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SERIAL ATA FOR FPGA TARGETS 

Michael Gilroy', James Irvine2 

I Institute of System Level Integration and A2E, UK 
2 University of Strathclyde, UK 

ABSTRACT 

Serial ATA is the latest in a line of high-speed serial 
communication standards introduced as a high 
bandwidth replacement for older parallel devices. 
Serial ATA 1.0 has been released as a direct 
replacement for the current Advanced Technology 
Attachment (ATA) communication standard in 
personal computer systems. 

FPGAs have developed to the stage where they can 
readily be considered for implementation in high-speed 
communication systems with both Altera and Xilinx 
providing FPGAs with multi Giga bit transceivers, 
allowing the versatility and ease of development of 
FPGAs to be applied to consumer devices in this field. 
At the outset of this development work there were as 
yet no SATA controllers available for FPGA targets. 
This has since changed with cores available for both 
protocol testing and hardware implementation. 

This paper details the stages involved in the 
development of a generic first generation Serial ATA 
controller IP block for an FPGA target from initial 
design through to simulation and test. This paper 
details the results of the investigation into a design for 
physical implementation using an FPGA target to 
provide the means to test in hardware the proposed 
design. 

INTRODUCTION 

Serial ATA is the latest in a number of high-speed 
serial communication standards introduced as a high 
bandwidth replacement for older parallel devices. With 
the introduction of Serial ATA the demise of the 
longstanding Parallel ATA standard seems immanent. 
This paper introduces the Serial ATA standard and 
presents the design for a generic implementation of a 
Serial ATA controller IP block for an FPGA target. 

Unlike other high-speed serial communication standard 
such as USB 2.0 and IEEE 1394 FireWire, which allow 
high-speed connectivity for external devices, Serial 
ATA has been developed as a replacement for internal 
connections between the computer motherboard and 
hard disk, CD and DVD disk drives. Whilst the Serial 
Attached SCSI (SAS) standard has also been developed 
for similar purposes, that standard had not been 
completed by the time of this project was underway. 

Serial ATA is currently in the process of replacing its 
parallel equivalent in both home and enterprise 
computer systems and continues to offer a cheaper 
alternative to SCSI devices. This paper discusses the 
design considerations for the implementation of a 
generic Serial ATA controller IP block. 

The aims of this development were to rapidly develop a 
synthesisable Serial ATA controller for implementation 
on FPGA targets. In addition it was desirable for the 
generated IP core to be sufficiently compact to allow 
additional components and IP blocks to be 
implemented on the same FPGA. 

SERIAL ATA 

The storage capacity available from computer hard disk 
drives has increased rapidly in the last 30 years. 
However the speed of transfer mechanisms have not 
increased at a similar rate. Parallel ATA and SCSI 
systems speeds were increased sporadically to keep 

pace with the increases in hard disk capacity, with the 
former going from an initial 3 MB/second to today's 
133MB/second. These speed increases have been made 
in such a way as to ensure continued backward 

compatibility but not for the future needs for data 
transfer. 

The Serial ATA standard addresses these issues from 
the outset by looking to the future and providing a 
simple roadmap for the introduction of next generation 
devices and doubling the transfer speed for each 
generation. First generation Serial ATA transfers data 
at up to 1.5Gbit/second (150MB/second). Whilst this in 
itself is not a huge improvement over the existing 
Parallel ATA standard, second generation devices will 
double transfer speeds to 3Gbit/second. 

Serial ATA therefore provides a scalable interface 
which can be supported by next generation devices for 
a number of years. In addition, Serial ATA devices are 
compatible with Parallel ATA devices through the use 
of appropriate cables which convert between them, 
allowing Serial ATA hosts to communicate with 
Parallel ATA devices and vice versa. This guarantee of 
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continued support for legacy devices is desirable 
assist migration to this new technology. 
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to system to be upgraded with no down time and allow 
system administrator to replace faulty drives more 
easily. 

Figure 1: Transfer speed of Parallel ATA, Serial ATA 
and SCSI systems from the 1986 until 2007 

SATA Physical Characteristics 

Serial ATA uses point-to-point communications 
allowing the entire channel bandwidth to be dedicated 
to the link. This has the added advantage of simplifying 
the software required to control devices as there is no 
need to handle the various possible master/slave 
connections which exist in Parallel ATA. The Serial 
ATA connectors and cabling are far simpler, thinner 
and longer than their Parallel ATA predecessors. 

There are only 4 signal pins used in Serial ATA 
connections and a voltage of only 250 milli volts is 
required to transmit data between Serial ATA devices. 
Such voltage levels are more suited to integration into a 
SoC design than the 3.3-5V supplies required for 
Parallel ATA. 

Serial ATA offers a cheaper method of implementing 
enterprise systems and offers a viable alternative to 
SCSI in the enterprise market place (l). Although this 
advantage will be more explicit in second generation 
Serial ATA devices the large difference in prices of 
Serial ATA devices when compared with SCSI devices 
should aid Serial ATA uptake. Serial ATA also 
supports hot-plugging (installation of a new drive 
whilst the computer system is running) which is a 
major advantage in enterprise systems. This 
functionality would allow the capacity of a RAID 

To date Serial ATA controllers have been added to 
hard disk drives only, as the transfer rates that it offers 
are not required for CD or floppy disk drives (2). 
Although Serial ATA is now being supported by major 
motherboard manufacturers, until devices other than 
hard disk drives are developed which support Serial 
ATA, both Parallel and Serial ATA interfaces will be 
needed within computer systems. 

Table I summarises the differences between Serial 
ATA 1.0 and Parallel ATA. 

Frame Information Structures 

Within the Serial ATA standard, a frame is defined as a 
group of Dwords (32-bits) that convey information 
between the host and device. The frame is bounded by 
primitives, which may be inserted to control the rate of 
information flow. The content of a frame is known as 
the payload. The information field's contents are 
divided into three categories: register type; setup type; 
and data type. The type and layout of the payload is 
indicated by the contents of the first Dword of 
information located in byte 0 of the payload. 

The various types of frame payload contents are 
concerned with the transmission of the contents of the 
Shadow Register Block Registers, Direct Memory 
Access (DMA) registers and PIO Registers. The 
Shadow Register Block Registers are used to ensure 
continued support for legacy systems whilst DMA 
Registers which are not used by legacy systems are 
required for continued development of the Serial ATA 
standard in the future. These registers contents are not 
as yet fully characterised with many reserved for future 
generations of Serial ATA. 

TABLE 1- Comparison of Serial ATA 1.0 and Parallel ATA devices (3 
Serial ATA Gen I Parallel ATA 

Theoretical Transfer rate 150 Mbytes/sec 133 Mbytes/sec 
Transfer mode Serial PIO 
Connector type 7-pin SATA 40 pin, 80 conductor IDE 
Maximum cable length 1 meter 0.45 meter 
Power Cable SATA Cable IDE Power cable 
Si nal Volta a 

1 
250 mV 3.3 -5 V 
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Features Command Reser ed FIS Type (27h) 0 v CRR O 
Dev/Head Cyl High Cyl Low Sector Number 

2 Features (exp) Cyl High (exp) Cyl Low (exp) Sector Num 
e 

3 Control Reserved (0) Sector Count Sector Count 
eP 

Reserved (0) Reserved (0) Reserved (0) Reserved (0) 4 

Figure 2: Register Host to device Frame Information 
Structure (FIS) layout (3) 

PROPOSED DESIGN 

Design Overview 

Our proposed design as shown in Figure 3 comprises of 
the CRC, DMA controller, scrambler, 8b/10b encoder 
and decoder. The physical serial transceivers which are 
required have been omitted from the design as it is 
proposed that these be implemented using external 
SERDES controllers. This was partly influenced by 
the lack of availability of the appropriate FPGAs at the 
time of development, and to permit the design to be 
truly generic, allowing it to be implemented in multiple 
FPGA devices and not just those with suitable Serial 
Phys. 
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The Serial ATA controller may be controlled by one of 
two transfer mechanisms, Parallel Input/Output (PIO) 
or through a DMA controller. The use of the PIO 
register block ensures that the Serial ATA controller is 
backward compatible with Parallel ATA devices. This 
remains the oldest method to communicate with hard 
disk drives to be implemented, although it is still used 
as the default access mechanism when booting a 
computer for the first time. Whilst the use of the PIO 
registers is permitted they severely limit the data 
transfer rate which may be achieved. 

DMA and the faster Ultra-DMA communication 
standards have been the de facto means of 
communication between disks and memory. It permits 
far higher data transfer rates to be supported. The Serial 
ATA standard supports DMA access through direct 
inputs from a DMA controller to the Transport layer 
controller. No DMA controller is defined by the Serial 
ATA standard, only the expected inputs and outputs are 
defined. It is therefore up to the vendor to select or 
design a suitable DMA controller to provide these 
inputs and respond to the outputs. The Transport layer 
FSM is controlled directly by the DMA controller for 

TransoortLayer Data Link Layer 

Scrambling Ensures that the 
spread spectrum power Is widely 
dispersed when transmitting data 
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Control 
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ý 
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encoded with the data 
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decoded 

Figure 3: Proposed System Design for Serial ATA on an FPGA 
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such communication, with the input and output data 
most likely stored in first-in-first-out (FIFO) buffers. 

CRC 

Cyclic Redundancy checking (CRC) allows errors 
within frames to be detected. The CRC of a frame is a 
Dword (32-bit) field which follows the last Dword of 
the contents of an FIS and precedes the end of frame 
(EOF) primitive. The CRC calculation is performed 
between the SOF and EOF primitives and covers all the 
FIS data between these primitives and prior to 
encoding for transmission (scrambling). 

The CRC is calculated using Dwords. Therefore if an 
FIS contains an odd number of words (16-bits) it 
should be padded with zeros to produce a Dwords 
before being used in the calculation. The CRC is 
calculated using the following polynomial: 
G(X) =X 

16 +X 15 +X 13 + X4 + 1. (2) 

The CRC is initialized with the value 52325032h 
before the calculation begins. Using such a design 
would require the CRC and scrambler units to operate 
at 8 times the clock speed of the rest of the system. 
Therefore an alternative design which utilises parallel 
LFSRs is proposed for use with the CRC and 
Scrambler units. 

A parallel implementation of the CRC unit allows the 
CRC value to be calculated on Dword (32-bit) 
quantities. This allows the Link layer clock to be set at 
the same speed as the input from the Transport layer 
which also operates on Dword quantities. To allow the 
device and host to calculate the correct CRC the CRC 
unit is preset to a known value to ensure that the host 
and device being their calculation of the CRC from the 
same point. 

Scrambling 

To reduce the generation of electro-magnetic 
interference (EMI), scrambling is utilised. EMI occurs 
when the power output of a device is centred on a 
limited number of repeated transmissions at a high 
switching speeds. This has the effect of focussing the 
power output over a narrow frequency range, as shown 

Enable 
11-i 

Muhipliutiao Registered 
Output 

32-bit CRC 
output 32-bit input 

to CRC 
O 

Addition 
Operations ý-º 

in figure 6, which can damage or interfere with devices 
at the receiving end. Scrambling or spread spectrum 
techniques, are employed by Serial ATA to remove the 
high frequency components from the transmitted signal 
and so spread the effective power over the spectrum. 
This is shown in figure 7. 

