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ABSTRACT 

In this work several investigations and developments have been carried out. The 

summary of these is as follow: 

• An investigation into the applicability of the bond-graph methodology, using the 

so-called Model Transformation Tools software, has been undertaken to model 

parallel robots. This software is a novel, non-commercial, program developed at 

the University of Glasgow, and in addition to the standard bond graph, it 

contains a powerful tool called the Hierarchical Bond Graph for dealing with 

very large-scale dynamical systems. It is the first time this tool has been applied 

for the modelling of parallel manipulators. 

• A General Method for modelling parallel robots using the Hierarchical Bond­

Graph concept has been developed. The method is based on related work on the 

modelling of closed chain robots using the Lagrange method. 

• Introduction of a new design concept to be known as the Multi-cell Parallel 

Planar Manipulator. The methodology allows for an increase in the workspace 

of the manipulator by increasing the number of cells without affecting the 

number of DOF. It can also be shown to enhance the manoeuvrability of the 

system. 

• Application of the multi-cell approach to a specific 2-DOF planar parallel 

manipulator and recognition of the need for a general model led to the 

development of a general dynamic model for the multi-cell manipulator using 

the Lagrange method. The reason for using the Lagrange formulation is that the 

necessary generalisation cannot be formalised using the Bond Graph technique 

due to the dependency of a bond graph on the specified structure of the system 

being modelled. 

• Static balancing of the new general manipulator was addressed and a new 

method for balancing has been introduced The method reduces the number of 

parameters to be adjusted to only one. 
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• Optimisation of the location of the redundant motor in the manipulator was 

investigated. This was achieved through dynamic analysis of the one-cell 

manipulator based on different motor positions. The modelling of the redundant 

actuated manipulator was performed using the Hierarchical Bond Graph method 

developed for parallel robots. To the author's knowledge this is the first time 

redundant actuated systems have been modelled using the bond-graph 

methodology. 

• The development of a new design for a one-cell manipulator using a Singularity 

based Design technique as proposed within this thesis. The design allows the 

operation of the manipulator in all known mechanical modes (Serial, Parallel, 

and Redundant Actuated Parallel). This enhances the versatility of the 

manipulator considerably. The idea was then generalised and led to the design of 

novel manipulators that are henceforth to be called Parallel-Parallel 

manipulators. 

• Construction and manufacture of an experimental system to test the multi-cell 

planar parallel manipulator design. The robot has two cells and moves in the 

horizontal plane. The experimental system design also incorporates a high 

precision electronic drive for interfacing to the controlling computer. 

• Investigations have been carried out into the efficiency of different non-linear 

control systems for application within the experimental system. 

• The development of a new nonlinear, model-based, control technique based on 

the pre-existing computed torque and sliding mode control methods. 

• The development of a new algorithm for the design of PD controllers that 

ensures uniform and fast dynamic responses, which are free from overshoots for 

all robot configurations. The technique also satisfies general stability 

requirements of the system. 
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Chapter 1 

Introduction 

Because manufacturing versatility is an important issue in industry robots are 

frequently used [1]. They are ideally suited for industrial applications where working 

conditions typically involve high degrees of heat, noise, poisonous gases, risk of injury, 

boring work, and extreme physical exertion. The economical advantage of using 

industrial robots is down to their abilities to reduce production cost, to increase 

productivity, to improve product quality and to improve management control. Industrial 

robots are used today in many applications such as material handling, spot and arc 

welding operations, spray-painting, die-castings, metal forming, drilling operations and 

assembly operations. 

In the early 1960s the first robot came into use. By the early 1980s there were 

more than 30000 robots working in Japan, Europe and U.S.A. The first generation of 

robots was unable to gather any information about its surroundings. Such robots could 

only perform pre-programmed motions. However, these types of robots included a wide 

range of designs from machines for material handling to advanced models which could 

perform complicated tasks such as welding and painting operations. The common 

feature of the robots of the first generation has been their ability to respond to 

instructions from a computer program without the need to change their basic set-up. 

Second generation of robots included all the features of first generation robots plus 

additional means for detailed communication with their surroundings. This 

communication has been accomplished by using sensors such as vision and tactile 

transducers. 
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1.1 Components of a Robot 

A robot is a controlled mechanical device that replaces or partially replaces a 

worker in a factory. Although robots are not nearly as versatile as a human, they are 

much more flexible and universal than the automated machines. Externally, a robot is 

observed to have a base, an arm, and an end effector. The end effector carries a tool or a 

part that is usually called the workpiece. Inside the arm or the base are the actuators that 

cause the arm to move. A control unit is required to give instructions to the actuators. 

Certain sensors are fixed to the robot for two purposes: in order to collect information 

about the robot actions and its status, or for gathering information about the surrounding 

environment. Figure 1.1 shows the main parts of a robot. 

Camera 

Sensors 

Gripper 

Computer 

Fig. 1.1: The principal units of a robot fitted with sensors [2]. 
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1.1.1 Arm 

The arm is responsible for positioning the gripper with respect to the base. It 

consists of several links connected by joints that are either revolute or prismatic. The 

links are made rigid to support the load carried by the gripper. Usually they are hollow 

to reduce the weight of the arm and provide space for gearing and electrical cables. On 

the other hand, joints must be precisely configured to maintain accurately the arm 

position. 

1.1.2 Wrist 

A wrist is mounted on the end of the arm. The wrist, as shown in Figure 1.2, 

includes three joints which provide three rotational motions (Roll, Pitch and Yaw). It is 

important to note that it is desirable to have the wrist-roll, wrist-pitch and wrist-yaw 

occur at the same centre. This is because control and dexterity are both improved by 

such a concentric configuration. 

1.1.3 End Effector 

In robot terminology, the end of the wrist is the end of the arm. At this end the 

end effector is fixed. Typical end effectors are claws, grippers, vacuum pickups etc. 

1.1.4 Actuators 

Electric motors, hydraulic cylinders or pneumatic actuators can drive the robot. It 

is important to note that the joints of the robot can be driven directly or indirectly. In the 

first case and by using electric motors the joint shaft is coupled directly to the motor 

shaft. The disadvantage of this is that each motor forms static and dynamic loads on the 

lower motors. Of course this affects the load capacity of the robot. However, direct drive 

offers two important advantages which are better positioning accuracy and improved 

reliability. The first advantage is down to the absence of gear trains and, hence reduction 

in friction and no backlash. The improved reliability results from the decrease in the 

number of parts in a connection. In the indirect drive mechanical transmissions are used 

to connect the actuators to the joints. Despite the lack of reliability and accuracy in the 
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indirect drives they improve the load capacity of the robot and can make its control 

simple. 

'1<m 

roll 

Fig. 1.2: A robot with three degrees of freedom wrist [3]. 

1.1.5 Control unit 

The control unit contains all the necessary devices used to direct and sequence 

the robot links, wrist and end effector. Robots are activated by various kinds of 

computers, from microprocessors to minicomputers. Advanced robots require 

continuous processing and computations. However, this requires high-speed computers. 

1.1.6 Sensors 

Sensors are grouped into two classes: 

• Internal sensors that measure variables within the robot structure. These can 

include position sensors, velocity sensors and force sensors. 

• External sensors that gather information about the surroundings of the robot. 

These may include vision and touch sensors. 

1.2 Classification of robots according to their workspace 

Robots can be classified by their workspace into four types as follows, 
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• Cartesian Robots 

Cartesian robots are characterised by a small workspace, but have a high degree 

of rigidity. Therefore, they are suitable for machining operations. These robots can reach 

any part of a volume bounded by the length of the individual sections of the arm. Figure 

1.3 (a) illustrates this type of robots. 

• Cylindrical Robots 

Cylindrical robot arms consist of one revolute joint and two prismatic joints. The 

workspace of these arms is a cylinder. Due to the existence of the revolute joint the 

control of these robots is slightly more difficult than in Cartesian robots. A typical 

example of a cylindrical arm is shown in Figure 1.3 (b) 

• Spherical Robots 

These robot arms have one linear joint and two revolute joints. They have a 

larger workspace and a lower rigidity than Cartesian and cylindrical robots. The control 

of these arms is more complicated than in cylindrical robots due to the revolute joints. A 

spherical arm can reach any point in a volume bounded by an inner and outer 

hemisphere. The radii of the two hemispheres correspond to the minimum and the 

maximum extensions of the linear part. Figure 1.3 (c) illustrates a typical example of a 

spherical arm. 

• Articulated Robots 

This type of robot arm includes three revolute joints. Articulated arms are similar 

to human arms. Their workspace is larger than any other robot types. The control of 

these robots is very complicated when compared to other robot types. Figure 1.3 (d) 

shows a typical example of this kind of robot structures. Sometimes, a prismatic joint 

replaces the upper revolute joint and the axes of rotation of the other revolute joints are 

made vertically. This arrangement is appropriate for assembly operations. The advantage 

of this design is that the weights of the first two links do not affect the robot dynamics. 

Figure 1.2 (e) illustrates this kind of robot design. 
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(a) Cartesian robots, (b) Cylindrical robots, (c) Spherical robots 
(d) Vertical articulated robots, (e) Horizontal articulated robots 



7 

Robots are usually open-loop mechanisms with multiple degrees of freedom 

(DOF). In general they have actuators at each joint, with a single DOF at the joint 

positions. Whilst having good operating characteristics, such as large workspace, high 

flexibility and manoeuvrability, typical manipulators have the disadvantages of low 

precision, low stiffness and low power. Additionally they are generally operated at low 

speeds to avoid excessive vibration and deflection. Also, the presence of gearboxes in 

manipulators of this sort limits their performance due to friction effects and backlash 

inherent in gear trains. To overcome these drawbacks the principal research efforts in the 

field have been centred on the development of direct-drive robots using light, strong and 

stiff link materials, together with small and light actuators of large power capabilities. 

In recent years improvements in the performance of robots have been achieved 

by development of the mechanisms themselves. Considerable research (see for instance 

[4-15]) has been published, especially on alternatives to open-loop robots, that is, 

parallel robots which consist mainly of closed-loop mechanisms where the links are 

arranged in parallel rather than in series. They generally offer a much higher rigidity and 

improved accuracy because the joint errors do not accumulate as they do in serial robots. 

Additionally, the actuators are all mounted on the supporting frame so that they do not 

form a part of the dynamic load as they frequently do in serial designs. The reduced load 

gives a smaller mobile mass resulting in potentially faster dynamic behaviour. The 

manipulator can also be driven directly by actuators, usually in the form of electric 

motors. The reduction of friction and the elimination of gearboxes, and hence backlash, 

allow for fast, potentially high precision, manipulators. 

In the literature it can be found that the performance of parallel robots can be 

further improved by using actuation redundancy (see [16-17]). A robot with actuation 

redundancy has more actuators than are actually needed. Therefore, the selection of 

actuator torques to track a prescribed trajectory becomes indeterminate. This can, 

however, allow the optimisation of the torque distribution among the actuators according 

to some chosen performance criterion. 
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Despite the advantages of parallel robots extensive research in the area has led to 

the conclusion that such manipulators are problematic due to issues of poor workspace, 

many singular configurations, and complex kinematic and dynamic characteristics. 

Because of these issues research in the area of parallel robots has been distributed 

between kinematic optimisation and analysis (see for example [18-25]), workspace 

analysis [26-27], dynamic analysis [28-32] and design analysis [33]. It is also the case 

that much effort has been devoted to the analysis of manipulator singularities (see for 

instance [34-38]) leading to a prevailing opinion which appears to support the idea of 

singularity avoidance in both path planning and control, as well as in mechanical design 

(see [39-40]). 

Due to the desirable characteristics of parallel manipulators, yet the problems associated 

with them such as poor workspace, multiple singular configurations, and complex 

kinematic and dynamic characteristics, the need for practical solutions to these 

drawbacks is vital for the exploitation of the performance benefits. In this context the 

research in this thesis is directed towards the development of new techniques for 

enhancing the performance of planar parallel robots. To meet this main aim several 

investigations and developments have been carried out. Before stating the nature of these 

developments and investigations previous work in the area of parallel robots is 

highlighted in the next section. 

1.3 Literature Review 

1.3.1 Robot Mechanism Configurations 

From the kinematic point of view robotic manipulators can be classified into two 

types, those known as " Serial Robots" and those defined as "Parallel Robots". In the 

former the links are arranged in a consecutive manner where one actuator is located on 

each link to define one DOF. Figure 1.4 shows one typical example of this sort of 

manipulator. Within this family of robots each link must carry the subsequent links and 

their associated actuators. As a result large link sizes and high motor torque capabilities 

are necessarily required and because of their cantilever design serial robots suffer from 
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the drawbacks mentioned earlier. Despite these drawbacks these manipulators do display 

many useful and very important characteristics which are required for any robot, such 

as: 

• Large workspace capability. 

• High manoeuvrability. 

In comparison with serial mechanisms parallel robots are closed-loop 

mechanisms in which the end effector is connected to the robot base by a number of 

independent chains (this number is equal to the number ofDOF of the robot) which have 

at most two links and are actuated by a unique rotary or prismatic actuator mounted on 

the base. It is important to refer to the fact that the word independent here means that no 

segment of a chain can be linked to another chain. This structural propriety results in 

manipulators of compact sizes and possessing multiple degrees of freedom. Typical 

planar and spatial examples of these manipulators, with different DOF, are shown in 

Figures 1.5-1.8. Due to the fact that the actuators are all mounted on the ground, as seen 

in the Figures, these manipulators have very small mobile masses meaning that their 

dynamics are potentially very fast. Because the position and orientation of the end­

effector are decided by each of the independent chains these structures do not have the 

problem of accumulation of actuator errors as is the case for serial robots. Therefore they 

can position very precisely. In many cases parallel robots overcome the defects of serial 

robots but suffer from certain defects that can be stated as follows: 

• Small working space. 

• Multiple singular configurations. 

• Low manoeuvrability. 

To overcome the first and third of these defects research in the area of parallel 

robots has been focused on the development of new designs that merge the properties of 

serial robots into those of parallel robots [15] leading to what are known as "Hybrid 

systems". The design of such systems is based on Redundancy in both the actuation and 



10 

the kinematics. Despite significant improvements in workspace and manoeuvrability 

these systems can become very complicated from the point of view of control and 

analysis. Therefore this technique has drawbacks because it loses some of the 

advantages of the original parallel system, mainly because the resulting system is 

effectively a serial robot. Figure 1.9 shows a typical hybrid manipulator driven by 

hydraulic actuators. The first nine DOF of this robot manipulator result from three 

linearly actuated parallel robots each of 3-DOF and connected in series. In order to 

enlarge the workspace a sliding pair has been added at the beginning of the mechanism, 

and this forms the remaining DOF. 

, 

~ 
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Fig. 1.4: A typical serial robot (Unimation PUMA 560, [41]). 
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Fig. 1.5: A typical 2 DOF planar parallel manipulator (five-bar mechanism). 
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Fig. 1.6: A typical 3 DOF planar parallel manipulator. 
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Fig. 1.7: The DELTA-580 manipulator, a 3 DOF direct-drive parallel robot [10]. 

Fig. 1.8: The Hexa manipulator, a 6-DOF parallel robot [36]. 
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Sliding Pair 

Section (1) 

Section (2) 

Section (3) 

Fig. 1.9: A ten DOF hybrid serial-parallel robot [15]. 
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1.3.2 Singularity 

Singularity in parallel robots is an important issue that should be analysed 

irrespective of the manipulator design. Unlike in serial robots singularity in parallel 

robots is a structural property. The presence of singularity inevitably leads to loss of 

manipulator control. The analysis of singularity leads to two important classes l [34] 

[36]. These are: 

• Parallel singularities. 

• Serial singularities. 

From the literature [34] [36] when the manipulator is in a serial singularity there 

is a direction along which no Cartesian velocity can be produced. The gripper loses one 

or more DOF and can resist one or more forces or moments without exerting any torque 

or force at the actuated joints. On the other hand when the manipulator is in a parallel 

singularity the manipulator becomes uncontrollable (the gripper of the manipulator gains 

one or more DOF and it cannot resist the forces or moments from one or more directions 

even when all actuated joints are locked). Figures 1.10 and 1.11 show these two singular 

configurations for a five-bar mechanism (a typical planar 2-DOF parallel robot). 

There is, in fact, another case of singularity which occurs only when the 

parameters of the manipulator satisfy certain special conditions. In this case a finite 

motion of the gripper is possible, even if the actuated joints are locked, or alternatively a 

finite motion of the actuated joints produces no motion of the gripper [34]. 

The differentiation between the various types of singularities is mainly 

dependent on two important matrices from the velocity equations of the manipulator. 

The detailed procedure for obtaining these matrices, and the conditions at which 

singularities can occur is outlined in chapter 5. In fact, the prevailing research opinion 

appears to support the idea of singularity avoidance in both path planning and control, as 

well as in mechanical design. 

1 In the context of this research examples of singularity are here restricted to 2-DOF planar mechanisms. 
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Fig. 1.10: Example of parallel singularity. 
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Fig. 1.11: Example of serial singularity. 
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1.3.3 Redundancy in Parallel Robots 

Redundancy can improve the abilities and performance of parallel robots and can 

be applied in the following ways: 

• Kinematic redundancy. 

• Sensing redundancy. 

• Actuation redundancy. 

The first allows for the minimisation of joint speeds. Sensing redundancy can help in 

avoiding uncertainties in the direct kinematics or by reducing the computational effort 

required by adding information in order to reduce the computation time within the 

control loop. Finally, a manipulator with actuation redundancy has more actuators than 

the number of degrees of freedom that are required to define its dynamics, however this 

makes the selection of the motor torques (in order to follow a desired path) 

indeterminate. Under certain circumstances this can lead to an optimisation of the torque 

distribution among the actuators according to some pre-specified performance criterion. 

Different co-ordination schemes for actuation redundancy have been proposed, for 

example Nakamura and Ghodoussi [42] represented the unactuated joint angles as 

functions of the actuated joints and used the Jacobian matrices to parameterise the 

actuation redundancy. Another example is the case of Beiner [16] who transformed the 

robot's differential equations into algebraic relations in order to cast the problem into a 

standard constrained optimisation form. 

Kock [17] removed the rotational degree of freedom of the movable platform of 

a 3-DOF planar manipulator and instead considered the system as a redundant 2-DOF 

manipulator. In this case both the kinematic and the actuation redundancy schemes were 

applied by adding a redundant branch and a redundant motor to the normal five-bar 

mechanism. In many cases the location of the redundant actuator appears to be a 

personal choice and there is no obviously optimum place for it to be. In this context 

Beiner [16] recommended the optimisation of the location of the redundant actuator in 

order to enhance its advantage in dynamic applications. 
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1.3.4 Modelling of Parallel Robots 

The derivation of dynamic equations of motion for mechanical systems can be 

achieved using the classical concepts of vectorial mechanics [43], Newton-Euler [44], 

and the energy based construct of Lagrange-Euler [45] and Lagrange [46-47]. In 

addition to this other energy and power flow methods like the Bond-Graph approach can 

be used to formulate the dynamic equations [48-53]. In fact all of these methods can be 

applied directly to derive the equations of motion for serial manipulators without any 

conceptual difficulty. The choice of such methods is down to the modeller and the 

specific reason for which the equation of motion is derived. 

For parallel robotic systems, containing closed chains in their design, the 

situation is different. This is because of the holonomic constraints involved in the 

kinematic structures of these manipulators, meaning that the previously mentioned 

modelling techniques are not directly applicable. One classical method for dealing with 

constraint cases of this sort is to introduce Lagrange Multipliers, A, into Lagrange's 

equations [54-55]. The disadvantage of this technique is the difficulty in finding 

appropriate recursive computational schemes, likes those proposed for serial 

manipulators. 

An alternative modelling approach for systems with closed chains was explored 

in the literature [42][56-59]. This approach solved the problem by reducing the closed 

chain to a tree structure mechanism consisting of multi-serial chains on the assumption 

of virtual actuation. This approach [42] can be summarised as follow: 

1. A closed-link mechanism is transformed into an open-loop structure by virtually 

cutting the workless joint that closes the loop. This is on the assumption that 

virtual actuators drive the unactuated joints of the open-loop structure. This 

procedure directly corresponds to removing the holonomic constraints that close 

the loops in the manipulator. 

2. The serial reduced system can then be dynamically modelled using any of the 

standard recursive formulations. 
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3. The torques of the actuated joints of the original closed mechanism can 

subsequently be computed from joint torques of the tree structure, by taking into 

consideration the constraints ofthe closed loop. 

A complete step-by-step formulation of the dynamics of the basic cell of the manipulator 

under investigation using the above technique can be found in Appendix (A). This was 

done primarily to check the validity of the results obtained by the bond graph technique. 

It is important to refer to the fact that Lagrange's formulation is the most common 

modeling technique in references [42][56-59] and the examples presented were planar 

mechanisms. 

Despite the above complications dynamic modelling of closed kinematic chains 

can be achieved by means of the standard Lagrangian technique after solving the 

kinematic constraints, and thus by reducing the number of position variables to the 

actual number of degrees of freedom. However this results in complex algebraic 

computations whilst deriving the equations of motion. 

The bond-graph methodology is an attractive technique for modelling physical 

dynamic systems with the advantage that it can deal with many different application 

domains. The bond graph theory provides a graphical representation of power flow in 

dynamic systems wherein power flow is expressed by the product of two generalised 

variables; e (effort) and f (flow). The disadvantage of the method is that it needs a 

computer to handle the equations generated from the graph of the models. This is due to 

the large number of equations generally extracted from the model's graph. But the 

availability of computer software such as CAMP-G [60] and MTT [61-62] assists in this 

process, so that bond-graphs can be used practically for the dynamic modelling of 

physical systems. 

Modelling of mechanical systems by means of bond-graphs begins with the 

derivation of positional equations dependent on the kinematic structure of the system 

and then after differentiation these are transformed to the velocity equations defining the 

system. The bond graph of the system is constructed from the system velocities. In 
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constrained mechanical systems the derived velocities are not independent which gives 

rise to a set of inertia derivative causalities in the bond graph model. A bond graph with 

derivative causality implies the existence of an algebraic loop: the system dynamics are 

described by a set of first order differential equations together with a set of algebraic 

equations. This problem must be alleviated as the process of deriving the dynamic 

equations become cumbersome. 

In order to solve the derivative causality problem Kamopp and Margolis [63] 

introduced a solution through which the derivative causality effect can be removed 

based on the addition of fictitious compliance elements (C-elements) to the appropriate 

junctions in the bond graph model. The addition of these elements assumes mechanical 

components of high stiffness. The method is advantageous because it not only eliminates 

the derivative causality problem but can also describe the joint forces, and can be used to 

model joint clearances [64]. The disadvantage of this method lies in the fact that the 

system states are increased to more than the actual number required. Zeid [64] proved 

that the Kamopp-Margolis method produces a formulation that is equivalent to the 

classical Lagrange multipliers method for the modelling of planar mechanisms. He also 

demonstrated that the use of R-elements (dampers) instead of the C-elements could 

eliminate derivative causality without increasing the number of states of the system. The 

formulation using these damping elements is still equivalent to the method of Lagrange 

multipliers. Khulif [65] removed the derivative causalities by adding artificial effort 

sources instead. The procedure to establish this method can be obtained from this 

reference. 

For holonomic constrained mechanical systems Redfield [66] formulated bond 

graphs based on conservation of energy principles and generalized coordinates. This 

bond graph is a representation of the standard Lagrange equation of motion. Although 

the method assists in avoiding the derivative causality problem it is not practically useful 

because the modeller has to write the kinetic co-energy and potential energy in terms of 

the generalised coordinates, take the appropriate partial derivatives and then construct 

the bond graph model. The major disadvantage of the method lies in the fact that all 
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constraint forces are lost and therefore other design variables must be reconstructed 

using free body diagrams and Newton's laws [67]. 

Despite the aforementioned and the recent efforts in the field of bond graphs (see 

for example [68-70]) it seems that there is no efficient, established, technique for 

modelling mechanical systems. The area is still open for new techniques that make the 

bond graphs modelling process more efficient, easy and systematic. 

1.3.5 The Control Problem of Parallel Robots 

Parallel robots have the merit of being able to move at high speed, this being 

enhanced by the use of direct drive motors. Change of inertia and the effect of 

centrifugal and Coriolis forces in robot dynamics cannot be ignored in high-speed 

applications and must therefore be considered in any control implementation. The 

computed torque2 method ([44] and [71-73]) has been proposed for conventional serial 

link manipulators on the basis that nonlinearity can be cancelled out by the model itself 

and the resulting linear system together with the disturbances can be controlled by a 

simple PD or PID controller. The method needs the model to be of very high quality, 

and this is frequently very difficult to achieve because of the uncertainty in the model 

parameters. 

The same idea can be applied to the control of parallel robots. However in 

addition to the above restriction solutions of the inverse dynamics of parallel 

mechanisms require considerably more computation than those for serial systems. The 

key to practical application is how fast the inverse dynamics can be solved. 

The feed-forward method is another possible control technique that can be used 

in the control of parallel robots. It differs from the computed torque method in the way 

that the model does not interact with the feed back loop. For the sake of this research the 

two methods will be reviewed. 

2Sometimes it is called Feed Back Linearisation. 
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• Feed-Forward Controller 

The feed-forward controller is the simplest form of model-based control system. 

It uses the inverse dynamics of the robot, R-1
, to calculate the required torque, 1", to 

perform a prescribed joint trajectory (ed' 8 d' 8 d)' For controlling the uncertainty in 

parameter estimations and dealing with unknown dynamics a PD controller is used. The 

schematic diagram of the controller is shown in Figure 1.12. It is clear that the model­

based portion is outside the servo-loop. This in fact can solve the inverse dynamics 

computational problem associated with parallel robots because the torques from the 

model can be computed off-line and then be read from memory at run time. 

Unfortunately the method does not provide complete decoupling. This is due to the fact 

that corrective torques in the servo-loop of one joint will affect all the other joints. 

@d 

ed 

@d 

Inverse I TmodeJ + 

Dynamics 

E 

+ 

@ 

ROBOT Ie 

+ 

Fig. 1.12: Feed-forward control system for robot manipulators. 
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The following equation defines the control law, 

T=Tmorul +KpE+KvE (1.1) 

Where E is the vector of servo errors. The terms K p ' Kv are the proportional and the 

derivative gain matrices of the servo-loop, respectively. Their values are chosen to 

satisfy stability conditions. 

• Computed Torque Controller 

The computed torque controller differs from the feed-forward controller in the 

way that the model-based portion interacts with the servo-loop to allow complete 

decoupling. The schematic representation of this controller is shown in Figure 1.13. 

A realistic implementation of the computed-torque method must rely on 

estimates of the manipulator parameters rather than the exact values. Let 

M(e),v(e,e),8(e) and F(e) denote the estimated values of the manipulator inertia 

tensor, Coriolis and centrifugal force vector, gravity-loading vector, and frictional force 

vector, respectively. That is, 

M(e) = M(e)+ .w(e) 

v(e,e)= v(e)+ ilV(e) 

G(e) = 8(e)+ ilG(e) 

F(e )= F(e )+ M(e) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

The terms .w(e),ilV(e),ilG(e) andM(e) denote the vectors of the errors in the 

estimates of the arm parameters. In order to apply the computed torque controller and 

therefore cancel the nonlinear dynamics of the manipulator that is defined by the 

following equation: 

T = M(e)8 + v(e,e)+ G(e)+ F(e) (1.6) 
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The following state feedback control law can be used, 

r = M(e){ed +Kv E +Kp E}+ v(e,e)+ O(e)+F(e) (l.7) 

Substituting from equations 1.2-1.5 into equation 1.6 and then equating to equations 1.7 

gIves, 

E+ {I -M-1(e)LW(e)}(Kp E+Kv E) 

-M-I(e){~v(e,e )+~G(e)+M(e )+LW(e)ed }= 0 (l.8) 

.-
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Fig. 1.13: Schematic of the computed torque Controller. 

If the model is exact, equation 1.8 is reduced to the following linear second order 

equation that is independent of the arm parameters: 
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E+Kv E+Kp E = 0 (1.9) 

If the gain matrices, that is Kv and K p' are diagonal then the closed loop equations of 

motion (equation 1.9) are not only linear but also uncoupled. The characteristic roots of 

equation 1.9 can be assigned to have negative real parts through the appropriate 

selection of the gains Kv and K p thereby the error will approach zero asymptotically. 

The major problem of the computed torque method lies in the fact that the values 

of the parameters in the model are often not known exactly for reasons that will be 

discussed in chapter 6. However, because in many applications the mass properties of 

the objects that the manipulator picks up are not generally known it is impossible to 

maintain an accurate dynamic model. 

Despite the advances in control systems theory the PID controller is still the most 

commonly used controller for commercial robots. The popularity and the widespread use 

of this controller can be attributed to its simplicity and its generally acceptable 

performance characteristics. The I term ensures robust steady-state tracking of the step 

commands while the P and D terms provide desirable transient response and stability, 

respectively. 

Recently, a new class of PID controller has been discussed in the literature [74-

76], consisting of a nonlinear gain in cascade with a linear fixed-gain PID controller. 

This structure enables the controller to adapt its response based on the performance of 

the closed-loop control system. When the error (e) between the desired and the actual 

values of the controlled variable is large, the gain amplifies the error substantially to 

generate a large corrective action to drive the output of the system to its goal rapidly. As 

the error diminishes, the gain is reduced automatically to prevent large overshoot in the 

system response. The block diagram representation of this controller is shown in Figure 

1.14. The nonlinear gain can represent any nonlinear even function of the error that is 

bounded in the sector 0 < K < Kmax' Two partially successful functions have been 

proposed [74]. These are the Sigmoidal and the Hyperbolic functions and are defined as 

follows: 



• Sigmoidal function 

{ 2 -I} K =Ko +KI 1+exp(-K2e) 

• Hyperbolic function 

K = Ko + K J {l- exp(K,e )+2exp (_ K,e )} 

WhereKo' KI and K2 are user-defined, positive, constants. 

Command 

Input + 

..... ,... 
Nonlinear 

gain 
PID 

Controller 

(1.3) 

(1.4) 

ROBOT 

Fig. 1.14: General structure of a Nonlinear PID controller [74]. 

1.4 Organisation of the Thesis 

The layout of the thesis is as follows: 

• Chapter 2 
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Output 

In this chapter the basic concepts of bond graphs are outlined. After this the 

dynamics of the main cell of the parallel robot are formulated by using the standard 
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Bond-Graph methodology. The Model Transformation Tools (MTT) software is used 

to perfonn this task. In addition to the standard bond graphs, MTT contains a 

powerful attractive technique for modelling large-scale dynamic systems called the 

Hierarchical Bond Graph. A general method is discussed for modelling the parallel 

robot by means of the Hierarchical Bond-Graph. 

