popular browser at the time and so the one in which trial

participants were most likely to have previous experience.

The web site used displays several Java applets, one of which is a variant of the physical visitor's map.

Mouse clicks on the map are interpreted as movements around the Centre, with the direction from the

old location to the new location treated as the new orientation. Whenever the user clicks a location the

nearest exhibit is calculated and information - which may be comprised of text, pictures, video or

audio - relevant to the exhibit is displayed in the main browser frame (Figure 3). If there are multiple

exhibits in close proximity to the location the user selected then, by selecting hyperlinks, the user may

be asked to select the one they are most interested in currently viewing. Information about a particular

exhibit may span several web pages and the user can simply navigate this information within the main

frame as he or she would with any other website.

As with the physical visitor's map, the other visitors' locations are displayed on the map, shown at the

bottom-left of the display, with differently coloured icons. Again, through using this interface along

with the shared audio channel, the web visitor can be kept continually aware of what his or her

covisitors are currently viewing and enjoy the feeling of a shared visit, much as they would if all

visitors were conducting a traditional museum visit where all the users are physically present in the

museum space.

72

Chapter 3: Investigation of two mobile applications

ýh
..,

rQ. wW
ý

wt

City : MIC WILLOW TEA ROOMS
11" -J[- -11 A. TI

COýIf 11
, aý ý

_ LJ 4ý

r; ý1 'ý

rC `Ts

bad L% 1\11{: \ 11\1

mum 4"M onk

a ýýo
" PV.. , ad nat,

Figure 3: The web interface to the Lighthouse system

The final visitor uses a first-person, 3D display with avatars representing the other visitors (Figure 4)

and, just like the other visitors, has a headset through which he or she shares audio. The textured 3D

model of the gallery for this visitor's system had to be created from building plans and photographs of

the exhibition area. Exhibits are modelled at a crude level showing form, but not fine detail. For

example, the textual descriptions on the plaques by exhibits are unreadable within the 3D environment.

In order to allow this visitor to experience the more intricate details of some of the exhibits, a cut-down

version of the web visitor's interface is also provided. When the visitor moves close to an exhibit in

the 3D environment detailed information about it is automatically displayed on his or her web

interface.

The web interface utilised for this final type of user was significantly different from the pure web user

as it only displayed a single frame showing information about an exhibit itself. As it was designed to

be purely passive and simply update with information about the current exhibit as the user moved his or

her avatar around the 3D environment, it did not display the map of the area or a hierarchical overview

that the pure web visitor had access to. It was included as a simpler alternative to embedding all the

information within the 3D environment, which would have been preferable if time and resources had

allowed. Although not a perfect solution, splitting the screen in half with one half displaying the 3D

environment and the other showing the detailed information in the web browser permitted the 3D user
to have access to the same level of information as the other visitors.

73

Figure 4: The 3D virtual environment of the Mackintosh Room

One of the main features of the system that allowed for the smooth communication between all the

users to occur was that each user had access to similar information -- albeit in different formats. In

order to support looking at exhibits as a group, the system supports 'hybrid exhibits' presented both

physically and digitally. Each physical exhibit in the Centre has corresponding web pages, reproducing

the artefact as text and 2D images to stand as a digital version of the physical exhibit. When a physical

and a digital visitor are both at a particular location they see comparable versions of the exhibits

associated with that location. For the digital visitors, an exhibit is presented as 11TMl, pages in a web

browser. The spatial location of each digital visitor is converted to a name that represents a spatial

extent, or zone, in the centre. A browser applet responds to a zone change by loading a new ITTMI.

page corresponding to main exhibit in the new zone.

While not designed to be a fully mobile system that could run anywhere, it had initially been hoped that

it would be easy to deploy quickly the Lighthouse infrastructure at other exhibits and museums and that

the VR and web visitors would be able to access the existing Lighthouse system and any newly

supported museums from any remote location. Furthermore, the system was based in one small room

and it was envisioned that the system could, in theory, be scaled-up and deployed over entire museums

rather than just a single exhibit.

Thus, many of the system's main aims were the same, or closely related to. the aims a fully mobile

system would have. For example, the system aimed to be continually available throughout the visit so

that visitors could wander through the physical or digital environments and always remain in contact

sharing their visit regardless of where they were located in the physical or digital space.

3.1.2 Novel Infrastructure
This section gives a brief overview of the main pieces of infrastructure that were. at the time, unique

and novel to the Lighthouse system and which greatly influenced the type of system the Lighthouse

was and the type of experience it delivered to users.

14

Chapter 3: Investigation of two mobile applications

3.1.2.1 EQUIP
EQUIP is an adaptive infrastructure created to support information sharing between heterogeneous

devices. In its simplest form EQUIP can be thought of as providing shared tuple spaces which various

clients can simultaneously share and listen for changes in. It was originally envisioned and then later

designed by Chris Greenhalgh, who was also responsible for the majority of the implementation in the

initial version. However, as with any complicated computer system, many people contributed small

parts throughout its, still ongoing, development. At the time of the Lighthouse project EQUIP had

three main aims which were [75]:

0 to provide a run-time infrastructure for multiple domains

0 to support interoperation between Java and C++

" to support extensibility

However, since the initial version of EQUIP used in the Lighthouse it has continued to progress and

now supports interoperation between more languages and has become far more flexible. The number

of available EQUIP modules-supporting such things as networking for servers and clients,
information sharing and pattern matching-has also grown, further expanding the areas in which
EQUIP proves useful.

Despite the many changes, EQUIP's core functionality of providing a shared tuple space between

clients remains basically the same. By combining a messaging system with multiple private and public

state spaces, EQUIP can provide comprehensive event distribution and state sharing. Clients are able

to hook into others' state spaces and be notified of current events as they happen, changes to stored

items in the state space or changes only to items matching a particular pattern. Due to EQUIP's ability

to notify instantly any interested clients of changes in a tuple space, EQUIP can easily take on the

additional role of a messaging system as any communication can easily be transmitted inside a tuple.

Indeed, as previously stated, in the Lighthouse project the majority of information transmitted through

EQUIP was simple communication messages between clients which would traditionally have been sent

over a direct point-to-point connection utilising either TCP or UDP.

As EQUIP supports dynamic rediscovery of other clients and their respective state spaces, and as it

maintains a record of all previous states and events, it can smoothly handle periodic connection
dropouts between devices. Reconnection is carried out automatically when possible and each client
will receive only the changes to state that were missed in the interim. Thus, EQUIP allows not only for

smooth reconnection but also the seamless connection and catch-up of a late-starting client that will
simply be delivered all the relevant information from the session that it missed prior to joining. EQUIP
is also intelligent enough to send these messages in order so that any function that relies on a strict
ordering of events will not fail.

75

Chapter 3: Investigation of two mobile applications

In the Lighthouse EQUIP was used in a server-based configuration. One machine ran EQUIP and

maintained a single state space within it. The clients each visitor ran left information in this one space

and monitored it for messages and state information from the other clients. Thus, in the Lighthouse,

EQUIP was utilised only as a simple database and as a messaging system. The state space also played

the role of the database - storing all the information about the digital versions of the exhibits and the

data required for the VR and web users model of the museum.

3.1.2.2 Auld Linky
Auld Linky is a lightweight contextual link server that can be used to store and serve hypermedia

structures and filter search results based on context information. Data in Auld Linky is encoded as an

XML linkbase that can then be queried through the standard HyperText Transfer Protocol (HTTP).

The main advantage of Auld Linky's ability to f\ttec tesu\ts based on context is that it can serve the

same source information in an appropriate format for a specific device and can tailor the delivered

document to the user's experience. For example, if two users, one with a powerful device capable of

playing audio and video, and one with a far less powerful device request the same document, the first

may receive a movie whilst the second would receive a text document. Both the movie and the text
document would describe the same information; Auld Linky is simply delivering it in the format most

suitable to the user's device. Similarly, Auld Linky is capable of considering contextual information

about users and may omit sections of information, or alternatively provide expanded versions of a
description, based on the information it has about the user's knowledge level on a topic and what
documents the user has read in the past.

In the Lighthouse, all the information about the exhibits in the museum was stored and served from

Auld Linky. This meant the exhibits and information about them could be presented to each of the

three types of visitor in a manner which was suitable for the device each was using and his or her

location in the museum. Information could also be adapted depending on what other exhibits the

visitor had already seen or had yet still to view. For example, for the web visitor using a laptop

machine with a relatively large screen and good speakers, information on an exhibit may be shown

mainly as pictures or a movie whilst for the visitor physically present in the museum, who can see the

exhibit first-hand, only some supplementary information, not available at the exhibit, could potentially
be presented in textual format on their PDA. Similarly, for a visitor viewing their first exhibit the
description delivered to them may be appended with general information about Mackintosh and also

point them to other related exhibits. Alternatively, if a visitor has already viewed the other exhibits that

are related to the one they are currently viewing, the delivered document could potentially be focused

only on the current exhibit or describe related ones more in the format of a reminder rather than

suggesting the user revisit something he or she has recently viewed.

3.1.2.3 Positioning System
The locations of the three types of visitor in the Lighthouse system were each determined in a different

manner, but their positions were all eventually mapped to the same underlying model of the museum.
This model was stored on a central server and the users' positions were continually uploaded to the

76

Chapter 3: Investigation of two mobile applications

same server so that each client could read them, thus allowing each user to be continuously aware of

the others' locations.

The 3D environment visitor was easily located as their position was simply taken to be that of their

avatar in the virtual environment. As this environment was built from the scale replica of the museum

stored on the server, there was no need to translate their coordinates further. This user's orientation

was interpreted from the viewpoint his or her avatar currently had within the 3D environment. That is,

if in the 3D environment his or her avatar was directly facing North then his or her orientation was
displayed as North to the other users of the system.

Web visitors navigated the museum model using a two-dimensional map. Clicking on the map placed

their icon, an arrow, in a location and their orientation was interpreted as the direction of the previous
location they had clicked to their current position. Again, as this map was constructed from the replica

of the museum stored on the server, this location required no further translation and could be stored on

the server in its native format.

The physical visitor proved to be the hardest to locate and it was here the most additional work was

required. For the other two visitors the location was easy to obtain and required little or no extra code

other than that required to upload the location to the server. However, locating the physical visitor

required a substantial amount of infrastructure, setup time and novel technology.

An ultrasonic positioning system, developed at the University of Bristol, provided a solution for

locating the physical user in the museum space. Eight ultrasonic transmitters were placed around the
Mackintosh room (which is approximately 1Ox2Om in size). As the transmitters are quite small it was
possible to place them in corners, on the ceiling and on top of a divider wall in the centre of the room,
in such a way that they were not noticeable to the casual visitor. Indeed, even with knowledge that
they had been installed it still proved difficult to find them. A single RF transmitter was used to

synchronise these ultrasonic transmitters embedded around the museum. When the ultrasonic
transmitters received the RF signal, sent at set intervals, they all emitted an ultrasonic pulse. A receiver
attached to the user's PDA listened for these pulses and delivered them to the PDA through a standard,
wired, serial connection. Once on the device, the differences in the flight times of the signals were
compared and used to calculate the user's positioning. The receiver attached to the PDA was also
augmented with a compass from which the user's orientation could be obtained. Once the position and
orientation were known on the PDA, they were displayed to the user on the map shown on the screen
and also went over 802.11 wireless to the server and subsequently shared to the other visitors.

From the user's perspective, the ultrasonic location system was extremely lightweight and required no
input or effort from them. As the required receiver was attached to the back of the PDA and
continuously and automatically obtained the user's location and delivered it to the PDA, the user was
largely unaware of the efforts being made to locate them in this passive method.

77

Chapter 3: Investigation of two mobile applications

Despite the rather unusual layout of the Mackintosh room, using the ultrasonic positioning system

provided a 50% accuracy of 0.52m, 95% accuracy of 1.83m and an overall standard deviation of

1.29m.

3.1.3 Factors influencing the mobility of the system
Although, as previously mentioned, the Lighthouse system was not designed with mobility, portability

or scalability as primary goals, the lessons learned from the system were fundamental in understanding
how certain weaknesses in a system could seriously impede usability in a mobile system.
Unsurprisingly, the most immediate problems with the mobility of the system became apparent as soon

as moving the system to another museum or expanding it to encompass a larger physical area were
considered. Ultimately, these problems were severe enough for the system to be abandoned after a
single set of runs in the Lighthouse, and not used again. This was a substantial disappointment as it had
been hoped the system would be more widely implemented and, as it had been extremely successful in

the Lighthouse, there was considerable interest from other museums who would have liked to trial the

system and from peers in academia who were interested in gaining further results on how the system

would run in general. Although following the Lighthouse, the Equator group at Glasgow continued to

work in the same area of supporting co-visiting, to create a more mobile experience, it proved
necessary to build a completely new system from scratch rather build upon the Lighthouse
implementation.

Obviously, after experiencing the loss of such a substantial amount of work it became critical that the

new system would not suffer from the same immobility that the Lighthouse had. Indeed, much of the
incentive in creating the new system, titled George Square, was to address directly the limitations to

mobility seen in the Lighthouse in order to create a system which provided the same rich co-visiting
experience but was far more mobile and usable in a greater number of situations.

3.1.3.1 Number of users
One of the main constraints to the flexibility of the system was that the entire experience of visiting the
museum through the Lighthouse system could only be achieved if there was exactly one of each of the
three types of visitor sharing a visit simultaneously. This limitation was mainly caused through initial
design decisions in which it was envisioned there would be no need to test the system in any other
configuration. Simply, all throughout the design and implementation only a single scenario was
considered and once the system was completed it would have been a substantial task to retrofit it to
work with any other number of visitors.

This decision later proved extremely problematic as while running the trials there were many instances

when one of the throe trial participants cancelled at short notice - on these occasions the entire trial had
to be abandoned. Clearly, if the system were permanently installed at the Mackintosh Centre it would
be extremely frustrating for two tourists to find themselves in the museum yet una lt to use the v nein
*ply mause they could rotrWA someone to take the role of the required third visitor, There were

7$

Chapter 3: Investigation of two mobile applications

also instances when after using the system for a period of time users expressed desires to change roles.
For example, the visitor physically walking around the museum may become tired yet wish to continue

their interaction with the system and their fellow visitors, and so take on the role of the web or VR

visitor. However, such a switchover was not feasible as the system interfaces were considerably
different-changing role required time spent learning the new interface-and so users were unable to

transition smoothly from one role to another. The difficulty of changing roles was additionally

compounded as, other than location, no information about other users' context was displayed by the

system. The result of this was that it was impossible for a user assuming a role to "continue on" with
any support the previous occupier of that role had been supplying. For example, it was common during

the trials for the physical visitor to support the other visitors by describing specific details of an

exhibit's visual appearance whilst it was common for the web visitor to supply the textual descriptions

they had available. However, when a new user assumed a role no information on what their co-visitors
had been viewing recently or what they were currently looking at was available. This essentially

resulted in new users to a role having to begin afresh and gradually learn their co-visitors' context
rather than being able to continue smoothly on from the last occupier of the role.

Unsurprisingly, research shows that collaborative user bases are extremely fluid and group members
are transient, often only remaining in the group for a short period of time, during which time they may
also be frequently changing the role they play within the group [52]. As mobile, peer-to-peer systems
often result in collaborative groups of people coming together to drive the experience, these fluid group
dynamics directly transfer into the mobile environment. Therefore, it can be expected that a system
that requires an extremely specific number of users may be uncharacteristic of the majority of mobile
systems, and exhibit reduced flexibility and mobility as a result.

This suggests that a mobile system must not only be designed to allow a flexible number of users but
that it should additionally support the ability of users to change rapidly the role they play while using
the system. As the problems with the Lighthouse demonstrate, and as the George Square system later
confirms (section 3.2), this can be facilitated in two ways: maintaining a consistent interface between
different roles and, if users are collaborating, making high levels of contextual information about other
users available.

3.1.3.2 Time
Similar to the number of users, the times in which users could use the system were also extremely
specific and caused further problems. Despite the fact that EQUIP has support for logging a large
amount of state information and maintaining a history of it, the Lighthouse system only provided
functionality to a group of people simultaneously sharing a visit. That is, there would be no benefit
delivered by the system for two people visiting the Mackintosh Room at different times - something
that is a common occurrence as one may visit alone and subsequently recommend the museum to a
friend.

79

Chapter 3: Investigation of two mobile applications

Another issue with time relating to the Lighthouse was that all users had to initiate their visits at the

same time. It was not possible for two users to start using the system and have a third join them part-

way through their visit. Again, previous literature shows that collaborative groups are extremely fluid

with users both continually joining and dropping out of using the system [521. Requiring a group of

users to start and stop simultaneously their use of the system is simply unrealistic within a mobile

environment.

Furthermore, regardless of whether a physical, web or 3D environment visit was made, there was no

information maintained between visits, and thus the system did not allow subsequent visitors to take

advantage or learn from the experiences of prior visitors. Each visit could potentially have added

valuable information about the exhibits. For example, questions such as what exhibits were

particularly interesting or what was a good order to view the exhibits in could easily have been

answered by simply showing a user an overview of the visits previous users had conducted.

In short, information about visits could have been permanently stored and used to connect a series of

visits or to shape richer experiences for later users. The system ran as a one-time event and any
information the system generated and used during a visit was transient and completely lost after the

visit ended.

The requirement for all users of a community to be present to utilise any functionality of a system is

serious encumbrance for a mobile system. Increasingly, mobile communities are becoming more
disparate in both location and time of use, and it is becoming preferable to provide as much
functionality as possible to the isolated user, logging their use and any data they generate, and to

synchronise opportunistically any data that is to be shared with the community when the user's device

encounters peers.

To support this functionality it is clear that a mobile system should support both the dynamic discovery

of peers and the dynamic formation of connections to peers. It must allow users to join and integrate

with existing networks of peers, and to leave these groups subsequently, without any negative impact

on the user's device or on the communities it connects to.

Attempts to overcome these time constraints in order to support both pre-visiting and post-visiting, and
to allow users to join and leave a visit at any time were designed into George Square. In addition,
George Square allows single visit experiences and reuses the information generated from them to
improve subsequent visits for all users. These improvements are described in the subsequent section
on George Square.

3.1.3.3 Network
The network configuration required by the Lighthouse system was extremely strict. All the clients
required a constant and flawless connection to each other and to the server - which was responsible for

running EQUIP, Auld Linky and a database containing information about the exhibits in the museum.

80

Chapter 3: Investigation of two mobile applications

Due to the Lighthouse being one of the first projects in which EQUIP was used, and as EQUIP was still

maturing at the time and under heavy development, EQUIP's abilities to support late-joiners and bring

them up-to-date with others were not integrated into the system. Thus, if during the visit experience,

one of the clients lost network connectivity for a period of time, it was not guaranteed that it would be

able to rejoin without intervention from one of the trial organisers. Therefore, it was vital that the

network connections to all machines participating in the trial were as robust as possible so that such
failures were extremely unlikely.

In addition to requiring a robust connection, the Lighthouse system required a minimal amount of other

traffic to exist on the network. Again, this was due to EQUIP's immaturity as some of the protocols it

utilised at the time did not resend or gracefully recover from lost or heavily delayed messages. For

example, whenever the system was run on the standard University network during in-house trials it

would invariably fail within a few minutes as the relatively moderate level of traffic would interfere

with EQUIP's own messages. Thus, the Lighthouse system required both a robust and an extremely

quiet network.

To ensure the cleanest network environment possible, when the system was set up in the Mackintosh

room a separate, small, isolated network was installed despite the fact that the building already had an

available Ethernet network. The isolated network consisted of one router into which the server, web

visitor's machine, VR visitor's machine and a wireless access point were connected by wire. As

wireless 802.11 Ethernet is far less reliable than wired Ethernet communication, the level of wireless
traffic was kept to a minimum and the only device that communicated with the wireless access point

was the single PDA the physical visitor carried. The only traffic permitted over this small network was
that which the system itself created.

The result of this restrictive network setup was that all the users suffered decreased mobility. Although

the web and VR visitors both ran their clients on laptops that were capable of connecting to wireless
access points, an Ethernet cable was required to ensure a robust connection; with the result that users
could not move from the desks where the machines had been set up. Similarly, the user in the museum
itself, who was the sole wireless user, could not use the system once they left the Mackintosh room as
the wireless network did not stretch much further than the room itself. Not only did the users suffer
from reduced mobility, the functionality of their machines was also reduced while using the system in

that, as they had to use a particular network and network configuration, they were not able to connect
to the World Wide Web or reach the Internet at all during the trial. This proved frustrating for some of
the users who knew further information about the exhibits and Charles Rennie Mackintosh would be

available on the Web but were unable to find it during the trial.

A final, frustrating network constraint that the trial organisers experienced was that the system had no
peer-discovery mechanism built into it. This resulted in every machine involved having to be set with
a specific IP address and programmed with the IP addresses of their peers in order to communicate

81

Chapter 3: Investigation of two mobile applications

with them during the trials. In a more mobile system it would obviously be hoped that there would

never have to be intervention from an organiser - yet requiring an average user to set their own IP

address and discover others is clearly not acceptable.

These issues demonstrate some unique network characteristics of mobile systems. Firstly, mobile

systems must be able to handle multiple network configurations intelligently and robustly-adapting to

the current network types, topologies and traffic levels. Secondly, they must be able to do so without

requiring input from the user. This is an extremely important point as mobile systems may often

encounter substantial periods of time without attention from the user (for example, when they are

carried in a pocket). If they are to continue to prove useful during such periods it is vital that they

automatically sense and adapt to their current network surroundings.

Although improvements to the network were made in George Square, it is not until the later chapter on

a novel type of wireless driver (Chapter 4) that a suitably adaptable solution to this problem is

presented in this thesis.

3.1.3.4 Centralisation
Just as all the clients relied on a particular network configuration, they all also relied on a particular

machine to drive the system. The server was critical to the operation of the Lighthouse system as it

hosted: EQUIP spaces in which state information was held and messages between clients were

transferred; an Auld Linky linkbase that stored the content about the exhibits; and an Auld Linky server
that was required to serve the content in the correct format to the two types of remote clients. The

necessity of such a server resulted in the standard problems of reduced flexibility and mobility. The

most critical problem was that each mobile client had to have a constant connection to the server if it

was to function. Without access to the server, a client may only provide extremely reduced
functionality, none at all or crash the PDA. For the clients in the Lighthouse system, loss of

communication with the server would invariably result in loss of all functionality for the web and VR

visitors, and a complete lockup of the PDA for the mobile user.

The server also introduces a single point of failure - if it crashes or if there are network problems

preventing it from being contacted then it may cause loss of functionality to not only a single client but

to an entire community of mobile users.

3.1.3.5 Location constraints
Although it had been hoped that the Lighthouse system, or the majority of the infrastructure used in it,

could be expanded or adapted to work in other physical locations with a minimal amount of effort, it

was tied to the particular location of the Mackintosh Centre. This was mainly because the positioning

system used to locate the user physically present in the museum required suitable areas where
ultrasonic pingers could be placed, hiding out of sight yet themselves able to view large regions in

order to provide a high level of coverage for the area. Even if the target area met these requirements, a
substantial amount of calibration and set up was required to obtain a useable level of accuracy.

92

Chapter 3: Investigation of two mobile applications

Clearly, it is not practical, due to time and cost constraints, to cover every possible area a tourist may

visit with calibrated ultrasonic pingers. Therefore, although the ultrasonic positioning system proved

valuable in the confined space of the Mackintosh Centre, it was unlikely to be suitable if multiple, or
larger, locations were to be considered.

It is self-evident that not being tied to a particular location is of utmost importance to a mobile user.
The ideal for such a system is that it be carried with the user and available at any time and in any
location. From the literature review it is clear that hybrid positioning systems, which can reliably

provide locations both indoors and outdoors, are most suitable for mobile systems. The Lighthouse

positioning system fails to meet this requirement but further it also proves to be extremely costly and
time-consuming to install. It was realised that even if the system were to be used at another indoor

location this installation cost would be a significant barrier.

Therefore, new requirements for mobile positioning systems have to be identified based on the failings

of the system used in the Lighthouse. These are: that the cost and setup in any positioning system, even
hybrid ones, must be low for any location in order to provide coverage in as many areas as possible;
and that any calibration be achievable through automatic techniques.

At the time the Lighthouse and George Square were implemented such a system did not exist. There is

therefore a clear need for this positioning infrastructure for mobile, peer-to-peer systems. The

requirements gleaned from the Lighthouse system and supported by the findings in the literature review
became the core goals of a novel hybrid positioning system, the design and implementation of which is

subsequently discussed in Chapter 5.

3.1.3.6 Content constraints
One of the main reasons users found the system enjoyable to use was because it allowed them to
explore and discuss the exhibits in the Mackintosh Centre with their co-visitors. For the web and VR

visitor, this meant that a massive amount of content authoring was required to create suitable versions
of the exhibits that could be viewed online and in a 3D environment. As well as information about the
exhibits - such as photographs, text, links to other related exhibits and content-matching patterns for
Auld Linky - the entire Mackintosh Centre had to be mapped in order to create a digital representation
of the space. The amount of authoring required in the Lighthouse system is perhaps its biggest

constraint on mobility, as it requires the most time and effort on behalf or the designer or a dedicated

content author before the system can be used at all in a new area.

In order to recreate the Lighthouse experience in another museum, every exhibit therein would have to
be examined and, with the help of someone knowledgeable about the exhibits, a digital version
including information about the exhibit's location in the museum, textual description and image would
have to be designed and input, in the correct format, into the Lighthouse system. Additionally, possible
contexts a user may find themselves in during their visit would have to be considered and entered into

83

Chapter 3: Investigation of two mobile applications

Auld Linky and, if the data to be delivered to the end-user was in a format that EQUIP did not already

understand, appropriate structures to hold the data would have to be created in EQUIP.

Clearly, the amount of content that has to be created at the outset to allow the Lighthouse system to

function is one of the main inhibitors to its flexibility. It is simply not possible to cold-start the system

nor is it possible to boot-strap it with a low level of information as the system itself does not support

adding additional material or altering existing information.

This problem leads to an extremely clear and previously unreported requirement for mobile systems:

that pre-authored content should be avoided wherever possible to allow users to roam to new areas

without requiring a designer or dedicated content author to have visited the location beforehand. A

method in which pre-authored content can be avoided whilst simultaneously maintaining a suitably

high level of content was designed for the George Square. It is discussed further in section 3.2.3.3.

3.1.4 Conclusions
Whilst the Lighthouse was undoubtedly a success, since it demonstrated a unique co-visiting system

that delivers a range of heterogeneous data to users during their visit, attempting to convert it into a

mobile system reveals many problems. Analysis of these problems has led to guidelines for the future

design and development of mobile systems, the identification of certain infrastructure that is lacking for

mobile systems and, in some cases, simply the highlighting of existing problems. Thus, analysis of the

Lighthouse system has proved vital to this thesis as it has identified problem areas in mobile systems

and focused the remainder of the work in the thesis.

From the investigation of the Lighthouse some new mobile design guidelines have been exposed.
Although each of these has been discussed in the chapter, they are further clarified here.

SWnnort users chsnrini roks
That users in collaborative systems change roles is not novel, and the fact that users' roles are fluid in

desktop applications was highlighted by Dourish and Bellotti as early as 1992 [521. Smith et al. point

out that roles, and the change of roles, is a natural concept in humans [156]:

People in a group play various roles. Manager, intern, department chair, guest speaker,
the woman who knows how the fax machine works, the guy who got the pizza, the person

speaking now, the person capturing this on the whiteboard; roles can be formal or
informal, long-lived or ephemeral.

This highlights that roles may be assumed over long periods of time, perhaps permanently, but that

they can also be fleeting, momentarily assumed and discarded. Smith et al. go on to discuss how roles

can be applied in CSCW [1561:

84

Chapter 3: Investigation of two mobile applications

When it comes to computer supported cooperative work, it is perhaps natural to try to be

helpful by supplying roles directly. Group dynamics can be difficult to proscribe, and

individual activities can vary from group to group, from one context to the next.

Consequently, most workers in this area realize that a system that prevents a group from

modifying their roles can hinder rather than help. But roles can evolve in unexpected

ways, even in the midst of a collaboration. More recently there has emerged a

recognition for the importance of tightness and flexibility in the midst of a session.

It is clear that Smith et at. believe that a lack of support for flexible roles can be detrimental in CSCW.

Muller et at. seem to concur, and propose a hybrid system and demonstrate a prototype that supports

user collaboration in the short-term, mid-term and long-term on desktop machines [1191. They make

clear that the short-term support is actually support for ad hoc collaboration that is previously

unplanned and occurs spontaneously. Again, support for such spontaneous collaboration as well as

longer-term collaboration is an important issue in the mobile environment. Just as mobile systems

offer a wider range of contextual information, so they open up a greater number of possible roles-and

greater support for fluid, rapid change within those roles is vital for smooth collaboration to occur.

Users of collaborative mobile systems are continually supporting one another in differing ways. Each

user's unique context gives them unique advantages or access to information that they often utilise to

aid other users. Alternatively, in non-collaborative mobile systems, such as games, players often wish

to assume certain roles within the game and experiment with the possibilities of each. Smooth

exchange of roles can be supported in at least two ways.

Maintain a consistent user interface between roles: By maintaining a consistent interface for different

roles it is easier for users to assume new roles. The Lighthouse system fails to do this and as a result it

was seen that changing roles within it was extremely difficult. As will be seen, George Square,

maintains a consistent user interface for all its users and thus enables the rapid exchange of roles.

Information about the context of other users should be shared and made visible: In mobile systems

as much information as possible about the context of other users should be shared and made visible by

the system. Exposing the context of other users allows users to understand better their role and the

roles of others, and to assume rapidly new roles when and if required.

Suwon fluid rroun dvnarnics

in mobile, peer-to-peer systems it is normal that the group of users is in continual flux with members

joining and leaving unexpectedly. This guideline is distinct from the previous one as it addresses the

issues of devices leaving and joining a group of peer devices whilst the previous guideline recommends

support for role change within existing groups. Fluid group dynamics can be supported in two ways.

85

Chapter 3: Investigation of two mobile applications

Allow and support We joiners: In mobile systems it is common for groups of users, or their devices, to

work together to enrich the experience the system provides. The system should support new users
joining already formed groups to allow them to share in the benefits the group provides. Information

should be recorded on devices even when isolated or working normally within a group in order to
deliver this information and allow new users to "catch-up" with the group when they arrive. A network

technology and topology should be selected that allows new devices to join automatically and integrate

with existing groups of peer devices.

Support the single-user experience: One important configuration of users that is often neglected in

mobile systems is the isolated user. Mobile systems can support peer-to-peer users working in large

groups but this does not mean the single-user experience is of no value. Not only should a system

continue to operate and provide functionality for the isolated user's benefit, it should also attempt to
make use of the actions and information isolated users generate. For example, by recording the choices

made when a user is isolated from a group of peer devices the information can later be shared when
peer devices are encountered in the future, for the benefit of the whole community.

Avoid reliance on ore-autkored content
The design and implementation of the Lighthouse revealed that one of the most time-consuming and
costly parts of creating the system was finding, recording and inputting the vast amount of content that

was required for the digital versions of the museum. Mobile systems can, by definition, roam to any
location and it is simply not practical that content can be collected and authored for every possible
location. Therefore, pre-authored content must not be necessary to mobile systems if they are to be

truly free to roam to any location. Instead, automatic content-generation methods should be employed
where possible. Avoidance of reliance on pre-authored content can be achieved through the selection
of self-generating or reliance-free content type architectures, which are discussed in section 3.2.6.

As a group, after reviewing the Lighthouse system, a deliberate decision was made at Glasgow to
create a new tourist co-visiting system that directly addressed the mobility problems experienced in the
Lighthouse. This new system, George Square, adheres to the three design guidelines identified here. it
is described in the following section.

In addition to the guidelines discovered, the analysis of the Lighthouse also revealed two extremely
important pieces of infrastructure that are currently not available for mobile devices. Firstly, it is

apparent that a robust network communication method is needed that supports the dynamic groups of
mobile systems. The communication method should therefore allow devices to smoothly and
intelligently join and leave the peer groups that often spontaneously form in mobile, peer-to-peer

systems. As part of this process, it is important that the system is capable of vtV%*ly A'Ake
discovering pear dt'4W. % %%& sie %)xt% y pttw% pn htOT. S. TUT%elmote, in contrast to the
Lighthouse, it should continue to allow users to maintain their normal network functions (such as

26

Chapter 3: Investigation of two mobile applications

connection to the Internet) whenever possible. The design and implementation of a network driver that

conforms to these requirements is described in Chapter 4.

The second crucial piece of infrastructure required is a positioning system that works both indoors and

outdoors and that has high availability. It is clear that in the Lighthouse the positioning technology

used limited the system to a single room within a single building. A mobile positioning system should

have the functionality to locate a user wherever they may be. Perhaps more importantly, the system

should have little or no setup cost to allow users to roam to new locations without requiring additional

infrastructure to be installed at the location beforehand. The design and implementation of a

positioning system that meets these constraints are described in Chapter 5.

In conclusion, the analysis of the Lighthouse system was crucial to the work in this thesis. It identified

important guidelines that can, and should, be applied to mobile systems in general, and led to the

design and implementation of two vital pieces of infrastructure that were previously unavailable for

mobile systems.

3.2 George Square
The George Square system, named after the location it was initially trialled in, attempts to address
directly the many mobility problems faced in the Lighthouse. George Square is a co-visiting system
intended to free users from location and mobility constraints experienced previously and allow them to

utilise the system throughout an entire city. Whilst the main effort of the George Square system
implementation went into overcoming the mobility problems identified in the Lighthouse, many of the

underlying research goals remained similar to those of the Lighthouse - for example, examining the

viability of manipulating and delivering a heterogeneous range of information to users. The system

was implemented over a half-year period from January 2003 through to the summer when it was

trialled in George Square in the centre of Glasgow. Work on George Square has since been published
in [21] and [9].

The other main aims of George Square were to explore how collaborative ubicomp can work over an

entire city space rather than a single confined location, and to encourage users to look beyond their

own use of information and consider how their accessing the information may be perceived or utilised
by other co-present or remote users. A secondary aim of the system was to explore how the concept of

web-logging could be implemented into an existing infrastructure. Over the last couple of years web-
logging, or blogging, has experienced an explosion in popularity but, despite their vast number, most
bloggers edit their blog using standardised and rather plain tools thus resulting in the majority of blogs
having an extremely similar appearance. George Square permitted an ongoing integration with a blog-

like web site that allowed a user's location and the information they viewed to be continually logged

and uploaded in order to generate a novel blog site.

87

In addition to these aims, George Square utilised a surprisingly large amount of what was, at the time,

novel technology and so proved an excellent opportunity to investigate how this technology performed

in real-world applications and how it could be effectively deployed.

As will be made apparent, George Square adheres to the design guidelines for mobile systems

identified in the previous chapter and was used as a testbed to validate that these are indeed beneficial.

George Square was designed at Glasgow University, primarily by Matthew Chalmers, Barry Brown,

Ian MacColl and myself. The majority of the code for the system was implemented by Ian MacColl

and myself, although Barry Brown did also contribute slightly to the coding effort.

3.2.1 System overview
George Square allows visitors to a city to share their visit with other visitors in the city or with remote

visitors via the Internet. Tourists in the city carry a tablet PC running the George Square software and

augmented with a GPS receiver and an USB-stick camera (Figure 5).

Figure 5: (eurgr lquurr u, A: r ý% ith Iahlet PC.

Remote users can share a visit with those in the city or, as the system delivers a wealth of interesting

information about the city, conduct a completely independent remote visit entirely over the Internet.

Although a visitor to the city is free to conduct his or her visit as they traditionally would, the system

provides several useful features to guide and advise the user through the city, enrich the visit with

additional information and enable the visitor to closely share his or her experience with others

travelling with them or with remote users.

The majority of the George Square interface (Figure 6) shows a large map revealing the user's own
location, the location of co-visitors and recommendations for locations, web pages and photographs.

88

Chapter 3: Investigation of two mobile applications

As the user conducts his or her visit through the city his or her location is continually tracked using the

GPS unit and displayed on the map to allow the user to navigate easily (mark I in Figure 6). If the

strength of the GPS signal is too low to get an accurate fix, or if they want to fake their position, the

user may switch to "manual" positioning where they simply click on the map the location they wish to

appear at. The locations of any co-visitors, who may be automatically or manually located, are also

shown.

ýT

........
ý'i rz! -i r

N_"ýQ

1"w1 ýry

T

... r... - M.

II

ýM

Figure 6: George Square interface showing users location (I), photographs (2), locations (3), photograph
links (4) and recommendation lists (5)

Visitors may use the USB camera at any time to take photographs that are automatically geo-

referenced. Thumbnails of any photographs a user takes are subsequently placed onto the map in the

interface. Clicking on the thumbnail on the map opens the full-size image. Photographs are shared

with co-visitors so that others in remote locations (in the city or on the Internet) are able to view and

discuss the images as they appear. In addition to appearing on the map, the last three images taken are
displayed on a filmstrip at the top-right of the interface. This allows a visitor to quickly see the latest

image taken by another without having to scroll their own map to where their co-visitor is currently
located. Again, clicking the images on the filmstrip opens the full-size image.

As the user's icon on the map moves around, either through being tracked using the GPS unit or

through the user clicking to manually locate his or her avatar, the system generates recommendations

for locations he or she may wish to visit, web pages that may be relevant to items nearby and

photographs for pictures taken by previous visitors. These recommendations are generated using the

89

Chapter 3: Investigation of two mobile applications

Recer [27] algorithm and are thus relevant to the user's current context5. The recommendations are

displayed at the appropriate locations on the map and in a list at the bottom of the screen. Clicking a

recommendation will open the relevant web page, photograph or highlight the location on the map. In

addition to their own recommendations, users see the recommendations currently being shown to other

visitors as ghosted icons on the map and in a list, and one may click and open these recommendations

just as with one's own. As had been found in the Lighthouse, having access to what another sees is

vital in allowing for smooth discussion. For example, in George Square, it is typical for one user to

suggest something like, "let's try my third recommendation" and for the other user to perceive instantly

the recommendation that is being referred to. Without having access to others' lists, such smooth

discussion and immediate understanding would not be possible.

As the user moves around the city-looking at web pages, taking photographs and visiting locations-

all these actions are logged and stored. Recommendations for users currently visiting are subsequently

generated from the history logs all the previous users of the system have built up during past visits to

the area. This constant and automatic updating of the log data ensures that the system remains relevant

and adapts as the city or events in the city change.

In addition to being able to see other visitors' locations, photographs and recommendations, visitors are

also able to collaborate through discussion over a VoIP connection. Visitors in the city used the built

in tablet microphone and pair of headphones to provide their audio connection whilst remote users had

the option to use their machines' inbuilt microphones and speakers, or headsets.

Remote users are able to conduct a visit to the city entirely over the Internet-with the system

providing them the same information as a visitor actually present in the city would receive from their

tablet PC. By using manual positioning, and clicking where they wished their avatars to be placed,

remote visitors can view recommendations of photographs, web pages and locations as they would if

they used the system whilst visiting the physical locations. In this way, the remote visitor can view
images of the city and learn about it through the web pages that are recommended. Obviously, the

remote visitor is able to hold a discussion with, and view pictures taken by, any user who is currently

using the system to physically visit the city.

Using the remote interface, a tourist who is planning a visit to the city can conduct a pre-visit-

essentially using the remote interface to learn about the city and plan their trip. Once in the city, he or
she can again use the same interface, which he or she is now familiar with, whilst conducting the actual
physical visit.

3.2.2 Blog system overview
In addition to George Square's visiting interface, a secondary blogging interface is automatically made

available after a remote or physical visit is conducted. Although this section of the George Square

Further details of Recer can be found in section 6.3.1.

90

Chapter 3: Investigation of two mobile applications

system was not part of the main trials of the system, some users were questioned about their use of this

part of the interface and access logs of the site were examined. As the user travels around the city his

or her actions are recorded and stored, over time creating a history of his or her use. Subsequently, a

web interface to this stored information is made available (Figure 7). This interface provides several

sections of information. Firstly, a map with the path the user walked overlaid in red is shown and any

photographs he or she took or web pages visited during the visit are presented as icons on the map.

Again, these icons can be clicked to view the full photograph or visit the web page.

Controls for filtering the data based on a certain time period, area of the city, web page or

recommendation are provided, in order that a user who has conducted a long or complex visit can view

a more manageable subset of his or her data. Separate controls allow for comments to be appended to

entries - for example, a user may wish to leave a comment about a statue he or she visited or explain

why a certain web page was relevant whilst he or she was at a specific location. The user may also

choose to remove entries for privacy reasons or simply because he or she may anticipate a section of

the visit which would not be exciting or interesting for others to view.

I1 4'- ý, -'-- * 40ý1", dr Ir -. vvtoft 113 -

4

Znan
in

I'

,ý

ýxm. mrý

out
Zwen 1.0

Dýr1A u81 : fit. s: et

"awe " Sir Waltet Scott

canm " Robot Bum

tame " V1'illun E Gladstone

t_ &� a tame - Sir Bcbm Peel

P -e Albert rim

. ^. . Str Walw Scott

- r.. " " Su John Slome

ýýý
ý, - Lord Clyde

` -IJ

Sir Jobur Moore

TL a ... omas Campb

r. - Lord Cly-de

f4m-

-Ph

ý'. ý' "~ " now" Campbell
--

r. " Lord Cly-de

Figure 7: l he (eot e Square post-visit blog interface

91

Chapter 3: Investigation of two mobile applications

Another section, below the map, provides the same information in a list format. A user who has visited

the city can use the map and the list to relive or remind themselves of their visit. Alternatively, the

website, possibly after editing, can be used as a blog and shown to friends or family. As a password is

required before editing is permitted, these external visitors may only view the site rather than edit it.

3.2.3 Improvements from the Lighthouse
As stated, George Square's main goals included directly addressing the problems for mobility faced in

the Lighthouse. The following three sections describe how the three design guidelines identified from

the analysis of the Lighthouse were beneficial to George Square. The fourth section describes how

modular design was beneficial to the trial designers in George Square and theorises that the benefits of

modular design could be passed on to the end user.

3.2.3.1 Support for changing roles
George Square adhered to the guideline that mobile systems should be designed to support users
changing roles, or establishing their own roles, in several ways. Firstly, the user interface for co-
visitors was identical regardless of whether the users were physically present at the location or
conducting their visit remotely. This proved extremely helpful as in several of the trials users
expressed a desire to change from indoors to outdoors or vice-versa after using the system for a while
and, when they did so, experienced no problems in continuing to use any aspect of the system in their
new role. Similarly, the post-visit blog site was designed to be as identical as possible. Again, even
though many users did not visit the blog until some time after their use of the actual system, the
familiarity of the interface resulted in no users having problems utilising the functionality it provided.

Secondly, a large amount of context information on users was shared and made available to view
through the interface. Whilst the Lighthouse had only shown the location of other users, George
Square showed the recommendations other users had recently received and photographs they had

recently taken. This additional context information allowed one user to see quickly what another had

recently been interested in and what they were likely to view next. The result of this was that if a new
user joined an existing group of visitors he or she could quickly perceive how their visit had been going
and smoothly integrate with them to join the visit. For example, one user during a trial perceived that
the remote visitor's icon was placed near some statues of lions in the square and offered:

"I'll take a picture of the stone lions for you. They're very majestic".

Similarly, remote users, who had more time available to browse the web, were able to point out items
to those physically in the square that seemed interesting based on the information they read on the
Web. One remote user points another visitor present in the square to an item they find interesting and
requests a picture:

92

Chapter 3: Investigation of two mobile applications

"Or see if you can get that picture of that human rights plaque that's just near you just

now. There's a human rights plaque that's just near you. I've circled it, don't know if

you [can see]"

This smooth collaboration was made possible by following the design guideline discovered from the

Lighthouse - by making context information about other users available it is clear that users better

understood the current, and possible future, actions of others. Not only did this benefit current

collaboration, it also greatly reduces the effort and time a user assuming a new role must observe others

before he or she can offer similar help. This was repeatedly observed in trials in which the user

physically present in the square often started exploring the area before the remote user's system

connected. When the new remote user connected, he or she was instantly able to see what the user in

the square had already looked at and what recommendations had been made. Therefore, it was

extremely common for the first action upon perceiving this to be an offer of help to find more

information on either what the user in the square had just seen or on one of the items that had been

recommended, and so was likely to be viewed next.

3.2.3.2 Support for fluid group dynamics
One of the guidelines discovered from the Lighthouse was that mobile systems should support fluid

group dynamics. Specifically, they should support late-joiners to an experience as well as not

neglecting the single-user experience. George Square exemplifies a system that closely adheres to this

guideline.

Whilst in the Lighthouse EQUIP was used only as a synchronous communication system, in George

Square EQUIP is additionally employed as a type of database which logs the events passing through

the community as well as the states of all the devices within the community. For example, when a set

of recommendations is delivered to a device, the event of delivering recommendations, and a list of the

recommendations themselves, are logged by EQUIP. Similarly, any photographs users take or any

locations they visit are stored by EQUIP. Subsequently, if a new device joins a group of peer devices

already engaged in a visit, this information about recent activity is passed to them by one of the

existing peer devices in the community. Indeed, it is possible for every action since the system began

to be passed to newly arriving peers. Thus, even if a group of users had been utilising the system for

some time and had already moved around the city taking photographs and receiving recommendations,

upon joining a new user would immediately be delivered all this information. This allows the new user

to instantly see where others are, catch up with photographs and browse the recent recommendations.

This enables an ability in newly connecting visitors to integrate rapidly and smoothly with a

community of users, to learn the context of the community and to behave appropriately within that

community. As the literature review earlier pointed out, support for correct and appropriate behaviour

is essential if mobile devices are to be accepted by their users.

The ability to catch quickly up by examining events missed whilst a device was not a member of a

community, either because it had never joined or because it had temporarily left, has the additional

93

Chapter 3: Investigation of two mobile applications

advantage of supporting mobile devices which may face the generally less reliable network

infrastructure of a mobile environment. For example, if a mobile device experiences disconnection

from a peer community due to network problems, or simply because the owner turns it off to conserve

battery power, this ability can ensure it can smoothly reintegrate when a connection is again available

without adverse affects - any information that had passed in the interim would be delivered, in order,

as soon as the machine rejoined the system. In the George Square trials, this was experienced in

virtually every individual trial. The north-east edge of the square was rather distant from both the

remote visitor's device and the infrastructure access points we had set up in the area. Thus, when a

user entered this area of the square, neither a direct connection to a remote visitor's device or a

connection through the infrastructure access point was available. However, their system continued to

operate, although it did not provide live updates from co-visitors. Once it re-entered the region where

coverage was available, the first peer it encountered would automatically update it on the events and
information it had missed. Similarly, the device would do the same for the actions the user had

performed whilst outside network coverage, propagating his or her actions to others.

The advantage of this configuration was that set, static peer communities were not necessary.
Individual users could break off from the main peer community and work on their own for a period of
time - rejoining in their own time without losing any information or functionality. Furthermore, the

system actively supported the individual user working on his or her own and recorded information for
later sharing with the community. Unlike in the Lighthouse, where users who became disconnected

would experience system crashes, the George Square system allowed users to continue using the

system whilst isolated from the larger community of users. New recommendations on locations to visit
would still be generated and delivered, and any locations or websites the user visited or photographs he

or she captured would be stored and shared to peers if the isolated device became reconnected in the
future.

This behaviour is vital in a mobile community, as there are often large periods of time when devices

are isolated from either infrastructure or a peer community. The George Square trials revealed that in

virtually every trial at least one device operated in an isolated fashion for some period of time. As

periods of isolation are normal for mobile systems it is important that functionality continues in these
situations and ongoing information is recorded, in order that the community may benefit from the data

collected.

By following the guideline of supporting fluid group dynamics, the George Square system smoothly
handles disconnections and reconnections of peer devices within the community and strongly supports
isolated users. Furthermore, it actively logs information isolated users generate and ensures it is shared
with the larger community of users when peer devices are again encountered.

In addition to the actual experience of visiting a tourist location, research highlights the importance

tourists give to both planning a trip and to reviewing or reliving a trip once it is completed [191. Whilst

94

Chapter 3: Investigation of two mobile applications

the Lighthouse failed to support pre-visit and post-visit activities, George Square aided in both tasks -

thus supporting isolated usage in more scenarios and further increasing the availability of the system.

Before a visit, the system could be used to experiment with paths through the city. By using the

`manual locate' function to position ones avatar, one was able to experiment with various different

actions and histories-viewing the recommendations for nearby attractions that would be delivered as

one did so. Furthermore, if the user then subsequently did join a group of others to conduct a visit, the

information from this pre-visit would be shared with the peer devices that are newly encountered. This

effectively allows the peers to learn from the plan the user created and generate recommendations more

in accord with this pre-visit.

Finally, due to the consistent interface for different roles and the implementation of smooth integrations

for new devices to a community, George Square did not suffer the same problem of requiring a set

number of users as had previously been experienced in the Lighthouse. In the Lighthouse, the strict

requirement for an exact number of users, and for each user to fulfil an exact role, greatly restricted the

opportunities people had to use the system. Two users who wished to use the system while visiting the

Mackintosh room would be unable to do so unless a third person could be found, simply because each

part of the system had been designed to look for connections to two other peers, and not to begin unless

they were found. Furthermore, each of the three users would then have to assume a specific role of

physical, web or VR visitor. This was normally impractical as the most common types of visit to the

museum were pairs who wished to physically visit the museum together. Many visitors voiced a desire

to conduct a purely remote visit with other distant friends - no members being physically present in the

museum itself. The trialled scenario, one physical visitors and two different remote visitors, was not

particularly desired by most groups and even felt quite forced during the trials.

George Square made no such assumptions as to the number of users or the roles they should fulfil

when using the system. It supports a variable number of users-from a single user on his or her own to

a large group. Not only can the number of users vary, the types of users are not important for the

smooth operation of the system. A single user may be physically in the city or conducting the visit

over the Internet. Similarly, a group of users may consist purely of tourists in the city, purely of remote

visitors or a mixture of the two.

The substantially increased freedom of George Square was a far better fit for a mobile community

where group members and their machines are transient, and where the number and type of users is

rarely static.

