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ABSTRACT 

This dissertation reports research into the thermochemical modelling of imperfect air 

with applications to computational fluid dynamics (CFD). The work is broadly 

separated into two topics; physical modelling of imperfect gases and numerical aspects 

of simulating the flow of such gases. 

Various levels of physical modelling are considered. Primarily, state equation 

models for high temperature air in vibrational and chemical equilibrium are examined. 

The most popular techniques currently used for modelling the thermodynamic state of 

such gases are based on either look up tables or curve fits. Available curve fit data are 

therefore examined and used in the validation of more physically based methods. 

A six species, three reaction, ionization free air state model is developed based on 

the solution of the laws of mass action to compute the flow chemistry. The calorically 

imperfect behaviour of the component species is modelled using both available curve 

fit data and statistical mechanics expressions, and it is concluded that species property 

curve fits are more appropriate for applications within the CFD environment. 

However, existing models based on this approach are limited by their inability to 

compute the derivative information required for the formation of the flux Jacobian and 

for the calculation of sonic speed. These limitations are overcome by developing 

innovative expressions for the required thermodynamic derivatives. Novel equations 

describing the frozen and equilibrium speeds of sound in a chemically reacting 

imperfect gas are also developed. 

In order to apply any state model within the numerical solution of the flow 

equations, it is necessary to identify the correct dependent and independent variables. 

The nature of any model based on the solution of the laws of mass action requires that 

the equilibrium temperature is used as an independent variable. Techniques for 

inverting the state equations to give temperature as a dependent variable are therefore 

investigated, and a novel algorithm is developed based on a Newton-Raphson iteration 

for this inversion. 

Many modern algorithms for the solution of hyperbolic and hyperbolic-parabolic 

systems of equations rely on mathematical properties associated with calorically perfect 

state equations. Algorithms developed on the basis of perfect gas behaviour must 

therefore be modified to account for thermal imperfections in high temperature air. 

The principal modifications identified here are the restructuring of the flux Jacobian to 

account for temperature variations of the ratio of specific heats, the nonhomogeneous 

nature of the flux vector with respect to the conserved variables and the lack of a 

closed form for the characteristic variables. 
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In order to illustrate the application of equilibrium gas models within the CFD 

environment, a solution of the quasi-one-dimensional Euler equations is presented for 

supersonic and hypersonic nozzle flows with and without a shock wave present. 

Particular attention is given to the characteristic treatment of boundary conditions, as 

this is an area in which perfect and equilibrium gas models require distinct treatments. 

The scheme used is a trapezoidal time/central space differenced one with added 

artificial dissipation. 

In addition to modelling the thermodynamic state equations for reacting gases, 

some progress towards the modelling of translational nonequilibrium is described. 

Methods for evaluating the transport coefficients of air in chemical equilibrium are 

addressed. Chemically relaxing inviscid flows are also examined and techniques are 

proposed for the solution of such flow problems. 
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Chapter One 

INTRODUCTION 

New concepts in launch vehicle design and ambitious space research projects have 

broadened interest in hypersonic aerodynamics over the last decade. In light of these 

programmes, this dissertation examines aspects of the modelling of air as a real gas 

and presents simulation techniques for hypersonic flows. This introductory chapter 

gives a brief historical perspective on the evolution of hypersonic flight, along with 

some notes on important projects currently under consideration. As a prelude to the 

detailed examination of hypersonic flows, the terms "hypersonic" and "real gas" are 

discussed. A brief overview of some numerical aspects of the project is then 

presented. Finally the thesis under investigation is presented and the scope of the 

current study is outlined. The chapter concludes by outlining the layout of the 

dissertation. 

1.1 THE EVOLUTION OF HYPERSONIC FLIGHT. 

Not only does successful hypersonic flight require an extremely powerful engine, but 

it also demands an understanding of the behaviour of air under abnormal conditions. 

Parallel developments in both propulsion and aerodynamics in the first half of the 

twentieth century have therefore contributed to the rapid advancement of hypersonics, 

from the first successful hypersonic projectile launched by R. H. Goddard on 

February 24, 1949, to the launch of the Space Shuttle Columbia on April 12, 1981. 

Recent applications demand better understanding of hypersonic aerodynamics for two 

reasons. Firstly, there is a trend towards the use of lifting surfaces on re-entry 

vehicles, to permit their safe return to a designated base. Secondly, proposed 

interplanetary and deep space missions involve high atmospheric entry speeds which 

must be reduced aerodynamically to safe landing velocities. Hypersonic aerodynamics 

therefore forms an important aspect of space research. 

As early as 1687 Newton had recognized that sound propagates through air at a 

finite speed and proposed an expression for this, based on the elasticity of air. 

Unfortunately, he incorrectly assumed the propagation of sound to be an isothermal 

process, and it was not until 1816 that the French mathematician Laplace published the 

first correct expression for acoustic propagation, based on the isentropic 

compressibility of air. 
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The existence of a finite speed of sound led to the question of what would happen 

when an object travelled faster than that speed. Shock waves had by this time been 

recognized and Bernhard Riemann made the first attempts at their analysis in 1858. 

He, like Newton, made a fundamental error in his assumptions about the nature of the 

problem, and it was not until 1870 that the Scottish engineer William Rankine 

published the normal shock relations generally accepted today. These equations were 

rediscovered independently by the Frenchman Pierre Henry Hugoniot seventeen years 

later, and it is to these two men that the normal shock relations are generally ascribed. 

By 1910 the theoretical behaviour of normal shocks was capped by the application of 

the second law of thermodynamics to the problem by both Lord Rayleigh and G. 1. 

Taylor. This established the direction of changes through a normal shock, precluding 

the existence of expansion shocks. 

In 1893, the Swedish engineer Carl de Laval demonstrated the use of a 

convergent-divergent nozzle within a steam turbine to achieve exceptionally high 

rotation speeds. At the time, the supersonic nature of the flow in such nozzles was 

unproven, and it fell to Aurel Stodola to demonstrate its existence experimentally and 

substantiate the relationship between his experiments and normal shock theories in his 

book "Steam Turbines", published in 1903. 

It is interesting to note that 1903 also saw the publication in Russia of a paper 

entitled "Investigations of Space by Means of Rockets" by Konstantine Tsiolkovsky. 

This represented the first practical suggestions that liquid fuelled rockets could be used 

as a propulsion system to investigate space. Unfortunately, the paper was too far 

ahead of its time - given that the first successful powered flight only took place in 

December of that year, under the control of Orville Wright. Tsiolkovsky was 

proposing flight at escape velocities at a time when the Wright brothers had achieved a 

mere 30 miles per hour. 

Less than five years after the Wright brothers first flight, the German 

aerodynamicist Ludwig Prandtl was engaged in research into the theoretical nature of 

oblique expansion processes. Using photographic techniques pioneered by Ernst 

Mach, Prandtl, assisted by Theodor Meyer, produced some outstanding research on 

supersonic flows. It was in Meyer's doctoral dissertation in 1908 that the oblique 

expansion relations were first laid down, together with the basis for the understanding 

of oblique shock behaviour. By the end of the decade, the fundamentals of supersonic 

flow were understood. However, this field of research was still very much of 

academic interest, as there were few practical applications for such theories. 

In 1909, the American engineer Robbert H. Goddard embarked upon a career 

which was to lead to the patenting of the world's first design for a liquid fuelled rocket 
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in 1914 and the subsequent publication of his paper "A Method of Reaching Extreme 

Altitudes" in 1919. It is the work of Goddard, together with that of Tsiolkovsky and 

later of the Austro-Hungarian engineer Hermann Oberth, which led to the development 

of a propulsion system ultimately capable of attaining hypersonic velocities. Despite 

the early visions of Tsiolkovsky, and the influential work of Oberth through his 

publication of "De Raket zu den Planetenraiimen" (The Rocket into Interplanetary 

Space) in 1923, it was Goddard who first successfully launched a liquid fuelled rocket 

on March 16, 1926. It was also Goddard who first shot a liquid fuelled rocket 

through the sound barrier in 1935. 

While the practicalities of using rocket power to attain escape velocities were being 

investigated in the mid 1920s, Prandtl, with his Swiss colleague Jacob Ackeret, and 

the English aerodynamicist Hermann Glauert, were independently considering the 

more immediate problem of establishing the effect of Mach number on propeller tips. 

The solution of this problem led to the publication of linearized theories on the 

behaviour of aerofoils in compressible flows. Another colleague of Prandtl's, Adolf 

Busemann, went on to present fully nonlinear solutions to supersonic flow problems 

using the method of characteristics. This analytic, technique was used to design the 

first practical supersonic wind tunnels in the mid 1930s. 

Rocket powered flight became a reality on September 30, 1929, when Fritz von 

Opel flew in a powered glider, propelled by a solid fuel rocket. German interest in 

rocketry was spurred by restrictions placed on her ability to perform artillery tests 

under the Treaty of Versailles, and the work of Oberth in the early 1930s was soon 

recognized for its military potential. A former assistant to Oberth, Wernher von 

Braun, became technical director of the rocket research centre at Peenemiinde in 

northwest Germany in 1935, after such research for civilian purposes was forbidden 

by his government. Braun became responsible for the management of the A-4 rocket 

programme, later designated V-2 by the German Propaganda ministry. The first 

successful A-4 launch took place at Peenemiinde during October 1942, by which time 

Germany was firmly established as world leader in rocket research. 

At the end of the Second World War many of the German rocket scientists, 

including Braun, were moved to the United States, where they contributed both to the 

peaceful application of rocketry to space research and to its application to long range 

ballistic missiles. A high point in the fields of both rocket research and aerodynamics 

came on October 14, 1947, when Chuck Yeager in the rocket powered Bell X-I 

became the first man to fly faster than the speed of sound. Further advances came 

quickly, with the first multistage rocket launch being accomplished on February 24, 
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1949. This experiment had the further distinction of producing the first successful 

hypersonic flight. 

Under the auspices of the International Geophysical Year, an 18 month period 

from July 1957 to December 1958, several important events took place. Firstly, on 

October 4, 1957, the U.S.S.R. stamped its authority on space research by launching 

Sputnik 1, the first artificial satellite to orbit Earth. This was followed by nine more 

sputnik missions carrying out a number of experiments, including research into life 

support systems. Less than four months later, on January 31, 1958, under the 

direction of Braun, the U.S. successfully launched its first satellite, Explorer 1. In 

October of that year, the National Aeronautics and Space Administration was 

established in the U.S. with the express purpose of achieving parity with the Soviet 

space programme. A space race had begun between the two most powerful nations on 

Earth. 

The 1960s represented the first peak in research into hypersonic flow. The Soviet 

Union at first confirmed its authority over the space race by launching Yuri Gagarin 

into orbit on April 12, 1961, and safely returning him to Earth. Alan B. Shepherd 

performed a slightly less ambitious sub orbital flight on May 5, after which President 

John F. Kennedy publicly committed the U.S. to landing a man on the moon by the 

end of the decade. Also about this time some practical propositions were being made 

towards the concept of a reusable orbital transfer vehicle, ideas which were later to 

evolve into the American Space Shuttle. The decade ended with the historic Apollo 11 

mission, which landed Neil Armstrong and Edwin Aldrin on the surface of the moon, 

and returned them safely. 

During the 1970s and '80s, launchings of artificial satellites became commonplace. 

However, waning public interest in manned space flight lead to the termination of the 

Apollo program after 17 missions. With the Soviet manned space program 

concentrating on maintaining support for their Sal~lJt space station through the use of 

disposable launchers, the U.S. took a different approach and concentrated on the idea 

of a reusable launch vehicle. This led to the launch of the Space Shuttle Columbia on 

April 12, 1981. The Shuttle is unique in its ability to provide flight test data in the 

hypersonic regime. 

The late 1980s have seen a resurgence in interest in hypersonic flight for several 

reasons. Increasing launch costs highlight the desire for a fully reusable space vehicle. 

The two-stage-to-orbit German Sanger project is an example of the use of cunent 

engine technology to achieve this. Also, advancing engine technology has led to the 

proposal of hybrid air breathing/rocket motor designs. These ideas have fuelled 

research into single-stage-to-orbit vehicles, such as the American NASP (National 
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Aerospace Plane) and British HOTOL (Horizontal Take-off and Landing). As far as 

manned space flight is concerned, it is likely that less ambitious projects will prevail, 

such as the European Space Agency's mini-shuttle Hermies. 

Future aero-thermodynamic challenges are not restricted to the field of manned 

space flight. Such projects as the European Cassini/Huygens mission to land a 

planetary probe on Titan, or the Rosetta mission to collect and return _co metary 

samples to Earth will call for detailed knowledge of the hypersonic behaviour of gas 

mixtures. Proposed Mars lander missions present similar problems. Furthermore, 

low Earth orbit satellites, such as the gravitational research satellite Aristoteles, require 

an understanding of the high speed rarefied gas flows they encounter, in order to 

effectively control aerodynamic drag. 

The study of hypersonic flow is of continuing interest to a large number of 

practical research programmes. It is therefore important to detail exactly what is meant 

by the term hypersonic and establish the breadth of this field of study. A specific area 

of research can then be identified and investigated. 

1.2 DEFINITION OF HYPERSONIC REAL GAS FLOWS. 

Unlike the clear demarcation between subsonic and supersonic flows, there is no 

single point beyond which a flow can be classified as hypersonic. Anderson (1986) 

defines hypersonic flow as "that regime where certain physical flow phenomena 

become progressively more important as the Mach number is increased to higher 

values". The lack of precision in this statement is compounded by the vagueness of 

the term "real gas". It is therefore important to qualify the various phenomena which 

fall into the category of hypersonic real gas flows. 

1.2-a Hypersonic Flows. 

There are various phenomena which occur within high Mach number flows which are 

present irrespective of the thermochemical model chosen to represent the gas. They 

exist because of the high speed of the flow and are generally present at Mach numbers 

above five. It is instructive to first look at these effects without reference to the 

modelling of the gas, although all such effects are influenced to some degree by the 

choice of gas model. 

As flow speed increases above sonic, the bow shock formed ahead of a blunt body 

will steadily strengthen and move closer to the body. The resulting thin shock layer 

can be used to advantage in reducing the complexity of the problem, providing the 

Reynolds number of the flow is sufficiently high to prevent the shock and boundary 
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layers interacting. Examples of such theories relying on the thin shock layer in 

inviscid flows are Newtonian theory, modified Newtonian theory, Newtonian

Busemann theory and Maslen's thin shock-layer theory. It is emphasized that these 

theories give only approximate solutions based on the absence of viscosity and the 

nearness of the shock to the body. 

Another inviscid phenomenon associated with hypersonic flows is the formation of 

an entropy layer on a body's surface. Due to the high curvature of the bow shock at 

the leading edge of an hypersonic projectile, large gradients in entropy can be set up 

normal to the direction of the flow. Although in viscid mechanisms are responsible for 

the formation of the entropy layer, its importance lies mainly with its influence on the 

viscous boundary layer. Through the vorticity associated with strong entropy 

gradients, a highly curved bow shock interacts with the growth and development of 

the viscous boundary layer, and it becomes difficult to separate viscous and inviscid 

regions of the flow. 

It is not only through the entropy layer that viscous/in viscid interactions can take 

place. At the low Reynolds numbers often associated with re-entry problems, thick 

boundary layers tend to merge into the shock layer. This precludes any possibility of 

solving the viscous and inviscid portions of the flow separately. Even numerical 

solutions for merged shock/boundary layers are difficult because of the need to 

maintain a dissipative scheme for the correct capturing of shocks, without adversely 

affecting the resolution of strong shear layers. 

1.2·b Real Gas Flows. 

The term "real gas" is generally taken to describe any gas which does not have 

constant specific heats. Such gases require detailed modelling of their internal 

structure in order to correctly represent their behaviour. The internal structure of 

diatomic and monatomic gases will be discussed in section 2.1. 

Caloric imperfections are the first real gas effects to become evident in any gas 

flow. These imperfections give rise to a temperature dependence for the specific heats 

of the gas so that internal energy is no longer linearly related to temperature. 

Calorically imperfect gases do, however, obey Boyle's law, so that pressure is a linear 

function of density at a fixed temperature. Gases which fail to obey Boyle's law are 

thermally imperfect. Thermal imperfections can come about because chemical activity 

changes the molar mass of the gas, or because of high density effects, where vinol 

corrections are applied to the thermal state equation to account for the finite volume of 

individual atoms. Electrical excitation within a gas can be treated as a special case of 
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chemical activity, giving rise to complex caloric imperfections, eventually leading up to 

ionization. 

The extreme velocities associated with hypersonic flight imply that the finite 

number of collisions required to excite some molecular processes take place over 

appreciable length scales. In such circumstances the affected processes must be 

modelled out of equilibrium. Such nonequilibrium modelling can lead to considerable 

difficulties with the different time scales associated with various processes. Also, 

nonequilibrium processes lead to spatial gradients in fluid properties which in tum give 

rise to diffusive effects. Heat and momentum transfer phenomena are consequences of 

translational nonequilibrium, and are implicit in many perfect gas models of fluid flow. 

However, chemical and vibrational rate processes are specific to real gas flows and 

form important research topics in their own right. 

Low density effects give rise to some very specialized real gas problems. In 

situations where the Knudsen number (the ratio of the mean distance between 

molecules to a characteristic length of the boundaries) becomes large, free molecular 

flows result, and the continuum equations of motion no longer apply. Such flows 

carry their own solution techniques, often relying on stochastic models. In the same 

way that supersonic and hypersonic flows have an indistinct boundary, the transition 

from continuum to free molecular flows is not clearly defined. Transitional flows are 

an area of current interest to many researchers, because of their relevance to 

atmospheric entry problems. 

Complex physical processes, such as radiative heat transfer, electrical and 

magnetic effects in ionized flows or nuclear activity are beyond the scope of the current 

research. 

1.3 THE NEED FOR HYPERSONIC FLOW SIMULATIONS. 

Some distinctive attributes of the behaviour of gas mixtures under extreme conditions 

have been outlined in the preceding section. It is clear that only in a limited number of 

cases will there be analytic solutions to problems involving such gases. Those 

solutions that do exist are restricted to simple geometries or specific points in the flow, 

and therefore are of limited use in the practical design of lifting re-entry vehicles. 

However, such theoretical solutions that do exist are of immense importance to the 

understanding of physical phenomena which form the basis of all computational and 

experimental analysis. 

It is recognized that the design of the U.S. Space Shuttle relied principally on data 

derived experimentally. However, while the four Shuttle orbiters remain the only 
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reusable manned spacecraft yet built, they no longer represent the state of the art in 

spacecraft design technology. During initial flight testing of the orbiter Columbia, 

several anomalies were observed regarding the preflight data. Most notably these were 

the required flap deflection for trim and severe heating rates measured on the lee 

surface of the orbiter (Young et aI., 1981). These effects have subsequently been 

investigated using computationally based simulations (Maus et aI., 1984) and the 

differences have been put down to real gas effects. 

The primary reason for the incorrect flap angle and heating rate preflight 

predictions for the shuttle was the difficulty in experimentally simulating high altitude 

hypersonic flows in ground test facilities. Such high enthalpy facilities are very 

expensive to build and operate, and much care must be taken when extrapolating test 

results to full scale flows. Because of the complexity of the behaviour of gas mixtures 

such as air, uninterpretable results would come from such facilities unless they utilize 

simple gases such as monatomic-diatomic nitrogen mixtures. These may be less 

representative of actual conditions in the upper atmosphere. The short run times of 

many types of high enthalpy tunnel give rise to measurement difficulties, particularly 

for parameters such as heat transfer rate or skin friction. Also, in situations where 

densities are low and Mach numbers high, dynamic similarity of nonequilibrium flows 

can only be achieved on a full scale model, which implies flight testing. Clearly then, 

hypersonic wind tunnel test results require more care in their extrapolation to the full 

scale case than do the equivalent supersonic results. 

The evolution of computational fluid dynamics (CFD) over the last two decades 

has provided an additional tool for the analysis of hypersonic flows. The 

simultaneous simulation of mass, length, time and temperature scales for complex 

geometries, such as the shuttle orbiter, is now a practical proposition, albeit for limited 

degrees of physical modelling. Increasing computing power, vectorization and 

parallelization of computer codes, and reductions in the cost of fast access memory all 

point towards CFD becoming more widely used in the design process over the next 

few years. 

However, CFD is still limited in many respects. Early algorithms have been 

developed largely on a mathematical basis, and often rely on certain restrictive 

properties of the equation of state for a perfect gas. As a consequence, it is not always 

possible to extend some of the advanced modern high resolution shock capturing 

algorithms directly to incorporate even the simplest equilibrium air models. Much 

work remains to be done in the field of algorithm development. 

It is unlikely that computational solutions will ever entirely replace experimental or 

theoretical work. Rather they will be used, as at present, to substantiate and facilitate 
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the analysis of experimental and flight test results. With the development of faster and 

more robust codes, increasing use will be made of such solutions within the design 

process. The field of hypersonics will probably see the biggest advantages from CFD, 

because the difficulties in deriving numerical solutions will be outweighed by the cost 

and complexity of deriving and analysing meaningful experimental results. 

1.4 SOME GENERAL NUMERICAL ASPECTS OF FLOW SIMULATIONS. 

The most distinctive feature of hypersonic flows is the presence of very strong shock 

waves. Shock waves are discussed in greater detail in section 3.3. The only solution 

to the Euler equations which satisfies shock inducing boundary conditions is a 

discontinuous one, representing an instantaneous adjustment of all 

molecular energy modes across the shock. The same is not true of the Navier-Stokes 

equationst , which can model the internal structure of weak shocks. Shock structures 

are, however, only important when the mean free path between molecules approaches 

the length scale of the boundary conditions. In most continuum flows shocks can 

therefore be treated as if they are discontinuities, and many numerical algorithms are 

developed on this basis. 

There are two basic techniques for modelling shock waves within a numerical 

scheme. These are shock fitting and shock capturing. Shock fitting techniques rely on 

a prior knowledge of the position and strength of shock waves. The jump in 

conditions across the shock are established from the Rankine-Hugoniot relations, and 

the shock is treated as a boundary to the flow. This has the advantage of concentrating 

the solution process in the field of interest (ie between the bow shock and the body), 

but is limited by the need to compute the location of the shock and the jump in 

conditions across it. The advantages of shock fitting techniques are gradually being 

eroded by the development of high resolution shock capturing algorithms. These rely 

on modelling the shock as part of the solution, and require no advance knowledge of 

shock position. Shock capturing schemes can successfully deal with embedded 

shocks, which are common in hypersonic flows over complex geometries. 

The method chosen to discretize the equations of motion has a significant effect 

upon the validity and accuracy of their numerical solution. It also affects the speed of 

convergence to a steady state. Treating time derivatives and space derivatives 

t The term Navier-Stokes equations is taken to refer to the full set of conservation equations for a 

fluid, including the mass and energy conservation laws, rather than the momentum conservation 

equations alone. 
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separately, there are two classes of techniques for differencing each of these terms: 

implicit or explicit time differencing and central or upwind space differencing. 

Discretization of the equations of motion is dealt with in section 3.2. 

1.5 THE SCOPE OF THIS STUDY. 

The general objective of this work is to investigate and implement improved physical 

models for air within the CFD environment. It is not yet possible to include every 

degree of realism within a numerical simulation, and it is therefore the purpose of this 

section to highlight those particular aspects of the task which fall within the scope of 

this study. 

This research concentrates primarily on modelling the equations of state for 

inviscid equilibrium air at moderate densities. Principally, the effects of calorific and 

thermal imperfections in the state equations are addressed, and only continuum flows 

are considered. The modifications to existing implicit algorithms required for the 

implementation of equilibrium gas models are then examined. 

To illustrate the use of these state equation models, they are applied to a one 

dimensional test case. The scheme used is trapezoidal time differenced, central space 

differenced (Beam and Warming, 1976) with Jameson (Jameson et aI., 1981) type 

artificial dissipation. 

Some progress towards steady state nonequilibrium modelling, both in terms of 

rotational and translational nonequilibrium and in chemical nonequilibrium, has also 

been made. Perhaps of most immediate importance to hypersonic flow is the 

modelling of the translational nonequilibrium, as this effect leads directly to the 

transport properties of the flow, and is responsible for surface shear stresses and heat 

transfer rates. Fast methods for computing the transport coefficients for gas mixtures 

are therefore desirable. 

The emphasis throughout this dissertation is placed on physical modelling rather 

than algorithm development. Numerical aspects are vital because of the modifications 

to the basic equations brought about by changing the physics of a flow, but it is not the 

purpose of this thesis to evolve revolutionary techniques for the solution of these 

equations. Rather, existing numerical methods are picked upon and modifications are 

presented to allow their application to more physical problems. Further improvements 

in efficiency of the solution process will always be possible by developing better 

numerical techniques. 
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1. 6 THE STRUCTURE OF THE DISSERTATION. 

There are two aspects to the research presented in this dissertation. These are the 

physical modelling of the gas and the numerical representation of these models. As 

mentioned in section 1.5, priority is given to improving the physical modelling in CFD 

codes, and emphasis is placed on that aspect. Chapter two therefore presents detailed 

background information on the behaviour of imperfect gases, expanding on 

infonnation introduced in section 1.2. Chapter three continues by providing the 

background for numerical modelling. 

Chapters four and five fonn the core of the thesis, as they present the development 

and implementation of fast equilibrium models for inviscid flows. The relative merits 

of different techniques are discussed in these chapters. 

Progress towards nonequilibrium modelling, both in tenns of Navier-Stokes type 

simulations, and vibrational and chemical nonequilibrium problems, is discussed in 

chapter six. 

Chapter seven concludes the dissertation by restating what has been achieved and 

putting forward recommendations on the use of the techniques developed. Future 

research directions are also discussed in this chapter. 
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Chapter Two 

PHYSICAL GAS DYNAMICS 

This chapter describes the fundamental equations on which subsequent work is 

based. A microscopic account of the internal structure of gases is given first, followed 

by a description of the equations of motion for viscous and inviscid gases. The 

similarities between these equations and the equivalent perfect gas equations are 

discussed. The effects of chemical activity within the gas are considered, and the 

equations describing both nonequilibrium and equilibrium chemical reactions are 

presented. Finally, the equations of state are discussed and the departures from perfect 

gas behaviour highlighted. 

2.1 THE INTERNAL STRUCTURE OF GASES. 

The imperfect behaviour of gases at high temperature is principally due to the 

excitation of internal energy modes inactive at lower temperatures. For this reason, a 

qualitative understanding of the internal structure of gases such as air is important. 

Air at low temperatures is normally considered to be a mixture of 78% diatomic 

nitrogen, 21 % diatomic oxygen and 1 % argon. Other gases, such as ozone, carbon 

dioxide, nitrogen dioxide, sulphur dioxide and water vapour are present in varying 

degrees at different altitudes, but, with the exception of water vapour, the 

concentrations of these species are never more than 0.1 %. In the upper reaches of the 

stratosphere, where continuum hypersonic flows are likely to be encountered during 

reentry, the oxygen concentration can fall to about 15% and nitrogen concentration can 

vary between 70% and 80%, according to altitude. At any altitude, the principal 

reactions therefore involve nitrogen and oxygen in some form. Air can then be 

considered to be a mixture of monatomic and diatomic non polar gases. 

A monatomic gas can only store energy through the translational motion and 

electronic excitation of its component atoms. Such a gas can be visualized as 

consisting of fast moving point masses which interact through an electrostatic 

potential. When two atoms come sufficiently close for their respective potentials to 

interact, an exchange of energy takes place, and their translational or electronic modes 

change state. The way in which the potential is modelled therefore dictates many 

aspects of the gas behaviour. Examples of commonly used models are the rigid 

sphere, square well, Lennard-Jones and Buckingham potentials illustrated in Figure 

2.1. 
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If two atoms collide and disperse energy in the process, they may form a chemical 

bond. This bond is created because of the potential well\l1ustrated in Figure 2.1. The 

molecule so formed has both rotational and vibrational energy storage modes in 

addition to translational and electronic modes. Furthermore, if vibrational energy 

levels are low, the potential well may be approximated by either rigid rotator or 

harmonic oscillator models. 

In the perfect gas model of air, the gas is represented by a uniform mixture of rigid 

rotating diatomic molecules, which interact according to the rigid sphere model. 

Vibrational and electronic modes are not present and the translational and rotational 

modes are assumed to be fully excited so that internal energy is a linear function of 

temperature. This model is illustrated in Figure 2.2a. Perfect gas descriptions of air 

are valid from about 200 K up to 600 K, and are characterized by having constant 

specific heats. 

Above 600 K vibrational excitation becomes significant, and the rigid rotator 

model must be replaced by an harmonic oscillator. Further increases in temperature, 

up to 1000 K, lead to electronic excitation and chemical activity, in which case 

harmonic oscillator models must be supplemented by dissociation models or replaced 

by more representative potentials, such as the Lennard-lones (6-12) potential. Figure 

2.2b illustrates a vibrationally and electronically excited gas. 

To excite rotational or translational energy modes, only a small number of 

molecular collisions are required. However, at the continuum level, spatial gradients 

in these forms of internal energy lead to the transport of mass, momentum and energy. 

These effects are accounted for through the transport coefficients, and will be 

discussed in greater detail in chapter six. Vibrational and chemical excitation require 

significantly more col1isions, and therefore take longer to relax back to an equilibrium 

state after being perturbed. If the flow speed is very high, these relaxation processes 

can therefore take place over considerable spatial distances. Chemical and vibrational 

relaxation processes must be accounted for if internal energy exchanges in hypersonic 

flows are to be correctly modelled. 

2.2 THE CONSERVATION LAWS FOR M ASS, MOMENTUM AND 

ENERGY. 

The equations of motion for a chemically reacting real gas can be derived from a 

continuum point of view by applying the fundamental principles of mass, momentum 

and energy conservation to a moving fluid element (Liepmann and Roshko, 1957). 

Applying these principles at an atomic level results in a more involved analysis leading 

tIf energy is removed during the collision process, the colliding atoms may be left with insufficient energy to 
overcome this potential well and therefore become bonded. 
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to the same equations (Vincenti and Kruger, 1965). The following sections present 

the equations describing the motion of viscous and inviscid fluids in chemical 

equilibrium. These equations are then simplified to one dimensional flows. 

2.2-a Viscous Equations. 

The conservation laws for mass, momentum and energy in the absence of body forces 

can be written using the summation convention as: 

dP dPUj = 0 -+ 
dt dXj 

d [ (dUi ~)~ d [A dUk] 
- dXj ~ dXj + dXi U + dXi dXk 

dPU' dPU'U' dP __ 1+ 1 1+_ 
dt dXj dXi 

(2.1 ) 

(2.2) 

~[p(e+ U2)]+~[pUj(e+2..+ U2
)] 

dt 2 dXj P 2 
= - Uk~ ---1..+_. +UjA- +- k- (2.3) d [ (dUi dUk) dUk] d ( dT) 

dXj dXk dXJ dXk dXj dXj 

The above equations can be expressed in vector form as: 

where: 

dUf dFfj _ dFfvj 
-+ -

Ur = 

Flj = 

FfVj = 

dt dXj dXj 

p 

PUi 

p(e+ U;) 

pUj 

PUillj+<>ijP 

pu{e+~<) 

o 

(
dUi dUi) s: 'I dUk 

~ -+--'- +uij/\,-
dXj dXi dXk 

Uk~ +- +U'/\'-+ -
(
dll i dUk) '\ dUk kdT 
dXk dxj J dXk dXj 
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The transport coefficients, 11, A and k, appearing in the these equations are discussed 

in chapter six. 

2.2-b Inviscid Equations. 

The inviscid equations can easily be obtained from Eqs . (2.4) by setting the transport 

coefficients to zero. This eliminates the viscous flux vector, and so the equations of 

motion become: 

aUf + aFfj = 0 
at aXj 

(2.8) 

with Uf and Ffj defined by Eqs. (2.5) and (2.6). 