• Chapter 3 

In this chapter the novel design concept of the Multi-cell Parallel Planar 

manipulator is introduced. Application of this concept to a specific 2 DOF planar 

parallel manipulator is undertaken leading to the development of a general dynamic 

model for this multi-cell manipulator, for any configuration, using the Lagrange 

method. In addition to this static balancing of the manipulator is addressed and a 

proposal for balancing is introduced. 

• Chapter 4 

In chapter 4 the optimisation of the location of the redundant motor in the 

manipulator is investigated. This is achieved by the dynamic analysis of a one-cell 

manipulator using different motor locations. Modelling of the redundant actuated 

manipulator is perfonned using the Hierarchical Bond Graph Method. 

• Chapter 5 

In this chapter, a novel design for a one-cell manipulator is developed using a new 

Singularity based Design technique developed by the author of the thesis. A 

complete dynamical analysis of the manipulator is perfonned through simulation. It 

is important to note that the idea is generalised and leads naturally to the design of 

further novel manipulators, defined here by the tenn Parallel-Parallel manipulators. 

• Chapter 6 
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This chapter gives details of the experimental system and the experimental rig 

required to study the implementation issues that arise for a planar parallel 

manipulator of this sort. In addition to this revision of the theoretical dynamic modes 

is performed in order to match the actual dynamics of the arm. The revised dynamic 

model is then subjected to an evaluation process achieved by comparing data 

collected from the experimental robot with that obtained by simulations using the 

dynamic model. 

• Chapter 7 

In chapter 7 investigations are carried out into the effectiveness of the feed-forward 

and the computed torque controllers in controlling the experimental manipulator. 

• Chapter 8 

In this chapter a relationship between the computed torque controller and the well­

known sliding mode controller (SMC) is established using the reaching law method. 

After that a new design for a computed torque controller is constructed followed by 

theoretical and experimental evaluation of the system performance using this 

controller. 

• Chapter 9 

In chapter 9 investigations are carried out into the effectiveness of some nonlinear 

PD and PID controllers in controlling the experimental robot manipulator. 

• Chapter 10 

In this chapter a new methodology for the design of PD controllers is introduced 

followed by analysis of the system stability using the Lyapunov stability criterion. 

After that theoretical and experimental evaluation of the system performance under 

this kind of control is carried out. 



• Chapter 11 

In this final chapter the thesis is concluded and suggestions for further research are 

presented. 
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Chapter 2 

Bond Graph Modelling of a 2 OUF Planar Parallel 
Manipulator Using the Model Transformation 

Tools Software 

2.1 Introduction 

The bond graph is a graphical construct in which all the characteristics of a 

physical system can be defined. In the method the physical system is divided into 

components, and each component has its own physical law (the so-called constitutive 

relationship). Connections between the components are based on the structure of the 

physical system. These connections are represented on the model graph by individual 

half arrows (bonds) which indicate the direction of power flow between the components. 

Each bond has two variables associated with it based on power; thus the two variables 

attached to each bond in a bond graph are the effort (e) and the flow (j). The 

multiplication of these two variables gives the amount of power that is carried by the 

bond. The effort and flow variables can be represented in any physical domain, for 

example the effort and flow can represent the voltage and the current in an electrical 

system, or the force and velocity in a mechanical system. This is, in fact, one of the 

advantages of using a bond graph in modelling dynamic systems within different 

domains. In addition to this bond graphs also highlight the structure of the system, 

giving a clear understanding of the interactions between the system components. 

The first part of the chapter explores the definitions of the basic bond graph 

elements and components. Following on from this the Model Transformation Tools 

(MTT) [62] software is presented. After that the bond graph method is used to model a 

specific 2-DOF parallel manipulator using the MTT program. 

,I 
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2.2 Elements of Bond Graphs 

2.2.1 Bonds 

The primary element in any bond graph is the energy bond. It is represented by a 

half arrow. Each arrow carries two variables, the effort and the flow. The direction of the 

arrow refers to the positive direction of the flow of power. The form of the bond is seen 

in Figure 2.1. The flow variable is conventionally associated with the side of the bond 

that has the half arrow. 

Effort 

Flow /' 

Fig. 2.1: Representation of an energy bond. 

2.2.2 Variables 

The meaning of the effort and flow variables in different energy domains is 

shown in the table 2.1 below. 

Domain Mechanical Electrical Hydraulic Thermal 

Effort Force / Torque Voltage Pressure Temperature 

Flow Velocity / Current Flow rate Entropy flow rate 

Angular velocity 

Table (2.1): Effort and flow variables in different energy domains. 
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2.2.3 Junctions 

There are two types of junctions in bond graphs. The first type is the '0-

junction' which allows the flow variables to be added algebraically. The other one is the 

'1- junction' and this allows the addition of effort variables. These junctions are 

generalisations of series and parallel connections in electrical systems. Table 2.2 shows 

the two junctions and the mathematical equations associated with them. 

e,p, 
e

1 
e3 

1; 7~O !/ 
f e. • I I • 

• •• 

e1 = e2 = e3 = ..... = ei 

h=/2+J;+ .... ·+J; 

e,p, 
e

1 
e3 

h 7 je
i 

•• /7 
e1 = e2 + e3 + ..... + ei 

h=/2=/3= .... ·=J; 

Table 2.2: Bond graph junctions. 

2.2.4 Components 

There are two basic components in bond graphs namely One-Port components, 

III which each component is connected to only one energy bond, and Two-Port 

components which are each connected to two bonds. 
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2.2.4.1 One-Port Components 

The four main one-port bond graph components are the R-, C-, J- and S­

components. The physical system components that are represented by these one-ports in 

different energy domains can be shown in Table 2.3. The physical laws governing each 

component determine the relationships between the power-variables associated with the 

bond connected to it. The physical laws that govern typical components are shown in 

Table 2.4, noting that linear behaviour is assumed throughout. 

Domain 

Component Mechanical Electrical Hydraulic 

R Damping Resistance Flow resistance 

(Transitional or rotational) (Ohmic / Thermal) 

C Compliance Capacity Compressibility 
(Transitional or rotational) 

I Mass / Inertia Inductance Fluid inertia 

S Force / Torque Voltage source / Pressure source / 

Velocity / Angular velocity Current source Flow source 

Table 2.3: Physical representations of one-port components. 

2.2.4.2 Two-Port Components 

The only practical two-port components in bond graph representations are 

Transformers and Gyrators. They represent the physical effects of amplification or 

attenuation of the effort applied to them. The advantage of these two-port components is 

their ability to represent connections between different energy domains. As the 0- and 1-
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junctions represent addition, the two-port components represent the process of 

multiplication. The symbols and the constitutive relationships of both the transformer 

and the gyrator are shown in table 2.5. 

Component Value Symbol Constitutive relationship 

R r 7 R:r 
e=f·r or, f=~ 

r 

7 C:c e =! Jf·dt f=c
de 

C c or, 
c dt 

7 I:m e=m
dj 

j =~ Je.dt or, I m dt m 

Sf 1 f = constant (Flow source) 
S - 7 

Se 71 e=constant (Effort source) 

Table 2.4: The one-port components and their features. 

Component Gain Symbol Constitutive relationship 

1 
Transformer k 7 TF:k 7 e2 = k e, and 1; = k It 

(TF) 

Gyrator n 7 GY:n 1 
(GY) 7 e2 = n 1; and f2 = - e, 

n 

Table 2.5: The two-port components and their features. 
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2.2.4.3 Modulated Two-Port Components 

If the variables nand k in the two-port components are not constant the 

definition is revised to modulated two-port components. The modulated component has 

three bonds associated with it. Two of these bonds are the original energy bonds of the 

normal components whilst the third bond carries the modifying signal and is not an 

energy bond. So, there is no energy transfer through this signal. This bond is commonly 

called an Activated bond. 

2.2.5 Causality 

The way in which inputs and outputs are specified in bond graphs is by using 

causal strokes. The causal stroke is a short, perpendicular, line at the tail or head end of 

the energy bond. It indicates the direction in which the effort signal is applied. It is 

commonly known that the end of the bond which displays the causal stroke is the end 

towards which the effort is applied and that the flow is directed to the other end. One of 

the main features of modelling with bond graphs is that the causality is not specified 

when the model is being developed. The causality is specified only for the source 

components and it subsequently propagates through the graph. Figure 2.2 shows the 

directions of the effort and flow in a bond with different causal stroke locations. 

I ..... ..... Effort 

_-.. Flow 7 

Effort ~ I 
... Flow 7 

Fig. 2.2: The meaning of a causal stroke. 
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2.3 Model Transformation Tools (MTT) 

The MTT program is a computer software which has the ability to take bond 

graph models in some graphical format and transform them to a set of useful 

representations such as differential algebraic equations, state space equations, transfer 

functions and simulation codes. The transformations in MTT can be accomplished by 

using software tools such as REDUCE, Matlab, OCTAVE, and etc., usually encapsulated 

in UNIX shell scripts. The relationships between the tools themselves are encoded in a 

Make file. This allows the modeller to specify the representation that he needs, and then 

all the intermediate transformations are generated automatically. 

In addition to the standard bond graph, MTT also accommodates the concept of 

the hierarchical bond graph via a library of sub-systems which work in many different 

energy domains. The connections between these sub-systems in MTT are accomplished 

by using special bonds called Named SS Components. Further bonds, called SS 

Components, represent the inputs and the outputs of the system model. More 

information about MTT can be found in the manual [62]. 

2.4 Bond graph dynamic modelling of 2-DOF Planar Parallel 

Manipulator using MTT 

As previously mentioned, one of the associated problems of parallel robots is 

their complicated dynamics, even for simple structural systems. This puts certain 

restrictions on the application of model-based control strategies due to the scale of the 

real-time computations required for the inverse dynamics. To take full advantage of 

parallel robots and to minimise such difficulties the manipulator shown in Figure 2.3 

was chosen to be the principle mechanism to be studied. This manipulator is a special 

case of the conventional five-bar mechanism and has a symmetric structure with simple 

constraints together with links of equal lengths. In addition it has been proven that the 

maximum workspace for a five-bar mechanism occurs only when it exhibits this specific 

design [4]. 
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Fig. 2.3: Configuration of the, 2-DOF, planar parallel manipulator. 

The first step in the modelling process is to construct the bond graph of the 

manipulator. This is done by means of the following steps: 

• Assumptions 

Each link in the manipulator is assumed to be rigid with mass m, length 2L and 

polar moment of inertia about the centre of mass of the link J = t mL2 . 



• Solving the kinematic constraints of the mechanism 

From figure 2.3 one can deduce that: 

()I = ()Jl and ()2 = ()22 

Differentiating with respect to time leads to, 

Where, 

(1)1 = (1)11 and (1)2 = 0)22 

() : Represents the angular displacement. 

(1) : Represents the angular velocity. 
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(2.1) 

(2.2) 

It is clear from Figure 2.3 that the angular displacements are measured from the Y-axis. 

This is due to the fact that the standard ROD component used in the hierarchical bond 

graph approach is based on this assumption. So, it is better to work to the same 

convention here also. 

• Defining three absolute velocities for each link 

Three absolute velocities for each link must be defined. These represent the X, Y 

Cartesian velocities and the angular velocity (1) of the centre of mass of each link, 

assuming that OXY is representative of an inertial frame. 

• Link Ob (mass centre is point 1) 

XI = ~(xJ= ~(Lsin()J= L(1)1 COS()I (2.3) 
dt dt 

Y
I 

= ~(YJ= ~(Lcos()J= -L(1)1 sin()1 (2.4) 
dt dt 
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OJ =~(B) 
I dt ~ I 

(2.5) 

The above three velocities are represented on the bond graph for the manipulator, shown 

in Figure 2.4, by the three I-junctions x_I, y_I and wI. 

• Link Oa (mass centre is point 2) 

Similar to the case of link ~b, the three velocities of link Oa are as follows: 

X2 = ~(xJ= ~(LsinB2)= LOJ2 COSB2 (2.6) 
dt dt 

Y2 = :t (Y2)= :t (LcosBJ= -LOJ2 sinB2 (2.7) 

OJ2 = :t (B2 ) (2.8) 

These are represented on the graph by the three I-junctions x _ 2, y _2 and w2. 

• Link ac (mass centre is point 11) 

XII = ~(Xll) = ~(2LsinB2 + LsinBI) = 2LOJ2 COSB2 + LOJI cosBI dt dt 

Yll = ~(Yll) = ~(2LcosB2 + LcosBI) = -2LOJ2 sinB2 - LOJI sinBI 
dt dt 

d 
OJII = OJI = -(BII) 

dt 

(2.9) 

(2.1 0) 

(2.11) 

These absolute velocities are represented on the graph by the three I-junctions x_II, 

y _11 and w 11. 



• Link bc (mass centre is point 22) 

Similar to the previous link, the three velocities of link bc are as follows: 

X22 = ~(X2J = ~(2LsinO] + LsinOJ = 2LOJ] cosO] + L012 cos02 
dt dt 

Y22 = ~(Y22) = ~(2LcosO] + LcosOJ = -2L01] sinO] - LOJ2 sin O2 
dt dt 

d 
0122 = 012 = -(022 ) 

dt 

These are represented by the three I-junctions x _22, Y _22 and w22 

• Model construction 
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(2.12) 

(2.l3) 

(2.14) 

The bond graph model of the manipulator, Figure 2.4, is constructed from the 

kinematic equations 2.1-2.14 by using combinations of bonds, junctions, transformers, 

integrators and I-elements. On the graph each INTF component represents an integrator 

that is responsible for integrating the angular velocity attached to it, therefore producing 

the angular displacement (0) that enters the transformer (EMTF) component via the 

mod port by using a direct bond. This displacement represents the modulation signal of 

the transformer whose gain, in this case, contains terms of either Sin ( 0) or Cos ( 0) . 

It is important to refer to the fact that the angular velocities of links Oa and ~b, 

for the sake of clarity, are repeated twice on the graph; th_l, wI for link Ob and th_2, 

w2 for link Oa. These do not affect the model because direct bonds are used in the 

connections to their counterparts. 
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Fig. 2.4: Standard bond graph model for the parallel, 2-D OF, manipulator. 
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In order to complete the model of the manipulator the externally applied torques 

(inputs) and system states have to be defined on the graph. The inputs are represented by 

the two effort-source elements t I and t II. It should be noted that because in bond - -

graphs the states result from every C- and 1- element of integral causality and due the 

fact that each integrator has a C- element of this type (as is discussed in section 2.6) the 

system has two states these being the angular displacements of link Oa and of link Ob. 

Moreover, two other states have been chosen as the angular momenta of these two links. 

The definition of these two states is accomplished by assigning integral causality to the 

two I-elements that connected to the two I-junctions representing the angular velocities 

of links Oa and Ob. 

The second step in the bond graph modelling process using the MTT program is 

to write the label file of the model (Appendix B). This file is very important because it 

defines the characteristics of all the components in the bond graph model. 

The third step in the modelling process is to extract the various representations 

generated by the software and this is not possible unless the bond graph of the system is 

causally complete. The most important representations are the structure representation 

and the simulation code and these can be found in Appendix (B). It is important to note 

that the simulation code generated by MTT has many errors in its structure meaning that 

it cannot be used directly in simulating the system in the Matlab program. The errors 

results from the fact that the software incorrectly produces capitalised letters in some 

words such as xInitial, MTTxI, MTTx2, MTTx3, MTTx4, MTTuI and MTTu2. 

To obtain the equation of motion in state space form the generated simulation 

code has to be transferred manually into the following matrix form: 

20 12cos& 0 -I2x
2
sin& Xl 'l"l 

12cos& 20 I2x\ sin& 0 x
2 

'l"2 
(2.15) = ~I 0 0 1 0 X3 J 

0 0 0 1 x
4 

X2 
J 

Where, L1x = x4 - X3 
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Equation 2.15 is not useful unless the state vector of the system is defined. This must be 

identified from the generated list of states (Appendix B). 

The state vector of the system is as follows: X = [j 81 j 82 81 82 f 

Equation 2.15 together with the above state vector gives the full information required for 

any control system design or analysis of the manipulator. 

2.4.1 Discussion 

It has been shown that twelve velocities have defined the parallel manipulator 

kinematics. Because these velocities are not independent the bond graph model shows 

many inertial (1-) elements with derivative causality. In the MTT program these 

represent the system non-states. The derivative causality in MTT does not affect the 

modelling process because the software has the ability to reduce differential algebraic 

equations into ordinary differential equations by using a special technique that is 

discussed by Gawthrop and Smith [50]. 

It has also been shown that once the constraints are solved for the parallel, 2-

DOF, robot then the modelling process is systematic. In fact this is true for the system 

here because the constraints are very simple, and the existing MTT built-in components 

such as the EMTFs, are sufficient for performing the task. However, in general, solving 

the constraints for other simple parallel robots will inevitably lead to complicated 

equations that may contain functions other than simple relationships such as 

L cos, L sin, 2L cos and 2L sin, and systems with these features cannot necessarily be 

modelled using MTT because of the lack of built-in functions. 

2.5 Hierarchical bond graph modelling of the 2-DOF planar parallel 

manipulator using MTT 

In serially driven manipulators, each link is responsible for generating one 

degree of freedom (two states). Hence the number of links is equal to the number of 
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degrees of freedom of the manipulator. In fact, this feature is not relevant to systems 

that have closed kinematic chains in their topologies, such as parallel robots. In parallel 

robots the number of links can exceed the number of degrees of freedom. Because of 

this use of the standard bond graph technique for modelling parallel manipulators will 

lead to bond graph models with huge numbers of bonds and components. This feature 

will obviously make the graph complex and hard to follow. So for this reason the 

hierarchical technique of bond graph modelling is the most suitable when modelling 

such robots. The idea of hierarchical modelling [77] using MTT is based on a 

decomposition of the system into simple subsystems each of which can be considered as 

a component in a standard bond graph. These sub-systems may be themselves also be 

built hierarchically. Connecting the sub-systems together by ports allows the 

construction of the whole bond graph for the system. The power of a hierarchical bond 

graph lies in the fact that it extends the re-usability of a sub-system model, it clarifies the 

bond graph model and it reduces the number of bonds on the model's graph. 

MTT has a library of ready-to-use subsystems for modelling mechanical 

manipulators that serve to reduce the time and effort required. For modelling planar 

robots, the ROD component represents any longitudinal link with a uniform cross­

section. The bond-graph of this subsystem is shown in Figure 2.5. The component itself 

contains a subsystem which is the integrator INTF that integrates the angular velocity of 

the link and therefore producing the angular displacement needed by each modulated 

transform in the graph. The bond graph of this component is shown in Figure 2.6. 

It is important to refer to the fact that the ROD component produces two fixed 

states in the form of angular momentum and angular displacement. The first state is due 

to the integrator (lNTF) while the other state is due to the integral causality assigned to 

the inertial J- element attached to the angular velocity of the rod. 
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Fig. 2.5: Bond graph model for the ROD subsystem. 
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c 

I 
SS:fFlowl 7 AF --7~ 0 7 AE 7 SS:flntegrated_flow] 

Fig. 2.6: Bond graph model for the INTF subsystem. 

Figure 2.6 shows two new bond graph elements which are the AF and the AE 

two ports components. The general characteristics of these components and their 

constitutive relationships are defined in Table 2.6. It is important to refer to the fact that 

the gains k and n in the case of the INTF component are both equal to one. 

Component Gain Symbol Constitutive relationship 
I 
! 

Effort amplifier k ~AE:k~ [~J[~ ~Ii,] (AE) 

Flow amplifier n ~AF:n~ [~}[~ a~] (AF) 

Table 2.6: Characteristics of AF and AE components. 

During the modelling investigations for the hierarchical representation of the 

parallel, 2-DOF, manipulator several unavoidable problems occur. The summary of 

these problems is as follows: 
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• When constructing the bond graph model of the system, Figure 2.7, there is some 

confusion as to whether the power flow direction should be directed from serial 
~ ~ 

chain Oac to serial chain Obc or from chain Obc to Oac. 

~ ~ 

• In directing the power flow either from the chain Oac to Obc or from Obc to Oac 

the MTT program indicates that the system is under-causal, meaning the failure 

of the modelling process. This is absolutely true because the causality 

considerations of both the bond graph models of the two serial chains Oac and 

Obc, Figures 2.8 and 2.9, lead to causality conflictions on the bonds that connect 

them. 

• The use of the ROD component causes the system to have more states (eight) 

than the actual number (four). This is because each ROD produces two states 

which are the angular velocity and the angular displacement of the link that it 

represents. 

• The solution of the constraints of the manipulator cannot be represented on the 

bond graph model due to the structure and the causality considerations of the 

ROD component. 

To overcome the problems stated above a general method for modelling the 

existing manipulator is introduced and which can be applied systematically when 

modelling manipulators with closed kinematic chains inside the MTT program. The 

method can be summarised by means of the following points: 

~ Preliminary construction of the bond graph model 

In this step the arm is transformed into two serial chains, that is Oac and Obc, 

and then the chains are separately represented, hierarchically, on the graph. 
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Fig. 2.7: Hierarchical bond graph model of the parallel, 2-DOF, manipulator 
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~ Finalising the bond graph model 

In order to connect the serial chains to finalise the model of the manipulator, 

Figure 2.10, the energy bonds from both chains are connected to each other by using a 

set of O-junctions and then a dummy effort source is applied at each of these junctions. 

This process transforms the system from the under-causal state to the causal state so the 

system equations of motion can be obtained from the MTT program. It is important to 

refer to the fact that the addition of the effort sources necessarily assumes that external 

forces are applied to the system. To ensure that the applied effort sources have no effect 

on the velocity of the system zero values have been assigned to their values. The label 

file of the model is shown in Appendix C. 

~ Equations of motion 

The equations of motion from the model are obtained by transforming the 

generated simulation code (Appendix C) manually into the state space form which in 

this case is as follows: 

16 0 6cos Llx - 6X3 sin Llx 0 0 0 0 XI 

0 0 0 0 0 0 0 x2 

6COSLlx 6xI sin Llx 4 0 0 0 0 0 X3 

0 0 0 1 0 0 0 0 x4 

0 0 0 0 4 0 6cos Llx' - 6x7 sin Llx' Xs 

0 0 0 0 0 0 0 X6 

0 0 0 0 6cos Llx' 6xs sin Llx' 16 0 x7 

0 0 0 0 0 0 0 Xs 

2L(j< cosx2 - fy sinxJ+Tl 
Xl 
J 

2L(j< COS x4 - fy sin x4 ) 

X3 
(2.16) 

J =1 

2L(j< cos X6 - fy sin X6 ) 

X5 

J 
2L(j< cos Xs - fy sin Xs )+ T 2 

X7 

J 
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Fig. 2.10: The modified bond graph model for the parallel manipulator. 
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Where, 

LU: = X4 -X2 and /),.'X = Xg -X6 

The system equations given by equation 2.16 are not final because the states are not 

independent and the equations contain the artificial forces, f and f which need to be 
x y 

removed. 

~ States identification 

Because the MTT program defines the order of the of the system states 

automatically it is always impossible to know the relationships between the links and the 

states unless they are identified from the generated structure representations (Appendix 

C). Doing this the state vector for the manipulator is defined as follows: 

x = [jaJI ()I jm22 ()22 jmll ()ll jaJ2 ()2t 

~ Final equations of motion 

In order to obtain the system equations of motion in its finalised form we do the 

following: 

Recalling that the solution of the constraints of the manipulator yield, 

()I = ()II' ()2 = ()22' aJI = aJll and aJ2 = aJ22 

In terms ofthe states, the solution becomes: 

X2 = X6 ' X4 = Xg , Xs = XI and x 7 = X3 

Differentiating these with respect to time leads to, 

X2 = X6 ,x4 = Xg , Xs = XI and x7 = X3 (2.17) 
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Replacing the dummy forces in equation 2.16 by zeros and then substituting from 2.17 

leads to the following: 

'1"1 

16 0 6 cos I1x - 6xl sin I1x 0 0 0 0 XI ~ 
0 0 0 0 0 0 0 x2 J 

6 cos I1x 6x
I 

sin I1x 4 0 0 0 0 0 Xl 
0 

~ 
0 0 0 1 0 0 0 0 x4 J 
0 0 0 0 4 0 6 cos I1x - 6x

l 
sin I1x XI 0 

0 0 0 0 0 0 0 x2 
~ 
J 

0 0 0 0 6 cos I1x 6x
I 

sin I1x 16 0 Xl '1"2 

0 0 0 0 0 0 0 x4 ~ 
J 

(2.18) 

It is important to refer here to the fact that replacing the dummy forces by zeros 

practically removes the holonomic constraint which connects the two serial chains. 

Transforming equation 2.18 into individual equations gives: 

16xl + 6X3 cos L1x - 6X3X4 sin L1x = Tl 

Xl 
X2 =--:­

} 

6xl cos L1x + 6xl x2 sin L1x + 4X3 = 0 

. X 
X

4 
=_3 

j 

6X3 cos L1x - 6X3X4 sin L1x + 4Xl = 0 

X· - Xl 
2 --

j 

16X3 + 6xl cos L1x + 6xl x2 sin L1x = T 2 

• X 
X

4 
=_3 

j 

(2.19) 

(2.20) 

(2.21 ) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 
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Adding equations 2.19 and 2.23 leads to 

20x, + 12x3 cos Llx -12x3x4 sin Llx = I, (2.27) 

Adding equations 2.21 and 2.25 also leads to 

20x3 + 12x, COSLlx + 12x,x2 sinLlx = I2 (2.28) 

By removing repeated equations (2.24 and 2.26) and then writing equations 2.27, 2.28, 

2.20 and 2.22 in matrix form it can be seen that the reduced equations of motion for the 

manipulator emerge, as follows: 

20 0 12cosLlx -12x3 sinLlx 
I, 

x, x, 
0 1 0 0 X2 jl = (2.29) 

12cosLlx 12x, sinLlx 20 0 X3 I2 

0 0 0 1 x4 
X3 
j 

Taking into consideration the order of the states, it is clear that the derived equations of 

motion are the same as those given in section 2.4 (equation 2.15). In addition to this the 

results are also the same as those obtained in Appendix (A) by using the technique 

discussed in chapter 1. 

It is important to refer here to the fact that the modelling technique here is similar 

to the Serial Transformation Technique of Appendix (A) in the way that the raw 

equations are belonging to the individual serial chains. The differences here lie in the 

fact that no artificial motors are used and the reduction of the system equations is 

performed by writing the dependent states in terms of the independent states instead of 

writing the unactuated angles in terms of the actuated angles. 
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2.6 Conclusions 

In this chapter we have seen that Model Transformations Tools (MTT) software 

is able to deal with systems containing closed kinematic chains in their mechanical 

structure. In the standard bond graph, once the constraints are solved, the modelling 

process is straightforward and no further manipulation of the generated system equations 

is necessary. On the other hand, despite the reduction of the time and the effort during 

the construction of the system bond graph by use of the hierarchical tool, this approach 

proved to be not as straightforward. 

During this chapter it was intended to show that the method developed for the 

hierarchical modelling of parallel robots is generally systematic and it is similar to the 

method described in chapter 1 in incorporating the constraints into the generated 

equations. By using dummy forces of zero values at the end-effector it is possible to 

simulate the process of transforming the parallel robot into two serial sub-chains. 
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ChaPler3 

The Multi-Cell Parallel Manipulator: 
A Novel Technique lor Designing Planar Parallel 

Robots 

3.1 Introduction 

In chapter one it has been discussed that one of the drawbacks of parallel 

manipulators is their inherently poor workspace. Clearly the optimisation of workspace 

is very important for all manipulator design. In the conventional 2-DOF parallel link 

manipulator the link lengths limit the workspace. In addition to this any increase in the 

link length will adversely affect the manipulator manoeuvrability. Notwithstanding that 

there will usually be a design limitation to some extent on the link length. 

To overcome the limitations of the workspace of conventional 2-DOF parallel 

link manipulators the work discussed in this chapter is directed firstly to the introduction 

of a new design technique that allows an increase in the workspace without affecting the 

number of degrees of freedom of the manipulator, followed by a practical example. 

After that a general dynamic model for this practical example is derived using 

Lagrange's formulation. The model represents the manipulator in different orientations. 

Later in the chapter a new method for balancing this manipulator is introduced. The 

method actually reduces the number of variables to be adjusted to only one. Following 

on from this the chapter is formally concluded. 

3.2 The planar multi-cell parallel Robot 

If attention is initially restricted to revolute type mechanisms the conventional 2-

DOF parallel manipulator can be considered as a five-bar linkage with two rotary inputs 
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at points A and B as shown in Figure 1.5. If the distance between the two motors at A 

and B tends to zero, and all links have the same length, then the mechanism becomes the 

manipulator of chapter two (Figure 2.3). It has also been mentioned that this special case 

is very useful because of its simplified kinematic constraints and its workspace. If it is 

now considered that this linkage is a unit cell, and then several such cells are arranged in 

series, a multi-cell manipulator is constructed. In this way the number of degrees of 

freedom is not changed and the resulting workspace is equal to the number of cells 

multiplied by the original cell's workspace. Figure 3.1 shows a SCARA type 

manipulator in which this concept is applied. The manoeuvrability of this design can be 

optimised by proper reduction of the cell dimensions. This design also allows for the 

addition of multiple tools (e.g. milling or routing cutters) which may, in certain 

circumstances help in reducing the time required for performing tasks, for example in 

high-speed assembly operations. 

3.3 Formulations of the general dynamic model for the multi-cell 

planar, 2-D OF, parallel manipulator. 

3.3.1 Horizontal Orientation 

The initial assumption is that the manipulator has n + 1 cells, where n is the 

number of junctions in the manipulator, and a junction is defined as the point Goint) 

between two adjacent cells. The overall manipulator contains four links (Oa, Ob, de and 

ce) each having a mass m, a polar moment of inertia about the centre of mass J and a 

length 2L. There are also 2n cross-links each with a mass 2m, a polar moment of 

inertia about the centre of mass Jc and a length 4L. 

Assuming uniform rigid links with circular cross-sections yields 

J = ImL2 
3 

Jc = +{ 2m(2LY}= 8J 

(3.1) 

(3.2) 
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Fig. 3.1: Multi-Cell 2-DOF parallel planar manipulator, horizontal configuration. 



The Lagrange formulation is used to generate the equations of motion, shown here 

without the usual potential energy term for orientational reasons, 

T, ~ :1 (:;} :; for i = 1,2 

Where, 

T is the total kinetic energy of the robot. 

