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Summary. 

The normal adult pulmonary circulation comprises a low pressure, low-resistance 

circuit which is under the control of both active and passive factors (Fishman, 1985). 

In the disease pulmonary hypertension, the pulmonary circulation becomes a high- 

resistance circuit, as a result of structural and functional changes in the pulmonary 

vasculature. Endothelin-1 (ET-1), a potent endothelium-derived vasoconstrictor 

peptide has been implicated in the pathogenesis of both clinical and experimental 

pulmonary hypertension (Barnes, 1984). 

The small pulmonary arteries are thought to be important determinants of 

pulmonary vascular resistance in vivo. Therefore, the main aim of my research was to 

investigate the vascular reactivity of pulmonary resistance arteries in vitro, and assess 

any functional changes which may occur as a result of pulmonary hypertension. 

Particular influence was given to investigation of the vascular effects ET-1 in 

pulmonary arteries, and characterisation of the ET receptors present in these vessels. 

To investigate changes in vascular reactivity in pulmonary hypertension, a chronic 

hypoxic rat model was utilised. 

In control adult rats, ET-I (non selective ETA / ETB receptor agonist) produced 

potent vasoconstrictor responses in both large extrapulmonary arteries (3-5 mm i. d. ) 

and pulmonary resistance arteries (150 µm i. d. ) whereas responses to SxS6c (selective 

ETB agonist) were observed only in pulmonary resistance arteries. The selective ETA 

receptor antagonist FR 139317 was more effective in attenuating ET-1 mediated 

vasoconstriction in larger calibre pulmonary arteries than in pulmonary resistance 

arteries. Therefore it was found that ETA receptors predominate in large calibre 

extrapulmonary arteries, but pulmonary resistance arteries contain populations of both 

ETA and ETB receptors mediating vasoconstriction. 

Young male rats exposed to 14-16 days chronic hypobaric (418 mmHg) hypoxia 

exhibited significantly increased pulmonary artery pressure, right ventricular 
hypertrophy and pulmonary vascular remodelling all of which are associated with the 

development of pulmonary hypertension. Responses to ET-1 were significantly 

augmented in chronic hypoxic rat pulmonary resistance arteries compared to age 
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matched controls, and this potentiation appeared to be mediated via activation of ETA 

receptors. 

Pulmonary resistance arteries from chronic hypoxic, but not control rats, 

exhibited endogenous inherent tone, which was counteracted by basal release of nitric 

oxide (NO). Evidence was displayed for augmented endothelium-dependent 

vasodilatation in chronic hypoxic pulmonary resistance arteries. 

Using selective and non-selective ET receptor antagonists, evidence for the 

presence of a putative "inhibitory" ETA-like receptor was found in control, but not 

hypoxic pulmonary resistance arteries. Responses to SxS6c and ET-3 (agonist at ETg > 

ETA receptor) were antagonised by the selective ETB receptor antagonist BQ-788. A 

consistent finding was the need for combined blockade of both ETA and ETB receptor 

sites in order to antagonise ET-1-mediated vasoconstriction in both control and hypoxic 

preparations, indicating "cross-talk" between the receptor subtypes in these vessels. 

Whenever possible, functional studies were conducted in human tissue in order to 

classify the ET receptor subtypes present in the normal human pulmonary arterial tree. 

ET-I produced equipotent contractile responses in human large intrapulmonary (--5 mm 

i. d. ) and pulmonary resistance arteries (-200 µm i. d. ). Responses to ET-1 were 

attenuated by ETA receptor antagonists in the large calibre vessels only. Potent 

vasoconstrictor responses to SxS6c and ET-3 were also observed in resistance arteries, 

of approximately 30 % of the maximum response achieved to ET-1 in these vessels. 

ET-3 mediated vasoconstriction was antagonised by blockade of the ETB receptor 

subtype. These results show that ET-1 mediated vasoconstriction in the human 

pulmonary vasculature is mediated predominantly via ETA receptors in large calibre 

intrapulmonary arteries, whereas pulmonary resistance arteries contain populations of 

both ETA and ETB receptors at an approximate ratio of 70 : 30, both of which mediate 

vasoconstriction. 

The influence of vascular tone and NO on vasoconstrictor responses to 5- 

hydroxytryptamine (5-HT) were examined in bovine pulmonary resistance arteries. 

Preliminary studies were also conducted examining 5-HT in pulmonary resistance 

arteries from control and chronic hypoxic rats. Increasing vascular tone, or inhibition 
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of NO synthase, augmented responses to 5-HT and dramatically potentiated responses 

to sumatriptan (selective 5-HT1D agonist) in bovine pulmonary resistance arteries. As 

inherent tone is increased in resistance arteries from hypoxic rats, the vascular effects of 

5-HT and sumatriptan were studied in these vessels. Responses to 5-HT were 

significantly potentiated in hypoxic resistance arteries compared to controls. 

Contractile responses to sumatriptan were absent in both control and chronic hypoxic 

vessels, and significant responses could not be uncovered by NOS inhibition or raised 

vascular tone. 

The levels of intracellular cyclic nucleotides are important regulators of 

pulmonary vascular tone. Preliminary studies were conducted to investigate the effect 

of hypoxic pulmonary hypertension on levels of the intracellular cyclic nucleotides 

([CAMP]; and [cGMP]i) and total phosphodiesterase (PDE) activity in the pulmonary 

arterial tree. Total [cGMP]; was significantly decreased in the larger calibre pulmonary 

arteries (> 0.5 mm i. d. ) from hypoxic rats in comparison to control vessels, and these 

changes were associated with a corresponding increase in cGMP PDE activity. 

[cAMP]i was decreased in hypoxic pulmonary artery branches and a corresponding 

increase in cAMP PDE activity was found in this vessel. The observed decreases in 

cyclic nucleotide concentrations may equate with increased vascular tone observed in 

pulmonary hypertension. No significant changes in cyclic nucleotide levels or PDE 

activity were observed in chronic hypoxic rat pulmonary resistance arteries. 
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Over the past 40 - 50 years the pulmonary circulation has been extensively 

studied, documenting its unique physiological properties and highlighting the complex 

regulatory control of the pulmonary vasculature. Morphological and functional 

investigations have indicated that the pulmonary circulation is more than a passive 

conduit for the flow of blood to and from the respiratory alveoli. In the last ten years 

the fundamental role of the vascular endothelium in the regulation of both systemic and 

pulmonary vascular tone has emerged, and is thought to be of considerable importance 

in both normal and disease states. The focus of my research centres upon the vascular 

reactivity of pulmonary resistance arteries, investigating in particular the role of the 

potent endothelium-derived peptide endothelin. The pulmonary circulation will be 

discussed in detail in section 1.3 of my introduction, but to begin with, I will review the 

major endothelium-derived vasoactive factors with particular detail to the physiology 

and pharmacology of endothelin. 

Historically the vascular endothelium was considered to be a simple cellular 

inner lining to blood vessels, providing a physical barrier and regulating vascular 

permeability. However, it is now known that endothelial cells regulate many functions 

including, vascular remodelling, haemostasis and inflammation via metabolism 

synthesis and release of a range of chemical mediators (Löscher, et al., 1989). The 

endothelium also regulates vascular tone in response to humoral and physical forces, 

via the synthesis and release of vasoactive compounds which both constrict and relax 

vascular smooth muscle. 

23 



1.1.2 Relaxing factors. 

1.1.2.1 Endothelium-derived relaxing factor (EDRF) / Nitric oxide. 

In 1980, Furchgott & Zawadzki reported that acetylcholine (ACh)-induced 

relaxations in rabbit isolated aortic strips were dependent upon an intact vascular 

endothelium. By showing that a donor artery with intact endothelium could relax an 

endothelium denuded preparation, Furchgott also showed that ACh released a soluble 

factor from the endothelium, which was termed endothelium-derived relaxing factor 

(EDRF). Many substances including bradykinin, substance P, serotonin, adenosine 

diphosphate, histamine and thrombin, were also shown to mediate vasodilatation via 

release of EDRF (Löscher, 1989; Furchgott, 1990). Besides chemical activation, 

physical forces such as pulsatile flow and shear stress mediate EDRF production 

(Tesfamariam & Halpern, 1987; Tesfamariam & Cohen, 1988). 

Similarities in the chemical actions of EDRF and the free radical gas nitric 

oxide (NO) were reported, and it is now generally accepted that the biological activity 

of EDRF is due to the release of NO or a related compound (Palmer, et al., 1987; 

Ignarro, el al., 1987). The amino acid L-arginine was shown to be the precursor for the 

synthesis of NO in endothelial cells, and a synthetic pathway incorporating an enzyme 

nitric oxide synthase (NOS) was proposed (Palmer et al., 1988a, b, 1989). The 

proposed synthetic pathway for NO production in endothelial cells is shown in figure 

I. I. NO is generated from the gaunidino nitrogen of L-arginine in the presence of 

molecular oxygen to yield L-citrulline and NO. 

At present two main NOS isoforms have been described. A constitutive enzyme 

(cNOS) which was first described in vascular endothelium and in neurones but has also 

been detected in other cell types (Palmer, et al., 1989; Mayer, et al., 1989). The 

second is an inducible form (iNOS) located primarily in macrophages and neutrophils 

(Marietta, et al., 1988; Moncada, et al., 1991). cNOS is strongly regulated by calcium 

/ calmodulin, continually expressed, and once activated will produce picomolar 

amounts of NO until calcium levels decrease (Moncada, ei al., 1991). In contrast, 

iNOS is regulated at the level of transcription, requiring the actions of inducers such as 

cytokines or endotoxin for expression and is calcium independent (Moncada, et al., 
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1991). After induction, iNOS remains active for 4- 24 hours, yielding nanomolar 

concentrations of NO, 100 fold greater than those of cNOS. The synthesis of NO is 

stereo-specifically inhibited by various L-arginine analogues which act as competitive 

inhibitors of NOS, such as L-NG-monomethyl-arginine (L-NMMA) (Palmer, et al., 

1988b), and L-NG-arginine-m ethyl -ester (L-NAME) (Rees, et al., 1990). 

Shear stress 
Agoni sts 

Endothelial Cell 
......... 

2 

.............. .. "+ .............. 

ý"ý . L-arg. 
, .... L-citr. 

:::. Cycloox +20 2; 

Vascular smooth AC 
muscle cell ©"ý 

PGI 2" ATP CAMP 
Relaxation NO 

CGMP 
GTP ýý. 
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Figure 1.1. 
Major endothelium-derived relaxing factors. Mechanism of release and action on 

vascular smooth muscle cells. For full explanation see text. Examples of agonists 

which stimulate synthesis and release of EDRF : acetylcholine, bradykinin, adenosine 
diphosphate, endothelin, histamine. AA = arachidonic acid; AC = adenylate cyclase; 
Ca2+ = calcium; cAMP = cyclic AMP; cGMP = cyclic GMP; cNOS = constitutive 

nitric oxide synthase; Cycloox = cyclooxygenase; GC = guanylate cyclase; GTP = 

guanosine triphosphate; L-arg = L-arginine; L-citr. = L-citrulline; NO = nitric oxide; 
PGI2 = prostacyclin; R= receptor. 

The biological action of EDRF / NO on vascular smooth muscle is to mediate 

vasodilatation. Upon release NO diffuses freely through the endothelial cell to the 

smooth muscle where it activates soluble guanylate cyclase, stimulating the production 
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of cyclic 3', 5' guanosine monophosphate (cGMP) from guanosine-5'-triphosphate 

(Ignarro, et al. 1989). Activity of NO is short lived somewhere in the range of 3-30 

seconds, and decomposes rapidly to form mixtures of nitrate and nitrite in oxygenated 

solutions (Tolins, et al., 1991). The short half life of NO in plasma is reflective of the 

existence of several reactants in the plasma milieu that cause inactivation, including 

haemoglobin and superoxide anions (Moncada, et al., 1991). In accordance with the 

interaction between NO and superoxide, Rubanyi & Vanhoutte (1986) showed that 

EDRF half life was prolonged in the presence of superoxide dismutase (SOD) a 

scavenger of superoxide anions. 

In addition to the effects on vascular tone, NO has also been shown to inhibit 

vascular smooth muscle cell proliferation (Garg & Hassid, 1989), and inhibit platelet 

aggregation and adhesion (Radomski, et al., 1987 a, b). The terms of EDRF and NO 

are often used in the same context, but it must also be remembered that endothelial cells 

synthesise and release other EDRF's distinct from NO. 

Arachidonic acid (AA) metabolites, the prostaglandins and leucotrines are 

known to have vasoactive properties. The main prostaglandin synthesised and released 

from the endothelium is prostacyclin (PGI2) which is synthesised via cyclooxygenase 

breakdown of AA (Moncada & Vane, 1979). PGI2 relaxes bovine coronary arteries 

(Bunting, et al., 1977), and accounts for at least part of the endothelium-dependent 

relaxation in some vascular preparations (Forstermann, et al., 1986; Lamontagne, et 

al., 1992). Like NO, PGI2 is a vasodilator that also inhibits platelet aggregation, but 

through activation of adenylate cyclase rather than guanylate cyclase (Vegesna & 

Diamond, 1986; Cöte, et al., 1993). As the synthesis of both PGI2 and NO are calcium 

dependent processes (see figure 1.1), many stimuli, such as shear stress cause the 

release of both factors (Busse, et al., 1993). 

Another proposed non-prostanoid EDRF that differs from NO is endothelium- 

derived hyperpolarising factor (EDHF) (Feletou & Vanhoutte, 1988). This substance, 

as yet not chemically identified, is thought to be released from endothelial cells by a 
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calcium-dependent process similar to that for NO and prostanoids (Chen, ei al., 1988; 

Chen & Suzuki, 1990). EDHF mediates vasodilatation by hyperpolarisation of vascular 

smooth muscle via stimulating K+ efflux through ATP-sensitive channels (Nakashima, 

et al., 1993). The hyperpolarisation of the smooth muscle cell membrane likely inhibits 

calcium entry into the cell via voltage-dependent calcium channels and thereby causes 

relaxation (Taylor & Weston, 1988) 

1.1.3 Endothelium-derived contracting factors (EDCF). 

1.1.3.1 Candidates for EDCF's. 

Katusic & Shepherd (1991) have described endothelium-dependent contractions 

mediated by the activation of AA metabolites via the cyclooxygenase pathway in 

arteries and veins. Thromboxane A2 (TxA2), and the primary prostaglandins PGD2, 

PGE2 PGF2a and PGI2 may contribute to endothelium-dependent contraction in certain 

preparations (Miller & Vanhoutte, 1985). The endoperoxides (e. g. PGH2) are good 

candidates for EDCFs as they act upon the same receptors as TxA2, and because as 

precursors of all the prostanoids, they are necessarily made in the greatest abundance 

(Kato, et al., 1990; Ito, et al., 1991). Superoxide anions have also been suggested as 

EDCF's (Katusic & Vanhoutte, 1989), however this effect may be due to inhibition of 

the vasodilator effects of NO (Rengasamy & Johns, 1993; Gryglewski, et al., 1986). 

Of all the endothelium-derived contracting factors, arguably the most important is the 

recently discovered vasoconstrictor peptide endothelin. 

1.2.1 Discovery, 

In 1985, Hickey and colleagues demonstrated that the medium of cultured 

endothelial cells possessed potent vasoconstrictor properties. When applied to bovine 

isolated coronary arteries, the culture medium from endothelial cells triggered a slowly- 

developing well maintained contraction, which could not be contributed to any known 

vasoconstrictor agents. Subsequent studies by other groups confirmed this initial 

observation (Gillespie, et al., 1986), and by 1988, this peptidergic constrictor factor had 

27 



been isolated, purified, sequenced, cloned, and termed endothelin (ET) (Yanagisawa, ei 

al., 1988). Following the initial identification of ET, it was soon reported that this 

peptide belonged to a family of structurally similar peptides. Low hybridisation 

stringency Southern blot analysis of human genomic DNA revealed the existence of 

three distinct genes which encode three distinct ET peptides termed endothelin-1 (ET- 

1), endothelin-2 (ET-2) and endothelin-3 (ET-3) (Inoue, ei al., 1989a, b). 

1.2.2 Protein structure of the endothelins 

The newly identified ET's showed no similarity to any known peptides of 

mammalian origin. However it was soon reported that ET's showed strong structural 

similarity to another family of peptides, the sarafotoxins, found in the venom of the 

Israeli burrowing asp Atractaspis engaddensis (Kloog & Sokolovsky, 1989). There are 

five members of the sarafotoxin family termed sarafotoxin S6a-e (SxS6a-e). The amino 

acid structural sequences of the ET's and one member of the sarafotoxin family SxS6c, 

are shown in figure 1.2. All family members comprise of 21 amino acid residues and 

show homology at ten positions, including all cysteine residues (positions 1,3,11,15), 

as well as at positions 8 (aspartic acid), 10 (glutamine), 16 (histidine), 18 (aspartic 

acid), 20 (isoleucine) and 21 (tryptophan). All of the peptides posses two intrachain 

disulphide bridges linking Cys1-Cys15 and Cys3-Cys11. Human and porcine ET-1 

possess identical sequences. Human ET-2 has two substitutions relative to the ET-1 

sequence, and shows homology with a fourth peptide cloned from mouse intestine 

termed endothelin-p or vasoactive intestinal constrictor (V. I. C. ) (Saida, ei al., 1989). 

Human ET-2 and mouse V. I. C. differ by one another by only one amino acid and it is 

suggested that V. I. C. is the murine equivalent of ET-2. ET-3 sequence is identical in 

both human and rat, and differ from ET-1 by six amino acids. The COOH-terminal 

hexapeptide is conserved in sequence throughout the ET family, is largely hydrophobic, 

and has been shown to have biological activity in its own right (Rovero, et al., 1990). 
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Figure 1.2 

Amino acid structure (one letter code) of endothelin-1,2 and 3 and the related peptide 

sarafotoxin S6c (SxS6c). Structural difference from ET-1 is indicated by a bold circle 

outlining amino acid. Bold black lines indicate disulphide bonds between Cysi - Cys15, 

and Cys3 - Cys11. 
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ET's are thought to exist as compact structures in solution. Nuclear magnetic 

resonance imaging (NMR) of ET-1 suggested that a helix region dominates the central 

core between Lys9-Cys15, encompassing both disulphide bridges (Endo, el al., 1989; 

Reily & Dunbar, 1991). The structure of the COOH-terminal peptide is less well 

defined, some models suggesting the tail folded back toward the central helix, whilst 

other models suggest that the COOH terminus was a flexible structure (Endo, et al., 

1989; Reily & Dunbar, 1991). The overall NMR determined structure of ET-3 appears 

to be similar to those of ET-1, as would be expected considering the degree of 

homology between peptides (Mills, et al., 1992). Janes, ei al., (1994) described the 

crystal structure of ET-1 which differs significantly from the structures defined by 

NMR. The crystal structure was found to have an N-terminal extended ß strand with a 

bulge between residues Ser5 and Metz, and a long irregular helix that extends from 

residues Lys9 to Trp21, in the COOH-terminus. Defining the structure of ET's may 

prove useful for the pharmacological design of selective receptor agonists and 

antagonists. 

1.2.3 tndotnelin gene expression 

The three distinct human genes for ET-1, ET-2 and ET-3 have been mapped to 

chromosome 6, chromosome 1 and chromosome 20 respectively (Arinami, et al., 1991; 

Bloch, el al., 1989a, b). Each ET is a product of a separate gene that codes for a large 

preproendothelin (preproET) mRNA. The human ET-1 gene contains five exons, of 

which exon 2 encodes the complete sequence of mature ET-1 (Inoue, et al., 1989a, b). 

A variety of growth factors and vascular proteins can modulate the transcription and / 

or translation of the ET-1 gene (see section 1.2.3.2 and figure 1.3). 

1.2.3.1 Tissue expression or enuotneiins. 

Although ET-1 was originally isolated from porcine endothelial cells, it is now 

known that the ET's are produced from a variety of tissue and cell types. The majority 

of studies have focused on ET-1 expression. ET-1 mRNA has been detected in 

endothelial cells from many different locations including aorta (Tokunaga, et al., 1992), 
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umbilical vein (Inoue, et al., 1989b) and brain microvessel (Yoshimoto, et al., 1990). 

Vascular smooth muscle cells have also been shown to express ET-1 mRNA 

(Yanagisawa, et al., 1988; Resink, et al., 1990). Expression of ET-2 and ET-3 mRNA 

gene was not detected in either vascular endothelium or smooth muscle cells (Bloch, et 

al., 1989a, b), and to date ET-1 is the only member of the ET family known to be 

produced from endothelial cells. 

ET-1 is also expressed in many non vascular cell types, for example neurones 

(Giaid, et al., 1989), epithelium (Baley, et al., 1990) and bone marrow mast cells 

(Rubanyi & Polokoff, 1994). Expression of ET-2 mRNA is less widespread, but has 

been detected predominantly within the kidney and intestine, with smaller amounts 

produced in the myocardium, placenta, and uterus, although the exact cells of origin are 

not clear (Saida, et al., 1989; Firth & Radcliffe, 1992). ET-3 has been detected in high 

concentrations in the porcine brain (Shinmi, et al., 1989), and in a similar fashion to 

ET-1, ET-3 mRNA can be detected in numerous tissue and organ types including lung, 

heart, kidney, intestine and brain (Firth & Radcliffe, 1992). 

1.2.3.2 Regulation of endothelin gene ex rem ssion 

The rate of release of ET-1 from cultured endothelial cells is linear suggesting 

constitutive release of the peptide in vitro (Hexum, et al., 1990), however it has also 

been shown that several important stimuli enhance de novo synthesis of ET-1 and 

expression of the preproET-1 gene. Reports demonstrated that vasoactive compounds 

such as adrenaline, angiotensin II and bradykinin led to either increased expression of 

the preproET-1 gene or to ET-1 release (Yanagisawa, et al., 1988; Dohi, et al., 1992; 

Marsden, et al., 1991). Treatment with growth factors and cytokines also increase ET-1 

message within cultured endothelial cells (Yanagisawa, et al., 1989; Emori, et al., 

1992; Marsden, et al., 1991). Increased ET-1 mRNA expression was also stimulated 

by exposure to oxidised low density lipoprotein (Boulanger, et al., 1992), or to hypoxia 

(Kourembanas, et al., 1991). Reports have shown opposing effect of shear stress on 

ET-1 expression and release. Enhanced expression and production of ET-1 by cyclic 

stretch of endothelial cells has been reported (Sumpio. & Widmann, 1990; Yoshizumi, 
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Figure 1.3 

Biosynthetic pathway for endothelin-1 production. 

Regulation of endothelin-1 gene and proposed biosynthetic pathway for conversion of 

preproendothelin to endothelin. Examples of hormones and vascular factors modulate 

the synthesis of the preproendothelin-1 by the endothelin-1 gene through regulating the 

binding of transcription factors to specific elements on the endothelin-1 gene promoter. 

The mRNA is translated to a 203 amino acid preproendothelin protein, which is then 

converted to the 39 amino acid form (porcine) referred to as big endothelin- I by dibasic 

endopeptidases and carboxypeptidase. Big endothelin-1 is then cleaved at the Trp73 - 

Va174 bond by specific endopeptidases referred to as endothelin-converting enzyme. 

The final product is the 21 amino acid peptide, endothelin-1, consisting of amino acids 

Cys53 to Trp73 
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ei al., 1989), as has an opposing decrease in ET-1 mRNA levels with increasing shear 

stress (Sharefkin, ei al., 1991; Malek & Izumo, 1992). The contrasting results may be 

in part due to the origins of the endothelial cells used, or in the actual physiological 

levels of shear stress applied. Rapid release of ET-1 has been observed in response to 

increases in fluid flow rate (Milner, et al., 1990). 

Atrial natriuretic peptide (ANP) and NO have been shown to inhibit ET-1 

synthesis and release (Hu, et al., 1992; Boulanger & Löscher, 1990). Many of the 

reported inducers of ET-1 production are known to promote intracellular calcium 

accumulation and / or protein kinase C activation which may act at the level of 

transcription and / or translation. A summary of some of the substances which regulate 

gene transcription and translation of ET-1 is shown in figure 1.3. 

1.2.4 Biosynthesis of mature endothelins. 

The gene sequences predict that all the ET's are derived from preproET 

precursors comprised of between 160 and 238 amino acid residues, depending on the 

isopeptide and the species. Figure 1.3 shows the proposed proteolytic pathway for the 

biosynthesis of mature ET-1. The large precursors (203 amino acids for preproET-1) 

are first subject to intermediate processing by dibasic amino acid endopetidases, and 

carboxypeptidases to yield pro-ET's (more commonly termed big ET's) of 37 to 41 

amino acid residues. Big ET's can be secreted from cells in vitro and in vivo, and big- 

ET-1 levels in the plasma of normal human subjects are approximately twice the levels 

of ET-1 (Sawurama, et al., 1989). The reported plasma levels of ET-1 fall within a 

relatively wide range (0.1 - 20 pg / ml plasma) and vary substantially between 

publications (Rubanyi & Parker-Botelho, 1991; Rubanyi & Polokoff, 1994). The final 

stage of ET synthesis involves an unusual cleavage of big ET's between the Trp21 - 

Va122 (ET-1 and ET-2) and Trp21 - Ile22 (ET-3) bond, which is proposed to occur via 

specific endothelin-converting enzymes (ECE) (Yanagisawa, et al., 1988; Inoue, et al., 

1989a). The presence of big ET-1, mature ET-1 and its carboxyl terminal fragment can 

be detected in the conditioned medium of cultured endothelial cells indicating that all of 

the biosynthetic stages can occur within the endothelial cells (Emori, et al., 1989). The 
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vasoconstrictor actions of big ET-1 are over 100 fold less potent than mature ET-1 in 

the pig coronary artery (Kimura, et al., 1989), therefore the biosynthetic step converting 

big ET-1 to mature ET-1 appears to be important for expression of full vasoconstrictor 

actions. In the anaesthetised rat intravenous administration of big ET-1 produced 

vasoconstrictor responses with 4 times less potency, or equal potency to ET-1 

(Sawamura, el al., 1989), but infusion of the neutral endopeptidase (NEP) inhibitor 

phosphoramidon greatly reduced the pressor effect of big ET-1 (Matsumura, el al., 

1990). This suggests a rapid and efficient conversion of exogenous big ET-1 to 

biologically active ET-1 in vivo. Once synthesised ET-1 is immediately secreted and 

appears not to be stored in intracellular secretory granules (Nakamura, ei al., 1990; 

Rubanyi & Parker Botelho, 1991), therefore active control of ET-1 release appears to 

depends upon de novo synthesis of the peptide. 

1.2.4.1 Endothelin-converting enzymes (ECE). 

Characterisation of ECE activity in cultured bovine carotid artery and porcine 

aortic endothelial cells revealed that the enzyme may be a membrane bound neutral 

metalloprotease, as production of ET-l, or conversion of big ET-1 to ET-1 by 

endothelial cells displayed a narrow pH optimum (at pH 7.1), and could be selectively 

inhibited by phosphoramidon but not by various inhibitors of aspartic, serine or 

cysteine proteases (Okada, et al., 1990). Although there is good sequence homology 

between big ET-1 and big ET-3, this ECE described in bovine endothelial cells 

converted big ET-3 poorly, suggesting the existence of other types of enzymes 

converting the various isoforms of big ETs (Okada, et al., 1990). Human whole blood 

has been shown not to be a major site of conversion of big ET-1 to ET-1 (Watanabe, et 

al., 1991a). In addition the conversion of big ET-1 to ET-1 in isolated blood vessels 

has been shown to be dependent on the presence of an intact vascular endothelium 

(Fukuroda, et al., 1990d). This evidence would suggested that conversion of big ET-1 

to ET-1 in vivo occurs by an ECE present in the vascular endothelium. 

Studies have reported cloning of an ECE activity from rat, bovine and human 

sources (Ikura, et al., 1994; Schmidt, et al., 1994; Shimada, el al., 1994; Xu, et al., 
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1994). The enzyme expressed in rat endothelial cells was also shown to be 

phosphoramidon sensitive, but thiorphan insensitive (Shimada, et al 1994). Advances 

in ECE research have shown the previous hypothesis of the existence of more than one 

ECE isoform to be correct. The first ECE isoform to be identified and cloned was 

termed ECE-1, which was described as a type II metalloprotease that processed 

endogenously produced big ET-1 intracellularly and exogenously supplied big ET-1 on 

the cell surface (Shimada, et al., 1994; Xu, et al., 1994). The second isoform, ECE-2, 

is structurally similar to ECE-1 but was found to have an unusually acidic pH 5.5 

optimum, which may imply the enzyme acts intracellularly in acidified compartments 

and not on the cell surface (Emoto & Yanagisawa, 1995). ECE-1 was found to be 

abundantly expressed in endothelial cells in vivo, but could not be detected in neurones 

(Xu, et al., 1994). In contrast to ECE-1, ECE-2 is strongly expressed in neuronal cells 

(Emoto & Yanagisawa, 1995). Both ECE-1 and ECE-2 isoforms are substrate selective 

preferentially cleaving big ET-1 over big ET-2 and ET-3, implying that there may be 

yet more ECE(s) that cleave big ET-2 and big ET-3 more efficiently. Two isoenzymes 

of ECE-1 have recently been described which are derived from the same gene 

(Shimada, et al., 1995), and have subsequently been termed ECE-la and ECE-lb. 

ECE-la is expressed and localised in the vascular endothelial cells of all organs, 

whereas ECE-lb is present in human renal adenocarcinoma cells, human umbilical vein 

endothelial cells and bovine aortic endothelial cells (Battistini, et al., 1995). 

As previously mentioned, ECE's are sensitive to the actions of the NEP 

inhibitor phosphoramidon. However, phosphoramidon usefulness as a therapeutic 

agent targeting ET production are limited by its low inhibitory potency, selectivity and 

short duration of action. Some recently developed compounds which demonstrate ECE 

inhibitory effects include FR 901533 (Emoto & Yanagisawa, 1995), CGS 26303 and 

CGS 16393 (Trapani, et al., 1995) and WS75624 A and B (Tsurumi, ei al., 1995). In 

addition some phosphoramidon analogues demonstrate increased potency for ECE, 
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whilst showing a corresponding decrease in potency against NEP 24.11 (Kukkola. et 

al., 1995), and this may prove useful in the search for selective ECE inhibitors. 

1.2.5 Endothelin receptor subtypes 

1.2.5.1 Cloning of endothelin receptor subtypes. 

Before the receptors for ET had been cloned, the existence of more than one 

receptor subtype had been inferred from the discovery of varying agonist potencies in 

different tissues of the C-terminal fragment of ET-1, [endothelin]16-21 (Maggi, et al., 

1989). This hexapeptide produced contractions in the rat isolated aorta, but was 

inactive in the guinea-pig bronchus. Early experiments using 125I-ET-1, -2 and -3 

binding affinities, along with SDS-PAGE analysis of molecular mass, suggested two 

ET receptor subtypes were present in chick cardiac membranes and in rat lung 

membranes (Watanabe, et al., 1989a; Masuda et al., 1989). By the end of 1990, two 

groups simultaneously reported the isolation and cloning of two different ET receptors. 

One of the receptors was isolated from bovine lung cDNA library, and once expressed 

in Xenopus oocytes, showed extremely high selectivity of ET and SxS6 peptides (Arai, 

et al., 1990). The second cloned receptor was identified in rat lung cDNA library, and 

showed equal affinity for ET-1, ET-2 and ET-3 (Sakurai, et al., 1990). Both receptor 

subtypes have subsequently been identified from human rat and bovine cDNA (Hosoda, 

et al., 1991; Sakurai, et al., 1992). These two cloned receptors are homologous to 

other hepta-helical receptors of the rhodopsin superfamily, having seven hydrophobic 

regions predicted to form transmembrane helices, with an extracellular N terminus and 

a cytoplasmic C terminus. Each of these receptors is coupled to aG protein. 

1? 52 Endothelin A receptor. ETa),. 

The cloned receptor which showed selectivity for ET's in the following order, 

ET-1 = ET-2 > ET-3, was subsequently termed ETA (Arai, et al., 1990; Masaki, et al., 

1991). Strangely, it must be noted that cloned ETA receptors show 1000 fold 

selectivity for ET-1 over ET-3, whereas radioligand and functional studies indicate ETA 

receptors selectivity for ET-1 in the range of 10 to 100 fold. However, in many cases 
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this discrepancy may be due to the tissues concerned containing a mixture of receptor 

subtypes. 

1.2.5.3 Endothelin B receptor. ETB) 

The second cloned receptor which demonstrated equal affinities for the 

members of the ET family was termed ETB (Sakurai, ei al., 1990; Masaki, ei al., 

1991). As this receptor is non isopeptide selective it therefore demonstrates equal rank 

order of potency, i. e. ET-1 = ET-1 = ET-3. The ETA and ETB receptors have 

approximately 63 % homology in their amino acid sequence, and each type is highly 

conserved across mammalian species (85 to 90 %). Before the discovery of selective 

agonists and antagonists, the relative potency of the three ET peptides was used to 

classify the presence of ETA or ETB receptor subtypes. However, vascular endothelial 

cell function appears to be particularly sensitive to the action of ET-3, perhaps 

suggesting a further receptor subtype. 

1.2.5 
.4 

Endothelin C receptor (ETc) 

An ET receptor present on cultured bovine endothelial cells was shown to have 

functional selectivity for ET-3 over ET-1 (Emori, ei al., 1991). Similar observations 

were found by Warner et al (1992), in that endothelial cell release of NO was 

particularly sensitive to the actions of ET-3 over ET-1. cDNA for a receptor with 

relatively high affinity for ET-3 was reported in Xenopus laevis dermal mellanophores, 

and had approximately 50 % amino acid homology with ETA and ETB receptor 

subtypes (Karne, ei al., 1993). A mammalian counterpart of this putative third ET 

receptor has yet to be cloned, and is therefore not accepted within IUPHAR regulations. 

If a third ET receptor was present in mammalian tissues, it would probably have a 

considerably different amino acid sequence from the ETA and ETB receptors, as 

southern blots of human genomic DNA have revealed only two signals corresponding 

to the ETA and ETB subtypes (Sakamoto, et al., 1991). 
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1,2,5.5. Tissue distribution of endothelin receptor su , pc 

It is difficult to make strong conclusions on the differential distribution of ET 

receptors determined by northern blotting, as results vary markedly between 

publications, even for the same receptors and species (Miller, et al., 1993). In general, 

ETB receptors appear to be more widely distributed on many different tissue types, for 

example in the brain, liver, kidney and uterus (Sakurai, et al., 1990; Miller, et al., 

1993; Simonsen, 1993). The mRNA for ETA receptors appears to be strongly 

associated with vascular tissue, and is particularly expressed in the heart and lungs 

(Arai, et al., 1990). In the brain ETA receptors were found to be associated with blood 

vessels, and ETB receptors with glial and epithelial cells, but few receptors if any were 

associated with neurones (Hori, et al., 1992). In the kidney, there is a similar situation 

in that ETA receptors are located on vascular smooth muscle, whereas ETB receptors 

are located on vascular endothelium, vasa recta and the loop of Henle (Simonsen, et al., 

1993). 

Therefore with reference to the vasculature in general, the majority of evidence 

would indicate that ETA receptors are located on the smooth muscle cells of many 

vessel types. Stimulation of vascular ETA receptors mediates a slowly developing 

long-lasting contraction (Rubanyi & Parker-Botelho, 1991). ETB receptors have been 

shown to be expressed in vascular endothelial cells, and analysis of rat ETB receptor 

messenger RNA, showed strong signals in endothelial and epithelial cells but did not 

reveal any significant expression of ETB receptors in vascular smooth muscle cells 

(Hori, et al., 1992; Sakurai, et al., 1990). However, ETB receptor mRNA has been 

detected in vascular smooth muscle cells from human tissue samples including 

coronary, pulmonary and intermammary artery (Davenport, et al., 1993; Winkles, et 

al., 1993). When present on the vascular endothelium, activation of ETB receptors is 

generally thought to mediate vasodilatation, whereas activation of ETB receptors on 

smooth muscle cells mediates vasoconstriction (Rubanyi & Polokoff, 1994). Due to the 

opposing functional responses of endothelial and vascular ETB receptors, they are often 

referred to as ETBI (endothelial - vasodilatation) and ETB2 (vascular - contractile). For 

further discussion of ET effects in the vasculature see section 1.2.11.3. 
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1.2.5.6 Regulation of endothelin receptor expression. 

The regulation of the production of ET-receptors often parallels that of ET's. 

Hypoxia and cyclosporine rapidly stimulate the production of ET-1 and ETA receptors 

in endothelial cells and vascular smooth muscle cells respectively (Simonsen, el al., 

1993). Epidermal growth factor, basic fibroblast growth factor, cAMP, and estrogen 

up-regulate ETA receptors in some tissues, and C-type natriuretic hormone, angiotensin 

II and basic fibroblast growth factor up regulate ETB receptors. In contrast, ET's, 

platelet derived growth factor, angiotensin II and transforming growth factor-ß 

downregulate ETA receptors, whereas cAMP catecholamines and perhaps ET's 

downregulate ETB receptors (Levin, el al., 1995). 

1.2.6 Structure / activity relationships. 

Early studies indicated the importance of conserving free amino and carboxy 

terminals to retain the biological activity of ET-1 and related peptides (Nakajima, el al., 

1989a). The terminal Trp21 must be present and in the L-configuration for these 

peptides to exert biological actions (Kimura, et al., 1988). Reduction of the disulphide 

bonds, or scrambling of the bonds results in peptides that are less active in promoting 

vasoconstriction via activation of ETA receptors (Nakajima, ei al., 1989b). The amino 

and carboxy groups if Asp8 and Glulo, and the aromatic group of Phe14, contribute to 

the expression of ET-1 vasoconstrictor actions (Nakajima, ei al., 1989b). 

The linear analogue [A1a1,3,11,15]ET-1, in which both disulphide bridges are 

absent, has been shown to mediate depressor responses in anaesthetised rats (ETB- 

mediated response) and lack sustained vasoconstrictor properties (ETA-mediated 

response) (Douglas & Hiley, 1991; Bigaud & Pelton, 1992). Amino terminal truncated 

versions of linear ET-1 analogues also act as potent ETB receptor agonists, and lack 

ETA receptor activity (Rubanyi & Polokoff, 1994). In general it would appear that ETA 

receptor activity requires the highly ordered ET helical core to be retained as well as the 

presence of the linear COOH-terminal domain. Activation of ETB receptors appears to 

require only the COOH-terminal domain. Manipulation of these structure activity 
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relationships led to the discovery of the first selective ET-receptor agonists and 

antagonists, as described in the following section. 

1.2.7. Agonists and antagonists at endothelin receptors 

1.2.7.1. Selective agonists. 

With the relative potencies of the three ET peptides at the ETA and ETB 

receptors, ET-3 is the only endogenous ET which could be considered a selective 

agonist, having preference for ETB receptors. However, ET-3 can, in some 

preparations, have potency in the low nanomolar range at ETA receptor sites, therefore 

it is important when using ET-3, to assess the ratio of potency to that of ET-1. The 

structurally similar sarafotoxin S6c (SxS6c) has become accepted as a selective ligand 

for ETB receptors. Williams, et al., (1991) demonstrated that SxS6c was at least 50,000 

times less potent than ET-1 at inhibiting binding of 1251 ET-1 in rat aorta and atria, 

tissues rich in ETA receptors. BQ-3020, is a potent agonist of ETB receptors, with a 

selectivity ratio of 4700 for ETB : ETA (Saeki, et al., 1991). Other compounds often 

used as selective ligand for ETB receptors are [Alas, 3,11,15]ET-1 (Hiley, et al., 1990) 

and IRL 1620 (Takai, et al., 1992). Since the discovery of ET-1 in 1988, the research 

into selective agonists and antagonists is yet to elude a selective agonist at the ETA 

receptor site. 

1.2.7.2 Peptide endothelin receptor antagoni, ts. 

The first ET receptor antagonists to be described were peptide or peptoid 

derivatives of the ET's or structurally related analogues. 

The cyclic pentapeptide, BQ-123 was shown to be highly selective for ETA 

receptors in binding experiments, and also inhibited contractile responses to ET-1 in the 

pig coronary artery (Ihara, et al., 1992). Following the development of BQ-123, a 

second peptide ETA receptor antagonist, FR 139317, was described (Sogabe, el al., 

1993). This peptide antagonist showed approximately 90-fold selectivity for ETA 

receptors with a pA2 value of 7.2 against ET-1-induced contractions in rabbit aorta. 
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Other peptide antagonists which have been described as selective for ETA receptors are 

BQ-610 (Verheyden, et al., 1994), and PD 151,242 which has been introduced in its 

iodinated form as a selective radioligand for ETA receptors. (Davenport, et al., 1994). 

The peptide antagonist TAK-044 displays unusual properties in that it demonstrates 

high selectivity for ETA receptors in binding experiments, but functionally it acts as a 

non selective ETA / ETB receptor antagonist (Ikeda, et al., 1994; Kikuchi, et al., 

1994). 

Peptide B receptor antagonists. 

A truncated sequence of ET-1, IRL 1038, was reported to be a selective ETB 

receptor antagonist, although it was apparently less potent as a functional antagonist 

when compared with binding studies (Urade, et al., 1992). Unfortunately, the affinity 

of the antagonist for ETB receptors was reported to be highly variable between batches, 

and data obtained with this compound should be considered with caution (Urade, et al., 

1994). Other ETB receptor antagonists described are BQ-788, and the less potent RES- 

701-1 (Ishikawa et al., 1994; Mori shita, et al., 1994). 

Non-selective peptide, endothelin receptor antagonists. 

Very few non-selective peptide ET receptor antagonists have been described. 

Derivatives of the ET C-terminal hexapeptide have led to the production of PD 142,893 

and PD 145,065 which functionally inhibit ETA and ETB mediated responses with pA2 

values in the range of 6.0 - 7.1 (Doherty, et al., 1993). 

1.2.7.3 Non-peptide antagonists. 

In 1993 and 1994, the first non-peptide ET antagonists were described. These 

compounds would have possible therapeutic advantages over peptide antagonists as 

they would be orally active. 

Non-peptide ET6 receptor antagonists. 

BMS 182874 is a selective non-peptide antagonist at ETA receptor sites, with a 

pA2 value of 6.3 against ET-1 mediated contraction of the rabbit carotid artery (Stein, et 

al., 1994). Recently described novel non-peptide ETA receptor antagonists PD 155,080, 
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PD155,719 and PD156,707, show varying degrees of selectivity and potency at the ETA 

receptor site (Reynolds, et al., 1995; Doherty, et al., 1995) 

Non-peptide ETg receptor antagonists. 

Non-peptide ETB receptor antagonists have been slow to emerge, but recently 

such a compound Ro 468443 has been described, which displays approximately 2000 

fold selectivity for the ETB receptor (Clozel, et al., 1995). 

Non-selective non-peptide endothelin antagonists. 

Other non-peptide ET antagonists show less selectivity between ETA and ETB 

receptor subtypes and are often classes as non-selective. The first orally active ET 

receptor antagonist to be described was Ro 46-2005 (Clozel, et al., 1993), which was 

subsequently structurally optimised to produce bosentan (Ro 47-0203) a more potent 

mixed antagonist of ETA and ETB receptors (Clozel, et al., 1994). Although bosentan 

acts upon both ETA and ETB receptor subtypes, it demonstrates approximately 20 fold 

selectivity for the ETA receptor subtype. The most potent of the non-peptide ET 

antagonists to date is SB 209670, which antagonises ET-1 induced contractions of rat 

aorta (ETA receptors) with a pA2 value of 9.39, whereas in the rabbit pulmonary artery 

(ETB2 receptors) the pA2 value was 6.7. Binding studies demonstrated less selectivity 

between the two receptor subtypes with Ki values of 0.2 nM (ETA receptor) and 18 nM 

(ET8 receptor) indicating at least 90 fold selectivity for the ETA receptor subtype 

(Ohlstein, et al., 1994). More recently, additional non-peptide non-selective ET 

antagonists have been described including PD 160,672, PD 160,874, L749329, 

L751281 and SB 217242. (Doherty, et al., 1995; Battistini, et al., 1995; Barone, et al., 

1995). 

A summary of the selectivity and potency of the ET agonists and antagonists 

used in my studies is shown in table 1.1 (see also experimental chapters). The 

structures of these peptide and non peptide antagonists are shown in figure 1.4. 
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Figure 1.4 

Structure of selected endothelin antagonists used in this thesis. The full chemical 

names are given below. Further information on receptor selectivity can he found in 

table 1.1. 

BQ-788 

[N-cis-2,6- dimethylpiperidinocarbonyl - L-y-methylleucyl-D- I- 

methocarb onyl try pophanyI-D-norleucine]. Peptide antagonist selective for ETB 

receptor subtype. 

FR 139317 

((R)2-[(R)-2-[(S)-2-[[ I -(hexahydro-1 H-azepi nyl)]carbinyl ]amino-4- 

methylpentanoyl]amino-3-[3-(1-methyl-1 H-indoyl)]propionyl ]amino-3-(2- 

pyridyl)propionic acid. Peptide antagonist selective for the ETA receptor subtype. 

BMS 182874 

5-(Dimethylamino)-N-(3,4-dimethyl-5-isoxazolyl)-1-naphthalenesulfonamide. Non- 

peptide antagonist selective for the ETA receptor subtype 

Bosentan (Ro 47-0203) 

4-tert-butyl-N-[6-(2-hydroxyl-ethoxy)-5-(2-methoxy-phenoxy)-2,2'-bipyrimidin-4-yl]- 

benzene-sulfonamide. Non-peptide anatgonist at both ETA and ETB receptor subtypes 

(shows slight selectivity for ETA receptor subtype). 

SB 209670 

[(+)-(1 S, 2R, 3 S)-3-(2-carboxymehtoxy-4-methoxyphenyl)1-(3,4- 

methylenedioxyphenyl)-5-(prop-1-yloxy)indane-2-carboxylic acid]. Non-peptide 

antagonist at both ETA and ETB receptor subtypes (shows slight selectivity for ETA 

receptor subtype). 
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1.2.8 Intracellular mechanisms. 

As my interest in the biological actions of ET's centres on their pulmonary 

vascular effects, in this section I will introduce the main signal transduction pathways 

linked to ET receptor subtypes in vascular tissue. As the contractile effects of ET are 

most extensively studied, the signal transduction pathways stimulated by ET-1 

activation of ETA receptors are best understood. To generalise in most vascular 

preparations, ET-1 mediates increase in cytosolic Ca2+ concentration in two distinct 

phases; a transient initial phase, which is the result of Ca2+ mobilisation from 

intracellular stores, and a sustained phase which is dependent on extracellular Ca2+ 

(Rubanyi & Polokoff, 1994). ET-peptide interaction with ET-receptors is essentially 

irreversible (Marsault, et al., 1991), which in part explains the well maintained 

vasoconstriction produced by ET-1 in vascular preparations. 

1.2.8.1 Phospholipase C activation 

Overwhelming evidence suggests that the major signal transduction pathway 

mediating ET-1-induced contraction in the vasculature is by activation of phospholipase 

C (PLC), leading to and rapid formation of inositol 1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG) accumulation. This has been shown to occur both in isolated 

arterial preparations (Pang, et al., 1989; Kasuya, ei al., 1989), and also in vascular 

smooth muscle cells in culture (Resink, el al., 1988; Araki, el al., 1989). Both ETA 

and ETB receptor subtypes have been descried to be coupled to this pathway (Masaki, 

et al., 1994). The intracellular cascade of events triggered by PLC activation by 

vascular ET receptors in shown in figure 1.5. ET's interaction with the membrane ET 

receptor activates PLC (via aG protein), which catalyses phosphatidylinositol 4,5- 

bisphosphate (PIP2) breakdown. The products of this reaction are IP3 and DAG, the 

former of which acts upon specific receptors to release intracellularly stored Cat+. The 

increase in intracellular Ca2+ activates the enzyme myosin light-chain kinase, which 

leads to the phosphorylation of myosin light-chain protein triggering contractile events. 

The second product DAG, may in turn activate protein kinase C (PKC), see section 

1.2.8.3. Activation of PLC leading to IP3 accumulation is one mechanism linked to 
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ET-1 mediated contraction via intracellular Ca2+ stores and is probably responsible for 

the initial transient phase, however, ET-1 also stimulates increases in intracellular Ca2+ 

concentration by utilising extracellular calcium. 

UET-1 

Ca2+ 

Ca2+ 
? PIP Cell 

Channel 
ET R2 Membrane 

GG PLC 

ýp3 I4DAGI 

t [Ca2+] j 

y MLC 
MLGP 

CCONTRACTION 

IT PKC I 

PROLIFERATION 

Figure 1.5. 
ET-1 intracellular signalling pathways. Main intracellular signalling events due to 

activation of membrane ETA and ETB receptors. For full explanation see text. ET R= 

ET receptor; G=G protein; PLC = phospholipase C; PIP2 = phosphatidylinositol 
bisphosphate; IP3 = 1,4,5-inositol triphosphate; PKC = protein kinase C; MLC = 

myosin light-chain; MLC-P = phosphorylated myosin light-chain; MLCK = myosin 

light-chain kinase; ?= link between ET receptor and Ca2+ channel still uncertain. 