3.2.3.3 Avoiding pre-authored content
Possibly the largest and most significant problem with the Lighthouse was that it required a

considerable and extensive amount of content to be authored for whatever location it was to run at.
This involved finding a professional knowledgeable in the area, who was prepared to give their time,

and liaising with them to transpose their knowledge into digital format. This process represented
perhaps the largest percentage of time in implementing the system. It also meant that the entire system

95

Chapter 3: Investigation of two mobile applications

was locked to locations where such content had been generated. Moving the system not only involved

transporting and setting up infrastructure but also meant having to find a knowledgeable expert in the

target area. This problem alone was more than enough to halt any mobility the system may have

otherwise had.

The issue with relying on pre-authored content is succinctly stated by Hansen at al [83]:

While location-based information systems for, e. g., tourists, are well known, these

systems usually rely on predefining all available information. This reliance on special

purpose authored content is unfortunate, as it puts the onus of creating content on the

maintainers of the system rather than on its users or the Web in general. Furthermore.

users should certainly be allowed to add their own material and observations to a
system.

Hansen et al. realise that content creation is often the primary task in when introducing a new system
and also hint that users of a system may not only aid in finding official content to add to the system but
that their own input is of a unique and valuable kind.

Harter et al. demonstrated that systems that do not require any pre-authored content are certainly
plausible. Indeed the earlier Campus Aware application [25], which extends the concept of GeoNotes
[135], demonstrates a working mobile system in which no content need exist when the system is first

started. Campus Aware is described by Burrell at al. [25]:

This tour guide allows members of the campus community to annotate physical space
with knowledge and opinions. Prospective students can also annotate space with
questions and thoughts as well as read comments made by those who are knowledgeable

about the campus.

Subsequent evaluation of Campus Aware reveals that content generated by users themselves is not
necessarily of lower quality than content authored through more traditional methods by system
designers or professionals of a subject area [251:

Opening up a system to user contributions holds the promise of content that is much
more informal, opinionated, and even more subversive than content provided by an
official source... Notes contributed by an unofficial source such as students or other
insiders were valued more than the official factual notes that were posted. The content
became qualitatively unique and was well-received when it was created by other users.
This evidence provides Justification of opening system to this type of user feedback.

96

Chapter 3: Investigation of two mobile applications

Campus Aware demonstrates one possible method for allowing users to generate and contribute their

own content to a mobile, peer-to-peer system. However, as will be discussed, there are several ways to

generate content without relying on direct input by a designer and the George Square system allows
both user-generated content and official content to be automatically gathered without requiring input

from a designer or specific content author.

The problems with gathering and inputting content experienced in the Lighthouse resulted in it being an

essential priority in George Square to avoid any set up which required content authoring. Instead

George Square follows the guideline that, wherever possible, pre-authored content should be avoided
in mobile systems. To achieve this George Square was implemented in a manner that allowed it to

gather information as it ran in order to build up information about the area in which it was being used.
As users conducted their visits, their locations, web pages accessed and photographs taken were all
logged to the server. It was recommendations of this previously logged data that then provided content
for subsequent visitors - both content generated purely by the user (for example, photographs) and

content which was essentially recommended by users (for example, web pages). Furthermore, as the

log of user activity was continually being extended with data through use, the information about the

area remained relatively current as long as the system continued to be in use.

By creating a system that relied on content automatically generated through the use of the system itself,

no authoring of any data was required by the system designers. Indeed, as the data was not delivered
directly to users but rather filtered through a recommendation system, the quality of the information
delivered to the users was of a generally high quality. Acceptances of recommendations (that is,

visiting a recommended location or viewing a photograph) provided positive feedback to the

recommendation algorithm, thus continually increasing the relevance of the delivered data. As George

Square required no content authoring it could literally be deployed at any location and over time would
begin to gather and deliver useful information to its users.

Although most of the visitors received a wealth of information from the system, the initial users would

receive no recommendations, as there would be no logged data for the area. Whilst this did present a
small problem it was far less significant than the problem of authoring a static set of content from the

outset. The system did provide some value to initial users, as they were still able to share photographs,
keep track of each other, discuss their visit over the VoIP connection and view Web pages. Thus,
George Square provides functionality to initial users and this functionality, and quality of delivered

content, grows over time or with the size of the community of users.

3.2.3.4 Modular design
The realisation that designing a system in which roles could easily be moved from one machine to
another provided such a great benefit during later deployment and configuration that it led to the
experimentation with a more modular and general componentised design process. Although this is
discussed in far greater detail later in the thesis (Chapter 7), a brief introduction is warranted at this
point.

97

Chapter 3: Investigation of two mobile applications

EQUIP supports a powerful feature in that its tuple-spaces are capable of discovering and accessing

other EQUIP tuple-spaces on the same network. Indeed, if security settings permit, any discovered

tuple-spaces may be accessed using exactly the same protocols as if it were located on the local

machine. The result of this is that the location of a tuple-space is completely abstracted away from an

application to the point that, from the application's perspective, it is transparent whether the tuple-

space is located locally or on another machine on the network.

It was decided early in the implementation of George Square that each client would run its own EQUIP

server which would maintain two tuple-spaces - one public and one private. Rather than each system

component being coded to directly communicate with other components, any data that was to be read

or written would be passed through the tuple-spaces. For example, the component that is responsible
for interacting with the USB camera and generating JPEG images writes the images into both the

private and public tuple-spaces when the user clicks to take a photograph. Both the map component

and the image-strip have hooks into the private tuple-space and monitor for any tupfe being entered that

matches the type JPEG. When this type is detected both these components read the tupfe out and use it

to display thumbnails on the interface. Similarly, when peers detect and connect to the public tuple-

space they check for instances of JPEG images and read them out in order to display them on their

local device as images from a co-visitor. Two tupfe-spaces, a public one and a private one, were used

simply to clearly separate information that may leave the device and information that would not.
However, this was done purely to ease the design process and there is no technical reason that all
information could not have been placed in a single tuple space on each device.

Although this technique of mediating messages through EQUIP tuple-spaces required a little extra

work compared to directly passing information from one component to another, it provided the

substantial benefit of encouraging and supporting components to be completely decoupled from one

another. This, in turn, allowed for components to be easily moved, turned off or updated whilst the

system was running. Furthermore, as the location of tuple-spaces is transparent to EQUIP applications,

components could be moved between machines with no interruption to services. For example, during

testing it was common to turn off a recommendation server on one machine and activate it on another
to determine which provided the best performance. Similarly, providing the feature to switch user
positioning between the component which read location from the GPS unit and the one which read it
from manual clicking on the map as it was simply a case of deactivating one and activating the other.
Finally, supporting multiple clients became a trivial task as, for example, displaying locations of
multiple users on the map was handled automatically as EQUIP detected new user's public tuple-

spaces and automatically read the user's locations out of them.

This ability to activate, deactivate and move components from one machine to another clearly maps
directly to the concept of users temporarily assuming roles and changing roles in mobile systems. In a
sense, the extremely late changes to the George Square configuration and setup that EQUIP facilitated

98

Chapter 3: Investigation of two mobile applications

were design decisions to alter the roles users in the trials would assume. It is clear that if users

themselves are to assume new roles then a system that supports different roles, and has an interface and

tools that can adapt and change based on those roles, could be extremely beneficial.

Although EQUIP provides substantial support for allowing users in a peer-to-peer community to

temporarily assume roles it does not provide a comprehensive solution. One of the main problems with

EQUIP is that it does not permit a device to supply functionality to support a new role it has not

previously been programmed with. Components can be activated or deactivated but there is no method

for teaching a device to assume a new role once the system is active and there is no way of transferring

a new component to support a new role to a device. Furthermore, EQUIP provides no method for

determining which client devices are most suited for assuming a particular role themselves, or

supporting a user in a particular role, or when they should do so. Instead, when using EQUIP it is the

user that must decide when and which roles to assume. This can be a substantial difficulty, particularly

if there are many roles available, as the user is unlikely to have knowledge of, or be proficient in, each

and every component available.

These findings and the experience with EQUIP feed directly into the Domino system described in

Chapter 7. Domino aims to address these issues by automatically detecting the actions a user takes and

providing support to transfer and install new functionality that can support roles devices - facilitating

role change at the system level.

3.2.4 New issues
Whilst it is clear that George Square offers significant improvements in mobility, primarily due to

following the three guidelines identified from the Lighthouse, it still exhibits some severe problems.

These are discussed here.

3.2.4.1 Sharing data generated during isolated use
Clients in George Square continued to operate while isolated from any other peer devices. Whilst

isolated they continued to monitor the websites and locations the user visited, essentially identifying

new information and creating new data logs that could potentially be of relevance and use to other

users within the community. Although George Square allowed this behaviour and supported a smooth

reconnection to a single peer or community of peers it failed to adequately spread the information

generated back into the community.

When a device that had been isolated for a period of time encountered a peer it would transfer its logs

to that peer, allowing the latter to benefit from the data gathered while the former had been isolated.

However, the peer device receiving the updates would not store the information again in its own log.

Thus, regardless of the number of peers who received the updates from the device that had been

isolated, only that single device would ever contain, and therefore be able to share, that information.

This has the result that unique information gathered when a peer is isolated is only available to peers if

they can currently connect to that peer. This is illustrated in the diagram below.

99

Chapter 3: Investigation of two mobile applications

A

rý

uI
$2
 t

I

Z)
.

3)

10

Figure 8: Diagram of one of the problems experienced in George Square. (I) While a device is separated from a
community of peer devices it may still gather or generate some data A. (2) When the device rejoins the community
the data or functionality A provides is available to all the peer devices. (3) However, when the device again leaves
the community a copy or copies of A are not left in the community. Thus, the information and value of: t is lost to

the community.

This problem is likely unique to peer-to-peer communities and did not become apparent in the

Lighthouse as that system was so static and pre-configured that it could not really be classed as a peer-

to-peer system. Every device in the Lighthouse always viewed all the information within the system as

they were always connected to the server.

However, this problem must be addressed and can be overcome by introducing another design

guideline for mobile, peer-to-peer systems:

Allow information to be shared and stored by multiple peers

By sharing information with peers that then copy that information and store the copy themselves it can

be made available to a greater number of carriers and spread far more rapidly throughout a community.

In this way, all information be copied to all devices. Whilst that is one strategy for achieving rapid

distribution it is often not efficient and can prove problematic. The issue is discussed further in

Chapter 6. This guideline is later employed by the Samara system which implements a distributed

100

Chapter 3: Investigation of two mobile applications

database for peer-to-peer devices. Its implementation is described in Chapter 6 and is itself

subsequently used to drive the Castles game described in Chapter 7.

3.2.5 Re-experienced issues
The design and implementation of George Square began shortly after the trials of the Lighthouse had

been completed. Thus, although some lessons were learned and improvements included in George

Square, there was not enough time to address every issue. Three problems were, unfortunately, re-

experienced - these are detailed here.

3.2.5.1 Centralisation
Whereas Lighthouse clients would completely fail if their connection to the server were interrupted, in

George Square each client was able to run independently. Clients relied on querying a server to gain

recommendations and to log their own data whilst all other functions were carried out locally or

through direct communication with peers. For example, if a client lost its connection to the server but

could still communicate with a peer, it would still be able to receive the location of the peer, see the

recommendations the other user had displayed and view any photographs that were taken. However,

no new recommendations for their own client would be received until access to the server was

regained.

The problems of peer-to-peer systems relying on centralised architecture are obvious within the George

Square system. Although the system does not crash and continues to provide some functionality whilst

unable to connect to the server, the system is severely reduced and cannot usefully operate in this mode

for any length of time. The information about recommendations and peer locations rapidly becomes

stale and it was clear from the trials in which users left network range that the system quickly became

of little value without the server. Users were essentially forced to re-enter network range to connect to

the server in order to continue with their visit. This issue does not affect the smooth rejoining and

integration back into the peer community of clients that have been isolated - it simply results in a

frequent need to do so.

The failures of both the Lighthouse and George Square due to their centralised nature clearly draw

attention to the fact that centralised architectures are not suitable for peer-to-peer systems.

3.2.5.2 Network
As discussed previously, the Lighthouse required an extremely specialised network environment.
Relying on an isolated network not only required a considerable cost - both monetary and in set up

time - but also resulted in users having no access to the Internet while using the system. George

Square largely resolved most of the network requirements. By the time George Square was
implemented, EQUIP's network protocols were far more robust and, coupled with the previously
discussed ability for clients to disconnect and reconnect easily to the system, intermittent network

connections or dropped packets were no longer problematic. Due to this, George Square did not

require an isolated network and was able to run over standard networks connected to the Internet.

101

Chapter 3: Investigation of two mobile applications

The tablet PCs carried by users in the city were capable of connecting to any wireless access point.

This allowed them to communicate with peers and to freely access the Internet. Indeed, the system

made use of how users browsed the Internet by tracking the web pages they visited and later

recommen«'mg them to other visitors. Remote users' computers required a broadband Internet

connection but there was no requirement for this to be provided over wired Ethernet or to be isolated

from other network traffic.

In George Square, the type of network was significantly different from the Lighthouse. Whereas the

Lighthouse system was in its own isolated subnet, the clients in George Square had full access to the

Internet and the wealth of data it provided. Despite this significant change, neither setup proved

particularly suitable for the mobile environment. In George Square the reliance on infrastructure

networks resulted in peers that were not in range of any infrastructure, but were in range of one

another, being unable to detect each other. This is extremely wasteful as peers encountering one

another in the wild in this manner may benefit from the exchange of information, and such techniques

have been successfully employed in many previous systems [62], [173], [7], [146]. Mobile devices

experience a large number of networks and types of network, and to utilise these various types they

must be able to switch intelligently between them-to use both infrastructure and ad hoc networks

where appropriate.

One severe problem that remained was the need to pre-program each client with the IP address of other

clients. Despite the fact that many of the clients operated on the same subnet, they were still incapable

of detecting one another automatically and so had to be programmed with each other's IP addresses.

This again draws attention to the need for an automated configuration process for the network setup as

well as the need for a reliable method of discovering peers.

The experience of further network failings in George Square simply strengthens the need for a

technique for intelligently and smoothly switching between networks. As has been previously stated,

the design and implementation of a system that performs such a function is detailed in Chapter 4.

3.2.5.3 Location
At the time George Square was implemented there was only one viable positioning system to cover a

city, GPS. Although GPS is designed for outdoor use and is aimed to have global coverage we found

that it performed extremely poorly in the centre of Glasgow. When users started the system, the GPS

often took a long period of time (in some cases as much as five minutes) to find enough satellites to
locate the user. When a position was delivered it was often found to be inaccurate. Furthermore, users

experienced frequent dropouts when the GPS failed to provide a position and there were certain regions

of the square in which, throughout all the trials, a GPS location was simply never available.

The problems we experienced are, in fact, common to the use of GPS within cities and almost identical

problems were experienced during GUIDE [361. GPS performs poorly in any locations where a GPS

102

Chapter 3: Investigation of two mobile applications

unit does not have a clear, unobscured line-of-sight to the sky (and hence the satellites that are in orbit).

This problem is often compounded by multipath reflections, caused when satellite signals arrive later

than expected, at multiple times and/or weaker, due to being reflected off buildings.

In our trials it was not uncommon for users to attempt to rely on the GPS position but to quickly

abandon it in favour of the fall-back self-positioning we provided, which simply involved them

clicking on the map to inform the system of their current location. This self-reporting of position is

akin to that described by Benford et al, discussed earlier in the literature review [13]. Again, the failure

of GPS, a system designed for outdoor use, highlights the finding from the Lighthouse and the

literature review-that a single positioning technique is not suitable for mobile systems and instead a

hybrid position technique should be employed.

As previously stated, a hybrid positioning system developed as part of the work for this thesis is

described in Chapter 5.

3.2.6 Categorising mobile, peer-to-peer systems
In the literature review it was pointed out that Triantafillou et al. split peer-to-peer systems into three

categories: centralised, hybrid and pure. Their work implies that pure peer-to-peer systems are

ultimately the most mobile whilst centralised are the most static. It should be noted that a pure peer-to-

peer architecture does not exclude the use of the traditional server-client model for transfers. As long

as both peers can simultaneously act as servers and clients to each other then one cannot be said to be

assuming a role the other is incapable of.

For example, in many recent mobile music applications, such as that described in [1731, music

exchange may occur simultaneously in both directions through traditional methods such as the FTP

protocol. Here, peer A may be downloading a song from the FTP server running on peer B whilst B

simultaneously downloads a song from A's FTP server. As is clear, in this instance a server-client

communication model is used but only from peer-to-peer; there is no centralised server for the client

community in general. In short, a pure peer-to-peer architecture does not preclude the use of server-
based services on individual clients.

Attempting to categorise both the Lighthouse and George Square according to these definitions proves
interesting. The Lighthouse is quite clearly a centralised system. A peer in the Lighthouse has no
direct communication with others and instead uploads messages and other information to a server,

which peers then read from. If the server is unavailable then the majority of the functionality of the

clients is lost and, in most cases, the client completely fails to respond to any user input. This may be

one of the reasons that the Lighthouse proved to be quite inflexible in its mobility.

The George Square system proves harder to categorise, as it does not fit smoothly into one of these

three definitions. Although every other service in George Square performed in a pure peer-to-peer

manner, the substantial one of generating recommendations was not. The fact that a machine was

103

Chapter 3: Investigation of two mobile applications

required to perform this specialised function clearly prohibits George Square from being classed as

pure peer-to-peer. However, as this service could run on any of the participating peers it could be said

that this role was temporarily assumed and this would suggest that the system was a hybrid one.

Unfortunately, in order to ensure that the maximum amount of log data would be captured from the

trials, the recommendation server was locked to one specific client machine that was always used by a

remote visitor. Thus, although George Square is indeed a hybrid-capable peer-to-peer system, it was

never actually trialled as one. Despite this, the benefits experienced from the fact that the majority of

communication was achieved in a pure peer-to-peer manner and the fact that the recommendation

server was implemented in a hybrid manner were apparent both in the end system and in designing the

trials.

As with many large trials, during the latter stages of the design process many last minute changes were

made. These frequently involved changing the number of participants or the type of machines that

would be used. Due to the fact that the recommendation process was implemented in a hybrid manner

there were no problems when moving this task from one machine to another. In a traditional

centralised, server based model reassigning the roles the server fulfilled to another machine would

often involve installing many support applications and require a substantial amount of time. However,

as hybrid systems are designed to have services and roles continually migrating from one machine to

another, it was a simple and almost instantaneous process in George Square.

After categorising both the systems using Triantfillou et al. 's categories. it is clear that they do not

account for one of the most important features identified in this thesis - that of content authoring. As

the Lighthouse demonstrated, authoring content for a system can be one of the most time consuming

and expensive aspects of creating a mobile system. Furthermore, if the system is to remain up-to-date

then content authoring can prove to be an ongoing commitment even after the system software is

complete.

Surprisingly, although content (or the lack of content) can greatly impact a mobile system there is a
distinct lack of literature on the subject. In order to advance the discussion it seems necessary to build

on Triantafillou et al. 's categorisations and define some of the possible types of systems based on how

they gather content. Therefore, four categorisations for defining how content is used in a mobile

system are proposed here: static, external, self-generating and reliance free.

A sfetk content system is one in which content must be gathered and input into the system before it is

operational. Once the content is input and the system started, the content cannot be changed and no
new content can be inserted unless the system is shut down and rebuilt with new data. In shoe, all
content must be input by one of the system's designers whilst the system is offline. This is the
category the Lighthouse would fall into. In the Lighthouse, all the content that drove the experience
was meticulously found, converted, aligned with existing data and input into the system by the
researchers working on the system. Inputting the data was a complicated process understood by only a

104

Chapter 3: Investigation of two mobile applications

few people and it was simply impossible even for them to alter any of the data the system used whilst it

was in operation. Clearly, the fact that data must be gathered and input by a professional before a static

content system can be used means it is possibly the worst choice for a mobile, peer-to-peer systems, as

these can unexpectedly roam to any location.

An external content system is one in which content may continually change but in which a third party

is responsible for updating or changing this information. Indeed, an external content system is itself

not capable of altering the data at all. Instead, the system links to an external source from which it

reads data. For example, an application that reads weather from a website such as weather. com and

simply parses and displays it would be an external content system. In such an application, the client

application itself has no way of changing the data and the developers of the client need not necessarily

have generated, maintained or owned the original data. As any mobile system relying on external

content would at least periodically require a connection to the external server holding the data, it is a

poor choice for mobile systems.

In a self-generating content system information is entirely generated by the client applications

themselves. This information may be shared to the community either through being uploaded to a

server that peers then read from or spread directly through the community from one peer to another.

George Square is a typical system that falls into this category. Recommendations are generated from

the log of the system being used and, as the community of users increases, the amount of logged data,

and therefore quality of the recommendations, grows. A key feature of a self-generating content

system is that it is not necessary for any data to be entered before the system is first run, as it will build

the data up as the system is used. Self-generating content systems are probably the most appropriate

for use in peer-to-peer systems as they can be configured to require absolutely no support, and

connections to, any devices or servers outside the community.

Finally, a reliance free content system has no dependency on any permanent store of content. A

typical system that would fall into this category would be an instant messaging system. In this all data

passed from one peer to another is typically generated and used once, and the delay between creation

and consumption is minimal. In short, a reliance-free system has no requirement for a permanent store
for any of the content it uses or generates. Reliance-free content systems should have no problems

working in a mobile, peer-to-peer environment as they are likely to only require connections to peers

that are currently in range.

Clearly, in order to avoid the considerable task of authoring content, either a self-generating or

reliance-free content system must be employed. Static content systems require a committed effort from

application developers during implementation and often require continued maintenance by them after

the system is deployed. Whilst external content systems remove this responsibility from the developers

of the application, it is simply moved into the hands of a third party. Obviously, having some of the

content outside local control is often not desirable - particularly in critical applications.

105

Chapter 3: Investigation of two mobile applications

Both self-generating and reliance-free systems relieve the entire weight of authoring content from the

developer. They can also provide substantial value to the end-user community as self-generated data

can be continually updated at no further cost thus providing a system that always stays relevant.

However, it may not prove feasible to create systems that fall into these categories in every domain.

For example, any system that relies on officially sanctioned data, such as stock market prices, could not

be self-generated on end-user devices.

Whilst it is impossible to create self-generating or reliance-free systems for all possible application

domains, designers of mobile systems should aim to create such systems when feasible in order to

negate the substantial cost and time involved in authoring content. Such systems also allow designers

to avoid the requirement of a central server which often leads to the problems found in the Lighthouse

and George Square. The diagram below (Figure 9) demonstrates where each of the categories

described fall in relation to requiring a central server and requiring content to be authored.

ý'
!

Externs' Server required

No server r'erati

required 1 RelienCe"Ires

Content must No content
be authored authored

Figure 9: Overview of the design space relating to content types of pure peer-to-peer systems in the mobile
environment.

As will be seen throughout the remainder of this thesis, the systems implemented from this point
forward, with the exception of Treasure, attempt to avoid the requirements for content authoring and

centralisation, and are either self-generating or reliance-free content systems.

By re-examining Triantafillou et al's categories alongside the content system categories, we can
identify where each type combination may store the data they create and, subsequently, the types of

network each may rely on.

Centralised peer-to-peer systems with a reliance on either static, external or self-generated content can

easily rely on a central server to store and access data. As all clients must have access to this central

server it is from here that data can be spread throughout a community.

106

Chapter 3: Investigation of two mobile applications

Hybrid or pure peer-to-peer systems within reliance-free content systems do not require a permanent

store and so need no server or external source to operate from. In short, systems falling into these

categories do not generate any data that must be spread and stored throughout the entire community of

users

However, pure, and some hybrid, peer-to-peer systems which utilise self-generated content may need

to spread this content throughout the community. This presents a problem, as there is no central store

that all clients can access in order to share content through. Therefore, an alternative, reliable method

of distributing content in such systems must be found. To spread their data, these systems may rely on

epidemic network algorithms. These are discussed further in Chapter 6.

Figure 9 demonstrates that servers are not required for anything other than external content systems.

However, this is only true if pure or hybrid architectures are followed. Table I provides a more

complete overview of the design-space, comparing the new content types proposed here to

Triantafillou et al's. peer-to-peer types.

Static External Self-generating Reliance-free

Pure N - N N

Hybrid N S N N

Centralised S S S -
Table 1: Possible peer-to-peer and content combinations. Items marked ̀ -' are not valid combinations.
Combinations marked ̀ S' require a server to operate whilst those marked ̀ N' do not require a server.

It is clear from Table I that pure and hybrid peer-to-peer systems have the advantage of negating the

need for a server for the majority of content types. In contrast, centralised peer-to-peer systems can
introduce the need for a server where one may not be required (static and self-generating). Therefore,

with the exception of external content systems, all content types are achievable without the use of a
central server. This leads to a final guideline extracted from the work on the Lighthouse and George
Square.

Avoid centralised Deer-to-Deer architectures whenever Possible
George Square, a hybrid peer-to-peer and self-generating content system, proved far more flexible and
mobile than the Lighthouse, a static centralised system, yet both provide similar functionality (both are
tourist co-visiting systems). It is clear from both the Lighthouse and George Square that whenever
centralisation was used it repeatedly proved detrimental to the mobility and flexibility of both systems.
The categorisation of content types and the combination with peer-to-peer types reveals that for most
mobile systems centralisation can easily be avoided through a prudent selection of content-type.

In designing a mobile system, developers should seek to rely on static, self-generating and reliance-free
content types in order to avoid centralisation. When utilising static or self-generating content
architectures, designers should avoid the use of centralised peer-to-peer designs, as such systems can

107

Chapter 3: Investigation of two mobile applications

be achieved through pure or hybrid architectures. The only mobile systems that absolutely require

centralisation are those that rely on external content. Designers of such systems should strongly

consider alternative content types where possible to avoid the problems centralisation often introduces.

3.3 Conclusions
Analysis of both the Lighthouse and George Square systems has proved extremely beneficial in

revealing problems with existing mobile systems, developing guidelines for the future design of mobile

systems and identifying infrastructure that is simply lacking in current mobile systems.

From the investigation five new and important guidelines for developing mobile systems have been

identified:

" Support users changing roles

" Support fluid group dynamics

" Avoid reliance on pre-authored content

" Allow information to be shared and stored by multiple peers

" Avoid centralised peer-to-peer architectures whenever possible

For each of these guidelines, information on how they can be applied has been provided and the first

three have been demonstrated to be useful as part of the George Square system. All of these guidelines

are followed by the systems subsequently described in this thesis and their utility is reinforced by their

successful application within these systems.

In addition, the importance of avoiding pre-authored content in mobile systems has been highlighted

and categorisations of the possible types of content system have been given. Again, the George Square

system demonstrates how a complex and successful system that avoids a reliance on pre-authored

content can be implemented.

Four important pieces of infrastructure missing in mobile, peer-to-peer development have been

identified:

"A mechanism for intelligently selecting which networks to use and for reliably discovering

peers on these networks

0A hybrid positioning system that requires no initial setup and yet has high availability in

providing location both indoors and outdoors
"A method for providing and distributing data within a peer-to-peer community

"A method for adapting the system itself around user's activities

Whilst the remainder of the work in this thesis does follow the guidelines laid out in this chapter, the

primary aim from this point on is the investigation and implementation of the four missing pieces of

109

Chapter 3: Investigation of two mobile applications

infrastructure identified as important to mobile systems. Each one is subsequently demonstrated in a

successful mobile system. It is hoped that the identification of the guidelines and the implementation

of the missing infrastructure will advance the mobile field by facilitating the future design and

development of mobile applications.

109

Chapter 3: Investigation of two mobile applications

110

Chapter 4: A network driver for mobile, peer-to-peer systems

ý4 A NETWORK DRIVER FOR MOBILE,
PEERMTOMPEER SYSTEMS

During the literature review it became clear that there was a need for a network driver that can fulfil the

specific needs of mobile, peer-to-peer applications. Specifically, the requirement is to allow the

discovery and communication with the highest number of peers possible. This need is reinforced by

both the Lighthouse and George Square trials that suffered different but severe problems with the

network technologies they employed.

Current network drivers and technologies frequently fail when used in mobile, peer-to-peer

environments. As has been experienced, they often require configuration by trial designers or by users

before they can be used in a particular network setup. They often disconnect and fail to rejoin

networks without input from the user. In short, they fail to be autonomous enough to intelligently join

and configure devices for use in networks without requiring user input. As they fail to join networks

they in turn fail to locate and identify peers. This is a serious problem as it has been seen that the

discovery of peers is crucial in driving any peer-to-peer system.

With this in mind, several goals for a mobile, peer-to-peer network driver can be stated:

0 Require no input from the user

" Automatically select and join networks where peers are most likely to be found

" Automatically configure the device for use after a network is joined

" Continue to allow users to perform standard tasks (e. g. check email, browse the Web)

" Advertise the device's own existence on a network to allow peers to find it

" Discover peers once on a network

To address these issues, the development of a new network driver was undertaken and this work is

detailed in the following sections. Firstly, an overview of the current communication technologies

available on mobile devices is presented; this includes considerations of legal concerns and a trial

aimed at discovering which technology best supports peer-to-peer discovery and communication.

Following this, one of the technologies is selected and a driver is then implemented. The driver

consists of two main segments and each is tested within a mobile system. The implementation of each

segment and the subsequent trial within a system are described.

During the course of discussing the design and implementation of the wireless driver, the concept of
Seamful Design is also investigated. Experimentation with the use of seamful design in the mobile

systems trialled in this section leads to a final design guideline for mobile, peer-to-peer systems. This

is discussed further in section 4.2.2 of this chapter.

III

Chapter 4: A network driver for mobile, peer-to-peer systems

4.1 Selection of an underlying technology

In creating mobile systems there are many constraints, such as legal issues, which are outside a
developer's control and cannot be directly overcome through software design. Although developers

often try to mitigate such problems as best they can, there are frequently instances when the solution is

simply too costly or risky, and functionality must be dropped. A particularly relevant issue for mobile

applications is the use of wireless communication, as this is generally required if any communication is

to occur between multiple users' devices in peer-to-peer environments. The choice of which form of

wireless communication to use in a mobile application can be of the utmost importance to its

subsequent performance, as it can greatly affect the number of peers that can potentially be

encountered, the rate data can spread within a peer-to-peer community, and the types of information

that can be transferred and accessed. In addition, legal issues can simply exclude some forms of

wireless from being used in certain communications. For example, one of the major issues in the
Yoshii game (discussed later in section 4.3.3) was that it was thought too risky, from a legal standpoint,
to use any discovered access points to transfer data over in order to synchronise scores with an Internet-
based server.

Although there are new wireless protocols emerging, such as Wireless USB and WiMAX, there are
currently only three that are popular on mobile devices; 802.11, GPRS/GSM and Bluetooth. This

section examines these three different wireless technologies and presents results from trials in order to

compare them.

4.1.1 802.11
802.11 wireless is probably the most popular choice for communication in peer-to-peer applications on
PDAs for several reasons. It has relatively high bandwidth, a large range, little protocol overhead in

terms of setup, and is built-in on nearly all modern PDAs. 802.11 wireless cards are also beginning to

appear built-in on phones. Although there are currently three widely used 802.11 protocols (a, b and

g), mobily devices predominately use only 802.11 b, which provides a maximum transfer rate of
11Mbps. As this is the only form of 802.11 available for most mobile devices, it is the only one
included in the trials and comparisons are described later in this section.

Wireless card power consumption is not normally detailed in the technical specification of most mobile
devices but will normally range from 1-4W during normal use. This is relatively high compared to
both Bluetooth and GPRS, and despite recent attempts to improve the power efficiency [51], is unlikely
to change in the near future.

Despite its many advantages, use of 802.11 can still prove problematic due to the many legal concerns
surrounding its use. The primary problem with 802.11 is not that there are specific laws limiting its
use. Rather, the problem is that there are too few laws (at least in the UK and the USA) directly
addressing issues with 802.11. This results in overly cautious design in many applications utilising
802.11, as developers are simply unaware of how they may and may not use 802.11. Inevitably,

112

Chapter 4: A network driver for mobile, peer-to-peer systems

particularly in commercial applications, they opt to err on the side of caution and avoid 802.11

whenever possible.

There are few or no legal issues concerning ad hoc use of 802.11, in which devices communicate

directly to one another rather than involving a third-party. Similarly, as discovery of 802.11 access

points is a completely passive process, there are no known legal concerns here either. Furthermore, as

the vast majority of access points are owned and operated by individuals rather than commercial or

institutional bodies, there are no concerns that mapping the location of access points in any way

constitutes IP theft or a security risk. However, despite the fact that 802.11 access points are now

extremely common-it is typical for hundreds to be in range in streets at the centre of large western

cities-the use of access points that are not one's own remains a legal grey area. Although the work in

this thesis leads to advocating peer-to-peer communication for mobile applications in general, the

ability to use discovered access points is important for many travellers as they provide a convenient,

and often free, connection to the Internet. Given that users desire to connect to access points, be they

their own or others', it would be advantageous to allow peer-to-peer applications to continue to

discover and communicate with peers whilst connected to an infrastructure mode network. Indeed, this

is one of the aims of the network driver described here-to allow mobile devices to continue to run

peer-to-peer applications regardless of the type of network they are using.

Obviously, to use 802.11 access points that are randomly discovered while a device moves within a

city the access points themselves must be left open. Although the American federal government at one

point believed open access points to be a threat to national security [17] and some American counties

are considering legally forcing businesses to secure their access points [4], there is still a substantial

number of open access points to be found. Indeed, the majority, 67%, of access points still remain

open and this is likely to increase to 80% by 2007 [79].

Most open access points are operated by home users who simply have no concern about leaving it

open, do not have the knowledge to enable security on them (nearly all access points have security
disabled by default) or deliberately leave them open as they do indeed intend for their connection to be

publicly shared. Deliberately sharing a connection through an access point is not necessarily illegal,

nor is it necessarily a security risk if sensible measures are taken to encrypt or secure data transmitted
inside the network. Indeed, in choosing between securing network traffic and securing an access point
it may be wiser to do the former as both WEP and WPA, the most common forms of 802.11 security,

are extremely easy to crack - there are even applications which automate the process6. Although many
ISPs have clauses in their contracts that prohibit anyone but the contract holder from using the

connection, others actively encourage it. For example, SpeakEasy state in their policy document':

6 http: //airsnort. shmoo. com
http: //www. speakeasy. net/netshare/terms/# W i-Fipolicy

113

Chapter 4: A network driver for mobile. peer-to-peer systems

Wireless networking and publicly shared wireless networks present exciting new

opportunities to share information and connectivity resources with one another - we

encourage you to explore it!

Despite the fact that many access point owners do desire their connection to be publicly available, there

is no concrete way to differentiate these from owners who do not wish their access points to be used

other than asking the owner him or herself. Similarly, although many cities are starting to provide free

wireless access, there is no definitive technique for automating the process of determining which access

points belong to these networks, keeping any list of open access points up-to-date, or filtering out

access points which by coincidence have the same SSIDs as ones which are provided freely.

Given that there are so many open access points, and that their use could be beneficial for mobile

applications that rely on external data, there is a strong inclination to write applications that can make

use of them. However, the main legal concern in using any of the open access points that are

discovered is that doing so may constitute theft if the owner does not wish to share his or her

connection. By connecting to the Internet through an open access point, one increases the bandwidth

used by whoever owns the access point. If their ISP charges them on a usage basis then clearly the

owner of the access point may incur additional fees. To date, only one legal case has arisen in which a

man using an open access point was charged with theft, and no legal precedent has been set". Hale

states [79]:

This panoply of case law provides fairly broad (and potentially confusing) latitude to

courts in determining whether unauthorized access has occurred in the case where
defendant piggy-backs off of another's WLAN.

Despite this apparent legal confusion, the general consensus among users seems to be one which Hale

also states, but one which he does not highlight as legally proven. That is [79]:

... [the] absence of password protection, or a similar failure to take reasonable

safeguards against unauthorized use, such as encryption, may rebut the view that any

outside access to a private WLAN constitutes unauthorized access.

Kerr also arrives at this conclusion stating that [95]:

Here the code-based restriction presumably includes the network's encryption scheme.
Under this approach, access is without authorization only if the user bypasses the

wireless network's encryption scheme. If the hospital left the network open and
unencrypted, however, use would not be circumventing a code-based restriction and

could not be without authorization.

http: //www. msnbc. msn. com/id/8489534/

114

Chapter 4: A network driver for mobile, peer-to-peer systems

Although this may be strong enough support to convince individuals to connect to and use open access

points to access the Internet, the fact that the legality is not proven means that it is not yet advisable for

developers to create applications which will automatically implement this behaviour. Whilst individual

use of single open access point is likely not to be noticed and even less likely to appear in court, an

application which automated the connection to an access point and then utilised it to connect to the

Internet could potentially be used by many - thus making it easily noticeable and potentially a target

for legal attack. Instead, it may be safer to allow detection, connection and non-Internet use of open

access points; such as accessing local clients, printers, or other services on the local subnet. This

avoids many of the legal issues concerning theft since, as no paid service is utilised, the owner incurs

no financial loss. Hale concludes similarly, stating [79]:

If a Wi-Fi interloper must continue, he or she should avoid heavy downloading activity

(music, games, movies, etc.) that has a tendency to overburden the network and may

amount to recoverable damages.

All mobile developers should have knowledge of these legal concerns and should be fully aware of

how far their applications push them. Whilst there are no insurmountable hardware or software

problems with using 802.11 for direct peer-to-peer communication or detection of wireless access

points, developers must be conscious that connecting to and using Internet connections through open

access points remains a legal grey area. Connecting to and using open access points as a conduit for

peer-to-peer communication is likely to be legal, and therefore may be considered as acceptable to

implement within applications. Developers should certainly not avoid 802.11 completely, as 802.11 is

perhaps the most suitable communication platform for peer-to-peer applications.

4.1.2 Bluetooth
Bluetooth is the most common form of wireless communication technology on mobile devices and is

found on both modern phones and PDAs (for example, the Mate SP5 phone and the iPAQ 4150 PDA).

Although it is possible to use Bluetooth to connect to the Internet by connecting through another

device, such as a mobile phone using GSM or a laptop computer using 802.11, this is extremely rare.
There are no Bluetooth infrastructure points that provide Internet access and thus in practice Bluetooth

is primarily used only for connecting devices directly to others in a peer-to-peer fashion. Clearly, this

leads to an immediate constraint, as Bluetooth is simply not an option in cases where mobile devices,

which do not have another wireless communication technology, require Internet access.

Bluetooth is capable of speeds up to 2.1 Mbps, and uses between I to 100mW depending on the class of

Bluetooth used. There are three classes of Bluetooth the ranges and power consumption rates listen in

Table 2.

115

Chapter 4: A network driver for mobile, peer-to-peer systems

Class Power Consumption (mW) Range (m)

1 100 100

2 2.5 10

3 1 1

Table 2: Bluetooth classes, power consumption and range.

As the overwhelming majority of Bluetooth devices are sold with Class 2 devices built-in-indeed, the

author has been unable to locate any PDAs or phones with Class I or 3 Bluetooth currently available- -

we shall concentrate only on this one class. External cards providing Class I Bluetooth are available

for many PDAs but, as Class 2 is sufficient for most users' range requirements when using most

commercially available Bluetooth devices, and as the addition of an external card can make a device's

form unwieldy, the use of external cards remains extremely rare.

4.1.3 GSM/GPRS
GPRS (General Packet Radio Service) is a data service which runs on top of GSM (Global System for

Mobile communications) and is available on virtually all modern phones. Most mobile phone network

providers make GPRS available for data transfers to customers. When actively using GPRS the phone

network assigns the phone an IP address and allows full Internet access. Standard GPRS is capable of
data rates up to 160kbps although EGPRS (Enhanced GPRS) increases this to 236.8kbps. In practice,

the data rate achieved is generally much lower as bandwidth has to be shared with other users in the

same phone cell. Also, interference from other phones, even those not transferring data, can

significantly impact reception. In addition, GPRS rates are affected by the range from the device to the

cell tower and, as average users are not aware and have no means of discovering where a cell tower is,

they have no information available on how to decrease this range in order to achieve higher data rates.

The main disadvantage of GPRS for use in mobile, peer-to-peer applications is that the connection

method, a direct connection to the Internet, is detrimental to the behaviour of peer-to-peer applications.
As there is no local subnet, an application relying on GPRS is unable to discover nearby peers, even
those within the same phone cell, and thus is unable to utilise any pure peer-to-peer techniques. In

short, devices relying solely on GPRS have no choice but to rely on a central Internet server if they

wish to discover peers. Other notable disadvantages are high cost (in Britain charges average

approximately £3 per megabyte of data transferred) and relatively slow connection rate.

In addition to the technical disadvantages of GPRS on the GSM network, the mobile phone operators,

who pay for the construction and placement of the cell towers, are extremely protective of any potential

profit that may be made through the use of mobile phones or cell towers. If the locations of cell towers

are known it is possible to utilise the information about what cell towers are in range and the signal

strengths to each to provide a form of positioning through triangulation. As the mobile phone network

116

Chapter 4: A network driver for mobile, peer-to-peer systems

providers wish to profit from this information themselves, they actively seek to quash attempts to use

information about cell tower locations to locate users. They do this in two main ways. Firstly, by

encouraging mobile phone manufacturers to block access to the information about cell towers that a

phone detects. For example, mobile phones must be constantly aware of what cell towers are in range

and the signal strengths to each in order to handle hand-offs from one cell to another adequately and for

simpler tasks such as displaying the current signal strength to the user. However, the required API

information is not made publicly available so as developers might use it in their own applications, and

thus laborious work probing memory must be completed for each phone operating system and driver in

order to determine where this information is stored and how it can be interpreted.

Secondly, mobile phone network providers claim the location, layout and identification numbers of

their cell towers are copyrighted information. Recently, in Austria, an individual was prosecuted for

writing an application that used this information [98]. By writing an application that detected cells and

recorded their unique identifiers and locations he was able to record cell towers and their locations as

he drove through large sections of Austria. Subsequently, he was able to write another application that

then used this information to find a user's location and provide some basic location-based services.

Unfortunately, the network provider whose cell tower information he was using, T-Mobile, decided to

prosecute for this use and successfully managed to stop the application from being used.

For the mobile developer not working for the phone network companies, the fact that cell tower

location information is aggressively guarded by these companies greatly reduces the range of mobile

applications that can be made on phones. For example, any applications that reveal information about

cell towers or their IDs are simply not permissible. This means that applications we have worked on,

such as Treasure and Feeding Yoshi would not be possible using GSM networks. This situation is

unfortunate as many of the users of these applications, as well as other researchers, have specifically

shown an interest in a version which would work on phones. Similarly, games such as Node Runner9

may not be possible if the nodes being sought were cell towers instead of 802.11 access points.

As GPRS on GSM networks is incapable of supporting pure peer-to-peer applications and since the

phone networks discourage use of cell information, GPRS is not a candidate for most mobile

applications. Whilst the network characteristics may be of interest for centralised applications, they are

not relevant for this thesis and, in any event, are widely published already. Therefore, GPRS is not
included in the comparison of possible peer-to-peer wireless technologies and instead only 802.11 and

Bluetooth are examined.

4.1.4 Trial
In order to investigate which transmission techniques are most suitable for pure peer-to-peer mobile,

two specific aspects must be considered:

http: /twww. noderunner. org

117

Chapter 4: A network driver for mobile, peer-to-peer systems

" the time it takes to discover peers

" the amount of data that may be transferred during peer encounters

Firstly, consider the time taken to discover peers and the reliability of doing so. This is obviously
important for pure peer-to-peer applications in which maximising the number of peers encountered is

critical to maintaining both enough information to drive the application and to keeping the information

up-to-date. Secondly, consider the amount of data that can be transferred during encounters at different

distances. Again, this is critical for similar reasons-the amount of data transferred during encounters

can directly affect the performance of any mobile application that relies solely on peer-to-peer

communication. Furthermore, the distances are important as when a device is in a mobile environment

randomly encountering peers, encounters will occur with a different proximity and this information can
be vital to discovering if an application is viable. For example, if a mobile application were to be used
to transfer files of 500kB between peers wandering around a museum it may not be a feasible one if the

average time and distance between devices during encounters resulted in less than 500kB being

transferred.

As stated, out of the three wireless technologies common on modem devices, only 802.11 and
Bluetooth were considered suitable for use in pure peer-to-peer mobile environments. Furthermore,

only one specific version of each was examined - 902.11 b and Class 2 Bluetooth. Two separate trials
were conducted to record results of the two topics of interest - the time for peer discovery to occur and
transfer rates over successful connections.

In the first trial, examining peer discovery and reliability, both 802.11 and Bluetooth were tested at
different ranges: 1,5,10,20,50 and 100 metres. The Class 2 Bluetooth being used has a range of 10

metres so was not expected to work for any distances above this but was tested for completeness.
802.11 devices were tested both in ad hoc and infrastructure mode. The primary interest is in ad hoc

use as this is the most likely form used in peer-to-peer mobile applications but again, for completeness,
tests using an infrastructure access point were conducted. For the Bluetooth and ad hoc 802.11 tests,
the devices were simply moved the required distance from each other before the tests were run (top of
Figure 10). In the infrastructure 802.11 test, the relevant distance was from the access point so the two
devices were moved the required distance in opposing directions from the access point (bottom of
Figure 10). For all tests care was taken to ensure that there were no obstructions between the devices.
This includes the bodies of the organisers conducting the tests, the organisers were careful to ensure
they were all behind the devices when trials were being run.

118

Chapter 4: A network driver for mobile. peer-to-peer systems

5 metres

-5 metres -------5 mnet, es ----

Figure 10: 802.1 1 and Bluetooth trial device setup. In both the ad hoc 802.11 and Bluetooth tests, the devices

were connected directly at the required distance apart with a clear line of sight to each other. For the infrastructure
802.11 tests, the devices were connected to an 802.11 access point, the required distance from the access point and

with a clear line of sight to the access point.

In order to conduct and record the necessary timings, applications were written for both 802.11 and

Bluetooth that continually seek out peers. In the case of Bluetooth this simply involved standard calls

to the Bluetooth stack that already includes discovery methods. However, for 802.11 SDS (Self

Discovering Spaces, explained in more detail in section 4.3.2) was used as there is no discovery

mechanism included in its network stack. In order to improve accuracy, the SDS broadcast rate was

increased to l Oms rather than the default of Is. The default is set at this length so as not to flood the

network under normal conditions but this was not an issue for the tests as they were conducted on

isolated networks. Thus, the lOms rate obviously allows for results to be accurate to within that

interval. The 802-11 network mode, IP address and SSID were locked throughout the trials and not

allowed to jump from one network type or SSID to another, so as to eliminate the underlying network

setup times from interfering with the trial results.

At each of the 6 distances, the peer discovery was attempted 20 times and the time to discover peers, in

cases where it was successful, was noted. If devices failed to discover one another within 60 seconds,
the attempt was recorded as unsuccessful. Whilst results will vary slightly depending on many external

factors we did not measure, such as moisture in the air or air pressure, it is hoped the recorded results

are representative of the technologies' general profiles. The number of individual broadcasts and

discovery attempts made was also ignored. This was done because it is not deemed worthwhile to

compare these values as 802.11 and Bluetooth discovery protocols are substantially different. For

example, such a comparison attempted between SDS's I Oms broadcast rate and Bluetooth's long scan
time, which can be longer than 10 seconds, would undoubtedly lead to an extremely low discovery

ratio for 802.11, which does not accurately reflect the overall detection rate during peer encounters.
The results from the first trial are shown in Table 3.

119

Chapter 4: A network driver for mobile, peer-to-peer systems

Bluetooth Ad hoc 802.11 Infrastructure 802.11

Range (m) Avg time (ms) % succ Avg time (ms) % succ Avg time (ms) %succ

1 4256.7 80 9.9 100 52.2 100

5 4247.3 100 9.0 100 45.1 100

10 15081.6 55 9.1 100 51.2 100

20 N/A 0 10.1 100 66.8 100

50 N/A 0 11.2 100 167.9 100

100 N/A 0 14.85 100 N/A 0

Table 3: Peer discovery times and success rates

It is clear from the results that both ad hoc and infrastructure 802.11 are far superior to Bluetooth when
it comes to peer discovery. Even within the 10 metres that the Bluetooth protocol specifies that Class 2
devices should operate, there was a clear sensitivity to range. It is commonly known that Bluetooth

devices are not reliable when they are either too close or too far, and this is borne out in the results of
the trial which show that discovery was only 80% reliable at I metre distance and 55% reliable at 10

metres. Furthermore, the time for peers to discover one another was substantially higher between 5 and
10 metres, more than tripling from just over 4 seconds to over 15. This is a serious defect for peer
discovery in mobile environments as devices are rarely within 10 metres of one another for 15 seconds
unless owners are travelling as a group or are stationary.

802.11, however, provides extremely reliable peer discovery from 1 to 100 metres. In ad hoc mode,
range within the 100 metre limit seems to affect discovery rates little, and all averages are below 50

milliseconds. However, in infrastructure mode the range seems to have a stronger affect and it is clear
at 50 metres there is a marked increase in the time taken for discovery to occur and at the 100 metre
limit there are no successful discoveries whatsoever. This difference from ad hoc mode may be due to
the aerial on the access point itself being less powerful, or more obscured, than on the devices. An
Apple AirPort was used as the infrastructure access point and the casing that surrounds the internal

aerial may have interfered with the signal. Tests with another type of access point, preferably with an
external aerial, would have to be conducted to confirm this theory. Despite this effect experienced at
the maximum range in infrastructure mode, 802.11 proved far superior to Bluetooth. Even at its
maximum 100 metre range, discovery took place in the worst case in under 1.5 seconds compared to
over 4 seconds in the best instance for Bluetooth at S metres (the distance it performed most
efficiently).

The second trial was conducted using a similar method as the first. The devices were again separated
at the same ranges, but in this trial the time taken to transfer I MB of data between the devices after
they had successfully detected one another was recorded. This was repeated five times at each of the
ranges and the average transfer rate calculated. Obviously, despite many attempts to connect devices

outside the maximum ranges specified, connections were not possible at some of the higher distances.
In these cases results could not be recorded. The results from the second trial are presented in Table 4.