()i is the generalised co-ordinate of link i. 

OJi is the angular velocity of link i. 

(3.3) 

r i is the generalised force in the direction of the generalised co-ordinate. 

The kinetic energies ofthe actuated links (Oa and Ob) can be calculated as follows, 

TOa = t (Io )oa OJI
2 (3.4) 

TOb = t(Io )Ob OJ; (3.5) 

Where 

TOa,TOb are the kinetic energies of links Oa and ~b, respectively. 

OJP OJ2 are the angular velocities oflink Oa and ~b, respectively. 

(IO)oa,(IO)ob are the polar moments of inertia of links Oa and Ob about point O. 

The symmetry of links Oa and Ob leads to, 

(IO)oa = (IO)Ob = J + mL2 = 4J (3.6) 

Substituting from equation 3.6 in equations 3.4 and 3.5 gives 

TOa = 2JOJ~ (3.7) 
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Now, let 

TOb = 2JOJi (3.8) 

Xj'Yj be the x-y co-ordinates ofpointj. 

j be an identifier assigned to a point. 

v j be the absolute resultant velocity of point j. 
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Taking into considerations the solution of the constraints of the main cell outlined in 

chapter 2, it can be deduced, from Figure 3.1, that: 

x, = 2L(cosB, + cosB2 ) (3.9) 

y, = 2L(sinB, + sinBJ (3.10) 

Differentiating these with respect to time leads to, 

x, = -2L(OJ, sinB, + OJ2 sinB2 ) (3.11) 

y, = 2L(OJ, cosB, + OJ2 cosB2 ) (3.12) 

The absolute resultant velocity of point 1 can be calculated from the above as follows, 

2 ·2 ·2 v, = x, + y, 

V,2 = 4L2 { OJ,2 + OJ~ + 2 OJ, OJ2 COS(B2 - B,)} (3.13) 

a ~ lan-' ( ~ J 

Where 

a is the angle between VI and x,. 
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At every junction there are two concentrated masses representing the two cross-links 

connected at this junction. These two masses have the same translational velocity 

whereas one of the cross-links has angular velocity lVI and the other has angular velocity 

lV2 . 

From the above, 

1'.. = 2 {H2m)v~ }+tJclV~ +tJ/o~ 

= 2m VI
2 + t(8J) lVI

2 + t(8J)lV; 

2 ( 2 2) = 2m VI +4J \lVI +lV2 (3.14) 

Where 

T;. is the kinetic energy of the cross-links at junction 1. 

Similarly, it can be deduced that 

2 (2 2) T; = 2mv2 + 4J lVI + lV2 (3.15) 

2 (2 2) T; = 2mv3 + 4J lVI + lV2 (3.16) 

For any junction n, it can therefore stated that 

2 (2 2) 1'" = 2mv
JJ 

+ 4J lVI + lV2 (3.17) 

Now, if ~)s the total kinetic energy of all cross-links at all the n junctions then it is 

possible to write 

~c = T;. + T2 + T3 + T4 + Ts + ....... + T,,-I + T" 

Substituting from equations 3.14 to 3.17, the previous equation becomes 



( 2 2\. (2 2 2 2 2 2 2) 
~c = 4Jn lVI + lV2 r- 2m VI + v 2 + V3 + v4 + Vs + ...... +vn_1 + vn (3.18) 

From the physical structure of the manipulator shown in Figure 3.1 it can be deduced 

that 

X2 = 2 XI , X3 = 3 XI , x4 = 4 XI ' Xs = 5 XI 

leading to 

Xn = n XI (3.19) 

Also, 

Y2 = 2 YI , Y3 = 3 YI , Y4 = 4 YI , Ys = 5 YI 

which leads to 

Yn = n YI (3.20) 
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Differentiating these with respect to time and calculating the absolute resultant velocity 

at each junction gives the following: 

V2 = 2 VI , V3 = 3 VI , v4 = 4 VI , Vs = 5 VI 

and therefore 

Vn = n VI (3.21) 

Now, from equation 3.18, it is possible to construct the following 

( 2 2\, (2 2 2 2 2 2) 
~c = 4Jn lVI + lV2 r- 2m VI + 4 VI + 9 VI + 16 v4 + ...... +n VI 

= 4Jn (lV: + lV~ }t 2m v: (1 + 4 + 9 + 16 + ...... +n2 ) 

= 4Jn (lV: + lV~ }t 2m VI

2 H- n(n + 1 )(2n + I)} (3.22) 
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Substituting for VI from equation 3.13 leads to, 

T;c = 4J { n + n (n + 1)(2n + 1)} (())~ + ());)+ {8Jn (n + 1)(2n + 1)} ())1())2 COS(B2 - BI) 

(3.23) 

Assuming that there is an imaginary junction at point e, i.e. this will be the junction 

number n + 1 in the system, so from equations 3.19 and 3.20, 

Xe = XII+I = (n + 1)xl (3.24) 

and, 

Ye=YII+I=(n+1)YI (3.25) 

From Figure 3.1 it can be deduced that 

Xf = xe - LcosB2 

= 2 (n + 1)LcosBI + (2n + 1)LcosB2 (3.26) 

And, 

Yf = Ye -LsinB2 

= 2 (n + 1)LsinBI + (2n + 1)LsinB2 (3.27) 

Differentiating these with respect to time gives, 

Xf = -2 (n + 1)L())1 sinBI - (2n + 1)L())2 sinB2 (3.28) 

and, 

Y f = 2 (11 + 1)L())1 cosBI + (211 + 1)L())2 COSB2 (3.29) 

Calculating the absolute resultant velocity, 
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2 ·2 ·2 
Vf=Xf+Yf 

= 4 (n + If L2OJI
2 + (2n + If L2OJ; + 4 (n + 1)(2n + I)L2OJIOJ2 COS(B2 - BI) (3.30) 

Similarly, 

Xg = xe - LcosBI 

= 2 (n + I)LcosB2 + (2n + I)LcosBI (3.31) 

And, 

Yg = Ye - LsinBI 

= 2 (n + I)LsinB2 + (2n + I)LsinBI (3.32) 

Calculating the absolute resultant velocity of point g yields, 

v; = 4 (n + IY L2OJ~ + (2n + If L2 OJI
2 + 4 (n + 1)(2n + I)L2 OJIOJ2 COS(B2 - BJ 

(3.33) 

Next, in order to find the contributions of links de and ce the kinetic energies are defined 

as follows, 

Where, 

T de , Tee are the kinetic energies oflinks de and ce respectively. 

T I 2 I J 2 
de = "2 m V f + "2 OJ2 

T _I 2 IJ 2 
ee - "2 m V g +"2 OJI 

(3.34) 

(3.35) 

Substituting for vf and vg ' from equations 3.30 and 3.33, in 3.34 and 3.35 yields, 



and, 
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Tde = 6J(n + ly aJ~ + tJ{ 3(2n + lY + 1 }aJ; + 6J(n + 1)(2n + l)aJ1aJ2 COS(02 - 01) 

(3.36) 

Tee = 6J(n + lY aJ; + tJ{3(2n + lY + 1 }aJ1
2 + 6J(n + 1)(2n + l)aJ1aJ2 COS(02 - 01) 

(3.37) 

Therefore from the foregoing the total kinetic energy of the system (T) can be 

determined, thus, 

T = Tab + TOa + Tde + Tee + J;e 

= 2J a/ +2J aJ2 1 2 

+ 6J(n+IYaJ; +tJ?(2n+lY +1}aJI
2 +6J(n+l)(2n+l)aJ1aJ2 COS(02 -OJ 

+6J(n+lyaJ~ +tJ?(2n+lY +1}aJ; +6J(n+l)(2n+l)aJ1aJ2 COS(02 -OJ 

+ 4J {n + n (n + 1)(2n + I)} (aJ1
2 + aJ;)+ {8Jn (n + 1)(2n + 1)}aJ1aJ2 COS(02 - 01) 

2{ 3 2 } 2{ 3 2 } = JaJ
l 

8n + 24n + 26n + 10 + JaJ2 8n + 24n + 26n + 10 

+ JaJ1aJ2 COS(02 -01){16n 3 +48n2 +44n+12} 
(3.38) 

Now, letting 

q = (8n3 + 24n2 + 26n + 10 ) (3.39) 

VJ' = (16n 3 + 48n 2 + 44n + 12) (3.40) 

Substituting into equation 3.38 gives, 

T = JqaJ I
2 + JqaJ; + JVJ'aJ1aJ2 COS(02 - 01) (3.41) 



Taking the necessary partial derivatives of equation 3.41 gives, 

8T - = 2J ~OJ, + JIj/COS(02 - OJOJ2 (3.42) 
8OJ, 

8T - = 2J~ OJ2 + JIj/COS(02 - oJ OJ, (3.43) 
8OJ2 

~(8T J = 2J~ B, +JIj/COS(02 -OJB2 -Jlj/sin(02 -O,)OJ2 (lD2 -OJJ 
dt 8 OJ, 

~( 8T J = 2J~ B2 + JIj/COS(02 - O,)B, - Jlj/sin(02 - oJ OJ, (OJ2 - OJJ 
dt 8OJ2 

8T = Jlj/sin(02 - O,)OJ,OJ2 (3.46) 
80, 

8T = -Jlj/sin(02 - OJOJ,OJ2 (3.47) 
802 

Applying Lagrange's equations yields, 

(3.44) 

(3.45) 

1", = 2J~B, + JIj/COS(02 - O,)B2 - Jlj/sin(02 - OJOJ~ (3.48) 

and, 

1"2 = 2J~B2 +JIj/COS(02 -O,)B, +Jlj/sin(02 -O,)OJ,2 (3.49) 
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Transforming equations 3.48 and 3.49 to state space form requires the following 

substitutions, 

OJ, = x, , 0, = x2' lD2 = X3 and °2 = x4 



67 

Substituting in 3.48 and 3.49 yields, 

.2 = 2; x, + If/COS(X4 - X2 )X3 -If/sin(x4 - X2 )X3 x4 (3.50) 
J 

and, 

~ = 2; X3 + If/COS(X4 - xJx, + If/sin(x4 - x2 )x, x2 (3.51) 
J 

By writing equations 3.50 and 3.51 in matrix fonn we get, 

2; 0 If/ cos ~ - X31f/ sin ~ x, 
'Z", 

J 
0 1 0 0 x2 x, = 

If/ cos ~ x,1f/ sin ~ 2; 0 X3 'Z"2 

0 0 0 1 x4 J 
X3 

(3.52) 

Where, ~ = x4 - x2 

The state vector is given by 

x = [m, (), 0)2 ()2 Y 

Now, if we substitute for n = 0 (which means that there is only one cell) in equation 

3.52, the following is obtained 

20 0 12cos~ -12x3 sin~ 
'Z", 

x, 
J 

0 1 0 0 x2 x, = 
12cos~ 12x,sin~ 20 0 X3 'Z"2 

0 0 0 1 x4 J 
X3 

(3.53) 



68 

It is clear that the result given by equation 3.53 is the same as that obtained in chapter 2 

for the one-cell manipulator if it is considered that the first and the third elements of the 

state vector in chapter 2 are the angular momenta while here they are the angular speeds. 

3.3.2 Vertical Orientation 

In this case the manipulator is moving in the X - Z plane. A part of the 

manipulator with the new configuration is shown in Figure 3.2. The system has the same 

kinetic energy as when the manipulator is moving in the horizontal plane. 
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Fig. 3.2: Part of the manipulator with the new orientation. 

Z 
3 

x 



69 

Recalling the value of the kinetic energy T , 

2{ 3 2 } 2{ 3 2 } T = JOJ1 8n + 24n + 26n + 10 + JOJ 2 8n + 24n + 26n + 10 

+ JOJ1 OJ2 COS(02 - 01) {16n 3 + 48n 2 + 44n + 12} (3.54) 

To complete the derivation of the equations of motion it remains to find the total 

potential energy of the manipulator, U. The potential energy stored in the ith link of the 

mechanism is the amount of work required to displace its centre of mass from the 

horizontal reference plane in the presence of gravity. 

The total potential energy U stored in the system is given by [71] 

Where, 

k 

U =- ImigTCi 

i=1 

mi is the mass of the ith link. 

g is the gravitational acceleration vector. 

(3.55) 

C is the vector representing the centre of mass ofthe ith link as shown in Figure 3.3. 

Now, letting 

Xc / i : be the X co-ordinate of the mass centre of the it" link. 

Yc/i : be the Y co-ordinate of the mass centre of the it" link. 

Zc / i : be the z co-ordinate of the mass centre of the fh link. 

go : be the acceleration of gravity, 9.81 m/sec2
• 
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Fig. 3.3: Configuration of the til lin1e 

Then, 

gT = [0 0 go] 

c i = [Xcii YC/i 
T 

ZCli] 

gT C
i = [0 0 gJ Y: /: = gozcli 

[

X 10] 

Zcli 

Substituting into equation 3.55 yields, 

k 

U = - Lmigozcli 
i~I 

(3.56) 

(3.57) 
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~ Links Oa and Ob. 

Letting 

U Oa : be the potential energy of link Oa. 

U Ob : be the potential energy of link Ob. 

Then from equation 3.57, we have 

UOa = -mgOzelOa 

UOb = -mgOzelOb 

From Figure 2.3, the following emerges 

ZelOa = LsinBJ 

ZelOb = LsinBZ 

Now, the potential energies of links Oa and Ob become 

U Oa = -mgoL sin BJ 

U Ob = -mgoL sin Bz 

~ Cross-links 
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(3.58) 

(3.59) 

Recalling that each junction represents the mass centres of the connected cross­

links. Hence, there are two masses at every junction, each with a value of 2m . 

Let, U p U Z ,U3 , ............. ,U
II 

represent the potential energies of the cross-links at 

junctions 1,2,3, ............ ,n. 



Similarly, 

U1 = -2 (2m) gozi = -4mgozl 

U2 = -4mgoz2 

U3 = -4mgoz3 

U4 = -4mgoz4 

Now, for any junction it is possible to write, 

U =-4mgoz
lI II (3.60) 

Letting 

Utc be the total potential energy of all cross-links at all the junctions. 

Then, we have, 

Utc = U1 + U2 + U3 + U4 + ............ + UII 

= -4 m go {ZI + Z2 + Z3 + Z4 + ............. + z,J (3.61) 
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Since the Z co-ordinate for any point here is the same as the Y co-ordinate in the 

pervious part of the chapter (where the manipulator moves in the horizontal plane), the 

following relationships are obtained 

ZI = 2L(sin 01 + sin O2) 

Z2 = 2Z1 

Z3 = 3z1 

ZII = nZI 

Zc/de =Zj =2L(n+1)sinOI +L(2n+1)sin02 

zc/ce = Zg = 2L(n + 1)sin02 + L(2n + 1)sinOI (3.63) 



Now, from equation 3.61 it is clear that 

Ute = -4mgo { z\ + 2z\ + 3z\ + 4z\ + ............. + nzJ 

= -4mg Oz\ { 1 + 2 + 3 + 4 + ........... + n} (3.63) 

The term { 1 + 2 + 3 + 4 + ........... + n} constitutes a sequence of the form 

a + (a + d) + (a + 2d) + (a + 3d) + ...... 

With a = d = 1, the sum to n terms is given by 

t n { 2a + (n -1) d} = t n (n + 1 ) 

Substituting into equation 3.63 yields, 

Ute =-4mgo2L(sinB\ +sinBJt n (n+1) 

=-4n(n+1)Lmgo(sinB\ +sinBJ (3.64) 

~ Links ce and de 

and, 

U = -mg z 
ce 0 g 

= -mgo {2L(n + 1) sinB2 + L (2n + 1) sinBJ (3.65) 

U =-mgoz j de 

= -mgo {2L(n + l)sinB\ + L(2n + l)sinBJ (3.66) 
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Now, from equation 3.57, the total potential energy of the manipulator can be shown to 

be as follows 

k 

U = - Lm;go zc/; = UOa +UOb +Utc +Uce +Ude 
;=1 

= -mgoLsinBI - mgoL sin B2 

- 4n (n + l)Lmgo(sinBI + sinB2 ) 

- mgo {2L(n + 1)sinB
2 

+ L(2n + l)sinBI} 

-mgo{ 2L(n+1)sinBI +L(2n+1)sinB2} 

This gives, 

U = -mgoL¢ (sinBI + sinBJ (3.67) 

Where, ¢ = (4n 2 +8n + 4) 

The Lagrange equations for systems having potential energy, is given by 

d (aT J aT au r -- -- ----
; - dt am; aB; aB; 

for i = 1,2 (3.68) 

au 
aB = -mgoL¢cosB 

I I 

au 
aB = -mgoL¢cosB 

2 2 

Since the total kinetic energy of the system is the same as the horizontal case, the first 

and the second terms of the R.H.S. of equation 3.68 can be obtained from the previous 

part of the chapter. 
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d (aT J aT au ,-- -- ----
, - dt aw, ao, ao, 

= 2Jr; B, + JIj/ COS(02 - 0, )B2 - Jlj/OJ2 (OJ2 - OJJsin(02 - oJ 

- JIj/OJ,OJ2 sin(02 - 0,)+ mgoLt/lcosO, 

=2Jr;B, +JIj/COS(02 -0,)B2 -Jlj/OJ; sin(02 -0,)+ mgoLt/l cos 0, (3.69) 

d (aT J aT au ,-- -- ----
2 - dt aW2 a02 a02 

= 2Jr; B2 + JIj/COS(02 - O,)B, - Jlj/OJ, (OJ2 - OJ, )sin(02 - oJ 

+ JIj/OJ,OJ2 sin(02 - 0,)+ mgoLt/l cos02 

=2Jr;B2 +JIj/COS(02 -O,)B, +JIj/0J;sin(02 -0,)+ mgoLt/l cos O2 (3.70) 

Transforming the above two equations into state space form as before, the following 

equation of motion results 

2Jr; 0 Jlj/cosAx - JIj/ X3 sinAx x, " - kcosx2 
0 1 0 0 x2 x, 

= 
Jlj/cosAx J Ij/ x, sin Ax 2Jr; 0 X3 '2 -kcosx4 

0 0 0 1 x
4 X3 

(3.71) 

Where, 

k = mgoLt/l and Ax = x4 -x2 
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3.3.2.1 Static balancing of the manipulator 

In order to perform balancing counter masses must be added to the manipulator. 

The traditional way to balance manipulators is to fit extensions to the links and then add 

counter masses to the end of these extensions [78]. In this work balancing is performed 

by adding a counter cell and one counter mass. The configuration of the counter cell and 

the location of the counter mass are shown in Figure 3.4 below. 

The potential energy of the counter system ( U cs ) is calculated as follows 

• Potential energy of link DB 

U OB = -mgozc/OB = -mgo(- LsinB2) = mgoL sin B2 

Z I 
I 

I 
I 

I 

Junctions 4 2 _./~ 

Z 
2 

Zl 

\ MassM 

Fig. 3.4: Part of the balanced manipulator. 
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• Potential energy of link OA 

U OA = -mgo ZelOA = -mgo(-LsinBJ= mgoL sin B, (3.73) 

• Potential energy of link AQ 

U AQ = -mgo zelAQ 

= -mgo(-2LsinB, -LsinB2)= mgoL(2sinB, +sinB2 ) (3.74) 

• Potential energy of link BQ 

U =-mgzIBQ BQ 0 e 

= -mgo(- 2L sin B2 - LsinB,) = mgoL(2 sin B2 + sinB,) (3.75) 

• Potential energy of the counter mass (M ) 

U M = -MgozQ 

= -Mgo(-2LsinB, -2LsinBJ= 2MgoL(sinB, +sinB2 ) (3.76) 

From which we have 

U es = U OB + U OA + U AQ + U BQ + U M 

= mgoLsinB2 + mgoL sin B, + mgoL(2sinB, + sinBJ 

+ mgoL(2 sin B2 + sinB,)+ 2MgoL(sinB2 + sinB,) 

= 2mgoL(2 + A) (sin B, + sin B2) 

Where, A = M , and is defined as the mass ratio. 
m 

(3.77) 
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The condition for complete static balancing occurs if, and only if, the potential 

energy of the whole manipulator, including the counter system, vanishes. 

Mathematically this means that, 

Potential energy (Manipulator) + Potential energy (Counter system) = 0 

or, U +Ues =0 (3.78) 

Substituting for U and Ues ' from equations 3.67 and 3.77 respectively, into equation 

3.76 yields, 

- mg oL¢(sin 81 + sin 82 ) + 2mg oL(2 + A Xsin 81 + sin 82 ) = 0 

Solving for ¢ yields, 

¢ = 2(2+A) (3.79) 

Substituting for ¢ = (4n 2 + 8n + 4), from section 3.3.2, into the above equation gives the 

following condition 

M = 2mn(n+2) (3.80) 

The required counter-mass for balancing the manipulator, for any number of cells, can 

be obtained from equation 3.80. 

Due to the presence of the counter system the kinetic energy of the manipulator 

is increased. So, the kinetic energy of the robot must be updated and the new equations 

of motion should be formulated. 

If Tes is defined as being the kinetic energy of the counter system, then 
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r::s = TOA + TOB + TAQ + TBQ + TM (3.81) 

Where, the R.H.S terms are the kinetic energies of links OA,OB,AQ,BQ and the 

counter mass M , respectively. 

TOA = t(Io )OA lV~ 

Where, 

(IO)oa = (IO)Ob = J + mL2 = 4J 

This leads to 

TOA = 2JlV~ (3.82) 

Similarly, 

TOB = 2J(1)~ (3.83) 

From Figure 3.4, it can be deduced that 

XclAQ = -2LcosB, -LcosB2 

zcl AQ = -2LsinB, - LsinB2 

xclBQ = -2LcosB2 -LcosB, 

zclBQ = -2LsinB2 -LsinB, 

xQ = -2L cos B, -2LcosB2 

zQ =-2LsinB2 -2LsinB, 

Differentiating equation 3.84 with respect to time yields, 

(3.84) 
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XclAQ = 2LOJI sin 01 +LOJ2 sin O2 

ZclAQ = -2LOJ I cos 01 -LOJ2 cos 02 

X clBQ = 2LOJ2 sin O2 +LOJI sin 01 

ZclBQ = -2LOJ2 cos 02 - LOJ, cos 01 

XQ = 2LOJI sin 01 + 2LOJ2 sin 02 

ZcQ = -2LOJ2 cos 02 - 2LOJI cos 01 
(3.85) 

By deriving the resultant velocity of the mass centre of each link of the counter cell and 

that of the counter mass, the following relationships are obtained 

V:1 AQ = L2 {4OJ: + OJ~ + 4OJIOJ2 COS(02 - OJ} 

V:
1BQ 

=L2{4OJ~ + OJ: +4OJIOJ2 COS(02 -OJ} 

V~ = 4L2 {OJ1
2 + OJ~ + 2OJ I OJ2 COS(02 - OJ} 

T - I 2 IJ 2 
AQ - "2 mvclAQ +"2 OJ2 

= 2J{ 3OJ: + OJ~ + 3OJI OJ2 COS(02 - O,)} 

T -, 2 'J 2 
BQ -"2 mv c I BQ +"2 OJI 

= 2J{3OJ~ + OJ: +3OJ I OJ2 COS(02 -OJ} 

T - I 2 
Q -"2 mvQ 

= 2ML2 {OJ~ + OJ: + 2OJI OJ2 COS(02 - O,)} 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

(3.90) 

(3.91) 
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Substituting for M from equation 3.80 into 3.91 yields, 

TQ = 12Jn(n + 2) { coi + (iJ~ + 2co,co2 COS(02 - O,)} (3.92) 

Now, from equation 3.81, 

~s = TOA + TaB + TAQ + TBQ + TM 

= 2Jco,2 +2Jcoi +2J{3co: + co; +3co,co2 COS(02 -OJ} 

+ 2J{ 3co; + co: + 3co,co2 COS(02 - OJ} 

+ 12Jn(n + 2) { (iJi + co~ + 2CO,(iJ2 COS(02 - OJ} 

This gives, 

Tcs = J{ (12n2 + 24n + 10 )CO,2 + ~2n2 + 24n + 10 )coi + 12(2n2 + 4n + 1)(iJ,co2 COS(02 -O,)} 

(3.93) 

Now, the new total kinetic energy of the manipulator (T"ew) can be obtained from 

equations 3.54 and 3.93, as follows, 

T"ew = T + ~s 

2{ 3 2 } 2{ 3 2 } = Jco, 8n + 24n + 26n + 10 + Jco2 8n + 24n + 26n + 10 

+ Jco,co2 COS(02 -OJ{16n 3 +48n2 +44n+12} 

+ J{ (12n2 + 24n + 10 )co~ + (12n2 + 24n + 10 )coi} 

+ 12J(2n2 + 4n + 1 )co,co2 COS(02 - 0,) 

This yields, 
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Tllew = J{ (8n3 + 36n 2 + SOn + 20 )mf + (8n3 + 36n 2 + SOn + 20 )m~} 

+ J~6n3 + 72n 2 + 92n + 24 )m,m2 COS(02 - OJ (3.94) 

Now, letting 

~ = 8n 3 + 36n 2 + SOn + 20 

and, 

1/1 = 16n3 + 72n 2 + 92n + 24 

Then, 

{ ~ 2 ~ 2 ~ { ).t 
1',/eW =J c;m, +c;m2 +lj/m,m2COS\02 -0,1 (3.95) 

By comparing equations 3.41 and 3.95, it is clear that both are the same except for 

c; == ~ and Ij/ == 1/1. So, the new equation of motion is the same as equation 3.52, but 

using the new symbols. Hence we have 

2c; 0 1/1 cos Llx -1jJ.x3 sin Llx x, T, 

J 
0 1 0 0 x2 x, = 

1/1 cos Llx 1jJ.x, sin Llx 2c; 0 X3 T2 

0 0 0 1 x4 
J 
X3 

(3.96) 

3.4 Conclusions 

In this chapter the concept of multi-cell planar parallel manipulators has been 

introduced. The concept allows for an increase in the workspace without affecting the 

original system structure. With proper reduction of the cell dimensions the 

manoeuvrability of the whole manipulator can be greatly enhanced. Following on from 

this, a general dynamic model for the manipulator with any orientation has been derived 
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by using the Lagrange formulation. The correctness of the model has been checked by 

comparing its one-cell equations of motion with the equations obtained in chapter 2 for 

the same mechanism using the bond graph method. After that a new method of static 

balancing has been introduced and which led to the reduction of the number of variables, 

to be adjusted, to only one parameter. 



Chapter 4 

Bond Graph Modelling and Analvsis 
01 a 2-DOF Planar Redundant-Actuated One­

Cell Parallel Manipulator 

4.1 Introduction 
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In addition to the advantages of parallel manipulators the performance of 

such mechanisms can be further improved by using actuation redundancy. A 

manipulator with actuation redundancy has more actuators than the number of 

degrees of freedom which are required to define its dynamics, however this makes 

the selection of the actuator torques, in order to follow a desired path, indeterminate. 

Under certain circumstances this feature can lead to an optimisation of the torque 

distribution among the actuators according to some pre-specified performance 

specification. In many cases the location of the redundant actuator in the robot 

appears to be a personal choice. In this context Beiner [16] recommended that it is 

important to optimise of the location of the redundant actuator in order to enhance its 

advantage in dynamic applications. 

This chapter is dedicated to investigate the effect of the redundant motor 

location on the performance of a redundant one-cell parallel planar manipulator. The 

arm is modelled by the bond-graph method using the Model Transformation Tools 

(MTT) software. The equations of motion are obtained using the hierarchical method 

discussed in chapter 2. The analysis of the redundant system is performed in the 

second part of the chapter using the derived dynamic model. 
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4.2 Hierarchical Bond Graph Modelling of a Redundant One-Cell 

Parallel Manipulator 

In order to optimise the location of a redundant motor in the one-cell parallel 

manipulator of Figure 4.1, the motors torques associated with all the possible 

locations of such a redundant actuator for a given task must be calculated and then 

compared. However, this requires a dynamic model for the manipulator at each 

location ofthat motor. To reduce the time and the effort while performing this task it 

was decided to go for the formulation of a general model which captures all the 

possible locations of the redundant actuator and then to assign zero values for the 

parameters of the redundant motors at all locations except the chosen one. Because 

the locations at joint A and joint C are the same (by symmetry) the dynamic model 

assumes only two redundant actuators at joint A and B, in addition to the two main 

motors located at joints 0 and O. 

y 

""" I .... ' ................ 1 

r .................... .... 
: 84 I-
I 
I 
I 
I 
I 

B 

Redundant 
Motors 

Fig. 4.1: Configuration of the redundant one-cell manipulator. 
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In the bond graph model of the system, Figure 4.2, the motors at 0, 5, A and 

B are represented by the effort sources t_I, t_II, C2 and C3, respectively. The 

masses of the redundant motors at joints A and B are represented by the inertial 

elements m_xx & m_yy and m_x & m_y, respectively. 

It is important to mention that in the model the mass of the redundant motor 

between links AB and CB also includes the payload mass, and the dummy forces 

(t_vx and t_vy) include the external forces applied to the end-effector of the arm. The 

rest of the graph is similar to the bond graph model of the normal parallel one-cell 

manipulator discussed in chapter 2. The label file for this particular model and the 

generated representations such as the simulation code, list of inputs etc. are shown in 

Appendix (D). It is important to note that the list of states in Appendix (D) is a 

Matlab file, meaning that it is structurally different from those in Appendices (B) and 

(C). This is an additional representation by the MTT program as it was upgraded 

whilst this particular work was underway. 

To get the raw equations of motion the simulation code is transformed to the 

following equations 

k,x, + 6k2 cos LU' X3 + 6k2x3 sin LU' x4 = £, - £3 + 2LVy cos x2 - Ix sin x2 ) (4.1) 

X, 
x2 =J (4.2) 

6k2 cos LU' x, + 4k3 X3 - 6k2x, sin LU' x2 = £3 - £4 + 2LVy cos x4 - Ix sin x4 ) (4.3) 

X3 
x4 =J (4.4) 

4xs + 6cosb x7 + 6X7 sinb Xs = £4 + 2LVy cosx6 - Ix sinx6) (4.5) 

XS 
X6 =J (4.6) 

6cosb Xs + 16 x7 - 6xs sinb X6 = £2 + 2LVy cos xs - I, sinxs) (4.7) 

x7 
Xs =J (4.8) 
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Fig. 4.2: The hierarchical bond-graph model for the redundant parallel manipulator. 



