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SUMMARY 

This thesis reports research carried out towards numerical simulation of hypersonic flows 

around space- plane shapes. For high speed flows around conical geometries, a locally 

conical approximation was introduced, which resulted in locally conical Navier- Stokes 

equations. 

In order to achieve accuracy and efficiency for steady state solutions, various 

methods were investigated. Based on the MacCormack implicit scheme and the 

Beam- Warming implicit scheme, two implicit procedures were developed to solve the 

locally conical Navier- Stokes equations (LCNSE). A new implicit boundary treatment 

was introduced in the MacCormack implicit scheme. The source term in the governing 

equations was treated explicitly. A simplified Beam- Warming implicit scheme was 

developed for its application to the LCNSE. Accuracy of the two schemes was 

investigated. The time step dependence of steady state solution with MacCormack- type 

schemes was analyzed and a procedure to reduce the error was proposed. 

To further accelerate the convergence to the steady state, two multigrid methods 

were applied to the two implicit schemes respectively. An extention of Ni- type 

multi grid method was developed to accelerate the MacCormack implicit scheme, and the 

F AS multigrid method was employed to accelerate the simplified Beam- Warming 

implicit scheme. 

In parallel, a new approach for fast steady state solution - sparse quasi- Newton 

method was proposed to avoid difficulties in linearization associated with implicit 

schemes for general CFD problems. Formulation was given for three- point and 

five- point spatial discretization schemes. Preliminary results of a nozzle problem with 

van Leer's flux splitting and Harten's TVD high shock- resolution schemes illustrated 

significantly faster convergence to steady state with the sparse quasi- Newton approach 

than those with corresponding implicit operators of van Leer and Harten. 
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Numerical simulations by solving LCNSE with the two implicit schemes developed 

in this study were carried out on hypersonic flows around a cone, on the leeside of a 

delta wing and beneath/over a cone- delta- wing combination. Detailed structures of the 

complex flow interaction were well predicted including the existence of embedded shock 

waves and secondary vortices. Comparison with available experimental data was made. 

Euler solutions were also carried out to compare with the N- S solutions. 

In the present hypersonic delta wing flow simulation, different phenomena were 

found than would have been expected from the Miller and Wood classification in the 

lower speed range. 

The numerical simulation of hypersonic viscous flows around a cone- delta- wing 

combination was the first flow field simulation around such a shape representing 

wing- body interference. It was found that the complexity of the flow field results from 

the shock- shock, shock- boundary layer and shock- vortex interactions in the flow 

field. High local heating and its cause were revealed near the corner on both the 

windward side and the leeward side surfaces of the geometry. 
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CHAPTER ONE 

INTRODUCTION 

1 .1 Hypersonic Interest and Projected Spacecraft 

During the past few years a strong international interest has been renewed in all 

aspects of hypersonic flight, driven by new spacecraft concepts such as the British 

HOTOL (HOrizontal Take- Off and Landing), the French Hermes, the West German 

Sanger and the American NASP (National Aero- Space Plane) [1,2]. These hypersonic 

flight vehicles are primarily planned to operate as more economic space satellite 

launch vehicles to satisfy the increasing demand for development of space for 

communications, scientific experiments and material manufacture. Among them the 

HOTOL and the NASP are aimed at a historical goal for launch vehicles, i.e. full 

reusability. This HOTOL- class spacecraft reduces drastically the cost of present day 

launchers, i.e. the rocket system or the US space shuttle, mainly by taking advantage 

of a horizontal take- off from a conventional runway and by economies achieved 

through air- breathing in the lower level of the atmosphere. Furthermore, due to their 

airplane- like operation within the atmosphere, the design of HOTOL- class spacecraft 

is directly relevant to a new generation of sub- orbital hypersonic transport vehicle for 

fast and economic trans- global operation. 

For the design of such hypersonic vehicles, in addition to the importance of the 

prediction of aerodynamic forces due to their airplane- like operation, one of the most 

demanding factors is the prediction of the aerodynamic heating rate. As pointed out in 

[3, 4], high heating is not only limited to the stagnation line on the windward surface. 

Flow interactions can introduce locally very high heating rates. Accurate knowledge of 

skin temperature and heating rate is essential in deciding what materials are used to 

build the structure and what insulation is required. 
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1.2 Classification and Modelling of Hypersonic Flow 

The term hypersonic flow usually refers to flows with Mach number M > 6. A major 

complexity associated with hypersonic aerodynamics is that the hypersonic regime covers 

the whole flow range from the continuum flow to molecular flow. Hypersonic flow can 

be classified according to the value of the ratio of the mean free path of the 

molecules and the characteristic length of the considered problem, denoted by the 

Knudsen number, Kn. In the continuum flow range at very small Kn, i.e. Kn < 0.1, 

the Navier- Stokes equations can generally be used to describe the flow processes. This 

is true for atmospheric flight in altitudes up to around 100 km. In the other limiting 

case, at very large Kn, the mean free path of the molecules becomes of sufficient 

magnitude relative to the vehicle dimensions that the continuum model breaks down and 

the full Boltzmann equation must be used. Here molecular flow simulations should be 

employed, wherein the motion of a large number of molecules is computed, such as in 

the direct simulation Monte- Carlo method. 

Because of the wide range of the hypersonic regime, in addition to the 

well- known difficulties in compressible flows associated with the determination of 

transition from laminar flow to turbulence and the modelling of turbulence, hypersonic 

flows often involve such new problems as real gas effects, equilibrium or 

non- equilibrium chemical reactions and the flow behaviour in the transitional range 

between continuum and molecular ranges. 

In the hypersonic regime a major design driver is the prediction of peak 

aerodynamic forces and peak aerodynamic heating rates, which usually occur at lower 

altitudes within the continuum range. However hypersonic flows around flight vehicle in 

this flow rang often involve strong flow interactions such as shock- shock, 

shock- boundary layer, shock- vortex and other viscous/inviscid interactions. 

Solutions of Euler equations or even simpler inviscid modelling can sometimes 
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provide useful data on aerodynamic forces and can be coupled with proper boundary 

layer codes to generate such important parameters as skin friction and heat transfer 

rates. However this approach is not applicable when strong viscous/inviscid interaction 

occurs. The boundary layer approximation is no longer valid in such regions as on the 

lee- side of the vehicle at high angles of attack, near the nose of the body and around 

the leading edge of the wing at high Mach number. Therefore, for strong interactive 

flows, a Navier- Stokes solution is required to predict accurately hypersonic 

aerod ynamic characteristics. 
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1 .3 Wind Tunnel Experimentation and Hypersonic CFD 

With the continuous development of more powerful computers as well as more 

sophisticated and efficient numerical algorithms, computational fluid dynamics(CFD) has 

emerged as a viable tool in understanding complicated fluid dynamic phenomena in 

subsonic, transonic and supersonic regimes. CFD is now routinely applied to practical 

problems, in complementary ways, with wind tunnel experimentation in the aircraft 

design and verification process. 

Although CFD is playing an increasingly important role, wind tunnel 

experimentation has been the major design tool for modern aircraft. It is also 

well- known that the development of the US Space Shuttle took place mainly in wind 

tunnels or by other means of experimental investigation. 

Unfortunately, difficulties with wind tunnel experimentation in the hypersonic 

regime become much more severe than in the lower flow speed regimes. For the flow 

conditions which existing hypersonic wind tunnels can achieve, high energy consumption 

makes this approach very expensive .. On the other hand, the accuracy of such crucial 

parameters as the heat transfer rate, is difficult to achieve by conventional measurement 

techniques due to the usually small dimension of the hypersonic wind tunnels, which 

limits the size of the models to be tested. Furthermore, experimental simulation of a 

hypersonic flow field in which non- equilibrium reaction chemistry is important would 

require the air density, flight velocity and vehicle scale all to be reproduced 

simultaneously. This is not possible in existing ground- based experimental facilities. A 

typical example is the situation with the US space shuttle programme. The experience 

gained in free flight as compared to experimental and theoretical design shows that 

many flow phenomena lack basic understanding and require further study. Examples 

include the severe heating rate found on the leeside surface of the Shuttle. 
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In contrast, CFD capabilities can be extended to the hypersonic regime more easily 

without the fundamental difficulties apparent in hypersonic experimental investigation. 

The simulation of the density, velocity and scale is possible in computer flow 

simulation. The renewed interests in hypersonic flight is in fact partly attributed to the 

confidence in using CFD solely in design because of the impossibility of simulating the 

wide range of the actual hypersonic conditions in a wind tunnel. As a result, CFD is 

anticipated to be the primary tool, or the only tool in some conditions, for providing 

the extensive flow simulation information required in the design process of new 

hypersonic vehicles. The hypersonic flow regime will probably be the first to be 

dominated by CFD. This of course necessitates the development of efficient and robust 

hypersonic CFD codes which are reliable in predicting important quantities such as 

aerodynamic loading and heating. 

Although today's numerical algorithms are more accurate, efficient and robust than 

those of a few years ago, they are still unsatisfactory in many aspects. Worthwhile 

codes have been produced, but further improvements in algorithm technology could 

multiply their usefulness many times over. Major improvements are needed in spatial 

accuracy, convergence reliablity and convergence rates [5, 6]. CFD methods today can 

simulate flow about complex geometries with simple physics, or about simple geometries 

with more complex physics, but they cannot do both. To change this situation, one of 

the most pressing needs today is the improvement of the convergence rate in Euler and 

Navier- Stokes solutions. This need is more severe in hypersonic CFD because the 

complexity of the flow usually involves solution of high order equations. 

A wind tunnel must be calibrated after it is built. A numerical code needs to be 

validated to ascertain its accuracy before or during the computer simulation of the flow. 

This validation can usually be done by running the code under conditions where 

well- documented experimental data are available and comparing the numerical results 

with the experimental data. It should be noted that the existing experimental data in 

hypersonic regime are rare and the quality of these data are usually low as compared 
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with the extensive and well- documented data in subsonic, transonic and supersonic 

regimes. This is clearly attributed to the difficulties with hypersonic experimentations as 

mentioned earlier. Expensive free- flight tests would be the only way to validate 

numerical codes in the full hypersonic regime. 
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1.4 Aim and Approaches of This Study 

This practical requirement inspired the present research to simulate continuous 

hypersonic flow by solving the Navier- Stokes equations in order to provide extensive 

flow field data for both the basic understanding of complex flows and for actual design 

purposes. 

As a first stage towards this ultimate goal the present study assumed that the gas 

is perfect. Therefore validation of the codes could be carried out by comparing the 

numerical results with existing experimental data. Confidence in using the codes, 

together with the ability of Navier- Stokes CFD to assess real gas effects not generally 

simulated in experimental facilities, will naturally lead to the exploration of the real gas 

effects on such parameters as lift- drag ratio, stability and aerodynamic heating. 

Laminar flows were investigated in this study because of the lack of reliable 

determination of transition and turbulence modelling for 3D hypersonic strongly 

interactive flow and also due to the prevalence of laminar flow in the hypersonic 

regime. 

The final assumption concerns the geometry. Conical shapes were chosen in this 

study. The reason for this is twofold. First of all they include fundamental or generic 

shapes that can represent spacecraft geometries. Important examples of such shapes are 

(1) cones, (2) elliptic cones, (3) delta wings, (4) conical body/delta wing combinations, 

(5) axial corners, (6) caret wings and other wave riders. Secondly a locally conical 

approximation can be made for hypersonic flow around such shapes downstream of the 

apex, which decouples the 3D NS equations in the radial direction. Therefore 

computation and storage requirements are reduced radically so that a systematic 

investigation on both the numerical methods and the physical phenomena could be 

carried out with a medium- sized computer, namely, the ICL 2988 of Glasgow 

University Computing Centre, which was available during this study. 
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To sum up, the assumptions made in the research reported in this thesis are: 

(a) the flow is a continuum; 

(b) the gas is perfect; 

( c) the flow is laminar; 

(d) the geometry is conical. 

Under these assumptions, a mathematical model the locally conical 

Navier- Stokes equations(LCNSE) - can be established for the simulation of the flow. 

The presentation is naturally divided into two major steps: (1) numerical aspects; 

(2) physical aspects, which were in fact closely related to each other in the 

development of the research. 

On the numerical aspects, for an efficient simulation, emphasis was put on the 

improvement of the convergence rate, which is considered to be one of the most 

pressing needs in hypersonic CFD with N- S solutions. To achieve fast convergence to 

the steady state, two implicit time marching schemes were developed to solve the 

locally conical N- S equations. These two schemes are based on (1) the MacCormack 

implicit scheme [7]; (2) the Beam- Warming implicit scheme [8]. Major new inputs into 

the application of these two implicit schemes to the LCNSE are: (1) in the 

MacCormack implicit scheme an implicit boundary condition treatment according to the 

explicit boundary condition was adopted; (2) an explicit treatment of the source term in 

the LCNSE was employed and justified; (3) a simplified version of Beam- Warming 

implicit scheme was proposed for steady state solution; (4) steady state dependence on 

time step of MacCormack- type schemes was revealed and the measures to avoid it was 

investigated; (5) accuracy and efficiency of these two schemes were compared and 

discussed. 

To further accelerate the convergence, two multigrid methods were presented for 

these two implicit schemes respectively. This original work was motivated by the recent 
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progress in multigrid theories [9] and some successful applications of the multigrid 

procedures to accelerate explicit time marching schemes in CFD [10- 12]. The 

Ni- type multigrid procedure [10] was applied to accelerate the MacCormack implicit 

scheme [13] while the full approximation scheme(FAS) [14, 15] was used to speed up 

the convergence of the simplified Beam- Warming implicit scheme. This was done 

according to the basic structures of the two different implicit schemes. Different 

strategies in the multi grid procedures were studied. 

In parallel to this, a more basic numerical investigation was carried out on a 

sparse quasi- Newton method [16- 22] for a fast steady state solution. This was a result 

of an analysis on the inherent shortcomings of the existing implicit schemes for steady 

state solutions. A general procedure of the method was proposed and formulation was 

demonstrated for three and five point spatial discretization schemes. Preliminary results 

were obtained for a nozzle problem modelled by 1D Euler equations with high 

shock- resolution schemes, i.e. van Leer's flux vector splitting scheme [23, 24] and 

Harten's total variation diminishing(TVD) scheme [25, 26]. Compared with the 

corresponding implicit operators, the sparse quasi- Newton approach showed a much 

faster convergence to steady state. 

This thesis presents numerical flow field simulations for three simple while 

representative geometries of hypersonic flight interest. Cones, delta wings and 

cone- and- delta- wing combinations were studied. Comparisons are made with the 

experimental data of Tracy [27], Cross [28] and Meyer and Vail [29] respectively. The 

flows around cones and delta wings in low speed regimes were well understood. But 

their behaviour in hypersonic regime needs to be further investigated. The present 

codes provided this possibility. Unlike the situation with cones and delta wings, the 

hypersonic flow around a cone- and- delta- wing combination is more complicated due 

to the more complex flow interactions. The only information available about this flow 

was some surface measurement data [29- 31]. The flowfield data did not exist and the 

surface measurements near the junction was not certain. A first flowfield simulation of 
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such flow by the codes developed in the present research [32] provided further insight 

into the complex structure of the flow and revealed high local aerodynamic heating 

regions and their causes. The leeside flow above the combination was also explored 

with the present computer simulation [33]. 

10 



1.5 Arrangement of the Thesis 

As mentioned in the previous sections, the major contribution can naturally be divided 

into (1) numerical method development; (2) hypersonic flow simulations. As a 

consequence, after the mathematical model is established in Chap. 2, the thesis develops 

in the two following chapters on these two aspects respectively. Chap. 3 presents 

research efforts towards faster convergence after detailed presentation of the basic 

numerical schemes. Accuracy studies will also be reported in this chapter. In Chap. 4, 

some simulations are presented. Interesting physical phenomena revealed by the 

simulation will be discussed. General conclusions drawn from this study and future work 

are addressed in Chap. 5. 
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CHAPTER TWO 

GOVERNING EQUATIONS 

2.1 Introduction 

In this chapter, the governing equations are described under the assumptions mentioned 

in Chap. 1. As a starting point, the unsteady three dimensional compressible N- S 

equations in Cartesian coordinates are presented in Sec. 2.2. They are then transformed 

into spherical coordinates in Sec. 2.3. In Sec. 2.4 the locally conical approximation is 

introduced to the N- S equations in spherical coorodinates and the locally conical N- S 

equations result. Conical Euler equations are derived in Sec. 2.5 by simply deleting 

viscous terms in the locally conical N- S equations. Sec. 2.6 describes the initial and 

boundary conditions. 
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2.2 Compressible N- S Equations in Cartesian Coordinates 

The unsteady, three dimensional, compressible Navier- Stokes equations in Cartesian 

coordinates (x,y,z) without body forces and external heat addition can be written in 

conservation form as 

au "+ aE + aF + aG = 0 
at ax ay az 

where the dependent variable vector U is given by 

p 

puX 

U PUy 

pUz 

pe 

and the flux vectors E, F, G are given by 

E 

F 

G 

PUx 

PUX
2 + P - 7XX 

pUyux - 7 yx 
pUzux - 7 ZX 
(pe + p)ux + qx - UX7 XX - Uy7 yx - UZ7 ZX 

pUy 

puxuy - 7 xy 
pUy

2 + P - 7 yy 
pUzuy - 7 zy 
(pe + p)uy + qy - Ux7 xy - Uy7 yy - Uz7 zy 

PUz 

pUXUz - 7 XZ 

PUyUz - 7 yz 
PUZ

2 + p -7 ZZ 
(pe + p)uz + qz - UX7 XZ - Uy7 yz - UZ7 ZZ 
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and the components of the stress tensor are 

TXX 
~ (2 aux 
3 Jl ax 

auy 
ay 

auz ) 
az 

Tyy ~ (2 auy aux auy ) 
3 Jl ay ax ay 

T ZZ 
~ (2 auz 
3 Jl az 

auy 
ay 

aux ) 
ax 

_ aux au 
Txy· - Jl (ay + axY ) Tyx 

TXZ 
( aux + auz ) 

Jl az ax TZX 

au au 
Tyz = Jl ( azY + ~ ) Tzy 

Fourier's law for heat transfer by conduction will 

components of the heat flux q can be expressed as 

aT 
qx = - k ax 

aT 
qy = - k ay 

aT 
qz = - k az 

Because a perfect gas is assumed, the equations of states are 

p = pRT 

T = ( 'Y - 1 ) [ e - I V I 2/2 l/R 

where R 287 m 2/sec 2. K is the gas constant and 'Y 

heats. 

be assumed so 

(2-6) 

that the 

(2-7) 

(2-8) 

(2-9) 

1.4 is the ratio of specific 

The coefficient of viscosity is given by the Sutherland's formula 

Jl 
C p/2 

1 ;;:;--:---::: (2-10) 

where eland c 2 are constants given as 1.458 X 10- 6 kg/m 'sec' K ~ and 11 0.4 K 

respectively. 
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The coefficient of thermal conductivity is related to the coefficient of viscosity by 

the Prandtl number 

Pr 
CpJl 

k (2-11) 

So far nine equations in Eqs. (2-1), (2- 8)- (2-11) are obtained for nine 

unknowns, the density p, the three velocity components ux' uy' uz' the internal energy 

e, the pressure p, the temperature T, the coefficient of viscosity Jl and the coefficient 

of thermal conductivity k. The description of the problem will be completed with the 

specification of appropriate initial and boundary conditions, which will be discussed 

later. 

As pointed out by Peyret and Viviand [34], the system of the above N- S 

equations is of hybrid parabolic and hyperbolic type. Without the time dependent term 

in Eq. (2-1) the steady N- S equation system is of hybrid elliptic and hyperbolic type. 

With grid generation techniques, a general transformation can be made for general 

body- fitted coordinates. In spite of this, a specific transformation is introduced in the 

next section which suits conical shapes. 
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2.3 Compressible N- S Equations in Spherical Coordinates 

For the study of the flow around conical shapes, it was found that a spherical 

coordinate system is much easier for a simple body- fitted mesh generation. For these 

shapes, therefore, it is not necessary to use a general grid generation technique. Such a 

technique usually involves solutions of partial differential equations for a body- fitted 

coordinate system. 

Eq. (2-1) can be transformed into the spherical coordinate system (r, e, <p) via 

the following transformation 

x x(r, e, <p) r sine cos<p, r >- 0 

y y ( r, e, <p) r sin e s i n<p , o (, e (, 7r (2-12) 

z = z(r, e, <p) r cos<p. o (, <p (, 27r 

Fig. 2.1 shows the relation between the two coordinate system. 