There are two scramblers used in Serial ATA. One 
scrambles the payload data and the other is used to 
suppress repeated primitives. All Data characters 
between the SOF and EOF must be scrambled prior to 
transmission. The scrambling of all the data characters 
is performed on Dwords by XORing the data to be 
transmitted with the output of a linear feedback shift 
register (LFSR). The LFSR implements the following 
polynomial: 

G(X)=X32+X26+X23+X22+X16+X12+ 

xl1+X10+X, +X, +x, +x°+X2+X+l. 
(1) 

The shift register is initialised to the hexadecimal value 
OxFFFF prior to the first shifted output and before the 
SOF primitive. 

The suppression of repeated primitives is carried out 
twice in a row. The CONT (continue) primitive is 
transmitted followed by random data. Any data 
following the CONT primitive is ignored by the 
receiver as it is assumed to be the same as that already 
received. 

The scrambler unit also performs its operation in 
parallel on Dword quantities for the same reasons as 
stated for the CRC unit. The scrambling of data is 
performed by generating a pseudo-random value and 
XORing it with the data to be scrambled. The registers 
which store the feedback data for the scrambler 
generator unit are preset prior to scrambling. Passing 
the scrambled data back through another instance of the 
preset scrambler allows the scrambled data to be 
descrambled. Therefore the same design is used for 
both scrambling and descrambling with only the data 
input to the scrambler unit differing. 
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Figure 4: CRC unit design Figure 5: Diagram Scrambler/ Descrambler unit design 
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Figure 6: Radiated power output without spectrum 
techniques applied 

Encoder & Decoder 

The 8b/lOb encryption is used to encode the clock and 
data information together. This allows the clock to be 
extracted during data reception, removing the need to 
transmit clocking information with the data. Both the 
encoder and decoder are based upon the original design 
developed by Widmer and Franaszek (4), as described 
in their original paper. The original Widmer and 
Franaszek 8b/lOb encoder and decoder used twelve 
control characters, but Serial ATA 8b/10 encoders use 
a subset of only four of these control characters. 

Designs for both the encoder and decoder are shown in 
Figs 8 and 9. Both operate at a clock rate four times 
faster than that of the rest of the Serial ATA controller. 
Their maximum clock rates are fixed by the Serial 
ATA specification to an upper limit of 150MHz. 

Byte Control 
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t 

Character 

Output generator 

CoMrdu 
Data 

chsraclsr 

. __. 

Sb 
Function 
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Diaparüy 
Control 

Sb16b 
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Switch ý 
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Figure 8: The 8b/lOb encoder (pipeline stages and 
clock lines omitted for clarity) 

Sb/6b 
Encoding 

Switch 

Figure 9: The I Ob/8b decoder (pipeline stages and 
clock lines omitted for clarity) 

frequency 

Figure 7: Radiated power with spread spectrum 
techniques applied 

FUNCTIONAL TESTING 

Testing was performed using Verilog testbenches 
running on ModelSim SE. Simulations were run at both 
module and system level to verify functional operation 
of the design. For the CRC, scrambler and primitive 
suppressor modules, self checking testbenches were 
generated to test all possible combinations of input and 
output. These modules were shown to operate correctly 
in response to all possible input combinations. 

A system level testbench was generated to verify 
operation of the design in response to PIO and DMA 
transactions. By passing the generated output back 
through the design, the generation of the serial output 
and Dword length data was verified to operate 
correctly. Whilst the results which were generated in 
this way showed the device to operate correctly, further 
testing in hardware is required to verify the design's 
operation. 

SYNTHESIS & TIMING ANALYSIS 

Throughout the design process Synplify Pro 6.4 was 
used to synthesise the design, targeting the Altera 
Stratix EPIS25 FPGA, which was always selected as 
the default target for all synthesis and place and route 
tools which were used. FPGA selection was 
determined by the sponsors, and was selected to meet 
given cost, performance and availability of the devices 
at the time the project was commencing. Place and 
route along with timing analysis were performed using 
Quartus 11 version 3 from Altera. 

Having run the place and route tool on the synthesised 
link layer design, timing analysis of the resulting layout 
showed that both the encoder and decoder did not meet 
the timing constraints specified in the constraints file. 
Further, the top speed for both the encoder and decoder 
designs was less than that required by the Serial ATA 
standard. As a result of this failure to meet the timing 
requirements of the design both the encoder and 
decoder code were modified to incorporate a more 
pipelined architecture. As a result of this modification 
to the design, and having re-synthesised the design and 
processed the new circuit design through Quartus all of 
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the components of the Link layer were found to meet 
the relevant timing constraints. 

The data Link layer, physical control logic and the 
DMA interface all successfully passed synthesis and 
timing analysis. We were unable to test and verify the 
design in hardware due to the need for a suitable 
Gigabit Serial Phy. As a result, testing was carried out 
through the use of a testbench. This tested the devices 
ability to handle both PLO, and simple DMA read and 
write operations and verified that the device followed 
the Serial ATA specification with regard to data 
transfer. 

As the aim of the project was to produce a generic 
design of a Serial ATA controller for FPGA targets, it 
was decided to target the design at devices from both 
Altera and Xilinx to determine whether the design 
could be readily transferred between manufacturers and 
devices. A summary of the area reports is given below 
in Table 2. All the results shown here were generated 
using Synplify Pro 7.3. 

TABLE 2- Comparisons of device area usage between 
devices 

Device 
Manufacturer Device 

Percentage 
Area Usage 

(%) 
Xilinx Virtex 2pro XC2VP7 - 21 

7 
Xilinx Virtex 2 CS 144 -6 74 
Altera Stratix EPI S25 -7 11 
Altera Cyclone EPIC3 -7 47 

As can be seen in Table 2 above, the preferred target 
device requires a total utilisation of only 11%. This 
leaves ample space on the FPGA for implementation of 
multiple other IP blocks that will use the SATA 
controller. 

All of the devices in Table 2 met the timing 
requirements during post synthesis timing analysis, 
During the timing analysis process, it was noted that 
better timing performance was found using the Altera 
devices. However, improvements in performance 
would be expected using the Xilinx toolchain. In each 
of the cases given in Table 2, the Altera devices offered 
approximately a 10% higher maximum clock rate over 
the Xilinx devices. Further checks were not carried out 
as the Altera devices were the preferred choice. 

CONCLUSIONS 

A fully simulated implementation of a Serial ATA host 
controller has been implemented and shown to meet 
the timing constraints necessary to permit the device to 
operate on an Altera Stratix device. Through 
simulation and timing analysis it has been shown that 

this device complies with the Serial ATA standard for 
the implementation of a Serial ATA controller. 
The implemented design is currently undergoing 
further verification and hardware testing to verify 
operation prior to making the IP available 
commercially. Future developments of the IP will 
follow the Serial ATA roadmap with the design and 
development of second and third generation devices in 
the future. 

Whilst the simulated testing which was performed has 
shown the design to operate correctly, implementation 
and testing in hardware is still necessary to prove this. 
The Serial ATA host controller has however been fully 
synthesised, with an appropriate DMA controller which 
supports PIO transfers and simple memory read write 
operations, which should allow the design to be tested 
in hardware relatively quickly and easily once the 
necessary SERDES are added. In addition to this, 
improvements to the design may yet be made to 
improve the timing and layout results to permit the 
design to be fitted to a smaller area of the device. The 
design may also be implemented as one IP block in a 
SoC at some point in the future, 
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ABSTRACT 
Hard disk storage capacity has continued to rise whilst at the same 
time the cost per megabyte continues to fall. This, combined with 
increased usage of digital storage for documents, photography and 
video for both home and business use has led to increased need 
for reliable data storage system. Redundant arrays of inexpensive 
disks (RAID) have proven to offer the best characteristics for 
reliable storage. However, to date RAID based systems have been 
limited by their support for only single disk erasure tolerance. 

This paper introduces an efficient hardware RAID 6 controller on 
an FPGA capable offering support for uninterrupted access during 
double disk erasures and recovery. 

Categories and Subject Descriptors 
Bin [Hardware Miscellaneous]: Applications: uses of FPGAs to 
achieve high performance 

General Terms 
Algorithms, Performance, Design. 

Keywords 
RAID 6, redundancy, FPGA, hardware acceleration. 

1. INTRODUCTION 
The volume of data stored digitally on hard disk drives, and the 
capacity available from such drives has increased rapidly in 
recent years. This has been fuelled by the increased popularity of 
MP3 players, digital photography and recording. This data is 
commonly held on a single hard disk drive with irregular if any 
backup being made. Should the hard disk fail, the user loses all 
their data. In businesses whilst data storage and backup policies 
may be implemented these tend to offer slow recovery in the 
event of multiple disk failures. Both personal and business users 
need a cheap, reliable, fast and easy to use system to provide data 
recovery from disk failures. Currently many users utilise 
redundant arrays of independent disks (RAID) based systems to 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Conference'04, Month 1-2,2004, City, State, Country. 
Copyright 2004 ACM 1-58113-000-0/00/0004 

... $5.00. 

William Berrie 
A2E Ltd. 

Adaptive House 
Livingston, UK, EH54 6AX 

+441506463393 

wberrie@a2etech. com 

provide this performance. 

RAID based systems can increase the redundancy of the system to 
provide the capability to recover data from a disk which no longer 
operates (catastrophic failure) or the recovery of lost data due to a 
single unrecoverable read error. Catastrophic failures occur 
infrequently in modern hard disk drives with the mean time to 
failure for a single disk of around 1.4 million hours for the highest 
reliability drives [101. However, the probability of an 
unrecoverable read access from a disk is far greater, and increases 
with the number of disks in the array and the capacity of the 
disks, as shown in figure 1. Although arrays of over 16 drives are 
uncommon, there is a clear relationship between the disk capacity, 
array size and the probability of an unrecoverable read error. As 
disk capacities increase so too will the probability of a read error. 
Lower quality drives have an increased probability of failure of 
several orders of magnitude and for storage capacities of over 
ITB will in all probability result in a read error every time the 
array has to be rebuilt [11]. Should a disk fail the standard RAID 
based systems will fail completely if a read error occurs during 
the rebuild process. 

ä 
ý 
0 ý CL 

Probability of unrecoverable read error occurring 
during rebuild stage: 

error rate for read accesses of I in 1014 
100 

80 

60 

40 

20 

0 
48 16 32 48 

Number of disks in array 
--. -- 250GB disk drives 

-a--100 GB disk drives 

Figure 1. The probability of an unrecoverable error increases 
with both disk size and the number of disks in the RAID 

array. 
With the continued increase in disk capacities and increased 
probability of a read error standard RAID based systems may no 
longer provide sufficient reliability to recover successfully from 
catastrophic disk failures. 
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Support for the recovery from up to two catastrophic failures, two 
read errors or a single catastrophic failure and a read error can be 
provided through the use of a storage system implementing a 
RAID 6 algorithm. The technology to provide this additional 
protection has been available for a number of years, however the 
cost, proprietary nature of the implementations and 10 
performance have limited the uptake of these systems. In larger 
array systems more sophisticated solutions have been developed 
to improve system performance, however, the cost and 
complexity of such systems preclude them from consideration of 
smaller businesses and consumers. 