The quasi-one-dimensional equations of motion are obtained from Eqs. (2.8) by 

replacing the j = 1 and j = 2 derivatives with a source term representing area changes in 

those directions, as follows : 

aUr + aFr = .or 
at ax 

(2.9) 

-, 
p 

where: Ur = 1 
pu 

(2.10) 

p(e+ U;J 

pu 

Fr =1 
pu2+p 

(2.11) 

pu(e+~+ U;) 

pu 

.or =-1 pu2 I ddx In A 

pu(e+~<) 
(2.12) 

Both the viscous equations, Eqs. (2.4), and the inviscid equations, Eqs. (2 .8), can 

be derived purely from conservation principles . No reference to the composition of 

the gas is necessary, and they therefore apply equally well to perfect gases and 

chemically reacting gases. 
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The principal differences between perfect and real gas models lie in two areas. 

Firstly, additional equations must be introduced to represent the chemical behaviour of 

a reacting gas. The form of these additional equations depends on whether or not the 

chemistry is modelled in equilibrium. Secondly, the state equations describing the 

thermodynamic behaviour of the gas differ considerably, depending on the gas model 

chosen. 

2.3 THE CONSERVATION LAWS FOR COMPONENT SPECIES. 

In situations where chemical reactions are out of equilibrium, conservation equations 

are introduced to describe the internal production of component species. For viscous 

flows, these equations are further complicated by additional mass diffusion terms. 

However, nonequilibrium aspects of this work address either translational or chemical 

relaxation, and therefore only the species production rate equations for in viscid flows 

are required. These equations are: 

aplls apUjlls . --+ =0) 

at (Jxj 
(2.13) 

where the subscript s represents each species present in the gas mixture. Equations 

(2.13) can be written in vector form, similar to Eq. (2.4) as: 

aUe + aFcj = Qc 
at aXj 

(2.14 ) 

where: Uc = [Plls] (2.15) 

FCj = [pUjlls] (2.16) 

Qe=[ffis] (2.17) 

Equations (2.13) are not fully independent, but are related to the global mass 

conservation equation. One species production rate equation can be replaced by the 

algebraic relation: 

L Mslls = 1 (2.18) 
s 

Furthennore, if the gas is composed of more than one element, nuclear conservation 

equations can be used to eliminate an additional production rate equation, reducing the 

number of independent rate equations to (s-2). 
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The full set of equations representing an inviscid chemical nonequilibrium flow 

may be written by combining Eq. (2.8) with Eq. (2.14) to give: 

au + aFj = Q 
at aXj 

(2.19) 

where: u = [~:] (2.20) 

F = [:~] (2.21) 

Q =[~]. (2.22) 

2.4 THE LAW OF MASS ACTION. 

If the chemical production rates are small in relation to the flux terms, they may be set 

to zero and Eqs. (2.13) become redundant. This is the frozen flow limit, where the 

chemical composition is fixed at its initial condition. The gas chemistry in this case 

does not need to be computed. 

The opposite extreme arises when the chemical production rates are large relative to 

the flux terms. In this case, chemical reactions proceed comparatively quickly and so 

remain always in equilibrium. Again the production rate equations become redundant. 

However, the gas composition is not now fixed at its initial condition, but must be 

computed from equilibrium considerations. 

The specific concentrations of the component species in equilibrium can be found 

from the law of mass action in the form: 

TI (T] s) v ~'r 
S -=-----,-, = Kr 

TI (T]s)v sr 

s 

(2.23) 

where the stoichiometric coefficients, v~r and v~~, are found by writing the reaction 

equations as: 

LV~ Xs H LV~r' Xs . 
s r S 

(2.24) 

The equilibrium constants in terms of the specific concentrations are given by: 
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Kr= ~)s sr-Vsr)K 
( 

I(v" , 

pRT Pr' 
(2.25) 

Finally, the equilibrium constants in terms of partial pressures can be related to the 

thermodynamic state of the gas through the Gibbs free energy at the standard state 

(Kuo, 1986): 

( ~grO) KPr = exp - Rr . (2.26) 

Equations (2.23) represent r equations for the s unknown species, and there are 

. therefore a further (s-r) equations required to complete the chemical description of the 

gas. These follow from the nuclear conservation equations expressing the fact that the 

total number of atomic nuclei remains constant. 

2.5 EQUATIONS OF STATE. 

The equations of motion represented by Eq. (2.4), Eq. (2.8) or Eq. (2.19) are not 

fully determined until the thermodynamic state equations are defined. Two state 

equations are generally required to describe a gas, although perfect gas models often 

combine these into a single equation of state. A caloric equation is required to relate 

internal energy to temperature and a thermal equation is necessary to relate temperature 

to pressure and density. In their generic form, the state equations may be written as 

follows. 

Caloric equation of state: e = e(T, l1s) . (2.27) 

Thermal equation of state: p = pep, T, l1s) . (2.28) 

At high temperatures and low densities, where the mean free path is sufficiently 

large for the finite volume of atoms and molecules to be considered negligible, air can 

be modelled as a chemically reacting mixture of thermally perfect component species. 

In this case the state equations take the form: 

e = L l1s es(T) (2.29) 
s 

p = L l1s RpT . 
s 

(2.30) 

If the gas remains in chemical equilibrium, its composition can be expressed as a 

function of density and temperature only, and Eqs. (2.27) and (2.28) can be reduced 

to: 
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e = e(p, T) (2.31) 

p = pep, T) . (2.32) 

Techniques for modelling Eqs. (2.31) and (2.32) are the subjects of chapter four. 

If a gas is thennally perfect, the specific gas constant is independent of the state of 

the gas, and Eq. (2.30) reduces to: 

p = ROpT (2.33) 

Furthermore, if the gas is also calorically perfect, its specific heats are independent of 

the state of the gas, and Eq. (2.29) reduces to: 

e = cvT (2.34) 

Equations (2.33) and (2.34) can then be combined to give the simple relation: 

p = (y - 1 )pe (2.35) 

High temperature air deviates from perfect gas behaviour because the assumptions 

on which Eqs. (2.33) and (2.34) are based cease to be valid. Firstly, vibrational 

excitation of the diatomic species causes an increase in the heat capacity of the gas and 

caloric imperfections become evident. Secondly, chemical reactions change the molar 

mass of the gas and its specific gas constant changes, introducing thermal 

imperfections. 
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Chapter Three 

COMPUTATIONAL GAS DYNAMICS 

The equations of motion presented in chapter two form a set of nonlinear partial 

differential equations describing the flow field. There is a limited number of analytic 

solutions to these equations, even when perfect gas behaviour is assumed. For 

chemically active imperfect gas mixtures and generalized boundary conditions, analytic 

solutions become intractable. In such situations, numerical solutions must be sought. 

It is therefore important to highlight the mathematical aspects of these equations 

pertinent to developing numerical algorithms for their solution. 

The following analysis concentrates on mixtures of thermally perfect gases in 

chemical equilibrium. Transport phenomena are neglected. 

3.1 THE MATHEMATICAL CHARACTER OF THE FLOW EQUATIONS. 

The viscous conservation laws expressed by Eqs. (2.4) form an hybrid system of 

parabolic-hyperbolic second order partial differential equations (Hirsch, 1989b). 

Eliminating the diffusive terms by setting the transport coefficients to zero leads to the 
().. set. of 

unsteady Euler equations, Eqs. (2.8), which are purely hyperbolic first order partial 
II 

differential equations. The unsteady Euler equations therefore exhibit the wave like 

properties associated with hyperbolic convection equations. 

The analysis of the Euler equations for an equilibrium reacting gas is more 

involved than for perfect gases, because of the complexity of the state equations. In 

general, it is not possible to find simple expressions for Eqs. (2.31) and (2.32), so the 

generic form of these equations must be retained. 

3.1-a Linearization of the Equations of Motion. 

The system of equations under investigation are the quasi-one-dimensional Euler 

equations for equilibrium air, represented by Eqs. (2.9). These can be written in a 

linearized form by expressing the flux vector F in terms of the solution vector U. 

Dropping the subscript f from Eqs. (2.9), on the understanding that no chemical 

relaxation equations are required, the foml of these equations becomes: 

au + A au = n 
at ax 

(3.1) 
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where: A= dF 
dU . 

Equation (3.2) is evaluated in appendix one to give: 

A= 

where: 

o 1 0 

u2 
X-(2-K)T (2-K)U K 

u2 
(X+KT-ho)u ho-Ku2 (1 +K)U 

u2 
ho=h +T. 

(3.2) 

(3.3) 

(3.4) 

In deriving the Jacobian, the thermal state equation is assumed to be a function of mass 

density and internal energy density, such that: 

p = pep, E) (3.5) 

The choice of dependent variables in this equation is largely subjective, and 

alternatives are discussed in section 5.2. With the state equation written in the form of 

Eq. (3.5), the thermodynamic derivatives appearing in the Jacobian matrix are: 

x = (dP
) = (dP

) + ~(dP) 
dP dP P de 

f e p 

(3.6) 

K = (dP
) = ~ (dP

) 
dE P de p p 

(3.7) 

3.1-b Variable Transformations and the Compatibility Relations. 

In order to establish the hyperbolic nature of Eqs. (3.1) for a general equation of state, 

it is necessary to show that the eigenvalues of the Jacobian A are all real. This is most 

easily shown if the equations are first transformed into primitive variables. Defining 

the vector of primitive variables Vas: 

V =[:] =[ ;p ] 
P pep, E) 

(3.8) 

The Jacobian of the transformation between conserved and primitive variables is given 

by: 
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Evaluating this gives: 

M-I = 

which is inverted to give: 

M = I 

M-I = av 
au 

100 

u 

p 

u2 

1 

P 
o 

X+KT -UK K 

() () 

u p 0 

u2 X 1 
2-- pu 

K K 

Equations (3.1) can now be written in tenns of the primitive variables as: 

where: 

av - av -
-+A-=Q 
at ax 

u p 

A= M-IAM =1 0 u 

o 

p 

o X+Kh u 

n=M-IQ=_[ p~ ld~lnA' 
pU(X+Kh) 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

The group X + Kh can be identified as the equilibrium speed of sound as follows. 

Firstly, the second law of thermodynamics can be expressed in the fonn: 

pTds = dE - h dp (3.15) 

from which: 

(aE) = h . 
ap s 

(3.16) 
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Secondly, differentiating Eq. (3.5) with respect to density while holding entropy 

constant, the equilibrium speed of sound is given by: 

(~:l = (~:l + (~:)J~:l (3.17) 

Hence, from the definitions of X and K, Eqs. (3.6) and (3.7): 

ce2 = X + Kh (3.18) 

Equations (3.12) can now be decoupled by diagonalizing the A matrix. The 
-

eigenvalues of A are first found from: 

I A - IA 1=0 (3.19) 

which gives: 

Al = U (3.20) 

A2 = U + Ce (3.21) 

A3 = U - ce . (3.22) 

These eigenvalues are all real and therefore, because lacobians A and A are similar, 

Eqs. (3.1) are hyperbolic. A can now be diagonalized by computing a transformation 

based on its left eigenvectors: 

11 T = (1 0 -c:2 ) 

12T = (0 1 _1 ) 
PCe 

13T =(O 1 __ 1 ) 
pCe 

The transformation matrix takes the form: 

L-l = aw 
av 
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(3.23) 

(3.24) 

(3.25) 

(3.26) 



1 0 
1 

ce2 

L-I = I 0 1 
1 

where: 
PCe 

(3.27) 

0 1 
1 

PCe 

Inverting Eq. (3.27) gives: 
r-

1 L L 
2ce 2ce 

L=I 0 
1 1 
2 2 (3.28) 

0 PCe PCe 
2 2 

Finally, Eqs. (3.1) can be written: 

aw + A aw = L-IQ 
at ax 

(3.29) 

where: A~L-1AL~[ ~ 
o 

u+ce 

o u~ce ] 
(3.30) 

and: L-IQ = [-~ce] :x In A . 

uCc 

(3.31) 

Equations (3.29) are the compatibility relations for an equilibrium reacting gas. They 

form a set of three independent wave equations describing the propagation of the 

characteristic variables WI, W2 and W3 at wave speeds u, u+ce and U-Ce respectively. 

They differ from the equivalent perfect gas equations only in the formulation of the 

speed of sound. 

3.1-c A Comment on the Characteristic Variables. 

For a general equilibrium gas with state equation described by Eq. (3.5), variations in 

internal energy density can be expressed as: 

1 X 
dE = -dp - -dp . (3.32) 

K K 
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The second law of thermodynamics expressed by Eq. (3.15) can then be invoked to 

establish the relationship: 

dp _~= _KpT 
ce2 ce2 ds 

From Eqs. (3.26), dWI is identified as: 

dWI = dp -~ 
Ce . 

(3.33) 

(3.34) 

The first component of the compatibility relations, Eqs. (3 . .2tt), describes the 

propagation of the property WI throughout the flow field, such that: 

aw 1 + u aw 1 = 0 . 
at ax 

(3.35) 

Combining Eqs. (3.33) to (3.35) leads to: 

as as 
-+u-=O. 
at ax 

(3.36) 

This equation describes the convection of entropy along path lines and so the first of 

the compatibility relations expresses the fact that for any equilibrium inviscid gas flow, 

entropy is conserved. In this respect, perfect and equilibrium gas flows are identical. 

From Eq. (3.33), for an isentropic process in an equilibrium gas: 

dp = ce2 dp . 

The second and third components of Eqs. (3.26) can then be written as: 

dW2 = du + Ce dp 
p 

ce 
dW3 = du - - dp . 

P 

Integrating these equations gives: 

w2 = u + J~ dp 

w3 = u - J~ dp . 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

For an isentropic perfect gas flow, sonic speed can be expressed as a function of 

density only. Equations (3.40) and (3.41) can then be integrated to give closed forms 

for the characteristic variables. This is, however, no longer the case for an equilibrium 

gas, where in general: 
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cc = cc(p, £) (3.42) 

Closed forms for the characteristic variables do not therefore exist. Numerical 

integration schemes and boundary treatments which rely on such closed form 

equations for the characteristics must therefore be reformulated before being applied to 

an equilibrium gas. Characteristic boundary treatments are discussed in section 5.5. 

3.2 DISCRETIZATION OF THE EQUATIONS OF MOTION. 

In order to compute a numerical solution for Eqs. (2.4), (2.8) or (2.9), they must first 

be approximated by a set of algebraic equations. Computational techniques can then 

be used to solve these equations. The techniques available for reducing the equations 

of motion to a form in which they 'can be solved numerically are discussed in this 

section. 

Discontinuities within the flow field are correctly captured only if the equations of 

motion are discretized in their conservative form, given by Eqs. (2.4) for viscous 

fluids and Eq. (2.8) for inviscid fluids. No attempt has been made to solve the 

viscous equations here and consequently only solution techniques for the Euler 

equations have been investigated. 

Steady state solutions for the Euler equations are generally achieved through a time 

marching approach, principally because the steady state Euler equations are hybrid 

hyperbolic-elliptic equations at subsonic speeds, which are difficult to solve. Time 

dependent terms are therefore retained and used to develop iterative numerical 

algorithms which afford steady state solutions. 

3.2-a Temporal Discretization. 

Two families of techniques for discretizing the time derivatives in Eqs. (2.8) can be 

identified. Explicit methods relate unknown variables at a given time step to known 

variables from previous time steps only. Each grid point can therefore be advanced 

forward in time independently of its neighbours. Implicit methods, on the other hand, 

simultaneously advance every grid point, and are therefore more complex than their 

explicit counterparts. 

Explicit methods are widely used in solving both the viscous and inviscid 

equations, because of their numerical simplicity and their suitability fot vectorization on 

modern computers. Historically, explicit techniques such as Lax-Wendroff and 

MacCormack schemes were developed at an early stage (MacCormack, 1969). 

However, these early schemes are based on combined space and time differencing, 
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which can lead to time step dependence for the steady state solution (Qin, 1987). 

Stable explicit schemes with independent time integration, based on Runge-Kutta time 

stepping schemes, can be defined (Jameson et aI., 1981) which circumvent. both the 

time step dependence problems and some of the restrictive stability requirements of 

earlier schemes. 

Implicit techniques involve more computation per time step, because large matrix 

inversions are required to advance solutions. However, the stability characteristics of 

such schemes are greatly improved over explicit methods, with allowable time steps 

being restricted only by accuracy requirements (Beam and Warming, 1976). Implicit 

schemes are of great importance within chemically reacting flow simulations, because 

the stiffness associated with fast reactions can impose an unacceptably short time step 

on an explicit algorithm (Oran and Boris, 1987). 

3.2-b Spatial Discretization. 

The form of discretization applied to the time derivatives appearing in Eqs. (2.8) 

dictates the allowable time step and the time accuracy of a numerical algorithm. The 

fidelity of the converged solution, however, is largely governed by the treatment of 

spatial terms. As with the time derivatives, there are two broad classes of technique 

which can be applied to discretize these terms - central differencing and upwind 

differencin g. 

Central differencing is the more straight forward technique to apply. The 

MacCormack, Jameson and Beam-Warming schemes referenced earlier are all 

examples of centrally differenced schemes. However, central difference schemes lack 

dissipation, and therefore give rise to large oscillations at discontinuities in the flow 

field. This occurs because a centrally based scheme tries to represent derivatives near 

shock waves using information on both sides of the shock - a representation which is 

clearly invalid if the shock is a true discontinuity in the flow field. The success of 

centrally based schemes in capturing shock waves depends on the construction of 

artificial dissipation terms which damp oscillations (Jameson et a1. 1981). However, 

these additional viscous terms tend to smear shock waves over several grid points, 

turning them into steep gradients rather than discontinuities. A degree of numerical 

experiment is therefore required to establish the best compromise between damping 

oscillations and smearing the shock. 

Upwind schemes utilize the hyperbolic nature of the equations of motion to 

construct dissipative algorithms (Wang, 1990). Such schemes correctly account for 

the wave like behaviour of the flow. Crisp resolution of shocks is achieved at the 

expense of greater complexity of the numerical algorithms. In order to construct stable 
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upwind schemes, flux terms must be separated into forward and backward 

propagating components and the appropriate directional differencing applied to each 

component. Flux splitting followed by differencing leads to flux-vector split schemes 

(Anderson et aI., 1985). Flux differencing followed by splitting forms an alternative 

approach known as flux-difference splitting. The schemes described by Roe (1981), 

Osher and Solomon (1982) and Osher and Chakravarthy (1983) fall into this category. 

3.3 SHOCK WAVES. 

In the absence of second order viscous terms, entropy is conserved throughout the 

flow field, according to Eq. (3.36). No physical mechanism exists within the gas 

model to generate entropy. Mathematically, shocks appearing in solutions to the Euler 

equations must be represented by true discontinuities, with the states on either side of 

the discontinuity being related by the Rankine-Hugoniot equations. The principal 

difficulty wi th numerical shock capturing schemes is in correctly representing this 

discontinuity. Furthermore, there is no mathematical reason why expansion shocks 

cannot exist within an inviscid flow, despite their obvious physical impossibility. 

The transformation relations defined by Eqs. (3.10) and (3.27) can be applied to 

the viscous equations, Eqs. (2.4), to give, in an analogous fashion to the derivation of 

Eq. (3.36): 

as + u as = 2~+A(au)2 + _1 ~(k aT) 
at ax pT ax pTax ax . 

(3.43) 

Equation (3.43) describes the convection of entropy along path lines in a viscous flow, 

and is valid at every point in the flow field. Most importantly, this equation provides 

the mechanism by which entropy can be produced within the fluid, and therefore 

permits solutions including shock waves of finite thickness. However, for most 

continuum flows of engineering interest, shock wave thicknesses are of the order of 

10-6 m, and can only be resolved on exceptionally fine grids. Shocks in viscous flows 

can therefore be treated numerically as discontinuities. 
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Chapter Four 

EQUILIBRIUM AIR MODELS 

This chapter presents techniques for modelling the equilibrium thermochemical 

properties of air. The types of available model are split into two families; data base 

models and physical models. These are illustrated in Figure 4.1. It can be seen that 

both families of techniques subdivide into two classes. Anderson (1989) gives a 

review of these techniques, and includes a discussion of their application to an existing 

perfect gas Euler code. 

The first section of the chapter examines the family of data base models, giving 

information on both lookup tables and curve fitting techniques. This section 

comprises mainly of review material and it details the two important sets of curve fits 

used later in this dissertation. 

The substance of this chapter concerns the development of a fast computational 

module for the calculation of equilibrium state properties. This module is based on the 

works of Prabhu and Erickson (1988) and Poll and Hodgson (1988), extending the 

techniques presented by those authors to include the calculation of derivative 

information required to form the flux Jacobian and to calculate sonic speeds. The air 

model chosen is at present restricted to six species and three reactions and is therefore 

simpler than the ionized air models chosen by the above authors, but extension to more 

complex chemistry is possible. Differences between the air models leads to a 

modification in the low temperature treatment of air, which is also discussed in this 

chapter. 

The equilibrium air module falls into the class of simplified physical model, and 

relies on the solution of the law of mass action to compute the chemical state of the 

gas. Simplifications over the full statistical mechanics model of air come about 

through the use of curve fits for the thermodynamic properties of the component 

species. Anderson (1992) reports the original development of these routines. 

4.1 CURVE FITTING TECHNIQUES AND DATA BASE MODELS. 

In chapter two, the equations of state were discussed and it was indicated that for a gas 

everywhere in local thermochemical equilibrium anyone state variable is a function 

only of two independent variables. The most important state equations from the point 

of view of CFD calculations are those relating pressure and temperature, which appear 
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in the flux terms of both the Euler and Navier-Stokes equations, to density and internal 

energy, which appear in the vector of conserved variables. 

Tabulated data relating these variables have been available for a number of years 

(Mansen and Hodge, 1961; Hilsenrath and Klein, 1965). Such data are based on 

accurate evaluation of statistical mechanics expressions combined with carefully 

executed experimental work. FORTRAN programs have been developed (Lomax and 

Inouye, 1964) using these data to construct lookup tables for coefficients of 

interpolation functions. These programs require extensive data bases to represent the 

complex behaviour of air at high temperature, and are therefore quite demanding on 

memory resources. Also, only limited information is available from such a data base, 

since only the variables tabulated can be retrieved. While this is not necessarily a 

limitation during the time dependent solution of a fluid flow problem, is does limit the 

amount of thermodynamic and chemical data which can be extracted from the final 

converged solution. 

The principal disadvantage of data base techniques is the amount of information 

required to provide sufficient accuracy. Over 10 000 tabulated values, equivalent to 78 

Kbytes for 8 byte single precision calculations, may be required for each state 

relationship. Also, programs such as NASA-Ames RGAS which rely on the lookup 

of cubic coefficients for interpolation functions are too cumbersome and slow to be 

efficiently implemented in CFD ccxles (Srinivasan et aI., 1987a). 

Curve fitting techniques are closely related to the data base methods described 

above. They may be regarded as coming from the same family of techniques, but are 

characterized by the small number of data points necessary to represent the 

interpolation curves, and the sophisticated nature of these curves. Amongst the earliest 

attempts at applying this approach to air thermochemistry is the work of Grabau 

(1959). The success of this approach is exemplified by its adoption by Tannehill and 

Mugge (1974) and subsequently by Srinivasan et aI. (1987a) to produce accurate and 

convenient curve fits for air thermodynamic properties. Both these sets of curve fits 

have been used in applications within this dissertation, and are now summarized 

briefly. 

4.1-a Grabau Type Transition Functions. 

The concept originally proposed by Grabau was to use a discrete set of smooth curves, 

linked by carefully constructed transition functions, to represent the thermodynamic 

behaviour of air. The general form of the Grabau type transition function is: 

f f2(X,y) - [1 (x,y) 
z(x,y) = 1(X,y) + 1 ± exp(f3(x,y)) (4.1 ) 
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16 Coefficient Curve Fits 24 Coefficient Curve fits 

p = p(e,p), ce = ce(e, p) p=p(e,p), ce = ce(e,p) 

T = T(e,p) T = T(e,p), s = s(e,p) 

h = h(p, p), T = T(p, p) h = h(p, p), T = T(p, p) 

p = pep, s), Ce = ce(P, s) 

e = e_(p, s) 

Table 4.1 Available Curve Fits for Equilibrium Air Properties. 

where f} (x,y) and f2(X,y) are polynomial functions between which a smooth transition 

is required. The sign in front of the exponential term in Eq. (4.1) dictates whether the 

transition is odd or even. If this sign is positive, the transition will be odd and contain 

an inflection point, as shown in Figure 4.2a, and if the sign is negative, the transition 

will be even and contain no inflection, as in Figure 4.2b. The coefficients of f3(X,y) 

determine the rate of the transition between h (x,y) and f2(X,y). 

Tannehill and Mugge developed sixteen coefficient curve fits based on transition 

functions of the above form. The curve fits developed by Srinivasan et al. are similar 

in form, but improved smoothness is achieved through the use of twenty-four 

coefficients. Table 4.1 gives the properties to which these curves were fitted. The 

curves of particular interest in developing CFD codes are: 

p = p(p,e) (4.2) 

ce = ce(p,e). (4.3) 

An estimate of temperature as a function of both mass density and specific internal 

energy is necessary for the application of some physical models of equilibrium air to 

CFD codes. It is also therefore important to have data for the curves: 

T = T(p,e). (4.4 ) 

For both the sixteen and twenty-four coefficient curve fits, the thermal state 

equation, Eq. (4.2), is expressed in terms of the enthalpy/internal energy ratio y: 

p = (y - 1) P e . (4.5) 

Grabau type curve fits are developed for y, expressed in terms of base ten logarithms 

of density and internal energy: 

where: 

- f f2(y,Z) - fJ (y,z) 
Y(y,z) = 1 (y,z) + 1 ± exp(f3(y,Z)) 

y = log lO(p/PO) 
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Z = 10glO(e/eo). (4.8) 

The calorific state equation, Eq. (4.4), is expressed directly as curve fits for the base 

ten logarithm of temperature: 

10 (TIT) - (z) + g2(Y,Z) - gl (y,z) 
glO 0 - gl y, 1 ± exp(g3(Y,Z)) (4.9) 

where: x = 10gIO(p/po) (4.10) 

y = log IO(p/po) ( 4.11) 

Z=x-y. (4.12) 

To evaluate x in Eq. (4.10), pressure is first calculated using Eq. (4.6) for y in Eq. 

(4.5). 

4.1-b Sixteen Coefficient Curve Fits. 

For the sixteen coefficient curve fits the interpolation and transition functions for y in 

Eq. (4.6) are defined as follows: 

fl(y,Z) = al + a2Y + a3z + '4yz + aSy2 + %Z2 + a7yz2 + a8z3 (4.13) 

f2(y,Z) - fl(Y,Z) = a9 + alOY + allZ + al2Yz (4.14) 

f3(Y,Z) = (al3 + aI4Y)(z + alSY + a16) ( 4.15) 

where Y and Z are given by Eqs. (4.7) and (4.8) respectively. 

The temperature curve fit functions for Eq. (4.9) are given by: 

gl(Y,Z) = bl + b2Y + b3z + b4YZ + bSz2 + b6y2 + b7y2z + b8yz2 (4.16) 

g2(Y,Z) - gl (y,z) = b9 + blOY + bllZ + bI2Yz + bI3z2 (4.17) 

g3(Y,Z) = (b14Y + bIS)(Z + b16) (4.18) 

with Y and Z defined by Eqs. (4.11) and (4.12) respectively. 

To evaluate the sonic speed, the isentropic density derivative of Eq. (4.5) can be 

fonned. This is done in appendix two, with the following result: 

Ce
2 ~ e [ (y . I) ( Y + (a~: e l ) + (al~Y p 1 J. ( 4.19) 

This expression is formulated in terms of derivatives of Eq. (4.6). As such, 

discontinuities and a lack of smoothness in these curves mean Eq. (4.19) is not 
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accurate if used directly. For the sixteen coefficient curve fits, correction coefficients 

are introduced to improve their accuracy. The sonic speed curve fits become: 

ce2~e[ K) + (y - 1)('1 + K2 (a~ e)J + K3 (a~Yp)J. (4.20) 

The coefficients al to aI6, bI to bI6 and KI to K3 are given in Tables A3.1 and 

A3.2, appendix three. For this set of curves, all transitions are odd and the signs 

before the exponential terms in Eqs. (4.6) and (4.9) are always positive. 

4.1-c Twenty-Four Coefficient Curve Fits. 

The following interpolation and transition functions define the twenty-four coefficient 

curve fits for yin Eq. (4.6): 

f 1 (y ,z) = a 1 + a2Y + a3z + <l.4yz + asy2 + ~z2 + a7y2z + 

a8yz2 + a9y3 + alOz3 

f2(y,Z) - fl (y,z) = all + aI2Y + al3z + aI4Yz + aISy2 + aI6z2 + a17y2z + 

aI8yz2 + aI9y3 + a20z3 

f3(y,Z) = a21 + a22Y + a23z + a24Yz 

with y and z again being given by Eqs. (4.7) and (4.8). 

The temperature curve fit functions in this case become: 

gl (y,z) = bI + b2Y + b3Z + b4YZ + bSy2 + b6Z2 + b7y2z + 

b8yz2 + b9y3 + blOZ3 

g2(y,Z) - gI(y,Z) = bll + b12Y + bl3z + bl4YZ + bISy2 + bI6Z2 + b17y2z + 

bl8yz2 + bl9y3 + b20z3 

g3(y,Z) = b21 + b22Y + b23Z + b24YZ 

with Y and Z defined from Eqs. (4.11) and (4.12) respectively. 

(4.21 ) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

These curve fits are regarded as being sufficiently smooth at their junctions to 

permit the application of Eq. (4.19) directly to compute the speed of sound. 

Furthermore although the temperature curve fits are all still odd transitions, the y 
curves now include an even function, and so the coefficients al to a24 in Table A3.3, 

appendix three, are supplemented with the sign of the exponential term appearing in 

Eq. (4.6). The coefficients bl to b24 appear in Table A3.4. 
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The two sets of curve fits presented above have specific advantages and 

disadvantages which dictate the application to which they may be put. Firstly, both 

sets of curve fits lack any form of physical input. Whilst the chosen form of the 

curves is based on sound physical reasoning, the polynomial coefficients are derived 

purely on a mathematical basis, and indeed the choice of junction points between 

curves or how many coefficients to retain in anyone curve is quite subjective. Unlike 

the physically based models presented later, only one thermodynamic variable is 

available from each curve, and therefore only very limited information can be gained 

with the curves presented here. Secondly, it is not possible to have one continuous 

curve representing the full range of possible densities and internal energies, and so 

there are inevitable discontinuities in the derivatives at junctions. These discontinuities 

cause noticeable inaccuracies in the derivative information used to calculate sonic 

speed. 

Figures 4.3a and 4.3b illustrate the pressure curve fits, for densities in the range 

1.225xl0-6 kg m-3 to 122.5 kg m-3. Similar plots for the same density range are 

produced for the temperature curve fits and shown in Figures 4.4a and 4.4b. The 

sonic speed data are plotted in Figures 4.5a and 4.5b and this clearly illustrates the 

problems in continuity with the derivatives appearing in Eq. (4.19). 

The speed of execution of the routines which evaluate the different curve fits will 

be discussed in relation to the physical techniques outlined next. 

4.2 PHYSICALLY BASED TECHNIQUES. 

The most fundamental technique for relating state variables in an equilibrium gas is to 

apply the results of statistical mechanical calculations, together with accurately 

measured data on the properties of the component species, to the gas mixture. Such an 

approach allows any gas mixture to be modelled, providing the assumption of 

equilibrium thermochemistry is valid. However, by the nature of the algebra involved 

in solving the large numbers of highly nonlinear equations associated with the law of 

mass action, and the complexity of the partition functions for electrically excited gases 

at high temperatures, such an approach is impractical within a time dependent CFD 

code. Alternative techniques are discussed by Balakrishnan et al. (1983). In 

particular, free energy minimization procedures have been adopted (Gordon and 

MCBride, 1971) to develop large and versatile programs, such as the NASA-Lewis 

CEC72 and TRAN76 codes. These programs are considerably more versatile than the 

NASA RGAS program mentioned earlier, and can deal with combusting hydrocarbon 

mixtures as well as high temperature air. However, the cumbersome nature of the free 
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energy minimization technique led to the development of fast methods for calculating 

equilibrium compositions in the late sixties (Erickson et aI., 1966). These techniques 

have been further refined to deal specifically with equilibrium air mixtures (Prabhu and 

Erickson, 1988; Poll and Hodgson, 1988). 