1.2.8.2 Transmembrane influx of extracellular calcium. 

A number of studies in different isolated tissue preparations have indicated that 

part of the ET-1 mediated contractile response is dependent on the presence of 
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extracellular Cat+. The initial study by Hickey, et al (1985) showed that the EDCF- 

induced contractile response from cultured endothelial cell medium could be attenuated 

by removal of extracellular calcium, or by addition of the L-type Ca2+ channel blocker 

verapamil. Similar inhibitory effects of L-type Ca2+ channel blockers on ET-1 

mediated responses have been noted in a number of preparations including rat aorta 

(Sakata, et al., 1989), rat mesenteric arteries (Godfraind, et al., 1989) and pig coronary 

arteries (Egashira, et al., 1990). However, in other preparations such as the rat 

pulmonary artery (Leach, et al., 1990) and rabbit pulmonary vein (Steffan & Russell, 

1990), L-type Ca2+ channel antagonists were not effective in attenuating ET-1 mediated 

responses. Evidence would suggest that ET-1 is not an endogenous ligand of L-type 

Ca2+ channels (Kasuya, et al., 1989; Hirata, et al., 1988) and therefore activation must 

be the consequence of indirect gating by ET-1. Therefore it would appear that 

activation of voltage operated (VOC) Ca2+ channels, either indirectly or via coupling to 

a G-protein may be partly responsible for the influx on extracellular Ca2+ due to ET-1 

activation (Inoue, et al., 1990; Takayasu, et al., 1989) but the exact channels involved 

and mechanism of activation may vary between tissues. 

1283 Activation of protein kinase C. 

As mentioned previously, the production of DAG via PLC activation, may in 

turn activate the enzyme protein kinase C (PKC). There is evidence to suggest that 

activation of PKC may play a role in ET-1-induced vascular contraction; for example 

in the rabbit pulmonary vein, the PKC inhibitor H-7 effectively blocked ET-1-induced 

contractions (Steffan & Russell, 1990). Contractile responses mediated by ET-1 are 

similar to the slowly developing and long-lasting contractile responses produced by 

phorbol esters (PKC activators). The irreversibility of ET-1-induced responses is due to 

a late intracellular signalling event for which PKC activation may be in part responsible 

(Marsault, et al., 1991). PKC activation mediates the long term effects of ET-receptor 

activation, in that it stimulates DNA synthesis, gene transcription and mitogenesis 

(Simonsen, et al. 1993) 
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1.2.8.4 Other intracellular pathways. 

ET-1 may activate phospholipase A2 in certain tissues to mediate the release of 

PGI2 and TxA2 through metabolism of AA (Resink, et al., 1989), and this may be one 

of the mechanisms by which ET's mediate vasodilatation. In cultured bovine 

endothelial cells, as well as being coupled to PLC, ETB receptors may be negatively 

coupled to adenylate cyclase via an inhibitory G-protein (Eguchi, et al., 1993). 

Activation of these receptors would result in intracellular cAMP levels decreasing, 

which in turn would result in a rise in intracellular free calcium, and perhaps stimulate 

NOS activity resulting in NO production. ET-1 has also been shown to activate the 

Na+-H+ antiporter leading to intracellular alkalisation in vascular smooth muscle cells 

(Koh, et al., 1990). 

1.2.9 Pharmacological actions of endothelins. 

Many pharmacological and physiological studies have indicated that ET's have 

a diverse effects in various biological systems; including endocrine, reproductive, 

gastrointestinal and nervous systems (Rubanyi & Polokoff, 1994). In this section some 

of the main pharmacological effects of ET's in the cardiovascular system will be 

introduced. The pharmacological actions and potential physiological role of ET's in the 

pulmonary circulation will be discussed separately in section 1.4. 

1.2.10 Direct cardiovascular effects. 

1.2.10.1 Haemodynamic actions in intact animals. 

Intravenous infusion of ET-1 into conscious, anaesthetised or pithed rats 

produces a biphasic response which comprises of an initial transient vasodilatation 

followed by a profound sustained increase in systemic blood pressure (Yanagisawa, et 

al., 1988; Gardiner, et al. 1990; MacLean, et al., 1989). The initial transient depressor 

response has since been demonstrated to be mediated via activation of ETB receptors, 

due to the ability of ETB receptor antagonists such as BQ-788 to abolish this response 

(Ishikawa, et al., 1994), and the ability of ET-3 and SxS6c to mediate the depressor 

response (Gardiner, et al., 1990; Clozel, et al., 1992). The depressor action of ET's 
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may be due to the release of PGI2 (Le Monnier de Gouville, et al., 1989) and / or NO 

(Gardiner, ei al., 1990), although the exact mediator of this response may be species 

dependent. The sustained pressor response to ET-1 in the pithed rat was shown to be 

due to increased total peripheral resistance, with no change observed in heart rate or 

cardiac output (MacLean, ei al., 1989). Although it was initially thought that the 

pressor response to ET-1 in intact animals was solely due to activation of ETA receptors 

(Ihara, ei al., 1992; Douglas, ei al., 1992), it is now known that vascular ETB receptors 

also contribute to this response in vivo (Clozel, ei al., 1992). Additional evidence for 

vascular ETB receptors will be discussed in section 1.2.11.3. 

1.2.10.2. Cardiac actions. 

High affinity ET-binding sites are present in cardiac tissue (Nayler, 1990). 

Cultured cardiac myocytes can also synthesis and release ET-1, therefore suggesting a 

regulatory role for ET's in the heart. In isolated perfused hearts and cardiac tissue, 

application of ET-1 induced positive inotropic effects (Rubanyi & Polokoff, 1994; 

Moravec, et al., 1989) which is accompanied by prolongation of the cardiac action 

potential (Watanabe, et al., 1989b). Both positive and negative chronotropic effects of 

ET-1 have been observed, which may be due to differences in experimental 

preparations and the site of ET-1 application (Rubanyi & Polokoff, 1994). One reason 

for such differences could be due to the potent coronary vasoconstrictor actions of ET's 

(Kurihara, et al., 1989). Intracoronary arterial infusion of ET-1 could lead to significant 

myocardial ischemia, decreasing cardiac output and contractility, hence giving 

opposing results to those observed in isolated tissue preparations. 

1.2.10.3. Vascular actions. 

Since the first reports by Hickey, ei al., (1985) and Yanagisawa, et al., (1988) 

demonstrating the potent vasoconstrictor actions of ET-1, numerous studies in a 

different types of isolated blood vessels have confirmed the initial observation that ET- 

1 produces slowly-developing well-maintained constrictor responses (Randall, 1991; 

Rubanyi & Parker-Botelho, 1991). In the majority of preparations, ET-1-mediated 
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vasoconstriction could be attributed to direct activation of vascular ETA receptors, 

indicated by the relative potency of ET's and the ability of selective ETA receptor 

antagonists to attenuate these responses (Masaki, et al., 1991,1994). However, it was 

observed that in some vascular preparations that ET-1-mediated vasoconstriction was 

partially or totally resistant to the actions of ETA receptor antagonists, and therefore 

could not be entirely contributed to ETA receptor activation. In the rabbit saphenous 

vein, the ETB receptor agonist SxS6c produced contractile responses of equal potency 

to ET-1, and responses to ET-1 were resistant to the actions of BQ-123 (Moreland, et 

al., 1992). Shortly after this a similar observation was demonstrated by Sumner, et al., 

(1992) who demonstrated that vasoconstriction to ET-1 in the rabbit jugular vein was 

resistant to antagonism by BQ-123, and potent contractile responses were also observed 

to the ETB agonist [Ala1,3,11,15] ET-1 in this preparation. Many reports have since 

demonstrated functional populations of contractile ETB receptors in isolated tissue 

preparations such as the porcine coronary artery (Harrison, et al., 1992; Shetty, et al., 

1993) and canine coronary artery (Teerlink, et al., 1994). There is also growing 

evidence for ETB receptor mediated vasoconstriction in animals in vivo (Clozel, et al., 

1992; Bigaud & Pelton, 1992; McMurdo, et al., 1993; Moreland, et al., 1994). As 

well as its effects on larger arteries and veins, ET-1 is a potent vasoconstrictor of 

resistance arteries and the microcirculation (Rubanyi & Polokoff, 1994) which together 

are important determinants of peripheral vascular resistance. As well as exhibiting 

potent contractile responses in isolated vascular preparations, ET's can mediate 

vasodilatation through interaction with the vascular endothelium (see section 1.2.11.4). 

Comparing responses in isolated blood vessel preparations is has been generally 

found that ET-1 is between 3- to 10- fold more potent in systemic venous preparations 

than in corresponding arterial preparations (Rubanyi & Polokoff, 1994). It has been 

postulated that the increased sensitivity in venous preparations may be due to activation 

of different receptor populations, as evidence for vascular ETg receptors is most 

commonly detected in systemic venous preparations. 
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1.2.10.4 Interaction with vascular endothelium. 

Although ET's are potent vasoconstrictors of vascular preparations, in vivo 

evidence showed that administration of ET's produced a transient depressor response. 

Warner et al., (1989a, b) showed that ET-1 and ET-3 produced vasoconstrictor actions 

in isolated perfused vessels of the rat and rabbit, and that ET-1 was 10 fold more potent 

than ET-3 in mediating vasoconstriction. However when vascular tone was artificially 

raised in these preparations, equipotent vasodilatation to ET-1 and ET-3 was observed. 

Removal of the endothelium and administration of methylene blue inhibited this effect 

suggesting the involvement of endothelium-derived NO in this response. The relative 

potency of the ET's, and the ability of selective ETB agonists and antagonists to 

mediate and inhibit these responses indicated that activation of endothelial ETB 

receptors are responsible for ET-mediated vasodilatation (Douglas & Hiley, 1990; 

Takayanagi, et al., 1991). NO release can also be demonstrated in cultured endothelial 

cells via activation of ETB receptors (Hirata, et al., 1993). 

As has been observed with other factors which mediate endothelium-dependent 

vasodilatation (see section 1.2.2), ET's can also stimulate endothelial release of PGI2 in 

some preparations. This has been demonstrated in isolated vascular preparations 

(Rakugi, et al., 1989) and in intact animals (De Nucci, et al., 1988; Filep, et al., 1991). 

ET-1 and ET-3 have been shown to stimulate the release of PGI2 from cultured 

endothelial cells (Emori, et al., 1991). 

1.2.10.5 Growth/ proliferative effects. 

As well as mediating changes in vascular tone, there is evidence to suggest that 

ET-1 may also regulate growth and proliferation of vascular cell types. ET-1 stimulates 

mitogenesis in Swiss 3T3 fibroblasts (Takuwa, et al., 1989), stimulates vascular smooth 

muscle cell proliferation (Komuro, et al., 1988) and increases mitotic activity in 

cultured aortic smooth muscle cells (Muldoon, et al., 1989; Yu, et al., 1991). The 

proliferative effects of ET's are variable between publications, and it is thought that 

ET's may be co-mitogenic with other growth factors and vasoactive compounds such a 

platelet derived growth factor (Nakaki, et al., 1989; Weissberg, ei al., 1990). 
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Weissberg, et al., (1990) demonstrated that ET-1 and ET-2 were equipotent in 

stimulating mitogenesis, whereas ET-3 displayed significantly less potency suggesting 

this action is mediated via ETA receptors. ET's may also regulate endothelial cell 

growth, proliferation and migration (Vigne, et al., 1990; Wren, et al., 1993), and would 

appear to be mediated via ETB receptor activation (Morbidelli, et al., 1995). 

1.2.11 Indirect cardiovascular actions. 

Intracerebroventricular injection of ET-1 in rats evokes profound increase in 

arterial blood pressure and vasoconstriction, (Yamamoto, et al., 1991; Rubanyi & 

Parker-Botelho, 1991). These vascular effects appeared to be mediated in part via 

increased plasma catecholamine levels. ET's may also regulate firing activity of 

mechanoreceptors in the circulation, both in the carotid sinus and aortic arch, and also 

those in the heart and lungs (Rubanyi & Parker-Botelho, 1991). 

ET-1 is a potent vasoconstrictor of renal vasculature which result in marked 

decreases in renal blood flow (Hirata, et al., 1989; Edwards, el al., 1990). This results 

in decreased urine volume and decreased sodium excretion probably mediated through 

reduction in glomerular filtration rate. 

As mentioned in section 1.2.3.2, ET-1 production can be regulated by many 

factors including vasoactive hormones. However, it is also now known that ET's 

interact with the endocrine system, causing inhibition and release of various hormones. 

ET's stimulate aldosterone biosynthesis and secretion both in vivo and in vitro (Miller, 

et al., 1989). ET-1 also stimulates atrial natriuretic peptide (ANP) secretion (Hu, et al., 

1988), the physiological actions of which will oppose those of ET-1. The main effects 

of ANP are vasodilatation, and this hormone has been shown to inhibit ET-1 synthesis 

and secretion (see section 1.2.3.2). ET-1 also stimulates arginine vasopressin (AVP) 

release, elevates plasma renin concentration and increases angiotensin II (All) levels 

(Rubanyi & Parker-Botelho 1991; Rubanyi & Polokoff 1994). Both AVP and All 

stimulate ET-1 synthesis and release, and may act synergistically with ET-1 in 

increasing vascular tone. 
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1.2.11 Evidence for receptor subdivisions. 

Before introducing the possible physiological role of ET's in the cardiovascular 

system, I will take this opportunity to review evidence for possible ET receptor 

subdivisions. As most of this evidence has arisen from functional studies it was of 

importance to first introduce the vascular actions of ET's before approaching this topic. 

Analysis of genetic material from mammalian species has resulted in the identification 

of only two signals corresponding to the ETA and ETB receptor subtypes, therefore this 

would suggest that analysis of the biological actions of ET's would be easily identified 

as either ETA-mediated, ETB-mediated or a combination of dual receptor activation. In 

many experimental conditions, this assumption is the case, however, some studies have 

suggested that possible ETA and ETB and non-ETA / non-ETB receptor subtypes may 

exist. 

Possible ET14 rec tý pes. 

The involvement of ETA receptors in ET-1 mediated responses is generally 

classified by the relative potencies of ET-1 over ET-3 and the inability of ETB receptor 

agonists (such as BQ-3020 and SxS6c) to elicit equivalent responses. Use of the 

selective ETA receptor antagonists BQ-123 and FR 139317 would also indicate the 

involvement of ETA receptors. In some tissues where agonist potencies would suggest 

ETA receptor populations, it was found that the ETA receptor antagonists was more 

effective in shifting ET-3 mediated responses in comparison to ET-1 (Sumner, et al., 

1992; Salom, et al., 1993). In the rabbit saphenous vein contractile responses are 

mediated via both ETA and ETB receptors, however, it was found that the ETA receptor 

mediated response could be subdivided into a BQ-123 sensitive and BQ-123 resistant 

component (Sudjarwo, et al., 1994; Nishiyama, et al., 1995). Sudjarwo, and 

colleagues (1994) suggested that these "subtypes" of ETA receptor could be classified 

as ETAI (BQ-123 sensitive) and ETA2 (BQ-123 insensitive). 
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Possible ETB receptor subWes. 

Although the ETB receptors mediating vasodilatation and vasoconstriction 

appear functionally and anatomically distinct (being present on endothelium and 

smooth muscle cells respectively) it still remains uncertain whether these receptors are 

"true" structurally distinct subtypes. The ETB receptor antagonists IRL 103 8 and RES 

701-1, were thought to be selective for the ETB 1 receptor mediating vasodilatation 

(Sudjarwo, et al., 1993; Karaki, et al., 1994) indicating that EIBI and ETB2 receptors 

may be structurally dissimilar. However, as mentioned in section 1.2.7.2, questions 

have arisen over the suitability of IRL 1038 as a consistent ETB receptor antagonist. 

RES 701-1 will also antagonise ETB2 mediated vasoconstriction in some vessel 

preparations, although greater concentrations of the antagonist were required to 

antagonise ETB2 mediated vasoconstriction in comparison to ETBI mediated 

vasodilatation (Sudjarwo, et al., 1994). The non selective ET receptor antagonist PD 

142,893 may selectively inhibit ETB1 receptor mediated vasodilatation, whilst being 

ineffective in inhibiting ETB2 mediated contractile responses (Warner, et al., 1993; 

Douglas, et al., 1995). Radioligand binding studies in canine coronary artery 

membranes have indicated possible ETB receptor subtypes, exhibiting either high or 

low affinity for both ET-1 and ET-3 (Teerlink, et al., 1994), but although a functional 

correlate could be identified for the high affinity site, none could be found for the low 

affinity site. 

Possible non ETA / nonETB receptors. 

The apparent atypical ET receptor-mediated responses observed in some 

vascular preparations have been attributed either to novel subtypes of ETA or ETB 

receptors, or some authors have attributed these responses to the presence of non-ETA / 

non-ETB receptors. In the human saphenous vein contractile responses to ET-1 are 

resistant to the actions of the ETA receptor antagonist BQ-123, whereas responses to 

SxS6b in this preparation are partially antagonised by BQ-123 (Bax, et al., 1993). The 

authors therefore suggested that ET-1 was mediating its vasoconstrictor action via a 

non-ETA / non-ETB receptor. Similar non ETA / non ETB receptors have been reported 
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to exist in pig coronary artery (Harrison, et al., 1992), rat vas deferens (Eglezos, et al., 

1993), human coronary artery (Godfraind, 1993) and human small omental veins 

(Riezebos, et al., 1994). Douglas, et al., (1995) have also suggested the presence of a 

ETC-like receptor mediating vasoconstriction in the rabbit saphenous vein, which 

demonstrates selectivity for ET-3 over ET-1. If further distinct subtypes were to exist 

in mammalian tissues, they must be markedly different from the known ETA / ETB 

receptors, or so similar in structure that they may be mistaken for the known receptor 

subtypes. It could also be the case that multiple receptors may be derived from a single 

gene, and that differences in pharmacological responses are due to alternate splicing or 

post-translational modification. Although no strong conclusions concerning possible 

ET-receptor subtypes other than ETA and ETB can be made, what is apparent from all 

of these studies is that considerable heterogeneity in ET-receptor mediated responses 

occur in a number of tissue preparations. 

1.2.13 Possible physiological role for endothelin in the cardiovascular ysttem. 

From the pharmacological evidence previously reviewed, a speculative role for 

ET's in cardiovascular homeostasis can be proposed. ET's may act in a paracrine or 

autocrine fashion to regulate basal vascular tone, having both direct effects on vascular 

smooth muscle cells and through indirect interaction with the vascular endothelium. It 

has been shown that inhibition of PGI2 and NO production potentiates the 

vasoconstrictor actions of ET's in vivo and in vitro (De Nucci, et al., 1988; Schini, et 

al., 1991; Filep, et al., 1993). In anaesthetised rats, infusion of the NOS inhibitor L- 

NAME resulted in increased mean arterial pressure which was significantly reduced by 

both the ETA receptor antagonist BQ-123 and the mixed receptor antagonist bosentan 

(Richard, et al., 1995). This evidence would support the hypothesis that under basal 

conditions, NO suppresses ET-induced vascular tone. A role for ET-1 in control of 

human vascular tone was described by Haynes & Webb (1994). In this study, infusion 

of BQ-123 into the brachial artery of normal subjects caused progressive vasodilatation 

and a 64% increase in blood flow after one hour, indicating the presence of endogenous 

ET-1-induced tone under normal physiological conditions. Experimental mice which 
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are deficient in ET-1 (partial knockout of ET-1 gene) were shown to have significantly 

elevated blood pressure in comparison to control animals implicating the importance of 

the depressor actions of ET's in the maintenance of vascular tone (Kurihara, et al., 

1994). ET's may also have an indirect effect on vascular tone through central and 

reflex effects, interaction with other vasoactive hormones and control of plasma volume 

through fluid balance. The importance of ET as a vascular growth factor in control 

situations is still unclear, but may be of more importance in vascular remodelling 

observed in some disease states. 

1.2.14 Clearance and metabolism of endothelins. 

Although ET's appear stable in blood and plasma in vitro, the half life of 

circulating ET's in vivo is relatively short-lived. In anaesthetised rats the half-life of 

125I-ET-1 in the plasma was only 40 seconds (Sirviö, et al., 1990), with approximately 

60 % of infused ET-1 or ET-3 being removed from the circulation within the first 

minute (Anggard, et al., 1989). The importance of pulmonary clearance of circulating 

ET's was initially shown by De Nucci, et al., (1988). In the aforementioned study the 

authors showed that greater than 50% of infused ET-1 was removed in the first passage 

through isolated perfused guinea-pig lung. In anaesthetised rats approximately 80 % of 

circulating ET-1 is removed by the lungs, with lesser amounts being removed by 

kidney, liver, heart and spleen (Sirviö, et al., 1990; Fukuroda, et al., 1994c). It has also 

been shown that infusion of the ETB receptor antagonist BQ-788 significantly reduced 

(over 95%) the pulmonary clearance of ET-1 (Fukuroda, et al., 1994c). The same 

effects were not observed with ETA receptor antagonists showing the importance of 

ETB receptors in clearance of circulating ET-1. Mature ET's may also be degraded by 

the actions of NEP, as infusion of the NEP inhibitor SQ-29,072 significantly increased 

plasma levels and urinary excretion of ET-1 in the anaesthetised rat (Abassi, et al., 

1992). 

56 



1.2.15 Pathological role of endothelins. 

Ever since their discovery in the late 1980's, ET's (ET-1 in particular) have 

been implicated in many disease states. The involvement of ET-1 in pathology of 

certain diseases has centred on increased local or circulating levels of ET-1 and or 

changes in tissue responsiveness to the peptides in both human and animal models of 

disease. Table 1.2 illustrates some of the diseases for which a pathophysiological role 

for ET's has been postulated. 

Cardiovascular diseases - 
(General) - Hypertension 
(Heart) - Myocardial ischemia 

- Congestive heart failure 

- Coronary vasospasm 
(Blood vessels) - Vasospasm due to 

subarachnoid haemorrhage 

- Stroke 

- Atherosclerosis 

diseases L 
- Raynaud's disease 

ung 
(Vascular) - Pulmonary hypertension 
(Airway) - Asthma 

- Parenchymal lung diseases 

- Postischemic acute renal failure 

- Chronic renal failure 

- Gastric ulcer 
- Inflammatory bowel disease 

Table 1.2. 
Diseases for which ET's may play a pathophysiological role. (For further examples see 
Rubanyi & Polokoff, 1994; Levin, 1995) 

Cardiovascular diseases. 

With its potent vasoconstrictor properties, ET-1 has been of particular interest in 

cardiovascular diseases where local vascular tone (vasospasm) and generalised vascular 
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tone (hypertension) are increased. Indeed elevated plasma ET-1 levels (above the range 

found in normal subjects) are found in patients with essential hypertension (Saito, et al., 

1990), cerebral vasospasm following subarachnoid haemorrhage (Rubanyi & Polokoff, 

1994), coronary vasospasm (Matsuyama, et al., 1991) and primary Raynaud's 

syndrome (Zamora, et al., 1990). The role of ET-1 in pulmonary diseases (pulmonary 

hypertension) will be discussed in section 1.4 and throughout my relevant experimental 

chapters in this thesis. The maintained vasoconstrictor actions of ET-1 suggested a 

possible involvement of the peptides in ischemic insult to organs and tissues, and in 

accordance with this, plasma ET-1 levels are increased in patients with acute 

myocardial infarction (Miyauchi, et al., 1991). Elevated plasma ET-1 levels have been 

observed in patients with congestive heart failure (Stewart, el al., 1992), and may as a 

result of decreased clearance of the peptide as well as increased production. 

Disruption of the ET, or ET-receptor gene in mice indicates the importance of 

these peptides in the development of neural crest derived structures. Total knockout of 

the ET-1 gene in mice causes severe craniofacial and thoracic blood vessel 

malformation, and these mice die of respiratory failure at birth (Kurihara, et al., 1994). 

This developmental effect would appear to be mediated by ET-1 activation of ETA 

receptors as malformations are increased by treatment with BQ-123, antibodies of the 

ETA receptor or by knockout of the ETA gene (Kurihara, et al., 1995). Mice lacking in 

ET-3, unlike ET-1 deficient mice, are viable at birth but die at 3-4 weeks age as a result 

of toxic megacolon (Baynash, et al., 1994). Similar changes are observed in mice by 

knockout of the ETB receptor gene (Hosoda, et al., 1994) and indeed mutations of the 

ETB receptor gene have been found in a human hereditary form of Hirschsprung's 

disease (aganglionic megacolon) (Puffenberger, et al., 1994). The evidence presented 

above is only a small example of the growing literature implicating ET's in the 

pathophysiology of certain disease states. The effectiveness of ET antagonists has been 

studied some animal models of diseases for which they have been implicated with some 

promising results (Battistini, et al., 1995). However, whether this treatment will prove 

effective for treatment of human disorders is yet to be elucidated. 
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The adult pulmonary circulation is characterised as a low-pressure, low- 

resistance vascular bed that accommodates the entire output of the right ventricle at less 

than 20% of systemic vascular pressure. Vasodilator drugs have little or no effect on 

the pulmonary circulation at rest suggesting that under normal conditions the 

pulmonary vasculature possesses little or no resting vascular tone (Fishman, 1985). A 

key feature of the pulmonary vasculature is its high degree of compliance, which 

ensures maintenance of low pressure even in the face of increased cardiac output. 

1.3.1 Functions of the pulmonary circulation. 

One of the main functions of the pulmonary circulation is to deliver 

deoxygenated blood to the lungs, distributing it through the sheets of pulmonary 

capillaries in the alveoli, to allow gas exchange to occur. However, the lungs also serve 

several non-respiratory functions. The pulmonary microvasculature represents an 

enormous area for processing of circulating vasoactive substances (Vane, 1969), and 

has a unique position in that all the venous blood from the body tissues must pass 

through the lungs before it is recycled. Several mediators including histamine, 

noradrenaline and 5-HT are removed from the blood upon passing through pulmonary 

vasculature. The conversion of angiotension I (Al) to the more potent vasoconstrictor 

All occurs in the pulmonary circulation, via an angiotensin converting enzyme (ACE) 

present in the vascular endothelium (Fishman, 1985). 

3 

Considerable structural differences between pulmonary and systemic arterial 

vessels are apparent, as would be expected from their marked pressure differences. In 

keeping with a low-pressure system, pulmonary arteries generally have much thinner 

walls, and contain less smooth muscle and elastin in comparison to systemic vessels. 

The main pulmonary trunk leaving the right ventricle passes upwards through 

the heart, and rapidly divides into two daughter branches (approximately at the level of 

the fifth thoracic vertebra). The left pulmonary artery extends to the hilum of the left 
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lung were it divides into two branches 
, one passing to each lobe. The right pulmonary 

artery also divides into two branches, the larger of which extends to the middle and 

lower lobes of the right lung, and the smaller to the upper lobe. Pulmonary arteries 

form a rapidly branching structure throughout the lungs, following the branching 

pattern of the airways. In the human lung, 17 orders of pulmonary arterial branching 

have been estimated (Singhall, et al., 1973). The pulmonary trunk and its primary 

branches are defined as elastic arteries, comprising of several elastic laminae with 

interposed smooth muscle (Heath & Edwards, 1958). Continuing through the 

branching pattern of the human pulmonary vascular tree, the number of elastic laminae 

gradually decreases, with arteries >1 mm i. d. still classified as elastic pulmonary 

arteries. The predominantly muscular pulmonary arteries (100 µm -1 mm i. d. ) 

accompany the bronchioles and consist of approximately 4-6 layers of vascular smooth 

muscle cells bound by distinct internal and external elastic laminae (Brenner, et al., 

1935; Heath, et al., 1958). Below the level of the terminal bronchus, the layers of 

vascular smooth muscle are abruptly reduced, and smooth muscle is obliquely arranged 

in the vascular wall. The vessels are classed as partially muscular or nonmuscular 

arteries, and accompany the respiratory bronchioles (Heath, et al., 1958). In the human 

lung, pulmonary arterioles can generally be classed as arterial vessels less than 100 µm 

i. d. (Brenner, 1935). These vessels consist of a single elastic lamina, with extremely 

sparse smooth muscle (Heath & Edwards, 1958). 

There is however, considerable variation in the structure and branching pattern 

of pulmonary vessels between species (Kay, 1983). Interspecies differences are 

observed in the arrangement of collagen, smooth muscle and elastic tissue in the 

pulmonary trunk, as well as in the medial thickness of muscular pulmonary arteries. In 

general the structure of pulmonary arteries is similar in man, ferret and monkey with 

most other mammals demonstrating more muscular pulmonary arteries (Kay, 1983). In 

some mammals, the muscular pulmonary arteries can extend to vessels below 100 µm 

i. d. This is in contrast to the human pulmonary vasculature, in which vessel below 100 

pm i. d. are normally nonmuscular in structure. 
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Figure 1.6 
Structure of pulmonary arterial tree in normal and pulmonary hypertensive states. 
Schematic diagram showing approximate location of different types of pulmonary 
artery. The figure to the right indicate the effect of hypoxic pulmonary hypertension, 

showing the apparent progression of muscularisation into previously nonmuscular 

arteries, and the thickening of already muscular vessels. For full explanation see text. 

In the rat lung, elastic and muscular pulmonary arteries can clearly be identified. 

Meyrick & Reid, (1978) divided the muscular pulmonary arteries of the rat lung into 

three main groups, being classed as muscular, partially muscular or nonmuscular 

arteries . 
Nonmuscular arteries comprise the smallest part of the pulmonary arterial 

tree. Vessels of this type lack a muscular media, consist of a single elastic lamina and 

are comprised of pericytes instead of smooth muscle cells (Meyrick & Reid, 1978). A 

recent study by Sasaki, et al (1995) further subdivided the arteries of the rat pulmonary 

circulation. The large elastic artery was subdivided into two segments, a classic elastic 

and transitional elastic segment. Muscular pulmonary arteries (originating at vessels 
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-300 µm i. d. ) were subdivided into thick muscular, ordinary muscular, partially 

muscular and nonmuscular. The pulmonary resistance arteries used in my own studies 

(-150 µm i. d. ) would probably be classed within the ordinary muscular group described 

above. The structure of the pulmonary arterial tree giving approximate location of the 

different vessel types is shown in figure 1.6. 

13.3 Pulmonary pressure and pulmonary, vascular resistance. 

In normal humans subjects, mean pulmonary artery pressure (PAP) is 

approximately 12-15 mmHg, with peak systolic and diastolic values of 20-30 mmHg 

and 7-12 mmHg respectively (Fishman, 1985). Although there is some species 

variation in PAP, values in the range of 15-20 mmHg are most commonly found under 

normal conditions. In human, cat and dog lungs, the pressure drop across the 

pulmonary vascular bed is -10 % of the pressure drop across the systemic circulation 

(Fishman, 1985). The pressure drop across each of the three major components of the 

pulmonary vascular bed; the arteries, capillaries and veins; is fairly even suggesting an 

even distribution of pulmonary vascular resistance throughout the lung. This is in 

contract to the systemic circulation where 70 % of resistance to blood flow is located in 

the arterioles. However, morphometric analysis of the human lung indicates that the 

major site of pulmonary vascular resistance may be located in the small muscular 

arteries (100 µm -1 mm i. d. ) and the arterioles (<100 µm i. d) (Horsfield, 1978; 

Singhal, 1973). 

1.3.4 Regulation of low vascular tone. 

In order to maximise gas exchange, the air-blood interface in the alveoli must be 

extremely thin. Maintenance of low pulmonary pressure is therefore of utmost 

importance to prevent capillary leakage and pulmonary oedema. The pulmonary 

circulation is under the control of both passive and active factors which mediate 

changes in pulmonary vascular tone and hence pulmonary pressure (Barnes & Lui, 

1994). Passive factors include, changes in cardiac output, gravitational force, airway 

and interstitial pressure, however of more interest to my research are the active factors 
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which alter pulmonary tone by mediating constriction or dilatation of pulmonary 

vascular smooth muscle. Included in this groups are autonomic nervous control, 

humoral factors and respiratory gases. 

Active control. 

1.3.4.1 Autonomic nerves. 

The pulmonary vasculature is innervated primarily from the anterior and 

posterior pulmonary plexi (Downing & Lee, 1980). The density and type of 

innervation appears to be strongly species dependent, and varies with the location and 

or size of the vessel (Downing & Lee, 1980; Barnes & Lui, 1994). In general it would 

appear that larger muscular pulmonary arteries are more densely innervated, whereas 

the smaller pulmonary arteries and arterioles tend to have sparse, or are absent of 

innervation. Both sympathetic and parasympathetic nerve fibres have been detected in 

the lungs of most species (Fishman, 1985). Stimulation of sympathetic (adrenergic) 

nerve fibres in the pulmonary vasculature mediates predominately vasoconstrictor 

responses (Ingram , et al., 1968; Barnes & Lui, 1994), whereas stimulation of 

parasympathetic (cholinergic) nerve fibres mediates vasodilatation (Downing & Lee, 

1980; Daly & Hebb, 1952). Evidence also exists for the presence of non-adrenergic 

non-cholinergic nerve (NANC) fibres in the pulmonary vasculature of some species 

(Liu, et al., 1992) which mediate vasoconstriction or vasodilatation depending on the 

neurotransmitter / preparation involved (Barnes & Lui, 1994). Whether autonomic 

innervation contributes to basal pulmonary vascular tone is uncertain, but may be 

involved during conditions of stress (Fishman, 1985). 

1.3.4.2 Humoral control. 

Many circulating hormones and chemical mediators can effect pulmonary 

vascular tone through direct effects on vascular smooth muscle, or via interaction with 

the vascular endothelium. The effects of these humoral mediators can vary 

dramatically with species, the preparation studied and the level of pre-existing vascular 

tone. Humoral control of pulmonary vascular tone has been extensively studied and in 
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general agents such as All, thromboxane and thrombin are pulmonary vasoconstrictors, 

whereas PGI2, ACh and ANP tend to mediate vasodilatation (Fishman, 1985; Barnes & 

Lui, 1994). Under conditions of basal vascular tone agents such as bradykinin, AVP, 

substance P, histamine and 5-HT will mediate vasoconstriction, but have also been 

shown to mediate pulmonary vasodilatation when vascular tone is raised. 

13.4.4 Endothelial control. 

As previously mention in section 1.1. and 1.2, endothelium-derived mediators 

can have profound influences on vascular tone in both the systemic and pulmonary 

vasculature (Löscher, et al., 1989; Daugherty, et al., 1995). Cyclooxygenase products 

such as PGF2a, PGE2, TxA2 and endoperoxides tend to mediate vasoconstriction 

whereas, PGI2 and PGE1 are pulmonary vasodilators (Fishman, 1985; Barnes & Liu, 

1994). The pulmonary circulation can produce relatively large quantities of PGI2 

(Gryglewski, et al., 1978) and TxA2 (Engineer, et al., 1978), and are implicated in the 

vasodilator and vasoconstrictor actions of other vasoactive compounds e. g. adenosine 

and histamine (Lippton, et al., 1992; Fishman, 1985). The lipoxygenase products of 

AA metabolism, the leucotrines, have been shown to be potent pulmonary 

vasoconstrictors in vitro and in vivo (Voelkel, et al., 1984; Barnes & Liu, 1994). 

Since the identification of the EDRF NO the role of endothelium-derived NO in 

the control of pulmonary vascular tone has been extensively studied (Adnot, et al., 

1995; Higenbottam, 1995). Many humoral factors and autocoids have been shown to 

induce pulmonary vasodilatation via endothelial release of NO (Barnes & Liu, 1994; 

Adnot, et al., 1995) and may even be released from NANC nerve terminals in 

pulmonary vessels (Liu, et al., 1992). However, it has been postulated that continual, 

basal release of NO may be an important regulator in the maintenance of low 

pulmonary vascular tone. Under conditions of basal tone, inhibition of NOS activity 

resulted in increased pulmonary vascular resistance of sheep, pig and human isolated 

perfused lungs (Cremona, et al., 1994), but had no effect on basal tone in isolated 

perfused lungs of the dog or rat (Cremona, et al., 1994; Barer, et al., 1993; Liu, et al., 

1991). However, increases in pulmonary vascular resistance have been reported 
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following intravenous infusion of the NOS inhibitor L-NMMA in healthy human adults 

(Stamler, et al., 1994). The role of basal NO in regulation of pulmonary vascular tone 

would therefore appear to be species dependent. 

The role of ET's in the pulmonary circulation will be discussed in section 1.4. 

1.3.4.5 Intracellular Cyclic Nucleotides. 

Many vasoactive compounds exert their biological actions upon the pulmonary 

vasculature by regulating intracellular concentrations of the second messengers cAMP 

and cGMP, for example the vasodilators NO and PGI2 (see section 1.1.2) which 

increase intracellular levels of cGMP and cAMP respectively. By stimulating or 

inhibiting the activity of the enzymes adenylate cyclase and guanylate cyclase, 

vasoactive compounds can alter [cAMP]j and [cGMP],, which in turn regulate vascular 

tone. The exact mechanisms responsible for cGMP-mediated relaxation are not 

completely understood but may involve activation of protein kinase G, inhibition of IP3 

formation, dephosphorylation of myosin light chain kinase and inhibition of Ca2+ influx 

(Lincoln, 1989). Similarly, cAMP is thought to mediate vasodilatation through 

activation of several mechanisms including activation of cAMP-dependent protein 

kinase thus decreasing myosin light chain kinase activity, inhibition of Ca2+ influx and 

stimulation of Ca2+ efflux (Murray, 1990). Changes in these signalling systems have 

been noted in a number of disease states including cardiovascular disease, asthma and 

inflammation. The levels of [cAMP]i and [cGMP]i can be controlled not only by 

production but also through degradation by cyclic nucleotide phosphodiesterases 

(PDE's). These enzymes are the only known means by which cells inactivate cyclic 

nucleotides, by hydrolysis to the corresponding 5'-nucleotide. PDE's exists as a large 

family of enzymes (currently there are greater than 30 recognised isoenzymes) which 

can be classified into seven main families based on the basis of their amino acid 

sequence, substrate specificity and sensitivity to pharmacological agents (Beavo, et at, 

1994). 

PDE 1 is able to hydrolyse both cAMP and cGMP and is profoundly activated 

by calcium and calmodulin. PDE 2 can also hydrolyse both cAMP and cGMP, and 
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hydrolysis of cAMP by this enzyme can be stimulated by low concentrations of cGMP. 

The third enzyme, PDE 3 has the ability to hydrolyse cAMP specifically and can be 

inhibited by low concentrations of cGMP. PDE4 and PDE 7 also hydrolyse cAMP 

specifically but are unaffected by cGMP concentrations. PDE 5 and PDE 6 hydrolyse 

cGMP specifically (Bolger, 1994; Beavo, et al., 1994). Five of these PDE's (PDE 1 to 

5) are known to be present in the cardiovascular system, and targeting of these enzymes 

may prove useful in the treatment diseases such as thrombosis, inflammatory disease, 

cardiac arrhythmias and could prove useful in the treatment of pulmonary vascular 

disease (Stoclet, et al., 1995). 

1.3.5 Respiratory Ras regulation. 

Pulmonary vascular tone is strongly influenced by the relative components of 

respiratory gases. Both hypoxia and hypercapnia induce pulmonary vasoconstriction, a 

feature which is unique to the pulmonary circulation (Fishman, 1961). Although mixed 

venous P02 contributes to the hypoxic response, the main stimulus for hypoxic 

pulmonary vasoconstriction (HPV) appears to be alveolar hypoxia (Marshall & 

Marshall, 1983). 

1351 vnoxic pulmonary vasoconstriction. 

HPV has been extensively studied since it was first described by von Euler and 

Liljestrand (1947). The physiological function of HPV in the adult lung appears to be 

in maximising ventilation-perfusion matching, diverting blood from the hypoxic alveoli 

toward better ventilated areas of the lung. Although pulmonary arteries of different 

calibre exhibit HPV, the vessels most effected by hypoxia are the small muscular 

pulmonary arteries. This was first demonstrated in isolated lungs by Kato & Staub 

(1966), and subsequent studies have confirmed this to be the case (Hauge, 1969; 

Shirai, et al., 1986). Direct micropuncture measurements in the cat lung have also 

indicated that the predominant sire of HPV is the precapillary arteries (Nagasaka, et al., 

1984). 
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1.5.3.2 Mechanism of hypoxia-induced pulmonary vasoconstriction. 

Despite extensive research over the past 50 years, the exact mechanism 

underlying HPV remains unclear. Evidence suggests that HPV activates mechanisms 

intrinsic to the pulmonary vasculature, and is independent of circulating humoral 

substances and neuronal control (Fishman, 1985; Voelkel, 1986). Failure to identify a 

conclusive mediator of HPV has implied that hypoxia may have a direct effect on 

vascular smooth muscle cells. In support of this theory, hypoxia has been shown to 

contract isolated pulmonary vascular smooth muscle cells (Madden, et al., 1992) and 

pulmonary smooth muscle cells in culture (Murray, et al., 1990). Several possible 

mechanisms have been proposed to explain this direct action of hypoxia, including 

inhibition of : 02 sensitive K+ channels, voltage gated K+ channels and / or Ca2+ 

activated K+ channels (Post, et al., 1992; Weir & Archer, 1995). Another theory is that 

HPV is initiated via decreased oxidative phosphorylation within pulmonary smooth 

muscle cells (Rounds & McMurtry, 1981). However, there is evidence to indicate that 

hypoxia may activate and endothelium-dependent mechanism leading to HPV. Several 

studies, in a range of species have indicated that HPV in isolated arterial preparations is 

dependent upon and intact vascular endothelium (Holden & McCall, 1984; 

Demiryürek, et al., 1993; Leach, et al., 1994), postulating that release of an EDCF or 

inhibition of an EDRF may be responsible for these effects. The role of endothelium- 

derived NO is unclear as inhibition of NOS activity has been shown to both attenuate 

(MacLean & McGrath, 1991) and augment (Liu, et al., 1991) HPV. Release of 

endothelium-derived leucotrines and prostaglandins have also been implicated as 

mediators of HPV (Barnes & Liu, 1994). 

The effect of hypoxia on pulmonary tissues is universal, although there appears 

to be species variations in the intensity of the vasoconstrictor response (Fishman, 1985). 

Acute hypoxic stimuli produce HPV which is maintained only for the duration of 

hypoxia, and is reversed upon exposure to normoxic gas mixture. However, when 

exposed to chronic hypoxia, the reflex appears malign, and is maintained even upon 

return to normoxia. 
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1.3.6 Pulmonary Hypertension. 

An increase in mean pulmonary artery pressure of 10-15 mmHg above normal 

values is generally accepted as evidence of pulmonary hypertension (Fishman, 1985). 

The condition of pulmonary hypertension can occur as a primary phenomenon 

(sometimes referred to as idiopathic pulmonary hypertension) the cause of which is 

unknown. Primary pulmonary hypertension is rare, occurring most frequently in 

women of 30-40 years of age, and with a mean survival rate of 2-3 years after the onset 

of symptoms (Rich, 1988). Pulmonary hypertension occurs more frequently as a 

secondary phenomenon as a result of other disease states including, chronic obstructive 

lung disease (COLD), congenital heart defects, congestive heart failure and the adult 

respiratory distress syndrome. Exposure to low inspired 02 due to environmental 

factors can also lead to the development of pulmonary hypertension, as displayed in 

some residents of high altitudes (Penaloza, ei al., 1962). Regardless of the mediator of 

pulmonary hypertension, the condition is often progressive, characterised by a 

relentless increase in pulmonary vascular resistance that ultimately leads to right-heart 

failure and death. 

The contributing factors to secondary pulmonary hypertension can vary, and 

will depend on the primary disease involved. Examples of possible contributing factors 

in chronic obstructive lung disease would include prolonged HPV and acidosis, 

whereas in Eisenmenger syndrome (congenital heart defect) the main contributory 

feature is increased pulmonary flow due to intracardiac shunting of blood (Fishman, 

1985). Although these facts contribute to the development of pulmonary hypertension, 

the exact mechanisms by which pulmonary hypertension develops is not fully 

understood. A feature common to all form of pulmonary hypertension is pulmonary 

vascular remodelling, where pulmonary arteries, particularly those less than 100 µm 

i. d., show various degrees of intimal thickening and muscular hypertrophy (Heath, 

1993). 
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1.3.6.1 Pulmonary vascular remodelling. 

In the early stages of both primary and secondary pulmonary hypertension, a 

progression of muscularisation into the nonmuscular terminal portion of the pulmonary 

arterial tree is observed (Haselton, et al., 1968; Heath, et al., 1987,1993). This occurs 

as a result of hyperplasia of vascular smooth muscle cells which extend distally in a 

layer internal to the original internal elastic lamina (Heath, et al., 1987), thus forming 

an inner layer of longitudinal smooth muscle. In the latter stages of the remodelling, 

the pattern of cell migration and proliferation differs depending on the type of 

pulmonary hypertension; i. e. plexogenic pulmonary hypertension (typical of the 

primary condition and Eisenmengers syndrome) in which distinct plexiform lesioning 

develops; or hypoxic pulmonary hypertension (Heath, 1992,1993). However common 

to most cases is proliferation of vascular smooth muscle cells in the vascular media and 

frequently the intima (Heath, 1992). The resulting intimal and medial thickening may 

reduce the calibre of resistance vessels and occlude small vascular channels, resulting in 

increased vascular resistance. A reduction in the number of peripheral vessels 

(probably as a result of vascular occlusion) is a feature of primary pulmonary 

hypertension (Anderson, et al., 1973). In some cases (especially hypoxic pulmonary 

hypertension), vasoconstriction may also contribute to inappropriate increases in 

pulmonary vascular resistance in many patients with pulmonary hypertension (Wood, 

1958). In hypoxic pulmonary hypertension blood viscosity is increased owing to 

hypoxia induced polycythaemia contributing to increased pulmonary vascular 

resistance (Leach & Treacher, 1995). In many cases of pulmonary hypertension the 

increased pulmonary vascular resistance leads to right ventricular hypertrophy (cor 

pulmonale) resulting in right heart failure. 

Once pulmonary hypertension is developed, the associated vascular changes 

renders the pulmonary circulation relatively resistant to the actions of standard 

vasodilators, and often results in intolerable side effects, such as systemic hypertension. 

In the search for selective treatment for pulmonary hypertension virtually every 

vasodilator agent has been tested including, hydralazine, Ca2+ channel antagonists, 

adrenoceptor antagonists, ACh, PGI2, nitroprusside and ACE inhibitors (Rich, 1988; 
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Fishman, 1985; Barnes and Liu, 1995). More recently the effects of inhaled NO in the 

treatment of pulmonary hypertension have been investigated. Inhaled NO significantly 

reduced PAP in patients with both primary and secondary pulmonary hypertension 

without effecting the systemic circulation (Pepke-Zaba, ei al., 1991; Adnot, et al., 

1993). However, high doses of NO are known to be toxic and therefore its use as a 

long term vasodilator therapy is yet to be elucidated. In the search for selective therapy, 

and greater knowledge into the underlying causes of pulmonary hypertension, several 

animal models have been developed and studied. 

1.3.7 Animal models of pulmonary hypertension. 

1.3.7.1 Chronic hypoxic model. 

Chronic hypoxic animals (mainly rats and mice) are commonly used and are a 

well studied model of hypoxic pulmonary hypertension. A full description of this 

model will be given in chapter 2 of this thesis. Rats exposed to chronic (hypobaric or 

normobaric) hypoxia exhibit significant pulmonary hypertension, and develop similar 

morphological changes in the pulmonary vascular bed that are observed in human 

pulmonary hypertension (Hislop & Reid, 1976; Rabinovitch, et al., 1979). The 

hypoxia-induced morphological changes in the pulmonary vasculature of the rat is 

characterised by a progression of spirally arranged smooth muscle into smaller, more 

peripheral arteries (< 80 µm) where smooth muscle is not normally present. This 

apparent progression of vascular smooth muscle is actually as a result of differentiation 

of precursor cells normally present in these vessel, the pericyte and intermediate cell, 

into smooth muscle cells (Meyrick & Reid, 1978). The pericyte and intermediate cell 

normally lie internal to a single elastic lamina, and once differentiated, the new muscle 

cells induce the production of an internal lamina. Intra acinar vessels as small as 20 µm 

i. d. can exhibit medial hypertrophy and significant muscularisation (Meyrick & Reid, 

1978). There is also an increase in the medial muscular wall thickness of normally 

muscular arteries (-100 µm i. d. ) and a reduction in the number of peripheral arteries 

(Hislop & Reid, 1976; Rabinovitch, et al., 1981). The increase in vascular smooth 

muscle cell mass is accounted for by hypertrophy of the smooth muscle cells already 
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present and proliferation of fibroblasts and collagen in the adventitia (Meyrick & Reid, 

1978). Chronic hypoxic animals also exhibit polycythaemia which exacerbates the 

development of pulmonary hypertension and right ventricular hypertrophy (Naeye, 

1965; Hunter, 1974). 

L3.7,2 Other models of pulmonary hypertension. 

Ingestion of the seeds from the leguminous plants Crotalaria in humans leads to 

severe damage to the liver, lungs and central nervous system (Fishman, 1985). The 

toxic effects of this plant are as a result of the alkaloid monocrotaline which it contains. 

However in animals such as the rat, ingestion of Crotalaria or subcutaneous injection 

of monocrotaline results in the development of pulmonary hypertension within several 

days (Fishman, 1985; Olson, et al., 1984). Monocrotaline itself does not act directly 

on the pulmonary circulation but is converted by the liver to dehydromonocrotaline, a 

substance which is highly toxic to the pulmonary vasculature. A beagle model of 

pulmonary hypertension has also been described (Okada, et al., 1995). Features of 

monocrotaline induced pulmonary hypertension are early vascular endothelial damage, 

followed by increased vascular smooth musculature and rise in pulmonary artery 

pressure (Rosenberg & Rabinovitch, 1988). Unlike chronic hypoxic rats, these animals 

do not develop polycythaemia, but do exhibit right ventricular hypertrophy. 

More recently, the fawn hooded rat has been postulated as a possible model of 

primary pulmonary hypertension. This strain of rat has hereditary bleeding tendency 

due to platelet storage pool disease and has been shown to develop idiopathic 

pulmonary hypertension (Stelzner, et al., 1992). 

In the following section, a basic outline of the effects of ET's in the pulmonary 

circulation will be introduced, with reference to their possible implications in the 

physiology and pathophysiology of the pulmonary vasculature. As this area is the focus 

of my research, further detailed analysis of ET in the pulmonary circulation will be 

discussed in each of the relevant experimental chapters. 
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1.4.1 Biosynthesis. 