120

Chapter 4: A network driver for mobile, peer-to-peer systems

Range (m) Bluetooth

avg time (ms)

Ad hoc 802.11

avg time (ms)

Infrastructure 802.11

avg time (ms)

1 19063.4 2589.7 4260.2

5 20459.2 2606.6 4233.8

10 67024.1 2637.3 4332.8

25 N/A 2769.1 4303.9

50 N/A 2757.1 4571.0

100 N/A 4526.7 N/A

Table 4: Transfer times between peers exchanging 1 MB of data

At 25 metres and over, Bluetooth was unable to complete any transfers whatsoever. Similarly, when in

infrastructure mode 802.11, it was unable to complete any transfers at 100 metres. Again, both ad hoc

and infrastructure 802.11 prove vastly superior to Bluetooth. Bluetooth experienced slow transfers of

around 20 seconds at both I and 5 metres and a remarkably poor transfer rate, taking over a minute to

transfer 1 MB, at 10 metres. This is particularly surprising as 10 metres is within the operating range

specified for Bluetooth1°-.

Class 2 radios - most commonly found in mobile devices - have a range of 10 metres or

30 feet

Therefore, such a substantial drop-off in transfer rate was simply not expected within the operating

range. 802.11 performs far better in transfer rates with I MB being sent in under 3 seconds for

distances of 50 metres and below in ad hoc mode. In infrastructure mode, transmission times are just

slightly under double the corresponding ad hoc times. This is most likely not because the total travel

distance is doubled (the devices are in opposite directions of the access points) but due to packet

collisions and subsequent traffic management in the access point firmware. The access point must

receive data from one device and retransmit it in order to reach the destination device. As all wireless

traffic is broadcast, this results in a busy network environment in which the access point is receiving

data and sending acknowledgements to the sending device and sending data and receiving

acknowledgements from the receiver device. Again, despite this it is clear that 802.11 outperforms

Bluetooth both within its operating range and far beyond.

Complete results from the trials are available in the appendix.

4.1.5 Conclusions
Whilst neither Bluetooth or 802.11 can be said to be the most appropriate technology for all mobile

peer-to-peer communication, it does appear that 802.11 is generally more effective than Bluetooth.

This is mainly because 802.11 works over a larger range, and is substantially quicker and more reliable
in the very thing that is fundamental to all peer-to-peer applications, that of detecting peers.

1° http: //www. bluetooth. com/Bluetooth/Leam/Basics

121

Chapter 4: A network driver for mobile, peer-to-peer systems

Although the use of 802.11 does evoke the legal problems discussed, none of these in any way affect

peer-to-peer communication itself. Thus, developers using 802.11 can design for standard peer-to-peer

ad hoc use without any concerns and, if they desire, additionally allow for peer discovery over
infrastructure networks. It is only if the application requires Internet access that the developer should
be hesitant about using randomly discovered open access points. As one of the findings thus far has

been that peer-to-peer mobile applications should generally avoid reliance on a central server, this

should not be an issue for the majority of such applications.

802.11 has clear advantages over Bluetooth for peer-to-peer mobile applications. Its extremely short
discovery time, greater operating range and relatively rapid transfer rate adequately meet the need to
identify the largest number of possible peers and quickly spread information throughout a community

of users.

Given that 802.11 does appear to provide so many benefits for mobile applications, it can appear

surprising that a large number of applications do employ Bluetooth rather than 802.11 on devices

where both are available. The most likely reason for this is that Bluetooth does have a single but

significant advantage over 802.11 in its power consumption that can literally be a thousand times lower
(2.5mW compared to 1-4W). However, this advantage may soon be inconsequential as modern
devices, such as the i-Mate SP5, are now capable of running for an entire day whilst using inbuilt
802.11. Traditionally, the lack of a device lasting an entire day has been the barrier inhibiting its wider
use.

Future versions of Bluetooth are likely to use UWB (ultra-wideband), which may provide greatly
increased bandwidth, significantly reducing peer discovery times and increasing bandwidth. However,

this is unlikely to be implemented in the near future and will not significantly affect the operating range
of Bluetooth devices. As higher operating ranges greatly increase the chances of discovering and
communicating with peers, it is possible that 802.11 will remain a preferable choice even when faster
UWB Bluetooth becomes available.

4.2 The wireless driver
The need for the network driver and the decision to create it using 802.11 directly resulted from the
work in this thesis - specifically as a result of the problems encountered in George Square. However,

the decision to implement it was made in conjunction with Malcolm Hall, and both he and myself
worked equally on the implementation of the first part of the driver described in this section.

The implemented driver runs on PocketPC and Windows Mobile devices. The first part of the driver

essentially allows the default driver on the mobile device to be bypassed, and for our driver to scan for

and select which networks to join. The standard drivers provided as part of the PocketPC and
Windows Mobile operating systems are not suitable for a number of reasons. Firstly, they continually
request the operating system to ask the user about network connection decisions through a pop-up

122

Chapter 4: A network driver for mobile, peer-to-peer systems

balloon. This is not only annoying for users but also requires them to have knowledge of various

connection issues such as IP addresses and wireless security. Furthermore, as there is no automatic

connection to networks, there can be substantial periods when the device simply remains disconnected

from all networks whilst it waits on user input. If a device is carried in a user's pocket then these

network notifications will not be seen and, as a result, the device may remain disconnected for the

entire duration of a user's travels. This is a clear waste of battery power and of opportunities to meet

peers-the network card is on and there are networks it could connect to in order to search for peers yet
instead the card remains idle. Finally, the standard PPC/WM wireless driver cannot easily be

controlled programmatically, meaning that these continual interruptions to the user and the lack of

automated connection cannot be overcome using this driver.

Most of the work on the driver is implemented in C#. Indeed, as will become apparent, most of the

mobile systems from Glasgow that are discussed in this thesis have been implemented in C#.

Throughout work on many of the systems discussed in this thesis there has been a gradual switch from

using Java to C# for implementing mobile applications. Although there are many reasons for this, the

main ones are: C# IDE tools are more tightly integrated with development on the main mobile

operating systems (PocketPC and Windows Mobile); performance of compiled C# executables is

substantially faster than Java executables, particularly in thread allocation and graphics performance;

and native API functionality, which is commonly required on mobile platforms to access their
hardware, is easier to invoke from C#. Janecek and Hlavacs arrive at similar conclusions in their study
comparing both languages for use in mobile development [92].

The driver we created is mainly implemented in C# but certain parts of code which interface with the
NDIS" APIs on the device are written in C++. The driver deactivates the standard PPC or WM driver

and also, optionally, disables the network notification bubbles that can prove distracting to the user.
Once the default driver is disabled, our driver allows card power to be turned on and off, scans for

802.11 networks to be conducted, connection mode to be switched between ad hoc and infrastructure,

networks to be joined and IP addresses to be automatically configured. In short, full control of the

wireless functions on the device are made available by our driver through a simple set of API methods.

This bypassing of the default driver to allow full control of wireless functionality is the first part of the

wireless driver. The second part, which adds some default logic to control which networks are joined

and the ability to discover peers, is described in the subsequent section in this chapter. However, the
first part was tested within the Treasure game, which is described in the next section.

4.2.1 Treasure
The Treasure game was created for two reasons: to test the wireless driver and to investigate Chalmers'

concept of Seamful Design. This concept relates back to the findings of Flintham et at. described in the
literature review - by revealing details of infrastructure to users they can be empowered to find novel

11 Network Driver Interface Specification (see http: //www. ndis. com/ for more details)

123

Chapter 4: A network driver for mobile, peer-to-peer systems

ways to use the infrastructure and to overcome problems better when the infrastructure fails. As the

concept of Seamful Design employed in Treasure turns out to be highly applicable to mobile systems

more generally, it is discussed after the description of Treasure and before further discussion of the

wireless driver.

The idea and game concept behind Treasure was my own-inspired by Matthew Chalmer's desire for a

Seamful Design testbed. The overwhelming majority of the implementation was done by Malcolm

Hall and myself, although several undergraduate students did contribute small pieces of code to the

game client as part of a summer research project.

To take part in the game, players are split into two teams and carry a PDA (iPAQ 5550) augmented

with GPS capability. The interface shows a map of the area onto which coins periodically appear

(Figure 11). Players can collect these randomly appearing coins by physically moving over the

apparent location of the coin. When users feel they have collected enough coins, they can exchange

them for points by clicking a button marked ̀upload'. The coins that appear are placed randomly in the

game area and so can be outside areas of 802.11 coverage, but to exchange the coins for points the

players must be inside network coverage. If they are not in network coverage, or if they are in an area

of particularly poor network coverage, the coins will simply be dropped and no points gained when the

upload button is clicked. Furthermore, new coins only appear on a player's map whilst the player is

within network coverage. This concept of having apparently physically located objects that are only
viewable on digital devices whilst not viewable in the physical world is common to mobile games, and

appears in Six in the City [118] and Benford et al. 's Unearthing Virtual History system [12].

As the game progresses, the map the players view is continually updated with an overlay of the
network strength in the area - sampled by players' devices. In addition, the current 802.11 signal

strength is always displayed as a bar graph at the top of the screen. Thus, as the game progresses,

players learn where areas of strong and poor 802.11 signal strength are, and learn that to collect points

reliably they must be in an area of high signal strength. Players are also shown information about the
GPS infrastructure. Their own, and other players' locations are always displayed on the map, and the
GPS accuracy can be inferred by a coloured number that shows the quality of the GPS fix and the

number of satellites currently in view. The user interface for the game, on which the overlay of signal

strength readings can be seen, is shown in the figure below.

124

Chapter 4: A network driver for mobile. peer-to-peer systems

Admin tý u
A&

®IA

Figure 11: The Treasure interface. The map overlay of the 802.11 wireless signal is shown in red, yellow and
green in the interface. In this particular screenshot, taken shortly after a game started, no low signal strength (red)

areas have yet been recorded.

In addition to collecting coins to gain points, players can also `steal' coins from others. To do so both

players must be in network range and within ten metres of one another. Players may then click the

`pick-pocket' button to attempt to steal all the coins a competitor is currently holding. Alternatively, if

a player suspects another may be chasing him or her in an attempt to pick-pocket, he or she may

activate a temporary shield that protects from pick-pocket attempts for a short period of time (20

seconds). If a player is lucky enough to be in range of multiple opponents, a successful pick-pocket

can gain the coins from two or more opponents simultaneously. As pick-pocketing can only be

achieved in areas of network coverage, there are advantages in being both in network coverage and in

being outside network coverage. Whilst in network coverage, players learn about new coins they can

collect, and may exchange coins they are carrying for points. However, they are susceptible to pick-

pocketing and their location is made available to competitors and displayed on their maps. Outside

network coverage players are safe from pick-pocket attempts and their locations are not shown to

competitors. They may collect coins in relative safety without being observed on the screens of

opponents' devices. However, they do not learn about new coins and are unable to exchange coins for

points. Thus, to play the game successfully, players must learn the advantages of being both in

network coverage and being outside network coverage, and balance their time appropriately in each.

By taking part in the game players come to learn the characteristics of the network coverage in the area

and discover how it can be both advantageous and problematic.

125

Chapter 4: A network driver fier mobile, peer-to-peer systems

This situation of experiencing advantages and disadvantages in both being connected to a network and

being isolated from it can be seen as a cipher for more general Internet privacy and awareness issues.

When connected to the Internet, there is the potential for exposure to viruses, hacking or being spied

upon-although often one must use the Internet, and the services available on it, to conduct parts of

one's work or leisure. When disconnected from the Internet, a user's privacy and their machine's

health are generally safer from these threats, and may still conduct many local network tasks within an

office or home intranet. The design of Treasure represents in the small issues that are a common

concern in the large. Treasure demonstrates that by drawing attention to these issues-forcing users to

be consciously aware of them-users can gather deeper understanding of a system.

1y
.v .'V

l'] LL4 ; i_
ý. ' ; ; CT's

In addition to our own trials at Glasgow University, Treasure was demonstrated at UbiComp 2004,

MobileHCl 2004 and WMCSA 2004, and at each location a large number of people signed up to play

the game. Nearly all players reported that the game was extremely fun to play and this was

substantiated by the observation that many of the players were extremely active during the game -
running for long periods of time as they collected coins and chased other players in attempts to pick-

pocket (Figure 12). Research on Treasure was published at UbiComp 2005 in [6].

4.2.2 Seamful Design
Seamful Design opposes the traditional view of mobile design for ubicomp expressed by Mainwaring

et al. [112]:

126

Figure 12: Player running through trees and bushes whilst playing Treasure at UbiComp 2004

Chapter 4: A network driver for mobile, peer-to-peer systems

Ubiquitous computing (ubicomp) is a vision of infrastructure. Indeed, it is a vision of

multiple infrastructures - some new, some existing; some virtual, some physical; some

technical, some social - all coming together in a seamless way.

Seamful Design suggests that by inverting this traditional view, in which seams are hidden from the

user, substantial benefit can be found in empowering users with the greater understanding observable

and obvious seams facilitate.

Treasure exemplifies Seamful Design as it reveals the underlying 802.11 infrastructure to the players as

part of an enjoyable game. Through playing the game, players who had no previous knowledge of

either 802.11 and GPS were able to learn of their characteristics in a practical way, and use them to

their advantage. As coins were only reliably uploaded in areas of good signal strength, players

attempted to learn where the 802.11 access points were and upload when they were particularly close to

them. For example, one player reported that they always attempted to upload "near the green node in

the window". In actuality, the "green node" they identified was a brightly coloured first aid kit, and the

access point they were uploading through was located in the office above, but was not clearly visible
from outside. However, this rather amusing example does clearly demonstrate that players did develop

an understanding of the 802.11 coverage and actively attempted to locate the nodes. Indeed, in the

example, the actual access point was more or less directly above the first aid kit and the player did

extremely well locating it as closely as he did.

Players also learned and used the characteristics of the GPS infrastructure to their advantage. We

observed one player who placed his magnetic GPS antennae onto a metal fence, which allowed him to

gain a more accurate GPS fix rapidly and collect a nearby coin he had previously had difficulty

collecting. Similar to players in Can You See Me Now, we also observed that players currently carrying
many coins and deep in an area of network coverage would attempt to `hide' near walls or in trees

where they suspected GPS quality to be poor. They realised that if they were in an area of poor GPS

coverage their locations would be obscured from competitors who would then experience difficulty in

getting their positions close enough to the `hidden' player's for the pick-pocket function to work.

These examples demonstrate that by designing to expose infrastructure and information about the
individual components that make up a system, and how they work together to form that system, users
gain vital knowledge and understanding of the system. This, in turn, allows users to take advantage of
the system at a level they would otherwise not be capable of and to deal better with breakdowns when
they occur.

Treasure demonstrates that Seamful Design-design that attempts to make apparent the characteristics
of the underlying infrastructure-can be of great benefit in the mobile environment. In Seamful
Design, instead of attempting to patch over or hide problems in services from the user, such problems

127

Chapter 4: A network driver for mobile, peer-to-peer systems

are designed in a way as to make them obvious and clear to the user. In a system that fully reveals and

provides descriptions of the seams in infrastructure, users are able, through understanding the reasons
for disconnections or breaks in services, to mitigate problems themselves. In this way, a system that

employs Seamful Design can provide more functionality and uptime than a system that attempts to

patch over and hide problems. A common example of this, used in the first paper on Seamfii! Design

[29], is a cell phone which hides the signal strength and currently connected cell information it may
leave callers bewildered when they are unable to make calls and their phones do not respond.
However, if users are shown the seams of the system, and told which cell they are connected to and
how strong the signal strength is, then over time they will learn that connection to a cell and a high

signal strength allow for high audio quality and low dropouts during calls. Therefore, when they are
unable to make calls, they are more likely to understand why and seek out an area in which they can
gain higher signal strength. This is echoed by the behaviour of players in Treasure who attempt to seek
out areas of high 802.11 coverage to be sure of reliable network connection before uploading their
coins for points. It is clear that players are using their knowledge of infrastructure to their advantage as
they seek out 802.11 coverage when required and avoid coverage when they observe competitors
following them.

The behaviour of players observed in Treasure as a result of Seamful Design leads to the final design
guideline of this thesis:

Ewose cheractrisd ofunderlvlnr lafraWuciw e when aonron ale
lt is clear that users are more adaptable than many designers expect, and by taking advantage of their
intelligence, through Seamful Design and the revealing of seams this can be leveraged to overcome
unexpected breakdowns in the infrastructure. Seamfal Design is far more applicable in the mobile
environment than the standard desktop environment simply because the infrastructure is currently less

reliable. This is exemplified by the typical and commonly experienced fact that network
disconnections and reconnections are normal and expected in the mobile environment whereas they are
rare and surprising in the office environment. Thus, Seamful Design should be a vital component of
every mobile system.

In order to understand how to implement Seamful Design in a mobile system, it is beneficial to
examine a subset of Gaver et al. 's guidelines for designing for ambiguity [68] as their inversion from
looking at ambiguity as a negative feature to perceiving it as a positive one in design echoes the
inversion the concept Seam fu/ Design applies to the underlying infrastructure in a system. Whilst
Gayer et al. define many rules, only two seem relevant to Seamful Design. This is unsurprising, as
although the two concepts of Ambiguity as a Resource for Design and Seamful Design share the stated
inversion of negative to positive, they remain distinct concepts. The two methods are:

" Expose inconsistencies to create a space for interpretation

" Cast doubt on sources to provoke independent assessment

128

Chapter 4: A network driver for mobile, peer-to-peer systems

By exposing inconsistencies early on, before a system breakdown, the user has more time to learn to

understand the nature of the inconsistencies, identify when they are within limits and when they are

unacceptable, and to use the knowledge later to attempt to overcome the inconsistencies when

necessary, or even find ways to take advantage of them. By casting doubt on sources, the user is also

encouraged to seek actively to understand better the sources and the information provided. Again, the

increased knowledge a user can gain from exploration initially caused by doubt can greatly aid in

repairing breakdowns when they subsequently occur. However, one key difference between Seamful

Design's use of doubt and Gaver et al. 's use of doubt is that in Seamful Design doubt should only be

encouraged or evoked when the user is likely to learn practically from the experience-whereas Gaver

et al. often seem to support its use for artistic effect.

Although these ambiguity methods are two that are applicable to designers who wish to utilise Seamful

Design in their own application, it should be noted that the over-arching goal is simply to expose the

underlying components and infrastructure of both software and hardware (both internal and external) to

users in order to provide them with increased knowledge which may provide novel benefits or aid in

overcoming system breakdowns or problems. As stated, this is particularly important in mobile, peer-

to-peer environments where the level of infrastructure systems rely on is generally far higher, and more

transient, than in desktop systems. However, designers should be careful not to attempt simply to

expose every aspect of infrastructure they can identify. Rather, Seamful Design should only be applied

to those aspects of infrastructure that are potentially problematic, frequently causing breakdowns, or

those that are potentially useful if people can identify ways to appropriate them. Such features may be

identified early in the design process of a system through observational studies or through designers'

prior experience and intuition in an area. By applying Seamful Design selectively in this way, it may

achieve greater impact in highlighting a few crucial aspects of the system to the user.

4.2.3 Wireless driver in Treasure
The wireless driver we created proved to be necessary to the Treasure game. The game involved

players frequently leaving and re-entering network coverage, and the frequent sampling of the

networks SSIDs in range and their strength. The default wireless driver simply would not have

supported this behaviour as it does not robustly and automatically rejoin networks, requires frequent

user input when it does, and does not update signal strength (or expose it programmatically) frequently

enough to give adequate feedback to players. Furthermore, the default network driver also commonly

disconnects from a working network when it detects a new or slightly stronger network. This is often a

disastrous decision as the newly detected network may prove to be unusable due to encryption, MAC

security or simply because the detected access point does not connect to any usable network.

By utilising our own driver for Treasure players experienced no problems leaving and re-entering

network coverage. The driver allowed the game to be programmed to scan automatically for network

coverage, detect the network used for the game and instantly connect, configure and, importantly, stick

129

Chapter 4: A network driver for mobile, peer-to-peer systems

to that particular network for as long as it was available. From the goals stated at the start of this

chapter, the driver at this point fulfils two of the original goals:

" Require no input from the user

" Automatically configure the device for use after a network is joined

The implementation of the driver used for Treasure was a significant feat. The code required to

implement it is extremely complex and low-level and, although it is clear that many others have tried to

implement similar drivers, none have managed to do so with the combination of compatibility this one

provides. This is exemplified by the fact that the mobile wireless scanner application subsequently

developed using this driver, WiFiFoFum 12, is compatible with more 802.11 devices and cards than any

other mobile wireless scanner. However, the driver used for Treasure is only part of the solution

required for supporting mobile, peer-to-peer applications. It is not capable of intelligently selecting

which network to join or of discovering peers. To fulfil this missing functionality this core driver was

augmented with extra functionality described in the following section and tested in another mobile

game, Feeding Yoshi (section 4.3.3).

4.3 Switching networks and discovering peers
As discussed previously, the ideal network situation for most mobile applications is that they be on the

appropriate network to discover peers as often as possible yet still allow users to connect normally to
infrastructure access points which permit connection to the Internet. To support this behaviour two
improvements were made to the wireless driver used in Treasure. Firstly, default logic was added to

the driver code to allow it to continually select and join the network where peers are currently most
likely to be found. Secondly, a peer discovery mechanism was implemented. Both the improvement to

the original wireless driver and the creation of the discovery mechanism were designed and

implemented entirely by myself.

4.3.1 Improvements to the wireless driver to support peer-to-peer
Although the driver used in Treasure was a significant step forward for use in mobile applications, it

did not adequately support mobile, peer-to-peer usage. It has been seen that mobile, peer-to-peer

applications must allow users to continue to perform the tasks they normally perform such as checking

email and browsing the Web whilst also maximising their opportunities for encountering peers. In
order to achieve this over 802.11 wireless, mobile peer-to-peer systems must therefore allow the

normal connection to 802.11 infrastructure access points when they are available but find a way to

continue to discover peers when no infrastructure access points are available, as mobile devices

frequently encounter areas of infrastructure coverage and areas of no coverage.

To implement this behaviour, additional logic was added on top of the existing wireless driver. The

driver is used to scan continually for infrastructure access points and if any are in range the driver is

1' Malcolm Hall primarily developed WiFiFoFum, with some sections of code being contributed by myself. It is available for
download at http: //www. aspecto-software. com/WiFiFoFum

130

Chapter 4: A network driver for mobile, peer-to-peer systems

used to connect automatically to the infrastructure network and an attempt is made to use DHCP to

assign an IP address for the device. If an IP address can be assigned in this manner, a check is

conducted to verify if a connection to the Internet can be made. If an IP address cannot be assigned

and there are more infrastructure networks in range, the process is repeated, testing the next network in

the queue, which is arranged in order of signal strength. If an IP address cannot be assigned using

DHCP but there are no other networks in range (or all networks have been tested) then the device stays

connected to the current network and instead uses a self-assigned 1P address. However, if there are

multiple networks in range, none of which have a connection to the Internet, then the driver will

automatically switch between them if no peers have been detected after a predefined period of time.

This behaviour automates the process of connecting to infrastructure networks and maximises the

opportunities for encountering peers when near infrastructure access points. If any of the infrastructure

access points provide a connection to the Internet then all devices using this driver will connect to it.

This allows mobile peer-to-peer applications to continue to allow normal use of the Internet to the user

whenever it is available. Indeed, since this process is automated it generally makes the Internet easier

to access than would normally be available on the device. If none of the access points provide a

connection to the Internet then devices will still connect and use self-assigned IP addresses in the same

subnet range. Furthermore, if there are multiple infrastructure networks, devices will switch between

them until a peer device is encountered. Once a peer is encountered, both will stay on the same

network. Thus, even if there are multiple access points and networks available, devices using this
driver will attempt to cluster around one particular network.

The behaviour of the enhanced driver when it is near infrastructure access points is described by the
following pseudo-code:

131

Chapter 4: A network driver for mobile. peer-to-peer systems

1 Scan for infrastructure networks

if (already connected) {

if (Internet is not available) {

if (new networks found since last scan) {

disconnect from current network;
} else if (predefined time passed without encountering peers AND other networks available) {

disconnect from current network;

connect to next network and use self-assigned IP;

}

}

goto 1;
}

else if (networks available)

sort networks by signal strength;
for each (network in list) {

attempt to connect, assign IP address and check for Internet connection,
if (connection is not suitable AND more networks in list)

try next network;

else

use self-assigned IP address;

}
goto 1;

Connection to particular access points and networks is achieved by setting the SSID and associating the

card with a particular BSID. The code shown provides a comprehensive solution for ensuring mobile
devices use the connection with Internet availability if there is one among multiple networks in range.
Whether an Internet connection is available or not, the enhanced driver ensures that peer devices will

cluster around the same network and thus maximise their opportunities for encountering one another.
However, it does not allow peers to discover one another when infrastructure access points are not in

range. Luckily, there is a simple solution to this problem.

The driver behaves as described whenever a scan is conducted and infrastructure access points are

available. However, when the device is not connected to any network and a scan reveals no

infrastructure access points in range, the enhanced driver simply switches the network device to ad hoc

mode, joins a pre-defined ad hoc network and uses a self-assigned IP address. Thus, two devices in

range of one another but not within range of any infrastructure access points ensure that they are on the

same ad hoc network and are able to discover one another and communicate through the ad hoc

network. This enhanced driver essentially ensures that mobile devices are able to locate and find an

Internet connection whenever one is available, find any peers in the area when they are near

infrastructure access points and find any peers in the area when they are in the wild (out of range of
infrastructure access points).

132

Chapter 4: A network driver for mobile, peer-to-peer systems

If two devices running the enhanced driver are brought near an infrastructure access point they will

both automatically connect to the infrastructure access point and be able to discover and communicate

with one another through it. Even if multiple infrastructure networks are available they will eventually

meet on the same network and stay connected to it (Figure 13). If the same two devices encounter one

another in the wild they will both be in ad hoc mode on the same network SSID and be able to discover

and communicate with another directly.

''I
ii

Figure 13: Diagram of device behaviour when multiple access points are in range. The wireless driver ensures
that, even when there are multiple infrastructure access points in range, devices will cluster around one access

point to ensure they may communicate with one another.

If the same two devices are in range of multiple infrastructure access points and one allows a

connection to the Internet, the two devices will select this network above the rest and connect to it.

They will then be able to discover and communicate with one another through the infrastructure

network as well as providing a standard Internet connection to the user (Figure 14).

� --

IMem@l

r '

rr
rý

^l `r

�'I
Figure 14: Diagram of device behaviour when an Internet connection is available through an access point which is

in range. When there are multiple access points in range the driver ensures the one with a connection to the
Internet is selected if one is available.

Allowing automatic connection to infrastructure networks and falling back to a predefined ad hoc

network when there are no infrastructure access points in the area means that devices can locate peers

133

Chapter 4: A network driver for mobile, peer-to-peer systems

regardless of where they are. It also means that they are able to connect to the Internet normally

through infrastructure access points. This allows the user to both use the mobile application and

continue to use their normal Internet applications without being bothered with pop-ups from the

operating system.

The enhanced driver fulfils another two of the goals set out at the start of the chapter:

" Automatically select and join networks where peers are most likely to be found

" Continue to allow users to perform standard tasks (e. g. check email, browse the Web)

Throughout this section there have been many mentions of a device connecting to a network and

"discovering" peer devices. However, the discovery of peers is not a simple matter for mobile devices

and is implemented as part of this thesis, and described in the next section. In addition, situations in

which the algorithm implemented may potentially fail are also discussed.

4.3.2 A peer discovery mechanism
Discovery of peer machines is often taken for granted in desktop and laptop systems as it has been

available for some time. Perhaps the most widely used and earliest peer communities were used solely
for the purposes of sharing files over the Internet. Most of the peer-to-peer sharing in these older

systems was achieved using pseudo peer-to-peer discovery in which the IP address of a server is

required to bootstrap the process. Machines register themselves with a central server or supernode and,

rather than discovering other peers directly, simply retrieve the list of peers stored by the server. These

configurations are still common today and both the Gnutella [86] and eDonkey [82] networks work in

this manner with no direct peer-to-peer discovery but rather pseudo peer discovery achieved through

the use of a server.

The most common form of direct peer discovery that users are most likely familiar with today is

Apple's Bonjour (previously called Rendezvous) peer discovery mechanism used in iTunes. Whenever

iTunes users connect to a wired or wireless Ethernet network they can elect to share their music with

others and can, in turn, view the music shared by other iTunes users on the network. The simplicity of
sharing that the use of Bonjour in iTunes permits-connecting to and browsing others' music - has

allowed users to use this service frequently and build communities around sharing. Newman et al.

realise that this type of sharing, enabled through peer discovery, is a novel type of sharing - the social

aspects of which have not yet been investigated and so are not fully understood [1231. They conduct a
study of iTunes users and find, among other things, that the peer discovery alone allows complex social
interpretations to be made about when a user is off work, at lunch or has left for the day. it is clear
from such research that users find significant value in creating and using peer communities that
develop in this manner - both from technical and social standpoints.

Implementations of Bonjour are available for both Microsoft Windows and Mac OS X. Both rely on
mDNS to achieve their peer-discovery functionality, and both are essentially implementations of the

134

Chapter 4: A network driver for mobile, peer-to-peer systems

ZeroConf standard (RFC 392713). Microsoft also has its own version of ZeroConf that it calls SSDP14

(Simple Service Discovery Protocol), and it is included in modern versions of Windows. The various

versions of ZeroConf available on each desktop platform can provide novel functionality to desktop

machines and improve ease of use in existing systems such as instant messaging", sharing of clipboard

contents16 and discovery of printers [2]. Despite the clear advantages of peer discovery exhibited on

standard machines, there is no implementation of Bonjour, ZeroConf or the mDNS protocols available

for mobile devices.

The lack of a mobile version of any of these discovery techniques is surprising as peer discovery is

more applicable, and important, in the mobile environment. Certainly, a reliable peer discovery

mechanism is vital to much of the subsequent systems described in this thesis.

As there was no existing peer discovery mechanism available for mobile devices, one was implemented

as part of this research. The idea, design and implementation are all my own work and the concept is

the direct result of the findings described previously in this thesis.

The peer discovery mechanism is titled SDS (abbreviated from `Self Discovering Spaces') and

provides essentially the same functionality to mobile devices that Bonjour does for desktop devices. It

exposes a simple API that allows devices to broadcast their existence, and to listen for and be notified

of any other peer devices that are broadcasting their existence. Additionally, meta-information such as
the device's IP address, owner's name, services it is providing and ports through which those services

can be accessed may be included in the broadcast messages themselves. By default, peers using SDS

broadcast their existence every I second, but this period can be customised to any desired value using
the API.

In addition to the meta-information about the client contained in every broadcast, a further set of 20

strings referred to as TextRecords can be encoded in the broadcast messages. These can be used by

applications to embed any additional information that they may require. Peer devices using SDS for

discovery can hook into events to be notified of newly discovered peers and when a known peer alters
its broadcast message. This may happen if a peer adds a service to the list of services it is advertising,

alters one of its TextRecords or changes its IP address.

SDS fulfils the last two goals listed at the start of this chapter:

" Advertise the device's own existence on a network to allow peers to find it

" Discover peers once on a network

http: //www. ietf. org/rfc/rfc3927. txt
" http: //quimby. gnus. orglintemet-drafts/draft-cai-ssdp-v 1-03. txt
15 http: l/www. apple. com/macosx/feetures/ichat/
16 http: //www. porchdogsoft. com/products/spike/

135

Chapter 4: A network driver for mobile, peer-to-peer systems

It should be noted that the idea of peer discovery is not novel or unique to this thesis. This is clearly

apparent from the existing implementations available for desktop machines, Apple's Bonjour and

Microsoft's ZeroConf. However, the implementation for mobile devices is new and the combination

of the enhanced wireless driver and SDS to provide a comprehensive peer discovery mechanism for use

in all mobile network scenarios is new.

The code for SDS has been made publicly available as part of the Equator Software Archive and can be

downloaded from the Equator website (http: //www. equator. ac. uk).

Although the combination of enhanced wireless driver and SDS provides an efficient and robust

method for peer discovery on mobile devices, it is not a perfect solution. Two situations, both

involving infrastructure access points, have been identified in which peer devices within range will fail

to discover one another.

In Figure 14 it was shown that multiple devices encountering several access points in an area will

gradually settle on a single wireless network that provides a connection to the Internet. However, if

multiple access points provide an Internet connection and devices initially connect to different ones, the
devices will elect to stick to these different networks, unaware that a peer device is nearby and
connected to another available network. One possible solution considered during the design of SDS is

to continue to switch to and test the remaining networks in range even when it has been detected that

one, or more, of those networks provide an Internet connection. However, it was thought that such
behaviour would be frustrating, as users would experience intermittent Internet availability even while

remaining in a single area, as the driver continually switched to and from networks that had Internet

connectivity. As one of the initial goals was to allow the use of standard Internet connections and
functionality when available, this solution was subsequently considered unsuitable.

The second situation in which discovery may fail is if four or more devices simultaneously begin

sensing and attempting to connect to infrastructure networks. Figure 13 shows that when there are
infrastructure access points available, none of which have an Internet connection, devices will

continually switch from one network to another in order to detect peers which are in range but on

another network. If four or more devices begin this process at approximately the same time, there is a

chance that two will encounter one another on one network whilst the other two discover one another

on a second network. As, after discovering a peer, devices then stay on the same network the devices

would discover at least one other device, but fail to discover the second set of devices connected to the

other network. Although the likelihood of four or more devices conducting this process simultaneously
is low, and attempts are made to lessen its occurrence by searching networks in the order of signal

strength, it is still possible for peer devices to fail to discover one another in this way.

It may be possible to overcome this second problem by slightly altering the algorithm to permit peer
devices that have identified one another on a network to agree to jump simultaneously to another

136

Chapter 4: A network driver for mobile, peer-to-peer systems

network. In this way, groups of peer devices could continue to search for other devices whilst ensuring

they switch to networks at the same time as the devices in their group. However, the implementation

and exploration of the viability of this solution is left to future work as it may prove to be a complex

task. It is likely that such a solution would introduce a large amount of additional network traffic, and

complexity, as devices exchanged information about which networks they were in range of, and

negotiated which one to switch to next, with the devices in their group.

A simpler solution applicable to both the problems identified would be available if the hardware were

capable of connecting to multiple networks. If connection to multiple networks were possible, other

networks could be searched for peers or Internet connectivity without interruption to current Internet

connectivity or connections to peers. Whilst this may currently be achieved through the use of two

physical 802.11 cards, this is a poor solution as extremely few users, or devices, have two 802.11 cards.
A better solution may be found in Microsoft's Virtual WiFi", which allows a single network device to

switch rapidly between multiple networks and network configurations-essentially allowing a single

network device to behave as two independent devices. Currently, Virtual WiFi is only available for

desktop versions of Microsoft Windows and only supports wired connections. However, if this

technology were ported to mobile versions of Windows in the future, it may provide a suitable solution
for use with the enhanced wireless driver and SDS.

Whilst the solution to peer discovery presented here does have the two problems identified, these are
unlikely to occur commonly, and the solution provides an extremely robust and reliable technique for

the discovery of peer devices in many varied mobile environments in general.

4.3.3 Enhanced wireless driver and SDS in a mobile, peer-to-peer
game

The enhanced wireless driver and SDS were used within a second mobile game, titled Feeding Yoshi.

The Feeding Yoshi game descends from a game concept originally conceived by Malcolm Hall, Scott
Sherwood and myself. This original idea was adapted by all the Equator researchers at Glasgow
University and several at the University of Nottingham to create Feeding Yoshi, and the game was
subsequently implemented by Malcolm Hall, Scott Sherwood and myself. Whilst the main research
interest relevant to this thesis in the game was testing the enhanced driver combined with SDS, to
verify they were of benefit at both the system and user level, the game was also used to research how

mobile games could be designed and implemented to be played over a relatively long period of time (a
theme which it has in common with games such as FIASCO [32]) and to further investigate Seamful
Design. Research on Feeding Yoshi was published at CHI in [10].

The aim of Feeding Yoshi is for each team of players to collect as many points as possible, by feeding
Yoshis the fruits they desire. Yoshis are creatures that players find scattered around the city and which
are constantly hungry for five fruits of seven varieties. In order to collect fruit, players must first collect

" http: //research. microsoft. com/netres/projects/virtualwifi/software. htm

137

Chapter 4: A network driver for mobile. peer-to-peer systems

seeds from the Yoshis themselves-each Yoshi always has a seed for the fruit it most often enjoys.

These seeds can then be sown at plantations that can be found scattered around the city, just as Yoshis

are. Once a seed is sown, the plantation will begin to generate fruit, which can then be picked and used

to feed Yoshis. Feeding a Yoshi one of his desired fruit scores 10 points, but feeding several fruit

simultaneously gives more points, e. g. feeding all five desired fruits at once scores 150 points. Feeding

a Yoshi a fruit it does not want results in the player losing 10 points. As a player moves through the

city, nearby plantations and Yoshis appear as names in a pull down menu and as icons on a map

(Figure 15). An audio alert is also made when a plantation or Yoshi is detected so that the player does

not have to continually attend to the PDA screen.

Name: Malc Score: 30

-C
A1 17
w llýd

4)* tt.

4 4A

" Ge
aoý

A. el

Tuesta

Figure 15: Map screen of Feeding Yoshi game. In the map screen, Yoshis and plantations are shown as icons, and
navigation controls are on the right. Near the bottom is a row containing (from left to right) a button for selecting

icons, pinning an icon onto the map, initiating a swap with another player (greyed out), and the basket of up to five
fruit: in this case, two melons.

On first being detected, a Yoshi or plantation appears in the centre of the currently displayed area of the
map, although a player can 'pin' a Yoshi or plantation icon in a better place. On the right side of the

map are buttons for switching to a list view rather than the map, panning, zooming, and selecting a
Yoshi to be highlighted on the map as a 'favourite'. Along the bottom of this screen, and also shown in

the other two screens in the game, is the player's 'basket' that provides space for a limited number of
fruits and seeds to be carried. Clicking on a Yoshi brings up a screen showing the Yoshi, a seed for his

favourite fruit, and the five fruit he currently wishes to eat (Figure 16). Similarly, clicking on a

plantation leads to another screen with either a tree empty of fruit, i. e. an unseeded plantation, or a tree

138

Chapter 4: A network driver for mobile, peer-to-peer systems

with fruit ready to be picked, i. e. a seeded plantation. Seeding is done by selecting a seed in the basket

then clicking a Seed button.

. ýý y.

Fec-- JM
_.

Figure 16: Yoshi screen of Feeding Yoshi game. The Yoshi screen shows the Yoshi himself, as well as the five
fruits he currently desires (top right) and a seed of his favourite fruit (top left). After selecting one or more of the
fruit in the basket (bottom right), the Feed button is used to feed the Yoshi and gain points. The left arrow returns

to the map.

When two players approach one another, they see each other's icons on their maps. Selecting a nearby

player's icon triggers an opportunity to swap fruit and seeds. This is useful if the Yoshis in the areas

that a player knows want fruit that do not grow there. By swapping with team-mates with access to

other areas, they may gain more points. Swapping is also intended to encourage simultaneous play and

to make it more fun to play together. Lastly, the game provides a webpage with a scoreboard showing

each player's score so far, as well as the total score for each team. Players use this webpage to update

their scores as described below.

The game runs on 802.11-equipped PDAs. For the trials we used a mixture of HP iPAQ 2750s and
4150s, which have built-in 802.11 and which, due to their small form factor, were relatively easy for

users to carry with them throughout the week. Each PDA was additionally fitted with an SD card to

allow us to store the substantial amount of log data we gathered as our users played the game. The

Yoshis and plantations that are detected while playing the game are actually wireless access points. As

players move around the city, their PDAs continually scan for the presence of wireless networks.
Secured wireless networks become Yoshis and open networks become plantations. While it would be

an easy and, perhaps, obvious solution to communicate with the Feeding Yoshi game server via the

open access points that are discovered (e. g., to upload scores automatically), as has been previously

pointed out at the start of this chapter, it is a matter of debate as to whether using open networks in this

way is legal in some countries, including the US and UK (even though opening networks up to

139

Chapter 4: A network driver for mobile, peer-to-peer systems

neighbours and passers-by may be a common and deliberate practice 176]). In order not to encourage

our players to potentially break the law, Feeding Yoshi does not transmit any data over the open

networks that it discovers. It only detects their existence and identity. Instead. players have to

manually upload their scores at the game website using a 'score voucher code' that is generated by the

PDA. This uses the PDA's MAC address as a unique key for this player to encrypt the current score

and the current time, in order to prevent cheating. When a code is entered on the website. decryption is

attempted using the MAC address of every PDA in the game. The player's identity is made apparent, as

only one MAC address is likely to provide a logical score. This workaround allowed us to keep the

scores relatively up-to-date, which in turn helped to keep the game competitive between the different

teams. Indeed, players reported that they often felt a strong urge to play immediately after checking the
leader board and seeing their scores were behind another team or player's score. Swapping fruit

between players is achieved through the use of the enhanced wireless driver and SDS. Each game

client continually broadcasts its own existence using SDS. and uses the enhanced driver to swap
appropriately through infrastructure and ad hoc networks. When another PDA is detected and one of
the players wishes to initiate trading, that player's PDA stops scanning and sends a message requesting
the other PDA to cease scanning too; important as the constant scanning is a relatively heavyweight

task for the 802.11 equipment on standard PDAs. The exchange itself is done through traditional TCP

socket connections. During the game trials it was found that most participants did not use the map the

game provided, and instead primarily relied on the alternative list interface that showed the same
Yoshiis and plantations. Therefore, the map was removed in a subsequent version of the game that was
made available for public download at www. yoshigame. com. As of July 2006 the game has been
downloaded over 3500 times.

The success of the enhanced wireless driver and SDS was apparent in the trials of Feeding Yoshi, As

players carried the devices with them over the course of the week, many became familiar with their

general use and began to utilise the Internet and mail capabilities it had. Indeed, as part of the game
required users to "claim" their points by entering a code on a website, many users reported that they
simply used the PDA itself to do so when a connection was available. Without the enhanced driver,

players would not have been able to both use the Internet when it was available and run the game
simultaneously.

The combination of enhanced wireless driver and SDS also allowed users to work together in various
scenarios. Users in the same team reported collaboratively working together, In one instance, four

members of one team arranged to meet during their lunch break. By travelling as a group of four they
were able to fulfil all of a Yoshi's five desires more often (and therefore gain the maximum number of
points). Each of the four users deliberately tried to carry different fruits. When a Yoshi was
encountered, the team swapped the required fruits to a single user's basket until that user had the
required five fruits the Yoshi desired. The smooth interaction between player both when away from
Yoshis (access points) and when close to them would again not have been possible without the
intelligent swapping of networks and network modes, and a reliable peer discovery mechanism.

140

Chapter 4: A network driver for mobile, peer-to-peer systems

The fact that peer devices maximised their opportunities for discovery is best exemplified in what

might previously have been considered a rather unlikely meeting of players from different teams. Each

of the two teams consisted of four players, most of whom worked in Glasgow, but none had a

workplace within two miles of those of the players in the opposing team. Surprisingly, despite the

extremely large play area, two players from opposing teams met by chance through the game during

the one week they played it for. One of the players describe the event herself:

"I was playing away and then this box popped up saying 'Norman would like to trade'

and I thought 'I don't have a Norman on my team! ' Then I saw this guy with a PDA and

he was looking around, and then we caught up with each other and we thought 'hmmm...

not the same team'. But he walked over and he said that he was from [the other team]

and could he trade? And well, I was in my prime playing spot so I had all the fruit I

needed, so I just thought, okay I would trade with him. "

Whilst this encounter was indeed an unlikely occurrence within our trial setup it would simply not have

been possible at all without the enhanced driver and SDS. When the players encountered one another

they were simply playing the game as normal, gathering fruit and feeding Yoshis on their own. In

these situations, the enhanced driver is intelligently switching between ad hoc and infrastructure mode.

Without this capability, and the driver's ability to select the network which has the highest chance of

containing peers, it is extremely unlikely that both devices would have been on the same network at the

same time. The enhanced driver ensures they are on the same network when they are co-located, and

SDS provides an extremely fast and highly reliable discovery mechanism once they are.

4.4 Conclusion
The combination of wireless driver and SDS fulfils the first of the four pieces of infrastructure

identified as required for mobile, peer-to-peer systems in Chapter 3:

"A mechanism for intelligently selecting which networks to use and for reliably discovering

peers on these networks

The earlier work in this thesis led to the identification of the clear need for a peer-to-peer discovery

solution that facilitates the discovery of peers regardless of the location or connection type of the

mobile device, whilst still permitting the user to take advantage of a standard Internet connection

whenever one is available.

An investigation into underlying communication technologies identified that 802.11 was more suitable
for use in peer-to-peer applications than either GSM or Bluetooth. By combining an enhanced wireless
driver with SDS, a comprehensive solution running on 802.11 was found which provides extremely

rapid yet reliable peer discovery for a large number of mobile phones and PDAs. In addition, the

solution not only permits users to continue to utilise Internet connections when they are available but

141

Chapter 4: A network driver for mobile, peer-to-peer systems

also actively seeks such connections and automatically configures devices to use them whenever

available, all the while permitting peer discovery to occur.

The wireless driver was used in Treasure and the combination of enhanced wireless driver and SDS

was demonstrated in Feeding Yoshi. This combination is again used in systems implemented and

described later in this thesis.

The combination of enhanced wireless driver and SDS provides automated peer discovery to mobile

devices at a level that was not possible previously. Devices can reliably discover one another

regardless of whether they are close to or distant from infrastructure access points without requiring

that the device's network card be tied to any single configuration that would prohibit use of the Internet

or limit connections to newly discovered networks. This is an extremely important contribution, as the

mobile application market is rapidly growing and this solution allows peer-to-peer applications to run

without interfering with the normal use of the device for Internet access. With a solution that does not

compromise existing uses of a mobile device, the uptake of new mobile and mobile peer-to-peer

applications can proceed more rapidly.

142

Chapter 4: A network driver for mobile, peer-to-peer systems

143

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

5A HYBRID POSITIONING SYSTEM
FOR MOBILE, PEERMTOMPEER
APPLICATIONS

During the examination of the many existing mobile, peer-to-peer applications as part of the literature

review, it became apparent that no single positioning system is suitable for general use in such

applications. As was made clear, several researchers have realised that hybrid positioning systems may

provide a more suitable solution, and at least one basic attempt to create such a system was made by

Baus et al. [8]. However, this basic attempt required considerable setup, was specific to one

application and was in no way a lightweight or general solution.

Analysis of both the Lighthouse and George Square systems confirmed that current indoor and outdoor

positioning systems are indeed not a suitably comprehensive solution and that a hybrid solution is

likely to provide greater performance. The required solution was identified at the end of Chapter 3 as:

"A hybrid positioning system that requires no initial setup and yet has high availability in

providing location both indoors and outdoors

This can be broken down further for the sake of clarity as:

0 Able to locate users or devices both indoors and outdoors

0 Little or no initial setup cost

0 High availability (able to provide a location as often as possible)

One system that comes close to fulfilling these goals is Intel's Place Lab. However, as will be seen,
Place Lab fails to offer a general solution for mobile, peer-to-peer applications in several crucial areas.

This chapter begins with a brief review of previous positioning technology, and how it has been utilised
in the systems created and discussed earlier in the thesis, in order to clarify further the problems with

existing systems. It then examines the most advanced existing hybrid positioning system currently

available, Place Lab, and identifies several drawbacks relating to the four goals listed above. Finally, a
new hybrid positioning system created as part of this thesis, Navizon, is introduced and discussed.

5.1 Review of positioning systems
Although an investigation of existing positioning systems was presented earlier in the literature review,

this section provides a brief review concentrating on the particular shortcomings and successes of such

systems, and how attempted upgrades or augmentations often simply improve one aspect of a

positioning system at the expense of another.

144

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

In all the systems discussed previously, both in the literature review and as parts of this thesis, accurate

and continually available positioning of the user has remained, to differing extents, a problem. The

Lighthouse positioning system required an extensive amount of set up, and was tied to a single small,

indoor area. Whilst the GPS positioning utilised in George Square, Treasure and Feeding Yoshi

allowed a far greater area to be covered, it was less accurate and still failed to cover substantial areas

(such as narrow streets and, of course, any indoor location). As an extremely large number of mobile

systems rely on position information to provide functionality, it is vital that a positioning system with

extremely high availability is found.

A positioning system's value may be judged in three main categories: accuracy, potential area of use

and availability (or uptime). Unfortunately, none of the traditional positioning systems available today

performs well in all of these categories. As has been seen, high accuracy has been achievable in many

indoor systems using ultrasonic and RF techniques such as the positioning system developed at Bristol

and used in the Lighthouse [20], and the Bat system [85].

The Bat system is important as it built on the seminal work carried out in the Active Badge system -

one of the first accurate and convenient indoor positioning systems that was actually deployed and in

use for a long period of time [84]. Most indoor positioning systems require substantial setup and the

Bat system is typical with a high installation cost. It requires a matrix of receivers to be installed on the

ceiling of the area where positioning is required. Each receiver must be connected by wire to a central

computer that coordinates both the transmission of identification requests to clients and the calculation

of the position when the receivers detect a beacon. The transmitting devices, which are the items that

are tracked, do not periodically transmit a beacon as multiple devices may be co-present and doing so

may cause interference. Instead, the transmitters also have a receiver that detects incoming requests

and responds by broadcasting a pulse when a request corresponding to its ID is received. Thus, the

computer controlling the system must be programmed with the IDs of any devices that are to be tracked

prior to their entry into the environment-further complicating the setup process. It then polls each

device it is aware of in turn, asking each to broadcast a pulse. Clearly, such a system involves a

tremendous commitment in installation and maintenance. However, although now many years old, Bat

remains one of the most accurate positioning technologies; able to position devices to within a few

centimetres accuracy.

Whilst Bat performs excellently in accuracy, it has neither a high area of use or high availability-it is

only available in a small area after a costly setup is conducted. Other ultrasonic and RF systems such

as Walrus [16] and Landmarc [124] generally have similar profiles of high accuracy but a significant

set up time and small operative area.