Where, 

and, 

kl =16+ 12 (mill +mp +mJ 
m 

2 (mill +mp) +1 
k2 = m 

3(mlll +mp)+1 
k3 = m 

Llx = x 2 - x 4 and Ax = X6 - Xg 

mill: is the mass of the redundant motor at joint B. 

mn: is the mass of the redundant motor at joint A. 

mp: is the payload mass. 

i,: is the applied external force in the direction of the X co-ordinate. 

fy: is the applied external force in the direction of the Yeo-ordinate. 

m: is the link mass. 

L : is the link length. 

J : is the polar moment of inertia about the centre of mass of the link. 

'I: is the torque of the motor located at joint O. 

'2: is the torque of the motor located at joint 5. 

'3: is the torque of the redundant motor at joint A. 

'4: is the torque ofthe redundant motor at joint B. 

The solution of the constraints from chapter 2 gives, 

X6 = x 2 ' Xg = x 4 ' Xs = XI' x7 = X3 and Ax = Llx (4.9) 

Differentiating these with respect to time yields, 

X6 = X2 , Xg = X4 , Xs = XI and x7 = X3 (4.1 0) 

Substituting from equations 4.9 and 4.10 into equations 4.1- 4.8 leads to 

88 
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klxl + 6k2 COS ~ X3 + 6k2x3 sin ~ x4 = 'I - '3 + 2L(Jy cos x2 - Ix sin x2) (4.11) 

XI 
x2 =J (4.12) 

6k2 cos ~ XI + 4k3 X3 - 6k2xI sin ~ x2 = '3 - '4 + 2L(Jy cos x4 - f~ sin x4) (4.13) 

X3 
X4 =7 (4.14) 

4xI + 6cos~ X3 + 6X3 sin~ X4 = '4 + 2L(Jy cosX2 - Ix sinx2) (4.15) 

XI 
X2 =-; (4.16) 

6cosA\: XI + 16 X3 - 6xI sin~ x2 = '2 + 2L(Jy cosx4 - f~ sinx4 ) (4.17) 

X3 
X4 =7 (4.18) 

Removing the repeated equations and then adding equations 4.11 and 4.15 yields, 

(kl +4)xI +6(k2 +1)cos~x2 +6(k2 +1)x3sin~x4 = 

'I +'4 -'3 +4L(JyCOSX2 - f~sinx2) (4.19) 

Adding equations 4.13 and 4.17 gives, 

6(k2 +l)cos~xl +4(k3 +4)X3 -6(k2 +l)xI sin~x2 = 

'2 +'3 -'4 +4L(JyCOSX4 - f~sinx4) (4.20) 

Equations 4.19, 4.12, 4.20 and 4.14 are the reduced state equations of motion of the 

redundant manipulator. 

The state vector is defined by 

XI = JBpX2 = 8p X3 = JB2 and X4 = 82 (4.21) 
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Now, in order to calculate the motor torques for a given task the states of the 

system must enter the equations as parameters, however this requires the system 

equations to be written in the joint space as follows, 

Substituting from 4.21 into equations 4.19 and 4.20 and rearranging yields, 

1'[ +1'4 -1'3 =J(k[ +4)8[ +6J(k2 +1)cos(0[ -(2)82 

+6J(k2 +1)sin(0[ -(2)8i -4L(JycosOI - fxsinOJ 

1'2 +1'3 -1'4 =6J(k2 +l)cos(OI -OJ81 +4J(k3 +4)82 

- 6J(k2 + 1 )sin( 01 - OJ 81
2 - 4L(Jy cos O2 - f~ sin ( 2) 

Now, letting 

U1 = 1'[ + 1'4 - 1'3 

U2 = 1'2 + 1'3 - 1'4 

We have two different cases as follows, 

• Redundant motor at joint A (1'4 = 0) 

(4.24) 

(4.25) 

(4.22) 

(4.23) 

Substituting for 1'4 = 0 into equations 4.24 and 4.25 gives two equations in three 

unknowns. To solve for these three unknowns we use the pseudo-inverse approach 

method mentioned in reference [16]. It is important to note that this approach gives 

the unconstrained solution of equations 4.24 and 4.25 for the three unknowns. 

Writing equations 4.24 and 4.25 in matrix form yields, 

[

1'1 J = [1 0 -1]-[. [u[] 
1'2 0 1 1 U

2 
1'3 

This leads to, 



2u) +U2 
7) = 3 

U) + 2u 2 
7 = 

2 3 

U 2 -U) 

73 = 3 

• Redundant motor at joint B (73 = 0) 
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(4.26) 

(4.27) 

(4.28) 

Similarly, substituting for 73 = 0 into equations 4.24 and 4.25 and writing them in 

matrix form yields, 

[:J[~ 0 ~J[::J 1 

This leads to, 

7) = 
2u) +u2 (4.29) 

3 

u) + 2u2 (4.30) 7 = 
2 3 

74 = 
u) -u2 (4.31) 

3 

The manipulator is forced to follow the following third order joint-space trajectory, 

B) (t) = 0.1745 + 1.0472 t2 
- 0.349 t3 

8) (t) = 2.0944 t -1.047 t2 

8) (t) = 2.0944 - 2.094 t 

B2 (t) = 0.7854 + 0.9818 t 2 
- 0.3273 t 3 

82 (t) = 1.9635 t - 0.9818 t 2 

82 (t) = 1.9635 -1.9635 t (4.32) 
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The initial and the final conditions are 

()l (0) = ~ (rad), ()2 (0) = t (rad), ()l (f) = f (rad) and ()2 (f) = 2; (rad) 

The manipulator is assumed to possess the mechanical parameter values 

given in Table 4.1 below. In the analysis the arm is simulated for two different 

redundant motor masses (Case I and Case II) and for different payloads and external 

forces. The simulation tests are summarised in Table 4.2. The simulations are 

performed inside Matlab 5.3 using script files (Appendix E). 

In each test, and for each of the two simulation cases (Case I and Case II), the 

sum of the absolute values of the motors torques for the case where the redundant 

motor is at joint A is compared to its counterpart when the redundant motor is 

located at joint B. The simulation results obtained are shown in Figures 4.3 to 4.18. 

4.3 Discussion 

The results show that the location of the redundant motor only has a 

considerable effect on the robot performance when the payload mass is small. In this 

case it is preferable to locate the redundant motor near the robot-base in order to 

reduce the power consumption while performing tasks. Figures 4.3-4.4 of case I and 

Figures 4.11-4.12 of case II clarify this fact by showing that the value of the total 

torque is smaller in the case where the redundant motor is at joint A than when the 

motor is at joint B. As the payload mass gradually increases the results reveal that the 

effect of the location of the redundant motor decreases and this is quite obvious from 

Figures 4.5 and 4.13 depicting case I and case II, respectively. 

In applications where the arm is in contact with its environment by applying 

forces the analysis shows that the effect of the redundant motor position is nearly 

negligible. The results of tests 4-7 for both cases (case I and case II) prove the 

previous point. It is important to refer here to the fact that when the arm is carrying 

payloads, together with also applying forces, the same result is obtained. Clearly, 

Figures 4.10 for case I and Figure 4.18 for case II both explain this. 
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From the above results, and the fact that most of the robot applications 

involve contact with the environment, it can be concluded that the location of the 

redundant motor is not important and its position should be decided upon only by the 

practical design considerations required for the manipulator. 

Parameter Value , 

I 

L 0.125 (m) 

-
m 0.31 (kg) 

J 0.0004 kg.m2 

mil 0.44 kg (Case I) 

0.88 kg (Case II) 

mill 0.44 and 0.88 (kg) I 

Table 4.1: Manipulator parameters for simulations. 

Payload (m p ) Ix Iy 
Test 

(kg) (N) (N) 

1 0 0 0 

2 0.5 0 0 

3 1 0 0 

4 0 5 0 

5 0 10 0 

6 0 0 5 

7 0 0 10 

8 0.5 5 5 

Table 4.2: Simulation tests for the manipulator. 
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• Case II (m n , mill = 0.88 kg) 
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4.4 Conclusions 

In this chapter the redundant one-cell, 2-DOF, parallel planar manipulator has 

been modelled using the bond-graph method via the Model Transformation Tools 

software (MTT). The developed method of chapter 2 has been used to perform the 

modelling process and to the author's knowledge it is the first time the bond-graph 

technique has been used in modelling redundant manipulators. The model represents 

the arm when carrying more than one redundant manipulator, and hence it is a 

general model. In addition to this the effect of the location of the redundant motor on 

the performance of the manipulator has also been analysed. The conclusion to the 

analysis recommends inserting the redundant motor as near the base as possible if the 

manipulator is designed only for the normal pick and place tasks, and the payloads 

are small. If the manipulator is designed for applications that need contact with the 

environment such as, machining operations, then the position of the redundant motor 

is not important and it can be put in any suitable location. 
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Chapter 5 

SEPA-ROBOT: 
A Serial-Parallel Manipulator with Singularig­

Based Design 

5.1 Introduction 

Despite the advantages offered by parallel manipulators such as high rigidity, 

high precision, high load capacity etc., extensive research in the area has led to the 

conclusion that such structures are problematic due to issues of poor workspace and 

having many singular configurations. Although the workspace issue can be manipulated 

and can be optimised in several ways such as the method discussed in chapter 3, the 

singularity issue cannot be avoided due to the structural properties of these robots. It is 

important to mention that this issue must be analysed for any parallel robot because of 

the fact that at singular configurations the control of the manipulator is inevitably lost. In 

fact the prevailing opinion in the research literature appears to support the idea of 

singularity avoidance in both path planning and control, as well as in the mechanical 

design of such robots (see for example [39] [40]). On the other hand, although serial 

robots suffer from many drawbacks such as low rigidity, low load capacity, low 

precision and etc., these manipulators have the characteristics of large workspace and 

high manoeuvrability. It is important to note that these two properties are very important 

for any manipulator design. 

From the above facts it can be concluded that there are two contradictory 

manipulator designs. The parallel design avoids the drawbacks of the serial design but 
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suffers from the lack of advantages of the serial design which are of great concern to the 

versatility of the robot manipulator. Due to this the work here is directed towards the 

development of a new manipulator which can work in different operating modes 

(designs). It was decided to call the manipulator "SEPA-ROBOT" because the 

manipulator can work as a serial robot and as a parallel robot. In addition to these two 

modes, the manipulator can also work as a redundant actuated parallel robot. The 

manipulator design here is based on singularity, meaning that the work here is rather 

different to that presented by other researchers. It is important to note that this design 

technique can open the door to building new manipulators or mechanical systems which 

apply the same idea. This, in fact, makes the controller design a challenging matter 

because there are no specific dynamics for such systems. 

In addition to the above contributions the work also generalises the idea to 

include the design of new manipulators, defined by the term "Parallel-Parallel Robots". 

In these manipulators the contribution of actuation redundancy, when applied, is 

maXImum. 

The first part of the chapter is directed towards introducing the issue of 

singularity in the planar parallel manipulators via the analysis of the manipulator under 

investigation. The second part explains the manipulator design and its operation. 

Following on from this, and in order to evaluate the performance of the new design, 

three dynamic models representing the different working modes are formulated using the 

standard Lagrange method. After that the performance of the different modes are 

examined via simulation. Following this the generalisation of the idea of singularity­

based design is presented together with design examples. 

5.2 Singularity in Parallel Robots 

In the case of the design proposed here the discussion on singularity is restricted 

to the mechanism shown in Figure 5.1, the one-cell manipulator of chapter 2, which is 

the core of the new manipulator. The mechanism has two DOF with all joints being 

rotary. The two main actuators are located at joints A and B. 



From Figure 5.1 the position co-ordinates of the gripper are as follows, 

Xp = 2LcosBJ + 2LcosB4 

Yp = 2LsinBJ + 2LsinB4 

Differentiating these with respect to time yields, 

Xp = -2L sin BJ 8J - 2LsinB4 84 

Yp = 2LcosBJ 8J +2LcosB4 84 

y 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

m ;X 
A,B 

Fig. 5.1: Configuration of one-cell parallel manipulator. 
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Equations 5.3 and 5.4 can be written as follows, 

. _ () + . () (5.5) 
[

Xp] _ [- 2LSin()\]. [0 -1][2LCOS()4]. 
Yp 2Lcos()\ \ 1 0 2Lsm()4 4 

On the other hand, the position co-ordinates of the endpoint can also be defined by 

Xp = 2LcoS()2 + 2LcoS()3 (5.6) 

Yp = 2L sin ()2 +2Lsin()3 (5.7) 

Differentiating equations 5.6 and 5.7 with respect to time yields, 

Xp = -2Lsin()2 O2 - 2Lsin()3 03 
(5.8) 

j; p = 2L cos ()2 O2 + 2L cos ()3 03 (5.9) 

Equations 5.8 and 5.9 can be written as follows, 

[~p]=[-2LSin()2]o +[0 -1][2LC~S()3]O 
Yp 2LcoS()2 2 1 0 2Lsm()3 3 

(5.10) 

To remove both the two idle (unactuated) joint velocities, that is 03 and 04 , from 

equations 5.5 and 5.10 we pre-multiply both sides of these equations by 

[2LcoS()4 2Lsin()J and [2LcoS()3 2Lsin()3]' respectively. Performing this yields 

the following two equations, 

r J[X] r J[- 2L sin () ] . L2L cos ()4 2Lsin()4 .p = L2LcoS()4 2Lsin()4 () \ ()\ 
Yp 2Lcos \ 

(5.11) 
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r J[X] r J[- 2LsinB ] . L2LcosB3 2L sin B3 Y: = L2LcosB3 2L sin B3 2LcosB
2

2 
B2 (5.12) 

Now, combining equations 5.11 and 5.12 leads to 

[
2LCOSB4 2LsinB4][\]_[4L2sin(B4-BJ 0 l[BI] 
2LcosB3 2LsinB3 Yp - 0 4L2 sin(B3 - BJJ B2 

(5.13) 

Equation 5.13 is called the velocity equation of the manipulator and it takes the form 

AF = BB 

Where 

P is the Cartesian velocity vector of the gripper. 

B is the vector of the actuated joint velocities. 

A is the direct kinematic matrix. 

B is the inverse kinematic matrix. 

The summary of the results in reference [34] and reference [36] states that 

singularity occurs whenever the determinant of A or B , or both, vanishes. When 

det(B) = 0 the manipulator is in a serial singularity and there is a direction along which 

no Cartesian velocity can be produced. The gripper loses one or more DOF and it can 

resist one or more forces or moments without exerting any torque or force at the actuated 

joints. On the other hand when det(A) = 0 the manipulator is in a parallel singularity 

and the manipulator becomes uncontrollable (the gripper of the manipulator gains one or 

more DOF and it cannot resist the forces or moments from one or more directions even 

when all actuated joints are locked). The last case occurs only when the parameters of 

the manipulator satisfy certain special conditions and in this case a finite motion of the 
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gripper is possible even if the actuated joints are locked, or alternatively a finite motion 

of the actuated joints produces no motion of the gripper [34]. 

For the case discussed here the determinants of A and B are as follows, 

det(A) = 4L2sin(£13 - (14) 

det(B) = l6L4sin(£14 -£1l)sin(£13 -£1J 

(5.14) 

(5.15) 

Recalling that the solution of the constraints ofthe mechanism of Figure 5.1 is defined 

by, 

£14 = £12 and £13 = £11 

Then, from equations 5.14 and 5.15, we have 

det(A) = -4L2sin(£12 - £1J 

det(B) = -16L4sin2(£12 - (11) 

(5.16) 

(5.17) 

This means that both the determinants of A and B vanish for the same condition, 

which is £12 -£11 = ktr where k = 0,1 (assuming restrictions on £12 and £11 ). For k = 0, 

the manipulator is fully extended, as shown in Figure 5.2, and it demonstrates the 

definitions of both serial and parallel singularity. However, when k = 1 the manipulator 

demonstrates also both singularities, but in this case the end-effector (point P) overlaps 

the origin at point A and B, as shown in Figure 5.3. 

5.3 Manipulator design 

In the first singular configuration (k = 0) the gripper cannot resist any angular 

moment. Therefore if an additional motor is placed at joint Cor D, any torque produced 

by this motor will rotate the two links DP and CP together. This case simulates the 
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second link ofa 2-DOF serial robot. If we also let the two main motors at A and B have 

the same control signal (i.e. the same torque) the links AD and BC will also rotate 

together as if they are the first link of the serial robot. One possible design for the 

manipulator is shown in Figure 5.4. In this case the arm moves in the horizontal plane 

and the system is quite similar to the SCARA robot. It is important to refer here to the 

fact that the necessary condition for the manipulator to initiate this serial mode is to 

bring the original manipulator to the singular configuration of Figure 5.2. 

However, if the manipulator is to be operated in the redundant parallel mode the 

mechanism should start at a configuration other than those of Figures 5.2 and 5.3. 

Additionally the three actuators at A, Band Cor D should have control signals (torques) 

that can be calculated according to the results in [16] and [42]. On the other hand if it is 

required to operate the manipulator in the normal parallel mode then the third motor at C 

or D can be removed or neglected and treated as a concentrated mass. In addition the 

manipulator should initiate at the same configuration as the previous mode. 

y 

C,D 

{Il '/ "" X 
A,B 

Fig. 5.2: First singular configuration. 
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y 

D 

o 2L @ 2L 
0c '" x 

A,B,P 

Fig. 5.3: Second singular configuration. 

A&B: Main Motors 

C: Redundant Motor 

Fig. 5.4: A possible design for the new manipulator. 

5.4 Dynamics of Working Modes 

Since the mechanical structure of the arm changes for the different modes the 

dynamics of the arm necessarily differ in each case. Thus, there is no single dynamic 

model that represents the arm. In order to analyse the arm in each case, the Lagrange 

method will be used to obtain the equations of motion for each case. The links of the 
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manipulator are assumed to be uniform rods each with a mass m, a length of 2L and a 

moment of inertia about the centre of mass of J. The mass of the redundant motor and 

the payload mass are represented by mm and mL, respectively. 

• Redundant mode dynamics 

To help in deriving the equation of motions the redundant manipulator IS 

redrawn in Figure 5.5 where the location ofthe redundant motor can be shown. 

J = tmL2 (5.18) 

(IBC)B = (IAD)A =J +mL2 =4J (5.19) 

The kinetic energy of link BC is as follows, 

I ( ). 2 • 2 TBc ="2 I BC B B 2 = 2J B 2 (5.20) 

Similarly, 

T I ( )'2 '2 
AD ="2 I AD A BI = 2JBI (5.21) 

For the mass of the redundant motor the kinetic energy is given by, 

T - I 2 - I {,2LO' \2 -2 L20' 2 
M-"2mmvC-"2m/ll~ 2}-mm 2 (5.22) 

Now letting xg ' Yg ' Vg and Xh' Yh' vh be the x-y position co-ordinates and the resultant 

velocities of the mass centres of links CP and DP, respectively. Then we have, 

Xg = 2LcosB2 + LcosOI 

Y g = 2L sin B2 + LsinOI 

Differentiating with respect to time and calculating the resultant velocity give, 



y 
p 

M ~X 

A,B 

Fig. 5.5: Configuration of the redundant parallel mode. 
(C: Redundant motor) 

Xg = -~Lsin8i:J2 + Lsin8/:JJ (5.23) 

Y g = 2L cos 8/)2 + Leos 8/)1 (5.24) 

2 .2·2 2'2 2'2 2" ( ) v g = Xg + Y g = 4L 82 + L 81 + 4L 8182 cos 82 - 81 
(5.25) 

Hence, the kinetic energy of link CP is given by, 

Tcp = 1- mv: + 1- JBI2 = 6JB; + 2JBI
2 + 6J cos(82 - 81 )iJI

B
2 

Similarly, 

Xh = 2Lcos81 + Lcos82 

Yh = 2Lsin81 + Lsin82 

(5.26) 

Differentiating with respect to time and calculating the resultant velocity give, 
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X
h 

= -~LsinO,O, + Lsin0202 ) 
(5,27) 

Yh = 2LcosO,0, + Lcos020 (5.28) 

2 ,2 ,2 2'2 2'2 2" ( ) 
V" = X" + y" = 4L 0, +L O2 +4L 0,02 COS O2 -0, (5,29) 

The kinetic energy oflink DP is then given by, 

TDP = t mv7. + t JO; = 6JO,2 + 2JO; + 6J COS(02 - 0, )0,02 (5,30) 

For the payload mass the kinetic energy is calculated as follows, 

Xp = 2LcosO, + 2Lcos02 

YP = 2LsinO, + 2L sin O2 

Xp = -(2LsinO,0, + 2Lsin0202) (5,31) 

Yp = 2LcosO,0, +2Lcos020 (5,32) 

2 ,2 ,2 2'2 2'2 2" ( ) 
Vp = Xp + yp = 4L 0, +4L O2 +8L 0,02 cos O2 -0, (5,33) 

2 2'2 2'2 2 ( )" TL =tmLvp =2mLL 0, +2mLL O2 +4mLL cos O2 -0, 0,02 (5,34) 

Now the total kinetic energy of the manipulator is given by 

T = TBe + TAD + Tcp + T DP + TL + T M 

( 2 \n2 ( 2 2 \n2 
= \lOJ + 2mLL p, + V. OJ + 2mlllL + 2mLL P2 

+ (12J +4mLL2)coS(02 -0,)0,02 (5,35) 



Letting, 

~\ = 10J + 2mLL2 

~2 = ~\ +2m L2 III 

~3 = 12J + 4mLL2 

These lead to, 

T = ~/)\2 + ~28; + ~3 COS(B2 - B\ )8\82 

N ow the total virtual work is given by, 

ow = 1'A8(B\) + 1'B8(BJ+ 1'c8(27r-B2 +B\) 

Then we have, 

= (1'A +1'c)8B\ +(1'B -1'c)8B2 

_oW =1'A+1'C 1'\ - oB\ 

_oW =1'B-1'
C 1'2 - oB

2 

Lagrange's equation of motion, 

= !£ ( o~ ) _ oT for i = 1,2 
1'

i dt OBi OBi 

114 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

From equations 5.41-5.43, the equations of motion of the redundant manipulator are as 

follows, 
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TA +Te = 2~Jjl +~3COS(02 -(1)B2 -~302(02 -OJ sin(02 -(1)-~30102sin(02 -(1) 

= 2~A +~3COS(02 -(1)B2 -~3sin(02 -(1) 0; (5.44) 

T B - T e = 2~2B2 + ~3 COS(02 - OJ BI - ~301 (02 - oj sin(02 - OJ+ ~30102 sin(02 - OJ 

= 2~2B2 + ~3 cos( O2 - (1) BI + ~3 sin( O2 - (1) 01
2 (5.45) 

• Normal parallel mode without the redundant motor mass 

In this case we substitute for mill = 0 in equations 5.37 and removing the torque 

Te from equations 5.44 and 5.45. Performing these operations leads to, 

TA = 2~IBI + ~3 COS(02 - ( 1) B2 - ~3 sin(02 - ( 1) 0; (5.46) 

TB = 2~IB2 + ~3 COS(02 - OJ BI + ~3 sin(02 - ( 1) 012 (5.47) 

• Serial mode dynamics 

The configuration of the manipulator in this case is shown in Figure 5.6. 

Recalling that, 

(/Be)B = (/ADL =1+mL2 =41 

The kinetic energies of both links AD and BC are then calculated as follows, 

( )
• 2 • 2 

TAD = TBe = t I Be B 01 = 2101 (5.48) 

Also, the kinetic energy of the motor mass at joint C is given by, 
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2 {, '\2 2'2 
TM = tmmVC = tmm \2LB\ J = 2mmL B\ (5.49) 

The x-y position co-ordinates ofthe end-effector are as follows, 

Xp = 2LcosB\ + 2LcosB3 

yP = 2L sin B\ + 2L sin B3 

Differentiating with respect to time and calculating the resultant velocity give, 

Xp = -(2LsinBA + 2LsinBi;}3) (5,50) 

y p = 2L cos BlJ\ + 2L cos BiJ3 (5,51) 

2 ,2 ,2 2'2 2'2 2" ( ) Vp = Xp + yp = 4L B\ + 4L B3 + 8L B\B3 cos B3 - B\ (5,52) 

The kinetic energy of the payload mass is then given by, 

2 2 '2 2 '2 2 ( In ' TL =tmLvp =2mLL B\ +2mLL B3 +4mLL cos B3 -B\p\B3 (5,53) 

y p 

2L 

C,D 

2L 

m '{ ~X 

A,B 

Fig, 5,6: Configuration of the manipulator serial mode, 



The x-y position co-ordinates of the mass centre of link CP or DP is given by, 

Xh = 2Lcos(}1 + LCOS(}3 

Yh = 2L sin (}I + Lsin(}3 

Differentiating with respect to time and calculating the resultant velocity give, 

Xh = -(2Lsin(}IBI + Lsin(}3B3) 

Yh = 2Lcos(}IBI + LCOS(}3B3 

2 ·2·2 2'2 2'2 2" ( ) 
V

h 
= X

h 
+ Yh = 4L (}I + L (}3 + 4L (}1(}3 cos (}3 - (}I 

The kinetic energies oflinks CP and DP are given by, 

T -T _I 2 IJ(}'2 CP - DP -'2 mvh +'2 3 

= 6JBI
2 + 2JBi + 6J COS((}3 - (}I) BIB3 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

Now the total kinetic energy ofthe manipulator is calculated as follows, 

T=TBC + TAD +Tcp +TDP +TL +TM (5.58) 

Substituting from equations 5.48, 5.49, 5.53 and 5.57 in equation 5.58 gives, 

( 
2 2)'2 ( 2) '2 T = 16J + 2mLL + 2mmL (}I + \4J + 2mLL (}3 

+ (12J +4mLL2) COS((}3 -(}I) BIB3 (5.59) 
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Letting, 
~ = 16J + 2mLL2 + 2mlllL2 

~ = 4J +2mLL2 

~ = 12J + 4mLL2 

Substituting from 5.60-5.62 in equation 5.59 yields, 

T = A/j,2 + A2B; + A3 COS(03 - 0, )B,B3 

Now the total virtual work is given by, 

5W = r A 5(0,)+ r B 5(0,)+ rc 5(03 -0,) 

= (r A + r B - r c) 50, + r c 503 

From equation 5.64, the generalised forces are calculated as follows, 

- aw = r A + r B - r c r, - ao, 

aw 
r 3 =-=rC a03 
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(5.60) 

(5.61) 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

From Lagrange's equation (equation 5.43), the equations of motion for this serial mode 

are given by, 

r A +rB -rc = 2~ B, +~COS(03 -OJB3 -~B/sin(03 -OJ (5.67) 

r c = A3 COS(03 - 0,) B, + 2A2B3 + A3B,2 sin(03 - 0,) (5.68) 
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5.5 Performance evaluation of the manipulator modes 

In order to complete the design process it is necessary to find a suitable basis for 

the selection of the motors. Additionally the dynamic characteristics of the different 

modes under different payloads need to be evaluated. In order to do this the arm was 

simulated to perform a pre-specified dynamic task and the payload was gradually 

increased until the motors reach their maximum values of the torques. The three motors 

were assumed to have the same maximum torque this is because the redundant motor 

becomes a main motor in the serial mode. The task used for the simulations is a point-to­

point fifth order joint-space trajectory connecting (}lD = 0.175 rad, (}20 = 0.785 rad to 

(}ll = 1.571 rad and (}21 = 2.88 rad in t I = 1 sec. The parameters of the manipulator 

are assumed to be of the values m = 0.25 kg ,2L = 0.125 m and mill = 0.44 kg. The 

maximum torque limit is chosen to be 6.5 N.m. 

The trajectory equations for the links are as follows, 

(}l (t) = 0.1745 + 13.963 t3 - 20.9445 t4 + 8.3778 t5 

81 (t) = 41.889 t2 - 83.778 t3 + 41.889 t4 

81 (t) = 83.778 t - 251.334 t2 + 167.556 t3 

(}2(t) = 0.7854 + 20.994 t3 - 31.4195 t4 + 12.5664 t5 

82(t) = 62.8319 t2 -125.6637 t3 + 62.8319 t4 

82(t) = 125.6638 t - 376.9911 t2 + 251.3276 t3 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

In the simulations, the determination of the motor torques in the case of the redundant 

mode is achieved by using the pseudo-inverse approach used in chapter 4. To implement 

this we do the following, 

In equations 5.44 and 5.45, letting 



TI = TA +Te 

T2 =TB -Te 

Writing these two equations in matrix form gives, 

[ 1 0 1][:A]=[TI] o 1 -1 B T2 

Te 

Solving this equation leads to, 

2TI + T2 

TA = 3 

"I" _ TI +2T 
"B - 2 

3 

T -T2 .1_ Te = 3 
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(5.75) 

(5.76) 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

In the case of the serial mode the two motors A and B are assumed to have the same 

torques. The simulations are performed using the SimulinkiMatlab5.3 program, and the 

block diagrams for the three modes are shown in Figures 5.7, 5.8 and 5.9. 

5.6 Results and Discussion 

The results show that the maximum payload achieved by the redundant mode is 

5.25 kg and it is 5.20 kg for the serial mode, whilst it is 5.00 kg for the non-redundant 

mode without the mass of the redundant motor. The joint torques for all the modes are 

shown in Figures 5.10, 5.11 and 5.12. From these results the redundant and the serial 

modes succeed in carrying higher loads without exceeding the torque limits of the 

motors. It is important to note that in the case of the redundant mode the gain achieved 

(compared to the non-redundant mode) is relatively small (5%) if compared with gains 

obtained by other researchers. This may be attributed to the different tasks imposed or to 
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the different optimisation algorithms used in the determination of the motor torques, or 

may even be due to the differences in the manipulator designs. The first proposal agrees 

with the findings of Beiner [16] where smaller gains in dynamic tasks were reported for 

specific trajectory paths. On the other hand, the improvements in the serial mode are 

mainly due to the extra motor at the base (A or B). In this work the serial mode can be 

considered as a redundant serial robot with the redundant motor located on the ground. 

This is opposite to the redundant parallel mode where the extra motor forms a dynamic 

load on the system. In other words the help provided by the extra motor in the serial 

mode is 100 %. It is important to refer to the fact that this result is based mainly on the 

assumption that the three motors have the same maximum limits. If the maximum torque 

limit of the motor at C is decreased, the achieved maximum payload in the serial mode 

will be decreased. This is absolutely true because the motor located at C is vitally 

important for the serial robot, as it is one of the main motors of the arm. 

Despite the improvements in the redundant parallel mode over the non-redundant 

one at higher loads, the results obtained at low loads were different and the non­

redundant mode was found to be better than the redundant mode. As the payload 

increases the difference decreases until they become the same. Further increase in the 

payload leads to improvements in the redundant mode over the non-redundant one. We 

should refer here to the fact that the results obtained show that there is a limit on the 

gains obtained from the redundant mode. A further increase in the payload up to a level 

of 10 kg gives the same gain, which is 5% over the non-redundant mode. 