The application of these fast techniques to state calculations within CFD codes still 

requires some research. The remainder of this chapter discusses the development of a 

state calculation module based on a restricted chemical model of air, which includes 

routines for computing important thermodynamic derivatives. 

4.3 THE CHEMICAL COMPONENTS. 

The model chosen to represent air involves the following six species: diatomic oxygen 

(h, diatomic nitrogen N2, monatomic oxygen 0, nitric oxide NO, monatomic nitrogen 

N and argon Ar. All ionized species and trace species such as carbon dioxide, water 

vapour and ozone are ignored. Table 4.2 gives the atomic weights of these species, 

together with their low temperature concentrations. 

Argon is treated as an inert gas, and does not participate in any reactions. It does, 

however, make a contribution to the internal energy of the gas mixture which must be 

accounted for. The reactions which take place between the above species are: 

02 + X H 20 + X 

N2 + 02 H 2NO 

N2 + X H 2N + X 

Species Species Molar Mass 

Number M (kg mol-I) 

1 D2 0.031999 

2 N2 0.028013 

3 0 0.015999 

4 NO 0.030006 

5 N 0.014007 

6 Ar 0.039948 

L1eRO = 493.566 kJ moP (4.27) 

L1eRO = 181.342 kJ mol- I (4.28) 

L1eRO = 941.636 kJ mol-I. (4.29) 

Proportions at T = 273.15 K 

Mole Fraction Mass Fraction 

x a 

0.2095 0.2314 

0.7809 0.7553 

0.0000 0.0000 

0.0000 0.0000 

0.0000 0.0000 

0.0096 0.0133 

'----
Molar Mass of Air at ~73_.~_K = I( xjMj) = 0.028963 kg mol- l 

Table 4.2 Low Temperature Composition of Air. 
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In these reactions, species X represents a catalytic body which is present only to act as 

an energy source for the reaction. For example, diatomic oxygen cannot 

spontaneously decompose into oxygen atoms - a catalyst must collide with the 

molecule and supply sufficient energy to break the atomic bond. This catalytic body 

may be any atom or molecule present in the mixture and, for an equilibrium 

calculation, is of little significance. It is, however, vitally important in nonequilibrium 

calculations, where different catalysts yield different reaction rates. The ~eRO above 

are the heats of reaction at absolute zero for the three reactions. 

4.4 THERMODYNAMIC PROPERTIES OF THE COMPONENT SPECIES. 

Consideration is being given to developing an equilibrium air thermochemical model 

suitable for atmospheric reentry problems. The hypersonic velocities associated with 

such problems are most likely to be encountered at high altitudes. Figure 4.6 shows a 

velocity altitude map for the space shuttle STS-l flight reentry. From this it can be 

seen that the hypersonic portion of that flight took place mainly in the upper layers of 

the atmosphere. These are regions of very low density and pressure - of the order of 

10-4 kg m- 3 and 10-2 kN m-2 respectively at 65 km altitude. As a consequence, the 

component species of the gas can be assumed to be thermally perfect and no viral 

corrections are required (Poll and Hodgson, 1988). 

Two techniques have been investigated for calculating the species thermodynamic 

properties. Firstly, the direct evaluation of partition functions associated with the 

internal energy modes of atoms and molecules has been implemented. This is 

potentially the most versatile method, as it does not restrict the gas mixture to particular 

components. However, the complex functions describing the electronic behaviour of a 

species give rise to large computing times. Compromises can be made by neglecting 

some of the high order electronic terms, but significant loss in accuracy at high 

temperatures then results. 

The second, and preferred, technique for calculating the species properties relies 

on fitting polynomial curves to statistically calculated data. This has the advantage of 

improving the accuracy of the calculations, at the expense of some generality. 

4.4-a Direct Calculation of Species Properties from Partition 

Functions. 

Energy contributions due to the different modes within an atom or molecule can be 

evaluated from their partition functions using the relations (Vincenti and Kruger, 

1965): 
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A A 2 a AO 
e = R T aT In Q + ef (4.30) 

Cv ~(~) (4.31) 

p 

where e is the molar internal energy, Cy is the molar heat at constant volume and Q is 

the statistically evaluated partition function. The partition function for each species can 

be broken down into components representing the individual energy modes within the 

atom or molecule, which yield expressions of the form (Mayer and Mayer, 1940): 

(
21tmkT)3

h 
Qlranslational = V h2 

Qelectronic = Igi e-si/f 
i~O 

Q,Ollil;onal ~ ; (;, ) 

Qyibrational = 1 _ e-svff . 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

In Eq. (4.34), a is a symmetry factor and is one for heteronuclear molecules and two 

for homonuclear molecules. Rotational and vibrational contributions can apply only to 

the diatomic species. These partition functions give the molar heats and internal 

energies for diatomic species in the form: 

A[3 1 II cy 
= R :2 + (I gi e-9i/T)2 i>j j 

ei e· 
( 

2 

g i T - g j ¥) e-{9i+9j)ff 

+ 1 + (e8v!2:~:-a'/2T J 1 (4.36) 

A A [3 1 e i - 9 'IT evff lAO 
e = RT :2 + I gi e-9i/T ~ g i Tel + + e9v/T _ 1 + ef . (4.37) 

It is noted that the above expressions are based on an harmonic oscillator model of 

the vibrational modes, and no account is taken of coupling effects between the rotation 

and vibration in diatomic molecules. Contributions due to electronic excitation are in 

an open ended form, and it is desirable only to consider those terms in the series which 
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Species 81 82 go gl g2 cr 8f 8 y 
A 0 
ef 

(K) (K) (K) (K) (kJ mol-I) 

Ch 11 390 3 2 2 2.1 2270 0.0 

N2 1 2 2.9 3390 0.0 

0 228 326 5 3 1 246.783 

NO 174 2 2 1 2.5 2740 90.671 

N 4 470.818 

Ar 1 0.0 

Table 4.3 Statistical Constants for the Main Chemical Components of Air. 

contribute significantly to Cy or e. From a practical point of view, it is necessary to 

limit the number of terms in this series to avoid lengthy computing times for cy . Table 

4.3 presents the data used to calculate cv and e for the six species in Table 4.2 (Moore, 

1949, et seq). 

To give the desired computational speed, a maximum of three terms (including the 

constant term gO) are retained in the electronic partition functions. High temperature 

electronic effects, anharmonic effects and coupling effects are therefore neglected. 

This leads to errors at temperatures above 6000 K, particularly notable in the molar 

heat variations. Figure 4.7a presents the distribution of molar heat calculated from Eq. 

(4.36) for 200 K to 6000 K. Monatomic gases are observed to have Cy equal to 312 R 
("'" 12.5 J mol- 1 K-l) at 200 K and diatomic gases have Cy equal to 512 R ("'" 20.8 

J mol- 1 K-l). At this temperature rotation is fully excited in diatomic molecules, and 

there is some small electronic contribution, notably in species containing oxygen. 

Vibrational modes excite at temperatures between 400 K and 2000 K, giving a smooth 

rise in cy up to about 29.1 J mol- 1 K -1 for diatomic species. Departures from this 

value are due to electronic effects, most notable in 02. Corresponding data for e are 

presented in Figure 4.8a. 

4.4-b Polynomial Curve Fits for the Species Properties. 

It was pointed out earlier that the statistical mechanics approach described above is 

potentially more accurate, but this has to be traded against increased computing times. 

Applying a curve fit to detailed calculations of the species properties allows a fast close 

approximation to them, which can extend the range of the model at no additional 

computational expense. This is the approach adopted by Prabhu and Erickson (1988), 

and the curve fits presented in that reference are used here. Additional curve fits are 

presented by Park (1990), but these are formulated in terms of the total number density 
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and as such are not suited to an equilibrium calculation, unless it is based on an 

iterative quasi-nonequilibrium method. 

A fifth order polynomial in T is fitted to data for cp and the required properties are 

calculated as follows. . It is first noted that cp is a function of temperature only so that: 
~ 5 

~ (ah) ~ . 1 cp(T) = - = R L aj TJ- . 
aT j=l 

p 

The differential relationships: 

lead to: 

and: 

dh = Cp(T) dT 

~ ~ dT ~ dn 
ds = cp(T) T - R ~ 

T 

h = J cp(T) dT + hTo 
To 

R[ 

T 

5 
L '4 Tj + 
. 1 J J= 

a6 ] 

sO = J CpiT) dT + sTo 

To 

= R[a 1 In T +.£ j~jlTj-l + a7 ] 
J=2 . 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

Data are available for curve fits in this fonn for temperatures in the range 200 K to 

15 000 K, and are presented in Table A3.7, appendix three. At temperatures at or 

below about 300 K, the statistical mechanics approach with the data presented in Table 

4.3 will yield more accurate results, down to temperatures approaching Sr (generally 

of the order of 3 K for the gases considered). However, such low temperatures are 

very unlikely to be encountered in trans-atmospheric flight, and will be associated with 

thermal imperfections in the species behaviour which invalidate the present method. 

The curve fit approach is therefore adopted as it is more efficient at high temperatures. 

Figure 4.7b is provided for comparison with the statistical data on cv in the range 200 

K to 6 000 K. Figure 4.8b presents the data for e throughout this temperature range 

and compares with the statistical calculation in Figure 4.8a. 
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The molar heats Cv are plotted throughout the range 200 to 15000 K in Figure 4.9 

using the curve fit data, from which it is observed that the neglect of high temperature 

terms in the electronic partition functions has a pronounced effect on both monatomic 

and diatomic species characteristics. Diatomic species are further influenced by both 

coupling and anharmonic effects, therefore the simplified statistical expressions cannot 

be considered valid at temperatures above about 8 000 K. 

4.5 EQUILIBRIUM SPECIES CON CENTRA TIONS. 

The method used for calculating the equilibrium species concentrations is a modified 

version of that presented by Prabhu and Erickson (1988). The chemical equilibrium 

equations, corresponding to Eqs. (4.27) to (4.29) are combined with mass 

conservation equations to give a non-linear set of algebraic equations for the 

equilibrium concentrations. 

The equilibrium equations associated with the three reactions under consideration 

are as follows: 

(P3/PO)2 

Kpl = (PI/PO) 

(P4/pof 
Kp2 = (Pl/

PO
)(P2/

PO
) 

(PS/pof 
K - ) P3 - (P2/

PO 

(4.43) 

(4.44) 

(4.45) 

The Pi represent the partial pressures of each species i (see Table 4.2) and the Kp are 
J 

the equilibrium constants for reactions one to three, evaluated at standard state pressure 

PO = 101 325 N m-2. It is more convenient to work in mole mass ratios 11i rather than 

partial pressures, so the relation: 

is applied to give: 

Pi = 11ipRT 

2 
~= 
111 

11i = 
111112 

~Kpl = Kl 
pRT 

Kp2 K2 
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(4.46) 

(4.47) 

(4.48) 



2 
!LL = ~ Kp3 = K3. 
112 pRT 

(4.49) 

The Kpj are related to the species properties through the Gibbs free energy in the 

standard state: 

L1gP = -R T In Kpj . (4.50) 

If the reactions are written in the fonn: 

N N 

L Vij' Xi H L Vi/, Xi (4.51 ) 
i=} i=} 

then the free energy change L1gjO will be given by (see Kuo, 1986): 

L1gP = ~ Vij" gin - ~ Vij' g in. (4.52) 
) ) 

The gin represent the standard state free energy for species i and can be evaluated from 

the species properties already presented: 

A.O A A 
g) = hi - T SiO. (4.53) 

For any given temperature and density, Eqs. (4.47) to (4.49) provide three 

equations for the five unknown mole mass ratios lli. As already stated, argon is 

considered to be inert in this case and so 116 has a fixed value corresponding to the low 

temperature concentration of the species: 

116 = llAr . (4.54) 

Two further equations are required before the problem is fully defined. These follow 

from the nuclear conservation equations, relating the number of oxygen and nitrogen 

nuclei under any condition to their low temperature concentrations: 

2111 + 113 + 114 = llo (4.55) 

2112 + 114 + lls = llN . (4.56) 

These six equations, Eqs. (4.47) to (4.49) and (4.54) to (4.56), can be combined 

and solved to yield the mole mass ratios, or specific concentrations, of the species at 

any temperature and density. 

4.6 Low TEMPERATURE CONSIDERATIONS. 

In the solution of the six equilibrium equations, the ratio K2I(K}K3) occurs frequently, 

and care is therefore required at low temperatures, where the concentrations of 
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monatomic nitrogen and oxygen tend to zero. This results in a division by zero error 

when Kl or K3 is smaller than a machine representable number. This problem is 

circumvented by assuming that if the natural log of Kp3 is less than -100, reaction 

three does not take place and similarly if the natural log of Kpl is less than -100 then 

reaction one does not occur. Figure 4.10 shows the temperature variation of the 

reaction constants between 200 K and 1 500 K. From this it can be deduced that 

below about 530 K neither reaction one nor reaction three can be simulated and below 

1 000 K only reaction three cannot be simulated. There are therefore three cases to be 

considered. 

4.6-a Very low temperature: In Kpl < -100, T < 530 K. 

In this case reactions one and three do not occur. Mole mass ratios for 0 and N are 

correspondingly set to zero, and the remaining mole mass ratios are calculated from the 

equilibrium balance of reaction two. 

Assumption: 113 = 0 (4.57) 

115 = 0, (4.58) 

equilibrium: 11i -- = K2 (4.59) 
111112 

nuclear conservation: 2111 + 114 = 110 (4.60) 

2112 + 114 = 11N (4.61 ) 

116 = 11Ar . (4.62) 

4.6-b Low temperature: In Kp3 < -100, T < 1 000 K. 

Reaction one now leads to some oxygen dissociation, and the assumption of negligible 

monatomic oxygen is no longer considered valid. Nitrogen dissociation has not yet 

begun. 

Assumption: 115 = 0, (4.63) 

equilibrium: 
11 2 
~ = K1 (4.64) 
111 

1142 
-- = K2 
111112 ' 

(4.65) 
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nuclear conservation: 2111 + 113 + 114 = 110 

2112 + 114 = 11N 

116 = 11Ar . 

4.6-c High temperature: T > 1 000 K 

(4.66) 

(4.67) 

(4.68) 

All three reactions are important and so the full solution for the six unknown mole 

mass ratios is required. 

Equilibrium: 

nuclear conservation: 

2 
k= K] 
111 

2 
3L = K2 
11]112 

2 
115 = K3, 
112 

2111 + 113 + 114 = 110 

2112 + 114 + 115 = 11N 

116 = 11Ar . 

4.7 SOLUTION OF THE EQUILIBRIUM EQUATIONS. 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

The solution of the equilibrium equations for the very low temperature case is a 

straight forward non-iterative process. Equations (4.59), (4.60) and (4.61) are 

combined to give: 

_ {(l1 N + 110) + [(l1N 2 +1102) + (16/K2 - 2)l1N110] 1/2 } 
114 - - 2 (4 /K 2 - 1) . 

(4.75) 

Mole mass ratios for the remaining unknown species follow from Eqs. (4.60) and 

(4.61): 

111 = ] h(110 - 114) (4.76) 

112 = 1h(l1N - 114) . (4.77) 
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For the higher temperature models, it is not possible to solve the problem 

analytically, as above. Instead a fourth order polynomial in 113 is solved using a 

Newton-Raphson iteration. This polynomial takes the form: 

where: 

and: 

bO = 

b} = 

b2 = 

b3 = 

b4 = 

4 

L b'113j = 0 
'.J'\ J 
J=v 

2K}1102 

(KeK3 - 4)K}110 

2K) - KeK3K } - 8110 - K2(l1N -110) 

8 - K2 - 2KeK3 

(8 - 2K2)/K) 

K}K3Ke2 = K2 . 

(4.78) 

(4.79) 

(4.80) 

(4.81) 

(4.82) 

(4.83) 

(4.84) 

The above coefficients relate to the high temperature model of air. In the low 

temperature case, the same polynomial is solved, but the coefficients are modified 

because the product K3Ke must be set to zero. 

An initial guessed value of 113 is calculated by assuming 115 is zero and that 112 can 

be approximated by: 

This leads to the equations: 

11N 
112 = 2 . 

211] + 113 +114' = 110 

11 2 
11} =~ K] 

114' = (l1NK2Jlh 

113 2K] 

(4.85) 

(4.86) 

(4.87) 

(4.88) 

where 114' is an approximate value of 114' This initial guess is very good for the low 

temperature model where Eq. (4.85) is a close approximation. However, at higher 

temperatures, 115 starts to become significant and the guess is consequently less 

accurate. However, it is observed that three iterations of a Newton-Raphson scheme 

is sufficient to provide a converged solution for 113 in Eq. (4.78), even at high 

temperatures. From Eqs. (4.86) to (4.88), the initial value of 113 is given by: 
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1_[ {S (11NKIK2)lh}2 KI110 ]Ih {S (11NKIK2)lh} 113 - 4 + 32 + 2 - 4 + 32 . (4.89) 

Equation (4.78) is now solved in three iterations by the following Newton-Raphson 

algorithm: 

4 

f(T13n) = I bj (ll3n~ 
j=O 

4 

f(113 n) = Ijbj (ll3n~-1 
j=1 

f(113 n) 
113

n
+

1 
= ll3

n 
- f(113 n) . 

(4.90) 

(4.91) 

(4.92) 

Having achieved a converged solution for 113' the remaining unknown mole mass 

ratios follow algebraically. For the low temperature model, the unknowns are: 

115 = 0 

2 
114 = 110 - ll3 - -1132 

KI 

112 = ~(llN - ll4) 

111 = ~(llo -ll3 -ll4) 

ll6 = llAr· 

For the high temperature model, they are: 

115 = 

2 
llo -ll3 - -ll32 

Kl 

Kc113 

114 = Kcll3llS 

ll2 = ~(ll N - ll4 - lls) 

III = ~(ll 0 - II 3 - II 4 ) 

ll6 = llAr. 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

(4.101) 

(4.102) 

Figures 4.11 a to 4.11 c illustrate the chemical composititon of air as calculated 

using the above method at densities of l.225 x 10-4 kg m-3, l.225 kg m-3 and 122.5 

kg m-3. These are plots of mole fractions against temperature in the range 200 K to 

15000 K. The relationship between the mole fractions and mole mass ratios is: 
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l1i 
x·=-

I 6 
L l1j . 

j=l 

(4.103) 

With the chemical properties of the gas mixture now known, it is possible to 

calculate the associated thermodynamic properties. 

4.8 THERMODYNAMIC PROPERTIES OF THE MIXTURE. 

Having calculated the equilibrium chemical properties of the mixture for a given 

temperature and density, it is possible to compute the mixture thermodynamic 

properties. Of particular importance are the pressure and internal energy, but any 

thermodynamic variable can be calculated from the available information. The specific 

concentration of the mixture is given by: 

6 
11 = L 11· I. 

i=l 

Pressure can then be found from the thermal state equation in the form: 

Specific enthalpy is given by: 

p=Rl1pT. 

6 ~ 
h = L hi l1i 

i=l 

and specific internal energy follows from: 

e = h-R11T. 

(4.104) 

(4.105) 

(4.106) 

(4.107) 

The calculation of the mixture entropy is more complex. Returning to the 

differential form of the second law of thermodynamics, for a single species i: 

T dSi = dhi -~ (4.108) 
P 

or since s· = 'n·s. p. = R'n.pT and dh· = 'n,cp.dT . , I 'II I' I 'II I 'II I . 

~ ~ dT ~ ~ 
ds· = cpo -- R 

I I T Pi. 
(4.109) 

Integrating this expression then gives: 

T Pi 

si = J1 dT R - dp' + s· 0 ~ J 1 ~ T 
Pi I I 

(4.110) 

To Po 
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The first and last tenns on the right hand side of this equation are recognised from Eq. 

(4.42) to be the standard state entropy at Pi = PO. Equation (4.110) therefore becomes: 

Si = ~iO - R In .£i 
PO· 

(4.111) 

The mixture specific entropy will be the summation of the species entropies multiplied 

by their respective concentrations: 

s = L l1i si 

s = L ( 11 i si 0 - R 11 i In 2ipi - R 11 i In R- ) 
i PO 

s=-Rl1 ln R-+ Ll1 ·( s·O - R In 2i) PO . lip 
1 • 

(4.112) 

The partial pressures can be written in terms of mole mass ratios through an 

application of the thennal state equation, Eq. (4.105): 

Pi Rl1ipT 
In - = In ~ = In 11' - In 11 . 

P R11pT 1 
(4.113) 

Enthalpy (x 106 J kg-l) Entropy (x 103 J kg-l K-l) 

Density Temp. Mollier Calculated Difference Mollier Calculated Difference 

(kg m-3) (K) Chart Value Chart Value 

1000 1.0470 1.0535 0.0065 7.1185 7.1277 0.0092 

2000 2.2673 2.2928 0.0255 7.7526 7.7800 0.0274 

12.88 3000 3.7001 3.7344 0.0343 8.2137 8.2435 0.0298 

6000 10.226 10.325 0.099 9.4530 9.4843 0.0313 

8000 16.083 16.101 0.018 10.182 10.176 0.006 

12000 32.907 32.735 0.172 11.715 11.698 0.017 

1000 1.0470 1.0535 0.0065 8.4299 8.4544 0.0245 

2000 2.2751 2.2956 0.0205 9.0783 9.1082 0.0299 

0.1288 3000 4.0543 4.0785 0.0242 9.6605 9.6910 0.0305 

6000 13.407 13.542 0.135 11.514 11.572 0.058 

8000 30.939 30.862 0.075 13.790 13.782 0.008 

1000 1.0470 1.0535 0.0065 10.404 10.445 0.041 

1.288x 10-4 2000 2.3617 2.3900 0.0283 11.096 11.147 0.051 

3000 6.9514 7.0344 0.0830 12.753 12.818 0.065_ 

Table 4.4 Validation Data from Royal Aeronautical Society Mollier Charts. 
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Equation (4.112) can now be expressed in terms of total pressure and mole mass 

ratios, reproducing the result presented by Prabhu and Erickson (1988): 

s = - R Tlln L + L Tli ( ~iO - R In Tl i ) . 
TlPo i 

(4.114) 

The Gibbs free energy can also be calculated for the mixture: 

g = h - Ts . (4.115) 

Figure 4.12 illustrates the application of these equations to compute an enthalpy

entropy diagram. Lines of constant temperature and constant density are plotted 

against calculated values of enthalpy and entropy. The resulting chart has been 

compared with Mollier chart data published by the Royal Aeronautical Society (1962) 

and gives good agreement, as shown by the results in Table 4.4. It is noted, however, 

that the flattening of the chart in Figure 4.12 at high enthalpies and entropies is due to 

the mixture becoming fully dissociated and no further chemical changes taking place. 

This region of the chart is inaccurate, because of the lack of an ionization model. It is, 

however, useful to have an approximate prediction of conditions in this region, even 

without ionization modelled, in case the method should be used by a CFD code which 

allows accurate modelling within the general flow field, but where one or two points 

lie outside the valid enthalpy-entropy range. 

A useful indication of when ionization is likely to become important is to evaluate 

the product of enthalpy and entropy and compare this to the parameter: 

1 = h s > 9.2 x 106 J2 kg-2 K-I . (4.116) 

4.9 EQUILIBRIUM AND FROZEN SPEEDS OF SOUND. 

In an equilibrium flow calculation, it is important to be able to correctly evaluate the 

propagation speed of acoustic waves, particularly if a flux vector splitting or flux 

difference splitting technique is being used to discretize the fluid equations. Also, the 

frozen speed of sound t is important in nonequilibrium problems, and it is desirable to 

have a method for calculating this parameter at the equilibrium condition. 

t In a purely equilibrium calculation, the frozen speed of sound is meaningless. If, however, 

account is taken of nonequilibrium effects, then high frequency components of an acoustic wave will 

propagate into the equilibrium free stream at the frozen speed of sound, and this becomes an important 

parameter. Also, the ratio of the frozen to equilibrium speed of sound gives an indication of how 

much an acoustic wave will distort due to noncquilibrium effecLs. 
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The equilibrium and frozen speeds of sound are given by the expressions: 

2 - -
(
ClP) 

c
e 

- Clp s,1)=1) * 
(4.117) 

cr2 ~ (~:) 
s,1) 

( 4.118) 

The constraints 11 = 11* or 11 = constant must be imposed on the pressure derivative as 

well as the familiar constraint on entropy being constant because in a nonequilibrium 

gas, any thermodynamic variable is a function of not only any two other state 

variables, but also the chemical state of the gas. Imposing these constraints therefore 

leads to unique values for the pressure derivative, one of which permits an infinitely 

fast adjustment of the chemical state of the gas (ce) and the other of which permits no 

chemical changes (Cf). The two propagation speeds therefore lie at extreme ends of the 

range of speeds at which a sound wave may propagate in a nonequilibrium gas. 

Considering an equilibrium chemically reacting gas, the first and second laws of 

thermodynamics lead to the relation: 

Tds = de -~dp 2 . 
P 

(4.119) 

This is equally valid for perfect, frozen or equilibrium gas models. In terms of 

specific enthalpy, this expression is: 

1 
T ds = dh - - dp . (4.120) 

P 

The enthalpy of the reacting gas mixture has already been expressed as a function 

of temperature and the chemical state of the gas, Eq. (4.106). That is: 

h = h (T, 11j) . (4.121) 

Differentiating this gives: 

6 
dh = (h)T dT + I (h) . d11j 

j=] 1)1 
(4.122) 

where: 
(h)T ~ (~~ l; (4.123) 

(h)1)i = (:~J .. 
T,1)Y;"1 . 

(4.124) 
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Furthennore, the species mole mass ratios in equilibrium are functions only of 

temperature and density: 

11i = 11i (p, T) 

d11i = (l1i)p dp + (l1i)T dT 

where: (a
11 i ) 

(l1i)p = ap T 

(a
11 i ) (l1)T = aT 

p 

The thennal state equation for a chemically reacting gas can be written: 

~ 6 
P = R I 11i P T 

i=l 

which in differential fonn becomes: 

~(6 6 6) 
dp = R i~l 11 j pdT + j~l 11 j T d P + P T j~l d 11 j . 

Putting Eq. (4.126) into Eq. (4.130) yields: 

[ 11 + p I (l1 j )p] 
dT = 1 $?- _ i T dp 

[11 + T ~ (l1 j)T] Rp [11 + T ~ (l1 j )T] p . 

Substituting Eq. (4.126) into Eq. (4.122) gives: 

dh = [(h)T + I (h) (l1 j)T] dT + [I (h) ,(l1j) ] dp . ,111 ,111 P 
I I 

(4.125) 

(4.126) 

(4.127) 

(4.128) 

(4.129) 

(4.130) 

(4.131) 

(4.132) 

Now putting Eq. (4.131) into Eq. (4.132), then applying the resulting expression for 

dh to the Tds equation in the form of Eq. (4.120) gives an expression for ds as a 

function of dp and dp: 

[11 + T ~ (l1 j)T] T ds = {d
p 

[(h)T + ~ (h)l1j(l1 j)TJ - ~ [11 + T ~ (l1 j)TJ } dp-

{~ [ (h)T + ~ (h)l1j(l1 j)TJ [11 + P ~ (l1 j )pJ 

[7 (h)l1j(l1 j )p] [11 + T ~ (l1 j )T] } dp . (4.133) 
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The equilibrium speed of sound is now given by setting ds in Eq. C4.133) to zero: 

RT [Ch)T + I, Ch) .C11 j)TI11 + P I,C11j) ] . 111 . P 
1 1 

(OP) ~ 
op S,l1j=l1j* [Ch)T + ~Ch)l1jC11j)TJ - R [11 + T~C11j)TJ 

Rp [~(h)l1j(11j)p I 11 + T~(11j)T ] 
(4.134) 

[Ch)T + ~Ch)l1jC11j)TJ - R [11 + T~(11j)TJ 

Equation C4.134) gives c2 for an equilibrium gas. If the gas is frozen in any chemical 
state, the derivatives (11 jh and (11j)p will be zero, since no change in the chemistry of 

the gas can occur. Equation (4.134) then reduces to: 

(~:) 
S,l1 j 

_ R11T(h)T 
- A 

(h)T- R11 
(4.135) 

which is c2 in a frozen gas. 

Furthermore, it is interesting to note that the product R11 is the specific gas 

constant, R, and from Eq. (4.123), (hh is the specific heat, cp, for a chemically inert 

gas. If Eq. (4.134) is simplified to the perfect gas case, the result is therefore: 

(~:) 
S,l1j 

= ~ RT = yRT. cp-R 

This is the familiar result for a nonreacting perfect gas. 

(4.136) 

Once the chemical composition of the gas has been calculated, it is necessary to 

calculate the thermodynamic derivatives appearing in Eq. (4.134). The mixture 

enthalpy is given by Eq. (4.106). With the species molar enthalpies from Eq. (4.41), 

this can be differentiated directly to give (hh: 

A

6 (S '1) (h)T = R j~1 Tlj j~ ajj TJ- . (4.137) 

Similarly (h)l1j is given by: 

(h) . = R I,::.jJ TJ- + aj6 A ( 5 a" . 1 ) 

111 j= 1 J . 
(4.138) 

Calculation of the derivatives (Tlj)T and (Tlj)p is less straight forward. In the very 

low temperature case, where the Tlj are explicit functions of the equilibrium coefficient 
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K2 the derivatives are given by the differential forms of Eqs. (4.57) to (4.61), which 

lead to: 

2Tl}"12 6K2 
6114 = 4114 + K2(111 + 112) 

1 
6111 = - 2 6114 

1 
6112 = - 2 6114 

6113 = 0 

6115 = 0 

where 6 represents either a/ap or a/aT. 

(4.139) 

(4.140) 

(4.141 ) 

(4.142) 

(4.143) 

The equations representing the low temperature model, Eqs. (4.63) to (4.67), can 

be written in differential form as: 

21'136113 = K]611} + 11}6K} (4.144) 

21146114 = K211]6112 + K2112611} + 11}1126K2 (4.145) 

2611] + 6113 + 6114 = 0 (4.146) 

26112 + 6114 = 0 . (4.147) 

This is a set of linear algebraic equations in the unknown chemical derivatives 611j, 

which can be solved analytically to give: 

11}112 
11}1126K2 - -- (K}6K2 - K26K j ) 

~ 2113 
u114 = 

112 1 11} 
4114 + K2(11} + 112) + K2 - + 4" K}K2 -

113 113 

6113 = 211]6K} - K}6114 

4113 + K} 

1 
6112 = - 2 6114 

1 
611} = -2(6113+ 6114) 

6115 = O. 
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(4.149) 

(4.150) 

(4.151) 

(4.152) 



Unlike the low temperature models, in the high temperature case chemical 

derivatives must be found from the fourth order polynomial Eq. (4.78). Implicit 

differentiation of this equation leads to expressions for (ll3)T and (ll3) p: 

4 
IOb'll 3j 
'=0 J s: 1-ull3 = - ...... 4-"----

Ijbj ll 3j-] 
j=] 

(4.153) 

The bj are the coefficients in Eq. (4.78) and Obj represent the temperature or density 

derivatives of these coefficients. The derivatives of these coefficients are found by 

differentiating Eqs. (4.79) to (4.83): 

ObO = 2ll02oK] (4.154) 

Ob1 = (KeK3 - 4)llooK1 + K1 KellOOK3 + K]K3ll0oKe (4.155) 

Ob2 = 20K] - (llN - llo)oK2 - K3KeOK 1 - K 1 KeOK3 - K 1 K30Ke (4.156) 

Ob3 = - OK2 - 2K30Ke - 2KcoK3 (4.157) 

Ob4 = (- b4oK] - 20K2)/K] . (4.158) 

Having found Oll3 from the above expressions, the remaining chemical derivatives 

follow from Eqs. (4.98) to (4.101) in differential form: 

OllS = 2 oK1 - .....:..!. + -- + -- Oll3 _...:...L OKe 2113 (ll<: 4 1 J ll<: 

K1 ~ ll3 K]~ Kell3 ~ 

Oll4 = ll3llSoKe + KellSOll3 + Kell30llS 

1 
Oll2 = - 2 (oll4 + Olls) 

1 
Oll] = - 2 (Oll3 + Oll4) . 

(4.159) 

(4.160) 

(4.161) 

(4.162) 

In order to evaluate the above expressions for the chemical derivatives lli, a 

knowledge of the derivatives of the equilibrium constants Kj is required. These are 

found from Eqs. (4.50) and (4.84). From (4.84): 

Kc [ 2 2] OKe = 2K oK 2 - K3 K c oK] - K]Ke oK 3 . 
2 

(4.163) 

From Eqs. (4.47) to (4.50): 
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~ 0 ~ 

K} = exp[ g~} - 2 g}O + I n ~ ] 
Rf Rf pRT 

(4.164) 

~O ~O ~O 

[
g} g2 g4] 

K2 = exp Rr + Rr - 2 Rr (4.165) 

K = ex -}- - 2 ~ + I n ~ {
iO gO p] 

3 Rf Rf pRT 
(4.166) 

Differentiating these equations will lead to expressions involving the derivatives of the 

Gibbs free energies, defined according to Eq. (4.53). As the standard state free 

energies are a function only of temperature, their density derivatives are all zero. The 

temperature derivatives can be found most easily by replacing the enthalpy and entropy 

in Eq. (4.53) by Eqs. (4.41) and (4.42), giving: 

T 

gO = f cp dT + 
To 

T 

l1?o - T J ¥ dT - T ~To 
To 

T 

- -- = ~ - - c dT - - - ~ a (~) c I f ~ I1?O C 
aT R T R T R r To p R r R T 

~ ~ - ~ 
aT (R T) - - R r . 