We introduce a hardware based RAID 6 controller implemented 
on an FPGA to improve the performance when compared to a 
software only solution, reduce cost and improve reliability. 

2. RAID 
RAID provides the means to combine multiple hard disks in a 
single logical unit to offer high availability, performance or a 
combination of both. This provides better resilience and 
performance than a single disk drive. 

The benefits of RAID include: 

" Protection against data loss. 

" Provision of real-time data recovery with uninterrupted 
access due to drive failure or recovery. 

" Increased system uptime and network availability. 

" Multiple drives working in parallel increases system 
performance. 

2.1 Standard RAID Algorithms 
Six RAID levels were originally proposed [121. Of these RAID 
levels 0,1 and 5 are the most commonly implemented. RAID 0 or 
striping does not provide recovery for data should a drive fail but 
does improve read/write access speeds by distributing data across 
the discs. RAID 0 is normally combined with RAID I (mirroring) 
to gain the benefit of improved read/write access times with the 
advantage of adding the ability to recover lost data should a drive 
fail. The efficiency of RAID I is poor as you need one mirror disk 
for each data disk. RAID 5 offers the best performance to cost 
ratio, requiring one disk for checksum data and two or more data. 
The RAID 5 checksum is a parity calculation making generation 
and recovery possible by a simple field of XOR gates. 

Disk 1 Disk 2 Disk 3 Disk 4 
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Figure 2. RAID 0 implementation. Data is striped across the 
four disk array to Improve I/O performance. 
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Figure 3. RAID I implementation. Data is written onto both 
disk drives. 
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Figure 4. RAID 5 implementation. Data and associated parity 
are striped across the drives. This is the smallest RAID 5 

array type with the data and parity locations being rotated on 
each stripe. 

The need for improved RAID performance was originally 
tempered with the financial cost of such systems. RAID 5 
required the lowest outlay in purchase cost due to the requirement 
for only a single extra drive. However, as hard disk drive prices 
have fallen and capacity increased so to has the amount of data 
stored on such devices. Whilst the mean time to tailure (MTTF) 
of disk drives has improved, with less than 1% of disk drives 
failing a year [I 1 ], there is an increased risk of data loss due to 
unrecoverable read errors due to the increased storage capacities. 

RAID 5 has also benefited from low cost easily implemented 
hardware accelerators. These have been incorporated onto 
motherboards and add-in cards for PC systems and provided a fast 
and efficient solution of RAID storage. The cost of the additional 
hardware requirements necessary to implement the more complex 
RAID 6 algorithms long prohibited the widespread adoption of 
this technology. Low cost FPGAs such as the Altera Cyclone or 
Xilinx Spartan series offer the means to rapidly develop and 
implement improved hardware accelerated RAID algorithms. 

2.2 RAID 6 
RAID 6 has been loosely defined as offering support for the 
recovery of any 2 disk erasures. RAID 6 increases the reliability 
of a RAID system through its ability to recover data with up to 2 
disk failures without any downtime. There have been a number of 
algorithms proposed for the implementations of RAID 6 
including, EVEN-ODD encoding [4] and Reed-Solomon (RS) 
coding [6]. 
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axb=i log(log(A) + log(B)) 

Division is calculated as: 

Figure 5. RAID 6 RS based design. Shows the smallest array 
size with two data disks and two checksum disks. 

We propose an RS encoding scheme for RAID 6 operations and 
optimise it for implementation in an FPGA based hardware 
accelerator. We are concerned with the development of a RAID 6 
hardware accelerator which offers performance better than that 
achievable in software in terms of CPU utilisation and rebuild 
speed. Furthermore, the reconfigurability of FPGAs provide the 
means to easily adapt the system design to cope with possible 
future standardisation of RAID level 6 [8]. 

2.3 The need for RAID 6 
Whilst the risk of double disk failure remains low for small 
arrays, should a single drive fail it is becoming increasingly likely 
that an unrecoverable read error will occur during the rebuild 
phase. This is particularly true for lower reliability, cheaper hard 
disk drives. Whilst fully functioning, a RAID 5 array can recover 
from an unrecoverable read error on one drive, or a single 
catastrophic disk failure. RAID 5 copes with one simultaneous 
failure. Any failure from that point until the completion of the 
rebuild will cause a failure of the array. Should an unrecoverable 
read error be found during the rebuild stage, the stripe will be lost 
and may only be recovered by returning the system to the last 
known good backup, assuming one was made [9]. 

RAID 6 can recover from a bad block failure and a single drive 
failure simultaneously increasing the likelihood of a successful 
rebuild. Just as RAID 5 offered the best performance to cost ratio 
for single disk erasures, RAID 6 offers the best performance to 
cost ratio for double disk erasures. 

2.4 Reed-Solomon coding 
Reed-Solomon coding [ 12] adds check digits (c; ) calculated over a 
Galois field from a set of data digits (d) such that: 

n 

c; dj xf; j l=1 

Galois field arithmetic is used to calculate the missing data with n 
checksums required to solve for n unknowns, i. e. n checksums 
can correct n erasures. Addition and subtraction operations are 
both performed as XOR operations. Multiplication and division 
are more complex and are calculated using logarithms. Unlike 
regular logarithms, the log of any non-zero element of a Galois 
Field is an integer, this allows exact multiplication and division of 
Galois Field elements. Multiplication is calculated as: 

b=i log(log(A)- log(B)) 

For our implementation a Galois Field of GF(24) is proposed. This 
results in a small logarithm table suited to a small, easily 
replicated lookup tables. This structure is compact and easily 
implemented on an FPGA and can be readily scaled to larger 

array structures. 

If the lost data is a checksum, the checksum can be recalculated 
from the existing data. 

c, =di ED dj 

c2=(d; ®i)®(di®j) 
If a single error occurs, calculate the cl (parity), setting the 
missing data to 0. Missing data is calculated by subtracting the 
new parity from the original XOR. 

If there are two missing items calculate sl and s2, the modified 
checksums from setting the missing data to 0 then: 

c, (Ds, =d, ED dj 
c2 ®sz =(d; (9 i) ED (d, 0 ýý 

The missing data is calculated from: 

(d; ®i)®(dj ®j) =c, ED sZ®i 

=: ý (d, ®i)®(dj ®j)=(c2 ®sz)ED L(ci (Ds, )®il 

and: 

(di®i)m(dj ® j): -- C2 msz 

ý 
(c2 msZ)m 

(CI®SI)®i (9) 

imj 

3. System Architecture 
3.1 RAID 6 
The RAID 6 algorithm has been manipulated such that the 
accelerator hardware requirements are reduced to a series of XOR 
gates, lookup tables and flip-flips. Using a Galois Field of 2° 
reduces the hardware requirements and simplifies the design of 
the encoder and decoder blocks. 
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These encoder and decoder blocks can be instantiated repeatedly 
to support larger or smaller data bus paths. For our test system we 
operated using a 32-bit data path which required 8 encoder and 
decoder blocks. The encoder and decoder blocks operated at clock 
speeds in excess of 250MHz for Altera Cyclone devices, with a 
latency of 3 clock cycles. Our encoder/decoder block for a 32-bit 
wide data path required only 564 logic cells to implement in the 
Altera Cyclone device family. 

3.2 Test System Design 
To test the performance of the RAID 6 hardware accelerator, it 
was implemented on an Altera Stratix EPIS25 based PCI bus 
expansion card controlled by a simple DMA controller. This PCI 
based accelerator card was added to a PC based test system to 
determine the performance of our hardware solution compared 
with the existing RAID 6 software solution. Our test platform 
consisted of, a serverclass computer running Linux kernel 2.6.9 
under Fedora Core 3, an AMD Opteron processor, 1 GB of RAM, 
I parallel ATA drive for the operating system and 4 Serial ATA 
drives for the RAID array. 

11-M 
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Parity Disk 
1 

ý 

Parity Disk i 
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ý 

Figure 8. System design 
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Our hardware accelerator was controlled via a modified revision 
of the Linux RAID 6 driver which replaced the standard software 
algorithms for calculating data and checksum values with calls to 
the hardware controller. 
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-4 

Figure 9. RAID 6 hardware acceleratator 
The first disk worth of data is loaded into a RAM block, when the 
second disks data is read; the checksum or lost data is calculated 
using the encoder/decoder blocks. Data is loaded into the output 
RAM blocks and written when the RAM blocks are full or all the 
data has been processed. 

4. Hardware Verification 
To verify that the hardware accelerator operated correctly within 
our test system a RAID 6 array was generated and verified using 
the Linux mdadm tools [51 and our modified RAID 6 device 
driver. Using the hardware accelerator this we were successfully 
able to: 

" Generate a RAID 6 array 

" Build a Linux File system 

" Mount the RAID 6 array 

" Read and write file to the array 
Verification that the data written successfully to the drive was 
performed by running a diff on the written file and the original. In 
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this and all other tests each of the four disk drives utilised 10 GB 
partitions, offering 20 GB of usable data storage space. 
With the RAID 6 array functioning correctly under normal 
circumstances, each disk was removed and rebuilt separately. 
Files were written to and read from the array whilst each disk was 
missing (operating in the degraded mode) and during the rebuild 
stage. Once the array was rebuilt the files on the array were 
compared with the original files to verify that the data had been 
successfully recovered. These steps were repeated with each 
combination of double disk erasure. Again the array successful re- 
generated the missing data. 

5. Analysis 
Comparison of the hardware accelerator performance was made 
with software RAID 6 which is now incorporated into the Linux 
2.6 kernel. As can be seen from Table 1 the hardware accelerator 
currently matches the performance of the software 
implementation for building the RAID array and the recover of a 
single disk erasure. However, during double disk erasures the 
hardware accelerator out performs the software. This is due to the 
software algorithm recovering data one disk at a time requiring 
double the number of read/write transactions. The hardware as it 
is able to calculate the missing data for both failed drives 
simultaneously and so the rebuild speed is reduced only by the 
time required to write the second disks worth of data. It is to be 
expected that the performance of the hardware accelerator will 
increase with an increase in the bus speed and data path width. 

Table 1. Comparison of Software and hardware RAID 6 
performance. 

Software 
RAID 6 

Hardware 
RAID 6 

Array generation speed 12 MB/sec 12 MB/sec 

Data recovery -I erasure 12 MB/sec 12 MB/sec 

Data recovery -2 erasure 7 MB/sec 11 MB/sec 

Whilst building the previous tests showed the RAID 6 algorithm 
operated successfully under all single and double disk erasures, 
true RAID performance is more commonly measured using 
benchmarking software 18,10], we selected BONNIE due to it's 
ease of use and natively designed for Linux (9]. Bonnie performs 
a series of tests on a file of known size, performing millions of 
read/write operations to the array to provide information on CPU 
utilisation, and access speeds during block read/write accesses 
and random access across the device. 

To ensure that the data could not be held in RAM a 2GB file was 
used by BONNIE during testing. 
As can be seen from Table 2. the hardware generally offered 
comparable access speeds for sequential outputs. However the 
performance during double disk erasures is vastly improved when 
using the hardware accelerator. In addition to this, the hardware 
accelerator was able to rebuild the lost drive whilst BONNIE was 
running at approximately 1.8 MB/sec compared with a rebuild 
speed of I MB/sec for software RAID 6. 

For sequential input accesses again the hardware RAID 6 far out 
performed the software RAID 6 during double disk erasures. The 

only exception to this was during random seeks which offered a 
poor response from both software and hardware. 