Many alternative techniques to ultrasonic and RF positioning in indoor environments exist but these
have similar problems in requiring extensive setup. For example, CarpetLAN [66] is a novel technique
in which a user can be located through the use of a high speed switching voltage which travels from a

145

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

mobile device through the body itself to the carpet tile the user is standing upon. Each carpet tile is a

node which can, to an extent, automatically configure itself when placed adjacent to existing tiles. As

each tile is aware of its own dimensions, it can calculate its location and location extents from

information gathered from neighbouring tiles. Whilst this aids in simplifying the extension of an

existing CarpetLAN positioning system, the initial cost and setup remains substantial - as does the

financial cost of each tile.

Some indoor positioning techniques attempt to greatly increase availability by trading away accuracy.

For example, Bluetooth is now available on the vast majority of modern mobile devices and consumes

a relatively low amount of power. Thus, by relying on Bluetooth, an indoor positioning system may

hope to become available to a far greater audience. Hallberg et al. investigate the plausibility of

Bluetooth positioning, and manage an accuracy of around 1.7 metres [80]. However, due to limitations

with the Bluetooth technology, particularly the length of time it takes one device to pair with another

and the transmission range of Bluetooth, this accuracy level was only achieved with severe restrictions.

For example, a user travelling at normal walking speed would likely be too fast for their device to

create the necessary connections to receive position information, and so in the trials the devices were

either stationary or moved very slowly. Furthermore, the setup required Bluetooth nodes to be installed

throughout the building. Thus, higher availability is not really achieved as nodes must be installed and

setup cost remains high.

Most indoor positioning systems rely on a form of triangulation from beacon signals. By discarding

triangulation, some positioning systems may attempt to increase availability, again at the cost of

accuracy. In the MobiTip system, Bluetooth kiosks were used to identify the general region a device

was in--such as a shopping centre or a university building [146]. Whilst this technique allowed

enough time for the Bluetooth connections to be created and thus was useable as part of a prototype

system, the accuracy was obviously very low-at the building level. There is a clear pattern in many

current positioning systems, in that they attempt to improve on a certain feature at the cost of another.
In the case of MobiTip, availability is improved but with a substantial cost to accuracy.

One common theme in all these position systems is that they rely on a centralised machine for

coordination purposes. The setup of the central machine and the connections to it are often the main

causes of high setup and maintenance costs, and result in only small areas being covered and general
low availability of the system. The Cricket system attempts to overcome this by offering a
decentralised solution [139]. Indeed, the authors state that one of the goals of Cricket is "widespread

building-wide deployment" and that they believe "that it is not possible to deploy and administer a
system in a scalable way when all control and management functions are centralized". Such a
statement appears to be supported by the fact that few of the previously discussed positioning systems
have ever been deployed throughout an entire building or used for any length of time. Indeed, it would
appear that the only indoor positioning research systems that were deployed and actively used
throughout a building over a period of time were Want's original Active Badge system and Olivetti's

146

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

Bats system. Cricket's decentralized architecture relies on occupants of a space being responsible for

installing beacons if they wish the positioning system to be available in that region. Clients listen for

beacons and attempt to infer their position from the list of visible beacons and, if required, a map server

can be consulted. Decentralisation is achieved in the Cricket system by moving a significant amount of

data and calculation to the client. Clients must maintain a list of beacon locations or, if possible,

consult an external database to look up the beacons it can see. Essentially, the beacons are dumb nodes

that do nothing but transmit an identifier. Whilst this does allow beacons to be easily placed, it

presents many problems for the client as it introduces a number of requirements on the client side.

Overall, it is clear that none of the existing indoor location techniques provides a comprehensive

solution to locating an indoor user accurately at all times. Indeed, the authors of Cricket identify this

themselves, and determine that neither RF nor ultrasound on their own are adequate, and so determine

to use both to gather a more accurate reading (RF to receive an initial broadcast signal and do some

initial calibration and then ultrasound to receive a final set of pulses and triangulate from these).

Whilst most indoor systems are accurate once their infrastructure is in place, the prohibitive cost, in

both time and effort, to install them results in few areas being covered. Similarly, the extra equipment

that must be appended to the mobile devices for most indoor systems to operate is awkward and can
consume a large amount of power - making them undesirable and useable for only short periods of
time. For these reasons it is rare to find a continuously available indoor system, and there are no
known commercial applications available to the general public that make use of indoor location
information.

Outdoor location systems often have an inverse profile to that of indoor ones, in that they are less

accurate but require minimal setup and are available over far greater areas. The most widely known

and used outdoor positioning system is undoubtedly the Global Positioning System, which gives

varying results depending on the user's location and the weather. Typically, a user's position can be
determined to within a few metres under good conditions. As GPS is so widely known and has already
been discussed in many systems earlier in the thesis, it will not be discussed further here.

Despite the prevalence of GPS for outdoor positioning there are several other techniques available.
These normally take advantage of the existing technologies already available on the mobile device and
the existing infrastructure in the environment. For example, the commercially available Ekahau system
relies on a device's 802.11 wireless capability to detect wireless access points in the area and
triangulate a position from them. Ekahau works both indoors (at room level accuracy) and outdoors
[591. However, it requires a considerable amount of setup. Before it can be used, the locations of all
the available access points in the target must be measured and then a comprehensive sampling of the

area must be conducted in which the signal strengths of visible access points must be recorded four
times for every square metre of area to be covered. In areas were the position is found to be weak it is

simply recommended that another access point be inserted into the area (even if it is not needed for
data transmission purposes).

147

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

Unlike indoor positioning systems, outdoor positioning systems are commonly used in commercial

applications available to the public. For example, TomTom Navigator's is an extremely popular

wayfinding application which runs on a variety of mobile devices including phones, PDAs and purpose

built TomTom units. In addition to practical applications utilising outdoor positioning systems, games
have become more popular. MogiMogi19 has been a popular location based game in Japan for over a

year, and Sony have recently announced that future games for their PSP may utilise a GPS hardware

plugin in order to make physical location a gaming element20.

Despite the fact that applications utilising the user's location are starting to become popular, it remains

clear that there is currently no positioning system providing a comprehensive solution to locating a user

accurately both indoors and out. Indeed, even if only indoor positioning is required, a single

technology is not sufficient and, as in Cricket, multiple technologies must be combined. It is, therefore,

advisable to investigate the amalgamation of multiple positioning technologies in order to provide a

more comprehensive solution.

5.2 Place Lab
Place Lab is a positioning system that attempts to combine many technologies in the hope that,

working in conjunction, the technologies will be able to provide greater uptime and accuracy than any

single system could previously achieve. Place Lab provides an API that allows modules for different

positioning technologies to be utilised with the core Place Lab library. However, the majority of the

modules currently available with the Place Lab software rely on the detection of statically placed
beacons and the subsequent triangulation of beacon signal strength in order to calculate the position of

a mobile device.

Triangulation is a simple and well-understood technique, and is commonly used in many positioning

systems. Place Lab continually scans for known beacons and records the signal strengths to them. If

only one beacon is detected it simply places the user at the location of the beacon. If two or more
beacons are detected it uses the signal strengths to each to estimate a likely position for the device.

In Place Lab, the static beacons can be wireless access points, cell towers or fixed Bluetooth beacons.

The project is open-source and the code exposes a Java API that can be used to code additional

modules to further the number of possible beacon types used for positioning. For example, a module

could be added to allow IR beacons to be utilised in a similar way as the fixed Bluetooth devices are.
However, to date there have been no publications referring to any but the three included (802.11, GSM

and Bluetooth) positioning technologies being used with the Place Lab software.

u www. tomtom. com
19 http: //www. mogimogi. com/
20 httpJ/uk. gear. ign. con-Jorticiesn29/729703pl. htm1

148

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

Before an area can be used to locate users with Place Lab, it must first be sampled to detect where

some of the beacons are located. This involves utilising GPS whilst scanning for wireless, cell and/or

Bluetooth beacons to discover the positions of as many static beacons as possible. An important failing

of Place Lab in the discovery of beacons is that the software that must be run to carry out detection is

not the same as the software that is run to position users later using the locations of beacons. This

introduces complexity and effort to the setup required before Place Lab can be used in a location.

Users must first install and execute the beacon finding software and completely cover the area in which

they wish positioning to be available in order that enough beacon samples are gathered. They must then

either install and execute the positioning part of Place Lab on the same device, or copy the database of

collected access points to a new device they wish to use. Alternatively, Place Lab recommends that

users check if beacon data for their area is available from Wigle. net, and download data from there if

available. Users are also encouraged to copy manually the logs to a desktop machine and upload them

through the Place Lab website. Finally, the positioning component of the software can be run in the

sampled area in order to locate the user carrying the device. However, no new beacons are detected

whilst using this part of the software and this makes a comprehensive sweep of any areas where the

positioning software is to be used vital during the initial detection stage. Clearly, this complexity

introduces an extremely high setup cost and directly opposes the aim of having little or no initial setup

COSTS.

Research has been conducted in using diffusion techniques to calculate the location of newly
discovered beacons in order to partly lower the initial setup costs of beacon systems. Spratt explains

the concept of diffusion [1581:

The Positioning by Diffusion approach is characterized by a seamless inter-working of

the positioning algorithm across Access Points, Static Devices as described, and Mobile

Devices. The actual movement of Mobile Devices is used to diffuse position information

from Access Points - which have had their position programmed into them - to Static

Devices which the former passes close to. Subsequently, other Mobile Devices passing

close to Static Devices can obtain this stored position information to perform positioning

calculations. The position data originally emanating from a small number of Access

Points can be combined to perform positioning calculations.

Diffusion of this kind allows nodes that were not captured during an initial sampling of an area to be

later detected, positioned and included as resources for use in a positioning system. However, the

locations of nodes detected in this manner are not as accurate as those achieved by traditional sampling.

Despite this, LaMarca et al. are able to demonstrate that a sampling of only 20% of the available
beacons led to an accuracy of 56 metres with 84% coverage on beacons that had not been captured

originally, when diffusion was applied to determine their positions [105].

149

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

The use of diffusion techniques allows for the possibility of positioning accuracy and the number of

sampled beacons to continue to grow after an area's initial sampling and creation of trace logs. A

general overview of the type of diffusion Place Lab is capable of utilising is as follows. When a

beacon, such as a wireless AP (access point) is sampled, the time is recorded. Subsequently, when a

new AP is found the time difference between detecting the known AP and the new AP is calculated.

As the majority of mobile devices are carried and enabled when users are walking, an assumption is

made that the velocity of the user is no more than a certain value, say five metres per second. This

allows a radius around the known AP to be created in which it is possible the new AP is located. If

more readings are recorded with times from other known beacons, from which more radii can be

calculated, the circles will overlap. As can be seen in Figure 17, the area where all, or the majority of

circles overlap, is the likely location of the newly found beacon.

Region of Poxaihk
Positions

" AP2

{

"

AP?

Figure 17: One technique used in positioning by diffusion. Overlapping time circles allow for a newly detected
beacon to be placed within the overlaps (taken from [158]).

It should be noted that whilst Place Lab has implemented diffusion techniques, they are still

experimental and not included as part of the default download package. Thus, Place Lab has not yet

overcome the problem of incurring an initial high setup cost. Furthermore, even with diffusion

techniques, a significant sampling of the area must still be conducted and a generally uniform number

of beacons sampled over the area to maximise the chance of overlaps. The use of diffusion techniques

to estimate beacons locations (rather than relying on correctly sampled beacon readings) also leads to a

gradual decay in quality and accuracy over time and will never be as accurate as raw sampling.

Although Place Lab is in theory an extremely comprehensive system for providing location, it does

have some further weaknesses that can make it a poor choice for use in a mobile application. One of

the primary problems is that not all components of the system run on many mobile devices. Although

the 802.11 component which allows detection and triangulation of 802.11 beacons works on a number

of PDAs, it is not available on many phones. Worse, the GSM cell tower component appears only to

work on a single set of phones, the Nokia N60 series, which do not have 802.11 capabilities. Thus, to

use both 802.11 and GSM beacons using Place Lab, a Nokia N60 series phone must be paired with a
PDA through Bluetooth. The phone then passes the information about detected GSM signals to the

150

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

PDA which runs the main Place Lab software. This, of course, means that users must both invest in

and carry a PDA and phone, linked by Bluetooth, if they wish to use the Place Lab functionality fully.

An additional problem with the GSM detection in Place Lab is that it is only able to detect one GSM

signal at a time. This is described by Otsason et al. [129]:

The Place Lab system employed a map built using war-driving software and simple radio

model to estimate a cell phone's location with a 100-150 meter accuracy in a city

environment. The goal of Place Lab was to provide coarse-grained accuracy with

minimal mapping effort. This is different, and complementary to our goal of doing

accurate indoor localization given a detailed radio survey. Another distinction is that

Place Lab used a cell phone platform that only programmatically exposed the single

associated cell tower.

The relatively low accuracy results, as Otsason et al. state, are based on a reliance on only a single

associated tower. Although Place Lab relies on 802.11 beacon triangulation to achieve high accuracy

when using 802.11, it is unable to employ triangulation in GSM as it is only able to detect a single

GSM signal at a time. The result is that Place Lab is only able to detect the single cell-tower a phone is

currently connected to. As phone cells can cover areas of 100m to 3km, this gives GSM positioning

which relies on a single cell at best the same accuracy level. Furthermore, as there is no guarantee that

the cell tower a phone is currently associated with is the closest, a second level of inaccuracy is

introduced.

Place Lab is primarily coded in Java and although Java is intended to be a particularly portable
language, the communication that is required between 802.11, GSM and Bluetooth hardware on mobile

devices is low-level and cannot usually be achieved through Java alone. Instead, drivers must be coded

natively and interprocess communication used to communicate between Java and the native code
library. Writing drivers to communicate with every variation of wireless, cell phone or Bluetooth

hardware available on the variety of mobile devices is simply not an achievable task and negates the

advantages in portability of the sections of code that are in Java. Indeed, Place Lab currently only

supports Nokia Series 60 cell phones, as these are the only phones for which the phone manufacturers

have released a useable API and a driver has been coded. The difficulty of using Java's JNI to perform

native process execution is highlighted in [92] and is possibly the primary reason Place Lab does not

support a substantial amount of mobile hardware.

A final weakness of Place Lab is that it does not support a standard protocol through which it may
deliver a position to third-party applications. Instead, application developers must design their systems

around Place Lab from the onset if they desire to utilise it. [104] presents the claim that:

151

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

Place Lab provides a virtual serial-port interface that can mimic an external GPS unit by

emitting NMEA 0183 navigation sentences in the same format generated by real GPS

hardware.

However, this does not appear to be correct. Over a year after this claim was stated the Place Lab code

does not support the NMEA 0183 protocol. Rather, it is able to parse only two of the five NMEA

sentence types (GGA and RMC) and emulate only the single GGA sentence type. Whilst this is

enough to supply some web-based mapping applications and extremely basic mobile applications, it is

not sufficient to drive the overwhelming majority of existing mobile applications (for example, popular

navigation applications such as TomTom and iGo are not supported). As a result, positions calculated
by Place Lab cannot easily be retroactively fitted to most existing applications as it provides no

external delivery to anything other than other Java applications.

These last three points - that Place Lab provides poor GSM positioning, does not run on many mobile
devices and does not expose the position it calculates to third-party applications - results in Place Lab
having low availability in many situations. For example, if a user decides to run another process in
addition to Place Lab on their device, it may consume resources required by Place Lab which may
result in it no longer being able to deliver positions in a timely fashion. Whilst such problems affect
the availability of the system as a whole, the previously discussed fact that an area must be sampled
before Place Lab can provide any location finding features in the area can hinder its availability in
specific areas.

Despite the weaknesses that lead Place Lab to be currently impractical as a positioning system for
applications on mobile devices, it exemplifies the power of amalgamating different positioning
technologies into one system. Furthermore, by providing an implementable interface the system can be
quickly adapted to recognise new types of beacon should they become more common in the future.
Delivering availability of almost 100% in most areas [104], Place Lab far outperforms GPS in outdoor
environments whilst continuing to operate quite accurately in most indoor buildings. Although not a
suitable solution for most mobile applications for the reasons specified, Place Lab does demonstrate
that a hybrid positioning system is viable for mobile devices.

5.3 A comprehensive positioning solution for mobile, peer-to-
peer devices

Whilst Place Lab is a powerful system, it is currently unsuitable for use in applications on mobile
devices due to the weaknesses outlined previously. In order to fulfil this need, a new system was
designed and implemented at Glasgow by Malcolm Hall and myself.

This system, titled Navizon, is similar to Place Lab in that at its core is the concept of amalgamating
existing positioning technologies, and utilising infrastructure that is already widely deployed in order to
calculate positions. It is important to note from the outset that work on Navizon is completely
independent from Place Lab and that the concepts behind Navizon were arrived at independently. The

152

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

initial design and start of implementation of Navizon was conducted before any Place Lab research had

been published and, although it is impossible to be certain, is likely to have commenced before any

work on Place Lab had begun. In short, Navizon was developed and implemented at approximately

the same time, but completely independently from, Place Lab. Malcolm Hall and myself have

designed, implemented and maintained Navizon from initial concept through to the commercial

application it is today. Even though Navizon is now funded and marketed by Mexens21, a company

based in New York, we remain the sole developers coding, maintaining and augmenting the Navizon

system.

The need for an amalgamation of positioning technologies had gradually become clear following the

development and evaluation of many systems at Glasgow, and from reading the literature available at

that time. The Lighthouse had used ultrasonic positioning that was accurate but tied to one location

(low availability and high setup cost). George Square and Treasure utilised GPS that covered large

areas but often failed to locate the user for large periods of time during trials if the weather was bad or

if users did not stay in open areas (low setup cost but low availability). Our own experiments with the

Ekahau system revealed that although it worked indoors, it simply required too much investment in

time to carry out the required calibration (high setup cost). Bluetooth positioning was attempted but

found to work only on a few devices and be extremely unreliable, due to Bluetooth requiring too long

to search for and identify peers in the area. The Bluetooth issues have, of course, been previously
discussed in Chapter 4. Through the implementation of previous systems and investigation into

alternative positioning technologies it became obvious that only by combining several technologies

would a suitably reliable positioning system be achieved.

The primary, overarching goal of Navizon is to provide a positioning system that is available
(delivering a location) as often as possible. In order to achieve this, Navizon, like Place Lab, relies on

several different positioning technologies. Through continual monitoring of each positioning system's

performance, Navizon is able to switch to whatever system is likely to give the most accurate position

at any given time. Currently, the default Navizon release utilises three positioning technologies: GPS,

802.11 wireless and cell-phone towers. However, the combination of these technologies allows

Navizon to achieve accuracy to within a few metres both indoors and outdoors.

Navizon is implemented primarily in C# but some low-level sections that interface with NDIS drivers

and read information on cell tower IDs and signal strengths from phones are written in C++. To detect

802.11 access points, Navizon uses the wireless driver discussed in Chapter 4. The driver allows it to

scan for and detect every single 802.11 access point that is in range of the device. Navizon vastly
improves on Place Lab in using GSM cell tower beacon information, as it is able to detect

simultaneously and read information about seven cell towers on phones, as opposed to Place Lab's

one. As a result, Navizon is far more accurate when relying on cell towers for positioning as it can
detect multiple cell beacons from which to triangulate a location, rather than just detecting one and

Z' http: //www. mexens. com

153

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

basing the position on the tower's location without using triangulation. The technique Navizon

employs when using GSM beacons is similar to that described by Otsason et al. [129]. However,

Navizon achieves the detection and use of seven GSM signals simultaneously using standard cell

phones whilst Otsason et at. relied on an external GSM modem connected to a laptop computer.

Navizon works by continually marking the locations of beacons, currently wireless access points and

cell towers, whenever a good GPS signal is available. When a reliable GPS signal is being received the

device can estimate the locations of the beacons it detects. The recorded positions of these beacons can

later be used to triangulate a client's position when no GPS signal is available, or if it is calculated that

a beacon triangulation is currently likely to be more accurate than the one GPS is delivering. A

significant difference from Place Lab is that the Navizon software is a single process that both

continually monitors new beacons and provides a location. Thus, there is no need in Navizon for

separate software to be installed and run, or for an area to be sampled before the system can be used.

Navizon also attempts to calculate beacon positions more accurately by employing a simple technique.

When a beacon is detected, it is not simply placed at the location of the current GPS signal. Instead, as

it is almost impossible that the beacon will be at the current location of the user when it is first detected

(it is more likely that this occurs on the edge of the beacon's coverage range), an algorithm is applied

in an attempt to position it more accurately. When a beacon is detected, tuples of the current location

and the beacon's signal strength are recorded until the beacon is no longer in range. Once the beacon is

no longer in range, a log of the path the user took past the beacon and the signal strengths to it will
have been created (Figure 18).

Figure 18: Path of Navizon user passing a beacon. As a Navizon user walks past a beacon, his or her device
records many samples of the beacons signal strength. Subsequently, the average of these are calculated to find a

location likely to be closest to the beacon. For example, in this case the 9 samples would be averaged leading to a
position around the mid-samples being stored. This is far more accurate than relying on any one reading.

154

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

Navizon then analyses the log and discards spurious readings, which are mainly those for which GPS

accuracy, taken from the HDOP22 value, is poor. It uses the remaining readings, taking account of the

signal strengths, to find the weighted centroid of the samples, which is hopefully close to the actual

location of the beacon. In tests this technique has proved to increase accuracy of the discovered beacon

by over 4.5 times compared to using the first detected signal and over 2.1 times compared to relying on

only the strongest signal (see the appendix for complete trial results). This position is then assigned a

quality rating based on the number of samples that were used to calculate the final location and the

mean of the signal strengths detected. The database on the local device is then checked, and if less than

ten readings already exist for the beacon ID, the new reading is inserted. However, if there are already

ten readings in the database then the quality rating of each existing one is considered and, if the new

reading is higher, the lowest one of these is replaced.

Whenever a beacon is being used to triangulate the position of the user, the beacon's location is

calculated as the weighted average (based on quality) of all the readings currently on the device,

according to the following equation. Note that i is the number of readings.

I
position; x quality;

location -
quality;

Later, if the device is synchronised with the server, the same process of removing the reading with the

lowest quality rating is repeated if any of the entries on the global server are lower than the new one.

The date of a reading is also considered so that an extremely accurate but nevertheless extremely old

entry may be replaced by a medium quality reading which is new. This is an important advantage over

Place Lab as although beacon locations are generally static they may be moved from time to time.

Place Lab is unable to adapt to such changes, but by using this technique Navizon can gradually learn

the new locations of any beacons that have been moved.

The process of first calculating the most likely position of the beacon, marking it for quality and only

retaining the highest quality readings results in the creation and maintaining of an accurate beacon

database. A client using Navizon continually reads from GPS and scans for beacons. If the GPS is

working but delivering a poor signal then Navizon switches to the beacon-based positioning that is

currently able to deliver the most accurate position. If a user does not have a GPS device, Navizon can

still operate by relying purely on the beacon-based location technologies available to it. Similarly, if a

22 The Horizontal Dilution of precision is a measurement of the predicted accuracy of a GPS position based on the geometric
configuration of GPS satellites currently in view of the GPS receiver. A low HDOP value, such as 2, represents a `good' reading
that was generated from satellites that are distant from one another-spread widely across the sky. A high HDOP value, for
example over 20, represents a reading from satellites that are close together. For example, if only 5 satellites were in view and
they were all almost directly above the user then a high HDOP value would be calculated. Typically, HDOP values of 6 or lower
are said to be 'good', whilst readings of 7 or 8 are 'moderate', and higher values represent 'fair' and 'poor' readings. The
maximum allowable HDOP value is 50, and is rarely, if ever, seen in practice.

155

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

user owns a PDA that does not have GSM or a phone that does not have 802.11 then Navizon simply

deactivates the module for that technology but otherwise continues to work as normal.

The Navizon application maintains a beacon database on the local device but is able to synchronise

with a global server if the user desires. If one never chooses to synchronise with the global database

then one is only able to utilise beacon data generated by oneself. Thus, such a user would require, at

least for a while, a GPS unit that they would use to find beacons. Once this data had been gathered, the

system would be able to select from the available beacon systems when GPS was poor or unavailable.

The beacon information that Navizon gathers is immediately entered into the database and available for

use. So, for example, a new user could travel from home to a local shop using GPS and on the way
back remove the GPS unit and rely on 802.11 or GSM positioning for the return journey, as on the

outgoing journey Navizon would have mapped and stored the beacon locations. This is significantly
different from the Place Lab system where one must use a separate program and then upload one's

traces to a server before one is able to use the sample data.

When one does synchronise with the server, one can select a region for which one wants to download

beacon data by simply drawing a rectangle on a Google Map23 on the Navizon website. The data is

then transferred to one's device and is then immediately available for use. The ability to download this
data, which may have been generated by any of Navizon's users, allows a user with no GPS unit at all
to use Navizon as a positioning system. If users move to different areas, they are free to simply alter

their region and resynchronise their devices to acquire new beacon data for those areas. When users do

synchronise with the server, any data they themselves have collected is uploaded and if, as previously
described, the readings are of higher quality than existing ones on the global server, then the latter are

replaced. The need to synchronise with a central server is, to the author's regret, in opposition to the

guidelines stated earlier in this thesis and the author fully believes that a hybrid peer-to-peer and self-

generating content architecture would be most suitable for the Navizon system. Unfortunately,

however, Navizon is a commercial application and is no longer fully controlled solely by the author.
Hence, some aspects of Navizon's use of data adhere to the guidelines-for example, it does use a self-

generating content architecture-whilst others, such as the reliance on a central server, do not. Whilst

this may affect Navizon's relevance as an example system for the architectural guidelines, it does not

affect its technical capabilities as a hybrid positioning system.

Navizon's sharing of gathered data to others creates a community where the majority of users who do

not have every supported positioning technology are fed by a small minority who do. Users with GPS

units, 802.11 and GSM capabilities map out beacons in an area, and users with only 802.11 or GSM

can then use this data through Navizon to position themselves. Navizon supports the ability to use any
type of positioning to locate beacons for any other type. For example, a user with 802.11 and GSM

may discover a new GSM beacon that is then automatically positioned using the current data from

u Goo& Maps (www. googk. com/msps)

156

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

802.11 positioning subsystem. This can then be uploaded and shared, allowing users with only GSM to

use the beacon when locating themselves.

5.3.1 Using Navizon
Although positioning systems are becoming more common, and devices with inbuilt GPS are starting

to emerge, most users are unfamiliar with their use in general. Certainly, the majority of mobile device

users experience difficulty when trying to configure a GPS device for the first time. In addition to the

positioning technology, many mobile users are lacking fundamental knowledge about their mobile
devices, such as how to synchronise them with their computers and how to transfer files to them.

Expecting users to be able to comprehend how to download, install, configure and maintain a

complicated positioning system themselves is unrealistic. For example, the majority of mobile users

lack sufficient knowledge to carry out these steps in order to run the Place Lab system.

As there are so many issues with current positioning systems, Seamful Design may not be an

appropriate solution to the configuration and usage problems experienced. As discussed previously,

Seamful Design should be selectively applied, highlighting the most important issues to users, rather

than applied to every aspect of a system. Such an approach would probably leave the end user

overwhelmed, rather than focusing their attention, and drawing out further knowledge, on specific, yet
important, issues within the system. Thus, a more suitable approach, in this case, may be to follow

traditional techniques, attempting to make the positioning system simply easier to use, and less

transparent, to users.

This is particularly important in a positioning system, as one that requires extensive configuration, or
advanced knowledge, may exhibit reduced availability, as the majority of users may not have the

required skills to configure it to perform well. Therefore, to ease the burden on the users and make the

system generally more available, one of the goals of Navizon was that it be simple for the end user to
install and use.

Navizon is distributed as a single installer package that, when run on a desktop machine, will install to

any PocketPC or Windows Mobile device, including PDAs and mobile phones. A version of Navizon
is also available for Symbian phone. The single Navizon application performs all of the tasks required
to drive the entire Navizon system within a community of users including data gathering,
synchronisation and, of course, the positioning of the user. All of this is automated by default although
one can, if one desires, opt to turn off the automation (for example, one may choose not to

automatically synchronise their data with the server). By default, therefore, a user does not need to

concern him or herself with collecting beacon data, as this occurs, when possible, transparently in the
background through normal use of the system-regardless of what positioning technologies one's
device is equipped with.

Navizon also makes the upload of gathered data and the download of newly available data as simple as
possible for the end user. Gathered data is automatically compressed and uploaded to the server either

157

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

transparently during normal use through the device's 802.11 capabilities or, if the device has no 802.11

capability, when the user docks their device with their computer. Similarly, as new data becomes

available for the area the user is located in or has marked as their predefined area on the website, it is

automatically and transparently downloaded and installed during normal use, when a connection is

available, in the same manner.

If one wishes to utilise Navizon in a new area, one may easily do so on the Navizon website by

dragging a rectangle around the desired area. One's device does not have to be docked during this

procedure, as the new data will simply be transmitted to one's device the next time an Internet

connection is available. However, Navizon does not use the wireless driver described in the previous

chapter to connect automatically to access points. Instead, users must configure the connections they

wish to use in the traditional, time consuming, manner. Whilst this is a weakness of Navizon, it is

currently thought to be necessary in a commercial product. As previously discussed, the legality of

using open access points is questionable, and it would be unwise to build such behaviour into a

commercial product that is widely used.

Browsing the entire Navizon location database and marking the area users wish to use Navizon in is

provided through a website interface. A map of the entire world is provided through a Google Maps

interface, which one can drag and zoom to view any location they desire. Beacons available in the area

are overlaid on the map-802.11 and GSM beacons appear with distinctively different icons (Figure

19). This interface allows a new user to determine quickly if an area already has a high coverage
(although if it does not they can still use the system, as it will quickly learn the beacons through his or
her own use).

159

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

T., r ;. tr 1 tr ; ýrlav 30th

srec, s' rg rjr`ct, ', 1, tir" 7, r !ct, <e mrra

d
MsD SateH e Nybrld

"tpr
F"ý

ä
-0 7oo

O tf %,

41

Par",, tOhO
fff

Map aw ©2ooe T. SAtrs -

View World View My Area

Figure 19: Navizon web interface showing coverage in a small area of Paris. Cell towers are shown as larger blue
markers whilst secure and insecure 802.11 access points are shown as smaller green and red markers respectively.
Note that for performance reasons in displaying the Google Map only a subset of the true markers are shown. This
is clear from the message at the top of the image stating that although there are actually 5675 beacons recorded for

the viewable area, only a random 200 of these are shown.

Further information, such as the ID of the beacons (MAC for 802.11 beacons and unique IDs assigned

by the mobile phone providers themselves for GSM) are displayed as well as the vendor's ID (the

maker of the access point for 802.11 and the network provider for GSM) are available simply by

clicking a beacon icon.

Navizon has been designed not as a stand-alone positioning system to run by itself, but as a system that

can be used to drive other applications. To achieve this, it is vital that Navizon performs well in two
important areas. Firstly, it must not consume too much of the available system resources in order that

the majority of resources are instead available to the main application which Navizon is driving.

Secondly, as Navizon is designed to replace one positioning system with an amalgamation of many, it

must be capable of transparently replacing previous positioning systems. In practice, Navizon

consumes approximately 2-10% of the processing time on modern CPUs, and requires only an average

of 119 bytes of storage space per beacon. This low resource usage is vital, as it allows sufficient

resources for interactive services, such as mapping applications or location-based services, to run,

whilst Navizon concurrently runs in the background, delivering the data that drives such services.

In order to allow Navizon to replace transparently existing positioning technologies, it can create a

virtual serial port, to which it writes position data correctly formatted to conform to the NMEA-0183

159

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

standard. Navizon fully emulates NMEA GGA, GLL, GSV, GSA, VTG and RMC sentences. These

sentences contain information on latitude and longitude, time, velocity, orientation, number of satellites

in view, signal information from satellites, and much more (a short, but concise overview, of NMEA-

0183 sentences can be found in [49], whilst a more complete reference is the NMEAs own publication

on the standard [1251). This standard is the most common, almost exclusively used, format for position
data on modem mobile devices. By fully emulating NMEA output, Navizon is able to replace the

majority of positioning systems on which existing mobile applications rely. For example, Navizon can

replace GPS device input for applications such as TomTom or iGo, allowing users to run such

applications relying purely on either 802.11 or GSM beacon information.

5.3.2 High adaptability to support new technologies
A feature of critical importance to Navizon's future development, identified as relevant to mobile

applications in general, is that it has been developed in a completely modular manner and is therefore

easily adaptable. This is of high importance as the infrastructure that is embedded throughout a single
building or an entire city is in a continual flux. A decade ago, GPS was not publicly available and

positioning systems useable by the general public were virtually non-existent; the few that were

available were confined to indoor locations. Over the last two decades an abundance of mobile phone

cell towers have been placed throughout the western world, creating a massive change in the

technological infrastructure of modern cities. For example, the Navizon database reveals 545 cell

antennae in a single square kilometre in the Manhattan area of New York, and this density is typical of

most major Western cities around the globe24. Similarly, throughout the last decade an even higher

number of 802.11 access points have been sited, and it is now almost impossible to find any street in

large cities, such as New York, where a signal from at least one wireless access point can not be

detected. For example, the same square kilometre in Manhattan contains 14953 access points. More

recently, Bluetooth devices have become common for the average user and it is now equally difficult to

find any location in a busy pedestrian street where there is an absence of Bluetooth signals.

The almost blanket placement of these devices-the infrastructure which feeds the modern city's data

requirements-is what allows Navizon to use beacon detection to locate users accurately. However, as
the infrastructure and the type of technology used is in continual flux, it is vital that Navizon be

prepared to integrate quickly any new technology should it become popular. For example, Bluetooth

has emerged as a common technology on mobile devices themselves but is not yet frequently used on
static devices due to the relatively long connection time required for devices to pair. However, if future

versions of Bluetooth do not have this limitation, it is likely that static devices utilising it would
become common. Therefore, if this occurs it would be prudent to add Bluetooth to the beacon types
Navizon can use.

2' The Navizon database can be browsed to view beacons and check densities at http: //my. navizon. com. The area the figures cited
here is the square kilometre running from approximately the intersection of 48'" Street and 10i° Avenue to the intersection of 39'"
street and 3 Avenue. Note that mobile phone cell towers typically contain between 4 and 10 antennae, and the actual number of
cell towers in this area is likely to be 545 divided by this number.

160

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

To support rapid adaptation and integration with future technologies, Navizon is designed in a modular

manner at all levels. Navizon consists of five main areas: -

" User interface

" Positioning system input

" Location filtering and calculation

" Data storage and synchronisation

" Position output

All of these five main areas are loosely coupled, but each is also modular in itself. For example, each

possible position system is implemented in its own module, and any number of modules can be

connected to the system and run simultaneously, with Navizon selecting the best performing one at any

time (Figure 20).

Position
outp,, t

Figure 20: Navizon positioning modules. Only one of the three positioning modules must be active for Navizon to
provide a position.

The position output from Navizon currently only comes from one of the three possible positioning

modules; GPS, 802.11 or GSM. The decision of which of these to use is based on some simple limits.

Assuming all three are available on the device, if the current GPS HDOP value is 6 or lower then GPS

will always be used. For HDOP values between 6 and 10,802.11 will be used if more than three

access points are in view, otherwise the GPS position will still be used. If the GPS HDOP value is

higher than 10, then any position delivered from 802.11 will override the GPS position. GSM

positioning is only used when both GPS and 802.11 are unable to deliver any position (there are not

enough GPS satellites to get any position and no known 802.11 access points are detected). Table 5

details where Navizon's final position will come from in each situation.

161

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

HAP
APs

<= 6 7-9 >= 10 GPS invalid

0 GPS GPS GPS GSM

1-2 GPS GPS 802.11 802.11

>= 3 GPS 802.11 802.11 802.11

Table 5: Table of which underlying positioning subsystem Navizon uses to calculate a final user position, based on
the HDOP value of the GPS and the number of APs currently detected.

The use of limits to determine which underlying technology to use is relatively simple, and it is likely

Navizon's final position accuracy could be improved further if sensor fusion techniques were

employed-specifically, complimentary sensor fusion of the type Brooks and lyengar describe seems

appropriate [18]. For example, rather than relying solely on GPS in the case where both the GPS and

802.11 subsystems are providing good accuracy, the two readings could be combined to provide

greater overall accuracy. However, to date, such algorithms have not been implemented. This is

mainly due to the fact that early versions of Navizon were relatively processor intensive, and so during

the initial design sensor fusion was dismissed, as it would have added further processing requirements

to an already processor-heavy task. However, Navizon has been greatly optimised since its initial

versions, to the point that it typically uses less than 5% of the CPU time on a modern PDA such as an
iPAQ 2750 (with an Intel PXA270 processor clocked at 624MHz). Therefore, sensor fusion is now a
highly suitable candidate for improving Navizon's accuracy further in the future.

Just as with the three positioning modules, the filtering algorithms are implemented in distinct

modules. Currently, Navizon relies primarily on a centroid algorithm for locating beacons but this is

simply a module, and the raw location data can easily be routed to any other position module, which

may implement an alternative algorithm. Several filter modules are available to smooth the location

data Navizon generates, and these are hot-swapped--that is, the application runs as the underlying

positioning technology being used switches. For example, if GPS is used, only a very basic filter

which smoothes large jumps in location is employed, whilst under 802.11 positioning a more

complicated filter is switched to, which takes account of the last four positions and calculates an

expected movement vector; this is then used to smooth the position Navizon subsequently delivers.

Again, the filtering modules are currently relatively basic-simply predicting future movement based

on the current vector, and averaging this calculated vector with the current position whenever the

position is substantially different from what the vector would suggest. Just as with sensor fusion,

during the design process alternative techniques were ruled out due to excessive processor usage.
However, since Navizon now consumes far less processor time, alternative techniques can be

considered to improve further the delivered position. One such technique could be the use of Gaussian

process models, which are indeed likely to provide more accurate positioning. Chen et al. show that
Gaussian processes delivered higher accuracy than both centroid and fingerprinting techniques for
GSM positioning in five of the six scenarios they tested [34]. Schwaighofer et al. implement a

162

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

Gaussian process-based positioning technique using DECT25 networks [150]. Whilst they find their

implementation achieves an average error of around 10m after calibration with 100 points, their work

also demonstrates several reasons why Gaussian models might not yet be suitable for use with

Navizon. Firstly, Gaussian models generally rely on information about how radio signals propagate

from the base stations, and a model, or calibration data, of the area around each access point. Navizon

is used with an extremely large number of PDA and phone models, and the base stations it uses to

triangulate data can be any model from any manufacturer. It would be almost impossible to create a

database of all possible radio propagations from each aerial of each type of access point that might be

encountered. Furthermore, storing such data (propagation models) for such a vast range of PDAs,

phones and base stations is simply not a viable option given the limited storage space available on most

mobile devices. Secondly, Navizon is a system designed to be used in any area without any specific

bootstrapping by the user. This directly conflicts with the calibration data that normally must be

collected prior to the use of Gaussian process models. Although Navizon does attempt to locate 802.11

and GSM base stations automatically, it cannot achieve the high accuracy in this process that is

required for such techniques to be used reliably.

Each of the five main areas within Navizon's structure contain modules that can easily be swapped in

and out allowing for rapid production of new interfaces and inclusion of new technologies. Indeed, the

strength of a modular code design in a mobile system has already been confirmed in Navizon's own

development cycles, as it has allowed the addition of new filtering modules to be quickly implemented

and swapped-improving the quality of the delivered location-and for a mobile phone version to be

rapidly created following the initial PDA version.

Finally, to aid other developers in integrating Navizon into their applications, a comprehensive API is

publicly available, which includes methods for connecting to the Navizon database, detecting beacons

and generating data from them.

5.3.3 Sharing of information between users
The design of Navizon was strongly influenced by many of the findings from the systems discussed

previously. Initially, Navizon was designed as a pure peer-to-peer application with a self-generating
data model. Although a central dependency on a global server was later added to make Navizon a

commercially secure product, the benefits gained from the initial design remain. In particular, the self-

generating architecture, in which new data is generated through the normal use of the system, is

thoroughly embedded in Navizon.

The initial design of Navizon was as follows. The application itself would generate the entirety of the

data that is required to calculate positions through detecting and calculating beacon positions.
Although a new beacon can be positioned when the current location itself is being derived from other

Z' Digital Enhanced Cordless Telecommunications are, as the name implies, primarily used to provide networks for cordless
telephones. It is now common for large office blocks to have tens or hundreds of DECT base stations spread throughout the
building, much in the same way as 802.11 access points. Similar to 802.11 clients detecting 802.11 access points, DECT clients
can detect the unique identifiers and signal strengths of DECT base stations currently in range.

163

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

beacons (for example, a cell tower beacon can be calculated from positions generated by the 802.11

beacon module), the concept was that a minority of owners with devices containng GPS capabilities

would aid in essentially war-driving, or bootstrapping, a much larger community of 802.11 and GSM

devices. Areas would be mapped out by GPS users and the data they collected would be automatically

distributed to other users through a peer-to-peer network. As no beacon data is ever generated from an

external source (beacon data is only created by the application itself) Navizon is a completely self-

generating data system. Initial development versions of Navizon were able to propagate the data they

generated directly to peers, and had no dependency on any external server. The underlying idea was

that as users moved from one location to another, they would encounter peers and continually gain new

data on the local area, both by generating it themselves and by receiving it from peer devices.

Clearly, this design is extremely powerful as it allows Navizon to be introduced into a new community

of users who all contribute to generating data that is distributed for the benefit of the entire community.

However, Navizon was subsequently adapted to a commercial product and, as the new owner26 desired

the maximum level of control over the generated beacon data as it is believed to be of high commercial

value, it was decided that it should be controlled centrally. Obviously, as described, the decision to

hold the data centrally introduces a number of negative aspects previously outlined.

As it is clear that a decentralised architecture is the most desirable type for mobile systems, attempts

were made to make the central server, which was required by the new owner, as transparent to the

process as possible. It was hoped that by minimising the role of the central server, the negative effects
introduced by its use would also be minimised. When new beacon data is generated, Navizon caches it

as it did in the decentralised version. However, instead of automatically sending the data to peers when

they are detected, it instead uploads it to the server when a connection to it is available. Unfortunately,

this of course means that a connection to the central server is now a requirement if up-to-date data is to
be supplied. Although one may achieve this connection through docking with a computer, wireless
802.11 or GPRS, all these have convenience, configuration, legal or cost implications-as has been

previously discussed.

This centralised architecture admittedly contradicts the previous findings and guidelines in this thesis,

which suggest the initial pure peer-to-peer architecture, or a hybrid one, would be superior. The author
does believe that this is true, and that an alternative architecture would be more suitable. Whilst this

constraint is unfortunate, it in no way minimises the power that the hybrid positioning solution of
Navizon provides, and Navizon makes a substantial contribution to the mobile field in providing a
positioning system with greater availability and ease of use than any previous technique has managed

to achieve.

2` Whilst Navizon is now funded and marketed by Mexens, Malcolm Hall and myself remain the sole developers of the Navimn
application. To date, all code in Navizon has been implemented by Malcolm Hall or myself, and we continue to maintain and
develop it.

164

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

5.4 Performance
Several tests have been conducted to estimate Navizon's performance when using 802.11 and GSM

beacons to locate the device. Firstly, Navizon was run on a device for 10 minutes at three locations,

and the accuracy of each of the three positioning types was measured from the readings gathered.

Secondly, three walks were conducted, during which a device running Navizon was carried. The data

gathered from these walks allows for an overview of how accurately the location data generated by

each of the three positioning types aligned with the actual route followed.

As Navizon has been widely used, a substantial amount of data on 802.11 and GSM positions have

been collected from the public's use, and most major cities in the USA and the UK have many beacon

locations recorded. Therefore, as the majority of the trials were conducted in one of these cities,

Glasgow, it was not normally necessary for the area to be sampled (wardriving) prior to the trials.

Instead, before the trials were run, the device running Navizon was synchronised with the global

Navizon server, which contains the beacon data gathered by many Navizon users. Undoubtedly, a

portion of this data would have been contributed by the author through the normal use of Navizon in

the area. However, this would have occurred through normal, daily use of Navizon and was not

conducted with the trial in mind. The one exception was a walk that was carried out in Erskine, a small

suburban area approximately 15 miles west of Glasgow. As it was not believed that this area would

have been extensively mapped prior to the trial, a 30 minute war-drive of the area was completed

before the walk was commenced. The war-drive was conducted with the use of a car, and involved

driving along the roads surrounding the route that was to be walked.

For the first set of trials the accuracy of Navizon's three positioning methods were measured at three

locations in the west-end of Glasgow. For each location an iMate SP5 phone running Navizon was

placed on the ground and left to log data for 10 minutes. Placing the device on the ground ensured that

it was not moved for the duration of the trial. The actual location coordinates (latitude and longitude)

the tests were conducted at were determined through the use of a geo-referenced OSGB map. To

verify the coordinates gained from the geo-referenced OSGB map they were compared to the

coordinates returned from Google Earth for what was believed to be the same location. For all three

locations the coordinates were found to have no greater than a 0.00003 difference, which represents

approximately 2 metres for the areas tested in, and is believed to be acceptable.

Measuring the accuracy of any positioning system is always challenging, as there is no completely

reliable method to provide a true, fully accurate position to compare the system being tested against.

Unfortunately, although it is extremely unlikely the error of this method is greater than 5 metres, the

exact error cannot be determined. Whilst this introduction of error is unfortunate, this problem of
finding a completely reliable measurement of position to compare a system against is commonly

experienced by researchers examining positioning systems, and is not unique to this research or to

these trials. LaMarca et al. employ a different method when measuring accuracy in PlaceLab. They

rely on averaging the positions delivered by two independent D-GPS devices [104]. However, as GPS

165

is one of the positioning systems being trialled, this was not believed to be a suitable technique for use

here, as it would likely weight the results in favour of GPS.

During the trial, the device logged the latitude and longitude coordinates generated by Navizon's GPS,

802.11 and GSM modules, all of which were concurrently active and generating location data

throughout the trial. The following three figures (Figure 21, Figure 22. Figure 23) plot the locations

generated by each of the three Navizon modules during the trials. In each figure the actual location the

device was placed at is marked with a white square. GPS results are shown as smaller blue squares,

802.11 as green, and GSM as red. Note that the maps shown in each figure are shown at different

scales-a scale bar is included at the bottom left of each to help gauge distances.

W 00"

1
16

f t"T

Figure 21: Map of locations determined by Navi, on's three positioning tcchniquc. (actual iocatwn i, white . yu , GPS in blue, 802.11 in green, GSM in red) for location 1 (55.873784, -4.29227)

166

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

i

I -.

F lop--

/ý+

'1

01

rig

%

Figure 22: Map of locations dctcrtnincd by Navizon's three positioning techniques (actual location is white square,
(; PS in blue. 802.11 in green, GSM in red) for location 2 (55.872978, -4.289858)

Figure 23: Map of locations dctcnnined by Navizon's three positioning techniques (actual location is white square,
GPS in blue. 802.11 in green, GSM in red) for location 3 (55.87443, -4.288545)

167

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

After the results were gathered, the NMEA data generated by both the GPS unit and Navizon was

parsed to extract the sexagesimal latitude and longitude values. These values were subsequently

converted from sexagesimal values to decimal latitude and longitude. In order to measure the distances

between multiple decimal latitude and longitude coordinates, they were further converted to OSGB

tranverse mercator coordinates using the Airy Spheroid constants27. The code used for completing this

conversion is shown in the Appendix. Once in OSGB coordinates, the distance between two sets of

coordinates can be easily calculated using the traditional Cartesian distance formula, as OSGB

coordinates represent a square grid with each unit being exactly one metre. A simple C# program was

implemented to complete the conversions for all the trial results and to calculate the distances of each

from the known actual location. Finally, from these distances the maximum and minimum errors,

mean, variance and standard deviation from the recorded actual location were calculated. The results

are shown in the following tables (Table 6, Table 7, Table 8). Note that all result values have been

rounded to two decimal places.

Minimum error
(metres)

Maximum error

(metres)

Mean

(metres)

Variance

(metres)

Standard deviation

(metres)

GPS 0.63 64.13 12.83 216.55 14.72

802.11 13.21 20.36 17.75 1.11 1.05

GSM 164.72 231.19 195.00 136.87 11.70

Table 6: Minimum and maximum levels of error, mean, variance and standard deviation, for positions determined
by Navizon for location 1.

Minimum error

(metres)

Maximum error

(metres)

Mean

(metres)

Variance

(metres)

Standard deviation

(metres)

GPS 2.32 9.23 6.58 3.18 1.78

802.11 3.38 15.08 13.70 4.97 2.23

GSM 205.15 315.23 259.58 220.15 14.84

Table 7: Minimum and maximum levels of error, mean, variance and standard deviation, for positions determined
by Navizon for location 2.

Minimum error
(meins)

Maximum error
(metres)

Mean

(metres)

Variance

(metres)

Standard deviation

(metres)

GPS 10.23 17.81 11.41 1.33 1.15

802.11 6.36 27.15 21.19 6.18 2.47
GSM 52.09 140.41 87.39 447.08 21.14

Table 8: Minimum and maximum levels of ertor, mean, variance and standard deviation, for positions determined
by Navizon for location 3.

17 The Airy Spheroid is an approximation of the curvature of the Earth for Great Britain. It was defined in 1830 by the then
British Astronomer Royal, George Biddell Airy, and has since become the standard ellipsoid used for Great Britain.

168

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

It is clear from the results in the tables that both GPS and 802.11 prove both more accurate and more

reliable than GSM. However, surprisingly, it is also clear that 802.11 may often outperform GPS

positioning in both accuracy and reliability. The results from location I show that although 802.11 Is

minimum error is lower than that of GPS, 802.11 does in general deliver a more accurate and reliable

position, and has a substantially lower maximum error. For the two other locations GPS and 802.11

performance is extremely similar. In all trials and measurements GSM's performance was the worst.

However, its maximum error in all trials is 315.23 metres, which is still accurate enough for many

coarser-grained location-based services. Furthermore, although GSM's standard deviation is higher

than GPS and 802.11, it still proves to be of relatively high reliability. As position information from

GSM is available almost 100% of the time-far outperforming both GPS and 802.11 in this aspect-it

can prove more useful in many scenarios despite its lower accuracy.