The resulting equations in a spherical coordinate system can be written in weak 

conservation form as 

where 

au aE aF ac -
at + or + aa + a~) + H 0 

U r 2 sine 

E r 2 sine 

p 

PUr 

I pue 

pU<p 

pe 

PUr 

pUr
2 + p - Trr 

PUeur - Ter 

pU<pur - T<pr 

(pe + p)ur + qr - UrT rr - ueTer - U<pT<pr 
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(2-13) 

(2-14) 
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F r sinO 

G = r 

PUO 

puruo - T rO 

PU02 + P - TOO 

PUcpUO - TcpO 

(pe + p)uo + qo - UrTrO - UOTOO - UcpTcpO 

PUcp 

PUrUcp - T r'f 

PUOUcp - TOcp 

pUcp2 + p - Tcpcp 

(pe + p)Ucp + qCP - UrTrcp - UOTOcp - UcpTcpcp 

and the source term vector is 

o 

if r sinO 

( PU02 + P - TOO) - ( pUcp2 + P - Tcpcp) 

ctgO ( pUcp2 + P - Tcpcp ) + puruO - TrO 

ctgO ( PUOUcp - TOcp ) + puruO - Trcp 

o 

The components for the shear stress tensor are 

Trr 

TOO 

OUr 2 d' V 2p.. or -"3p.. IV 

1 OUO U 2, V 
2p.. ( r 00 +?.) - "3p.. dlV 

Tcpcp = 2p.. ( ___ ~ ___ OU~ + ~ + uoctgO) 2 d' 
rSInO ocp r r -"3p.. IV V 

TrO = TOr = p..[ r ~(~) + ! OUr 
or r r 00 

T Ocp T cpO 
sinO ~ ~ + ___ 1_ OUO 

p.. [ roO ( sin 0) r sin 0 ocp 

Trcp Tcpr p..[ 

1 
div V r 2sinO 

1 oUr o (u'f) ---- + r- ___ 
rsinO ocp or r 

0~(r2sinOUr) + o:(rsinOUo) + o~(rucp) 

and the components of the heat flux are 

qr 

qe 

oT 
k or 

_ k ! oT 
r 00 

1 oT 
qCP = - k rsinO ocp 

17 

(2-16) 

(2-17) 

(2-18) 

(2-19) 

(2-20) 



In spherical coordinates, conical shapes are usually easily defined. Especially 

interesting is that the spherical coordinate surfaces compose a variety of practical 

conical shapes without further transformation. These shapes include cones (Fig. 2.2), 

delta wings (Fig. 2.3), cone/delta wing combinations with or without the wing dihedral 

(Fig. 2.4), and some waveriders such as caret wings (Fig. 2.5). As shown in the figures 

a cone with a half- cone angle Bc is composed of a B = Bc ( 0 ~ cp ~ 211" ) 

coordinate surface. A delta wing with leading edge sweep back angle 1\ is composed of 

B = 11"/2 ( - 11"/2 + 1\ ~ cp ~ 11"/2 - 1\). A cone/delta wing combination is composed 

of B = Bc ( 0 ~ cp ~ 211" ), cp = 11"/2 ( Bc ~ B ~ 11"/2 - 1\) and cp = - 11"/2 ( Bc ~ 

B ~ 11"/2 1\ ). 
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2.4 Locally Conical Navier- Stokes Equations (LCNSE) 

Numerical solution of the 3D N- S equations described in Sec. 2.2 or 2.3 requires both 

a huge computer storage and a very large amount of computing time even for simple 

aerodynamic configurations. This has led researchers in the past to simplify the 

equations through neglect of the stress terms ( therefore, inviscid flow) and/or by 

reduction of the number of dimensions to be considered in the problem. This section 

introduces the local conicity concept after description of the global conical flow. The 

locally conical approximation decouples the 3D N- S equations in the radial direction 

and leads to the locally conical N- S equations. 

2.4.1 Definition of Conical Flow 

Generally speaking, a conical flow can be defined as a flow in which all flow 

quantities are constant along rays passing through a common vertex. If a conical shape 

is defined as a shape generated by rays passing through a common vertex, a truly 

conical flow can only be an inviscid supersonic or hypersonic flow around a conical 

shape with a bow shock wave attached to the vertex of the shape. The exclusion of a 

significant length scale has the effect of reducing the number of independent variables 

in the problem by one. 

If a body- fitted spherical coordinate system centred at the vertex of the conical 

shape is used to describe the flow, then all the spherical surfaces must have the same 

vector and scalar values of the flow quantities for a given (e, 'P) point. Therefore all 

the derivatives of the flow quantities with respect to the spherical radius (r) of these 

spherical surfaces from the origin must be zero. 
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2.4.2 Locally Conical Approximation 

As noted in Sec. 2.4.1, the concept of conical flow is strictly valid only for inviscid 

flow. Conicity disappears when viscosity is involved. However examination of many 

experimental studies [27- 31] of supersonic or hypersonic flows around conical shapes 

revealed that these flows exhibit a locally conical behaviour downstream from the nose 

region even though relatively large viscous regions exist. If the flow is described in a 

spherical coordinate system, this locally conical behaviour indicates that, for a given r, 

the gradient in the radial direction is much smaller than those in the crossflow 

spherical surface. 

Based on this examination, MacRae [35] introduced an approximation to the 3D 

N- S equations for supersonic or hypersonic flows around cones. Unlike MacRae's 

presentation a local point of view is stressed here in this approximation to avoid 

confusion with the global inviscid conical flow. 

For a given spherical surface, i.e., a given r, a locally conical approximation is 

done by neglecting the derivatives of the flow quantities p, up u 0' u<p' e, p, T, J1- and 

k with respect to r in the 3D N- S equations (2- 13). 

2.4.3 Derivation of Locally Conical Navier- Stokes Equations 

Under the locally conical approximation, the changes made in the expressions (2- 19) 

for the shear stress tensor are 

7 rr - jJ1- div V 

J1- au 
7 r O 7 Or - ( -uo + ~ ) r ao 

7r<p 7<pr 
1!:. _1_ aUr _ u 
r ( sinO a<p <p ) (2-21) 
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div V = rs~no ( 2ur sinO + o!( ursinO ) + ~~O ) 

qr = 0 (2-22) 

Therefore from the expressions in (2-15) and (2- 21) the derivative of the r 

direction flux vector with respect to r becomes 

0 

oE 
Trr 

2 - 0 
or - E - r 2sinO - TOr r or 

T cpr 

UrT rr + UOTO r + UcpTcpr 

0 

Trr 
2 - rsinO I - E + TOr r 

T cpr 

UrT rr + UOTO r + UcpTcpr 

By substituting expression (2- 23) into Eq.(2-13), the equations become 

where 

oU of oC H-' 
at + 00 + ocp + o· 

H' 

o 

Trr 

H + ~ E + rsinO 
r TOr 

Tcpr 

UrT rr + UOTO r + UcpTcpr 

2pUr 

2pur
2 - PU0 2 - pUcp2 - Trr + TOO + Tcpcp 

rsinO I 3puru O -ctgO(pUcp2 + p) +ctgO Tcpcp -2T r O 

3purucp + ctgO pUOucp - ctgO TOcp -2Trcp 

2ur (pe + p) - UrT rr -UOTrO -UcpTrcp 
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2.4.4 Non- dimensionalisation of LCNSE 

The locally conical N- S equations are nondimensionalised by 

u* ~ u~ ~ u* u 
r IVloo IVloo cp wt 

p* 
p p* p p..* L (2-26) 
Poo PoolVloo 2 p..oo 

e* e T* T t* t 
IVloo 2 To-Too r/IVloo 

where the nondimensionalised variables are denoted by an asterisk. The free stream 

conditions, denoted by 00, are used for the non- dimensionalisation and r is the location 

of the spherical surface where the locally conical approximation is made. 

As a result, the nondimensionalised LCNSE can be written as 

where 

au aF aG 
at + ao + acp + H o 

U sinO I 

F sinO 

G 

P 

PUr 

puO 

pUcp 

pe 

PUO 

puruO - 7 rO 

PU02 + P - 700 

PUcpUO - 7 cpO 

(pe + p)uO + qo - U r 7 r O - U0700 - Ucp7cpO 

PUcp 

PUrUcp - 7 r~ 

PUOUcp - 70cp 

Pu 2 + P - 7 cp cpcp 

(pe + p)Ucp + qCP - Ur 7 rcp - U070cp - Ucp7cpcp 
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2pur 

2pur 2 - PUe2 - pU~2 - Trr + Tee + T~ 

H sine I 3purue -ctge(pu~2 + p) +ctge T~~ -2T r e (2-31) 

3puru~ + ctge pueu~ - ctge Te~ -2Tr~ 

2ur (pe + p) _ UrT rr -ueTre -U~Tr~ 

where the components of the shear stress tensor are 

Trr 
2 ~ aUe 1 au 

- 3" R-- (2ur + ae + ctgue + -. -e r ) eoo,r stn ~ 

Tee ...3..!!:.- ( aUe 
Reoo,r ae + ur ) + Trr 

T =...3..!!:.- 1 au ~ Reoo,r ( sine a~\a + ur + uectge ) + Trr 
(2-32) 

Tre T er ~ aUr ) 
~ ( -ue + 

00, r ae 

Te~ T~e 
~ au 1 au 
~ (~ - ctge u~ + -. - ~ OO,r stne a~ 

~ 1 dUr 
T r~ T ~r R-- ( -. -e a - u~ ) eoo,r stn ~ 

and the components of the heat flux in (2- 29) and (2- 30) are given by 

qe 
~ aT 

2Reoo rPr ae , (2-33) 
~ aT 

q~ 2sineReoo rPr d~ , 

With non- dimentionalisation (2- 26), the equations of state, (2- 8) and (2- 9) become 

p 

T 

1'-1 
-pT 
21' 

2'Y(e - IVI 2/2) 

(2-34) 

(2-35) 

For simplicity of the layout of the above governing equations, which are used in 

the following computation, the asterisk for all the nondimensionized variables are 

omitted. 

Note that the length scale r still appears in the governing equations through the 

characteristic Reynolds number 

Reoo,r 
poolVloor 

~oo 
(2-36) 
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in the expressions for shear stress (2- 32) and heat flux (2- 33). As a consequence, 

solution of the locally conical N- S equations depends directly on the position r where 

the computation is carried out. And it is also evident that the non- conicity, i.e. the 

difference in the solutions for different values of r, is totally attributed to the viscous 

effects. 

With the help of the LCNSE (2- 27), the claim that a conical flow has to be 

inviscid flow can be proved. Suppose the flow is conical and described by 3D N- S 

equations (2- 13). Then (of or) should be zero with respect to all flow quantities. This 

results in the LCNSE (2- 27). Because the flow is conical, the solution should be 

independent of r. But r appears in (2- 27) through (2- 32) and (2- 33). Therefore the 

coefficient of viscosity Jl should be zero. In other words, inviscid flow is a necessary 

condition for conical flows. The conical boundary condition requires that a conical flow 

should be supersonic or hypersonic. 
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2.5 Conical Euler Equations 

As discussed in the last section, conical flows are inviscid and, therefore, solutions of 

Euler equations. Conical Euler equations can be derived by neglecting viscous terms in 

the locally conical N- S equations. Therefore the conical Euler equations may be 

written in the following form. 

where 

au of oe 
ot + 00 + ocp + H o 

u sinO 

F sinO 

G 

H sinO 

P 

PUr 

puO 

pUcp 

pe 

puO 

puruO 

PU 0 2 + P 

pUcpuO 

(pe + p)uO 

PUcp 

purucp 

pUOucp 

pUcp2 + P 

(pe + p)ucp 

2pur 

2pur 2 - PU02 - pUcp2 

3puruO -ctgO(pUcp2 + p) 

3pur ucp + ctgO pUOucp 

2ur (pe + p) 

(2-37) 

(2-38) 

(2-39) 

(2-40) 

(2-41) 

Examination of the above equations reveals that the significant length, r, is missing 

in the unsteady Euler equations. 
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The conical Euler solutions will be presented for comparison with the locally 

conical N- S solutions. Of course, they can be used to provide useful force data if the 

viscous/inviscid interaction is not very strong. The conical Euler code can also be used 

as a tool for the basic study of conical flows. 

It should be noted that conical flow is only defined for steady state flow. The 

unsteady form is used for the steady state solution, while for the study of the initial 

transient pheno menon of high speed flows around conical geometries a full three 

dimensional unsteady solution is necessary. 
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2.6 Initial and Boundary Conditions 

The description of a differential system of equations is not complete without the 

specification of appropriate initial and boundary conditions. This section describes the 

general initial and boundary conditions for the locally conical N- S equations and the 

conical Euler equations presented in the previous sections. The boundary conditions 

determine the shapes simulated. More specific conditions for different geometries will be 

given in detail in Chap. 4, where flow simulations are presented. 

2.6.1 Boundary conditions 

The three typical boundary conditions in the present problem are: 

(a) On the wall of the conical shapes. As the flow is assumed to be continuum 

throughout the flowfield, no- slip condition is applied on the solid wall for viscous 

solutions. Either temperature or its normal derivative (corresponding to the heat 

transfer) is prescribed on the wall to "be a given constant. That is, 

u r ue u~ 0; 
aT 

Tw or (an)w given (2-42) 

For the inviscid solution of the Euler equations, a tangential velocity condition is 

applied on the wall. 

(b) The outer boundary. Because shock- capturing schemes are used in the numerical 

solution of the governing equations, all shock waves in the flowfield are captured 

automatically with the numerical solutions. As a conseqence of this, the flow properties 

on the outer boundary are set to the properties of the free stream as long as the outer 

boundary is sufficiently far away from the conical wall to include all the shock waves. 
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(c) The symmetry boundary. If the flowfield is symmetric, the computational domain 

can be halved by the symmetry boundary. On this boundary, all the normal derivatives 

of the flow properties are identically zero except for that of the normal velocity 

component. The normal velocity component is set to zero on the symmetry boundary. 

This boundary condition is commonly referred to as the reflection condition. 

2.6.2 Initial Conditions 

Although the major interest of this research is steady state solutions, a time marching 

numerical procedure is followed by solving the unsteady governing equations to achieve 

a steady state. In all the following computations, the flowfield is initialized to free 

stream values of the flow quantities at all points except for the points on the wall, 

where the appropriate wall boundary condition is applied. 
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CHAPTER THREE 

NUMERICAL METHODS 

3.1 Introduction 

Flows governed by the equations presented in Chap. 2 can be simulated numerically by 

finite- difference solution of these partial differential equations subject to appropriate 

initial and boundary conditions. In this chapter, methods and numerical considerations 

related to the finite- difference solutions of these equations will be presented. As stated 

in Chap. 1, one of the most pressing needs in the algorithm technology in CFD is to 

improve the convergence rate of Euler or N- S solutions. As steady state solutions are 

of major concern in this research, the emphasis will be on the achievement of fast 

steady state solutions. 
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3.2 Review of Existing Numerical Schemes 

Before detailed presentation of the numerical approaches taken in this research, a brief 

review of existing schemes along with some discussion are given in the present section 

with concentration on steady state solutions of N- S equations. This review also justifies 

the approach taken in the reseach. More general reviews can be found in [5, 6, 34, 

36] 

3.2.1 Time Marching Approach 

A time marching approach is generally followed in solving the compressible N- S 

equations although in many cases only a steady state is of interest. There are three 

reasons for this. As mentioned previously in Chap. 2, the steady compressible N- S 

equations are a mixed set of hyperbolic and elliptic equations which are difficult to 

solve because of differences in numerical techniques required for hyperbolic and elliptic 

equations. However, with the unsteady term, the compressible N- S equations become a 

set of mixed hyperbolic and parabolic equations, which can usually be solved more 

easily with a time marching approach due to the similarity of the numerical techniques 

for these two types of equations. Furthermore, following a physical time process assures 

robustness of the solution procedure and prevents non- physical states such as negative 

density, which may occur in non- physical iterative schemes to terminate the 

computation. Another obvious advantage of a time marching approach is the versatility 

of the code, which, if the time accuracy is retained in the scheme, can be used for 

both steady and unsteady problems. Due to these features, nearly all successful solutions 

of the compressible N- S equations have employed the unsteady form. The steady state 

solution is obtained by marching the solution in time until convergence is achieved. 

On the other hand, if the physical time process is followed strictly, a time 

marching approach may be excruciatingly slow when one is interested solely in steady 
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state solutions. If one is willing to give up some versatility and interest is concentrated 

on the steady state problem then a faster method can be expected. Emphasis of the 

present research on the numerical aspect is focussed on the achievement of fast steady 

state solutions. 

3.2.2 Time Discretization - Explicit or Implicit? 

If the unsteady form of the compressible N- S equations is employed, there exist 

essentially, as far as time discretization is concerned, two classes of methods: explicit 

or implicit methods. 

Explicit methods such as the famous MacCormack two- step explicit method [37] 

have been widely used in solving compressible N- S equations since the algorithm is 

relatively simple. Another advantage of explicit methods appearing recently with the 

development of vector computers is that a full vectorization of the codes is usually 

straightforward. For example, Shang et al [38] vectorized the MacCormack explicit code 

on a Cray machine. Another more recent tendency is to use an explicit multi- stage 

Runge- Kutta method for Euler [39] or N- S [40] solutions. The major advantage of 

this approach over conventional explicit methods is that the severe stability restriction is 

relaxed to a certain extent due to the enlarged stability region. 

As is well- known, a major difficulty with an explicit method is that the stability 

condition is often so restrictive that a huge number of time steps have to be taken 

before reaching a steady state. This situation is especially severe for N- S solutions at a 

high Reynolds number, where highly stretched meshes are generally involved for 

accurate resolution of the viscous effects. The reason behind this is that most of the 

explicit methods follow automatically a true physical process. 
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A radical development in compressible N- S solutions is the non- iterative implicit 

methods proposed by Briley & MacDonald [41] and Beam & Warming [8]. The 

non-iterative feature is achieved by linearizaton and the nonlinear problem is solved 

linearly at each time step. This approach is loosely referred as the implicit method in 

the literature and it will be used in the following text. 

Recently MacCormack [7] extended his well- known explicit scheme to a implicit 

version. A saving in computing time by a factor of 17.5 was found compared to his 

former explicit scheme. It was also applied by Shang and MacCormack [42] to 

axisymmetric biconic configurations and computer time reduction by a factor of 13 was 

achieved against its fully explicit predecessor. This scheme has been applied to PNS 

solutions [43], viscous shock layer solutions [44] and to multiequation turbulence 

modelling [45]. 

The Beam- Warming implicit scheme and the MacCormack implicit scheme are 

now two of the most widely used schemes for compressible N- S solutions for the 

understanding of complicated flow phenomena. Generally, as compared with explicit 

methods the penalty that the implicit 'methods take more computation per time step and 

more coding work is amply offset by the great improvement in convergence to steady 

state by taking much larger time steps. 

If only the steady state is of interest, the implicit time marching can be 

considered as a special iterative method. Because the time accuracy is not important, 

simplification can be introduced in the linearization of the flux vectors. In fact, exact 

linearization is generally impractical for N- S solutions. Hence many implicit steady 

state solutions of the compressible N- S equations were achieved with some kind of 

simplification in the linearization of the flux vectors. 

Any kind of simplification in the implicit procedure can degrade convergence rate 

and blocks the way to accelerating the convergence further to steady state by taking 
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larger time steps. As a result, for a efficient time marching scheme for steady state 

solutions, there is a tradeoff between the simplification of the procedure, therefore, the 

amount of computation per time step and the convergence rate of the procedure. The 

two extremes are the explicit time marching, which is the simplest while usually the 

slowest, and the fully implicit scheme with exact linearization, which, as ..1t ~ 00, 

reduces to a Newton iteration method with quadratic convergence while it is inevitably 

the most complicated. It is believed that the most efficient scheme should lie 

somewhere in between. It may be useless to produce an algorithm simple enough but 

with a very slow convergence rate. It is equally useless to develop a scheme with a fast 

convergence rate but a huge computation per iteration. 

Furthermore for a practical multidimensional application, approximate factorization 

of the implicit operator is also introduced in the implicit time marching procedure. The 

error introduced by the approximate factorization is another reason in limiting time 

steps in implicit schemes with factorization. Recently, as the pressure on computer 

storage is released due to the appearance of modern supercomputers, some relaxation 

schemes have been proposed to avoid the factorization of the implicit operators 

[46- 49]. 

3.2.3 Spatial Discretization - Central or Upwind? 

The above mentioned MacCormack- type schemes [37, 7], Beam- Warming implicit 

scheme [8] and the explicit Runge- Kutta schemes [39, 40] have all one thing in 

common: the use of central differencing for discretization of the spatial derivatives and 

the addition of some form of artificial dissipation for capturing the shock waves. 

In contrast, for Euler equations, there are a variety of schemes which produce 

sufficient dissipation by non- centred discretization in space. These schemes (monotone, 

total variation diminishing, flux splitting, flux difference, lambda) employ some form of 
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upwind differencing under the assumption of characteristic theory and wave propagation. 

The work of Steger & Warming [50], van Leer[23, 24], Osher and Chakravarthy[51], 

Roe [52] and Harten [25] all fall in this category. This approach is attractive because it 

closely relates the inviscid physical features of the problem to the spatial discretization 

schemes. High resolution of shock waves is achieved. The drawback of such an 

approach is its complexity, chiefly in multidimensional problems. Moreover all of these 

schemes were originated from Euler solutions and the high resolution feature for shock 

waves does not always exist for shear layers with these schemes as has recently been 

discovered in [53]. These are supposed to be the two major obstacles for their 

application to multidimensional N- S solutions. 