6. Future work 
Our RAID 6 hardware accelerator is currently limited by the PCI 
bus transfer rate and the hard disk drive being located on a 
separate bus from the RAID 6 controller. Moving the RAID 6 
accelerator onto higher speed buses such as PCI-X or PCI-express 
should offer higher bandwidth for data transfers. This should 
provide improved performance and enable the controller to 
support larger array sizes. By adding the SATA controller to the 
hardware accelerator all transactions to the hard disk drives will 
be performed via the RAID 6 controller offering improved 
read/write performance and reducing CPU utilisation. Finally 
differing Reed-Solomon implementations may be generated to 
test the performance and limitations of each in such a system. 

Our current system does not implement disk striping (RAID 0). 
An investigation into the use of disk striping may be carried out in 
the future, however as the P+Q data is written as part of the stripe, 
we expect the benefit of this approach to be negligible. 

7. Conclusion 
We have demonstrated a working RAID 6 controller on an FPGA 
which provides performance equivalent to or better than that 
achievable by a software solution. RAID 6 is currently being 
adopted by a number of companies and may in the near future be 
standardised, our solution allows systems to be developed today 
and be easily upgraded to support any required standardisation in 
the future. 
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Table 2. Comparison of BONNIE results between hardware and software RAID 6 sequential outputs and inputs. 

Sequential Output Sequential Input 

Per Char Block Rewrite Per Char Block Rewrite Mode 
MB! % MB! % MB/ % MB! % MB/ % MB! % 
sec CPU sec CPU sec CPU sec CPU sec CPU sec CPU 

Software 
normal 14226 33.7 21330 4.7 14314 18.8 6780 24.5 31522 33.9 244.3 3.3 

operation 

Hardware 
normal 14815 30.3 21528 4.1 13683 6.1 6745 24.4 32353 34.4 244.1 3.0 

operation 
Software 

Single 11103 29.8 18297 6.5 14087 17.5 6236 22.6 28225 32.4 223.3 4 1 disk . 
erasure 

Hardware 
Single 
disk 12020 24.7 19996 4.4 13508 15.8 6316 22.9 28186 28.1 268.6 3.0 

erasure 

Software 
Single 
disk 

6089 14.5 20649 4.6 5883 7.2 5532 20.0 7800 28.6 256.9 3.9 
erasure 

Hardware 
double 
disk 10577 24.7 19736 4.3 12561 14.7 5767 20.9 27709 29.5 257.5 3.3 

erasure 
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ABSTRACT 

Hard disk storage capacity has continued to rise whilst at 
the same time the cost per megabyte continues to fall. This, 
combined with increased usage of digital storage for 
documents, photography and video for both home and 
business use has led to increased need for reliable data 

storage system. Redundant arrays of inexpensive disks 
(RAID) have proven to offer the best characteristics for 

reliable storage. However, to date RAID based systems 
have been limited, due to cost and circuit complexity, by 
their support for only single disk erasure tolerance. FPGAs 
allow us to overcome these difficulties and allow support 
for more complex storage algorithms. 
This paper introduces an efficient FPGA based hardware 
RAID 6 accelerator providing uninterrupted access during 
all single and double disk erasures and recovery. 

1. INTRODUCTION 

The volume of data stored digitally on hard disk drives, and 
the capacity available from such drives has increased 
rapidly in recent years. This has been fuelled by the 
increased popularity of MP3 players, digital photography 
and recording. This data is commonly held on a single hard 
disk drive with irregular if any backup being made. Should 
the hard disk fail, the user loses all their data. In businesses 
whilst data storage and backup policies may be 
implemented these tend to offer slow recovery in the event 
of multiple disk failures. Both personal and business users 
need a cheap, reliable, fast and easy to use system to 
provide data recovery from disk failures. Currently many 
users utilise redundant arrays of independent disks (RAID) 
based systems to provide this performance. 
RAID based systems can increase the redundancy of the 
system to provide the capability to recover data from a disk 
which no longer operates (catastrophic failure) or the 
recovery of lost data due to a single unrecoverable read 
error. Catastrophic failures occur infrequently in modern 
hard disk drives with the mean time to failure for a single 
disk of around 1.4 million hours for the highest reliability 
drives [101. However, the probability of an unrecoverable 
read access from a disk is far greater, and increases with the 

number of disks in the array and the capacity of the disk 
drives, as shown in figure 1. There is a clear relationship 
between the disk capacity, array size and the probability of 
an unrecoverable read error. As disk capacities increase so 
too will the probability of a read error. Lower quality drives 
have an increased probability of failure of several orders of 
magnitude and for storage capacities of over ITB will in all 
probability result in a read error every time the array has to 
be rebuilt [1I]. Should a disk fail the standard RAID based 
systems will fail completely if a read error occurs during 
the rebuild process. 

Probability d unreoowrabla read error occurring 
during rebuild stage: 

100 error rate for read accesses of 1 in 1014 

- -__ -_-_ _ -- ---, 
80 

60 

40 

20 

0 
48 16 32 48 

Number of IdcsIn array 
-250ßB disk drives 

s-100GBdisk drives 

Fig. I. The probability of an unrecoverable read error for 
RAID arrays utilising 250GB and I00GB disk drives. 

With the continued increase in disk capacities and increased 
probability of a read error standard RAID based systems 
may no longer provide sufficient reliability to recover 
successfully from catastrophic disk failures. 
Support for the recovery from up to two catastrophic 
failures, two read errors or a single catastrophic failure and 
a read error can be provided through the use of a storage 
system implementing a RAID 6 algorithm. The technology 
to provide this additional protection has been available for a 
number of years. The cost, proprietary nature of the 
implementations and 10 performance, however, limited the 
uptake of these systems. In larger array systems more 
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sophisticated solutions have been developed to improve 
system performance, although, the cost and complexity of 
such systems preclude them from consideration by smaller 
businesses and consumers. 
The prohibitive cost of RAID 6 controllers in the past have 
been due, in part, to the increased chip density and circuit 
complexity of the hardware accelerator and also the high 

cost of hard disk drives. We resolve both these problems 
via an FPGA based RAID 6 accelerator utilising low cost 
Serial ATA (SATA) hard disk drives. The increased 
reliability of RAID 6 algorithm allows the low cost and 
lower reliability drives to be used in a reliable system. 
Although for the system described in this discussion the 
accelerator was implemented on a Stratix FPGA the 
accelerator can readily be implemented on lower cost 
Cyclone 11 FPGAs reducing the overall cost. 

Disk 1 

D3 

D11 

Disk 2 Disk 3 Disk 4 

2. BACKGROUND 

RAID provides the means to combine multiple hard disks in 
a single logical unit to offer high availability, performance 
or a combination of both. This provides better resilience 
and performance than a single disk drive. 
The benefits of RAID include: 

" Protection against data loss. 
Provision of real-time data recovery with 
uninterrupted access due to drive failure or 
recovery. 
Increased system uptime and network availability. 

" Multiple drives working in parallel which 
increases system performance. 

2.1. Standard RAID algorithms 

Six RAID levels were originally proposed [12]. Of these 
RAID levels 0,1 and 5 are the most commonly 
implemented. RAID 0 or striping does not provide recovery 
for data should a drive fail but does improve read/write 
access speeds by distributing data across the discs. RAID 0 
is normally combined with RAID 1 (mirroring) to gain the 
benefit of improved read/write access times with the 
advantage of adding the ability to recover lost data should a 
drive fail. The efficiency of RAID I is poor as you need 
one mirror disk for each data disk. RAID 5 offers the best 
performance to cost ratio, requiring one disk for checksum 
data and two or more data. 
The RAID 5 checksum is a parity calculation making 
generation and recovery possible by a simple field of XOR 
gates. 
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Fig. 2. RAID 0 implementation. Data is striped across the 
four disk array to improve I/O performance. 
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Fig. 3. RAID I implementation. Data is written onto both 

disk drives 

Disk 1 Disk 2 Disk 3 

P1 

P3 

P2 

P4 

Stnpe 0 

Stripe 1 

Stripe 2 

Stripe 3 

RAID 5 
panty generation 

Fig. 4. RAID 5 implementation. Data and associated 
parity are striped across the drives. This is the smallest 

RAID 5 array type with the data and parity locations being 
rotated on each stripe 

The need for improved RAID performance was originally 
tempered with the financial cost of such systems. RAID 5 
required the lowest outlay in purchase cost due to the 
requirement for only a single extra drive. However, as hard 
disk drive prices have fallen and capacity increased so too 
has the amount of data stored on such devices. Whilst the 
mean time to failure (MTTF) of disk drives has improved, 
with less than 1% of disk drives failing a year [11], there is 
an increased risk of data loss due to unrecoverable read 
errors due to the increased storage capacities. 
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RAID 5 has also benefited from low cost easily 
implemented hardware accelerators. These have been 
incorporated onto motherboards and add-in cards for PC 
systems and provided a fast and efficient solution of RAID 
storage. The cost of the additional hardware requirements 
necessary to implement the more complex RAID 6 
algorithms has long prohibited the widespread adoption of 
this technology. Low cost FPGAs such as the Altera 
Cyclone or Xilinx Spartan series offer the means to rapidly 
develop and implement improved hardware accelerated 
RAID algorithms. 

3. RAID 6 

RAID 6 has been loosely defined as offering support for the 
recovery of any 2 disk erasures. RAID 6 increases the 
reliability of a RAID system through its ability to recover 
data with up to 2 disk failures without any downtime. There 
have been a number of algorithms proposed for the 
implementations of RAID 6 including, EVEN-ODD 
encoding [4] and Reed-Solomon (RS) coding [6]. 
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Fig. 5. RAID 6 RS based design. Shows the smallest array 
size with two data disks and two checksum disks. 

We propose an RS encoding scheme for RAID 6 operations 
and optimise it for implementation in an FPGA based 
hardware accelerator. We are concerned with the 
development of a RAID 6 hardware accelerator which 
offers performance better than that achievable in software 
in terms of CPU utilisation and rebuild speed. Furthermore, 
the reconfigurability of FPGAs provide the means to easily 
adapt the system design to cope with possible future 
standardisation of RAID level 6 [8]. 

3.1. The need for RAID 6 

Whilst the risk of double disk failure remains low for small 
arrays, should a single drive fail it is becoming increasingly 
likely that an unrecoverable read error will occur during the 
rebuild phase. This is particularly true for lower reliability, 
cheaper hard disk drives. Whilst fully functioning, a RAID 
5 array can recover from an unrecoverable read error on one 
drive, or a single catastrophic disk failure. RAID 5 copes 

with one simultaneous failure. Any failure from that point 
until the completion of the rebuild will cause a failure of the 
array. Should an unrecoverable read error be found during 
the rebuild stage, the stripe will be lost and may only be 
recovered by returning the system to the last known good 
backup, assuming one was made [9]. 
RAID 6 can recover from a bad block failure and a single 
drive failure simultaneously increasing the likelihood of a 
successful rebuild. Just as RAID 5 offered the best 
performance to cost ratio for single disk erasures, RAID 6 
offers the best performance to cost ratio for double disk 
erasures. 