The second trial conducted involved following a known route whilst walking with a device running

Navizon. All the routes begin and end in the same location, and as viewed from the maps, were

traversed in an anti-clockwise direction. The device recorded all the positions calculated by Navizon's

GPS, 802.11 and GSM modules throughout the walk. This process was repeated for three routes, two

around the University of Glasgow and one in Erskine. As there are many points generated, each
individual set of GPS, 802.11 or GSM points are displayed on their own map in the following figures

in order to present the findings clearly and avoid confusion. A final figure in each set displays the final

locations output from Navizon after it selected which underlying positioning system it calculated most

to be performing best at the time. The first set of figures (Figure 24, Figure 25, Figure 26, Figure 27),

show the results from the Erskine walk. As with the maps from the first set of trials, note that each

map is shown at a different scale, and that scale bars are provided at the bottom-left of each map to aid

in gauging distances.

169

Chapter 5: A hybrid positioning system for mobile. peer-to-peer applications

ýr it=ý ýý, ý rý ý
Y ýýýi
ý'r

3" r.
r .. 95

ý; ý
ý

ý ý, ', ý'

tý
Výr',

ýý ýr ý,
ý,

r ýýý Yip' "º, ' 40
441, ;.

/i
%y-'`4ý 'o- %tf-

Von
3!!; 10

41k .

Figure 24: Map showing GPS positions recorded whilst %kalkint; route marked Nrllow in f": rskinc.

170

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

ý'.)f} v Li

1r 1ü. II rr,

Figure 26: Map showing GSM positions recorded whilst walking route marked yellow in Erskine.

171

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

ýý

y

ý�
psi

a

kvbý

I*-
Ir r

w ,' KA

goo
ij

Pt'1

172

Figure 27: Final locations output from Navizon for route marked in yellow in Erskine.

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

The next set of three images (Figure 28, Figure 29, Figure 30, Figure 31) show the results from the first

route around the University of Glasgow in the west end of Glasgow.

ýýs

r ,a
h.:

ýW-i

oilý
pvii

MIA

Figure 28: Map showing GPS positions recorded whilst walking the first route in Glasgow (marked in yellow).

PIK

0 "Ol .

''

,,.

1
' ;ý

J

U: 1
low

ANN,
Figure 29: Map showing 802.11 positions recorded whilst walking the first route in Glasgow (marked in yellow).

173

Chapter 5: A hybrid positioning system for mobile. peer-to-peer applications

_ ý_

.. J ýº

-444 Abo

ýrM11ýº ýi-..

=wag CP
Ir r-Q

Wbq"

VAL

oý

t, . 'ý. t'"
ýýýIrký,

ý`"'ý..,.
ý

ýý ýl
ýýý. 4ýý

ý r!! ý

Fr\

r

vc;

Figure 30: Map showing GSM positions recordcd whilst walking the first route in Glasgow (marked in yellow).

174

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

,.
i

.
ýýý)ý

. _. ý. /

r #ý

.ý ý.

The results from this first Glasgow walk proved surprising, as the GPS readings were extremely poor.

The walk was started at the very upper-left corner of the route and followed in anti-clockwise direction.

The walk soon entered a building and, as could be expected, GPS lost the position. However, the

journey through the building was short, and the vast majority of the southern edge of the route was

outside in a relatively open road surrounded by low buildings or, at many parts, no buildings at all.

This segment of the journey took over 5 minutes, and the GPS appears to have performed extremely

poorly during this time. For several minutes the GPS device did not provide any position at all, or

provided positions that were approximately half a kilometre south-east of the actual location.

Ironically, the GPS device appears to have begun providing more accurate positions just moments

before the route turns north and reenters another building.

For this particular route, 802.11 positioning appears to have substantially outperformed GPS. This

perhaps highlights one of the ways in which 802.11 aids positioning in general, and why a hybrid

positioning system is more powerful than systems that rely on only one technique. It is clear that GPS

can prove more accurate if users are primarily travelling outside in open locations. However, 802.11 is

often more useful if parts of the route are indoors. Not only can 802.11 provide a location indoors, it

also continues to be immediately available once a user returns outside, whilst GPS can take many

minutes before providing reliable positioning once more. Note that in general 802.11 is quite accurate
for this route (the 802.11 map is magnified to a greater level than the others in this walk, and the scale
bar can be used to verify that the accuracy is comparable to GPS for the parts of the route where GPS is

available).

175

Figure 31: Final locations output from Navizon for first route in Glasgow, marked in yellow.

The final set of map images shown in the following figures (Figure 32, Figure 33, Figure 34. Figure 35)

and display results from the second route around the University of Glasgow.

Figure 32: Map showing (; PS positions rccordcd whilst walking the scu>nd ruutc in ('lagaw Imatkcd in ycIk w)

176

Chapter 5: A hybrid positioning system for mobile. peer-to-peer applications

I

', +rý

-4w

4k

ýý

F iKun 11 Map , hewing 802.11 positions rcu)rdcd whilst walking the second route in Glasgow (marked in
yclk)w).

k1ý

iiOF6.

tt'ý
b ýýi

taw

.. ý

-IA4- - I.
A

Figurc 34: Map slw-A eng t GSM Ix)%mons recorded whilst walking the second route in Glasgow (marked in yellow).

177

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

r-
ý. '

4

As with the first Glasgow route, there are areas of the route for which GPS did not provide a position as

it was indoors, or was a segment following an indoor area during which the GPS device did not yet

have a satellite fix. In these areas 802.11 did provide a position, and seems to have been generally as

accurate indoors as it was outdoors. For the areas for which GPS and 802.11 provided positions, the

accuracy again seems to be generally similar between the two; although it is clear that GPS does

achieve a higher maximum accuracy when in optimum conditions. Although showing maximum errors

of 350-400 metres from the route, GSM appears to provide approximately block level accuracy or

better in general.

One unavoidable limitation of the trials was that they were limited in area, mainly being conducted in

Glasgow and the surrounding area. Any positioning technology that relies on beacons is obviously

affected by the density of these beacons. The density of 802.11 and GSM beacons varies from one

country to another, from city to city, and even from regions within a single city. Again, simple
browsing of the Navizon database28 reveals substantial variations from one area to the next.

Furthermore, as Trevisani and Vitaletti point out, there are marked variations between urban and

suburban areas in general [164]. Therefore, due to this constraint, the results from the trial are,

literally, not globally applicable, and should be viewed, at best, as typical of the performance within a

large Western city.

'" http: //my. navizon. com

178

Figure 35: Final locations output from Navizon for second route in Glasgow, marked in yellow.

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

In addition to these trials a simple, shorter trial was conducted to find the availability of each

positioning technology Navizon relies upon during a typical shopping trip in the centre of town. The

solution Navizon provides is perhaps most apt for use in dense urban areas, and so the selection of a

shopping trip in the centre of a large city was thought appropriate, as outside dense urban areas, such as

in suburban or countryside areas, GPS availability is generally extremely high, and a solution such as

Navizon is not a necessity if mobile applications are to be used.

An Mate SP5 running a slightly edited version of Navizon29, and connected via Bluetooth to a small

GPS unit, were given to a trial participant to carry with her during a normal shopping trip with her

friends. The Mate had both its GSM and 802.11 capabilities activated, and Navizon was able to use all

three of the underlying positioning technologies it relies on. The version of Navizon had been slightly

edited to log counters of the total time it depended on each of the three positioning technologies, and

the time when none of them were producing a result. As with the previous accuracy trials, the same

area constraint applies, and again the results can only be viewed as typical of a large Western city, and

not applied to other types of area.

The subject spent just under 4 hours on her shopping trip, the majority of it spent in shops in or around

Buchannan Street and Argyle Street in Glasgow. The percentage of the trip for which each system was

available and producing a valid location is shown in Table 9 (note that timing information from the

same trial is also available in the appendix).

Technology 802.11 GSM GPS Any

Availability (%) 68.35 99.83 23.20 99.85

Table 9: Availability of each positioning technology Navizon uses during a normal shopping trip in town.

Whilst the positions delivered by GSM are less accurate than GPS, the availability of this system in

urban and indoor areas is far higher. Furthemore, 802.11 has been shown to be only slightly less

accurate than GPS outdoors, and it is significantly more available. Using Navizon, the trial participant

had a valid location throughout almost the entire duration of her trip, compared to only around 23% for

GPS.

Whilst the accuracy of Navizon using 802.11-commonly under 20 metres and at worst around 27

metres-is higher than that reported by LaMarca et al. 's Place Lab, 31 metres [105], it would be

unwise to conclude based on this data alone that Navizon is generally superior in accuracy. As has been

stated, the density of access points and cell towers varies greatly between areas, and as both Navizon

and Place Lab's performance is directly dependent on this density, any testing performed in different

regions should not be compared. Certainly, it is entirely possible that if Place Lab were used in the

same regions, and had recorded the same beacons, it would perform as well or better.

' The version used in the trials was edited to output debug information about the locations it was calculating and which
positioning technique it was currently using to a comma separated file. This was done simply to allow for the fast transfer of this
information into spreadsheets used to create and calculate the tables presented here.

179

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

It is clear that one application area for which Navizon is not suitable is the accurate positioning-room

level or below--of users or devices in indoor environments. Whilst Navizon does continue to operate

in indoor locations, it must use 802.11 or GSM beacon positioning, which is not currently capable of

delivering sub-metre accuracy. Clearly, for applications in which centimetre accuracy is desirable-for

example, to track a device within a single room, as was achieved with high accuracy with the Active

Bat [171]-Navizon does not deliver a suitable solution.

5.5 Conclusion
As has been previously stated, a user's location is the most important piece of contextual information

for mobile systems. Navizon may aid mobile, context aware applications, by making location

information constantly available. In this way, Navizon is an enabling technology, allowing novel

mobile applications to be created which rely on the location data Navizon produces. Prior to Navizon,

the majority of mobile applications relied on GPS alone and, as has been seen, this supplies extremely

poor availability in urban and indoor areas. Navizon is able to deliver a location, accurate to under 100

metres, both indoors and outdoors, almost 100% of the time.

Navizon fulfils the goals set out at the start of this Chapter. It provides a position both indoors and

outdoors virtually constantly with a relatively high degree of accuracy. This, and the fact that it runs

on an extremely large number of mobile devices, makes it highly available to end users, and designers

who wish to develop context aware mobile applications. As there is no need to sample any area before

Navizon can be used, and as it requires only standard hardware sold on most mobile devices, the

system requires almost no set up time or cost. As a self-generating content system, Navizon builds the
information it relies on through normal use of the system. Furthermore, as the system is always
transparently detecting and recording new beacon locations, it requires no conscious effort in

specifically sampling an area.

Work on the Navizon technology was completed in 2004, and since 2005 Navizon has been

commercially available from an American company called Mexens. Navizon has undoubtedly proved

useful in, and relevant to, the mobile field as it is extremely successful commercially. At the time of
writing there are over ten thousand Navizon users, and data on over five million beacons currently held

in the database. In addition, several logistics companies in America and Europe now rely on Navizon

as a positioning system for parts of their fleet tracking.

It is hoped that the main use of Navizon in the future will indeed be as an enabling technology for

context aware mobile applications. New versions of Navizon already permit a user location to be

continually tracked and made available to others through a website, and allow users to search for

services such as restaurants or entertainment services in the local area when they are mobile.
Hopefully, these are just the first mobile applications of many that will rely on Navizon to provide

180

Chapter 5: A hybrid positioning system for mobile, peer-to-peer applications

constant positioning within their systems. Future applications using Navizon are discussed further in

the Future Work section of Chapter 8.

Additionally, Navizon's 802.11 location technique has also been made available through a Java applet,

which allows 802.11 positioning to be carried out when a website is viewed on a laptop computer. The

location information provided can then be used to filter or verify information made available through

the website. For example, in the USA, Major League Baseball is experimenting with receiving a

position from the Navizon Java applet in this way to detect where users are, and then allowing them to

view games involving their local team online and directing them to nearby ticket offices.

As with the outcome of Chapter 4, Navizon also aids in making mobile applications fit more accurately

Weiser's vision of ubiquitous computing, in which the technology becomes invisible to the user, who

becomes free to concentrate on his or her main task-rather than being forced to deal explicitly with

the underlying technologies required to achieve that task. With Navizon, location information itself is

made more ubiquitous. In prior systems location was only available periodically, and users had to be

continually aware of how the positioning system was performing. In cases where the system was

required but not available, users may have had to alter their own plans in order to move to a location

where positioning information was available, or spend time better configuring a poorly performing

system. This is the problem Messter et al. described, in which users are forced to detach from their

current context and task in order to remain nomadic, and continue using a mobile system [116]. As

Navizon provides a location both indoors and outdoors almost continually, location information can be

assumed to be constantly available, and users have more freedom to continue with their own tasks,

rather than having to work around a poorly performing system.

181

Chapter 5: A hybrid positioning system for mobik, peer-to-peer applications

192

Chapter 6: Distributing data in mobile, peer-to-peer applications

6 DISTRIBUTING DATA IN MOBILE,
PEER"TO"PEER APPLICATIONS

At the end of Chapter 3, one of the pieces of infrastructure required for mobile, peer-to-peer

applications was:

"A method for providing and distributing data within a peer-to-peer community

Mobile peer-to-peer communities are more fluid and transient than desktop communities in general,

and even than peer-to-peer communities that run within desktop environments. Since the network

topology within mobile, peer-to-peer communities rarely remains static for any length of time, and as

clients can leave the community at any time and may never rejoin, there are unique challenges in

routing data from one client to another.

The difficulty of routing data from one device to another is compounded by the fact that mobile devices

have a relatively small amount of storage space. Thus, not only must data be routed in novel ways,

once data arrives on a device, a decision must be made on whether to store it and, if so, for how long.

This chapter explores these two issues: firstly, routing data within a mobile, peer-to-peer community

and secondly, deciding when to store and when to discard data. As these topics are extremely broad

the concepts discussed are grounded in two applications, FarCry and Samara. Neither system is

formally trialled; they are simply used as proof-of-concept experimental applications. FarCry is a file-

sharing application, and is used to gain an overview of how data may spread within peer-to-peer

communities whilst Samara is a tourist guide that relies on a recommendation system to guide users to

interesting locations. A recommendation system is a particularly relevant topic within this area, as

such systems require substantial amounts of data to be transferred between users and large amounts of

data to be stored on their devices if they are to deliver a high quality of recommendation. Although in

this chapter Samara is presented as a proof-of-concept system, in the subsequent chapter it is

successfully demonstrated in operation within part of a larger sub system, Domino, and trialled in a

mobile peer-to-peer game, Castles.

6.1 Epidemic distribution of data
For a mobile system to be classed as pure or hybrid peer-to-peer, and to enjoy the benefits of such

architecture, it must be capable of distributing any required data within the community of peers without

it passing through any external devices. For reliance-free content systems, this is a trivial matter, as

messages are generally short-term and so communication is carried out directly between two devices

that are in range of one another. However, for self-generating content systems the task is far more

complicated. For example, imagine a pollution monitoring system that one carries with them

throughout the day. As one travels, a sensor connected to one's PDA monitors and stores pollution

183

Chapter 6: Distributing data in mobile, peer-to-peer applications

levels in various parts of the city, and a map and overlay is provided so that one can later browse the

collected data.

Although such a system is of use, it would require a large effort for the user to map out a significant

area of the city. Furthermore, pollution information would be unavailable if one were travelling to an

area for the first time, and if one desired to avoid areas of high pollution the system would be of no

help. However, if there were a community of users within the city, all using the system, they could

share data-covering a far greater area of the city together than any one could achieve on their own. If

each user had access to the entirety of the data collected by all users, then the number of areas for

which one had data would be far greater. In addition, the larger number of users would also result in

data being more reliable and up-to-date, as areas may be monitored more often by multiple users.

Therefore, to enjoy these benefits, the data collected by each device must be spread throughout the

entire community of users.

A standard technique in such situations is to rely on a central server in order to synchronise, and many

existing mobile systems employ this method [154], [35], [43]. If a central server is used, there are two

common methods in which devices connect to it. In one method, the user is required periodically to
dock their device with a computer that is connected to the Internet. The dock then provides a pass-
through network connection to the PDA that can then access the Internet itself and communicate with
the server. It uploads the data collected since its last synchronisation, and downloads either the entirety

of the available data, or only sections which relate to the local area or have altered since the last

synchronisation. This technique has been successfully employed in systems such as those described in

[461, [39] and [117].

A second method essentially works in a similar manner but eliminates the need to dock the device

physically, by utilising the device's wireless network card to detect nearby networks and synchronise

when a nearby network that provides Internet access is found. This technique is far less common, as it

normally requires a greater effort on the designer's part. For mobile devices, a long connection period

cannot be guaranteed as the user may suddenly move out of network range. Therefore synchronisation

must be achieved through the atomic transmission of small segments of data rather than by sending the

entirety of the collected data at once. The task of scanning for and successfully connecting to networks

must also be carried out and is in itself a substantial task that requires direct control of the network

card.

Finally, many developers may be hesitant to attempt utilising discovered networks due to the many
legal issues involved, or to pay per-client costs to enable devices to access Internet connections

provided by companies such as Vodafone and T-Mobile through infrastructure access points. Despite

these negative aspects, there are a few commercial and research systems which do utilise this method to
synchronise data. For example, the data collected by Skyhook Wireless' Bertha application is

automatically synchronised over any T-Mobile access points that are detected. This is beneficial to

184

Chapter 6: Distributing data in mobile, peer-to-peer applications

both the PDA carrier, who does not need to take the extra step of periodically docking their PDA, and

to the organisation collecting the data, as the devices synchronise more frequently than if docking were

required and therefore there is reduced risk of collected data being lost. This configuration of relying

on paid connections is usually only employed when the data is of high value to a company, as it is

normally the company that pays the associated costs.

Although these two techniques do provide a centralised solution that may be attractive for commercial

reasons, the fact that they are centralised detriments the mobility and flexibility of the application. In

all the systems listed, frequent synchronisation with a central server is required if functionality is to be

maintained and data kept up-to-date. Indeed, the first time the applications are run, they provide little

or no functionality until one manages to locate a connection to the server and synchronise one's PDA.

Furthermore, even if peers are located within range of one another, the fact that one has synchronised

will not benefit any other devices, each of which have to connect and synchronise separately.

Removal of the central server also minimises these negative aspects, but introduces the dilemma of
how generated data is spread throughout the community. One alternative method that has recently
been gaining popularity is epidemic algorithms. Epidemic algorithms seek to address the problem of
disseminating information in peer-to-peer networks, and as such are highly suited for use in mobile
communities. The core concept behind epidemic algorithms is that they act similarly to a contagious
disease within a community; spreading from one node to another, and being stored within that node

until another is encountered, when it can be copied to a novel node once more.

One of the advantages of epidemic techniques is that they are highly scalable and are not dependent on

any one particular node being continually available. Indeed, Vogels et al. state that [168]:

These protocols allow systems to be built in pure peer-to-peer manner, removing the

need for centralized servers...

As mobile communities are never static, and have nodes that are highly transient, epidemic algorithms
that are not dependent on any single node are particularly useful in mobile environments. Although

epidemic algorithms were proposed for use on desktop systems as early as the 1980s, they are

experiencing a recent resurgence due to this suitability to mobile systems. Despite the fact that Vogels

et al. concentrate on the Spinglass project, looking primarily at epidemic algorithms for use in the
desktop environment, they do go on to highlight more properties that help make epidemic algorithms

effective in mobile environments [168]:

An epidemic-style protocol has a number of important properties: the protocol imposes

constant loads on participants, is extremely simple to implement and rather inexpensive

to run.

185

Chapter 6: Distributing data in mobile, peer-to-peer applications

The fact that epidemic algorithms are relatively simple and inexpensive to implement and run aids their

use on mobile platforms, which typically have less processing and storage capabilities than their

desktop counterparts.

Although epidemic algorithms have been widely known and discussed for some decades, one of the

first serious attempts at applying them to mobile communities was in 2001 by Papadopouli and

Schuhrinne. They describe 7DS (7 Degrees of Separation), an infrastructure they use to drive a mobile

system for caching web pages on devices and spreading them throughout a larger community of users.

This system allows mobile users who do not currently have access to the Internet, to continue to

receive and view popular web pages whilst they travel. The authors define 7DS as [1311:

... an architecture and set of protocols enabling the exchange of data among peers that

are not necessarily connected to the Internet.

7DS demonstrates the strength epidemic techniques can have in a mobile environment. They can

enable useful information to be delivered to members of a community who currently have no Internet

access and, as previously highlighted, can do so in a lightweight and relatively simple manner.

Despite their increasing popularity, epidemic techniques have not been implemented and trialled in

many actual mobile systems, and most remain theoretical. The primary reason for this may be that

many epidemic-based systems need a large number of users to operate optimally, and it is often
difficult to recruit the required high number in a research scenario. In such situations it is unlikely that

enough trial participants will be available for the epidemic techniques employed to exhibit the full

range of benefits they may potentially provide if a larger group were available. However, there are

many reports on results from computer-generated models of how epidemic algorithms might perform.
Papadouli and Schulzrinne report that their simulations demonstrate that epidemic algorithms can allow

data to spread to close to 100% of users after only 25 minutes if there is a density of 25 users per

square kilometre [131].

Lindemann and Waldhorst expand Papadouli and Schulzrinne's work, simulating how data can spread
through the use of epidemic algorithms and considering for more parameters [109]. They find that

changes to buffer size, among many other factors, can substantially affect the spread of data in

epidemic-based networks.

In addition to providing the rapid dissemination of data in peer-to-peer communities, epidemic

algorithms prove to be robust. EraMobile is an epidemic technique that continually monitors the node
density of the overall community and number of neighbours around a node, and adapts buffer levels

and transmission rates accordingly [130]. This allows EraMobile to reduce spread rates when the

number of nearby nodes is high, reducing network traffic, yet increase spread rates when the node
density is low, compensating for lower levels of encounters between peers.

186

Chapter 6: Distributing data in mobile, peer-to-peer applications

Whilst there is a substantial amount of other literature focusing on epidemic models and their

simulations ([120], [96], [107]), Demers et al. take a slightly more practical approach and describe how

epidemic algorithms may be applied to use with databases [48]. The epidemic techniques Demers et al.

detail, in particular rumour mongering, can be applied within a peer-to-peer community to spread data

throughout the community. If we take the earlier pollution application example, we can envision how

an epidemic algorithm would work in this scenario. From the user's perspective, the manner in which

the application is used remains the same. The device is carried as normal and collects pollution data as

it is moved around the city. A map display on the screen has an overlay showing all the pollution data

available. However, when two users pass each other in the city, their devices now discover one another

and exchange as much pollution data as they are able to. When one of these devices passes a third

user, it transfers not only its own information about pollution but also the data from the peer it

encountered previously. In this way, data introduced or generated by one peer is spread throughout the

community at an exponential rate, as more peers gain copies of the data. In the pollution example, data

is aggregated and so the number of instances of data about one particular location is not significant.

However, if the application requires only the latest copy then updates can be time-stamped. Devices

receiving information from a peer can then discard any entries that are older than copies they already

hold. This ensures that the latest data continues to propagate throughout the community, whilst older

data is spread only by peers who have not yet received the latest copy to others who have even older
data.

Epidemic spreading techniques can also be utilised in a controlled manner and these are indeed already

common in many systems. In FolkMusic, a user whose device was in range of another was able to

browse the music library of a peer and download music he or she selected to his or her own device

[173]. As this music was then shared by the two devices, a single song was able to spread throughout

an entire peer-to-peer community in this manner. Although this technique was not used in a way to

deliberately evoke epidemic spreading, the manner in which the song spreads throughout a community

is typical of the three epidemic algorithms described in [48]. Unfortunately, although FolkMusic did

rely on ad hoc networks and so appears applicable, it was not particularly mobile as it ran only on

laptop computers. Despite mentioning that future work would be conducted to create a PocketPC

version, no such version was ever implemented. However, Hakansson later implemented Push! Music

which did run on mobile devices and provided almost the same functionality as FolkMusic [78].

Push! Music allowed users to share music in an ad hoc manner by allowing one user to "push" a song

onto another's device when they were in range. Both FolkMusic and Push! Music rely on users

themselves initiating the spread of a file to a peer device.

If information on device encounters is spread in an epidemic fashion, more sophisticated

communication methods become available. For example, a message intended for a specific recipient

can be efficiently directed through a peer-to-peer community in order to reach its target. Glane et al.
describe such a procedure [71]. When a peer has a message it wishes to send to a specific target, it

187

Chapter 6: Distributing data in mobile, peer-to-peer applications

reviews a history of past encounters. The history contains not only a log of the frequency it has

encountered peers in the past but also ratings for how likely these peers are to encounter others. For

example, imagine a device has a message for device T and by examining its history log it is calculated

that there is 30% chance that this will be the next device the unit encounters. The next device that is

encountered turns out to be A, which has a 20% chance of encountering T next. The decision made

would then be to hold the message on the local device, as it has a slightly higher chance of

encountering the target first. However, if A turned out to have an 80% chance of encountering a device

B, which in turn had a 50% chance of encountering T then the decision would be made to pass the

message over in the hope that the message would progress from A to B and finally to the target T.

Clearly, this strategy is not suitable for messages that must be delivered in a prompt fashion but it does

allow a message to navigate through a peer-to-peer environment without resorting to mass duplication

and broadcast. It should be noted that although the navigation of the message through the community
is not epidemic, the information about encounters which is maintained in routing tables on each device

must be spread and updated according to epidemic algorithms if devices are to have enough

information to route messages correctly.

An interesting technique for gathering data for later rapid distribution is found in [73]. In this antiviral

system nodes are set up with the specific aims of detecting viruses, gathering or generating
immunisation methods, and rapidly and strategically spreading the antiviral information to clients in

order to stem the spread of the virus. These special nodes are called honey-pots and are capable of
leapfrogging the virus in order to contact other honey-pots outside the infected area and prepare them

to combat the virus. One of the reasons the honey-pots are so effective is that they are strategically
located and actively seek out viruses. Applying similar techniques to aid in epidemic spreading rather
than stem an epidemic viral spread provides an interesting strategy.

By moving clients of a peer-to-peer community to an area that is likely to be of high interest to the

community, it is possible to gather and concentrate a substantial amount of content and to spread it

rapidly to interested clients. For example, if a standard peer of a pure peer-to-peer system providing

tourist information were placed in a museum it would automatically, as part of its normal function,

contact and communicate with all the peers that visited the museum. Initial visitors would generate

content that the peer permanently located in the museum would gather. In contrast, if peers randomly

encountered each other, the information they exchange may be of value, but may not be immediately

relevant to the area the users are currently in. However, here all the system's visitors to the museum

are likely to be using the system to conduct their visit, and the statically located peer will gather a large

amount of information specific to the museum itself. Subsequent visitors will then be guaranteed to
have this substantial database of information made available to their device upon arriving in the
museum. This strategy allows a location of specific interest to a community to be rapidly documented.

In short, removing the reliance on random encounters in a peer community can greatly aid the spread of
information about a specific location. The most significant advantage of this strategy is that the client

188

Chapter 6: Distributing data in mobile, peer-to-peer applications

is identical to all the others in the peer community, and so no specialised code is required and the setup

time is minimal - simply placing one of the peer devices at the desired location is all that is necessary.

To see how this method could be advantageous, it is useful to imagine a decentralised version of the

George Square system. The George Square trials relied on a central server to collect the information

from each set of users who visited a small square within the city, in order for these results to be used as

content for the subsequent visitors. If the system were decentralised and information was spread in an

epidemic fashion, then even if the trial participants were given the system over a long period of time it

would be unlikely that any information would have been exchanged between peers - as they would

have been unlikely to encounter one another. Therefore, when each user visited the square they would

be starting with only the lowest amount of data, even if many users had visited previously. However, if

a peer device were permanently located in the square for the duration of the trials then each subsequent

user would have been guaranteed to receive the entirety of the information generated previously on the

square.

This technique provides the benefits of a centralised system without actually requiring a specialised

server device, or creating additional code or network configurations to support it. There is nothing

unique about the device left at a specific location except that it is not currently being carried by a user;

as a result the entire system is still entirely pure peer-to-peer. It is suggested that this technique, titled

Bothy3, can be of great value in preparing event locations or areas of interests within a community. 0

Epidemic algorithms appear to be an extremely suitable method of distributing data throughout a pure

peer-to-peer community. However, as stated previously, they have not been implemented and trialled

in many systems and instead are more often simulated. Therefore, epidemic algorithms and techniques

detailed here are implemented and trialled in systems described subsequently in this thesis-both to aid

the author's own experience with epidemic techniques and in order to ground the work in practical

applications.

6.2 A mobile, peer-to-peer file-sharing application
File-sharing applications are one of the few mobile, peer-to-peer systems that are commonly found

both in existing literature and commercially. For example, [1731 implemented a file-sharing system

that allowed users to browse and share each other's music collections. Files can also be shared,

although not easily, using the functionality included as standard in Microsoft's PocketPC and Windows

Mobile operating systems, which allows them to "beam" files to other users either through IR or

Bluetooth hardware.

However, in all these systems the spread of data is limited in some way-most frequently, users

themselves must initiate the transfer. In order to experiment with automated transfer, a system called

FarCry was examined. It is important to note that FarCry was created solely by Malcolm Hall and that

the author did not contribute to its design or implementation directly (although it does rely on previous

10 After the notion of a Scottish bothy in which travellers utilise a shared hut, often noting details of their visit and travels in the
bothy book located therein.

189

Chapter 6: Distributing data in mobile. peer-to-peer applications

work from this thesis that the author did work on, including the enhanced wireless driver and SDS).

However, the system is a perfect test bed for the issues discussed in this chapter and was thus seen as

applicable for use here.

The FarCry sharing application for PDAs demonstrates the guidelines and infrastructure identified thus

far in the thesis in a working and useful mobile application. It continually broadcasts its existence

while simultaneously searching for peers, and when a peer is located a sound plays and a notification

bubble appears to alert the user. Clicking the alert opens up the FarCry browser screen, which shows

files on the peer device that the user has selected to share (Figure 36). Peers are likely to discover one

another at approximately the same time, and it is possible for two peers to browse one another's files

simultaneously. Shared files may be of any type, including music, video or photographs. The share

screen also shows some basic information about the owner of the device - such as name and an avatar

image.

Cowed end view thew index page?

re

s. wma 3323 KB
This - Santa Cna. wma 3982 KB

wmY 2366
4034352170 1 KB

shares j eugee

Taal. ýý-

Bllll]ee s les

Welcome bo Bungee's
personal server

;'f
Tr, e Tt. ls - Santa

. wma StreaTDownbad
Gr

diathess. wma

wnl -d

Awl LavVe - Don't Tel Me. wma
Stream Cwyvt hued

V*w Toob aS1 ®1 ®ý"

vrl Lavigne - Don't Tel Me. wma
4033BU7. pg

,
4034217.)q

w Lavfprie - Don't Tel Me. wma Ccrr lM
BSS. +Mnä 26.73%

Tods ®I"

Figure 36: The FarCry user interface showing from left to right: the notification bubble when peers are in range,
the introductory page when viewing another's library and the list of files on another device.

When one notices a file one is interested in, one can select to stream the file and play it in real-time (if

it is of a suitable type such as audio or video) or copy the file to one's own PDA. Alternatively, rather

than selecting files oneself, one can elect to enable ̀ leech mode'. Whilst in this mode one's PDA

simply attempts to download as many shared files as possible from each peer it encounters. FarCry

supports both epidemic spreading controlled by the user and, through leech mode, fully automated

epidemic dispersion of files.

FarCry utilised the custom network driver and SDS to achieve its operation in its pure peer-to-peer

environment. The application can be categorised as a self-generating content one as, from the

application's perspective, new content is either received from peers or added directly into the

application by the owner of the device.

FarCry was never formally trialled but informal testing proved worthwhile as it revealed the severity of
letting epidemic spreading occur in all situations, and led to a simple categorisation of epidemic

190

Chapter 6: Distributing data in mobile, peer-to-peer applications

spreading techniques: blanket, user-controlled and system-controlled. In systems in which one must

pick the files one desires before they are transferred, the files spread in an epidemic but controlled

manner, and this spread may be called user-controlled. For example, if user A downloads a music file

from the original owner 0, then there are now two peers in the community from which the file can

subsequently be downloaded. Thus, user B may download the file from either A or 0. This is clearly

epidemic spreading, as files can be downloaded from peers other than the original creator or owner of

the file and, as the file becomes more widely available, the rate of its spread through the community

can grow exponentially. However, the spread of the file is not completely random or global. It spreads

in a controlled manner, as a user must actively browse for and select the file before it is transferred.

This type of spreading, and use of the system, was the default behaviour of the FarCry application.

When leech mode is enabled in FarCry, a blanket spread is observed, as each device attempts to gather

a copy of every file shared by every peer device it encounters. This provides an exponential and

extremely rapid epidemic spread and, if no new files are introduced, will result in the community

reaching equilibrium, in which every peer has a copy of every file. However, in practice it was found

that storage space on standard mobile devices is low (typically around 128MB built in with a slot for a

I or 2GB memory card) and each device will usually run out of storage space after a relatively short

time in such an environment. This is extremely problematic as, once storage space is full, the system

completely stagnates as no new information can enter the system. In FarCry this results in a user

ending up with a static set of arbitrary files, which he or she may or may not be interested in.

Certainly, once the user reviews the files, FarCry is of no more use to that particular individual, unless

additional storage space is made available or existing files are deleted-although it can still serve other

users by continuing to distribute files. Obviously, this problem was experienced fairly quickly in our

trials, as the devices used did not have large memory cards. However, regardless of how much

memory is available on the device, this problem will eventually occur.

While this would suggest that a controlled spread method is generally more suitable for epidemic

applications there are many situations in which it does not provide a rapid enough dispersal of the data.

For example, in [711 the performance of the routing algorithms is dependent on the clients having the

most up-to-date information possible in order for them to identify correctly the probability of one peer
device encountering another. Indeed, Goldenberg et al. make it clear that a blanket epidemic spread is

the most fail-safe manner in which to send a critical message in a peer-to-peer community [731.

Furthermore, even if a controlled epidemic spread technique is used, it is inevitable that the device will

eventually run out of storage space unless old data is cleared. This is perhaps slightly less critical if the

spread is user-controlled, as if one is selecting files or information to download, one is more likely to
be aware of the current storage state, and to delete old or unwanted data if the store is full. If there is

no input from the user during exchanges, and instead the system itself selects which data to exchange

with peer devices, the epidemic spreading technique can be called system-controlled. When system-

controlled epidemic spreading techniques are employed, as in [73], then just as with blanket spreading,

191

Chapter 6: Distributing data in mobile, peer-to-peer applications

a method of clearing old data becomes essential. It should be noted that the controlled in system-

controlled refers to the fact that the system provides some intelligent control or filter to the spread of

data, rather than that the epidemic spread is simply automated by the system. Therefore, blanket-

spreading is not a subset of system-controlled spreading, as with blanket-spreading there is no filtering

applied, and the spread of data is simply as opportunistic as possible.

User-controlled spreading is obviously most useful when fine control over what is transferred is

required. However, as it requires continual user input to operate, a user-controlled spreading method

often results in many wasted peer encounters. For example, if two users are passing one another in the

street their devices carried in their pockets may activate an alert but this can be easily missed in a busy

environment or simply disregarded if a user is otherwise occupied. As the spread of data from peers is

often fundamental in providing an up-to-date and relevant peer-to-peer application, these missed

exchanges can take the data exchange rate below a critical level, so that the system eventually becomes

stagnant and useless. In such situations, a system-controlled epidemic algorithm can prove far more

useful, as its automated behaviour ensures that data exchanges with peers are carried out
instantaneously whenever possible, and thus aid in maintaining the flow of data through a peer

community.

In order to further discussion on epidemic techniques, it is useful to define explicitly the three types of

epidemic spreading techniques for mobile, peer-to-peer environments:

" blanket: whenever a peer device is encountered the entirety of available data held is attempted
to be transferred

" user-controlled: the user elects if and when to transfer data to or from a peer device

" system-controlled: the spread of data is automated, but the system applies some filter to the

available data so that a subset is transferred in each exchange rather than the entire dataset

It is clear that each category exhibits unique advantages in the mobile environment and that the choice

of which to use is often specific to a particular application. As both blanket and user-controlled

epidemic spreading are easily understood and relatively simple to implement, the next section

concentrates on a system-controlled spreading technique and subsequent methods for culling data in

order to prevent storage being rapidly consumed.

6.3 A novel method for distributing data in mobile, peer-to-
peer environments

The brief investigations conducted with FarCry led to a realisation that an intelligent method for both a
system-controlled epidemic spreading technique and a method for identifying and culling irrelevant or
old data was required, in order to stop devices simply filling up their storage with data whilst
maintaining a healthy flow of data through a peer community. Culling old data is particularly
important in a mobile environment, as storage is normally substantially lower than in desktop

machines. Similarly, processing power on the average mobile device is also far lower than on desktop

192

Chapter 6: Distributing data in mobile, peer-to-peer applications

machines so, if the stored data is to be analysed or searched, then a large amount of redundant or

irrelevant stored information can have a significant impact on an application's performance. It is

therefore critical to ensure that only relevant data is stored.

It should be noted that whilst user-controlled and blanket epidemic spreading are generally quite

limited in implementation options (user-controlled simply relying on the user's acceptance and blanket

simply being as opportunistic as possible) system-controlled spreading methods can be implemented in

many ways. Therefore, the following method is simply a single, hopefully elegant, solution presented

in the hope that it can be reused in its current form and to illustrate the basic concepts involved in

system-controlled epidemic spreading.

As stated, in a system-controlled epidemic spreading algorithm the system must make intelligent

decisions about when to copy data from another device and which data, out of all that may be available,

to copy, and in which order to copy it. Peer encounters may be short, occurring as users pass one

another whilst walking in the street, or long, as when two colleagues occupy the same room for the

duration of a meeting. Peer devices may meet in many circumstances and thus the length of peer

encounters cannot be pre-determined. It is therefore important that devices are intelligent enough to

transfer data that is likely to be of value in the time available during encounters.

Even if the length of an encounter were not an issue, any system-controlled epidemic spreading method

cannot simply copy all the available data (this would be blanket epidemic algorithm), as this would

quickly consume all the storage on the device and may not be possible if the encounter is not a

particularly lengthy one. One obvious solution would be to choose data at random or take a small

section of only the latest available data. However, with these techniques there is no guarantee that any

relevant data on a peer would ever be retrieved. To obtain data that is relevant to a peer the system

must attempt to identify segments of data that are likely to be of interest to the user and give priority to

these when peer exchanges are conducted.

In order to identify sections of data or files that may be of interest when peers meet, a collaborative
filtering algorithm was utilised to generate recommendations for files or data a peer is likely to find

relevant. The Recer recommendation algorithm was again utilised (it had already been used in George

Square) due to the prior familiarity Glasgow Equator had with it, and because it is an extremely generic

recommendation system which is able to operate smoothly with heterogeneous types of data. As the

system-controlled epidemic system being implemented was to act as an example and to, hopefully, be

reusable in future peer-to-peer applications, a generic solution was favoured.

6.3.1 Recer
The Recer algorithm is simple yet powerful [281. Actions which the user or application performs are

monitored and logged. Typical actions may be accessing a file, browsing to a web page, sending a
friend an instant message, or simply switching from one application or window to another. Each action
is logged as a plain text entry in a database, along with a timestamp noting when it occurred and

193

Chapter 6: Distributing data in mobile, peer-to-peer applications

additional metadata such as the type of entry it is and which user performed it. Over time, the entries

create a continual log of the user utilising the application or their device, which may be thought of as

one history among the various possible usage scenarios. Although it is possible to create

recommendations based on a single history alone, it is not normally wise to rely only on a user's

history of use, as this will result in no recommendations that are novel to them being delivered. Thus,

the history of a single user must be compared to the histories of others if novel and interesting

recommendations are to be made.

The actual recommendation algorithm works by first extracting all of the most recent entries from the

user's own history. This recent activity forms a user's context - the items that are relevant to the

current activity they are participating in (Figure 37).

BU iIrliry girrt-"rr, 't

File acces'
"

Users path
UR; ,,.,,

t

Figure 37: Overview of the Recer algorithm used to identify context. Items are recorded to the user's history (or
path log) as they occur. The user's context can then be said to be the recent activity from this history and can be

extracted.

Instances of each individual item from the context are searched for in the histories of other users.
When a matching item is located, a window around it is generated by creating markers in time on either

side of the item, and any collocated items found within this window are then extracted. Finally, the

results from all the windows are amalgamated and ranked in order of number of occurrences (Figure

38). The highest ranked items are then presented as recommendations..

Context ! user A)

1/ý

-T 1IIIIII,

"-"" -I- Go ý/ý "" 40140 4MM1= """"

I1I,

//1I1
1yý1I1tý
"1 1ý 1I

Recommendations

Figure 38: Overview of the Recer algorithm for generating recommendations. Items from one user's (user A)
context are identified in another's (user B) history log. Items adjacent to these are then extracted and ranked as

recommendations for user A.

194

Chapter 6: Distributing data in mobile, peer-to-peer applications

Versions of the Recer algorithm were implemented by the author as APIs in Java, C# and PHP (to

allow it to be used on websites). The Java and PHP versions run only on desktop (or laptop) machines

running Windows, Linux or OS X. However, the C# version is implemented in the NET Compact

Framework and can run on both mobile devices with PocketPC or Windows Mobile and desktop

machines. When running on desktop machines, Recer can use Microsoft SQL Server, Postgres or

mySQL as its database back end. When on a mobile device only a Microsoft SQL Server CE database

can be used.

The length of the context, size of the windows and number of recommendations returned may all be set

using the API in order to tweak the algorithm for a range of circumstances. However, the default API

values of five minutes for context and two minute windows (one minute on either side of a located

item) generally provide good results, and these values have been used in all the systems Recer has been

used in for this thesis.

Obviously, Recer, like all collaborative filtering algorithms, relies on information from other users to

provide high quality recommendations. In Recer's case, it is the history information from other users

that is required, and a method of spreading this information in an epidemic manner within a peer-to-

peer community was implemented.

The history information Recer generates is relatively small, as each individually logged action is

typically under 100 bytes, which results in approximately 10,000 entries per megabyte of history data.

However, the compact size of the individual entries does not entail that a blanket epidemic spreading

method should be used-the data must still be spread in a controlled manner. The length of a peer

encounter may not be predetermined, and many encounters last only a short period of time and are cut

off suddenly as the peers move out of wireless range of one another. It is therefore critical that the

information transferred in the short period available is likely to be of value to the recipient.

When a peer conducts its first exchange, the histories transferred are indeed somewhat random as there

is no previous experience about which data may be of most relevance. As the connection is far from

reliable, the history information is transferred in small segments of 100 entries at a time. This aids in

preventing loss of large amounts of data, as no more than 100 history entries (a relatively small

number) will be lost if a connection is broken. To assist further in preventing data toss, the transfer

mechanism is implemented using separate threads to conduct the actual network transfer and to store

and process that data. This often allows a secondary thread to extract any successfully transmitted

histories regardless of where the transmission breaks. For example, if the connection is lost whilst

entry 65 of a 100 entry segment is being transmitted then the secondary thread will be able to recover

the 64 completely received entries. This robust protocol ensures a high successful transfer rate even in

the extremely transient and unreliable peer-to-peer network environment.

195

Chapter 6: Distributing data in mobile, peer-to-peer applications

Peers do not only share copies of their own paths but also those of others from which they have

downloaded information. For example, a client may download sections of history that belong to user A

and sections that belong to B during a single encounter with device A. This can occur if device A had

previously downloaded path data during an encounter with device B. In this way, a single encounter

with one peer can provide a wide variety of data from many users.

After history data has been received from an encounter with a peer, it can be used when generating

recommendations. It is these recommendations that refer to the actual data that is to be shared within

the peer community. For example, a music sharing peer-to-peer application may use the Recer

algorithm and epidemically spread the Recer histories. However, this underlying metadata is shared

only to allow the identification of data that the peer is sharing which is most likely to be of interest.

Following the creation of a set of recommendations for items, these items can subsequently be actively

searched for within the peer community if they are not immediately available. For example, if a device

A receives history information from peer B that causes a recommendation for a particular song to be

generated then A may immediately request the song from B. If B has a copy of the song, it will provide
it for A. If it does not have the song, then A will make a note of the recommendation and actively seek
it out in encounters with other peer devices. When the item that has been recommended is discovered

on a peer device, it can either be automatically downloaded or may be presented to the user, who can
then decide whether he or she would be interested in accepting the recommendation and downloading

the file to their device. Thus, this technique of recommending shared peer data not only filters the data

to select that most likely to be of relevance but also supports both system-controlled and user-

controlled epidemic spreading of data.

As discussed, the first transfer of the recommendation metadata is random as there is no previous data

from which to calculate areas of interest. However, after a number of histories have been downloaded,

the system periodically analyses them at times when the processor is otherwise unoccupied. It attempts

to determine from which histories recommendations of the highest interest may be drawn in the future.

Each of the downloaded histories on a device are compared to the user's own history, and an average

per-item similarity rating is calculated. It is important that the final rating gives the average similarity

on a per-item basis rather than over entire histories, as a history average would not give a meaningful

ranking unless compared to a history of similar length. It is only segments of history that are
downloaded during peer encounters-it would be rare that a whole history would be transferred and, if
it were, it is unlikely that the two histories would have exactly the same number of entries. Therefore,

a ranking calculated over an entire history would have a bias that simply favoured longer paths.

Once history rankings have been calculated, all subsequent history exchanges during peer encounters

rely on them to give the highest ranked histories priority. When a peer is subsequently encountered, it
is asked for the list of users for which it carries history data. This is compared to the rankings list and
if there are any matches then segments of history from the highest ranked user are requested first. If

196

Chapter 6: Distributing data in mobile, peer-to-peer applications

the length of the connection is long enough to allow the entirety of the history data stored on the peer

device to be downloaded, then the rankings list is again consulted and the next highest matching history

requested. If there are no further matches, then history data is again requested at random. This process

prioritises histories from which recommendations more relevant to the user are likely to come.

Gathering data from these histories first helps ensure that the short encounters in a pure peer-to-peer

environment are less likely to be wasted, by transferring data that is unlikely to prove beneficial to the

user.

The list of similarity rankings is reused to provide a second beneficial feature-that of culling old or

irrelevant data. In order to stop the storage space on a PDA being entirely consumed by the history

information collected from peer devices, it is necessary that there be a process that periodically cleans

it up. When storage space is full, or when it is approaching an allowed limit set by the user, the

ranking list is consulted and the lowest ranked histories, from which recommendations are least likely

to be found for the user, are discarded. If, after discarding these histories, there is still not the sufficient
level of required storage space, the oldest segments of history logs are removed, without removing the

entire history. The continual cycle of discarding old and irrelevant path data whilst renewing it with

paths downloaded from peers results in a recommendation system that is kept up-to-date and continues
to provide novel recommendations.

The combination of the Recer collaborative filtering algorithm and the additions to allow its path data

to be distributed and maintained in a peer-to-peer environment is named Samara (short for System for

Ad hoc MetAdata RecommendAtions). A mapping system that was the first application to utilise
Samara is detailed in the next section.

6.3.2 Samara
The first pure peer-to-peer mobile application to utilise the Samara infrastructure is a mapping and
location recommending system designed to be used by tourists. As a tourist travels around, he or she

carries a PDA, equipped with GPS, on which the application runs and records locations visited.

As data from the GPS unit is delivered in standard NMEA format, the main component of which is

latitude and longitude delivered approximately once per second, locations of interest must be

interpreted from this raw NMEA stream. One possible solution would be to rely on some of the many
Internet services that maintain a database of latitude and longitude mapped to postcodes to convert the

raw coordinates. Once the postcode was obtained from a web site that provided this conversion,

another web service, such as that provided by the Yellow Pages website, could be used to supply a list

of businesses at the current postcode. This method allows for intelligent guesses to be made about
which building a user had entered.

However, in a pure peer-to-peer environment, in which this particular application exists, reliance on an
external third-party is best avoided. Furthermore, this method relies on a static database of officially
recorded buildings. It would, therefore, fail to recognise personal or locally known locations, such as a

197

Chapter 6: Distributing data in mobile, peer-to-peer applications

common meeting place, or a country area with no particular nearby building. Such areas may be of

great importance for someone who uses such a location to picnic, walk their pet or simply admire the

view. Therefore, instead of relying on the discussed method, a self-generating content structure was

implemented. This worked by recording coordinates in a database, and marking a surrounding region

whenever the system detected the user was at a location that seemed to be important to them. Rather

than relying on an external database, it is the user's own actions that are relied upon to identify the

locations that are of value to them-allowing any location whatsoever to be recorded. Important

locations are interpreted using the two main techniques outlined in [88] that allow for both outdoor and

indoor locations (at building granularity) to be detected.

The first technique, which allows indoor locations to be detected, involves recording the time and

locations where a GPS signal is lost. If the signal is not regained within a certain timeframe (five

minutes in our system) then it is possible that the cause of the loss of signal is that the user entered a

building. As in [114], a threshold of at least three instances of such maintained loss of signal is

required around the same location within a period of two weeks before the location is accepted as one

of interest, and marked as such by the system. This threshold aids in filtering out false positives such

as loss of signal due to the user entering an area with poor line of sight to the satellites (such as a

narrow city street), accidental disconnection of the GPS unit from the PDA or other random GPS

device failures. In this way, only entrances to buildings that the user frequently visits, and are therefore

likely to be important to them, are recorded as important locations in the internal database.

The second method, which allows outdoor locations of interest to be detected, simply involves

monitoring the period of time a user stays within a specified range. If approximately the same location

is maintained for a period of time (again, five minutes in this particular system) then the location is

noted. Just as in the first method, three repeated detections are required within a two week period for

the location to be permanently entered as important in the location database. This technique allows, for

example, the detection of locations such as a park bench that a user frequently rests on while eating
lunch.

When a location is detected as important and entered as such in the database on the users PDA, the
location is assigned a random, unique identifier string. The user is free to leave this identifier as the

randomly generated string. However, if one desires, one may at any time review one's locations and
rename them--replacing the random string with a more meaningful name. This can aid others in
identifying what may be at the location if they later receive the entry on their PDAs. In addition to the

two automated location detection techniques outlined, one may also manually enter locations that are of
interest by panning the map to the desired location, and using an interface tool to draw a rectangle

around the location. A tool for allowing the user to fake visits to locations by manually positioning

themselves at any location is provided, along with a tool for deleting locations and visits (to protect

privacy).