Analysis of tissue levels of ET-1 in rat organs found that pulmonary tissues 

contained relatively high concentrations of the peptide (3400 pg/g wet weight) 

(Matsumoto, et al., 1989). Similarly high levels of ET-1 have also been demonstrated 

in porcine and human lungs (Hemsen, 1991). In the rat, analysis of ET-gene expression 

showed that both ET-1 and ET-3 were strongly detected in lung tissue (Firth & 

Radcliffe, 1992). The lungs were also shown to be the predominant site of ET-1 

expression, being 5-fold greater than expression in large intestine and at least 15-fold 

higher than any other organ. ET-1 would appear to be synthesised by a number of 

pulmonary cell types including vascular endothelium (Giaid, et al., 1991; Naruse, et 

al., 1989; MacCumber, et al., 1989; Ohlstein, et al., 1989), parenchymal cells 

(Marciniak, et al., 1992), airway epithelial cells (Giaid, et al., 1991; Endo, et al., 1992) 

and tissue macrophages (Ehrenreich, et al., 1990). ET-3 expression can also be 

detected in human lung parenchyma (Marciniak, et al., 1992) although the exact cells of 

origin are unclear. All this evidence would implicate the lungs as an important site for 

the biosynthesis of ET-1. 

1.4.1.2 Binding - Pulmonary receptors. 

Autoradiographic studies have shown widespread, high density binding of ET's 

in pulmonary tissues, namely in tracheal and bronchial smooth muscle, blood vessels of 

all sizes, parenchyma and alveolar walls (Power, et al., 1989; Koseki, et al., 1989; 

McKay, et al., 1991a). Even before the identification of the known ETA and ETB 

receptor subtypes, Masuda, et al., (1989) described two different forms of ET receptors 

in the rat lung. This initial observation was verified by the solubilisation of both ETA 

and ETB receptors from the rat lung, with retention of their characteristic binding 

activities (Kondoh, et al., 1991). 

Use of selective agonists and antagonists for ET-receptors in binding 

experiments, and in situ hybridisation techniques has revealed some indication of tissue 

/ cell distribution of ET-receptors within the lung. Using the selective ETA receptor 

antagonist BQ-123, Nakamichi, et al., (1992) demonstrated that in porcine lungs, ETA 
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receptors appear to be predominantly localised in bronchi and blood vessels, whereas 

ETB receptors were detected diffusely throughout the parenchyma. Observations in the 

rat lung using in situ hybridisation, showed high levels of ETA receptor mRNA were 

observed in smooth muscle layers of airway and pulmonary vasculature, whereas both 

ETA and ETB receptor mRNA were detected in parenchymal tissue (Hori, et al., 1992). 

Autoradiographic studies showed that ETA receptors predominate in adult human 

pulmonary artery (Fukuroda, et al., 1994a; Davenport, et al., 1993) however a high 

proportion of ETB receptors are present in the rabbit pulmonary artery (Fukuroda, et al., 

1994a; Panek, et al., 1992). Therefore, the subtypes of ET-receptor appear to vary not 

only with tissue localisation, but there may also be species variations. Functional 

experiments have also show evidence for the presence of both ETA and ETB receptors 

in the lung, as will discussed in the following sections. 

1.4.3 Pulmonary actions of Endothelins. 

ET's are known to elicit biological effects on both airway and vascular tissues 

within the lung (Filep, et al., 1992). Although ET's are implicated in the physiology 

and pathophysiology of airway function, I will concentrate only on the pulmonary 

vascular effects of ET's. 

Intravenous administration of ET-1 to anaesthetised dogs resulted in a mild 

constriction of the pulmonary vascular bed (Miller, et al., 1989; Goetz, et al., 1988). 

Similar slight vasoconstrictor actions of ET-1 were demonstrated in the pulmonary 

circulation of the conscious catheterised rat (Raffestin, et al., 1991). Both mild 

(Lippton, et al., 1989), and potent (Minkes, et al., 1990) pulmonary vasoconstrictor 

actions of ET-1 have been reported in the anaesthetised cat, and may be due to actual 

dose of the peptide administered. In conscious rats, in which pulmonary vascular tone 

was increased by airway hypoxia, i. v. administration of ET-1 produced rapid 

pulmonary vasodilatation which was sustained over approximately 10 minutes 

(Hasunuma, et al., 1990). ET's also produce vasodilatation in the pulmonary vascular 
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bed of the cat, where pulmonary vascular tone has been raised by U46619 

administration (Lippton, et al., 1991). Earlier studies from the same group (Lippton, et 

al., 1989) had failed to show any vasodilator actions of ET's in the cat pulmonary 

vasculature, however the authors suspect that this may have been due to unrecognised 

tachyphylaxis of the response. Infusion of the K+ channel blocker glibenclamide, 

significantly attenuated the vasodilator action of ET's in the cat pulmonary circulation 

suggesting that ET activation of K+ channels was mediating vasodilatation in this 

model (Lippton, et al., 1991,1995). The relative potency of the ET peptides in 

mediating vasodilatation suggested that activation of ETB receptors mediated this 

response (Lippton, et al., 1991). It is unclear from these studies in vivo, whether ET- 

induced pulmonary vasodilatation is due to direct action on the vascular smooth 

muscle, or is mediated through another cell type (i. e. endothelium). 

1.4.3.2 In vitro Studies. 

As is observed in vivo, the pulmonary vascular response to ET's in isolated 

perfused lungs is dependent upon the initial degree of vascular tone. Under conditions 

of basal tone, ET-1 produced mild to moderate (dose-dependent) increases in 

pulmonary pressure and pulmonary vascular resistance in isolated perfused lungs from 

most species including, lamb (Toga, et al., 1991), rat (Hasunuma, et al., 1990; 

Raffestin, et al., 1991; Eddahibi, et al., 1991; Crawley, et al., 1992) and rabbit (Mann, 

et al., 1991). ET-1 is generally more potent than ET-3 in mediating the vasoconstrictor 

response suggesting the involvement of ETA receptors, although the exact potency ratio 

varies between species. In isolated perfused lungs in which pulmonary vascular tone 

has been raised either naturally (as in the fetus) (Wong, et al., 1995), or artificially (by 

airway hypoxia or vasoconstrictor drugs) (Hasunuma, et al., 1990; Raffestin, et al., 

1991; Eddahibi, et al., 1991; Crawley, et al., 1992), administration of low 

concentrations of ET's produces rapid dose-dependent vasodilatation. In isolated 

perfused rat lungs, the vasodilator response of low concentrations of ET-1 are of short 

duration, and pulmonary artery pressure returns to pre-ET-1 infusion levels within 
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minutes (Hasunuma, et al., 1990; Eddahibi, et al., 1991). With subsequent application 

of greater concentrations of ET-1, vasodilatation is no longer apparent, and only 

vasoconstriction is observed. The relative potency of the ET's in mediating 

vasodilatation in the pulmonary circulation of the rat and pig would indicate that 

activation of ETB receptors mediates this response (Crawley, et al., 1992; Perrault, et 

al., 1995). However, the actual mechanism of vasodilatation is less clear. In the rabbit 

pulmonary vasculature, ET-1 mediates release of PGI2 and NO (De Nucci et al., 1988). 

Vasodilatation to ET's can be attenuated by inhibition of NOS in the pulmonary 

vasculature of the rat (Raffestin, et al., 1991) and pig (Perrault & DeMarte, 1991). 

There is also evidence to suggest that ET activation of ATP-sensitive K+ channels 

mediates pulmonary vasodilatation in isolated perfused rat lungs (Hasunuma, et al., 

1990; Eddahibi, et al., 1991) as is observed in the cat pulmonary vasculature in vivo 

(Lippton, et al., 1991). 

Isolated tissue preparations. 

ET-1 and ET-3 have been demonstrated to be more potent in constricting the 

isolated rat pulmonary artery than aorta (Rodman, et al., 1989). Indeed ET-1 has been 

shown to induce potent vasoconstriction in isolated pulmonary arteries from many 

species including, pig (Sudjarwo, et al., 1993) sheep (Toga, et al., 1992) rabbit (Panek, 

et al., 1992) and human pulmonary arteries (McKay, et al., 1991b; Hay et al., 1993). 

Cardell, et al., (1990) reported that ET-1 was more potent in small pulmonary arteries 

of the guinea-pig than corresponding veins, however, the opposite relationship was 

found in the adult sheep, with veins being more sensitive to ET-1 than arteries (Toga, et 

al., 1992). Although there is strong evidence for vasodilatation to ET's in vivo and in 

isolated pulmonary vascular beds (see above), evidence demonstrating ET mediated 

vasodilatation in isolated pulmonary arterial preparations is less apparent. Hasunuma, 

et al., (1990) showed that ET-1-mediated vasodilatation was absent in rat isolated 

extrapulmonary arteries with intact endothelium. A similar situation is observed in 

lamb isolated pulmonary resistance arteries with ET-1 failing to produce vasodilatation 

in preconstricted vessels (Wang & Coceani, 1992). In isolated pig pulmonary arteries 
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and veins, ET-1 produced equipotent contractile responses under conditions of basal 

tone (Zellers, ei al., 1994), however in preconstricted vessels ET-1 produced 

endothelium-dependent relaxations (at picomolar concentrations) which were greater in 

veins than arteries (Sudjarwo, el al., 1993; Zellers, et al., 1994). In contrast to the 

observations by Hasunuma, ei al., (1990), Carville, el al., (1993) demonstrated 

endothelium-dependent relaxatory responses to ET-3 in rat isolated extrapulmonary 

arteries. The endothelium-dependent relaxation in isolated pig and rat pulmonary 

vessels was suggested to be mediated via activation of endothelial ETB receptors due to 

the relative potency of ET's, and could be prevented by inhibition of NOS (Zellers, et 

al., 1994; Carville, et al., 1993). 

1.4.4 Mechanism of action. 

The exact signal transduction mechanisms activated by ET's in the pulmonary 

circulation are not yet clear. The vasoconstrictor action (mainly due to activation of 

ETA receptors) may involve mobilisation of extracellular and intracellular calcium 

(Leach, et al., 1990; Sudjarwo, et al., 1995) and activation of PKC (Mann, et al., 1991; 

Barman & Pauly, 1995) all of which mechanisms are linked to ET-1 mediated 

contraction of the systemic vasculature (see section 1.2.8). Release of cylooxygenase 

products may also contribute to the vasoconstrictor action of ET's the dog lung 

(Barnard, et al., 1991). As mentioned above, vasodilatation to ET's has been attributed 

to the release of PGI2, NO and / or activation of ATP-sensitive K+ channels, depending 

on the preparation and species under observation. Recently Lippton, et al., (1995) 

reported that although all ET isopeptides promote vasodilatation through activation of 

ATP-sensitive K+ channels, the vasodilator actions of ET-1 and ET-2 in the cat 

pulmonary vasculature were mediated via a pertussis toxin (PTX) sensitive G protein 

mechanism, whereas vasodilator responses to ET-3 were resistant to PTX treatment, 

suggesting different signal transduction mechanisms are activated by the different 

peptides. 
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1.4.5 Physiological role for endothelin in the pulmonary circulation. 

A physiological role for ET-l in maintenance of pulmonary vascular tone is 

difficult to determine from the aforementioned evidence. From the pharmacological 

actions of ET-1 in intact lungs, the vasodilator actions of ET's could be implicated in 

the maintenance of low vascular tone through interaction with the vascular 

endothelium, or through direct actions on vascular smooth muscle. However what may 

be of more physiological importance is that the pulmonary circulation appears to be and 

important site for both the production (see section 1.4.1.1) and clearance of ET-1 (see 

section 1.2.14). The extent of pulmonary clearance of ET-1 appears to depend on the 

species under study as no significant extraction was found across the pulmonary 

circulation of the pig (Pernow, et al., 1989). However, investigations by Stewart, et al., 

(1991) showed that in normal humans, arterial to venous ratio of ET-1 was less than 

unity suggesting pulmonary clearance of ET-1 in the healthy human lung. 

1.4.5.1 Endothelin in hypoxic pulmonary vasoconstriction. 

Alveolar hypoxia has been shown to stimulate ET-1 production in rat lungs 

(Shirakami, et al., 1991) and has therefore been examined as a possible mediator of 

HPV. The rapid onset of vasoconstriction upon hypoxic exposure would rule out de 

novo synthesis and release of ET-l, and the reversibility of HPV upon the return to 

normoxia is also not compatible with the relative irreversibility of ET-1 mediated 

vasoconstriction. The ETA receptor antagonist BQ-123 has been shown to be 

ineffective in preventing HPV in isolated canine pulmonary arteries (Douglas, et al., 

1993), isolated perfused rat lungs (Takeoka, et al., 1995) and in the intact lamb (Wong, 

et al., 1993). However, recent evidence has shown that ET antagonists can effectively 

block HPV in some preparations. In conscious rats, acute HPV could be inhibited by 

both the ETA receptor antagonist BQ-123, and the mixed ET receptor antagonist 

bosentan (Oparil, et al., 1995; Chen, et al., 1995). BQ-123 was also effective in 

blocking HPV in the intact lamb, and isolated pulmonary resistance arteries of the lamb 

(Wang, et al., 1995). Although ET-1 is thought be secreted immediately upon 

synthesis, there may be some evidence to suggest that ET-1 can be stored in secretory 
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vesicles and released in response to stimuli such as stretch and hypoxia (MacArthur, et 

al., 1994; McClellan, et al., 1994). The role of ET-1 in HPV is still unclear with 

positive evidence both for and against ET-1 as a mediator of HPV, however there is 

more positive evidence to implicate ET-1 in chronic hypoxic pulmonary hypertension. 

1.4.6 Endothelin in pulmonary hypertension. 

ET-1 has been implicated in the pathophysiology of both primary and secondary 

pulmonary hypertension. An outline of the evidence will be introduced below, with 

further detailed discussion given in the relevant experimental chapters of this thesis. 

Evidence for a pathophysiological role of ET-1 in pulmonary hypertension has centred 

around three main points. 

1) ET-1 produces potent well-maintained vasoconstrictor responses in isolated 

pulmonary arterial preparations (see section ), implying that subtle disturbances in it's 

production and release could induce sustained vasoconstriction typically observed in 

pulmonary hypertensive states. 

2) ET-1 stimulates DNA synthesis and cell proliferation of cultured pulmonary artery 

smooth muscle cells (Hassoun, et al., 1992; Janakidevi, et al., 1992) and also 

stimulates the replication of pulmonary artery fibroblasts (Peacock, et al., 1992). 

Therefore suggesting a role for ET-1 in vascular remodelling associated with 

pulmonary hypertension. 

3) Increased local tissue, and circulating plasma levels of ET-1 have been reported in 

both animal models (Li, et al., 1994a), and patients with primary and secondary forms 

of pulmonary hypertension (Stewart, et al., 1991; Giaid, et al., 1993). 

All of these points would therefore implicate that abnormalities in the 

physiological status of ET-1 production and metabolism may be a factor in the 

development of pulmonary hypertension. 

15 Reasons for study ng pulmonary resistance arteries in vitro. 

It had been proposed that the pre-capillary resistance vessels, which can account 

for up to 50% of the total vascular resistance in the systemic circulation, were not 
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present in the pulmonary circulation (Barer, 1976). In 1989 Leach et al., were one of 

the first groups to investigate the properties of small pulmonary arteries of the rat using 

the Mulvany wire myograph. The wire myograph (which will be described in detail - 

chapter 2 this thesis) allows the study of small resistance vessels in vitro. In this study, 

Leach, et al. (1989) demonstrated that vessels of a diameter in the range of 200-400 Pm 

produced considerably more force for a given intervention than vessels with smaller or 

larger internal diameters, and therefore suggested that these vessels may play an 

important role in the generation of pulmonary vascular resistance. As described 

previously the small pulmonary arteries of the lung which are thought to be the main 

site of pulmonary vascular resistance and hypoxic pulmonary vasoconstriction in vivo 
(Staub, 1985) incorporating vessels of 60-500 p. m i. d. depending of the species (Tod, et 

al., 1987; Fike, et al., 1988). Reports have also shown that physiological and 

pharmacological characteristics of the pulmonary artery are heterogeneous. Large and 

small pulmonary arteries of the rat have different membrane properties (Suzuki and 

Twarog, 1982), and show different responses to vasoactive agents (Leach, et al., 1992). 

By use of vascular occlusion techniques ET-1 has been shown to preferentially increase 

small-artery resistance in the rat lung (Barnard, et al., 1991). Taking all of these points 

into consideration, characterisation of the vasoactive properties of pulmonary resistance 

arteries is extremely important. 

Main Aims of Project. 

Although isolated pulmonary vessels have been studied for some time in vitro, 

technical limitations restricted the size of vessel which could be studied without causing 

substantial damage to the tissue. With the development of the wire myograph, smaller 

and more physiologically relevant pulmonary vessels can now be studied. I have 

outlined the importance of the small pulmonary resistance arteries in vivo, therefore the 

main points I wished to address with my research were to : 

1) Study the vascular reactivity of isolated pulmonary resistance arteries in vitro to 

selected vasoactive agents. With the possible implications of ET-1 in pulmonary 
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function, particular attention was given to the vascular reactivity of pulmonary 

resistance arteries to ET's and related peptides. 

2) Compare and contrast ET-mediated responses in control and pulmonary 

hypertensive (chronic hypoxic) rat pulmonary resistance arteries. 

3) Identify the receptor subtypes mediating ET-induced responses in control and 

pulmonary hypertensive rat pulmonary resistance arteries. 

4) Identify the receptor subtypes mediating ET-induced responses in human 

pulmonary arteries. 

Additional preliminary studies were also conducted investigating the effect of 

pulmonary hypertension on intracellular cyclic nucleotide levels in the pulmonary 

arterial vasculature. 
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Chapter 2 

Materials 

Methods 
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2.1.1 Organ bath set up for larger diameter pulmonary artery 

Standard organ bath procedures were used for studying larger calibre pulmonary 

arteries (2-5 mm) in vitro. The technique used is similar to that described by Hooker, et 

al (1976). Figure 2.1 shows a schematic diagram of the organ bath set up. Rings of 

larger calibre pulmonary artery were suspended between two wire supports, the upper 

support being connected by cotton to a (Grass FT03) isometric transducer and the lower 

support was connected to a glass tissue holder. Isometric contractions were recorded via 

a transducer connected to a6 channel Gould (model number BS-Z76) chart recorder. 

Each arterial segment was then mounted in 5 ml isolated organ baths containing modified 

Krebs-Heinslet solution (hereafter referred to as Krebs solution). Appropriate tension 

was then placed on the vessels (see experimental chapters) and were maintained at 37 0C, 

by means of an insulating water jacket surrounding the bath, bubbling with an 

appropriate gas mixture (for exact gas details see section 2.1.7). 

2.1.2 Wire myogra hhy 

2.1.2.1 Back rg_o_und 

The small vessel wire myograph was first described by Mulvany and Halpern 

(1976). This was a breakthrough in the investigations of blood vessels in vitro as it 

allowed measurement of isometric responses of small resistance arteries. Previously, due 

to technical limitations these experiments had to be carried out in larger diameter vessels, 

with the smallest vessel studied in vitro being the rat tail artery. Measurements of 

pressure taken from various regions of the systemic vascular tree demonstrated that in 

some vascular beds at least 50% or more of the pre-capillary pressure drop occurs in 

vessels with internal diameters greater than 100 µm (Bohlen, 1986). Therefore vessels 

with internal diameters ranging from 100-400 µm must contribute substantially to 

peripheral vascular resistance. The technique which was developed is ideally suited to 

vessels with internal diameters of 100-400 p. m, but can be adapted to study vessels of up 

to 1000 µm. As previously mentioned initial studies involving wire myography 
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Figure 2. 

Diagrammatic representation (not to scale) of the organ bath experimental apparatus used 

for studying larger diameter pulmonary arteries in vitro. Volume of the organ bath was 5 

ml, gas bubbling apparatus is not shown on diagram. 
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concentrated on systemic resistance vessels, however the technique can essentially be 

applied to any small tubular structure such as bronchi and ureter (Chopra, et al., 1994; 

Prieto, et al., 1994). 

2.1.2.2 Description of M, yoeaph equipment 

Mulvany / Halpern small vessel wire myograph models 500A and 5 10A were 

used in the following experiments. The myograph consists of a stainless steel organ 

chamber (as shown in figure 2.2) which can house up to two vessel preparations. The 

vessels are mounted on the myograph by means of wire (see mounting procedure section 

2.1.4.1) to vessel support heads shown in figure 2.2. 

Figure 2.2. 
Schematic diagram (not to scale) of Mulvany / Halpern wire myograph. The above 

model 500 A allows in vitro isometric measurement of a maximum of two preparations. 
Vessels are attached by means of wire to the vessel support heads. The vessel chamber is 
filled with Krebs solution, and is electronically heated to 37 °C. 
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One of the vessel supports is attached to a sensitive isometric force transducer, and the 

other is attached to an adjustable slide arm which is controlled by a micrometer. This 

allows distance between the supporting heads to be accurately adjusted, allowing tension 

to be placed on the preparation. 

The temperature of the vessel chamber is electronically controlled via internal 

heating pads (within 0.1 OC). A digital readout of force and temperature is displayed on a 

separate myograph controller module. This in turn has output connections to a Linseis 6 

channel chart recorder (model Typ 2065), to allow a hard copy of the force readout from 

both transducers. 

2.1.3 Dissection of pulmonary arteries. 

2.1.3.1 Rat pulmonary arteries. 

Large extrapulmonary arteries. 

Rats were killed by overdose of sodium pentobarbitone (60 mg/kg i. p. ) and the 

heart and lungs removed and immediately placed into ice cold Krebs. The main 

pulmonary artery leaving the right ventricle was identified, and surrounding tissue cleared 

so that the right and left branches were visible. The vessels were then carefully dissected 

free and cleaned of connective tissue and fat. Each vessel constituted one ring, main 

pulmonary artery (3-4 mm i. d., 2-3 mm long), and pulmonary artery branches (2-3 mm 

i. d., 5-6 mm long), therefore giving a total of three arterial rings per rat. These vessels 

were placed in a vial of ice cold Krebs in preparation for mounting in the organ bath (see 

section 2.1). 

The left lung was cut free and pinned to dissecting dish with its visceral surface 

exposed and parietal surface lying inferiorly. During the dissection, the preparation was 

frequently washed with ice cold Krebs solution. Using a dissecting microscope an 

incision was made along the superficial aspect of the bronchus, cutting from large 

proximal airway along the bronchial tree to distal bronchus / bronchiole (see figure 2.3). 
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Once completed, the associated pulmonary artery (- 150 µm i. d. ), branching parallel to 

the bronchus in the bronchovascular bundle was then easily identified beneath the 

bronchial wall. The bronchial tissue was then gently dissected free and removed from the 

artery beneath. The lung tissue lateral to the artery was carefully dissected free, the artery 

removed and placed into a vial of ice cold Krebs solution, in preparation for mounting on 

the myograph. 

13RON 

1----1150 µm (approx. ) 

Figure 2.3. 
Schematic diagram showing dissection procedure for rat pulmonary resistance arteries. 
The above diagram show the close association between the bronchial tree and the 
pulmonary arterial tree. The venous circulation has been removed from this diagram to 

avoid complication, but normally lies superior to the bronchial tree. Orientation of the 
lung in the above diagram is as follows : Visceral surface superior, parietal surface 
inferior, rostra] region to the right. The arrows indicate the approximate location and size 
of pulmonary resistance arteries used in these studies. 

2.1.3.2 Bovine pulmonary resistance arteries. 

A lobe of bovine lung was placed on a dissecting tray with its visceral surface 

exposed. The main internal pulmonary artery was identified, and the airway lying 

superior to the artery was dissected free. The branching pathway of the pulmonary 
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arterial tree was followed until an intrapulmonary artery of approximately 3 mm i. d. was 

identified. A block of lung tissue (approximately 10 cm3) surrounding the 3 mm i. d. 

artery branch was then removed from the lobe. Using a dissecting microscope the 

branching pathway of the artery was followed until resistance arteries of the appropriate 

size were located (150-250 pm). Identification of a pulmonary resistance artery was 

assured by the proximity of the accompanying bronchiole. The resistance arteries were 

carefully dissected free from the surrounding parenchymal tissue and placed in to a vial of 

ice cold Krebs solution. 

2.1.3.4 Human pulmonary arteries. 

Large intrapulmonary arteries. 

The lung samples were placed in a Krebs filled petri dish and a large pulmonary 

artery segment was identified. Depending on the original size of the sample, the artery 

was followed along its branching pathway until branches with internal diameters of 3-5 

mm were located. The artery was then cleaned of surrounding parenchymal tissue, 

removed and mounted in the organ bath (see section 2.1). 

Pulmonary resistance arteries. 

Using a dissecting microscope the artery (3-5 mm) remaining within the lung 

sample was then followed further along its branching network until pulmonary resistance 

arteries of the appropriate size (-200 µm) were located. The arteries were cleaned of 

surrounding tissue, removed and placed in a vial of ice cold Krebs solution in preparation 

for mounting. The identification of a resistance artery was verified by the proximity of 

the accompanying bronchiole. This was found to be a useful tool when only small 

sections of lung were obtained. The location of the area of lung removed during surgery, 

and the size of the section obtained varied between samples, due to obvious differences in 

the surgery required for individual patients. However, great care was taken to ensure that 

vessels of the appropriate size were removed from each lung sample to minimise 

variation. 
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2.1.4.1 Myo ph mounting procedure. 

Vessels were mounted as pairs in the same bath of a Mulvany / Halpern small 

vessel wire myograph (J. P. Trading). The mounting procedure is similar to that 

described by Mulvany, et al., (1977), although there are slight modifications. The 

mounting procedure for pulmonary vessels is shown in figure 2.4. The length of the 

arterial preparation once mounted on the myograph was -2 mm. The myograph vessel 

chamber was filled with Krebs solution, and once the vessels were mounted, the heating 

mechanism was activated to increase the temperature to 37 °C. Vessels were bubbled 

with the appropriate gas mixture (see section 2.1.7. ). 

2) 3) 

CUT AND 
REMOVE EXCESS 

a' 

e 
a 
e 

A 

6 

B 

5) 6) 

Figure 2.4. 
Mounting procedure for pulmonary resistance arteries. Vessels to be mounted were 
placed in a petri dish containing Krebs, and whilst holding onto the cut end of the artery, 
a 40 Vtm diameter stainless steel wire was carefully passed through the lumen of the 

vessel. 

1) This was then transferred to the Krebs filled organ bath of the myograph and the wire 

secured between the mounting heads such that the artery segment was correctly 
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positioned in the gap between the mounting jaws. 2) The free ends of the wire were 

then secured to the left mounting jaw by means of attaching screws. 3) The heads were 

then separated and any excess vessel that lay outside the jaw, and that had served to allow 

manipulation of the vessel whilst mounting, was carefully cut away. 4) A second 40 

pm wire was then carefully passed through the lumen of the vessel. 5) The mounting 

heads were then closed and the free ends of the second wire were secured to the right 

mounting head. 6) The mounting heads were then separated and appropriate tension 

could now be placed on the vessel. 

2.1.4.2 Normalisation 

The normalisation procedure was originally described by Mulvany and Halpern in 

1977. This procedure allows vessels to be stretched to stimulate a required resting 

transmural pressure. The Laplace relationship can derive the wall tension in a cylinder if 

its radius and the pressure within it are known. It can therefore be modified to give the 

relationship between these three variables for a vessel mounted on the myograph. 

Pi = Wall tension / (internal circumference / 2it) ............... 
(1) 

Where Pi is the effective pressure, being an estimate of the pressure (in kPa) which 

would be necessary to extend the vessel to the measured internal circumference. Wall 

tension is the force divided by the was length i. e.. 

Wall tension = Force (F) / (Length (L) x 2) 

Note that the wall length is equal to twice the segment length, since there is both an 

"upper" and "lower" wall. After a given amount of stretch is placed on the vessel, the 

internal circumference (IC) can be calculated as follows. 

IC 1= (micrometer reading at I- micrometer reading at point B) x2 +(IC B) 

Where point B is the point at which the two securing wires are just touching, and when 

using 40 µm diameter wires ICB would equal 205.6 µm. The difference in the 

micrometer reading will be equivalent to the distance between the two wires. 
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Rearranging equation (1) gives 

Pi = (2it) x Wall tension / IC 

substitute values for wall tension, and internal circumference 

Pi = (27t) xF/2xL (205.6 + (2 x distance between wires)) 

Therefore by using this relationship vessels could be stretched to mimic a required 

equivalent transmural pressure. 

2.1.4.3 Choosing the correct pressure. 

For the majority of systemic vessel preparations, the figure of 0.9 of L 100 is used 

as a normalisation pressure. L100 is the diameter which the vessel would have if relaxed 

and under a transmural pressure of 100 mmHg. When set under these conditions the 

equivalent pressure of the vessel is normally in the range of 60-70 mmHg (depending on 

vessel type). As the pulmonary circulation normally operates under conditions of low 

pressure and resistance they should clearly be set up under appropriate conditions. It was 

therefore decided that pulmonary arteries taken from normal lungs would be tensioned to 

give equivalent transmural pressures of -16 mmHg. This is approximately the 

pulmonary artery pressure which would be experienced in vivo (Fishman, 1976). For 

studies using pulmonary resistance arteries from pulmonary hypertensive animals, 

vessels were set up to mimic equivalent transmural pressures to which they would be 

exposed to in vivo (-16 mmHg for control, and -36 mmHg for chronic hypoxic ). These 

are representative pressures which have been demonstrated in rats under similar 

conditions and exposed to the same degree and duration of hypoxic exposure in order to 

develop pulmonary hypertension (Herget, et al., 1978; Rabinovitch, et al., 1979). 

Pulmonary artery pressure in control and chronic hypoxic rats used in this study was 

measured to ensure that these values were appropriate (see chapter 4). An extensive 

study on the effects of resting tension, on responsiveness in rat pulmonary resistance 

arteries was also carried out (see chapter 5). 
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21.5 Calibration of equipment. 

The transducers and chart recorder used in the organ bath set up were calibrated 

daily using known weights. Calibration of the myograph equipment is more time 

consuming and therefore the myograph transducers, and the 6 channel Linseis recorder 

were calibrated every fortnight using known weights, however little variation was 

observed in readings from calibration to calibration. 

2.1.6 General procedure for mvograph and organ bath experiments. 

The general procedure for in vitro studies are listed as follows, but may vary between 

individual experiments, therefore exact procedures are given in each experimental 

chapter. 

1) After mounting of the preparations in the organ bath, or myograph, vessels were 

allowed to equilibrate for one hour in Krebs solution at 37 OC, bubbling with appropriate 

gas mixture, prior to the addition of any drugs. 

2) Following this, vessels were then stimulated with 50 mM KCl to verify tissue viability 

and give a reference contractile response. Once the response reached plateau the vessels 

were then washed with fresh Krebs solution and allowed to return to baseline tension. 

3) The vessels were then left for a further 30 minutes before the addition of any drugs. 

4) A cumulative concentration response curve (CCRC) was then conducted to the 

required agonist covering a range of concentrations which ensured that threshold 

response, and maximum response (if possible) were included. 

i) For agonists which reversibly bound to their receptor, following the initial CCRC, 

vessels were washed with fresh Krebs solution until the tension returned to baseline 

level. The tissues were then left for 20 minutes before the required antagonist / inhibitor 

was added and left for its required incubation period. Following this a second CCRC to 

the agonist was conducted. Some vessel preparations were used as time controls in that 

the second CCRC was conducted without the addition of the antagonist / inhibitor. 

ii) For agonists which irreversibly bound to their receptor, only one CCRC could be 

conducted in each preparation. Therefore, separate tissues were used to perform 
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experiments using antagonists / inhibitors. In such experiments the antagonist / inhibitor 

drug was added 30 minutes after the KCl response and left for its required incubation 

period, before the CCRC was performed. 

2.1.7 Gas mixture. 

As the pulmonary vasculature is actively sensitive to 02 and CO2 concentration, a 

gas mixture which would mimic physiological conditions was chosen. The contents of 

the gas mixture used for bubbling tissues in vitro was as follows : 16 % 02,5 % C02, 

Balance N2. Bubbling the Krebs bicarbonate solution with this mixture gives final bath 

02 tension of approximately 100 - 110 mmHg and CO2 tension of 35 - 36 mmHg, with 

pH 7.4 (measurements taken by oxygen electrode and blood gas analyser), which are 

values equivalent to those found in pulmonary arteriolar blood. Although larger diameter 

pulmonary arteries will be carrying deoxygenated blood towards the lung (approximate 

02 tension of 40 mmHg), it was decided to use 16 % 02 in these vessels to minimise 

variation between groups (with one exception, see chapter 3). The same gas mixture was 

also used when studying pulmonary vessels from chronic hypoxic rats and was also 

chosen in order to minimise variables between groups. 

The standard gas mixture used for in vitro studies of isolated tissues is 95 % 02, 

5% 02, and this hyperoxic gas mixture was originally chosen to prevent areas of the 

isolated tissue preparation becoming hypoxic or anoxic. Decreasing 02 tension from 

95% may effect vascular reactivity in relatively thick walled preparations, for example 

umbilical arteries (Nair & Dyer, 1976). However as pulmonary arterial preparations are 

relatively non muscular and are thin walled, 02 diffusion through the tissue wall should 

be a limiting factor in this case (Fishman, 1976). 

2.1.8 Note on en in. 

Cumulative concentration response curves conducted to ET-1 in pulmonary 

vessels were normally taken to a maximum concentration of 0.3 µM, and addition of this 

final concentration often produced a further contractile response in the tissue, and can 

92 



therefore not strictly be considered "maximal". There are two reasons for not increasing 

the concentration of ET-1 further 1) The relative solubility of the peptide yields a stock 

solution of 100 p. M therefore a large volume of stock solution must be added to 15 ml 

baths to give final concentrations of 1 µM 2) ET-1 (and related peptides) are extremely 

expensive and we could therefore not afford to use large volumes of stock solution. In 

some organ bath experiments, and a couple of myograph experiments, the maximum 

concentration achieved in the CCRC to ET-1 in control vessels was increased to 1 µM. 

In these experiments no further contractile response was observed to ET-1 therefore 0.3 

µM seems to be an approximate value for achieving maximum contraction to ET-1 in 

pulmonary arteries. 

2.2.1 "In House" adult Wistar rat. 

The adult Wistar rat from the "In House" breeding stock of the Institute of 

Physiologys own Animal Unit was used in initial experiments. The rat is a commonly 

used model for the study of the pulmonary circulation in many research groups (Hunter et 

al., 1974; Rabinovitch et al., 1979; Bonvallet, et al., 1993) therefore it was important 

to characterise vascular reactivity of the resistance vessels in the rat pulmonary 

circulation. The Wistar rat would also be used to produce the pulmonary hypertensive 

model used in my studies. Animals were maintained on a twelve hour light-dark cycle 

and allowed free access to standard diet and water. 

2.2.2 Bovine 

Bovine pulmonary resistance arteries were used in some experiments involving 

responses to 5-hydroxytryptamine (5-HT). These vessels were chosen for these studies 

as bovine intrapulmonary arteries have been shown to exhibit similar 5-HT receptor 

populations to those observed in human intrapulmonary arteries (Templeton ei al., 

1993). Bovine lungs were obtained on the day of experimentation from the local abattoir 

(Duke St. Glasgow). Lungs were removed from freshly slaughtered cattle. The lobes of 
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lung were transported to the laboratory in a container filled with oxygenated Krebs 

solution. 

2.2.3 Human. 

Whenever possible studies were carried out using human pulmonary arteries. As 

human tissue was only available approximately once every month, the tissue was used to 

verify key experimental results obtained in the animal models used. Macroscopically 

normal sections of human lung were obtained from patients undergoing surgery for 

bronchial carcinoma, who did not have evidence of any other chronic lung disease. 

Samples were supplied by the Royal and Western Infirmaries, Glasgow. Samples were 

refrigerated in fresh Krebs solution on site, collected and studied no longer than 12 hours 

post-operative. Details of individual patient histories are not known. The treatment 

provided for each patient is variable and depends strictly on individual needs. 

2.2.4 Hypoxic / hypobaric Rat. 

2.2.4.1 Introduction. 

Hypoxic animal models (mainly rats and mice) have been used since the 1920's to 

study various environmental effects and disease states. The animal models were exposed 

to hypoxic environments by use of environmental chambers (normobaric - decreased 

inspired 02 at normal atmospheric pressure; or hypobaric - decreased inspired 02 due to 

decreased atmospheric pressure), or by actual relocation of the animals to altitude where 

the inspired 02 levels are lower than at sea level (see Campbell, 1927a, b, c and Timiras, 

et al., 1957). These early investigations studied the acclimatisation of animals to altitude, 

or 02 tensions which would be experienced at altitude. Animals exposed to these 

hypoxic environments exhibited initial weight loss and alterations in certain internal organ 

weights (Campbell, 1935; Timiras, et al., 1957). 

As previously stated in chapter 1, exposure to chronic global hypoxia is one of 

the factors which can lead to the development of pulmonary hypertension. By the late 

1960's early 1970's, the normobaric and hypobaric animal models were being studied as 
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possible models of the human pulmonary hypertensive state (Naeye, 1965,1967; Abbot, 

et al., 1968; Bartlett, et al., 1971). Further studies showed that the chronic hypoxic rat 

developed right ventricular hypertrophy, muscularisation of pulmonary arteries, 

polycythaemia and carotid body enlargement within 8-14 days, whereas recovery in air 

was slower (Hunter, et al., 1974; Herget, et al., 1978). All of these changes are also 

shown in human chronic hypoxia (Haselton, et al., 1968; Naeye, 1961,1962). The 

basic principles of both models are described below. 

" NORMOBARIC HYPOXIA 

The normobaric method used by most investigators has been adapted from a chamber 

described by Cryer and Bartly in 1974. The oxygen concentration within the chamber is 

reduced from the normal 21% to -10% (160 mmHg to -80 mmHg 02) by intermittent 

infusion of nitrogen from a liquid N2 reservoir, the gas outflow of which is regulated 

electronically. To prevent the build up of C02, humidity and ammonia gas the air is 

circulated through specific chemical absorbers. 

" HYPOBARIC HYPOXIA 

Hypobaric hypoxia reduces the inspired 02 content of the environment by reducing the 

atmospheric pressure within the chamber. This is the equivalent of taking the animals to 

high altitude. As the atmospheric pressure decreases, the partial pressure of the gaseous 

components of air decrease, therefore the partial pressure of 02 inspired decreases. The 

relationship between atmospheric pressure and inspired 02 is shown in figure 2.5. Note 

however that the percentage of the gaseous components of air will remain constant i. e. 02 

21%, N2 - 78%, C02 and inert gases - 1%. 

Hypobaric hypoxia is achieved by withdrawing air from the chamber by use of a 

pump, until the pressure within the chamber is equivalent to -0.5 atmosphere (exact 

pressure may vary between groups; 500 mbar = 380 mmHg) which reduces the inspired 

02 pressure from 160 mmHg to 80 mmHg. The chamber is continuously flushed with 

room air to maintain conditions of low humidity and CO2. 
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Figure 2.5. 
Relationship between 02 concentration and atmospheric pressure. Dotted lines indicate 

02 concentration at control atmospheric pressure (1000 mbar) and experimental pressure 
(500 mbar in the above case). 

The hypoxic rat has been extensively studied and both normobaric and hypobaric 

hypoxic animal models are still commonly used by pulmonary research groups for 

example : Normoxic model (Eddahibi, et al., 1992; Elton, ei al.., 1992; Xue, et al., 

1994); Hypobaric model (Rabinovitch, et al., 1981; Bonvallet., ei al., 1994; Petit, et 

al., 1995). Normobaric and hypobaric hypoxic animals show similar structural and 

haemodynamic changes within the pulmonary circulation. The hypoxic hypobaric 

chamber has proved to be more economical than the normobaric chamber and it is the 

hypobaric model that is used in my studies. The Royal Hallamshire Hospital Sheffield 

designed and manufactured the hypoxic hypobaric chamber used in the following 

experiments, which conforms to the high safety standards required by the Home Office. 

2,2.4.2 Chamber design and components 

The design and layout of the hypoxic / hypobaric chamber are shown in figure 

2.6. The chamber is designed to hold two standard rat cages, with up to four rats in each 
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Fgu 2.6 

Hypoxic / hypobaric chamber. 

Diagrammatic representation of hypoxic / hypobaric chamber (not to scale). The inlet 

valve which controls pressure within the chamber is located on the door. A length of 

tubing connects the chamber to the pump, and can be seen leaving the rear of the chamber 

(vacuum hose connection). The safety vacuum switch and pressure gauge are also 

located at the rear of the chamber. 

The photograph shows two standard rat cages within the chamber. The pressure reading 

at the time the photograph was taken reads -840 mbar, as the chamber was being 

returned to experimental pressure after cleaning. 
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cage. The structure of the chamber is made from transparent high resistance Plexiglas 

which is rigid except for the door which can be removed to allow the rat cages to be 

placed in the chamber, or removed. Air is removed continually from the chamber by the 

pump, and the resulting pressure within the chamber is displayed on the gauge. The 

pressure is adjusted by the inlet valve positioned on the door; closing the inlet valve 

decreases the pressure within the chamber. Air is constantly flowing through the 

chamber at 45 L/min, ensuring that moisture and CO2 do not build up. Temperatures are 

similar both inside and outside of the chamber. The animals are protected from exposure 

to low pressures by the vacuum safety switch (set at 460 mbar) which when triggered 

turns the pump off, allowing the pressure to return to its set value. 

2.2.4.3 Maintenance of animals. 

The chamber was housed in a specially designed environmental room which 

maintains temperature at approximately 21°C, humidity at 55 %, gives 20 changes of 

filtered air per hour and maintains a 12 hour on 12 hour off light cycle. Animals used in 

the experiments were obtained from credited commercial suppliers Harlan UK Ltd. The 

rats supplied were male specific pathogen free, and ordered in at age 28-30 days 

(approximately 60 g weight). Animals were allowed to acclimatise within the 

environmental chamber for five days before being split into two groups of four. One 

group of animals were placed in the chamber and the other group remained in normal 

atmospheric conditions to act as age matched controls. 

Production and maintenance of chronic hypoxic rats. 

1) The chamber door was removed and the rat cage was placed in the chamber so that the 

food and water dispensers were at the rear. This ensures that the animals could be 

observed at all times. Food hoppers and water dispensers had previously been filled to 

maximum capacity. 

2) The chamber door was replaced and the pump switched on. 
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3) The inlet valve was closed slightly and the door was gently pushed closed to form a 

tight seal. 

4) The chamber was taken down to the desired pressure (550 mbar - 418 mmHg) in 

small steps by slowly closing the inlet valve, and observing the pressure reading on the 

gauge. Initially the rats were taken down slowly over two days to the desired pressure. 

Animals were carefully watched for any signs of distress at all times. Once the stable 

experimental pressure was reached rats were checked every 15 minutes for the following 

hour to ensure the pressure remained stable and the animals were not in distress. 

5) The chamber could then be left to run for the experimental time required. Checks were 

made five times a day to ensure that 

" pressure reading was not fluctuating below or above desired level 

" temperature inside and outside the chamber was not fluctuating above 230C or 

below 200C. 

" animals were not showing signs of distress 

" pump was operative, not overheating or making unusual noises etc. 

6) At weekends the chamber was checked by a member of the Central animal facility 

staff, University of Glasgow. 

7) When the animals required fresh diet and water, usually every three days, the chamber 

was gradually taken to atmospheric pressure by opening the inlet valve, over a period of 

two hours. Once atmospheric pressure was reached the pump was switched off and 

allowed to cool for half an hour while the rat cages were cleaned and animals given fresh 

food and water. Following this the animals were placed back in the chamber, the pump 

switched on, and taken back to 550 mbar over a peri od of two hours. 

After 14 days in the chamber, two of the rats were removed and the remaining 

two rats were taken back to experimental pressure for a further two days. Of the two rats 

removed one was immediately sacrificed and studied on that day along with an aged 

matched control. The second rat was left in room air to be studied no longer than 24 

hours after removal from the chamber. The same procedure occurred on day 16 for the 

remaining two rats. 
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2.2.5 Assessment of pulmonary hypertension. 

2.2.5.1 Using ventricular ratio measurements 

In both clinical and experimental forms of pulmonary hypertension thickening of 

the right ventricular wall is observed. Chronic global hypoxia causes global pulmonary 

vasoconstriction, increasing pulmonary vascular resistance and pulmonary pressure. 

Right ventricular hypertrophy occurs due to the increased work load required to pump 

blood through a high resistance pathway. The degree of right ventricular hypertrophy 

gives an index of the development and degree of pulmonary hypertension (Hunter, et al., 

1974; Leach, et al., 1977). 

Procedure for ventricular measuremen 

Rats from control and chronic hypoxic groups were sacrificed by overdose of 

sodium pentobarbitone (60 mg / kg i. p. ). The thoracic cage was opened and the heart 

and lungs were removed. Atria and associated large calibre vessels were dissected from 

the ventricular mass, and the heart was dissected so to isolate the free wall of the right 

ventricle from the left ventricle plus septum as described by Fulton, et al., 1952. The 

ventricles were first washed in Krebs saline, blotted dry on tissue and then wet weights 

were measured on a Oertling NA 114 balance. The ratio of right ventricular (RV) free 

wall weight to left ventricle plus septum (LV+S) was used as an index of right ventricular 

hypertrophy. The ratio of ventricular weight to body weight of the animals was also 

assessed to eliminate any possible error occurring from this. 

2.2.5.2 Using histologi 

Pulmonary vascular remodelling due to pulmonary hypertension can be assessed 

histologically, by estimation of the number of thick-walled peripheral pulmonary vessels. 

Thick walled peripheral vessels (TWPV) are generally characterised by their proximity to 

the alveolar ducts, their size, and the nature of their elastic coat. 
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Procedure for histological examination of TWPV. 

Rats were killed by overdose (as stated above) and the heart and lungs removed 

en bloc. The lungs were dissected free and fixed in 10% formal-saline. Complete 

transverse sections of the middle right lobe were cut 5 µm thick, and stained for elastic 

tissue and smooth muscle with elastic-van Gieson stain. The resulting sections were 

examined using a Zeiss Axiophot microscope. A double elastic lamina was said to be 

present when two laminae with a space between were visible for at least half the diameter 

in cross section. The counting of thick peripheral vessels is a time consuming job. As 

estimations of the percentage of thick walled peripheral vessels in the hypoxic hypobaric 

model of pulmonary hypertension are well documented (Hunter, et al., 1974; Leach, et 

al ., 1977; Bonvallet, et al., 1994) I chose not to systematically count each stained 

section, but simply visualise the presence or absence of these vessels in our rat groups. 

This would aid in the validation of the hypoxic model of pulmonary hypertension I was 

using. 

Histological examination of pulmonary resistance arteries 

Electron microscopy 

Pulmonary resistance arteries were dissected from control and chronic hypoxic rat 

lungs according to the methods stated in section 2.1.3. The vessels were fixed for 1 hour 

using 2% glutaraldehyde in 0.1M sodium cacodylate buffer at pH 7.2 (Sabatini, et al., 

1963). The specimens were then given three 20 minute washes in 0.1 M sodium 

cacodylate buffer at pH 7.2. Post-fixation was carried out using 1% osmium tetroxide in 

0.1 M sodium cacodylate buffer at pH 7.2. Following fixation the specimens were 

dehydrated with graded alcohol and embedded in araldite. 

Semithin sections were cut with a glass knife on a L. K. B. 3. Ultratome and 

stained by the polychrome method of Pasyk, et al., (1989). The sections were then 

examined using a Zeiss Axiophot microscope and micrographs taken using Kodak 

Ektachrome 64 film. 
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Ultrathin sections were cut with a diamond knife and mounted on Formvar coated 

1000 µm aperture grids. The ultrathin sections were double stained with uranyl acetate 

(Stempak & Ward, 1964) and lead citrate (Reynolds, 1963). The stained sections were 

examined using J. E. O. L. 100S electron microscope at 80kV and electronmicrographs 

taken on Kodak electron microscope film. 

2.2.5.3. Using direct in vivo measurement of pulmonary artery pressure. 

Direct measurement of the pulmonary artery pressure of the animals gives a clear 

indication of the extent of pulmonary hypertension. The closed chest method of 

pulmonary artery pressure requires placement of a vascular cannula in the pulmonary 

artery. The cannula enters through the right jugular vein, passing through the right 

atrium to right ventricle, and then is manipulated into the pulmonary artery (Kydd, 1966). 

The positioning of the cannula in the pulmonary artery is identified by the shape of the 

pressure wave. I adopted this technique initially when attempting to measure pulmonary 

artery pressure, however the pressure wave form within the pulmonary artery can also be 

simulated when the tip of the catheter leans against the ventricular wall (Herget and 

Palacek, 1972). I therefore decided to adopt the open chest method of pulmonary artery 

pressure measurement as described by Wanstall & O'Donnell, 1990. 

Procedure for measurement of pulmonary artery pressure (open chest). 

Rats from control and hypoxic groups were anaesthetised with sodium 

thiopentone 120 mg/kg i. p injection. The level of anaesthesia was constantly monitored 

throughout the procedure by absence of blink reflex and hind limb withdrawal reflex in 

the unlikely event of further anaesthetic administration being required. Once fully 

anaesthetised, the trachea was cannulated and the rat was artificially ventilated via a 

Harvard apparatus 680 rodent respirator. The thorax was opened and a heparin filled 

(100 u /ml) 23 G hypodermic needle with the sharp point removed was inserted into the 

right ventricle and carefully advanced into the pulmonary artery. The hypodermic needle 

was attached via polyethylene tubing to a Spectramed physiological pressure transducer 
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(model number P23XL). The pulmonary artery pressure was measured on a2 channel 

Linseis flat bed recorder (model number TYP LS ). Correct placement of the needle in 

the pulmonary artery was confirmed by sight and the wave form of the pressure record, 

which differed from that obtained when the needle was withdrawn into the right ventricle. 