4. REED-SOLOMON CODING 

Reed-Solomon coding [ 12] adds check digits (c, ) calculated 
over a Galois field from a set of data digits (d) such that: 

c dj xf, 
1=l 

(1) 

Galois field arithmetic is used to calculate the missing data 
with n checksums required to solve for n unknowns, i. e. n 
checksums can correct n erasures. Addition and subtraction 
operations are both performed as XOR operations. 
Multiplication and division are more complex and are 
calculated using logarithms. Unlike regular logarithms, the 
log of any non-zero element of a Galois Field is an integer, 
this allows exact multiplication and division of Galois Field 
elements. Multiplication is calculated as: 

axb=i log(log(A) + log(B)) (2) 

Division is calculated as: 

b=i log(Iog(A) - log(B)) (3) 

For our implementation a Galois Field of GF(24) is 
proposed. This results in a small logarithm table suited to a 
small, easily replicated lookup tables. This structure is 
compact and easily implemented on an FPGA and can be 
readily scaled to larger array structures. 
If the lost data is a checksum, the checksum can be 
recalculated from the existing data. 

c =d, ED d, (4) 

ýý _ (d, (9 ')® (d, 0 Iý (5) 

If a single error occurs, calculate the cl (parity), setting the 
missing data to 0. Missing data is calculated by subtracting 
the new parity from the original XOR. 
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If there are two missing items calculate sl and s2, the 
modified checksums from setting the missing data to 0 
then: 

c, ®s, =d; ®d, 

c, ®s, =(d, (9 i)®(d, ®i) 

The missing data is calculated from: 
(d, ®i)®(d; ®j)=ci ®s2 ®i 

=>(d, ®i)ED (d, (&j)=(c, ED s, )ED [(c, ®sj®i] 

and: 
(di®i) ®(dj ®j)=c2 ®s2 

ý(c2 (D s2) ®(c, 
®si)®i 

iED j 

(6) 
(7) 

(8a) 
(8b) 

(9a) 

(9b) 

Whilst these calculations are computationally intensive on a 
standard CPU, they may be reduced to a series of 
multiplications, divisions and XOR operations on an FPGA. 

5. SYSTEM ARCHITECTURE 

The encoder/decoder blocks operate on a 4-bit wide data 
bus. This reduces the size of the lookup tables for 
multiplication and division operations and simplified the 
design. However, this limits the maximum size of the array 
to 16 disks, which was considered to be a reasonable trade- 
off as our test system could only support 8 disks. Minimal 
changes would be required to alter the algorithm to support 
larger arrays. To reduce overall resource utilisation, the 
Reed-Solomon codec shares lookup tables, and control 
signals, between the encoder and decoder functions. 
The encoder and decoder blocks may be instantiated 
repeatedly to support larger or smaller data bus paths. Our 
test system operated on a 64-bit data path utilising 16 
encoder and decoder blocks. The encoder and decoder 
blocks operated at clock speeds in excess of 250MHz for 
Altera Cyclone devices, with a latency of 6 clock cycles. 
Our encoder/decoder block for a 64-bit wide data path 
required only 3598 logic cells to implement in the Altera 
Cyclone device family. 

5.2. Test System Design 

5.1. RAID 6 

The RAID 6 algorithm has been manipulated such that the 
accelerator hardware requirements are reduced to a series of 
XOR gates, lookup tables and flip-flips. Using a Galois 
Field of 2° reduces the hardware requirements and 
simplifies the design of the encoder and decoder blocks. 

Disk 1-- 
I .1 

Disk 21 
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Disk I 

Disk 2 
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Fig. 6. RAID 6 encoder logic. 
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Fig. 7. Decoder logic. 
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To test the performance of the RAID 6 hardware 
accelerator, it was mapped to an Altera Stratix EP I S25 
based PCI bus expansion card controlled by a simple DMA 
controller. This PCI accelerator card was added to a PC 
based test system to determine the performance of our 
hardware solution compared with the existing RAID 6 
software solution. Our test platform consisted of: a server 
class computer running Linux kernel 2.6.15.2 on an AMD 
Opteron processor with I GB of RAM; I parallel ATA 
drive for the operating system; and 4 Serial ATA drives 
with the RAID 6 array. 

". IN 
CPU 

Linux 2.6 
k. rn. l 

Parity Disw 
1 

ý 
DMA 

oantrollM 

_. RF4aD_O 
Hi ffr/Yaft 

acctlý i , iýu ( 

Fig. 8. System design 

The hardware accelerator resource utilisation (post fitting) 
for the entire design was 12729 logic cells (68% 
utilisation), of which 4281 logic cells were required for the 
RAID 6 hardware encoder/decoder. The hardware 
accelerator suffers from a6 clock latency between 
processing the data and generating the encoded output. 
However, as the test system read data in 2Kb chunks over 

ParityDýk 

I, 

ý 

-- 
I 
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the PCI bus, this delay in generating the encoded data was 
inconsequential in this instance. The accelerator was 
therefore clocked at 66MHz to match the PCI bus clock 
rate. 
Our hardware accelerator was controlled via a modified 
revision of the Linux RAID 6 driver which replaced the 
standard soliwarc algorithms for calculating data and 
checksum values with calls to the hardware controller. 

PCI 
Core 

DMA 
controller 

ýRAM 

Qk)ck 2 

D6 
Oder/ 
xter 

Fig. 9. RAID 6 hardware acceleratator 

The first disk worth of data is loaded into a RAM block, 
and when the second disks data is read, the checksum or 
lost data is calculated using the encoder/decoder blocks. 
Data is loaded into the output RAM blocks and written 
when the RAM blocks are full or all the data has been 
processed. 

6. HARDWARE VERIFICATION 

To verify that the hardware accelerator operated correctly 
within our test system a RAID 6 array was generated and 
verified using the Linux mdadm tools [5] and our modified 
RAID 6 device driver. Using the hardware accelerator we 
were successfully able to: 

" Generate a RAID 6 array 
" Build a Linux File system 
" Mount the RAID 6 array 
" Read and write files to the array 

Verification that the data written successfully to the drive 
was performed by running a diff on the written file and the 
original. In this and all other tests each of the four disk 
drives utilised 10 GB partitions, offering 20 GB of usable 
data storage space. 
With the RAID 6 array functioning correctly under normal 
circumstances, each disk was removed and rebuilt 
separately. Files were written to and read from the array 
whilst each disk was missing (operating in the degraded 
mode) and during the rebuild stage. Once the array was 
rebuilt the files on the array were compared with the 
original files to verify that the data had been successfully 
recovered. These steps were repeated with each 

; \ppcndix 11 1'ubluhrd 1': yu"i. -S 
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combination of double disk erasure. Again the array 
successfully re-generated the missing data. 

7. ANALYSIS 

Comparison of the hardware accelerator performance was 
made with software RAID 6 which is now incorporated into 
the Linux 2.6 kernel. As can be seen from Table l the 
hardware accelerator outperforms the software algorithm in 
all modes of operation. Although generation of a RAID 
array and rebuilding a double disk failure would intuitively 
be expected to operate at the same rate, the differences in 
performance observed are due to the additional 
requirements necessitated when building the array. The 
speed up over a single erasure recovery is due to the need to 
read an extra disks worth of data. Data throughput was 
found to be limited by the device driver and control 
mechanisms used to load data onto the accelerator card. 
Throughput is expected to be improved by transition to a 
higher speed bus, however, the PCI bus was not the limiting 
factor for the four disk array. 

Table 1. Comparison of Software and hardware RAID 
6 performance. 

Software 
RAID 6 

Hardware 
RAID 6 

Array generation speed 17 MB/sec 23 MB/sec 
Data recovery -1 erasure 17 MB/sec 23 MB/sec 
Data recovery -2 erasure 15 MB/sec 25 MB/sec 

Whilst the previous tests showed the RAID 6 algorithm 
operated successfully under all single and double disk 
erasures, true RAID performance is more commonly 
measured using benchmarking software [8,10]. We 
selected BONNIE++ due to its ease of use, support of 
multi-gigabyte testing and that it was natively designed for 
Linux [9]. BONNNIE++ performs a series of tests on a file 
of known size, performing millions of read/write operations 
to the array to provide information on CPU utilisation, and 
access speeds during block read/write accesses and random 
access across the device. 
To ensure that the data could not be held in RAM a 4GB 
file was used by BONNIE during testing. The results of this 
testing showed that the hardware accelerator was capable of 
faster rebuild speeds during high data throughput at the cost 
of higher CPU utilisation. This is in part due to the 
operating system being able to perform more background 
tasks as the device driver sleeps while the hardware is 
processing data, as opposed to the software only solution 
which performs all calculations on the processor. 
To verify that the CPU utilisation dropped when using the 
hardware accelerator we repeated the BONNIE++ and 
using the Linux system monitor, measured the percentage 
of CPU time consumed by the RAID 6 driver. During 
single disk erasure, CPU utilisation was found to drop by a 
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third when compared with the software only driver. This 
drop increased to one half of the software only solutions 
CPU consumption during double disk erasures. 
The overall performance of the hardware accelerator would 
be increased through the use of a higher speed bus and 
providing direct access to the hard disk controller to the 
accelerator. 

8. FUTURE WORK 

Our RAID 6 hardware accelerator is currently limited by 
the device driver. However, on arrays of over 6 disk drives 
the PCI bus speed currently being utilised will limit data 
transfer rate, although this should be overcome through the 
use of the PCI-X bus. Additionally, as array size increases 
the CPU over head required to setup and run the hardware 

accelerator increases to unacceptable levels, the optimal 
solution will therefore be achieved by adding a number of 
hard disk controller chips onto the same board as the FPGA 
and giving the FPGA direct access to these controllers. 
Thanks to our implementation on the FPGA we are well on 
our way to achieving this goal using an embedded NIOS 
processor to offload all setup and control features for the 
RAID 6 accelerator. 

9. CONCLUSION 

We have demonstrated a working RAID 6 controller on an 
FPGA which provides reliable data storage and outperforms 
software based solutions providing higher data throughput 
and lower CPU utilisation. RAID 6 is currently being 
adopted by a number of companies and may in the near 
future be standardised, our solution allows systems to be 
developed today and be easily upgraded to support any 
required standardisation in the future. 
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ABSTRACT 

As storage requirements and magnetic disk densities 
increase the need for reliable storage solutions also 
increase. This IP core, written in Verilog HDL, provides a 
small and efficient hardware accelerator for performing 
RAID 6 calculations to provide uninterrupted access to 
data during single and double disk failures. 

In this paper we describe the implementation and 
verification of a RAID 6 IP block. We present an example 
system implemented on an FPGA to demonstrate the 
capabilities of the IP block and verify its operation in 
hardware. 

Keywords - RAID 6 Core, reconfigurable, data reliability 

1. INTRODUCTION 

data loss due to multiple simultaneous disk errors, be they 
unrecoverable read errors or disk drive failures (erasures). 

In this paper we discuss the limitations of RAID 5, the 
benefits of adopting RAID 6, present a RAID 6 IP block 
the verification process, and an example RAID 6 based 
application. 

2. RAID OVERVIEW 

RAID allows the combination of multiple hard disk drives 
to provide a combination of one or more of the following 
characteristics: 

" Protection against data loss. 

" Provision of real-time data recovery with 
uninterrupted access due to drive failure or 
recovery. 