(4.167) 

(4.168) 

(4.169) 

Utilising Eq. (4.169) for the five active species, and differentiating Eqs. (4.164) to 

(4.166) with respect to temperature or density leads to: 

aK} = K} [ 2 ~ _ ~} _ 1 ] 
aT T Rf Rf 

aK2 K2 [ 114 112 11}] -=- 2-
A 

--A --A 

aT T Rf Rf Rf 

aK3 = ~[ 2 ~ _ ~2 _ 1 ] 
aT T Rf Rf 

aK] = ~ 
ap p 

aK2 = 0 
ap 
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( 4.170) 

(4.171) 

(4.172) 

(4.173) 

(4.174) 



dK3 

dP 
~ 
P . 

(4.175) 

All the chemical and thennodynamic derivatives appearing in Eq. (4.134) can now 

be calculated for each of the three air models, and it is therefore possible to compute 

the equilibrium speed of sound. 

Equilibrium and frozen speed of sound variations with temperature are illustrated 

in Figures 4.13a to 4.13c, for three different densities. These show solutions of Eqs. 

(4.134) and (4.135). For comparison, the perfect gas, y = 1.4, solution is also 

shown. It is noted that the low density case (Figure 4.13a) exhibits perfect gas-like 

behaviour at high temperatures. This is because the diatomic species become fully 

dissociated at these temperatures and no further chemical changes take place. This 

behaviour would be significantly modified if the presence of ionization were modelled. 

It is also interesting to note that the fully dissociated gas behaves like a perfect gas 

with R = 571.4 J kg-1 K -1 and y = 1.40. This specific gas constant corresponds to 

that expected from the low temperature data in Table 4.2. However, the value of y for 

a fully monatomic gas would be expected to be 5/3 or 1.67. The departure from this 

value is explained by the high temperature behaviour of monatomic nitrogen, 

illustrated in Figure 4.9. It is seen that the molar heat of nitrogen increases by about 

8.5 J mol- l K-I due to electronic contributions to the partition function. As this 

species composes over 78% of the gas, this causes the ratio of specific heats to fall 

significan tl y. 

The ratio of sonic speeds, cr/ce, is plotted in Figure 4.14. These curves show 

where the derivative tenns in Eq. (4.134) are large, corresponding to the two peaks. 

These are the points of maximum dissociation rate (with respect to temperature) firstly 

for oxygen and then for nitrogen. It is possible that flight conditions giving sonic 

speed ratios at or near these points in large sections of the flow field will require to be 

modelled out of equilibrium. 

4.10 VALIDATION. 

The scheme presented here has been validated against the twenty-four coefficient curve 

fits presented earlier and the Royal Aeronautical Society Mollier charts. For 

temperatures in the range 200 K to 15000 K and densities from 1.225 x 10-6 kg nr3 

to 1.225 x 102 kg m-3 the equilibrium speed of sound, pressure and specific internal 

energy were calculated using the method presented here. The specified density and 

calculated internal energy were then applied to the curve fits to compute comparative 

values of pressure and equilibrium sonic speed. The data were then 
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Mean Max. Min. Std. Dev. 

16 Coefficient Pressure 9.51 28.4 2.4 3.138 

24 Coefficient Pressure 11.97 29.4 8.4 2.325 

16 Coefficient Temperature 46.77 76.4 35.4 5.586 

24 Coefficient Temperature 51.62 104.4 44.4 5.599 

16 Coefficient Sonic Speed 52.41 77.2 41.2 3.867 

24 Coefficient Sonic Speed 56.82 86.2 47.2 3.610 

State Calculation without Sonic Speed 80.42 108.4 37.4 8.032 

State Calculation with Sonic Speed 107.9 146.4 51.2 10.76 

Table 4.5 Comparison Between Execution Times for Curve Fit Calculations and 

Thermochemical State Calculations, in microseconds. 

nondimensionalized consistently and plotted in Figures 4.15 and 4.16. In these 

figures, continuous lines represent the results of the current scheme, and crosses 

correspond to curve fit data. 

From Figure 4.15 it is clear that there is excellent agreement between the calculated 

and curve fit pressure data. There is some departure of the two methods at low 

densities and high energies, because of the presence of ionization data in the curve fits. 

A significant advantage of this scheme over the curve fits is evident from Figure 

4.16. The calculated sonic speed data are smooth and continuous throughout the 

applied temperature range. The curve fit data, because it relies on differentiating sets 

of discontinuous curves, cannot match this smoothness, and significant errors are 

apparent at junctions between curves - most noticeable at lower densities. Again the 

lack of an ionization model in the present scheme accounts for the low density, high 

energy departures noted in Figure 4.16, but otherwise agreement is very good. 

Table 4.5 gives the results of comparing the execution speeds for routines 

evaluating both sets of curve fits presented in Section 4.1 and the thermochemical state 

calculation technique. Computation times (in microseconds) are given for state 

calculations both with and without associated sonic speed calculations. 
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Chapter Five 

IMPLEMENTATION OF EQUILIBRIUM AIR MODELS IN 
THE CFD ENVIRONMENT 

In chapter four, the types of model available for computing the thermochemical state of 

equilibrium high temperature air were discussed and an air model was developed based 

on the solution of the laws of mass action. However, no reference was made as to 

how this model could be used in the numerical solution of the equations of motion. 

The problems associated with implementing equilibrium air models within CFD codes 

are therefore addressed in this chapter. 

To illustrate the application of these techniques, the solution of a quasi-one

dimensional inviscid nozzle problem is presented. The specific differences between 

the perfect and real gas numerical routines for solving this problem lie in two areas; the 

formation of the implicit operator for the chosen scheme and the application of 

boundary conditions. In chapter three, it was pointed out that for a general real gas, 

the characteristic variables cannot be integrated to give simple closed forms for the 

Riemann invariants. This can lead to difficulties when including real gas effects in 

some of the modern high resolution schemes. However, progress is being made in 

this direction (Abgrall, 1991; Glaister, 1988; Grossman and Walters, 1989; Liou et 

aI., 1990; Suresh and Liou, 1991; Vinokur and Montagne, 1990). The scheme used 

here is an implicit time, central space differenced one (Beam and Warming, 1976) with 

added artificial dissipation (Jameson et aI., 1981). This scheme is chosen for its 

numerical simplicity. The principal difficulties encountered are therefore with the 

implementation of the equilibrium gas dynamics, rather than the numerical analysis. 

The experience gained with developing the implicit operator for this scheme can be 

extrapolated to more advanced algorithms, which are discussed as a topic for future 

research in chapter seven. 

5.1 INVERSION OF THE STATE EQUATIONS. 

The method for calculating the equilibrium thermochemical state of the gas mixture 

presented in chapter four has been formulated on the basis that the independent 

variables are the fluid density and temperature. Mass density was chosen primarily 

because it is one of the conserved fluid variables, as well as a principal thermodynan1ic 

variable. Pressure could be used as an alternative to mass density, but such a 

formulation would be less useful in solving fluid flow problems. Ideally, the second 
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independent variable would be specific internal energy, as this relates closely to the 

conserved total energy density: 

E=p(e + u;). (5.1) 

However, it is not possible to use this variable because each component species carries 

its own internal energy, and the mixture internal energy can only be determined once 

the composition of the gas is known. Moreover, since the gas is in thermal 

equilibrium, each component must have the same temperature, irrespective of the gas 

composition. Temperature therefore makes an essential second choice as independent 

variable. 

As a consequence of using mass density and temperature to specify the state of the 

system, a problem arises when relating a given mixture internal energy to an unknown 

temperature. The only way of achieving this is through an iterative numerical scheme 

(Anderson, 1989). This puts a limitation on the application of such models within a 

time dependent CFD code, as the inversion process must be repeated at every grid 

point, and therefore leads to a large amount of time spent calculating numerous 

variables, many of which are not explicitly required by the solution algorithm. 

Three inversion schemes have been considered. These were a linear point iterative 

scheme, a superlinear Regula falsi method and a quadratic Newton-Raphson scheme 

(Froberg, 1985). The first scheme was restricted by its slow convergence rate and 

was immediately discounted on that point. The second two methods were limited by 

their need for an accurate initial guess of temperature corresponding to the known 

internal energy. The choice between these techniques was based on the fact that, for 

the Newton-Raphson scheme, the chemical state of the gas needed to be calculated at 

only one point during the iteration. The Regula falsi technique required the chemistry 

to be analysed at an additional point on the temperature scale in order to calculate 

Mean Max. Min. Std. Dev. 

Time Per Iteration, x 10-6 s 

Regula falsi 156.3 184.9 100.2 10.91 

Newton Raphson 138.5 162.4 79.2 10.76 

Number of Iterations, flT < 0.1 K 

Regula falsi 3.332 5.0 2.0 0.8590 

Newton Raphson 2.891 4.0 1.0 0.5936 

Table 5.1 Comparison Between Execution Times for Regula falsi and Newton

Raphson inversion of the Thermodynamic State Equations. 
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derivative infonnation, and also required a more accurate initial guess. This offset the 

reduced computational effort required because none of the thennochemical derivatives 

needed to be calculated. In addition, the Regula falsi method, being only superlinear, 

did not exhibit as fast a convergence rate as the quadratic Newton-Raphson scheme. 

Details of the execution speeds of the Regula falsi and Newton-Raphson 

techniques are given in Table 5.1, from which it can be seen that the Regula falsi 

method not only required more time per iteration, but also required more iterations to 

converge to a desired temperature tolerance. The final choice of a Newton-Raphson 

scheme was therefore made. 

The scheme is summarised as follows: 

TO = T estimate (p, e) 

en = en (p, Tn ) 

(~~) = (~, e"(p,T"») 
p p 

en - e 
T

n
+ I = Tn - (den/dT)p 

(5.2) 

(5.3) 

(5.4 ) 

(5.5) 

Details of the calculation of internal energy as a function of mass density and 

temperature have already been presented in section 4.8. The energy derivative follows 

from the chemical state of the gas in a manner similar to that presented in section 4.9 

for the derivatives appearing in the acoustic equations. Internal energy is a function of 

temperature and the chemical state of the gas, in an analogous fashion to Eq. (4.121): 

e = e (T, lli) . (5.6) 

Then: 
( de) = (e)T + ~ (e)lli(lli)T 
dT * I 

lli=lli 

(5.7) 

where: (e)T = (~~) (5.8) 

lli 

(e)lli = (:~J .. 
T,llY;"l 

(5.9) 

(
dll i ) (llj)T = dT . (5.10) 
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It is noted that the above derivatives are evaluated with mass density constant, so the 

chemical state of the system is a function of tern perature only, according to Eq. (5.4). 

Enthalpy and internal energy are related through: 

e=h-Rl1T 

(e)T = (h)T - R 11 

(e) = (h) - R T (11) 
Tli Tli Tli . 

(5.11 ) 

(5.12) 

(5.13) 

In the above expressions (h)T and (h)Tli can be found from Eqs. (4.137) and (4.138). 

The derivative (l1)Tli is found from Eq. (4.104): 

(11) . = ~ (~J = 1 
Tll j ollj 

(5.l4) 

Equation (5.13) now reduces to: 

(e) = (h) - R T 
Tli Tli 

(5.15) 

Calculation of the chemical derivatives (l1j)T in Eq. (5.7) has already been discussed in 

section 4.9. 

In order to initiate the iterative inversion of the scheme using this method, an 

accurate initial estimate of temperature is required. The most efficient way of doing 

this is to use the sixteen coefficient curve fits presented in section 4.1-b. 

Figures 5.1 and 5.2 illustrate the results of calculating the equilibrium pressure and 

sonic speed from given specific internal energy and mass density. Temperature 

appears in this calculation only as an intermediate variable, but is plotted in Figure 5.3 

for direct comparison with Figures 4.4a and 4.4b. A maximum of three iterations are 

required in the inversion process at low temperatures to achieve a converged solution 

to within 0.01 K. However, because the curve fits include the effects of ionization, up 

to five iterations are required at higher temperatures. The curve fits do not provide a 

good estimate to the solution of the state equation model under these conditions 

because the gas models from which the two methods are derived are not directly 

equivalent. As can be seen by comparing Figures 5.1 and 5.2 with Figures 4.3 and 

4.5, this technique provides improved smoothness and continuity throughout the valid 

range of densities and internal energies over that provided by the equivalent curve fits. 
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5.2 CALCULATION OF THE X AND K DERIVATIVES. 

The two thennodynamic derivatives X and K fonn the link between the thermochemical 

and dynamic behaviour of an equilibrium gas. They are the real gas counterpart!; of the 

ratio of specific heats, ,,(, in a perfect gas model. They were defined in chapter three 

as : 

F(::), (5.16) 

K = (~:) 
p . 

(5 .17) 

The choice of these particular derivatives is not unique. For example, Table 5.2 lists 

the choice of derivatives used by various authors. This list is by no means exhaustive, 

but serves to illustrate that any orthogonal pair of derivatives on a thermodynamic 

surface can be chosen. 

The choice of derivative is largely dictated by the form of the state equation . 

However, in this case it is possible to obtain any pair of derivatives, and the choice of 

X and K is made because of the simplicity of the resulting acoustic equation. 

The derivatives are given by (see appendix four): 

R [11 + T~(11i)T ] 
K= 

[(h)T + ~(h)T\i(11i)TJ - R [11 + T~(11i)TJ 
(5.18) 

Thennodynamic Thennodynamic 

Surface Derivatives 

Vinokur and Montagne (1990) 
pep, E) (op/op )E (Op/OE )p 

AbgraJJ (1991) 

Liou et al. (1990) 
yep, e) 

(oy/op )e (ay/oe )p 
y= hie 

Suresh and Liou (1991) 
pcp, e) (op/op )e (op/oe )p 

Glaister (1988) 

Grossman and WaIters (1989) 
p('t, e) 

(op/o't )e (op/oe )'t 
't = lip 

Table 5.2 Thennodynamic Derivatives Chosen by Various Authors to Represent 

the Behaviour of Equilibrium Air. 
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RT [(h)T + ~ (h)Ttj(11j)T I 11 + P~(11j)pJ 
X= 

[(h)T + ~(h)Tti(11j)T J - R [11 + T~(11j)T J 

R [h + pI,(h) .(11j) J[11 + TI,(11 j)TJ . Ttl P . 
1 1 

(5.19) 
[(h)T + ~(h)Tti(11j)T J - R [11 + T~(11j)T J 

For a perfect gas, these expressions reduce to: 

RO K=-- =y-l 
Cp-RO 

(5.20) 

_ROCcpT-h) -0 
X - Cp-RO - (5.21) 

The behaviour of the thennodynamic derivatives is illustrated in Figures 5.4a and 

5.4b. From these figures, K can be seen to have a low temperature value of 0.4 and X 

to be zero, corresponding to Eqs. (5.20) and (5.21). As temperature increases, K 

remains constant up to about 400 K, illustrating that the gas is behaving perfectly in 

this region. Between 400 K and 2000 K, vibrational excitation dominates the 

behaviour of the gas and caloric imperfections are evident. This corresponds to the 

increase in molar heat for the three diatomic molecules (see Figure 4.9) and the 

associated decrease in K. Chemical changes in the gas start to become important at 

about 1500 K. Since the chemical composition of the gas is density dependent, curves 

depicting the behaviour of both X and K diverge for different densities above this 

temperature, illustrating the thennally imperfect nature of air at these temperatures. 

The first minimum in the K curves (and associated maximum in the X curves) 

corresponds to the point of maximum dissociation rate, with respect to temperature, of 

diatomic oxygen. It also corresponds to the first maximum in the ratio of sonic speeds 

in Figure 4.14. The second minimum corresponds to the maximum dissociation rate 

of diatomic nitrogen. Small changes in temperature at these points will lead to large 

chemical changes in the gas. Rapid changes in temperature around these points may 

therefore lead to nonequilibrium chemical behaviour. The maximum value of K 

between these regions represents a chemically more stable temperature. 

At high temperatures, the diatomic species become dissociated and the chemical 

composition of the gas tends towards fully monatomic oxygen and nitrogen, together 

with a small amount of argon. These species are, however, electrically excited, 

although not ionized in this model; therefore the molar heats at constant volume are 

larger than at low temperatures. This results in K returning to a value slightly greater 
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than 0.4, rather than 0.67 predicted for a monatomic gas with no internal structure 

(Vincenti and Kruger, 1965). 

The large negative value of X at high temperatures can be interpreted as follows. 

Despite the fact that the gas mixture at these temperatures is behaving perfectly in the 

sense that its specific heats and chemical composition are nearly constant, large 

amounts of energy have been absorbed both by the internal modes of the atoms and the 

decomposition of the diatomic species. The specific enthalpy of the mixture is 

therefore considerably more than would be expected according to the perfect gas 

relationship: 

h = cpT. (5.22) 

Equation (5.22) can therefore be replaced by an expression of the fonn: 

hac[ual = cpT + '-\h . (5.23) 

The increment in enthalpy can be related to the thennodynamic derivatives through: 

'-\h = - X 
K. 

(5.24) 

The ratio -X/K is therefore interpreted as representing the enthalpy of the mixture 

absorbed by internal modes of the atoms and molecules and by the dissociation of 

molecules. 

5.3 THE QUASI-ONE-DIMENSIONAL NOZZLE PROBLEM. 

In order to illustrate the application of the preceding state equation models to a fluid 

dynamic problem, the computational solution to the quasi-one-dimensional nozzle 

problem with equilibrium inviscid air has been generated. Practical applications for 

such a solution are limited because nonequilibrium effects, particularly diffusive 

effects, influence the behaviour of air in hypervelocity nozzles. Additionally, nozzle 

problems are more closely associated with propUlsion applications, where com busting 

hydrocarbon chemistry is important. Even within hypersonic test facilities utilizing 

such nozzles, the gases used are unlikely to be as complex as the air mixture presented 

here. 

This test case has been selected primarily because it fonns a bench mark for testing 

most computational algorithms. The authors mentioned in Table 5.2 use a one

dimensional analysis to develop their algorithms, and use either a quasi-one

dimensional nozzle problem or a shock tube problem to illustrate this. The solution to 

the one-dimensional Euler equations contains the essential aspects of the convective 
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behaviour of high speed air flow. This problem does not require time accurate 

algorithms, and is ideally suited to rigorous testing of boundary condition algorithms. 

Furthermore, exact solutions can be generated for nozzle problems, if somewhat 

tediously, using Mollier chart data. 

The nozzle shape chosen here is described by the equation: 

A = exp (.i ci xi) 
1=1 

(5.25) 

where x is the spatial coordinate and the coefficients Cj determine the area distribution 

through the nozzle. These coefficients are chosen to satisfy prescribed inlet, throat and 

exhaust conditions. 

5.4 DISCRETIZATION OF THE EQUATIONS OF MOTION. 

For a quasi-one-dimensional nozzle problem, conservation principles lead to the 

following formulation: 

u= 

F= 

Q=-

au + aF = Q 

at ax 

[p (e: u;)] 

[ 

pu 1 pu2 + P 

pu (e + u; + ~) 

= [:] 

[ 
m 1 m2 

-+ p 

m ~ E + p) 
P 

[ 
pu 1 [m 1 P) d m

2 
d 

-In A = - p - In A . 
2 dx dx 

pu ( e + u2 + ~) ; (E + p) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

This set of nonlinear partial differential equations is closed by an algebraic state 

equation in the form: 

p = p (p, e) . (5.30) 

Techniques for modelling this equation have been discussed in previous sections. 
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5.4-a Numerical Discretization. 

In order to solve Eq. (5.26) numerically, it is discretized using an implicit (trapezoidal) 

time, central space scheme (Beam and Warming, 1976). Centrally differenced 

schemes suffer from a lack of dissipation (Wang, 1990) and therefore require the 

addition of an artificial dissipation term to maintain stability and smooth shock 

profiles. The success of such schemes lies in the careful construction of the numerical 

viscosity which provides this dissipation. 

Adding a second order viscous term to Eq. (5.26) gives: 

au + aF =n +~(VN au) 
at ax ax ax. 

(5.31) 

Trapezoidal time differencing takes the form: 

~u = 1 (au
n 

+ au n+lJ 
~t 2 at at 

(5.32) 

where: ~u = Un+1 _ Un. (5.33) 

Using Eq. (5.31) in Eq. (5.32) and expanding terms at time n+ 1 in a Taylor series 

about time step n gives (see appendix five): 

[ 
I 1 an 1 a aF I a 2 
-- --+ ----. ---VN 
~t 2 au 2 ax au 2 ax2 

n 

· ] ~u 

= - - + n + - VN - + O(~t2) [ 
aF a ( au)]n 
ax ax ax 

(5.34) 

Time accuracy is not required from this expression, and so the algorithm can be 

simplified by treating the source term explicitly, and assuming the numerical viscosity 

is locally constant. This reduces Eq. (5.34) to: 

[
.l + L ~ aF • _ vji I a2 

• ]n ~U 
~t 2 ax au 2 ax2 

= - - + n + - VN - + O(~t2) [ 
aF a ( au)]n 
ax ax ax 

(5.35) 

In their original paper, Beam and Warming mention simplifications to this expression 

in the case where F is an homogeneous function of degree one in U. In appendix six, 

it is shown that this is true only when the functional form of the state equation 

satisfies: 
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p (p, e) 
p (Ap, e) 

A 
(5.36) 

for some constant A. This implies that pressure must be linearly related to density for 

the homogeneity condition to hold. For such a linear relationship to hold, the 

derivative (ap/ap)c must be constant. In the case of a perfect gas, this is easily shown 

to be true. However, for chemically reacting air, Figure 5.5 illustrates that this is 

untrue, especially at high internal energies. Equation (5.35) has therefore been derived 

without applying the homogeneous property to the flux vector. 

Centrally differencing the spatial derivatives in Eq. (5.35) leads to the fully 

discretized equations: 

[- ~~: ]
n [ vNi 

-- i1Ui-1 + 
2i1x2 i1t 

VN' + I 

i1x2 ]
n [ Ai+ I _ 

i1Ui + 4i1x 

Fn n . F. Un Un n n 

VN' ]n 
2i1;2 i1 U i+ I 

1+1 I-I n i+I-' U.-U. = ___ + __ +Q +V 1 1 I-I 
2i1x 2i1x i Ni+l/2 i1x2 - VNi-l/2 i1x~ + O(i1t

2
,i1x

2
) 

where: VNi+l/2 = ~ (VNi+1 + VNi) . 

(5.37) 

(5.38) 

This is a set of N-2 linear algebraic equations for N unknown values of i1U at time 

step n. The additional two equations for i1U at i=l and i=N follow from the boundary 

conditions discussed later. 

5.4-b Artificial Dissipation. 

The numerical viscosity, VN, appearing in Eq. (5.37) is based on the model proposed 

by Jameson et al. (1981). It is desirable to have relatively high second order 

dissipation at or near shocks, where truncation errors resulting from central 

differencing compound to produce oscillations, but maintain the second order accuracy 

of the scheme by minimalizing the dissipative terms in smooth regions of the flow. 

Jameson et al. found that their scheme did not converge to a truly steady state unless a 

fourth order damping tenn was included in the algorithm. This has not been found 

necessary here, and only the second order damping tenn in Eq. (5.37) is required. 

The magnitude of the damping tern1 is related to the locally normalized pressure 

derivative as follows: 

ap 
vN=a-i1x2 

ax2 
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where a is a variable parameter allowing some degree of control over the strength of 

the damping term. Discretization of Eq. (S.39) gives: 

VNj = a Pi+l - 2Pi + Pi-l 

Pi+l + 2Pi + Pi-I. 

5.5 BOUNDARY CONDITIONS. 

(S.40) 

At a boundary there is an exchange of information between the system and its 

surroundings. The direction in which that information travels is dictated by the 

behaviour of the characteristics of the equations of motion, and whether the mass flux 

through the boundary is positive (inflow) or negative (outflow). There are four 

possible boundary conditions to be considered in a one-dimensional flow: subsonic 

inflow, supersonic inflow, subsonic outflow and supersonic outflow. Figures S.6a 

and S.6b indicate the direction of propagation of information at each type of boundary. 

These follow from the propagation directions of the characteristic variables in Eqs. 

(3.29). 

Numerous schemes are available for computing boundary conditions. The 

simplest of these is to extrapolate the correct number of primitive variables from the 

interior of the flow to establish the numerical conditions, and impose physical 

boundary conditions on those remaining. The choice of which primitive variables are 

extrapolated at any type of boundary influences the stability of the algorithm. For 

example, at a subsonic outflow boundary, specifying pressure and extrapolating 

density and velocity leads to a stable algorithm, but specifying either density or 

velocity and extrapolating pressure and the remaining variable leads to problems. 

Which variables can and cannot be extrapolated at any type of boundary is dictated 

by the characteristic behaviour at that boundary. Physical boundary conditions are 

dictated by information propagating along incoming characteristics, and numerical 

conditions by the outgoing characteristics. It therefore makes sense to apply boundary 

conditions directly in terms of the characteristic variables. However, in the case of a 

thermally imperfect gas, analytic expressions for the characteristic variables cannot be 

found, so a direct extrapolation of these variables cannot be implemented. Two r.Jt.her

techniques have been investigated for getting round this problem. The first relies on 

the solution of the appropriate compatibility relations at the boundary, and the second 

is based on the extrapolation of time differences of the characteristics. 

All boundary conditions have been treated explicitly in this case. That is to say, at 

each time step, the interior points are all updated implicitly using Eq. (5.37) with fixed 
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values of ~U at i = 1 and i = N, then the boundary points are updated using one of the 

three above techniques. 

Hirsch (1989b) discusses extrapolation techniques for establishing numerical 

boundary conditions, and includes the extrapolation of time differences of the 

characteristics as a feasible approach. This treatment is conceptually straight forward 

and therefore easy to implement. However, no evaluation of the effectiveness of this 

extrapolation is made in the above reference, and several deficiencies are noted here. 

5.5-a Subsonic Characteristic Boundary Conditions. 

From Figure S.6a, it can be seen that for a subsonic problem two of the characteristics 

run in the direction of flow and one against. The two forward running characteristics 

represent the convection of entropy and the propagation of pressure disturbances in the 

direction of flow. The backward running characteristic represents the propagation of 

information against the flow, and is present because the flow is subsonic. When there 

is a transition to supersonic flow, this backward running characteristic changes 

direction, and the nature of the flow is therefore modified. 

The presence of a backward running characteristic allows information to propagate 

from the system out into the surroundings through an inflow boundary, and similarly 

form the surroundings into the system at an outflow. It is therefore necessary to apply 

one numerical and two physical boundary conditions at an inflow, and two numerical 

and one physical boundary conditions at an outflow. 

Physical boundary conditions at inlet are applied through a specified density and 

pressure: 

~PI = Piniel - PI (S.4l) 

~PI = Pinlcl - PI (5.42) 

The compatibility relations, Eqs. (3.29), describing the propagation of the 

characteristics are: 

aWl aWl 
-+u-=O 
at ax 

(S.43) 

aW2 aW2 d 
- + (u + c ) - = -uc -In A 
at C ax e dx 

(5.44 ) 

aW3 aW3 d 
- + (u - C ) - = uc - In A . 
at C ax e dx 

(S.45) 
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At an inflow boundary, the numerical boundary condition can be established by 

discretizing Eq. (S.4S) using forward spatial differences. This differencing will be 

stable because w3 propagates out of the system, (u - ce) is negative and the 

differencing is upwind. First order forward differencing of W3 and explicit time 

differencing leads to: 

[
d ] [ (P2-P1)]~t ~(W3)1 = u1 ce] dx In A ~t - (u] - cel) (u 2 - u l ) - -

I PIce] ~x . 

The unknown primitive variable is computed from: 

~PI 
~ul = ~(W3)1 +-

p]CC] 

(S.46) 

(5.47) 

and the transformation matrix M given by Eq. (3.11) is used to compute the required 

~U at the inlet: 

~u = M ~V . (5.48) 

A similar technique is applied at the outflow boundary, where Eqs . (S.43) and 

(S.44) are discretized to establish the numerical boundary conditions and exhaust 

pressure is imposed physically: 

~PN = Pexhausl - PN 

[ 

(PN - PN -1) ] ~ 
MWl)N=-uN (PN - PN-I) - c~ ~x 

~(W2)N = - uN CeN [:x In A] ~t 
N 

- (uN +CCN)[(U N - uN_I) + (PN - PN-I)]~ 
PNCcN ~x 

~PN 
~PN = ~(Wl)N +-2 

c~ 

~PN 
~uN = M

W
2)N - PNCcN . 

(S.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

Equation (5.48) is th en applied at the exhaust to compute the conserved variables. 

Spatial differencing of Eqs. (5.43) and (5.44) is now backward because the outgoing 
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characteristics are running forwards. This differencing is still therefore upwind and 

stable. 

The second technique for implementing boundary conditions on the characteristic 

variables relies on the first order extrapolation of time differences of the characteristic 

variables. Equations (5.41) and (5.42) are again used to compute density and pressure 

at the inlet, but the characteristic extrapolation now takes the form: 

~(W3)1 = 2~(W3)2 - ~(W3)3 . (5.54) 

The inlet velocity then follows from Eq. (5.47). 

At a subsonic exhaust, Eq. (5.49) gives the exhaust pressure, then the density and 

velocity follow from Eqs. (5.52) and (5.53) with the right running characteristics 

extrapolated according to: 

~(WI)N = 2Mw I)N_I - ~(WI)N_2 (5.55) 

M W2)N = 2~(W2)N_I - ~(W2)N_2 . (5.56) 

The required conserved variables at either the inlet or exhaust follow from Eq. (5.48). 

S.S-b Supersonic Characteristic Boundary Conditions. 

The application of supersonic boundary conditions is more straight forward than the 

equivalent subsonic case. This is primarily because all the characteristics run in the 

same direction in this case. There is therefore no choice about the physical or 

numerical boundary conditions. Figure 5.6b illustrates why all the boundary 

conditions at a supersonic inflow must be physical, and all those at a supersonic 

outflow must be numerical. 