198

Chapter 6: Distributing data in mobile, peer-to-peer applications

Once locations are recorded in the database, the user is marked as having visited them whenever they

are again within the boundaries of that location for five minutes or more. The record of the visit is

stored by entering the action of visiting the location into the user's Recer history log. In this manner

the application identifies any locations important to the user and creates a record of the user's visits to

them.

Whenever a user's device encounters a peer, the Recer algorithm and the Samara techniques previously

discussed are employed to exchange the most relevant items for generating future recommendations.

Thus, new locations and recommendations to visit them spread throughout the peer-to-peer community

in a system-controlled epidemic manner. Recommendations for locations from a peer community can

allow a user to learn about new locations, such as restaurants which have just opened, in their own area

as well as providing a vital resource and guide to a tourist in a new city.

Samara essentially provides a novel peer-to-peer epidemic routing algorithm. It uses recommendations

from a standard collaborative filtering system to drive the spread of data within the peer-to-peer

community.

6.4 Conclusions
The work in this chapter examines methods of distributing and handling data in mobile, peer-to-peer

environments. By looking at existing epidemic spreading techniques and examining them within
FarCry, the fact that both the spread and storage of data within mobile peer-to-peer communities must
be continually monitored and controlled is highlighted. This leads to the design and implementation of

a novel system-controlled epidemic spreading technique in Samara, in which a recommendation system

is used to drive the spread of data between devices. This, in turn, aids in ensuring that useful data be

transferred first during peer encounters, which are often limited in time and thus do not normally

provide opportunity for all available data to be transmitted.

In addition, the same recommendation algorithm is used to monitor data stored on individual devices,

and to decide when and which data to remove when available storage is low. Thus, Samara provides a

generally applicable solution for both spreading data within a peer-to-peer community, and monitoring

and maintaining the data on individual devices.

The work presented in this chapter is crucial to the work in the following chapter, which relies on the

techniques discovered from experimentation with FarCry and implementation in Samara to facilitate

the creation of a mobile adaptive infrastructure.

199

Chapter 6: Distributing data in mobile, peer-to-peer applications

200

Chapter 7: Adaptation in mobile software

7 ADAPTATION IN MOBILE
SOFTWARE

One of the most important findings of the literature review that has not yet been discussed further, is

that mobile, peer-to-peer systems should be highly adaptable-capable of adaptation at a low level,

adapting the system itself when required. This concept is examined in this chapter and a system, called

Domino, for providing an extremely high degree of adaptation in a peer-to-peer system is implemented

and demonstrated.

Throughout the design and use of all the systems discussed, it has been clear that many forms of

adaptability are required to allow mobile applications to shape themselves into the differing

environments and contexts they are used in. Both George Square and Navizon experienced significant

changes to their design and execution environment after initial testing, and the fact that they exhibited

high levels of modular design greatly aided in rapidly reconfiguring them to operate in differing mobile

environments. In George Square, the EQUIP engine allowed for a modular structure in which any

single component could be activated, deactivated, moved from one system to another, upgraded or

replaced without having to halt the entire system. Indeed, the system as a whole was capable of

altering its behaviour and functionality as new modules came online providing extra information. For

example, when a new user joined midway through a trial, the system would automatically detect their

presence, hook into the EQUIP space running on his or her system, and append information about the

new user's location, photographs and recommendations to those already using the system.

Similarly, the modular design of Navizon allows for individual components to be turned on or off, or

replaced without halting the entire system. In its normal use, Navizon is continually hotswapping

modules, selecting whichever is the most suitable at any given time. Modules which become available

only after the system is already running (for example, when a user plugs a GPS unit into a previously

empty slot or turns on a wireless card which was off) are automatically queried and the information

they provide is smoothly integrated.

Realising the benefits modular design provides, which are particularly relevant in mobile systems, an

attempt to implement a mobile modular architecture was undertaken. The main motivation behind this

work was the desire to support fully flexible applications that can provide substantially different

functionality depending on the user's context, in accordance with the similar discoveries from the

literature review. For example, a flexible tourist support application may provide a general map of the

city but when a user enters a particular complex such as a museum, a module providing a guide to the

museum may be automatically installed and loaded on his or her device. Alternatively, if the visitor to

a city desires food he or she may select to install and run a restaurant module that could overlay the
locations of restaurants on the existing map and provide menus and ratings when selected.

201

Chapter 7: Adaptation in mobile software

It should be noted that the desired form of adaptation is one that puts the user, and his or her usage

history and knowledge level, at the core. This is in contrast with walk-up pop-up systems in which an

application adapts the information it displays based solely on external factors [19]. In such systems,

the content delivered is identical regardless of who is using the system. Both [161] and [102] present

such systems-in both the same information is displayed whenever a user moves to a specific location

without regard to, or consideration of, any differences between the users. The findings of the literature

review make it clear that adaptation should be achieved with a high regard for the particular user of the

system and his or her context, rather than in this walk-up, pop-up fashion.

Bunt et al. distinguish between two types of adaptation: adaptive and adaptable [24]. Adaptable

systems are ones in which the interface is highly customisable but in which the user must perform any

customisations manually. Adaptive systems are ones in which customisations happen automatically

and in which the interface tailors itself to the user. Bunt et al. propose that a combination of both types

may be the most suitable-implementing customisations automatically but still allowing the user to

undo automatic customisations or make his or her own. As will be seen, the Domino system does

adhere to this advice and is both adaptive and adaptable. Bunt et al. also discover that although users

often believe their own customisations are advantageous they frequently perform poorly and, in

general, customisations that are automated and applied by the system itself often result in increased

performance. A final finding of Bunt et at. is that users can become distrustful of adaptation if it is not

made obvious to the user when it occurs, and if the effects are not fully disclosed. Again, as will be

seen in the Castles game used to trial Domino, this is heeded and Castles does attempt to make

adaptations apparent when they occur. However, this issue, in combination with Seamful Design,

deserves further investigation than is presented in this thesis and so is mainly left as an item for future

work (discussed in Chapter 8).

Adaptability can undoubtedly aid in providing a more useable interface, increased enjoyment and,

perhaps most importantly, benefits to efficiency both in the interface and the underlying system itself.

For example, Henricksen and Indulska demonstrate how a web browser and proxy can be used to adapt

the quality, quantity and content of information being retrieved from the Web in order to suit the

specific network bandwidth, processing capabilities and display characteristics of specific devices [87].

Findlater and McGrenere studied relatively shallow system changes - concentrating on interface

changes and in particular on menu items [63]. They provide useful comparisons between three types of
system: a static, unalterable one in which menu items were set, a user-alterable one which allowed

menu items to be reordered as the user saw fit, and an automatically adaptive one which analysed the
items the user accessed most frequently, and attempted to place them at the top, or most easily

accessed, areas of the menu structure. The findings showed that the substantial majority of users

preferred the adaptable menus but that they preferred the system under which they had full control,
feeling that changes under a completely automated system were difficult to anticipate. In retrospect,

this seems self-evident as finding a target has moved after becoming used to finding it at a particular

202

Chapter 7: Adaptation in mobile software

location is both frustrating and time-consuming to adjust to. Without forewarning or asking a user to

authenticate a change, there is also no possible way for the user to foresee the exact moment the change

will occur and so there is no alternative method for dealing with the problem except correcting from it

after it has transpired. Despite this, the findings indicated that the users who did favour the fully

automated system were extremely strong in their support for it. This led Findlater and McGrenere to

suggest that the most suitable approach may be a `mixed-initiative', combining adaptable and self-

adaptive elements to create a system which is partly automated but requires user confirmation and

validation before changes are implemented. Clearly, Findlater and McGrenere's findings are almost

identical to those of Bunt et al..

Adaptive systems may not only aid in overall user experience and increase efficiency but may become

required to manage the complex configurations that are now emerging in large software applications.

Birsan reports on a 1000 plug-in system stating, that such systems are rapidly becoming common, and

by their very nature, may be unmanageable for average users [15]. Thus, a form of automation which

is able to filter the possible configurations before presenting a reduced list of adaptations to the user

may be the only method to manage such complexity. Indeed, Findlater and McGrenere state
"adaptable and adaptive interaction techniques are likely the only scalable approaches to

personalisation". Crow and Smith come to similar conclusions suggesting that "collaborative dialogues

with the user" might help to strengthen adaptive systems [44].

There are many existing mobile systems that do provide a rudimentary level of adaptation. For

example, MovieLens Unplugged attempts to learn what movie genres and actors a user enjoys and
deliver appropriate recommendations when the user is actually in the store [117]. One caveat of these

systems is that they require a period where the user must spend time entering a profile of his or her own

particular interests from which the system can draw to generate custom or adapted behaviour.

The requirement of a lengthy set-up process can negatively influence potential users. This negativity is

increased for mobile devices, as many perceive these simply as accessories to a main digital hub

(desktop computer). Imagining such devices are capable of delivering only reduced, lower quality
information and functionality to what they are used to, many users do not anticipate a large return for

their time. Although it is likely that utilising the ideas previously discussed to implement more

relevant and useful mobile applications may gradually alter users' perceptions of mobile devices, it is

currently the case that many users will simply choose to disregard a mobile application that does

require any time-consuming set-up period.

Another system, HIPPIE, attempts to customise information delivered to museum visitors. When a

museum visitor views a display, HIPPIE attempts to present information based on a record of what
displays and related information the visitor had seen before, either in the museum or previously [127].

Schiele et al. describe another museum system in which users wear a mobile system with a video
camera attached and can associate recordings of tour guide descriptions and speeches with particular

203

Chapter 7: Adaptation in mobile software

exhibits by clicking a button to activate the camera [148]. Subsequent visitors are then delivered these

video presentations through a head-mounted display when they are near the exhibits, and the system

recognises, through the video camera, that the painting currently being viewed is the same as one for

which a recording has recorded previously been made.

Although the systems discussed do adapt to the user's context and behaviour, the only elements that do

so are the information that is delivered, and not the system or the functionality it provides. Currently,

there are few, if any, known mobile applications, and few desktop applications, that adapt themselves,

increasing or simplifying their own functionality to suit a user's needs. For example, although the

desktop MovieLens application does learn what movies a user likes, it does not adapt its functionality

based on this information [143]. It cannot learn to provide further types of information specific to that

genre or start recommending anything other than movies. In short, mobile applications

overwhelmingly remain static in their code and functionality; there are few mobile applications or

systems able to have their code and functionality augmented or amended at runtime.

Adaptation of software and functionality has been proposed for numerous reasons but rarely
implemented in desktop systems. The majority of existing work is theoretical, proposing architectures
but not actually implementing functioning examples. Dashofy et at. describe a self-healing system

architecture that potentially allows systems to recover from failure through the dynamic swapping of

software modules at runtime, controlled by an intelligent software agent that can select an appropriate

repair plan through analysis of system modules [45]. Whilst the architecture they propose is extremely

strict, requiring substantial amounts of metadata on each software module and configuration, they make

clear the requirement of at least a basic standardised interface for modules used in adaptive systems.
Georgiadis et al. propose a similar architecture of modules, components and interfaces but apply it at

the system design stage in order to provide rapid development and flexible software implementations

[70]. Although they concentrate primarily on using components to construct the initial structure of a

system they also show that such components can later support rapid reconfiguration at runtime.
Dellarocas et al. also rely on software modules and interfaces to create a self-evolving architecture that

uses dynamic reconfiguration to swap in new software modules in cases where it is detected that they

may outperform existing modules [47].

It is apparent that the majority of adaptation architectures that support dynamic reconfiguration (at

runtime) rely on modular approaches such as these. Predefinitions of modules and the architectures
they are to be used in are required in any situations where a new software module is to be smoothly
integrated into an existing configuration of modules. If care is not taken, architectures can become

overly specified and lead to strict limitations being imposed on developers. As will be seen, the
Domino system described later attempts to avoid this by enforcing only a few basic rules that modules

must adhere to.

204

Chapter 7: Adaptation in mobile software

Recombinant systems, which rely on a set of common interaction patterns to enable rich

communication to occur between devices that have little or no previous information about one another,

are beginning to emerge. The Speakeasy system is one example which relies on `interaction patterns'

to support data exchange, user control and contextual awareness between devices which have no a

priori knowledge of one another [122]. Through the use of interaction patterns, Speakeasy systems can

adapt to discover and use external resources at runtime, even if the resources are of types not

previously encountered. Speakeasy achieves its adaptation through a set of several fixed elements: a

small set of fixed domain-independent interfaces which modules can use to initiate communication,

mobile code that supports dynamic extension of functionality, and "user-in-the-loop" interaction that

bestows ultimate control on the end user in deciding if and when communication between entities will

occur. Speakeasy supports only a small number of components associated with devices and services in

the local context, and filters mainly on the basis of known locations and owners. However, the set of
information which it relies on to achieve its filtering is static and the system is incapable of updating to

suit even gradual change. Furthermore, Speakeasy again relies on external factors to make its filtering

decisions - completely ignoring a user's current context in a manner akin to walk-up pop-up models.

Adaptation on the desktop is, unsurprisingly, slightly more evolved. One of the earliest studies in

software adaptation and user collaboration centred on the Buttons system [110]. Buttons allowed

software functionality to be shared via email, permitting users to both collaborate over which
functionality they used and to match the system to their personal work practices. Users were able to

customise ̀ buttons' by setting parameters in pop-up menus while more expert users were capable of

more sizeable changes at a code level. In Buttons a `tailoring culture' evolved, in which expert users

would make substantial changes, hoping to increase usability or efficiency and then share their adapted

components via email to a few users. Users who found the changes advantageous would often mail

them out to others, thus allowing positive functionality to spread gradually throughout the community.
Thus, Buttons aided users who were not experienced in a particular area or who were occupied on other

tasks to acquire highly customised amendments from experts who had both the knowledge and time to

implement beneficial changes. This model, in which the majority of people within a community rely

on expert users to customise their own work environments rapidly, is an echo of social interaction

without technology where it is common to simply ask a knowledgeable expert to give

recommendations on tools to utilise in order to perform a particular task.

Many users may not have the time to seek out such recommendations or may not even be aware
improvements in their current applications are possible. For example, a user who relies on FireFox to
browse to websites and write about ones they find interesting in their own blog may be unaware that a
plugin that would simplify this task exists. By providing a button that, when clicked, automatically

pastes the current URL and page heading into an input form for their own blog, the plugin can simplify
and expedite the user's task. Similarly, a Visual Studio developer who manually deploys

supplementary images that their application uses to a mobile device may not know that there is now a
plugin available that automates this process. Users may continue to neglect plugins or changes that

205

Chapter 7: Adaptation in mobile software

could ease the tasks they frequently carry out even if they are commonly known within the community.

Traditionally, knowledge of such improvements comes through discussion with co-workers, friends, or

over the Internet through group forums or mailing lists. However, many users simply do not have time

to seek out these recommendations from others-particularly now that the number of technologies used
by the average person has substantially increased. There are simply too many technologies to keep up-

to-date with, and finding a professional user who is abreast of current developments can be difficult

even through the Internet. Conversely, fewer recommendations are voluntarily offered as the number

of applications and combinations of software that users now run makes it difficult to gain the in-depth

knowledge of their software environment, required to recognise when a particular module or

application would be a worthwhile addition to a user's configuration. These recommendation and

awareness problems are not isolated to desktop examples and also prevail in the mobile environment.

For example, in the tourist application described previously, one may simply not know that a module

which could deliver increased functionality in an area one is visiting is available and, even if one does,

may not have the knowledge required to install and run it.

This would suggest that any adaptive system must be capable of automatically identifying adaptations
that would benefit a user and subsequently, and automatically, acquiring, installing and running them.

Without the ability to recommend improvements, an adaptive system is likely to languish as users find

they do not have time to search out and learn to use new functionality. In short, a system that can fully

adapt itself to a user's usage habits, interests and surrounding context is desired. Such a system, titled
Domino, is described in the next section.

7.1 System adaptation based on users' context
Domino's primary goal is providing support for the spread of functionality and content throughout a

community of users, in order to improve system usability and content quality for the entire community.

The functionality that is spread is activated and deactivated on individual devices based on the user's

current and recent context.

The Domino infrastructure consists of three individual sub-systems that were originally conceived and
implemented independently. The first part is the communication infrastructure used for discovering

peers, which was described in Chapter 4. The second part is responsible for creating recommendations

and is the Samara infrastructure, which was described in Chapter 6. The final part of Domino is

responsible for dynamic software adaptation at runtime. As this final piece of the entire Domino

system was also originally titled Domino it will from this point on be referred to by the acronym DAF
(Domino Adaptation Framework) in order to distinguish it from the overall system created by the

merger of the three components.

206

Chapter 7: Adaptation in mobile software

º ýý Poer found

Recommendation Adaptation

Start new module

Evaluate modules
depondvncies

Communication

Physk aI & iF'
di-cuvcTy

(, mot and service yalh

segment requests

Request path segments

Merge paths and
ath received generate

IcL ornmendations

'Tvlodule received
(3et and servic ,r~
module revue,, '', Log module usage

Add, removo, or replace
modules

Connect dependencies

Record systems riew state

Figure 39: Overview of the Domino system.

Figure 39 shows how the three sub-systems involved link together to form the Domino system. The

communication section is responsible for ensuring that peers are consistently connected to the networks

that will maximise their opportunities for discovering other peers on the network, and for initiating the

initial communication handshakes to allow transfers to occur. The communication section utilises the

custom wireless driver originally constructed for and used in Feeding Yoshi. As before, this driver

maximises opportunities for encountering peers as it ensures two devices within wireless range of one

another will consistently connect to the same network-switching between infrastructure and ad hoc as

necessary. Again, once on the same network, SDS is used to allow peers to broadcast their presence,

and detect one another and the services they provide.

The recommendation section of Domino is the Samara infrastructure and is identical to the version

previously used in the Samara mapping application. As this infrastructure has already been described

it will not be discussed here. However, the method in which it interfaces with the other components in

Domino will be discussed after a description of the adaptation section.

The three individual parts combined to create Domino were created independently, before Domino was

conceived. The communications section is a combination of the enhanced wireless driver, SDS and

communications required by Recer. Therefore, it is all my own work. The recommendation section is

Samara that, as was detailed in the previous chapter, is based around Chalmers' Recer algorithm but

has been completely re-implemented and heavily augmented by myself to operate in the mobile, peer-

to-peer environment. The final adaptation section is the DAF which was designed and implemented

entirely by Malcolm Hall.

The idea of combining these three components in order to provide adaptation in mobile, peer-to-peer

environments was conceived by Malcolm Hall and myself. The considerable amount of additional
implementation required in order to combine these three components into the final Domino system was

achieved through equal efforts by Malcolm Hall and myself.

207

Chapter 7: Adaptation in mobile software

7.1.1 Adaptation
The adaptation section of Domino, the DAF, is responsible for receiving new modules, installing

modules into the system, determining module dependencies and finally executing modules. All of

these tasks are achieved during runtime, allowing for dynamic and ongoing adaptation of Domino

systems to suit users and their current tasks.

Each section of code that the DAF can transfer and install is referred to as a module, and each module

within a DAF on a system runs under direct control of a DAF Manager. Managers are responsible for

deciding whether to accept a new module, and for loading, installing and running modules. A default

Manager is provided in the Domino system, which is fully capable of performing all of these tasks.

However, if a developer desires, he or she is free to extend this default Manager in order to create

specialised behaviour. For example, after receiving module recommendations from the Samara

component in Domino, the default Manager requests a final decision from the user to determine

whether the module should be installed and run. If such behaviour is not desired, the Manager class

could be edited to bypass this final authorisation request. In general, DAF Managers will be directly

linked to the UI of an application as this allows decisions such as authorisation requests, module

removals or when to pause modules to be directly controlled by the user. This allows users easily to

remove adaptations and additions that turn out to be less advantageous than expected. Indeed, in all the

Domino systems we have created at Glasgow, the Manager used has been the default one and has been

added to the application's main GUI form itself by simply having the form extend the default Manager

class.

Domino modules themselves can contain any code and thus be of any size; from a small plugin that

simply displays the time to an entire application such as a web browser. The only constraint on DAF

modules is that they must conform to the DAF code interface in order to allow a DAF manager to

control integration with other modules already active on a system. Module developers can easily

achieve the required conformity either by implementing the DAF interface directly or by extending an
included base class which already conforms to the interface. The interface itself, exposed through a

. NET DLL, is extremely simple and contains only seven method stubs: SetManager, GetDependencies,

FindDependency, AddDependent, Start, Pause and Destroy.

The first four methods enable new modules to be integrated smoothly into a running Domino system,
which may have other modules already active and running on the system. When a new module arrives
on a Domino system, the first method called is SetManager, which couples the DAF Manager to the

module. This allows the Manager to analyse the module subsequently and control its initialisation.

During initialisation the Manager checks if the module has any dependencies by calling its
GetDependencies method. A dependency is a requirement one module has on another Domino

module, which must be available within the system, either already running or known and executable by

the Manager. For example, a map layer module may have a dependency on a map viewer, or a module
that shows a user's location on a map may have a dependency on a module that provides NMEA

208

Chapter 7: Adaptation in mobile software

information. Such dependencies must be identified and coded into the module by its designer, or

designers. If any dependencies exist, the Manager tries to fulfil them, first checking if any active

modules can support the new addition, which is achieved by calling the FindDependency methods of

all currently active modules. If any of the modules already active can fulfil the dependency, the new

module is connected to the one that is already running by a call to its AddDependent method. Checks

to FindDependency are necessary, as in certain cases one module may be technically capable of

supporting another but, perhaps due to resource limits or other constraints, be currently unable to fulfil

a dependency. For example, a map may be able to support a maximum of 5 map layers, if it already

has 5 connected layers then a call to FindDependency on behalf of yet another new map layer will fail.

If no currently active modules can support the new module, but the Manager has access to a DLL that

contains a module that could fulfil the dependency if active, it will attempt to start a new instance in

order to fulfil the dependency. Finally, if all calls to FindDependency fail and the Manager does not
have access to a required module DLL on the local device, the Manager will note the module that is

required and seek it in future peer encounters. If this occurs, the new module will not be started
immediately, but in all future peer encounters the required modules will aggressively be sought and,

when available, will be installed and the new module started at that point, if the user of the device still

wishes.

By utilising the first four interface methods in this way, a Domino Manager can correctly ensure a
module is installed on any Domino system. The installation algorithm followed when a new module,
modx, is received and started by the Manager, is described by the following pseudo code.

209

Chapter 7: Adaptation in mobile software

dependencies o= modx. GetDependencieso ;

stillRequired f= new arrayo ;

foreach(dependency in dependencies) {

fulfillersO = new arrayO;
foreach (module in activeModules) {

if (typeof(module) != typeof(dependency)) {

continue;

}
ff (module. Find Dependency(typeof(modx)) {

fulfillers. add(module);

}
}
if (fulfillers. isEmpty()) { !/ no modules are currently active which could fulfil the dependency

search module library on local device for dependency;

if (dependency is in local library) {

newModule = start new instance of module;

de pendency. fulfil(newMod ule);
}else{

stillReq uired. add(depe nde ncy);

continue;
}

} else if (fulfillers. length == 1) {

dependency. fulfil(fulfillers[O]) ;
} else there are multiple modules that can fulfil the dependency

most_suitable = Run_recer algorithm_to_find_most_suitable(fulfillers);
dependency. fulfil(most_s unable);

}

if (all dependencies fulfilled) {

modx. Start();

} else {

modx. Destroyo ;
add missing dependencies to list of wanted modules;

The latter three methods-Start, Pause and Destroy-simply allow an installed module to be executed

and halted as desired. When the Manager first calls a module's Start method the module should

allocate any resources it requires to run and begin execution. Subsequently, if the Manager calls the
Pause method, possibly at the behest of the user, the module should halt its execution but not release

any resources it holds. Paused modules can be restarted by a call to their Start method that should not

reinitialise the entire module if repeatedly called, as resources have already been allocated, but simply

resume from the paused state. If the Manager calls the Destroy method, the module should fully stop

execution and release any system resources it holds.

210

Chapter 7: Adaptation in mobile software

When a module is to be removed from the system, the Domino Manager again uses GetDependencies

to identify any other modules relying on the module to be removed. These modules are listed and

displayed to the user, who can decide if he or she still wishes to proceed with the removal. Relying on

the user for every module removal may not be the most suitable course of action, as users may be

involved in other tasks, and requesting they authorise module removals may be a distraction.

Furthermore, users may not have the understanding required to identify how modules are connected, or

even the functionality any one module provides. Therefore, an automated removal process may be

preferable. Whilst automation of this type could be achieved through a developer creating a

customised version of a Domino Manager, it may be more appropriate if this were the default

behaviour of Domino, as requiring a user to understand modules seems in direct opposition to its most

fundamental goals. Therefore, the automated removal of modules, and identification and handling of

dependent modules, is an item for future work, and is discussed in the Future Work section of Chapter

8.

The seven methods are all that are required to exist for any C# class to conform to the Domino

interface. In many cases, not all the methods have to contain code and may remain as stubs. For

example, some simple modules may not have any dependencies whatsoever, and their

GetDependencies method will simply always return a null value. Similarly, some modules may not

contain independent threads, and may be controlled by other modules on the system. These modules

will simply always return true on a call to Pause, as they are not independently active. Samples of code
from some Domino modules are included in the Appendix. Note that as some of these classes are from

earlier iterations of the Domino system, their method names may not fully match the current ones

described. For example, the GetDependencies method was titled GetChildren in early experimental

iterations of Domino.

As Managers can verify if a module's main thread is active, they are able to check this thread to
determine if a module has crashed or become stuck in a loop. In cases where a module with an

execution thread does fail, a Manager can release the resources the module may have been using, and

reconfigure any modules that may have been dependents of the failed one. Similarly, if a module fails

to respond to a call to Pause in a timely manner, it may have crashed or be a malicious module. In such

cases, a Manager can forcibly halt the module's execution and release its resources. If the module is
believed to be malicious, the manager can completely remove it from the system, by deactivating any

active instances and deleting the DLLs which hold the module. The ability of the Manager to monitor

modules in this way adds an extra layer of security to the Domino system, and makes it more robust-

allowing dynamic reconfiguration when modules fail. General security concerns, as well as privacy

concerns, regarding Domino are discussed as issues for future work in Chapter 8.

DAF, like the other components in Domino, is written entirely in C# for the NET platform. Each DAF

module is a NET class that is wrapped inside a DLL. DLLs are used as they provide a convenient
package for transporting code between devices. When a new DLL arrives on a device the DAF uses

211

. mm

Chapter 7: Adaptation in mobile software

the NET reflection capabilities to dynamically instantiate the class at runtime; enabling its use from

that point on.

7.1.2 Example use
To understand the manner in which the three sections of Domino interact, and to understand better each

section individually, it is useful to walk through a real, yet relatively simple, example from an actual

Domino application in which three users participate. This is now described with reference to the first

Domino application created, a simple mapping tool.

The core application simply displays a map and allows the user to pan and zoom the viewport onto the

map (Figure 40). The application is built using the Domino system and the application's main form.

which is responsible for displaying the main GUI and all the widgets within it, is a DAF Manager,

capable of providing all the dynamic adaptive functionality this entails. Within the application, in two

separate threads, the other two Domino components of communication and recommendation are also

active. Thus, the application is continually searching for peers to exchange data with, and logging

module use. The GUI component, which provides the core map view with pan and zoom functionality,

is a DAF module and so its use is recorded in the logging process.

/, ý

-. qjm,., vlmpý -. 9"lloomem-

Figure 40: Overview of a Domino test application. The left image shows the user interface displaying map,
pollution layer and GPS location. Each of these is actually a separate Domino module that may potentially be

recommended, transmitted, installed and executed on peer devices.

Three users, who will be referred to as A, B and C, all run this Domino system on PDAs. From the

possible modules, A only has the map whilst both B and C have the map and additional GPS and

pollution modules. All the participants have spent some time using their systems, so logs of their use
of the three modules have been recorded.

A walks close to an infrastructure access point and the communication section of Domino automatically

switches his PDA wireless card to infrastructure mode, sets the card's SSID to that of the access point,

212

QUR on mi.

Chapter 7: Adaptation in mobile software

and uses DHCP to retrieve an IP address. It then starts broadcasting the existence of a Domino history

server to the network whilst simultaneously listening for similar broadcasts from peer devices.

B also enters the range of the same infrastructure access point and her device goes through the same

steps. As both devices are broadcasting and searching for peers, they discover each other's presence on

the network at approximately the same time (within one second). The communication section on A 's

device notifies the Samara section of Domino that a peer is available. Samara then informs the

communication section that it wishes to gather usage history from the peer by sending it details of the

request to make. As it has not encountered any peers before, it simply asks for the history of the user

of the device itself to be sent and, if time permits, any history logs from other users stored on B to be

sent subsequently.

The request is made, and the server running on B's device services it by using Samara to query the

history data and deliver it back to the communication section from where the results are sent to A's

device. The Samara instance on A stores the newly gathered history and reruns its recommendation

algorithm to check if any new recommendations are available. Recommendations for both the GPS

and pollution modules are generated but the GPS recommendation is ranked higher (simply because B

has used it more frequently).

Both recommendations with rankings are sent to the DAF running on A's device, which through the

Manager displays the recommendations. As the GPS layer is ranked highest, A selects to try it first.

The DAF section now requests that the Samara instance retrieve the recommendation. This, in turn,

uses the communications section to contact B's device once more and to retrieve the actual GPS

module which is delivered back to Samara and on to the DAF. The DAF then instantiates the code in

the DLL and checks for any dependencies the module may have. As the GPS module contains a map

overlay it returns a dependency for a base map. The DAF Manager is aware that a base map is already

running and, as the map returns true to its FindDependency call, elects to connect the new GPS module

to the base map before execution. It is helpful to note at this point that the GPS module is not simply a

map overlay alone but also contains code to search for and connect to a GPS device, and to parse the

NMEA it outputs-and that all this code is contained within a single DAF module. The GPS module's

Start method is called, and it connects to the GPS, parses the output and finally displays the user's

position on the pre-existing map module.

A subsequently moves away from the infrastructure access point and, as his device detects this, the

communication section automatically switches the wireless card to ad hoc mode, sets a predefined
SSID and assigns a self-generated IP address. It again begins to both advertise its own presence and

search for peers. During this period, the Samara instance on the device detects that activity is low and

takes the opportunity to run a comparison of A's usage history against the other histories on the device.

Although the only other history on the device is that of B, it is still recorded as being similar to the

current user's history.

213

Chapter 7: Adaptation in mobile software

Subsequently, C's device is encountered and a request for history data is made. However, as it is

known that B's history is similar, the request this time asks for history data from B first, if it is

available, before asking for data from C or any other users. As C's device contains no data from B it

returns only its own user's history data. Again, Samara runs the recommendation algorithm and this

time generates a recommendation for the pollution module alone. As the input to the recommendation

algorithm contains a list of the currently running and recently used modules, it never recommends

anything the user currently has active.

A accepts the recommendation for the pollution module and the request is made to fetch it from C"s

device. However, before the module can be delivered across the network, the devices move out of

range of one another. As A has already accepted the recommendation, the failure to gather the actual

module is noted by the Samara instance on the device and a record is made to seek the module from

peers encountered in the future. If A subsequently encounters B, C or any other user who has the

pollution module, A's device will immediately request and receive it from them. Once the pollution

module is gathered, the user will be asked if they still wish to install it and, if so, it will be dynamically

installed and run on their system.

This simple example demonstrates how the three sections of the Domino system combine to provide a

system that is able to monitor continually the activities a user conducts on their device and adapt to suit
their needs better. As Domino logs the activities of multiple users, there is a varying skill set between

its users. This allows experienced users, or users who have more time to experiment with the available

modules, to discover good combinations of modules that work well in particular tasks. The Domino

system allows these combinations to be tracked and subsequently recommended to less experienced

users. This tracking of experienced users, and the filtering of their findings and knowledge to less

experienced, mimics the patterns of sharing software Mackay found occurring in normal office

environments [109]:

The act of customizing one's own software applications is usually viewed as a

reasonably solitary task ... However, because people have varying levels of desire and

ability to customize, and have limited amounts of time, they often look to friends and

colleagues for customization ideas. Borrowing customizations has numerous advantages
for individual users. They can reduce both the time spent learning how to customize and
the risk of making errors, which increases the time available for accomplishing actual

work. They can also experience how other people work, find out new ways of doing

things and benefit from each other's innovations.

The adaptation Domino provides may be viewed as a partial automation of the processes Mackay

describes here--taking the role of translator, filtering efficient software customisations from highly

experienced users to the rest of the community of users. However, Domino goes further in that it does

214

Chapter 7: Adaptation in mobile software

not blindly recommend software from experienced to less experienced users, but actively monitors a

user's context and provides continual adaptation around the current activity and context.

7.2 Applications of Domino
In addition to the behaviour described in the previous example, Domino provides other advantages.

One of the most important is in disambiguating which modules should be utilised when fulfilling

dependencies in cases where there are multiple possibilities. For example, it is easy to envision a slight

extension of the previous example in which a system is running two map modules rather than one.

When a recommendation for a new overlay module is accepted it could potentially be connected to

either of the existing maps. In cases like these, Domino is able to analyse the past usage history of the

maps and their existing relationships with other overlays to determine which map is the most suitable

candidate. It achieves this by referring back to Samara, and asking that it runs the recommendation

algorithm but considers only the new module as the sole item of context. The results returned from

such a Recer query are simply a ranked list of the modules the new overlay is commonly found to

appear in conjunction with. We refer to these as associated modules. Thus, if the new module is one
that provides an overlay of the locations of museums, it might be found that it is associated with other
tourist-based overlays such as ones displaying restaurants, clubs or theatres. Once the list of associated

modules is gathered, Domino can use it to check which of the currently active modules, in this case

which of the two base maps, contains the largest overlap of associated modules. Thus, if one of the

two maps contained mainly other tourist overlays, whilst the second map contained pollution
information, Samara could determine that the first map is the most suitable candidate in which to place

a new museum overlay, based on the past usage of the modules involved..

This automated disambiguation of where to place incoming components greatly benefits Domino's core
functionality as it directly addresses one of its goals-the reduction of time spent understanding a
system and how it could be improved through the addition of new plugins. That is, Domino not only
discovers new functionality and improvements to a system but also aids in inserting the new
component smoothly into the running the system in an appropriate place.

It is hoped that Domino's ability to spread functionality through a community will permit functionality

to cluster at locations it is most appropriate. For example, over time, it could be expected that users

visiting a museum would come to use similar modules at that particular location. Indeed, it is possible
that programs specific to the museum itself, such as a guide, could be created as Domino modules. As

most visitors to the museum would find such a module useful, it is likely that it would be widely used
at the location. If the number of users and time spent in the museum allowed sufficient overlap
between visitors, the module's functionality could perpetually pass to incoming visitors - the
functionality the module provides would essentially cluster at the one location. When such behaviour
is desirable, it can be encouraged using the Bothy technique described earlier. Placing the device in a
location from which it is likely to be able to connect to transitive devices allows it to collect the

215

Chapter 7: Adaptation in mobile software

maximum number of visitor history logs and modules most relevant to the location. Thus, even if a

new visitor selects a relatively quiet time to visit the museum, he or she will still receive Domino

module recommendations from the on-site device rather than having to rely solely on chance meetings

with peers. Furthermore, as the device it does encounter has been able to accumulate the collective

modules and history from all previous visitors, it is likely to provide a far higher quality of

recommendation than the average peer encounter. Functionality and information may naturally cluster

around a particular location and, if required, can be aided through the use of the Bothy technique.

The fact that Domino was designed to spread functionality and information throughout a community of

devices results in it being capable of spreading modules not only between separate users, but also

between the many devices owned by a single user. For example, one may use a tourist application

written on top of Domino on one's desktop machine at home to conduct a pre-visit of a city one is

planning to visit. This could be similar to the pre-visit facility offered by the George Square system.

As one is likely to either dock one's PDA with the desktop machine or have it near whilst conducting

this activity, any Domino application running on the PDA would be able to exchange information with
the application running on the desktop. Thus, if one added modules to the application on one's desktop

as one found them useful-perhaps a tool for retrieving public train or bus schedules-the same

modules could be automatically copied to the PDA. This is distinct from synchronisation of
information and could be the first form of functionality synchronisation. As the devices of a single

user move in and out of range of one another, and as the user is likely to have somewhat similar usage

patterns on each device, the modules installed on one device would likely be recommended to others.
Obviously, not all modules would be copied to all devices, and it is likely that Samara would

recommend only those suitable for use.

One shortcoming of Domino is that the recommendations it makes are only for additional modules,

ones that the user does not have installed. This may pose a problem, as Domino never recommends

that a user remove a module from a configuration. Over time, if a user continued to accept

recommendations for modules, and did not manually remove other modules, any Domino system has

the potential to become unmanageable to both the user and the system, as it is overwhelmed by an ever-
increasing number of modules, which increase complexity and consume resources. Whilst a user can

manually deactivate and remove any module they desire, this negates the benefits Samara provides in

automating the recommendation of software. Recommendations for the removal of Domino modules is
important in systems where a large number of modules are available, and is clearly a vital item for
future work. As such, it is discussed further in the Future Work section of Chapter S.

7.3 Castles
In order to verify that the Domino system works as expected, and that users find value in using it, a test

system was built using Domino and a trial was conducted. The trial was primarily a technical one,
conducted to ensure that the Domino system behaved as hoped within an application-with peers
discovering one another, exchanging recommendation information and modules and adapting to the

216

Chapter 7: Adaptation in mobile software

users behaviour as expected. This section describes the game itself, the set up of the trial and some

initial findings.

7.3.1 Game description
The system constructed to test the Domino architecture is a mobile strategy game called Castles. This

section describes the game and its rules from a standard player's perspective, before detailing the game

technically in terms of Domino and modules.

Games have a wide social and financial impact, and form an interesting application area in themselves.

However, we selected a game to experiment with Domino for several reasons. Firstly, as a game does

not have to be constructed to fit a particular external task, it can easily be suitably constructed in a

manner that allows the exploration of the specific technical issues raised by the wider research. Rather

than forcing the architecture into an existing problem where it might receive only periodic or light use,

a game can be deliberately developed in a way that ensures maximum use of, and experimentation

with, the components of particular interest to the research.

Furthermore, as users are frequently keen to play games, and often spend substantial periods of time

experimenting with games they find engrossing, they are more likely to find ways to stretch one's

designs, assumptions and concepts. From experience of previous systems' trials, it is clear that trials

based around a game result in a larger number of willing participants, and an increased and prolonged
interest in using and reporting on the system. Games are also an application area in which users are

already often involved in radical re-engineering of systems. Many games now have extensive

`modding' communities (such as Half Life31) and so the idea of an adaptable or changing application is

not one which is alien to game applications or to the people who use them.

7.3.2 Gamer's perspective
From a game play perspective, Castles is similar in theme to other strategy games where the player

must create a building infrastructure, which in turn allows for the construction of armies-such as in

the Age of Empires, Stronghold or Settlers games32. The majority of the Castles game is played in a

solo building mode. Players begin the game with a low number of base resources (stone, wood and

food) and must utilise these to construct buildings, which will in turn produce more refined resources

such as shields or swords. Each building costs a certain amount of resources to construct initially and,

once built, consumes resources each game cycle in order to output more refined resources. For

example, a blacksmith building might take 10 stone and 5 iron units to construct initially and, once

built, it will consume 5 iron units and 1 food unit each game cycle, and will output a single sword.

Players must ensure that the buildings they construct combine in a manner that allows all the building

inputs to be fulfilled each game cycle. The rate the game cycles controls the speed of the solo game

section, and is set at once cycle every ten seconds. This value was selected simply because we find it is

http: //half-Iife2. com/ (game information), http: //www. planethalflife. com/featurea/motw/ (modding information)
URLs where more information on these games can be found are http: //www. microsoft. com/games/empires/,

http: //www. stronghold-game. com/ and http: //www. settlers4. com/

217

Chapter 7: Adaptation in mobile software

neither too fast nor too slow-players do not become bored waiting long periods of time for resources

to accumulate before they can construct new buildings, and they do not become confused or anxious

because the game is moving too quickly to follow.

Buildings can be made more efficient through the use of tool upgrades. Tools are constructed in the

same manner as buildings (with a certain resource cost) and can be added to any building the player

owns. However, they affect each building in a unique way. For example, the scythe tool has little

effect (only a 20% increase in output) if combined with a fisherman's hut but will more than double

output if combined with a farm. In short, tool upgrades can have differing affects depending on which

building they are added to.

The buildings that produce the end army units, the most important for the next section of the game, are

the only ones that do not automatically consume resources each game cycle. Instead, once the other

buildings have produced the required goods, the player can select the building and then click to `buy'

the unit. For example, if a player has accumulated ten swords and shields, he or she can select the

barracks and click to `buy' ten soldiers. When the game begins, there are over forty types of building

and eleven types of army unit available to the player. These can be combined in any way the player

chooses so there are many techniques to construct efficient building infrastructures and many paths that

will lead the player to construct a suitable army. However, in general, the more efficiently players

construct a building infrastructure and utilise building upgrades, the more resources they will be able to

produce, and so the more army units they will be able to purchase. The interface displayed to users

whilst playing this portion of the game, and creating buildings, is shown in Figure 41.

[JIgMiLok

F. fI'_

txise Wheatheld tone: 4 Wo

Figure 41: Castles main game interface.

The aim of the game is to win battles against others, and once a player has constructed an army he or
she can use it to attack other players. When a player chooses to engage in battle with another, they are

218

Chapter 7: Adaptation in mobile software

given an opportunity to select which units they wish to build the three rows of their army-front, back

and reserve. Like the building part of the game, battles are conducted through a series of game cycles

although this is largely transparent to the user who simply perceives time passing. The interface

displays a representation of the battle with the front and back rows shown attacking one another. This

display changes after each battle cycle so that the battle progress is shown within it - inevitably with

one army beginning to overcome the other. At any point the player can elect to send in the

reinforcements they selected before the battle, attempt to retreat, or surrender. In any battle, the winner

is rewarded by receiving some of the defeated player's resources as well as having the results of the

battle recorded on their device to display to other players at a later date.

7.3.3 Technical perspective
Throughout the design process Castles has been developed to take advantage and experiment with the

Domino system wherever possible. The entire game is built using Domino, and each user interface

component, including the map on which buildings are placed, is a Domino module. Every individual

building, building upgrade and army unit is a Domino module in itself. Thus, for example, the

Barracks building in the game is a Domino module which is contained in its own individual DLL ready
for transport over the network should any other Domino client request a copy.

The Samara recommendation system in the game works as previously described-continually

monitoring the player's own module use and collecting history information from peers whenever

possible. This allows for players to be aided throughout the game by the use of recommendations. As

there are a high number of buildings, adapters and units, there is significant variation in the types of

society (module configurations) that a player may create to support an army. Selecting which buildings

to construct next or where to apply building adapters can be a confusing or daunting task. However,

Domino helps by finding out about new modules as they become available, recommending which

modules to create next, and loading and integrating new modules that the player accepts. When new
buildings and units are available to be run but not yet instantiated, the user is notified of the new

additions by the use of highlighting in the menu of available buildings.

The way in which Castles finds and recommends building modules to the user, and automatically and
appropriately installs them if accepted, is an example of the typical functionality Domino can provide.
In many systems users can struggle to identify when new functionality exists, where it can help, how to
install it, and with what other existing software it may work well in combination with. Castles

exemplifies the general situation here, demonstrating a practical example of how Domino may be

applied to aid users in these tasks. The fact that installation, and activation, of new modules can be

achieved at runtime, additionally gives Domino its adaptive functionality.

Samara monitors the player's own module use, and by comparing his or her current building

configuration to the history of others', can generate recommendations on how the player should
proceed. Such help may aid the player in strategy games such as Castles, where the number of possible
choices can seem overwhelming for both new and experienced players. Again, this example within

219

Chapter 7: Adaptation in mobile software

Castles is an instance of the more general and common problem of users being overwhelmed by the

amount of available software or information, or not having time to learn the intricacies of the many

possible software items, before making a decision on which to install and use.

If the user desires, he or she can get additional information about a recommendation, such as the

dependencies or the modules most frequently used in conjunction with it in the past in similar contexts.

This information, obtained in a pop-up dialog by clicking the recommendation information button in

the build panel, can help the player to understand better how the module might be used (Figure 42).

This building -"v orl; -%veil
with:
House rank=9
Wheat Field rank =3
Mill rank: =2

13 C1R Build

Iron: 2 Wood: 2 Stone: 6 Peon: 4

File j, u ®IA

Figure 42: Recommendation pop-up in the Castles game. The pop-up displays what modules a module has been
used in combination with previously.

Thus, a new module is smoothly integrated into the player's system without requiring substantial

module management, or indeed any knowledge of the low-level transfer or installation process. Simply,

the user sees the new options and recommendations, and can make use of that information without

having to search manually for or install the new modules. On the other hand, Domino does not go too

far in automatically loading and running modules. It presents module recommendations in a way that

permits a user to see them as he or she plays, and find out about their past use. Overall, Domino

complements the conversation and discussion among players about new and interesting modules, and

eases the introduction of new modules into each individual system, and into the community.

When a Castle's player decides to construct a building upgrade tool, Domino is able to recommend

which building it is best to place the tool into. For example, if the player does construct the scythe tool

previously mentioned, Domino is likely to recommend it be combined with the farm. Samara is able to
determine this recommendation as appropriate, as the history logs suggest that other players have

220

Chapter 7: Adaptation in mobile software

realised, through experimentation, that this building is one in which the scythe is particularly

beneficial. Recommendations for building upgrades are vital as, unlike with buildings where users can

view statistical information about resource inputs and outputs, with building upgrades the user is

provided with little alternative information to determine where such upgrades will help.

A final aid the Samara recommendations provide to the user in the interface occurs when new modules

themselves are available. When two players' devices are within wireless range, one may choose to

attack another. Behind the scenes, Domino also initiates its history-sharing and module-sharing

processes. When a battle commences, both players select from their army the troops to enter into

battle. Players receive updates as the battle proceeds, and at any time can choose to retreat or concede

defeat. At the same time, players can talk about the game, or the modules they have recently collected,

or modules they have used and either found useful or discarded. After each battle, as the devices will

have been exchanging history information in the background, the opportunity is taken to allow players

to exchange Domino modules. In order to extend the length of the game, an artificial limit is placed to

allow only one Domino module to be exchanged per battle. In a large community of users such a limit

would not be necessary as there would likely be large variability in the number and combinations of

modules on the peers encountered. However, as our trials were conducted with a limited number of

users allowing an unlimited number of modules to spread could quickly lead to all devices carrying all

available modules after only one or two encounters. The screen displayed after a battle presents a list

of modules available on the peer's device. Although each available module is displayed, the ones that
Domino recommends are highlighted-as well as being ranked in the order Samara recommends them.

The user does not have to follow recommendations if he or she does not desire. Indeed, it is believed

that the most experienced players, those who have had most time to experiment with the game, will

generally ignore the recommendations. Instead, it is the novice and average users who will benefit

most by being guided through the system in this manner. This echoes Domino's original concept,

which is more generally applicable, in which users who have had time to experience a large number of

modules provide information that aids others, who simply do not have the time to invest in

experimenting with the numerous possible combinations. Domino recommendations from the Samara

engine permeate throughout the game community and Samara continues to provide recommendations

on which to receive and how to utilise them in order to guide the user in several different ways. The

visibility of successful adaptation is therefore part of the game, with successful players having to

continue to innovate if they are to maintain an advantage over others.

As Castles is built on Domino, Castles' system components interact almost identically to the three
Domino components themselves; which have been described earlier. The only significant addition is

that of another instance of the communications section, which this time broadcasts, listens for and
negotiates the transfers required for the battle stage. The game interface and algorithms are all
contained within classes that are accessed from the Domino Manager within the application, which in

this case is the main UI form.

221

Chapter 7: Adaptation in mobile software

7.3.4 Trial
With the exception of several very small test applications, such as the map with GPS and pollution

layers example, Castles is the first application that makes substantial use of Domino. Both the

communication section and Samara had been trialled previously in Feeding Yoshi and the Samara

mapping application respectively, and found to be sufficiently robust. However, the integration of the

three Domino components and the DAF itself had not previously been built into and tested within a

substantial application.

Despite the fact that this trial was primarily a technical one, we also took the opportunity to get some

initial feedback from users about whether they understood the module recommendations and were

comfortable using the interface to select and install the modules. This was achieved simply through

short interviews at the end of the trial.

The trial involved 4 participants playing the Castles game both on their own and with others during

battles. Each player began the game with 54 common modules - modules of which every player had a

copy. These modules consisted of 33 buildings, 10 building upgrades and 11 army units. In addition to

the 54 common modules, each individual player also began with 5 modules that were unique to only
him or her. For example, only one player began the game with the catapult-building module. It is

realised that from a game play perspective, this likely introduces an inherent unfairness to the actual

game, although it is believed that any such affect will be minor. As Domino systems automatically

transfer information when in range, the trial was run in cycles of two repeating stages in order to allow

time after each stage to ensure the spread of Domino modules was monitored.

Firstly, a period of isolated play, in which participants were able to concentrate on constructing their
building infrastructure and army was conducted. During this period Domino logged players' own

module use but, as no other peer devices were in range, did not exchange log data or modules. As the
devices began the trial with an empty Samara database, recommendations on which buildings to

construct were not available during this first round of isolated play. This period of isolated play was
followed by a shorter period of play in which two participants met one another and conducted a battle.

This meant that users spent most of the time alone but periodically met up to start battles and to talk

about the game and its modules, much as they might if they were walking with their phones or PDAs
during a normal day and randomly encountering other players. During the battle period, Domino

continued to operate in the background and exchanged history logs and recommended modules. In this
trial, the Domino Manager did not request that users authorise the installation of recommended

modules. This meant that every module recommendation that was generated was automatically

accepted, copied over the network, and made available inside the game interface, rather than requiring

users to authorise them. In short, the way Domino was applied meant that after each battle players

automatically gained new building modules that could then be recommended to players to construct in

subsequent periods of isolated game play.