Mean pulmonary artery pressure (PAP) was taken as diastolic PAP + one third pulse 

pressure (systolic-diastolic PAP). 

Measurement of pulmonary artery pressure with indwelling cannulae is also well 

documented within hypoxic animal models (Rabinovitch, ei al., 1979; Elton, et al., 

1992; Eddahibi, el al., 1992) therefore I decided to verify pulmonary pressures in two 

animals to validate the development of pulmonary hypertension in the chronic hypoxic 

model. 

2 .3 Biochemical Methods. 

2,3.1 Measurement of intracellular cyclic nucleotide concentration 

2311 Introduction. 

Intracellular cyclic AMP (cAMP) and intracellular cyclic GMP (cGMP) 

concentrations were quantified by using a modified version of the technique described by 

Brown, et al., (1972). The process involves competition for protein binding sites 

between radiolabelled CAMP / cGMP, and the unlabelled CAMP / cGMP to be quantified. 

2,3.1.2 Preparation samt? es 

Control and chronic hypoxic (14 day exposure to hypoxia) rats were killed by 

overdose of sodium pentobarbitone (60 mg/kg i. p. ), the heart and lungs removed and 

immediately placed into ice cold Krebs. Sections of pulmonary artery from different 

locations in the pulmonary vascular tree were then dissected free. Arteries were taken 

from the following four locations, main pulmonary artery (pulmonary trunk), first right 

and left branch, main intrapulmonary artery and pulmonary resistance arteries (see figure 

2.7) 
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Figure 2.7. 

Arterial preparations used in biochemical studies (not to scale). 

Vessels were taken from 4 different locations in the rat pulmonary vasculature. Figure 

2.7. A shows location extrapulmonary arteries used i. e. main pulmonary artery (4-5 mm 

i. d. ) and branch pulmonary arteries (3-4 mm i. d. ), in reference to other main vessels 

leaving the heart. 

Figure 2.7. B shows location of intrapulmonary arteries used i. e. main intrapulmonary 

artery or axial artery (2-0.5 mm i. d. ) and pulmonary resistance arteries (150-200 µm i. d). 

The left lung is illustrated in figure 2.7. B rostral side to left, ventrolateral side to bottom. 
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The arteries were cleaned of surrounding fat and parenchymal tissue, placed in a 

vial of Krebs solution and gassed at 37 OC for 30 minutes. The tissues were then rapidly 

frozen in liquid nitrogen before being homogenised in 0.6 ml of 4% perchloric acid and 

then left for at least 1 hour at 4 °C. After sonicating for 15 minutes the samples were 

then centrifuged at 3000 rpm for 10 minutes and the supernatant retained; 200 µl for 

Lowry protein assay, and the remainder of the supernatant was neutralised using KOH. 

Intracellular cAMP / cGMP concentration was determined by competition binding assay. 

2.3.1.3 Assay pro ure 

Assay procedure for measurement of intracellular cAMP concentrations is given 

below. The procedure for measurement of intracellular cGMP was identical, except for 

the substitution of 3H-cGMP, and cGMP specific binding protein, where appropriate. 

Using assay buffer, various dilutions (0-320 pmols/ml) of unlabelled cAMP were 

prepared giving corresponding values in the assay of 0.06,0.12,0.25,0.5,1.0,2.0, 

8.0, and 16 pmol / 50 W. These were used to prepare a standard curve for unknown 

cAMP determination by incubating with a fixed concentration of labelled cAMP and 

binding protein, also used for unknown samples as shown below. 

[5', 8-3H]-cAMP was diluted in assay buffer to give approximately 500 000 

c. p. m. / ml. Binding protein was diluted 1: 30 in assay buffer for use. Samples were 

then set up as shown below : 

maple Buffer H-cAh - Binding Protein 

Background - 200 µl 100 µl - 

Total bound - 100 µl 100 µl 100 µl 

Standards 50 µl 50 µl 100 µl 100 µ1 

Unknowns 50 µl 50 µl 100 µl 100 µl 

The incubation process was initiated by the addition of binding protein, hence this 

was always added last. After a2 hour incubation period to allow the reaction mixture to 

reach equilibrium, unbound cAMP was precipitated by addition of 250 0 of a well mixed 
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suspension of 2% (wt/vol. ) activated charcoal and 1% (wt/vol. ) bovine serum albumin, 

in ice-cold assay buffer. Tubes were rapidly vortexed then centrifuged for 5 minutes at 

12 000 rpm at 4 °C, to sediment the charcoal containing cAMP which had not bound to 

binding protein during the incubation. A 300 µl volume of each supernatant was taken to 

which 3 ml of scintillation fluid was added, and 3H-cAMP concentration was assessed by 

liquid scintillation counting, incorporating a purpose-designed curve fitting programme. 

2.3.2 Measurements of phosphodiesterase activity. 

2.3.2.1 Preparation of samples. 

PDE activity was measured as described previously by Marchmont and Houslay, 

(1980). Use of 3H-cyclic nucleotide as a radioactive tracer allows enzyme activity to be 

assayed at subsaturating concentrations of substrate. Samples were prepared as 

described for measurement of intracellular cyclic nucleotides with the exception of the 

tissues being homogenised in 0.4 ml Tris HCl buffer containing a cocktail of protease 

inhibitors, as opposed to 4% perchloric acid. Once again 200 µl of supernatant was 

retained for Lowry protein assay. 

2.3.2.2. Assay procedure for nhosphodiesterase activity. 

At 4 °C, 25 pi of sample was added to 25 µl of 20 mM Tris HCl pH 7.4, 

containing 5 mM MgC12. Blanks, containing 50 µl of Tris / Mg2+ buffer only, were 

incorporated in every assay. To this 50 µl of 3H-cyclic AMP was added. In all 

experiments an unlabelled cAMP concentration of I µM was used. Tubes were then 

incubated at 30 °C for 10 minutes. Samples were boiled immediately for two minutes 

and allowed to cool to 4 °C again. Boiling terminates the reaction by completely 

inactivating PDE activity. Following this 25 gg (25 µl of aI mg / ml solution) of snake 

venom (Hannah ophiophagus) was added to the samples. Snake venom contains the 

enzyme 5' nucleotidase which converts 5'-nucleotide monophosphate, formed during the 

initial incubation, to 5'-nucleotide. Samples were incubated again at 30 °C for 10 

minutes to allow the excess of 5' nucleotidase to act. Following this 400 µl of Dowex 
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was added, which selectively binds and therefore precipitates cyclic nucleotides. Note, 

Dowex was kept well stirred during use to ensure a homogenous suspension. Tubes 

were mixed well and left to stand for 15 minutes then vortexed again before sedimenting 

the Dowex resin by centrifugation at 12 000 rpm. A 150 µl aliquot of the resulting 

supernatant was added to 3 ml of scintillation fluid for counting. 

The cGMP PDE activity assay procedure adopted was exactly as stated above 

except for the substitution of cGMP for cAMP. 

2,3.3 Protein Assay - Lowry Method. 

The sample protein content was measured by the modified Lowry method as 

described by Peterson (1977), using a Sigma diagnostics protein assay kit (procedure 

No. P 5656). The principle of this method involves the formation of complexes between 

an alkaline reagent and the peptide to be measured, which subsequently turns purple-blue 

colour upon the addition of a phenyl reagent. Absorbance at a suitable wavelength can 

then be recorded, and the protein concentration determined from a calibration curve. 

Procedure. 

1) Standard solutions of BSA were prepared containing 0- 80 µg/ml of protein per ml, 

to compare with unknown samples from control and chronic hypoxic rat pulmonary 

arteries (100 tl of retained homogenate supernatant). 

2) All samples were diluted to 1 ml volume. 

3) 1 ml Lowry reagent solution was added to all samples and mixed well. 

4) Following 20 minutes incubation at room temperature, 0.5 ml of Folin & Ciocalteu's 

Phenol Reagent working solution was added to each tube and mixed well. 

5) Samples were left for a further 30 minutes to allow colour to develop, and following 

this absorbance was measured at 500 nM. A calibration curve of absorbance vs. protein 

content of standard samples was plotted. 

6) Protein concentration of unknown samples were determined from the calibration curve 

and multiplied by the appropriate dilution factor to obtain protein content of original 

sample. 
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2.4 Data analysis. 

2.4.1 Calculation of results. 

For in vitro measurements of isometric tension, data from preparations 

undergoing the same procedure were grouped together and are expressed as the mean 

value ± standard error of the mean (SEM). Data are expressed as absolute contraction 

(mg wt. tension), percentage of reference contraction to 50 mM KCl (% 50 mM KCI), or 

as percentage of own maximum response in each tissue (% own maximum) depending on 

the agonist used (see individual chapters). 

For measurement of PDE activity correct c. p. m. per sample was calculated by 

subtracting the blank value in each case. This is necessary as it is generally found that 2- 

5% of tritiated cAMP does not bind to the Dowex resin. Determining the protein content 

of each sample allowed results to be expressed relative to the protein content of each 

sample. Finally, specific activity in each case was calculated as pmol/min/mg protein. 

Data for intracellular cyclic nucleotide levels are expressed as absolute concentration pmol 

/ mg. The n numbers for each group are given as standard in parenthesis and are 

expressed as n/n= number of ring preparations from number of animals (lungs). 

2.4.2 Measurement of a og nist potency. 

As a measurement of agonist potency in tissue preparations pEC50 values are 

given as standard; where EC50 is the concentration of an agonist that produces 50 % of 

the maximum possible effect of that agonist, and the pEC50 is equal to the -log of the 

EC50. In some cases other percentage values for example pEC20 and pEC8o values were 

also calculated. pEC20, pEC50 and pEC8O values were calculated by computer 

extrapolation from individual concentration response curves in each vessel. 

To assess the effects of antagonists and give an estimation of antagonist affinity 

pKB and pA2 values (where appropriate) have been calculated. 
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The pKB value is the -log of the KB which is the dissociation equilibrium constant for an 

antagonist; defined as the molar concentration of ligand required to occupy 50 % of the 

receptor pool. An estimate of the pKB value where only one concentration of antagonist 

has been studied were calculated using the following direct fit equation. 

pKB = -log KB and KB = [Antagonist] /r -l 

where r= concentration ratio [A'] / [A] 
, that is the concentration of agonist required to 

elicit an equal effect in the presence ([A']) and absence ([A]) of antagonist. The common 

value chosen here is the EC50. 

The pA2 is the negative logarithm of the concentration of antagonist required to 

produce a two-fold shift to the right of the control response to an agonist. In this thesis 

pA2 values for antagonist were calculated where three or more concentrations of an 

antagonist were studied, according to the methods described by Arunlakshana & Schild 

(1959). In brief this process involves plotting values obtained for log(r-1) (see above) 

against the log concentration of antagonist studied. If the relationship between antagonist 

and receptor is competitive, this graph should yield a straight line with a slope not 

significantly different from unity, and an intercept on the abscissa equal to the pA2. In 

cases where the Schild plot is unity, the pA2 value is equivalent to the pKg value 

(Arunlakshana & Schild, 1959). 

Several assumptions have to be taken into account when estimating pKg values in 

the direct fit model. The equation used to calculate pKB assumes that the antagonist 

interacts with agonist for unoccupied receptors in a simple, reversible manner. As has 

been discussed in chapter 1, the nature of ET's interaction with receptors is thought to be 

essentially irreversible, and this factor therefore questions the validity of the pKg and pA2 

calculations. For calculation of pA2 and pKg values, response curves to agonists are 

normally with and without antagonist, in the same tissue preparation. The fact that only a 

single response curve to ET and related peptides can be constructed in isolated vessels 

will also increase the degree of error. However, it was decided to include these values as 

estimates of antagonist potency, although these main points must be taken into account 

when interpreting the data. 
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2.4.4. Statistical analysis. 

Statistical comparisons between the means of three or more groups of data were 

studied using one way analysis of variance (ANOVA) followed by the appropriate ad hoc 

post test to assess which groups were statistically different. Comparisons between two 

groups were made using Students t-test for paired or unpaired data where appropriate. 

*p < 0.05 was considered to be statistically significant. Where a significant difference is 

indicated, the test used is always stated. The statistics software package InStat P203 base 

on a Macintosh IIci computer was used. 

2.5. Solutions. 

The composition of the modified Krebs-Heinslet solution was as follows : NaCl 118.4 

mM, NaHCO3 25 mM, KCl 4.7 mM, KH2PO4 1.2 mM, MgSO4 1.2 mM, CaCl2 2.5 

mM, glucose 11 mM. 

Normal saline :9g Na Cl / litre distilled H20. 

Assay buffer for cAMP / cGMP : 50 mM Tris HC1 (pH 7.4) containing 4 mM EDTA. 

Assay buffer for PDE measurements : 20 mM Tris HC1 (pH 7.4) containing 5 mM 

MgC12. 

Protease Inhibitor cocktail composition was as follows. 2.5 mM Benzanidine, 0.2 mM 

PMSF, 1 µg/ml Antipain, 1 pg/ml Leupeptin and I µg/ml Pepstatin A. 

cAMP and cGMP binding proteins, 3', 5' cAMP, 3', 5'cGMP, Hannah ophiophagus 

snake venom, Dowex 1-chloride, were kindly prepared by collaborators in the laboratory 

of Professor M. D. Houslay, Institute of Biochemistry, University of Glasgow. 
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2.6 Drugs and chemical reauentc 

Compound S=lier Solvent / stock 

Acetylcholine Sigma H20/1 mM 
BMS 182874 (5-(Dimethynamino)-N-(3,4- Gift H20/1 mM dimethyl-5-isoxzolyl)-1-naphtalenesulphon- 

amide 
Bosentan (4-tert-butyl-N-[6-(2-hydroxy- 

Gift H20/ 1mM 
ethoxy)-5-(2-methoxy-phenoxy)-2,2'- 
bi rimidin-4- 1 -benzenesul honamide 

Bovine Serum Albumin Sigma - 
BQ-788 (N-cis-2,6-dimethylpiperidinocarb- Peptide 0.1 % DMSO /1 mM 
onyl L-y-MeLeu-D-Trp(COOCH3)-D-Me) International 

Charcoal (Norit A) Sigma - 
Dowex-l-chloride Si ma - 

Endothelin-1 Biomac H2O / 100 µM 
Glas ow 

Endothelin-3 Peninsula H2O / 100 µM 
Laboratories 

FR 139317 (N-CO-L-Leu-D-1-Me-Trp-D- 
Neosystems H2O / 100 µM 

3 2-P rid 1 Ala-O 

Heparin Evans 500 u/ml 

L-NAME ° -nitro-L-ar inine meth lester Sigma H20 / 0.1 M 

Lowry Protein assay kit (P 5656) Sigma - 

Noradrenaline Sigma H2O / 10 mM 

Pentobarbitone Sodium (Uthetal) Rhone 200 mg/ml 

Sarafotoxin S6c Sigma 0.1 % acetic acid / 
100µM 

SB 209670 (IS, 2R, 3S)-3-(2-carboxymeth- Gift H20/1 mM 
oxy-4-methoxyphenyl)-1-(3,4- 
methyleudioxy-phenyl)-5-(prop-l-yloxyl- 
indane-2-carbox lic acid) 

Sodium nitroprusside Sigma H20/1 mM 
Sumatri tan (GR 43175) Glaxo H20/1 mM 
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Compound Supplier Solvent / stock 

Thiopentone Sodium Evans Saline / 120 mJ ml 
U46619 (9,11-Dideoxy-11cx, 9a-epoxymeth- 

anoprostaglandin F2(x) 

Upjohn absolute alcohol /I 

mm 

5-H drox tamine Sigma H2O / 10 mM 

3H cAMP Amersham - 

3H cGMP Amersham - 

H2O = distilled water. DMSO = dimethylsulphoxide. All subsequent dilutions were 

made in distilled water. 
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Chapter 3 

Endothelin Receptor Subtypes 
in Small and Large 

Pulmonary Arteries of the Rat 
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3.1 Introduction 

The importance of the pulmonary circulation as a site of biosynthesis and 

clearance of ET-1 has previously been introduced in this thesis (section 1.4). In similar 

fashion to many vasoactive compounds, ET-1 has been shown to mediate both 

vasoconstriction and vasodilatation of the pulmonary vasculature depending on the 

species, preparation and the degree of initial vascular tone present (see section 1.3). 

There are two main subtypes of ET-receptor denoted ETA and ETB (Arai, et al., 1990; 

Sakurai, et al., 1990). To briefly re-cap on the properties of these receptors : ETA 

demonstrates selectivity for ET-1 over ET-3, whereas the ETB receptor is non- 

isopeptide selective. 

In similar fashion to the systemic vasculature, it is generally accepted that 

vasodilator responses to ET-1 in the pulmonary circulation are mediated via activation 

ETB receptors, however the receptor mediating the vasoconstrictor response appears to 

vary between species. In rat, dog and guinea-pig isolated pulmonary arteries, the 

vasoconstrictor response to ET-I appears to be mediated solely via the ETA receptor 

subtype, due to the relative potency of the ET isopeptides and / or the ability of ETA 

selective antagonists to attenuate the response (Watanabe, et al., 1991b; Douglas, et 

al., 1993; Cardell, et al., 1993). However, in the rabbit pulmonary circulation, potent 

vasoconstrictor responses to selective ETg agonists are observed and vasoconstriction 

to ET-1 in this preparation are relatively resistant to the actions of BQ-123 (selective 

ETA receptor antagonist) (Panek, et al., 1992; LaDouceur, et al., 1993). This therefore 

suggests the involvement of vascular ETB receptors mediating vasoconstriction in the 

rabbit pulmonary artery. All of these in vitro studies were conducted in large 

pulmonary arteries, internal diameters ranging from 2 to 5 mm and the in sitzt location 

of the vessel varied from main or branch extrapulmonary arteries, to intrapulmonary 

arteries depending on the species studied. The relative sizes of blood vessels in the rat 

pulmonary vasculature has resulted in the majority of in vitro isolated vessel studies 

being conducted on extrapulmonary capacitance arteries, i. e. the pulmonary trunk and 

primary left and right branches. As the pulmonary resistance arteries are important 
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determinants of pulmonary vascular resistance it is of interest to examine the vascular 

responses to ET-1 and related peptides in these vessels. 

In this chapter, I examined the vascular reactivity to ET-1 in the intrapulmonary 

resistance arteries of the normal adult rat. In addition, the vascular effects of ET-1 in 

the larger extrapulmonary capacitance arteries were also studied, to compare and 

contrast vessels of different size, structure and location in the pulmonary arterial tree. 

The peptide sarafotoxin S6c (SxS6c) was used as a selective ligand for the ETB 

receptor subtype (Williams, et al., 1991), and responses to this peptide were compared 

to the endogenous peptide ET-1, which will act on both ETA and ETB receptor 

subtypes. At this early stage of my research, very few receptor antagonists were 

commercially available, and therefore the relative potencies of the constrictor peptides 

was an important determinant of the receptor subtypes present. The receptor antagonist 

FR 139317 is highly selective for the ETA receptor subtype and was used to determine 

the role of ETA receptors in mediating vasoconstriction (Sogabe, et al., 1993). 

Therefore, using the limited compounds available, I attempted to identify the receptor 

subtypes mediating ET-induced responses in both extrapulmonary and pulmonary 

resistance arteries of the rat. 

3.2 Methods. 

Control adult Wistar rats from the Institute of Physiologys own animal unit were 

used in this initial study. Male animals of approximately 250g were killed by overdose 

of sodium pentobarbitone (60 mg / kg i. p. ) and the heart and lungs removed en bloc. 

barge diameter pulmonary arteries. 

The left and right branch extrapulmonary arteries were dissected out and 

mounted in 5 ml organ baths as described in the methods section (chapter 2). After 

mounting in the organ bath, an initial tension of 1.5g was placed on each vessel 

(optimal tension, personal observations). In these experiments, pulmonary artery rings 

were placed in Krebs solution at 37 °C and bubbled with a gas mixture of 8% 02,6 % 
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C02 balance N2, yielding final bath 02 tension of 45-50 mmHg and CO2 tension of 35- 

36 mmHg (measurements taken with oxygen electrode and blood gas analyser). This 

bubbling mixture mimics the gas tensions found in deoxygenated blood which would be 

flowing through large diameter extrapulmonary arteries in vivo. This study is an 

exception in that 8% 02 was used in comparison to 16 % 02 in all other studies. As it 

was observed that contractile responses to ET-1 in large capacitance pulmonary arteries 

were similar in both gas mixtures (personal observations, data not shown), it was 

therefore decided to minimise variation between groups and use 16 % 02 for all 

subsequent studies. 

Pulmonary resistance arteries. 

Pulmonary resistance arteries (-150 µm i. d) were dissected out and mounted 

according to methods section (chapter 2). Using the normalisation procedure vessels 

were then stretched to an equivalent transmural pressure of -16 mmHg, which is the 

physiological pressures that these vessels would experience in vivo (Herget, ei al., 

1978). The vessels were bathed in Krebs solution at 37 OC and bubbled with 16 % 02, 

5% C02 balance N2. 

Experimental p_rot9col. 

Both sizes of arterial preparation were allowed to equilibrate for l hour prior to 

the addition of any drugs. Vessels were then stimulated with exogenous application of 

50 mM KCI, and once the contractile response had reached plateau, the vessels were 

washed three times with fresh Krebs solution. Following this, the integrity of the 

vascular endothelium was assessed by the ability of 1 µM ACh to cause relaxation after 

preconstriction with 1 gM NA. Following washout and return to baseline tension, 

cumulative concentration response curves (CCRC's) to ET-1 and SxS6c (0.01 pM - 300 

nM or I µM) were constructed following either : 

A) 45 minute "rest period" or 

B) 45 minute incubation period with a chosen concentration of FR 139317. 
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Table 3.1 below illustrates the experiments carried out in the different vessel types. 

Large extrapulmonary 

artery 

Pulmonary resistance 

artery 

Endothelin-1 � � 

Sarafotoxin S6c � � 

ET-1 + FR 139317 � (0.1 - 10 µM) � (0.1 - 10 µM) 

SxS6c + FR 139317 X � (at 1 µM) 

Table 
Summary of experimental procedures performed. 

There is evidence to suggest that endothelial ETg receptors can mediate 

vasodilatation in isolated pulmonary arteries via endothelial release of NO (Zellers, el 

al., 1994; Carville, el al., 1993). Therefore the effect of the nitric oxide synthase 

inhibitor L-NAME on responses to SxS6c in pulmonary resistance arteries was also 

investigated. In these experiments, L-NAME (100 µM) was added 15 minutes prior to 

construction of CCRC to SxS6c. 

Graphical data are expressed as percentage of reference contractile response to 

50 mM KCI or as percentage of own maximum contractile response. pEC20 pEC50 and 

pEC80 values (where appropriate) were calculated according to the methods stated in 

chapter 2. Relaxations induced by ACh were calculated as a percentage of the level of 

preconstriction to NA in each preparation. Except where otherwise stated, all statistical 

comparisons of the means of groups of data were made by Students t-test for unpaired 

data. pA2 values and pKB values for the antagonists FR 139317 were calculated 

according to methods section 2.4.3. 
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3.3 Results. 

Contractile responses to 50 mM KCl were 379 ± 20 mg wt tension and 187 ± 12 

mg wt tension in rat extrapulmonary arteries and pulmonary resistance arteries 

< 0.001; n= 20 rings from 20 lungs for both arterial respectively (***p preparations). 

Both extrapulmonary arteries and pulmonary resistance arteries had intact vascular 

endothelium with relaxations to ACh of 64 ±3% in extrapulmonary arteries and 45 ±4 

% in pulmonary resistance arteries (**p < 0.01; n= 10 rings from 10 lungs for both 

arterial preparations). The average internal diameter of rat pulmonary resistance 

arteries was 175 ±6 µm at an equivalent transmural pressure of 17 ± 0.5 mmHg (n = 16 

preparations from 16 lungs). 

Responses to ET-1 and SxS6c. 

Extranulmonaryarterv rings. 

Figure 3.1. A shows responses to ET-1 and SxS6c in rat extrapulmonary arteries. 

ET-1-induced contractile responses in these vessels were slow to develop (between 3- 

5 minutes at threshold concentration) but contractile responses were well maintained 

once established. Threshold response to ET-1 was at 0.2 nM and the maximum 

response was achieved at 0.1 . iM, with maximum contractile values of 204 ± 14 % of 

the reference contraction to KCl in these vessels. pEC50 values for ET-1 are shown in 

table 3.2. In contrast to ET-1, the ETB receptor agonist SxS6c was almost completely 

inactive in this vessel preparation, producing a slight vasoconstriction at 0.1 pM of 20 t 

3% of 50 mM KCl response (***p < 0.001 vs. ET-1). 

Figure 3.1. B shows responses to ET-1 and SxS6c in rat pulmonary resistance 

arteries. ET-1 also produced contractile responses in these pulmonary resistance 

arteries which demonstrated slow onset, but were well maintained once developed. 

Threshold response to ET-1 was at 8 pM and the maximum contractile response was 

achieved at 0.1 pM, with values of 210 ±5% of the reference contraction to 50 mM 
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KCl in these vessels. ET-1 was approximately 3 fold more potent in pulmonary 

resistance arteries compared than in extrapulmonary arteries (see table 3.2 for pEC50 

values). The response curve to ET-1 in pulmonary resistance arteries appears biphasic 

in nature with a shallow component from 1 pM to 0.1 nM, followed by a steeper 

component at higher concentrations. In contrast to observations in extrapulmonary 

arteries, the ETB receptor agonist SxS6c produced significant contractile responses in 

pulmonary resistance arteries which were 5 fold more potent than contractile responses 

to ET-1 in this preparation. Responses to SxS6c were similar to ET-1 in that they 

demonstrated slow onset. The threshold contractile response for SxS6c was at 2 pM 

and maximum vasoconstriction achieved at 10 nM. Maximum contractile response to 

SxS6c was 196 ± 13 % of the reference contraction to 50 mM KC1, and did not differ 

significantly from the maximum contractile response to ET-1. The response curve to 

SxS6c exhibits a "drop off' in tension at concentration above 10 nM. 

Effect of FR 139317 on responses to ET-1. 

Fxtrapul_monary arteries. 

Figure 3.2A and B show the effect of the ETA receptor antagonist FR 139317 

(0.1 - 10 µM) on contractile responses to ET-1 in rat extrapulmonary arteries. The 

pEC50 values for ET-1 in the presence and absence of FR 139317 are shown in table 

3.2. Incubation with the antagonist (at all concentrations tested) had no significant 

effect on baseline tension of rat extrapulmonary arteries. From figure 3.2 and table 3.2 

it can be seen that FR 139317 at 0.1 . tM had no effect on contractile responses to ET-1, 

whereas 1 and 10 µM of the antagonist produced significant rightward shifts in the 

response curve to ET-1. The maximum contractile response to ET-1 is not significantly 

reduced in the presence of any concentration of the antagonists tested, as shown in 

figure 3.2. A. Table 3.3 shows the pKB values for FR 139317 in this preparation. 

Schild regression produced a pA2 value of 6.83 ± 0.07; with a corresponding slope of 

0.81 ± 0.06 (n = 6) which is significantly less than unity (*p < 0.05; one sample t-test). 
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Effect of FR 139317 on responses to ET-1 in rat extrapulmonary arteries. CCRC's to 

ET-1 (0, n= 12 / 11); in the presence of 0.1 µM FR 139317 (0, n=7/ 7); in the 

presence of 1 pM FR 139317 (O, n= 11 / 9) and in the presence of 10 µM FR 139317 

(p, n=6/ 5). A Data are expressed as percentage reference contraction to 50 mM 

KC1. B Data are expressed as percentage own maximum contraction. Each point 

represents the mean ± SEM. 
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The calculated pA2 value is not significantly different from pKB values at both I and 10 

µM in this preparation. 

Pulmonary resistance arteries. 

The effect of the ETA receptor antagonist FR 139317 (0.1 - 10 µM) on 

responses to ET-1 in rat pulmonary resistance arteries is demonstrated in figure 3.3. A 

and B. A summary of the pEC5o values for ET-1 in the presence and absence of FR 

139317 are shown in table 3.2. Incubation with the antagonist (at all concentrations 

tested) had no significant effect on baseline tension of rat pulmonary resistance arteries. 

FR 139317 at 1 and 10 µM (but not 0.1 . tM) caused a significant rightward shift in 

responses to ET-1 in this preparation. However FR 139317 does not appear to be 

working in a concentration-dependent fashion as I and 10 pM of the antagonist produce 

the same degree of rightward shift. The maximum contractile response to ET-1 in these 

vessels was not affected by FR 139317 at any of the concentrations studied (see figure 

M II 

Extra ulmona artery Pulmonary resistance artery 

KB value n KB value n 

ET-1+FR(1 µM) 6.95±0.13 11 6.28±0.23* 6 

ET-1 +FR(10 µM) 6.48±0.19 6 5.34±0.19** t 5 

Tab-Le 33 
Estimated pKB values for FR 139317 in rat pulmonary arteries. FR = FR 139317. *p 

< 0.05 FR (1 µM) extrapulmonary vs. FR (1 µM) pulmonary resistance artery. **p< 

0.01 FR (10 µM) extrapulmonary vs. FR (10 µM) pulmonary resistance artery. tp< 

0.05 FR (1 µM) vs. FR (10 µM) pulmonary resistance artery, Students unpaired t-test. 

The pKB values for FR 139317 in pulmonary resistance arteries are shown in 

table 3.3 (above). Schild analysis produced a pA2 value of 7.22 ± 0.32; with a 

corresponding slope of 0.23 ± 0.03 which is significantly less than unity (***p < 0.001 

one sample t-test). The pKB values at 1 and 10 µM are significantly different and not 

comparable with the calculated pA2 value. All this evidence shows that FR 139317 is 
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figure 3.3 

Effect of FR 139317 on responses to ET-1 in rat pulmonary resistance arteries. 

CCRC's to ET-1 (0, n=8/ 8); in the presence of 0.1 µM FR 139317 (0, n=6/ 6); 

in the presence of I µM FR 139317 (O, n=6/ 6) and in the presence of 10 µM FR 

139317 (A, n=5/ 5). A Data are expressed as percentage reference contraction to 50 

mM KCI. B Data are expressed as percentage own maximum contraction. Each point 

represents the mean ± SEM. 
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not acting as a competitive antagonist in rat pulmonary resistance arteries. The pKB 

values calculated at I and 10 µM are significantly greater in the extrapulmonary artery 

compared to pulmonary resistance arteries. 

Effect of NOS inhibition and FR 139317 on SxS6c responses. 

Figure 3.4 A and B show the effect of the NOS inhibitor L-NAME (100 . tM) on 

responses to SxS6c in pulmonary resistance arteries. L-NAME itself produced 

contractile responses in 53 % of treated vessels which were only 4±I% of the 

reference contractile response to 50 mM KCl (16 ±4 mg wt tension in absolute values; 

n= 5). pEC50 values for SxS6c in the presence and absence of L-NAME are shown in 

table 3.2. Figure 3.4. B demonstrates that L-NAME has no effect on the response curve 

to SxS6c at low concentrations (below 0.3 nM) but causes a significant leftward shift in 

the higher concentration range of the curve. This is also demonstrated by a significant 

change in the pECgc value, with no apparent change in the pEC50 value. (pEC80 values 

were 8.43 ± 0.24 for SxS6c control, and 9.18 ± 0.12 for SxS6c in the presence of L- 

NAME; *p < 0.05). The "drop off' in tension at the end of the SxS6c response curve 

is also observed in the presence of L-NAME. 

The effect of the ETA receptor antagonist FR 139317 on responses to SxS6c in 

rat pulmonary resistance arteries is also shown in figure 3.4. A and B. The pECso 

values are summarised in table 3.2. Incubation of tissues with I . tM FR 139317 had no 

effect baseline tone in pulmonary resistance arteries. Figures 3.4 A and B and table 3.2 

show that contractile responses to SxS6c are resistant to the actions of the ETA receptor 

antagonist FR 139317 (1 itM). In fact the ETA antagonist, in a similar fashion to L- 

NAME causes a significant leftward shift in the higher concentration range of the 

response curve to SxS6c. (pEC80 values were 8.43 ± 0.24 for SxS6c control and, 9.13 

± 0.12 for SxS6c in the presence of FR 139317, *p < 0.05). 
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Figure 3.4_ 

Effect of L-NAME (100 µM), and FR 139317 (1 µM) on responses to SxS6c in rat 

pulmonary resistance arteries. CCRC's to SxS6c (9, n= 10 / 8); in the presence of 

100 pM L-NAME (0, n=5/ 5) and in the presence of I µM FR 139317 (O, n=8/ 

5). A Data are expressed as percentage reference contraction to 50 mM KCI. B Data 

are expressed as percentage own maximum contraction. Each point represents the 

mean ± SEM. 
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3.4 Discussion. 

Responses to ET-1 and SxS6c : Effect of FR 139317, 

Rat Extrapulmonary arteries 

In rat extrapulmonary arteries, potent vasoconstriction to ET-1 was observed. 

The contractile responses to ET-1 were slow to develop but well maintained as has been 

documented in other isolated arterial preparations (Rubanyi & Parker-Botelho, 1991). 

As ET-1 can act at both ETA and ETB receptors sites, I examined the effects of the 

selective ETB agonist SxS6c in this preparation. This selective ETg ligand produced no 

significant vasoconstriction in the rat extrapulmonary artery, immediately suggesting 

that ET-I is acting solely via the ETA receptor subtype in these vessels. 

The involvement of the ETA receptor subtype in ET-1-mediated contraction in 

rat extrapulmonary artery is further supported by the ability of the ETA receptor 

antagonist FR 139317 to attenuate ET-1 responses. FR 139317 produced concentration 

dependent antagonism in this preparations with a pA2 value of 6.83. This is 

comparable to values obtained for FR 139317 in rabbit aorta (pA2 of 7.2) rat aorta (pA2 

of 6.7) and guinea-pig pulmonary artery (pA2 of 6.65); (Sogabe, et al., 1993; 

Kengatharan, et al., 1993; Cardell et al., 1993). Although FR 139317 appeared to 

produce concentration-dependent antagonism of ET-1-induced contractions in the rat 

extrapulmonary artery, Schild analysis produced a slope significantly less than unity, 

which indicates non-competitive antagonism. This may be due to the nature of ET- 

receptor interaction with ET-1, which is essentially irreversible (as discussed in chapter 

l; see also section 2.4.3) therefore making true competitive antagonism impossible. 

Non-competitive antagonism with another ETA receptor antagonist BQ-123 has also 

been described in cell based assay systems (Hiley et al., 1992; Vigne, et al., 1993)and 

in human small omental vessels (Riezebos, et al., 1994). However, the inability of the 

ETB agonist SxS6c to mediate contractions, and the ability of FR 139317 to antagonise 

ET-1-mediated responses, supports previous observations that ET-1 mediated 

contractions in rat extrapulmonary arteries are mediated via activation of vascular ETA 

receptors (Watanabe, et al. (1991b); Bonvallet, et al., 1993). 
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Pulmonary resistance arteries. 

ET-1 produced contractile responses in pulmonary resistance arteries which 

were approximately 3 fold more potent than those observed in extrapulmonary artery 

preparations. Differences in the sensitivity of different sized arterial segments from the 

guinea-pig lung has also been described, in which smaller diameter intrapulmonary 

arterial segments are more sensitive to ET-1 compared to large diameter pulmonary 

arteries (Cardell, el al., 1990). My observations are in contrast those found by Leach, et 

al., (1990) where they demonstrated greater sensitivity to ET-I in rat large diameter 

pulmonary arteries (pEC50 of 8.05) compared to the smaller pulmonary resistance 

arteries (pEC50 of 7.48). This may be partly due to the resting tension placed on the 

resistance vessels under study, as I have found that over stretching of pulmonary 

resistance arteries significantly decreases tissue sensitivity to ET-1 (chapter 5 this 

thesis). The response curve to ET-1 in pulmonary resistance arteries is biphasic in 

nature suggesting a heterogeneous population of ET receptors. In contrast to 

extrapulmonary arteries, the pulmonary resistance arteries demonstrated significant 

contractile responses to the selective ETB agonist SxS6c, which were 5 fold more 

potent than responses to ET-I in this preparation. The maximum contractile response 

to SxS6c was not significantly different from values observed for ET-1. This evidence 

would suggests the presence of a significant population of ETB receptors mediating 

contractile responses, similar to the situation observed in the rabbit pulmonary artery 

(Panek, et al., 1992; LaDouceur, et al., 1993). 

The ETA receptor antagonist FR 139317 caused a significant shift in the 

response curve to ET-1 in pulmonary resistance arteries, but was significantly less 

effective in these vessels compared with rat extrapulmonary arteries as shown by the 

difference in pKB values. These results are comparable with the observations of 

Bonvallet, el al., (1993), which showed that the ETA receptor antagonist BQ-123 was 

more effective in antagonising responses to ET-1 in larger pulmonary arteries compared 

to the smaller pulmonary arteries of the rat. In pulmonary resistance arteries FR 
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139317 produced non-concentration dependent shift of the ET-1-mediated response, 

producing significantly different pKB values for the antagonist at 1 and 10 µM. The 

non-competitive nature of antagonism is indicated by the extremely shallow slope of 

the Schild plot (0.23) which gives a pA2 value of 7.22. This non-competitive 

antagonism could be due to the irreversible binding kinetics of ET-1, but a more 

probable explanation is that ET-1 is activating multiple receptor subtypes in this 

preparations. The incomplete antagonist action of FR 139317 on ET-1 responses in 

pulmonary resistance arteries would indicate that only part of ET-1 contractile response 

is mediated by the ETA receptor subtype. Potent contractile responses to the ETB 

agonist SxS6c suggest the presence of vascular ETB receptors in rat pulmonary 

resistance arteries. As ET-1 will activate both ETA and ETB receptor subtypes, 

blocking the ETA mediated contraction with FR 139317 means that ET-I may act 

preferentially on the vacant ETB receptor site, which can also mediate substantial 

vasoconstriction. 

Effect of L -NAME and FR 139317 on SxS6c-mediated responses in pulmonary 

resistance arteries. 

The response curve to SxS6c demonstrates a dramatic "drop off' in tension after 

10 nM. There is evidence to suggest that ET's can mediate vasodilatation via 

endothelial cell release of NO and this is though to be mediated via ETB receptor 

activation (Carville, et al., 1993; De Nucci et al., 1988; Eddahibi, el al., 1991). The 

possibility that this "drop off' in tension was due to NO release was tested by pre- 

treatment of vessels with the NOS inhibitor L-NAME. Administration of L-NAME 

caused small increases in tone in approximately 50 % of the pulmonary resistance 

arteries tested, and this is probably due to the removal of basal release NO. The "drop 

off' in SxS6c response curve at high concentrations is still observed in the presence of 

L-NAME and is therefore cannot be attributed to NO release. Although the actions of 

other mediators (e. g. PGI2, EDHF) cannot be ruled out, this fall in tension appeared to 

be non-concentration dependent indicating desensitisation of response rather than 
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release of another compound. Desensitisation of ETB receptor-mediated responses has 

been shown to occur in isolated vascular preparations (LaDouceur, et al., 1993; 

Sudjarwo, ei al., 1993) and in vivo (Lippton, el al., 1991). Responses to SxS6c in 

porcine pulmonary vein exhibit marked desensitisation even in the absence of 

endothelium (Sudjarwo, et al., 1993), therefore this seems the most plausible 

explanation for the "drop off' in tone. 

L-NAME did however cause a significant increase in tissue sensitivity to the 

high concentration range of the SxS6c response curve which suggests that endogenous 

NO modulates the response to SxS6c in these vessels. Unfortunately, the effect of L- 

NAME on ET-1-mediated responses was not tested, therefore it is not clear whether this 

potentiation is specific to SxS6c. L-NAME may be causing this increase in sensitivity 

by preventing the relaxatory effects of NO produced by endothelial ETB receptors, or 

by removing basal released NO. Responses to ET's in the presence of raised vascular 

tone were not studied in these preparations, however, I can find no evidence for 

endothelial ETB receptor-mediated relaxation in rat pulmonary resistance arteries 

(separate study, chapter 5 this thesis), and have not been observed in the rat 

extrapulmonary artery (MacLean, et al., 1994). 

SxS6c is highly selective for ETB receptors over ETA receptors (Williams, ei 

al., 1991), but in order to verify SxS6c was mediating contractile responses via ETB 

receptors, I studied the effects of the ETA antagonist FR 139317 on SxS6c-induced 

contractions. Responses to SxS6c were resistant to antagonism by FR 139317, but in a 

similar fashion to L-NAME, FR 139317 also caused a significant leftward shift in the 

high concentration range of the SxS6c response curve. D' Orleans-Juste, el al., (1992) 

showed that ET-1-stimulated release of PGI2 from rat isolated perfused lungs was 

mediated via an ETA-like receptor as responses could be inhibited by the ETA receptor 

antagonist BQ-123. However, it seems unlikely that SxS6c could activate ETA 

receptors to release PGI2 due to its selectivity for the ETB receptor subtype. Another 

possible explanation may be that there is basal release of ET-1 in these vessels, and 

with the ETA receptor subtype blocked by FR 139317, this ET-1 acts on ETB receptors 
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therefore potentiating the SxS6c response. Basal release of ET-1 has been 

demonstrated in isolated pulmonary artery rings from human, sheep and rabbit lungs, 

with values in the range of I- 20 fmol detected in the vessel bathing solutions in vitro 

(Demiryürek, et al., 1994). 

Maximum contractile responses to ET-1 were considerably greater than 50 mM 

KCl contractile response in both extrapulmonary artery and pulmonary resistance 

arteries. This was also found to be the case with SxS6c in pulmonary resistance 

arteries. KCl elicits its contractile response through membrane depolarisation which 

causes activation of voltage-gated calcium channels. This allows calcium entry into the 

smooth muscle cell raising intracellular calcium concentration, and activated the 

contractile process. The initial membrane event in the action of ET-1 on vascular ETA 

receptors is to induce phospholipase C stimulated PIP2 hydrolysis, which is increased 

by subsequent and indirect influx of extracellular calcium through voltage gated 

calcium channels (Resink, ei al., 1988; Marsden, ei al., 1989; Xuan, ei al., 1989; see 

also chapter 1). There is also evidence to suggest that ET-1 increases the sensitivity of 

the contractile proteins to calcium (Marsault, et al., 1990; Nishimura, ei al., 1992), 

which may explain the magnitude of the contractile response to ET-1 in comparison to 

KCl 

To summarise, these results demonstrate diversity in the ET receptor subtype 

mediating vasoconstriction at different anatomical levels of the pulmonary circulation 

of the rat. In large calibre extrapulmonary arteries responses to ET-1 appear to be 

mediated solely via activation of the ETA receptor subtype as responses to ET-1 are 

antagonised by the ETA antagonist FR 139317, and vessels are insensitive to the ETB 

receptor agonist SxS6c. In rat pulmonary resistance arteries there appears to be a 

significant population of vascular ETB receptors mediating vasoconstriction which 

coexist alongside vascular ETA receptors due to the partial antagonism with the ETA 

receptor antagonist FR 139317. Further analysis of ET receptor subtypes in rat 

pulmonary resistance arteries using novel ET antagonists can be found in chapter 6 (this 

thesis). 
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Chapter 4 

Validation of 
Chronic Hypoxic Rat Model 
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4.1 Introduction. 

The chronic hypoxic / hypobaric rat, as previously discussed in this thesis, has 

been extensively studied as a model of pulmonary hypertension. Rats exposed to these 

hypoxic conditions develop significant pulmonary hypertension, right ventricular 

hypertrophy and pulmonary vascular remodelling (Hunter, el al., 1974; Rabinovitch, el 

al., 1979), which are similar to the structural changes observed in human hypoxic 

pulmonary hypertension (Haselton, et al., 1968). After the installation of the hypoxic 

hypobaric chamber within our laboratory, I wished to verify that rats maintained in this 

chamber exhibited the same structural changes observed in similar rat models. 

It was also necessary to validate the protocol for studying hypoxic rats removed 

which would be used for in vitro studies. Returning the chamber to normal atmospheric 

pressure daily is time consuming (2 hours in total from 550 to 1000 mbar) and also 

reduces the duration of time at which the animals are exposed to the hypoxic 

environment. A possible protocol was therefore decided upon which involved 

removing 2 rats from the chamber after 14 days hypoxia : one to be studied on the same 

day, and the other would be kept in normobaric / normoxic conditions to be studied the 

next day. The final 2 rats would be removed on day 16 of hypoxic exposure a studied 

in the same fashion as day 14 rats. I wished to verify that there would be no in vitro 

functional differences between pulmonary resistance arteries removed from rats 

exposed to these hypoxic / normoxic regimes. 

The rate of reversal of the structural changes associated with chronic hypoxia 

has been studied by a number of groups, and although there is some discrepancy in the 

time duration taken for reversal, most authors agree that this process is slow to occur, 

over many weeks or months (Heath, et al., 1973; Leach, et al., 1977). It has also been 

reported that certain structural changes reverse more rapidly than others after returning 

to normoxic environment. For example, a significant fall in pulmonary artery pressure 

is observed during the first 9 days after return to normoxia (Fried & Reid, 1984); the 

degree of right ventricular hypertrophy was reported to have reversed to control values 

after 12 week recovery from chronic hypoxia, whereas the percentage of thick walled 
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peripheral vessels was still significantly greater in hypoxic animals after 20 weeks 

recovery (Herget, et al., 1978; Rabinovitch, et al., 1981). The functional changes 

associated with exposure to chronic hypoxia, and their recovery in normoxia, have been 

studied in less detail and usually investigate changes occurring after at least 48 hours 

recovery in normoxic conditions (Adnot, et al., 1991; Maruyama & Maruyama, 1994). 

In this chapter I examined pulmonary artery pressure and muscularisation of 

small pulmonary vessels comparing a small number of control with rats exposed to 14 

days chronic hypobaric hypoxia. I also investigated in vitro responses in pulmonary 

resistance arteries to KC1, ET-1,5-HT and relaxatory responses to ACh in 

preconstricted vessels in four experimental groups of rats : exposed to 14 days hypoxia, 

14 days hypoxia plus 1 day normoxia, 16 days hypoxia and 16 days hypoxia plus I day 

normoxia. The degree of right ventricular hypertrophy was also examined comparing 

control and chronic hypoxic rats. 

Weaning male specific pathogen free rats (age approximately 28 days, weight 

approximately 65 g) were divided into groups of four (maximum for each cage), one 

group being placed in the hypoxic hypobaric chamber and maintained at 550 mbar for 

up to 16 days (see chapter 2 for exact details of maintenance). The other group were 

maintained in normoxic conditions to act as age matched controls. Following 14 days 

exposure to hypoxia, rats were removed from the chamber and studied according to the 

following procedures. 

1n vivo measurement of pulmonary artery pressure 

For this procedure rats were maintained in hypoxic conditions as described 

above for 14 days only then removed. A hypoxic rat was then anaesthetised and 

pulmonary artery pressure measured according to the procedure described in methods 

section 2.2.5.3. Following this the same procedure was carried out on age an matched 

control animal. As pulmonary artery pressure measurements are well documented in 
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this model of pulmonary hypertension, I decided to perform measurements in only one 

animal from each group, therefore maximising the tissue available for in vitro studies. 

Histological examination of lung sections. 

Rats were maintained in hypoxic conditions for 14 days as described above. 

Preparation of lung sections for light microscopy were carried out according to methods 

section 2.2.5.2. The preparations were then examined to detect the presence of thick 

walled peripheral lung vessels (TWPV). 

Histological examination of pulmonary resistance arteries. 

Pulmonary resistance arteries of the same size and location as used in in vitro 

studies were dissected from control and chronic hypoxic lungs by the procedure 

detailed in section 2.1.3.1. Vessels were then processed and examined using light 

microscopy and electron microscopy to assess any structural changes in these vessels 

(section 2.2.5.2). 

In vitro studies of pulmonary resistance arteries. 

Rats were maintained in hypoxic conditions for 14 days, after which animals 

were sacrificed and studied according to the following time protocol. 

Day 14 hypoxia " Chamber opened and 2 rats are removed. 

" Remaining 2 rats in the group are returned to 550 mbar 

"1 rat is sacrificed - termed Day 14 / 0; i. e. 14 days hypoxia / 

sacrificed on day 0 after removal from chamber (within 5 

minutes removal from chamber) 

"I rat remains in normoxic conditions overnight. 

Day 15 hypoxia " Chamber is maintained at 550 mbar 
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" Rat removed from chamber on day 14 is sacrificed - termed 

Day 14 /1i. e. 14 day exposure to hypoxia, sacrificed 1 day 

after removal from chamber. 

Day 16 hypoxia " Chamber opened and final 2 rats are removed. 

"I rat is sacrificed - termed Day 16 / 0; i. e. 16 days hypoxia / 

sacrificed on day 0 after removal from chamber (within 5 

minutes removal from chamber) 

"1 rat remains in normoxic conditions overnight. 

Day 17 " Final hypoxic rat is sacrificed - termed Day 16 / 1; i. e. 16 days 

hypoxia / sacrificed after I day removal from chamber. 

After sacrifice of the animals, the heart and lungs were removed. Pulmonary 

resistance arteries (-150 p. m i. d. ) were dissected from the lungs and mounted on the 

wire myograph according to methods section 2.2.5.2. Vessels were bathed in Krebs 

solution at 37 °C and bubbled with 16 % 02,5 % CO2 balance N2. Using the 

normalisation procedure vessels were tensioned to give an equivalent transmural 

pressure of -36 mmHg, which would be the pressures these vessels would be exposed 

to in vivo. (Rabinovitch, ei al., 1979; Herget, et al., 1978). Following a1 hour 

equilibration period, vessels were first stimulated with exogenous application of 50 mM 

KCI, and once the contraction had reached plateau, vessels were washed three times 

with fresh Krebs. After a further 30 minute equilibration period, vessels were then 

subjected to one of the following protocols. 