Inflow boundary conditions need not refer to characteristic information in any 

way. They are applied through known values of the three primitive variables at the 

boundary: 

~P 1 = pinlcL - PI (5.57) 

~UI = UinlcL - UI (5.58) 

~PI = Pinlct - PI . (5.59) 

These boundary conditions can be further simplified if the initial conditions set the 

primitive variables to their correct values. The implicit solution for interior values does 

not effect the boundary values, so Eqs. (5.57) to (5.59), combined with the 

transformation to conserved variables, Eq. (5.48), lead to: 
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l1UI=O. (5.60) 

To numerically establish the outflow boundary conditions, Eqs. (5.43) to (5.45) 

are all discretized using backward differences: 

[ 

(PN-PN-I)]~ 
l1(wI)N = - uN (PN - PN-I) - c~ l1x (5.61 ) 

[ 
d J [ (PN-PN-I)]l1t l1(W2)N = - uN ceN dx In A l1t - (uN+ceN) (uN-uN_I) + - (5.62) 

N PWeN l1x 

d [(PN-PN-I)]~ 
l1(W3)N = uN ceN [dX I n A I

N 
l1t - (uN-ceN) (uN-uN_1) - PWcN l1x. (5.63) 

The conserved variables can then be computed by the direct transformation: 

l1U = (ML) l1 W (5.64) 

The alternative extrapolation of time differences of the characteristics for numerical 

boundary conditions leads to outflow boundary conditions, Eqs. (5.61) to (5.63), 

being replaced by: 

l1(WI)N = 2l1(wl)N_1 - l1(WI)N_2 (5.65) 

l1(W2)N = 2l1(W2)N_I - l1(W2)N_2 (5.66) 

l1(W3)N = 2l1(w3)N_I -l1(W3)N_2 . (5.67) 

5.5-c Evaluation of Boundary Treatments - Supersonic Exhaust. 

The three boundary treatments examined in detail are as follows: 

1) fIrst order extrapolation of the primitive variables, 

2) solution of the characteristic equations using fIrst order upwind differencing, 

3) fIrst order extrapolation of time differences of the characteristic variables. 

For the supersonic exhaust case, no shock is present in the flow and so the artificial 

dissipation can be set quite low. This prevents any numerically induced oscillations at 

the boundaries from being too heavily damped and therefore shows up any errors 

induced by reflections at these points. 

The test case considered for this analysis is a low speed, high temperature one. 

The nozzle geometry is specified through an equation of the form (see appendix 

seven): 
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A(x) = exp(± C; x;J 
1=0 . 

(5.68) 

The throat and exhaust locations are taken to be Xl = 0.25 m and Xe = 1.00 m, and the 

radii at these points are rl = 5 mm and re = 5.05 mm. These values give the 

coefficients of Eq. (5.68) as: 

co = -9.443 797, CI = -0.070758 m- I, 

C2 = 0.176895 m-2, C3 = -0.094 344 m-3. 

The geometry of this nozzle is illustrated in Figure 5.7. 

Stagnation conditions are selected such that the gas behaves thermally perfectly 

within the nozzle. An inlet static temperature of 1760 K gives an expansion through 

the nozzle in the region where K is a function only of temperature and not of density 

(see Fig. 5.4a). The stagnation conditions at the inlet are: 

pressure PO = 69 576.0 N m-2, 

density Po = 0.12326 kg m-3, 

enthalpy hO = 2.233 8 x 106 ] kg-I, 

entropy s = 9 064.2] kg-l K-I. 

The molar mass of the gas, and hence the specific gas constant, is constant through the 

length of the nozzle: 

molar mass M = 0.028 962 kg mol-I, 

specific gas constant R = 287.08 J kg-I K-I. 

The boundary conditions are completely defined by the static density and pressure at 

the subsonic inlet corresponding to the above stagnation conditions. These are: 

static pressure p = 42 159.0 N m-2, 

static density P = 0.082 432 kg m-3. 

The initial conditions for the solution of Eqs. (5.37) were generated from an exact 

perfect gas solution to the nozzle geometry using the following conditions: 

stagnation pressure PO = 70 345.0 N m-2, 

stagnation densi ty PO = 0.122 50 kg m -3 , 

ratio of specific heats y = 1.333. 

The differences between the different boundary treatments lie in three areas: the 

computational effort required to implement the technique, the convergence rate for the 

iterative solution of Eq. (5.37) and the accuracy of the converged solution at the 

boundary. From the point of view of computational effort, linear extrapolation of the 

primitive variables is the most attractive technique, requiring only transformation 

between conserved and primitive variables at the exhaust and the first two interior 

points. However, this technique does give rise to small oscillations at the exhaust 

boundary, when compared to the solution generated by implementing Eqs. (5.61) to 
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i = N i = N-l i = N-2 i = N-3 10glO(~p) 

x/XO 1.00 0.99 0.98 0.97 

NAt 1.010 00 1.010 00 1.00998 1.00996 

Mach N urn ber: 

B. C. Type 1 1.1559 1.155 8 1.155 8 1.1555 -5.64 

difference 0.0003 0.0000 0.0002 

B. C. Type 2 1.1559 1.155 9 1.155 7 1.155 5 -6.09 

difference 0.0000 0.0002 0.0002 

B. C. Type 3 1.155 8 1.1560 1.155 7 1.1556 -5.67 

difference -0.0002 0.0003 0.000 1 

Table 5.3 Supersonic Exhaust Conditions, 3000 iterations at CFL = 0.98. 

(5.63). Also small reflections caused by this boundary condition do not escape from 

the system as quickly as for either characteristic based method, and the convergence 

rate with the same interior scheme, illustrated in Figure 5.8, is slightly slower. 

The solution of the compatibility relations at the boundary, being the most 

physically based of the three techniques considered, does not give rise to oscillations, 

and gives the fastest convergence rate, since excess energy can escape the system 

correctly and without reflection. Furthermore, the penalty for this in terms of 

computational effort is only marginally greater than for the above case. 

Linear extrapolation of time differences of the characteristic variables has not been 

found to be an effective treatment for several reasons. The computational effort 

required is higher than the other two techniques because of the need to transform 

between conserved, primitive and characteristic variables at the boundary and the first 

two interior points. Also the convergence rate is only marginally better than for 

extrapolation of the primitive variables and oscillations are more pronounced than 

either of the other techniques. 

Table 5.3 presents Mach number details at the exhaust for the three different 

boundary treatments. Oscillations appear to be most pronounced in this variable, but 

are also present in other thermodynamic variables, such as total enthalpy, internal 

energy and temperature. The degree of reflection present with each boundary 

treatment can be assessed from the differences between Mach numbers at consecutive 

points. These differences show the oscillatory nature of the solutions for types one 

and three boundary treatments, when compared with the solution of the compatibility 

relations at the boundary. 
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Figures 5.9a to 5.9d illustrate the variation of Mach number, pressure, enthalpy 

and temperature through the nozzle for a supersonic exhaust. For comparison, perfect 

gas solutions generated with the same stagnation pressure, density and enthalpy are 

also plotted, with a constant ratio of specific heats fixed by the stagnation conditions 

as: 

Y= 1 1 _ ~ = 1.338 (5.69) 

poho 

For the moderate test conditions presented here, there is only a marginal difference 

between the equilibrium gas and perfect gas solutions. The most noticeable difference 

appears in the temperature variation. It can be seen that the perfect gas model gives an 

over expansion of the gas, when compared to the vibration ally excited solution. 

Perfect gas Mach numbers are slightly higher than the equivalent equilibrium gas case. 

Similarly the perfect gas solution expands to lower pressure, enthalpy and significantly 

lower temperature. 

The above results can be explained in the following manner. As the gas expands 

and the temperature falls, the energy stored internally by vibrational excitation is 

released and goes into translational excitation of the molecules. This keeps the 

temperature of the gas higher than in the perfect gas case. At the same time, the 

specific heats are decreasing and offsetting the effects of increased temperatures on the 

static enthalpy. The combination of increased temperature and decreased specific heats 

do not exactly compensate each other, and the result is a static enthalpy slightly greater 

than the perfect gas prediction. Given that the total enthalpy is the same in both cases, 

less enthalpy is available to accelerate the flow through the nozzle, and so the 

expansion is less than predicted by a perfect gas analysis. 

S.S-d Evaluation of Boundary Treatments - Subsonic Exhaust. 

In order to generate a shock within the nozzle, an exhaust pressure is imposed, and 

subsonic exhaust boundary conditions are implemented. The same three boundary 

treatments are examined in this case as for the supersonic case, and the same nozzle 

geometry and inlet stagnation conditions are used. The static pressure imposed at the 

exhaust is: 

pressure p = 44 000.0 N m-2 

This pressure gives rise to a stationary shock located at x = 0.71 m. Initial conditions 

are generated from the same perfect gas solution as before, only with a shock induced 

at x = 0.75 m. 
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i = N i = N-1 i = N-2 i = N-3 10glO(~p) 

x/XO 1.00 0.99 0.98 0.97 

NAt 1.01000 1.010 00 1.00998 1.00996 

Mach N urn ber: 

B. C. Type 1 0.862 84 0.863 01 0.863 01 0.863 34 -5.78 

difference 0.000 17 0.000 00 0.000 33 

B. C. Type 2 0.86287 0.86305 0.863 02 0.863 36 -5.84 

difference 0.000 18 -0.00003 0.00034 

B. C. Type 3 0.862 90 0.863 04 0.863 04 0.863 36 -5.85 

difference 0.000 14 0.000 00 0.000 32 

Table 5.4 Subsonic Exhaust Conditions, 3000 iterations at CFL = 0.98. 

In order to prevent excessive oscillations developing at the shock in this case, the 

second order damping factor is increased from a = 0.01 to a = 0.1. Unfortunately, 

this also damps oscillations at the exhaust boundary, making conclusions about the 

performance of the different boundary treatments less easy to draw. Additionally, the 

presence of a shock gives rise to some lightly damped oscillations in the subsonic part 

of the flow, further confusing the picture at the exhaust. The addition of this artificial 

dissipation tends to smear the shock over several grid points (in this case the shock is 

spread over five cells). Application of high resolution techniques, rather than the 

central differencing used here, could solve these problems, with the latest techniques 

having been shown to capture shocks with at most one interior point (Suresh and 

Liou, 1991). 

Table 5.4 gives Mach number data at the subsonic exhaust and Figure 5.10 

illustrates the convergence histories for the three types of boundary condition. From 

this, similar conclusions can be drawn as in the supersonic case. That is to say, the 

solution of the compatibility relations at the exhaust boundary is again the most 

successful technique, although the advantages are more marginal in this case. 

Particularly, both characteristic techniques yield similar degrees of oscillation and 

convergence rates, but the lower computational effort required to implement Eqs. 

(5.50) and (5.51) rather than Eqs. (5.55) and (5.56) give this technique the advantage. 

Figures 5.lla to 5.lld give the variation of the thermodynamic variables through 

the nozzle, compared with a perfect gas solution with the same stagnation conditions 

and shock location. Upstream of the shock, identical behaviour to the supersonic case 

is observed, as expected. However, the strength of the shock is influenced by the 

presence of internal gas modes, with the equilibrium shock being slightly weaker than 
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the perfect gas prediction. This is clearly seen in the Mach number plots, where Mach 

number ahead of the shock is less than the perfect gas prediction, and beyond the 

shock slightly greater. However, the effect is most noticeable in the temperature jump 

across the shock, where the equilibrium gas gives a jump of 98.5 K compared with 

116.9 K for the perfect gas between the same x locations (x = 0.69 and x = 0.74). 

The shock strength is weaker because the vibrational modes of the gas are capable of 

further excitation, and therefore less energy goes into increasing the temperature across 

the shock. 

5.6 HYPERSONIC EXPANSION NOZZLE. 

A more demanding test of the state equation model presented in chapter four is an 

hypersonic expansion nozzle. In this case, the gas is expanded from very high 

temperature reservoir conditions up to hypersonic Mach numbers. A nozzle geometry 

specified by Eq. (5.68) is again used, with throat and exhaust locations at x = 0.1 m 

and x = 1.0 m respectively, and radii of 5 mm and 182.7 mm at these points. The 

coefficients of Eq. (5.68) therefore become: 

co = -9.165 624 

c2 = 32.576 774 n,-2 

C1 = -5.923050 m- 1 

C3 = -19.743499 m-3 

This gives the nozzle geometry shown in Fig 5.12. 

The stagnation conditions for this test are chosen to give an expansion through a 

region of thermally imperfect gas behaviour, and no exhaust pressure is imposed, so 

no shock is present. The reservoir conditions are: 

pressure PO = 25.167 x 106 N m-2, 

density Po = 6.425 kg m-3, 

enthalpy hO = 25. 164 x 106 J kg-I, 

entropy s = 11310.0 J kg-1 K -1, 

temperature TO = 9434.8 K. 

The perfect gas solution used for comparison is generated with the same stagnation 

conditions, but with the molar mass of the gas held constant and equal to its stagnation 

value. Thus: 

molar mass M = 0.020 026 kg mol-I, 

specific gas constant R = 415.18 J kg-l K-l, 

ratio of specific heats y = 1.184 

Figures 5.13a to 5.13c illustrate the variation of Mach number, enthalpy and 

temperature through the nozzle for both perfect and equilibrium gas expansions. A 

Mollier chart solution is also presented to validate the equilibrium calculation. As for 
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the supersonic test cases presented in section 5.5, the most noticeable difference 

between perfect and equilibrium gas solutions is in the temperature prediction. The 

perfect gas model over-predicts the expansion, giving exhaust temperatures of 1 860 K 

compared to the equilibrium solution of 2 710 K. This over-prediction of temperature 

drop is in part caused by the incorrect modelling of internal energy modes, as was the 

case with the supersonic nozzle discussed earlier. At the stagnation condition for the 

equilibrium gas case, a significant proportion of the internal energy is stored by modes 

not present at lower temperatures, whereas for the perfect gas model, the same number 

of excited modes is present at all temperatures. The equivalent y for the perfect gas 

calculation has been chosen according to Eq. (5.69) to give the same stagnation 

enthalpy, pressure and density as in the equilibrium gas case, and the difference 

between the internal structures of the two gas models is evident only in the values of 

the thermodynamic derivatives at stagnation. Particularly, the value of K for the 

equilibrium model at stagnation, which should equate to (y - 1) in the absence of a 

complex internal structure, is lower than the value required to simulate the same 

conditions with a perfect gas: 0.135 as opposed to 0.184. The difference in the 

thermodynamic derivatives is a consequence of the distribution of internal energy 

among modes (notably electronic and vibrational) which have a complex temperature 

dependence in the equilibrium gas case. 

In addition to considering the effects of internal modes on the expansion of the 

gas, chemical changes must also be accounted for, since substantial internal energy 

exchanges occur because of the recombination of monatomic species. Figure 5.14a 

shows the calculated chemical distribution along the nozzle, and Figures 5.14b to 

S.14d give the variation of molar mass and derivatives X and K. The ability to 

compute this data illustrates an advantage of the present state equation modelling over 

the curve fitting techniques presented at the start of chapter four. From Figure 5.14a it 

is seen that nitrogen recombination is present throughout the high temperature regions 

of the nozzle, from inlet up to about x = 0.6, and oxygen recombination becomes 

significant from x = 0.5 onwards. A major chemical change within the gas is evident 

between x = 0.5 and x = 0.6. Furthermore, the variations of the thermodynamic 

derivatives exhibit turning points at x = 0.58, indicating that a change in the behaviour 

of the gas takes place around this point. These effects manifest themselves most 

clearly in the Mach number plots, where the equilibrium calculation is initially less than 

the perfect gas prediction, but displays a sudden steepening at the point where the 

derivatives X and K start increasing. Upwind of this point, nitrogen recombination is 

the dominant reaction from the thermodynamic point of view, and downwind oxygen 

recombination is more significant. Comparing the results in Figures S.13c and 5.14c 
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with the temperature dependence of K illustrated in Figure 5.4a shows that the peak 

value of K corresponds to the ridge separating oxygen and nitrogen dissociation 

reactions. 

The enthalpy plot (Figure 5.13b) shows the equilibrium calculation slightly lower 

than the perfect gas prediction, mainly because of the presence of the enthalpy of 

formation for the monatomic species in Eqs. (4.27) to (4.29) - despite the higher 

temperatures associated with the equilibrium calculation, some of the available 

enthalpy goes into dissociating diatomic species, and the static enthalpy of the gas 

remains lower than the perfect gas prediction. 
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Chapter Six 

NONEQUILIBRIUM THERMOCHEMICAL MODELLING 

Chapter four presented techniques for modelling the thennochemical state of air under 

equilibrium conditions. Chapter five discussed the implementation of these models 

within a computational algorithm for the solution of inviscid flow problems. 

Together, those chapters describe a successful and versatile method for solving 

chemically reacting, fully equilibrium air flow problems. However, while such 

techniques can provide more accurate and detailed solutions to high enthalpy flow 

problems than are possible using perfect gas theory, their applicability is limited. Most 

notably, the assumption that all the internal molecular modes remain in equilibrium 

must be questioned. 

Several important phenomena occur because the equilibrium assumption breaks 

down at an atomic level. Among the most significant of these effects are transport 

phenomena, which are a consequence of the excitation of rotational and translational 

energy modes during a collision process. They give rise to viscosity and heat 

conduction in a gas where momentum and temperature gradients exist, and mass 

diffusion where a chemical imbalance is present. Such nonequilibrium effects are 

accounted for within continuum derivations of the conservation equations by including 

shear stress and heat conduction terms within the model. State equation models must 

then be supplemented by suitable models for the viscous and heat transfer coefficients. 

Rotational and translational energy modes reach equilibrium within a very small 

number of collisions, under normal circumstances. For this reason, they are not of 

great significance unless there are strong gradients present in the flow, such as near 

solid surfaces or within shock waves and strong shear layers. Conversely, vibrational 

modes and chemical reactions require more significant numbers of collisions to adjust 

to equilibrium, and therefore may remain out of equilibrium, or even frozen. 

throughout large areas of the flow. The effects of chemical and vibrational relaxation 

are exaggerated by high flow speeds associated with hypersonic flight, and are of great 

significance where they impinge upon a body surface, where catalysis may give rise to 

unexpectedly high heat transfer rates. 

Aspects of the modelling of both transport and chemical nonequilibrium effects 

have been investigated and are presented in this chapter as topics for future research. 
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6.1 TRANSLATIONAL AND ROTATIONAL RELAXATION IN CHEMICAL 

EQUILIBRIUM. 

The random translational motion of gas molecules results in the diffusion of mass, 

momentum and energy along gradients in these properties. If the gas remains in 

chemical equilibrium, mass diffusion is continuously balanced by chemical reactions. 

This diffusional process is therefore of no consequence within a chemical equilibrium 

model, such as that presented in chapter four. Momentum diffusion, however, gives 

rise to shear stresses within the fluid, which in turn necessitate the inclusion of a 

viscous coefficient in the continuum derivation of the Navier-Stokes equations. 

Similarly, heat conduction terms arising from the diffusion of energy appear in the 

energy conservation equation through the inclusion of a coefficient of thermal 

conductivity. These two coefficients must be correctly modelled if translational 

nonequilibrium effects are to be represented. 

The relaxation times associated with the translational and rotational excitation of 

diatomic gases at moderate temperatures are of the same order, with rotational 

excitation being slightly slower. The effects of rotational and translational relaxation 

are therefore almost indistinguishable. However, on a microscopic scale, the 

difference between the two relaxation times can become important, with rotational 

energy modes of the molecules requiring several more collisions to reach local 

equilibrium than translational modes. In this case, an additional coefficient, the bulk 

viscosity coefficient ~B, must be introduced. Bulk viscosity is significant in analysing 

problems such as the structure of strong shocks at elevated temperatures in diatomic 

gas mixtures. The interest in this research has been in developing a model suitable for 

solving problems on the scale of space craft and artificial satellites at low Knudsen 

numbers, where the internal structure of flow features such as shock waves is of 

relatively low importance. Bulk viscosity effects are therefore neglected, and the 

Stokes relation: 

3A+2~=O 

is assumed to hold throughout the flow field, where: 

2 
A = ~B -"3 ~ . 

(6.1) 

(6.2) 

To represent the effects of translational and rotational nonequilibrium under the above 

assumptions, it is thus only necessary to develop models of the transport coefficients 

for momentum and energy. 
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6.2 CURVE FITS FOR THE TRANSPORT COEFFICIENTS. 

The transport coefficients for a gas in chemical and vibrational equilibrium are 

functions only of the thermochemical state of the gas. Since the state of the gas can be 

fully defined by a set of curve fits in any two state variables, it follows that the 

transport coefficients can equally well be so defined. Providing the curve fits 

representing these coefficients are based on the same physical model as those 

representing the state equations, a consistent set of equations can be defined relating all 

the required variables in the conservation equations. Such an approach has been taken 

by Srinivasan et a1. (1987b) to provide curve fits suitable for use with CFD 

applications. These curve fits are based on the Grabau transition functions discussed 

in section 4.1, and take the form: 

and: 

where: 

11/110 = <PI (y,z) + <P2(y,Z) - <PI (y,z) 
1 ± exp(<P3(y,Z» 

k/kO = '1'1 (y,z) + 'l'2(y,Z) - '1'1 (y ,z) 
1 ±exp('I'3(Y,Z», 

y = 10gIO(p/PO) 

Z = 10gIO(e/eo). 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

The interpolation and transition functions <P and 'I' are based on bicubic expressions 

similar in fonn to Eqs. (4.21) to (4.26): 

<P 1 (y,z) = CJ + c2z + C3Y + C4yz + csz2 + c6y2 + C7z2y + 

c8zy2 + C9z3 + cIOy3 

<P2(y,Z) - <PI (y,z) = CII + CJ2Z + CI3Y + CI4YZ + CJSz2 + CJ6y2 + C17Z2y + 

CJ8zy2 + CJ9z3 + c20y3 

<P3(y,Z) = C21 + C22Y + C23Z + C24YZ 

'1'1 (y,z) = dl + d2Z + d3Y + d4yz + dsz2 + d6y2 + d7z2y + 

dszy2 + d9Z3 + d I Oy3 

'l'2(y,Z) - 'l'I(Y,Z) = dll + dl2Z + d13Y + dl4YZ + dIsz2 + dl6y2 + d17Z2y + 

dlszy2 + dl9Z3 + d20y3 
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(6.8) 

(6.9) 

(6.10) 

(6.11 ) 



'V3(y,Z) = d2I + d22Y + d23Z + d24YZ . (6.12) 

Table A3.5 in appendix three presents data for the coefficients CI to C24 and 

coefficients dl to d24 appear in Table A3.6. The functional forms of Eqs. (6.3) and 

(6.4) are illustrated in Figures 6.1 and 6.2 respectively. From Figure 6.1 it can be 

seen that the viscosity coefficient increases monotonically with respect to internal 

energy, until about 78.0 x 106 J kg-I, at which point ionization causes the sudden 

appearance of large numbers of low mass particles and a consequent decrease in the 

diffusion of momentum. The simplicity of the form of these curves leads to an 

accurate representation of the viscosity coefficient using a minimal number of separate 

curves. The same is not true of the coefficient of thermal conductivity shown in 

Figure 6.2. Chemical changes within the gas cause fluctuations in the value of this 

coefficient over ratios more than ten times as great as for the coefficient of viscosity. 

A large number of separate curves is therefore required to represent the variation of 

this parameter. 

The advantages and disadvantages of using curve fit models for the state equations 

were discussed in section 4.1. Similar arguments apply to modelling the transport 

coefficients this way, although it is less important to have smooth and continuous 

curves throughout the required range, because derivatives of these curves with respect 

to the independent variables are not required. 

6.3 TRANSPORT COEFFICIENTS OF THE COMPONENT SPECIES. 

If a gas remains everywhere in chemical and vibrational equilibrium, its 

thermochemical properties can be expressed, in principle, as functions of any two state 

variables. For this reason, curve fits such as those presented in sections 4.2 and 6.2 

can provide efficient methods for calculating mixture properties. However, if 

additional degrees of freedom are built into the gas model, such as vibrational 

relaxation or chemical nonequilibrium, the number of independent variables required to 

fix the state of the gas increases. The complexity of any curve fit required to represent 

the transport properties of such a gas then outweighs any advantage gained from the 

technique. Physically based methods must then be applied to provide the required 

versatility. The first step in any such method is to compute the transport properties of 

the component species, and the following sections outline how this problem may be 

approached. 
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Species alli blli clli 

02 0.0449290 -0.082615 8 -11.504 533 

N2 0.0268142 0.3l7 783 8 -13.618 136 

0 0.0208144 0.4294404 -13.905 725 

NO 0.043637 8 -0.033 551 1 -11.879 328 

N 0.011 557 2 0.603 1679 -14.735 335 

Table 6.1 Curve Fit Coefficients for Species Viscosities. 

6.3-a Curve Fitting Methods. 

The results of molecular theory (Hirschfelder et al., 1954) show that viscosities and 

conductivities of pure gases at low pressures are functions only of temperature. It is 

therefore possible to use curve fits in one variable to determine these coefficients, in 

the same fashion as for the species thermodynamic properties in section 4.4. Such a 

technique is has been adopted by Blottner et al. (1971) and has been applied within 

CFD codes by Bhutta et al. (1985), Prabhu et al. (1987a and 1987b) and Bhutta and 

Lewis (1988). Similar curve fits for the species transport coefficients have been 

employed by Shuen (1992). 

The Blottner et al. curve fits for the species viscosities take the form: 

clli T(alli In T + bll i) Ili = e , (6.l3 ) 

where: Ili = coefficient of viscosity for species i in kg m- 1 s-l 

alli } 
blli = curve fitting constants given in Table 6.1. 

clli 

Figure 6.3b illustrates the species viscosity variation with temperature described by 

this equation. The Eucken relation is then used to compute the species thermal 

conductivities: 

where: 

ki=-A -A + 2.5 , Ili (CYi f 
Mj R 

kj = coefficient of thermal conductivity in J m- 1 s-l K-l 

Mj = molar mass in kg mol-1 

Cyj = molar heat at constant volume in J mol- 1 K-l. 
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More accurate methods for calculating the species conductivities are discussed in 

section 6.3-c. Figure 6.4b illustrates the variation of species conductivities with 

temperature according to Eq. (6.14). 

6.3-b Theoretical Techniques for Viscosity. 

A rigorous application of kinetic theory to the calculation of viscosity leads to the 

expression: 

where: 

Ili = 2.6693 x 10-6 {ITlif 
(Jj2 0(2,2) 

mi = molecular weight in unified mass units 

T = temperature in K 

(Ji = collision cross section in A 
0(2,2)* = reduced collision integral. 

(6.15) 

The above expression is only a first approximation to the viscosity of a pure gas, but is 

shown by Hirschfelder et al. to provide close agreement with higher order 

approximations. 

The reduced collision integral is a dimensionless function of reduced temperature 

T*, and may be evaluated either from tabulated data, in the form of a look up table, or 

approximated by the expression: 

0(2,2)* = 1.0 

0.697 (1.0 + 0.323 In T*) . 
(6.16) 

Comparisons between tabulated data and Eq. (6.16) are provided in Figure 6.5, from 

which it can be seen that some improvement in accuracy may be gained by developing 

a better curve fit than Eq. (6.16). 

The reduced temperature is given by: 

Species (J (A) £o/k (K) m (u) 

Ch 3.467 106.7 3l.999 

N2 . 3.798 7l.4 28.013 

0 3.050 106.7 15.9995 

NO 3.492 116.7 30.006 

N 3.298 71.4 14.0065 

Ar 3.542 93.3 39.948 

Table 6.2 Lennard-lones (6-12) Potential Parameters for the Six Species Air Model. 
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* kT T = 
EOi 

(6.17) 

where k is the Boltzmann constant. The above expressions are based on the Lennard

Jones (6-12) model representing the potential energy of two interacting particles. The 

parameters associated with this potential, 0' and £0, are taken from Svehla (1962) and 

given in Table 6.2, together with the species molecular weights. Figure 6.3a 

illustrates the variation of species viscosity based on Eq.(6.15) with the data given in 

Table 6.2. Comparing this result with Figures 6.3b highlights some differences in the 

two sets of data on which these plots are based. It is likely that the estimation 

techniques used by Svehla for the monatomic species data are less accurate than the 

information on which the curve fits are based, although further investigation into the 

original data sources for the curve fits is required in order to establish this. 

6.3-c Theoretical Techniques for Thermal Conductivity. 

Thermal conductivities are more difficult to estimate accurately than viscosities, mainly 

because of the numerous mechanisms available for exchanging energy between 

particles. For monatomic gases, rigorous kinetic theory, again based on the Lennard

Jones (6-12) potential, leads to the expression: 

kiMi = 2.5 CVi . (6.18) 
Ili 

This expression is valid where the only energy storage mode is translational. In the 

case of the diatomic species, a further extension of this equation is required. Several 

correlations have been proposed of the fom1: 

~ 

kiMi - f Clf + fint Cint . - - If 

Ili 
(6.19) 

Of these, the most popular is the Eucken relation, Eq. (6.14). Reid and Sherwood 

(1966) describe additional empirically based models in this form, notably the modified 

Eucken model, the Stiel and Thodos model and the Brokaw model. However, none of 

these techniques are entirely satisfactory for diatomic gases over wide temperature 

ranges, in which case the Bromley model provides a greater accuracy. With this 

Species Tc (K) 

~ 154.8 

N2 126.2 

NO 180.0 

Table 6.3 Critical Temperatures for the Diatomic Species. 
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model, thennal conductivity is calculated from the expression: 

where: 

kiMi = 1.30 CYi+ (l.75 _ °T·
3

.
5)R , 

~i n 

Tri = reduced temperature Tffci 

TCi = critical temperature in K. 

(6.20) 

The species specific heats appearing in Eqs. (6.18) and (6.20) may be calculated using 

the techniques of section 4.4. Critical temperatures for the three diatomic species are 

given in Table 6.3. 

Figure 6.4a illustrates the application of Eq. (6.20). There is not good agreement 

between this data and the equivalent curve fit data in Figure 6.4b, primarily because of 

the differences between the viscosity calculations for the two techniques. Again, 

further investigation of the original data sources for the curve fit data are required 

before any conclusion can be drawn about the accuracy of either technique. 

6.4 TRANSPORT COEFFICIENTS OF THE GAS MIXTURE. 

Rigorous kinetic theory derivations of the transport coefficients for gas mixtures lead 

to an expression involving the determinants of matrices with elements dependent on 

the species properties, concentrations and various collision integrals. The resulting 

expression is complex and unwieldy, and not well suited to repeated evaluations 

within a CPD code. However, various estimation techniques have been developed 

which greatly simplify the problem, without introducing unacceptable approximations. 

6.4-a Estimation of Mixture Viscosity. 

The rigorous equation for mixture viscosities can be written in an approximate series 

form, and, by neglecting second order tenns, reduced to: 

where: 

n 

~=I ~i 
n 

i=l 1 + L Ih .. ~ 
'Y1J X' 

j=l 1 

ji"'i 

~ = mixture viscosity in kg m- 1 s-l 

Xi = species mole fractions 

<Pij = viscosity parameter. 

(6.21 ) 

The accuracy of Eq (6.21) hinges on the expressions chosen to represent the viscosity 

parameter. Again, the equations for this parameter developed directly from kinetic 
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theory are too unwieldy for repeated use in CFD codes, since they rely on the 

evaluation of viscous and diffusion collision integrals and binary diffusion coefficients 

for each pair of species. The evaluation of Eq. (6.21) may be made more efficient if 

the Wilke estimation method for the viscosity parameter is employed. In this case <!>ij 

is given by: 

2 

[ 
1/2 1/4 ] 

1 + (lli/Ilj) (MjlMi) 
<!>u= 1~ 

-{8 [ 1 + (M/Mj) ] 

(6.22) 

<!>ji = (Il/Ilj) (MjlMi) <!>ij . (6.23) 

Since the species viscosities have been previously calculated, Eqs. (6.22) and (6.23) 

are easy to evaluate even for complex gas mixtures. 

Mixture viscosity calculations are illustrated in Figure 6.6, based on the species 

curve fit data of Blottner et al. and the Wilke mixing formula. Excellent agreement can 

be observed with the curve fit data in Figure 6.1, up to energies of 25 x 106 J kg-l. 

Above these energy levels, ionization becomes significant and the two gas models on 

which Figures 6.1 and 6.6 are based are no longer equivalent. 

6.4-b Estimation of Mixture Thermal Conductivity. 