As pointed out by Pulliam [54], an upwind scheme is equivalent to a central 

differencing scheme plus a certain form of dissipation. He illustrated the upwind 

connection to artificial dissipation using the plus- minus flux splitting method of Steger 

and Warming [50]. Yee and Harten [55] also demonstrated that a TVD scheme is 

equivalent to a central differencing scheme plus a more sophisticated dissipation term. 

As mentioned previously, one recent trend is to use relaxation methods with 

unfactored implicit operators. An upwind scheme usually yields an implicit operator with 

a better matrix property, which is a desirable feature for a successful use of relaxation 

methods. Chakrarvathy [46] related the diagonal dominance of the coefficient matrix 

with the TVD property of the discretization scheme. This important advantage possessed 

by some upwind schemes would be able to make them superior to central difference 

schemes for fast steady state solution because this property allows efficient relaxation 

procedures to be used. Mulder [48], Chakravarthy [46], Thomas and Walters [49] have 

recently presented some preliminary while interesting investigations along this line. 

In conclusion, since the central differencing schemes are comparatively simple and 

more flexible, they are preferable at the present time for compressible N- S solutions 

provided the artificial dissipation is added properly. In fact, upwind schemes can be 
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used to guide the development of nonoscillatory, robust and efficient artificial dissipation 

schemes. On the other hand, upwind schemes usually provide better resolution of 

discontinuities, especially shock waves, and can become competitive in the near future 

to central differencing for steady state solutions in efficiency by using appropriate 

relaxation methods to solve the resulting large sparse linear system. 

3.2.4 Multigrid Acceleration 

While the available theorems in the mathematical theory of multigrid methods generally 

assume ellipticity [9], the multigrid idea and schemes have been applied to accelerate 

time marching methods in CFD with great success. Ni [10] was the first to propose a 

multiple- grid scheme to accelerate time marching Euler solutions with a Lax- Wendroff 

type explicit method. The motivation was to propagate waves more efficiently on 

coarser grids whilst maintaining the fine grid accuracy. This acceleration procedure was 

then applied by Johnson [11] to the time marching N- S solution with the MacCormack 

explicit method as the fine grid scheme. 

A more direct application of the mathematical multigrid method is the application 

of the full approximation scheme (FAS) [14, 15] to accelerate time marching schemes. 

Jameson [12] used the FAS multigrid scheme to accelerate his explicit Runge- Kutta 

calculations. This F AS multigrid scheme, a nonlinear multi grid scheme, is based on the 

fact that iterative methods usually work well in reducing high frequency errors while 

low frequency errors can be reduced more efficiently on coarser grids. 

Although these two types of time stepping multigrid methods are now becoming 

popular for acceleration of steady state Euler or N- S solutions, the success of their 

application is problem dependent. Also there are so many factors in the multigrid 

procedures, i.e. the cycling strategy, the level number, the iteration number on each 

grid, which can influence the convergence that extensive numerical experiments are 

necessary if an optimum is to be found. 
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3.3 Implicit Solution of LCNSE 

For rapid achievement of steady state, implicit schemes were preferred to explicit 

schemes in this research. Two implicit schemes were applied to the locally conical N- S 

equations. Their formulation and special considerations required for this particular 

application are discussed in this section. Special features of these two schemes and a 

comparison of their accuracy and efficiency are also addressed. 

3.3.1 MacCormack Implicit Scheme for LCNSE 

Since the details of the numerical integration method has been contained in 

MacCormack's original paper [7], the scheme outlined here will provide details more 

specific to the problem being analyzed, i.e. the problems governed by the locally 

conical N- S equations. The solution procedures are included to describe clearly the 

scheme, especially the implicit boundary treatment. 

3.3.1.1 Formulation 

Eq. (2.27) may be integrated in time by the following implicit predictor- corrector set 

of finite difference equations: 

Predictor: 

n n n n LiU·· -Lit ( ;\ F· . / LiB + ;\. G· . / Lirp + H· . ) 1,j '""+ 1,j '""+ 1,j 1,j 

[ I - (Lit/LiB)4IAnl'J [ I - (Lit/Lirp)4IBnl 'Joui~} n 
LiUi , j (3-1a) 

ul!+'· ul!· + oul!+'· 
1,j 1,j 1,j 
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Corrector: 

n+1 n+1 n+1 n+1 
AU·· -At (A F· ·/.10 + A G· '/A<p + H· .) 1,J - 1,J - 1,J 1,J 

n+1 n+1 n+1 
[I + (At/AO)A_IA /'][1 + (At/A<p)LLIB I'PUi,j 

n+1 
AUi,j (3-1b) 

u17-+ 1. (1/2) (u17- . + u17-+ 1. + au17-+ 1.) 1,J 1,J 1,J 1,J 

In these equations, (4/ A<p) and (LL. / .10) are one- sided forward and backward 

differences, respectively. I A I and I B I are matrices with positive eigenvalues and are 

related to the lacobians AI = (aFI/aU) and BI = (aGI/aU), and I is the unit matrix. 

The dots in the equations indicate that the differences operate on all the factors to the 

right. The inviscid lacobians AI and BI can be diagonalized by So and S<p' that is, 

AI SO-li\ASO BI S<p-1i\BSip (3-2) 

where 

Uo 0 0 0 0 uip 0 0 0 0 

0 uo 0 0 0 0 uip 0 0 0 

i\A = I 0 0 uO+c 0 0 i\B = 0 0 uip 0 0 (3-3) 

0 0 0 Uo 0 0 0 0 u<p+c 0 

0 0 0 o uo-c 0 0 0 0 u<p-c 

and AI, BI, are given in Appendix A and SO, So - 1, Sip and S<p - 1 are given in 

Appendix B. The matrices I A I and I B I in Eqs. (3- 1a) and (3-1 b) are formed by 

replacing the diagonal matrices i\A and i\B with positive valued diagonal matrices D A 

and DB' The matrices I A I and I B I are thus defined by 

IAI SO-lDASO IBI Sip-1 DBSip (3-4) 

where D A and DB are diagonal matrices defined by 

DA = max ( Ii\AI + ~AI, 0.0), DB = max ( Ii\BI + ~BI, 0.0) (3-5) 

In the above expressions, I i\A I and I i\B I are diagonal matrices with absolute value 

elements of i\A and i\B and 
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2v 1 110 
'AA - - - -pl10Reoo r 2 I1t ' , 

'AE _ 2v 1 sinOI1~ 
psinOI1~Reoo r - 2 I1t , 

(3-6) 

with 

4 'Y v - max (_II _II). 
3r ' Pr r 

Viscous effects are included in the implicit operator through the coefficient v. 

For regions of the flow in which I1t satisfies the following explicit stability 

conditions 

1 
I1t ~ 2 

1 
I1t ~ 2 

1 
(luOI+c)/110 + 2v/pI10 2Reoo ,r ' 

1 
(3-7) 

D A and DB vanish and the set of difference equations (3- 1) reduces to the 

well- known MacCormack explicit method. In that case, 

3.3.1.2 Solution procedure and numerical boundary conditions 

Supposing 01 is the outer flow boundary, 0 1 is the wall boundary, and ~1+~' ~J- ~ 

are the symmetry boundaries, the solution procedure and the explicit and implicit 

boundary condition treatment is given below. 

Predictor: 

1) Calculate the explicit increment I1Ui~jfrom (3-1a) 

2) For j-2,3, ... , J-1 

i-I-1,1-2, ... , 2, 

calculate 6u·*· from 
1 , J 
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Lit n * 
(I + LiO' IAli,j)OUi,j 

1 

n Lit n * 
LiUi,j + LiO' IAli+1,j OUi+1,j 

1 
(3-8) 

As boundary condition at = 1 is fixed to the flow properties at infinity, i.e. ur 

= uroo, u 0 u 000' u<p = up T Too and p = Poo, the corresponding implicit 

boundary condition is oU l:j 0, which starts the above block bidiagonal solution 

process. 

3) For 2,3, ... , 1-1 

j = J-1,J-2, ... , 2 

1'f-FT 
calculate OUi,j from 

Lit n n+1 * Lit n n+1 
(I + Li<pj IBli,j)OUi,j OUi,j + Li<pj IBli,j+10Ui,j+1 

To start the above procedure, the value 

n n+1 
IBli,J oUi,J 

has to be known. 

Implicit symmetry boundary condition . 

As boundary condition at = J - 112 is a symmetry boundary condition, i.e. 

Uri,J Ur i,J-1' uOi,J UOi,J-1' u<pi,J - u<pi, J -1 , 

ei ,J ei ,J-1' Pi ,J Pi ,J-1' 

The implicit boundary condition is treated correspondingly as: 

(3-9) 

(3-10) 

a) If Lit and Li<pJ is so chosen that the scheme reduces to an explicit version at the 

boundary, then IB linJ = 0. , 

b) If a very fine mesh is necessary near the symmetry boundary, an implicit treatment 

on this boundary corresponding to the explicit boundary condition is 

n+1 
oUi,J 

n+1 
E oUi ,J-1' 

n n 
IBli J E = E IBli J-1 , , 
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where 

1 0 0 0 0 

o 1 000 

E = o 0 1 0 0 (3-12) 

o 0 0 -1 0 

o 0 0 0 1 

Therefore, by substituting (3-11) into (3- 9), the following equation is solved for 

j = J-1 

Llt n n+1 
[ I + "'A'"" (I-E) IBI i J-1 loUi J-1 IJ.tp , , * oUi,J-1 (3-13) 

The matrix on the left hand side can be inverted easily and the solution of the block 

bidiagonal system (3- 9) starts with 

1 0 0 0 0 

0 1 0 0 0 

oUt:t+ 1 I * 1, J-1 0 0 1 0 0 bUi,J-1 
~ ~ ~ -L- ~ 
1+a4 1+a 4 1+a 4 1+a4 1+a 4 

0 0 0 0 

where 

2Llt n 
ak = ~ ( IBli J-1)4 k k=l, 2, ... , 5 

IJ..,.-J-1 ' , 

c) This boundary condition can also be treated more approximately by taking 

Thus 

n+1 
oUi,J-1 

n 
oUi,J-1 

n n+1 n n+1 
IBI i JoUi J IBI i JEoUi J-1 

" " 

4) Update the solution 

n+1 
Ui,j 

n n+1 U· . + oU· . 
1 , J 1 , J 

Corrector: 
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EIBI i J-1 OUi ,J-1 , 

(3-14) 

(3-15) 

(3-16) 

(3-17) 



1) Calculate the explicit increment 

n+, 
.1U i , j 

from Eq.(3-1b). 

2) For j= 2,3, ... , J-l 

i=2,3, ... , I-I, 

calculate oui: j from 

.1t n+, ** 
(I + .10. IAli,j )OUi,j 

1 

n+,.1t n+, ** 
.1Ui,j + .10. IAli_, ,jOUi_"j 

1 
(3-18) 

This procedure necessitates the specification of an implicit boundary condition on the 

wall. 

Implicit wall boundary condition: 

a) On the wall, the boundary condition is ur = u 0 Ucp = 0, T = Tw, 

( (}p/ () O)w = 0 thus the flow state on the wall can be expressed as a function of the 

state away from the wall. Supposing P"j = P 2,j is used to approximate «(}p/ () O)w = 
0, then 

** 
P, ,j 

o 
** 

U, ,j sinO, o ** Q(U 2 ,j)' 
** oU, , j 

(}Q, ** 
~U . oU 2 J. (3-19) 

2, J ' 

where 

2')'IVI 
Tw 

0 
(}Q 

0 ~= (}U 2 ,j 
0 

IVI 

o 
** ** P, ,je, ,j 

2')' 
T Un,j 

w 
0 

0 

0 

- ur2 , j 

2')' 2')' 2')' 
T U0 2 ,j - Tw Ucp2, j Tw w 
0 0 0 

0 0 0 

0 0 0 

-U0 2 ,j -Ucp2, j 1 

Therefore, the block diagonal solution procedure (3- 18) can start with solving 

.1t (}Q 
[ 1 + .10

2 
( I A I 2, j - I A I, , j (}U~~ j ) ] 

** n+, 
oU 2 ,j = .1U 2 ,j 
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b) This boundary condition can also be treated more approximately by taking 

** oU 1 , j c3Q ** ~OU2 . 
2, J ' J 

3) For i = 2,3, ... , 1-1 

j = 2,3, ... , J-1 

calculate oUn+ 1. from 
1, J 

c3Q * 
~OU2 . 

2, j , J 

( I + Llt I B I t;+1. ) out;+~ 
Ll~j 1,J 1,J 

** Llt n+1 n+1 
OUi,j + Ll~j IBli,j-10Ui,j-1 

(3-22) 

(3-23) 

On the symmetry boundary, = 1 + ~, the implicit boundary treatment is similar to 

that on = J- L which will not be repeated here. 

In the above procedure, the solution of the block bidiagonal system is carried out 

making use of the known decomposition of I A I and I B I , which reduces the 

computation in the inversion of the block matrices. For example, to solve Eq. (3- 8) in 

the predictor, the equation is rewritten as 

-1 Llt n * 
SOi,j[I + LlOi (DA)i,j )SOi,j OUi,j 

and can be easily solved as 

n Llt n * 
LlUi,j + LlO. 1A1i+1,jOUi+1,j 

1 

-1 Llt n _ n Llt n * 
OUi,j SOi,j[I + LlO. (DA)i,j ) 1 SOi,j[LlUi,j + LlO.1A1i+1,jOUi+1,j)· 

1 1 

Note that the block matrix inversion is trivial because S of' ,1 j and S Oi,j are known 

and [ I + (Llt/ LlOi) (D Ni?j ] is diagonal. This in fact means that a block bidiagonal 

matrix inversion is reduced to a scalar bidiagonal matrix inversion. 

It is important to note that all the boundary conditions are treated corresponding 

to the explicit boundary conditions, which is an approximation of the physical boundary 

conditions. This treatment was found to be more stable than MacCormack's "zero" or 

"reflection" treatment of the implicit boundary conditions[7]. 
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It should be noted that explicit adaptive second order artificial viscosity is added in 

(3.1) to overcome oscillations near the shock waves. This artificial viscosity should be 

controlled to its minimum to assure the accuracy of viscous parameters on the wall. 

Details are given in Appendix C. 

Compared to the flux vector derivative terms, the source term in Eq. (2- 27) has 

a lower order influence on the stability property of the difference scheme. In fact, the 

von Neumann stability condition is independent of the source term if the Jacobian of 

the source term is bounded, as proved in Appendix D- 1 . 

3.3.1.3 Features of the scheme 

The above method is unconditionally stable, and is second order accurate in both 

space and time under the condition that pl1t/pl18 2 and Pl1t/p(l1tp'>in8)2 remain bounded 

as I1t, 118 and I1cp approach zero. 

In addition to this, the following" features of this scheme should be pointed out. 

a) For regions of the flow satisfying explicit stability criteria, the implicit method 

reduces to the corresponding explicit method and therefore no more computing time 

than the explicit scheme is needed in these regions. Due to this feature, the implicit 

MacCormack scheme is also called explicit-implicit or hybrid in some literature. 

b) Viscous effects are included in the implicit operator in an approximate and very 

simple way to enhance the stability for viscous flows. Therefore the computation of the 

implicit operator and its inversion can be done with the help of the knowledge of the 

inviscid Jacobians. Two block bidiagonal matrix inversions are reduced to two scalar 

bidiagonal matrix inversions, a fact which greatly reduces the computation. 
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c) Although the scheme is unconditionally stable in von Neumann's sense, Llt is still 

limited in practical computation, which is considered to be mainly due to the error 

created by approximate factorization taken in the procedure and the approximate 

linearization. 

d) An intrinsic property of the two- step MacCormack type schemes, explicit or 

implicit, is the time step dependence of the steady state solution, as analyzed in 

Appendix E. Thus, convergent steady state solutions may only be reliable with 

sufficiently small Llt. Therefore one measure to achieve spatial accuracy is to reduce 

time step towards the end of the marching until variation of the solution with this 

reduction diminishes. This is obviously a disadvantage of the scheme for steady state 

solutions. 

3.3.2 A Simplified Beam- Warming Implicit Scheme for LCNSE 

3.3.2.1 Beam- Warming implicit scheme 

If the inviscid and the viscous parts in the flux vectors and the source term are split, 

the LCNS equations can be written as 

au + aFI + aGI + HI 
at ae a<p 

aFy + aGy + Hy. 
ae a<p (3-24) 

By using backward Euler implicit time discretization, the equation can be discretized in 

time as follows, 

un+ 1
_ Un aFI+ 1 aGI n+ 1 n+l 

-. -- + a e + a<p + HI 
~Fn+l ~Gn+l 
~ ~ n+l 
ae + a<p + Hy 

Linearization of the nonlinear flux vectors and the source term gives 
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Fr+ 1 n 
Fr + ~~I ( Un+1 - un ) + O(~t2), (3-26) 

n 
Gr+ 1 

= Gr + ~~I ( Un+1 - Un ) + O(~t2), (3-27) 

n 
Hr+ 1 

= Hr + ~~I ( Un+1 - Un ) + O(~t2). (3-28) 

If the viscous flux vectors are further split into two parts as 

FV = FVl ( U, Ue + FV2( U, Utp ), (3-29) 

GV = GV1( U, Ue + GV2( U, Utp ), (3-30) 

where U e = aUlae, Utp = au/atp, the linearization is 

n n 
F~~l F~l+ ~~Vl( Un+ 1 - Un ) + ~~~1( U~+l - u~ ) + O(~t2), (3-31) 

n n 
F~~l F~2+ ~~V2( Un+ 1 - Un ) + ~~V2( U~+l - u~ ) + O(~t2), (3-32) 

tp 
n n 

G~~l G~l+ ~~Vl( Un+ 1 - Un ) + ~~~1( U~+l - u~ ) + O(~t2), (3-33) 

n n 
G~~l G~2+ ~~V2( Un+ 1 - Un ) + ~~Y2( U~+l - U~ ) + O(~t2), (3-34) 

tp 
n n 

Hn+ 1 Hn aHy ( Un+1 _ Un) aHy Un+1 _ Un 
V V + au + aUe e e 

n 
+ aHY2( Un+1 _ Un ) + O(~t2) (3-35) 

autp tp <p • 

After the above linearization, the equation can be written in the following delta 

form as 

1 a 
~t I + ae(AI - P + Re - M - X + Ytp)n. -

a2 
ae 2 Rn. 

a a2 
+ -- (BI - Q + S - N - W + Ze)n. - --- sn. atp tp atp2 

a2 
- --(Y + Z)n + (eI - L + Me + N )n. 1 ~Un aea<p tp 

aFT aG n aFy aGy n (ae + ~ + HI )+(ae + atp + HV) + O(~t), (3-36) 

un+1 un + ~Un. 
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The lacobians in the above equations are 

A = aFI 
I au 

p = aFYl 
au 

R = aFYl 
aUe 

X = aFY2 
au 

y = aFY2 
auY' 

B = aCI 
I au 

Q = aCY2 
au 

s = aCY2 
auY' 

W = aCYl 
au 

z = aCYl 
aUe 

(3-37) 

c = aHI 
I au 

L = aHy 
au 

M = aHy 
aUe 

N = aHy 
auY' 

Beam and Warming [8] used approximate factorization for a direct solution of the 

equation by solving two block tridiagonal systems. For that purpose, cross derivatives 

should be avoided by lagging the following two terms in time, 

n n-l 
~Y2 ~Y2 + O(~t2), n n-l 

~CYl ~CYl + O(~t2). (3-38) 

In this case the lacobians X, Y, Wand Z in (3- 36) vanish and three time levels are 

involved. 

3.3.2.2 Simplification of the implicit procedure 

It is difficult to derive analytically all the lacobians listed in Eq. (3- 37). Fortunately, 

for steady state solution, only the spatial accuracy is the major concern. From the 

delta form of Eq. (3- 36), the spatial accuracy of the steady state solution is 

determined by the right hand side, RHS, in Eq. (3- 36). The implicit operator can 

only influence the convergence to the steady state. A simplified implicit operator is 

presented here, which includes the inviscid lacobians and representative viscous 

lacobians to enhance stability. The factorized simplified form is expressed as 

a a 2 a a 2 
[ I + ~t(--AI' - ~ R· )][ I + ~t(--BI' - ___ So )] ~Un ae ae aY' aY'2 

Un+l = Un + ~Un, 

RHSn~t, 

(3-39) 

where AI, BI, R, and S are given in Appendix A. As has been analyzed previously in 

the MacCormack implicit scheme, the source term is treated explicitly. 
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3.3.2.3 Solution procedure and numerical boundary conditions 

Supposing 81 is the outer boundary, 8 1 is the wall boundary, and <Pl+~' and <PJ- ~ 

are the symmetry boundaries. 

1) Calculate the right hand side of (3- 36) or the residuals 

RHSn 
. dF dG n 
-( d8 + d<p + H )i,j' 

2) Solve the block tridiagonal system 

i . e. 