A. Cumulative concentration response curve to KCI (from 5 mM to 100 mM) 

B. Cumulative concentration response curve to 5-HT (from I nM to 30 PM) 

C. Cumulative concentration response curve to ET-1 (from 0.01 pM to 0.3 µM) 

D. Relaxation response curve to ACh (0.1 nM to 100 µM), following preconstriction 

with 10 pM 5-HT. 
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Right ventricular hypertrophy. 

The hearts from control and hypoxic animals were dissected into right ventricle 

and left ventricle & septum, blotted and weighed according to the procedure described 

in section 2.2.5.1. Data for hypoxic rats were also divided into the four experimental 

groups i. e. day 14 / 0, day 14 / 1, day 16 /0 and day 16 /1 to assess any differences. 

Data analysis. 

As measurement of pulmonary artery pressure and pulmonary vascular 

remodelling were only carried in a limited number of animals, representative traces and 

photographs of lung sections are shown in the following results section. For in vitro 

studies, pEC20 pEC50 and pEC80 values were calculated for all compounds according 

to methods stated in chapter 2. CCRC's to KCl are expressed as absolute contraction 

(mg wt. tension), CCRC's to ET-1 and 5-HT are expressed as percentage of reference 

contraction to 50 mM KCl in each preparation, and CCRC's to ACh are expressed as 

percentage level of preconstriction to 5-HT in each preparation. Data for body weight 

and ventricular weights are expressed as g or mg, and ventricular ratios were calculated 

for each individual heart. Statistical comparisons were made by one way analysis of 

variance (ANOVA) followed by Tukeys post test, or by Students unpaired t-test: p< 

0.05 was considered statistically significant. 

Figure 4.1 shows the traces obtained for pulmonary artery pressure 

measurement in the control and chronic hypoxic rats. From the control animal trace the 

right ventricular pressure wave can be clearly seen, which becomes blunted in 

amplitude once the needle is carefully manipulated into the pulmonary trunk. The 

position of the needle within the main pulmonary artery was confirmed by sight and by 

the pressure wave form obtained. Typical pulmonary artery pressure wave form can be 

observed in the trace from the control animal (indicated by arrows, PA). From this 
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trace the measurements of pulmonary artery pressure of the control rats were, systolic 

pressure of 14 mmHg, diastolic pressure of 8 mmHg, and therefore a calculated mean 

pulmonary artery pressure of 10 mmHg. The trace to the right shows measurements 

obtained from a chronic hypoxic rat. The paper speed is unfortunately only half of that 

used for measurement in control animal which makes pulmonary artery wave from 

impossible to detect. (This was due to one of the limitations of this measurement 

technique : as insertion of the needle into the right ventricle allows blood to seep from 

the heart the pressure measurements must be taken rapidly before too much blood is 

lost. In the case of hypoxia animals, blood loss is rapid due to the increased right 

ventricular pressure). What is apparent from this trace however is the much greater 

right ventricular pressure, and a significantly greater pulmonary artery pressure in this 

hypoxic animal compared to the control. From this trace the hypoxic animals had a 

pulmonary artery systolic pressure of 25 mmHg, diastolic pressure of 19 mmHg, with a 

mean pulmonary artery pressure of 21 mmHg. 

Histology. 

Figure 4.2 shows photographs take from sections of lung viewed under light 

microscopy. Figure 4.2. A shows a typical example of a pulmonary arteriole (-50 µm) 

from a control rat which comprises a single elastic lamina with sparse traces of vascular 

smooth muscle. Figure 4.2. B shows a section obtained from the lung of a 14 day 

chronic hypoxic rat. An arteriole of similar size to the control plate has developed a 

relatively thick muscular media bound by two distinct elastic laminae. On viewing the 

sections obtained from the rat lungs, TWPV were abundant and easily detected in 

chronic hypoxic preparations in comparison to control preparations. 

Figure 4.3 shows stained sections of control and chronic hypoxic pulmonary 

resistance artery viewed by light microscopy. These vessels are of identical size and 

location to pulmonary resistance arteries used in in vitro studies (between 150-200 µm). 

Figure 4.3. A shows cross section of a pulmonary resistance artery from a control rat. 

The control vessel displays a distinct inner elastic lamina, with the external elastic 
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Figure 4.2 

Structure of pulmonary arterioles from control and chronic hypoxic rat lungs. 

Sections are stained with Elastic van Gieson stain. Elastic tissue stains black; Cell 

cytoplasm stains pink. 

A. Section of lung showing pulmonary arteriole from control rat (- 50 µm i. d. ) 

B. Section of lung showing pulmonary arteriole from chronic hypoxic rat (-50 µm 

i. d. ), note presence of muscular media and double elastic lamina. 
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Figure 4.2 
Structure of Pulmonary Arterioles from Control and Chronic Hypoxic rats 

A. Control Rat 

ý> 

ý ̀ ýý 

II 

50µm 

B Chronic Hvvoxic Rat 
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Fi Lure 4.3 

Structure of pulmonary resistance arteries - light microscopy. 

Sections are stained by polychromal method. Connective tissue stains pink / brown, 

cell cytoplasm stains blue / purple. 

A. Pulmonary resistance artery from control rat. 

B. Pulmonary resistance artery from chronic hypoxic rat. Note significant thickening 

of tunica media in comparison to control. 

Key :A= adventitia; E= endothelium; L= lumen; TM = tunica media. 
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Figure 4.4. 

Structure of pulmonary resistance arteries - electron microscopy. 

A. Pulmonary resistance artery from control rat. 

B. Pulmonary resistance artery from chronic hypoxic rat. Note significant thickening 

of tunica media, and increased connective tissue in comparison to control. 

Key :A= adventitia; CT = connective tissue; E= endothelial cell; IEL = inner elastic 

lamina; L= lumen; SM = smooth muscle cell 
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lamina bordering the tunica media and adventitia being less prominent. The tunica 

media comprises of approximately 1-2 smooth muscle cell layers surrounded by 

connective tissue. Comparing the control vessel with the chronic hypoxic vessel shown 

in figure 4.3. B, it can be seen that the artery from the hypoxic rat has a significantly 

thicker tunica media (approximately twice as thick as control vessel), comprising of 

approximately 3 smooth muscle cell layers and large areas of connective tissue. Again 

note the distinct inner elastic lamina which appears thicker in comparison to the control 

preparation. 

Figure 4.4 shows electron micrographs of pulmonary resistance arteries from 

control and chronic hypoxic rats. In the control vessel (figure 4.4. A. ) the media again 

comprises of a maximum of 2 smooth muscle cell layers with sparse areas of 

connective tissue visible between cells. Distinct inner elastic lamina is visible between 

the media and endothelium, with the external elastic lamina again less prominent. 

Figure 4.4. B shows a hypoxic vessel, which as seen under light microscopy, has a 

significantly thicker tunica media in comparison to the control vessel. The media 

comprises of approximately 2 smooth muscle cell layers and displays larger areas of 

connective tissue between smooth muscle cells and in the adventitia in comparison to 

the control vessel. Note also the more prominent internal elastic lamina in the chronic 

hypoxic vessel in comparison to control. 

In vitro functional studies. 

Internal Diameter (µm) Pressure (mmHg) n/n 

Da 14/0 192.3±18.1 35.0±0.9 4/4 

Day 14/1 195.8±15.6 36.5±0.6 4/4 

Day 16/0 212.5 ± 14.0 35.5 ± 0.6 4/4 

Day 16/1 191.2±21.0 36.0±0.7 4/4 

Fable 4.1 Internal diameter and pressures of vessels from chronic hypoxic rats. 
Average internal diameter of arteries removed mounted on the wire myograph from the 
four groups of chronic hypoxic rats. Data are expressed as the mean ± SEM. 
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Table 4.1 gives measurements of internal diameter and resting transmural 

pressure in pulmonary resistance arteries removed from chronic hypoxic rats. This table 

demonstrates that pulmonary resistance arteries from these animals exhibit very similar 

internal diameters when set up at the same equivalent transmural pressure. 

Figure 4.5 shows contractile responses to increasing concentrations of 

exogenous applied KCI. The pEC20, pEC50 and pECgp values for all rat groups are 

summarised in table 4.2. From this figure and table 4.2. A it can be seen that there is no 

significant difference in responses to KCl between the four groups of rats. Figure 4.6 

shows response curves to ET-1 in chronic hypoxic rats. ET-1 produced potent 

contractile responses in all tissues which showed no significant difference in sensitivity 

or maximum contractile response between the four hypoxic rat groups (see also table 

4.2. B). 5-HT also produced contractile responses in pulmonary resistance arteries as 

shown in figure 4.7. From this figure and table 4.2. C it can be seen that there is no 

difference in either tissue sensitivity to 5-HT or maximum contractile response between 

the four hypoxic rats groups. In vessels preconstricted with 10 µM 5-HT, cumulative 

addition of ACh produced concentration dependent vasodilatation as is demonstrated in 

figure 4.8. Pulmonary resistance arteries from the four rat groups demonstrated no 

difference in tissue sensitivity to ACh or the maximum relaxatory response achieved to 

the agonist (see figure 4.8 and table 4.2. D). 

Tables 4.3 and 4.4 show body weight, ventricular weights and ventricular ratios 

obtained from a control and hypoxic group of rats. In this table data from the four 

groups of hypoxic rats are grouped together. (Rats number HI and H5 are equivalent to 

day 14 / 0, H2 and H6 to day 14 / 1, H3 and H7 to day 16 /0 and H4 and H8 to day 16 / 

1). The average weight of rats at the beginning of the study was not significantly 

different between the control and hypoxic groups (average weight of control group was 

73.4 ± 1.9 g and average weight of hypoxic group was 71.0 ± 2.4 g). Comparing data 

from tables 4.3 and 4.4, hypoxic animals are significantly lighter than aged matched 
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Fiaure 4.5 
Responses to KCl in chronic hypoxic rat pulmonary resistance arteries. CCRC's to KCl 

Day 14/0(0); Day 14/1 (0); Day 16/0(D)and day 16/ 1 (0). n=4/4forall 
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Figure 4.6 
Responses to ET-1 in chronic hypoxic rat pulmonary resistance arteries. CCRC's to 
ET-1 in Day 14/0(0); Day 14/ 1 (0); Day 16/0(11)andDay 16/1(U). n=4/4 
for each preparation. Data are expressed as percentage of reference contraction to 50 
mM KCl in each preparation. Each point represents the mean ± SEM. 
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Table 42 

Potency of agonists in chronic hypoxic rat pulmonary resistance arteries. 

pEC2o, pEC50 and pECgp values obtained for :A KCI, B ET-I IC 5-HT and D 

ACh, in chronic hypoxic rat pulmonary resistance arteries. Data are expressed as mean 

± SEM. Statistical comparisons were made using one way analysis of variance 

(ANOVA), followed by Tukeys post test. 

Day 14 /0= rats exposed to 14 days hypoxia. 

Day 14 /0= rats exposed to 14 days hypoxia /I day normoxia. 

Day 16 /0= rats exposed to 16 days hypoxia. 

Day 16 /1= rats exposed to 16 days hypoxia /I day normoxia. 
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Table 42A 

KCl pEC20 pEC50 pEC80 n/n 

Rat 14/0 1.94±0.08 1.74±0.05 1.50±0.05 4/4 

Rat 14 1 2.08 ± 0.14 1.87 ± 0.09 1.62 ± 0.06 4/4 

Rat 16/0 1.94±0.06 1.71 ±0.08 1.42±0.10 4/4 

Rat 16/1 1.99±0.08 1.83±0.06 1.62±0.05 4/4 

Table 4.2. B 

ET-1 EC20 pEC50 pEC8o n/n 

Rat 14 /0 9.09 ± 0.25 8.24 ± 0.06 7.71 ± 0.13 4/4 

Rat 14/ 1 8.90±0.15 8.14±0.16 7.47±0.11 4/4 

Rat 16/0 8.75 ± 0.04 8.12 ± 0.03 7.47 ± 0.08 4/4 

Rat16/1 8.71±0.17 8.08±0.05 7.32±0.14 4/4 

Table 4.2. C 

5-HT pEC20 pEC50 pE n/n 

Rat 14/0 6.23±0.08 5.78±0.06 5.31±0.06 6/4 

Rat 14/1 6.41 ± 0.09 6.01 ± 0.08 5.45 ± 0.11 6/4 

Rat 16/0 6.20±0.10 5.73±0.10 5.25±0.08 6/4 

Rat 16/ 1 6.32±0.13 5.97±0.11 5.47±0.13 6/4 

Table 4.2. D 

ACh EC p pEC50 EC n/n 

Rat 14/0 7.76 ± 0.29 6.91 ± 0.27 6.01 ± 0.26 5/4 

Rat 14/1 7.30 ± 0.14 6.84 ± 0.15 6.13±0.23 5/4 

Rat 16/0 7.36 ± 0.34 6.62 ± 0.34 5.91±0.38 5/4 

Rat16/1 7.64±0.20 7.18±0.13 5.92±0.24 5/4 
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Figur re 4.7 
Responses to 5-HT in chronic hypoxic rat pulmonary resistance arteries. CCRC's to 5- 

HT Day 14 /0 (0); Day 14 /1 (0); day 16 /0 (O) and Day 16 /1 (I). n=6/4 for 

all groups. Data are expressed as percentage of reference contraction to 50 mM KCl in 

each vessel. Each point represents the mean ± SEM. 

100 

80 
0 v as i, 
a 
E, 60 

40 
y 
irr 

O 

20 
Ix 

Figure, 4.8 

Responses to ACh in 5-HT preconstricted pulmonary resistance arteries from chronic 
hypoxic rats. CCRC to ACh Day 14 /0 (0); Day 14 /1 (0); day 16 /0 (0) and Day 
16 /I (N). n=5/4 for all groups. Data are expressed as percentage of preconstriction 
to 10 mM 5-HT. Each point represents the mean ± SEM. 
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controls. Rats exposed to chronic hypoxia showed a dramatic increase in the absolute 

size of the right ventricle, and a corresponding slight decrease in the size of the left 

ventricle plus septum. The absolute total weight of the hearts was not significantly 

different between control and hypoxic animals. The significant right ventricular 

hypertrophy is demonstrated by the increase in RV / LV & S, RV / TV and RV/ BW 

ratios in hypoxic animals compared to controls. No significant difference was found 

between control and hypoxic animals in the LV &S / BW ratio 

To assess if there was any significant difference between hypoxic rats exposed 

to different durations of hypoxia, I examined body weight, ventricular weight and 

ventricular ratios in day 14 / 0, day 14 / 1, day 16 /0 and day 16 /I rats. Data from 

these animals are summarised in table 4.5. From this table it can be seen that there is a 

tendency for an increase in body weight of the animals between day 14 /0 and day 16 

/1, which was verging on being statistically significant (p = 0.057 Students unpaired t- 

test). The right ventricular weight had increased significantly in absolute terms 

between at 14 /0 and day 16 / 1, however there was no significant difference in left 

ventricular weight or in total ventricular weight between groups. This apparent increase 

in right ventricular weight is not observed when ventricular ratios are studied. No 

significant difference was found in RV / LV & S, RV / TV, RV / BW or LV &S/ 

BW, between the four hypoxic groups. 

In vivo measurements showed that pulmonary artery pressure was greater in the 

hypoxic animal than in the control animal indicating the development of pulmonary 

hypertension. The average pulmonary artery pressures in these animals appear slightly 

lower than measurements observed in other control and hypoxic rats for example; 

control values of 16 ±1 mmHg and 18 ± 0.5 mmHg, and hypoxic values of 40 ±2 and 

45 ±4 mmHg (Chen, et al., 1995; Rabinovitch, et al., 1979 respectively). One of the 

reasons for this difference in pulmonary artery pressure values may be the procedure 
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used for measurement, as all these studies used the closed chest procedure of measuring 

pulmonary artery pressure. The open chest method may give lower readings due to the 

removal of the physiologically normal negative pressure in the thoracic cavity by 

opening the chest wall. This results in the lungs deflating and the animals have to be 

artificially ventilated. I do however observe comparable figures to those obtained by 

Wanstall ei al (1992) who also use the open chest method for measurement of 

pulmonary artery pressure. In this study the authors demonstrated a mean pulmonary 

artery pressure of 13 ±2 mmHg for control animals and 26 ±2 for chronic hypoxic 

animals. Another reason for this apparent discrepancy between studies may be due to 

the use of anaesthetics, as indwelling pulmonary artery catheters allow readings to be 

taken from conscious animals, whereas other methods required the animals to be fully 

anaesthetised, as in this case. My measurements for both control and hypoxic animals 

were obtained in animals breathing normal room air. This would not effect control 

animal readings but may effect chronic hypoxic animals readings as there may be an 

acute HPV component over and above the increased pulmonary resistance due to 

vascular remodelling. Acute responses to hypoxia in chronic hypoxic animals have 

been shown to be either augmented or attenuated depending on the preparation species 

(Karamsetty, et al., 1995). Comparing published data between groups, there appears to 

be little difference in pulmonary artery pressure measurements in 14 day hypoxic rats 

breathing normoxic gas mixture or hypoxic gas mixture (comparing normoxic 

measurements from Herget, et al. 1978; Rabinovitch, el al., 1979, Bonvallet, el al., 

1994; Morrell, et al., 1995 a, b with hypoxic measurements of Eddahibi, el al., 1991, 

1995; Kouyoumdjian, et al., 1994; Chen, et al., 1995; Petit, et al., 1995). Systemic 

arterial pressure was not measured in this study, but previous studies have shown that 

chronic hypoxia has selective effects on the pulmonary circulation and no changes are 

observed in systemic pressure (Rabinovitch, et al., 1979). From my limited 

examination from a control and hypoxic rat, my results do however demonstrate greater 

pulmonary artery pressure in the hypoxic animal compared to the age matched control. 

As the pulmonary artery pressures recorded in my limited studies are lower than values 

152 



obtained in the majority of the literature, in future experiments I have chosen to tension 

pulmonary resistance arteries at -16 mmHg for controls and - 36 mmHg for chronic 

hypoxic. This is in keeping with the values obtained wealth of in vivo recordings 

indicated above, and with studies previously performed in isolated rat pulmonary 

resistance arteries (Rogers, et al., 1992). 

Histologv. 

The sections taken from control and hypoxic rat lungs show that pulmonary 

vascular remodelling has taken place, similar to that previously described in other 

hypoxic rat models (Hunter, et al., 1974). Pulmonary arterioles of -50 µm are normally 

nonmuscular, thin walled and comprise of a single elastic lamina as is demonstrated in 

this case. However in the hypoxic animals, vessels of the same size and location were 

now muscular and comprised of two elastic laminae, surrounding the newly developed 

smooth muscle layer. This apparent progression of muscularisation occurs due to the 

pericytes normally present in nonmuscular vessels differentiating into a smooth muscle 

cell via an intermediate cell (Meyrick & Reid, 1978). 

Pulmonary vascular remodelling has also been described throughout the 

pulmonary vascular tree, for example in pulmonary resistance arteries (100 - 300 p. m 

internal diameter) substantial medial thickening has been reported (Rabinovitch, et al., 

1981). In my studies substantial medial hypertrophy the pulmonary resistance arteries 

(-150 . tm i. d. ) is observed in chronic hypoxic rats compared to controls. From my 

limited observations it is difficult to make any strong quantitative conclusions as to 

which components of the medial wall are altered in chronic hypoxia. Comparing the 

electron micrographs from control and chronic hypoxic preparations it would appear 

that both vessels comprise of approximately 2 smooth muscle cell layers. Therefore it 

would appear that hypertrophy rather than hyperplasia is responsible for medial 

thickening in these vessels. This has previously been demonstrated in larger diameter 

hilar pulmonary arteries of the chronic hypoxic rat (Meyrick & Reid, 1978). What is 

also apparent from the electron micrographs is that chronic hypoxic vessels appear to 
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have greater areas of connective tissue in the media and adventitia, and also display 

significant thickening of the internal elastic lamina, indicating increased deposition of 

connective tissue in chronic hypoxia. Increased matrix deposition is also well 

documented in pulmonary hypertension. Significant increase in the width of the arterial 

adventitia due to increase in collagen deposition is observed after only 3 days hypoxic 

exposure (Meyrick & Reid, 1978; Hislop & Reid, 1976). Early medial thickening is 

also as a result of collagen deposition around the existing muscle cells prior to the 

development of muscle cell hypertrophy (Meyrick & Reid, 1978; Hislop & Reid, 

1976). These results indicate that the experimental animals from this chamber exhibit 

the same structural changes previously observed in chronic hypoxic rats. 

Functional Responses. 

In order to assess if an extra 48 hour longer exposure to hypoxia with or without 

24 hour exposure to normoxia had any effect on functional responses in pulmonary 

resistance arteries, I looked at vasoconstriction and vasodilatation to a range of agonists 

in vessels from the four chronic hypoxic rat groups. I observed no statistically 

significant differences between groups in any of the agonists studied. Pulmonary 

resistance arteries taken from day 14 / 0, day 14 / 1, day 16 /0 and day 16 /I rats 

demonstrated identical sensitivities to all the contractile agents studied. Each of the 

agents mediate vasoconstriction by triggering events leading to increases in intracellular 

calcium, however different intracellular pathways are involved. As mentioned 

previously in chapter 3, KCl mediates vasoconstriction by depolarisation which opens 

voltage gated calcium channels, whereas ET-1 and 5-HT act upon a surface membrane 

receptor activating PLC. These results indicate that functional responses to the 

contractile agents are not effected by additional 48 hour exposure to hypoxia, or by a 

subsequent 24 hour exposure to normoxia. I would not expect dramatic structural 

changes to be occurring between day 14 and day 16 hypoxia, as it has previously been 

demonstrated that vascular remodelling in the rat is well developed after 14 days of 

chronic hypoxia, and no significant differences are apparent with longer periods of 
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exposure to hypoxia (Hunter, et al., 1974; Wanstall, et al., 1992). Therefore a dramatic 

alteration in functional responses would not be expected to be as a result of structural 

changes. As previously mentioned, reversal of the structural changes associated with 

chronic hypoxia is extremely slow therefore a 24 hour exposure to normoxia would not 

result in any major reversal of vascular remodelling. However hypoxia can have effects 

on the release of vasoactive compounds, gene expression and overall cell activity 

(Fandrey, 1995), which could effect functional responses in these tissues. In my studies 

I found no significant difference in tissue sensitivity or maximum contractile response 

to any of the contractile agents studied. 

Endothelium-dependent relaxation mediated via a variety of compounds has 

been reported to be abolished in isolated extrapulmonary artery rings, and isolated 

perfused lungs of rats exposed to chronic hypoxia (Adnot, et al., 1991; Carville, et al., 

1993; Eddahibi, et al., 1993; Maruyama, et al., 1994). It was also demonstrated that 

endothelium-dependent relaxations were completely or partially restored after as little 

as 48 - 72 hours recovery from hypoxia (Adnot, et al., 1991; Maruyama, et al., 1994). 

ACh has been demonstrated to mediated endothelium-dependent vasodilatation in rat 

isolated pulmonary arteries (Carville, et al., 1993). I therefore compared vasodilatation 

to ACh in the four groups of hypoxic rats to assess if there were any differences 

between groups, as this agonist has been shown to mediate endothelium-dependent 

relaxation in isolated pulmonary arterial preparations (Carville, et al., 1993; Leach, et 

al., 1992). Contrary to the above reports, pulmonary resistance arteries from all groups 

of hypoxic rats demonstrated significant vasodilatory responses to ACh, which were not 

effected by additional 48 hour exposure to hypoxia, or subsequent 24 hour recovery in 

normoxia (for comparison with control pulmonary resistance arteries see chapter 5). 

The differences between my own, and other groups observations may lie in the 

preparations studied i. e. pulmonary resistance arteries as opposed to isolated 

extrapulmonary arteries or isolated perfused lungs, in that functional changes may be 

occurring in vessels other than pulmonary resistance arteries. 
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Right ventricular hypertrophy 

Rats exposed to hypoxia gain less weight over the experimental period than 

aged matched controls. This has been well documented in chronic hypoxic rats, in that 

over the first 3 days exposure to hypoxia, rats lose both water and food appetite, but 

will subsequently gain weight at the same rate as control animals (Hunter, ei al., 1974; 

Rabinovitch, et al., 1981). However due to lack of appetite and / or increased 

metabolic rate as a result of hypoxic stress over the first few days, chronic hypoxic 

animals are significantly lighter in weight than age matched controls. Rats exposed to 

chronic hypoxia exhibited significant right ventricular hypertrophy as demonstrated by 

RV / LV &S, RV / TV and RV / BW ratios, all of which have been used previously as 

an index of right ventricular hypertrophy. The degree of right ventricular hypertrophy 

observed in these hypoxic rats is comparable to values demonstrated previously for rats 

of similar age and weight, for example Rabinovitch, et al., (1981) reported RV / LV & 

S ratio for control animals = 0.32 ± 0.03, and chronic hypoxic RV / LV &S=0.64 ± 

0.04. Although the absolute weight of the right ventricle tended to be grater in day 16 / 

I rats compared to day 14 /0 rats this proved not to be significant when examined as 

ratio of RV / LV & S, RV / TV &S or RV / BW, which takes into account any growth 

or weight gain which may have occurred over the 4 day period. No significant 

differences were found in the ratio of LV &S/ BW or TV weight indicating the 

significant increased workload for the right heart to increased pulmonary vascular 

resistance. 

To summarise, rats exposed to 14 days chronic hypobaric hypoxia within the 

newly installed chamber exhibited increased pulmonary artery pressure, right 

ventricular hypertrophy and pulmonary vascular remodelling. No functional 

differences to KCI, ET-1,5-HT or ACh were found between chronic hypoxic rats 

exposed to 14 or 16 days hypoxia, with or without subsequent 24 hour exposure to 

normoxia. As no differences in responses to these agonist were found, subsequent 

results for hypoxic pulmonary resistance arteries includes data from all four groups. 
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Chapter 5 

Responses to Endothelin in 
Pulmonary Resistance Arteries : 

Effect of Pulmonary Hypertension 
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5.1 Introduction. 

As mentioned in the general introduction of this thesis there is growing evidence 

to suggest the involvement of ET-1 in the pathogenesis of pulmonary hypertension in 

both clinical studies and in various animal models of pulmonary hypertension. In the 

chronic hypoxic rat it has been shown that pulmonary arterial responses to ET-1 are 

augmented (Eddahibi, et al., 1991), and that hypoxia increases the expression of the 

ET-I gene in the rat lung (Elton, et al., 1992). Increased ET-I expression has also 

been shown to occur in the fawn hooded rat, a species which develops idiopathic 

pulmonary hypertension (Stelzner, et al., 1992), and is associated with the development 

of monocrotaline induced pulmonary hypertension in the rat (Yorikane, et al., 1993). 

Hypoxia stimulates ET-1 release from rat mesenteric resistance vessels in vitro 

(Rakugi, et al., 1990) and in addition acute alveolar hypoxia has also been shown to 

increase lung and plasma ET-1 levels in conscious rats (Shirikami, et al., 1991). The 

role of ET-1 in human forms of pulmonary hypertension will be discussed in chapter 7 

of this thesis. 

My results from chapter 3 in this thesis suggested that the vasoconstrictor 

responses to ET-1 in control rat pulmonary resistance arteries were mediated via both 

ETA and ETB receptors whereas the response to ET-1 in the large extrapulmonary 

arteries is mediated by the ETA receptor alone. With the development and validation of 

a chronic hypoxic rat model of pulmonary hypertension (chapter 4 this thesis), I could 

now assess any changes in pulmonary vascular reactivity between control and 

pulmonary hypertensive rat pulmonary resistance arteries. In this chapter I investigated 

vascular responses to ET-1 in pulmonary resistance arteries from rats exposed to 

chronic hypoxia and their aged matched controls. As pulmonary resistance arteries 

from chronic hypoxic animals would experience greater pressures in vivo due to their 

pulmonary hypertensive state, the role of initial resting tension on vascular responses to 

ET-receptor agonists was also investigated. The possibility of the presence of inherent 

tone in pulmonary resistance arteries was also examined by determining the response of 

isolated vessels to sodium nitroprusside. I have also investigated the influence of NO 
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on vascular tone, and responses to ET-1 and SxS6c, by studying the effects of the NOS 

inhibitor L-N0'-nitroarginine methylester (L-NAME). 

5.2 Methods. 

Chronic hypoxic rats were prepared according to the methods stated in chapter 

2. After exposure to 14-16 days of chronic hypoxia rats were sacrificed along with 

aged matched controls, and pulmonary resistance arteries were dissected out according 

to section 2.1.3.1. Control and chronic hypoxic pulmonary resistance artery vessel 

pairs were then mounted as ring preparations in the same bath of a wire myograph. 

Using the normalisation process explained in chapter 2, vessels were placed under "low 

tension" or "high tension" . 
"Low tension" being equivalent to a transmural pressure of 

-16 mmHg, which is approximately the pressure of pulmonary arteries and arterioles of 

control animals in vivo; and high tension being equivalent to -36 mmHg, which is 

approximately the pulmonary artery pressure of pulmonary hypertensive animals in 

vivo. The vessels were bathed in Krebs solution at 37 °C and bubbled with 16 % 02,5 

% C02, balance N2. 

After 1 hour equilibration period vessels were stimulated with two separate 

administrations of 50 mM KCl with the vessels being washed with fresh Krebs solution 

and allowed to return to baseline tension between KC1 stimulations. Following this the 

integrity of the vascular endothelium was assessed by the ability of I tM ACh to cause 

relaxation after preconstriction with 1 p. M NA. In a further set of experiments full 

cumulative concentration relaxation curves were conducted to ACh in control 

preparations at low tension and chronic hypoxic preparations at high tension, following 

preconstriction with 10 W 5-HT (this proved to produce a more stable contractile 

response to that of NA) 

Cumulative concentration response curves (CCRC's) to ET-1 and SxS6c (0.01 

pM-0.3 µM) were constructed at both resting tensions with or without 100 µM L- 
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NAME. Experiments were also carried out to assess the possible vasodilator effects of 

SxS6c. Preparations were first preconstricted with 10 µM 5-HT and following this 1 

µM ACh was added to verify the presence of an intact vascular endothelium. 

Following washout and 30 minute rest period, vessels were again preconstricted with 

10 µM 5-HT, and CCRC's to SxS6c (0.01 pM to 0.3 nM) were conducted, allowing 1 

minute intervals between the addition of each concentration of SxS6c. To ensure that 

any relaxations observed were not due to a "fall off' in tone, some preparations were 

run as time controls i. e. no addition of SxS6c. These experiments were carried out with 

control pulmonary resistance arteries at low tension and chronic hypoxic pulmonary 

resistance arteries at high tension only. 

To assess the possible presence of endogenous tone in these vessels, I µM 

sodium nitroprusside (SNP) was administered, prior to the addition of KCI or any 

drugs, and following washout the response to 50 mM KCI was tested. These 

experiments were carried out in endothelial intact preparations. As SNP induced 

relaxations are produced independently of the endothelium, I chose to avoid the 

damaging effect of endothelium removal. The table 5.1 below lists the experiments 

rnrripd nut within the erouos tested. 

CONTROL RAT HYPOXIC RAT 

LOW HIGH LOW HIGH 

Endothelin-1 CCRC � � � � 

Sarafotoxin S6c CCRC � � � � 

ET-1 + L-NAME (100 µM) � � � � 

SxS6c + L-NAME (100 µM) � � � � 

Effect of 1µM SNP on tone � � � � 

Effect of 100 µM L-NAME on tone � � � � 

1 µM NA followed by 1 p. M ACh � � � � 

ACh CCRC (tone induced by 5-HT) � x X � 

SxS6c CCRC (tone induced by 5-HT) � X x � 

Summary of experimental procedures performed 
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Data analysis. 

pEC5o, and pEC20 values (where appropriate) were calculated according to the 

methods stated in chapter 2. CCRC's to ET-I and SxS6c, relaxations to SNP and 

contractions to L-NAME are expressed as percentage reference contraction to 50 mM 

KCl in each preparation. Cumulative responses induced by ACh and SxS6c were 

calculated as a percentage of the level of preconstriction in each preparation. Statistical 

comparisons were made using one way ANOVA or Students t-test for unpaired data. p 

< 0.05 was considered to be statistically significant. 

5.3 Results. 

Assessment of pulmonary hypertension 

Pulmonary hypertension was assessed by measuring right ventricular to total 

ventricular ratio as described in chapter 2. This ratio was found to be significantly 

greater in chronic hypoxic rats (***p < 0.001, Students unpaired t-test) indicating a 

significant degree of pulmonary hypertension. For individual data on rats see appendix 

1. Internal diameters and pressures of pulmonary resistance arteries set up at low and 

high tensions are summarised in table 5.1 below. 

Internal Diameter (µm) Transmural pressure 

(mmHg) 

n/n 

Control Low 165.1±5.4 16.9±0.8 10/ 10 

Control High 203.4 ± 8.2 ** 34.3 ± 0.4 ** 10 / 10 

H oxicLow 171.7±6.0 16.0±0.3 10/ 10 

H oxicHi h 201.7±7.7t 36.4±0.6tt 10/ 10 

Ible 5.2 Internal diameter and pressures of rat pulmonary resistance arteries 
Average internal diameter of arteries removed mounted on the wire myograph from the 
four groups of control and chronic hypoxic rats. Data are expressed as the mean ± 
SEM. Statistical comparisons were made using one way ANOVA followed by Tukeys 

post test. **p < 0.01 control high vs. control low, tp < 0.05, ttp < 0.01 hypoxic high 

vs. hypoxic low. 
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As would be expected table 5.1 shows that pulmonary resistance arteries from 

both control and chronic hypoxic rats exhibit significantly greater internal diameters 

when normalised to the higher resting tension. No significant difference was found 

between control and hypoxic vessels mounted at low tension, or at high tension. 

ET-1 and SxS6c responses and the effect of basal tension. 

Control pulmonary resistance arteries. 

50 mM KCl induced contractions were of the same magnitude at low and high 

tensions in control rats, being 235 ± 29 mg wt (16 rings) and 305 ± 34 mg wt (16 rings) 

respectively. Figure 5.1. A and B shows CCRC's for ET-1 and SxS6c in pulmonary 

resistance arteries from control rats at low and high tension. The figure shows that 

responses to ET-1 and SxS6c are biphasic in nature, there being a low gradient 

component at lower concentrations (0.1 pM - 30 pM for SxS6c and 0.1 pM - 0.3 nM for 

ET-1) and a steeper gradient at higher concentrations. For this reason I have chosen to 

compare the pEC20 values of the response as well as the pEC50 values. A summary of 

the pEC50 values can be seen in table 5.3 and pEC20 values in table 5.4. From figure 

5.1. A and tables 5.3 and 5.4 it can be seen that an increase in the resting tension in 

control vessels caused a significant decrease in the tissue sensitivity to ET-1 at both 

pEC2o and pEC50 levels. The maximum contraction achieved to ET-1 was unaltered by 

an increase in resting tension. Figure 5.1. B also shows that SxS6c produced 

contractions in control rat pulmonary resistance arteries which were over 10 fold more 

potent than ET-1 in control pulmonary resistance artery at both low and high tension. 

From this figure and tables 5.3 and 5.4 it can be seen that the sensitivity to SxS6c was 

not significantly altered by changes in resting tension, although high tension appears to 

cause a slight right-ward shift in the SxS6c CCRC. This was not significant at the 

pEC20 or pEC50 level. The maximum contraction achieved to SxS6c appears to be 

decreased in vessels placed at higher resting tensions although this again proved to be 

not significant. 
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Figure 5.1. 

ET-1 and SxS6c-induced vasoconstriction in control rat pulmonary arteries. A 

CCRC's for ET-1 in control vessels at : low tension (0, n=8/ 8), and at high tension 

(0, n=5/ 5). B CCRC's for SxS6c in control vessels at : low tension (0, n=8/ 8), 

and at high tension (0, n=5/ 5). Data are expressed as percentage of reference 

contraction to 50 mM KCl in each vessel. Each point represents the mean ± SEM. 
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Chronic hypoxic pulmonary resistance arteries. 

50 mM KCl-induced contractions were of the same magnitude at low and high 

tensions in chronic hypoxic rats being 246 ± 30 mg wt (16 rings) and 264 ± 33 mg wt 

(16 rings) respectively; and did not differ from control rat pulmonary resistance artery 

responses to 50 mM KCl at low and high tensions. Figure 5.2 A and B shows CCRC's 

for ET-1 and SxS6c in chronic hypoxic pulmonary resistance arteries. A summary of 

the relevant pEC50 values is shown in table 5.3 and pEC20 values are shown in table 

5.4. From this it can be seen that an increase in the resting tension in chronic hypoxic 

vessels had no effect on the tissue sensitivity to ET-1 at the pEC5() or pEC2O level, and 

had no effect on the maximum contraction achieved to the peptide. Comparing tissue 

sensitivity to ET-1 between control and chronic hypoxic vessels at low tension, control 

vessels were significantly more sensitive to ET-1 at the pEC20 level but not at the 

pEC50 level. Conversely, at high tension chronic hypoxic vessels were significantly 

more sensitive to ET-1 at the pEC50 value only. Pulmonary resistance arteries from 

chronic hypoxic rats were over 10 fold more sensitive to SxS6c than ET-1 at both 

tensions studied, and changes in resting tension appear to have no significant effect on 

responses to SxS6c in chronic hypoxic rat pulmonary resistance artery. Comparing 

sensitivity between control and chronic hypoxic vessels, at low tension SxS6c was 

more potent in control vessels at the pEC20 value only and there was no significant 

difference between groups at high tension. The shape of the CCRC's to SxS6c appear 

different comparing control (figure 5.1. B) and chronic hypoxic (figure 5.2. B). Both 

curves demonstrate a "drop off' in tone at the higher concentrations of SxS6c however 

this is much more dramatic in chronic hypoxic vessels making the curves appear almost 

bell shaped. 

Figure 5.3 shows the maximum contractions achieved to ET-I and SxS6c in 

control and chronic hypoxic pulmonary resistance artery at low and high tensions. 

Altering resting tension had no effect on the maximum contractile response to ET-1 in 

control and chronic hypoxic rats, however, the maximum contraction to ET-1 is 

significantly increased in chronic hypoxic pulmonary resistance artery at both low and 
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Figur, e52 
ET-1 and SxS6c-induced vasoconstriction in chronic hypoxic rat pulmonary resistance 
arteries. A CCRC's for ET-1 in chronic hypoxic vessels at : low tension (0, n=6/ 6), 

and at high tension (0, n=6/ 6). B CCRC's for SxS6c in chronic hypoxic vessels at : 
low tension (0, n=5/ 5) and at high tension (M, n=8/ 8). Data are expressed as 
percentage reference contraction to 50 mM KCl in each vessel. Each point represents 
the mean ± SEM. 
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Figure 5.3. 

Maximum contraction to peptides in control and chronic hypoxic preparations. 

A Maximum contraction achieved to ET-1 in control and chronic hypoxic rat 

pulmonary resistance arteries. Open columns show data from vessels at low tension 

(control, n=8/8; chronic hypoxic, n=6/ 6). Hatched columns show data from 

vessels at high tension (control, n=5/5; chronic hypoxic, n=6/ 6). Data are 

expressed as a percentage reference contraction to 50 mM KCI in each vessel. Each 

point represents the mean ± SEM. Statistical comparisons were made using Students 

unpaired t-test. *p < 0.05 Control vs. chronic hypoxic. 

B Maximum contraction achieved to SxS6c in control and chronic hypoxic rat 

pulmonary resistance arteries. Open columns show data from vessels at low tension 

(control,. n=8/8; chronic hypoxic, n=5/ 5). Hatched columns show data from 

vessels at high tension (control, n=5/5; chronic hypoxic, n=8/ 8). Data are 

expressed as a percentage reference contraction to 50 mM KCI in each vessel. Each 

point represents the mean ± SEM. 

168 F 



A* 
* 

250 

200 
E 

150 

y 100 

50 

0 

B 

250 

200 

0 150 

0 
100 

H 

ii 

50 

0 

Q 
LOW TENSION 

® 
HIGH TENSION 

Maximum contraction to peptides in control and chronic hypoxic preparations. 

168 

CONTROL CHRONIC 
HYPOXIC 

CONTROL CHRONIC 
HYPOXIC 



high tension when compared to control preparations. In contrast to ET-1 the maximum 

contractions to SxS6c were not significantly different in chronic hypoxic pulmonary 

resistance artery compared with controls. Although maximum response to SxS6c 

appears to be greater at low tension that at high tension in control and chronic hypoxic 

preparations this difference was found to be not significant. 

Integrity of the vascular endothelium 

Control and chronic hypoxic pulmonary resistance arteries preconstricted with 1 

µM NA showed similar percentage relaxations to 1 p. M ACh. Values being : control at 

low tension 42.2 ± 3.0 %, control at high tension 43.1 ± 4.1 %, chronic hypoxic at low 

tension 52.1 ± 4.3 % and chronic hypoxic at high tension 51.7 ± 3.9 %. However 

Figure 5.4 shows that the preconstriction with 1 µM NA was significantly greater in 

chronic hypoxic vessels at both low and high tensions compared with control vessels. 

The resulting tone after the administration of ACh is also illustrated in figure 5.4 and it 

can be seen that although the percentage relaxation was not different between groups, 

the overall magnitude of relaxation is much greater in chronic hypoxic vessels. 

A further study was undertaken to see if the sensitivity to ACh was different 

between control and chronic hypoxic vessels preparations. In this study vessels were 

first preconstricted with 10 p. M 5-HT as this produced greater and more stable resting 

tone than NA in control preparations. However 5-HT induced tone was again greater in 

chronic hypoxic preparations than in controls values being 34.5 ± 3.2 % of 50 mM KCI 

contraction in controls and 87.6 ± 5.2 % of 50 mM KCl contraction in chronic hypoxic 

preparations (**p < 0.01 Students unpaired t-test). Figure 5.5 shows relaxation 

response curves to ACh in control and chronic hypoxic pulmonary resistance arteries. 

Data for pEC20 and pEC50 values are shown in table 5.5 below. From this table and 

figure 5.5 it can be seen that chronic hypoxic pulmonary resistance artery were over 10 

fold more sensitive to ACh than control preparations. Also the overall maximum 

relaxation observed to ACh was significantly greater in chronic hypoxic vessels 
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Maximum contraction to 1 p. M NA, and relaxation achieved to I µM ACh in control 

and chronic hypoxic rat pulmonary resistance arteries at low and high resting tensions. 

Open columns show data for contractile responses to NA, and hatched columns show 

remaining vascular tone after the administration of ACh. n= 16 /16 for all groups. 

Data are expressed as percentage reference contraction to 50 mM KC1. Each point 

represents the mean ± SEM. Statistical comparisons were made using Students t-test 

for paired or unpaired data. *p < 0.05, **p < 0.01, ***p < 0.001 effect of ACh of NA 

induced tone. tp < 0.001 control NA induced tone vs. chronic hypoxic NA induced 

tone 
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Figure 5.5. 

Relaxation responses to ACh in control and chronic hypoxic pulmonary resistance 

arteries (tone raised with 10 W 5-HT). CCRC to ACh in control pulmonary resistance 

arteries at low tension (0, n= 20 / 10). CCRC to ACh in chronic hypoxic pulmonary 

resistance arteries at high tension (0, n= 20 / 10). Data are expressed as a percentage 

of contractile response to 10 tM 5-HT. Each point represents the mean ± SEM. 

Statistical comparisons were made using Students unpaired t-test. **p < 0.01, ***p< 

0.001 Control vs. chronic hypoxic. 
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compared with controls (maximum relaxation being : control 27.9 ± 2.7 %, and 71.6 ± 

2.7 % chronic hypoxic; ***p < 0.001, Students unpaired t-test). 

pEC20 n/n pEC50 n/n 

Control 6.81 ± 0.09 20 / 10 5.77 ± 0.15 20 / 10 
[Chronichypoxic 

7.73 ± 0.16*** 20 / 10 7.12 ± 0.19*** 20 / 10 

Table 5.5 Sensitivity to ACh in control and chronic hypoxic pulmonary resistance 
arten es 

pEC20 and pEC50 values for ACh in control and chronic hypoxic pulmonary resistance 

arteries. Data are expressed as mean ± SEM. Statistical comparison were made using 
Students unpaired t-test. ***p < 0.001 control vs. chronic hypoxic 

Assessment of endogenous tone in pulmonary resistance arteries. 

Figure 5.6. A shows the effect of SNP (1 µM) when administered prior to any 

other agent. Not all vessels relaxed to SNP, in control vessels at low tension 29 % of 

vessels relaxed, in control vessels at high tension and in chronic hypoxic vessels at low 

tension 88 % of vessels relaxed; and in chronic hypoxic vessels at high tension 93 % of 

vessels relaxed. Figure 5.6. A demonstrates that there is a significantly greater 

relaxation in the chronic hypoxic vessels at high tension, indicating a greater degree of 

endogenous tone in these vessel preparations. 

Effect of L-NAME (100 I LM) 

Figure 5.6. B shows vasoconstriction produced by the administration of 100 tM 

L-NAME itself. In control preparations at low tension 33 % of vessels contracted to L- 

NAME, whereas in control vessels at high tension 53 % of vessels contracted to 

administration of L-NAME. In chronic hypoxic animals at low tension 56 % of vessels 

contracted, and at high tension 88 % of vessels contracted. Figure 5.6. B shows that L- 

NAME produced a significantly greater vasoconstriction in chronic hypoxic pulmonary 

resistance arteries at high tension. 
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Figure 5.6. 

Effect of SNP and L-NAME on control and chronic hypoxic vessels. 

A Relaxation to 1 pM SNP in control and chronic hypoxic rat pulmonary resistance 

arteries. Open columns show data from vessels at low tension (control, n= 14 / 8; 

chronic hypoxic, n=8/ 6). Hatched columns show data from vessels at high tension 

(control, n=8/6; chronic hypoxic, n= 14 / 8). Data are expressed as percentage of 

reference contraction to 50 mM KCl in each vessel. Each point represents the mean ± 

SEM. Statistical comparisons were made using Students unpaired t-test. **p < 0.01 

Control vs. chronic hypoxic. 

B Effect of 100 p. M L-NAME on vascular tone. Open columns show data from rat 

pulmonary resistance arteries at low tension (n = 15 /8 for both control and chronic 

hypoxic). Hatched columns show data for rat pulmonary resistance arteries at high 

tension (n = 15 /8 for both control and chronic hypoxic). Data are expressed as 

percentage of the reference contraction to 50 mM KCl in each vessel. Statistical 

comparisons were made using Students unpaired t-test. **p < 0.01 control vs. chronic 

hypoxic; tp < 0.05 chronic hypoxic low vs. chronic hypoxic high. 
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The effect of L-NAME on responses to ET-1 in control pulmonary resistance 

arteries at low and high tension is shown in figure 5.7. A. A summary of the pEC50 

values is shown in table 5.3, and pEC20 values in table 5.4. L-NAME had no effect on 

tissue sensitivity to ET-1 in control vessels at low tension. However, the decrease in 

sensitivity which was observed when control pulmonary resistance arteries were set at 

high resting tension, was not seen in the presence of L-NAME. Figure 5.7. A also 

demonstrates that the maximum contraction achieved to ET-1 was significantly 

decreased in the presence of L-NAME at both low and high tensions. Figure 5.7. B 

shows the effect of L-NAME on responses to SxS6c in control pulmonary resistance 

artery at low and high tensions, with the pEC50 and pEC20 values listed in table 5.2 and 

5.3 respectively. The administration of L-NAME had no effect on the tissue sensitivity 

to SxS6c (at pEC20 or pEC50 level) or the maximum contraction to the peptide in 

control preparations. 

The effect of L-NAME on responses to ET-1 in chronic hypoxic rat pulmonary 

resistance arteries at low and high tension is demonstrated in figure 5.8. A. The tissue 

sensitivity to ET-1 was not effected by L-NAME (see tables 5.3 and 5.4 for pEC5() and 

pEC20 values) at both low and high tensions. However in a similar fashion to that 

observed in control rat pulmonary resistance artery, L-NAME caused a significant 

decrease in the maximum contraction achieved to ET-1. There was a dramatic effect of 

L-NAME on responses to SxS6c in chronic hypoxic pulmonary resistance artery at low 

and high tensions which is demonstrated in figure 5,8. B. Data for pEC2() and pEC50 

values are also shown in tables 5.1 and 2. From this we can see that L-NAME 

significantly increased the sensitivity of chronic hypoxic pulmonary resistance vessels 

to SxS6c at both low and high tensions. L-NAME also caused a significant increase in 

the maximum contraction to SxS6c in chronic hypoxic pulmonary resistance artery at 

high tension only. Figures 5.8. A and B illustrate that the biphasic nature of the ET-1 

and SxS6c curves is exaggerated in the chronic hypoxic vessels and is particularly 

prominent in the L-NAME treated vessels. 
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Responses to ET-1 and SxS6c in control vessels: effect of 100 µM L-NAME. 

A CCRC's to ET-1 in control vessels at low tension (p, n=8/ 8), control low + L. 
NAME (9, n=6/ 6), control vessels at high tension (0, n=5/ 5), control high + L- 
NAME (U, n=6/ 6). 

B CCRC's to SxS6c in control vessels at low tension (0, n=8 control low + L- 
NAME (0, n=6/ 6), control vessels at high tension (0, n=5/ 5), control high + L- 
NAME (0, n=7/ 7). Data are expressed as a percentage of the reference contraction 
to 50 mM KCl in each vessel. Each point represents the mean ± SEM. Statistical 

comparisons were made using Students unpaired t-test. *p < 0.05, control vs. control + 
L-NAME. 
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Figure 5.8. 

Responses to ET-1 and SxS6c in chronic hypoxic vessels : effect of 100 µM L-NAME. 