Several techniques are available for estimating mixture conductivities based on 

expressions similar in form to Eq. (6.21). The most significant of these are discussed 

by Reid and Sherwood, who establish that the method developed by Cheung, Bromley 

and Wilke is most suitable for calculating the thermal conductivities of mixtures of 

monatomic gases with linear, non polar polyatomic gases. Since the gas model 

considered here consists of monatomic and diatomic, non polar species, this is the 

technique adopted. In this case, the conductivities of the pure components are broken 

into two parts, defined by: 

ki 

ki ki ~{ 
1.0 + 0.35 (cv/R - 1.0) 

kt* = ki - kt. 

monatomic species 

diatomic species 

The mixture conductivity is then computed from the Wassiljewa expansion: 
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n kt 
k = L n ~ ~) 1/8 .. ~ 

i=l 1 + L (MijMi <PIJ Xi 
j=l 

n k** ~ 1 __ -

+ L.J n .. ~ 
i=l + L <PIJ xi 

j=l 

(6.26) 

J;ei j;ei 

where: 
1 ~ ~ 

Mij = 2: (Mi + Mj). (6.27) 

Using the Wassiljewa expansion to compute mixture conductivity has the additional 

advantage in that the parameters <Pij are already known from Eqs. (6.22) and (6.23) 

used in the computation of the mixture viscosity. 

6.5 RECOMMENDATIONS ON THE CALCULATION OF THE TRANSPORT 

COEFFICIENTS. 

For chemical equilibrium problems, most authors appear to prefer curve fits or look up 

tables directly for the transport properties of the gas mixture. For example, Thareja et 

al. (1983) implement simple curve fits for viscosity and neglect the pressure 

dependence of Prandtl number, expressing it only as a function of enthalpy so that: 

k=~ 
Pr(h) . 

(6.28) 

The simplicity of their curve fits is unfortunately outweighed by their limited accuracy 

and validity. Prabhu and Tannehill (1986) also use curve fitting techniques and 

Tannehill et al. (1988) use the curve fits of Srinivasan et al. (1987b), as detailed in 

section 6.2. 

The advantages of using physically based models for chemical equilibrium state 

equations, in terms of providing additional information about the flow, do not apply to 

such models for the transport coefficients. The fast execution of the curve fits 

therefore make this approach very attractive. However, the data presented in section 

6.2 are based on a nine species air model, including ionization, and are therefore 

inconsistent with the six species air model developed in chapter four. The importance 

of this inconsistency is not likely to be significant at low temperatures, where little 

ionization is evident. However, at elevated temperatures the reduced viscosities and 

increased conductivities associated with ionization will produce inaccurate estimates of 

heat transfer rate and skin friction at solid surfaces. The most efficient technique 

consistent with the model developed in chapter four is therefore to use curve fits for 

species transport properties and use the estimation techniques of Wilke and Cheung et 

al. to compute mixture properties. 
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When considering extension to chemical or vibrational nonequilibrium, curve 

fitting for mixture properties is no longer a practical proposition. In this case, the most 

popular approach is to use species property curve fits such as those discussed in 

section 6.3-a, and one of the several mixture property estimation techniques available. 

6.6 CHEMICAL NONEQUILIBRIUM. 

Chemical and vibrational nonequilibrium phenomena have longer relaxation times than 

either translational or rotational processes, and are therefore treated somewhat 

differently. Vibrationally relaxing models have not been examined in the course of this 

work, but aspects of chemical relaxation have, and are therefore discussed here. 

6.6-a Additional Chemical Reactions. 

Park (1985) discusses an eleven species argon free air model, including ionization. 

This model includes thirty-three dissociation reactions, nine exchange reactions and 

five ionization reactions, and is therefore quite comprehensive, despite neglecting the 

presence of argon. The work presented here has neglected ionization on the 

understanding that care should be taken when assessing the accuracy of high 

temperature applications. Conversely, the inclusion of argon in the current model 

slightly improves the realism of low temperature solutions. In developing a chemically 

relaxing model consistent with the equilibrium model already presented, the Park 

model may be simplified and the reactions described by Eqs. (4.27) to (4.29) 

supplemented by the exchange reactions: 

NO+O H N+02 t.eRO = 133.364 kJ mol- I (6.29) 

N2 +0 H N + NO t.eRO = 314.706 kJ mol- I (6.30) 

and the dissociation reactions: 

NO+X H N +O+X t.eRO = 626.930 kJ mol-I. (6.31) 

The dissociation reaction Eqs. (4.27) (4.29) and (6.31) each represent a set of six 

reactions with different catalytic bodies, and the overall model therefore represents a 

set of twenty one reactions. 

The equilibrium constants for reaction Eqs. (4.27) to (4.29) have been described in 

section 4.5. For the above reactions, these constants may be computed from the 

equations: 
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K4 ~ T1]l1s = (~f' 
113114 KIK2 

(6.32) 

KS = 114115 ~ (K2
K

3 f' 
112113 K} 

(6.33) 

K6 ~ Tl3
Tl

S ~ (
K1K

3 f' 
114 IS 

(6.34) 

Rakich et al. (1983) and Park (1985) use low order polynomial fits directly for the 

equilibrium coefficients in their models. Extending the Prabhu and Erickson method 

discussed in section 4.4-b to compute the equilibrium coefficients in Eqs. (4.47) to 

(4.49) and (6.32) to (6.34) should provide a more accurate and versatile technique, 

giving more detailed thermodynamic information at little additional computational 

expense. 

6.6-b Modelling the Production Terms. 

The species concentrations in a chemically relaxing gas are computed from the mass 

conservation equations discussed in chapter two. These relations require knowledge 

of the production rates for the six component gases. The production rates are in turn 

dependent on the forward and reverse reaction rates associated with the twenty one 

reactions. The forward reaction rates can be computed from the modified Arrhenius 

equation: 

kr = C TTlrr -9r/f 
r rr e r=1,21 

and reverse reaction rates follow from the known equilibrium constants: 

kr 
k =_r r=121. 

br K ' 
r 

(6.35) 

(6.36) 

Table 6.4 summarizes the experimental data required to evaluate these rate constants. 

The production rates required in Eqs. (2.13) are now given by: 

cDs = L, (v~'r - v ~Jkrr n (plls)Vsr - _1 n (plls)Vsr 26 { 6 I 6 "} 

r=l s=l Krs=l 
(6.37) 

where the v~r and v~~ are the stoichiometric coefficients for each species s appearing on 

the left and right sides respectively of each reaction r: 
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r Reaction K Cf llf Sf ref. 

1 2ChH20+02 Eq. (4.47) 2.750x1019 -1.0 59500 c. 

2 02+ N2 H 20 + N2 " 2.750x1019 " " c. 

3 Ch+OH30 " 8.250x 1 019 " " c. 

4 02+ NOH 20+ NO " 2.750xl019 " " c. 

5 02+N H20+ N " 8.250xl019 " " c. 

6 Ch+ Ar H 20 + Ar " 3.628x1018 " " a. 

7 N2 + 02 H 2N + 02 Eq. (4.49) 3.700xl021 -1.6 113 200 c. ! 

8 2N2+ H 2N + N2 " 3.700x1021 " " c. 

9 N2+0 H2N +0 " 1.11Oxl022 " " c. 

10 N2+ NO H 2N + NO " 3.700x 1 021 " " c. 

11 N2+ N H 3N " 1.11 Ox 1 022 " " c. 

12 N2+ Ar H 2N + Ar " 1.924x 1 017 -0.5 " a. 

i 

13 NO + Ch H N + 0 + 02 Eq. (6.32) 2.300x 1 017 -0.5 75500 c. I 

14 NO + N2 H N + 0 + N2 " 2.300x 1017 " " 

15 NO+OHN+20 " 4.600xlO17 " " 

16 2NO+ H N +0 +NO " 2.300x1017 " " 

17 NO+N H 2N +0 " 4.600xlO17 " " 

18 NO + Ar H N + 0 + Ar " 3.990xl02O -1.5 " 

19 N2+02H2NO Eq. (4.48) 4.600xl024 -2.5 64600 

20 NO +OH N +02 Eq. (6.30) 2. 160x108 1.290 19220 

21 N2+0H N +NO Eq. (6.31) 3.180xl013 0.1 37700 

Table 6.4 Forward Rate Constants for the Twenty One Reaction Air Model. 

a. Wray (1962), b. Vincenti & Kruger (1965), c. Park (1985). 

6 6 

c. 

c. 

c. 

c. 

a. 

b .. 

c. I 

c. I 

2:v~r Xs H 2:v~~ XS· (6.38) 
5=1 5=1 

Two problems can be identified when computing species mole fractions from the 

above expressions. Firstly, the equilibrium constant K may tend to zero in some 

circumstances. From Eq (6.37), this will result in an infinite production rate. In such 

a case, the species mass conservation equations are redundant, and the concentrations 

may be computed using the equilibrium techniques of chapters four and five. A 

similar problem arises when the production rates are close to zero. This represents 

frozen flow, where again the species conservation equations are redundant. 
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The numerical problems associated with areas of equilibrium or frozen flow 

embedded in an otherwise nonequilibrium flow are not insubstantial. Further research 

is required in this area, in order to establish the viability of using Eq. (6.37) directly in 

the form given. One solution to this problem is to rewrite Eq. (6.37) in terms of the 

backward rate constant, using Eq. (6.36). Curve fits for both forward and backward 

rate constants in a modified Arrhenius form can then be used, so avoiding numerical 

overflow errors (Prabhu et aI., 1987a). 

The second problem linked to the species mass conservation equations is 

associated with cumulative numerical errors. In order to conserve mass globally, one 

species conservation equation must be dropped and the respective concentration found 

from the global continuity equation. However, if the species dropped is not a 

dominant one, numerical errors can force its concentration to become negative. This 

problem is exaggerated for inviscid flows, where nuclear conservation must also be 

satisfied. The solution to this problem is fully discussed by Park (1985 and 1990). 

6.7 SOLUTION TECHNIQUES FOR THE CHEMICAL NONEQUILIBRIUM 

EQUATIONS. 

A number of techniques have been developed for integrating the equations of motion 

for finite rate chemically reacting flows. The most logical of these rely on 

simultaneously integrating the conservation equations for the fluid and chemical 

variables. Many of the schemes available for integrating viscous and inviscid perfect 

gas equations can be extended to solve chemical relaxation problems if this approach is 

adopted. This technique is favoured by Prabhu at al (1987a and 1987b) and Shuen 

(1992). However, the numerous unknowns associated with any but the simplest air 

model and the restrictive time step imposed by stiff chemical equations can render this 

approach impractical (Bhutta and Lewis, 1988). 

Fortunately in many problems the coupling between the fluid variables and 

chemical variables is not strong, and some form of loosely coupled integrating scheme 

can be devised (Park, 1990). In this case, the overall problem is broken into two 

parts: a fluid mechanics problem and a chemistry problem. These two problems are 

then solved separately but iteratively, thereby greatly reducing the complexity of the 

algorithms required. Furthermore, existing perfect gas integration schemes can be 

modified to deal with the fluid mechanics problem with less effort than if the chemical 

equations are solved simultaneously. Loosely coupled integration schemes are 

favoured by many authors, notably Rakich et al. (1983), Bhutta et al. (1985), Sinha et 

al. (1987), York et al. (1988) and Bhutta and Lewis (1988). 
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Chapter Seven 

CONCLUSIONS AND FUTURE RESEARCH 

Chapters four and five presented the development and implementation of a state 

equation model for equilibrium air. Chapter six continued by discussing the 

techniques available for modelling the transport coefficients for air. This chapter 

completes the dissertation by drawing conclusions from previous results and putting 

forward recommendations for future research. 

7.1 CONCLUSIONS. 

The conclusions drawn from this research can be summarized as follows. 

7.1-a Curve Fitting Techniques for Equilibrium Mixture Properties. 

Curve fitting techniques are the easiest equilibrium gas models to implement within the 

CFD environment. They require little understanding of the basic physics of high 

temperature air, and they do not require the computation of the chemical composition 

of air. They are therefore the fastest techniques for calculating the equilibrium state of 

air, providing few state variables are required. Curve fits can be formulated directly in 

terms of either conserved or primitive variables, thereby precluding the need for any 

inversion of the state equations. 

The lack of a physical foundation for these techniques can, however, be 

considered a disadvantage. Separate curves are necessary for each different 

thermodynamic variable required during the solution of the equations of motion, and 

the computing time when several such variables are required becomes excessive. 

Furthermore, it is not possible to form one continuous curve throughout the necessary 

temperature range. While careful choice of coefficients can to a large extent preserve 

continuity in any thermodynamic variable across boundaries between curves, 

thermodynamic derivatives inevitably exhibit discontinuous behaviour. Some degree 

of accuracy must therefore be sacrificed if parameters such as sonic speed, specific 

heats or derivatives X and K are to be evaluated from curve fit data for the basic 

thermodynamic properties. 
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7.1-b Physically Based Techniques for the Equilibrium Mixture 

Properties. 

The technique developed in chapter four for computing the mixture properties provides 

improved versatility over any curve fitting method. In particular, the gas composition 

can easily be varied to represent different proportions of oxygen and nitrogen in the 

upper reaches of the stratosphere. Furthermore, the technique may be extended to 

include additional species, or to model ionization, with a minimal amount of work. As 

this technique relies on computing the chemical composition of the gas, very little extra 

calculation is required for additional state variables. The smoothness provided by 

using physically based techniques is greatly improved over any curve fitting method, 

and is particularly evident in sonic speed calculations. 

The greatest disadvantage of physically based techniques is the need to use 

temperature as a fundamental variable. This does not fit in well with numerical 

algorithms for solving the equations of motion, which require the state variables either 

as functions of density and internal energy, or of density and pressure. Iterative 

schemes for computing temperature as a function of density and internal energy have 

therefore been investigated and it is concluded that Newton-Raphson schemes provide 

the best compromise between convergence rate and computation time. 

The additional information provided by physically based techniques, particularly 

the data on the chemical composition of air, is not always needed directly by 

algorithms for solving the flow equations. Therefore if time accuracy is not required 

during the solution process, these techniques are unnecessarily slow when iterating to 

reach a steady state. 

7.I-c Transport Coefficients. 

For equilibrium calculations, transport coefficients must be calculated using curve fit 

data unless the chemical composition and species specific heats are known. However, 

if chemical data are available from a physically based state equation model, it is more 

efficient to combine this with an empirically based mixing rule such as the Wilke 

estimation method discussed in section 6.4. It is noted that species viscosities can be 

more quickly evaluated using curve fits, rather than relying on complex theoretical 

expressions. 

In the case of chemical nonequilibrium calculations, mixing rules must be used 

because the composition of the gas is no longer a unique function of two state 

variables. 
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7.1-d Recommendations. 

For steady state calculations derived using a time dependent approach, it is observed 

that computational speed is initially of greater importance than accuracy of the state 

equation model. Curve fitting techniques are therefore preferred in the initial stages of 

the solution process, and a switch to using physical methods made once the solution 

has almost converged. Furthermore, it is recommended that a converged perfect gas 

solution should be used as the initial condition for an equilibrium solution, in an effort 

to further reduce the required computing times. 

It has been found that species property curve fits can provide a better compromise 

between accuracy and speed than equivalent expressions developed from molecular 

theories. For the air state calculations considered here, there is no sacrifice of 

versatility made by the adoption of this approach. It is therefore recommended that 

any extension of the techniques presented here should be made using such curve fits. 

For time accurate solutions, it is desirable to always use physically based 

equilibrium models in order to provide the required accuracy, particularly for sonic 

speed calculations. Such an approach also provides more data at each time step and 

therefore facilitates more detailed analysis of the results. 

Curve fitting for mixture properties becomes impractical for chemical 

nonequilibrium problems. It is envisaged that the most appropriate technique in this 

case is to again use species property curve fits and combine these using the results of 

section 4.8, with the chemical compositions computed from the solutions of 

production rate equations. 

7.2 FUTURE RESEARCH. 

Future research in the field of hypersonic aerodynamics can be divided broadly into 

two categories; physical aspects and numerical aspects. 

7.2-a Physical Aspects. 

The most immediate extension of the work presented here is the implementation of the 

viscosity and thermal conductivity models within a CFD code. The state equation 

model discussed in chapters four and five can be included directly within a solution 

algorithm for the viscous equations, along with the transport coefficient models 

discussed in chapter six. However, the one dimensional nozzle problem is not well 

suited to testing viscous models, and more representative test problems should be 

designed, such as locally conical or parabolized Navier-Stokes problems or two 
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dimensional full Navier-Stokes problems. These test cases introduce additional 

complications with generating grids and performing grid transformations before 

solving the equations of motion. 

A second straightforward expansion of this work is to extend the equilibrium 

routines to include ionization at high temperatures. 

Some preliminary work has been laid down regarding the development of 

algorithms for the solution of chemical nonequilibrium problems. Further research is 

required in this area, particularly in establishing the best methods for modelling the 

production rate terms appearing in the equations of motion and in overcoming the 

stiffness problems associated with fast reactions. For inviscid chemical 

non equilibrium problems, the one dimensional nozzle problem is an ideal test case, 

because equilibrium, frozen and nonequilibrium chemistry can be identified at various 

points along a subsonic-supersonic expansion nozzle. In addition, stationary 

discontinuities can be set up within the nozzle to demonstrate the ability of numerical 

algorithms to cope with the relaxation zone behind a shock. 

Two aspects of nonequilibrium research which have not been addressed within this 

dissertation are vibrationally relaxing flows, where the internal energy of the individual 

species is considered to be out of equilibrium, and viscous chemically relaxing flows. 

In modelling vibrational relaxation, a unique temperature for the gas cannot be 

identified, and an additional thermodynamic variable, the vibrational temperature, must 

therefore be introduced. In order to describe the behaviour of this temperature, an 

additional relaxation equation must be introduced. A further refinement of this model 

would be to separate the vibrational temperatures for all diatomic species in the mixture 

and treat each one independently. Such an approach, while providing a very high 

potential for the accurate physical representation of air, would require detailed 

information on the vibrational behaviour of the component species. 

Modelling viscous chemically relaxing flows introduces the requirement for mass 

diffusion coefficients for the species present in the mixture. These may be evaluated 

using mixing rules similar to those for viscosity and conductivity. 

7.2·b Numerical Aspects. 

It was mentioned at the beginning of chapter five that the scheme used to discretize the 

equations of motion was chosen for its numerical simplicity. The trapezoidal time 

differencing used provides the implicit scheme required for stiff, nonequilibrium 

problems, but the central space differencing is not considered adequate to resolve the 

relaxation zones behind shock waves in nonequilibrium air. Close to shock waves, 

discretization errors tend to swamp any physical refinements made to the equations of 
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motion. Modern high resolution schemes, however, can potentially capture shock 

waves with only one interior point and it is therefore highly desirable that these should 

be extended to deal with both equilibrium air problems and chemically relaxing 

problems. 

Adaptive grid generation techniques are likely to be very useful in chemically 

relaxing flows, as grids can be refined in regions of high chemical activity, so 

improving the resolution of the solution and at the same time relieving some of the 

stiffness problems associated with fast reactions. 

The execution times associated with the numerical solution of both equilibrium and 

nonequilibrium equations of motion are considerably longer than those for equivalent 

perfect gas cases. Clearly, it is desirable to extend available acceleration techniques for 

perfect gas algorithms, such as multi-grid acceleration, to deal with real gas 

algorithms. 
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APPENDIX ONE 

The Jacobian matrix defined by Eq. (3.2) can be derived as follows. Writing the flux 

vector F in terms of the components of the solution vector U gives: 

where: 

F= 

m 

m2 
-+p 
p 

m(E+p) 
p 

m = pu 

E = £ + pu
2 

2 

The components of F can be differentiated to form the Jacobian: 

0 1 0 

(OP) _ m2 (OP) +2m (~~) 
~~ =1 

dP p2 dm p 
m,E p,E p,m 

m(oP) m m(oPV~2:Q m(oP) + m - - - (E+p)-
p dP p2 P dm p p dE P 

m,E p,E p,m 

(A 1.1) 

(A 1.2) 

(A1.3) 

(A 1.4) 

To evaluate the pressure derivatives in Eq. (A 1.4), the chain rule for differentiation is 

applied to the generic form of the state equation, such that: 

p = pep, £) (A 1.5) 

(~~) ~ (~~) + (~:) (:~) 
m,E £ p m,E 

(A1.6) 

(:~) ~ (~:) (::) 
p,E p p,E 

(A 1.7) 

(~~) ~ (~:) (::) (A 1.8) 

p,m p p,m 

Internal energy density can be expressed from Eq. (A 1.3) as: 
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E = E _ m
2 

2p 

from which the required internal energy derivatives become: 

(
i1E) m2 u2 

i1p = 2p2 =2 
m.E 

(::) = -; =-u 

p.E 

(::) = 1 
p.m 

Defining the pressure derivatives X and K as: 

x = (~:) 
E 

K = (~:) 
p 

gives: 

(
i1P) u2 
i1p = X + K2 

m.E 

(:~) = -UK 

p.E 

(:~) = K 

p.m 

(A 1.9) 

(A1.10) 

(A1.II) 

(A1.12) 

(A1.13) 

(A1.14) 

(A1.IS) 

(A1.16) 

(A1.17) 

Equation (A 1.4) can now be expressed fully in terms of the primitive variables as: 

0 0 

u2 
(2 - K) U 

A=I 
X-(2-K)T K 

(A1.18) 

u2 E+p u2 E+p u2 
(X+KT-p-T)u p+T-KU2 (1+K)U 

The total specific enthalpy is identified by the grouping: 
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APPENDIX TWO 

The exact equation for sonic speed derived from a generic thermal state equation in the 

form: 

p = (Y - 1) P e (A2.I) 

where: Y =Y(p, e) (A2.2) 

is given as follows. 

From the first and second laws of thermodynamics, the differential relationship 

between specific entropy, specific internal energy and mass density is: 

T ds = de - --%- dp. 
P 

The differential form of the state equation, Eq. (A2.I), is given by: 

dp = e (y . 1 + P (~a J dp + P (Y . 1 + e (~;) Jcte 

Combining Eqs. (A2.3) and (A2A) and noting that ~ =.1 ~ld gives: 
oX x a n X 

(A2.3) 

(A2A) 

P(Y'l+(a~e)JdS=dP.[e (Y'l+(al~Yp)} ~ (Y'l+(a~:e)JdP (A2.5) 

Acoustic propagation speed is given by the th ennod y nam ic den v ati ve (~:): w hie h 

can be written in terms ofy by setting ds in Eq (A2.S) to zero, representing a constant 

entropy process: 

(d
P

) = e (Y _ 1 + (~)) + £ (Y - 1 + (~)) 
dP dIn p p dIn e s c p . 

(A2.6) 

Finally, the state equation may be applied to Eq. (A2.6) to reproduce the result given 

in Srinivasan et al. (1987): 

cc
2 

= e [ (y . 1) ( f + (a~: e l ) + (al~Y p 11 (A2.7) 
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APPENDIX THREE 

This appendix contains the curve fit data used to represent the thermodynamic 

properties of both equilibrium air and the component species of air. The sources of 

these data are: 

Tables A3.1 and A3.2 

Tables A3.3 and A3.4 

Tables A3.5 and A3.6 

Table A3.7 

Notes: 

1) In Table A3.1, 

2) In Table A3.2, 

3) In Table A3.3, 

4) In Table A3.4, 

Tannehill and Mugge (1974). 

Srinivasan et al. (1987a). 

Srinivasan et al. (1987b). 

Prabhu and Erickson (1988). 

y = loglO(p/1.292) 

z = loglO(e/78 408.4). 

x = loglO(P/1.013 4 x 105) 

Y = loglO(p/1.225) 

z = x - y 

TO = 288.16 K 

For small z, T = p (p, e)/pR. 

y = loglO(p/l.292) 

Z = loglO(e/78 410.4). 

x = log 1O(P/1.0 13 25 x 105) 

Y = loglO(p/l.292) 

Z = x - Y 

TO = 273.15 K 

For small z, T = p (p, e)/pR. 

5) In Tables A3.5 and A3.6, y = loglO(p/1.243) 

Z = loglO(e/78 408.4) 

~O = 1.748583 x 10-5 kg m- l s-l 

ko = 1.879 15 x 10-2 J m- l s-l K-I. 

6) In all cases, dimensional variables are in S. 1. units (see nomenclature). 
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3.38 < z 

-8 A032700e+0 1 
-8.3176100e-01 
7 .2206604e+0 1 
4.9191397e-Ol 
1.152999ge-03 

-2.0355896e+01 
-7.0617020e-02 
1. 9097900e+00 
O. oooooOOe +00 
O. oooooOOe +00 
O.oooooOOe+OO 
O.oooooOOe+00 
O.oooooOOe+OO 
O.oooooOOe+00 
O.oooooOOe+00 
O.oooooOOe+OO 

6.5720000e-03 
1.8339600e-01 
-1.3596000e-0 1 



I ....... 
o 
\C 

I 

a1 
a2 
a3 
'l4 
as 
<l6 
a7 
ag 
a9 
alO 
a11 
al2 
a13 
a14 
alS 
a16 

Kl 
K2 
K3 

z ~ 0.65 0.65 < z ~ 1.54 1.54 < z ~ 2.22 2.22 < z ~ 2.9 2.9 < z 

1. 3999996e+00 1.4481297e+00 1.7315798e+00 1.5935001e+OO 1. 1268797e+00 
O.oooooOOe+OO 1.2920001e-03 3.901999ge-03 7 .532399ge-02 -2.5957000e-02 
O.oooooOOe+OO -7.3509991 e-02 -2. 7284598e-0 1 -1.7618603e-Ol 1.3602000e-02 
O.oooooOOe+OO -1 .94 7999ge-03 6.2370002e-03 -2.607199ge-02 1.3772000e-02 
O.OOOOOOOe+OO O.OOOOOOOe+OO 0.0000000e+00 O.ooooooOe+00 O.oooooOOe+OO 
O.oooooOOe+OO O.OOOOOOOe+OO O.ooooooOe+OO O.ooooooOe+OO O.OOOOOOOe+OO 
O. oooooOOe +00 O.OOOOOOOe+OO O.oooooOOe+OO O.ooooooOe+OO O. OOOOOOOe +00 
O.OOOOOOOe+OO O.OOOOOOOe+OO O.oooooOOe+OO O.ooooooOe+OO O.oooooOOe+OO 
O.OOOOOOOe+OO 5.4745000e-02 4.141899ge-02 -2.0083803e-01 -1.277369ge-0 1 
O.OOOOOOOe+OO -1.3705000e-02 3.7475001e-02 -5.8536001e-02 -8.7942004e-02 
O.OOOOOOOe+OO -5.5473000e-02 1.6984001e-02 9.9686980e-02 4.3104000e-02 
O.oooooOOe+OO 2.187399ge-02 -1.8038001e-02 2.528699ge-02 2.3547001e-02 
O.oooooOOe+OO -1. OOOOOOOe+O 1 -1.0000000e+Ol -1. oooooOOe+O 1 -2. OOOOOOOe +0 1 
O.oooooOOe+OO O.OOOOOOOe+OO 3.0000000e+00 5.0000000e+00 4.0000000e+OO 
O.oooooOOe+00 O.OOOOOOOe+OO -2.499999ge-02 O.ooooooOe+OO O.oooooOOe+00 
O.oooooOOe+OO -1.4200001 e+OO -2.0249996e+00 -2.6999998e+00 -3. 3000002e+OO 

O.oooooOOe+OO -1.9730000e-03 -1.3027000e-02 4. 3420000e-03 6.3480000e-03 
O.oooooOOe+OO 1.8523300e-Ol 7.4270000e-02 2. 1219200e-0 1 2.0971600e-0 1 
O.oooooOOe+OO -5.9952000e-02 1.2889000e-02 -1.2930000e-03 -6.00 1 OOOe-03 

Table A3.1 (continued) Sixteen Coefficient Curve Fits for p = pep, e): -4.5 < Y ~ -0.5 



, -
o , 

z ::; 0.65 0.65 < z ::; 1.68 1.68 < z ::; 2.46 2.46 < z 

al 1.3999996e+00 1.4551001e+00 1.5960798e+00 1.5436296e+00 
a2 O.OOOOOOOe+OO -1.0200001e-04 -4.2426001e-02 -4.907099ge-02 
a3 O.ooooooOe+OO -8. 1537008e-02 -1.9283998e-0 1 -1.5356201e-01 
Cl4 O.OOOOOOOe+OO 1.6600000e-04 2.9353000e-02 2.920899ge-02 
as O.oooooOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO 
Cl() O.OOOOOOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO 
a7 O.oooooOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO 
a8 O. ooooooOe +00 o .0OOOOOOe+00 O.OOOOOOOe+OO O.OOOOOOOe+OO 
a9 O.OOOOOOOe+OO 1.2864703e-Ol -1.9430000e-02 -3.2490700e-Ol 
alO O.ooooooOe+OO -4.9454000e-02 5.9540011e-03 -7.759898ge-02 
all O.oooooOOe+OO -1.0103601 e-Ol 2.6097000e-02 1.4240801e-01 
al2 O.OOOOOOOe+OO 3.351800le-02 -6. 1639994e-03 2.2071000e-02 
a13 O.ooooooOe+OO -1.5000000e +01 -1.5000000e+0 1 -1. ooooooOe+O 1 
al4 O.oooooOOe+OO O.OOOOOOOe+OO O. OOOOOOOe +00 o .0OOOOOOe+OO 
alS O.OOOOOOOe+OO O.OOOOOOOe+OO O.oooooOOe+OO O.OOOOOOOe+OO 
al6 O.oooooOOe+OO -1.4200001e+00 -2.0500002e+OO -2. 7080002e+00 

KI O.oooooOOe+OO 4.5000000e-04 -6.6609000e-03 -8.1000000e-05 
K2 O. oooooOOe +00 2.0389200e-0 1 1.27 63700e-0 1 2.26601 00e-0 1 
K3 O.ooooooOe+OO 1.0179700e-01 2.9703700e-01 1.7092200e-01 

Table A3.1 (concluded) Sixteen Coefficient Curve Fits for p = p(p, e): -0.5 < Y 



I 
~ 

~ 

I 

z S; 0.3 

bl See Note 2 
b2 
b3 
b4 
bs 
b6 
b7 
b8 
b9 

blO 
bll 
b12 
b13 
bl4 
blS 
b16 

0.3 < z S; 1.0 1.0 < z S; 1.35 1.35 < z S; 1.79 1.79 < z S; 2.47 2.47 < z 

2.71 79998e-0l 1.3992500e+OO I. 114009ge +00 1.0172195e+OO -4.5087097 e+O 1 
7.4000005e-04 1.6777998e-OI 2.220999ge-03 -I.7918002e-02 -9.0050402e+OO 
9.90I3603e-01 -1.4316797e-01 3.518750Ie-01 4. 7352302e-0 1 3.5868500e+0 I 
-4.9469993e-03 -1.592339ge-01 1.7246000e-02 2.5456000e-02 6.7922201 e+OO 
O.oooooOOe+OO O.OOOOOOOe+OO O. oooooOOe +00 o .0OOOOOOe+OO -6.776989ge+00 
O. oooooOOe +00 O.OOOOOOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO -6.47050I4e-02 
O. oooooOOe +00 O.OOOOOOOe+OO O.oooooOOe+OO O.OOOOOOOe+OO 2.5325000e-02 
O.OOOOOOOe+OO O.OOOOOOOe+OO O. OOOOOOOe +00 o .OOOOOOOe+OO -1.2736998e+OO 
9. 907 I 69ge-0 I -2.7947001 e-02 -1.I509895e+00 -2. 1 797800e+00 O.OOOOOOOe+OO 
1.7519403e-Ol -9.0761006e-02 -I. 7355502e-0 I -3.3471602e-01 O.OOOOOOOe+OO 
-9.8240697e-OI 3.0703598e-0 I 6.733419ge-Ol 8.9861900e-Ol O. OOOOOOOe +00 
-1.5923202e-0 1 1.2162101e-01 8.8398993e-02 1.2738597e-01 O. OOOOOOOe +00 
O. oooooOOe +00 O.OOOOOOOe+OO O.oooooOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO 
O. oooooOOe +00 O.OOOOOOOe+OO O.oooooOOe+00 O.OOOOOOOe+OO O.OOOOOOOe+OO 
-2.0000000e+0l -2. OOOOOOOe +0 1 -2.0000000e+Ol -2. ooooooOe+O 1 O.OOOOOOOe+OO 
-8.8000000e-01 -1. 170000le+OO -1.5600004e+OO -2.2200003e+00 O.oooooOOe+OO 