[ 1+ dt( d~Aln- d~~Rn)'l~U* ~t RHSn, 

* * * 
Bi,j~Ui-l ,j + Di,j~Ui,j + Ci,j~Ui+l ,j 

= 3,4, ... ,1-2, 
2,3, .. " J-l, 

~tRHSn, 

where 

Bi ,j 

Di,j 

Ci ,j 

~t ~t 
-1'+ -8· Ai-l,j - "8. 2 Ri-l J" 1 1-1 Ll 1 ' 

2 + -- R· , 
~8i2 1,J' 

~t ~t 
81'+ -8' Ai+l,j - "8,2 Ri+l J" 1 1-1 Ll 1 ' 

(3-40) 

(3-41) 

(3-42) 

(3-43) 

a) For i= 1-1, the boundary condition at i= I has to be embedded in the implicit 

operator, 

* ~UI, j = 0, * * BI-l ,j~UI-2,j + DI-l ,j~UI-l ,j * ~tRHSI_l, j' (3-44) 

b) For i= 2, implicit wall boundary condition is applied to evaluate ~U 1 ~j' 

* B2,j~Ul,j 
~t 

[ - 8
3
-8

1 
All,j 

~t d8~ Rl ,jldUl~j' 

It is easy to verify that on the wall * R 1 ,j~U 1 ,j = 0 and 
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0 0 0 0 0 

0 0 0 0 0 
* -u * * -u * ILlU *, (Jsin8 1 All ,jLlU1 ,j Ci.* r -u8 <p 1 2,j sin8 2 

0 0 0 0 0 

0 0 0 0 o J 2, j 

Therefore 

. * 
B2 , jLlU, ,j * B2 ,jLlU2,j 

and the equation to be solved on the wall boundary is 

* * 
( D 2 ,j + B 2 ,j ) LlU 2 ,j + C 2 , j LlU 3 , j LltRHS 2, j , 

3) Solve the block tridiagonal system 

i ,e, 

where 

.1 .1 2 
[I + Llt(Ll<p BI' -Ll~ Sn, )]LlU = LlU*, 

Ei,j LlU i,j_1 + Gi,jLlUi,j + Fi,jLlUi,j+1 

= 3, 4, 
2, 3, 

... , 

... , 
J-2, 
I-I, 

Llt n 

* LlU i , j , 

E' , Llt B ,n, - -- S, , 1 , j <P' -<P' 11,j-1 Ll<pj21,j-1' 1+1 1-1 

G' , 2 n 
1,j + Ll<P/ Si,j' 

F' ,= Llt B n Llt n - -- S, , 1 , j <P' -<P' li,j+' Ll<P/ 1, j+1 ' j+' j-1 

On the symmetry boundaries 

LlUi 1 = E LlUi 2' , , LlU, J 1 , ELlUi J -1 ' , 

The equations on the symmetry boundaries are 

* (Gi 2 + Ei 2 11 )LlUi 2 + Fi 2LlU i 3 LlU i 2' , , , , , , 
* 

Ei J-,LlUi J-2 + (Gi J-1 + Fi J-,I,)LlUi J-1 , , , , , LlUi J -1 ' , 
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(3-47) 

(3-48) 

(3-49) 

(3-50) 

(3-51) 

(3-52) 

(3-53) 
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4) Update the solution 

Un+1 = Un + LlUn . (3-55) 

It should be noted that in the shock- capturing hypersonic simulation of this 

research (presented in Chap.4) a second order adaptive artificial viscosity was added to 

the right hand side of (3- 39) and a corresponding second order implicit term was 

added to the -left hand side for stability. The fourth order artificial dissipation term, 

usually used in Euler solutions, was found unnecessary for the present N- S solutions 

and it degraded the accuracy of viscous parameters on the wall. Details of the adaptive 

artificial viscosity is given in Appendix C. 

3.3.2.4 Features of the scheme 

The simplified Beam- Warming scheme presented above is second order accurate as far 

as the spatial accuracy is concerned. The implicit time marching is unconditionally 

stable in von Neumann stability analysis. 

It is obvious from the above procedure that the implicit scheme needs to solve 

two general block tridiagonal systems. Because AI and R, and BI and S cannot be 

diagonalized simultaneously, this block tridiagonal system cannot be reduced to a scalar 

tridiagonal system as has been done in the inviscid case by Pulliam and Chaussee [56] 

or in the implicit MacCormack scheme for the LCNSE presented previously. 

Some authors suggest omitting completely the viscous effects in the implicit 

operator to simplify the implicit procedure. This, of course, will not influence the 

accuracy of the steady state solution. However the purpose of implicitization is to 

relieve the severe stability condition for high Reynolds number N- S solution. Therefore 

the influence of explicit viscous treatment on stability needs to be analyzed. This is 

investigated in Appendix D with a scalar convection- diffusion equation modelling. It is 
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found that if only the inviscid term is treated implicitly while the viscous term is 

ignored in the implicit operator, the time step is limited by the viscous effects, which 

can be severe in the viscous region where the mesh is very fine. Therefore the 

advantage of the implicit scheme is lost for viscous solutions, if viscous effects are not 

taken into account in the implicit operator. 

On the other hand, because of the generality of the block tridiagonal solution, the 

implicit boundary conditions are evidently easier to be embedded in the solution 

procedure. 

In contrast to the implicit MacCormack scheme presented in Sec. 3.3.1, an 

important advantage of the simplified Beam- Warming scheme is that accurate steady 

state solutions can be achieved with large time steps because the formulation separates 

the time discretization from spatial discretization and, therefore, indicates a time step 

independence of a steady state solution. This point is analyzed in Appendix E. 

Again, as in the MacCormack implicit scheme, the time step in practical 

computation is still limited due to' the errors introduced by (1) the approximate 

factorization; (2) the imperfect linearization. Therefore in practical computation, an 

optimum time step needs to be found by numerical testing for best convergence to the 

steady state. 

3.3.3 A Comparative Study of the Two Implicit Schemes 

To compare the two implicit schemes, some statistical data from the numerical 

simulation of this research is shown in Table 3.1. The total computation time shown in 

the table is the time for convergence. Because the convergence criteria are different 

maximum relative error max I un+ 1_ Un 1/.1t is used in the MacCormack implicit 

scheme and the root mean square of the residuals is used in the simplified 
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Beam- Warming scheme - a strict comparison of convergence is not convenient. 

However, a same physical non- dimensional time of about 2 is found for all the cases 

to reach a converged flowfield with the pressure distribution and all the shock waves 

reaching their steady state. From (2- 26), this means the time for flowfield convergence 

is roughly the time for the incoming flow to sweep twice from the vertex to the 

computation station. This convergence criterion is used for the comparison of the two 

implicit schemes in the following table. It should be noted that viscous parameters such 

as heat transfer needed longer time to settle down to their steady state. 

Table 3.1 Computation time comparison, LCNSE solution, mesh 65><65 

Algorithm time step ~t 

MacCormack explicit 0.0001 

MacCormack implicit 0.005 

Simplified B-W implicit 0.02 

* Estimated 

ICL 2988 computing time, cpu 

per time step 
per grid point 

(second) 

0.269 X 10- 2 

0.343 X 10- 2 

0.302 X 10- 1 

total to 
convergence 

(hour) 

63.14 * 

1. 61 

3.54 

From Table 3.1, it is clear that both of the implicit schemes are marginally more 

efficient than the explicit scheme for steady state solutions. Due to the very fine mesh 

near the wall, the time step used in the explicit scheme was severely limited by the 

stability condition (3- 7) while the implicit procedure could march in time with much 

larger steps. Steady state solution of the problem with M explicit scheme is prohibitive 

on the computer available. 

It is interesting to note the small difference in CPU time per time step between 
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the MacCormack explicit and implicit schemes. This is partly due to the low cost of 

the implicit procedure. It is also attributed to the useful capability of the implicit 

scheme which can switch automatically to the explicit scheme in regions where 

implicitization is not necessary. 

Also shown in the table is the difference between the two implicit schemes. The 

computing time of the simplified Beam- Warming scheme per time step is much longer 

than that of the MacCormack implicit scheme. The reason for this is clear by analyzing 

the formulation of the two different schemes. The difference is due to the difference in 

the inversion of two block tridiagonal matrices and that of four scalar bidiagonal 

systems per time step. On the other hand, it was found that the simplified 

Beam- Warming scheme can use larger time steps for faster convergence. 

Furthermore it should be noted that the accuracy of the steady state solution with 

the MacCormack implicit scheme may be degraded by large time steps, as analyzed in 

Appendix E. From numerical experience, whether this Lit dependence is severe is 

problem dependent. Therefore as a safeguard for the accuracy of the steady state 

solution in the MacCormack implicit· scheme, the time step, Lit, should be reduced at 

the end of the time marching until no more change appears in the solution with this 

Lit reduction. However, with the simplified Beam- Warming scheme, the steady state 

solution only depends on the spatial discretization and, therefore, large time steps will 

not influence the accuracy of the steady state solution. 

Fig. 3.1 shows the heat transfer for the cone- de Ita- wing combination at 

a = 0 0
• Time step dependence of the MacCormack implicit scheme is clearly revealed 

by the marginal difference between the solutions of the MacCormack implicit scheme 

with Lit final = 0.005 and Lit final = 0.001. However after the final time step was 

reduced to 0.001, this dependence was overcome and the solution did not change with 

further reduction of the time step. This converged result agrees with the simplified 

Beam- Warming solution and the experimental data quite well. 
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3.4 Multigrid Acceleration of the Implicit Schemes 

As mentioned in Sec. 3.2, multi grid acceleration schemes are becoming a more widely 

used tool in CFD. For the Euler and N- S solutions some time stepping multigrid 

schemes have been proposed to accelerate the convergence of explicit time marching 

solutions to the steady state. But the mu1tigrid acceleration idea is not confined to 

explicit schemes. In this section two mu1tigrid schemes are presented for the implicit 

schemes formulated in the previous sections. 

3.4.1 Ni- type MuItigrid Acceleration of the MacCormack Implicit Scheme 

3.4.1.1 Ni's multi grid idea 

In Ni's scheme [10], the Lax- Wendroff finite difference method, which is derived from 

the Taylor series expansion, is formulated in such a way that the corrections ( aU = 

Un+ 1 - un ) at each grid point are related to the changes ( .1U ) taking place in 

the neighbouring control volumes. This formula is called distribution formula. After the 

corrections, aUh, are calculated on the finest grid using this one- step Lax- Wendroff 

type method, the corrections are restricted to the next coarser grid and replace the 

changes, .1U 2h, occurring in the control volume of the coarse grid. The distribution 

formula is then used to obtain corrections, aU 2h, on the coarse grid. By bilinear 

interpolations the corrections at the intermediate fine grid points is filled in and the 

solution can be updated. It is important to note the difference between the fine grid 

scheme and the coarse grid one. Instead of using the Lax- Wendroff scheme on the 

coarse grid, the changes on the coarse grid are restricted from the fine grid 

corrections. Therefore the coarse grid scheme is in fact a procedure of redistributing 

the corrections from the fine grid solution through the distribution formula. It is clear 

that the fine grid spatial accuracy is not influenced by this correction redistribution. 

The basic idea behind Ni's multigrid scheme is the use of coarse grids to propagate the 
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fine grid corrections properly and efficiently throughout the field, thus improving 

convergence rate to the steady state while maintaining low truncation errors. 

Based on the above analysis, various methods other than the one- step 

Lax- Wendroff method can be used for the purpose of generating fine grid corrections. 

In fact, the MacCormack explicit scheme has been used with Ni's distribution formula 

for multigrid acceleration [11]. 

Due to the advantage of implicit methods over explicit methods, especially for 

N- S solutions where a highly stretched mesh is necessary, it is the author's belief that 

more efficient procedures can be derived for steady state solutions by combining the 

advantages of implicit methods and multigrid schemes. It is possible because the implicit 

corrections can also represent changes on the coarse grid as explicit corrections. The 

physical meaning of the distribution formula is maintained. 

~.4.1.2 Application to the MacCormack implicit scheme 

The Ni- type multi grid procedure is used with the implicit MacCormack method 

presented in the last section as follows. 

Define successively coarse grids by successive deletion of every other line in each 

coordinate direction. This necessitates the definition of the mesh number as m·2P + 1. 

1) The implicit corrections on the finest grid are defined as 

h 
OUi,j 

from (3-1). 

n+l n 
U· . - U· . 

1 , j 1 , j 
.!. ( oUr:t+ 1

• + oUr:t+~ ) 2 1,j 1,j (3-56) 

2) These fine grid corrections are restricted to the changes occurring in the coarse grid 

control volumes, Le. 
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LlU2h I2g aUh (3-57) 

3) The distribution formula is used to calculate corrections on the coarse grid points. 

Ni IS distribution formula was derived without a source term. From the same idea of 

Taylor expansion, distribution formula with a source term is derived as follows, 

2h 1 LlU - Llt ( .1F Lle 1 aU· . = - Ll6 + Ll<p + '2Lill )] i+l , j+l 1,J 4 

1 
+ 4 LlU - Llt ( .1F Lle 1 

Ll6 - Ll<p + '2Lill )]i+l ,j-l 

1 .1F Lle 1 
+ 4 LlU - Llt (- Ll6 + Ll<p + '2Lill )]i-l ,j+l 

1 .1F Lle 1 (3-58) + 4 LlU - Llt (- Ll6 - Ll<p + '2Lill )]i-l ,j-l , 

where (i+ 1 ,j+ 1), (i+ 1 ,j- 1), (i- 1 ,j+ 1) and (i- 1 ,j- 1) represent the four coarse grid 

control volumes surrounding the coarse grid point (i,j), as shown in Fig. 3.2(a). 

Derivation of the above distribution formula for one dimensional case is illustrated in 

Appendix F. 

4) Interpolate the coarse grid corrections calculated from the distribution formula 

(3- 58) back to the fine grid and update the solution, i.e. 

U h I h U2h a new 2h a , 
h Unew = U + aUnew . 

The procedure is illustrated in Fig. 3.2. 

(3-59) 

(3-60) 

Because the coarse grid scheme (3- 58) is a wave propagation procedure, it 

implies a convection mechanism as pointed out by Johnson [11]. Therefore in the 

present N- S solutions the coarse grid scheme only involves inviscid Jacobians, which 

makes the multigrid scheme more efficient. That is in the distribution formula 

.1F aFILlU, 
au Lle aeILlU, 

au Lill aHILlU . 
au (3-61) 

For stability a local time step, which is determined by the local inviscid stability 

condition, is used in the coarse grid scheme, 
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.1t CFL min 
LlO s i n8Ll<p 1 

IU<pI+c ' 
CFL ~ 1 . (3-62) I uel+c' 

The above procedure is repeated on successively coarser grids until the coarsest 

grid is reached. The strategy used in the present multigrid cycling is the sawtooth 

cycling. 

3.4.1.3 Numerical test 

In Fig. 3.3 convergence histories are shown against a work unit, which is defined as 

the unit CPU time for one time step using the MacCormack explicit method. The case 

taken for this test is the cone case with Moo = 7.95 and 0' 0° (computation details 

can be found in Chap . 4). 

The Ni- type multigrid scheme has evidently accelerated both the explicit and the 

implicit schemes. A marginal difference in the convergence is shown again between the 

explicit and the implicit schemes. The figure shows that the implicit scheme with a two 

level multigrid is the most efficient approach. 

By monitoring the shock position during the time marching, it was observed that 

the multigrid scheme particularly speeded up the movement of the shock wave from the 

wall to its steady position. This corresponds to the physical meaning of Ni- type 

multigrid method and the inviscid nature of the present coarse grid scheme. 

3.4.2 FAS Multigrid Acceleration of the Simplified Beam- Warming Implicit Scheme 

3.4.2.1 Full approximation scheme (FAS) 

The original idea behind the multigrid method is that on a given grid relaxation 
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methods generally work well in reducing high frequency components of the error but 

poorly reducing low frequency components. A multigrid approach uses a relaxation 

scheme to smooth the high frequency error on the fine grid and then use successively 

coarse grids to reduce the low frequency error [14, 15]. 

Consider the discrete nonlinear problem arising from the discretization of PDE, 

Rh(Uh) = fh' ( Dh ). (3-63) 

The F AS nonlinear multigrid scheme can be presented as follows. 

Let Uh* be an approximation of the solution Uh of (3- 63), which is obtained 

after "1 relaxations. Denote the error of Uh * by 

* vh Uh - Uh 

and the defect of Uh * by 

* dh = fh - Rh(Uh) 

Trivially, the Dh- defect equation 

* * Rh(Uh + vh) - Rh(Uh) =. dh 

is equivalent to the original Eq. (3- 63), yielding 

* Uh Uh + vh· 

Eq.(3- 66) is approximated on % by 

* * RH(UH + vH) - RH(UH) dH 

or equivalently by 

* RH(WH) = dH + RH(UH) fH' * vH = WH - UH' 

(3-64) 

(3-65) 

(3-66) 

(3-67) 

(3-68) 

(3-69) 

After the solution on the coarse grid DH is obtained, the error vH can then be 

interpolated to vh on the fine grid Dh and the solution on the fine grid can be 

updated by (3- 67). After I' 2 relaxation on the fine grid a new solution Uh** is 

obtained. 
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The procedure for solving (3- 63) can be used to solve (3- 69) and a multi grid 

cycling results. 

It is important to note that transferred back to the fine grid Dh is not WH but 

the correction vH since only the correction and the defect quantities are smoothed by 

the relaxation process and can, therefore, be approximated well on the coarse grid. 

3.4.2.2 Application to the simplified Beam- Warming scheme 

The implicit time marching schemes presented in Sec. 3.3, when used for steady state 

solutions, can be considered as a relaxation scheme for the steady state problem. After 

certain time steps ( or iterations ) the high frequency components are reduced and the 

correction from one time step to the next becomes smooth. Thus a multigrid 

acceleration can be applied. 

Using the simplified Beam- Warming implicit scheme presented in the last section 

as a relaxation scheme in the F AS multigrid method, the following solution procedure is 

derived, which is also illustrated in Fig. 3.4. 

1) Solve Eq.(3- 63) by the implicit time marching approach, assuming the initial value 

Uhn . 

Un+ 1 
h 

n 
Uh + .1Uh. 

After 1'1 relaxation an approximate solution Uh * is obtained. 

2) Calculate Rh(Uh *) and the defect 

dh = fh - Rh(Uh*)' 

3) Restrict the fine grid solution to the coarse grid 

* 2h * U2 h I h Uh . 
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4) Restrict the defect to the coarse grid 

2h 
d 2h = T h dh' 

5) Solve the coarse grid equation 

R2h(W 2h) d 2h + R2h(U 2h*) f2h 

using again implicit time marching with U 2h * as initial value, 

n+l 
W2h 

n 
W2h + LiW 2h 

and a approximate solution W 2h * is obtained after P 1 time steps. 

6) Compute the correction 

* * V 2h W2h - U2h . 

7) Interpolate the correction to fine grid 

h 
vh 12h v2h. 

8) Compute the corrected approximation 

** U * Uh h + vh· 

9) Solve again 

Rh(Uh) = fh 

with time marching of P 2 steps using Uh ** as initial value and Uh *** is 

(3-72) 

(3-73 ) 

(3-74) 

(3-75) 

(3-76) 

(3-77) 

(3-78) 

obtained. 

Several time steps can be advanced in each grid level, but a simple procedure was 

preferred by taking "1 1 and I' 2 = O. This means immediately after one step time 

marching, the solution is updated and restricted to the next coarse grid with the defect. 

This forms a nonlinear problem on the coarse grid. Using the restricted solution as an 

initial value, another time step is marched on the coarse grid. This procedure continues 

until the coarsest grid is reached. After one iteration on the coarsest grid the 

correction is interpolated back to the successively coarse grids without time marching. 

The solution on the finest grid is then updated. This sawtooth cycling scheme adds no 

more storage to the implicit method because Uh * = Uhn+ 1 and W 2h * = W 2hn+ 1. 
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3.4.2.3 Numerical test 

Fig. 3.5 shows the convergence histories of the simplified Beam- Warming scheme with 

and without multigrid acceleration. The test case was the cone case with Moo = 7.95 

and O! = 4° (Details can be found in Chap.4). A mesh of 65X17 was used. 

The multigrid acceleration is evident. However, as the F AS multigrid procedure 

needs to solve LCNSE on the coarse grid, the overall computation saving is not much 

in the present case. The multigrid was only with one level of coarse grid. A higher 

level of coarse grid exhibited no more benefit in this case. The F AS multigrid 

efficiency needs to be further investigated with more numerical testing. 
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3.5 Sparse Quasi- Newton Method for Fast Steady State Solution 

3.5.1 Motivation 

As discussed previously most of the implicit methods used in CFD, though based on 

time dependent formulation, are only used to determine the steady state solutions. The 

time dependent term is, therefore, used merely as a parameter for generating an 

iterative scheme. The requirement on time accuracy is quite often relaxed in various 

ways. 