A CCRC's to ET-1 in chronic hypoxic vessels at low tension (O, n=6/ 6), low + L- 
NAvIE (0, n=7/ 7), chronic hypoxic vessels at high tension (O, n=6/ 6), high + L- 
NAME (0, n=7/ 7). B CCRC's to SxS6c in chronic hypoxic vessels at low 

tension (O, n=5/ 5), low + L-NAME (0, n=5/ 5), chronic hypoxic vessels at high 

tension (0, n=8/ 8), high + L-NAME (U, n=5/ 5). Data are expressed as a 
percentage of the reference contraction to 50 mM KCl in each vessel. Each point 
represents the mean ± SEM. Statistical comparisons were made using Students 

unpaired t-test. *p < 0.05 chronic hypoxic vs. chronic hypoxic + L-NAME. 
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Fi urn e 5.9. 

Responses to SxS6c in presence of raised vascular tone (induced by 5-HT 10 MM). 
A Time controls for control rat pulmonary resistance arteries at low tension (0, n=3/ 
3), CCRC to SxS6c in control pulmonary resistance arteries at low tension (0, n=6/ 
6). 
B Time controls for chronic hypoxic rat pulmonary resistance arteries at high tension 
(0, n=3/ 3), CCRC to SxS6c in chronic hypoxic pulmonary resistance arteries at high 

tension (0, n=5/ 5). Data are expressed as a percentage of the contraction achieved 
to 10 µM 5-HT. Each point represents the mean ± SEM. Statistical comparisons were 

made using Students unpaired t-test. *p < 0.05 time control vs. SxS6c. 

B 
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Effects of sarafotoxin S6c in l2reconstricted vessels. 

Figure 5.9. A shows the effect of SxS6c on control pulmonary resistance arteries 

preconstricted with 5-HT. In these preparations no relaxations were observed to SxS6c 

but significant vasoconstriction was observed from 0.1 pM onwards compared with the 

time controls. Figure 5.9. B shows the responses to SxS6c in chronic hypoxic 

pulmonary resistance arteries preconstricted with 5-HT. Again no vasodilatation was 

observed to SxS6c in these preparations compared with the time controls, and 

significant vasoconstriction was observed from 10 pM onwards. The preconstriction 

induced by 5-HT was significantly greater in chronic hypoxic vessels compared to 

controls values being 34.0 ± 5.7 % of 50 mM KCl contraction for controls and 60.0 ± 

8.9 % 50 mM KCl contraction for chronic hypoxic vessels (*p < 0.05, Students 

unpaired t-test). All vessels studied were shown to have intact vascular endothelium 

with ACh induced relaxations of 44 ±5% in control preparations (n =9 preparations in 

6 animals); and 59 ±6% in chronic hypoxic preparations (n =8 preparations in 8 

animals). 

The results from this study show that in the pulmonary resistance arteries from 

control young specific pathogen free rats, responses to ET-1 appear to be mediated via 

predominantly ETB receptors due to the relative potency of SxS6c and ET-1. This is 

what I have previously reported in pulmonary resistance arteries from older `in house" 

Wistar rats (chapter 3 this thesis). Due to the possible involvement of ET-1 in 

pulmonary hypertension, it was of interest to localise the effect of chronic hypoxia in 

the pulmonary circulation, and assess any changes in ET vascular reactivity in 

pulmonary resistance arteries from chronic hypoxic rats. In a parallel study, colleagues 

within our laboratory looked at the effects of chronic hypoxia on the main pulmonary 

artery and pulmonary artery branches of the rat. This study has subsequently been 

published (MacLean, et al., 1995). As pulmonary pressure would be greater in chronic 
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hypoxic animals than aged matched controls, I examined the effects of resting tension 

on vascular responses to ET's in these rat vessels. 

In control pulmonary resistance arteries, responses to ET-1 were significantly 

less sensitive when placed under the higher resting tension. This may have been due to 

over stretching of the smooth muscle layers causing damage, but seems unlikely as 

responses to SxS6c were not significantly decreased in sensitivity under the same 

conditions. The maximum contractile response to ET-1 was similar at both low and 

high tension again suggesting that the smooth muscle was not damaged. The decrease 

in sensitivity to ET-1 at high tension was not observed in vessels pre-treated with 100 

µM L-NAME. This may suggest that NO release in response to the increased vessel 

stretch at high tension, may be responsible for the decrease in sensitivity to ET-1. 

Indeed shear stress has been shown to stimulate NO production (Tesfamariam & 

Cohen, 1988). Responses to SxS6c in control rat pulmonary resistance arteries 

demonstrated no significant change in sensitivity when set up at high tension. Why 

resting tension should effect the sensitivity to one agonist and not another is unclear, 

but this has been previously demonstrated in rat pulmonary resistance arteries where 

responses to different contractile agonists appear to show different length-tension 

relationships when set up at equivalent transmural pressures of 17 mmHg and 36 

mmHg (Rogers, et al., 1992). In control vessels, the maximum contraction achieved to 

SxS6c was not significantly different to the maximum to ET- 1, however responses to 

SxS6c in chronic hypoxic vessels were significantly less than maximum responses to 

ET-l. This could be as a result of the desensitisation observed with ETB receptors 

illustrated by a "fall off' at high concentrations of SxS6c (Sudjarwo, et al., 1993). 

In chronic hypoxic animals, altering resting tension had little effect on 

sensitivity to ET-1 although there appeared to be a slight leftward trend observed at 

high tension, in the lower portion of the ET-1 response curve. The maximum 

contractile response to ET-1 in chronic hypoxic vessels was not altered by changes in 

resting tension. In a similar fashion to ET-1, responses to SxS6c were not significantly 

altered by changes in tension in chronic hypoxic pulmonary resistance artery. From my 
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results it appears that control preparations show greatest sensitivity to ET-1 when set at 

what would be their equivalent transmural pressure in vivo. A similar tendency is 

shown in chronic hypoxic vessels although this is not statistically significant. 

Chronic hypoxia increases the maximum response to ET-1, and this appears to 

be mediated via the ETA receptor subtype as maximum responses to SxS6c were 

unchanged. Chronic hypoxia causes pulmonary vascular remodelling, in which small 

pulmonary resistance arteries become muscularised (Hunter, et al., 1974, see also 

chapter 4). If it were simply the case that all vasoconstrictor responses were increased 

due to pulmonary vascular remodelling then we would have seen an increase in the 

maximum contraction to all vasoconstrictors tested (e. g. KCI and SxS6c). It could be 

argued that a significant increase in the SxS6c maximum response is not observed due 

to receptor desensitisation. However, I have examined the absolute contractile 

responses to SxS6c at each concentration step prior to desensitisation, and there is no 

significant difference between control and chronic hypoxic pulmonary resistance artery 

contractility at any of these points. Increased vasoconstrictor responses to ET-1 have 

previously been demonstrated in a hypoxic rat model of pulmonary hypertension 

(Eddahibi, et al., 1991). The results from my study would suggest that this increase is 

mediated via the ETA receptor subtype. It has also been demonstrated that lung ET-1 

levels are increased due to chronic hypoxia (Elton, et al., 1992). If this were the only 

process occurring a relative decrease in the ET receptors present would be expected due 

to receptor down regulation. This has been shown to occur in the monocrotaline lung 

injury model of pulmonary hypertension. In this model, lung and venous plasma ET-1 

levels are also raised, and this results in a relative decreased expression of the ETB 

receptor mRNA in the lung (Yorikane, et al., 1993). However, it has subsequently been 

shown that not only does hypoxia stimulate increases in lung ET-1 levels, but it also has 

a direct effect on ET receptors : increasing the ETA receptor mRNA levels in the rat 

lung (Li, et al., 1994 a, b). Therefore in the hypoxic state there must be some balance 

occurring between the opposing factors of receptor gene expression and down 

regulation. My results would agree with an increase in ETA receptor gene expression in 
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chronic hypoxia due to the observation of increased vasoconstrictor responses to ET-1 

with no effect on SxS6c. Eddahibi, ei al., (1993) observed no differences in ETA and 

ETB receptor binding between control and chronic hypoxic the rat lungs. If such a 

situation is occurring then increased vasoconstrictor responses to ET-I may be due to 

an increase in efficacy of ET-1 through alteration of the intracellular signalling 

mechanism, rather than an increase in receptor number. 

In parallel studied looking into vascular changes in main pulmonary artery and 

pulmonary artery branches of the rat, an increased sensitivity to ET-1 in the in the 

pulmonary artery branch of chronic hypoxic rats was observed (MacLean, ei al., 1995). 

ETB mediated responses were also uncovered in both the main pulmonary artery and 

pulmonary artery branches of the hypoxic rats. Comparing my own observations with 

this parallel studied indicates that not only do ET-receptor subtypes vary with the size 

or the location of the vessel, but the effect of pulmonary hypertension due to chronic 

hypoxia on the pulmonary circulation also varies with the vessel type studied. 

All vessels had intact vascular endothelium, and after preconstriction with I µM 

NA there were no differences in percentage ACh induced relaxations between groups. 

Endothelium-dependent relaxation has been shown to be attenuated in pulmonary 

hypertensive rat models (Adnot, et al., 1991; Shaul, el al ., 
1993) and in human 

pulmonary arteries from patients with COLD (Dinh-Xuan, el al., 1991,1993). The 

aforementioned studies in the pulmonary hypertensive rat model were either carried out 

on isolated main pulmonary arteries, or isolated perfused lung preparations, therefore it 

may be the case that the decreased endothelium-dependent relaxation is occurring in 

vessel types other than pulmonary resistance arteries (for example large calibre 

pulmonary arteries or small pulmonary arterioles and venules). One problem 

encountered in the initial study was that NA produced poor vasoconstriction in control 

pulmonary resistance artery, and significantly greater responses to NA were observed in 

chronic hypoxic pulmonary resistance arteries. Although there was no significant 

difference in the percentage relaxation to 1 µM ACh between groups, the overall 

magnitude of relaxation was greater in chronic hypoxic vessels. I therefore decided to 
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carry out a full relaxation response curve to ACh in vessels preconstricted with 5-HT 

(as this proved to be a more reliable agent for contracting control pulmonary resistance 

arteries). Contrary to previous results showing decreased endothelium-dependent 

relaxation in chronic hypoxic pulmonary arteries, results from this study showed that 

after preconstriction with 5-HT, ACh caused significantly greater relaxation in chronic 

hypoxic pulmonary resistance arteries compared with controls. This study also 

demonstrated that chronic hypoxic vessels were over 10 fold more sensitive to ACh. 

Endothelium-dependent relaxations were extremely poor in control pulmonary 

resistance arteries, giving a maximum relaxation of only 30 %. This poor relaxatory 

response to ACh has been previously demonstrated in control rat pulmonary resistance 

arteries (Leach, et al., 1992). 

There is evidence to show that there may be increased production of NO in 

chronic hypoxic rat lungs. For example Isaacson, el al., (1994) showed increased 

vasodilator responses to substance P in isolated perfused lungs from pulmonary 

hypertensive rats compared with control animals. Concentration of NO decomposition 

products was also significantly increased in the effluent from hypertensive rat lungs. 

Augmented endothelium-dependent vasodilatation to AVP has also been reported in 

isolated perfused lungs from chronic hypoxic rats (Eichinger, et al., 1994). There is 

also immunohistochemical evidence to suggest the upregulation of NOS expression in 

chronic hypoxic rat lungs (Xue, et al., 1994). This paper demonstrated an absence of 

NOS staining in the endothelium of pulmonary resistance arteries from control animals, 

but after a two week exposure to chronic hypoxia NOS staining was prominently 

expressed in the endothelium and smooth muscle of these resistance vessels. 

Subsequent studies from this group have indicated that both cNOS and iNOS are 

upregulated in chronic hypoxic rat lungs, with de novo cNOS staining observed in the 

endothelium of resistance arteries (Le Cras, et al., 1996). Whether the increased 

endothelium-dependent relaxation observed in pulmonary resistance arteries in this 

study is due to increased NO production, can only be speculated at this stage. The 

involvement of other endothelium-derived relaxing factors such as prostacyclin and 
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EDHF have also been implicated in the vasodilatory responses to ACh in some isolated 

vessel preparations (see section 1.1.2.2). However, in isolated rat extrapulmonary 

arteries and isolated perfused rat lungs ACh-induced vasodilatation has been attributed 

to the release of endothelium-derived NO (Adnot, et al., 1991; Carville, et al., 1993),. 

Therefore this evidence would indicate that increased production of NO would a likely 

candidate for increased vasodilatation to ACh in chronic hypoxic rat lungs. 

Administration of L-NAME produced increases in vascular tone in some, but 

not all, vascular preparations. The percentage of preparations which contracted and the 

absolute magnitude of response was greatest in the chronic hypoxic preparations, and 

significantly greater at high tension. It was previously suggested in this discussion that 

stretching the control vessels to higher tension may have stimulated the release of NO. 

In the control preparations at higher tension there is an increase in the number of 

preparations contracting to L-NAME but no significant increase in the magnitude of 

contraction is observed. My observation that L-NAME caused greater contraction in 

chronic hypoxic rat pulmonary resistance arteries suggests that there may be increased 

basal release of NO in the pulmonary hypertensive state compared to controls, or that 

there is a greater degree of inherent tone in pulmonary hypertensive vessels, and 

removal of basal NO release uncovers the increase in vascular tone. In support of the 

first theory it has been demonstrated that L-NAME induced a greater increase in 

pulmonary pressure in isolated perfused lungs from chronic hypoxic rats but was 

greatly reduced or not observed in control rats (Barer, et al., 1993; Isaacson, et al., 

1994). However, Barer et al., (1993) also demonstrated that control preparations would 

show an increase in perfusion pressure if the pulmonary circulation were in a 

preconstricted state. This suggests that tonic vasoconstriction could be the stimulus for 

increased release of basal NO. It is clear from my own investigations that it is not 

simply an increase in tension which causes increased NO release, in that I observed no 

significant increase in contraction to L-NAME when control preparations were 

stretched to higher tension. This supports the theory that there is an increase in the 

degree of inherent tone in the pulmonary hypertensive vasculature, which is uncovered 
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by the inhibition of basal NO release. Basal NO release may also be enhanced due to 

the upregulation of iNOS in chronic hypoxic rat lungs (Le Cras, et al., 1996) This 

suggests that NO may be of more importance in counteracting the increased 

vasoconstriction in pulmonary hypertensive rat lungs, rather than playing a role in 

maintenance of low pulmonary vascular tone in control rats. 

To further investigate the degree of inherent tone in each preparation, I 

examined the effect of SNP on basal vascular tone in pulmonary resistance arteries. In 

a similar fashion to L-NAME, relaxations to SNP were infrequent in control 

preparations at low and high tension, increasing in frequency in chronic hypoxic 

vessels, and were significantly greater in chronic hypoxic vessels at high tension. This 

suggests that chronic hypoxic pulmonary resistance arteries exhibit endogenous 

inherent tone at an equivalent transmural pressure they would experience in vivo. 

Relaxations to SNP in controls were infrequent and extremely small in magnitude, 

suggesting that controls exhibit little endogenous inherent tone in vivo. The increased 

effect of L-NAME on preparations from chronic hypoxic animals could therefore be 

explained by the increased degree of inherent tone observed in the pulmonary resistance 

arteries from chronic hypoxic rats. This has also been suggested to occur in larger 

diameter pulmonary arteries from chronic hypoxic rats (Oka, el al., 1993; Wanstall et 

al., 1995). 

L-NAME had no effect on responses to ET-1 in control preparations at low 

tension, however as mentioned previously, the decrease in sensitivity observed at high 

tension was not seen in those vessels pre treatment with L-NAME. The maximum 

contraction to ET-1 was however significantly decreased at both low and high tensions 

in the presence of L-NAME . There was no effect with L-NAME on SxS6c responses 

at low and high tension in control preparations. L-NAME had no significant effect on 

ET-1 responses at either tension in chronic hypoxic preparations, however the 

maximum contraction was again significantly reduced in the presence of L-NAME. 

The observed decrease in the maximum contraction to ET-1 in control and chronic 

hypoxic vessels pre-treated with L-NAME was unexpected. In isolated perfused rat 
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lungs, contractile responses to ET-1 are potentiated upon inhibition of NOS (Eddahibi, 

et al., 1991). The reasons for this effect of L-NAME can only be speculated at this 

stage. It could be that decreasing the intracellular levels of cGMP by NOS inhibition 

alters certain intracellular signalling pathway, for example regulation of PDE activity. 

Further investigations would be required to elucidate the mechanisms involved. 

Pre-treatment with L-NAME significantly increased tissue sensitivity to SxS6c 

in chronic hypoxic pulmonary resistance arteries. This indicates that NO may 

somehow be suppressing responses to SxS6c in chronic hypoxic pulmonary resistance 

arteries, further supporting the suggestion that there is increased NO production in the 

chronic hypoxic vessels. Alternatively there may be endothelial ETB-receptors 

releasing NO, and that pre-treatment with L-NAME inhibition this production, and 

subsequently increases the sensitivity to SxS6c. In this study I was unable to 

demonstrate any relaxations to SxS6c in preconstricted pulmonary resistance arteries 

from control or chronic hypoxic rat lungs, although it may be that the endothelial ETB 

receptors are such a small population that contractile ETB receptors overwhelm the 

relaxant component. Although vasodilatation to ET's have been demonstrated in 

isolated perfused lungs, the vessel types involved in this response have yet to be 

identified in the rat (Eddahibi et al., 1993). However, it has also been shown that 

pulmonary resistance arteries of the lamb do not demonstrate vasodilatory responses to 

ET's, whilst such responses are apparent in the small pulmonary veins of the lamb 

(Wang, et al., 1995). A similar relationship is demonstrated in isolated pulmonary 

vessels from the pig lung, with ET's mediating vasodilatation in pulmonary veins rather 

than pulmonary arteries (Zellers, et al., 1994). It therefore seems likely that vasodilator 

responses to ET's in the rat pulmonary circulation are mediated by vessel types other 

than pulmonary resistance arteries, perhaps the pulmonary veins. Eddahibi, et al., 

(1993) have also demonstrated that vasodilatation to ET's are reduced in chronic 

hypoxic isolated perfused lungs from the rat, so it seems unlikely that endothelial ETB- 

receptors are increased in chronic hypoxia. 
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The response curves to ET-1 and SxS6c were biphasic in nature, there being a 

low gradient component to 0.1 nM, followed thereafter by a steep gradient component. 

In my previous study in chapter 3, where I examined the larger extrapulmonary arteries 

of the rat, this biphasic response curve to ET-1 was not evident, and therefore is unique 

to the pulmonary resistance arteries. Such a biphasic nature usually suggests different 

affinity binding sites or receptor subtypes. As this effect was observed with SxS6c also 

this suggests the presence of an atypical ET receptor in these vessels. This study shows 

that the first component of the curve is most pronounced in those vessels treated with 

L-NAME. This suggests that this receptor-mediated response is normally suppressed by 

the presence of NO. The exact ET receptor subtypes present in the rat pulmonary 

resistance artery are studied in more detail in the following chapter (6) of this thesis, 

using selective ET receptor agonists and antagonists. 

In conclusion this study indicates that the vascular response to ET-1 in 

pulmonary resistance arteries is increased in chronic hypoxia and this appears to be 

mediated via ETA receptors. Resting tension appears to be an important determinant 

for tissue sensitivity to ET-1 although this is only statistically significant in control 

pulmonary resistance arteries. These preparations show greatest sensitivity for ET-1 at 

an equivalent transmural pressure of -16 mmHg. Exposure to chronic hypoxia 

increases vasodilatation to ACh, and increases the role of endogenous NO on vascular 

reactivity. Basal NO release also appears to suppress responses to SxS6c in pulmonary 

resistance arteries whilst having no effect on responses to ET-1. Isolated pulmonary 

resistance arteries from chronic hypoxic rats exhibit inherent tone in comparison to 

control animals. 
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Chapter 6 

Endothelin Receptor Subtypes in 
Pulmonary Resistance Arteries 

Effect of Pulmonary Hypertension 
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6.1 Introduction. 

For the possible role of ET-induced vasoconstriction in pulmonary hypertension 

to be fully understood, it is of importance to classify which ET receptors are present in 

the pulmonary vasculature. As previously mentioned in this thesis, the ET receptors 

mediating vasoconstriction in the pulmonary circulation varies between species. My 

results from chapter 3, using the limited agonists and antagonists available suggested 

that in control rat pulmonary resistance arteries both ETA and ETB receptors are 

involved in vasoconstriction to ET-1. A similar situation is thought to occur in piglet 

pulmonary arteries (Perrault, et al., 1995); and in the rabbit pulmonary artery ET-1 

mediated vasoconstriction is almost entirely ETB receptor mediated (LaDouceur, et al., 

1993). In my initial studies, research into ET receptor antagonists was in its early 

stages, with only ETA receptor antagonist commercially available (e. g. FR 139317 

Sogabe, et al., 1993). This made full classification of ET receptors difficult. 

Subsequently further ET receptor agonists and antagonists have been developed 

(as mentioned in chapter 1), and have proved useful in the classification of ET receptor 

subtypes. The properties of these antagonists are summarised in table 1.1, and there 

chemical structures are illustrated in figure 1.4. The ETB receptor antagonist BQ-788, 

demonstrates greater potency and reliability than earlier reported ETB receptor 

antagonists. It shows high selectivity for the ETB receptor subtype and was shown to 

have a pA2 value of 8.4 against BQ-3020 in the isolated rabbit pulmonary artery 

(Ishikawa, et al., 1994). One of the first non-peptide selective ETA receptor antagonists 

to be described was BMS 182874. This compound demonstrates greater than 3600-fold 

selectivity for the ETA receptor subtype, and has a pKg value of 6.3 in rabbit carotid 

artery rings (predominantly ETA receptor population) (Stein, et al., 1994). The other 

non-peptide ET receptor antagonists used in this study demonstrate less selectivity 

between the ETA and ETB receptor subtypes, although differences have been observed 

between functional and binding studies. In binding assays the non peptide mixed ET 

receptor antagonist bosentan displayed around 30 fold greater potency for ETA receptor 

over the ETB receptor subtype, and in functional studies the pA2 value for ETA receptor 
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mediated contraction was 7.28, compared with a value of 5.9 for ETB mediated 

constriction. (Clozel, et al., 1994). The most potent non-peptide ET antagonist 

described to date is SB 209670. This compound has a pKB value of 9.39 against ET-1 

at an ETA receptor site, and a pKB of 6.70 against ET-1 at an ETB2 receptor site 

(Ohlstein, et al., 1994). 

In chapter 5,1 examined the effects of resting tension on ET responses in 

control and chronic hypoxic rat pulmonary resistance arteries. Relying on the relative 

potency of ET receptor agonists ET-1 and SxS6c, I suggested that rat pulmonary 

resistance arteries contained populations of both ETA and ETB receptors, and that there 

may be a possible increase in the role of the ETA receptor subtype in the pulmonary 

hypertensive rat. In this chapter I investigated the effects of a range of ET receptor 

antagonists on responses to ET-1 and SxS6c in control and chronic hypoxic rat 

pulmonary resistance arteries. The endogenous ligand ET-3, according to receptor 

classification, should be selective for ETB receptors at low concentrations, but at higher 

concentrations will also activate ETA receptors. Responses to ET-3 were also 

investigated in control and chronic hypoxic rat pulmonary resistance arteries. 

Chronic hypoxic rats were prepared as stated in chapter 2. After exposure to 14- 

16 days of chronic hypoxia rats were sacrificed along with aged matched controls and 

pulmonary resistance arteries were dissected out according to the methods stated in 

chapter 2. Control and chronic hypoxic vessel pairs were then mounted as ring 

preparations in the same bath of a wire myograph. Using the normalisation process 

explained in chapter 2, vessels were tensioned to an equivalent transmural pressure of 

-16 mmHg for controls and - 35 mmHg for chronic hypoxic. These pressure were 

chosen as not only are they the physiological pressures that these pulmonary resistance 

arteries would experience in vivo, but also results from chapter 5 (this thesis) suggest 

that these pressures also produce optimum responses to ET-1 in control and chronic 
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hypoxic rat pulmonary resistance arteries. The vessels were bathed in Krebs solution at 

37 OC and bubbled with 16 % 02,5 % C02, balance N2. 

Experimental Protocol. 

After 1 hour equilibration period, vessels were stimulated with two separate 

administrations of 50 mM KCI with the vessels being washed with fresh Krebs solution 

and allowed to return to baseline tension between KCl stimulations. Following this, the 

integrity of the vascular endothelium was assessed by the ability of I µM ACh to cause 

relaxation after preconstriction with I µM 5-HT. CCRC's to ET-1, SxS6c and ET-3 

(0.01 pM - 300 nM) were constructed in control and chronic hypoxic vessels following 

either 

A) 45 minute "rest period" or 

B) 45 minute incubation period with selected concentration of an ET receptor 

antagonist. 

Table 6.1 below illustrates the antagonists studied against each agonist, in 

control and chronic hypoxic rat pulmonary resistance arteries. 

AGONIST 

ANTAGONIST Endothelin-1 Endothelin-3 Sarafotoxin S6c 

FR 139317 � (at 1 µM) x X 

BMS 182874 � (at 1 µM) x x 

BQ-788 � (at 1 µM) � (at I µM) � (at I µM) 

BMS +B Q-788 x � (at 10 and 1µM) X x 

Bosentan 

SB 209670 

� (at 1 and 10 µM) 

� (10 nM -I µm) 

X 

x 

4 (at 0.1 and I µM) 

X 

Table 6.1 
_Summary 

of experimental procedures performed. 

BMS = BMS 182874. x= addition of both BMS 182874 (10 µ1M and BQ-788 (1 µM) 

together. 
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Note. 

Control responses to ET-1 were carried out, whenever possible, in each tissue 

sample. Due to equipment and time limitations it was not always possible to run a 

control ET-1 CCRC when studying different antagonists. Therefore the data for ET-1 

CCRC have been "pooled" over many samples. However the ET-1 control CCRC 

results in this study have been updated with each group of experiments, and are stated 

separately in tables along with the antagonist under study. No differences were found 

between the updated ET-1 groups in control or chronic hypoxic animals. 

Concentrations of antagonists studied were chosen due to their calculated pA2 / pKB 

values in other vascular preparations (see table 1.1). Unfortunately due to time 

constraints it was not always possible to study a range of antagonist concentrations in 

each tissue. 

Results are expressed graphically as percentage of reference contraction to the 

second application of 50 mM KCI, or as percentage of own maximal contraction. The 

pEC20, pEC50 and pECgo values (where appropriate) were calculated according to the 

methods stated in chapter 2. Statistical comparisons were made using one sample t-test 

or Students t-test for unpaired data. pA2 and pKB values for antagonists (where 

appropriate) were calculated according to methods section chapter 2. 

Pulmonary hypertension was assessed by measuring right ventricular to total 

ventricular ratio as described in chapter 2. This ratio was found to be significantly 

greater in chronic hypoxic rats (***p < 0.001, Students unpaired t-test) indicating a 

significant degree of pulmonary hypertension. For individual data on rats see appendix 

1 
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Responses to ET-1, SxS6c and ET-3. 

Control and Chronic Hypoxic rats. 

50 mM KCl induced contractions were of the same magnitude in both control 

and chronic hypoxic pulmonary resistance arteries, being 270 ± 24 and 294 ± 24 mg wt 

tension respectively (n = 20 rings from 20 animals for both control and chronic hypoxic 

groups). The average equivalent transmural pressures placed on the vessels and their 

resulting internal diameter measurements are listed in table 6.2 below. 

Effective Pressure (mmHg) Internal Diameter (µm) 

Control PRA 15.9 ± 0.4 170.5 ± 5.0 

Chronic hypoxic PRA 35.6 ± 0.3*** 205.4 ± 5.0*** 

Table 6.2 Internal diameter and effective pressures of vessels. 
Data are expressed as mean ± SEM. n= 25 rings for both control and chronic hypoxic 

groups. ***p < 0.001 control vs. chronic hypoxic. 

As would be expected the effective resting pressure of chronic hypoxic vessels 

is significantly greater than control vessel preparations, and chronic hypoxic vessels 

show a corresponding greater internal diameter due to being stretched to higher tension. 

Both control and chronic hypoxic vessels exhibited vasodilatation to ACh, with values 

of 28.1 ± 2.5 % of 5-HT-induced preconstriction in control preparations and 55.2 ± 3.3 

% of 5-HT preconstriction in chronic hypoxic preparations (n = 20 for both groups) 

***p < 0.001 control vs. chronic hypoxic, Students unpaired t-test. This degree of 

relaxation was similar to results observed in chapter 5 in this thesis for control and 

chronic hypoxic vessel preparations. 

Figure 6.1 A and B show responses to ET-1, SxS6c and ET-3 in control rat 

pulmonary resistance arteries. A summary of pEC20 and pEC50 values are shown in 

table 6.3. Responses to ET-3 in control rat pulmonary resistance arteries were also 5 

fold more potent than ET-1, and were equipotent with SxS6c at the pEC20 level. The 

potencies of SxS6c and ET-3 were verging on being significantly different at the pEC50 

level. By the pEC80 level tissue sensitivity to ET-3 was significantly less than that to 
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ET-1, ET-3 and SxS6c-induced vasoconstriction in control rat pulmonary resistance 

arteries. CCRC's for ET-1 (0, n=8/ 8), SxS6c (0, n=8/ 8), and ET-3 (A, n=4/ 

4). A Data are expressed as percentage of own maximum contraction in each vessel. 

B Data are expressed as percentage of reference contraction to 50 mM KCl in each 

vessel. Each point represents the mean ± SEM. Statistical comparisons were made 

using Students unpaired t-test. *p < 0.05, ET-1 vs. ET-3. 
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ET-1, ET-3 and SxS6c-induced vasoconstriction in chronic hypoxic rat pulmonary 

resistance arteries. CCRC's for ET-1 (0, n= 6/ 6), SxS6c (0, n=8/ 8), and ET-3 (A, 

n=4/ 4). A Data are expressed as percentage of own maximum contraction in each 

vessel. B Data are expressed as percentage of reference contraction to 50 mM KCI in 

each vessel. Each point represents the mean ± SEM. 
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Ej rgýe6.3. 
Responses to ET-3 in control and chronic hypoxic rat pulmonary resistance arteries. 
CCRC's to ET-3 in control vessels (0, n=4/ 4), and in chronic hypoxic vessels (I, n 
=4/ 4). A Data are expressed as percentage of own maximum contraction in each 
vessel. B Data are expressed as percentage of reference contraction to 50 mM KCI in 

each vessel. Each point represents the mean ± SEM. Statistical comparisons were 
made using Students unpaired t-test **p < 0.01, ***p < 0.001 control vs. chronic 
hypoxic. 
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SxS6c (pECap values being ET-3 control 7.89 ± 0.08, and SxS6c control 8.51 ± 0.12; 

**p < 0.01, Students unpaired t-test). The maximum contractile response achieved to 

ET-3 in control vessels was significantly less than that achieved to ET-1 but not 

significantly different to SxS6c. 

Figure 6.2 A and B show responses to ET-1, SxS6c and ET-3 in chronic 

hypoxic rat pulmonary resistance arteries. As summary of the pEC20 and pEC5() values 

are shown in table 6.3. Again SxS6c was over 10 fold more potent than ET-] in this 

preparation, but ET-1 produced a significantly greater maximum contraction than 

SxS6c. Responses to ET-3 were 5 fold more potent than ET-1 and were equipotent 

with SxS6c at the pEC2o levels. As observed in control preparations responses to 

SxS6c were verging on being significantly more potent that ET-3 at the pEC5() level. 

By the pEC80 level tissue sensitivity to ET-3 was significantly less than that to SxS6c 

(pEC8o values being ET-3 hypoxic 7.84 ± 0.16, and SxS6c hypoxic 8.64 ± 0.08; *p < 

0.05, Students unpaired t-test). The maximum contractile response to ET-3 was similar 

to that of ET-1 and significantly greater than SxS6c (*p < 0.05, Students unpaired t- 

test). 

In figures 6.1,2 and 3 it can be seen that responses to ET-3 in both control and 

chronic hypoxic vessels are biphasic in nature, there being a slow gradual component to 

0.3 nM, and a steeper component thereafter. The responses to ET-3 appear to follow 

the time course for SxS6c at low concentrations and then verge towards the ET-1 

CCRC at higher concentrations of ET-3. Figures 6.3 A and B show that responses to 

ET-3 are equipotent in control and chronic hypoxic rat pulmonary resistance arteries, 

but the maximum contractile response to the peptide is significantly increased in 

chronic hypoxic preparations. 

Figure 6.4 A and B illustrate responses to ET-1 in control and chronic hypoxic 

rat pulmonary resistance arteries in the presence of I µM of the ETA receptor 

antagonists FR 139317 or BMS 182874. Table 6.4 shows pEC20 and pEC50 values for 
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Effect of FR 139317 and BMS 182874 on responses to ET-1 in rat pulmonary 

resistance arteries. 
A. CCRC's to ET-1 in control vessels (O, n=8/ 8), ET-1 in the presence of 1 pM FR 

139317 (0, n=6/ 6), and ET-1 in presence of I µM BMS 182874 (A, n=5/ 5). 

B CCRC's to ET-1 in chronic hypoxic vessels (O, n=8/ 8), ET-1 in the presence of I 

µM FR 139317 (0, n=6/ 6), and ET-1 in presence of 1 pM BMS 182874 (A, n=5/ 
5). Data are expressed as percentage of reference contraction to 50 mM KCl in each 
vessel. Each point represents the mean ± SEM. Statistical comparisons were made 
using Students unpaired t-test *p < 0.05 ET-1 vs. ET-1 + FR 139317. 
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ET-1 in the presence and absence of the ETA receptor antagonists. Incubation with all 

the antagonists used in these studies had no effect or baseline tension in control and 

chronic hypoxic preparations. FR 139319 did not effect the sensitivity or the maximum 

contractile response to ET-1 in control preparations, but caused a significant decrease in 

the maximum contractile response to ET-1 in chronic hypoxic vessels (see figure 

6.4. B). This decrease in the maximum contractile response occurred without effecting 

the tissue sensitivity to ET-1 (see table 6.4). 

Responses to ET-1 in chronic hypoxic pulmonary resistance arteries were 

unaltered in the presence of BMS 182874, but the antagonist caused a significant 

increase in tissue sensitivity to ET-1 in control preparations at both pEC20 and pEC50 

levels (see figure 6.4. A and table 6.4). This significant increase in tissue sensitivity 

occurred without effecting the maximum contractile response to ET-1 in control 

preparations. 

Effect of bosentan on responses to ET-l. 

The non peptide mixed ETA / ETB receptor antagonist bosentan was the next 

antagonist available for use in this study. Figure 6.5 A shows the effect of bosentan on 

responses to ET-1 in control rat pulmonary resistance arteries. From this figure and 

table 6.4 it can be seen that incubation with I p. M bosentan causes a significant increase 

in the tissue sensitivity to ET-1 in control preparations at both pEC20 and pEC50 values. 

This increase in tissue sensitivity occurred without effecting the maximum contractile 

response to ET-1. In the presence of 10 gM bosentan the lower concentrations of the 

CCRC to ET-1 are significantly antagonised, and this is illustrated also by a significant 

decrease in the pEC20 value for ET-1 (see table 6.4). Neither the pEC50 value or the 

maximum contraction to ET-1 were effected by incubation with 10 µM bosentan. 

Figure 6.5. B shows responses the effect of bosentan on responses to ET-1 in 

chronic hypoxic rat pulmonary resistance arteries. When present at I p. M there was no 
effect on responses to ET-1 in chronic hypoxic preparations, however 10 µM bosentan 

caused a rightward shift in the CCRC to ET-1, and also significantly decreased the 
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Figure 6.5 

Effect of bosentan on responses to ET-1 in rat pulmonary resistance arteries. 
A. CCRC's to ET-1 in control arteries (0, n=8/ 8), ET-1 in the presence of I p. M 
bosentan (0, n=4/ 4), and ET-1 in presence of 10 µM bosentan (A, n=3/ 3). B 

CCRC's to ET-1 in chronic hypoxic arteries (0, n=8/ 8), ET-1 in the presence of I 
µM bosentan (0, n=4/ 4), and ET-1 in presence of 10 µM bosentan (A, n=3/ 3). 
Data are expressed as percentage of reference contraction to 50 mM KC1 in each vessel. 
Each point represents the mean ± SEM. Statistical comparisons were made using 
Students unpaired t-test. tp < 0.05, ttp < 0.01, ET-1 vs. ET-1 + bosentan (1 µM). *p 

< 0.05, **p < 0.01, ET-1 vs. ET-1 + bosentan (10 µM). 
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maximum contractile response to ET-1 in these preparations. The antagonism of the 

CCRC to ET-1 by bosentan 10 µM is illustrated by a significant decrease in the pEC50 

value (see table 6.4). The pEC20 values in the presence and absence of 10 µM bosentan 

were verging on statistical difference. 

Effect of ETB, and mixed ET ETB receptor blockade on ET-1 responses. 

Figure 6.6 shows the effect of the ETB receptor antagonist BQ-788 alone, and 

BQ-788 and BMS 182874 together on responses to ET-1 in control and chronic 

hypoxic rat pulmonary resistance arteries. A summary of pEC20 and pEC5() values are 

shown in table 6.4. BQ-788 alone had no effect on responses to ET-1 in control or 

chronic hypoxic preparations. However a combination of both BQ-788 and BMS 

182874 causes a slight but insignificant rightward shift the lower portion of the CCRC 

to ET-1 in control preparations, and causes a significant rightward shift in the response 

to ET-1 in chronic hypoxic preparations. This is similar to observations in the presence 

of the mixed ETA / ETB receptor antagonist bosentan. 

The effect of the non peptide mixed ETA / ETB antagonist SB 209670 on 

responses to ET-1 is shown in figure 6.7. Incubation with the antagonist had no effect 

of resting vessel tone in either control or chronic hypoxic preparations. The pEC20 and 

pEC50 values for ET-l in the presence and absence of SB 29670 are shown in table 6.5. 

Figure 6.7. A shows the effect of the mixed receptor antagonist on responses to ET-1 in 

control pulmonary resistance arteries. It can be seen from this figure and table 6.5 that 

SB 209670 causes concentration dependent rightward shifts in the CCRC to ET-1. 

When present at I µM SB 2096709, significantly decreased the maximum contractile 

response achieved to ET-1. SB 209670 also demonstrates concentration dependent 

rightward shifts of the CCRC to ET-1 in chronic hypoxic vessel preparations. The 

maximum contractile response to ET-1 is significantly decreased at both 0.1 pM and 1 

pM SB 209670. The pKB values for SB 209670 in control and chronic hypoxic 

preparations are shown in table 6.7. The pKB values for SB 209670 were significantly 

greater at 0.1 p. M than 1 pM in both control and chronic hypoxic pulmonary resistance 
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Figure 6.6 

Effect of BQ-788, and a combination of BQ-788 + BMS 182874 on responses to ET-1. 

A. CCRC's to ET-1 in control vessels (0, n=9/ 9), ET-1 in the presence of I p. M 

BQ-788 (0, n=5/ 5), and ET-1 in presence of 1 pM BQ-788 and 10 µM BMS 182874 

(A, n=7/ 7). B CCRC's to ET-1 in chronic hypoxic vessels (0, n=8/ 8), ET-1 in 

the presence of 1 p. M BQ-788 (0, n=5/ 5), and ET-1 in presence of I µM BQ-788 

and 10 µM BMS 182874 (A, n=7/ 7). Data are expressed as percentage of reference 

contraction to 50 mM KCl in each vessel. Each point represents the mean t SEM. 
Statistical comparisons were made using Students unpaired t-test. *p < 0.05, **p < 
0.01, ET-1 vs. ET-1 in presence of BQ-788 and BMS 182874. 
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Figure 6.7 

Effect of SB 209670 on responses to ET-1. A. CCRC's to ET-1 in control vessels (Q, 

n=9/ 9), ET-1+10 nM SB 209670 (9, n=4/ 4), ET-1 + 0.1 µM SB 209670 (A, n=4 
/ 4), and ET-1 +1p. M SB 209670 (A, n=5/ 5). B CCRC's to ET-1 in chronic 
hypoxic vessels (0, n=9/ 9), ET-1 + of 10 nM SB 209670 (40, n=4/ 4), ET-1 + 0.1 

µM SB 209670 (A, n=4/ 4), and ET-1 +l µM SB 209670 (A, n=5/ 5). Data are 

expressed as percentage of reference contraction to 50 mM KCl in each vessel. Each 

point represents the mean ± SEM. Statistical comparisons were made using Students 

unpaired t-test. tp < 0.05,1'1'p < 0.01, ET-1 vs. ET-1 + SB 209670 (100 nM), *p < 
0.05, **p < 0.01, ***p < 0.001 ET-1 vs. ET-1 + SB 209670 (1 µM). 
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arteries. The pKB values obtained at 1 µM were also significantly greater in chronic 

hypoxic preparations than in controls. Using Schild analysis, pA2 values were 

calculated for SB 209670 vs. ET-1 in these preparations. In control preparations the 

pA2 value for SB 209670 was 7.95 ± 0.12, with a slope of 0.46 ± 0.03 (significantly 

less than unity ***p < 0.001, one sample t-test). In chronic hypoxic preparations the 

pA2 value for SB 209670 was 7.28 ± 0.14, with a slope of 1.01 ± 0.14 (not significantly 

different from unity). 

Effect of antagonists on SxS6c responses. 

Figure 6.8 shows the effect of the mixed ETA / ETB receptor antagonist 

bosentan on responses to SxS6c on control and chronic hypoxic rat pulmonary 

resistance arteries. A summary of pEC20 and pEC50 values are shown in table 6.6. 

When present at 0.1 . tM bosentan had no effect on responses to SxS6c in control or 

chronic hypoxic vessels, however I µM bosentan caused a significant decrease in the 

pEC50 value for SxS6c in both control and chronic hypoxic preparations. 

The effect of the ETB receptor antagonist BQ-788 on responses to SxS6c in 

shown in figure 6.9. pEC20 and pEC50 values are shown in table 6.6. Pre-treatment 

with BQ-788 caused significant antagonism of responses to SxS6c in both control and 

chronic hypoxic vessels. BQ-788 did not effect the maximum contractile response 

achieved to SxS6c in either control or chronic hypoxic preparations. The pKB values 

for bosentan and BQ-788 against SxS6c induced contractions are shown in table 6.7. 

Effect of BO-788 on ET-3 responses. 

Figure 6.10 shows the effect of BQ-788 on responses to ET-3 in control and 

chronic hypoxic rat pulmonary resistance arteries. pEC20 and pEC50 values are shown 

in table 6.6. In a similar fashion to that observed with SxS6c, BQ-788 caused a 

significant rightward shift in the CCRC to SxS6c in both control and chronic hypoxic 

rat vessels. As observed with SxS6c, BQ-788 did not effect the maximum contractile 

response achieved to ET-3 in either control or chronic hypoxic 
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Figure 6.8 

Effect of bosentan on responses to SxS6c in rat pulmonary resistance arteries. 
A. CCRC's to SxS6c in control vessels (0, n=8/ 8), SxS6c in the presence of 0.1 tLM 
bosentan (", n=4/ 4), and SxS6c in presence of I tM bosentan (A, n=5/ _5). 
B CCRC's to SxS6c in chronic hypoxic vessels (0, n=8/ 8), SxS6c in the presence 
of 0.1 µM bosentan (", n=4/ 4), and SxS6c in presence of I µM bosentan (A, n=5/ 
5). Data are expressed as percentage of reference contraction to 50 mM KCI in each 
vessel. Each point represents the mean ± SEM. 
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Figure 6.9. 

Effect of BQ-788 on responses to SxS6c in rat pulmonary resistance arteries. 

A. CCRC's to SxS6c in control vessels (0, n=8/ 8), SxS6c +1 µM BQ-788 (41, n= 

4/ 4). B CCRC's to SxS6c in chronic hypoxic vessels (0, n=8/ 8), SxS6c +I 4M 

BQ-788 (0, n=4/ 4). Data are expressed as percentage of reference contraction to 50 

mM KCl in each vessel. Each point represents the mean ± SEM. 
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Effect of BQ-788 on responses to ET-3 in rat pulmonary resistance arteries. 

A. CCRC's to ET-3 in control vessels (0, n=4/ 4), ET-3 +I µM BQ-788(9, n=3/ 

3). B CCRC's to ET-3 in chronic hypoxic vessels (0, n=4/ 4), ET-3 +t pM BQ- 

788 (0, n=3/ 3). Data are expressed as percentage of reference contraction to 50 mM 

KCl in each vessel. Each point represents the mean ± SEM. 
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preparations. The pKB values for BQ-788 against ET-3 are illustrated in table 6.7. 

pKB values for BQ-788 against ET-3 were found to be significantly less than values 

obtained for BQ-788 against SxS6c. 

CONTROL HYPOXIC 

ANTAGONIST KB n pKB n 

SB 209670 (0.1 µM) vs. ET-1 7.36 ± 0.04** 4 7.39 ± 0.03 ** 4 

SB 209670 (1 µM) vs. ET-1 6.91 ± 0.04 5 7.12 ± 0.04a 5 

Bosentan (1 i. M) vs. SxS6c 5.84 ± 0.13 5 6.11 ± 0.11 5 

BQ-788 (1 µM) vs. SxS6c 7.15 ± 0.04 4 7.22 ± 0.02 4 

BQ-788 (1 µM) vs. ET-3 6.68 ± 0.07tt 3 6.89 ± 0.17t 3 

Table 6.7 pKB values for antagonists. 
Statistical comparisons were made using Students unpaired t-test. **p < 0.01 SB 

209670 at 0.1 . tM vs. SB 209670 at 1 µM. ap < 0.01 control SB 209670 1 µM vs. 

chronic hypoxic SB 209670 1 µM. tp < 0.05, ttp < 0.01 BQ 788 (ET-3) vs. BQ 788 

(SxS6c). 

Responses to ET-1 ET-3 and SxS6c 

I had previously proposed in chapters 3 and 5 of this thesis that ETB receptors 

play an important role in ET-1-induced vasoconstriction in rat pulmonary resistance 

arteries, due to the greater potency of SxS6c over ET-1. In this chapter I have 

investigated this possibility further using selective and non-selective ET antagonists, 

against vasoconstrictor responses to ET-1, ET-3 and SxS6c. In both control and 

chronic hypoxic rat pulmonary resistance arteries, SxS6c is some ten-fold more potent 

than ET-1 in inducing vasoconstrictor responses. Control and chronic hypoxic rat 

pulmonary resistance arteries were also more sensitive to ET-3 than ET-1. Again, as 

previously reported in chapter 5, there was no difference in tissue sensitivity to ET-1 

and SxS6c between control and chronic hypoxic vessels. This was also found to be no 
difference in tissue sensitivity to ET-3 between control and chronic hypoxic 
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preparations. Maximum contractile responses to ET-1 and ET-3 were significantly 

increased in chronic hypoxic pulmonary resistance arteries compared to control 

preparations, whereas the maximum contractile response to SxS6c was unchanged. 

The shape of the response curve to ET-3 is biphasic in nature, following the 

time course of SxS6c at low concentrations (up to 0.3 nM), then verging toward the ET- 

1 curve at higher concentrations. This would suggest that ET-3 is may be acting on 

ETB receptors at lower concentrations, and at higher concentrations is acting on the 

ETA receptor subtype. If this was the case it would support the theory that increased 

vasoconstriction to ET-1 in chronic hypoxic pulmonary resistance arteries is mediated 

via the ETA receptor subtype, as the contractile response to ET-3 is significantly 

increased at higher concentrations of the peptide. The shape of the agonist response 

curves, and the relative potency of the peptides in these preparations would suggest a 

heterogeneous population of ET receptors. If there was a homogeneous population of 

"classical" ETB receptors, ET-1 and ET-3 would be expected to be equipotent. There 

are two possible explanations for the greater potency of ET-3 and SxS6c over ET-I . 

Firstly, it could be that there is a receptor present which shows selectivity for ET-3 over 

ET-1. Such a receptor has been cloned from Xenopus laevis dermal mellanophores and 

has been denoted ETC (Karne, et al., 1993). However a counterpart has yet to be 

cloned from a mammalian vascular preparation, although a receptor with similar 

pharmacological characteristics has been described in mammalian bronchial smooth 

muscle (Nally, et al., 1994). A second possible explanation for the relative potency of 

SxS6c, ET-3 and ET-1 in rat pulmonary resistance arteries could be the presence of an 

inhibitory receptor which ET-I activates. These possible explanations will be discussed 

in more detail later in this section. 

Antagonism of ET-I-induced vasoconstriction. 

In control pulmonary resistance arteries responses to ET-1 were insensitive to 

the actions of the ETA receptor antagonist FR 139317 (1 µM). The maximum 

contractile responses to ET-1 (from 30 nM to 300 nM) were however reduced in 
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chronic hypoxic pulmonary resistance arteries treated with FR 139317. The effect of 

the ETA antagonist reduced the contractile response to values similar to those exhibited 

in control preparations, and occurred without altering tissue sensitivity to ET-1. This 

would support my previous assumption that increased vasoconstriction to ET-1 in 

chronic hypoxic rat pulmonary resistance arteries is mediated via activation of ETA 

receptors. The non peptide ETA receptor antagonist BMS 182874 (1 µM) caused a 

significant increase in the tissue sensitivity to ET-1 in control preparations. This could 

suggest the presence of an inhibitory ETA-like receptor in control pulmonary resistance 

arteries which can be blocked by the actions of BMS 182874 (1 µM). A similar 

inhibitory effect to the situation observed here has been demonstrated in the rat fundus, 

where responses to ET-1 are potentiated in the presence the ETA selective antagonist 

BQ-123 (Gray & Clozel, 1994). It has also been demonstrated that low doses of BQ- 

123 potentiate the pulmonary vasoconstrictor response to ET-1 in the isolated perfused 

lung preparation taken from control rats (Lal, et al., 1995a). In chronic hypoxic rat 

pulmonary resistance arteries, BMS 182874 had no effect on the responses to ET-1. 