Table A3.2 Sixteen Coefficient Curve Fits for T = T(p, e): -7.0 S; Y S; -4.5 

. I 



I 

-" 

tv 
I 

bI 
b2 
b3 
b4 
b5 
b6 
b7 
bg 
b9 

bIO 
bll 
bI2 
bI3 
bI4 
bI5 
bI6 

z S 0.48 0.48 < z s 0.9165 0.9165 < z s 1.478 1.478 < z s 2.176 2.176 < z 

See Note 2 2.8431201e-Ol 5.02071 02e-0 1 1.0229397e+00 1.4754000e+00 
1.643999ge-03 -1.2990002e-02 2. 1535002e-02 1.2962002e-0 1 
9.8791200e-Ol 7.7481800e-Ol 4.2721200e-Ol 2.5415403e-0 1 

O.OOOOOOOe+OO 2.539699ge-02 6.9000013e-03 -4.6411000e-02 
O.OOOOOOOe+OO O. OOOOOOOe +00 O.oooooOOe+OO O.ooooooOe+00 
O.OOOOOOOe+OO O.OOOOOOOe+OO O.0000000e+00 O.ooooooOe+OO 
O.OOOOOOOe+OO O.OOOOOOOe+OO O.oooooOOe+00 O.ooooooOe+OO 
O.ooooooOe+OO O.OOOOOOOe+OO O.ooooooOe+OO O. ooooooOe +00 
O.OOOOOOOe+OO 9.9119991e-03 -4.2782301e-Ol -2.2122 902e-0 1 
O.ooooooOe+OO -1.5052700e-01 -2.1199101e-01 -5.7077002e-02 
O.OOOOOOOe+OO -3.8499990e-04 2.570959ge-0 1 1.5811598e-Ol 
O.ooooooOe+OO 1.057339ge-0 1 1.0119200e-Ol 3.0430000e-02 
O.ooooooOe+OO O.OOOOOOOe+OO O. ooooooOe +00 O. ooooooOe +00 
O.ooooooOe+OO O.OOOOOOOe+OO 0.0000000e+00 5.0000000e+00 
O.ooooooOe+OO -1.5000000e+0 1 -1.2000000e+0 1 O.ooooooOe+OO 
O.ooooooOe+OO -1.2799997 e+OO -1.777999ge+00 -2.3999996e+OO 

Table A3.2 (continued) Sixteen Coefficient Curve Fits for T = T(p, e): -4.5 < Y s -0.5 



z ::; 0.48 0.48 < z ::; 1.07 1.07 < z 

bI See Note 2 2.7926803e-0 1 2.332609ge-Ol 
b2 O. ooooooOe +00 -5.638299ge-02 
b3 9.9217200e-Ol 1.1978302e+00 
b4 O.ooooooOe+OO 6.3121021e-02 
bS O.ooooooOe+OO -1.659849ge-0 1 
b6 O.oooooOOe+OO O.OOOOOOOe+OO 
b7 O. ooooooOe +00 O.OOOOOOOe+OO 
b8 O.ooooooOe+OO O.OOOOOOOe+OO 

w b9 O.OOOOOOOe+OO -8.1453502e-0 1 , 
bIO O.ooooooOe+OO 9.9232972e-02 
bll O.oooooOOe+OO 6.023 8498e-0 1 
bI2 O.ooooooOe+OO -6.7427993e-02 
b13 O.OOOOOOOe+OO -9.3990982e-02 
bI4 O.ooooooOe+OO 5.0000000e+00 
bIS O.oooooOOe+OO -2.0000000e+Ol 
bI6 O.ooooooOe+OO -1.7799997e+OO 

Table A3.2 (concluded) Sixteen Coefficient Curve Fits for T = T(p, e): -0.5 < Y 



I 

-" 

~ 
I 

al 
a2 
a3 
(i4 

as 
36 
a7 
as 
a9 
alO 
all 
al2 
aI3 
a14 
alS 
a16 
a17 
alS 
a19 
a20 
a21 
a22 
a23 
a24 

SIgn 

z S 0.65 0.65 < z s 1.5 1.5 < z s 2.2 2.2 < z s 3.05 3.05 < z s 3.4 

1.3964996e+OO 1.5279198e+00 -1.7033295e+01 2.2437401e+00 -2.0807007e+Ol 
O.OOOOOOOe+OO -1.2695301e-02 -5.0854498e-Ol 1.0307300e-0 1 4.0197003e-Ol 
O.OOOOOOOe+OO -6. 135140le-Ol 2.4629898e+0 1 -5.3223801e-Ol 2.2591 003e+0 1 
O.OOOOOOOe+OO -5.082619ge-02 4.4561702e-Ol -5.5985201e-02 -2.5 660002e-0 1 
O.OOOOOOOe+OO -5.4938383e-03 -8.9529790e-03 3.564839ge-03 -9.5833000e-04 
o .0OOOOOOe+OO 6.3183498e-01 -1.1020400e+01 -4.8015598e-02 -7.7173996e+OO 
O.OOOOOOOe+OO 4.7512003e-05 2.2961800e-03 -1.013589ge-04 2.3966001e-03 
O.OOOOOOOe+00 3.3401 1 9ge-02 -9.8972678e-02 1.0679401e-02 4.6060000e-02 
O.OOOOOOOe+OO -3. 1846808e-04 -2.8918590e-04 1.5912700e-04 3.3670990e-04 
O.OOOOOOOe+OO -2. 199209ge-0 1 1.6290302e+00 3.660349ge-02 8.7800002e-0l 
O.OOOOOOOe+OO -4.9628601e+0l 1.8679703e+0 1 -5.7037802e+00 -2. 1737000e+02 
O.OOOOOOOe+00 -1. 1793200e+01 5 . 1966202e-0 1 -3.1005597e-Ol -4. 6927004e+OO 
O.OOOOOOOe+00 6.91 02798e+0 1 -2.4133804e+01 5.0109396e+OO 1.810099ge+02 
O.OOOOOOOe+OO 4.4040497e+01 -4.3483698e-0 1 1. 8041 09 8e-0 1 2.6620998e+OO 
O.OOOOOOOe+OO 5.0924902e+00 9. 1608912e-03 -9.4936118e-03 -3.4759000e-02 
O.OOOOOOOe+OO 1. 3730800e+01 1.0203500e+01 -1.4033098e+OO -5.0018997e+Ol 
O.OOOOOOOe+OO -1.4032602e+OO -1.5208200e-03 1.948389ge-03 6.4680986e-03 
O.OOOOOOOe+OO -1.7872604e+Ol 9.7076178e-02 -2. 797 1 800e-02 -3.8380998e-01 
O.OOOOOOOe+OO 2.0898801e-01 3.4648203e-04 -2.2490800e-04 -7.0390990e-04 
O.OOOOOOOe+OO -1.8694305e+0 1 -1.394599ge+OO 1.2027800e-01 4.5795002e+OO 
O.OOOOOOOe+OO 2.4604523e+01 -1.427619ge+02 1. 139754ge+02 4.5443726e+02 
O.OOOOOOOe+OO -2.0000000e+00 -1.6470881e+OO -4.9854670e+OO 1.2501330e+01 
O.OOOOOOOe+OO -2. 0930222e+0 1 7.660311ge+01 -4.2238327e+01 -1. 37600 1 0e+02 
O.OOOOOOOe+OO O. oooooOOe +00 8.259345ge-0 1 2.0097055e+00 -3.6417742e+OO 

+ - + + + 

Table A3.3 Twenty Four Coefficient Curve Fits for p = pep, e): -7.0 s y s -4.5 

3.4 < z 

-5.2295105e+Ol 
-4.0001100e-Ol 
4.5643906e+0 1 
2.2448403e-0 1 
-3.7377500e-03 
-1.2975600e+Ol 
2.431609ge-03 
-2. 795169ge-02 
2.2475500e-04 
1.2299805e+OO 
O.oooooOOe+OO 
O.oooooOOe+00 
O.OOOOOOOe+OO 
O.oooooOOe+OO 
O.oooooOOe+OO 
O.oooooOOe+OO 
O.oooooOOe+00 
O.oooooOOe+OO 
O.oooooOOe+00 
O.oooooOOe+OO 
O.oooooOOe+OO 
O.oooooOOe+OO 
O.oooooOOe+OO 
O.oooooOOe+OO 

+ 



z ~ 0.65 0.65 < z ~ 1.5 1.5 < z ~ 2.22 2.22 < z ~ 2.95 2.95 < z 

al 1.3979998e+00 1.3912296e+00 -1.2078400e+OO -2.2645998e+00 -1. 669039ge+0 1 
a2 O.oooooOOe+OO -4.0832087e-03 -2.5790900e-0 1 -7.8226328e-02 -2.5831801e-Ol 
a3 O. OOOOOOOe +00 1.425449ge-02 5.0230703e+00 4.9049702e+OO 1.7835007e+Ol 
<l4 O.ooooooOe+OO 1.4176901e-02 2.872009ge-0 1 7 . 1809590e-02 1.548979ge-0 1 
as O.oooooOOe+OO 2.5722501 e-04 -9.9557713e-03 -3.0644301e-03 -9.7126290e-03 
% O.OOOOOOOe+OO 6.2555015e-02 -3.2061901e+00 -2.24 7 5004e+00 -5.9410801e+00 
a7 O. oooooOOe +00 6.5291207e-04 5.235239ge-03 1. 7 4 20901 e-03 3.9773993e-03 
as O.ooooooOe+OO -7.8363717e-03 -7.504051ge-02 -1.316409ge-02 -2.013349ge-02 
a9 O.oooooOOe+OO 8.4691201 e-05 -1.4557400e-04 2.8421404e-05 9.0429996e-05 
alO O.oooooOOe+OO -9.787201ge-02 6.5156400e-0 1 3.3365798e-0 1 6.6043198e-Ol 
all O. ooooooOe +00 5.8095503e+OO -6.6284103e+00 -1.4790400e+Ol 8.5468994e+0 1 
al2 O.OOOOOOOe+OO -1.8 230200e-0 1 2.7711201e-02 -1.7662698e-Ol 1. 1755400e+Ol 
al3 O.OOOOOOOe+00 -9.6239595e+00 7.3076200e+00 1.3503600e+0 1 -7.2175995e+Ol 
a14 O.ooooooOe+OO 1.796190le-01 -7.6822996e-02 8.7728024e-02 -7. 1572304e+OO 
alS O.oooooOOe+OO -2.3051798e-02 7.1942098e-03 -2. 1 332700e-03 -4.1615002e-02 
a16 O.oooooOOe+00 5.2704697 e+OO -2.3316097e+00 -3.9537201e+00 2.0175797e+Ol 
al7 O.oooooOOe+OO 1.187200 1 e-02 -3.624629ge-03 7 . 1548694e-04 1.381469ge-02 
alS O.oooooOOe+OO -3.6550701e-02 3.0476701e-02 -8.961509ge-03 1.0899000e+00 
al9 O.oooooOOe+00 -3.3549895e-04 1.6277700e-04 7.3092800e-05 5.45 1 8390e-04 
a20 O.oooooOOe+00 -9 .1989702e-0 1 1.668559ge-0 1 3.6322898e-Ol -1.864379ge+00 
a21 O.oooooOOe+OO 1.4200000e+0 1 1.255323ge+02 1.7885420e+02 2.8832617e+02 
a22 O.oooooOOe+OO O.OOOOOOOe+OO 2.0153351e+00 6.3178940e+00 1.2485360e+0 1 
a23 O.oooooOOe+OO -I. 0000000e+0 1 -6.3907471e+Ol -6.7567413e+Ol -8.8169846e+01 
a24 O.oooooOOe+OO O.ooooooOe+OO -6.5152252e-0 1 -2.460060Ie+00 -3.7203093e+OO 

sign + + + + + 

Table A3.3 (continued) Twenty Four Coefficient Curve Fits for p = p(p, e): -4.5 < Y ~ -0.5 



1 
~ 

0-
1 

z ~ 0.65 0.65 < z ~ 1.7 1.7 < z ~ 2.35 2.35 < z 

aI 1.398799ge+00 1.3706198e+OO 3.4384601e-02 -1.7063303e+00 
a2 0.0000000e+00 1.2967300e-02 -2.335839ge-01 -1.484029ge-0 1 
a3 O.OOOOOOOe+OO 1.114180Ie-OI 2.8557396e+00 4.2310400e+OO 
'l4 0.0000000e+00 -3 .2691 19ge-02 2.5978702e-0 1 1. 3729000e-0 1 
as O.ooooooOe+OO 1.068690Ie-03 -I.0899272e-02 -9. 1 093406e-03 
ao 0.0000000e+00 -1.0613298e-01 -I.9478502e+OO -1.9729204e+OO 
a7 0.0000000e+00 -2. 0028600e-03 4.2365901 e-03 3.857070Ie-03 
a8 O. oooooOOe +00 1.902509ge-02 -6.7386508e-02 -2.8182998e-02 
a9 0.0000000e+00 2.3830500e-04 3.8571190e-04 2.6902603e-04 
alO O.oooooOOe+OO 3.022100 Ie-03 4.085 1 802e-0 1 2.958819ge-Ol 
a11 O.ooooooOe+OO O.OOOOOOOe+OO -4.2056904e+OO 3.4158005e+Ol 
al2 O.oooooOOe+OO O.ooooooOe+OO 1.3313901e-Ol -1.8997192e+Ol 
a13 O. ooooooOe +00 O.ooooooOe+OO 4.5123596e+00 -4.0858002e+Ol 
aI4 0.0000000e+00 O.ooooooOe+OO -1.6634101e-0 1 1.3032100e+Ol 
alS O.oooooOOe+OO O.OOOOOOOe+OO 1.6778701e-03 -8.0127198e-01 
al6 O.oooooOOe+OO O.ooooooOe+OO -1.3551598e+00 1.6082596e+01 
al7 O.oooooOOe+OO O.ooooooOe+OO -I.1002200e-03 2.75 1 2097e-01 
aI8 0.0000000e+00 O.ooooooOe+OO 4.9171600e-02 -2.2338600e+OO 
aI9 O.ooooooOe+OO O.OOOOOOOe+OO 3.0667591e-04 -1.7796901 e-04 
a20 O. oooooOOe +00 O.ooooooOe+OO 7.5250924e-02 -2.0885296e+00 
a21 O.oooooOOe+OO O.ooooooOe+OO 1.75704 1 ge+02 2 .. 5613232e+02 
a22 O.oooooOOe+OO O.OOOOOOOe+OO -2.163 277 6e+OO 1.737088ge+02 
a23 O.oooooOOe+OO O.ooooooOe+OO -8.8337021e+Ol -9.0588898e+Ol 
a24 O.oooooOOe+OO O.ooooooOe+OO 1. 89754 30e+00 -5.8388031e+Ol 

sign + + + + 

Table A3.3 (concluded) Twenty Four Coefficient Curve Fits for p = pep, e): -0.5 < y ~ 3.0 



I 
~ 

-..J 
I 

bl 
b2 
b3 
b4 
bS 
b6 
b7 
bg 
b9 

blO 
bll 
b12 
b13 
b14 
blS 
b16 
b17 
bIg 
b19 
b20 
b2I 
b22 
b23 
b24 

z ~ 0.25 0.25 < z ~ 0.95 0.95<z~1.4 1.4<z~1.95 1.95 < z 

See Note 4 1.4482403e-0 1 -9.3249998e+OO -1.9308197 e+Ol -2.5972107e+01 
1.3674401e-02 -9.320l703e-01 -1.5455704e+OO -1.774189ge+00 
1.170989ge-01 2.5717 606e+0 1 3.6903503e+01 3.6249496e+0 1 

-8.2229912e-02 1.6129198e+00 1.9221401e+OO 1.5538301e+00 
-6.7530293e-04 -3.0024201e-02 -3.5902701e-02 -4.5 1 35900e-02 
1.3936996e+OO -2. 1662003e+0 1 -2.2044006e+0 1 -1.5998800e+01 
-1.4731400e-03 2.6295900e-02 2.3182701e-02 2.436479ge-02 
6.8306625e-02 -6.8143100e-Ol -5.8093500e-Ol -3. 1780702e-Ol 
-7.9085105e-05 -2.7765101e-04 -2.0132700e-04 1.2804000e-04 
-6.6567302e-Ol 6.269619ge+00 4.4336700e+OO 2.405839ge+00 
O.OOOOOOOe+OO -3.3853397e+OO -3.8306904e+OO -1.8143295e+01 
O.OOOOOOOe+OO 1.8259400e-0 1 1.3286400e-Ol 1.5489602e-Ol 
O.OOOOOOOe+OO 1.8492800e-0 1 -3.9190197e+OO 1.265 8200e+0 1 
O.OOOOOOOe+OO -7.011089ge-01 -6.7956400e-0l -3.6625201e-01 
O.OOOOOOOe+OO 1.1015002e-02 6.0634105e-04 3.244959ge-02 
O.OOOOOOOe+OO 5.470 1996e+00 7.2463198e+OO -1.4175901e+OO 
O.OOOOOOOe+OO -1.6057000e-02 -8. 1299692e-03 -1.663849ge-02 
O.OOOOOOOe+OO 4.1162401e-01 3. 1546098e-01 1. 11 24098e-01 
O.OOOOOOOe+OO 1.5770 100e-05 -1.610119ge-04 3.0217692e-04 
o .0OOOOOOe+OO -2.8149796e+OO -2.1787901e+OO -3.1098300e-Ol 
O.OOOOOOOe+OO -3.8870148e+Ol 2.0800003e+Ol 1. 115883ge+02 
O.OOOOOOOe+OO -2.9082275e+Ol -2.5600006e+01 -6.4526062e+OO 
O.OOOOOOOe+OO 4.0705566e+0 1 1.0000000e+OO -5.3378632e+01 
O.OOOOOOOe+OO 2.6823471e+Ol 1. 8000000e+0 1 2.0269861e+00 

Table A3.4 Twenty Four Coefficient Curve Fits for T = T(p, e): -7.0 ~ y ~ -4.5 



z ~ 0.25 0.25 < z ~ 0.95 0.95 < z ~ lA lA<z~2.0 2.0 < z 

bI See Note 4 2.9499602e-02 -5.5332403e+OO -1.2377900e+Ol -1.7607895e+Ol 
b2 7.2499700e-03 -3.5374898e-0 1 -1. 1472797e+00 -1.2657900e+OO 
b3 7.8178298e-Ol 1.6363800e+Ol 2A13819ge+0 1 2A85440 1 e+O 1 
b4 -3.2740202e-02 5.8754700e-0l 1.3895702e+00 1.0944204e+00 
bs 3.2335706e-04 -1.1608101e-02 -3.636930le-02 -3.6553401e-02 
b6 3. 951979ge-0 1 -IAI23900e+Ol -IA284400e+0 1 -1.0816600e+Ol 
b7 -9.699889ge-04 7.9957098e-03 2.2426501 e-02 1.5434600e-02 
b8 2.9292598e-02 -2.351459ge-Ol -4.0655297e-Ol -2.278029ge-Ol 
b9 -8.9324003e-06 -2.7931598e-04 -3.2388791e-04 -4.598218ge-04 

blO -2. 121819ge-0 1 4.288909ge+00 2.8761997e+OO 1.6064100e+00 
bll o .0000000e+00 9.0797901e+00 4A078197e+00 2.6066895e+0 1 
b12 o .00OOOOOe+00 1.0 130796e+00 1.3304596e+00 2.3179102e+00 

00 b13 o .OOOOOOOe+OO -2.2942795e+Ol -1. 1540500e+01 -3.224330Ie+Ol , 
bl4 O.OOOOOOOe+OO -1.5212202e+OO -1.598919ge+00 -1.8264503e+OO 
blS O.OOOOOOOe+OO 3.783899ge-02 5 .3057998e-02 4.946209ge-02 
bl6 O.OOOOOOOe+OO 1.9565704e+Ol 8.5730896e+00 1.3382900e+01 
b17 O.OOOOOOOe+OO -2.6311502e-02 -3.103759ge-02 -1.855419ge-02 
bI8 o .OOOOOOOe+OO 5.7383901e-Ol 4.7127402e-Ol 3.5974401e-Ol 
bI9 O.OOOOOOOe+OO 5.4640207 e-04 4.7764997e-04 5.048 1 502e-04 
b20 o .OOOOOOOe+OO -5.6305704e+OO -1.962329ge+00 -1.8651695e+00 
b2I o . OOOOOOOe +00 7.619802ge+Ol 1 A075000e+02 3.093754ge+02 
b22 O.OOOOOOOe+OO -1.5011550e+Ol -6.4999924e+OO 1.8750183e+Ol 
b23 O.OOOOOOOe+OO -6. 7708450e+0 1 -7.7500000e+0l -1.3750040e+02 
b24 o .OOOOOOOe+OO 1.2731470e+Ol 5.0000000e+OO -8.333417ge+OO 

Table A3.4 (continued) Twenty Four Coefficient Curve Fits for T = T(p, e): -4.5 < y ~ -0.5 



I 
....... 

\0 
I 

z ~ 0.25 0.25 < z ~ 0.95 0.95 < z ~ 1.45 1.45 < z 

bI See Note 4 -2.940810 1 e-03 1.3239603e+00 -1.6064301e+00 
b2 5.7391496e-04 8.5277081e-02 -5.0736800e-02 
b3 9.8888 302e-0 1 -3.242569ge+00 3.9587202e+00 
b4 -3.7121400e-03 -2.0093697e-Ol 3.6938298e-02 
bS 1.1238700e-04 5.681458ge-03 -1.5937800e-03 
b6 2.8665598e-02 4.538229ge+00 -1. 7120 104e +00 
b7 -3.7652790e-04 -6.8585612e-03 1.060569ge-03 
b8 4.5605898e-03 1.181229ge-0 1 9.2512406e-03 
b9 1.7619197e-05 1.9836600e-04 6.5327797e-05 

blO -1.9949801 e-02 -1.6246004e+OO 2.7103901 e-O 1 
bll O.OOOOOOOe+OO -5.2667302e-0 1 1.8047607 e+O 1 
b12 O.OOOOOOOe+OO -1.586909ge-0 1 1.6296396e+00 
b13 O.OOOOOOOe+OO 2.6160002e+00 -2.7312393e+Ol 
b14 O.OOOOOOOe+OO 3. 1635600e-Ol -1.5742998e+OO 
biS O.OOOOOOOe+OO -1.9075502e-02 5.8527701e-02 
b16 O.OOOOOOOe+OO -3.3793001e+OO 1.3634200e+0 1 
b17 O.OOOOOOOe+OO 1.701239ge-02 -2.773129ge-02 
b18 o .0OOOOOOe+OO -1.5221202e-0 1 3.7071401e-Ol 
bI9 O.OOOOOOOe+OO -5.5839797e-04 1.1614601 e-03 
b20 O.OOOOOOOe+OO 1.3075705e+OO -2.2378702e+OO 
b2I O.OOOOOOOe+OO 1. 44 22060e+02 1.2925150e+02 
b22 O.OOOOOOOe+OO -2.5447266e+01 1.3605518e+OO 
b23 O.OOOOOOOe+OO -1.2770551e+02 -7.074819ge+Ol 
b24 o .0OOOOOOe+OO 2.2366470e+Ol 1.3605318e+OO 

Table A3.4 (concluded) Twenty Four Coefficient Curve Fits for T = T(p, e): -0.5 < y ~ 3.0 



z ~ 0.67 0.67 < z ~ 1.75 1.75 < z ~ 2.5 2.5 < z ~ 2.85 2.85 < z ~ 3.15 3.15 < z ~ 3.19 3.19 < z 

CI 4.8454702e-Ol -3.7166595e+Ol -1.6514700e+02 -7.0927383e+03 -1.2774800e+03 4.5591914e+03 -4.417919ge+02 
C2 4.6713501e-01 6.6788300e+Ol 2.1102800e+02 7.1364805e+03 1.2940000e+03 -4.2105703e+03 9.7985983e-02 
C3 5.7120505e-04 -2.4399796e+00 -4.7094803e+00 -2.4601401e+02 -3. 6072403e+0 1 1.03001 OOe+O 1 -3.0314795e+02 
C4 -1.4362901e-03 2. 1230898e+00 2.7825804e+00 1.6582600e+02 2.6319397e+Ol -2.6347794e+Ol 7.606498ge-03 
CS 2.5510998e+00 -3.6925903e+Ol -8.7830795e+Ol -2.3795200e+03 -4.2295801e+02 1.290689ge+03 -5.5711003e-05 
C6 2.5341590e-04 -1.464459ge-0 1 -3.1986701e-Ol -3.497 4403e+00 -4.7442502e-Ol -8.2813702e+00 -7.5610001e+Ol 
C7 -2.3347200e-04 -3.0842602e-Ol -1.286709ge-0 1 -2.7548706e+Ol -4. 3822803e+00 6.5958700e+00 -3.528360 1 e-06 
C8 -4.7237496e-04 7.5442314e-02 1.7317897e-Ol 1.2864103e+00 2. 8968400e-0 1 1.9827003e+00 -4.7681597e-04 
C9 -1.4410200e+OO 7.3648596e+00 1.2763900e+01 2.634650ge+02 4.5057098e+0 1 -1.314129ge+02 8.8614804e-09 
cIO 1.8689898e-05 -2.914639ge-03 3.861059ge-03 -3.1371100e-03 1.6404800e-02 -1.7286998e-0 1 -6.4885902e+OO 
Cll O.OOOOOOOe+OO 3.6175705e+Ol 2.3040700e+02 5.2615781e+03 o .OOOOOOOe+OO O. ooooooOe +00 6.7238687e+04 
C12 O.OOOOOOOe+OO -6.111019ge+01 -2. 9805493e+02 -4.9670117e+03 O.OOOOOOOe+OO O.OOOOOOOe+OO 3.2839804e+OO 
Cl3 O.OOOOOOOe+OO 2.4053097e+00 -6. 1830702e+OO 2.0313800e+02 o .OOOOOOOe+OO O.OOOOOOOe+OO 3.5500898e+04 
CI4 O. 0000000 e+OO -2.0591402e+00 8.4459496e+OO -1.329839ge+02 O.OOOOOOOe+OO O.ooooooOe+OO 2.7261600e+00 
CIS O.OOOOOOOe+OO 3.2391098e+01 1.2693300e+02 1.5242400e+03 O.OOOOOOOe+OO O.OOOOOOOe+OO 2. 137139ge-03 
CI6 O.OOOOOOOe+OO 1.3791603e-01 -2.3022901e-02 3.3243198e+00 O.OOOOOOOe+OO O.OOOOOOOe+OO 6.5088594e+03 
Cl7 O.OOOOOOOe+OO 2.7914900e-01 -2. 6167097 e+OO 2.1508102e+01 O.OOOOOOOe+OO O. OOOOOOOe +00 3.4237700e-04 
CI8 O.OOOOOOOe+OO -6.7204118e-02 2.2545800e-02 -1.1599703e+00 O.OOOOOOOe+OO O.ooooooOe+OO 3.8055998e-Ol 
CI9 O.OOOOOOOe+OO -S.0763998e+00 -1.7725693e+Ol -1.5045000e+02 O.OOOOOOOe+OO O.OOOOOOOe+OO -6.8489726e-08 
C20 O.OOOOOOOe+OO 2.6198700e-03 -4.4107214e-03 1.148619ge-02 O.OOOOOOOe+OO O.ooooooOe+OO 4.1411597e+02 
C21 O.OOOOOOOe+OO -3.4330002e+Ol -6.8820007e+01 -3.5939990e+02 O.OOOOOOOe+OO O.OOOOOOOe+OO 2. 977999ge+O 1 
cn O.OOOOOOOe+OO -1.8230000e+00 8.8240004e+OO -3.7630005e+Ol O.OOOOOOOe+OO O.OOOOOOOe+OO S .4150000e+OO 
C23 O.OOOOOOOe+OO 2.4990005e+0 1 3.202999ge+01 1.318999ge+02 O.OOOOOOOe+OO O.OOOOOOOe+OO 1.7130000e-03 
C24 O.OOOOOOOe+OO 6.5030003e-O 1 -5.3590002e+OO 1.3480000e+O 1 O.OOOOOOOe+OO O.OOOOOOOe+OO 3.1149993e-04 

Table A3.5 Curve Fit Coefficients for Il = Il(p, e): y ~ -3.8 



, --, 

c) 
C2 
C3 
C4 
C5 
c6 
C7 
c8 
c9 
CIO 
Cll 
C}2 
C}3 
Cl4 
Cl5 
Cl6 
CI7 
C}8 
C}9 
C20 
C21 
C22 
C23 
c24 

z ~ 0.67 

4.8454702e-Ol 
4.6713501e-01 
5.7120505e-04 
-1.4362901e-03 
2.5510998e+00 
2.5341590e-04 
-2.3347200e-04 
-4.7237496e-04 
-1.4410200e+00 
1.8689898e-05 

O. OOOOOOOe +00 
O. ooooOOOe +00 
O. OOOOOOOe +00 
O.ooooOOOe+OO 
O.ooooOOOe+00 
O.ooooOOOe+OO 
O.ooooOOOe+OO 
O. OOOOOOOe +00 
O.ooooOOOe+OO 
O.ooooOOOe+OO 
O.ooooOOOe+OO 
O. ooooOOOe +00 
O.ooooOOOe+OO 
O.ooooOOOe+OO 

0.67 < z ~ 1.75 1.75 < z ~ 2.5 2.5 < z ~ 2.85 2.85 < z ~ 3.15 3.15 < z 

-3.7166595e+Ol -1.6514700e+02 -7.0927383e+03 -1.2774800e+03 -6.4028984e+03 
6.6788300e+Ol 2.1102800e+02 7.1364805e+03 1.2940000e+03 6.2425391e+03 
-2.4399796e+OO -4.7094803e+00 -2.4601401 e+02 -3.6072403e+01 1.0327901e+02 
2. 1230898e+00 2.7825804e+OO 1.6582600e+02 2.6319397e+Ol -8.7318100e+01 
-3.6925903e+0 1 -8.7830795e+Ol -2.3795200e+03 -4.2295801e+02 -2.028649ge+03 
-1.464459ge-0 1 -3.1986701e-Ol -3.4974403e+00 -4.7442502e-0 1 -1.2239700e+0 1 
-3.0842602e-Ol -1.286709ge-0 1 -2.7548706e+01 -4.3822803e+00 1. 7187805e+0 1 
7.5442314e-02 1.7317897e-O 1 1.2864103e+OO 2.8968400e-0 1 3.5783005e+00 
7.3648596e+00 1.2763900e+Ol 2.634650ge+02 4.5057098e+Ol 2. 1990700e+02 
-2.914639ge-03 3.861059ge-03 -3.1371100e-03 1.6404800e-02 -1.279529ge-0 1 
3.6175705e+Ol 2.3040700e+02 5.2615781e+03 O.OOOOOOOe+OO O. OOOOOOOe +00 
-6.111019ge+Ol -2.9805493e+02 -4.9670117e+03 O.OOOOOOOe+00 O.OOOOOOOe+OO 
2.4053097e+00 -6. 1 830702e+00 2.0313800e+02 O.OOOOOOOe+OO 0.0000000e+00 
-2.0591402e+00 8.4459496e+00 -1.329839ge+02 O.OOOOOOOe+OO O. OOOOOOOe +00 
3.2391 098e+0 1 1.2693300e+02 1.5242400e+03 O.OOOOOOOe+OO O.OOOOOOOe+OO 
1.3791603e-0 1 -2.3022901 e-02 3.3243198e+OO O.OOOOOOOe+OO O.ooooooOe+00 
2. 7914900e-0 1 -2.6167097e+00 2.15081 02e+0 1 O.OOOOOOOe+00 O.ooooooOe+OO 
-6.7204118e-02 2.2545800e-02 -1.1599703e+00 O.OOOOOOOe+OO O.ooooooOe+OO 
-5.0763998e+00 -1. 7725693e+0 1 -1.5045000e+02 O.OOOOOOOe+OO O.ooooooOe+00 
2.6198700e-03 -4.4107214e-03 1.148619ge-02 O.OOOOOOOe+00 O. ooooooOe +00 