From the design point of view the selection of the torque limits for the motors 

should be as follows: 

1. Motor C should be selected on the basis of the applications required by the serial 

mode. 

2. Motor A and B should be selected on the basis of the applications required by the 

non-redundant robot and should be enough to satisfy the serial applications. 
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Fig. 5.7: Simulink block diagram for calculating the motors torques in the case of the normal parallel mode. 
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Fig. 5.8: Simulink block diagram for calculating the motors torques in the case of the redundant parallel mode. 
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Fig. 5.9: Simulink block diagram for calculating the motors torques in the case of the serial mode. 
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Fig. 5.10: Torque requirements for the normal parallel mode. 
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Fig. 5.11: Torque requirements for the serial mode. 
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5.7 Generalisation 

It has been shown that singularity can be used to build mechanical structures 

with interesting dynamic behaviour. The idea can be extended to the design of a new 

class of planar manipulators which could be called parallel-parallel manipulators (Figure 

5.13 and 5.14). In such manipulators the original mechanism of Figure 5.1 is used as a 

serial branch in the normal parallel manipulator. This allows the applications of 

actuation-redundancy with more than one redundant motor and with all actuators on the 

ground. In other words the redundant actuators do not form a dynamic load on the 

original system thus increasing their contribution to the manipulator without losses. 

Additionally changing the mode of operation of each branch (as done in section 5.3) it 

can allow different operating characteristics. 

c 

A 

Fig. 5.13: Parallel-Parallel 2 DOF manipulator. 



129 

p 

E 

Fig. 5.14: Parallel-Parallel 3 DOF manipulator. 

5.8 Conclusions 

In this chapter the new concept of singularity-based design is presented and used 

to develop a manipulator with multiple operating modes. For tasks with large workspace 

and medium load capacities the serial mode can be used. For high loads the normal or 

redundant-actuated parallel mode can be chosen. For each mode a dynamic model is 

derived using the Lagrange method. The possible conditions by which the motors 

torques can be selected have also been defined. In addition to this, a performance 

analysis has been carried out for each operating mode by using simulations. The results 

indicate improvements in the serial mode form the viewpoint of load capacity. Lastly 

the idea is generalised to include the design of new planar mechanisms called parallel­

parallel manipulators. 
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Because the control problem of parallel manipulators is the main concern of the 

work here, and due to the importance of the issue of practical validation to any control 

system design, it has been decided to build an experimental parallel manipulator. The 

arm is an implementation of the multi-cell parallel manipulator design technique. It has 

two cells and is directly driven by electric motors. The manipulator moves in the 

horizontal plane, so as to cancel the gravity forces. The first part of the chapter is 

directed towards giving the details of the overall experimental robot. These include the 

specifications of the links, actuators, sensors, data acquisition and control software. 

Since, in general, the theoretical dynamic model of the robot is not always perfect, due 

to issues such as the uncertainty in the robot parameters, noise in the measured signals, 

ignoring the flexibility of joints and links, ignoring friction at the joints etc., it was 

decided that the next part of the chapter would be directed towards evaluating the quality 

of the derived dynamics of the manipulator. This is performed via a comparison of the 

data collected form the experimental robot with that obtained by simulations using the 

dynamical model. It is important to note that this process is very important for all control 

techniques that are structurally dependent on the dynamic model of the robot. 

6.2 Specifications of the Experimental System Components 

6.2.1 Manipulator (Mechanical Part) 

Because the manipulator has two cells there are two cross-links and four normal 

links. The approximate value of the mass of each normal link is 0.1467 kg while it is 
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0.291 kg. for each cross-link. Figures 6.1 and 6.2 show the dimensional detail of each of 

these links while Figure 6.3 shows the whole robot. From Figure 6.3 it can be seen that 

the arm has two serial chains (up and down), each with three links, two of them being 

normal links and the other is a cross-link. Two joints located at the centre of the cross­

link, and the end of the third link connects the two chains. The first degree of freedom 

(DOF) results from the angular motion of the first link of the up serial chain. It has been 

decided to refer to this link as the first input link. The second DOF is due to the motion 

of the first link of the down serial chain. We refer to this link as the second input link. 

Controlling the motion of these two input links controls the x-y co-ordinates of the 

gripper. 

6.2.2 Actuators/Amplifiers 

The actuators of the experimental parallel robot are direct current (DC) 

permanent magnet servomotors. Both motors are the same model, which is S642-1B/T 

supplied by Electro-Craft. This motor has a peak current demand of 16.2 A, peak torque 

of 3.3 N.m, stall current of 3.3 A, stall torque of 0.68 N.m and a maximum supply 

voltage of 60 V. The moment of inertia of the rotor is 1.3 kg.cm2 and the motor torque 

constant is 0.23 N.m! A. 

The chosen amplifier is the MAX 250 unit supplied by Electro-Craft. It is a 

single axis four quadrant pulse-width modulation (PWM) drive for permanent magnet 

DC brush motors. The PWM frequency is 20 kHz. The drive can be operated in both 

velocity and torque control modes. The bandwidth of the drive, in the case of torque 

mode, is up to 2 kHz. The mean current value is 2.2 A while it is 5.6 A for the peak 

value. These are the default values of the amplifier, and removing certain resistors inside 

the drive motherboard allows one to vary them. The input control voltage to the 

amplifier must be within ± 10 V. 
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Fig. 6.2: Schematic diagram of the cross-link. 
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6.2.3 Sensors 

6.2.3.1 Position Sensors 

For position measurements, and for reducing the cost of the overall system, it 

was decided to use potentiometers. The potentiometers are one tum, conductive, plastic 

servo potentiometers supplied by the RS Company. The maximum permissible wiper­

current is 0.01 A. 

6.2.3.2 Velocity Sensors 

The angular velocities of the input links are measured using tachometers 

mounted integrally within the motors housings. To remove high frequency noise due to 

the amplifiers' current signals, the signals from the tachometers are filtered. This is 

performed digitally inside the software using a first order low-pass Butterworth filter 

with a cut-off frequency of20 Hz. The tachometer constant is 0.014 V/r.p.m. 

6.2.4 Control Software 

The control software is the Real Time Toolbox, which is a package for 

connecting MATLAB and SIMULINK to the real world. It adds on the capability of 

acquiring data in real time, immediately processing it by MATLAB commands or a 

SIMULINK model, and then sending it back to the outside world. All the basic 

commands of the Real Time Toolbox have both graphical and command-line interface. 

From the Real Time Toolbox SIMULINK block library, three blocks are of main 

concern in the control of the experimental robot. The first one is called the Adapter, this 

being a special block that loads the hardware driver but does not perform any actions 

during the simulations. The Adapter has no inputs and no outputs. The other two blocks 

are responsible for sending and receiving the data to and from the robot. These are the 

RT-Out and RT-In blocks, respectively. 

6.2.5 Computer 

The computer is a basic specification Pentium 100 MHz PC with 16-mega bytes 

of RAM. 
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6.2.6 Communications 

The communications between the control program and the robot is via one AD 

512 data acquisition card supplied by Humusoft. The card is designed for standard data 

acquisition and control applications and optimised for use with the Real Time Toolbox 

of MATLAB. The AD 512 contains a 100 kHz 12 bit AID converter with sample/hold 

circuit, four software selectable input ranges and 8 channel input multiplexers, 2 

independent double buffered 12 bit D/A converters and an 8 bit digital output port. It is 

important to note that the ± 10 V range was chosen for both the input and the output 

channels. Because the driver of the card maps the selected voltage range into the range -

1 to 1 the control designer must be sure that the control signal from the software to the 

amplifiers is within this range. 

The configuration of the overall actual system is shown in Figure 6.4. The 

manipulator itself is shown in Figure 6.5. 

6.3 Actual Arm Dynamics 

To reduce the expected gap between the theoretical and the actual robot 

dynamics, an attempt was made to take into account all the small features that exist in 

the actual system, but not in the theoretical system. These include the two connecting 

rods which connect the two serial chains as shown in Figure 6.3, the small connecting 

rods appeared in the same graph, and the masses of the bearings. These were treated as 

concentrated masses when refining the mathematical model. 

Applying the above, the derived system dynamics (actual) are given by the 

following two equations, 

T, = J (162 B, + 142 cos (02 - OJB2 -142 sin (02 - OJ On (6.1) 

T2 =J(162B2 +142 cos (02 -O,)B, +142sin(02 -OJO,2) (6.2) 
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Where, 

J = 4 x 10-4 kg.m 2, this being the calculated moment of inertia of each normal link. 

Because the control signals from the computer (PC) to the motors are in volts 

and not in torque units, equations 6.1 and 6.2 have been modified to represent the system 

dynamics in terms of the control voltages (u
1 

and u
2

) as follows, 

U1 = ~ {!62 01 + 142 cos (02 - OJ02 -142 sin (02 - oJe;} (6.3) 
kk 

a t 

U2 =~{!6202 +142cos(02 -OJOI +142sin(02 -oJeI
2
} (6.4) 

kk 
a t 

Where, 

k a = 1.2 AN, being the measured gain of each amplifier. 

kt = 0.23 N.m! A, being the motor torque constant. 

We should refer here to the fact that in equations 6.3 and 6.4 the subscript 1 is referring 

to the up motor, or the up input link, and the subscript 2 is referring to the down motor, 

or the down input link. 

6.3.1 Friction Model 

To improve the actual model and because some dry friction in the experimental 

system was encountered, a friction model has been added to the dynamic equations. The 

actual dynamic model after incorporating the friction part is represented by the 

following equations, 

U1 =~{16201 +142cos(02 -OJ02 -142sin(02 -oJe;}+ .t;sgn{eJ+bA (6.5) 
kk 

a t 

U2 = k:k
t 

{16202 + 142cos {02 -OJOI +142sin{02 -oJe:}+ i2sgn(eJ+b2e2 (6.6) 
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Here 1; and f2 are the dry friction forces associated with both the up and the down 

degrees of freedom. The viscous friction coefficients are represented by b
l 
and b

2 
and 

the function sgn represents the signum function. 

The above friction definition is a simplified model that considers friction forces 

associated with each DOF rather than with each joint. This is due to the difficulty in 

identifying the friction parameters of each of the unactuated joints. In order to determine 

the parameter 1;, the down motor was switched off and a gradually increasing voltage 

signal was sent to the up motor. The value of the voltage at which the arm began its 

motion was considered to represent the dry friction force, in volts, acting on the up DOF. 

Multiplying this voltage value by the amplifier gain and motor torque constant gave the 

value offt = 0.09 N.m. The value off2 = 0.1 N.m was obtained by using the same 

procedure, but in this case the up motor was switched off. The values of the viscous 

friction coefficients were chosen to give the best simulation results (bl = b2 = 0.01 

N.m.sec/rad), in the context of minimised error. These values are numerically small and 

would therefore not have masked other modelling errors of significance. 

6.4 Model Validation 

The validation of the mathematical model has been achieved by comparing data 

obtained from the experimental manipulator with simulations using the system dynamics 

represented by equations 6.5 and 6.6. The actual data from the experimental system, and 

that from the simulations, were obtained using a simple independent joint proportional 

controller applied to the manipulator. During the experiments and simulations the arm 

was forced to follow a specified trajectory which was represented by a sine wave 

function. We should refer here to the fact that the sampling rate during the experiments 

was 200 Hz. This is the minimum value that could be obtained from the Real Time 

Toolbox. The block diagrams used during the simulations and the experiments are 

shown in Figures 6.6 and 6.7, respectively. 
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The results in this case for the system responses and the angular velocities of 

each input link are shown in Figures 6.8-6.11. The results show a little difference 

between the actual system and the theoretical model. This is an expected result due to 

the following factors, 

• The uncertainty in the model parameters. 

• The fact that the exact friction model is unknown. 

• The noise in the measured signals. 

• The unknown dynamics of the electrical components, and the effects of the 

sampling rate which potentially has a great impact on the system. 

• Ignoring the flexibility of the links and the joints. 

• Ignoring the manufacturing errors in the arm. 
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It is important to refer here to the fact that despite there being no effect on the 

validation process due to the nature of the experiments (open loop or closed loop) it was 

decided to use only closed loop experiments in order to prevent damage of the system 

due to the case of singularity which may occur as a result of uncontrollable signals to the 

arm during the open loop experiments. To make sure that the type of the controller has 

no effect on the results, the preceding experiments and simulations have been repeated, 

but this time a simple independent joint proportional and derivative controller has been 

used. The results in this case are shown in Figures 6.12-6.15. From these diagrams it can 

be seen that the results are still essentially the same as in the case of the proportional 

controller. 

6.4 Conclusions 

In this chapter the experimental system has been discussed in detail. The 

specifications of the system components, that is the actuators, sensors, links, amplifiers, 

computer, data acquisitions and the control software, have been given. Following this 
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the theoretical dynamic model has been modified in order take into account features that 

are in the experimental system and not in the mathematical dynamical equations. In 

addition to this a simplified friction model has been added to the equations to improve 

the model. The quality of the derived dynamic equations has been checked out by 

comparing data collected from the experimental system with data from simulations. In 

the experiments and the simulations the robot has been subjected to a simple 

proportional controller. It was preferable to use closed loop experiments in order to 

avoid the state of singularity that the arm may be brought into due to uncontrollable 

signals in the open loop experiments. The results of this comparison show little 

difference between the actual and the theoretical model. The results are acceptable, as 

the dynamic model is not perfect due to the reasons mentioned earlier in the chapter. To 

prove that the controller has no effect on the validation results the previous experiments 

and simulations have been repeated by using a simple linear proportional and derivative 

controller. No significant difference has been found between these results and those 

obtained from the proportional controller. 
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Chapter 1 

Inverse Model-Based Control 

7.1 Introduction 

In this chapter the inverse model-based control techniques reviewed in chapter 

one, namely the computed torque and the feed-forward controllers, are applied to the 

experimental parallel manipulator. This is in order to examine the effectiveness of these 

methods in controlling the parallel robot and to examine any practical problems that 

could have arisen while using the Real-Time Toolbox in such a complicated control 

task. Because of the unactuated joints in the robot, and the difficulty in identifying their 

friction parameters or their friction models, it was decided to add an integral control 

action to the servo part (PD controller) of the control systems mentioned above. 

7.2 Experiments 

In the experiments the arm is forced to follow a prescribed trajectory represented 

by the following, 

Bid (t) = 1r _ 1r co s (cut ) (rad) 
2 4 

B2d(t) = 1r - 1r cos(cut) (rad) 
4 

Two values for cu have been chosen: cu = f and f (rad/s). The signals from the 

tachometers have been filtered using a first order Butterworth analogue filter with a cut-
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off frequency of 20 Hz. The minimum sampling-rate that can be achieved to perform the 

experiments is 100 Hz. The chosen Simulink solver was the ODE 45 routine. In order to 

compensate for the unknown friction torques at the joints an integral term has been 

added to the PD servo controllers. Practically this is desirable because the integral term 

builds up to remove any steady-state error. 

7.2.1 Feed-Forward Control 

The control law in this case is given by the following equation, 

TC = Tmodel + KpE + KvE + K[ fEdt (7.1) 

Here, T model is the vector of control signals, in volts, calculated from the dynamic model. 

Because the gains in the above equation are essentially the same as for the independent 

joint control, they have been chosen by trial and error to give the maximum desirable 

performance. This was achieved by using simulations and then implementing the 

obtained values for the experimental arm. Because of the uncertainty in the friction 

parameters the gains are slightly different from the real ones. The practical values of 

these gains are as follows, 

K - K - andK -
[

5 0] [0.08 0] [2.5 0] 
p - ° 5' v - ° 0.05 [- ° 2.5 

It is important to refer here to the fact that in the control law stated above E and E are In 

V and Vs-1
• The Simulink block diagram of the control system is shown in Figure 7.1. 

7 .2.2 Computed-Torque Control 

The control law is given by the following equation: 

TC =M(e)(ed +KpE+KvE+ fEdt)+V,n(e,e)e (7.2) 
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Where M(0) is the mass matrix calculated form the model, Vm (0,8)8 is the vector of 

Corio lis and Centrifugal forces, 0 is the vector of output angular displacements, 8 is 

the vector of output angular velocities and e d is the desired acceleration vector which is 

the second time derivative of the desired trajectory. 

Due to the existence of the integral term the theoretical (assuming an exact 

model) system equation in the error space, that is equation 1.9, becomes as follows, 

E + KvE + KpE + KI fEdt = 0 (7.3) 

In this case, the system order is increased to order six. Because the gain matrices K v' 

K p and Klare diagonal, the error equation for the i1h degree of freedom can be written 

as follows, 

e; + kvA + kf>te + kIf fe; dt = 0 (7.4) 

In order to ensure that the system is stable the gains are chosen according to the Routh­

Hurwitz criterion [79]. Using equation 7.4, and this criterion, the gain should satisfy the 

following conditions, 

kv; ,kIf > 0 and kvjkpj - kIj > 0 (7.5) 

The above conditions ensure that the elements of the first column of the Routh array are 

all positive. The following values represent the chosen gains, 

K - K - andK -[
100 0] [20 0 ] [80 0 ] 

p - 0 100' v - 0 20 I - 0 80 

Following on from this simulations are carried out to check the system 

performance. It is necessary to refer here to the fact that, here, E is in radians and E is 
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in radians per second. The Simulink block diagram of the control system is shown in 

Figure 7.2. 

7.3 Results and Discussion 

7.3.1 Feed-Forward Control 

In the case ofthe feed-forward controller and for OJ = 1-, the results are shown in 

Figures 7.3-7.8. For OJ ={, the results are shown in Figures 7.10-7.14. The results 

show moderately good tracking performance in the case of relatively slow motion. 

However the performance is not good in either case at the points where the system 

changes direction. This is due to stiction friction. On the other hand the results also show 

that noise is dominant at slow motion. 

7.3.2 Computed-Torque Control 

The results in this case, and for OJ = 1-, are shown in Figures 7.15-7.20. For 

OJ = {, the results are shown in Figures 7.21-7.26. Again the results of relatively slow 

motion are better than those for faster motion. This is attributed to the limited sampling 

rate that is obtainable. Here the results show superior tracking performance than in the 

case of feed-forward control. In addition to this the control law is able here to 

compensate for the unknown friction. The apparently poor performance of the feed­

forward control is attributed to the fact that the method does not provide complete 

decoupling (the corrective torques in the feed-back control of one joint perturb all other 

joints). 

7.4 Disturbance Rejection 

To examine the ability of the two inverse-model based control techniques to 

reject disturbances, the previous experiments have been repeated after assigning initial 

conditions to the arm. The initial positions of the two input links are as follows: 

0, (0) = 25 (deg.) O2(0) = 105 (deg.) 
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7.4.1 Results (Feed-Forward Control) 

The results for the case of (j) = f are shown in Figures 7.27-7.32 while for 

OJ = f the results are shown in Figures 7.33-7.38. The results obtained show that the 

controller is able to reject the disturbances represented by the initial conditions of the 

arm. Despite this result there is still an important drawback which lies in the fact that the 

system does not converge to its origin quickly. The graphs of the angular speed clearly 

show this drawback. The performance after rejecting the disturbance is the same as in 

the previous section. 

7.4.2 Results (Computed-Torque Control) 

The results of the fast trajectory are shown in Figures 7.39-7.44. In the case of 

the slow trajectory the results are shown in Figures 7.45-7.50. Here, the performance is 

very much better than that of the feed-forward control because the convergence to the 

origin is fast. On the other hand the results of the low speed trajectory show better 

tracking accuracy than those of the fast trajectory. It is important to note that the 

disturbance rejection property should be fast for any control system. However this does 

depend on the sampling rate of the control signals to the actuators. 

7.5 Conclusions 

In this chapter the two inverse model-based control laws (Feed-forward and 

Computed torque) have been applied to the experimental parallel robot. The results show 

that both methods are good at controlling the robot, but the computed-torque controller 

has been proven to be much better than the feed-forward controller. In both methods the 

tracking accuracy is very good at slow motion. On the other hand, despite the absence of 

friction mechanisms incorporated in the dynamic model used in both these control 

methods a compensation for friction is obtained from the integral action in the servo 

control part. The best compensation is reported for the case of the computed-torque 

control. In the disturbance rejection test the computed torque controller has been proved 

to be better than the feed-forward controller. 
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Chapter 8 

On the design of computed-torque controllers 
for sliding mode behaviour 

8.1 Introduction 

Nonlinear model-based control systems such as the computed-torque controllers 

are good techniques for robot control when the parameters of the model are known and 

the control computer is sufficiently able to compute the inverse dynamics in a reasonable 

time. This fact is equally applicable to both serial and parallel robots. Using the wealth 

of identifications techniques designed for serial structures can assist in solving the 

problem of identifying the unknown parameters of these robots. In fact their structural 

property is the key in the development of these techniques, where individual links 

parameters and friction terms of the joints can be identified separately. For parallel 

robots the problems are complicated. Neither the links parameters and their joint friction 

terms can be individually identified, nor can the inverse dynamics be calculated in real 

time. In addition to this the existence of many spherical joints in such spatial 

mechanisms makes the situation worse when identifying the friction parameters. It is 

important to note that the only solution to these problems is to use robust control 

systems. These are normally good techniques in the presence of uncertainties (see for 

example [80-82]). 

Sliding mode control (SMC) is one of the most important methodologies for 

nonlinear control. This is not only because of its robustness but also due to its invariance 

(under certain conditions) with respect to system perturbations and external disturbances 

[83]. This chapter is organised as follows in order to realise the aim of designing a 

robust computed-torque controller. Firstly the computed-torque method is briefly 
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reviewed. Secondly the sliding mode control system technique is presented. Following 

on from this a relationship between the SMC system and the computed-torque control 

method is established. Following this the latest trials of other research efforts to 

overcome the difficulties associated with the sliding mode control systems are presented, 

followed by derivations to explain their outcomes. After that the effort is directed 

towards the design of a new robust controller. Following this simulations are carried out 

using the SEP A robot in order to validate the control law, and also to examine the 

behaviour of all robot designs under this controller. For practical validation the 

controller is implemented on the existing experimental parallel robot. 

8.2 Computed-torque method for robot manipulators 

The equation of motion of an n-DOF rigid manipulator is given by 

r=M(e)0+v(e,e)+G(e)+F(e) (8.1) 

Where, 

M(e): is the inertia matrix with dimensions n x n. 

v(e, e) : is an n x 1 vector of Coriolis and centrifugal forces. 

F(e): is an n x 1 vector of friction forces acting at the manipulator joints. 

G( e) : is an n x 1 vector of gravity forces. 

e is an n x 1 vector of joint positions. 

r is an n x 1 vector of joint torques supplied by the actuators. 

In order to control the manipulator of equation 8.1 using the computed torque method, 

the control law, as discussed in chapter 1, is given by the following equation [44], 

r=M(e)(0d +KvE+KpE)+V(e,e)+G(e)+F(e) (8.2) 
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Where Kv and K pare n x n diagonal matrices of positive and constant elements on the 

diagonal. The vector of the servo errors is defined as (E = e d - e), where e d and e 

represent the vectors of the desired and the actual outputs respectively. 

If the model is exact and the elements of K p and Kv are represented by kpi and 

kVi respectively, the system response can represent either ofthe following three cases, 

1- Critically damped response (k;i = 4kpi )' 

II- Over-damped response (k;; > 4kpJ. 

III- Under-damped response (k;; < 4kpi )' 

It is important to note that the above conditions result from the solution of the error 

equation of the system as defined by equation 1.9 (chapter 1). 

Sometimes an integral term is added to equation 8.2 so that the system has no steady­

state error. In this case, equation 8.2 becomes as follows, 

r = M(e)( 8 d +K/i +KpE +Ki JEdt)+ v(e,e )+G(e)+F(e) (8.3) 

Where K; is a diagonal matrix with dimension n x n and with positive, and constant, 

elements on the diagonal. In fact the addition of such an integral term has a side effect 

because, as discussed in chapter 7, it raises the order of the system. To reduce this effect, 

the elements of the Ki matrix are always kept small [84]. 

8.3 Sliding mode control system (SMC) technique 

The aim of the sliding mode control system technique is to design a control law 

that forces the system to behave in a prescribed manner irrespective of the original 

system dynamics and the uncertainty in its parameters or the external disturbances. The 
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predefined system behaviour is represented by a stable differential equation usually of 

order less than the order of the original system. This differential equation is defined as 

follows, 

O"(X) = 0 (8.4) 

Where X represents the state vector of the system that is defined as XT = [ET ,ET]. 

The set of all X such that 0"( X) = 0 is a (2n - 1) - dimensional subspace or "hyper­

plane" in R21l which is normally called the switching surface [71]. In fact, for nonlinear 

systems in general the design of such switching surfaces is itself a research area and 

there are several design procedures that can do the job (see for example [83]). For 

robotic manipulators three alternatives for switching surfaces have been reported in the 

literature [85] and they are as follows, 

I- 0" = E 

II- O"=E+AE 

III- 0" = E + F;E + Fo 

Where A, Fl and Fo are diagonal matrices of positive elements on the diagonal. 

It is important to note that the second alternative is the common switching function (see 

for example [80-81] [86-88]). The simplest case occurs when using this alternative, and 

when n = 1. In this case the matrix A degenerates to a scalar value a and the switching 

surface corresponds to a line through the origin with a slope of ( - a), as seen in Figure 

8.1. 

The switching surface divides the state space into two parts. When the states of 

the system satisfy O"(X) < 0, then we are on one side of the switching surface and the 

control law has one form. On the other hand when O"(X) > 0 we are on the other side 

and the control law has another form. Here the controller changes structure in order to 

maintain the system on the sliding surface. On the switching surface the system is said to 
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be in the sliding mode. In the sliding mode (a(X) = 0) the dynamics of the system 

simplify substantially. If the switching surface is chosen to be the second alternative, 

mentioned earlier, then the system dynamics reduce to, 

E +AE = 0 (8.5) 

Clearly, the tracking errors are independent of the robot parameters and external 

disturbances. Because A is diagonal the tracking error for the t" DOF is given by the 

following equation, 

ej(t) = ej(O )exp(- a;t) (8.6) 

Where, ej (0) represents the initial value of the error of the e" DOF and ai represent its 

associated element in the matrix A. 

e 

a 

-1 

Switching surface 
r----------

/ 0' = 0 
I 
I 
I 
I 
I 
I 

/ e 
I 

Fig. 8.1: The simplest case of a switching surface. 
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From equation 8.6, it is clear that the time-rate at which the error is vanishing can be 

controlled through the choice of the elements of A. 

After choosing the appropriate switching surface, the next step in the SMC 

design technique is the formulation of the overall control law which drives the state of 

the system towards the sliding surface in a finite time and then maintains the state on 

this surface once it has been reached, despite the perturbations. It is relevant to note that 

the dynamics of the system in the first stage are called the reaching mode dynamics. The 

conceptual components of the SMC strategy for these two stages are Lyapunov control 

and bang-bang control, respectively. 

By using Lyapunov control the designer should only verify the following 

condition, 

~~{o-T(X)o-(X)}<O (8.7) 
2 dt 

The left hand side of equation 8.7 represents the time derivative of the following 

Lyapunov function, 

VL = !o-T (X)a-(X) (8.8) 
2 

Equation 8.8 is a Lyapunov function in the sense that it is continuously differentiable, 

VL > 0 and VL = 0, if and only if, o-(X) = O. The main problem with the above design 

procedure lies in the fact that it does not provide any clear idea about the structure of the 

control law, meaning that the designer must look for the suitable control which satisfies 

equation 8.7. This is in fact a very complicated task especially for multi-input multi­

output nonlinear systems. 

8.3.1 The Reaching law method for the design of SMC systems 

The reaching law method is a systematic design procedure for the design of SMC 

systems [83]. In addition to its simplicity the method has two advantages. The first is 

that by using the reaching law in the design of the control law the system becomes 
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invariant to the perturbations and the external disturbances during the reaching stage. 

The proof of this issue can be found in reference [83]. The second advantage is that the 

use of the reaching law gives a clear idea about the nature of the system dynamics 

during the reaching phase (a missing property when using the Lyapunov criterion). 

Definition 8.1 [83]: The reaching law is a differential equation which specifies the 

dynamics of a switching function o-(X). 

The practical general form ofthe reaching law is given by the following equation, 

0- = -QSgn(o-)- KH(o-) (8.9) 

Where, Q and K are diagonal matrices of dimension m x m, with m representing the 

number of inputs of the system, and having positive elements on the diagonal. The 

vectors Sgn(cr) and H(o-) are given by 

T 

Sgn(o-) = [sgn(o-, ), .... ,sgn(o-III)] (8.10) 

T 

H(o-) = [h, (0-, ), ....... , hili (crill) ] (8.11) 

Where the conditions cr; h; (o-J > 0 and h;( 0) = 0 should be satisfied. 

Three practical special cases for the reaching law have been reported [83] and they are 

as follows, 

o-(X) = -QSgn(o-) 

o-(X) = -QSgn(cr)- Kcr 

0-; = -q;lo-r Sgn(o-;) 

Where, 0 < a < 1 and i = 1 to m. 

(8.12) 

(8.13) 

(8.14) 



186 

From the choice of the parameters in the differential equation for the reaching law the 

rate at which the system moves towards the sliding surface can be controlled. In order to 

understand this issue let us multiply both sides of the general form of the reaching law 

by (JT (X) as follows, 

(JT 0- = _(JT Q Sgn((J)- (JT KH((J) (8.15) 

The left hand side of equation 8.15 is the time-rate ofthe Lyapunov function defined by 

equation 8.8 and the right hand side satisfies the reaching condition defined by equation 

8.7. It is now obvious that the reaching speed can be adjusted by proper choice of Q,K 

andH(o-). 

The formulation of the control law by using the reaching law method requires the robot 

dynamics to be written as follows, 

r = M(e)8 + v(e,e)+ G(e)+ F(e)+ Td (8.16) 

Where Td represents the vector of all the perturbations and the unknown disturbances. 