This suggests either that the influence of the putative inhibitory ETA-like receptor is 

absent in chronic hypoxic rats, or that it has decreased, given that the presence of a 

population of inhibitory ETA-like receptors may mask the effects of ETA antagonists on 

the contractile responses to ET-1. If the actions of a putative inhibitory ETA-like 

receptor were reduced in chronic hypoxic pulmonary resistance arteries an increase in 

sensitivity and / or the maximum contractile response to ET-I in chronic hypoxic 

preparations would be expected. The increase in tissue sensitivity to ET-1 is not 

observed in chronic hypoxic vessels however we do observe an increase in the 

maximum contractile response to ET-1. As explained in chapter 5 this increase in the 

contractile response ET-1 is unlikely to be solely due to increased smooth muscle due 

to pulmonary vascular remodelling, and may in part be the effect of decreased influence 

of an inhibitory ETA-like receptor. 

In rabbit pulmonary arteries ETB receptors predominate (LaDouceur, et al., 

1993). However, it has been shown that a small population of ETA receptors is also 
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present and that responses to ET-1 can only be inhibited by blocking both the ETA and 

ETB receptor sites (Fukuroda, ei al., 1994b). In order to investigate if such a 

synergistic phenomenon exists in rat pulmonary resistance arteries, I studied the effects 

of the non-peptide mixed ETA / ETB receptor antagonist bosentan and SB 209670. I 

also investigated the effects of the ETB antagonist BQ-788 alone, and combined with 

the ETA receptor antagonist BMS 182874. As 1 µM BMS 182874 caused a 

potentiating effect on the response to ET-1 it was decided to increase the concentration 

of this antagonist to 10 µM. In the presence of bosentan (1 µM) I again observed a 

significant increase in tissue sensitivity to ET-1 in control rat pulmonary resistance 

arteries. This supports the suggestion that ET-1 is acting on an inhibitory receptor 

subtype and that bosentan as well as BMS 182874 can actively block this receptor site. 

As with BMS 182874, this effect of bosentan was not observed in chronic hypoxic rat 

pulmonary resistance arteries. Upon increasing the concentration of bosentan to 10 

µM, it was found that the leftward shift in the ET-1 response observed at I µM 

bosentan in control vessels did not occur, and that the lower portion of the curve was 

now significantly shifted to the right. Higher concentrations of the ET-1 CCRC in 

control pulmonary resistance arteries were not effected by 10 p. M bosentan. In chronic 

hypoxic vessels, 10 µM bosentan caused a significant rightward shift in the response to 

ET-1, and also significantly decreased the maximum contractile response to ET-1 in 

these preparations. In a similar fashion to the ETA receptor antagonist FR 139317, the 

contractile responses to ET-1 in chronic hypoxic vessels was reduced by bosentan (1 

µM) to values similar to those seen in control preparations. 

The selective ETB antagonist BQ-788 alone had no effect on responses to ET-I 

in either control or chronic hypoxic pulmonary resistance arteries. In control rat 

pulmonary resistance arteries the combination of BMS 182874 and BQ-788 had a slight 

but non significant rightward shift at low concentrations of ET-1, though the 

potentiating effect of BMS 182874 was not observed when present at 10 pM combined 

with BQ-788. In the chronic hypoxic rat pulmonary resistance arteries, responses to 
ET-1 were significantly shifted in the presence of the combination of BMS 182874 and 
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BQ-788, however the maximum contractile response was not effected. If, as proposed, 

the influence of an inhibitory ETA receptor is less in the chronic hypoxic rats, the 

presence of BMS 182874 would facilitate the ability of BQ-788 to inhibit these 

responses as is shown in these studies. Indeed comparable results are observed between 

the actions of the mixed receptor antagonist bosentan, and the combination of the 

effects of BMS 182874 and BQ-788, in that the responses to ET-1 in control 

preparations show greater resistance to the action of ETA / ETB receptor blockade. 

The final antagonist studied against ET-1 induced vasoconstriction was the non- 

peptide mixed receptor antagonist SB 209670. This antagonist produced concentration 

dependent antagonism in the response curved to ET-1 in both control and chronic 

hypoxic rat pulmonary resistance arteries. Unlike the actions of I µM bosentan in 

control pulmonary arteries, SB 209670 did not produce any potentiation of the ET-1 

response at any of the concentrations tested. This may be due to the relative potency of 

the antagonists, with SB 209670 being more potent than bosentan at ETA and ETB 

receptors. The pKB values obtained for this antagonist were significantly greater at 0.1 

µM compared to I p. M. This difference may be due to the fact that the maximum 

contractile response to ET-1 is significantly reduced control preparations with the 

antagonist present at I µM, and in chronic hypoxic preparations at both 0.1 and I µM 

concentrations of SB 209670. The shape of the response curves suggests that if it were 

possible to further increase the concentration of ET-1 in the bathing solution, then 

control values for contractile responses may be reached. This may cause a decrease in 

the estimated pKB value for 1 pM SB 209670 in control and chronic hypoxic 

preparations. The calculated pA2 values for SB 209670 was significantly greater in 

control than in chronic hypoxic preparations, however Schild regression yielded a 

shallow slope for SB 209670 in control vessels indicating non-competitive antagonism. 

The slope of the Schild plot for this antagonist in chronic hypoxic vessels was not 

significantly different from unity, indicating that SB 209670 is acting in a competitive 

manner. The non-competitive interactions of SB 209670 in control preparations cannot 

be attributed ET-1 / receptor kinetics (see section 2.4.3) as competitive interaction is 
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observed in chronic hypoxic preparations. Non-competitive interactions may suggest 

receptor heterogeneity, however, as SB 209670 is a mixed antagonist of both ETA and 

ETB receptors we would therefore expect the antagonist to act in a competitive manner. 

This anomaly could be explained by the presence of the aforementioned putative 

inhibitory ETA-like receptor, which would interfere with SB 209670 antagonism in 

control preparations but not chronic hypoxic preparations. The estimated pA2 and pKB 

values for SB 209670 are comparable with values of 6.7 obtained in the rabbit 

pulmonary artery (predominantly ETB receptors) (Ohlstein, et al., 1994). 

Antagonism of ET-3 and SxS6c responses. 

It has been previously suggested in this discussion that one of the reasons for the 

relatively potency of SxS6c and ET-3 over ET-1 may be the presence of a receptor 

which is selective for these peptides over ET-1. Responses to SxS6c in both control 

and chronic hypoxic preparations were antagonised by the mixed receptor antagonist 

bosentan, and both SxS6c and ET-3 are antagonised by BQ-788. This would suggest 

that SxS6c and ET-3 are acting at ETB receptor subtypes, rather than a non ETA / ETB 

receptor. The pKB values for bosentan against SxS6c were similar in control and 

chronic hypoxic preparations and comparable to pA2 values of 5.9 described for SxS6c 

in the rat trachea (Clozel, et al., 1994). The pKB values for BQ-788 against SxS6c in 

control and chronic hypoxic pulmonary resistance arteries were also similar to the pA2 

value of 8.2 described for BQ-788 vs. BQ-3020 in the rabbit isolated pulmonary artery 

(Ishikawa, et al., 1994). BQ-788 exhibited a significantly lower pKg value against ET- 

3 than against SxS6c in both control and chronic hypoxic rat pulmonary resistance 

arteries. The fact that ET-3 would be acting on both ETB and ETA receptor subtypes 

may explain this difference. The results from SxS6c and ET-3 would suggest a 

functional population of ETB receptors being present in both control and chronic 

hypoxic rat pulmonary resistance arteries. 

There is evidence to suggest that ETB receptors are present in rat pulmonary 

resistance arteries, although the relative size of the ETB receptor population varies 
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between authors and may depend on the preparation being studied. In 1993 Bonvallet, 

et al., reported that the ETA receptor antagonist BQ-123 was much more effective in 

larger pulmonary arteries than small diameter pulmonary arteries. Contractile 

responses to ET-3 were also observed to be greater in small pulmonary artery 

preparations in comparison to larger diameter vessels. The ETB receptor agonists 

SxS6c, ET-3 and IRL 1620 have also been shown to cause increases in pulmonary 

perfusion pressures in isolated perfused rat lung preparations, and vascular responses to 

SxS6c were resistant to the actions of the ETA receptor antagonist BQ-123 (Lai, et al., 

1995b; Uhlig, et al., 1995). Results from retrograde perfusion of isolated perfused 

lung of the rat also suggested that the majority of ETB receptors in the rat pulmonary 

circulation appear to be located on the arterial rather than venous side (Lai, et al., 

1995b). There is also evidence to suggest the presence of a significant population of 

ETB receptors in pulmonary hypertensive rat lungs. In isolated perfused lungs of 

chronic hypoxic rats vasoconstriction to ET-1 is significantly attenuated by the ETA 

receptor antagonist BQ-123, but are almost completely abolished by treatment with 

bosentan (Eddahibi, et al., 1995). 

One of the most interesting observations in this study is the relative resistance of 

ET-1-mediated vasoconstriction to the actions of selective ETA and selective ETB 

antagonists. In a preparation with both contractile ETA and ETB receptor populations it 

would be expected that at least part of the response curve would be effected by the 

action of a selective ETA or selective ETB receptor antagonist. Partial antagonism of 

ET-1 mediated contraction with ETA antagonists has been demonstrated in the rabbit 

pulmonary artery (LaDouceur, et al., 1993; Fukuroda, et al., 1994b) and pig pulmonary 

vein (Sudjarwo, et al., 1993). In this present study it would appear that during blockade 

of the ETA receptor alone, ET-1 can still mediate almost identical vasoconstrictor 

actions through activation of the ETB receptor, and vice versa. To produce any 

substantial antagonism to ET-1 in these preparations required blockade of both the ETA 

and the ETB receptor site. 
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The possible use of ET antagonists in the treatment of pulmonary hypertension 

has been investigated in various animal models. The ETA receptor antagonist BQ-123 

(infusion 0.15 mg / hour by osmotic minipump) attenuates pulmonary hypertension in 

rats exposed to chronic hypoxia, decreasing pulmonary artery pressure, right ventricular 

hypertrophy and remodelling of small diameter arterial peripheral lung vessels when 

compared to saline treated animals (Bonvallet, et al., 1994). However treatment with 

the ETA receptor antagonist did not completely prevent the development of pulmonary 

hypertension, and animals treated with the ETA receptor antagonist still exhibited some 

degree of pulmonary hypertension and vascular remodelling. More effective actions of 

BQ-123 in both preventing and reversing established pulmonary hypertension were 

observed by DiCarlo, et al., (1995). In this study, administration of 0.4 mg / hour of 

BQ-123 completely prevented the development of hypoxic pulmonary hypertension in 

the rat, with treated hypoxic animals displaying pulmonary artery pressure, ventricular 

ratios and pulmonary arteriolar structure similar to normoxic control animals. In rats 

with established pulmonary hypertension, BQ-123 significantly decreased pulmonary 

artery pressure and prevented further increases in right ventricular hypertrophy in the 

continued presence of hypoxic environment. Non-peptide ET receptor antagonists have 

advantages as therapeutic targets as they are orally active. Chronic oral administration 

of bosentan also (100 mg / kg / day) attenuates the development of chronic hypoxic 

pulmonary hypertension in rats, but in a similar fashion to treatment with the ETA 

receptor antagonist, pulmonary artery pressure, right ventricular hypertrophy and 

vascular remodelling were still significantly greater in bosentan treated animals when 

compared with controls (Eddahibi, et al., 1995). Chen et al (1995) also looked at the 

effects of the antagonists on animals with established pulmonary hypertension. The 

results from this study showed that treatment with bosentan (100 mg / kg / day) 

completely prevented the development of hypoxic pulmonary hypertension in rats, as 

compared to only attenuation of response in the previously mentioned study. Oral 

administration of the mixed antagonist to animals with established hypoxic pulmonary 

hypertension significantly decreased pulmonary artery pressure and induced regression 
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of pulmonary vascular remodelling even in continued exposure to hypoxic 

environment. ET-1 has also been shown to stimulate collagen production in pulmonary 

vascular smooth muscle cells suggesting a role for ET-1 in stimulating matrix 

deposition in pulmonary hypertension (Mansoor, et al., 1995). These results all suggest 

an important role for endogenous ET-1 in not only the establishment but also the 

maintenance of hypoxic pulmonary hypertension, and may indicate that ET receptor 

blockade may prove to be useful in the treatment of hypoxic pulmonary hypertension in 

humans. 

In conclusion, the results of this study indicate that typical ETA-receptor 

interactions do not account for the vasoconstrictor effects of ET-1 in rat pulmonary 

resistance arteries. The results suggest that both control and chronic hypoxic 

pulmonary resistance arteries contain ETA and ETB receptors mediating 

vasoconstriction with the presence of a putative inhibitory ETA receptor in control 

pulmonary resistance arteries. The presence of ET-1 activated inhibitory ETA receptors 

may mask any inhibitory effects of ETA- and ETB- receptor antagonists on responses to 

ET-1. The possibility that ET-1 is acting at a non ETA / non ETB receptor resistant to 

the effects of the ETA and ETB antagonists used cannot, however, be ruled out. The 

development of pulmonary hypertension is these rats was associated with an increase in 

the maximum response to ET-1 which may be in part due to a reduction of the influence 

of inhibitory ETA-receptors, and an increased influence of vasoconstrictor ETA 

receptors. Effective antagonism of ET-1 mediated responses in rat pulmonary 

resistance arteries requires dual blockade of both ETA and ETB receptor subtypes. 
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Chapter 7 

Endothelin Receptors Subtypes in 
Human Pulmonary Arteries 
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7.1 Introduction 

There is growing evidence that ET's may be involved in the pathogenesis of 

human forms of pulmonary hypertension. Significantly increased plasma ET-1 levels 

above the normal range have been observed in patients with primary pulmonary 

hypertension (Stewart, et al., 1991) and secondary pulmonary hypertension due to 

chronic congestive heart failure and congenital heart defects (Cody, et al., 1992; 

Yoshibayashi, et al., 1991). Cody, et al., (1992) also showed that the plasma levels of 

ET-1 were well correlated with the degree of pulmonary hypertension observed and 

with the prognosis of the patient. High levels of ET-1, and ET-1 mRNA are present in 

the vascular endothelial cells of patients with primary and secondary pulmonary 

hypertension (Giaid, et al., 1993). 

Evidence also indicates that inspired 02 concentration can influence circulating 

plasma levels of ET-1. Patients exposed to low inspired 02 concentrations due to 

COPD, or due to exposure to high altitude exhibit increased levels of circulating ET-1, 

which are inversely related to arterial P02 and positively correlated with pulmonary 

artery pressure (Ferri, et al., 1995; Goerre, et al., 1995; Morganti, et al., 1995). It was 

also demonstrated that administration of 35 % 02 at high altitude normalised arterial 

P02, tended to decrease ET-1 levels and decreased pulmonary artery pressure 

accordingly (Goerre, et al., 1995). All this evidence suggests strong links between 

hypoxia, pulmonary hypertension and ET-1 levels. Indeed hypoxia has been shown to 

induce ET-1 gene expression and increase ET-1 secretion 8-fold in cultured human 

endothelial cells (Kourembanas, et al., 1991). ET-1 may also play a role in pulmonary 

vascular remodelling due to its proliferative effect on pulmonary vascular smooth 

muscle cells (Janakidevi, et al., 1992; Hassoun, et al., 1992; Peacock, et al., 1992). 

The proliferative effects of ET-1 in human pulmonary vascular smooth muscle cells are 

inhibited by the actions of BQ-123 therefore suggesting ETA receptors mediate this 

response (Zamora, et al., 1993). 

With the implication of ET-1 in the aetiology of pulmonary hypertension, 

targeting the production and actions of ET-1 in the pulmonary circulation may provide 
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a novel therapy. If control of the actions of ET-1 turns out to be a viable therapeutic 

strategy for pulmonary hypertension, it is of importance to characterise the receptors 

mediating the actions of ET's in the pulmonary vasculature. Various techniques have 

been utilised to identify ET receptors in human pulmonary arteries including : reverse 

transcriptase-polymerase chain reaction, in situ hybridisation, autoradiography and in 

vitro functional studies; and as a whole these results would suggest that ET-1 induced 

vasoconstriction in the human pulmonary artery was mediated exclusively via the ETA- 

receptor subtype (Davenport, et al., 1993; McKay, et al., 1991a, b; Buchan, et al., 

1994; Hay, et al., 1993). However, Davenport, et al ., 
(1993,1995) have also 

demonstrated that ETB receptors are expressed in media of human isolated 

intrapulmonary arteries. 

I have previously demonstrated that the receptor subtype mediating ET-1 

induced vasoconstriction in isolated pulmonary arteries of the rat varies depending on 

the size and or location of the artery under study (chapter 3 this thesis), with a 

predominant population of ETB receptors located in the pulmonary resistance arteries. 

The majority of these aforementioned studies in human vessels were carried out on 

large diameter pulmonary arteries (average 3-5 mm i. d. ), the smallest diameter 

pulmonary artery used in functional; studies being approximately 1 mm (Fukuroda, et 

al., 1994a). Therefore, I wished to examine and compare responses to ET's in small 

intrapulmonary resistance arteries with the larger diameter intrapulmonary arteries from 

the human lung. 

Human pulmonary arteries of the two sizes under study (3-5 mm i. d and -200 

µm i. d. ) were dissected and set up according to the procedures shown in methods 

section (see chapter 2). Great care was taken when mounting preparations, to assure 

that the vascular endothelium was not damaged. Large calibre pulmonary arteries were 

placed under 1.5g initial tension (optimal tension, personal observation data not 

shown), and pulmonary resistance arteries were normalised to give an equivalent 
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transmural pressure of -16 mmHg. All vessels were bubbled with 16 % 02,5% C02, 

balance N2. After 1 hour equilibration period the vessels were stimulated with 

application of 50 mM KCI. Following this vessels were washed out three times with 

fresh Krebs solution and allowed to return to baseline tension. The vessels were then 

again contracted with a second challenge 50 mM KCI. Following washout and return 

to baseline tension the vessels were subjected to the following protocols. 

A) 45 minute equilibration period followed by CCRC (0.01 pM to 0.3 µM) to either 

ET-1, ET-3 or SxS6c. 

B) 45 minute incubation with one concentration of selected antagonist (listed below) 

followed by CCRC to selected agonist. 

Due to the unfortunate rarity of human tissue samples it was not possible to 

complete all of the chosen studies in the different sized arterial preparations. The 

experiments carried out in each of the artery preparations is listed in table 7.1. 

A onist / Antagonist Large Pulmonary Artery Small Pulmonary artery 

Endothelin-1 � � 

Endothelin-3 � � 

Sarafotoxin S6c � � 

SxS6c + FR 139317 X � (at I µM) 

ET-1 + FR 139317 � (at 0.1 - 10 µM) � (at I and 10 µM) 

ET-1 + BM S 182874 � (at 1 µM) � (at 10 µM) 

ET-1 + bosentan � (at 0.1 and 1 µM) x 

ET-3 + BQ-788 X � (at 1 µM) 
Table 7.1 

Summary of experimental procedures performed. 
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Note. 

Control responses to ET-1 were carried out, whenever possible, in each tissue 

sample. However, due to the size of the tissue samples and the availability of 

equipment, it was not always possible to run a control ET-1 CCRC when studying 

different antagonists. Therefore the data for ET-1 CCRC and data for antagonists have 

been "pooled" over many samples. It must be noted that in large human intrapulmonary 

arteries, there are two stated average data for ET-1 in control conditions. The data in 

table 7.3 for ET-1 ± FR 139317 was the first study to be carried out and completed. 

The data in table 7.2 for ET-1 (± antagonists) and ET-3 was carried out at a later stage, 

and the control ET-1 data has been obtained from the same lung samples which were 

used for the antagonist studies. There was no significant difference found between the 

two ET-1 control data stated. As it is only possible to study a maximum of two vessels 

per myograph apparatus, collection of data is a much slower process therefore data has 

been "pooled" over all samples studied. 

Data Analysis. 

Results are expressed graphically as percentage of reference contraction to the 

second application of 50 mM KCI, or as percentage of own maximal contraction. The 

pEC50 values, pEC75, or pEC8o values (where appropriate) were calculated according 

to the methods stated in chapter 2. Statistical comparisons of the means of groups of 

data were made by Students t-test for paired or unpaired data; p<0.05 was considered 

statistically significant. Where appropriate, pKB values for the antagonist were 

calculated as shown in methods section (chapter 2). 

Z. 3 Results. 

50 mM KCl-induced contraction were 570 ± 77 mg wt tension in human large 

diameter intrapulmonary arteries (n = 12 / 10). Contractile responses to ET-1, and ET-3 

are demonstrated in figure 7.1. A summary of pEC50 values are shown in table 7.2. 
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Figure7_1 

Responses to ET-1 and ET-3 in human large calibre intrapulmonary arteries. 

CCRC's to ET-1 (0, n=7/ 7) and ET-3 (", n=4/ 3) in human large pulmonary 

arteries. A. Expressed as percentage of reference contraction to 50 mM KC1 and B. 

Expressed as percentage of own maximum contraction. Each point represents the mean 

± SEM. Statistical comparisons were made using Students unpaired t-test. *p < 0.05. 
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Group ECSo value n/n 

ET-1 Control 8.24 ± 0.11 7/7 

ET-3 Control 8.30 ± 0.11 4/3 

ET-1 +I µM BMS 182874 7.01 ± 0.24*** 5/4 

ET-1 + 0.1 µM bosentan 7.88 ± 0.17* 6/3 

ET- 7.53 ± 0.14** 6/3 

Table 7.2. 

pEC50 values for ET-3 and ET-1 ± antagonists in human large calibre pulmonary 

arteries. Data are expressed as mean ± SEM. n/n = number of preparations from 

number of lungs. Statistical comparisons were made using Students unpaired t-test *p 

< 0.05, 'k*p < 0.01, ***p < 0.001 vs. ET-1 control. 

Group pEC50 value n/n 

ET-1 control 8.07 ± 0.15 11/9 

ET-1+0.1 µMFR139317 7.88±0.17 7/7 

ET-1+IµMFR139317 7.31±0.19** 12/10 

ET-1 + 10 µM FR 139317 abolished response 3/2 

Tae 3 

pEC50 values for ET-1 (± FR139317) in human large calibre pulmonary arteries. 

Data are expressed as mean ± SEM. n/n= number of preparations from number of 

lungs. Statistical comparisons were made using Students unpaired t-test. **p < 0.01 

vs. ET-1 control. 
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ET-1 produced potent, well sustained, concentration dependent contractions in human 

large pulmonary arteries reaching a maximum contraction of 172 ± 31 % of the 50 mM 

KCl response. ET-3 was equipotent with ET-1 in this preparation (see figure 7.1. B and 

table 7.2), however ET-3 produced a maximum contraction of only 70 ± 25 % of the 50 

mM KCl response. The selective ETB receptor agonist SxS6c was inactive in human 

large diameter pulmonary arteries (n =4/3, data not shown on graph). 

Incubation with antagonists had no effect on vascular tone in human large 

diameter intrapulmonary arteries. The effect of the selective ETA receptor antagonist 

FR 139317 on ET-1 induced responses is shown in figure 7.2. pEC50 values are shown 

in table 7.3. When present at 0.1 µM, FR 139317 had no effect on the contractile 

responses to ET-1, whereas 1 p. M FR 139317 caused a significant rightward shift of the 

ET-1 response curve. FR 139317 (1 µM) appears to cause a greater shift at the higher 

concentrations of ET-1 (pEC75 for ET-1 control was 7.35 ± 0.2, and in the presence of 

FR 139317 (1 µM), 6.63 ± 0.15; **p < 0.01), but proved not to be significantly greater 

than the shift at the pEC50 level. FR 139317 at 0.1 and 1 µM did not affect the 

maximum contractile response to ET-1 in this preparation (see figure 7.2. A). When 

present at 10 µM, FR 139137 completely abolished contractile responses to ET-1 (n =3 

/ 2, data not shown on graph). 

The selective ETA receptor antagonist BMS 182874 (present at I µM) caused a 

parallel rightward shift in the CCRC to ET-1 without affecting the maximum 

contraction to the peptide (shown in figures 7.3. A and B). The pEC50 values in the 

presence and absence of antagonist are given in table 7.2. The pKB values for all the 

antagonists studied are shown in table 7.5. When present at both 0.1 and I µM, the 

mixed ETA / ETB receptor antagonist bosentan caused a significant rightward shift in 

the response curves to ET-1 (see figures 7.4. A and B, and table 7.2) without effecting 

the maximum contraction to the agonist. Bosentan appeared to be acting in a non- 

concentration dependent fashion, showing a similar degree of shift at both 0.1 and I 

p. M. This non concentration dependent effect is reflected in the apparent pKg values 
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(shown in table 7.5), with the pKB value at 0.1 p. M being significantly greater than at I 

µM. 

Pulmonary resistance arteries. 

The average internal diameter of pulmonary resistance arteries mounted on the 

myograph was 188 ±9 tm at an average transmural pressure of 16.3 ± 0.7 mmHg (n = 

12 preparations). 50 mM KCl-induced contractions were 113 ± 10 mg wt tension (n = 

12 / 10). Figure 7.5 illustrates responses to ET-1, ET-3 and SxS6c in human pulmonary 

resistance arteries. Data for pEC5o values are summarise in table 7.4. The response to 

ET-1 comprises two components, one being a gradual slope up to 0.3 nM and the 

second a steeper component at higher concentrations. Responses to ET-1 were 

equipotent in large calibre pulmonary arteries and pulmonary resistance arteries. ET-3 

was approximately five times more potent than ET-1 in this preparation (see figure 

7.5. B and table 7.4) but produced a maximum contraction of only 65 ±9% of the 

reference contraction to 50 mM KCl (***p < 0.001 vs. ET-1 control, Students unpaired 

t-test). Pulmonary resistance arteries demonstrated approximately five times greater 

sensitivity to ET-3 than the larger calibre pulmonary arteries (pEC50 values for ET-3 in 

pulmonary resistance arteries were 9.05 ± 0.19, and in large calibre pulmonary artery 

values were 8.30 ± 0.11; *p < 0.05, Students unpaired t-test). The selective ETB 

agonist SxS6c produced concentration dependent contractions in human pulmonary 

resistance arteries of greater potency than ET-1, and ET-3 (see figure 7.5. B and table 

7.4), which were completely resistant to the actions of the ETA receptor antagonist FR 

139317 (not shown on graph, pEC50 values for SxS6c control were 10.65 ± 0.27 n= 10 

/ 6, and in the presence of FR 139317 1 p. M pEC50 values were 10.55 ± 0.25 n=3/3 

). However in a similar fashion to ET-3, SxS6c produced a maximum contraction of 

only 67 ± 19 %o KCl response (***p < 0.001 vs. ET-1 control, Students, unpaired t-test). 

Incubation with antagonists at all concentrations studied had no effect on resting 

vascular tone. Figure 7.6 shows the effect of the ETA receptor antagonist FR 139317 

on responses to ET-1 in human pulmonary resistance arteries. From this figure and 
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Responses to ET-1 (0, n= 12 / 10); ET-3 (40, n= 10 / 10) and SxS6c (p, n= 10 / 6) 

in human pulmonary resistance arteries. A. Expressed as percentage of reference 

contraction to 50 mM KCI. B. Expressed as percentage of own maximum contraction. 

Each point represents the mean ± SEM. Statistical comparisons were made using 

Students unpaired t-test. **p < 0.01, ***p < 0.001. 
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Group pEC50 value n/n 

ET-1 control 8.32 ± 0.08 12 / 10 

SxS6c Control 10.65 ± 0.27*** (lii') 10/6 

ET-1 +I pM FR1 39317 7.98 ± 0.30 8/6 

ET-1+ 10 µMFR139317 8.80 ± 0.21 4/4 

ET-1 + 10 µM BMS 182874 8.20 ± 0.26 8/5 

ET-3 control 9.05 ± 0.19** 10 / 10 

ET-3 +I µM BQ-788 7.43 ± 0.13ttt 7/5 

Table 7.4. 

pEC50 values for peptides (± antagonists) in human pulmonary resistance arteries. Data 

are expressed as mean ± SEM. n/n= number of preparations from number of lungs. 

Statistical comparisons were made by Students unpaired t-test. **p < 0.01, ***p < 
0.001 vs. ETI control. Mp < 0.001 vs. ET-3 control. 

Antagonist Large PA PRA pKB value n 

FR 139317 (1 µM) � X 6.59 ± 0.24 11 

BMS 182874 (1 µM) � X 7.30 ± 0.18 5 

Bosentan (0.1 µM) � X 7.43 ± 0.15 6 

Bosentan (1 µM) � X 6.62 f 0.30* 6 

BQ788 (1 µM) X � 7.72 t 0.22 7 
Table 7.5. 
Estimated pKB values for antagonist in human pulmonary arteries. Large calibre 
pulmonary arteries (large PA) and pulmonary resistance arteries (PRA). All antagonist 
values are calculated against ET-1 CCRC with the exception of BQ-788 which is 
calculated against ET-3. *p < 0.05 bosentan 0.1 pM vs. I µM. 
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Figure 7.7. 

Effect of BMS 182874 on responses to ET-1 in human pulmonary resistance arteries. 
ET-1 control (0, n= 12 / 10) and ET-1 + 10 tM BMS 182874 (0, n=8/ 5). A. 
Expressed as percentage of reference contraction to 50 mM KCI. B. Expressed as 
percentage of own maximum contraction. Each point represents the mean ± SEM. 
Statistical comparisons were made using Students unpaired t-test. *p < 0.05. 

235 

-14 -12 -10 -8 -6 

-14 -12 -10 -8 -G 



A 

,' 80 

60 

ý., 40 

ii 

20 

0 

B 
log M [Endothelin-31 

100 

E 
go 

8 

60 

40 
ii 

20 
9 

0 

log M [Endothelin-3] 

Ejgur, e 7.8. 

Effect of BQ-788 on responses to ET-3 in human pulmonary resistance arteries. ET-3 

control (0, n= 10 / 10), and ET-3 +1p. M BQ-788 (", n=7/ 5). A. Expressed as 

percentage of reference contraction to 50 mM KCI. B. Expressed as percentage of own 

maximum contraction. Each point represents mean ± SEM. 

236 

-14 -12 -10 -8 -6 

-14 -12 -10 -8 -6 



table 7.4 it can be seen that FR 139317 did not antagonise responses to ET-1 when 

present at I p. M. However when present at 10 µM the antagonist causes a significant 

decrease in the maximal response to ET-1 at 30 nM and 0.1 µM, without effecting the 

tissue sensitivity to ET-1 (see figure 7.6. A). The effect of BMS 182874 (selective ETA 

receptor antagonist, I µM) is shown in figure 7.7 and table 7.4. This antagonist 

appeared to cause a slight rightward shift at the higher concentrations of ET-1, but this 

proved to be just insignificant (pEC75 value for ET-1 was 7.55 ± 0.19, and in the 

presence of BMS 182874 was 7.04 ± 0.05, p=0.07). However BMS 182874 did cause 

a significant decrease in the absolute contractile response to ET-1 in the range of 10 nM 

to 0.1 µM. 

Figure 7.8 shows responses to ET-3 in the absence and presence of I µM BQ- 

788 (selective ETB receptor antagonist) in human pulmonary resistance arteries. From 

this figure and table 7.4 it can be seen that BQ-788 caused a rightward shift in the 

response curves to ET-3 in human pulmonary resistance arteries, without affecting the 

maximal contractile response to the peptide. The pKB value for BQ-788 in this 

preparation is shown in table 7.5. 

Large calibre intrapulmonary artery 

ET-1 produced contractile responses in the human large calibre intrapulmonary 

artery with a potency similar to that described previously (McKay, et al., 1991; Hay, 

el al., 1993; Buchan et al., 1994). ET-3 also produced contractile responses in these 

preparations of equal potency to ET-1, however the maximum response to this peptide 

was only 35 % of that achieved to ET-1. The fact that ET-1 and ET-3 were equipotent 

in this preparation would initially indicate the presence of a population of ETB 

receptors. However, the selective ETB receptor agonist SxS6c was completely inactive 

in all large pulmonary arterial preparations tested, therefore suggesting the absence of 

vascular ETB receptors mediating vasoconstriction in human large calibre pulmonary 

arteries. This would imply that ET-3 is therefore acting either as a partial agonist at the 
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same receptor as ET-1, or mediating responses via a separate receptor subtype. Further 

experiments are required to clarify this situation. 

In accordance to results from previous studies the contractile response to ET-1 

were antagonised by blocking the ETA receptor. In this study FR 139317 and BMS 

182874 significantly antagonised the ET-1 response curve with apparent pKB values (at 

1 µM) of 6.59 and 7.30 respectively. Although BMS 182874 (1 µM) appears to be 

more effective than FR 139317 (1 µM) in attenuating the ET-1 response, there was no 

significant difference observed in the apparent pKB values for the antagonists. When 

present at 10 µM, FR 139317 completely abolished the response to ET-1 human 

pulmonary arteries tested. The nature of the antagonism produced by FR 139317 

prevents full Schild analysis from being carried out, however it would appear to be 

acting in a non-competitive dependent manner. As discussed in previous chapters this 

apparent non-competitive effect of ET antagonists has been observed in a variety of 

preparations; for example the ETA receptor antagonist BQ-123 showed non- 

competitive antagonist action in cell based assay systems (Hiley, et al., 1992; Vigne, et 

al., 1993), and also in human small omental venules (Riezebos, et al., 1994) and human 

pulmonary artery (Buchan, et al., 1994). 

One of the reasons for non-competitive antagonism in this vessel preparation 

may be due to receptor heterogeneity. It is possible that ET-1-induced contractions of 

the human pulmonary artery may be mediated predominantly via the activation of ETA 

receptors, but there also may be accompanying simultaneous activation of a small and 

variable population of non-ETA receptors. Indeed the fact that contractile responses to 

ET-3 in the human pulmonary artery are observed may indicate an additional receptor 

subtype being present. This is unlikely to be a classical ETB receptor due to the lack of 

activity of the selective ETB agonist SxS6c. I also observe a non-concentration 

dependent effect of the mixed ETA / ETB receptor antagonist bosentan, in human 

pulmonary arteries. There has been suggestion of the presence of a non-ETA, non-ETB 

receptor in human saphenous vein (Bax, et al., 1993), human umbilical artery 
(Bodelsson and Stjernquist, 1993) and human coronary artery (Godfraind, 1993). 
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However, this apparent heterogeneous receptor population in the human large 

intrapulmonary artery may be simply due to the almost irreversible binding of ET's to 

their receptors (Marsault, et al., 1991), and as mentioned previously this suggests that 

classical analysis of agonist / antagonist interactions may not hold for ET's. Further 

experiments using the more potent receptor antagonists on responses to ET-1 and ET-3 

may help to elucidate the receptor population in human large calibre intrapulmonary 

arteries. 

Pulmonarv resistance arteries. 

It can be seen that the response curve to ET-1 in human pulmonary resistance 

arteries appears biphasic in nature, which would immediately suggest a heterogeneous 

population of ET-receptors. That ET-1 induced vasoconstriction is not mediated 

entirely by a typical ETA-receptor in human pulmonary resistance arteries is suggested 

by its resistance to both of the ETA-receptor antagonist studied. However although the 

antagonists did not competitively shift the ET-1- induced response, both FR 139317 (10 

µM) and BMS 182874 (1 µM) significantly decreased the contractile response to high 

concentrations ET-1. This would suggest that ET-1 may be acting at ETA receptors at 

high concentrations, but at another receptor at low concentrations. 

The selective ETB receptor agonist SxS6c produced extremely potent contractile 

responses over 200 fold greater than ET-1 in human pulmonary resistance arteries, 

which were resistant to the actions of the ETA receptor antagonist FR 139317. The 

maximum contraction achieved to SxS6c was however only 35 % of that achieved to 

ET-1. Concentration dependent contractile responses were also observed to ET-3. This 

peptide proved to be less potent that SxS6c but 5 fold more potent than ET-1. In a 

similar fashion to the responses to SxS6c, the maximum contraction to ET-3 was only 

some 35 % of the maximum response to ET-1 in this preparation. The results also 

show that the ET-3 CCRC follows a similar time course of the first component of the 

CCRC to ET-1. The fact that ET-3 is more potent than ET-1 in this vessel preparation 

suggests the presence of a receptor other than the ETB subtype. If ET-3 was acting at a 
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"classical" ETB receptor subtype ET-1 and ET-3 would be expected to be equipotent, 

which is not the situation in pulmonary resistance arteries. As mentioned previously a 

non-ETA, non-ETB receptor has been described in human vasculature, and this could 

offer an alternative explanation for my results. The relative potency of ET-3 over ET-1 

in human pulmonary resistance arteries may suggest the presence of an ETC-like 

receptor (see section 1.2.5.4) however as a mammalian vascular counterpart this 

receptor has yet to be identified this explanation appears unlikely. The ETB receptor 

antagonist BQ-788 antagonised the contractile responses to ET-3 in this preparation 

suggesting that ET-3 is mediating its response via ETB receptors. From this data it 

would suggest that ET-1 mediates vasoconstriction via ETA receptor activation at high 

concentrations, but acts via ETB receptors at lower (and perhaps more physiologically 

relevant) concentrations. 

Although great care was taken when mounting both arterial preparations as not 

to damage the vascular endothelium, the integrity of the endothelium in each 

preparation was not pharmacologically tested. Interaction of ET's with the vascular 

endothelium in human pulmonary vessels is not well documented. Endothelial ETB 

receptors have been shown to mediate pulmonary vasodilatation in rats (Eddahibi, et 

al., 1991) and lambs (Wong, et al., 1995), but whether this occurs in the human 

pulmonary circulation is not yet clear. In my experiments, under conditions of basal 

tone, only contractile responses to ET-1 and related peptides were observed, but it 

would be of interest to study responses in the presence of raised vascular tone. It has 

also been reported that responses to ET-1 in human large diameter intrapulmonary 

arteries were not effected by cyclooxygenase inhibition (indomethacin) or NOS 

inhibition (L-NOARG), suggesting that local endogenous release of EDRF's may not be 

important in regulating the contractile responses to ET-1 in human pulmonary arteries 

in vitro (Pussard, et al., 1995). 

Under normal physiological conditions ET-1 circulates within the plasma in the 

low picomolar range, with values often in the range of 0.5 to 5 pg / ml of plasma 

(Miyauchi, et al., 1991b; Lam, et al., 1991; Goerre, et al., 1995; Ferri, et al.,. 1995). 

240 



There is considerable variation between groups as to the precise levels under normal 

conditions and this is probably due to sample populations, the assay techniques used for 

measurement, and the site at which the samples are taken. However, all relevant studies 

are consistent in showing that the ET-1 levels are significantly increased in cases of 

pulmonary hypertension. The most dramatic increases in circulating ET-1 levels and 

ET-1 expression, appear to be associated with primary pulmonary hypertension 

(Cacoub, et al., 1993; Giaid, et al., 1993; Stewart, et al., 1991; Nootens, et al., 1995); 

and it has been postulated that this may be a link to the greater than expected incidence 

of Raynauds phenomenon in patients with primary pulmonary hypertension, a condition 

in which increased plasma ET-1 levels have been documented (Cacoub, et al., 1993; 

Zamora, et al., 1990). Raised plasma ET-1 levels are also significantly increased in 

pulmonary hypertension secondary to hypoxia (Ferri, et al., 1995; Stewart, et al., 

1991), congenital heart defects (Yoshibayashi, et al., 1991; Cacoub, et al., 1993; 

Vincent, et al., 1993), valvular heart disease (Stewart, et al., 1991; Yamamoto, et al., 

1994; Zhu, et al., 1994; Chang, et al., 1993), chronic heart failure (Cody, et al., 1992; 

Kiowski, et al., 1995) and the adult respiratory distress syndrome (Langleben, et al., 

1993). Whether the levels of ET-1 are a cause, or an effect of pulmonary hypertension 

is still under debate. 

In primary pulmonary hypertension, there is a strong correlation between the 

intensity of ET-1-like immunoreactivity in muscular and elastic arteries and pulmonary 

vascular resistance (Giaid, et al., 1993). Also in pulmonary hypertension related to 

hypoxia, levels of ET-1 are positively correlated with alveolar / arterial oxygen 

concentration (Goerre, et al., 1995; Ferri, et al., 1995; Sofia, et al., 1994). In cases of 

surgically correctable pulmonary hypertension, for example valvular disease and 

congenital heart defects, circulating ET-I levels decrease markedly after surgery and 

correlate strongly with the improvements in pulmonary haemodynamics (Zhu, et al., 

1994; Ishikawa, et al., 1995; Chang, et al., 1993). Certainly this evidence would 

suggest a role for ET-1-mediated vasoconstriction contributing to the increased vascular 
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resistance observed in pulmonary hypertension. Recent observations by Ishikawa, et 

al., (1995) involving patients with various congenital heart defects, showed that 

increase in pressure load to the pulmonary circulation stimulated ET-1 production, 

whereas increased pulmonary blood flow depressed ET-1 production. 

These increased levels of ET-l, although still in the low picomolar range, may 

be sufficient to mediate vasoconstriction. In the context of my in vitro studies, plasma 

ET-1 concentrations would be at the threshold level (pEC10) required for contraction. 

Threshold concentrations of ET-1 have also been shown to facilitate contractions to 

other vasoactive compounds such as 5-HT, angiotensin II and a2-adrenoceptor agonists 

(Itoh, et al., 1992; Takeshita, et al., 1991; MacLean & McGrath, 1990). Indeed it has 

been demonstrated in the forearm circulation of healthy human volunteers, under 

control conditions, that infusion of the ETA receptor antagonist BQ-123 mediates 

prolonged vasodilatation suggesting that ET-1 plays a role in human vascular tone 

under normal physiological conditions (Haynes, et al., 1995). 

Although plasma levels of ET-1 give an indication of production, the actions of 

ET-1 may be more paracrine in nature than endocrine. It is thought that approximately 

75 % of ET-1 synthesised is secreted towards the vascular smooth muscle cells 

(Yoshimoto, et al., 1991; Wagner, et al., 1992), and given the small volumes of 

interstitial fluid, ET-1 levels may be significantly greater at the smooth muscle cells 

compared to plasma levels. Unfortunately little is known about the actions of ET-1 in 

human lungs in vivo. From studies of isolated systemic vessels in vitro, it was thought 

that ET-1 contracted the majority of human arterial and venous preparations via 

activation of ETA receptors (Davenport, et al., 1994,1995; Maguire, et al., 1995). 

However, comparative studies in vivo would indicate that both ETA and ETB receptors 

mediate vasoconstriction in human resistance and capacitance vessels (Haynes, et al., 

1995). This discrepancy may be due to the size and or type of preparation studied, as 

there is growing evidence in vitro to suggest the presence of vascular ETB receptors in 

human arteries and veins (Seo, et al., 1994; White, et al., 1994; Dashwood, et al., 
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1995). It therefore may be expected to see contribution of both ETA and ETB receptors 

in ET-1 mediated vasoconstriction in human pulmonary circulation in vivo. Changes in 

ET-induced responses, and ET receptor subtypes in the pulmonary vasculature are 

altered in animal models of pulmonary hypertension (Eddahibi, el al., 1991; Li, el al., 

1994; Yorikane, el al., 1993; chapters 5 and 6 this thesis). Whether pulmonary 

vascular responses to ET-1 are altered in human pulmonary hypertension is not yet 

known, and will be an important factor in determining the possible use of ET receptor 

antagonists as a therapy for pulmonary hypertension. 

ET antagonists have been shown to prevent and reverse pulmonary hypertension 

in animal models of pulmonary hypertension such as the chronic hypoxic rat 

(Eddahibi, et al., 1995; DiCarlo, ei al., 1995; Oparil, el al., 1995; Chen, el al., 1995); 

and monocrotaline canine model (Okada, ei al., 1995). In the rat, the mixed receptor 

antagonist bosentan was found to be equally if not more effective than the ETA receptor 

antagonist BQ-123, at preventing and reversing the cardiopulmonary changes 

associated with chronic hypoxic induced pulmonary hypertension. In a recent study, 

Kiowski, el al., (1995) investigated the effects of the mixed ET receptor antagonist 

bosentan in patients with chronic heart failure. Patients in this study had increased 

plasma levels of big ET-1 and ET-1, and a significant degree of pulmonary 

hypertension. Intra venous administration of 200 mg of bosentan (which yields an 

approximate plasma antagonist concentration of 0.2 µM) significantly reduced 

pulmonary artery pressure, pulmonary wedge pressure and right atrial pressure, 

indicating the possible therapeutic use of mixed ET receptor antagonist in secondary 

pulmonary hypertension. Bosentan would act on both ETA and ETB receptor subtypes 

mediating vasoconstriction, and possibly endothelial ETB receptors mediating 

vasodilatation. Whether the sum effect of the mixed antagonist in the pulmonary 

circulation proves to be greater than that of a specific ETA receptor antagonist is yet to 

be examined. 

To summarise, my results indicate that the ET receptors subtypes mediating 

vasoconstriction in the human pulmonary arterial vasculature varies depending on the 
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size and / or location of the vessel under examination. Large calibre pulmonary arteries 

appear to possess only vascular ETA receptors, whereas pulmonary resistance arteries 

contain populations of both vascular ETA and ETB receptors (at an approximate ratio of 

70 : 30) both of which can mediate vasoconstriction. 
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Chapter 8 

Responses to 5-Hydroxytryptamine in 
Pulmonary Resistance Arteries. 

Role of Cyclic Nucleotides in 
Hypoxic Pulmonary Hypertension 
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8.1 Introduction. 

5-HT is produced by activated platelets and pulmonary neuroendocrine cells, 

and has been implicated in pulmonary hypertension in the presence of pulmonary 

thromboemboli (Comroe, et al., 1953) and primary pulmonary hypertension (Herve, et 

al., 1995). Platelet release of 5-HT has also been shown to contribute to the initiation 

and progression of monocrotaline-induced pulmonary hypertension in rats (Kanai, el 

al., 1993). The vascular effect of 5-HT in the pulmonary circulation appears to be 

dependent on both the species under study and on the degree of initial vascular tone. 

For example, 5-HT has been shown to both act as a pulmonary vasoconstrictor (Hyman, 

et al., 1982; Wanstall & O'Donnell, 1990), but in some species such as the cat or 

sheep, 5-HT can also mediate vasodilatation of the pulmonary vascular bed when 

vascular tone is raised (Neely, et al., 1993; Cocks & Arnold, 1992). 

Sumatriptan (GR43175) has been classified as a selective agonist for the 5- 

HT1D receptor subtype (Humphrey, el al., 1993). In bovine isolated large 

intrapulmonary arteries, responses to 5-HT receptor agonists are modulated by the 

degree of vascular tone and release of endothelium derived NO (MacLean, et al., 

1994b). In the aforementioned study it was shown that under conditions of raised 

vascular tone, NOS inhibition or endothelium denudation, responses to the 5-HTID 

receptor agonist sumatriptan were "uncovered". In the pulmonary hypertensive state, 

vessels are subjected to increased vascular tone which will therefore modulate 

responses to various spasmogens. In this study I looked at the effects of increased 

vascular tone and inhibition of NOS activity in bovine pulmonary resistance arteries to 

assess if a similar situation occurs as in large intrapulmonary arteries. I also examined 

responses to 5-HT and sumatriptan in control and chronic hypoxic rat pulmonary 

resistance arteries, to assess any possible changes in the pulmonary hypertensive state. 

As mentioned in chapter 1, regulation of intracellular cyclic nucleotides levels is 

one of the important mechanisms for regulation of pulmonary vascular tone. cGMP is 

the key second-messenger of NO-induced pulmonary vasodilatation, whereas CAMP 

plays a central role in vasodilator responses to ß-adrenoceptor agonists, PGI2, and 
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vasoconstrictor responses to a2-adrenoceptor agonists and 5HT1D receptor agonists. 

The levels of intracellular cyclic nucleotides are controlled not only via synthesis, but 

also through degradation via the PDE enzyme family. The overall activity of these 

enzymes will therefore also influence vascular tone by the regulation of intracellular 

nucleotide concentrations. Therefore in this study I also investigated the intracellular 

concentrations of cAMP ([cAMP]1)and cGMP ([cGMP]; ) within pulmonary arteries of 

different sizes and locations from control and chronic hypoxic rats. To assess if any 

observed changes were as a result of altered PDE activity, total cAMP and cGMP PDE 

activity was also studied in these vessels. 

Isolate bovine pulmonary resistance arteries. 

Bovine pulmonary resistance arteries were dissected from the lungs of freshly 

killed cattle according to methods stated in chapter 2. Vessel pairs were then mounted 

in the same bath of a wire myograph, bathed in Krebs saline solution at 37 OC and 

bubbled with 16 % 02 5% CO2 balance N2. Using the normalisation process 

(described in chapter 2) vessels were tensioned to mimic an equivalent transmural 

pressure of -16 mmHg. 

Experimental protocol 

After 1 hour equilibration period vessels were stimulated with 50 mM KCI and, 

following plateau of response, vessels were washed three times with fresh Krebs 

solution. Integrity of the vascular endothelium was then assessed by the ability of 1 p. M 

ACh to mediate relaxation in 5-HT (1 µM) preconstricted vessels. After a further 30 

minute equilibration period cumulative concentration response curves to either 5-HT or 

sumatriptan (1 nM to 30 p. M) were constructed. The vessels were then washed 5 times 

with fresh Krebs solution and allowed to return to baseline tension. Following a further 

15 minute rest period vessels were then subjected to one of the following protocols. 
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A Addition of 100 pM L-NAME, After 15 minute incubation period, a second CCRC 

was conducted for the same first agonist used in each tissue. 

B Vascular tone was raised by administration of the stable thromboxane-mimetic 

U46619, at a concentration which increased vascular tone by around 20 % of the 

maximum contraction to KCl (around 10 - 30 nM). After tone had stabilised, normally 

within 20 minutes, a second CCRC was conducted for the same first agonist used in 

each tissue. 