222

Chapter 7: Adaptation in mobile software

In addition to the modules themselves being transferred during the battle, history logs from the current

opponent, along with any other players' histories that were also held on the opponent's device from

previous encounters, were exchanged. After the initial battle, players begin to receive building help

through recommendations for the first time during their second stage of isolated play. When the player

begins to construct a new building from this point on, he or she always has at least one

recommendation available for which building to construct. In this way, players gained new

functionality over time, and were guided in how to apply that functionality within their current module

configuration. The modules players received were based on their current configurations, and so as new

modules were recommended, installed and activated, the functionality provided adapted around each

player's own use of the system; around his or her context of use.

7.3.5 Findings
In the trial the Domino technology used performed as anticipated. When battles occurred, history logs

and modules were exchanged and in following periods of isolated play recommendations were

generated and newly available Domino modules used. There were no crashes or failures and the

application ran without incident throughout the trial.

During the trial, an average of 2141 history entries were exchanged between peers during their

encounters, and it took an average of 10.06ms to transfer each individual history entry. This time

includes the time for the requests to occur, the database to be queried, entries to be sent over the

network, and entries to be inserted in the receiver's database. This suggests that an average total of

99.45 Domino history entries can be transferred per second. History transfers occurred in the

background during battles, so users did not experience any delay whilst waiting to exchange this data

with peer devices. In all cases, history exchanges between devices occurred simultaneously. It is

likely that the transfer time would be lower if data were exchanged only in one direction, but the

scenario of data being simultaneously exchanged is more typical of a pure peer-to-peer environment, in

which all peers are equal and behave similarly. An average of 1.33 modules were transferred during

each encounter in the game, and the average size of the modules transferred was 7871 bytes. At the

end of the game trials, after playing 3 other participants, the average size of the history database on

each device was 1452KB.

Following the trial, participants were briefly asked about their experiences with the game in the hope

that suggestions that would improve future versions would be made. Unsurprisingly, all the

participants reported that they felt more confident in selecting which buildings to create after they had

their first encounter with a peer and began receiving recommendations. However, as none of the trial

participants had a computing science background, none of them realised that the modules that were

transferred could contain potentially harmful code. Whilst participants felt secure in the controlled trial

environment, the risk from harmful modules is real. This raised both security and privacy concerns as

participants were clearly unaware that logs were being transmitted or that the new building modules

that were received could have contained any code-including code that could be harmful, or access
logs for malicious reasons. These concerns led to a slight redesign of Samara to allow for greater

223

Chapter 7: Adaptation in mobile software

anonymity and to considerations of possible solutions to increase security. Some of the anonymity

improvements have since been implemented, whilst possible security solutions are still being

considered.

Prior to this trial, Samara, both in the mapping application and in Domino, had always transmitted a

unique ID with every history log entry. This is important for the recommendation algorithm as it needs

to identify co-occurrences of items within a single usage block, and to identify usage blocks it must be

known that all entries were generated around the same time by the same user. Although the device's

unique ID is not obviously displayed to the user at any point in Castles or on the PDA itself it would be

possible, with enough effort, to use it to link a set of Domino history data to a device and therefore to a

user. To combat this, an alternative to using the device's ID has been implemented. The system
behaves the same but rather than using the device's ID, a completely random ID is generated for use in

Domino and used during all Domino transactions. This technique greatly increases the complexity

required to identify a user, as there is no direct link between their log entries to the device itself.

Furthermore, as any Domino device can hold logs from many users, not just the owner of the device, it

is impossible to be certain if data transferred from a peer was actually originally generated on the peer.
As the randomly generated ID has over 1016 possible combinations, it is improbable that any two

generated IDs would be identical. One of the main advantages of this technique is that if two or more

sets of data are exchanged with a peer at different times, then the receiver, although not able to identify

the actual user, will be able to identify that the data comes from the same source and so will

subsequently be able to determine more exact recommendation weightings for the entries. For example,
if a new set of data is received and shows a moderate similarity to the current Domino user, the

likelihood of it being recommended would be high. However, if it was found that previous data had

been received from this user in the past, in addition to this new set, the chance of recommendation

could be significantly higher. This technique, of using a randomly generated ID to replace the device

ID is the one currently implemented in Domino.

In addition to the use of a random ID, the ability to halt all logging over a period of time has been

added. Users can choose to stop their Domino system from creating any new log entries but still have

the recommendation system, and peer exchanges, continue to provide its recommendation and software

adaptation functionality using the data it has already recorded. Finally, a list of keywords not to be

logged can be entered by the user. Before history entries are generated and stored, this list is consulted

and if any of the words are found inside the entry, it is completely discarded without being used or

stored. For example, a user called Charles might enter his own name as a keyword, and subsequently

any Domino entry that referred to a web visit to a URL which contained the word `Charles', such as
'http: //www. example. com/mail/-Charles', would be discarded by Domino. Whilst the benefits of a
keyword list are perhaps not immediately clear with respect to Castles, in which only modules are

recorded, they are obvious when considering that Domino also has the ability to record and recommend

not just software modules but other data, such as the text of a URL, contents of a document, or a
location, as in the initial Samara mapping application.

224

Chapter 7: Adaptation in mobile software

Security is a serious issue for any system using mobile code that moves between different devices, and

has been considered following the initial trial. One particular threat is so called `sleeper viruses' that

act as valid and useful modules for a period of time, become accepted in a community, and then after

an incubation period in which the module provides at least some useful functionality, and does not

exhibit any negative behaviour, switches to executing malicious code.

Currently, one of the most widely used techniques for deciding which applications to trust is that of

signing, in which a trusted authority analyses applications or modules, and assesses whether they may

be harmful. Those that are determined to be non-harmful are signed with a secure key that end-clients

know they can trust. In theory, this can inhibit harmful applications from spreading to many machines.

However, most implementations permit a user to decide to force an unsigned module or application to

run, allowing dangerous code to spread regardless of any signed authorisation, or lack of.

Whilst employing signing for Domino would provide an accepted solution to security concerns, there

are severe disadvantages that have, so far, negated its implementation into the Domino infrastructure.

Firstly, one of Domino's main strengths is that it allows for an extremely open community where

anyone can contribute a new module or amend an existing one. In an environment where each module

had to be signed, a large number of users would decline to create new modules, as those modules

would then have to go through the signing process. As this would be likely to involve some cost (in

terms of money or time for developers) this would further deter potential developers from contributing

to the community. Furthermore, forcing each module to go through a central location where it was

signed would negate the strength of the epidemic spreading Domino supports. There would be little or

no reason to provide epidemic spreading if one source had access to every possible module in the

community and could therefore, in theory, simply distribute them all from one central location.

A second possible solution is to create a sandbox environment for both the entire Domino environment

running on a device and for each individual module within that environment. Indeed, as Domino is

coded in the NET language, it already runs through the CLR (Common Language Runtime)-basically

a virtual machine.

Another possible solution is to use a permission-based model, in a manner similar to the Java language

and to most modern operating systems. For example, if a Domino module wanted to access a file on
the local device, it would first have to ask permission from the user who could deny, accept once or

accept forever the module's request. Whilst this method is employed by many languages that run on
virtual machines, it would possibly be too intrusive to users in a Domino environment. Previously, this

method had usually been used where the number of new modules or applications was relatively low,

and so the user was required to intervene on an infrequent basis. In a Domino system there can be an
extremely large number of modules running at any one time, and requiring the user to intervene for

each one could prove too time-consuming. Furthermore, as one of the advantages of Domino is that it

225

Chapter 7: Adaptation in mobile software

allows users to obtain expert tools quickly, it is unlikely that the user would have the required in-depth

knowledge of each particular module to make the correct decisions about when to trust them. Methods

of automating the process of determining which applications should be permitted to run or have access

to a particular part of the operating system may aid the user in this process. For example, Deeds

attempts to analyse code and roughly categorise it before comparing it to the access levels given to

code that previously fell into the same category [58]. Such a technique could make permissions a

viable option in the Domino architecture by removing many of the constant interruptions that might

otherwise be presented to the user.

A final potential technical solution relies on the same epidemic algorithms as the spread of the modules

themselves, spreading information about malicious modules during any contact with peers. For

example, if one user found a malicious module he or she could, after removing it, add it to a list of

known bad modules. From then on, the list could be transmitted to any encountered Domino peers. A

Domino client which had received this information could then refuse to accept the module if it were

recommended. Similarly, a client that was running the module and received information that it was

malicious could quickly remove the module even if it had not yet done any damage, adding it to the
blacklist of modules to avoid. As the information about malicious modules would be constantly spread

rather than having to be recommended, and as clients would be able to remove the module before it had

done any damage, the spread of the information that the module was malicious would, hopefully, be

faster than the spread of the module itself. In this way, viral outbreaks of malicious modules could

generally be prevented. However, this solution is not perfect, as although it would stop a large viral

outbreak in the community, it would not stop damage to a particular client who received the module
before receiving the information that it was malicious. More advanced implementations could make

use of the Internet to broadcast information about malicious modules, 'overtaking' their spread through

peer-to-peer contact. In so-called `honeypot' implementations, this has been shown to be particularly

effective at stopping the spread of conventional computer viruses [73].

Apart from these technical approaches to countering viruses, it is possible for a user to view a module's
history of use: on which device it originated, on which other devices it was used prior to its arrival, and
in what contexts it was used along the way with regard to other modules. This helps users to decide for

themselves whether the history is typical of a trustworthy module. Alternatively this history

information could be fed into an algorithm such as that in [33] or [147], to give a calculated level of
trust. Although this technique, a form of distributed trust model, may not be sufficient in itself, its use
is advocated as an additional protection method to be used in conjunction with other measures.

As stated, security is a serious issue and, whilst we are researching these and other possible solutions

and will continue to do so in future work, we have not yet settled on a single robust solution that we
fully trust. For this reason, we have so far avoided creating ̀ mission critical' applications based on the
Domino architecture and have instead, for the time being, concentrated implementing Domino into

game systems. While this does not avoid problems of viruses and malware (since ̀ bad' modules could

226

Chapter 7: Adaptation in mobile software

destroy a user's game, or be used as a way of cheating) it does provide an environment for

experimenting with module recommendation and broader security issues, limiting the potential damage

to users' devices.

The initial trial of Domino in the Castles game was primarily a technical one, ensuring that the

technology used behaved as expected, and practically demonstrating that high levels of adaptation,

based on users' context, are possible in mobile systems. Whilst the trial did fulfil this primary goal, it

was admittedly small, and there are many questions left open, particularly regarding the user

experience with the adaptation a Domino system provides. For this reason, a second larger trial was

conducted in December, 2006, involving a greater number of participants using the system over a

longer period of time. The goals of this trial were to examine the user experience, discover if an

adaptive system is acceptable to users and if they value the recommendations for software modules that

Domino provides. Results from this larger trial are currently being analysed, and are an item of future

work discussed in Chapter 8.

7.4 Conclusion
The Domino system implements the fourth, and final, piece of infrastructure that was identified as
required for mobile, peer-to-peer systems at the conclusion of Chapter 3:

0A method for adapting the system itself around the user's activities

Adaptation is an important element in mobile systems, as an increasing amount of software becomes

available, and users find it harder to manage the software, and combinations of software, on their

devices. Adaptation that occurs in an appropriate manner, and at appropriate times, is vital within the

mobile environment, where context can generally change more rapidly, and at a greater level, than on

desktop systems.

Domino allows a far higher level of adaptation than many adaptive systems on desktop machines are

able to achieve, and the adaptation it provides is based primarily on one's current context and one's

own, and peers', past actions. This is a novel approach compared to most existing adaptive systems,

which are generally not aware of the user's current task, or their context. Indeed, outside self-healing

systems, which adapt only when failure occurs, most systems in the area are adaptable, but not

adaptive, relying on direct user input to control adaptation.

In addition to providing a novel form of adaptation, Domino actively seeks, collects, and installs,

modules from peers-supporting adaptation through a peer-to-peer community, which was not

previously possible. The Castles game demonstrates one application of Domino in a mobile, peer-to-

peer environment. It is clear from the trial that adaptation around a user's activity is possible, and that
functionality can be adapted in the mobile environment whilst applications are actively running.

227

Chapter 7: Adaptation in mobile software

Whilst work is ongoing to further improve the Domino infrastructure, and is discussed in the Future

Work section of Chapter 8, Domino already allows a new level of appropriate adaptation in mobile

systems. Research on the Domino system was published at the Pervasive conference and can be read in

[11].

228

Chapter 7: Adaptation in mobile software

229

Chapter 8: Conclusions

8 CONCLUSIONS
In this chapter a summary of the results and contributions of the thesis are presented, as well as a

discussion of its limitations and proposals on how they could be addressed by future work.

8.1 Summary of thesis
A review of existing literature in Chapter 2 revealed that there is an overwhelming desire in the

research community to create mobile applications that are adaptive and context-aware, rather than

simply being reduced versions of desktop software. Previous work identifies that context-aware

systems are of substantial importance to the mobile field, and that system adaptation is a necessity if

flexible mobile systems are to be implemented. In addition, location is singled out as being the most

vital item of context information in mobile systems. Furthermore, problems with existing positioning,

communication and peer discovery techniques are highlighted.

Following the literature review of Chapter 2, an analysis of two mobile systems was conducted. The

first analysed the Lighthouse, a system that failed to be particularly mobile, whilst the second
investigated George Square, a mobile system aimed specifically to address failings apparent from the

Lighthouse. Both investigations result in the confirmation of many problems stated in previous
literature and the formation of design guidelines for mobile systems aiming to overcome many of these

problems. Certain problems are found to be caused by a lack of infrastructure tools available to the

mobile field, and four of these are implemented over the subsequent chapters. These specifically

address issues discovered in the literature review, and are reinforced by the analysis of the Lighthouse

and George Square, such as a positioning system that makes location information available to mobile

devices and an infrastructure that facilitates dynamic reconfiguration and adaptation based around a

user's context on mobile devices.

In total, seven systems (George Square, Treasure, Feeding Yoshi, Navizon, FarCry, Samara and

Domino) were designed, implemented and trialled. However, the amount of useful code developed for

mobile systems has been so high that it has been impossible to cover all of it even within this thesis.
Through the implementation and trials of many mobile and mobile, peer-to-peer systems discussed in

chapters 2 to 7, and through substantial experience with mobile, peer-to-peer development in general,
further guidelines and categorisations were extracted where relevant throughout the thesis. These are

collected and summarised in the next section.

The substantial number of systems implemented, as well as their trials and analysis in the course of this

thesis, has facilitated a holistic approach to a variety of issues within the mobile field. Whilst a holistic

approach is generally typical of Equator's research, and has been encouraged at Glasgow, it has been

particularly helpful to the work conducted for this thesis, aiding in the provision of general design

guidelines, and the identification of issues that span a range of mobile systems.

230

Chapter 8: Conclusions

8.2 Contributions
This thesis set out to advance the mobile, peer-to-peer field. In particular, it aimed to address the

problem that, despite mobile devices having the potential to deliver highly adaptive, context-aware

applications, the majority of mobile applications today remain static, inflexible versions of desktop

applications. The fact that this is indeed a problem in the field was strongly supported by findings in

the literature review, in which an overwhelming number of researchers paraphrase the same issue.

The problem is addressed in several ways in this thesis. Firstly, a set of design guidelines is presented.

Adhering to them should lead to more highly adaptable and context-aware mobile, peer-to-peer

systems:

" Support users changing roles

" Support fluid group dynamics

0 Avoid reliance on pre-authored content

" Allow information to be shared and stored by multiple peers

" Avoid centralised peer-to-peer architectures whenever possible

" Expose characteristics of underlying infrastructure where appropriate

Each guideline was discussed in detail, and advice and methods for implementing each were provided.
Over the subsequent chapters, many mobile systems were implemented, and each attempted to follow

the guidelines in order to demonstrate their relevance within the mobile field.

The issues arising from a reliance on pre-authored content were highlighted in one of the guidelines. In

addition, a categorisation of content systems was offered, and compared and contrasted with

Triantfillou et al's categories of peer-to-peer systems. This categorisation allows designers to select

combinations of peer-to-peer and content-type architectures in order to avoid problems which can be

caused by centralisation, or by the requirement of authoring substantial amounts of content for systems.

Four pieces of infrastructure were identified as being necessary for implementing dynamic, context-

aware, mobile, peer-to-peer systems but currently missing in the field:

"A mechanism for intelligently selecting which networks to use and for reliably discovering

peers on these networks

"A hybrid positioning system that requires no initial setup and yet has high availability in

providing location both indoors and outdoors

"A method for providing and distributing data within a peer-to-peer community
"A method for adapting the system itself around the user's activities

231

Chapter 8: Conclusions

For each of these infrastructure items, a chapter was devoted to its discussion and implementation.

Each one is fully implemented and demonstrated within applications that have been successful either

within the research community or commercially.

As the first item of infrastructure-a method for intelligently selecting which networks to use and for

reliably discovering peers-was dependent on an underlying communication technology, an

investigation into 802.11, Bluetooth and GSM was conducted. This examined the two most important

factors relevant to mobile, peer-to-peer systems; the length of time it takes for peer devices to discover

one another, and the amount of data that can be transferred between peer devices during encounters.

This trial resulted in 802.11 being a clear choice over Bluetooth or GSM in mobile, peer-to-peer

systems. The final solution presented an enhanced wireless driver combined with SDS providing a

comprehensive solution for reliably and rapidly discovering peer devices in a mobile peer-to-peer

environment. The solution enables peer-to-peer mobile systems such as Feeding Yoshi, Samara,

FarCry and Domino to be created far more rapidly than was previously achievable. Furthermore,

designers and users are no longer forced to pre-configure the device's network settings to a single,

prohibitive network that works for only a single system, as had to be done in [62] and [23]. Instead, no

pre-configuration is necessary, many peer-to-peer and standard applications can run simultaneously,

and users can continue to access the Internet on their devices in a manner that is actually easier than

was previously possible. This behaviour, allowing normal network usage when available, will be

increasingly important as more peer-to-peer applications, and applications that are designed to be used

over longer periods of time, are developed. Feeding Yoshi is an example of this type of mobile

application, one which is designed to be played over a long period of time, carried with the user

constantly and available at any location. If such applications are to be accepted, and used over long

periods as intended, it is vital that they employ the technology developed as part of this thesis, or akin

to it, to allow users to continue to use their mobile devices for a range of purposes, rather than being

forced to configure them for a single, specialised task.

As the literature review identifies, location is the most fundamental piece of context information in

mobile systems yet there are currently no systems that can provide a location reliably in mobile

environments. This problem was addressed by the implementation of a novel hybrid-positioning

system titled Navizon. Navizon combines GPS, GSM and 802.11 positioning techniques to provide

high accuracy and uptime to mobile applications. Navizon is currently the only system that

successfully combines all three of these positioning systems onto a single PDA or phone. With

Navizon, location information is available far more often than it has previously been with other

systems, and thus new forms of mobile application can be constructed. Whereas previously mobile

system designers could only plan to use location information either indoors or outdoors, but not both,

they are now free to assume that location information is always available. The fact that the system is

compatible with an extremely large number of PDAs and phones, and that it requires no additional

hardware and runs on a single device (unlike Place Lab which requires both a phone and PDA working

in unison to provide both 802.11 and GSM positioning) means that mobile applications which rely on

232

Chapter 8: Conclusions

position information can now be rapidly developed using many existing devices. Furthermore, because

Navizon adheres to NMEA standards and can fully emulate GPS hardware it can be rapidly retrofitted

to work with many existing mobile applications. The contribution Navizon makes is stated by

Kolodziej [99]:

Not until the availability of the NAVIZON wireless positioning system, GPS or cell

tower-based systems were the only potential means for basing location-based services.

As evidenced by the slow growth in LBS services, these traditional systems proved to be

costly to implement as they required specialized equipment, and prone to problems with

accuracy and reliability.

With NA VIZON, any Wi-Fi or cellular product designed for broadband data networking

can be used for location and tracking with no hardware changes. NA VIZON leverages

the existing 802.11 hardware already resident in over 120 million Wi-Fi-enabled devices

as of 2005, which is estimated to reach 430 million in 2009. Also, there are an estimated

40 million fixed Wi-Fi access points in the US, which constitute a wide wireless

coverage.

NA VIZON enables LBS applications and services with consistent and accurate location

information. Consumer applications include information-centric service such as maps

and directions, what is the nearest (Yellow Pages finder service), location-targeted

advertising, photos/video, and MMS to mobile-to-mobile applications such as Buddy

Finder and Social Networking. Enterprise applications include field force automation

(managing fleets and tracking mobile workers), real estate and custom solutions to

emergency services.

In order to address the issue of distributing and maintaining data in a mobile, peer-to-peer environment

a novel distribution method has been implemented which combines collaborative filtering techniques

with epidemic routing algorithms. As part of this process, a categorisation of epidemic spreading

techniques is derived from previous work and experimentation with the FarCry application and is

presented and explained. The resulting infrastructure, Samara, has been explained and demonstrated as

part of the larger Domino system and the Castles game. It provides a solution for both selecting data to

route to peers and which data to maintain, and which to erase. It is believed to be the first epidemic

spreading system relying on a recommendation system at its core. By using its recommendation

system, Samara provides both a novel epidemic spreading algorithm and, importantly, a system for

intelligently culling data on mobile devices.

The final piece of infrastructure implemented, Domino, specifically addresses the requirement of

mobile systems to be highly adaptable to the user and their context. By relying on Samara, Domino

continually monitors a user's context, records their actions and actively adapts, at runtime, to the

233

Chapter 8: Conclusions

current tasks the user is involved in. By utilising Samara to distribute both the history logs and

segments of functionality or code, the Domino system is able to provide an extremely high degree of

adaptation within a mobile, peer-to-peer environment. The level of adaptation Domino provides is

undoubtedly novel to the mobile environment, going beyond the level of dynamic adaptation that has

been achieved in most adaptable desktop systems.

In conclusion, the work within this thesis addresses the two original research questions introduced at

the outset of the thesis:

RQI How can mobile developers design and develop more flexible and context-aware

mobile systems?

RQ2 Are there software components lacking in the mobile field, hindering the

development offlexible, context-aware mobile systems?

The first question is addressed through both a literature review and the analysis of two systems. This

process identifies existing problems and allows guidelines to be suggested which target these problems.

From the same process many vital pieces of infrastructure that are currently missing in the mobile area

are identified which relate to the second question. These are each implemented as part of the thesis and

each is demonstrated in at least one successful system.

8.3 Limitations and Future Work
The work carried out for this thesis has resulted in a substantial number of design recommendations

and the implementation of a large amount of new mobile infrastructure that was not previously

available to mobile developers. Both the various design recommendations and the creation of vital
infrastructure specifically for use on mobile peer-to-peer applications are, hopefully, of great benefit to
future designers and developers. However, due to the fact that such a large amount of infrastructure

was implemented, there has not been sufficient time to test each individual piece as comprehensively as
had been hoped. Therefore, one of the most obvious items for future work is the continued testing and
integration into future applications of the infrastructure created as a result of this thesis.

Undoubtedly, work following the guidelines identified and relying on the infrastructure created will

continue at the University of Glasgow. Indeed, several such systems are currently in development at
Glasgow including Shakra, a mobile, peer-to-peer fitness application that runs on phones. Work on
improving Domino is also ongoing at Glasgow University, and as previously stated, a second, larger

trial using Domino was completed in December 2006, the results of which will be included in Malcolm

Hall's thesis. In addition, Domino is also being considered for use with Scott Sherwood's research,

which investigates how a digital representation of a user can be displayed to others. Domino could be

used in this work to provide adaptive behaviour in an application, which uses differing modules to
display various aspects of a digital presentation of a user. All of the work implemented as part of this

234

Chapter 8: Conclusions

thesis, with the exception of Navizon which is now a commercial application, has been implemented

within the Equator group and, as such, will be made available as part of the Equator software archive in

the second half of 2007. This includes the enhanced wireless driver, SDS, Samara and Domino-as

well as the larger applications the infrastructure was tested in, such as Treasure, Feeding Yoshi and

Castles.

Whilst work relying on the infrastructure developed as part of this thesis is ongoing, there are currently

a few existing problems with several of the infrastructure components that have yet to be addressed.

Whilst the wireless driver and SDS combination does greatly increase the chances of peer devices

encountering one another, and allows users to continue to access standard wireless Internet connections

when they are available, it does have a few failings. As discussed in Chapter 4, there are situations

where two peer devices within range of one another can join separate networks, and thus fail to

discover one another. One possible solution presented was the addition of a second network card,

either a physical or virtual one. However, it is unrealistic to expect devices, or users, to have access to

a second physical network card. Furthermore, this would introduce greater power drain, and increase

the overall size of any mobile device. Unfortunately, a virtual network card is currently not possible on

mobile devices, and there is no guarantee that such technology will be available for mobile devices in

the near future. Therefore, further work may be necessary to overcome the situation in which peer

devices do fail to meet when in range, which occurs when two separate groups of devices form whilst

connected to different infrastructure networks. This may be achieved by creating groups of devices

which switch networks simultaneously, or by finding another solution, such as relying on ad hoc mode

even when infrastructure networks which do not provide an Internet connection are in range. A second

problem with the driver is that it can only identify Internet connections available through networks that

provide DHCP services and do not require a proxy. Although it might be possible to self-assign an IP

address and test again for an Internet connection, this is not the behaviour of the driver, as networks

which require such configuration may be set up in this way by the owner, in an attempt to stop others

using it. As it is not our wish to attempt to overcome such issues, and use networks in cases where the

owners do not wish them to be used, the driver does not attempt connections if they can not be made in

this way. However, one small addition that could handle this situation would be to allow users to

configure network settings manually if they desire. Currently, if a user's own network is not a standard

configuration, the wireless driver will not be able to access the Internet through it, even if the user

would like to do so. By keeping the driver as it is, but additionally allowing the user to manually
ti

configure settings for specific networks when desired, connections to non-standard 802.11 networks

could be supported.

As discussed earlier, Domino does not yet recommend the removal of modules, although it does allow

users to deactivate and remove modules manually. The implementation of a method to remove

modules is a priority for the Domino infrastructure, and a technique to achieve this is already

implemented and will be trialled in the near future. The technique essentially relies on using the

current history logs, and the Recer algorithm. The logs are searched for configurations similar to the

235

Chapter 8: Conclusions

user's current context, and then checking forward from that point to inspect if any of the modules in

that set were removed from another's configuration. This produces a list of modules that may be

recommended for removal, which are presented to the user in a similar manner as the recommendations

for adding modules. If a module is to be removed, any dependent modules must be correctly handled.

The most obvious solution may be to use the Domino system itself again, this time to identify if any

other active modules can fulfil the dependencies required, and if so the modules could be reconnected

to these. However, in many cases the deactivation of a single module may result in dependent modules

having no other method of continuing to operate. In these cases, a method for clearly showing the

results of deactivating a module to the user must be found.

Another limitation of the work in this thesis is that it has not explored privacy concerns that may arise

from distributing and sharing information between peers in a mobile environment. This is simply

because there has not been enough time to organise a trial with the required high numbers of users to

investigate such concerns adequately. With regard to privacy, it is the belief of the author that in order

to allay fears that sensitive information is not being shared, an investigation into the types of
information users believe to be sensitive may first be necessary. Researchers are often oversensitive or

misdirected when they make assumptions on the data end-users wish to keep secure. This is apparent
in existing research, which demonstrates that users often have no concerns in sharing data assumed to

be sensitive by the designers, and that it is difficult to predict with which groups, such as family and
friends, users will freely disclose data [140], [14], [5], [91].

In order to investigate the issue of privacy thoroughly it may first be necessary to conduct large trials,

possibly with thousands of users, in which the types of data modern mobile devices can now gather are

available for sharing as doing so will aid in identifying which types of data users do indeed find

sensitive. It is only once the types of data that are generated and used in mobile environments have

been categorised with respect to privacy that techniques for attempting to keep such data secure can be

contemplated.

Although Navizon currently provides one of the most available positioning systems today-making

location a ubiquitous element-work must continue if it is to maintain high availability, and increase

accuracy. New wireless technologies and protocols, such as UWB Bluetooth and 802.11n, are due to

appear on commercially available products in the next couple of years, and work may be required to
keep Navizon compatible with these new developments. More importantly, it is believed that
Navizon's accuracy could be improved with the existing technology. The results of the Navizon

accuracy tests conducted in this thesis, and available in the Appendix, surprisingly reveal that for small

sample sets an unweighted centroid algorithm outperforms the weighted centroid algorithm Navizon

currently employs. One obvious reason for this may be that the signal strength value read from most
802.11 devices is unreliable, and actually introduces a significant amount of error. As an example of
how a signal can vary, Schwaighofer et al. point out that a single person's body shielding a phone
antennae simply by being between it and the base station can attenuate the signal by up to -3.5dBm

236

Chapter 8: Conclusions

[1501. Investigation of wireless signal strength reliability and propogation is an interesting research

topic in itself, as it has a range of applications outside positioning. It is clear that many researchers

assume such values to be accurate. Experience at Glasgow reveals that this is not necessarily true, and

investigation into true accuracy levels, and the factors which influence signal strength readings, may be

of value.

This thesis has concentrated solely on applications that run on mobile devices alone. However,

information generated by mobile systems in self-generating content architectures may be of use when

taken off the mobile device. One example of this has already been discussed in the George Square

post-visit online blog which allows users to relive their visit or rely on it to inform others, such as

family or friends, of the type of experience they had during their visit. Similarly, although not

discussed in this thesis, the Navizon application and website support a number of services tied to the

user locations Navizon generates; such as the tracking of groups of friends through the Navizon website

on a Google Map and the display of discovered beacons which is in itself useful for multiple purposes.

It is apparent that much of the data created by self-generating, peer-to-peer applications will be of use

to either the user themselves or friends or colleagues if transferred back to desktop machines and made

available over the Internet or intranets. As much of the work in this thesis, particularly related to

Domino, necessitates the tracking of user context and thus user activities, potentially useful information

is being gathered on many of the mobile systems implemented and discussed. Techniques and

technology for moving this data to the desktop and reusing it are currently being investigated and
future work hopes to examine thoroughly which of this information can be reused in such a way and if

users feel comfortable sharing such information.

Another issue for future work is that of investigating whether seamful design can influence users' trust

in aspects of the system. For example, Cosley et al. demonstrate that user acceptance of

recommendations is highly dependent on the interface used to display recommendations [41], as do

Dourish and Redmiles [54]. Given that systems from this thesis rely heavily on recommendations-

that is, Samara and Domino-an investigation to determine how seamful design might influence these

systems may be prudent. The application of seamful design to mobile recommendations may improve

trust in the recommendations delivered. Just as Cosley et al. demonstrated that the interface might

affect user acceptance, so might information about where recommendations and Domino modules have

been generated, where they have been used previously, and who used them. Such an investigation

seems increasingly necessary, as both mobile recommendations of this nature and the high level of

adaptation Domino enables are novel in the mobile field. As such, it is important to determine methods

to allow appropriate levels of trust to build up, in order to facilitate a faster uptake of systems and a

spread of the infrastructure into application areas and communities where it may be useful-and
inhibited where people reasonably feel that it is not.

237

Chapter 8: Conclusions

238

Chapter 9: References

9 REFERENCES

[1] Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R., and Pinkerton, M.,

"Cyberguide: a mobile context-aware tour guide, " ACM Wireless Networks, Special issue:

mobile computing and networking: selected papers from MobiCom '96, vol. 3, pp. 421-433,
1997.

[2] Apple Computer Inc, "Bonjour Printing Specification. " vol. 1.0.2
http: //developer. apple. com/networking/bonjour/BoniourPrinting. pdf, 2005.

[3] Bahl, P. and Padmanabhan, V. N., "Radar: An in-building rf-based user location and tracking
system, " in IEEE Infocom, Tel-Aviv, Israel, 2000, pp. 775-784.

[4] Bangerman, E., "New law requires some businesses to secure their WiFi networks, "
h! lp: //arstechnica. com/news. ars/post/20060421-6647. html ed: ars technica, 2006.

[5] Barkhuus, L. and Dourish, P., "Everyday Encounters with Context-Aware Computing in a
Campus Environment, " in Ubicomp 2004, Nottingham, England, 2004, pp. 232-249.

[6] Barkhuus, L., Chalmers, M., Tennent, P., Hall, M., Bell, M., Sherwood, S., and Brown, B.,
"Picking Pockets on the Lawn: The Development of Tactics and Strategies in a Mobile
Game, " in Ubicomp, Tokyo, Japan, 2005, pp. 358-374.

[7] Bassoli, A., Moore, J., and Agamanolis, S., "tunA: Local Music Sharing with Handheld Wi-Fi
Devices, " in The Fifth Wireless World Conference, University of Surrey, UK, 2004.

[8] Baus, J., Kruger, A., and Wahlster, W., "A resource-adaptive mobile navigation system, " in
7th International conference on Intelligent User Interfaces, San Francisco, California, USA,
2002, pp. 15-22.

[9] Bell, M., Chalmers, M., Brown, B., MacColl, I., Hall, M., and Rudman, P., "Sharing photos
and recommendations in the city streets, " in ECHISE workshop at Pervasive, Munich,
Germany, 2005.

[10] Bell, M., Chalmers, M., Barkhuus, L., Hall, M., Sherwood, S., Tennent, P., Brown, B.,
Rowland, D., Benford, S., Capra, and Hampshire, A., "Interweaving Mobile Games with
Everyday Life, " in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Montreal, Canada, 2006, pp. 417-426.

[11] Bell, M., Hall, M., Chalmers, M., Gray, P., and Brown, B., "Domino: Exploring Mobile
Collaborative Software Adaptation, " in Pervasive, Dublin, Ireland, 2006, pp. 153-168.

[12] Benford, S., Bowers, J., Chandler, P., Ciolfi, L., Flintham, M., Fraser, M., Greenhalgh, C.,
Hall, T., Hellstrom, S. 0., Izadi, S., Rodden, T., Schnadelbach, H., and Taylor, I., "Unearthing
virtual history: using diverse interfaces to reveal hidden virtual worlds, " Lecture Notes in
Computing Science, vol. 2201, pp. 225-231,2001.

[13] Benford, S., Seager, W., Flintham, M., Rowland, D., Stanton, D., Bowers, J., Tandavanitj, N.,
Adams, M., Row-Farr, J., Oldroyd, A., and Sutton, J., "The Error of Our Ways: Lessons from
Using Self-reported Position in a Location-Based Game, " in Ubicomp, Nottingham, UK,
2004, pp. 70-87.

[14] Berg, S., Taylor, A. S., and Harper, R., "Mobile Phones for the Next Generation: Device
Designs for Teenagers, " in Human factors in computing systems, Fort Lauderdale, Florida,
USA, 2003, pp. 267-296.

[15] Birsan, D., "On plug-ins and extensible architectures, " Queue, vol. 3, pp. 40-46,2005.
[16] Borriello, G., Liu, A., Offer, T., Palistrant, C., and Sharp, R., "WALRUS: wireless acoustic

location with room-level resolution using ultrasound, " Seattle, Washington, 2005, pp. 191-
203.

[17] Boutin, P., "Feds Label Wi-Fi a Terrorist Tool, " in Wired News:
http: //www. wired. com/news/wireless/0.1382.56742.00. html, 2002.

[18] Brooks, R. and Iyengar, S., Multi-sensor fusion: fundamentals and applications with software:
Prentice-Hall, Inc. USA, 1998.

[19] Brown, B. and Chalmers, M., "Tourism and mobile technology, " in CSCW, Helsinki, Finland,
2003, pp. 335-355.

[20] Brown, B., MacColl, I., Chalmers, M., Galani, A., Randell, C., and Steed, A., "Lessons From
The Lighthouse: Collaboration In A Shared Mixed Reality System, " in Human Factors in
Computing Systems, Fort Lauderdale, Florida, USA, 2003, pp. 577-584.

239

Chapter 9: References

[21] Brown, B., Chalmers, M., Bell, M., MacColl, I., Hall, M., and Rudman, P., "Sharing the
square: collaborative leisure in the city streets, " in ECSCW, Paris, France, 2005, pp. 427-429.

[22] Brunnberg, L., "The Road Rager - Making Use of Traffic Encounters in a Mobile Multiplayer
Game, " in Mobile Multiplayer Games, Maryland, USA, 2004, pp. 33-40.

[23] Brunnberg, L. and Juhlin, 0., "Keep Your Eyes on the Road and Your Finger on the Trigger -
Designing for Mixed Focus of Attention in a Mobile Game for Brief Encounters, " in
Pervasive, Dublin, Ireland, 2006, pp. 169-186.

[24] Bunt, A., Conati, C., and McGrenere, J., "What role can adaptive support play in an adaptable
system?, " in Intelligent User Interfaces, Funchal, Madeira, Portugal, 2004, pp. 117-124.

[25] Burrell, J., Gay, G. K., Kubo, K., and Farina, N., "Context-Aware Computing: A Test Case, "
in UbiComp, Gothenburg, Sweden, 2002, pp. 1-15.

[26] Capra, M., Radenkovic, M., Benford, S., Oppermann, L., Drozd, A., and Flintham, M., "The
multimedia challenges raised by pervasive games, " in Proceedings of the 13th annual ACM
international conference on Multimedia Hilton, Singapore: ACM Press, 2005.

[27] Chalmers, M., Rodden, K., and Brodbeck, D., "The Order of Things: Activity-Centred
Information Access, " in World Wide Web, Brisbane, Australia, 1998, pp. 359-367.

[28] Chalmers, M., "Information Awareness and Representation, " CSCW, vol. 11, pp. 389-409,
2003.

[29] Chalmers, M., MacColl, I., and Bell, M., "Seamful Design: Showing the Seams in Wearable
Computing, " in IEEE Eurowearable, Birmingham, United Kingdom, 2003, pp. 11-17.

[30] Chalmers, M., "A Historical View of Context, " CSCW, vol. 13, pp. 223-247,2004.
[31] Chalmers, M. and Galani, A., "Seamful Interweaving: Heterogeneity in the Theory and

Design of Interactive Systems, " in ACM Designing Interactive Systems, 2004, pp. 243-252.
[32] Chang, M. and Goodman, E., "FIASCO: game interface for location-based play, " in ACM

Designing Interactive Systems, Cambridge, MA, USA, 2004, pp. 329-332.
[33] Chen, F. and Yeager, W., "Poblano: A Distributed Trust Model for Peer-to-Peer Networks, " in

Technical Report, TR-I4-02-08 Palo Alto: Sun Microsystems, 2002.
[34] Chen, M. Y., Sohn, T., Chmelev, D., Haehnel, D., Hightower, J., Hughes, J., LaMarca, A.,

Potter, F., Smith, I., and Varshavsky, A., "Practical Metropolitan-scale Positioning for GSM
Phones " in UbiComp, California, USA, 2006, pp. 225-242.

[35] Cheok, A. D., Goh, K. H., Liu, W., Farbiz, F., Fong, S. W., Teo, S. L., Li, Y., and Yang, X.,
"Human Pacman: a mobile, wide-area entertainment system based on physical, social, and
ubiquitous computing, " Personal and Ubiquitous Computing, vol. 8, pp. 71-81,2004.

[36] Cheverst, K., Davies, N., Mitchell, K., and Friday, A., "Experiences of developing and
deploying a context-aware tourist guide: the GUIDE project, " in Mobile Computing and
Networking, Boston, MA, USA, 2000, pp. 20-31.

[37] Cheverst, K., Davies, N., Mitchell, K., Friday, A., and Efstratiou, C., "Developing a Context-
aware Electronic Tourist Guide: Some Issues and Experiences, " in Human Factors in
Computing Systems, The Hague, Amsterdam, 2000, pp. 17-24.

[38] Cheverst, K., Smith, G., Mitchell, K., and Davies, N., "Exploiting Context to Support Social
Awareness and Social Navigation, " ACMSIGGROUP Bulletin, vol. 21, pp. 43-48,2000.

[39] Cohen, D., Herscovici, M., Petruschka, Y., Maarek, Y., and Soffer, A., "Personalized pocket
directories for mobile devices, " in World Wide Web, Honolulu, Hawaii, USA, 2002, pp. 627-
638.

[40] Correia, N., Alves, L., Correia, H., Romero, L., Morgado, C., Soares, L., Cunha, J., Romao,
T., and Dias, A., "InStory: A System for Mobile Information Access, Storytelling and Gaming
Activities in Physical Spaces, " in Advances in Computer Entertainment Technology,
Universidade Politecnica de Valencia (UPV), Spain, 2005, pp. 102-109.

[41] Cosley, D., Lam, S. K., Albert, I., Konstan, J. A., and Riedl, J., "Is Seeing Believing? How
Recommender Interfaces Affect Users' Opinions, " in Human Factors in Computing Systems,
Fort Lauderdale, Florida, USA, 2003, pp. 585-592.

[42] Counts, S. and Fellheimer, E., "Supporting social presence through lightweight photo sharing
on and off the desktop, " in Human Factors in Computing Systems, Vienna, Austria, 2004, pp.
599-606.

[43] Crabtree, A., Benford, S., Rodden, T., Greenhalgh, C., Flintham, M., Anastasi, R., Drozd, A.,
Adams, M., Row-Farr, J., Tandavanitj, N., and Steed, A., "Orchestrating a mixed reality game
'on the ground', " in Human factors in computing systems, Vienna, Austria, 2004, pp. 391-398.

[44] Crow, D. and Smith, B., "The role of built-in knowledge in adaptive interface systems, " in
Intelligent User Interfaces, Orlando, Florida, United States, 1993, pp. 97-104.

240

Chapter 9: References

[45] Dashofy, E. M., van der Hoek, A., and Taylor, R. N., "Towards Architecture-based Self-
Healing Systems, " in Proceedings of the first workshop on Self-healing systems, Charleston,
SC, USA, 2002, pp. 21-26.

[46] Davis, R. C., Landay, J. A., Chen, V., Huang, J., Lee, R. B., Li, F. C., Lin, J., 111, C. B. M.,
Schleimer, B., Price, M. N., and Schilit, B. N., "NotePals: lightweight note sharing by the
group, for the group, " in Human Factors in Computing Systems, Pittsburgh, Pennsylvania,
United States, 1999, pp. 338-345.

[47] Dellarocas, C., Klien, M., and Shrobe, H., "An Architecture for Constructing Self-Evolving
Software Systems, " in ISA W3, Orlando, Florida, USA, 1998, pp. 29-32.

[48] Demers, A., Greene, D., Houser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,
D., and Terry, D., "Epidemic algorithms for replicated database maintenance, " in Principles of
distributed computing, Vancouver, BC, Canada, 1987, pp. 1-12.

[49] DePriest, D., "NMEA data, " http//www. ansinformation. org, /dale/nmea. htm, 2001.
[50] Dey, A. K. and Abowd, G., "Towards a Better Understanding of Context and Context-

Awareness, " in Ist International Symposium on Handheld and Ubiquitous Computing (HUC
'99), Karlsruhe, Germany, 1999, pp. 304-307.

[51] Dey, A. K. and Abowd, G., "Support for Adapting Applications and Interfaces to Context, " in
Multiple Users Interfaces: Engineering and Application Frameworks, Seffah, A., et al., Eds.:
John Wiley and Sons, 2003.

[52] Dourish, P. and Bellotti, V., "Awareness and Coordination in Shared Work Spaces, " in ACM
Conference on Computer Supported Cooperative Work, Toronto, Canada, 1992, pp. 107-114.

[53] Dourish, P. and Bly, S., "Portholes: Supporting Awareness in a Distributed Work Group, " in
SIGCHI conference on Human Factors in computing systems, Monterey, California, United
States, 1992, pp. 541-547.

[54] Dourish, P. and Redmiles, D., "An Approach to Usable Security Based on Event Monitoring
and Visualization, " in New Security Paradigms Workshop, Virginia Beach, VA, 2002, pp. 75-
81.

[55] Dourish, P., "What we talk about when we talk about context, " Personal and Ubiquitous
Computing, vol. 8, pp. 19-30,2003.

[56] Dourish, P. and Bell, G., "Yesterday's tomorrows: notes on ubiquitous computing's dominant
vision, " Personal and Ubiquitous Computing, vol. 11, pp. 133-143, January 2007 2006.

[57] Eagle, N. and Pentland, A., "Social Serendipity: Mobilizing Social Software, " IEEE Pervasive
Computing, vol. 4, pp. 28-34,2005.

[58] Edjlali, G., Acharya, A., and Chaudhary, V., "History-based access control for mobile code, "
in 5th ACM conference on Computer and communications security, San Francisco, California,
United States, 1998, pp. 38-48.

[59] Ekahau, "http: //www. ekahau. com/. "
[60] Enge, P., Fan, R., Tiwari, A., Chou, A., Mann, W., Sahai, A., Stone, J., and Van Roy, B.,

"Improving GPS Coverage and Continuity: Indoors and Downtown, " in Institute of
Navigation's GPS Conference, Salt Lake City, Utah, USA, 2001, pp. 3067-3076.

[611 Equator, "I Like Frank, " in Equator IRC Nottingham:
ha: //www. equator. ac, uk/index. 12hp/articies/727,2004.

[62] Esbjörnsson, M., Juhlin, 0., and Östergren, M., "Traffic encounters and Hocman: Associating
motrocycle ethnography with design, " Personal and Ubiquitous Computing, vol. Volume 8,
No. 2, pp. 92-99,2004.

[63] Findlater, L. and McGrenere, J., "A comparison of static, adaptive, and adaptable menus, " in
SIGCHI conference on Human factors in computing systems, Vienna, Austria, 2004, pp. 89-
96.

[641 Flintham, M., Anastasi, R., Benford, S., Hemmings, T., Crabtree, A., Greenhalgh, C., Rodden,
T., Tandavanitj, N., Adams, M., and Row-Farr, J., "Where On-Line Meets On-The-Streets:
Experiences With Mobile Mixed Reality Games, " in Human factors in computing systems,
Fort Lauderdale, Florida, USA, 2003, pp. 569-576.

[65] French, J. C. and Hauver, D. B., "Flycasting: On the Fly Broadcasting, " in Joint DELOS-NSF
International Workshop on Personalization and Recommender Systems in Digital Libraries,
Dublin, Ireland, 2001, pp. 89-93.

[66] Fukumoto, M. and Shinagawa, M., "CarpetLAN: A Novel Indoor Wireless(-like) Networking
and Positioning System, " Lecture Notes in Computer Science, vol. 3660, pp. 1-18,2005.

[67] Gaver, W. W., Moran, T., MacLean, A., Lovstrand, L., Dourish, P., Carter, K., and Buxton,
W., "Realizing a Video Environment: EuroPARC's RAVE System, " in Human factors in
computing systems, Monterey, CA USA, 1992, pp. 27-35.

241

Chapter 9: References

[68] Gaver, W. W., Beaver, J., and Benford, S., "Ambiguity as a Resource for Design, " CHI
Letters, vol. 5, pp. 233-240,2003.

[69] Gellersen, H. W., Schmidt, A., and Beigl, M., "Multi-sensor context-awareness in mobile
devices and smart artifacts, " Mob. Netw. Appl., vol. 7, pp. 341--351,2002.

[70] Georgiadis, I., Magee, J., and Kramer, J., "Self-Organising Software Architectures for
Distributed Systems, " in WOSS'02, Charleston, SC, USA, 2002, pp. 33-38.

[71] Glance, N., Snowdon, D., and Meunier, J. -L., "Pollen: using people as a communication
medium, " Computer Networks, vol. 35, pp. 429-442,2001.

[72] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D., "Using Collaborative Filtering to Weave
an Information Tapestry, " Communications of the ACM, vol. 35, pp. 61-70,1992.

[73] Goldenberg, J., Shavitt, Y., Shir, E., and Solomon, S., "Distributive immunization of networks
against viruses using the 'honey-pot' architecture, " Nature Physics, vol. 1, pp. 184-188,2005.

[74] Goren-Bar, D. and Kuflik, T., "Don't miss-r --: recommending restaurants through an adaptive
mobile system, " in 9th international conference on Intelligent user interface, Funchal,
Madeira, Portugal, 2004, pp. 250-252.

[75] Greenhalgh, C., "EQUIP: a Software Platform for Distributed Interactive Systems, " in
Equator Technical Report 02-002 Nottingham: University of Nottingham, 2002.

[76] Grinter, R. E., Ducheneaut, N., Edwards, W. K., and Newman, M. W., "The work to make a
home network work, " in Ninth European Conference on Computer-Supported Cooperative
Work, Paris, France, 2005, pp. 360-369.

[77] Griswold, W. G., Shanahan, P., Brown, S. W., and Boyer, R. T., "ActiveCampus -
Experiments in Community-Oriented Ubiquitous Computing, " Computer, vol. Vol 37, Issue
10, pp. 73-81,2004.

[78] Hakansson, M., "Push! Music: Mobile Music Sharing with Media Agents, " in SIGCHI
conference on Human Factors in computing systems, Montreal, Canada, 2006, pp. 909-918.

[79] Hale, It V., "Wi-Fi Liability: Potential Legal Risks in Accessing and Operating Wireless
Internet, " Santa Clara Computer and High Technology Law Journal, vol. 21, p. 543,2005.

[80] Hallberg, J., Nilsson, M., and Synnes, K., "Positioning with Bluetooth, " in ICT, 2003, pp. 954-
958.

[81] Hallberg, J., Svensson, S., Östmark, A., Lindgren, P., Synnes, K., and Delsing, J., "Enriched
Media-Experience of Sport Events, " in WMSCA, Lake District National Park, United
Kingdom, 2004, pp. 2-9.

[82] Handurukande, S. B., Kermarrec, A: M., Fessant, F. L., and Massouli, L., "Exploiting
semantic clustering in the eDonkey P2P network, " Leuven, Belgium, 2004, p. 20.

[83] Hansen, F. A., Bouvin, N. 0., Christensen, B. G., Gronbaek, K., Pedersen, T. B., and Gagach,
J., "Integrating the Web and the World: Contextual Trails on the Move, " in Hypertext, Santa
Cruz, USA, 2004, pp. 98-107.

[84] Harter, A. and Hopper, A., "A Distributed Location System for the Active Office, " IEEE
Network, vol. 8, pp. 62-70,1994.