In order to explain how the control law can be formulated by the reaching law 

method the reaching law of equation 8.12 is chosen as an example. In addition to this the 

following sliding surface is chosen 

(J=AE+E (8.l7) 

Taking the time derivative of the above equation gives 

0- = AE + jj; (8.18) 

Rewriting the system equation of motion (equation 8.16) in the error-space yields, 

jj; = 8 d -M-1(e )(r - v(e, e)- G(e )-F(e )-Td ) (8.19) 
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Substituting from equation 8.19 into equation 8.18 gives, 

0- = AE + 8 d - M-1 (e )(r - v(e, e)- G(e)-F(e)- Td ) (8.20) 

Now, equating equations 8.20 and 8.12 and solving for the control law r yields, 

r = M(e )(8d + AE + QSgn(O'))+ v(e,e)+ G(e )+F(e)+ Td (8.21) 

The existence of the unknown term Td in equation 8.21 represents the only difficulty 

when deriving the SMC law by the reaching law method. It is important to note that if 

this problem is not treated properly, the reaching time may be increased (i.e. the 

reaching speed may be decreased). The following derivation explains this issue. 

Suppose that the unknown term ~ is assigned a known quantity N. By doing this the 

control law of equation 8.21 becomes as follows, 

r = M(e )(8 d + AE + QSgn(O' ))+ v(e, e)+ G(e)+ F(e)+ N (8.22) 

Now, substituting from equation 8.22 into equation 8.20 which describes the time 

derivative of the switching function, yields 

0- = AE + 0d -M-1(e){M(e)(8d +AE + QSgn(O')) 

+ v(e,e)+ G(e)+F(e)+ N - v(e,e )-G(e)-F(e )-Td} 

= -QSgn(O')+M-l(e)(-N +TJ (8.23) 

Equation 8.23 shows that the actual reaching law, and of course the associated reaching 

speed, is strongly dependent on the quantity (- N + Td ). If the value of N does not 

match the unknown disturbances Td , clearly the reaching speed will be affected. 
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However, in order to solve the problem Gao and Hung [83] assume a priori knowledge 

of the upper and the lower bounds of Td , and according to this the value of N was 

chosen. The author's manipulations have led to 

N ~M(e) {( F, ~F,) sgn(a)-(F, ;F/)} (8.24) 

Where the vectors F., and ~ represent the upper and the lower values of the vector ~ , 

respectively. 

Equation 8.24 in fact is equivalent to the following logical function 

N={-M(e)~ 
-M(a)F., 

if a> O} 
if a < 0 

(8.25) 

Now, substituting from equation 8.24 into equation 8.22 yields, 

T ~M(e) {0, + AE+ QSgn(a) + ( F, ~ F,) sgn(a)-( F, ; F,)} 

+ v(e,e)+ G(e) + F(e) (8.26) 

It is important to note that equation 8.26 is practical only if Fu > 0 and ~ < O. 

This because of the fact that if F., > 0 ,~ > 0 and F., = ~ = F then the above control 

law will contain a constant term defined by (- M(e )F). This is unacceptable because 

the control law in this case does not depend on the system state. Despite this problem 

Gao and Hung [83] did not refer to this issue explicitly in their work. They used 

F., > 0 and ~ < 0, together with IF., I = I~ I = f, in their example. If this is the case then 

the value of N reduces to 



189 

N = M(e)f Sgn(cr) (8.27) 

and the control law takes the following form 

r =M(e)(@d +AE + QSgn(cr) )+ v(e,e )+G(e)+F(e) (8.28) 

Where, 
~ 

Q = Q+f (8.29) 

It is important to mention that the robust term in equation 8.28, that is QSgn(cr), is 

entirely normal in any SMC law, meaning that equation 8.28 is the only practical form 

of the control law by the reaching law method. In fact the term QSgn(cr) represents the 

actual reaching speed of the system whose original speed is defined by QSgn(cr), 

(equation 8.6). In other words, the actual reaching law may be written as 

6" Actual = -QSgn(cr) (8.30) 

8.4 Derivation of the relationship between the computed-torque and the 
sliding mode control systems 

Proposition 8.1: The computed-torque controller, either with or without an integral 

control action, is a sliding mode controller but with an invalid reaching law. 

Proof 

By comparing the SMC law defined by equation 8.28 with the computed-torque 

law of equation 8.2 it may be considered that 

Kv == A & KpE == QSgn(cr) 

From these it can be concluded that the computed-torque controller is actually a sliding 

mode controller with the following features 
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a = E + K E & 0- = -K E v p 

The reaching law here is invalid because it does not satisfies the reaching law definition. 

The above result is also true for the case of the computed-torque controller which 

has integral control action (equation 8.3), but in this case the invalid reaching law is 

given by 

0- = -KpE -K( fE dt 

8.5 General difficulties associated with the SMC systems 

Chattering is the basic obstacle preventing sliding mode control (SMC) from 

gaining wider use in practical applications. This phenomenon is generally undesirable 

since it involves extremely high control activity, and it may also excite any neglected 

high-frequency dynamics. For the sake of clarity chattering results from the robustness 

term in the control law that contains the discontinuous signum function. The main 

assumption in the design of SMC is that the control has to be switched infinitely fast 

from one value to another. This is practically difficult to achieve due to the time delays 

accompanied with digital implementations and the limited bandwidth of actuators. 

Generally, it originates from any nonideal switching at the sliding surface. Slotine and 

Sastry [89] introduced one common approach for chattering reduction. The approach 

involves introducing a boundary layer around the switching surface as shown in Figure 

8.2, and then using a continuous control within this layer. By using this method the 

signum function in the control law is replaced by the following saturation function 

Sat(a, ¢) = { ;( ) 
Sgn a 

if lal < ¢ } 

otherwise 
(8.31 ) 

Where ¢ represents the boundary layer thickness. 
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ej 

ej 

0-==0 

Fig. 8.2: Schematic diagram of the boundary layer in the case of simple sliding surface. 

It is immediately obvious from Figure 8.2 that there are two switching surfaces 

0-+ ,0-- instead of the original surface 0- = O. In addition, equation 8.31 assumes that the 

continuous control is represented by linear interpolation between the control-efforts 

defined on the two sliding surfaces 0'\0'-. Despite this, Slotine and Sastry [89] claim 

that any continuous interpolation between these two extreme control values is sufficient. 

Although the methodology does reject the high frequency chattering, the tracking 

accuracy is degraded by an amount linearly proportional to the size of the boundary 

layer. 

The mechanism by which the high frequency chattering is rejected is not 

explained in the forgoing discussion. To clarify the process one assumes that the vector 

N does not match Td in the reaching law of equation 8.23. Then, replacing the signum 

function by the saturation function in this law leads to, 

0- ~ -(;)a +M-' (e)(- N + Td ) (8.32) 
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Equation 8.32 shows that the variable (J', which is a measure of the distance to the 

sliding surface, is the output of a stable first-order filter whose input (to first order) is the 

quantity defined by M -\ (e) ( - N + TJ. Consequently chattering is eliminated, as long 

as the unmodelled high-frequency dynamics are not excited [89]. The additional 

filtration of perturbations through equation 8.17 results in the degradation of the tracking 

error. It is important to note that the existence of the two filters led Slotine [86] to make 

a claim for the balancing of the their break-frequencies to fix the best attainable tracking 

precision. To take the advantages of the system bandwidth, the boundary layer was made 

to vary with time in the work by Slotine and Coetsee [90]. For the sake of brevity nearly 

all of the work in the area of chattering reduction use the same approach, and the main 

efforts are directed towards introducing different continuous control laws inside the 

boundary layer to reduce the degradation in the tracking error (see for example [87-88] 

and [91-92]. 

Goa and Hung [83] mentioned that using the power rate reaching law defined by 

equation 8.14 could reduce chattering. In fact they stated that the absence of the term 

QSgn( (J') from this reaching law is the reason for chattering elimination. Obviously this 

is not entirely logical because chattering results from the existence of the signum 

function, and the presence of that function in the power rate law confirms that comment. 

In fact the power reaching law reduces the amplitude of chattering because the gain 

associated with the signum function has its lowest value (zero) on the sliding surface. 

Hence it can be concluded that using nonlinear gains in the reaching law can reduce 

chattering. 

Before closing the discussion of this section one thing needs clarifying, that 

being the outcome of the aforementioned efforts in removing chattering. The control law 

of the system when it is inside the boundary layer clearly explains this outcome. 

Replacing the signum function in equation 8.28 by the saturation function leads to 

r ~M(el( 8 d +AE + ~ o} v(e,e)+G(e)+F(e) (8.33) 
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Substituting from equation 8.17 into the above control law gives 

'~M(e)[ @d +( A+ ~)E + Q¢A E ]+v(e,e)+G(e)+F(e) (8.34) 

The control law of equation 8.34 has exactly the same structure as the computed-torque 

control law defined by equation 8.2. Hence it can be concluded that the methodology of 

the boundary layer tries (without intention) to implement the computed-torque control 

when the system is inside the boundary layer. On the other hand the outcome of recent 

efforts to reduce the degradation of the tracking error inside the boundary layer by the 

use of perturbation estimation [87] has led to a computed-torque law with integral 

control action. In order to justify this issue let us first look at the derived control law 

given in that reference. The following relation defines the law 

, ~ M (z)(i> AE + K, ; + K p<T + K pH fa dt) + c,i + G(Z) (8.35) 

Where i~ represents the vector of the required acceleration, M(Z) is the mass matrix and 

A,K,.,Kp,H are positive definite matrices. The vectors of gravity and friction forces are 

the O(Z) and C) terms, respectively. The vector of linear displacement (the actuators are 

linear) and the boundary layer thickness are represented by Z and ¢, respectively. It is 

important to note that in reference [87] the contribution of the Coriolis and centrifugal 

forces was neglected. In addition to this the sliding surface was given by 

0" = AE +E (8.36) 

Now, substituting from equation 8.36 into 8.35 yields, 

'~M(Z* +AE+K, (E~AEtKp(E+AE)+KpH f(E+AE)d} C)+ G(Z) 
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~M(z* +( ~ +Kp)E +( KpH +( ~' +Kp})E + KpH-t fEdt} + C) +G(z) 

(8.37) 

Therefore from equation 8.37 it is clear that the outcome is a computed-torque controller 

with an integral term. 

8.6 The design of a new robust, computed-torque, controller 

In section 8.4 it has been shown that the computed-torque controller is a sliding 

mode controller, but with an invalid reaching law. Hence in order to enhance the 

behaviour of the computed-torque controller the reaching law must be repaired. In order 

to achieve this aim the following reaching law is introduced, 

CJ; = -k;CY; - q;lcyr Sgn(cy;) (8.38) 

Where, 0 < a < 1. 

By using the above reaching law, together with the sliding surface of equation 8.17, the 

new control law (by using the reaching law method) is given by 

r = M(e) {e d + (K + A)t + (KA)E + \f(CY) }+ v(e,e)+ o(e) + F(e)+ N (8.39) 

Where, 

\fT(cy) = lqllcyrJ sgn(cy l ),qzICYzl
a2 

sgn(cyJ, ..... ,qlllcy,f" sgn(cy,J J 

Because N is no more than a discontinuous term it is ignored in the control law on the 

assumption that the term \f(CY) includes it. The control law becomes as follows after 

doing this, 

r = M(e ){ed + (K +A)t + (KA)E + \f(CY)}+ v(e,e)+ o(e)+ F(e) (8.40) 
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The quality of the new control law is assessed in the following two sections 

through simulations and practical implementation. First, simulations have been carried 

out using the SEP A robot to ensure the effectiveness of the control law to all robot 

designs. Following this the experimental parallel robot will be subjected to the control 

law to identify any practical issue which may arise. 

8.7 Simulations 

Assuming that the SEP A manipulator of chapter 5 is moving in the horizontal 

plane and using the values m = 1 kg, 2L = 1 m and mill = 0.5 kg where mill is the mass of 

the actuator at joint C, the mode dynamics (without friction at the joints) are as follows, 

• Normal Parallel Mode (without mill) 

[rAJ =[ all al2 COS(02 -OI)l[~I]+[-bl s~n(02 -Ol)~~] (8.41) 
r B a21 COS(02 - 01) a22 J O2 b2 sm(02 - 01 )01 

Where, 

all = a22 = 1.66 andal2 = a21 = bl = b2 = 0.996. 

• Redundant Parallel Mode 

[rA +rc]=[ a1l al2cos(02 -01)1[~I]+[-bls~n(02 -Ol)~~] 
r B - r c a21 COS(02 - OJ a22 J O2 b2 sm(02 - 01 ) 01 

(8.42) 

Where, 

all = 1.66, a22 = 2.16 and a12 = a21 = bl = b2 = 0.996 

• Serial Mode 
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[
I A + I B - Ie] = [ all a'2 COS(B3 - B,)l [~,] + [- b, s~n(B3 - B, )~3:] (8.43) 

Ie a2, COS(B3 -BJ a22 J B3 b2 sm(B3 -B,)B, 

Where, 

all = 3.156, a22 = 1.164 and a'2 = a2, = b, = b2 = 0.996 

8.7.1 Simulations (Case I) 

In order to examine the robustness against uncertainties in the robot parameters, 

the controller will be designed using the following values 

all = 2.1587,a22 = 1.82 anda'2 = a2, = b, = b2 = 0.7 

The first and the second value represent the averages of those of the three modes. The 

last value is chosen randomly. This is performed in order to simulate the system when its 

parameters are not known exactly. Using the above values the errors in the estimate of 

the parameters in the various modes are shown in Table 8.1. In addition to this the 

following gains are used during the simulations. 

K~[~ ~J A~[~ ~] & ql ~q2 ~3 and a~.7 

The links are commanded to track the following trajectories with OJ = 1- Hz, 

B, (t) = T -1-Cos(OJ t) (rad) & B2 (t) = B3 (t) = ff -1-cos(OJ t) (rad) 

The assumed initial values for the links are: B, (0) = 30° and B2 (0) = B3 (0) = 99° . The 

simulations are performed using the SIMULINKblock diagram shown in Figure 8.3. The 

maximum simulation time step is 0.01 second. The tracking errors of the various links in 

the manipulator modes are shown in Figures 8.4-8.6 and their control signals are shown 

in Figure 8.7-8.9. The phase planes are shown in Figures 8.10-8.12. 
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8.7.2 Simulations (Case II) 

To further show the robustness of the above control law the previous simulations 

have been repeated, but with the assumption that no information about the term v(e,e) 
is available. In this case, the control law of equation 8.40 becomes as follows, 

r = M(e) {e d + (K + A)£ + (KA)E + \{I (a ) } (8.44) 

The tracking errors of the links in the various modes are shown in Figures 8.13-8.15. 

The motors control signals and the phase planes are shown in Figures 8.l6-8.18 and 

Figures 8.l9-8.21, respectively. 

8.7.3 Simulations (Case III) 

This part is intended to examine the effect of the speed of the input trajectory on 

the tracking errors. In order to do this the first simulations are repeated, assuming no 

initial errors. The initial conditions are B
l
(0)=45° and B

2
(0) = B3(0) = 135°. Two 

different values for the speed are used (OJ = t Hz and OJ = f Hz). The first is called the 

slow speed and the other is called the fast speed. The tracking error results in the various 

mechanical modes are shown in Figures 8.22-8.27. 

Parameter Serial Mode Normal Parallel Mode Redundant Parallel Mode 

all - 31.0 % +30% +30% 

a 12 
+22.7 % + 22.7 % +22.7 % 

a 2l 
+22.7 % +22.7% + 22.7 % 

a 22 
+ 56.4 % +9.6% -15 % 

bl 
+22.7 % +22.7 % +22.7% 

b2 
+22.7 % + 22.7 % +22.7% 

, ~~ - .... - .... - - - -- - ~ 

Table 8.1. Approximate values of the error in the estimate of the robot parameters in the various 

modes. 
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8.8 Experiments 

The following gains are used during the experiments, 

[
9 0] [10 0] 

K = 0 8' A = 0 10 & ql = 5, q2 = 8 and a =.7 

The links are commanded to track the same trajectories as in the simulations but with 

three different speeds (OJ = f, t and f Hz). The SIMULINK block diagram is shown in 

Figure 8.28. The tracking errors and the associated control signals for the slow speed 

trajectory are shown in figures 8.29 and 8.30. The results of the medium and the fast 

speed trajectories are shown in Figures 8.31-8.34. The sampling rate is the same as in 

the previous chapter (100 Hz). In addition the tachometer signals are filtered using a first 

order Butterworth filter with a cut-off frequency of 50 Hz. 

8.9 Discussion 

On examining the results of the first two cases of simulations it can be found that 

for all robot designs the controller is able to track the specified trajectories with a very 

small error (nearly zero) despite the perturbations given to the robot parameters and the 

unknown dynamics. Besides this no chattering is reported in the control signals due to 

the reaching law used here. In addition, the system is able to reach the sliding surface in 

a finite time with little differences among the various dynamic modes due to the 

different level of perturbations and the contribution levels of the unknown dynamics. 

In the last case of the simulations the results show that for the slow-speed 

trajectory the average maximum tracking error of the various mechanical designs is 

0.00055 radians, approximately. Moving to the high-speed trajectory, the average 

obtained is 0.05 radians, which means that the tracking error is degraded by a very high 

percentage. It is important to note that this result is quite normal, as slope of the 

trajectory should be bounded due to the limited bandwidth of the system. 
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The limited sampling time and the noise in the actual system give a maximum 

tracking error of (0.05) radians, approximately, together with a little chattering. In fact, 

the most important factor is the sampling time which is very low compared with the 

bandwidth of the parallel robot. It is important to refer here to the fact that the control 

law used here does not contain any friction models. Besides this no information was 

available about the dynamics of the motors and their amplifiers. Despite these problems 

the controller is still able to keep the tracking error within a reasonable limit. The 

aforementioned results concern the slow and the medium speed trajectories. The results 

of the high-speed trajectory agree with those obtained by simulations. The error here is 

increased to (0.2) radians. 

8.10 Conclusions 

In this chapter it has been proven that the computed torque controllers are sliding 

mode controllers (SMC) but with unsuitable reaching dynamics. It has also been shown 

that chattering elimination in the conventional SMC through the boundary layer method 

leads to a normal computed torque control law. In addition to this it has been shown that 

the use of perturbation estimations to reduce the degradation of the error due to the use 

of the boundary layer method leads to a computed torque controller with an integral 

term. Following this a new robust computed torque controller has been designed based 

on the reaching law method. Simulations have been carried out in order to examine the 

robustness of the controller against the uncertainties in the robot parameters and the 

unknown dynamics. The SEP A robot has been used to ensure the effectiveness of the 

controller for the three designs tested. For practical examinations, experiments have 

been carried out on the existing parallel robot. It has been found that the theoretical 

results agree with those of the experiments. The most effective parameter found is the 

sampling rate which should be high enough to ensure low tracking errors. 



Chapter 9 

Evaluation 01 Some Nonlinear PID and PD 
Control Systems 

9.1 Introduction 
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It is well known that a very simple PD controller, with gravity compensation, is 

an adequate solution for set-point control of robot manipulators to satisfy the stability 

requirement [71] [84]. The practical significance of this control technique lies in the fact 

that it requires no detailed knowledge of the manipulator dynamics except the gravity­

loading vector. In practice, an integral action is added (PID controller) to reject constant 

perturbations at the cost of a reduced system bandwidth [93]. In fact, with the existing 

control structure it is impossible to select fixed gains which can critically damp the 

response to disturbances for all configurations of a given robot system. Average gains 

are always chosen which approximate critical damping at the centre of the manipulator 

workspace [44]. This inevitably results in overshoot at other positions within the 

manipulator workspace. 

To cope with the non-uniform dynamic performance of the PID controller, Seraji 

[74-75] suggests using a sector-bounded nonlinear gain in cascade with the linear PID 

controller. This gain represents an even function of the error to give high outputs at high 

inputs and vice versa. From the author's point of view the gain allows a large corrective 

action when the error is large. As the error diminishes the gain is reduced in order to 

prevent large overshoots in the response. Following this, stability analysis of the P, PD, 

PI, and PID controllers have been performed using the Popov criterion after assuming 

linear dynamics for the robot with restrictions to single-input single-output. This 

restriction does not guarantee the stability of real systems. It is important to refer to the 
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fact that the method is restricted only to systems with output feedback (velocity 

feedback is not allowed). In addition, no simulations have been performed to clarify the 

idea. Furthermore, examining the range of the variation of the gains, one can find that it 

is very small, which means no significant effect on the system performance. 

Armstrong [76] used a nonlinear PD controller with P and D gains, each with 

two terms for force control. The first term represents the smaller control gain that is kept 

constant. The second term consists of a higher constant gain multiplied by a switching 

function that controls its application to the system. From the author's perspective the 

modulation of the P gain increases the damping while the modulation of the D gain 

shortens the rise time. In that work both gains are modulated with the larger values 

applied at large errors and the smaller values at low errors. The method is also restricted 

to linear systems with single-input single-output. The idea is different from the 

foregoing in that it can be applied to systems of output and velocity feedback. 

A quick review of the research efforts in the area of nonlinear PD or PID control 

shows that one can find that it has all centred on one idea; the use of variable gains to 

improve the system response. This is a very old technique and the examination of early 

textbooks [94] will shows that it is really based on the idea of the nonlinear 

servomechanism as built by 1. B. Lewis and described in [94]. The idea was to have a 

positioning system whose damping is negative, or at least very small, when the error is 

large. This tends to ensure a more rapid response to large errors than in the 

corresponding linear system, and this desirable effect was accomplished by using a 

nonlinear velocity feedback dependent on the absolute value of the error. Although the 

system response was improved for step inputs, instability was reported for double pulse 

inputs. 

In this chapter, the nonlinear PID controller of Seraji [74-75] is evaluated 

experimentally. Following this, a nonlinear PD controller with a modulated P and D gain 

is designed and then experimentally evaluated. The aim here is to evaluate these specific 

nonlinear control methods in application to real systems. 
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9.2 Evaluation of the PID controller of Seraji 

For the i1h degree of freedom the control law is given by the following equation, 

Ui = kp;~ +kV;'ii +kJ; f~dt (9.1) 

Where kp,kV,kJ are constant gains and e represents the scaled error (the error e 

multiplied by the nonlinear gain) as defined by the following equation, 

e; ~ {,- exp(O.5e, )+'exp(- 0.5e,)} e, (9.2) 

Here, the nonlinear gain is represented by a Hyperbolic function. The following practical 

gain values are used during the experiments, 

kp = 3, kv = 1, and kJ = 0.3 

The performance of the system under the application of the control law of (9.1) is 

compared to its counterpart under the application of a linear control law. Two different 

sets for the gains of the linear law have been chosen and are as follows, 

(Case I) kp = 3, kv = 1, andkJ = 0.3 

(Case II) kp = 2.25, kv = 0.75, and kJ = 0.225 

The gain values of the second case result from multiplying the average of the extreme 

values of the output of the nonlinearity by the gains of the first case. This is done to 

enhance the evaluation process that is extended to include the P, PI, PD controllers, and 

leads to an examination of the system stability under these control laws. The robot, 

under all the various kinds of control laws, is subjected to two types of inputs. The first 

is a step input and the second is a sine function trajectory. It is necessary to refer here to 

the fact that due to the simplicity of the control laws it is possible to fix the sampling 

rate to the value of 200 Hz; this being twice the sampling rate that has been used in 
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chapters 7 and 8. The Simulink solver is the ODE 45 routine. All information from the 

experiments, such as the responses, angular speeds, control signals, is extracted and is 

exhibited for full examination of the system performance. 

9.2.1 Results 

• Step Input 

The results of the P and the PI control (Figures 9.1-9.12) for ()P()2'OJp OJ2 ,u\ 

and u2 show that the nonlinear control tends to be more stable than the linear alternative. 

Generally, all are stable due to the existence of friction in the system. Under linear 

control, the damped oscillations are always symmetric about the desired goal. The 

damped oscillations in the nonlinear control exhibit a very different behaviour. Under 

the linear PI control (case II), Figures 9.7-9.12, the oscillations have pushed the arm to 

the singularity state. This is explained on the graph by the disappearance of the 

oscillations after t = 7 sec. It is necessary to note that the disappearance of the 

oscillations occurs because the arm has been stopped manually to prevent damage to the 

system due to singularity. 

The results of the PD and the PID control (Figures 9.13-9.24) ()p ()2' OJp OJ2 , u\ 

and u2 show no significant differences between the nonlinear and the linear control. The 

linear PID controller with higher gains exhibits reasonable performance against the 

existing stiction-friction. This is logical behaviour because the high gains allow enough 

control torque at low errors to force the system to converge to its goal. This cannot be 

achieved by the nonlinear control because the gains are drastically decreased at low 

errors. 

• Sine input 

The results of the P and PI control (Figures 9.25-9.36) Bp ()2'OJ p OJ2 ,u\ and u2 

show that the linear control, especially the one with higher gains, allows better tracking 

than the non-linear control. The PD and the PID results (Figures 9.37-48) show that the 

linear control of high gains is the best in tracking the sine trajectory. However, there is 

no big difference between the linear and the non-linear P, PI, PD and the PID control. 
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The idea proposed by Seraji [74-75] was to have a uniform dynamic response of 

the system with very little overshoot using the nonlinear gain. To examine the possibility 

of doing this the robot was sUbjected to two step-inputs of different magnitudes. The 

performance of the system under the nonlinear PD and PID controls is evaluated. This is 

for conciseness and also because they are the most practical controllers. The results 

(Figures 9.49-9.52) show that there is not any uniformity in the system's dynamic 

response. In addition, overshoot is always present and cannot be prevented. Generally, 

as expected, the proposed controller of Seraji is just one possible idea. There is not any 

theoretical technique behind it. It is not enough to have gains (that depend only on the 

error) of variable magnitudes in the control law to achieve the objectives. 
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9.3 Design and Evaluation of a nonlinear PD controller with modulated 

P and D gains 

For the i'ilDOF, the proposed nonlinear PD control law is given by the following 

equation, 

U; = {ko; + kl ; Ie; I }e; - {bo; -bl , le;1 }B; (9.3) 

Here, ko represents the minimum proportional gain, while bo is the maximum derivative 

gain. The other gains are user defined positive constants that control the amount of 

variations in the P and D gains. At large errors the proportional gain is automatically 

amplified and the derivative gain is reduced. These actions allow for rapid rise times. As 

the error diminishes, the P gain is reduced to its minimum value while the D gain is 

increased to its maximum magnitude. This yields a maximum braking force near the 

goal in an attempt to prevent large overshoots. 
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Now, the task is to examine the performance of the robot under the application of 

the above control law. To do this, experiments have been carried out using the following 

practical gain values, 

ko = 3,k, = 4,bo = 20 andb, = 5 

Because the controller is designed for set point control, in the experiments the system is 

only subjected to double step-inputs of different magnitudes. This is for the examination 

of the uniformity of the dynamic response of the system. It is necessary to refer here to 

the fact that we are still able to reach the same sampling rate as in the previous section 

(200 Hz). 

9.3.1 Results 

Under this specific input, the results in Figures 9.53-9.58 show an improvement 

in the system rise time at the cost of overshooting due to the saturation in the control 

effort. To alleviate this, the variations in the gains can be decreased, but this 

immediately leads to degradation in the system rise time. As seen in the results, the 

problem of the stiction- friction is still there. In addition there is not any uniformity in 

the response and for every step input there is a different performance. 

9.4 Conclusions 

In this chapter it has been shown that the idea of using nonlinear gain in cascade 

with the conventional linear control makes little impact on the system stability for some 

control formulations such as P and PI. The system under these nonlinear control laws 

has proven to be more stable than under the linear laws. For other types of control (PD 

and PID), the system performance is still the same as for the linear case. The non-linear 

PD controller with modulated P and D gains has improved the system rise time at the 

cost of saturating the control. Because of this saturation overshoots always exist. Any 

attempt to alleviate such overshoots will be at the cost of degrading the system speed of 

response. It is important to note that the two controllers discussed herein failed to 

compensate for input variations, and yield non-uniform responses. 
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Chapter 10 

On the design 01 high-performance PD 
Controllers: A New MethodologV 

10.1 Introduction 
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In the previous chapter it has been shown that the available linear and nonlinear 

PD or PID controllers are unable to critically damp the system response to disturbances 

for all robot configurations. Due to this, overshoot is always present and cannot be 

prevented unless the system is severely damped. From an economic point of view this 

solution can be strongly unacceptable. On the other hand overshooting may be 

permissible to some degree in certain systems but it is prohibited in the case of parallel 

robots as this may bring the robot arm to one of its singular configurations, thereby 

causing damage to the system. In this sense the work here introduces a new 

methodology for the design of PD controllers to ensure fast system response and no 

overshoot for all robot configurations, i.e., it gives uniform and fast dynamic 

performance of the system. In addition to this the method is also able to satisfy the 

necessary stability requirement of nonlinear systems. For the purposes of theoretical 

assessment simulations have been carried out on the SEP A robot to ensure its validation 

for all robot designs. For practical validation experiments have been carried out on the 

existing parallel robot. 

10.2 Theoretical Background and Problem Statement 

Under standard assumptions the dynamics of a rigid robotic manipulator with 

either prismatic or revolute joints can be described by the following equation [95], 
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'c = M(8)e+ v,/J(8,e )e+F(e)+ G(8) (10.1) 

Here, 8 is a vector of generalised co-ordinates, M (8) is a symmetric, positive definite 

inertia matrix, v,/J (8, e)e is a vector of centrifugal and Coriolis forces, G( 8) is a vector 

of gravity forces, F(e ) is a vector of friction forces, and 'c is a vector of control forces 

or torques. 

WithF(e)= 0, global asymptotic stability of the closed loop system is ensured 

by the following PD control [84] [93], 

'c = KpE -Kve + G(8) (10.2) 

Where K p and K v are constant, diagonal, gain matrices of dimensions that depend on 

the mechanical design of the robot manipulator. The vector E is the regulation error 

with respect to the reference input 8 d which is constant here. 

Proper choice of the elements of the gain matrices can critically damp the system 

response to a specific input. Once this input is changed the system exhibits either 

sluggish or oscillatory response depending on the input values. This represents a non­

uniform dynamic response that is undesirable. Overshoot is the most critical issue that 

arises due to the non-uniform dynamic response. This problem must be avoided for 

robotic systems, especially in the case of parallel robots that have many singular 

configurations inside their workspace. The concern is always to avoid the state of 

singularity which can cause damage to the manipulator, as the control is lost. 

To ensure uniform dynamic performance for robotic systems, the next section 

introduces a novel PD control design technique that guarantees this. In addition, the 

controller allows fast system responses with no overshoot. Besides, global asymptotic 

stability is guaranteed for robotic manipulators that are defined by equation 10.1. 
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10.3 Controller design 

To prevent the robotic system defined by equation 10.1 (under the control of 

equation 10.2) from overshooting its desired input, the response of the ith degree of 

freedom must be kept inside the second or the fourth quarter of the phase plane of Figure 

10.1. However, this is not a strong condition for the prevention of overshoot. That 

condition is where the response of all degrees of freedom is maintained inside either of 

the two shaded areas in the second and fourth quadrants of Figure 10.1. The line which 

divides the second and the fourth quadrants is defined by the following equation, 

(A = Aiei - Bi = 0 (10.3) 

where, Ai is a gain representing the slope of the line. 