If the linearization is exact, the implicit scheme will, as Llt~, reduce to a Newton 

iteration method for the nonlinear system derived from the discretization of the steady 

state equations. The procedure of exact linearization is in fact the procedure of 

evaluating the Jacobian of the nonlinear system. 

Using the exact linearization, Mulder and van Leer [57] found a quadratic 

convergence to the steady state in the first order flux splitting solution for a nozzle 

problem. This fast convergence can only be obtained if an applicable procedure exists 

for the exact linearization (Le. the evaluation of the Jacobian). 

Unfortunately this is seldom the case in practice. The differential equations can be 

discretized by various methods in space. Some sophisticated schemes have been 

developed for high resolution of crucial fluid phenomena. The flux vector splitting and 

TVD schemes, for example, were recently proposed by van Leer[23, 24] and Harten 

[25] respectively for high resolution of shock waves in gasdynamics. On the other hand, 

viscous effects may be a dominant factor in the problem and turbulence modelling has 

often to be involved. 
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In all these cases, the evaluation of the Jacobian is often too difficult to apply so 

that different simplifications in constructing the implicit operator are made for a specific 

discretization scheme or for a specific problem. This process brings about an 

irretrievable loss of information that exhibits itself in the degradation of the 

convergence rate. The designer of such an implicit scheme finds himself in the position 

where he has to compromise convergence rate and generality to achieve a workable 

method. Furthermore the programming effort and computational cost spent in 

constructing the implicit operator usually still occupy a large portion in each time step, 

though the incorrect Jacobian already prevents the implicit method from quadratic 

convergence. 

Noting the difficulties in linearization in implicit schemes for most problems in 

CFD, the author proposed a new strategy, which updates the Jacobian by a sparse 

quasi- Newton method for the solution of nonlinear system [21, 22]. The sparse 

quasi- Newton method was first presented by Schubert [16] and Broyden [17]. 

Superlinear convergence was proved in [18, 19]. To form a successful nonlinear 

algorithm, this fast local convergence is combined with the robustness of some time 

dependent approach to form a globally convergent procedure. 

3.5.2 General Procedure of the Sparse Quasi- Newton Method 

for Stedy State Solutions 

In this section a general procedure of the sparse quasi- Newton method is given. Those 

who are interested in the theoretical aspects can refer to [16- 19]. 

3.5.2.1 Properties of the nonlinear system arising from CFD 

Consider the nonlinear system, 
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R(U) = 0, (3-79) 

which may arise from the discretization of the differential equations governing some 

physical process in CFD. 

The Jacobian J(U) = aR/aU has a sparse structure. In other words, each single 

equation depends on relatively few of the unknowns. Taking advantage of the zero or 

the sparse structure of J is crucial in order to solve the problem by a Newton or 

quasi- Newton method, where the Jacobian or its approximation is needed. The saving 

in both storage and arithmetic operation by taking advantage of the sparsity is very 

significant. Furthermore if the discretization scheme is finite differencing, the resulting 

nonlinear system usually has a regular banded sparsity pattern, e.g. block tridiagonal, 

block pentadiagonal, and so on. 

In spite of this sparsity, the system is usually large. And each single equation can 

be very complicated. Therefore the analytic expression of the Jacobian is generally 

unavailable and furthermore the function evaluation is usually very expensive. 

Since the Jacobian is usually unavailable, strategies other than the Newton method 

need to be sought. By making use of the sparse structure, a sparse finite difference 

Newton method [20] can be devised and the usual n additional function evaluations can 

be reduced significantly. This reduction can be seen from the formulation for block 

tridiagonal and pentadiagonal structured Jacobians in the following section. Although the 

reduction is remarkable, many function evaluations per iteration may still be too time 

consuming. To avoid these extra function evaluations, a quasi- Newton approach can be 

taken, which is one of the most fruitful and successful theories in the field of the 

numerical solution of nonlinear systems [19]. 

The basic idea of the quasi- Newton method is to approximate the Jacobian of 

the nonlinear system using only function values already calculated. However, when 

solving sparse systems, the advantage of the well- known Broyden method, using an 

approximation to the inverse of the Jacobian, cannot readily be retained since the 
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inverse of a sparse matrix is in general not sparse, and the consequent benefit would 

then be destroyed. Neither is it possible to use equivalent Broyden update on the 

Jacobian since this consists of adding a single- rank matrix to the old approximate 

Jacobian to form the new one. This single rank correction is generally not sparse so 

that again the advantage conferred by sparseness would be lost. 

3.5.2.2 Sparse guasi- Newton method 

To make a full use of sparsity in the quasi- Newton updating of the Jacobian, Schubert 

[16] and Broyden [17] proposed the sparse quasi- Newton method, which is introduced 

here to solve problems in CFD. 

Define the matrix projection operator P J Rnxn -7 Rnxn by 

(PJ(M» I 0, 

Mi ,j' 

if J(U)i,j ° for all U f Rn 
(3-80) 

otherwise 

That is P J zeros out the elements of M corresponding to zero position of the sparsity 

pattern of J(U) , while otherwise leaving it unchanged. Similarly define Si f Rn by 

[ 0, 
if J(U)· . ° for all U f Rn 

(Si)j 
1 , J 

(3-81) 
Sj' otherwise 

That is, Si is the result of imposing on S the sparsity pattern of the ith row of J(U). 

The procedure of the sparse quasi- Newton method may be written as following: 

Given R: Rn -7 Rn, UO f Rn, AO f RnXn 

DO for k 0,1,2, ... 

Solve AkSk -R(Uk) for Sk 

Uk+l Uk + Sk 

yk = R(Uk+l) - R(Uk) (3-82) 

Ak+l = Ak + PJ[D+(yk - AkSk) (Sk)T] 
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Here D+ € RnXl1 is a diagonal matrix with 

cn+)ii [ 
l/CSi)TCSi), 

0, 

if CSi)TCSi) ~ ° 
C3-83) 

otherwise. 

Although constructing the above sequence imposes no analytical assumption on R 

and no requirement on the initial value U 0 and A 0, care has to be exercised to enable 

a successful application. The above update scheme has been proved to be locally 

q- superlinearly convergent under standard assumptions on R [18, 19] including: (1) R 

is continuously differentiable; (2) the existence of the solution U*, R(U*) = 0; (3) 

J(U*)- 1 exists with II J- l(U*) II ~ (3; (4) J is Lipschitz continuous. 

Since the R in question is generally complicated, little analytical information about 

it is known. Thus it is usually impossible to check all the analytical properties of R 

before using the method so that numerical experiments are needed. However it is 

important to note that the fast convergence is a local property and the initial values 

for the procedure might be needed to be close to the final solution to exhibit this high 

performance. The basic idea in forming a successful nonlinear algorithm is to combine 

a fast local convergence strategy with a global convergence strategy in a way that 

derives benefit from both. 

3.5.2.3 Initialization and global convergence 

a) Initial value U 0 - Time dependent approaches 

There are several ways to make the convergence of a Newton procedure global. One 

dimensional searching of a corresponding optimization problem, for example, is proposed 

by Dennis and Schnabel [19] for this purpose. However for problems in fluid dynamics, 

a natural and robust way to get the initial approximation is the time- dependent 

approach, although as an iterative method it may be extremely slow. Following the true 
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physical process prevents the solution from non- physical states which may cause the 

procedure to stop, e.g., when the density becomes negative. The time- dependent 

marching is switched to the sparse quasi- Newton iteration as soon as the solution goes 

into a convergent region. Because the theory appropriate to the convergent region for 

the sparse quasi- Newton method is unavailable, this switching point has to be 

determined by experimentation to achieve the fastest convergence rate. 

b) Initial approximation A 0 to the Jacobian - Sparse finite difference Newton method 

If in the above initialization procedure, an explicit time differencing is used, the initial 

approximation A 0 to the Jacobian J(U 0) is evaluated by a sparse finite difference 

Newton method to start the sparse quasi- Newton procedure. While if an implicit time 

differencing is used in the initialization, the implicit operator can be used for the initial 

A o. The latter approach is simpler, but, if the implicit operator is far removed from 

J(U 0), the convergence may be greatly degraded. Since implicit mehtods are used in 

the following calculations for initialization, both approaches are tested for comparison. 

3.5.3 Formulation for Three- Point and Five- Point Schemes 

In the last section, the general formulation and application procedure are discussed. 

Here it is formulated for three- point and five- point schemes not only for their 

practical importance but also to provide a clear presentation of the application of the 

sparse quasi- Newton method and the sparse finite difference Newton method. 

Suppose the steady state problem has been discretized by a three- point or 

five- point finite difference scheme in space. Introduce the notation 

u l r l 8 1 

U2 r 2 8 2 

U I. R S (3-84) 

ul j l rl 81 
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where ui,q,si E R m 

and 

ri ri(ui- , ,ui,ui+ ,), 

for three- point scheme or 

ri ri(ui- 2,ui- , ,ui,ui+ , ,Ui+ 2)' 

for five- point scheme. 

The Jacobian has a block tridiagonal or pentadiagonal structure 

D, C, D, C, C1, 

J (U) 
aR B2 D2 C2 B2 D2 C2 C1 2 au or 

B13 B3 D3 C3 C1 3 

BI DI J B11 BI DI 

(3-85) 

where Di, Bi, Ci, B1i, C1i E R mxm It is suppose that the boundary conditions at 

1 and I can be embedded into the above structures. 

3.5.3.1 Block tridiagonal and pentadiagonal guasi- Newton updating 

The sparse quasi- Newton update for the tridiagonal or pentadiagonal Jacobian is 

presented here. Because the approximation Ak to J(Uk) will have the same sparse 

structure as J, one only needs to update the approximation Dik, Bik and Cik to 

Di(Uk), Bi(Uk) and Ci(Uk). By referring to (3- 82), the procedure may then be written 

as follows. 

For k 1, 2, ... 

1) Solve 

AkSk 

Uk+, 

-R(Uk) for Sk, 

Uk + sk , 
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for three-point scheme 

dii [(Si_1)T(Si_1)+(Si)T(Si)+(Si+1)T(Si+1) 

for five-point scheme 

dii 

[(Si_2)T(si_2)+(Si_1)T(Si_1)+(Si)T(si)+(si+1)T(Si+1)+(Si+2)T(Si+2)] 

where S-l SO,SI+l and sl+2 are equal to zero. , . 

2) Update Ak to Ak+1 by 

Dk+1. 
1 

Bk+1. 
1 

Ck+l. 
1 

Dk. _ d .. rk+1 . (sk.)T 
1 1 1 1 1 

Bk. _ d .. rk+1 . (sk. )T 
1 11 1 1-1 

Ck. _d··rk+1 ·(sk.+)T 1 11 1 1 1 

and for five-point scheme add 

Blk+1. 
1 

Clk+1 i 

Blk. - d. ·rk+1 . (sk. )T 
1 11 1 1-2 

elk. _ d. ·rk+1 . (sk. )T 
1 11 1 1+2 

i=l, ... , I , 

i=2, ... , I , 

i=l, ... ,1-1, 

i=3, ... , I , 

i=1, ... ,1-2. 

3.5.3.2 Block tridiagonal and pentadiagonal FD Newton method 

(3-86) 

In the sparse finite difference Newton method, one only needs 3xm or 5xm additional 

evaluations of R(U) for a finite difference approximation of J(U) for block tridiagonal 

or pentadiagonal sparsity patterns respectively. 

For the block tridiagonal case, this approximation can be evaluated by 

(Di)'n 

(Bi)'n 

(Ci)'n 

[ri(ui_1,ui+hnien,ui+1)-ri(ui_1,ui,ui+1)]/hni, 

[ q (u i _ 1 +h n i _ 1 en, u i ' u i + 1 ) - r i (u i _ 1 ' u i ' u i + 1 ) ] /h n i - 1 ' 

[ri (Ui-1' ui' ui+1+hn i+1 en)-q (Ui-1' ui, Ui+1) ]/hn i+1 , 

(3-87) 

where en € Rm is a vector whose nth element is 1 and all the other elements are 

zero. h is chosen according to the machine zero. 

68 



It is clear that the calculation of q(ui- , ,ui+ hnien,ui+ ,), 

ri(ui- ,+hni_ ,en,uj.ui+ ,), q(ui- "ui,ui+ ,+hni+ len) only needs 3xm evaluations of 

R(U). Similarly one can derive formulas for a block pentadiagonal structure, which 

needs 5xm evaluations of R(U). 

In computations, boundary conditions should be embedded into the above 

formulation according to R(U). 

3.5.4 Application to Flux- Splitting and TVD Schemes for a Nozzle Problem 

In this section a nozzle problem is chosen and two high shock- resolution finite 

difference discretization schemes are used to demonstrate the detailed procedure to 

apply the present method to existing robust discretization schemes. A comparison of the 

sparse quasi- Newton method with the original implicit procedures is given. The sparse 

quasi- Newton method is also compared with the sparse finite difference Newton 

method. The influence on convergence by using different initial lacobians for the sparse 

quasi- Newton procedure is studied. . 

3.5.4.1 The test problem 

The governing equation for the nozzle problem [26] can be written as 

a~XU) + H(u) 0 (3-88) 

with 

pK ffiK 1 0 

u = I ffiK I. F r (m'!p+p)K j , H = l-p(aK/ax) I , (3-89) 

eK J l(e+p)ffiK/p 0 
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with K, the area of the nozzle, a function of x 

K(X) = 1.398 + 0.374 tanh ( 0.8x - 4 ). (3-90) 

Here u is the vector of conservative variables, F is the flux vector, and m= pv. The 

primitive variables are the density p, the velocity v and the pressure p. The pressure p 

for a perfect gas is defined as 

p = (y-1)(e-m 2 /2p) 

where y is the ratio of specific heats. 

(3-91) 

In all the calculations the computational domain was 0 ~ x ~ 10. The spacing of 

Llx = 0.5 is used. The initial and boundary conditions are treated as in Vee et al [26]. 

3.5.4.2 Time dependent approach - backward Euler implicit operator 

Use a backward Euler differencing in time, the implicit scheme can be written as 

[ (I/~t) - Mk 1 (Uk+ 1 _Uk) = R(Uk) , (3-92) 

which can reduce to the Newton method as ~t ~ 0 if the linearization is exact, i.e. if 

M = J = aR! au. Therefore it provides a possibility for quadratic convergence. 

The convergence is monitored by the maximum residuals 

RES = max (I r I i I / I u I i I) 

and the time step with the implicit operator is 

~tk = €/RESk, 

(3-93) 

(3-94) 

where € is a positive number to control the initial transient. The implicit operators 

used below are of this evolution/relaxation type with ~t ~ 00 as RES ~ O. 
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3.5.4.3 Van Leer's flux vector splitting 

a) First order accuracy 

A flux vector splitting spatial differencing method [23, 24] is used to solve Eq. 

(3- 88). The resulting nonlinear system can be written as 

ri = Q(ui_l' u i,ui+,) = -(Fi+ - Fi_,+ + Fi+,- - Fi-)/Llx - Hi = 0, (3-95) 

where F+, F- are defined in the same way as in [23]. This flux- splitting scheme has 

the advantage that the split fluxes F+, F- are continuously differentiable and an 

analytic expression of the Jacobian for this problem can easily be derived. 

Implicit operator. After the exact linearization of the implicit backward Euler time 

differencing the implicit operator can be written as 

Di = I/~t + (E+i - E-i)/Llx - Gi' 

Bi 

Ci 

-E+' /Llx 1-, , 

-E-i+,/Llx. 

(3-96) 

where E+ and E- represent aF+ / au and aF- / au. Corresponding to the explicit 

boundary conditions, the implicit boundary treatment is 

where 

I , 

DI_, 

BI_, 

° 

DI-, + (2/Llx)E- I I" 

BI _, - (l/Llx)E- I I, , 

1 

1 

(3 -97) 

This correspondence on the boundary is important for the implicit operator. Otherwise 

the implicit operator will not reduce to the Jacobian as ~t ~ 00. 
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S parse quasi - Newton method. In the sparse quasi- Newton method, formulas in (3- 86) 

are used to update approximations Ok, Bk, Ck to ok+ 1, Bk+ 1, ck+ 1. Note that no 

special treatment on the boundary is needed. 

Fig. 3.6 shows the convergence histories against the iteration number and the work 

unit respectively. Here one work unit is defined as the CPU time per iteration needed 

for the corresponding implicit method. As shown in Figs. 3.6(b) and 3.6(c) the sparse 

quasi- Newton approach has almost the same efficiency as a Newton approach. The FO 

Newton method can achieve the same convergence as achieved by a Newton method if 

the increments are properly chosen according to the machine zero and R(U). 

b) Second order accuracy - MUSCL approach 

The MUSCL approach is used for a second order flux vector splitting scheme 

ri=ri (Ui-2' Ui-l' ui, Ui+l' Ui+2) 

=-[f+(U-i+l/2)-f+(U-i-l/2)+F-(U+i+l/2)-F-(U+i-l/2)]/dx - H(ui) 

(3-98) 

where u- and u+ are defined similarly as in [49]. 

Implicit operator. The implicit operator is the same as the first order case, which does 

not affect the accuracy of the right hand side but prevents the method from reducing 

to a Newton method as in the first order case. 

Sparse quasi-Newton method. Since the scheme is a five- point scheme, the block 

pentadiagonal quasi- Newton update is used. 

Fig. 3.7 shows the result for the second order case. As expected the convergence 

by the implicit operator is heavily degraded compared to the first order case, while the 

sparse quasi- Newton approach still exhibits a high convergence rate as compared to 

the FD Newton method. Although the FD Newton method has a slightly higher 

convergence rate (shown in Fig. 3.7(b)), the sparse quasi- Newton with the FD Newton 
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method evaluating the initial Jacobian is the most efficient (shown in Fig. 3.7(c)) as far 

as CPU time is concerned. 

3.5.4.4 Harten's TVD scheme 

If a first or second order accurate (in space) TVD scheme [25, 26] is used in the 

discretization, the resulting non-linear system may be written as 

ri - (1/~)(Fi+l/2 - Fi-l/2) - Hi = 0, (3-99) 

where 

Fi+l/2 
1 1 11 1 I 1 1 
2 (Fi+Fi+l) + 2 L [gi+gi+l/2-Q(ai+l/2+Yi+l/2)~i+l/21Pi+l/2 

and 

1 
gi S max 

1 1 
[0,min(~i+l/21~i+l/21 , 

1 1 
S~i-l/2~i-l/2)1 , 

S sign ( 1 
~i+l/2 ), 

1 1 I 

! (gi+l-gi)/~i+1J2' 1 
Yi+l/2 

I 1 
~i+l/2 = ~(ai+l/2)' 

1 
~(z)=2Q(z) and 

0, 

Q(z) 2 ( ;S + 0 ), ! 
1 Z2 

Izl, 

I 
~i+l/2 ;c 0, 

I 
~i+l/2 = 0, 

Izl L 0, 

Iz 1 ~ o. 

Implicit operator. To accelerate convergence to steady state, Harten [25] extended his 

explicit TVD scheme to an implicit method by a so- called TVD linearization. The 

resulting implicit operator can be written as 

Di 
- - - + 

(l/At)I + (1/~)( Ei+l/2 + Ei-l/2 ) - Gi' 

Bi 
- + 

(l/Ax) Ei-l/2' (3-100) 

Ci -(l/Ax) Ei=1/2' 
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where 

E±i+l/2 = Pi+l/2 diag [C±(a
1
+yl)i+l/2](P-l)i+l/2' 

C± (z) = (1/2) [ Q(Z) ~ Z ] 

and P is the matrix which consists of the right eigenvectors of aF/aU, i.e., P = 

(P 1 ,P 2 ,P 3). At the downstream boundary BI and DI are modified as in (3- 97). 

This "TVD linearization" is clearly not an exact linearization of R(U). Hence the 

implicit operator will not reduce to a Newton iteration method as Llt ~ 00. 

Sparse quasi-Newton approach. The above scheme is a five- point second order 

accurate (in space) scheme. Therefore the five point sparse quasi- Newton method 

formulated Sec. 3.5.3 is used. 

To get the three- point first order accurate TVD scheme, simply set g= 1- 0 in 

the above second order form. 

Figs. 3.8 and 3.9 show the t:esults for first and second order TVD scheme 

respectively. The convergent rate is improved greatly and the CPU time is reduced 

marginally by the sparse quasi- Newton approach. 

3.5.4.5 Analysis of convergence and efficiency 

A detailed analysis of the CPU time has revealed that: 

a) In the first order cases the implicit operator needs more CPU time per iteration 

than the sparse quasi- Newton method; 
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b) In the second order cases the sparse quasi- Newton method spends almost the same 

CPU time as the implicit method per iteration though the block pentadiagonal matrix is 

more expensive to invert than the block tridiagonal matrix; 

c) The sparse FD Newton method has the fastest convergence rate but spends much 

more time per iteration due to many times of functional evaluation, so its efficiency is 

outperformed by the sparse quasi- Newton method; 

d) Using sparse FD Newton method for the initial Jacobian approximation gives better 

results than directly using the implicit operator for this purpose. 
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3.6 Concluding Remarks 

In this chapter, two implicit schemes were developed for steady state solutions of 

the locally conical Navier- Stokes equations. In the implicit schemes the source term 

was treated explicitly based on Fourier stability analysis. For the MacCormack implicit 

scheme, the implicit boundary conditions were treated according to the explicit boundary 

conditions, which was found to be more robust in the computation than the implicit 

boundary treatment proposed in MacCormack's original paper. 