The digital storage requirements for both consumer and 
high end systems continue to increase rapidly year on 
year. This is being driven by the widespread adoption of 
digital TV, photography music etc., plus increased 
legislation on business to retain data over longer time 
periods. 
Coupled with this increase in storage requirements is the 
need for ensuring availability and reliability of the data 
and delivering this at as low a cost as possible. 
Redundant arrays of independent disks (RAID) have, 
since the 1980s, provided the means to store and recover 
lost data efficiently. Of the original RAID levels, RAID 5 
provided the optimal solution based upon the cost and 
reliability for systems with 3 or more hard disk drives. 
The performance benefits offered by RAID 5 based 
solutions are slowly being eroded by the increased risk of 

" Increased system uptime and network 
availability. 

" Multiple drives working in parallel which 
increases system performance. 

Various RAID levels were proposed by Paterson et at in 
their 1981 paper [11] describing RAID architectures. Of 
these, RAID 5 offered the best performance in terms of 
reliability when compared with the overall system cost, 
data availability, redundancy overhead and data 
throughput. 

RAID 5 utilises a single redundant disk which contains 
parity data to allow data recovery for and single disk 
failure or read error. The parity calculation may be readily 
implemented in software or in via a simple field of XOR 
gates in hardware. 
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Disk 1 Disk 2 

P2 

RAID 5 
panty generation 

Fig. I. RAID 5 implementation. Data and associated 
parity are striped across the drives. This is the smallest 
RAID 5 array type with the data and parity locations 

being rotated on each stripe 

The need for greater redundancy in array based systems 
was originally limited by the purchase cost and the low 

probability of simultaneous multiple disk failures. 
However, as disk capacities increase and disk arrays 
increase in density, the likelihood of an unrecoverable 
read error or multiple simultaneous disk failures occurring 
increase. 

The mean time to failure (MT-FF) of disk drives has 
improved rapidly with less than 1% of disk drives failing 

a year [I I ]. However, the probability of an unrecoverable 
read error occurring whilst restoring a disk array has 
increased due to the storage capacities now available from 
hard disk drives. 
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Fig. 2. Shows the probability of a read error occuring 
during an array rebuilding a single lost disk. Disks have a 

bit error rate for read accesses of 1 in 1014 

Disk arrays using large numbers of disks, or a small 
number of large disk drives increases the probability of 
errors occurring in a RAID 5 disk array. The use of 
double disk redundancy, RAID 6, reduces the risks of this 
situation occurring. 

Disk 3 3. RAID 6 

RAID 6 whilst not defined in the original RAID 
definitions has been loosely defined as offering support 
for the recovery of any 2 disk erasures. A number of 
algorithms proposed for the implementations of RAID 6 
including, EVEN-ODD encoding [4] and Reed-Solomon 
(RS) coding [6]. 

Mýl. 1 flic4 7 Checksum 1 Checksum 2 
-1- 1 ..,.... - P 

C, 1 Cj1 
0 

C, 2 

C, 3 

C, 4 

RAID 6 
P+Q 

C, 2 

C23 

CA 

Fig. 3. RAID 6 RS based design. Shows the smallest 
array size with two data disks and two checksum disks. 

Our solution utilises a Reed-Solomon based encoding 
scheme over a Galois field of 16, which necessitates the 
use of two redundant disk drives [12]. The use of Reed- 
Solomon codes instead of one of the other algorithms was 
determined by the ease of implementation and the 
similarities between this algorithm and RAID 5. RAID 5 

may be considered special case of Reed-Solomon with a 
redundancy of I, and therefore the RAID 6 
implementation may make use of data striping and other 
RAID 5 optimisations for updating stripes. 

4. RAID 6 IP BLOCK 

Our RAID 6 IP block is based upon a pipelined Reed- 
Solomon encoder and decoder with a controlling state 
machine and local memory. 

Reed-Solomon coding is performed over a Finite or 
Galois field. Galois field arithmetic is well suited to 
hardware implementation as the results of all 
multiplications and division are guaranteed to be real 
numbers. The use of Galois field arithmetic also makes 
the algorithm time consuming in software. 

All Galois field addition and subtraction is performed by 
an XOR operation. Multiplication and division may be 

performed utilising the logarithms and anti-logarithms. 
These are readily implemented as lookup tables in 
hardware. 

The RAID 6 IP block does not perform error detection on 
the incoming data stream. Data errors and disk failures are 
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instead indicated by the CRC checks performed by the 
hard disk drives on all read blocks. 

intsrcmneot 
Sys 

But WVwpst 

N8 cod" 

Chetksum CMwm 
^mnblyY 

RAID 6P bloch 

Fig. 4. RAID 6 IP block interconnection. The 
interconnect bus may be a direct connection to an on-chip 

device or a Avalon or other bus provided a suitable 
wrapper is included 

Data is read into the RAID 6 IP block from one disk at a 
time until the checksum memory is filled all or all the data 
is read. The checksum memory stores the temporary 
results of the Reed-Solomon calculations. These are fed 
back as each new disk is read. Once the final disk has 
been read the calculated checksum(s) may be output to the 
appropriate location. 

The Reed-Solomon coding scheme which has been 
utilised supports up to 16 disks and requires that data be 

encoded or decoded 4-bits at a time. By implementing 
multiple encoder/decoder blocks in parallel various data 
bus widths may be supported. Our test system verified the 
operation of both 32-bit and 64-bit wide data paths. 

5. VERIFICATION 

Verification of the IP block was performed by both 
simulation and implementation on an FPGA and testing 
using standard software tools. Simulation of the RAID 6 
RTL via a Verilog simulation allowed verification of 
correct operation of the encoder for all valid combinations 
of disks arrays from 4 to 16 disks. Simulation also showed 
proper data recover for all combinations of single and 
double disk failures. 

Synthesis of the design on to a number of Altera FPGAs 
showed that the RAID 6 IP block was capable of 
operating at speeds of up to 400MHz using 32-bit and 64- 
bit wide data paths. Ensuring data availability was found 
to be the limiting factor to the hardware design. 

To verify the hardware implementation provided a speed 
up over software based RAID 6 algorithms the RAID 6 IP 
block was synthesised onto an FPGA PCI development 

platform. This allowed direct comparison of the hardware 
with software based algorithms. 

6. TEST PLATFORM 

Our test platform consisted of: a server class computer 
running Linux kernel 2.6.15.2 on an AMD Opteron 
processor with I GB of RAM; I parallel ATA drive for 
the operating system; and 4 Serial ATA drives with the 
RAID 6 array. Testing of the RAID 6 IP block was 
carried out on an Altera Stratix EPIS25 based PCI 
development card connected to the test platform. The 
RAID 6 IP block was configured to perform its data 
accesses via the PCI bus accessing data from main 
memory. 

The standard Linux RAID 6 software driver was modified 
to support the use of the hardware accelerator on the PCI 
bus. All software based calculations of the Reed-Solomon 
coding were replaced with calls to the hardware. 

RAID 8 
IP Bock 

Fig. 5. PCI RAID 6 accelerator based upon the RAID 6 
IP block and implemented on an Altera Stratix PCI 

development board 

7. RESULTS & ANALYSIS 

Our hardware test platform allowed the hardware system 
to be tested and compared with existing software only 
solutions. Standard Linux based benchmarking tools were 
utilised to determine the data throughput and CPU 
utilisation. BONNIE++, a common benchmarking tool 
showed that the hardware performed favourably when 
compared to the software only implementation and it was 
noted that there was a significant drop in CPU utilisation, 
between 33% and 50%, when using the hardware. 

8. CONCLUSIONS 

RAID based storage solutions provide the means to 
provide low cost, reliable data storage systems. In this 
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paper we have demonstrated an implementation of a 
RAID 6 IP block to provide superior data reliability, 
implemented and tested the IP in an FPGA and shown 
that this hardware solution provides performance benefits 
over software only implementations even at low data 
throughput rates. 
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1 Introduction 

Reed-Solomon codes are known for their application in compact disks and space 

communication systems. This same technique lends itself readily to application as a 

coding scheme for RAID disk arrays. Although Reed-Solomon codes have been used for 

many years, hardware costs and complexities have precluded their utilisation for RAID 

based storage solutions. 

This tutorial intends to provide an overview of the coding theory, mathematical 

techniques and the application of these in hardware RAID acceleration. Specifically, 

details on the design of a RAID 6 based Reed-Solomon encoder and decoder are 

presented. Whilst the mathematical and coding theory is summarised here, a complete 

understanding of the theory is not necessary to allow the design and implementation of a 
RAID 6 hardware controller. 

1.1 Requirements 

The requirements for a redundant storage system are that: 

For n storage devices DI, D2, .., D� each of length k bytes let there be m checksum 
devices C,, C2, .., C,,,, each of k bytes in length [1], [2]. 

The required system response is that for all combinations of up to and including m 

storage device failures (erasures), all data may be recovered from the n remaining storage 
devices. 
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Figure 1. Shows the required system response. Any m devices may fail, but 
the system can recover the lost data. 
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2 Background 

2.1 RAID 

Redundant Arrays of Inexpensive Disks (RAID) allow a number of storage devices to be 

combined to improve throughput, system reliability and fault tolerance [3]. Whilst there 

are many benefits to using multiple disks in an array configuration, increasing the number 

of storage devices used in a system decreases the overall system's dependability, 

increasing the probability of a failure occurring. 

The mean time to failure (MTTF) of a disk array is inversely proportional to the number 

of devices in an array. 

M7TF = 
MTTFo«,;,. 

e array 
Number of Devices (1) 

While a disk array may allow multiple disk drives to be combined to make a larger and 
faster responding storage device, this inevitably increases the likelihood of a disk failing. 

To accommodate this, and provide the means to recover from a disk failure, redundant 
disks may be added to increase an array's tolerance to faults. The most popular RAID 

levels are 0,1, and 5 [4]. RAID 1, also known as mirroring, writes all data to two or more 

storage devices. RAID 0 or striping allows multiple disk drives to be combined together 

writing data linearly across devices to provide improved data throughput. Striping does 

not add redundancy to an array and a striped array is not truly a RAID array. 

Disk 1 Disk 2 Disk 3 

i DO 

D3 

06 D7 

D2 
'ý 

D5 

D8 

D9 I D10 D11 

RAID 0 
Striping 

Stripe 0 

Stripe 1 

Stripe 2 

Stripe 3 

Disk 1 Disk 2 

-----_ý _, 
DO DO 

--4: 
Dl D1 

D2 D2 

D3 D3 
1.. 

_, 
RAID 1 

Mirroring 

Figure 2. Shows RAID 0 and RAID I arrays 
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RAID 5 provides the optimal solution for single erasure recovery for three or more 

storage devices, in terms of disk utilisation, requiring only 1 redundant disk drive for n 

data disk drives. Data in a RAID 5 array is striped across the array in equal block lengths, 

k bytes long with each block known as a strip, and the parity of each of these blocks is 

calculated and written to the spare disk. 

Disk 1 Disk 2 Disk 3 

DO D1 11 P1 1 Stripe 0 

D2 P2 D3 Stripe 1 

--- ---"_-ý ý 
P3 D4 D5 SlfiDe 2 

_. __. 
ý___ý ' 

D7 P4 

RAID 5 
Parity generation 

Stripe 3 

Figure 3. Shows a RAID 5 array 
Recovery from a single erasure may be calculated by subtracting the lost data from the 

parity data (or regenerating the parity). All calculations are performed modulo 2 equating 

to a series of XOR operations. This architecture may be readily converted to a hardware 

implementation using a field of XOR gates to perform parity calculations or data 

recovery. 