After specifying the above line, and because we seek the response to be in the 

aforementioned shaded areas, the distance from the error axis to the line can be used as a 

parameter to control the value of the derivative gain. To implement this, the control law 

of equation 10.2 will take the following nonlinear form, 

t'c = KpE - n(E,e )Kve + G(e) (10.4) 

where, n(E,e)= diag[ 1 + exp(- k,If'J, 1 + exp(- k2If'J, ..... , 1 + exp(- klllf',J] 

and, If'i = Aileil-IBil· 

Here, diag means diagonal, ki is a user-defined, constant, positive gain and n is the 

number of degrees of freedom of the robot. 

In the control law stated above the elements of Kv should be chosen to be small 

so as to represent the smallest derivative gain. The motivation for using this controller 
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can now be discussed qualitatively. When the system is far away from the line defined 

by equation 10.3 the exponential term is reduced drastically causing the derivative term 

in the control law to be at its lowest value. This ensures rapid response in the early 

stages. As time passes the system reaches the specified line and the exponential term 

becomes equal to one, resulting in an increase in the value of the damping term. When 

the system overshoots the line the damping is increased by a very large amount causing 

the system to converge to the line. It is important to refer here to the fact that, despite 

this potential overshoot, we are still inside the desirable areas that are defined by the 

second and the fourth quadrants of the phase plane. This process is repeatedly applied to 

any trajectory on the phase plane. This inevitably results in the desired uniform dynamic 

performance of the system. 

The next section examines the stability of the system defined by equation 10.1 

under the control law of equation 10.4. 

-0. 
f 

e j 

Fig. 10.1: Phase plane for the f" DOF. 
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10.4 Stability analysis 

Assuming only viscous friction, equation 10.1 becomes as follows, 

Tc = M(e)0 + v,n(e,e)e + Be + G(e) (10.5) 

where, B is a diagonal matrix with positive definite gains representing the viscous 

friction coefficients. 

Theorem 

The closed-loop system defined by equations (10.5) and (10.4) is globally, asymptotic, 

stable with respect to E and E: 

E,E ~ 0 as t ~ 00 

Proof: 

Consider the following scalar Lyapunov function, 

l' T (). 1 v=-e Me e+-ETK E 2 2 p 
(10.6) 

Differentiating with respect to time yields, 

V= ~ eTi1(e)e+e™(e)0+ETKpE (10.7) 

Substituting from equations 10.4 and 10.5 into equation 10.7 gives, 

v =.!.eTi1(e)e+eT{K E-rlE e\T/- e-v Ie e)e-Be}-ETK e 
L 2 p \' ~v //I ~ , P 

Due to the skew symmetry of (ti1(e)- v'n (e,e)) [95], [84] and e = -E for set-point 

control, the time derivative of the Lyapunov function is reduced to the following 

equation, 
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v = -eTQ(E,e )Kv e -eT Be (10.8) 

Since K v,B and Q are positive definite, VL ::;; 0 is satisfied and the system is globally 

stable. 

10.5 Simulations 

To examine the uniformity in the dynamic responses of all robotic systems under 

the application of this control law, simulations have been carried out using the SEPA 

robot. The manipulator parameters are the same as those of chapter 8. The arm dynamics 

are defined by equations 8.41, 8.42 and 8.43. 

The design parameters of the controller (for all dynamic modes) are as follows, 

[9 0] [4.5 0] K p = , K v = , ~ = ~ = 2 ,and k, = k2 = 2 o 9 0 4.5 

To examine the effectiveness of the new control law in rejecting all disturbances, 

the arm has been subjected to a set of step inputs of different magnitudes. It is important 

to refer here to the fact that the motor torques in the serial and redundant modes are 

calculated in the same way as defined in chapter 5 and chapter 8. In addition, because 

friction only increases the stability of the system it is ignored in the simulation. The 

simulations have been performed using Simulink. 

10.5.1 Simulation Results 

The simulation results, in the form of system responses and motors control 

signals, for the normal parallel mode, the redundant parallel mode and the serial mode 

are shown in Figures 10.2-10.5, 10.6-10.10 and 10.11-10.14, respectively. The results 

show that the new controller is able to reject all the disturbances with the same 

effectiveness. The phase planes for the various operating modes are shown in Figures 
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10.15-10.20, and explain the uniformity of the system responses to all step inputs. In 

addition the controller is able to achieve fast system responses with no overshoots. The 

fast response results from the modulation of the derivative gain as shown in Figure 

10.21. 

Despite the fact that fixed design parameters have been used for the controller in 

all the dynamic modes the controller has succeeded in dealing with the differences 

between the dynamic models. This helps to underpin the robustness properties of the PD 

controller with gravity compensation [93]. 
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10.6 Experiments 

In the experiments the design parameters of the controller are as follows, 

Kp = ,Kv = ,~=A.2 =0.025 and kJ =k2 =40 [5 0] [14 0] 
o 3 0 14 

The sampling rate is 200 Hz. The Simulink solver is the ODE 45 routine. 

10.6.1 Experimental Results 

The results of the experiments (Figures 10.22-10.27) display the same 

characteristics as the simulations. Due to the presence of dry friction the arm is unable to 

converge to its origin. However, this can be overcome by adding an integral term to the 



269 

control law. Generally the results obtained are much better than the experimental results 

of chapter 8. The results of this chapter exhibit no overshoots, no control saturation, 

uniform system performance, and fast dynamic responses. In this sense the control 

method has achieved its goals. 
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10.7 Conclusions 

In this chapter a new technique has been introduced for the design of PD 

controllers. The design allows fast system responses without overshoots. In addition the 

system exhibits a uniform dynamic performance under the new control law. These facts 

have been theoretically and experimentally proven. The results obtained are valid for all 

robotic systems. Stability requirements have been fulfilled for the nonlinear system. 

Unlike other PD control strategies the new control law prevents any control saturation. 

As a result of these good results this new PD control law can be easily added to any 

nonlinear model-based control, as a servo controller, to enhance its performance. 
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ChaPler11 

Conclusions 

In order to improve the performance of planar parallel robots several investigations 

and developments have been carried out. The outcome of these is as follows, 

1. In chapter 2 it has been shown that the Model Transformations Tools (MTT) 

software is able to model parallel robots. In the standard bond graph, once the 

constraints are solved, the modelling process is straightforward and no further 

manipulation of the generated system equations is necessary. On the other hand, 

despite the reduction of the time and the effort during the construction of the 

system bond graph by use of the hierarchical tool, this approach has been 

proven to be not as straightforward. To alleviate this a new method has been 

developed for the hierarchical modelling of parallel robots. 

11. In chapter 3 the concept of multi-cell planar parallel manipulators has been 

introduced. The concept allows for an increase in the workspace without 

affecting the original system's structure. By using the Lagrange formulation a 

general dynamic model for a manipulator applying this technique with any 

orientation has been derived. After that a new method of static balancing has 

been introduced and which led to the reduction of the number of variables, to be 

adjusted, to only one parameter. 

111. In chapter 4 the redundant one-cell, 2-DOF, parallel planar manipulator has 

been modelled using the bond-graph method by using the Model 

Transformation Tools software (MTT). The model simulates the arm while 

carrying more than one redundant manipulator, and hence it is a general model. 

The effect of the location of the redundant motor on the performance of the 

manipulator has also been analysed. The conclusion of the analysis 

recommends inserting the redundant motor as near to the base as possible if the 

I 
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manipulator is designed only for the normal pick and place dynamic tasks and 

the payloads are small. If the manipulator is designed for applications that need 

contact with the environment such as machining operations then the position of 

the redundant motor is not important and it can be put in any suitable location. 

IV. In chapter 5 the new concept of singularity-based design has been presented and 

used to develop a manipulator with multiple operating modes. For each mode a 

dynamic model has been derived using the Lagrange method. The possible 

conditions by which motor torques can be selected have also been defined. In 

addition to this, a performance analysis has been carried out for each operating 

mode by using simulations. The results indicate improvements in the serial 

mode from the viewpoint of load capacity. After the analysis the idea has been 

generalised to include the design of new planar mechanisms called parallel­

parallel manipulators. 

v. In chapter 6 the experimental system has been discussed in detail. Following 

this the theoretical dynamic model has been modified in order take into account 

features that are in the experimental system and not in the mathematical 

dynamic equations. In addition to this a simplified friction model has been 

added to the equations to improve the model. The quality of the derived 

dynamic equations has been verified by comparing data collected from the 

experimental system with data from simulations. The results of this comparison 

show little difference between the actual and the theoretical model. The results 

are acceptable as the dynamic model is not always perfect. 

vi. In chapter 7 the two inverse model-based control laws (Feed-forward and 

Computed torque) have been applied to the experimental parallel robot. The 

results show that both methods are good at controlling the robot, but the 

computed-torque controller has been shown to be much better than the feed­

forward controller. In both methods the tracking accuracy is very good for slow 

motion. On the other hand despite that there is no friction model incorporated in 

the dynamic model used in both of the above control methods, success was 
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apparent in compensating for friction due to the integral action in the servo 

control part. The best compensation is reported for the case of the computed­

torque control. In the disturbance rejection test the computed torque controller 

has been shown to be better than the feed-forward controller. 

vii. In chapter 8 it has been proven that the computed torque controllers are sliding 

mode controllers (SMC) but with unsuitable reaching dynamics. On the other 

hand it has also been proven that chattering elimination in the conventional 

SMC through the boundary layer method leads to a normal computed torque 

control law. In addition, it has been shown that the use of perturbation 

estimations to reduce the degradation of the error due to the use of the boundary 

layer method leads to a computed torque controller with an integral term. 

Following this a new robust computed torque controller has been designed 

based on the reaching law method. Simulations have been carried out in order to 

examine the robustness of the controller against the uncertainties in the robot 

parameters and the unknown dynamics. The SEP A robot has been used to 

ensure the effectiveness of the controller to all mechanical designs. For practical 

examination experiments have been carried out on the existing parallel robot. It 

is found that the theoretical results agree very closely with those of the 

experiments. 

Vlll. In chapter 9 it has been shown that the idea of using nonlinear gain in cascade 

with the conventional linear control makes little impact on the system stability 

for some control formulations such as P and PI. The system under these 

nonlinear control laws has proven to be more stable than under the linear laws. 

For other types of control (PD and PID), the system performance remains the 

same as for the linear case. The non-linear PD controller with modulated P and 

D gains has improved the system rise time at the cost of saturating the control. 

Due to this overshoots always exist. Any attempt to alleviate such overshoots 

will be at the cost of degrading the system speed of response. It is important to 

note that the two controllers discussed herein failed to compensate for input 

variations and yield non-uniform responses. 
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IX. In chapter lOa new technique has been introduced for the design of PD 

controllers. The design allows fast system responses without overshoots. In 

addition, the system exhibits a uniform dynamic performance under the new 

control law. These facts have been theoretically and experimentally proven. The 

results obtained are valid for all robotic systems. Stability requirements have 

been fulfilled for the nonlinear system. 

Future work 

The following points are proposed for further investigations, 

• Development of a multi-DOF SEPA robot. 

Since robotic manipulation is done in three-dimensional space, a multi-DOF robot is 

very desirable in the sense that it can move its tool to both an arbitrary position and an 

arbitrary orientation within its workspace. 

• Force control of parallel robots. 

Force control requires higher-speed of response than position control, especially when 

rigidity of manipulators, force sensors and objects is high. In serial manipulators, 

however, it is difficult to shorten the response time due to their heavy weights. The fast 

dynamic behaviour of parallel manipulators can solve this issue. 

• Bond-graph modelling ofmulti-DOF parallel robots. 

The systematic nature of bond graph method, especially the hierarchical technique, can 

help reducing the time and the effort in modelling parallel robots with multiple degrees 

of freedom. A very difficult task would arise if link flexibility were to be considered 

during the modelling process. This, however, requires designing new ROD component 

that helps making the process easy and systematic. 



277 

Relerences 

1- K. Ting and G. Tsai," Mobility and synthesis of five-bar programmable linkages", 
The 9th Applied Mechanism Conference, Missouri, PP. IIl.l-IlL8. 

2- M. Shoham," A Textbook of Robotics 1", Eshed Robotec Ltd., 1982. 

3- A. J. Critchlow," Introduction to Robotics", Macmillan Publishing Company, 1985. 

4- D. McCloy, " Some comparisons of serial-driven and parallel-driven manipulators", 
Journal of Robotic a , Vol. 8, No.4, PP. 355-362, 1990. 

5- M. Uchiyama, "Structures and characteristics of parallel manipulators", Journal of 
Advanced Robotics, Vol. 8, No.6, PP. 545-557, 1994. 

6- H. Funabshi, "In parallel actuated mechanisms as a new robotic mechanism", 
Journal of Advanced Robotics, Vol. 8, No.6, PP. 535-544, 1994. 

7 - M. Tanaka, " Large-scale framed structure as parallel mechanism with hyper­
redundancy", Journal of Advanced Robotics, Vol. 8, No.6, PP. 573-587, 1994. 

8- K. Hunt, " Structural kinematics of In-Parallel-Actuated Robot-Arms", Journal of 
Mechanisms, Transmission, and Automation in design, Vol. 105, No.4, PP. 705-712, 
1983. 

9- J. Merlet, " Parallel manipulators: state of the art and perspectives", Journal of 
Advanced Robotics, Vol. 8, No.6, PP. 589-596, 1994. 

10- K. Miller: "Experimental Verification of Modeling of DELTA Robot by Direct 
Application of Hamilton's Principle", In: Proceeding of the IEEE International 
conference on Robotics and automation, PP. 532-537, 1995. 

11- T. Ropponen and T. Arai," Accuracy Analysis of a Modified Stewart Platforms", In: 
Proceeding of the IEEE International conference on Robotics and automation, PP. 
521-525, 1995. 

12- S. Kawamura and others," Development of an Ultrahigh Speed Robot FALCON 
using wire Drive system", In: Proceeding of the IEEE International conference on 
Robotics and automation, PP. 215-220, 1995. 

13- M. Lee," Design of High Stiffness Machining Arm Using Double Parallel 
Mechanisms", In: Proceeding of the IEEE International conference on Robotics and 
automation, PP. 234-240, 1995. 



278 

14- B. Shusheng, and others," Accuracy Analysis of the Serial-Parallel Micromotion 
Manipulator." In: Proceeding of the IEEE International conference on Robotics and 
automation, PP. 2258-2263, 1997. 

15- Z. Mingyang and others," Development of a Redundant Robot manipulator Based 
on three DOF Parallel Platform", In: Proceeding of the IEEE International 
conference on Robotics and automation, PP. 221-226, 1995. 

16- L. Beiner, "Redundant actuation of a closed-chain manipulator", Journal of 
Advanced Robotics, Vol. 11, No.3, PP. 233-245, 1997. 

17- S. Kock and W. Schumacher, " A Parallel x-y manipulator with actuation 
redundancy for high-speed and active-stiffness applications", In: Proc. of the IEEE 
Int. Conference on Robotics and Automation, Vol. 3, PP. 2295-2300, 1998. 

18- K. Han, W. Chung, and Y. Y oum," Local structuralization for the Forward 
Kinematics of Parallel Manipulators Using Extra Sensor Data.", In: Proceeding of 
IEEE Int. conference on Robotics and automation, PP. 514-520, 1995. 

19- K. Lee and D. Shah," Kinematic Analysis of a Three Degree of Freedom In-Parallel 
Actuated Manipulator." IEEE Journal of Robotics and automation, Vol. 4, No.3, 
PP. 354-360, June 1988. 

20- G. Pennock and D. Kassner, "Kinematic Analysis of Planar Eight-Bar Linkage: 
Application to a Platform-Type Robot", Trans. of ASME, Journal of Mechanical 
Design, Vol. 114, No.1, PP. 87-95, March 1992. 

21- C. Gosselin and 1. Angeles, " A Global Performance Index for the Kinematic 
Optimisation of Robotic Manipulators", Trans. of ASME, Journal of Mechanical 
Design, Vol. 113, PP. 220-226, September 1991. 

22- G. Feng and others, " A Physical Model of the Solution Space and the Atlas of the 
Reachable Workspace for 2-DOF parallel Planar Manipulators", Journal of Machine 
Theory, Vol. 31, No.2, PP. 173-184,1996. 

23- G. Feng and others, " Distribution of Some Parameters in Physical Model of the 
Solution Space of 2-DOF parallel Planar Manipulators", Journal of Machine Theory, 
Vol. 30, No.6, PP. 811-817, 1995. 

24- F. Gao, X. Liu and W. Gruver, " The Global Conditioning Index in the Solution 
Space of Two Degree of Freedom Planar parallel Manipulators", In: Proceeding of 
the IEEE Int. Conference on Systems, Man and Cybernetics, Vol. 5, PP. 4055-4058, 
1995. 

25- H. Ozaki and others, " The Atlas of the Payload Capability For Design of 2-DOF 
Planar Parallel Manipulators", In: Proceeding of the IEEE Int. Conference on 
Systems, Man and Cybernetics, Vol. 2, PP. 1483-1488, 1996. 



279 

26- V. Kumar, " Characterization of Workspaces of Parallel Manipulators", Trans. Of 
ASME, Journal of Mechanical Design, Vol. 114, PP. 368-375, September 1992. 

27- J. Merlet, C. Gosselin and N. Mouly, "Workspaces of Planar Parallel Manipulators", 
Journal of Machine Theory, Vol. 33, No. 112, PP. 7-20, 1998. 

28- A. Rao and A. Jagadeesh, " Structure-Based Dynamic characteristics of Planar 
Linkages Including Platfrom-Type Robots", Journal of Robotic Systems, Vol. 14, 
No.8, PP. 621-629, 1997. 

29- A. Fattah, 1. Angles, and A. Misra," Dynamics of a 3-DOF Spatial Parallel 
Manipulator with Flexible Links", In: Proceeding of the IEEE Int. conference on 
Robotics and automation, PP. 627-632, 1995. 

30-K. Lee and D. Shah," Kinematic Analysis ofa Three Degree of Freedom In-Parallel 
Actuated Manipulator." IEEE Journal of Robotics and automation, Vol. 4, No.3, PP 
361-367, June 1988. 

31- A. Codourey, " Dynamic Modelling of Parallel Robots for Computed-Torque 
Control Implementation", Int. Journal of Robotics Research, Vol. 17, No. 12, PP. 
1325-1336, July 1998. 

32- R. Ben-Horin, M. Shoham and S. Djerassi, "Kinematics, dynamics and construction 
of planarly actuated parallel robot", Journal of Robotics and Computer-Integrated 
Manufacturing, Vol. 14, PP. 163-172, 1998. 

33- K. Youcef-Toumi, " Analysis and Design of Manipulators With Decoupled and 
Configuration-Invariant Inertia Tensors Using Remote Actuation", Trans. of ASME, 
Journal of Dynamic Systems, Measurements and Control, Vol. 114, PP. 204-212, 
June 1992. 

34- C. Gosselin and 1. Wang, " Singularity loci of planar parallel manipulators with 
revolute actuators", Journal of Robotics and Autonomous Systems, Vol. 21, No.4, 
PP. 377-398, 1997. 

35-F. Gao and W. Gruver, " Performance Evaluation Criteria for Analysis and Design 
of Robotic Mechanisms", In: Proceedings of the Int. Conference on Advanced 
Robotics, ICAR, PP. 879-884, Monterey, CA, 1997. 

36- D. Chablat and P. Wenger, " Working modes and aspects in fully parallel 
manipulators", In: Proc. of the 1998 IEEE Int. Conf. on Robotics and Automation, 
Vol. 3, PP. 1964-1969, 1998. 

37- C. Gibson, D. Marsh, and Y. Xiang," Singular Aspects of General Planar Motions 
with Two Degrees of Freedom", Int. Journal of Robotics Research, Vol. 17, No. 10, 
PP. 1068-1080, Oct. 1998. 



280 

38- C. Collins and G. Long," The Singularity Analysis of an In-Parallel Hand Controller 
for Force-Reflected Teleportation", IEEE Transaction on Robotics and automation, 
Vol. 11, No.5, PP. 661-669, Oct. 1995. 

39-D. Nenchev and M. Uchiyama, " PARA-ARM: A Five-Bar Parallel Manipulator 
with Singularity-Perturbed Design", Journal of Mechanism and Machine Theory, 
Vol. 33, No.5, PP. 453-462, 1998. 

40- D. Nenchev and M. Uchiyama, " Dynamic Analysis of Parallel-Link Manipulators 
Under the Singularity-Consistent Formulation", IEEEIRSJ International Conference 
on Intelligent Robots and Systems, Vol. 3, 1996, Osaka, Japan. 

41- P. Taylor," Robotic Control", Macmillan Education, 1990. 

42- Y. Nakamura, and M. Ghodoussi, "Dynamics Computation of Closed-Link Robot 
Mechanisms with Redundant and Non-Redundant Actuators." IEEE Transaction on 
Robotics and automation, Vol. 5, No.3, PP. 294-302, June 1989. 

43- B. Mcinnis and Chen-Kang Liu, "Kinematics and Dynamics in Robotics: A Tutorial 
Based Upon classical Concepts of Vectorial Mechanics", IEEE Journal of Robotics 
and automation, Vol. RA-2, No.4, PP. 181-186, Dec. 1986. 

44- J. Craig, " Introduction to Robotics", Addison Wesley, 1986. 

45-Chang-Jin Li," A New Lagrangian Formulation of Dynamics for Robot 
Manipulators." Journal of Dynamic System, Measurement, and Control, Vol. 111, 
PP. 559-567, Dec. 1989. 

46- You-Liang Gu and Nan K. Loh," Dynamic modeling and Control by Utilizing an 
Imaginary Robot Model", IEEE Journal of Robotics and automation, Vol. 4, No.5, 
PP. 532-540, Oct. 1988. 

47- T. Khalil," Design and Control of a Robot arm by Computer." Unpublished MSc 
Thesis, Zagazig University, Egypt, 1994. 

48- P. Wellstead," Introduction to Physical Modelling." Academic Press, 1979. 

49-D. Karnopp, and D. Margolis," System Dynamics: A Unified Approach." Wiley 
Interscience Publication, 1990. 

50- P. Gawthrop, and L. Smith," Metamodelling: For Bond Graphs and Dynamic 
systems." Prentice Hall, London, 1996. 

51- R. Wynn," Bond Graph Model Based Control of Robotic Manipulators." 
Unpublished Ph.D. Thesis, University of Glasgow, 1993. 



281 

52- J. Blundell," Bond Graphs for Modeling Engineering Systems." John Wiley & Sons, 
1982. 

53- R. Fotsu-Ngwompo, S. Scararda, and D. Thomasset " Bond Graph Methodology for 
the Design of an Actuating System: application to two link Manipulator", 
International Conference on Man, Machine, and Cybernetics, PP. 2478-2483,1997. 

54- R. Kankaanranta, and H. Koivo," Dynamics and Simulation of Compliant motion of 
a Manipulator." IEEE Journal of Robotics and automation, Vol. 4, No.2, PP. 163-
173, April 1988. 

55- E. Haug," Computer Aided Kinematics and Dynamics of Mechanical Systems", Vol. 
1, Allyn and Bacon, London, 1889. 

56- R. Gunawardana and F. Ghorbel, " PD Control of Closed-Chain Mechanical 
Systems: An Experimental Study", In: Proceeding of the 5th IFAC Symposium, Vol. 
1, PP. 79-84, Nantes, France, Sept. 97. 

57- L. Menini, A. Tornamble and L. Zaccarian," Modelling and Control of an Under­
Actuated Closed Kinematic Chain." IEE Proceeding On Control Theory 
Applications, Vol. 145, No.1, PP. 1-8, January 1998. 

58- J. Luh and Y. Zheng," Computation of Input Generalized Forces for Robotics with 
Closed Kinematic Chain Mechanism." IEEE Journal of Robotics and automation, 
Vol. RA-l, No.2, PP. 95-103, June 1985. 

59- J. Murray, and G. Lovell," Dynamic Modelling of Closed-Chain Robotics 
Manipulators and Implications for Trajectory Control.", IEEE Transaction on 
Robotics and automation, Vol. 5, No.4, PP. 522-528, August 1989. 

60- J. Granda and J. Reus," New Developments in Bond Graph Modeling Software 
Tools: The Computer Aided Modelling Program 'CAMP-G' and 'Matlab', 
International Conference on Man, Machine, and Cybernetics, PP. 1542-1547, 1997. 

61- P. Gawthrop," MTT: Model Transformation Tools." In: Proceeding of the 
International Conference on Bond Graph Modelling and Simulation, PP. 197-202, 
Las Vegas, January 1995. 

62-P. Gawthrop," MTT: Model Transformation Tools. Online www home Page, 1997, 
URL: http://mtt.sourceforge.netl. 

63- D. Karnopp and D. Margolis," Analysis and Simulation of Planar mechanism 
systems using Bond Graphs." Journal of Mechanical Design, Vol. 101, PP. 187-191, 
April 1979. 



282 

64-A. Zeid," Bond Graph Modeling of Planar Mechanisms with Realistic Joint Effects." 
Journal of Dynamic Systems, Measurement, and Control, Vol. 111, PP. 15-23, 
March 1989. 

65- R. Redfield, "A Bond Graph Representation of Lagrange's Equations", In: 
Proceedings of the ASME Dynamic Systems and Control Division, Vol. 57-1, PP. 
431-437,1995. 

66- R. Redfield, "A Synthesis of Design and Lagrangian Bond Graphs", In: Proceedings 
of the ASME Dynamic Systems and Control Division,Vol. 58, PP. 715-720,1996. 

67- Y. Khulief, "Dynamic Analysis of Mechanisms Using Constrained Lagrangian Bond 
Graphs", In: Proceedings of the ASME Design Engineering Division, Vol. 47, PP. 
59-65, 1992. 

68- D. Kamopp, "Understanding Multibody Dynamics Using Bond Graph 
Representations", Journal of Franklin Institute, Vol. 334B, No.4, PP. 631-642, 
1997. 

69- W. Favre and S. Scavarda, "Bond Graph Representation of Multibody Systems with 
Kinematic Loops", Journal of Franklin Institute, Vol. 335B, No.4, PP. 643-660, 
1998. 

70- J. Jang and C. Han, "Proposition of a Modeling Method for Constrained Mechanical 
Systems Based on the Vector Bond Graph", Journal of Franklin Institute, Vol.335B, 
No.3, PP. 451-469, 1998. 

71- R. Schilling, " Fundamentals of Robotics Analysis and Control", Prentice Hall, 
1990. 

72- S. Tadokoro, " Control of parallel mechanisms", Journal of Advanced Robotics, Vol. 
8, No.6, PP. 559-571, 1994. 

73- P. Baines and J. Mills, "Feedback Linearized Joint Torque Control of a Geared, DC 
Motor Driven Industrial Robot", The Int. Journal of Robotics Research, Vol. 17, No. 
2, PP. 169-192, February 1998. 

74- H. Seraji, "A New Class of Nonlinear PID Controller", In: Proceedings of the 5th 

IFAC Symposium, Vol. 1, PP. 65-71, Nantes, France, September 1997. 

75- H. Seraji, "Nonlinear and Adaptive Control of Force and Compliance in 
Manipulators", The Int. Journal of Robotics Research, Vol. 17, No.5, PP. 467-484, 
1998. 

76- B. Armstrong, "Nonlinear PD Control with Incomplete State Knowledge: Damping 
without Derivative", In: Proceedings of the 5th IFAC Symposium, Vol. 1, PP. 73-78, 
Nantes, France, September 1997. 



283 

77- P. Gawthrop," Bond Graphs, Symbolic algebra and modelling of complex systems", 
Technical Report, Centre for systems and Control, Glasgow University, Feb. 1998. 

78- M. Jean and C. Gosselin, "Static balancing of planar parallel manipulators", In: Proc. 
of the IEEE Int. conference on Robotics and Automation, vol. 4, PP. 3732-3737, 
1996. 

79- E. Umez-Eronini, " System dynamics and control ", Brooks/Cole Publishing 
Company, 1999. 

80- M. Fujita and N. Tanaka, " A New Type of Robust Tracking Control of Robot 
Manipulators Based on Generalized SP-D Control Scheme ", In: Proceedings of the 
1997 IEEE Int. Conference on Robotics and Automation, PP. 2371-2376, 1997. 

81-A. Jaritz and M. Spong, " An Experimental Comparison of Robust Control 
Algorithms on a Direct Drive Manipulator", IEEE Transactions on Control Systems 
Technology, Vol. 4, No.6, PP. 627-640, 1996. 

82- M. Spong, " On the Robust Control of Robot Manipulators ", IEEE Transactions on 
Automatic Control, Vol. 37, No. 11, PP. 1782-1786, 1992. 

83- W. Gao and J. C. Hung, " Variable Structure Control of Nonlinear Systems: A New 
approach ", IEEE Transactions on Industrial Electronics, Vol. 40, No.1, PP. 45-55, 
February 1993. 

84- J. Craig, " Adaptive Control of Mechanical Manipulators ", Addison Wesley, 1988. 

85- Y. Stepanenko and Chun-Yi SU, " Variable structure control of robot manipulators 
with nonlinear sliding manifolds ", Int. Journal of Control, Vol. 58, No.2, PP. 285-
300, 1993. 

86- J. Slotine, " Sliding controller design for nonlinear systems ", Int. Journal of 
Control, Vol. 40, No.2, PP. 421-434, 1984. 

87- Nag-In Kim, Chong-Won Lee and P. Chang, " Sliding mode control with 
perturbation estimation: application to motion control of parallel manipulator ", 
Journal of Control Eng. Practice, Vol. 6, No. 11, PP. 1321-1330,1998. 

88- H. Elmami and N. Olgac, " Sliding mode control with perturbation estimation 
(SMCPE): a new approach ", Int. Journal of Control, Vol. 56, No.4, PP. 923-941, 
1992. 

89- J. Slotine and S. Sastry, " Tracking control of nonlinear systems using sliding 
surfaces, with applications to robot manipulators", Int. Journal of Control, Vol. 38, 
No.2, PP. 465-492, 1983. 



284 

90- J. Slotine and J. Coetsee, " Adaptive sliding controller synthesis for non-linear 
systems ", lnt. Journal of Control, Vol. 43, No.6, PP. 1631-1651, 1986. 

91-P. Kachroo and M. Tomizuka, "Chattering Reduction and Error Convergence in the 
Sliding-Mode Control of a Class of Nonlinear Systems ", IEEE Transactions on 
Automatic Control, Vol. 41, No.7, PP. 1063-1068, 1996. 