Both of the implicit schemes showed much higher convergence rate than the 

MacCormack explicit method for the staedy state N- S solution. While comparison of 

the two implicit schemes revealed that the simplified Beam- Warming implicit scheme 

spends substantially more time per time step than that of the MacCormack implicit 

scheme. On the other hand, it was found that the simplified Beam- Warming scheme 

can generally use larger time steps. 

Analysis of both a model problem and numerical results indicated that the accuracy 

of steady state solutions using MacCormack- type schemes will be influenced by time 

step size. However, it was found that accuracy of steady state solution using the 

MacCormack implicit scheme can be achieved by reducing the time step successively 

towards the end of convergence until the variation of the solution with the time step 

size disappears. A similar analysis of the Beam- Warming schemes revealed a time step 

independence of steady state solutions due to the spatial discretization is separated from 

the time discretization in the formulation. Nearly identical results of such crucial 

parameters as heat transfer rates with the two implicit schemes were obtained. 

Two multigrid schemes were found to be able to accelerate the convergence of the 

two implicit schemes further to the steady state, as achieved previously in acceleration 

of explicit schemes. 
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A sparse quasi- Newton scheme was proposed in order to avoid the difficulties in 

the linearization needed in implicit schemes and to achieve fast convergence to steady 

states. The rapid local convergence of the scheme was combined with the robustness of 

the time marching scheme to obtain a globally convergent procedure. The simplicity 

and generality of this procedure suggests its use as an efficient tool for fast steady state 

solutions in CFD. 

Preliminary results were presented for high resolution schemes to solve a one 

dimensional nozzle problem. Due to the sophistication of high resolution schemes, exact 

linearization in the implicit procedures is usually very difficult. Therefore simplification 

was introduced in the corresponding implicit schemes. For example, a first order 

implicit operator was used in the second order van Leer's flux splitting scheme and a 

TVD linearization was used in the Harten's impplicit TVD scheme. The sparse 

quasi- Newton method gave significantly faster steady state solutions as compared to the 

implicit operators of van Leer and Harten. 
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CHAPTER FOUR 

HYPERSONIC FLOW SIMULATIONS 

4.1 Introduction 

A major step towards understanding the flow over general hypersonic vehicle shapes can 

be made by numerically predicting the flow over simplified yet representative shapes. 

Cones, delta wings and their combinations are such shapes which exhibit their usefulness 

in the forebody and wing design for high speed flight vehicles. 

Owing to their practical importance, cones and delta wings were extensively studied 

in the past both experimentally and numerically in supersonic flows. However, due to 

the complexity of the flowfields, especially on the leeward side at high angles of attack 

where strong viscous/inviscid interations take place, the understanding of the flow 

behaviour is still far from satisfactory. Furthermore, hypersonic flows introduce new 

flow phenomena and new problems. It was believed that further study of these shapes 

in the hypersonic regime can contribute to the basic insight of hypersonic flow 

behaviour for more general hypersonic vehicles. 

A cone- and- delta- wing combination provides the simplest case for investigating 

wing- body interference in hypersonic flows. Some experimental investigations were done 

in the 60's [29- 31]. Unfortunately, the experimental data are not of high accuracy due 

to the difficulties encounted in hypersonic experimentation. Only surface measurements 

were made and large scatter appeared in the data near the junction where the 

interaction is strong. Furthermore, knowledge of just surface data is not sufficient for 

understanding the flow and misinterpreting of the surface data is not unusual. 
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In this chapter, numerical simulations carried out on hypersonic flows around such 

conical shapes as cones, delta wings and cone- and- deIta- wing combinations are 

presented. Validation of the codes was achieved by comparing the numerical results with 

the limited experimental data available. 

For the cone- and- deIta- wing combination, the author's first numerical simulation 

[32] provides details of the flowfield and explains the complex flow behaviour on the 

vehicle surface . The "possible" pictures given by the experimentalists are justified or 

modified. 

To explore the leeward side of the combination, where neither experimental nor 

computational investigations had been carried out, numerical simulation by the present 

codes was implemented to investigate the resultant phenomena [33]. 

Numerical solution of the conical Euler equations was also made to illustrate, by 

comparing with LeNS solutions, the importance of including the viscous effects. 
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4.2 Hypersonic Flow around Cones 

Experimental data indicate that at high angle of attack, the flow on the leeward side 

of a cone separates in a circumferential mode and forms counter- rotating longitudinal 

vortices . In addition to the bow shock around the cone, embedded shocks terminating 

the supersonic crossflow over the cone were also observed in the experiments under 

certain conditions. This complex flow structure clearly necessitates a N- S solution for 

representative simulations. 

4.2.1 Computational Conditions 

A well- documented experimental investigation was carried out by Tracy [27]. The 

present cone computation was carried out under his experimental conditions to enable 

validation of the code. 

Table 4.1 Conditions for cone flow simulation 

cone half angle 8c 10° 

free steam Mach number Me., 7.95 

free stream temperature Too 55.4 K 

wall temperature Tw 309.8 K 

total temperature To 755.6 K 

computation station r 0.1 m ( 4 in ) 

characteristic Reynolds number Reoo ,r 4.2 X 10 5 

Prandtl number Pr 0.72 

angle of attack a 0° , 4° , 8° , 12° , 20° , 24° 
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The geometry and the solution surface are illustrated in Fig. 4.1. Fig. 4.2 shows 

o 0 
the mesh system, where a mesh from 65 X 3 for O! = 0 to 65 X 65 for O! = 24 is 

stretched in the 0 direction so that a very fine grid is achieved near the wall in order 

to resolve the viscous effects. The mesh in the rp direction is evenly distributed for the 

cone case. A symmetry boundary condition mentioned in Sec. 2.6 is applied on the two 

lines at rp 0
0 

and rp 180
0 

so that only half of the whole flow field needs to be 

computed. On the wall the no- slip boundary condition is used. The wall is isothermal 

and the temperature is set to the given value T w' 

As has been mentioned in Sec. 2.6, the flow field is computationally initialized by 

setting it to the flow condition at infinity. If the incoming flow and the spherical 

coordinates are related in such a way as shown in Fig. 4.1 for the cone case 

simulation, the initial and the outer boundary conditions can been expressed as 

Poo 1 

u roo coso! cosO sinO! cosrp sinO, 

uOoo - coso! sinO - sinO! cosrp cosO, (4-1) 

Urpoo = sinO!sinrp, 

e
oo 

= 1 1 
')'(')'-1)Ma:,2 + '2 

4.2.2 Flow Field Simulation 

Flow field simulations were done for an angle of attack range from O! 0
0 

to 

o 
O! 24. At lower angles of attack the viscous/inviscid interaction is not strong and 

the flow field is characterized by a bow shock wave around the cone and a boundary 

layer fully attached on the cone surface. The case at O! = 0
0 

is a special case where 

the modelling is reduced to a one dimensional problem because the variation in the rp 

direction vanishes. The two implicit schemes and their multi grid accelerations were all 

first tested on this case before going to more complicated situations. This cone case at 

zero angle of attack provides a simple test model for the N- S codes since both a 

shear layer and a strong shock wave are involved. 
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The more interesting and complex cases are at high angles of attack. The 

unfavourable crossflow pressure gradient on the leeward side of the cone separates the 

boundary layer and the shear layers rotate into two vortices on both sides of the 

o 0 

leeward symmetry plane. Two simulation cases, 0' = 12 and 0' 24 are selected to 

demonstrate the flowfield and the results are shown in Figs. 4.3 to 4.5. 

Figs. 4.3(a) and 4.4(a) show the cross flow velocity vectors in which both their 

direction and magnitude are given. General pictures of the flow field are given by the 

simulation illustrating such major features as the bow shock waves, the flow separations 

and the vortices. Also plotted in these figures are the experimental data on the 

positions of the bow shock waves and the separation points. A closer look at the 

separation point and the vortex flow is given in Figs 4.3(b) and 4.4(b). 

The pressure and density contours in Figs. 4.3(c),(d) and 4.4(c),(d) give a clear 

picture of the bow shock wave. The embedded shock can also be detected from the 

contours in the 0' 24 0 case. This is actually a fairly mild shock and, thus, appears 

in the computed results only as relatively small changes in pressure and density 

compared to the strong bow shock. 

The computed surface pressure is plotted in Fig. 4.5 compared with experimental 

measurements. Good agreement is observed, although the computed pressures on the 

windward side are slightly lower than those measured experimentally. The same 

tendency has been observed in previous calculations of these cases [35] and is generally 

attributed to experimental pressure taps that were large in relation to the windward 

boundary layer thickness. 
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4.3 Hypersonic Flow on the Leeside of Delta Wings 

Delta wings are clearly quite common wing shapes for high speed atmospheric flight 

vehicles. A classification of the flow phenomena was first given by Stanbrook and 

Squire [58]. They divide the types of flow by means of a boundary defined around the 

normal Mach number MN = 1, which separates the flows with leading edge separated 

vortices from those with a shock attached at the leading edge. 

The classification of the flow was further enriched by Miller and Wood [59] based 

on experimental investigations at supersonic speeds. From pictures derived from various 

flow visualization techniques the flow is divided further into seven types representing 

seven different flow phenomena. This is illustrated on the left half of Fig. 4.13. 

Lack of information in the hypersonic regime makes the flow behaviour in this 

regime unclear, which motivated the present simulation. The numerical codes developed 

in the last chapter provide this opportunity. With extensive numerical simulations the 

classification may eventually be extended to the hypersonic regime. 

4.3.1 Computational Conditions 

The numerical simulation carried out here is under the conditions corresponding to the 

experimental work carried out by Cross [28], as shown in Table 4.2. 
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Table 4.2 Delta wing flow simulation conditions 

delta wing sweep back angle A 75
0 

free stream Mach number Moo 10.17 

free stream temperature Too 45.6 K 

wall temperature Tw 699.5 K 

total temperature To 989 K 

computation station r 0.14 m 

characteristic Reynolds number Reoo r 2.4 X 10 6 , 

Prandtl number Pr 0.72 

gas constant l' 1.4 

angle of attack a 
0 o , 0 

5 , 
0 

9 , 11
0 

, 15
0 

The normal angle of attack, i.e. the angle of attack normal to the leading edge, 

and the normal Mach number, i.e. the component of Mach number normal to the 

leading edge are defined by 

tga 
aN tg- 1 cosA' MN = Moo(1-cos2asin2A)~. (4-2) 

Under the present conditions the variation of aN and MN against a is listed in the 

Table 4.3. 
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Table 4.3 Variation of ~N and MN against ~ at Moo - 10.17 and A = 75° 

~ 0
0 50 9

0 

11
0 150 

~N 0
0 o 

18.7 
o 

31. 5 36.9
0 o 

46.0 

MN 2.6 2.8 3.0 3.2 3.7 

Due to the very high Mach number in the present case, the points (~N' M~ are 

all outside the classification chart given by Miller and Wood [59], where the maximum 

MN is 2. 

The computational surface and the geometry are related as shown in Fig. 4.6. The 

mesh system is shown in Fig. 4.7. The mesh is stretched in both directions. In the 0 

direction the mesh is stretched to obtain a fine grid near the wall and in the rp 

direction the mesh is stretched to obtain a fine grid around the leading edge to avoid 

overexpansion. The symmetry boundary, rp = 0
0

, halves the computational domain. The 

wall boundary condition is applied on the wing surface at 0 = 90
0

(0
0 

,,; rp ,,; 90
0

- A). 

The outer boundary condition and the initial condition are given as 

Poo = 1, 

ur,oo - sin~ cosO + cos~ cosrp sinO, 

Uo ,00 sin~ sinO + cos~ cosrp cosO, (4-3) 

urp,oo - cos~ sinrp, 

1 1 eoo + -
,),<,),-1)Moo 2 2 
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4.3.2 Flow Field Simulation 

Crossflow velocity vectors are plotted in Figs. 4.8(a)- 4.12(a). Details near the 

symmetry plane are shown in Figs. 4.8(b)- 4.12(b) 

Crossflow Mach number and density contours in Figs. 4.8(c), (d) 4.12(c), (d) 

clearly indicate the shock wave attached to the wing leading edge, the shear layer 

lifting off from the inboard of the wing surface. 

At a = 0° the flow field is characterized by a bow shock wave and the boundary 

layer remains attached to the wing surface. No embedded shock is observed in both the 

present numerical simulation and the experimental investigation, while it may occur in 

the lower Mach number range as indicated in Miller and Wood's classification. 

Particularly of note is the embedded shock wave above the shear layer shown in 

a = 5°, a = 9°, a = 11 ° and a = 15° cases. This embedded shock wave was 

clearly observed in the experimental investigation in the latter three cases. It strongly 

interacts with the wing boundary layer resulting in the separation on the wing surface. 

Miller and Wood's classification is illustrated on the left half of Fig. 4.13. Data 

points from the present simulation are plotted in the (aN, MN) chart and are shown to 

lie outside the scope of the Miller- Wood classification. The flow phenomena 

corresponding to different angles of attack for the present simulation are also illustrated. 

It is clear that the two straight lines in the Miller- Wood classification cannot be 

extended to the hypersonic regime on the right half of Fig. 4.13 because phenomena 

such as a leading edge separation bubble combined with a shock wave and an 

embedded shock along with no separation were not observed in the present hypersonic 

simulation. This is in agreement with the experimental investigation carried out by 

Cross [28]. 
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The above observation indicates that hypersonic flow around delta wing exhibits 

some different features from those in the lower speed range. Extensive numerical 

simulations could provide a valuable classification of types of delta wing flow in the 

hypersonic regime. 
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4.4 Hypersonic Flow beneath/over Cone- Delta- Wing Combinations 

In early studies it had been expected that the interference effects on the windward side 

of a wing- body combination in high speed flows would favour lifting effectiveness. 

Lack of knowledge of the shock- shock and shock- boundary layer interactions 

associated with it and difficulties in predicting the resultant separation, vortex flow and 

reattachment, however, did not allow the full exploitation of this benefit. On the other 

hand undesirable high local heating peaks were generated as a result of these 

interactions. 

Attempts made two decades ago to understand these complicated flows involved 

surface measurement in supersonic and hypersonic flow beneath such simple geometries 

[29- 31]. The small scale of experiments and the large scatter in the data, however, 

was so as to make it difficult to predict accurately, especially near the wing- body 

junction, the details of the surface pressure signature due to the vortex flows generated 

by the interactions and the resultant high local wall heating rates. 

To understanding the behaviour ·of this complex flow field, numerical experiments 

were carried out using the present computer simulation. 

4.4.1 Computational Conditions 

The cone- delta- wing configuration tested experimentally by Meyer and Vail[29] is 

chosen. Fig. 4.14 shows the sketch of the geometry and the solution surface . The flow 

conditions are listed in the following table. 
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Table 4.4 Flow conditions for cone-delta-wing combination simulation 

cone half angle Bc 12° 

delta wing sweep back angle A 60° 

free stream Mach number Mco 12.65 

total temperature To 1800 K 

free stream temperature Too 54.54 K 

wall temperature Tw 288 K 

computation station r 94 mm 

characteristic Reynolds number Reoo,r 3.78 X 10 5 

Prandtl number Pr 0.72 

Angle of attack 0' _10°*, _5°*, 0° , 5° , 15° 

* The minus degree corresponds to the leeward side flow simulation. 

No experimental data exist for these two cases. 

The mesh of 65><65, illustrated in Fig. 4.15, is stretched in both 8 and cp 

directions in such a way as to ensure sufficient resolution of the viscous effects. The 

initial flow field is set to the flow properties at infinity. The expression is the same as 

in Eq. (4-1) for the cone case. 

The boundary conditions supplied are 

a )on the wall: u = v = w = 0; T = T w = constant (isothermal wall) 

b) outer boundary: free stream values 

c ) symmetric plane: reflection condition 
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For the conical Euler solutions the wall no- slip boundary condition a) is replaced 

by tangency condition with v = 0 on the cone surface and w = 0 on the wing 

surface. 

4.4 .2 Windward Side Flow Field Simulations 

1) Angle of attack ex = 0° 

According to in viscid flow theory, flow at zero angle of attack is quite simple. In this 

case the free stream is aligned with the surface of the wing so no shock wave is 

generated by the wing. Part of the wing captures the high positive pressure of the cone 

shock layer and this so- called "inviscid interference pressure" produces an interference 

lift on the wing. 

Unfortunately this is not the case in practice. Viscous effects complicate the flow 

field . Figs. 4 .16(a)- (f) show the numerical results for this case . Fig. 4.16(a) presents 

the crossflow velocity vectors at each grid point and Fig. 4.16(b) gives a closer view 

near the junction. Figs. 4.16(c) and (d) show the crossflow Mach number and pressure 

contours. Figs. 4.16( e) and (f) compare the surface pressure and heat transfer with the 

experimental data respectively. 

The high pressure field of the cone shock layer interacts with the wing boundary 

layer, which results in separation on the wing. This is the major feature of the flow 

interaction, which is clearly shown in Figs . 4 .16( a) - (d) . The separated flow from the 

wing forms a very strong vortex, which reattaches first on the cone surface at A 1 and 

then on the wing surface at A 2 . Flow reattachment creates high local heating rates on 

the surface as seen in Fig. 4 .16( f). A secondary vortex between the wing and the 
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primary vortex is easily observed with reattachment at A 3' The thick viscous layer 

beneath the wing interacts with the oncoming flow and a weak shock wave forms from 

the wing leading edge. The outer edge of the viscous layer and the weak shock wave 

are clearly illustrated in Fig. 4.16(c). This weak shock wave again interacts with the 

cone shock wave and a resulting strong internal shock wave appears clearly outside the 

primary vortex to decelerate further the high speed flow passing through the weak wing 

shock and deflecting it into the primary vortex. The internal shock curves inwards 

beca use of the influence of the wall as shown in Figs. 4 .16( c) and (d). A shear layer 

resulting from the slip surface is seen lying between the shock- shock interaction point 

and the reattachment point A, in Fig. 4.16(c), which divides the flow processed by the 

cone shock from that by the wing shock. 

With the flow field pictures in mind, the surface pressure distribution and the heat 

transfer to the wall become understandable. Comparison with the data of Meyer and 

Vail's surface pressure measurement is made in Fig. 4.16(e). The pressure spike at A, 

predicted by the numerical results aligns qualitatively with measurements at zero angle 

of attack as reported in [31]. Unfortunately Meyer and Vail[29] failed to give data in 

this region due to difficulties in measurement near the junction. 

As shown in Fig. 4.16(f) the peaks in heat transfer correspond to the reattachment 

points, A" A2 and A3 while the valleys to the separation points, S" S 2' Quite good 

agreement with the experimental data has been observed in this case. Also observed is 

the good agreement with the two different codes, which gives the author confidence for 

the numerical simulation. 
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2) Angle of attack C\' = 50 

Figs. 4.17(a)- (f) illustrate the results of the numerical simulation of the case at 

an angle of attack of SOusing the same set of illustrations as for the C\' 0 0 case. 

At this small angle of attack, a number of its features as described for zero angle of 

attack are seen, but the effects on the surface parameters on the wing are more 

accentuated due to the interaction being more directed towards the wing. In the 

crossflow Mach contour, Fig. 4.17(c), the "three- shock configuration" is well 

represented and instead of a slip surface the shear layer between the shock- shock 

interaction point and the reattachment point A 1 is clearly seen. The shock resulting 

from the shock- shock interaction furthe r interacts with the wing boundary layer and 

another internal shock emerges close to the junction due to influence of the wall . This 

internal shock directs the strong crossflow to roll through the junction into a strong 

primary vortex beneath the wing. 

Significant is the appearance of a vortex rolling up from the cone surface, which 

is not seen in the zero angle of attack case. This vortex is seen more prominently in 

the C\' = 150 case to be described. It is seen from Fig. 4.17(e) that the predictions of 

the surface pressure distribution agree well with the measurements of Meyer and 

VaiI[29]. In Fig. 4.17(f) the heat transfer distribution agrees reasonably well with the 

experimental measurements in identifying the peaks and the valleys but the level is 

lower than the experimental data on the cone surface . At this stage this discrepancy is 

not understood. Communication of the work at an International meeting [32] did reveal 

from a colleague of the authors of this 1967 experimental study [29] that measured 

heat transfer results were higher than empirical results would show at the higher angle 

of attack cases, but this observation remains unsubstantiated. 
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3) Angle of attack 0' = 15 0 

Figs. 4.18(a)- (f) have an equivalent sequence as in the 0' = 0
0 

and 50 cases. 

Figs. 4.18(a) and (c) show crossflow features of the flowfield. At this high incidence, 

the flow structure is clearly different from those at zero and 50 angle of attack cases. 