To provide protection from more than a single erasure more complex solutions than basic 

parity must be utilised The second check must allow recovery from any second erasure. 
A number of algorithms have been proposed for this including, EVENODD [5], and 

Reed-Solomon coding [6]. We discuss only Reed-Solomon coding theory in this tutorial. 
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3 Coding Theory 

3.1 Background 

Reed-Solomon codes were first described by Irving Reed and Gustave Solomon in their 

1960 paper "Polynomial Codes over Certain Finite Fields" [8]. Reed-Solomon codes are 

constructed and decoded through the use of finite field arithmetic, specifically Galois 

Fields, named after the French mathematician Evariste Galois who discovered many of 

their important features. 

3.2 Galois Field Theory 

A Galois Field is a field of finite order or cardinality [9]. A Galois Field of q elements is 

usually denoted as GF(q). The number of elements in a finite field must be of the form 

pm, where p is a prime integer and m is a positive integer, and is denoted as GF(pm) or 
GF(q). By giving its size, a field is described completely as for any q of the form p', the 

field is unique up to its isomorphism: only fields of the power of the prime exist. 

The order of an element a in a GF(q) is the smallest positive integer m such that am = 1. 

An element with order (q-1) in GF(q) is known as a primitive element in GF(q). There is 

always at least one primitive element in a GF(q). As the (q-1) consecutive powers of a 

must be distinct, they form the (q-1) non-zero elements of GF(q) [9]. 
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Table 1. Shows all non-zero Galois Field elements in GF(q) 

Non-zero GF(q) elements A, a2, ..., a9"2 

Primitive element GF(q) aq-1=l 

Field limit aq= a 

The non-zero group of elements in a Galois Field GF(p") is cyclic, as can be seen from 

the table above once the primitive element has been reached the sequence repeats. 
Multiplication over a Galois Field is most easily described by the exponential 

representation: 

ax a''= a(x+v) (2) 

To obtain the polynomial representation of the Galois Field the exponential 

representations of the nonzero elements of GF(q) are reduced modulo the primitive 

polynomial. The primitive polynomial is an irreducible polynomial in GF(q) if the 

smallest positive integer n for which p(x) divides (x" -1) is n=(q'-1) 

Construction of the complete Galois Field may be made by finding one of the irreducible 

polynomials of the field. For small fields this may be done by a brute force method. This 

is illustrated below by calculating the primitive elements for GF(4) and GF(8). 

3.2.1 Calculating primitive polynomial GF(4) 
Our prime field is GF(2) represented by 0 and 1. This is shown as 4= 22. All addition and 

multiplication is performed modulo 2. To find the irreducible polynomial of degree 2 in 

GF[x] by a brute force method, list all the quadratic rings of degree 2 with the coefficients 

of 0 and 1: 

x2 0 

" x2 +1 

The only irreducible polynomial in this list is x2 +l as it does not factor to zero 
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3.2.2 Calculating primitive polynomial GF GF(8) 

Our prime field is again GF(2), since 8= 23, and may be represented by the values 0 and 

1. Again the coefficients can only be 0 and 1, so now all possible cubic polynomials with 

coefficients of 0 and I have to be checked to find the irreducible primitives. 

" x3 +1 

" x3 +x+ 1 

" x3 + x2 +1 

" x3+xZ+x+1 

Here there are two irreducible polynomials. Either may be chosen as the primitive 

polynomial as both representations are isomorphic. 

The polynomial representation of a Galois Field is commonly used for addition 

operations. Over a Galois Field the associative and commutative laws apply for addition 

and multiplication operations. This means that both addition and subtraction are the same 

and may be performed by a bitwise XOR operation. 

3.2.3 Galois Field example 
The exponential and polynomial representations of a Galois Field of GF(8) may be 

constructed as follows: 

The exponential representation for the field will have (q -1) nonzero elements. For this 

example q is 8, the seven nonzero elements would be: 

a° al a2 a3 a4 as a6 

p(x) = x3 +x+1 is a primitive binary polynomial in GF(23). If a is a root of p(x) then: 

a3+ a1+1 =0 

which may be re-written to give the value of a3. 

a3 = a1+1 

(3) 

(4) 
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Using equation (2) the polynomial representation for remaining elements may be 

determined: 

i. e. Exponential representation: 

a4= a3 AI 

therefore the polynomial representation may be calculated as: 

(a +1)( a )=a2+ a 

(s) 

(6) 

The complete exponential and polynomial representations of the GF(8) are given in the 

table below: 

Exponential Representation Polynomial Representation 

1 1 

a a 

a2 a2 

a3 a+l 

a4 a2+a 

as a3+a2=a2+a+1 

a CE 3+CE 2+a=a2+1 

0 0 
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3.3 Reed-Solomon Codes 

Reed-Solomon codes are examples of linear block codes. The code is constructed by 

splitting the original data or message into equal length blocks; each block is further 

divided into k symbols. The code generates an extra 2t redundant blocks which may be 

used to detect or correct errors. 

3.3.1 Reed-Solomon Encoding 
A number of approaches exist for the generation of Reed-Solomon codes. The original 

approach is very simple. For a packet of k information symbols, {mo, m,,...., mk. 1 }, taken 

from the finite field GF(q) the symbols may be used to construct the polynomial p(x)=mo 

+ mlxk"' +.... + mk_ixk"1. The Reed-Solomon codeword c is formed by evaluating the 

polynomial p(x) at each of the q elements in a finite field of GF(q). 

c=(co, CI ,...., cq->) =[P(O), P(a),...., P(a9-l)] (ý) 

By letting the k information symbols take on all possible values, all the possible code 

words may be found. There will only ever be q different values as they are found over the 
GF(q). There will be qk valid code words in any Reed-Solomon code. 

Reed-Solomon codes are linear as the sum of any two polynomials of degree (k-1) is 

another polynomial of degree less than or equal to (k-1). The number of information 

symbols is also known as the dimension of the code. As each code word has q 

coordinates, the code length n =q. Linear codes are usually denoted by their length and 
dimension as (n, k) codes. 

Each code word is related to a system of linear equations in k variable: 

P(O) =mo 

P(a) =mo + MI a+ m2a2 + ... + mk-t ak-' 

P(a2)=mo+ml a2+m2a4+... +mk_l a2(k'1) 

p(aq-1) = mo + ml a(g-1) + m2a2(g-1) + ... + Mk-1 a(k-1)(g-1) 

(8) 
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Any k of these expressions can be used to construct a system of k equations in k variables. 
The first k expressions would form the following system: 

10 
1a 
1 a2 

0 
a 

(k-1) 

a 
2(k-1) 

1 ak-I ack-lxk-n 

mo 

m, 
m2 

Lmk-1 J 

P(0) 
P(a) 
P(aZ) 

P(ak-I ) 

(9) 

By computing the determinate of the coefficient matrix, (10), it can be shown that the 

system has a unique solution for the k information symbols: 

10 "" 0 
1a ack-1> 
1 a2 a2(k-1) 

1 ak-ý ... ack-lxk->> 

(io) 

The determinate of the matrix reduces to a Vandermonde matrix when co-factor 
expansion is performed on the top row of the matrix. All Vandermonde matrices are non- 
singular, therefore any k expressions can be used to determine the values of the 
information coordinates. 

Whilst it is possible to detect as well as correct errors in the received data, this is not 
necessary in a RAID 6 controller where its errors are directly detected by the hard disk 

controller. The model being used is that of an erasure. Erasing a Reed-Solomon code 
word is equivalent to removing the linear equation in (8). As only k correct expressions 
are required to recover data, up to q-k of the code words may be erased and still allow 
recovery of the lost data. 

This original approach to generate Reed-Solomon codes has been mostly superseded by 

the generator polynomial approach. This is the same approach used in cyclic codes. A 

code is said to be cyclic if it meets the requirement that, for any code word c=(co, cl...... 
cn_1) the cyclically shifted word c'=( c1......, cn_1, co) is also a code word [7]. 
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If an (n, k) code is cyclic the code may always be defined using a generator polynomial: 

g(x)=(S0, g1X5 ...., gn-kXn-k) (11) 

The code word is calculated by multiplication of the message with the generator 

polynomial. 

c(x) = m(x)g(x) (12) 

The generator polynomial for at error correcting code within a field of GF(q) must have 

roots 2t consecutive powers of the primitive element, a. 

g(x)=ll 
(x-a') 

i=I 
(13) 

Cyclic Reed-Solomon codes GF(q) have a code length of (q-l), one co-ordinate less than 

achieved by the original method. This is useful for digital design as a field GF(256) may 
be represented by an 8-bit sequence. 
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4 Reed-Solomon for hardware RAID 6 

The diagram below shows a disk array with 2 data disks and 2 checksum disks. The data 

disks are split into blocks, these blocks are encoded using a Reed-Solomon code over a 

Galois Field GF(2'"), therefore encoding and decoding is performed using m-bit long 

symbols. 

Disk 1 Disk 2 Checkdisk 1 Checkdisk 2 

Di, Dý, c _+ 

Dt2. ' Dx. x C, ý 

_r-_P- 
D,., ! zii r G., 

r --L _- 1 
C2.1 
C22 

Figure 4. Shows basic RS RAID 6 array 

The benefit of using Galois Fields for encoding in a digital system is that all 

multiplication, division, addition, and subtraction operations result in a fixed length 

binary word. This is because the field length, unlike the set of integers, is finite. 

Therefore if encoding is performed on an 8-bit symbol all possible arithmetic operations 

will result in a 8-bit code word. 

To demonstrate the application of Reed-Solomon codes for RAID 6, the process 

undertaken to generate an encoder and decoder for a field of GF(16) is presented here. 

This limits the number of storage devices to which data may be written to 15, however, 

the same techniques may be applied to different Galois Fields of order GF(p"). 

4.1 Galois Field Arithmetic 

The following rules hold for arithmetic operations over a Galois Field: 

1. The associative law for addition: 

(a + b) +c=a+ (b + c) 

2. The commutative law for addition 

(14) 

(a+b)=(b+a) (15) 
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Addition is equivalent to subtraction over the Galois Field. Therefore both may be 

performed through the use of bitwise XOR operations. 

3. The associative law for multiplication 

a"b=b"a (16) 

4. The commutative law for multiplication 

(a"b)"c--a"(b"c) (17) 

5. The distributive law 

(a+b)"c=a"c+b"c (18) 

6. Multiplication is performed by addition of the exponent. This may be performed 
as a logarithm with base a where the addition is performed by conventional 
addition. 

a' " a' =a ('+j) q logg a' +logo a' = logo aýý+J) (19) 

7. Division is performed by subtraction of the exponent. This may be performed as a 
logarithm with base a where the subtraction operation is performed by 
conventional subtraction. 

a' = a' = a(`-') log,, a' - log,, a' = log,, a('-') (20) 

4.2 Reed-Solomon encoder 
A disk array with n data storage devices, dj, d2, 

.... 
d�, each k bytes has m associated 

checksum devices. Each checksum device, C,, C2i ... Cm, also hold k bytes of data. For any 

m device failures for both data and checksum devices then the failed devices can be 

reconstructed from the non-failed devices. 