92- Z. Lu, S. Kawamura and A. Goldenberg, " An Approach to Sliding Mode-Based 
Impedance Control ", IEEE Transactions On Robotics and Automation, Vol. 11, No. 
5, PP. 754-759, 1995. 

93- H. Sage, M. Mathelin and E. Osterg, " Robust control of robot manipulator: a survey 
",Int. Journal of Control, Vol. 72, No. 16, PP. 1498-1522, 1999. 

94- D. Graham and D. McRuer, " Analysis of Nonlinear Control Systems ", John Wiley 
and Sons, Inc., 1961. 

95- L. Freidovich and A. Pervozvanski, " Some Estimates of Performance for PID-like 
Control of Robotic Manipulators ", In: Proceedings of the 5

th 
IF AC Symposium, 

Vol. 1, PP. 85-90, 1997. 



Appendix A 

Formulation 01 the dynamic equations 01 the 
One-cell parallel manipulator by using the 

method 01 Serialtranslormation 

A.I Introduction 
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The alternative approach for the formulation of the dynamic equations of motion 

of the systems with closed chains solves the problem by reducing the system to a tree 

structure mechanism. This tree consists of multi-serial chains and it was assumed that it 

is virtually actuated. To check the results obtained with the bond graph technique, this 

appendix is directed to the modelling of the one-cell parallel planar manipulator using 

the above alternative method. The formulation of the dynamic equations for the serial 

sub-chains is performed using the standard Lagrange method. 

A.2 Derivation of the dynamic equations of motion for the one-cell 
parallel planar manipulator 

To apply the method of serial transformation to the manipulator, we first 

transform the arm into two sub-serial chains by virtually cutting the workless joint that 

closes the loop. This step directly corresponds to removing the holonomic constraints 

that close the loop in the manipulator. Figure 1.1 shows the manipulator after performing 

the above step. It is assumed that the resulting two sub-serial chains are virtually driven. 

The second step in the formulation is to derive the dynamics of the serial sub­

chains Oac and Obc. 
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Fig. 1.1: Configuration of the one-cell parallel planar manipulator after its serial 
transformation. 
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A.2.1 Dynamics of serial sub-chain Oac 

Recalling that each of the four links of the manipulator is of length 2L, mass m and 

polar moment of inertia about centre of mass J. 

Assuming uniform rigid links with circular cross-sections yields, 

J = tmL2 (1.1) 

(IOb)O = (IoJo = J + mL2 = 4J (1.2) 

Hence, the kinetic energy of link Oa is as follows: 

TOa = -t(IoJoO,2 = t(4J) 0,2 = 2JO,2 (1.3) 

The position co-ordinates of the mass centre of link ac (point e) are given by, 

Xe = 2LcosB, + Lcos(B, +q,) (1.4) 

Ye = 2LsinB, + Lsin(B, + qJ (1.5) 

Differentiating with respect to time and calculating the resultant velocity give, 

Xe = -2LsinB, 0, - Lsin(B, + q,)(e, + qJ (1.6) 

Ye = 2LcosB, 0, + Lcos(B, + q,)(e, + qJ (1.7) 

v: = 4L20,2 + 13 (q~ + 0,2 + 2 q, OJ+ 4L
2
0, (q, + OJ cosq, 

( ) 
2'2 2 2 ( ) 2 • = 5+4cosq, L B, +Lq, + 2+4cosq, L B ,q, (1.8) 



Hence, the kinetic energy of link ab is as follows: 

Tab = t mv; + t J &, + 8J 
= J (8 + 6cosqJ8,2 + 2Jij} + J(4 + 6cosqJq,8, (1.9) 

So, the total kinetic energy of this serial sub-chain is given by: 

T=TOa+Tac (1.10) 

Substituting from equations 1.3 and 1.9 into equations 1.10 leads to, 

T = J (10 + 6cosq,)8,2 + 2Jq~ + J(4 + 6cosq,)q,8, (1.11) 

Lagrange's equations of motion: 

r = ~ ( B~ J - BT fori = 1,2 
; dt Be; Be; 

B~ = J(20+12cosqJ8, +J(4+6cosq,)q, 
Be, 

~(B~ J = J (20 + 12cosq,)e, + J (4 + 6cosq,)q, 
dt Be, 

(1.12) 

-12Jq,8, sin q, - 6J sin q, q~ 

BT =0 
Be, 

BT . ( ) . -. = 4Jq, + J 4 + 6cosq, e, 
Bq, 

~(B~J = 4Jq, + J(4+ 6cosq,)e, - 6Jsinq, 8,q, 
dt Bq, 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 
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oT '2" ()' - = -6Jsinq1 ()1 -6Jsmq1 q1 1 
oq1 

Applying Lagrange's equations gives, 

(1.18) 

'fOa =J{(20+12coSq1)B1 +(4+6cosQ1)ql-12sinQ1 B/h -6sinQ1 412 } 

'fae = J {4q1 + (4 + 6COSQ1)B1 + 6sinQ1 B12 } 
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(1.19) 

(1.20) 

Where, 'fOa and 'fae are the generalised virtual torques associated with links Oa and ac 

respectively, 

A.2.2 Dynamics of serial sub-chain Obc 

In a similar way the virtual generalised torques associated with links Ob and be 

can be represented as follows, 

'fOb =J{(20+12cosQ2)B2 +(4+6cosQJQ2 -12sinQ2 BA2 -6sinQ2 4~ } (1.21) 

'fbe =J{4Q2 +(4+6coSQ2)B2 +6sinQ2 B; } (1.22) 

The third step in the formulation of the dynamic equations of the original parallel 

manipulator is to incorporate the constraints of the manipulator, This step is performed 

by firstly writing the idle joint generalised co-ordinates in terms of the actuated co-

ordinates, After that we derive the transformation matrix (w) that relates the original 

closed chain generalised torques to those of the serial sub-chains, 
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From the original configuration of the one-cell parallel manipulator we can deduce that 

ql = e2 - el (1.23) 

q2 = 2Jr - (e2 - el ) (1.24) 

The transformation matrix is defined as follows, 

I 0 

0 1 1 0 

Bql Bql 0 1 
(1.25) = w = I Be Be2 -1 1 I 

Bq2 Bq2 1 -1 
Bel Be2 

Now, if we let rIc and rf be the generalised torques associated with links Oa and Ob of 

the original closed chain manipulator then we have the following relation 

rOa 

[rl~] = wT • rOb 

1'2 rae 

(1.26) 

rbe 

Which leads to, 

C 
1'1 = rOa - rae + rbe (1.27) 

C 
l' 2 = rOb + rae - l' be (1.28) 

Substituting from equations 1.19, 1.20, 1.21 and 1.22 into equations 1.27 and 1.28, 

respectively, we get the reduced equations of motion of the parallel planar manipulator, 

as follows, 



r( =J{(20+12cosq\)8\ +(4+6cosq\)ij\-12sinq\ iJ/lJ -6sinq\ q~ } 

- J {4ij\ + (4 + 6cosq\ )8\ + 6sinq\ iJ\2 } 

+ J {4ij2 + (4 + 6cos q2 )82 + 6sin q2 iJ; } 

Substituting from equations 1.23 and 1.24 and rearranging leads to, 

r( = 20J8\ + 12Jcos(02 -0\)82 -12Jsin(02 -OJiJ; 

By means of a similar approach we also get the following, 

r; = 20J82 + 12Jcos(02 -OJ8\ + 12Jsin(02 -OJiJ\2 
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(1.29) 

(1.30) 

(1.31 ) 

These results are the same as the results obtained in chapter three if we put the number 

of cells to equal to zero. 

Assuming that the state vector is defined as XT = [JiJ\ 0\ JiJ2 O2 j. Then, by 

transforming the equations of motion into the state space form, we get the following 

matrix form that validates the results obtained by the bond graph method: 

20 0 12·cosLlx - 12 . sin Llx . X3 x\ 
r\ 
x\ 

0 1 0 0 x2 j = 
12·cosLlx 12· sinLlx· x\ 20 0 X3 r 2 

0 0 0 1 x4 
X3 

j 

Where, Llx = X 4 - x2 • 
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AppendixB 

labellile and list 01 Various representations 
Generated bv Mn 

B.I Label File 

%SUMMARY unit cell 

%DESCRIPTION <Detailed description here> 

%% Label file for system 2-DOF Parallel Manipulator (model_lbLtxt) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%% 

% %% Version control history 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%% 

%%% $Id$ 

%%%$Log$ 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%% 

%% Each line should be of one of the following forms: 

% a comment (ie starting with %) 

% Component-name CR name argl,arg2, .. argn 

% blank 

% Component type EMTF 

c 1 leos flow, 1 
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e2 leos flow,l 

e3 leos flow,n % n=2L 

e4 leos flow,n 

s1 lsin flow,l 

s2 lsin flow,l 

s3 lsin flow,n 

s4 lsin flow,n 

% Component type I 

, 1 L lin flow,j 

'11 L lin flow,j 

, 2 L lin flow,j 

, 22 L lin flow,j 

m11x lin flow,m 

m_11_y lin flow,m 

m 1 x lin flow,m 

m_1_y lin flow,m 

m 22 x lin flow,m 

m_22_y lin flow,m 

m 2 x lin flow,m 

m_2_y lin flow,m 

% Component type SS 

t I external external 

t II external external 
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B.2 List of Generated Representations 

• List of Inputs/Outputs 

List of inputs-outputs for system 2-DOF Parallel Manipulator 

Component System Repetition 

1 t I 2-DOF Parallel Manipulator 1 

2 t II 2-DOF Parallel Manipulator 1 
- - ~- - ... _- .. _- .... - .. - - .. - ... _-_ ... - .. _ .. __ ..... _ .. _-- _ ... _ .. - _ .... -

• List of Non-States Elements 

List of Non-States for system 2-DOF Parallel Manipulator 

Component System Repetition 

1 '11 L 2-DOF Parallel Manipulator 1 

2 ' 22 L 2-DOF Parallel Manipulator 1 

3 m11x 2-DOF Parallel Manipulator 1 

4 m_ll_y 2-DOF Parallel Manipulator 1 

5 mIx 2-DOF Parallel Manipulator 1 

6 m_l_y 2-DOF Parallel Manipulator 1 

7 m 22 x 2-DOF Parallel Manipulator 1 

8 m_22_y 2-DOF Parallel Manipulator 1 

9 m 2 x 2-DOF Parallel Manipulator 1 

10 m_2_y 2-DOF Parallel Manipulator 1 
-



• List of States 

List of States for system 2-DOF Parallel Manipulator 

Component System Repetition 

I ' I L 2-DOF Parallel Manipulator I 

2 '2 L 2-DOF Parallel Manipulator I 

3 a (th_l) 2-DOF Parallel Manipulator I 

4 b (th_2) 2-DOF Parallel Manipulator I 

• Simulation Code 

function [sys,xO] = model_cse(t,x,u,flag,xInitial); 

%Constrained-state eqns in Simulab form for system 2-DOF Parallel Manipulator 

%File model cse,m 

%Generated by MTT 

if nargin<4; flag=O; end; 

if (abs( flag) == I) I (abs( flag) == 3); 

% Set up the State variables; 

MTTxl = x(I); 

MTTx2 = x(2); 

MTTx3 = x(3); 

MTTx4 = x( 4); 

% Set up the Input variables; 

MTTul = u(1); 

MTTu2 = u(2); 

end; 

if abs( flag) == I 

mtte = zeros( 4,4); 

%state derivative; 
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ans2=sin(mttx3),,2*m*n/\2+2*j; 

ans1 =2*cos(mttx3),,2*I/\2*m+cos(mttx3),,2*m*n/\2+2*sin(mttx3),,2* 1/\2 *m+ans2; 

mtte( 1,1 )=ans 1 /j; 

mtte(1,2)=(2*I*m*n*(cos(mttx3)*cos(mttx4)+sin(mttx3)*sin(mttx4)))/j; 

mtte(1,4)=(2*I*m*mttx2*n*(-cos(mttx3)*sin(mttx4)+cos(mttx4)*sin(mttx3)))/j; 

mtte(2,1)=(2*I*m*n*(cos(mttx3)*cos(mttx4)+sin(mttx3)*sin(mttx4)))/j; 

ans2=sin(mttx4),,2*m*n/\2+2*j; 

ansl=2*cos(mttx4)"2*I/\2*m+cos(mttx4)"2*m*n/\2+2*sin(mttx4)"2*I/\2*m+ans2; 

mtte(2,2)=ans l/j; 

mtte(2,3)=(2*1*m*mttxl *n*(cos(mttx3)*sin(mttx4)-cos(mttx4)*sin(mttx3)))/j; 

mtte(3,3)= 1 ; 

mtte(4,4)=1; 

mttedx(l, 1 )=mttul; 

mttedx(2, 1 )=mttu2; 

mttedx(3, 1 )=mttx l/j; 

mttedx( 4,1 )=mttx2/j; 

sys = mtte\mttedx; 

elseif abs(flag) == 3 %outputs; 

mtty(1, 1 )=mttxl/j; 

mtty(2, 1 )=mttx2/j; 

sys = mtty; 

elseif abs(flag) == ° % structure; 

sys = [4,0,2,2,0,0]; 

end; 

ifnargin<5; xinitial = zeros(4,1); end; 

xo = xinitial; 
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AppendixC 

labellile and list 01 Various 
representations Generated bl MR lor the 

Hierarchical Model 

C.l Label File 

%SUMMARY unit cell 
%DESCRIPTION <Detailed description here> 
%% Label file for system unit-cell (h-modeIJbl.txt) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 
% %% Version control history 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 
% %% $Id$ 
%%%$Log$ 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 

%% Each line should be of one of the following forms: 
% a comment (ie starting with %) 
% Component-name CR_name argI,arg2, .. argn 
% blank 

% Component type ROD 
link_I none l;l;j;m 
link_22 none l;l;j;m 
link_II none l;l;j;m 
link 2 none l;l;j;m 



% Component type Zero flow source 
v x internal 0 
e x internal 0 
v _y internal 0 
e _y internal 0 

% Component type effort source 
t I external external 
t II external external 

% Component type effort source 
t_ vx C x internal % Dummy force = 0 
t_ vy Cy internal % Dummy force = 0 

% Component type Zero effort source 
f a 0 internal 
f b 0 internal 
f c 0 internal 

C.2 List of Generated Representations 

• List of Inputs/Outputs 

List of inputs/outputs for system Unit-Cell 

Component System 

1 t I Unit-Cell 

2 t II Unit-Cell 
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Repetition 

1 

1 
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• List of Non-States Elements 

List of Non-States for system Unit-Cell 

Component system repetition 

1 mx Unit-CeIl-link 1 1 

2 my Unit-CeIl-link 1 1 

3 mx Unit-CeIl-link 22 1 

4 my Unit-CeIl-link 22 1 

5 mx Unit-CeIl-link 11 1 

6 my Unit-CeIl-link 11 1 

7 mx Unit-Cell link 2 1 - -

8 m_y Unit-CeIl-link 2 1 

• List of States 

List of States for system Unit-Cell 

Component system repetition 

1 J Unit-CeIl-link 1 1 

2 Mtt3 Unit-CeIl-link 1 th 1 

3 J Unit-CeIl-link 22 1 

4 Mtt3 Unit-CeIl-link 22 th 1 

5 J Unit-CeIl-link 11 1 

6 Mtt3 Unit-CeIl-link 11 th 1 

7 J Unit-Cell-link 2 1 

8 Mtt3 Unit-Cell-link 2 th 1 



• Simulation Code 

function [sys,xO] = h _mod _ cse( t,x, u,flag,xInitial); 
%Constrained-state eqns in Simulab form for system unit-cell 
%File fourlink cse.m 
%Generated by MTT 
if nargin<4; flag=O; end; 
if (abs(flag) == 1) I (abs(flag) == 3); 
% Set up the State variables; 
MTTx1 = x(l); 
MTTx2 = x(2); 
MTTx3 = x(3); 
MTTx4 = x( 4); 
MTTxS = xeS); 
MTTx6 = x(6); 
MTTx7 = x(7); 
MTTx8 = x(8); 
% Set up the Input variables; 
MTTu1 = u(1); 
MTTu2 = u(2); 
end; 
if abs(flag) == 1 %state derivative; 
E = zeros(8,8); 
E(1, 1 )=(S*cos(mttx2)"2*1"2*m+S*sin(mttx2),,2 *1"2*m+j)/j; 
E(1,3)=(2*1"2*m*(cos(mttx2)*cos(mttx4)+sin(mttx2)*sin(mttx4)))/j; 
E(1,4)=(2*1"2*m*mttx3*(-cos(mttx2)*sin(mttx4)+cos(mttx4)*sin(mttx2)))/j; 
E(2,2)=1; 
E(3, 1 )=(2*1"2 *m*( cos(mttx2)*cos(mttx4)+sin(mttx2)*sin(mttx4)))/j; 
E(3,2)=(2*1"2*m*mttx1 *(cos(mttx2)*sin(mttx4)-cos(mttx4)*sin(mttx2)))/j; 
E(3 ,3)=( cos(mttx4)"2 *1"2 *m+sin(mttx4)"2 *1"2 *m+j)/j; 
E(4,4)=1; 
E(S,S)=(cos(mttx6)"2*1"2*m+sin(mttx6)"2*1"2*m+j)/j; 
E(S,7)=(2*1"2*m*(cos(mttx6)*cos(mttx8)+sin(mttx6)*sin(mttx8)))/j; 
E(S,8)=(2*1"2*m*mttx7*(-cos(mttx6)*sin(mttx8)+cos(mttx8)*sin(mttx6)))/j; 
E(6,6)=1; 
E(7,S)=(2*1"2*m*(cos(mttx6)*cos(mttx8)+sin(mttx6)*sin(mttx8)))/j; 
E(7,6)=(2*1"2*m*mttxS*(cos(mttx6)*sin(mttx8)-cos(mttx8)*sin(mttx6)))/j; 
E(7,7)=(S*cos(mttx8),,2*1"2*m+S*sin(mttx8),,2*1"2*m+j)/j; 
E(8,8)=1; 
mttedx(1,1)=2*cos(mttx2)*Cy*1-2*sin(mttx2)*Cx*l+mttu1; 
mttedx(2, 1 )=mttx 1/j; 
mttedx(3,1)=2*cos(mttx4)*Cy*1-2*sin(mttx4)*Cx*1; 
mttedx(4,1)=mttx3/j; 
mttedx(S,1)=2*cos(mttx6)*Cy*1-2*sin(mttx6)*Cx*1; 
mttedx( 6,1 )=mttxS/j; 
mttedx(7, 1 )=2*cos(mttx8)*Cy*1-2*sin(mttx8)*C x*1+mttu2; 
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mttedx(8, 1 )=mttx7/j; 
sys = E\Edx; 
elseif abs(flag) == 3 %outputs; 
mtty(l, 1 )=mttxl/j; 
mtty(2, 1 )=mttx7/j; 
sys = mtty; 
elseif abs(flag) == ° %structure; 

sys = [8,0,2,2,0,0]; 

end; 

ifnargin<5; xinitial = zeros(8,1); end; 
xo = xinitial; 
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Appendix 0 

labellile and list 01 Various representations 
Generated bl MTT lor the Hierarchical Model 01 

the Redundant Parallel Robot 

D.l Label File 

%SUMMARY unit cell 
%DESCRIPTION <Detailed description here> 
%% Label file for system Redundant one-cell (modeIJbl.txt) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 
% %% Version control history 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 
% %% $Id$ 
%%%$Log$ 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 
%% Each line should be of one of the following forms: 
% a comment (ie starting with %) 
% Component-name CR name argl,arg2, .. argn 
% blank 
R-
0 

rod a - none l;l;j;ffi 
rod b none l;l;j;ffi 
rod c - none l;l;j;ffi 
rod d none l;l;j;ffi 
% 
v x internal 0 
e x internal 0 
v_y internal 0 
e y internal 0 -
R-
0 



t I 
t II 

!I­o 

external 
external 

external 
external 

ffi X 

ffi_Y 
ffi xx 
ffi_YY 

lin flow,ffi_ffi 
lin flow,ffi_ffi 
lin flow,n_n 
lin flow,n_n 

% 
f 1 
f 2 
f 3 
t vx 
t_vy 

o internal 
external internal 
external internal 
f x internal 
f_y internal 

D.2 List of Generated Representations 

• List of Inputs, outputs, states and non-states 

function [input_ name,output_name,state _name] = G _R _M _ struc 
%% Structure file (G_R_M_struc.m) 
%% Generated by MTT at Tue Feb 9 13:27:56 GMT 1999 
input_name = [ 

'G R M t I' - - --
'G R M t II' 
'G R M f 2' 
'G R M f 3' - - --
]; 
nons tate _name = [ 

'G R M rod a m x' - - - - - -
'G _ R _M _rod _a _ m _y' 
'G R M rod b m x' - - - - - -
'G _R _ MJod_ b _ m_y' 
'G R M rod c m x' - - - - - -
'G _ R_ MJod_c_ my' 
'G R M rod d m x' 
'G _R _M Jod_ d_ m _y' 
'G R M m x' 

- - - -
'G_R_M_m_y' 
'G R M m xx' - - - -
'G_R_M_m_yy' 
]; 
output_name = [ 
'G R M t I' 
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'G R M t II' - - --
]; 
state_name = [ 
'G R M rod a J' - - - --
'G R M rod a th mtt3' - - - ---

'G R M rod b J' - - - --
'G R M rod b th mtt3' 
'G R M rod c J' - - - --
'G R M rod c th mtt3' - - - - - -
'G R M rod d J' - - -
'G R M rod d th mtt3' 
]; 

• Simulation Code 

function [sys,xO] = G_R_M_cse(t,x,u,flag,xInitial); 
%Constrained-state eqns in Simulab form for system G _ R_M 
%File G R M cse.m - - -
%Generated by MTT 
if nargin<4; flag=O; end; 
if (abs(flag) == 1) I (abs(flag) == 3); 
% Set up the State variables; 
MTTxl = x(I); 
MTTx2 = x(2); 
MTTx3 = x(3); 
MTTx4 = x( 4); 
MTTx5 = x(5); 
MTTx6 = x(6); 
MTTx7 = x(7); 
MTTx8 = x(8); 
% Set up the Input variables; 
MTTul = u(I); 
MTTu2 = u(2); 
MTTu3 = u(3); 
MTTu4 = u(4); 
end; 
if abs(flag) == 1 %state derivative; 
mtte = zeros(8,8); 
ans3=4*sin(mttx2Y2*lA2*m_m+4*sin(mttx2Y2*IA2*n_n+j; 
ans2=4*cos(mttx2)A2*lA2 *n _ n+5*sin(mttx2Y2 *lA2 *m+ans3; 
ansl=5*cos(mttx2Y2*lA2*m+4*cos(mttx2)A2*IA2*m_m+ans2; 
mtte( 1,1 )=ans 1 /j; 
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ans3=2* sin(mttx2) * sin(mttx4)*m _ m; 
ans2=cos(mttx2)*cos(mttx4 )*m+ 2 *cos(mttx2)*cos(mttx4)*m _ m+sin(mttx2)*sin(mttx4) 
*m+ans3; 
ansI =2*lA2*ans2; 



mtte( 1,3 )=ans l/j; 
ans3=2* cos(mttx4) * sin(mttx2) *m_m; 
ans2=-cos(mttx2)*sin(mttx4)*m-
2*cos(mttx2)*sin(mttx4)*m_m+cos(mttx4)*sin(mttx2)*m+ans3; 
ansI =2*lA2*mttx3*ans2; 
mtte(1,4)=ansI/j; 
mtte(2,2)= 1; 
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ans3=2* sin(mttx2) * sin(mttx4)*m_m; 
ans2=cos(mttx2)*cos(mttx4)*m+2*cos(mttx2)*cos(mttx4)*m_m+sin(mttx2)* sin(mttx4) 

*m+ans3; 
ansI =2*IA2*ans2; 
mtte(3, 1 )=ans 1 /j; 
ans3=-2*cos(mttx4)*sin(mttx2)*m_m; 
ans2=cos(mttx2)* sin(mttx4) *m+2 * cos(mttx2) * sin(mttx4) *m_ m­
cos(mttx4)*sin(mttx2)*m+ans3; 
ansI =2*lA2*mttxI *ans2; 
mtte(3,2)=ansI/j; 
ans2=4*sin(mttx4)A2*lA2*m_m+j; 
ansI=cos(mttx4Y2*lA2*m+4*cos(mttx4Y2*lA2*m_m+sin(mttx4Y2*lA2*m+ans2; 
mtte(3,3)=ansI/j; 
mtte(4,4)=I; 
mtte(5,5)=(cos(mttx6)A2*lA2*m+sin(mttx6Y2*lA2*m+j)/j; 
mtte(5,7)=(2*lA2*m*(cos(mttx6)*cos(mttx8)+sin(mttx6)*sin(mttx8)))/j; 
mtte(5,8)=(2*lA2*m*mttx7*(-cos(mttx6)*sin(mttx8)+cos(mttx8)*sin(mttx6)))/j; 
mtte(6,6)=1; 
mtte(7,5)=(2*lA2*m*(cos(mttx6)*cos(mttx8)+sin(mttx6)*sin(mttx8)))/j; 
mtte(7,6)=(2*lA2*m*mttx5*(cos(mttx6)*sin(mttx8)-cos(mttx8)*sin(mttx6)))/j; 
mtte(7,7)=(5*cos(mttx8Y2*lA2*m+5*sin(mttx8Y2*lA2*m+j)/j; 
mtte(8,8)=I; 
mttedx(I, 1 )=2 *cos(mttx2)*Cy*1-2 * sin(mttx2)*C x*l+mttuI-mttu3; 
mttedx(2, 1 )=mttx 1 /j; 
mttedx(3, 1 )=2 *cos(mttx4)*Cy*1-2 *sin(mttx4)*C x*l+mttu3-mttu4; 
mttedx( 4,1 )=mttx3/j; 
mttedx(5,I)=2*cos(mttx6)*Cy*1-2*sin(mttx6)*Cx*1+mttu4; 
mttedx( 6,1 )=mttx5/j; 
mttedx(7, 1 )=2*cos(mttx8)*Cy*1-2*sin(mttx8)*C x*1+mttu2; 
mttedx(8, 1 )=mttx7 /j; 
sys = mtte\mttedx; 
elseif abs(flag) == 3 %outputs; 
mtty( 1,1 )=mttx l/j; 
mtty(2, 1 )=mttx7/j; 
sys = mtty; 
elseif abs(flag) == 0 %structure; 

sys = [8,0,2,4,0,0]; 

end; 

ifnargin<5; xinitial = zeros(8,I); end; 
xO = xinitial; 
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AppendixE 

Matlab Script liles lor Calculating the Motor 
torques lor Case I 01 the Redundant Actuated 

Manipulator 

E.1 Script file for Case I (redundant motor at joint A) 

% Case I 
%Motor at joint A 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
m .-p=0; % payload mass 
fx=O; 
fy=O; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 

m=0.31; %Link mass; 
m m=O; % mass of redundant motor at joint B; 
m n=0.44; % mass of redundant motor at joint A; 
1=0.125; %Link half-Length 
J=0.0004; %moment of inertia about link centre of mass 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
kl = 16+ 12*(m _ m+m '-p+m _ n)/m; 
k2=2 *(m _ m+m'-p )/m+ 1; 
k3=3*(m_m+m'-p)/m+ 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
t=(0:.05:2); 
thl =0.1745+ 1.0472*t. *t-0.349*t. *t. *t; 
dth1 =2.0944*t-1.047*t. *t; 
ddth1 =2.0944-2.094*t; 
th2=0.7854+0.9818*t. *t-0.3273*t. *t. *t; 
dth2=1.9635*t-0.9818*t. *t; 
ddth2=1.9635-1.9635*t; 
ans=-4*1 *(fy*cos(th1 )-fx*sin(th1 )); 

% Theta (1); 
% Theta_dot (1); 
% Theta_dot_dot (1); 
% Theta (2); 
% Theta_dot (2); 
% Theta_dot_dot (2); 



u1 =J*((k1 +4)* ddth 1 +6*(k2+ 1 )*cos(th2-th1). *ddth2-6*(k2+ 1)*sin(th2-
th1). *dth2. *dth2)+ans; 
ans 1 =-4*1 *(fy*cos(th2)-fx*sin(th2)); 
u2=J*( 6*(k2+ 1 )*cos(th2-thl). *ddthl +4*(k3+4)*ddth2+6*(k2+ 1 )*sin(th2-
th1). *dth2. *dth2)+ans 1; 
itl =(2*ul +u2)13; 
it2=(u1 +2*u2)/3; 
it3=(u2-ul)13; 
ta=abs(itl )+abs(it2)+abs(it3); 
save itestl.mat t ta; 

E.2 Script file for Case I (redundant motor at joint B) 

% Case I 
%Motor at joint B 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
m ~=O; % payload mass 
fx=O; 
fy=O; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% 

m=O. 31; %Link mass; 
m_m=0.44; % mass of redundant motor at joint B; 
m_n=O; % mass of redundant motor at joint A; 
1=0.125; %Link half-Length 
J=0.0004; %moment of inertia about link centre of mass 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
kl = 16+ 12*(m _m+m ~+m _ n)/m; 
k2=2*(m_m+m~)/m+ 1; 
k3=3*(m_m+m~)/m+ 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
t=(O: .05 :2); 
th1 =0.1745+ 1.0472*t. *t-0.349*t. *t. *t; 
dth1 =2.0944*t-l.047*t. *t; 
ddthl =2.0944-2.094*t; 

% Theta (1); 
% Theta_dot (1); 
% Theta_dot_dot (1); 

% Theta (2); 
% Theta_dot (2); 
% Theta_dot_dot (2); 

th2=0. 7854+0.98l8*t. *t-0.3273*t. *t. *t; 
dth2=1.9635*t-0.9818*t. *t; 
ddth2=1.9635-1.9635*t; 
ans=-4*1*(fy*cos(th1 )-fx*sin(th1 )); 
u1=J*((k1 +4) * ddth1 +6*(k2+ 1)*cos(th2-thl). * ddth2-6*(k2+ 1)*sin(th2-
th1). *dth2. *dth2)+ans; 
ans 1 =-4*1*(fy*cos(th2)-fx*sin(th2)); 
u2=J*( 6*(k2+ 1 )*cos(th2-thl). * ddth 1 +4* (k3+4) *ddth2+6*(k2+ 1 )*sin(th2-
th1). *dth2. *dth2)+ans 1; 
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