From the crossflow velocity vector plot, Figs. 4 .18(a) and (b), there is observed a 

narrow separation region beneath the wing and the high energy flow reattaches on the 

wing first instead of on the cone as in the previous cases. The main stream of this 

flow passes through the corner then reattaches on the cone surface. It meets the cone 

boundary layer and rolls up into a vortex. When the high energy flow passes through 

the corner, a small part of it divides and forms a small vortex near the junction. A 

secondary separation on the cone surface beneath the primary one can be identified in 

Figs. 4 .18(b) and (c). 

At this angle of attack, the wing shock wave becomes stronger and the difference 

in strength and intersection angle between the two shock waves is reduced. The two 

shock waves appear to merge into each other and the interaction only results in weak 

compression waves and a shear layer. The compression waves interact with the wing 

boundary, while the shear layer joins into the process of rolling up of the primary 

vortex. 

The comparison of the wall pressure distribution is given in Fig. 4.18(e) . The two 

high pressure peaks near the corner represent the two reattachment points of the high 

energy stream. Peaks in heat transfer distribution, Fig. 4.18(f), exhibit all the four 

reattachment points, A" A 2 , A 3 , A 4 , on the wall, two on the wing and two on the 

cone surface , while the valleys in heat transfer distribution are associated with the 

separation points, S" S2 ' S3' S4 ' These peaks and valleys are clearly results of the 

flow structure shown in Fig. 4.18(a)- (d). The discrepancy with experimental data 

appears larger in the level of heat transfer distribution at this higher angle of attack. 
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4.4 .3 Exploration of Leeward Side Interaction 

The problem of leeward side heating in hypersonic streams was brought into 

Experience gained from the wind tunnel and flight tests associated with the NASA 

Space Shuttle development indicated that there can be significant localised heat transfer 

rates taking place on the leeward side of the vehicle due to flow reattachment. 

1-

With the confidence of the previous numerical simulations it is interesting to 

extrapolate our knowledge from the windward side to the leeward side around such a 

simple wing- body geometry. This will allow the leeward side wing- body interaction in 

hypersonic flow to be assessed. Special attention will be put on the high local heating 

problem. The leeside flow is simulated with the same code and conditions as the 

windward side simulation except for a negative input for the angle of attack. 

Figs. 4.19(a)- (d) show the leeside flowfield at a 5° derived from the computer 

simulation. It is interesting to compare these pictures with the delta wing case. Due to 

the existence of the upper cone body, the interaction is stronger at this low angle of 

attack than as seen in the delta wing leeside flow. The weak wing shock turns the 

body shock towards the cone surface and peak pressures and high local heating rates 

can be found at the resulting reattachment point as illustrated in Figs. 4.19(e) and (f). 

As stated earlier no experimental data exist for this case to compare with the 

prediction. 

4.4.4 Euler solutions 

To illustrate the importance of viscous effects it is usful to compare the Navier- Stokes 

solution with the Euler solution. Figs. 4.20(a)- (d) show solution of the conical Euler 
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equations for the 5° angle of attack case. It is not surprising to find that no vortex 

exists in the inviscid solution. The delta wing shock layer is much thinner than that in 

the viscous solution due to the absence of the thick boundary layer. The three shock 

configuration is clearly shown with a resulting shock reflected on the wing surface. The 

totally different flow structures produced by Navier- Stokes solutions and Euler solutions 

indicate the strong viscous effects associated with this problem, and justifies use of the 

N- S equations. 
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4.5 Concluding Remarks 

Numerical simulations of hypersonic flow around a cone, above a delta wing and 

beneath/above a cone- delta- wing combination have been generated by solving the 

compressible Navier- Stokes equations using a "locally conical" assumption. Illustrations 

derived from these solutions and comparisons with surface measurements and conical 

Euler solutions have resulted in the following conclusions. 

1) Numerical simulations can provide detailed information of the flow field and help 

understanding of the complex flow processes. 

2) Various types of vortex flows resulting from the shock- shock, shock- vortex and 

shock- boundary layer interactions dominate the flow on the leeside of the cone, on the 

delta wing and both beneath and over the combination. The comparison of the results 

with those from a conical Euler analysis indicates further that the flow is strongly 

influenced by viscous effects. 

3) For all three geometries, embedded or internal shocks were observed from the 

numerical simulation. For the cone and the delta wing, the embedded shocks seem to 

be a phenomenon associated with moderate to high angle of attack, while for the 

combination they are more evident at low incidence. 

4) For the combination, surface pressure peaks near the junction are features at low 

angle of attack cases and very high aerodynamic heating rates were observed in all 

cases around the strong vortex reattachment points. Due to different interaction 

structures at different angles of attack, the flow behaviour appears quite sensitive to the 

angle of attack, showing large difference between results at 0° and 15° angles of 

attack. 
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5) Reasonable agreement with surface pressure measurements provides validity of the 

locally conical assumption and the numerical method. For the wing- body combination, 

computed heat transfer rates agree well with the experimental data at low incidence, 

while the discrepancy with the measurement in the level of heat transfer distribution at 

high angles of attack needs to be explained further in the light of difficulties in 

measurement at those conditions. 

6) Almost identical results, even with the most crucial parameter - heat transfer, from 

the two different codes gives further confidence of the simulations. 

7) The results give important guidance to designers of high speed vehicles concerning 

the complex nature of aerodynamic loading and heating on surfaces. 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

Recently renewed interest in hypersonics necessitates a reliable, robust and efficient 

Navier- Stokes code for the understanding of the associated complex flow behaviour. 

Research towards the development of numerical methods and flow simulations of 

hypersonic flow around representative space- plane shapes is reported in this thesis . The 

research is naturally divided into two parts, numerical and physical. Some conclusions 

are drawn from this research. 

5.1 Numerical Aspects 

In the numerical part of the study, two basic implicit schemes were applied to solve 

the locally conical Navier- Stokes equations. Comparison of the efficiency and the 

accuracy of these two schemes were made in relation to the popular MacCormack 

explicit scheme. Further acceleration of these two implicit schemes was achieved by 

employing multi grid methods. In parallel to these studies, a totally new approach, the 

sparse quasi- Newton method, was proposed for fast steady state solutions. The 

following conclusions on numerical aspects are drawn from the research. 

1) Compared to the MacCormack explicit scheme, both of the implicit schemes showed 

a much faster convergence to the steady state by taking much larger time steps. 

Therefore for Navier- Stokes solutions, where a highly stretched mesh is usually 

necessary, as in the present simulation, an implicit scheme is preferred to an explicit 

scheme . 
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2) For steady state solutions, all the MacCormack- type schemes, both explicit and 

implicit, have the disadvantage of a dependence of the steady state solution on the 

time step, Lit, used in the time marching. This is proved both from a model problem 

analysis and from the results of numerical simulations. On the other hand, the 

Beam- Warming- type implicit schemes, including the simplified version presented in 

this thesis, have the advantage that the steady state solution does not depend on the 

time step used in the time marching. This was also proved from both a model problem 

analysis and from the numerical results. The key reason behind this difference is that 

in the MacCormack- type schemes the time differencing and the spatial differencing is 

mixed while in the Beam- Warming- type schemes the time differencing and the spatial 

differencing is separated. However, it was found that accuracy of steady state solutions 

using the MacCormack implicit scheme can be achieved by reducing time step size 

successively towards the end of convergence until the variation of the solution on time 

step disappears. In this way, nearly identical results of such crucial parameters as heat 

transfer rates were obtained using the two different implicit schemes. 

3) The simplified Beam- Warming scheme presented in the present thesis was found to 

need much more computing time per· time step than the MacCormack implicit scheme. 

This is due to the fact that two block tridiagonal matrix inversions need to be done 

per time step in the simplified Beam- Warming scheme while, in the MacCormack 

implicit scheme, by making use of the decomposition of the inviscid lacobians only four 

scalar bidiagonal systems need to be solved. 

4) Muitigrid methods can further accelerate implicit schemes. Although the Ni- type 

multigrid scheme is not originated from mathematical theory, it is efficient in 

propagating the waves with the help of the coarser grids. Treated as an iterative 

scheme for the steady state solution, the simplified Beam- Warming scheme can be 

further accelerated by a FAS multigrid procedure. 
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5) The proposed sparse quasi- Newton approach provides a new and very promising 

direction for fast steady state solution. Difficulties in the linearization needed in implicit 

schemes are avoided and the procedure depends only on the sparsity of the Jacobian 

and the solution from the previous iteration. Therefore the procedure is independent of 

the complexity of the right hand side and the system can be treated as a black box. 

The other important advantages are the superlinear convergence property and the 

simplicity of the procedure. Results of the sparse quasi- Newton method with van 

Leer IS flux splitting and Harten IS TVD spatial discretization schemes applied to an 

inviscid one dimensional nozzle problem showed a significantly faster convergence than 

the corresponding implicit schemes. 
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5.2 Physical Aspects 

The two implicit schemes with multi grid acceleration have been applied to simulate 

representative hypersonic vehicle shapes. Conclusions drawn from these simulations are: 

1) For hypersonic flows around a cone using solutions of the N- S equations, the 

numerical simulation appears to have captured all the mechanisms of the flow field. 

Strengthening viscous effects appear at increasingly higher angle of attack. The position 

of the bow shock and the embedded shock, the separation points and the surface 

pressure distribution are all in reasonable agreement with experimental data. 

2) The hypersonic flow on the leeside of a delta wing was found to behave differently 

than in the lower speed range from imcompressible to supersonic flows. Miller and 

Wood's chart was found to be incapable of direct extension to the hypersonic regime. 

New flow structures appear in the hypersonic regime. In all the cases at positive angles 

of attack, even at a = 50, a crossflow induced separation on the wing surface was 

detected in the numerical simulation. This observation was not found in the 

experimental work at a = 50 possibly due to the small size of this recirculation 

region. Similar to the behaviour of the viscous layer, this recirculation region grows 

with increase of the angle of attack. The embedded shock, which lies above the 

rolled- up vortex also strengthens with angle of attack. 

3) The hypersonic flow around a cone- delta- wing combination is considerably more 

complicated than that over separated shapes due to the the interference between the 

wing and the body. The nearly straight wing shock and the curved cone shock 

intersects, resulting in the formation of another shock. This shock further interacts with 

the boundary layer on the wing and a strong vortical flow is introduced. Due to the 

high strength of this vortical flow a secondary vortex was also observed between the 

primary vortex and the wing surface. An embedded shock was detected on the primary 

vortex. This gives a typical picture of hypersonic flow around wing- body combinations 
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at a low angle of attack. In contrast to the single cone or the single delta wing case, 

stronger interactions occur at lower angles of attack due to stronger resulting shock 

waves. 

Leeside flow is mainly dominated by the phenomenon that the cone shock is 

turned towards the cone surface by the weak wing shock. This induces high localised 

aerodynamic heating rates on the cone surface. 

4) A totally different picture is given by Euler solutions indicating that the 

viscous/inviscid interaction dominates the flowfield and Euler inviscid modelling does not 

apply for these simulations. This justifies the higher order modelling by N- S equations 

in the present research. 
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5.3 Recommendations and Future Work 

The research reported in this thesis prompts some topics for further study. 

1) The most important extension concerns the application of the sparse quasi- Newton 

approach to multidimensional cases. This extension necessitates an efficient way to 

invert the regular sparse matrix resulting from the discretization of the multidimensional 

problem. Efficient direct inversion of this matrix usually does not exist and some 

relaxation methods need to be sought. The combination of a relaxation scheme with the 

sparse quasi- Newton procedure overcomes the two barriers of conventional implicit 

schemes for fast steady state solution, that is, (1) the difficulty in linearization, i.e. the 

evaluation of Jacobian; (2) the factorization error due to the approximate factorization 

used in multidimensional problems. 

2) For simplicity only sawtooth multigrid cycling was studied in the present research. 

More work needs to be carried out to find an optimum strategy. 

3) Reduction of computing time per time step for the simplified Beam- Warming 

scheme can be achieved by replacing the viscous Jacobians Rand S with the 

corresponding maximum eigenvalues ARmaxI and ASmaxI. Therefore the diagonalization 

as in the Euler solution can be carried out and the block tridiagonal inversion reduces 

to a scalar tridiagonal inversion. However, the influence of this further simplification on 

convergence needs to be studied to determine whether it is worthwhile for an efficient 

steady state solution. 

4) With vector supercomputers available, explicit methods show one advantage over 

implicit ones because they are usually able to be vectorized directly. Vectorization of 

the implicit codes is clearly a further direction of research for more efficiency. One 

interesting work has been reported in [60], where the vectorization of the 

Beam- Warming implicit scheme is achieved. 
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5) More flowfield investigations can be done with the present codes. For example, 

extensive simulation of the hypersonic flow on the leeside of delta wings may extend 

Miller and Wood's classification to the hypersonic regime. Other geometries which can 

be directly simulated with the present codes include a waverider shape composed of a 

right angle caret wing, a cone with a nose fin, cone- body combined with a dihedral 

delta wing. Indeed, supersonic and hypersonic flow around any conical shapes composed 

of spherical coordinate surfaces can be simulated directly by the present codes. 

6) For more general conical shapes or even more general 3D geometries, general 2D 

or 3D grid generation techniques need to be employed. This is clearly a important 

factor for simulation of more practical 3D problems. 
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APPENDIX B 

DIAGONIZATION OF AI AND BI 

The inviscid Jacobians AI and BI can be diagonized by So and Srp 

respectively. i.e. 
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APPENDIX C 

ADAPTIVE ARTIFICIAL VISCOSITY 

In the present simulation of hypersonic flows all the shock waves are captured from the 

numerical solution. Although shock fitting is also possible in some cases, the complexity 

of the interaction and the existence of embedded shock waves make this approach too 

complicated to apply. However in order to capture shock waves by central differencing 

numerical schemes some explicit artificial viscosity term needs to be introduced to 

overcome the oscillation near the shock waves. The artificial viscosity technique used in 

the present simulation is a modification of the adaptive artificial dissipation proposed by 

Jameson [61]. From numerical tests the following modifications were made . 

1) Jameson used a combined second and fourth order artificial dissipation for his Euler 

solution. However the fourth order artificial viscosity term was found not necessary in 

the present hypersonic N- S solution. And its use degraded the accuracy of viscous 

parameters such as heat transfer. Thel:'efore only the second order term is retained. 

2) It was found that the artificial viscosity term needs to be totally switched off near 

the wall. This is essential for a accurate viscous solution. Also found from the 

numerical experience was its strong influence on the convergence. If it is not totally 

switched off near the wall the residuals near the wall cannot go down any further after 

two or three orders of reduction. 

The present artificial viscosity in the 0 direction has the following form: 

DO ' . = dO·+.1. . - dO' .I. • l,j 1 2 ,j 1-2,j (C-l) 

with 

dOi+L j COi+Lj q+Lj Ui+l,j- Ui,j) (C - 2) 
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where 

C8i+L j k a I u 8+c I /.18 i (C-3) 

The 8 direction sensor of a shock wave, "8i,j' is defined by 

/
Pi+l j - 2pi,j + Pi-1,j/ " . . , 

81,J Pi+l,j + 2Pi,j + Pi-l,j 
(C-4) 

"8i+Lj max ("8i+2,j, "8i+l,j' "8i,j, "8i-l,j) (C-S) 

f8i+~,j = min [ kl' k2 max ( 0, "8i+~,j - k3 ) 1 (C-6) 

The constants kl are choosen in the present simulation as 

ko 0.1 kl 0.5 k2 1 k3 0.01 (C-7) 

Note that k 3 is introduced in the present numerical simulation to switch off the 

artificial viscosity when the pressure gradient is small enough. 

The artificial viscosity in the cp direction is similarly defined. 
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APPENDIX D 

SOME FOURIER ST ABILITY ANALYSES 

D.1 Source Term Influence on Stability 

Consider the following problem 

au 
at 

au a 2u 
- c -- + v --- + s(u) ax ax 2 (D-l) 

Integrate the above equation by backward Euler time differencing and central spatial 

differencing with the source term treated explicitly 

n+l n 
U· - U· 

J I1t J 

n+l n+l n+l n+l n+l 
_ Uj+l - Uj_l Uj+l - 2Uj + Uj_l (n) c ~. +v . +su (D-2) 

Use Fourier analysis and substitute 

n . 
U j = ~ ne 1(TX j (D-3) 

into Eq.(D- 2) and define the amplification factor G by 

~n+l G~n (D-4) 

Then the magnitude of the amplification factor is 

IG(O",l1t)I 
I 1 + (as/au)l1tl 

{ (cl1t/l1x) 2sin 20"11x + [ 1+2(vl1t/11x2) (l-cosO"I1x) F }~ (D-S) 

If (as/au) is bounded, the von Neumann stability condition [62] 

IG(O",l1t)I ~ 1 + O(l1t) for all 0" (D-6) 

is always satisfied. Hence the finite difference scheme is unconditionally stable. From 

this analysis the normal source term with explicit treatment has no influence on the 

stability properties in the von Neumann sense. 
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However for practical problems Llt has a finite size and the influence of the 

source term on stability is reflected in Eq .(0- 6) through the term (as/ aU)Llt. 

a) If - 2/Llt ~ as/au ~ 0, the explicit source term treatment has the effect of 

stabilizing the method. 

b) If as/au > ° or as/au < - 2/Llt, the source term with explicit treatment has the 

effect of degrading the stability. The limit is the abnormal case where as/au is so large 

that the stability is totally destroyed. 

One may naturally think that the implicit treatment of the source term could make 

a positive influence on stability from the experience with implicitization of convection 

and diffusion terms. Examine the implicit treatment of the source term, i.e. 

n+l n 
U· - U· 

J Llt J 
n+l n+l n+l n+l n+l 

_ c Uj+l. - Uj _ l + v Uj+l - ~uJ + Uj_l + s(un+ 1 ) . (D- 7) 

The magnitude of the amplification factor is 

IG(a-,Llt)I 
1 

{(CLlt/~)2sin2a-Llx + [1+2(vLlt/Llx2)(1 - cosa-LlX)-(aS/aU)Llt]2}2 

(D-8) 

Again the von Neumann stability condition (0- 6) is satisfied and the scheme is 

unconditionally stable. 

From Eq.(O- 8) it is clear that the implicit source term treatment still cannot 

always have a positive effect on stability. 

a) If as/au ~ ° or as/au ;;, 2[1/Llt + 2(v/Llx2)], the implicit treatment of the source 

. term has the effect of stabilizing the method. 

b) If 4( v/ Llx 2) < as/au < 2/ Llt, the implicit source term treatment has the effect of 
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degrading the stability. It is noted that in this region the stability can be destroyed if 

dS/ dU is abnormally large, which can happen in this region. 

The above analysis indicates that the von Neumann stability is not influenced by 

the source term. In practice, the source term, whether treated explicitly or implicitly, 

has a lower order influence on stability as compared to the convection and diffusion 

terms. If the derivative dS/ dU is abnormally large, the stability can be totally destroyed 

even through implicit treatment of the source term is employed. Implicit treatment of 

the source term cannot always stabilize the solution while explicit treatment of it can 

sometime have a positive effect on stability, which depends on the sign and the 

magnitude of the derivative dS/dU. Unfortunately, for the cases where abnormal source 

terms may occur , e .g. the source term from turbulence modelling , this information is 

generally unavailable. 

For the problem studied in this thesis, the source term in the LCNSE or CEE 

results from coordinate tranformation (from Cartesian to spherical) and from the locally 

conical approximation. This source term is thought to be normal and, therefore, an 

explicit treatment of the source term is reasonable from above analysis. This was 

proved from the computational results . No better stability has been observed in the 

computation with an implicit treatment of the source term. 

D.2 Stability Condition with Explicit Diffusion Term . 

It is obvious that, in the Beam- Warming implicit scheme, the main computational 

effort is caused by the inversion of the block tridiagonal matrix. In the in viscid case, 

Pulliam and Chaussee [56] reduced the block tridiagonal solution to a scalar tridiagonal 

solution by taking advantage of the known diagonal form of the lacobians of the 

inviscid flux vectors. This procedure substantially reduced the computation. 

Unfortunately, in the viscous case, this cannot be done because there is no single 
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transformation matrix which can diagonalize the inviscid and the viscous Jacobians 

simultaneously. One way to employ a diagonal form for N- S solutions is to omit the 

viscous effect in the implicit operator allowing the implicit part to be diagonalized as in 

the Euler solution. The question to be asked about this explicit viscous term treatment 

is whether the stability of the implicit scheme is severely degraded or whether it is 

worthwhile to pay in stability for the saving in the matrix inversion. 

Consider the model convection diffusion problem (D- 1) without a source term. If 

the problem is integrated by 

n+l n 
U· - U· 

J L1t J 
n+l n+l n n n 

_ C Uj+12~Uj-l + V Uj+l - ~4 + Uj_l 

the magnitude of the amplification factor from Fourier analysis will be 

IG«(J, L1t)1 1 1 - 2(vL1t/Llx2)(1-cos(JLlx) 
[ 1 + (cL1t/Llx)2 s in 2(JLlx l~ 

Therefore the stability condition is 

L1t Llx2 
~ ~2-v . 