[85] Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P., "The anatomy of a context-
aware application, " in MobiCom: 5th Annual ACM/IEEE international conference on Mobile
computing and networking, Seattle, Washington, United States, 1999, pp. 59-68.

[86] Hayes, A. and Wilson, D., 'Teer-to-Peer Information Sharing in a Mobile Ad Hoc
Environment, " in WMCSA, Lake District National Park, UK, 2004, pp. 154-162.

[87] Henricksen, K. and Indulska, J., "Adapting the Web Interface: An Adaptive Web Browser, "
Proc. of the 2nd Australasian User Interface Conference (A UIC'2001). Australian Computer
Science Communications, vol. 23, pp. 21-33,2001.

[88] Hightower, J., Consolvo, S., LaMarca, A., Smith, I., and Hughes, J., "Learning and
Recognizing the Places We Go, " Lecture Notes in Computer Science, vol. 3660, pp. 159-176,
2005.

[89] Huang, J. and Waldvogel, M., "The swisshouse: an inhabitable interface for connecting
nations, " in Proceedings of the 2004 conference on Designing Interactive systems, Cambridge,
MA, USA, 2004, pp. 195-204.

[90] Hull, R., Neaves, P., and Bedford-Roberts, J., "Towards Situated Computing, " in The First
International Symposium on Wearable Computers, Cambridge, MA, USA, 1997, pp. 146-153.

[91] lachello, G., Smith, I., Consolvo, S., Abowd, G., D., Hughes, J., Howard, J., Potter, F., Scott,
J., Sohn, T., Hightower, J., and LaMarca, A., "Control, Deception, and Communication:
Evaluating the Deployment of a Location-Enhanced Messaging Service, " Lecture Notes in
Computer Science, vol. 3660, pp. 213-231,2005.

242

Chapter 9: References

[92] Janecek, A. and Hlavacs, H., "Programming interactive real-time games over WLAN for

pocket PCs with J2ME and. NET CF, " in NetGames '05: Proceedings of 4th ACMSIGCOMM

workshop on Network and system support for games, Hawthorne, NY, 2005, pp. 1-8.

[93] Jiang, C. and Steenkiste, P., "A Hybrid Location Model with a Computable Location Identifier
for Ubiquitous Computing, " in Ubicomp 2002, Lecture Notes in Computer Science, Goteborg,
Sweden, 2002, p. 246ff.

[94] Kang, J. H. and Borriello, G., "Ubiquitous Computing Using Wireless Broadcast, " in
WMCSA, Lake District National Park, United Kingdom, 2004, pp. 72-81.

[95] Kerr, O. S., "Cybercrime's Scope: Interpeting'Access' and'Authorization' in Computer Misuse
Statutes, " NYU Law Review, vol. 78, pp. 1596-1668, November 2003.

[96] Khelil , A., Becker, C., Tian, J., and Rothermel, K., "An epidemic model for information
diffusion in MANETs, " in Proceedings of the 5th ACM international workshop on Modeling
analysis and simulation of wireless and mobile systems Atlanta, Georgia, USA: ACM Press
</pre> </body> </html>, 2002.

[97] Kim, M., Fielding, J. J., and Kotz, D., "Risks of using AP locations discovered through
war driving, " in Pervasive, Dublin, Ireland, 2006, pp. 67-82.

[98] Knyrim, R. and Podoscheck, C., "Detektiv beutete Handy-Netzdaten, " in Rechtspanorama,
28th November, 2005.

[99] Kolodziej, K., "Advances in GPS: Navizon, " in IndoorLBS:
httn: //www, lbszooe. com/content/view/1171/1/, 2006.

[100] Kortuem, G., Schneider, J., Preuitt, D., Thompson, T. G. C., Fickas, S., and Segall, Z., "When
Peer-to-Peer comes Face-to-Face: Collaborative Peer-to-Peer Computing in Mobile Ad hoc
Networks, " in International Conference on Peer-to-Peer Computing, Linköpings, Sweden,
2001.

[101] Kruger, A., Butz, A., Muller, C., Stahl, C., Wasinger, R., Steinberg, K. -E., and Dirschl, A.,
"The connected user interface: realizing a personal situated navigation service, " in 9th
international conference on Intelligent user interface, Funchal, Madeira, Portugal, 2004, pp.
161-168.

[102] Kusunoki, F., Yamaguti, T., Nishimura, T., Yatani, K., and Sugimoto, M., "Interactive and
Enjoyable Interface in Museum, " in ACE, Valencia, 2005, pp. 1-8.

[103] Laerhoven, K. V., Schmidt, A., and Gellersen, H. -W., "Multi-Sensor Context Aware
Clothing, " in Sixth International Symposium on Wearable Computers, Seattle, USA, 2002, pp.
49-56.

[104] LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T.,
Howard, J., Hughes, J., Potter, F., Tarbert, J., Powledge, P., Borriello, G., and Schilit, B.,
"Place Lab: Device Positioning Using Radio Beacons in the Wild, " in Pervasive, Munich,
Germany, 2005.

[105] LaMarca, A., Hightower, J., Smith, 1., and Consolvo, S., "Self-Mapping in 802.11 Location
Systems, " Lecture Notes in Computer Science, vol. 3660, pp. 87-104,2005.

[106] Lammertsma, P. F., "Satellite Navigation, " in Institute of Information and Computing
Sciences, Utrecht University: http: //Vaul. luminos. ni/documents/show document. phl2? d=7,
2005.

[107] Lindemann, C. and Waldhorst, 0., P., "Exploiting epidemic data dissemination for consistent
lookup operations in mobile applications, " SIGMOBILE Mob. Comput. Commun. Rev., vol. 8,
pp. 44-56,2004.

[108] Lindemann, C. and Waldhorst, 0., P., "Modeling epidemic information dissemination on
mobile devices with finite buffers, " in Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems, Banff, Alberta,
Canada, 2005, pp. 121-132.

[109] Mackay, W. E., "Patterns of sharing customizable software, " in Proceedings of the 1990 ACM
conference on Computer-supported cooperative work, Los Angeles, California, United States,
1990, pp. 209-221.

[110] MacLean, A., Carter, K., Lovstrand, L., and Moran, T., "User-tailorable systems: pressing the
issues with buttons, " in Proceedings of the SIGCHI conference on Human factors in
computing systems: Empowering people Seattle, Washington, United States: ACM Press
</pre> </body> </html>, 1990.

[111] Madhavapeddy, A. and Tse, A., "A Study of Bluetooth Propagation Using Accurate Indoor
Location Mapping, " Lecture Notes in Computer Science, vol. 3660, pp. 105-122,2005.

[112] Mainwaring, S., Chang, M. F., and Anderson, K., "Infrastructures and Their Discontents:
Implications for Ubicomp, " in Ubicomp, Nottingham, UK, 2004, pp. 418-432.

243

Chapter 9: References

[113] Mantoro, T. and Johnson, C., "Location History in a Low-cost Context Awareness
Environment, " in ACSW Frontiers '03: Proceedings of the Australasian information security
workshop conference on ACSW frontiers 2003, Adelaide, Australia, 2003, pp. 153-158.

[114] Marmasse, N. and Schmandt, C., "Location-Aware Information Delivery with ComMotion, "
in 2nd international symposium on Handheld and Ubiquitous Computing, Bristol, UK, 2000,

pp. 157-171.
[115] Marmasse, N., Schmandt, C., and Spectre, D., "WatchMe: communication and awareness

between members of a closely-knit group, " in Ubicomp 2004, Nottingham, England, 2004, pp.
214-231.

[116] Messeter, J., Brandt, E., Halse, J., and Johansson, M., "Contextualizing mobile IT, " in
Designing interactive systems, Cambridge, MA, USA, 2004, pp. 27-36.

[117] Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., and Riedl, J., "MovieLens unplugged:
experiences with an occasionally connected recommender system, " in 8th international
conference on Intelligent user interfaces, Miami, Florida, USA, 2003, pp. 263-266.

[118] Mitchell, K., McCaffery, D., Metaxas, G., and Finney, J., "Six in the City: Introducing Real
Tournament -A Mobile IPv6 Based Context-Aware Multiplayer Game, " in NetGames '03,
Redwood City, California, USA, 2003, pp. 91-100.

[119] Muller, M. J., Geyer, W., Brownholtz, B., Wilcox, E., and Millen, D. R., "One-hundred days
in an activity-centric collaboration environment based on shared objects, " in Human factors in
computing systems, Vienna, Austria, 2004, pp. 375-382.

[120] Musolesi, M., Mascolo, C., and Hailes, S., "EMMA: Epidemic Messaging Middleware for Ad
hoc networks, " Personal Ubiquitous Computing, vol. 10, pp. 28-36,2005.

[121] Newcomb, E., Pashley, T., and Stasko, J., "Mobile computing in the retail arena, " in Human
factors in computing systems, Ft. Lauderdale, Florida, USA, 2003, pp. 337-344.

[122] Newman, M. W., Sedivry, J. Z., Edwards, W. K., Smith, T. F., Marcelo, K., Neuwirth, C. M.,
Hong, J. I., and Izadi, S., "Designing for Serendipity: Supporting End-User Configuration of
Ubiquitous Computing Environments, " in Designing Interactive Systems, London, UK, 2002,
pp. 147-156.

[123] Newman, M. W., Voida, A., Grinter, R. E., Ducheneaut, N., and Edwards, K., "Listening in:
practices surrounding iTunes music sharing, " in CH1 '05: Proceeding of the SIGCHI
conference on Human factors in computing systems, Portland, Oregon, USA, 2005, pp. 191--
200.

[124] Ni, L. M., Liu, Y., Lau, Y. C., and Patil, A. P., "LANDMARC: indoor location sensing using
active RFID, " Wireless Networks, vol. 10, pp. 701-710,2004.

[125] NMEA, "NMEA 0183 Standard, " National Marine and Electornics Association, Publications
and Standards, 2002.

[126] O'Shea, T., Lamming, M., Chalmers, M., Graube, N., Wellner, P., and Wiginton, G.,
"Expectations and Perceptions of Ubiquitous Computing: Experiments with BirdDog, a
Prototype Person Locator, " in BCS/IEE Conference on Information Technology and People
(ITaP), 1991.

[127] Opperman, R., Specht, M., and Jaceniak, I., "Hippie, A Nomadic Information System, " in
Proc. Ist international symposium on Handheld and Ubiquitous Computing, Karlsruhe,
Germany, 1999, pp. 330-333.

[128] Östergren, M. and Juhlin, 0., "Sound Pryer: truly mobile joint music listening, " in
International Conference on Entertainment Computing, Eindhoven, Amsterdam, 2004.

[129] Otsason, V., Varshavsky, A., LaMarca, A., and de, L., Eyal, "Accurate GSM Indoor
Localization, " in Ubicomp Tokyo, Japan: Springer, 2005, pp. 141-158.

[130] Özkasap, Ö., Genc, Z., and Atsan, E., "Epidemic-based approaches for reliable multicast in
mobile ad hoc networks, " SIGOPS Oper. Syst. Rev., vol. 40, pp. 73-79,2006.

[131] Papadopouli, M. and Schulzrinne, H., "Effects of power conservation, wireless coverage and
cooperation on data dissemination among mobile devices, " in Proceedings of the 2nd ACM
international symposium on Mobile ad hoc networking lamp; computing Long Beach, CA,
USA: ACM Press <pre> <Ibody> </html>, 2001.

[132] Pascoe, J., "Adding Generic Contextual Capabilities to Wearable Computers, " in 2nd IEEE
International Symposium on Wearable Computers: IEEE Computer Society, 1998, pp. 92-99.

[133] Patterson, D. J., Liao, L., Gajos, K., Collier, M., Livic, N., Olson, K., Wang, S., Fox, D., and
Kautz, H., "Opportunity Knocks: a System to Provide Cognitive Assistance with
Transportation Services, " in Ubicomp Nottingham, UK, 2004.

244

Chapter 9: References

[134] Paulos, E. and Goodman, E., "The familiar stranger: anxiety, comfort, and play in public
places, " in Proceedings of the 2004 conference on Human factors in computing systems,
Vienna, Austria, 2004, pp. 223--230.

[135] Persson, P., Espinoza, F., and Cacciatore, E., "GeoNotes: social enhancement of physical
space, " in Human factors in computing systems. vol. CHI '01 extended abstracts on Human
factors in computing systems Seattle, Washington: ACM Press, 2001, pp. 43-44.

[136] Persson, P., Blom, J., and Jung, Y., "DigiDress: A Field Trial of an Expressive Social
Proximity Application, " in Ubicomp Tokyo, Japan: ACM Press, 2005, pp. 195-212.

[137] Persson, P. and Jung, Y., "Nokia Sensor: From Research to Product, " in 2005 conference on
Designing for User eXperience San Francisco, CA: ALGA: American Institute of Graphic
Arts, 2005, p. 53ff.

[138] Place Lab, "www. placelab. org. " 2006.
[139] Priyantha, N. B., Chakraborty, A., and Balakrishnan, H., "The Cricket location-support

system, " in 6th annual international conference on Mobile computing and networking Boston,
Massachusetts, United States: ACM Press New York, NY, USA, 2000, pp. 32-43.

[140] Raento, M., Oulasvirta, A., Petit, R., and Toivonen, H., "ContextPhone: A Prototyping
Platform, " Pervasive Computing, pp. 51-59,2005.

[1411 Rakkolaien, I., Kupila, H., Majahalme, T., and Salmenpera, H., "Improving GPS Accuracy for
a Mobile 3D City Info, " in Multi-Dimensional Mobile Communications, Pori, Finland, 2001.

[142] Randell, C. and Muller, H., "The Well Mannered Wearable Computer, " Personal and
Ubiquitous Computing 2002, vol. 6, pp. 31-36,2002.

[143] Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., and Riedl, J.,
"Getting to Know You: Learning New User Preferences in Recommender Systems, " in
Intelligent User Interfaces San Francisco, California: ACM Press, 2002, pp. 127-134.

[144] Resnick, P. and Varian, H. R., "Recommender systems, " Communications of the ACM, vol.
40, pp. 56-58,1997.

[145] Ritter, H., Voigt, T., Tian, M., and Schiller, J., "Experiences using a dual wireless technology
infrastructure to support ad-hoc multiplayer games, " in NetGames Redwood City, California,
2003, pp. 101-105.

[146] Rudström, A., Svensson, M., Cöster, R., and Hook, K., "MobiTip: Using Bluetooth as a
Mediator of Social Context, " in Ubicomp. vol. Adjunct Proceedings Nottingham, UK, 2004.

[147] Saeb, M., Hamza, M., and Soliman, A., "Protecting Mobile Agents against Malicious Host
Attacks, " in Smart Objects Conference, Grenoble, France, 2003.

[148] Schiele, B., Jebera, T., and Oliver, N., "Sensory-Augmented Computing: Wearing the
Museum's Guide, " IEEE Micro, vol. 21, pp. 44-52,2001.

[149] Schilit, B. N., Adams, N. I., and Want, R., "Context-Aware Computing Applications, " in
Workshop on Mobile Computing Systems and Applications Santa Cruz, CA, USA: IEEE
Computer Society, 1994, pp. 85-90.

[150] Schwaighofer, A., Grigoras, M., Tresp, V., and Hoffmann, C., "GPPS: A Gaussian process
positioning system for cellular networks, " in Neural Information Processing Systems,
Vancouver, Canada, 2004.

[151] Seilen, A., Eardley, R., Izadi, S., and Harper, R., "The Whereabouts Clock: early testing of a
situated awareness device., " in Conference on Human Factors and Computing Systems,
Montreal, Canada, 2006, pp. 1307-1312.

[152] Shardanand, U. and Maes, P., "Social information filtering: algorithms for automating "word
of mouth", " in SIGCHI conference on Human factors in computing systems Denver, Colorado,
United States: ACM Press/Addison-Wesley Publishing Co., 1995, pp. 210-217.

[153] Simler, K. D., Czerwinski, S. E., and Joseph, A. D., "Analysis of Wide Area User Mobility
Patterns, " in WMCSA Lake District National Park, UK: IEEE, 2004, pp. 30-40.

[154] Skov, B. and Heegh, T., "Supporting information access in a hospital ward by a context-aware
mobile electronic patient record, " Personal Ubiquitous Computing, vol. 10, pp. 205-214,
2006.

11551 Small, J., Smailagic, A., and Siewiorek, D. P., "Determining User Location For Context
Aware computing Through the Use of a Wireless LAN Infrastructure, " 2000.

[156] Smith, R. B., Hixon, R., and Horan, B., "Supporting flexible roles in a shared space, " in
CSCW Seattle, USA: ACM Press, 1998, pp. 197-206.

[157] Sood, S., Hammond, K. J., and Birnbaumb, L., "Low-fidelity location based information
systems, " in 9th international conference on Intelligent user interface Funchal, Madeira,
Portugal: ACM Press, 2004, pp. 325--327.

245

Chapter 9: References

[158] Spratt, M., "An overview of positioning by diffusion, " Wireless Networks, vol. 9, pp. 565--
574,2003.

[159] Strohbach, M., Gellersen, H. W., Kortuem, G., and Kray, C., "Cooperative Artifacts:
Assessing Real World Situations with Embedded Technology, " in Ubicomp, Nottingham, UK,
2004.

[160] Takeuchi, Y. and Sugimoto, M., "An Outdoor Recommendations System based on User
Location History, " in Ist International Workshop on Personalized Context Modeling and
Management for UbiComp Applications (UbiPCMM 2005), 2005, pp. 91-100.

[161] Terrenghi, L. and Zimmermann, A., "Tailored audio augmented environments for museums, "
in 9th international conference on Intelligent user interface, Funchal, Madeira, Portugal,
2004, pp. 334--336.

[162] Terry, M., Mynatt, E. D., Ryall, K., and Leigh, D., "Towards Design Guidelines for Portable
Digital Proxies: A Case Study with Social Net and Social Proximity, " 2001.

[163] Terry, M., Mynatt, E. D., Ryall, K., and Leigh, D., "Social Net: Using Patterns of Physical
Proximity Over Time to Infer Shared Interests, " in Human factors in computing systems,
Minneapolis, Minnesota, USA, 2003, pp. 816-817.

[164] Trevisani, E. and Vitaletii, A., "Cell-ID Location Technique, Limits and Benefits: An
Experimental Study, " in WMCSA, Lake District National Park, UK, 2004, pp. 51-60.

[165] Triantafillou, P., Ntarmos, N., Nikoletseas, S., and Spirakis, P., "NanoPeer Networks and P2P
Worlds, " in 3rd IEEE International Conference on Peer-to-Peer Computing, 2003, p. 40ff.

[166] Tveit, A., "Peer-to-peer based recommendations for mobile commerce, " in Ist international
workshop on Mobile commerce, Rome, Italy, 2001, pp. 26--29.

[167] Ujjin, S., "An Adaptive Lifestyle Recommender System Using a Genetic Algorithm, " 2001.
[168] Vogels, W., Renesse, R. v., and Birman, K., "The power of epidemics: robust communication

for large-scale distributed systems, " SIGCOMMComput. Commun. Rev., vol. 33, pp. 131-135,
2003.

[169] Want, R., Hopper, A., Falcao, V., and Gibbons, J., "The Active Badge Location System, "
ACM Trans. Inf. Syst., pp. 91-102,1992.

[170] Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., and Light, J., "The Personal
Server: Changing the Way We Think about Ubiquitous Computing, " Lecture Notes in
Computing Science, vol. 2498, pp. 194-209,2002.

[171] Ward, A., Jones, A., and Hopper, A., "A New Location Technique for the Active Office, "
IEEE Personal Communications, vol. Vol. 4 No. 5, pp. 42-47,1997.

[172] Weiser, M., "The Computer for the 21st Century, " Scientific American, vol. 265, pp. 94-104,
1991.

[173] Wiberg, M., "Mobile Peer-to-peer Entertainment: Putting FolkMusic Back on the Streets
Again When Peer-to-peer Goes Mobile, " in Hawaii International Conference on System
Sciences, Hawaii, USA, 2004, pp. 288-297.

[174] Zeimpekis, V., Giaglis, G. M., and Lekakos, G., "A taxonomy of indoor and outdoor
positioning techniques for mobile location services, " SiGecom Exch., vol. 3, pp. 19--27,2003.

GLASGOW

246

Chapter 9: References

247

Chapter 10: Appendix

10 APPENDIX

10.1 Appendix A- Bluetooth and 802.11 peer discovery and
transfer tests

These tests compare Bluetooth, 802.11 ad hoc and 802.11 infrastructure peer discovery times and

transfer rates.

For all Bluetooth tests iMate SP5 phones were used. The primary reason for selecting this phone was

that, at the time, it was one of the few Windows Mobile devices available that utilised the Microsoft

Bluetooth Stack. This protocol stack is slightly easier to access than older Windows Mobile devices,

which used a WIDCOM Bluetooth stack. Currently (August 2006), there are now many more

Windows Mobile 5 devices on the market and nearly all devices sold with this operating system use the

Microsoft Bluetooth Stack. Therefore, if the tests were to be run again in the future the number of
devices that could potentially be trialled, with the existing trial code, is far higher.

For the 802.11 tests iPAQ 4150s were used-the same models that were used in trials of Treasure,

Feeding Yoshi and Castles.

The author is well aware that there are many factors that may influence the results from any trial

relying on wireless technology-be it Bluetooth, 802.11, GSM or other forms of wireless

communication. Hardware factors such as the antennae used, the shape of the antennae, and the form

of the device, which may shield antennae, all influence the strength of the wireless signals.
Furthermore, external factors such as the weather-wind, air pressure and humidity-affect the signal

as it travels between devices. The affects of both hardware and weather are likely to be negligible.

The author's own experimentation of running the trial with over 15 models of PDA suggests that the

results presented here for 802.11 and Bluetooth are indeed typical of the majority of mobile devices.

Experiments examining Navizon's accuracy, conducted by Graham McKinley, show no significant

correlation with 802.11 signal strength and weather.

Despite this, the author is wary, believing that the hardware and antennae used, and weather during

trials, are bound to influence both 802.11 and Bluetooth performance at some level. The influence is

negligible for the research within this thesis-there is a massive difference in performance between

Bluetooth and 802.11 and these factors could not affect the results to the extent that this gap could be

significantly reduced and the outcomes reversed.

10.1.1 Peer Discovery
The following tables show successful peer discovery times at 1,5,10,25,50 and 100 metre distances.

Distances over 10m are not included for Bluetooth, as although peer discovery was attempted at 25m

(an indeed even at 15m) there were no successful discoveries whatsoever. Similarly, for the 802.11

248

Chapter 10: Appendix

infrastructure test no recordings for 100m are given as, despite repeated attempts, there were none

whatsoever at this distance.

In addition the results presented in the tables, notes on the success rate of discovery were recorded. At

each distance 20 discovery attempts were made and if the peer devices had failed to discover one

another after 30 seconds the discovery attempt was recorded as a failure. After 20 attempts, the ratio of

successful discovery attempts were recorded. In instances were discovery had not been 100%

successful, additional discovery attempts were then made until a total of 20 times had been recorded,

which are presented in the tables.

Bluetooth discovery was successful 80% at Im, 100% at 5m and 55% at IOm. At distances over IOm

Bluetooth had 0% success in discovering peers. 802.11 was 100% successful at all distances in both ad

hoc and infrastructure mode, with the exception of 100m in infrastructure mode, where it had 0%

success.

Bluetooth

Distance (m) 1 5 10
Time (ms) 4043 4423 13143

4039 4018 10443
4127 3993 19358
4204 4078 10619
4201 4007 12543
5004 4287 10943
4062 4009 10746
4236 4208 21899
4445 4495 10750
4058 4393 10312
4047 4073 21443
4361 4594 21879
4912 4221 10688
4275 4569 19522
4210 4048 19589
4019 4342 19472
4114 4261 12969
4159 4480 10409
4080 4439 21660
4538 4008 13245

,1 Average time
ms 4256.7 4247.3 15081.6

802.11 ad hoc

Distance (m) 15 10 25 50 100
Time (ms) 84 18 16 11 6

249

Chapter 10: Appendix

18 3 6 18 22 9
11 16 2 11 4 14
6 4 9 17 19 9
11 9 3 11 15 27
12 18 11 8 8 24
7 6 1 2 13 18
14 17 18 9 4 16
4 5 6 2 9 4
11 13 11 16 17 31
10 6 11 12 12 18
15 11 7 15 19 9
11 6 7 10 1 3
10 11 10 5 8 17
15 16 19 7 15 19
3 4 3 7 10 11
6 3 12 12 8 12
5 6 7 2 7 6
3 6 10 12 7 20
18 16 10 9 15 24

Average time
ms 9.9 9 9.05 10.05 11.2 14.85

802.11 Infrastructure

Distance (m) 1 5 10 25 50 100
Time (ms) 43 41 22 35 39

62 42 77 42 43
24 46 46 34 60
94 70 70 72, 50
43 31 21 23 96
24 86 73 45 54
34 88 77 72 695
35 23 80 41 20
51 71 53 81 52
44 40 3 53 30

7 24 71 342 33
79 54 73 39 53
61 4 86 62 663
52 89 20 93 241
52 45 19 25 55
91 17 23 34 378
49 2 34 73 526
77 34 37 45 75
43 18 43 53 55
78 77 95 72 139

Average time
ms 52.15 45.1 51.15 66.8 167.85 NA

250

Chapter 10: Appendix

10.1.2 Data transfer
The tables in this section show the times taken to transfer 1MB of data between peer devices using

Bluetooth, 802.11 ad hoc and 802.11 infrastructure, after they have discovered one another using the

peer discovery methods detailed in the thesis. As with the discovery time trials, it is believed that

whilst hardware and weather factors may have influenced the results, the affects are negligible to this

research.

As the peer discovery trials showed, Bluetooth discovery over 10m, and 802.11 ifnrastructure

discovery at 100m was not successful. Peers could not detect one another at these distances nor could

they transfer data, and so results at these distances could not be recorded.

Bluetooth

Distance (m) 1 5 10
Time (ms) 22968 19368 65566

17546 19257 62098
18767 20714 65266
18006 22109 74949
17903 18557 61649
17706 19943 65873
22144 19335 76786
18093 23739 61145
19020 20132 62908
18481 21438 74001

Average time
ms 19063.4 20459.2 67024.1

802.11 ad hoc

Distance (m) 1 5 10 25 50 100
Time (ms) 2551 2568 2594 2982 2686 3185

2615 2621 2628 2691 2786 6586
2598 2624 2705 2680 2667 2717
2589 2610 2599 2736 2615 4041
2589 2558 2646 2724 2740 5343
2611 2669 2598 2794 2812 3729
2573 2624 2594 2734 2843 6018
2610 2604 2620 2916 2997 5461
2550 2555 2726 2763 2649 5091
2617 2581 2597 2726 2856 3338
2584 2659 2703 2714 2677 4285

Average time
ms 2589.7 2606.6 2637.3 2769.1 2757.1 4526.7

251

Chapter 10: Appendix

802.11 infrastructure

Distance (m) 1 5 10 25 50 100
Time (ms) 4306 4256 4480 4382 4372

4306 4378 4270 4244 4325
4276 4116 4202 4338 4639
4172 4256 4362 4382 4314
4336 4208 4442 4186 4826
4192 4336 4292 4442 4501
4236 4186 4220 4306 4882
4264 4290 4356 4160 4733
4344 4260 4270 4296 4674
4180 4138 4304 4278 4366
4250 4148 4463 4329 4649

Average time
(ms) 4260.2 4233.8 4332.8 4303.9 4571.0 ýA

252

Chapter 10: Appendix

10.2Appendix B- Access point positioning in Navizon
The aim of these tests was to compare the technique Navizon uses to originally locate new beacons to

other possible techniques.

The results from each test are shown in two tables. The first table shows the samples of GPS

coordinates with the signal strength of the access point. The second shows the actual location of the

access point and the locations found by Navizon, the first sample method and the strongest reading

method - as well as the error of these methods from the true location.

Access Point I

Latitude
55.8745667

Longitude

-4.2918583

Signal Strength
64

55.8744967 -4.2919 68
55.8744967 -4.2919 69
55.8744267 -4.2919433 78
55.8743533 -4.2920033 77
55.8742833 -4.2920617 64
55.8742833 -4.2920617 62
55.8742833 -4.2920617 59

55.87421 -4.2921 59
55.874145 -4.2921217 59
55.874095 -4.2921433 59
55.8747283 -4.2921883 59

Latitude Longitude Error
Actual 55.87434 -4.29207 -

Navizon 55.87436903 -4.292022036 0.0000560633
First 55.8745667 -4.2918583 0.000310177

Strongest 55.8744267 -4.2919433 0.000153525
Average 55.87436403 -4.292028608 0.0000478589

Access Point 2

Latitude
55.8742833

Longitude

-4.2920617
Signal Strength

66
55.8742833 -4.2920617 68
55.8742833 -4.2920617 63

55.87421 -4.2921 63
55.874145 -4.2921217 63
55.874095 -4.2921433 63
55.874095 -4.2921433 63
55.874095 -4.2921433 61
55.8740617 -4.2921917 61
55.8740583 -4.292265 64
55.8740583 -4.292265 64

253

Chapter 10: Appendix

Latitude Longitude Error
Actual 55.87412 -4.29225 -

Navizon 55.87415331 -4.292140963 0.0001140130
First 55.8742833 -4.2920617 0.000249246

Strongest 55.8742833 -4.2920617 0.000249246
Average 55.87415165 -4.292141673 0.000112857

Latitude Longitude Error
Actual 55.87438 -4.29221 -

Navizon 55.87433759 -4.292065467 0.0001506265
First 55.8746467 -4.2917967 0.00049188

Strongest 55.8744967 -4.2919 0.000331238
Average 55.8743246 -4.29207875 0.000142463

Access Point 4

Latitude
55.8749983

Longitude

-4.2915333

Signal Strength
64

55.874825 -4.291655 64
55.874825 -4.291655 64
55.8747317 -4.29172 64
55.8747317 -4.29172 62
55.8746467 -4.2917967 68
55.8745667 -4.2918583 66
55.8744967 -4.2919 62
55.8744967 -4.2919 62
55.8746717 -4.2922367 61
55.8746717 -4.2922367 60
55.8747283 -4.2921883 62
55.8747283 -4.2921883 62

Latitude Longitude Error
Actual 55.87474 -4.29192 -
Navizon 55.87470187 -4.291886851 0.0000505216

First 55.8749983 -4.2915333 0.000465033
Strongest 55.8746467 -4.2917967 0.000154621
Average 55.87470142 -4.291891408 0.0000480177

Access Point 5

Longitude Signal Strength
55.8721283 -4.2857917 59
55.872125 -4.2855533 66

254

Access Point 3

Chapter 10: Appendix

55.872125 -4.2855533 66
55.87217 -4.2851617 62
55.87217 -4.2851617 65
55.87217 -4.2851617 64

55.8721733 -4.2851417 64
55.872175 -4.2851367 64
55.872175 -4.2851333 64
55.872175 -4.2851333 62
55.8721767 -4.2851317 61
55.8721767 -4.28513 60
55.872175 -4.28513 60
55.872175 -4.28513 59
55.872175 -4.2851283 60
55.8721767 -4.2851233 65
55.8721767 -4.2851233 65
55.8721767 -4.2851233 65
55.872175 -4.2851217 60
55.872175 -4.2851217 60
55.8721767 -4.2851033 65
55.8721767 -4.2851033 65
55.8721917 -4.2849967 63
55.872195 -4.2849567 61
55.8721867 -4.2848983 61
55.8721867 -4.2848983 61
55.8721733 -4.2848533 59
55.87216 -4.2848217 59
55.87216 -4.2848217 59

55.8721367 -4.284795 58
55.8720967 -4.2847833 58
55.8720533 -4.2848517 58

Latitude Longitude Error
Actual 55.87234 -4.28526 - Ours 55.87216405 -4.285100258 0.0002376442
First 55.8721283 -4.2857917 0.000572295

Strongest 55.872125 -4.2855533 0.000363662
Average 55.87216371 -4.285096094 0.000240717

Access Point 6

Latitude
55.8965833

Longitude

-4.4410883

Signal Strength
62

55.8966533 -4.4413617 62
55.8966533 -4.4413617 57
55.896705 -4.4416533 57
55.896705 -4.4416533 57
55.8962817 -4.4422617 58
55.8962817 -4.4422617 58
55.896265 -4.442045 58
55.8962983 -4.4419817 58

255

Chapter 10: Appendix

55.8962983 -4.4419817 59
55.8963417 -4.44196 60
55.8963733 -4.4419333 62
55.8963917 -4.441915 62
55.8963917 -4.441915 59
55.8963917 -4.441915 62

55.89643 -4.441925 60
55.8964317 -4.4419283 60
55.8964317 -4.4419283 60
55.8964317 -4.4419283 60
55.89643 -4.4419283 60

55.8964283 -4.4419267 60
55.8964283 -4.4419267 60
55.8964233 -4.441925 64
55.8964233 -4.441925 64
55.8964133 -4.4419267 62
55.8964133 -4.4419267 62
55.8964033 -4.4419233 61
55.8964033 -4.4419233 61
55.896395 -4.441915 61

55.8963917 -4.4419067 60
55.8963883 -4.441895 59
55.8963883 -4.441895 59
55.8963867 -4.4418767 61
55.8963833 -4.4418583 61
55.8963833 -4.4418583 60
55.8963833 -4.4418517 60
55.8963833 -4.4418517 59
55.8963833 -4.4418517 55
55.8963833 -4.4418517 55
55.8963833 -4.4418517 62
55.8963833 -4.4418517 60
55.8963817 -4.4418533 59
55.8963817 -4.4418533 59
55.8963817 -4.4418533 59
55.8963817 -4.4418533 60
55.8963817 -4.4418533 61
55.8963817 -4.441855 61
55.8963817 -4.441855 61
55.8963817 -4.441855 61
55.8963817 -4.441855 59
55.8963817 -4.441855 60
55.8963817 -4.441855 60
55.8963817 -4.4418567 60
55.89638 -4.4418567 60
55.89638 -4.4418567 59
55.89638 -4.4418567 59
55.89638 -4.4418567 60
55.89638 -4.4418583 60
55.89638 -4.4418583 61

256

Chapter 10: Appendix

55.8963783 -4.4418583 60
55.896375 -4.4418983 58
55.8963733 -4.441935 58
55.8963733 -4.441935 59
55.8963733 -4.441935 59
55.8963683 -4.441975 55
55.8963617 -4.4420517 59
55.8963617 -4.4420517 56
55.8963617 -4.4420517 56
55.8963667 -4.4419733 58
55.8963633 -4.4419733 57
55.8963633 -4.4419733 57
55.896365 -4.44197 57
55.8963733 -4.4419783 62
55.8963833 -4.4419883 63
55.8963833 -4.4419883 63
55.8963933 -4.4419917 61
55.8963933 -4.4419917 61
55.8964033 -4.441985 61
55.896415 -4.4419817 61
55.896415 -4.4419817 64
55.896415 -4.4419817 64
55.896425 -4.4419767 64
55.8964383 -4.4419617 65
55.8964483 -4.4419517 72
55.8964483 -4.4419517 72
55.8964583 -4.4419417 69

55.89647 -4.4419317 75
55.89648 -4.4419233 83
55.89648 -4.4419233 83

55.8965017 -4.44195 81
55.8965017 -4.44195 84
55.89649 -4.4419583 84
55.89649 -4.4419583 81
55.89649 -4.4419583 81

55.8964883 -4.4419667 82
55.8964883 -4.4419667 82
55.8964833 -4.4419867 84
55.8964833 -4.4419867 85
55.8964833 -4.4419867 80

55.89648 -4.4420067 80
55.8964767 -4.44202 84
55.8964767 -4.44202 84
55.8964717 -4.4420433 86
55.8964717 -4.4420433 83

55.89647 -4.442055 89
55.89647 -4.442055 89

55.8964633 -4.4420717 93
55.89646 -4.4420867 93
55.89646 -4.4420867 98

257

Chapter 10: Appendix

55.8964567 -4.4421 98
55.8964567 -4.4421 92
55.896455 -4.442115 83
55.8964517 -4.4421283 83
55.8964483 -4.4421433 82
55.8964483 -4.4421433 87
55.8964383 -4.4421683 88
55.8964333 -4.442185 88
55.8964283 -4.4422017 83
55.8964283 -4.4422017 86
55.896425 -4.4422167 89
55.8964217 -4.4422333 89

Latitude Longitude Error
Actual 55.89658 -4.44194 -
Navizon 55.89642558 -4.441956244 0.000155269

First 55.8965833 -4.4410883 0.000851706
Strongest 55.89646 -4.4420867 0.000189528
Average 55.89642052 -4.441943364 0.000159516

10.2.1 Conclusion
For every access point the weighted centroid technique employed by Navizon outperformed both the
first sample and strongest sample methods. The table below shows the ratio of the weighted centroid

technique compared to both the first and strongest sample methods for each of the access points.

First Strongest

AP 1 5.532622 2.738414442

AP 2 2.186122539 2.186122539

AP 3 3.2655591 2.199070866

AP 4 9.204643291 3.060502413

AP 5 2.408202149 1.530278606

AP 6 5.485357871 1.220642828

Average 4.680417825 2.155838616

The results show that the technique Navizon employs outperforms the technique of relying on the first

sample by an average of over 4.5 times and outperforms using the strongest sample by over 2 times.

Surprisingly, the average algorithm, which is an unweighted centroid, outperforms the Navizon

algorithm for small data sets. This leads a possible change to Navizon in the future, and is discussed as

part of the Future Work section in the last chapter of the thesis.

258

Chapter 10: Appendix

10.3Appendix C- Domino example components
This section contains the source code from two example Domino modules, one from the Castles game

and one from one of the early test applications. They are included simply to demonstrate that the

Domino interface is simple to implement, and that not every method from the Domino interface

actually requires code to be added, and can instead remain as a stub.

10.3.1 Example 1: Building from Castles
using System;

using System. Collections;

using System. Drawing;

using CastlesLib. Units;

using Castles Lib. Cargos;

using Domino. ComponentModel;

using System. Windows. Forms;

namespace CastlesLib. Buildings

{

public abstract class Building : Domino. ComponentModel. IDominoComponent

{

protected static Package smallBuildingCost
{

get
{

Package p= Package. Empty;

p. Add(new Cargo(CargoType. lron, 2));

p. Add(new Cargo(CargoType. Stone, 4));

p. Add(new Cargo(CargoType. Wood, 4));

p. Add(new Group(new PeonO, 1));

return p;

}
}

protected static Package mediumBuildingCost
{

get
{

Package p= Package. Empty;

p. Add(new Cargo(CargoType. Iron, 4));

p. Add(new Cargo(CargoType. Stone, 7));

p. Add(new Cargo(CargoType. Wood, 6));

p. Add(new Group(new Peon(), 2));

return p;

}

protected static Package IargeBuildingCost

259

Chapter 10: Appendix

t
get
{

Package p= Package. Empty;

p. Add(new Cargo(CargoType. Iron, 5));

p. Add(new Cargo(CargoType. Stone, 10));

p. Add(new Cargo(CargoType. Wood, 10));

p. Add(new Group(new Peon(), 4));

return p;

private Recer. Paths. Rankableltemp contextltems;

private (Manager manager;

protected Package baseProduce = Package. Empty;

protected Package runCost = Package. Empty;

protected int buildCycles = -1;
protected Package cost = Package. Empty;

protected string imageFile = "Nolmage. png";

protected string description = "BaseBuilding'°

protected string name = null;

protected int buildRate = -1;
protected Size size = new Size(4,4);

protected Point location = new Point(O, 0);

protected bool enabled = true;

protected bool shop = false;

private int currBuild = 0;

private BuildingAdapter buildingAdapter = null;

private Package stock = Package. Empty;

private boot active = false;

public Recer. Paths. Rankableltemp Contextltems

{

get
{

return contextltems;

}
}
public Size Size

{

get
{

return size;

}

260

Chapter 10: Appendix

public Point Location

{

get
{

return location;

}

set
{

location = value;
}

}

public Package Produce

{

get
{

return (Package)baseProduce. Clone();

}

}

public bool Active

{

get
{

return active;
}

set
{

active = value;
}

}

how often this thing cycles

public int BuildRate

{

get
{

return buildRate;

}
}

public BuildingAdapter BuildingAdapter
{

get
{

return buildingAdapter;

}

set
{

buildingAdapter = value;

261

Chapter 10: Appendix

buildingAdapter. Building = this;

}

}

public void LeavePackage(Package pack)
{

stock. Add(pack);

}

public boot TakeStock(Package pack)
{

if (! stock. CanFulfill(pack))

return false;

stock. Rernove(pack);

return true;

}

public Package Stock

{

set
{

stock = value;
}

get
{

return stock;
}

}

public virtual Package Cycle()

{

Package outGoirq = Package. Empty;

//this works for the barracks it seems like the baracks constructor is not setting the baseProduce;
//stock. Remove(runCost);

//outGoing. Add(new Group(new Soldier(), 1));

if (! active)
return outGoing;

it (buildRate >= 0)

if (currßuild++ < buildRate)

return outGoing;
curr8uild = 0;

if (stock. CanFuifN(runCost))
{

stock. Remove(ru nCost);

outGoirg. Add(Produce)J/problem is with baseProduce here
}

if (buildingAdapter != nul)
{

262

Chapter 10: Appendix

i((stock. CanFuIfiII(buildingAdapter. RunCost))

{

stock. Remove(b uildi ngAdapter. Ru nCost);
if (buildingAdapter. ActiveThisCycleO)

{

outGoing. Mu lipyCargo(buildingAd apter. CargoM ult iplier);

outGoing. MuliplyGroup(buildingAdapter. UnitMultiplier);

}
}

}

return outGoing;
}

public void Paint()

{

}

public Package RunCost
{

get
{

return runCost;

}

public Package Cost

{

got
{

return cost;

}

public int BuildCycles

{

got
{

return -1;
}

}

public Image Image
{

got
{

return new Bitmap(imageFile);

}

263

Chapter 10: Appendix

III <summary>

/// The building is a shop style
Ill </summary>
public bool Shop

{

get
{

return shop;
}

set
{

shop = value;
buildRate = 0;

}

}

public string Name

{

get
{

return name != null ? name : GetTypeO. Name;

}
}

public string Description

{

get
{

return description;

}
}
#region (Component Members

public void Start()

{

//MessageBox. Show("Building dynamically constructed");
//Console. WriteLine("Asking manager for something that supports "+typeof(Building));

doesnt output at all, use messagebox
IDominoComponent container = manager. FindDependency(typeof(Building));

if(container! =null)
t

//MessageBox. Show("adding to "+container);

manager. Add Depende ncy(container, this);

}

else
{

MessageBox. Show("container was nuir);

264

Chapter 10: Appendix

}

public void Pause()

{
}

public void SetLocation(Point p)
{

}

public void StartComplex(Recer. Paths. Rankableltemp items)

{

}

public Recer. Paths. Rankableltem0 GetContextRankltems()

{

return contextltems;
}

public void Destroy()
{

}

public bool CanSupport(Type type)
{

return false;

}

public IDominoComponentfl GetChildren()

{

return null;
}

public void SetManager(IManager manager)
{

this. manager = manager;
}

public void AddDependent(IDominoComponent child)
{

}

public void SetContextRankltems(Recer. Paths. RankableltemO items)
{

contextltems = items;

}

Sendregion

265

Chapter 10: Appendix

}
}

10.3.2 Example 2: Map from Example application
using System;

using System. Data;

using System. Drawing;

using Domino. ComponentModel;

using Domino. Tools;

using System. Reflection;

using System. Windows. Forms;

using System. Collections;

namespace MapLib

N <summary>
/// Summary description for Class 1.
/// </summary>

public class MapLib : Control, IComponent
{

private (Manager manager;

private Font font;

private Bitmap image;

private ArrayList Layers;

private Bitmap buffer;

public MapLib()
{

font = new Font('Times", 12, FontStyle. Bold);

Layers = new ArrayList();

image = new
Bitmap(Assembly. GetExecutingAssembly(). GetManifestResourceStream("MapLib. map. png"));

}

protected override void OnPaintBackground(PaintEventArgs e)
{

protected override void OnPaint(PaintEventArgs e)
{

if(buffer==null)

buffer = new Bitmap(this. Width, Height);

Graphics g= Graphics. Fromlmage(buffer);

g. Drawlmage(image, 0,0);

g. DrawString("Map", font, new SolidBrush(Color. Red), 20,80);
foreach(Layer I in Layers)

266

Chapter 10: Appendix

{
I. PaintScaled(buffer);

}

g. Disposeo ;
e. Graphics. Drawl mage(buffer, 0,0);

}

#region (Component Members

public void SetSize(Size size)
{

this. Size = size;

}

public void SetLocation(Point p)
{

this. Location = p;
}

public IComponentfl GetChildren()

{

return (IComponent0)Layers. ToArray(typeof(IComponent));
}

public void StartComplex(Recer. Paths. Rankableltem[] items){

}

public void Start()

{

11 find a form

Logger. WriteLine(this, "Asking manager for something that supports "+typeof(Control));

(Component container = manager. FindDependency(typeof(Control));

f(container! =null)
{

Logger. WriteLine(this, "adding to "+container);

manager. AddDependency(container, this);

}

else
{

Logger. WriteLine(this, "container was null");
}

}

public void Pause()

{

}

public void Destroy()

{

267

Chapter 10: Appendix

public bool CanSupport(Type type)

return type. Equals(typeof(Layer));

public void SetManager(IManager manager)

this. manager = manager;

public void AddDependent(IComponent child)

Layers. I nsert(O, chi Id);

this. InvalidateO;

#endregion

268

Chapter 10: Appendix

10.4Appendix D- Navizon availability testing
To test the availability Navizon provides-how often it is able to locate the user with any of the

methods it is capable of using-a trial participant was asked to carry a device running a slightly edited

version of Navizon on an Mate SP5 during a shopping trip with her friends in the centre of Glasgow.

The Mate was connected to a Bluetooth GPS unit and had 802.11 and GSM enabled, allowing

Navizon to use all three forms for positioning. The only changes made to Navizon were the addition of

counters which tracked the time that each of the positioning technologies was able to provide a

location, as well as a counter that tracked the time that a location was not available from any of the

three positioning systems.

The device was activated shortly after the participant arrived in town and collected and stopped just

before she left. It did not record her journeys to or from the city. Altogether, the participant spent just

under 4 hours in the city, and the device recorded data over this entire period. The tables below show
the time, in milliseconds, and the ratios that each positioning technology was available.

802.11

Time (ms) Percents e
No coverage 42074390 31.65
Coverage 90850779 68.35

GSM

Time (ms) Percentage %
No coverage 223748 00.17
Coverage 132701421 99.83

GPS

Time (ms) Percentage
No coverage 102086823 76.80
Coverage 30838346 23.20

Any

Time ms Percentage
No coverage 198184 00.15
Coverage 132726985 99.85

269

Chapter 10: Appendix

10.5Appendix E- code to convert from latitude and longitude
(WGS84) to OSGB coordinates

public class CoordConverter

{

private const double airyA = 6377563.396;

private const double airylnvF = 299.3249646;

private const double airyF = 1/airylnvF;

private const double RADIANS_PER_DEGREE = 1.74532925199432957692369076848E-2;

private const double Origin_lon_g = -2;
private const double Ongin_lat_g = 49;

private const double X0 = 4.0E+5;

private const double YO = -1.0E+5;
private const double KO = 0.9996012717;

private const double b= (airyA) * (1-(airyF));

private const double Eps2 = (airyF) * (2.0-airyF);

private const double EE2 = Eps2 * Eps2;

private const double EE3 = EE2 * Eps2;

private const double Epps2 = (Eps2) / (1.0 - Eps2);

private const double WGSa = 6378137.0;

private const double WGSinvf = 298.257223563;

private const double dx = 375;

private const double dy = -111;

private const double dz = 431;

private static MapPoint translateDatum(double latitude, double longitude)
{

double phi = latitude' Math. Pl / 180.0;

double lambda = longitude' Math. Pl / 180.0;

double a0;
double b0;

double esO;
double f0;

double al;
double b1;

double esl;

double f1;

double psi;

double x;
double y;
double z;

270

Chapter 10: Appendix

double psil ;

aO = WGSa;
fO = 1.0 / WGSinvf;

al = airyA;
f1 = 1.0 / airylnvF;

bO=a0'(1-f0);

esO=2'fO-f0'fO;
b1 = al * (1 - f1);

es1=2*f1-f1*f1;

if (latitude == 0.0 11 latitude == 90.0 11 latitude == -90.0)
{

psi = phi;
}

else
{

psi = Math. Atan((1 - esO) * Math. Tan(phi));

if (longitude == 90.0 11 longitude == -90.0)
{

X=0.0;
y= Math. Abs(aO * bO / Math. Sqrt(bO * bO + aO * aO

Math. Pow(Math. Tan(psi), 2.0)));

}

else
{

x= Math. Abs((aO * b0) /
Math. Sgrt((1 + Math. Pow(Math. Tan(Iambda), 2.0))
(b0' bO + a0' a0' Math. Pow(Math. Ta n(psi), 2.0))));

y= Math. Abs(x ' Math. Tan(lambda));

}

if (longitude < -90.0 11 longitude > 90.0)

{
X= -X;

I

H (longitude < 0.0)

{

y=-y;

H (latitude == 90.0)

{

z= b0;

}

else if (latitude == -90.0)
{

271

Chapter 10: Appendix

z=-b0;
}
else
{

z= Math. Tan(psi) * Math. Sqrt((aO ' aO * bO * b0) / (b0 * bO + aO * aO
Math. Pow(Math. Tan(psi), 2.0)));

}

psil = Math. Atan((z - dz) / Math. Sgrt((x - dx) * (x - dx) + (y - dy) * (y - dy)));

latitude = Math. Atan(Math. Tan(psil) / (1 - esl)) " 180.0 / Math. Pl;

longitude = Math. Atan((y - dy) I (x - dx)) * 180.0 / Math. Pl;

if(x-dx<0.0)
{

if(y-dy>0.0)

{

longitude = 180.0 + longitude;

}

else
{

longitude = -180.0 + longitude;

}
}
return new MapPoint(Iatitude, longitude);

}

GLASS iow
UNI\"t: t s ITy
LM}:. \In 272