-3.4330002e+Ol -6.8820007e+Ol -3.5939990e+02 O.OOOOOOOe+OO O.ooooooOe+OO 
-1.8230000e+00 8.8240004e+00 -3.7630005e+01 O.OOOOOOOe+OO O.ooooooOe+OO 
2.4990005e+0 1 3.202999ge+01 1.318999ge+02 O. OOOOOOOe +00 O. ooooooOe +00 
6.5030003e-0 1 -5.3590002e+OO 1. 348 oooOe +0 1 O.OOOOOOOe+OO O.ooooooOe+OO 

Table A3.5 (concluded) Curve Fit Coefficients for Il = Il(P, e): -3.8 < Y 



N 
N 

I 

dl 
d2 
d3 
c4 
dS 
d() 
d7 
d8 
d9 

dIO 
dIl 
dI2 
dl3 
d14 
dIS 
d16 
d17 
dI8 
d19 
d20 
d21 
d22 
d23 
d24 

z ~ 0.65 

1.810036ge-01 
4.8126802e+00 
-2.7231116e-02 
1.2691337e-01 

-8.9913034e+OO 
-4.7198236e-03 
-1.2624085e-Ol 
9.232807ge-03 
8.9649105e+00 
-2.9488327e-04 
o . OOOOOOOe +00 
O. OOOOOOOe +00 
o . OOOOOOOe+OO 
O.OOOOOOOe+OO 
o . OOOOOOOe +00 
o . OOOOOOOe +00 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O. OOOOOOOe +00 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 

0.65 < z ~ 1.25 1.25 < z ~ 1.775 1.775 < z ~ 1.93 1.93 < z ~ 2.60 

-1.0593500e+04 3.7937500e+03 2.0665187e+05 7.1572625e+04 
2.3147000e+04 -7.4035117e+03 -3. 1656450e+05 -9.2471625e+04 
-7.4129395e+02 3.2969800e+02 -3.0732202e+02 1.9646323e+03 
1.2172400e+03 -3.5591602e+02 4.5703638e+02 -2.0280527e+03 
-1.6760102e+04 4.7712187e+03 1.6182494e+05 3.9446105e+04 
1.3510500e+0 1 1. 9706100e+0 1 1.9226027e+00 -9.2131958e+01 
-4.4318408e+02 1.0024100e+02 -1.5550845e+02 4.5673853e+02 
4.9491396e+OO -8.4255400e+OO -2.247880ge+OO 1.2724541e+Ol 
4.0663101e+03 -1.0074900e+03 -2.7603957e+04 -5.5728672e+03 
1.5538597e+00 4.8040003e-01 -3.0622602e-Ol -5.0568476e+00 
1.060319ge+04 -4.5360312e+03 -2.0656431 e+05 -3.2910781e+04 

-2.3156000e+04 9.0560508e+03 3.1819131e+05 4.2551211e+04 
7.4695093e+02 -4.9587012e+02 2.175422ge+03 1.4566331 e+03 
-1.224649ge+03 6.335629ge+02 -2.4667078e+03 -2.2653745e+03 
1.6760398e+04 -5.953171ge+03 -1.6359706e+05 -1.9476277e+04 

-1.2861500e+0 1 -2.0008698e+Ol 3.3952682e+Ol -1.3324594e+02 
4.4591 895e+02 -2.0544200e+02 7.1675317e+02 8.4370288e+02 
-5.3239803e+00 1.1885100e+0 1 -7.5384665e+00 1.0591533e+02 
-4.0625801 e+03 1.2894500e+03 2.8092637e+04 3.2389702e+03 
-1.5295601e+OO -1. 717349ge-0 1 1.9121437e+00 5.863946ge+00 
-4.2190002e+01 -3.3179993e+Ol -3. 9239990e+02 4.9169998e+Ol 
-4.6870003e+00 3.1580001e-0 1 -5.2059998e+Ol 2.4149994e+Ol 
2.8119995e+01 1.8630005e+Ol 2.053999ge+02 -2.45 50003e+0 1 
3. 1 250000e+00 -1.0349998e+OO 2.67 89993e+0 1 -1. 1810000e+Ol 

Table A3.6 Curve Fit Coefficients for k = k (p, e): y ~ -3.0 

2.60 < z ~ 2.69 2.69 < z 

1. 1456830e+06 -8.5499625e+04 
-1.2375250e+06 1.1739656e+05 
1.4024508e+04 6.4563168e+04 

-9.3467227e+03 -3.9551203e+04 
4.4593056e+05 -4.8170254e+04 
2.8485107e+02 2.3473167e-01 
1.5330740e+03 6.0816055e+03 

-1.0968916e+02 1.8871567e+Ol 
-5.3608352e+04 6.2052031 e+03 
-1.0955791 e+OO 4.0757723e+00 
-1.7520870e+06 5.8546887 e+04 
1.7967500e+06 -9.4634875e+04 

-1.3278737e+05 -6.6513812e+04 
9.8215562e+04 4.0899945e+04 
-6.0791744e+05 4.2127227e+04 
-1 .3384084e+03 -1.0260344e+00 
-1.8119430e+04 -6.3717305e+03 
5.2707324e+02 -5.3432770e+01 
6.7709875e+04 -5.7495195e+03 
2.5904894e+00 -1.10 17392e+0 1 
-1.7980000e+02 5.4110003e+00 
7.3710003e+OO 1.1620000e+0 1 
6.7309998e+Ol -1.0819998e+OO 
-3 .204999ge+OO -3.3909998e+OO 



, 
....... 
tv 
'-.H , 

d1 
d2 
d3 
cf4 
ds 
ci6 
d7 
d8 
d9 

dlO 
dll 
d12 
d13 
d14 
dIS 
d16 
d17 
dI8 
dI9 
d20 
d21 
d22 
d23 
d24 

z ~ 0.65 

1.810036ge-01 
4.8126802e+00 
-2.7231116e-02 
1.2691337e-01 

-8. 9913034e+00 
-4.7198236e-03 
-1.2624085e-01 
9.232807ge-03 
8.9649105e+00 
-2.9488327e-04 
O.OooOOOOe+OO 
o .0000OOOe+00 
O.OOOOOOOe+oo 
O.OOOOOOOe+oo 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 

0.65 < z ~ 1.29 1.29 < z ~ 1.85 1.85 < z ~ 2.0 2.0 < z ~ 2.58 2.58 < z ~ 2.73 2.73 < z 

-1.2249301e+04 3.180600 1 e+03 5. 1402398e+04 5.1131824e+04 1.0088046e+06 -9.6638500e+04 
2.4107102e+04 -6.6966406e+03 -7.5273312e+04 -6.6648750e+04 -1.086321Oe+06 1.3206488e+04 
-1.6182900e+03 4.3338196e+01 -3.3088892e+02 2.0217100e+03 1.3844801e+04 -4.7458105e+04 
2.2253501 e+03 -2. 1464900e+02 3.1155005e+02 -1.9306292e+03 -9.7268516e+03 2.3596875e+04 
-1.5926102e+04 4.4137695e+03 3.6653898e+04 2.8762395e+04 3.8985325e+05 1.8602773e+04 
1.980259ge+00 -3.6218994e+0l -4.8416397e+01 -8.4970047e+01 1.4840726e+02 -5.3564258e+03 
-7.532128ge+02 9.4135895e+01 -7 .4122696e+0 1 4.3353467e+02 1.7091665e+03 -2.3068020e+03 
5. 1848297e+00 1.1553800e+01 2.2313293e+0 1 1.792591ge+0 1 -5.2645OO4e+01 2.2433904e+03 
3.5337600e+03 -9.2975806e+02 -5.9301484e+03 -4.106460ge+03 -4.6621066e+04 -4.0413552e+03 
1.478509ge+00 -2. 1462097e+OO -9.191179ge-01 -6.2576542e+00 -1.5477133e-0 1 2.5188145e+02 
1.2248602e+04 -5.9876406e+03 -1.8089800e+05 -6.2768156e+04 -1.0733510e+06 1.0962581 e+05 

-2.4102301e+04 1.292430le+04 2.8253200e+05 8.6015875e+04 1.1457100e+06 -2.9901160e+04 
1.6181001e+03 -2. 722609ge+02 -1.0105300e+03 -1.oo02036e+03 -1.9343957e+04 4.7883496e+04 

-2.2257100e+03 5.4237793e+02 9.7557593e+02 6.2537280e+02 1.3366211 e+04 -2.3785383e+04 
1.5923500e+04 -9.0329297e+03 -1.47220ooe+05 -3.9578270e+04 -4.0670987 e+05 -1.175396ge+04 

-2. 1548204e+00 2.7417892e+01 3.286809ge+OO -1.0591702e+02 -4.1016724e+02 5.4 734180e+03 
7.537460ge+02 -2.1178700e+02 -2.3363100e+02 -3.8467377e+01 -2.2955198e+03 2.2 9055 22e+03 
-5.0511503e+00 -5.6857796e+00 -1.7658796e+00 7.6361420e+01 1.4994148e+02 -2.3208018e+03 
-3.531679ge+03 2.0783101e+03 2.5594000e+04 6.1295312e+03 4.7999871e+04 3.130439ge+03 
-1.4879503e+00 1.9 1 21704e+00 -1.5496200e-0 1 5.9388590e+00 -1.9779787e+00 -2.6570068e+02 
-3.1110001e+01 -1.8539993e+01 -4.1039993e+Ol -3.9010000e+00 -1.026000 1 e+02 -3.1070007e+01 
-4.4440002e+00 7.1099997 e+OO 6.5070007e+01 2.4179993e+0 1 6.3020004e+0 1 1.0820000e+0 1 
1.9440002e+0 1 1.0680oo0e+01 2.0830002e+01 1.3739996e+OO 3.8190002e+01 1.0470000e+Ol 
2.777999ge+00 -5.44 90004e+OO -3.4720001e+01 -1. 1450000e+01 -2.4309998e+Ol -3.046999ge+OO 

Table A3.6 (continued) Curve Fit Coefficients for k = k (p, e): -3.0 < Y ~ -1.0 



tv 
.j::,.. , 

dl 
d2 
d3 
d4 
ds 
d() 
d7 
d8 
d9 

dlO 
dll 
d12 
dl3 
dI4 
dIS 
dI6 
d17 
dI8 
dI9 
d20 
d21 
d22 
d23 
d24 

z ~ 0.65 

1.81 0036ge-0 I 
4.8 I 26802e+00 
-2.7231116e-02 
1.2691337e-01 

-8.9913034e+OO 
-4.7 I 98236e-03 
-1.2624085e-0 I 
9.232807ge-03 
8.9649105e+OO 
-2.9488327e-04 
O.OOOOOOOe+OO 
o .0OOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 
O.OOOOOOOe+OO 

0.65 < z ~ lAO I AO < z ~ 1. 91 1.91 < z ~ 2.05 2.05 < z ~ 2.57 2.57 < z ~ 2.75 2.75 < z 

-1.583860 I e+03 7.8925488e+02 3.5869102e+04 3. I 899562e+04 7.0838087e+05 3.1 855037e+05 
3A922300e+03 -1.917429ge+03 -5.168519ge+04 -4.21 86664e+04 -7.561991ge+05 -3.3041 156e+05 
-8.3983398e+02 3.5922705e+02 -6.301 8896e+02 2.3055603e+03 3.9503091e+03 2.2983352e+04 
1.095649ge+03 -4A407007e+02 6.633 I 396e+02 -1.9897017e+03 -2.7381802e+03 -1.6623461 e+04 

-2.5617500e+03 1.394629ge+03 2A747102e+04 1.8499980e+04 2.6888181e+05 1. I 384800e+05 
-1.2240700e+01 1.90681 OOe+O I -4.2387100e+Ol -1.6195114e+01 -1.2532251 e+02 -1.859903ge+02 
-3.5619702e+02 1.340829ge+02 -1.735379ge+02 4.2561816e+02 4.7728687e+02 3.0098223e+03 
7 .6563396e+00 -1.0928500e+01 2.0804794e+0 1 5.8640623e+00 4.7734787e+Ol 6.9840683e+Ol 
6.2514502e+02 -3 . 1344604e+02 -3.931669ge+03 -2.6808696e+03 -3.1838160e+04 -1.3020133e+04 
2.5823498e-0 1 4.249329ge-02 -1.0551205e+OO -3.6172504e+00 -4.014802ge+OO -7.7371645e+00 
1.5802500e+03 -1.3140100e+03 -1. 1052200e+05 -5.759403ge+04 -2.5216325e+05 o .0OOOOOOe+00 
-3A76639ge+03 3.1313401e+03 1.6759100e+05 7.9328437e+04 2. 172776ge+05 O.OOOOOOOe+OO 
8.395878ge+02 -5. 1875488e+02 4.6187695e+03 -1.927598ge+03 9.2882383e+03 O.OOOOOOOe+OO 
-1.094899ge+03 6.8026807e+02 -4.9493008e+03 1.6730544e+03 -7.7809180e+03 O.OOOOOOOe+OO 
2.5468201 e+03 -2.324929ge+03 -8A655812e+04 -3.6473008e+04 -5.6539297e+04 O.OOOOOOOe+OO 
1.2084300e+0 I -3.3200104e+01 2.2506500e+01 -7. 9208084e+0 I 1.8537296e+02 O.OOOOOOOe+OO 
3.5567407e+02 -2.2139301e+02 1.324409ge+03 -3.6 I 00732e+02 1.6120212e+03 O.OOOOOOOe+OO 
-7.4485703e+00 2.1181900e+01 -1 .1 03 1 600e+0 1 4.0542084e+0 1 -7 .1010757e+Ol O.OOOOOOOe+OO 
-6.1850391 e+02 5.525629ge+02 1.4243801 e+04 5.5975430e+03 3.9419248e+03 O.OOOOOOOe+00 
-2.912020 1e-0 I -4.75 16298e-01 9 .628869ge-0 1 2.1495867e+00 1. 1307096e+00 O.OOOOOOOe+OO 
-2. 1710007e+Ol -5.0250000e+Ol . -1.6810001e+02 -5.7330002e+01 -1. 7 86000 1 e+02 O.OOOOOOOe+OO 
-4.3420000e+OO -8AI19997e+00 7 .0630005e+O 1 2.0880005e+0 1 2. 179999ge-01 O.OOOOOOOe+OO 
1.3160000e +01 2.9820007e+01 8. 75 oooOOe +0 1 2.5919998e+Ol 6. 71 3999ge+0 1 O.OOOOOOOe+OO 
2.6320000e+00 3.5089998e+OO -3.7500000e+Ol -9.7930002e+00 -4. 7390002e-0 1 O.OOOOOOOe+00 

Table A3.6 (concluded) Curve Fit Coefficients for k = k (p, e): -1.0 < Y 



10 
VI 

I 

al 
a2 
a3 
'l4 
as 
ll6 
a7 

al 
a2 
a3 
'l4 
as 
ll6 
a7 

a} 
a2 
a3 
'l4 
as 
ll6 
a7 

200 ::; T < 800 

Diatomic Oxygen 
3.7703733e+00 
-2.8952206e-03 
9.5332234e-06 
-9.2469925e-09 
3.0191908e-12 

-1.8859756e+01 
3.6933498e+00 

Diatomic Nitrogen 
3.4622650e+00 
5.8202352e-04 
-3.0525453e-06 
6.2280066e-09 
-3.3755958e-12 
8.7951738e-Ol 
3.2192650e+00 

Monatomic Oxygen 
3.216713ge+OO 
-3.7822688e-03 
8.474678ge-06 
-8.8658254e-09 
3.536559ge-12 
2.9640461e+04 
1.8526411e+OO 

800::; T < 3 000 3 000 ::; T < 6 000 6 000 ::; T < 10 000 lO 000::; T < 15000 

2.8969173e+OO 2.8421116e+00 5.682lO8ge+00 -2. 7258968e-0 1 
2.3736544e-03 1.3320560e-03 -7.5300597 e-04 2.0115140e-03 
-1.4917096e-06 -3.3915853e-07 2.2980078e-07 -2.4547717e-07 
4.6603388e-lO 4.4652185e-11 -2.3955921e-l1 1.2025200e-11 
-5.3945167e-14 -2.2914825e-15 8.0048468e-16 -2.1389860e-16 
8.2240433e+01 5.8350391 e+02 -2.4700371 e+03 7.6117734e+03 
7.5019388e+00 8.6255035e+OO -9.8740053e+00 3.1631744e+Ol 

2.7022400e+00 3.9143505e+OO 1.2657471e+00 2.7715942e+01 
1.9443934e-03 3.1537097e-04 1.8269790e-03 -7.4173473e-03 

-8.9300045e-07 -5.6481042e-08 -3.7583897e-07 8.2395968e-07 
1. 9739206e-lO 3.6012296e-12 3.30337 15e-11 -3.5285302e-l1 

-1.696781Ie-14 5.2359434e-17 -9.3651118e-16 4.9671198e-16 
2.0180222e+02 -5.355 1953e+02 3.1426960e+03 -5.694269Ie+04 
7.2040844e+00 2.167199ge-02 1. 7943298e+0 1 -1.7402873e+02 

2.6045370e+OO 2.8lO1683e+OO 1.9209270e+00 1.9209270e+OO 
-1.7235464e-04 -2. 9039918e-04 2. 1 776554e-04 2. 1776554e-04 
1.157413ge-07 9 .083333ge-08 -1.8288404e-08 -1.8288404e-08 

-3.6417855e-l1 -9.9427818e-12 4.9050960e-13 4.9050960e-13 
4.6011541e-15 3.770435ge-16 2.850729ge-18 2.850729ge-18 
2.9728961e+04 2.9536613e+04 3.0783422e+04 3.0783422e+04 
4.586525ge+OO 3.253646ge+OO 9.27 48632e+00 9.2748632e+OO 

Table A3.7 Species Property Curve Fit Coefficients . 



200 ~ T < 800 800 ~ T < 3 000 3000~T<6000 6 000 ~ T < 10 000 10 000 ~ T < 15000 

Nioic Oxide 
al 4.2064362e+00 2.7543774e+OO 3.8015413e+00 4.9133167e+00 2.0456650e+Ol 
a2 -4.5098364e-03 2.3093284e-03 4.985753ge-04 6. 1755264e-07 -6.1498061e-03 
a3 1.0557385e-05 -1.2823357e-06 -1.253131ge-07 -5.5222383e-08 8.6914275e-07 
'4 -8.5919396e-09 3.4043524e-10 1.4093893e-11 1.168648ge-1l -5.0877511e-l1 
as 2.4047101e-12 -3.4807545e-14 -4.4820198e-16 -5.4642498e-16 l.0624156e-15 
<l6 1.0888965e+04 1.1 134324e+04 1.0666566e+04 8.845378ge+03 -2.2955242e+04 
a7 2.3137932e+00 9.0789671e+00 3.1619387e+00 -4.5786896e+00 -1.1561955e+02 

Monatomic Nitrogen 
al 2.50ooo00e+00 2.50751 1 le+OO 2.6376047e+00 3.3720617e+00 -1.0205642e+Ol 
a2 O. oooooOOe +00 -2.4797875e-05 -8.737331ge-06 -8.8554644e-04 4.2931363e-03 
a3 O.oooooOOe+OO 2.9641516e-08 -6.4772678e-08 2.529326ge-07 -4.9310665e-07 

tv 

9' '4 O.oooooOOe+OO -1.5288104e-ll 2.3473432e-1l -2.3187896e-ll 2.495 106ge-1l 
as O.oooooOOe+OO 2.8913713e-15 -1.7396164e-15 7.0471426e-16 -4.6969946e-16 
<l6 5.6626707e+04 5.662494ge+04 5.6452266e+04 5.6270152e+04 8.4933750e+04 
a7 4. 1807280e+00 4.1431866e+OO 3.2232103e+00 -1.0563974e+00 9.6403748e+01 

Argon 
aI 2.S000000e+OO 2.5000000e+00 2. 5 000000e+00 2.630354ge+00 -9. 1423988e+00 
a2 O.oooooOOe+OO O.OOOOOOOe+OO O.ooooOOOe+00 -7.7393444e-05 3.8508170e-03 
a3 O.oooooOOe+OO O.oooOOOOe+OO 0.0000000e+00 1.7219730e-08 -4.6800437e-07 
'4 O.oooooOOe+OO O.OOOOOOOe+OO 0.0000000e+00 -1.7028228e-12 2.4506924e-11 
as O.oooooOOe+OO O.OOOOOOOe+OO O.OOOOOOOe+OO 6.319884ge-17 -4.5646902e-16 
<l6 -4.2498957e-02 -4.2498957 e-02 -4.2498957e-02 -1.754801Oe+02 2.7751914e+04 
a7 4. 3664980e+00 4.3664980e+00 4. 3664980e+00 3.489009ge+00 8.9461761e+01 

Table A3.7 (concluded) Species Property Curve Fit Coefficients. 



APPENDIX FOUR 

Expressions for X and K, based on the enthalpy derivatives (hh and (h)1)i and the 

chemical derivatives (l1j)T and (l1j)p defined in section 4.9 are required. These 

expressions can be developed from the thermal state equation: 

p = RI11jpT (A4.1) 

combined with a generalized caloric state equation in the form: 

h = h (T, 11j(P, T». (A4.2) 

The differential forms of these equations are: 

dp = RP[ l1+ Tf(l1 j)T JdT + RT[ l1+Pf(l1 j)p JdP (A4.3) 

dh = [(h)T+ I(h) .(l1 j)T]dT + [I(h) .(l1j) ]dP . 1)1 . 1)1 P 
1 1 

(A4.4 ) 

where 11 = I11j. By definition, specific enthalpy and internal energy density are related 

by: 

h = E+p 

P 

which can also be expressed in differential fornl as: 

pdh=dE+dp-hdp. 

(A4.S) 

(A4.6) 

Eliminating dT from Eqs. (A4.3) and (A4.4), then further eliminating dh using Eq. 

(A4.6) gives the result: 

[(h)T+ f (h)1)i(l1j)T l R[ 11 + Tf(l1 j)T]} dp 

= R[ 11 + Tf(l1 j)T] dE 

+ {RT[ (h)T + f(h)1)i (l1j)T ][ 11 + P f(l1 j) p J 

- R [h+ Pf(h)1)j(l1 j)p][ 11 + Tf(l1 j)T ]} dp . (A4.7) 
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Alternately setting dE then dp to zero in Eq. (A4.7) gives the derivatives required in 

section 5.2: 

K= 

R [11 + T~(l1i)T J 
(A4 .8) 

[(h)T + ~(h)T)i(l1j)T J - R [11 + T~(l1j)T J 

RT [(h)T + ~ (h)T)i(l1j)T I 11 + P ~(l1j)p J 

X= 
[(h)T + ~(h)T)i(l1j)T J - R [11 + T~(l1j)T J 

R [h + p I (h) .(l1j) J[l1 + TI (l1j)TJ . T)1 P . 
I I 

(A4.9) 

[(h)T + ~(h)T)i(l1j)T J - R [11 + T~(l1j)T J 
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APPENDIX FIVE 

The quasi-one-dimensional equations of motion are given by: 

au + aF = Q +~(V~) 
at ax ax ax 

CAS.I) 

The source term Q represents area changes through a nozzle and vN is an artificial 

viscosity term. Trapezoidal time differencing takes the form: 

t1U I(aU
n 

au
n
+

1
J -=--+-

t1t 2 at at 
(AS.2) 

Using Eq. (AS. I) to replace the time derivatives in Eq. CAS.2) gives: 

-= -- +Q +- VN- -- +Q +- VN-t1U ~ aF
n 

n a ( au)n aF
n
+

1 
n+1 a ( au)n+1J 

t1t 2 ax ax ax ax ax ax 
(AS.3) 

Terms evaluated at time t = Cn+ 1 )t1t can be expanded in a Taylor series as: 

aFn+ 1 aFn a aFn 
- = - + t1t-- + OCt1t2) 
ax ax atax 

= - + t1t- ---- + O(t1t2) aF
n 

a (aF au)n 
ax ax au at 

n 

_ aF
n 
+ ~(aF t1 u) + OCt1t2) . 

- ax ax au 
(AS.4) 

Similarly 

nn+ 1 = nn + (~~ II U )"+0(1112) (AS.5) 

- VN- = - VN- + -(VNt1U)n+ OCt1t2) a ( au)n+1 a ( au)n a2 

ax ax ax ax ax2 
(A5.6) 

Replacing the time derivatives at t = Cn+ I)t1t in Eq. (AS.3) then gives: 

-= --+Q+- VN- --- --t1U +- -t1U +--(VNt1U) t1U (aF a ( au))n 1 a (aF )n 1 (aQ )n 1 a
2 

n 
t1t ax ax ax 2ax au 2 au 2ax2 

(AS.7) 

-129-



Finally, collecting ~u terms on the left hand side gives: 

n 

[l_ L an + L ~ aF • _! a2 v N .] ~u 
~t 2 au 2 ax au 2 ax2 

= - - + n + - VN - + O(~t2) [ aF a ( au)]n 
ax ax ax (AS.8) 

where the following notation has been adopted: 

[~ aF .] ~U = ~(aF ~u) 
axau ax au (AS.9) 
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APPENDIX SIX 

The flux vector appearing in the Euler equations is an homogeneous function of degree 

one in the conserved variables, providing the fluid obeys a prefect gas state relation. 

That is to say, for some constant A: 

F(AV) = AF(V) . (A6.1 ) 

This property leads to the important relation (Beam and Warming, 1976): 

F(U) ~ (~~) U (A6.2) 

The validity of this equation for a general gas must be established before it can be 

applied to the numerical solution of equilibrium gas problems. 

The flux vector is given in terms of the conserved variables by: 

m 

F(V) = 
m

2 
+ p(V) 

P 

m (E + p(V» 
P 

The generic form of the state equation may be written: 

E m2) 
p (V) = p (p, p - 2p2 

so that: p (AV) = P (Ap, e). 

Thus, Eq. (A6.1) is satisfied providing: 

m 

m2 + p(AV) 

F(AV) = A p A 

; (E + PO'A
U») 

and so in order to make use of Eq. (A6.2), the state equation must satisfy: 

p (p, e) = p (Ap, e) 
A 

(A6.3) 

(A6.4) 

(A6.S) 

(A6.6) 

(A6.7) 

Equation (A6.7) is satisfied if the gas is calorically or thermally perfect, but not in 

general. 
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APPENDIX SEVEN 

The one dimensional nozzle test problems presented in chapter five are based on nozzle 

geometries of the following fonn: 

A(x) = exp(c3x3 + c2x2 + clx + CO) (A 7.1) 

The coefficients Cj are chosen to satisfy certain constraints on the shape of the nozzle. 

In particular, if the position of the throat and the exhaust relative to the inlet are defined 

by Xt and Xe respectively and the nozzle cross sectional areas are specified at throat and 

exhaust as At and Ae, then the Cj will be given by the solution of the following linear 

equations: 

[ 

xe3 

Xt3 

3xc2 

3xt2 

2 Xc Xc 

Xt2 Xt 

2xe 

2xt 

1 ] [ C

3

] [In Ae 1 1 C2 In At 

o Cl 0 
o cO 0 

(A 7.2) 

The first derivative of A(x) in Eq. (A 7.1) has been set to zero at the exhaust to prevent 

rapid changes in the source terms appearing in the Euler equations at this boundary. 

Equations (A 7.2) can easily be solved to give the coefficients Cj: 

- xc
2

(xe - 3xt) 1 (AJA) 1 A cO - ( ) ~ n e + n e Xe - Xt j 

(A7.3) 

XtXc J c 1 = 6 1 In (A Ac) 
(xc - Xl) 

(A 7.4) 

(Xc + Xt) In (AJAc) 
C2 = -3 ( x )3 Xc - t 

(A 7.5) 

q= 2 (xc _ xl)3 In (AJAc) (A 7.6) 

Cubic expressions of the fonn of Eq. (A 7.1) have two turning points, and these are 

constrained to locate at the throat and at the exhaust. For test cases with non-zero area 

derivitive at the exhaust, the same expressions are used but the nozzle length is 

truncated between the throat and the exhaust. This does not pennit accurate control 

over the absolute value of the exhaust area, but does ensure there can be no turning 

point between the throat and the exhaust, which would give an invalid nozzle shape. 
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Figure 2.1 Spherically Symmetrical Intermolecular Potential Functions. 
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Figure 2.2 Molecular Representations for Perfect and Imperfect Air. 
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Figure 4.2 Grabau Type Transition Functions in One Dimension. 
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(b) Curve Fit Calculation. 
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Figure 6.3 Species Viscosity Variation with Temperature. 
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Figure 6.4 Species Thennal Conductivity Variation with Temperature. 
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Figure 6.5 Reduced Collision Integral for Viscosity Calculations. 
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Figure 6.6 Calculated Mixture Viscosity. 

GLASGOW 
UNIVERSITY 
LIBRARY 

o 

-1 

-2 
loglO p/PO 

3.0 3.5 


	338755_0001
	338755_0002
	338755_0003
	338755_0004
	338755_0005
	338755_0006
	338755_0007
	338755_0008
	338755_0009
	338755_0010
	338755_0011
	338755_0012
	338755_0013
	338755_0014
	338755_0015
	338755_0016
	338755_0017
	338755_0018
	338755_0019
	338755_0020
	338755_0021
	338755_0022
	338755_0023
	338755_0024
	338755_0025
	338755_0026
	338755_0027
	338755_0028
	338755_0029
	338755_0030
	338755_0031
	338755_0032
	338755_0033
	338755_0034
	338755_0035
	338755_0036
	338755_0037
	338755_0038
	338755_0039
	338755_0040
	338755_0041
	338755_0042
	338755_0043
	338755_0044
	338755_0045
	338755_0046
	338755_0047
	338755_0048
	338755_0049
	338755_0050
	338755_0051
	338755_0052
	338755_0053
	338755_0054
	338755_0055
	338755_0056
	338755_0057
	338755_0058
	338755_0059
	338755_0060
	338755_0061
	338755_0062
	338755_0063
	338755_0064
	338755_0065
	338755_0066
	338755_0067
	338755_0068
	338755_0069
	338755_0070
	338755_0071
	338755_0072
	338755_0073
	338755_0074
	338755_0075
	338755_0076
	338755_0077
	338755_0078
	338755_0079
	338755_0080
	338755_0081
	338755_0082
	338755_0083
	338755_0084
	338755_0085
	338755_0086
	338755_0087
	338755_0088
	338755_0089
	338755_0090
	338755_0091
	338755_0092
	338755_0093
	338755_0094
	338755_0095
	338755_0096
	338755_0097
	338755_0098
	338755_0099
	338755_0100
	338755_0101
	338755_0102
	338755_0103
	338755_0104
	338755_0105
	338755_0106
	338755_0107
	338755_0108
	338755_0109
	338755_0110
	338755_0111
	338755_0112
	338755_0113
	338755_0114
	338755_0115
	338755_0116
	338755_0117
	338755_0118
	338755_0119
	338755_0120
	338755_0121
	338755_0122
	338755_0123
	338755_0124
	338755_0125
	338755_0126
	338755_0127
	338755_0128
	338755_0129
	338755_0130
	338755_0131
	338755_0132
	338755_0133
	338755_0134
	338755_0135
	338755_0136
	338755_0137
	338755_0138
	338755_0139
	338755_0140
	338755_0141
	338755_0142
	338755_0143
	338755_0144
	338755_0145
	338755_0146
	338755_0147
	338755_0148
	338755_0149
	338755_0150
	338755_0151
	338755_0152
	338755_0153
	338755_0154
	338755_0155
	338755_0156
	338755_0157
	338755_0158
	338755_0159
	338755_0160
	338755_0161
	338755_0162
	338755_0163
	338755_0164
	338755_0165
	338755_0166
	338755_0167
	338755_0168
	338755_0169
	338755_0170
	338755_0171
	338755_0172
	338755_0173
	338755_0174
	338755_0175
	338755_0176
	338755_0177
	338755_0178
	338755_0179
	338755_0180