(D-9) 

(D-IO) 

(D-ll) 

The above analysis reveals that if the diffusion term is treated explicitly the time step 

will be limited by condition (D- 11). It is clear that the inviscid part has been released 

from the stability condition due to its implicit treatment. But the effect of using 

condition (D-ll) can be severe because viscous computations usually involve very fine 

mesh near the wall. Therefore simply omitting the viscous effect in the implicit 

operator is thought not to be a good practice for implicit computation of viscous flows. 

It is necessary to account for the viscous effect in the implicit operator for the sake of 

stability, which is an important feature with implicit schemes. 
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APPENDIX E 

TIME STEP DEPENDENCE OF STEADY STATE SOLUTION 

WITH MACCORMACK- TYPE SCHEMES 

Consider the following convection diffusion equation 

au 
at 

au a2 u 
- c ax + v ax 2 • 

Apply the explicit two- step MacCormack scheme to the above model equation, 

Predictor: 

n edt n n vdt n n n 
dUi - dx (Ui+1 - ui) + dx 2 (Ui+1 - 2u i +Ui-1) 

n+1 
ui 

Corrector: 

n n 
ui + dUi 

dU~+l= _ edt (U~+l 
1 dx 1 

n+1 I n n+1 
ui - (u· + U· 2 1 1 

n+1 vdt n+1 _ 2U~+1 - Ui-1) + dx 2 (Ui+1 1 

d n+1 + ui ) 

n+1 
+ Ui+1) 

The two- step scheme is equivalent to the following one- step scheme, 

(E - 1) 

(E-2) 

(E-3) 

(E- 4) 

(E-5) 

n+1 n I{ edt n n vdt n n n edt n edt n n 
ui ui + 2 - dx (Ui+1-u i)+ dx2(Ui+1-2ui+ui - 1)- dx [ui- dx2(Ui+1 - Ui) 

vdt n n n n edt n n vdt n n n 
+ dx2(Ui+1-2ui+Ui-1)-Ui-1+ dx (ui-u i-1)- dx 2(Ui- 2u i-1+Ui-2») 

vdt n n n edt n n n n n n 
+ dx2[Ui+1 - 2u i+u i-1 - dx (Ui+2-ui+1-2ui-1+2ui-2+ui-ui-1») 

vdt 2 n n n n n n n n n} 
+ (dx 2) [Ui+2-2ui+1+ui-2(Ui+1 -2ui+Ui-1)+ui-2ui-1+ui-2) (E-6) 

115 



The above equation can also be rewritten as 

n+1 n n n n n 
Uj - Uj 

Llt 
_ c Uj+1 - u·

n 
2L\.x 1-1 + " Uj+1 - 2Uj + Uj-1 

L\.x2 

1 n n n 
+ _ c 2Llt Uj+1 - 2uj + Uj 

2 .1x 2 1 

U.n n n 
_ cyLlt ( 1+2 - 2Uj+1 + U· • ~ 1 

n n 
n 2u· +Uj-2)/2.1x U· - 1-1 1 • ~ 

1 u. n _ 4 .n n n n + _ ,,2Llt 1+2 U1+ 1 + 6Uj 4Uj + U· 2 .1x 4 -1 1 2 

From the Taylor expansion 

n+1 n 
Uj - Uj 

Llt 

Use Eq.(E-l) 

a2 u 
(at 2 ) 

au n Llt a 2u n 
(at)i + ~(at2)i + 0(Llt 2

) 

a2 u 
c 2 (ax 2 ) 

a3 U a4 u 
- 2c"ax3 + ,,2ax 4 

(E-7) 

(E-8) 

(E-9) 

These three terms from the second order time derivative are approximated by the last 

three terms on the right hand side of Eq.(E- 7). Therefore the scheme is proved 

second order accurate in both time and space. 

However it is important to note that, if steady state is achieved, 

(Uin+ 1 - uin)/ Llt 0, the solution clearly depends on the time step through the last 

three terms on the right hand side of Eq. (E-7). 

It is clear that these terms have stronger influence in the regions where the 

derivatives are larger and, therefore, stronger time step dependence of the steady state 

solution will occur in these regions. 

In the transient analysis, the MacCormack scheme is a second order finite 

difference scheme with a truncation error O( Llt 2, Llx 2). However, in the steady- state 
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analysis, because the term (Uin+ 1 - uin)/Llt is missing the last three terms on the 

right hand side of Eq.(E- 7) can no longer be balanced by the transient error on the 

left hand side and remain as implicit artificial viscosity terms. These implicit artificial 

viscosity terms are results of steady state analysis. Roache [63] pointed out the 

difference in transient and steady state analysis for some other schemes. When a time 

marching scheme is used for a steady state problem, a steady state analysis should be 

considered. 

All the MacCormack type two- step schemes, such as the implicit MacCormack 

scheme presented in this thesis, are based on the two- step explicit scheme so that the 

steady state solution from these schemes are all actually dependent on time steps used 

in the time marching. From Eq.(E- 7) it is clear that the only way to reduce this 

Llt- dependence and to achieve a accurate steady state solution with MacCormack- type 

schemes is to reduce the Llt and therefore reduce these implicit artificial viscosity effects 

in steady state solution. 

To compare with this Llt- dependence, apply the Beam- Warming scheme with 

backward Euler time differencing, i.e. backward- time centred- space differencing, to 

the model problem, then 

f· 
n+1 n 

Uj - Uj 
Llt 

n+1 n+1 n+1 n+1 n+1 
_ Uj+1 - Ui-l uj+] - 2uj + Uj 1 

c 2Llx + JI Llx2 (E- IO) 

It is clear from the above expression that when the finite difference solution of the 

above equation reaches a steady state the solution will approximate the steady state 

partial differential equation to the second order without any time step dependence. The 

steady state independence of Llt i~ obvious. 

The key point is that the MacCormack scheme mixes the time and the spatial 

discretization while in the Beam- Warming scheme the time discretization and the 

spatial discretization is independent. 
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APPENDIX F 

DISTRIBUTION FORMULA FOR EQUATIONS WITH SOURCE TERM 

For simplicity of- presentation the following one dimensional problem is considered 

au + of + H = 0 
at ax 

The Taylor series expansion gives 

oU~ = U~+l_ U~ = (au)ndt + (a
2
u)n dt

2 
+ O(dt2) 

1 1 1 at i at 2 i 2 

From Eq. (F-1) 

(au)n= _(oF + H)~ = _(Fi+l-Fi-1 + H)~ + O(dx2) 
at i ax 1 2dx 1 

a 2u n a of of n aH of n 
(at 2 )i = ax[au(ax + H)]i+ [au(ax + H)]i 

(F-I) 

(F-2) 

(F-3) 

_ I{ of 1 of 1 }n 
- dx (au)i+~[dx(Fi+l-Fi)+Hi+~] - (au)i_~[dx(Fi-Fi-l)+Hi-~] 

I{ aH l' aH 1 }n 
+ 2 (au)i+~[dx(Fi+l-Fi)+Hi+~] + (au)i_~[dx(Fi-Fi-l)+Hi-~] 

Define 

+ O(dx 2 ) 

dUi_~ 

&i-~ 

dHi_~ 

[-(Fi-Fi-l)/dx - Hi_~]dt 

(aF/au)i_~dUi_~ 

(aH/au)i_~dUi_~ 

then the distribution formula can be written as 

1 
oUi = :2 dU - dt( & 1 

dx + 2 dH)]i+~ 

1 & 1 
+ 2 dU - dt( - -- + - dH)]. dx 2 1-~ 

(F-4) 

(F-S) 

(F-6) 

(F-7) 

(F-8) 

The distribution formula with source term for the two dimensional case, which are used 

in Sec. 3.4.1, can be derived similarly. 
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Fig. 2.1 Relation between Cartesian and Spherical Coordinates 



Fig. 2.2 Cone in Spherical Coordinates 

Fig. 2.3 Delta Wing in Spherical Coordinates 



Fig. 2.4 Cone- Delta- Wing Combination in Spherical Coordinates 

Fig. 2.5 Caret Wing in Spherical Coordinates 
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Fig. 4.4(c) Pressure Contours 
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Fig. 4.4(d) Density Contours 
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Fig. 4.6 Delta Wing Geometry and Solution Surface 
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DELTA WING 

Fig. 4.7 Mesh System for Delta Wing Case 
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delta wing surface <t> 

Fig. 4.8(c) Crossflow Mach Number Contours 
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delta wing surface <t> 

Fig. 4.8( d) Density Contours 
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delta wing surface 
<1> 

Fig. 4.9(c) Crossflow Mach Number Contours 

e 

delta wing surface 
<1> 

Fig. 4.9(d) Density Contours 
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delta wing surface 
<1> 

Fig. 4.10(c) Crossflow Mach Number Contours 
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'3 

delta wing surface 
<1> 

Fig. 4.10(d) Density Contours 
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delta wing surface 
<I> 

Fig. 4.11(c) Crossflow Mach Number Contours 

a 

delta wing surface 
<I> 

Fig. 4.11(d) Density Contours 
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delta wing surface 
<t> 

Fig. 4.12(c) Crossflow Mach Number Contours 

e 

delta wing surface 
<t> 

Fig. 4.12(d) Density Contours 
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Fig. 4.14 Cone- Delta- Wing Combination Geometry 
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Fig. 4.15 Mesh System for Cone- Delta- Wing Combination Case 
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Fig. 4.16(c) Crossflow Mach Number Contours 
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Fig. 4.16(d) Pressure Contours 



Cp 

.20 

.I~ 

o 

o 

o 
o 

o 
.00~ I I I I ! , I , I I 

00 300 60° 90°12° 15° ISo 21° 24° 27° 30° 

cone surface cp delta wing surface () 

St 

Fig. 4.16(f) Comparison of 

Heat Transfer 

X10-2 
1 .00 

.80 

.60 

.40 

.20 

Fig. 4.16(e) Comparison of 

Wall Pressure 

o 
@ 

0° 30° 
.001 I I I I 

90° 12° ISo 24° 30 ° 60° 

o experimental data 
cone surface cp delta wing surface () 

simplified B- W implicit 

MacCormack implicit 



n a 
"I1

 
z M

 

.... ~ ~
 

;...
. 

-..
.l 

("
) 

'"
t 

0 

~ 
::0

 
CJ

) 
.....

. 
(I

I 
~
 

s:: 

i 
-

-
It

 
("

) 

0-
'"

t 
a 

0 
'"

t 

~ 
tI

) 

("
) 

.... 0
-

0 
~
 

CJ
) 

=s 
0 

~
 

CJ
) 

::;
!l 

S'
 

~ 
=:

 
(I

I 

~
 

~ 
-

~
 

0 ('
) 

'"
t 

.... ~ 
So

 
'<

 
CJ

) 
I 

t..
., s:: =s ~
 .... 0 =s 

-< 
~
 

1 
~
 

!!.
 

R
 

0 
0 

CJ
) 

C.
 

II 
-

.....
 

S'
 

'<
 

V
I 

I ~ 
'" 

I 
0 

M
 

t"
"' ..., 

0 
OC

I 

» 

~ 
("

) 

:0
: 
~
 

'"
t 

0 

Z
 

~
 

a 

C
J 

- -
s: 

~
 

CJ
) 

~
 

~
 

:::t
. 

0 =s ("
) 
~
 

(I
I 

CJ
) 



e 

'" u 
« 
~ 
0:; 
::> 
f/) 

'" z 
o 
u 

e 

'" u 
« 
~ 

0: 
::> 
f/) 

'" z 
o 
u 

WING SURFACE e 

A,[MaTFfi7 

Fig. 4.17(c) Crossflow Mach Number Contours 

WING SURFACE e 

A1 

Fig. 4.17(d) Pressure Contours 



Cp 

.3B 

.2e 

.Ie 

o 

o 
01 0 

o 

Fig. 4.17(e) Comparison of 

Wall Pressure 

.Be I I iii i i ! i i 

eO 3eo 6eo geo12° 15° 18° 21° 24° 27° 30° 

cone surface 'P delta wing surface 8 

St 

Fig. 4.17(f) Comparison of 

Heat Transfer 

)(10""2 
1.00 

.80 

.60 

.40 

.20 . 

o 
e 

e 
e e 

e 

• 00 Ii' iii i I 

00 30° 60° 90° 12° 18° 24° 30 0 

cone surface 'P delta wing surface 8 

o experimental data 

computation 



S4 

DELTA WING 

Fig. 4.18 Results for Cone- Delta- Wing Combination Case 

Windward Side at 0' = 15° 

(a) Crossflow Velocity - Overall View 

f: ~ _~ ~3 ~ - - --
. ':3 3 u_~~ __ ~: : : l s ----- ................................ ~~~ ---....... -------...... -...... -~~ ~...r.r~ •••.•••••• ____ -..... ___ ~ 

lii/li}}}}i":':: :: : :: : : :: : : : : : : : ::: ::::::: __ ....................... ....... . . . . . . , , ..... ... . ~ ~ ~ ~ ~ ~ ~ : : ~ ~ , , , , ...... -- --
""""", "', ...... ----/IIJJllII, ••• """ I"" """"", 

• ''''''
11
"", """" "--,'''''/// 1", """" S / -.:1\\\\\\, •• ,// // 1 1 I, I , , , , , \ , 

3 .. ··:'\\\,'''''''---''111/ 1 1 ""," 
••..• :'", .. --"~/1111 I, , , \ \ , 
•••• •••••• "' 1 1

/ I"" \ 
'" •••...•• ,111/ / II" \ , 

····,',111 ' I t " 
"'1, II'r 1 \ 

""'/ " I •••• ', 11 /// /////11 
•••• ,, 1 ////

1
1 //// I 

""'/ 1/ II, " 
III/ 

///11/ /// 
//1/ 

Fig. 4.18(b) Crossflow Velocity -

Details near the Junction 



$ 

<oJ 
u 
« ... 
e:: 
::> 
f/) 

<oJ 
Z 
0 
U 

e 

<oJ 
U 
« ... 
e:: 
::> 
f/) 

'" z 
o 
u 

II 

WING SURFACE 9 

Al 

D 
/ 

Fig. 4.18(c) Crossflow Mach Number Contours 

WING SURFACE 9 

Fig. 4.18(d) Pressure Contours 



.se 
cp j' 0 0 

0 

o 0 
8 4~ 
0 

o 0 8 o 0 

J0~ ~ 
0 

.2e Fig. 4.18(e) Comparison of 

Wall Pressure 
o 

.10 

.eeJ I I I I : , ! I I I 

eO 3eo 6eo geo 12° 15° 18° 2]° 24° 27° 30° 

cone surface tp delta wing surface 8 

X10-2 
1.40 

St e 

1.20 
e 

@ 

~ 
Fig. 4.18(f) Comparison of 

Heat Transfer 

.00 I Iii' I I I 

0° 30° 60° 90° 12° 18° 2'1° 30° 

o experimental data 
cone surface cp delta wing surface 8 

simplified B- W implicit 

MacCormack implicit 



tJ
 g '" =' CD

 '" '"
I ... I:J
" 

CD
 

t...
t 

C
 =' a .... 0 =' 

'l1
 .... ~ """ ;... 1

0
 

"'""
' 

cr
 

....
.., (
)
 

'"
I 

0 ~ 0 ~
 ~ g .... r+
 

'<
 I 

tJ
 

trl
 ~ >
 ~ a 

()
 o ~ 

~
 

"'""
' 

CD
 

.e
 

~ 
()

 
a 

'"
I ~ 

ti
l .... 0
-

Q
 

CD
 

0 ~
 

'" r+
 

~ 
R

 
0 

II 
n .... ... '<

 
C

J\
 

I 
0 

0 Ci ;;l == ~
 

CD
 
~
 

.... -
" 



delta wing surface 

Fig. 4.19(c) Crossflow Mach Number Contours 

delta wing surface 

Fig. 4.19(d) Pressure Contours 

(") 

o 
~ 
~ 
[;}> 
(") 
(l) 

(") 

o 
~ 

~ 
(") 
(l) 



Cp 

XHrl 
1.00 

.50 
Fig. 4.19(e) Wall Pressure 

-. 

. 00 I I I I I I I i I I t 

0° 30° 60° 90° 12° 15° 18° 21° 24° 2'f 30° 

cone surface <p delta wing surface e 

St 

Fig. 4.19(f) Heat Transfer 

X10-2 
1.00. 

.80 

.60 . 

• 40 

.20 

•08 1 , , \ ~ , 
00 30° 60° 90° 12° 18° 24° 30 ° 

cone surface <p delta wing surface e 



n 0 z 
"I1

 .... OC
I 

'" 
.....

 
iv

 
0 

~ 
~
 

-
'" 

II
) 

c: 
0

-
-

--
~ 

!it
 

(
)
 

0-
'"

t 
a 

0 
'"

t 
~ 

ti
l 

(
)
 

.... 
0 

0
-

0 
~
 

~
 

=s 

~ 
II

) 

1 
.... Q

 
t::I

 
0 

~
 

o. 
II 

-
.... 

lit
 

'<
 

I 

t:
J 

U
\ 

~ 
'" 

I 
0 

t-<
 .., :t>

-

o 
tx1

 
OC

I 

,;
; 

~ 
e-

(
)
 

~
 

z 

'"
t 

~ 
0 

C
) 

II
) 

~ 
:=

 
ti

l 

~
 

0 
er 

-c: 
II

) 
~
 

.... 
~
 . 

~
 

.... 0 
0 

=s 
=s (
)
 

II
) ~ 



e 

'" u 
<C 
~ 

0:: 
::> 
(j) 

'" z 
o 
u 

e 

'" u 
<C 
~ 

0:: 
::> 
(j) 

'" z 
o 
u 

WING SURFACE 9 

Fig. 4.20(c) Crossflow Mach Number Contours 

WING SURFACE 

Fig. 4.20(d) Pressure Contours 

G(A8<](5\\,
UNf'(I,HSI1Y 
LlBHrl1\Y 

9 


	414299_0001
	414299_0002
	414299_0003
	414299_0004
	414299_0005
	414299_0006
	414299_0007
	414299_0008
	414299_0009
	414299_0010
	414299_0011
	414299_0012
	414299_0013
	414299_0014
	414299_0015
	414299_0016
	414299_0017
	414299_0018
	414299_0019
	414299_0020
	414299_0021
	414299_0022
	414299_0023
	414299_0024
	414299_0025
	414299_0026
	414299_0027
	414299_0028
	414299_0029
	414299_0030
	414299_0031
	414299_0032
	414299_0033
	414299_0034
	414299_0035
	414299_0036
	414299_0037
	414299_0038
	414299_0039
	414299_0040
	414299_0041
	414299_0042
	414299_0043
	414299_0044
	414299_0045
	414299_0046
	414299_0047
	414299_0048
	414299_0049
	414299_0049a
	414299_0050
	414299_0051
	414299_0052
	414299_0053
	414299_0054
	414299_0055
	414299_0056
	414299_0057
	414299_0058
	414299_0059
	414299_0060
	414299_0061
	414299_0062
	414299_0063
	414299_0064
	414299_0065
	414299_0066
	414299_0067
	414299_0068
	414299_0069
	414299_0070
	414299_0071
	414299_0072
	414299_0073
	414299_0074
	414299_0075
	414299_0076
	414299_0077
	414299_0078
	414299_0079
	414299_0080
	414299_0081
	414299_0082
	414299_0083
	414299_0084
	414299_0085
	414299_0086
	414299_0087
	414299_0088
	414299_0089
	414299_0090
	414299_0091
	414299_0092
	414299_0093
	414299_0094
	414299_0095
	414299_0096
	414299_0097
	414299_0098
	414299_0099
	414299_0100
	414299_0101
	414299_0102
	414299_0103
	414299_0104
	414299_0105
	414299_0106
	414299_0107
	414299_0108
	414299_0109
	414299_0110
	414299_0111
	414299_0112
	414299_0113
	414299_0114
	414299_0115
	414299_0116
	414299_0117
	414299_0118
	414299_0119
	414299_0120
	414299_0121
	414299_0122
	414299_0123
	414299_0124
	414299_0125
	414299_0126
	414299_0127
	414299_0128
	414299_0129
	414299_0130
	414299_0131
	414299_0132
	414299_0133
	414299_0134
	414299_0135
	414299_0136
	414299_0137
	414299_0138
	414299_0139
	414299_0140
	414299_0141
	414299_0142
	414299_0143
	414299_0144
	414299_0145
	414299_0146
	414299_0147
	414299_0148
	414299_0149
	414299_0150
	414299_0151
	414299_0152
	414299_0153
	414299_0154
	414299_0155
	414299_0156
	414299_0157
	414299_0158
	414299_0159
	414299_0160
	414299_0161
	414299_0162
	414299_0163
	414299_0164
	414299_0165
	414299_0166
	414299_0167
	414299_0168
	414299_0169
	414299_0170
	414299_0171
	414299_0172
	414299_0173
	414299_0174
	414299_0175
	414299_0176
	414299_0177
	414299_0178
	414299_0179
	414299_0180