C No addition of drugs. Vessels allowed to equilibrate for further 15 - 20 minutes 

before construction of second CCRC, to act as time controls. 

Isolated rat pulmonary resistance arteries. 

Chronic hypoxic rats were prepared as stated in chapter 2. After exposure to 14 

- 16 days of chronic hypoxia rats were sacrificed along with aged matched controls, and 

pulmonary resistance arteries were dissected out according to the methods stated in 

chapter 2. Control and chronic hypoxic pulmonary resistance artery vessel pairs were 

then mounted as ring preparations in the same bath of a wire myograph, bathed in 

Krebs saline solution at 37 °C and bubbled with 16 % 02 5% CO2 balance N2. Using 

the normalisation process explained in chapter 2, vessels were tensioned to give 

equivalent transmural pressures of -16 mmHg for control preparations, and -36 mmHg 

for hypoxic preparations. 

Experimental protocol. 

The same experimental protocol was conducted as described for bovine 

pulmonary resistance arteries except that only a single CCRC to either 5-HT or 

sumatriptan was conducted in each preparation. In a smaller subsequent study of 

sumatriptan responses, some vessels were pre-treated with 100 p. M L-NAME, or were 

subjected to conditions of raised vascular tone by administration of U46619 of a 

concentration to give 20 % of the maximum response to 50 mM KCI. 
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Measurement of cyclic nucleotides and phosnhodiesterase activity. 

Chronic hypoxic rats were prepared as stated in chapter 2. After exposure to 14 

- 16 days of chronic hypoxia rats were sacrificed along with aged matched controls, and 

pulmonary arteries were dissected from four different locations in the pulmonary 

vascular tree, main pulmonary artery, branch pulmonary arteries, intrapulmonary artery, 

and pulmonary resistance arteries (see methods section 2. ). Tissue samples were then 

processed and assayed to measure total cAMP, cGMP and total PDE activity under 

basal conditions (see methods section 2. ). Lowry protein assay was carried out for all 

samples. 

Data analysis. 

pEC20, pEC50 and pEC8p values (where appropriate) were calculated by 

computer extrapolation from individual CCRC's. Responses to 5-HT and sumatriptan 

are expressed as the percentage of reference contraction to 50 mM KCl in each vessel. 

Relaxations to ACh were calculated as the percentage of the level of preconstriction in 

each vessel. Biochemical results of cyclic nucleotide levels are expressed as total 

concentration in picomols per mg protein, and PDE activity is expressed as total 

activity picomol per minute per mg protein. Data are expressed as mean ± SEM. 

Statistical comparison were made using one way ANOVA followed by Tukeys post 

test, or by Students unpaired t-test. p<0.05 was considered statistically significant. 

8.3 Results. 

Bovine pulmonary resistance arteries. 

Isolated bovine pulmonary resistance arteries were of an average size of 194 ±6 

mm at an equivalent pressure of 16.4 ± 0.7 mmHg. 50 mM KC1 contractions were 448 

± 36 mg wt tension and vessels were shown to have intact vascular endothelium, ACh 
induced relaxation's were 69 ±3% of 5-HT preconstriction (n = 12 / 10 for all groups). 
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Responses to 5-HT and sumatriptan. 

5-HT produced potent contractile responses in bovine pulmonary resistance 

arteries (see figure 8.1), and no significant difference was found between time controls. 

pEC50 values for first curve time control was 6.19 ± 0.26, and pEC50 for second curve 

time control was 5.85 ± 0.19. Maximum contractile responses were over 250 % of the 

reference contraction to 50 mM KCl in each vessel. Sumatriptan produced small 

contractile responses which were only 10 % of the reference contraction to 50 mM KCI. 

No significant difference was found between time control curves for sumatriptan, 

pEC50 value for first time control curve was 5.61 ± 0.11, and pEC50 for second curve 

was 5.51 ± 015. 

Effect of raising vascular tone. 

U46619 produced a well maintained contractile response of approximately 20 % 

or less of the maximum obtained to 5-HT. Raising vascular tone produced a significant 

increase in tissue sensitivity to 5-HT in bovine pulmonary resistance arteries, without 

effecting the maximum contractile response to the agonist (see figure 8.2. A). A 

summary of the pEC50 values in the presence and absence of tone are illustrated in table 

8.1. Responses to the 5-HT1D receptor agonist sumatriptan were dramatically 

potentiated in the presence of raised tone, decreasing the threshold for contraction from 

30 nM to 0.3 nM, and increasing the maximum contraction approximately 10 fold. The 

tissue sensitivity to sumatriptan was also significantly increased in the presence of tone 

(see table 8.1 for pEC50 values). 

In approximately 10 % of treated vessels, small contractile responses to L- 

NAME were observed (3 ±I% of 50 mM KCl reference contraction). Responses to 5- 

HT in the presence and absence of L-NAME are demonstrated in figure 8.3. A. 

Maximal contractile responses to 5-HT were significantly potentiated in the presence of 
L-NAME, without effecting tissue sensitivity at the pEC50 value (see table 8.1). 
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Responses to 5-HT and sumatriptan in bovine pulmonary resistance arteries : Effect of 
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vessel. Each point represents the mean ± SEM. 
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Figur 8.2. 

Responses to 5-HT and sumatriptan in bovine pulmonary resistance arteries : Effect of 

raised vascular tone. 

A CCRC's to 5-HT control (0, n=8/ 8); 5-HT + tone (0, n=8/ 8). B CCRC's to 

sumatriptan control (0, n=7/ 7); sumatriptan + tone (9, n=7/ 7). Data are 
expressed as percentage of reference contraction to 50 mM KCI in each vessel. Each 

point represents the mean ± SEM. Statistical comparisons were made by Students 

paired t-test. *p < 0.05, **p < 0.01, ***p < 0.001 control vs. + tone. 
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Fieure8_3. 
Responses to 5-HT and sumatriptan in bovine pulmonary resistance arteries : Effect of 
L-NAME. 

A CCRC to 5-HT control (0, n=7/ 7); 5-HT + L-NAME (0, n=7/ 7), B CCRC's 

to sumatriptan control (0, n=8/ 8); sumatriptan + L-NAME (0, n=8/ 8). Data are 
expressed as percentage of reference contraction to 50 mM KCl in each vessel. Each 
point represents the mean ± SEM. Statistical comparisons were made by Students 

paired t-test. *p < 0.05, **p < 0.01, ***p < 0.001 control vs. + L-NAME. 
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A significant increase was however demonstrated at the pEC80 values being 

5.63 ± 0.13 without L-NAME, and 5.93 ± 0.13 in the presence of L-NAME (**p < 0.01 

Students paired t-test). Similar to the effect of increasing vascular tone, application of 

L-NAME produced a significant potentiation of responses to sumatriptan (see figure 

8.3. B). L-NAME also caused a significant increase in tissue sensitivity to sumatriptan 

(see table 8.1), and decrease the threshold concentration for contraction from 30 nM to 

0.3 nM 

5-HT n/ n Sumatri tan n/n 

without tone 6.05 ± 0.01 8/8 5.42 ± 0.19 8/8 

with tone 6.54±0.14tt 8/8 6.04±0.151 8/8 

without L-NAME 6.18 ± 0.15 7/7 5.45 ± 0.16 7/7 

with L-NAME 6.30±0.06 7/7 5.86±0.09* 7/7 

Table 8.1 pEC50 values for 5-HT and sumatriptan in bovine pulmonary resistance 

Data are expressed as mean ± SEM. Statistical comparisons were made using Students 

t-test for paired data. *p < 0.05 agonist without L-NAME vs. agonist with L-NAME. 
tp < 0.05, ttp < 0.01 agonist without tone vs. agonist with tone. 

Responses to 5-HT and sumatriptan. 

The average internal diameter and pressure of control and chronic hypoxic pulmonary 

resistance arteries is shown in table 8.2 below. 

Internal Diameter (µm) Transmural pressure 

(mmHg) 

Control 157.1 f 5.84 15.2 ± 0.5 

Chronic h oxic 193.0 f 8.7** 35.0 ± 0.3*** 
Table 8 

,2 
Internal diameters and pressures of rat pulmonary resistance arteries Data is 

expressed as mean ± SEM. Statistical comparison were made using Students unpaired 
t-test. **p < 0.01, ***p < 0.001 control vs. chronic hypoxic. 
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50 mM KC1 induced contractions were similar in control and chronic hypoxic 

pulmonary resistance arteries values being, 429 ± 33 mg wt tension controls, and 444 ± 

38 mg wt tension chronic hypoxic. As observed in chapter 5 and 6, ACh induced 

relaxations were significantly greater in chronic hypoxic vessels compared to controls; 

with values of 29.6 ± 2.4 % for controls and 68.1 ± 3.1 % for chronic hypoxic vessels 

(***p < 0.001, Students unpaired t-test). 

Figure 8.4 shows responses to 5-HT in control and chronic hypoxic rats 

pulmonary resistance arteries. From this figure it can be seen that responses to 5-HT 

were significantly greater in chronic hypoxic vessels compared to controls. pECso 

values for 5-HT in control preparations were 5.50 ± 0.07, and in chronic hypoxic 

preparation 5.76 ± 0.07 (*p < 0.05, Students unpaired t-test, n=/ 10 / 8). Under control 

conditions in all vessels tested, the 5-HT1D receptor agonist sumatriptan was found to 

be inactive. To assess if responses to sumatriptan could be "uncovered" in the 

preparations, a small separate study was conducted. Administration of L-NAME (100 

µM) had no effect on vascular tone in control preparations but caused slight contraction 

in 60 % of chronic hypoxic vessels (10 ±2% of 50 mM KCl reference contraction). In 

the presence of L-NAME only slight vasoconstrictor responses were observed to 

sumatriptan at the highest concentrations tested. Raising vascular tone with U46619 (to 

approximately 20 % of 50 mM KC1 induced contraction) had a similar effect to L- 

NAME, in that only small contractile responses were observed to sumatriptan. 

Sumatriptan showed no evidence of causing vasodilatation in the presence of raised 

vascular tone. 

Measurement of intracellular cyclic nucleotides. 

Figure 8.5. A shows total [cAMP]i within pulmonary arteries of control and 

chronic hypoxic rats. The measurements were taken in the absence of stimulation with 
any exogenous applied vasoactive factors, therefore indicate total basal levels. Basal 

[cAMP]i were similar in all arterial preparations, however intrapulmonary axial arteries 
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Responses to 5-HT and sumatriptan in control and chronic hypoxic rat pulmonary 

resistance arteries. CCRC's to 5-HT control (0, n= 10 / 10); 5-HT chronic hypoxic 

(o, n= 10 / 10) (sumatriptan inactive in both control and chronic hypoxic vessels). 

CCRC's to sumatriptan control + L-NAME (O, n=4/ 4), control + tone (A, n=4/ 4), 

chronic hypoxic + L-NAME (0, n=4/4), chronic hypoxic + tone (A, n=4/ 4). 

Data are expressed as percentage reference contraction to 50 mM KCl in each vessel. 

Each point represents the mean ± SEM. Statistical comparisons were made using 

Students unpaired t-test. ***p < 0.001, **p < 0.01, control 5-HT vs. chronic hypoxic 5- 

HT 
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Intracellular cyclic nucleotide levels in control and chronic hypoxic rat pulmonary 

arteries. 
A Total intracellular cAMP levels (n = 8). B Total intracellular cGMP levels (n = 8). 

Open columns show data from control animals and stippled columns show data from 

hypoxic animals. Main = main pulmonary artery; Branch = first right and left branch; 

Intra = main intrapulmonary artery; PRA = pulmonary resistance artery. Data are 

expressed as absolute levels pmol / mg. Each point represents the mean ± SEM. 

Statistical comparisons were made using Students unpaired t-test. *p < 0.05, **p < 
0.01 control vs. chronic hypoxic. 
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had significantly lower [cAMP]i levels when compared to the other arterial preparations 

(* p<0.05 ANOVA). From this figure it can be seen that exposure to chronic hypoxia 

has no significant effect on basal [cAMP]i in the main pulmonary artery although there 

is a tendency for levels to be reduced. However, [cAMP]i in right and left branch 

extrapulmonary arteries are significantly reduced in chronic hypoxic preparations 

compared to controls. In the main intrapulmonary artery of the lung total [cAMP]i are 

significantly increased in chronic hypoxic preparations compared to controls. A similar 

trend is observed in pulmonary resistance arteries, however this proved to be not 

significant (p = 0.087, Students unpaired t-test). 

Total [cGMP]; are demonstrated in figure 8.5. B. There was no significant 

difference in [cGMP]i levels between the four arterial preparations in control animals (p 

> 0.05 ANOVA). Exposure to chronic hypoxia caused a significant decrease in 

[cGMP]i in main pulmonary artery, right and left branch pulmonary artery, and 

intrapulmonary arteries of the rat. [cGMP]i in control and chronic hypoxic pulmonary 

resistance arteries were found to be not significantly different. 

Measurement of total hosphodiesterase activity. 

Figure 8.6. A shows measurements for total cAMP PDE activity in control and 

chronic hypoxic rat pulmonary resistance arteries. In control animals total cAMP PDE 

activity was similar in main, intrapulmonary and pulmonary resistance arteries, but was 

significantly greater in branch pulmonary arteries (***p < 0.001 ANOVA). Exposure 

to chronic hypoxia had no significant effect on total cAMP PDE activity in main 

pulmonary artery or pulmonary resistance arteries, but caused a significant increase in 

activity in branch and intrapulmonary arteries. Figure 8.6. B shows results obtained for 

total cGMP PDE activity in control and chronic hypoxic rat pulmonary arteries. In 

control animals, total cGMP PDE activity was significantly different in the four arterial 

preparations (*p < 0.05 ANOVA), and a Tukeys post test showed that this variation was 
between the greater observed activity in branch pulmonary arteries and less activity 

observed in pulmonary resistance arteries. Comparing control and chronic hypoxic 
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Total PDE activity in control and chronic hypoxic rat pulmonary arteries. 
A Total cAMP PDE activity (n = 8). B Total cGMP PDE activity (n = 4). Open 

columns show data from control animals and stippled columns show data from hypoxic 

animals. Main = main pulmonary artery; Branch = first right and left branch; Intra = 
main intrapulmonary artery; PRA = pulmonary resistance artery. Data are expressed as 
absolute activity pmol / minute / mg. Each point represents the mean ± SEM. 
Statistical comparisons were made using Students unpaired t-test. *p < 0.05, **p < 
0.01 control vs. chronic hypoxic. 
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preparations, total cGMP PDE activity was found to be significantly increased in all 

chronic hypoxic arterial preparations with the exception of the pulmonary resistance 

arteries. 

8 .4 Discussion. 

Bovine pulmonary arteries. 

Responses to 5-HT and sumatriptan. 

At least 10 different 5-HT-receptor subtypes have been described, including 5- 

HTIA-F, 5-HT2A-C, 5-HTi and 5-HT4 (Humphrey, et al., 1993). The receptor 

responsible for mediating contractile responses to 5-HT in pulmonary arteries was 

thought to be the 5-HT2 receptor (Frenken & Kauman, 1983). However, McIntyre, et 

al., (1992) demonstrated that administration of the 5-HT1D receptor agonist sumatriptan 

to patients undergoing diagnostic coronary angiography, produced a pronounced 

increase in pulmonary pressure when compared to the overall systemic effect, therefore 

postulating a role for the 5-HT1D receptor subtype in the pulmonary circulation. 5-HT2 

receptors are thought to mediate vasoconstriction through activation of PLC, production 

of IP3, and stimulation of PKC (Roth, et al, 1986), whereas sumatriptan has been 

shown to mediate vasoconstriction in the canine saphenous vein by decreasing the 

levels of intracellular cAMP (Sumner & Humphrey, 1990). Hence, the 5-HTi D 

receptor appears to be negatively coupled to adenylate cyclase in some vascular 

preparations. There is evidence to show that sumatriptan contracts isolated bovine 

pulmonary arteries, but is inactive in mesenteric arteries, suggesting the pulmonary 

circulation is more sensitive to the effects of sumatriptan (Templeton, et al., 1993b). In 

my results illustrated in this chapter it was found that under control conditions, 5-HT 

produced potent contractile responses in bovine pulmonary resistance arteries, whereas 

the 5-HTID receptor agonist sumatriptan was 4-fold less potent and produced only 

small contractile responses (around 10 % of 50 mM KC1) in these vessels. Responses 

to both agonists were reproducible over time. This suggests that under conditions of 

basal tone 5-HT-mediated vasoconstriction occurs via a receptor other than the 5-HT1D 
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subtype. A similar situation is observed in larger diameter bovine pulmonary arteries in 

vitro, where it was shown that responses to 5-HT are mediated via activation of 5-HT2A 

receptors (MacLean, et al., 1994b). 

Effect of raising vascular tone. 

In the presence of raised vascular tone, an increase in tissue sensitivity to both 

5-HT and sumatriptan was observed. A significant potentiation of the maximum 

contractile response to sumatriptan is also observed under these experimental 

conditions. Identical effects in the presence of raised vascular tone are observed in 

larger diameter bovine pulmonary arteries (MacLean, et al., 1994b). 5-HT has been 

shown to mediate vasodilatation in preconstricted sheep pulmonary veins (Cocks & 

Arnold, 1992) and in the cat pulmonary vascular bed (Neely, et al., 1993), however, in 

this present study only vasoconstrictor responses to 5-HT were observed in pulmonary 

resistance arteries. The potentiation of the maximum contractile response to 

sumatriptan, but not 5-HT in these vessels may be a reflection of the intracellular 

signalling pathways by which they mediate their vascular effects. In bovine isolated 

pulmonary arteries of larger calibre than used in the present study, responses to both 

sumatriptan and the a2-adrenoceptor agonist UK 14304 were significantly potentiated 

in the presence of raised vascular tone (Sweeney, et al., 1995). A feature common to 

both of these agonists is that they induce vasoconstriction via negative coupling to 

adenylate cyclase. In the aforementioned study it was also shown that responses to the 

al-adrenoceptor agonist phenylephrine were less effected by tone in that only a slight 

increase in potency to the agonist was observed. Phenylephrine is thought to mediate 

vasoconstriction via the same intracellular pathway as 5-HT, i. e. activation PLC leading 

to IP3 production. Therefore raising vascular tone in both large intrapulmonary arteries 

and pulmonary resistance arteries from the bovine lung, appears to have a more 

dramatic effect on agonists which mediate vasoconstriction via negative coupling to 

adenylate cyclase. 
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Effect of L-NAME. 

Release of NO has been shown to influence vasoconstrictor responses to a 

variety of contractile agents; for example, L-NAME has been shown to potentiate 

responses to both 5-HT and a-adrenoceptor agonists in the rabbit pulmonary artery 

(MacLean, et al., 1993a, b). Inhibition of NOS activity also potentiated responses to 

sumatriptan in both human pulmonary arteries (MacLean, et al., 1993c) and bovine 

pulmonary arteries (MacLean, et al., 1994b). My results are in agreement with these 

earlier studies in that inhibition of NOS potentiates responses to both sumatriptan and 

5-HT in bovine pulmonary resistance arteries. In a similar fashion to the effects of 

raised vascular tone, L-NAME appears have a more dramatic effect on the sumatriptan 

responses. This is illustrated by an increase in both potency and maximum contraction 

to sumatriptan in the presence of L-NAME, whereas only the maximum contraction to 

the high concentrations of 5-HT were potentiated. MacLean, et al., (1994b) found that 

inhibition of NOS had no effect on contractile responses to 5-HT in large diameter 

intrapulmonary arteries from the bovine lung. This suggests that basal NO release has 

greater influence on 5-HT-mediated responses in small diameter pulmonary arteries 

compared to larger diameter vessels. Ignarro, et al., (1987) found that smaller branches 

of bovine pulmonary arteries had higher intracellular levels of cGMP, were more 

sensitive to endothelium-dependent vasodilators and were more sensitive to methylene 

blue when compared to larger branches from a common vascular bed. All of these 

differences were not observed in endothelium denuded vessels suggesting regional 

variation in the influence of endothelium-derived NO. 

The mechanism by which NOS inhibition results in dramatic potentiation of the 

vasoconstrictor responses to sumatriptan may again be linked to the intracellular 

signalling pathways activated by sumatriptan. Investigations by Sweeney et al., (1995) 

showed that under control conditions, sumatriptan in itself significantly increased 

intracellular levels of cGMP in bovine large calibre pulmonary arteries via endothelial 

release of NO. This increase in cGMP would counteract any vasoconstrictor effects of 
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sumatriptan, as was illustrated by the ability of SNP (which directly increases 

intracellular cGMP concentrations) to inhibit vasoconstrictor responses to sumatriptan 

in these vessels (Sweeney, et al., 1995). Therefore, inhibiting NOS activity will 

prevent sumatriptan from increasing intracellular cGMP levels therefore "uncovering" 

the vasoconstrictor component. In my investigations, L-NAME also potentiated 

vasoconstrictor responses to 5-HT in bovine pulmonary resistance arteries although the 

observed effects were clearly less dramatic than in the case of sumatriptan. 

Vasodilatation to 5-HT was not observed in preconstricted pulmonary resistance 

arteries, however it could be the case that these effects are masked by the profound 

vasoconstrictor actions of 5-HT. Therefore whether the effect of L-NAME on 5-HT 

mediated responses is due to the removal of stimulated NO release (as is proposed for 

sumatriptan) or basal NO activity in these vessels is not yet clear. 

As mentioned previously, sumatriptan is thought to mediate vasoconstriction 

through decreasing [cAMP]i. Sweeney, et al (1995), demonstrated that in bovine 

pulmonary arteries, responses to sumatriptan in the presence of raised vascular tone 

could be further potentiated by administration of compounds that increase [cAMP]i (for 

example forskolin and isoprenaline). Therefore expression of 5-HTmp-mediated 

responses is markedly influenced by the levels of intracellular cyclic nucleotides. As 

responses to the 5-HT receptor agonists in bovine pulmonary resistance arteries are 

manipulated by the degree of vascular tone, it was of interest to investigate responses to 

5-HT and sumatriptan in chronic hypoxic rat pulmonary resistance arteries which 

exhibit inherent vascular tone (chapter 5 this thesis). 

Rat rný mon resistance arteries. 

Responses to 5-HT and sumatriptan. 

In chronic hypoxic vessels, 5-HT was found to be 2-fold more potent than in 

control vessels, and produced a significantly greater maximum response. Pulmonary 

arterial hyperreactivity to 5-HT has also been observed in rats with monocrotaline- 

induced pulmonary hypertension (Wanstall & O'Donnell, 1990) and pulmonary 
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hypertension secondary to platelet 5-HT storage disorder (Ashmore, ei al., 1991). 

However, there is no evidence for elevation of plasma 5-HT in the chronic hypoxic 

model rat model of pulmonary hypertension (Oka, et al., 1993), and these rats are not 

known to exhibit abnormalities in platelet 5-HT storage. Therefore other factors must 

be responsible for the observed changes in 5-HT activity in this model. It seems 

unlikely that pulmonary vascular remodelling alone is responsible for the increased 

responses to 5-HT, as not all agonist responses are increased in chronic hypoxic 

vessels; e. g. responses to KCl are unchanged. As vascular tone is an important 

modulator of 5-HT mediated responses in bovine pulmonary arteries, the increased 

inherent tone in pulmonary resistance arteries from chronic hypoxic rats may also be a 

factor involved in the observed changes. 

Under conditions of basal tone, the 5-HT1D agonist sumatriptan was found to be 

inactive in both control and chronic hypoxic preparations. After inhibition of NOS 

activity with L-NAME, or in the presence of increased vascular tone, only small 

contractile responses to sumatriptan were observed at the two highest concentrations 

tested. Therefore in contrast to bovine pulmonary resistance arteries, control and 

chronic hypoxic rat pulmonary resistance arteries do not contain a significant 

population of 5-HT1D receptors mediating vasoconstriction. Preliminary studies 

conducted in larger calibre pulmonary arteries from the same rats used in my own 

studies demonstrated that contractile responses to sumatriptan in these vessels could be 

uncovered after exposure to chronic hypoxia (MacLean, et al., 1995b). This suggests 

possible regional variation in 5-HT receptor populations within the rat pulmonary 

vasculature. 

The importance of intracellular cyclic nucleotides in both the control of vascular 

tone and in regulating 5-HTID like responses in pulmonary arteries has already been 

mentioned in this chapter. I examined the concentrations of these nucleotides in 

different arterial segments from four regions of the pulmonary vascular tree in both 
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control and chronic hypoxic rats. In control arterial preparations slight regional 

variation was observed in basal [cAMP]i. This may be as a result of different levels of 

local synthesis and release of vasoactive compounds in certain regions of the 

pulmonary vasculature (e. g. NO and PGI2). Indeed Ignarro, et al., (1987), 

demonstrated regional variations in cyclic nucleotide levels in different sized bovine 

pulmonary arteries, however the variations observed were in cGMP levels and not 

cAMP levels as in this case. 

Exposure to chronic hypoxia significantly decreased [cAMP]i in branch 

pulmonary arteries, whereas in intrapulmonary arteries there is a significant increase in 

[cAMP]i when compared to controls. This regional effect of chronic hypoxia on 

different vessel types may again be as a result of stimulation or inhibition of certain 

vasoactive factors. Significant decreases in [cGMP]i levels were observed in all 

pulmonary artery preparation from chronic hypoxic rats with the exception of the 

pulmonary resistance arteries. Chronic hypoxic exposures have been shown to decrease 

[cGMP]i in the main pulmonary artery of the rat, and this was presumed to be as a 

result of decreased endothelial NO production (Shaul, et al., 1993). In agreement with 

this is the observed loss of endothelium-dependent relaxation in extrapulmonary artery 

rings of chronic hypoxic rats (Carville, et al., 1993). Therefore decreased endothelial 

release of NO may contribute to the observed decrease in [cGMP]; in chronic hypoxic 

rat pulmonary arteries. There is however contrasting evidence to indicate that exposure 

to chronic hypoxia may in fact increase NO production in the rat lung (Isaacson, et al., 

1994) and increase NOS activity (Xue, et al., 1994). Indeed I have also demonstrated 

in this thesis (chapter 5) that vasodilatation to ACh is augmented in chronic hypoxic 

pulmonary resistance arteries suggesting that endothelial release of NO is not impaired. 

This may explain why no changes are observed in [cGMP]; levels between control and 

chronic hypoxic rat pulmonary resistance arteries. As decreasing [cGMP]1 is known to 

facilitate 5-HT1D-like responses in bovine pulmonary resistance arteries, this may play 

a role in the apparent "uncovering" of sumatriptan vasoconstriction in large calibre 

chronic hypoxic rat vessels which exhibit decreased [cGMP]i (MacLean, et al., 1995a). 
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Although [cGMP]i is unchanged in chronic hypoxic pulmonary resistance arteries, this 

would appear not to be a factor in the apparent inactivity of sumatriptan in these 

vessels, as NOS inhibition does not uncover responses to sumatriptan in these 

preparations. 

2E activity. Measurement of PD 

Another mechanism which may be responsible for the observed changes in 

cyclic nucleotide concentrations will be the overall level of PDE activity in these 

preparations. The decreased levels [cAMP]; observed in branch pulmonary arteries 

appears to be related to a corresponding increase in cAMP PDE activity in these 

preparations. However, in intrapulmonary arteries both [cAMP]1 levels and cAMP 

PDE activity are significantly increased. One reason for this apparent anomaly may be 

alterations in the activity and/or expression of adenylate cyclase, resulting in an 

increased production of cAMP. In all the arterial segments which demonstrated 

decreased levels of [cGMP]i, a corresponding significant increase in cGMP PDE 

activity was observed. In keeping with the unchanged levels of intracellular cyclic 

nucleotides, there were no observed differences in total cAMP or cGMP PDE activity 

in control and chronic hypoxic pulmonary resistance arteries. 

The decreased levels of [cGMP]; in larger diameter pulmonary vessels, possibly 

due to a combination of decreased endothelial NO and increased activity of cGMP PDE 

activity, will in part explain the endogenous tone exhibited in these vessel types 

(MacLean, et al., 1995a). Results obtained from pulmonary resistance arteries indicate 

no changes in either intracellular cyclic nucleotide levels or total PDE activity. 

Therefore, although these vessels exhibit endogenous tone in vitro (chapter 5), this 

vascular tone cannot be accounted for by alterations in cyclic nucleotide levels. 

However, there are many other factors which can influence pulmonary vascular tone 

and may be involved in the increased levels of tone observed in chronic hypoxic 

vessels; for example IP3 levels stimulated by PLC, activity of membrane Ca2+ and K+ 

channels and intracellular Cal' handling (Barnes & Liu, 1994) 
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Therefore in summary, I have found that responses to 5-HT and sumatriptan in 

bovine pulmonary resistance arteries are significantly modulated by the degree of 

vascular tone and release of NO. Pulmonary vasoconstrictor responses to 5-HT are 

augmented in chronic hypoxic rat pulmonary resistance arteries and neither control or 

chronic hypoxic vessels appear to contain functional populations of 5-HT1D-like 

receptors. Intracellular cyclic nucleotide levels and PDE activity are altered in regions 

of the chronic hypoxic pulmonary arterial tree, however no changes were observed in 

pulmonary resistance arteries. 
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9. General discussion. 

A feature which appears common to both the rat and human pulmonary 

vasculature is the apparent ET receptor heterogeneity, between arterial vessels of 

different sizes and location within the lung. In both species, I observed an increased 

influence of vascular ETB receptors mediating vasoconstriction in pulmonary resistance 

arteries. This could well be a feature which is not unique to the pulmonary vasculature. 

Using radioligand binding techniques, Dashwood, el al., (1995) showed that the ratio of 

vascular ETB : ETA receptors in the human coronary vasculature significantly increased 

as the diameter of the vessel decreased. The actual cause of this regional variation in 

ET receptor subtype is not clear, but may be a reflection of the structural differences 

between large (more elastic) and small (more muscular) vessels. 

In the pulmonary hypertensive rat model used in my studies, the influence of 

vascular ETB receptors is diminished in comparison to increased ETA receptor 

mediated vasoconstriction. However, it is not yet clear if a similar situation occurs in 

human pulmonary hypertensive states. What would be of extreme interest for future 

study would be to examine responses to ET's in pulmonary arteries from patients with 

pulmonary hypertension. This would assess any changes in vascular reactivity to the 

peptides, and resolve possible changes in the ET receptor subtypes present. The 

growing literature from animal models of pulmonary hypertension would suggest that 

ET antagonists may prove a useful and novel therapy in the treatment of pulmonary 

hypertension. Stewart, et a!. (1991) demonstrated that the arterial to venous ratio of ET- 

1 levels were highest in patients with primary pulmonary hypertension (ratio > 1) 

compared to patients with secondary pulmonary hypertension (ratio - 1). It was 

therefore postulated that increased ET-1 levels in secondary pulmonary hypertension 

may be due to abnormal clearance of the peptide, whereas in primary pulmonary 

hypertension there may be both decreased pulmonary clearance and increased 

pulmonary production of ET-1. If this proves to be the case then perhaps ECE 

inhibitors, in addition to ET antagonists, may prove to be a useful therapy in the 

treatment of primary pulmonary hypertension. 
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The requirement for dual receptor antagonism in order to attenuate responses to 

ET-1 in rat pulmonary resistance arteries suggested "cross talk" between ETA and ETB 

receptor subtypes in these vessels. Full expression of ET-1 vasoconstriction could be 

mediated by sole activation of the ETA or ETg receptor subtype, as shown by the 

resistance of ET-1 constriction to the actions of selective ETA and ETB receptor 

antagonists. The fact that ETB-mediated vasoconstriction (SxS6c and ET-3 responses) 

could be significantly antagonised by the use of selective ETB receptor antagonists, 

highlights this the role of ETA receptors in these vessels. Clearly what would be of use 

to examine this further would be a selective ETA receptor agonist, however as 

mentioned in chapter 1 such a compound has remained elusive. This feature of "cross 

talk" between ET receptors mediating vasoconstriction is not unique to the rat 

pulmonary resistance artery. Similar observations were found in the rabbit pulmonary 

artery (Fukuroda, et al., 1994b) and in human isolated bronchi (Fukuroda, el al., 

1996e), where dual antagonism of both ETA and ETB receptors is required to attenuate 

ET-1 mediated vasoconstriction. The actual mechanism by which this "cross talk" 

between receptors occurs is not yet known, but may involve intracellular interaction 

through a common second messenger system. The exact intracellular pathways 

activated by ETA and ETB receptors in the pulmonary vasculature is not yet clear, but is 

currently being examined within our laboratory. This may also aid in the examination 

of the putative inhibitory ETA -like receptor response observed in control rat pulmonary 

resistance arteries. It may well be that this inhibitory effect is a result of a mechanism 

which limits increases in the ETB stimulated intracellular signal. 

The increased vasodilatation to ACh observed in pulmonary hypertensive rat 

pulmonary resistance arteries may be due to increased endothelial release of NO, but 

further studies are required to clarify this situation. The use of NOS inhibitors and the 

effect of removal of the endothelium will help assess if increased production of 

endothelium-derived NO is mediating this response, or if some other process is 

occurring. Chronic hypoxia could perhaps stimulate upregulation of endothelial 

muscarinic receptors, or enhance vascular reactivity to NO via alteration of an 
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intracellular signalling pathway, for example increased expression of soluble guanylate 

cyclase. The upregulation of both cNOS and iNOS in chronic hypoxic rat lungs (Xue, 

ei al., 1994; Le Cras, et al., 1996) highlights the increased regulatory role for NO in 

experimental hypoxic pulmonary hypertension. The increased basal release of NO 

appears to counteract inherent vascular tone observed in chronic hypoxic rat pulmonary 

resistance arteries. This increased vascular tone was shown not to be as a result of 

changes in intracellular cyclic nucleotide levels in these vessels. In the systemic 

circulation of the rat, inhibition of NOS activity uncovered basal vascular tone which 

was attributed to the actions of ET-1 (Richard, ei al., 1995). Therefore examining the 

actions of ET antagonists on inherent vascular tone in pulmonary resistance arteries 

would be of interest. 

Increased vasoconstrictor responses were observed to both ET-l and 5-HT in 

chronic hypoxic rat pulmonary resistance arteries. Although this may be in part 

explained by the smooth muscle hypertrophy observed in pulmonary hypertension, 

there must be an additional mechanism involved, as responses to all vasoconstrictors 

are not increased in these vessels. Common to the aforementioned agonists is that they 

are both thought to mediate vasoconstriction through activation of PLC. It would 

therefore be of interest to study agonists which mediate vasoconstriction via other 

intracellular pathways distinct from PLC activation. It could be that chronic hypoxia is 

modulating components of the PLC - IP3 signal transduction mechanism, resulting in 

augmentation of responses to agonists which stimulate this pathway. Measurements of 

the intracellular levels of IP3 would also be of interest in pulmonary resistance arteries 

considering that responses to both 5-HT and ET-1 are potentiated in pulmonary 

hypertensive vessels. 

The biochemical studies that were carried out investigated the effect of hypoxic 

pulmonary hypertension on intracellular cyclic nucleotide levels. No significant 

changes were observed in pulmonary resistance arteries , 
however, significant changes 

were observed in large calibre vessels. What is of interest from these studies is the 

observed decrease in [cGMP]i in the larger calibre pulmonary hypertensive arteries. 
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This was attributed to a combination of both decreased endothelium-derived NO and 

increased cGMP PDE activity. PDE inhibitors have been the subject of recent 

investigation as possible therapeutic agents in experimental pulmonary hypertension. 

Infusion of PDE inhibitors results in pulmonary vasodilatation in rabbits and lambs 

with experimental pulmonary hypertension (Clarke, el al., 1994; Zeigler, et al., 1995), 

and may prove even more effective in combination with inhaled NO therapy (Thusu, el 

al., 1995; Ichinose, ei al., 1995). As mentioned previously PDE's exist as a large 

family of enzymes and therefore current investigations are ongoing in our laboratory to 

assess which isoforms are altered in the pulmonary hypertensive state. Characterisation 

of the exact PDE isoforms present in the pulmonary vasculature, and the changes in 

their relative activity in pulmonary hypertension may prove to be of value in the search 

for a novel selective therapeutic agent. 
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The following tables list data for individual experimental rats including duration of 
hypoxic exposure (duration), body weight (BW, g), right ventricular weight (RV, mg), 
left ventricular plus septum weight (LV & S, mg), total ventricular weight (TV, mg) 

and ventricular ratio (RV/LV&S, mg/mg). Av. = average for batch, C= control, H= 

chronic hypoxic. Example rat 1C1 = batch 1, control rat 1. 

Rat Duration BW RV LV &S TV RV/LV&S 

id 1 - 213 160 543 703 0.295 
I C2 - 207 156 529 685 0.295 

I C3 - 214 162 575 737 0.282 

1C4 - 226 179 531 710 0.337 

Av. - 215±4 164±5 545±11 709±11 0.302±0.012 

1111 14/0 153 189 461 650 0.410 

I H2 14/1 167 167 351 518 0.476 

I H3 16/0 172 220 442 662 0.498 
1114 16/1 202 234 483 717 0.484 

Av. - 173± 10 203 ± 15 434 ± 29 637 ± 42 0.470 ± 0.02 

2C I - 233 174 603 777 0.289 
2C2 - 297 206 626 832 0.329 

2C3 - 265 176 607 783 0.290 
2C4 - 260 216 548 764 0.394 

2C5 - 270 248 565 813 0.439 

2C6 - 267 189 592 781 0.319 
2C7 - 290 174 625 799 0.278 

2C8 - 318 226 479 705 0.472 
Av. - 275±9 201±10 581±17 782±13 0.351±0.026 

2H1 14/0 185 276 480 756 0.575 
2H2 14/1 237 374 601 975 0.622 
2H3 16/0 215 344 500 844 0.688 
2H4 16/1 250 321 550 871 0.584 
2H5 14/0 244 382 504 886 0.758 
2H6 14/1 220 256 482 738 0.531 
2H7 16/0 245 417 515 932 0.810 
2H8 16/1 273 356 615 971 0.579 
Av - 234±9 341±19 531±19 871±32 0.643±0.035 
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Rat Duration BW RV LV &S TV RV/LV&S 

3C1 - 216 197 559 756 0.352 

3C2 - 205 169 663 832 0.255 

3C3 - 235 178 605 783 0.294 

3C4 - 236 201 571 772 0.352 

3C5 - 205 155 512 667 0.303 

3C6 - 246 210 596 806 0.352 

3C7 - 247 194 553 747 0.351 

3C8 - 235 185 562 747 0.329 

Av. - 228±6 186±6 578±16 764±17 0.324±0.013 

3H1 14/0 169 278 492 770 0.565 

3H2 14/1 201 346 494 840 0.700 

3H3 16/0 185 359 435 794 0.825 

3H4 16/1 172 328 489 817 0.671 

3H5 14/0 183 333 473 806 0.704 

3H6 14/1 246 210 596 806 0.352 

3H7 16/0 195 312 508 820 0.614 

3H8 16/1 190 315 537 852 0.587 

Av. - 193±9 310±17 503±17 813±9 0.627±0.049 

4C1 - 202 165 571 736 0.289 

4C2 - 215 184 588 772 0.313 

4C3 - 215 163 564 727 0.289 
4C4 - 221 169 599 768 0.282 

4C5 - 186 142 495 637 0.287 

4C6 - 203 158 497 655 0.318 

4C7 - 215 192 514 706 0.374 

4C8 - 192 150 504 654 0.298 

Av. - 206±4 165±6 542±15 707±19 0.306±0.011 

4H I 14/0 149 221 493 714 0.448 

4H2 14/1 181 283 515 798 0.550 

4H3 16/0 170 289 502 791 0.576 
4H4 16/1 182 245 501 746 0.489 

4H5 14/0 138 169 387 556 0.437 
4H6 14/1 155 242 418 660 0.579 
4H7 16/0 165 279 449 728 0.621 
4H8 16/1 165 251 476 730 0.534 
Av. - 163 ±5 248 ± 14 468 ± 16 715 ± 27 0.529 ± 0.023 
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Rat Duration BW RV LV &S TV RV/LV&S 

5C1 - 168 126 436 562 0.289 

5C2 - 207 173 521 694 0.332 

5C3 - 187 148 472 620 0.314 

5C4 - 200 152 513 665 0.296 

5C5 - 190 163 465 628 0.351 

5C6 - 187 157 452 609 0.347 

5C7 - 220 163 543 706 0.300 

5C8 - 228 176 571 747 0.308 

Av. - 198 ±7 157 ±6 497 ± 17 654 ± 21 0.317 ± 0.008 

5H1 14/0 162 267 479 746 0.557 

5H2 14/1 169 212 414 626 0.512 

5H3 16/0 162 207 426 633 0.486 

5H4 16/1 179 287 468 755 0.613 

5H5 14/0 160 247 414 661 0.597 

5H6 14/1 168 247 463 710 0.533 

5H7 16/0 175 283 468 762 0.628 

5H8 16/1 162 301 417 718 0.722 

Av. - 167±2 258±13 444±10 701±19 0.581±0.027 

6C1 - 210 159 552 711 0.288 

6C2 - 201 162 559 721 0.290 

6C3 - 213 162 564 726 0.287 

6C4 - 205 159 531 690 0.299 

6C5 - 187 180 490 670 0.367 

6C6 - 191 192 498 690 0.386 

6C7 - 225 182 546 728 0.333 

6C8 - 200 167 476 643 0.351 

Av. - 204±4 170±4 527±12 697±11 0.325±0.014 

6H1 15/0 170 285 564 849 0.505 

6H2 15/1 168 259 467 726 0.555 

6H3 17/0 172 343 531 874 0.646 

6H4 17/1 194 311 531 843 0.585 

6H5 14/0 162 274 467 741 0.587 
6H6 14/1 166 276 470 746 0.587 
6H7 16/0 165 352 454 806 0.775 
6H8 16/1 165 333 487 820 0.684 

Av. - 170±4 304±13 497±14 801±20 0.615±0.03 
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Rat Duration BW RV LV &S TV RV/LV&S 

7C1 - 168 150 436 586 0.344 

7C2 - 201 194 512 706 0.379 

7C3 - 186 177 452 629 0.392 

7C4 - 207 195 472 667 0.413 

7C5 - 160 155 429 584 0.361 

7C6 - 148 150 346 496 0.434 

7C7 - 180 166 425 591 0.391 

7C8 - 178 151 439 590 0.344 

Av. - 179±7 167±7 439± 17 606±22 0.381 ±0.010 

7H1 14/0 161 267 390 657 0.685 

7H2 14/1 155 231 395 626 0.585 

7H3 16/0 150 242 380 622 0.637 

7H4 16/1 171 248 469 717 0.529 

7H5 14/0 125 234 354 588 0.661 

7H6 14/1 136 208 359 567 0.579 

7H7 16/0 130 226 363 589 0.623 

7H8 16/1 160 269 382 651 0.704 
Av. - 149 ±6 241 ±7 387 ± 13 627 ± 17 0.625 ± 0.021 

8C1 - 216 182 539 721 0.338 

8C2 - 228 235 534 769 0.440 

8C3 - 215 185 541 726 0.342 

8C4 - 237 223 589 812 0.379 

8C5 - 209 173 515 688 0.336 

8C6 - 178 146 440 586 0.332 

8C7 - 192 169 471 640 0.359 

8C8 - 190 170 448 618 0.379 

Av. - 208±7 185±10 510±18 695±27 0.363±0.013 

8H1 14/0 166 264 436 700 0.606 

8H2 14/1 184 270 489 759 0.552 

8H3 16/0 173 273 527 800 0.518 

8H4 16/1 204 323 488 811 0.662 
8H5 14/0 143 241 371 612 0.650 
8H6 14/1 170 241 447 688 0.539 
8H7 16/0 148 270 344 614 0.785 
8H8 16/1 151 252 377 629 0.668 
Av. - 167±7 267±9 435±23 702±29 0.622±0.031 
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Rat Duration BW RV LV &S TV RV/LV&S 

9C1 - 159 167 435 602 0.384 

9C2 - 171 143 436 579 0.328 

9C3 - 170 147 439 586 0.355 

9C4 - 178 177 406 583 0.436 

9C5 - 200 175 496 671 0.353 

9C6 - 177 169 426 595 0.397 

9C7 - 201 190 511 701 0.372 

9C8 - 165 168 516 684 0.326 

Av. - 178 ±5 167 ±5 458 ± 15 625 ± 18 0.366 ± 0.014 

9H1 14/0 125 199 332 531 0.599 

9H2 14/1 139 244 338 582 0.722 

9H3 16/0 140 329 407 736 0.808 

9H4 16/1 160 246 400 646 0.615 

9H5 14/0 156 272 402 674 0.677 

9H6 14/1 152 213 376 589 0.566 

9H7 16/0 160 355 380 715 0.882 

9H8 16/1 200 279 461 740 0.605 

Av. - 154±8 265±17 387±15 651±28 0.684±0.040 

loci - 212 198 492 690 0.402 

10C2 - 229 190 571 761 0.333 

10C3 - 249 206 553 759 0.374 

10C4 - 237 209 516 725 0.405 

iOCS - 192 205 485 690 0.423 

10C6 - 207 188 508 696 0.370 

10C7 - 172 165 432 597 0.382 

10C8 - 203 226 478 704 0.473 

10C9 - 200 194 480 674 0.404 
Av. - 211±8 198±6 502±14 700±16 0.396±0.013 

IOHI 14/0 173 262 451 713 0.581 

10H2 14/1 192 322 439 761 0.733 

10H3 16/0 192 273 481 754 0.568 

10H4 16/1 197 322 442 764 0.729 
10H5 14/0 137 265 395 660 0.671 
10H6 14/1 158 272 441 713 0.617 
10H7 16/0 166 280 445 725 0.629 

10H8 16/1 177 298 415 713 0.718 
10H9 16/1 181 273 433 706 0.630 
Av. - 175 ±6 285 ±8 438 ±8 723 ± 11 0.653 ± 0.021 
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Rat Duration BW RV LV &S TV RV/LV&S 

lid - 251 224 570 794 0.393 
11C2 - 257 210 627 837 0.335 

11C3 - 226 207 504 711 0.411 
11C4 - 208 154 476 621 0.330 

11C5 - 202 157 453 610 0.347 

11C6 - 212 170 440 610 0.386 
11 C7 - 220 180 442 622 0.407 

11C8 - 223 189 479 668 0.395 

Av. - 226±7 186±9 498±24 684±31 0.378±0.012 

11H1 14/0 172 257 431 688 0.596 

11H2 14/1 179 286 403 689 0.710 

11H3 16/0 182 311 472 783 0.659 

11H4 16/1 195 261 382 643 0.683 

11 H5 14/0 183 312 431 743 0.724 
11H6 14/1 179 218 395 613 0.552 

11H7 16/0 180 283 374 657 0.757 

11H8 16/1 203 274 455 729 0.602 
Av. - 184 ±4 275 ± 11 418 ± 12 693 ± 20 0.660 ± 0.025 

12C 1 - 189 231 368 599 0.628 

12C2 - 168 185 388 573 0.477 
12C3 - 185 179 428 607 0.418 

12C4 - 167 204 423 627 0.482 
12C5 - 185 146 393 539 0.372 
12C6 - 175 144 405 549 0.356 
12C7 - 171 165 418 583 0.395 
Av. - 177±3 179±12 403±8 582±12 0.447±0.035 
12H1 16/0 170 299 429 729 0.697 
12H2 16/0 159 236 442 678 0.534 
12H3 16/0 145 318 445 763 0.715 
12H4 16/0 177 302 432 734 0.699 
12H5 16/0 178 251 397 648 0.632 
12H6 14/0 150 255 418 673 0.610 
12H7 14/0 143 242 362 604 0.669 
Av. - 160±6 272±13 418±11 690±21 0.651±0.024 

Rat Duration BW RV LV &S TV RV/LV&S 
13C1 
13C2 

- 
- 

168 

188 
145 

162 
408 
476 

553 

638 
0.355 
0.340 
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Rat Duration BW RV LV &S TV RV/LV&S 

13C3 - 215 187 448 635 0.417 

13C4 - 206 199 509 708 0.391 

13C5 - 186 157 425 582 0.369 

13C6 - 198 166 415 581 0.400 

13C7 - 198 154 413 567 0.373 

13C8 - 209 164 383 547 0.428 

13C9 - 228 178 501 679 0.355 

13C 10 - 207 154 472 626 0.326 

Av. - 200±5 167±5 445±14 612±17 0.375±0.010 

13H1 14/0 142 222 376 598 0.590 

13H2 14/0 163 239 413 652 0.579 

13H3 14/0 153 241 359 600 0.671 

13H4 14/0 130 205 321 526 0.639 

13H5 14/0 150 233 306 539 0.761 

13H6 14/0 183 291 449 740 0.648 

13H7 14/1 156 202 397 599 0.509 

13H8 16/0 176 273 434 707 0.629 

13H9 16/1 177 226 399 625 0.566 

13H10 16/1 177 204 373 577 0.547 

Av. - 161 ±6 234±9 383 ± 14 616±21 0.614±0.023 

14C 1 - 192 158 419 577 0.377 

14C2 - 178 135 376 511 0.359 

14C3 - 199 163 462 625 0.535 
14C4 - 191 141 462 603 0.305 

14C5 - 213 166 453 619 0.366 

14C6 - 214 173 535 708 0.323 

14C7 - 218 158 475 633 0.333 

14C8 - 184 139 396 535 0.351 

Av. - 199±5 154±5 447± 18 601 ±22 0.356±0.008 

14H1 14/0 155 209 389 598 0.537 
14H2 14/0 165 234 395 629 0.592 

14H3 14/0 166 245 404 649 0.606 

14H4 14/0 160 205 423 628 0.485 

14H5 14/0 145 186 395 581 0.471 
14H6 14/0 138 165 397 562 0.416 
14H7 14/0 155 212 383 595 0.554 
14H8 14/0 157 227 380 607 0.597 
Av. - 155±3 210±9 396±5 606±10 0,532±0.024 
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