Reed-Solomon coding adds check digits (c; ) calculated over a Galois Field from a set of 
data digits (dj) by multiplication with a generator function g; ý such that: 
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n 

c; di xg; 
J=l 

(21) 

For RAID 6 two redundant or checksum drives are required, m=2, giving two syndromes, 

cl and c2. These two checksums are commonly known as the p and q checksums. 

The first checksum equates to a parity calculation across the data storage devices, 

equivalent to the RAID 5 calculations: 

c, = dam d, ®... E) d,, 
-, (22) 

The first checksum may therefore be calculated by performing a bitwise XOR operation 

on each data storage disk. The second checksum is more complicated, requiring 

multiplication by the generator polynomial: 

c2 = g°d° ® g'd, ® ... ® g^-d,, -, 
=do m2'd, ED ... ®2"-'dn-i 

(23) 

Multiplication over a Galois Field is performed by addition of the exponents. This 

multiplication may be performed by using lookup tables of the logarithmic expansion of 
the multiplicands, and adding the results modulo (2"'-1). These logarithm tables become 

exponentially larger as the value of m increases, as such this solution is best used 

when m! 5 8. 

Table 2. Logarithm Table GF(16) 

I 

gfloglil 

0 1 2 3 4 5 6 7 

10 3 14 

10 11 12 13 14 15 
II' 

Table 3. Inverse Logarithm table GF(16) 

I0123456789 110111 

6 13 11 12 

12 13 14 15 

gfilog[i] I1 12 4 18 13 16 112 111 15 10 7 14 15 13 9 
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Multiplication therefore may be performed as: 

g("-')d(�_>)= gfilog[ gflog(g(n-1)) + gflog(d(n->))l (24) 

When updating an entire stripe of data the operations performed are: two multiplication 

operations, one arithmetic addition and a divide per storage device followed by adding 
the results using an XOR operation as for the first checksum. This is significantly more 

computationally intensive than a simple XOR operation. 

4.2.1 Updating a strip 
Whilst equations 22 and 23 are appropriate when calculating the checksum of an entire 

stripe, they are inefficient for calculating the checksum when only one of the data disks, a 

strip, has to be updated. 

If the data word on a single storage device has to be updated to dj from dd then the 

checksum is recomputed by applying the function g; j: 

c; =c; -(dj xg, 
)+(d, 

xgj) (25) 

This means that both the checksum disks and the data disk which has to be updated have 

to be read to calculate the new checksums. So a write operation to a single disk drive 

requires three read operations and three write operations. 

4.3 Reed-Solomon Decoder 

When up to m devices fail the system is reconstructed as follows: 

" For each data device d; which fails, construct a function to restore the words in d; 
from the words in the non-failed devices 

" Recompute any failed checksum devices c; with g; 
From these operations the entire system is reconstructed. 

4.3.1 Re-Calculating Single erasures 
For single disk erasures one of two methods to recalculate the lost data is used. 
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If the lost data is a checksum, the checksum can be recalculated from the existing data 

using equations 22 and 23. This is the same method as for encoding the data originally. 

If the lost data is not a checksum, set the missing data to 0 and calculate the parity. 

Missing data is calculated by subtracting the new parity from the original by performing a 

bitwise XOR operation on with the original data and the p checksum. 

4.3.2 Re-Calculating double erasures 
If both failed storage devices contain checksum data then recalculate the checksum using 

equations 22 and 23. 

If there are two missing items calculate s, and s2, the modified checksums from setting 

the missing data to 0 then: 

c, ®s, =di ED d; 

c2 ®s2 =(d, ®i)®(d1 ®j) 

The missing data is calculated from: 

(d; ®i)®(dJ ®jA=c, ®s2 ®i 
(d; ®i)®(d®®j)= (c2 (9S2)®[(cI (B s1)®i] 

and 

(di(&i) ®(dj (&j)=c2 ®s2 

ý(c2 ®s2) E) 
(c, ED s, )®i 

i® j 

(26) 

(27) 

(28) 

(29) 
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1 Introduction 

This document describes the algorithm and hardware implementation of a simple Reed- 

Solomon encoder and decoder to be used in a RAID 6 hardware accelerator. The 

implementation selected provides support for two data disks and two checksum disks in a 

RAID 6 disk array. 

2 RAID 6 Algorithm 

A number of algorithms may be considered for the implementation of double disk 

redundancy (RAID 6) systems [1], [2]. However, for this implementation we consider 

only Reed-Solomon codes [3]. This method has been selected as it is readily implemented 

in hardware requiring only XOR operations, look up tables, adders and subtractors to 

implement a Reed-Solomon encoder and decoder. 

The algorithm proposed for initial implementation of a RAID 6 device will be optimised 

for operation with four hard disk drives, two data and two checksum disks. However, the 

principle of the design lends itself to expansion to larger disk arrays, which will be 

implemented in future designs. 

Although the theory of Reed-Solomon codes and Galois field arithmetic have been 

established for some years, the idea of utilising this theory for storage systems has been 

largely discarded due to the cost of implementation in hardware. Furthermore, the idea of 

using a Galois Field GF (22) is commonly discarded or used only to demonstrate the 

theory in its simplest form. 

This implementation is used to provide an optimised hardware implementation of a Reed- 

Solomon codec for a four disk RAID 6 array. 

2.1 Reed-Solomon encoder 

The disk array has two data disks and two checksum disks. The encoder will operate on a 

word length of 2 bits. The first checksum, C, is simply the parity of the two data bits. 

cl =do®d, 
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The second checksum is calculated using a generator polynomial as follows: 

c2=g°d°mg'd, =do ©2'd, (2) 

Multiplication over a Galois field is performed by addition of the exponents. This 

multiplication may be performed by using lookup tables of the logarithmic expansion of 

the multiplicands, and adding the results modulo (2°'-1). 

Table 1. Logarithm Table GF(4) 

'I IO'112 

, GflogLiJ I-12 
I 

Gfilog[i] 013 

Multiplication therefore may be performed as: 

g("-')d("-, )= gfilog[ gflog(g(" i)) + gflog(d("-1))] (3) 

Division is performed by subtracting the logarithmic values prior to taking the inverse 

logarithm: 

g("-1)d(n-iff gfilog[ gflog(g(° >)) 
_ gflog(d(n-1))] (4) 
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2.2 Reed-Solomon Decoder 

2.2.1 Re-Calculating Single erasures 

If the lost data is a checksum, the checksum can be recalculated from the existing data 

using equations (1) and (2). This is the same method as for encoding the data originally. 

If a single data disk or the first checksum fails we re-calculate the lost data by taking the 

parity of the remaining data. 

2.2.2 Re-Calculating double erasures 

If both failed storage devices contain checksum data then we recalculate the checksum 

using equations (1) and (2). 

If there are two missing items calculate the modified checksums, s, and s2, from setting 

the missing data to 0 then: 

s, =do (1) d, 

s2 =(d, o 0 1)e(d, (9 2) 

The missing data is calculated from: 

(do (9 1)®(d, (9 2)=c, ®s2 01 
= (d(, ®1}9(d, (92)=(c2 ®s2)®Rc, ®s, )81l 

and 

(do ®1) ®(d, (& 2) =c2 ®s2 
}®1 

ý(c2 ®s2) ® 
(c, ® s, 

1®2 
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3 System Design & Test 

3.1.1 Software Modelling 

A software model of the algorithm was generated to verify the implementation as valid, 

as well as to generate test data for hardware simulation. This test programme showed that 

the algorithm was implemented correctly and formed the basis of the hardware 

implementation. It was noted at this point that by modifying the lookup tables it would be 

possible to give the result of equations 3 and 4 for multiplication and division of two 

numbers in one table. This would remove the need for arithmetic addition and subtraction 

to be performed in the hardware implementation and reduce the system latency. This 

results in a larger table look up as shown in Table 2 and Table 3. However, this larger 

look up table removes the need for the addition and subtraction operations which would 

otherwise be required. 

Table 2. Expanded GF multiplication table 

Multiplicand 0 0 00 1 1 1 1 2 2 2 2 3 3 3 3 

Multiplier 0 1 23 0 1 2 3 0 1 2 3 0 1 2 3 

Product 0 0 00 0 1 2 3 0 2 3 1 0 3 1 2 

Table 3. Expanded GF division table 

Dividend 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

Divisor 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

Quotient 0 0 0 0 0 1 3 2 0 2 1 2 0 3 3 1 
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3.1.2 Hardware Desgn 

The hardware was implemented as separate encoder and decoder modules with only one 

producing valid data outputs at any given time. The encoder implementation outputs 

encoded data after a one clock delay. The encoding function was reduced to two XOR 

operations and two multiplicative table look ups. 

Input 1 Input 2 Input 1 Input 2 

LUT LUT 
GF(4) GF(4) 

multiplication multiplication 
by I 

-.. 
ý : _. 

by 2 

=1 

Checksum t Checksum 2 

Figure 1. Checksum generation logic 

The data inputs to the encoder, d1 and d2, are both two bits wide. All possible 

combinations of 2 bit data input were input in simulation to the encoder function. The 

results of this encoding were compared with the results generated by the software model 

to verify the encoder operated correctly. 

The decoder included an encoder for regenerating lost checksum data and additional logic 

to perform the operations required to solve for all combinations of single and double disk 

failure. The output decoded data was selected based upon the disk or disks which were 
indicated as having failed. There was a latency of 3 clock cycles in the decoder logic due 

to the increased operations required to decode the output. Simulation of the decoder using 

the previously encoded logic showed that the decoder was able to recover all valid 

combinations of single and double disk failures. 

3.2 RAID 6 codec performance 

By instantiating 16 encoder and decoder modules in parallel it was possible to encode and 
decode 32-bit wide data inputs. The data width has been parameterised to adjust to the 

desired data width to suit the application and may be controlled at the top level of the 
design by setting the data bus width parameter. 
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To verify that the hardware design was suitable for implementation on an FPGA target 

the design was synthesised using Altera's Quartus II version 4.0 targeting the Cyclone 

device family. The encoder and decoder functions were found to synthesise and run at 

clock rates in excess of 250MHz, exceeding the 150MHz clock rate of the current first 

generation Serial ATA devices which we hope to target with this design. 

4 Conclusions 

This error correction algorithm has been simulated in both hardware and software to 

verify the operation of the proposed design. The error correction algorithm has been 

coded in software and will operate at 800 Mbps on a 2GHz Pentium 4 processor under 
Windows. The Reed-Solomon codec has been coded in Verilog and targeted at the Altera 

Cyclone family. The codec operates at or above 250 MHz in hardware. An optimal RAID 

6 encoder and decoder for four disk arrays has been demonstrated. However, this design 

will need to be modified to support larger disk arrays in the future. 
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RAID 6 Accelerator Hardware Development 

July, 2004 

Overview: This document relates to work performed from the commencement of the 

EngD project work in October 2003 until May 2004 under the project title of 
"Techniques for ubiquitous reliable data storage". This document's purpose is to bring 

together both the background research, algorithm development and implementation and 
initial results and analysis of the work to this stage of the project. 

This document discusses the implementation of a PCI bus based RAID 6 hardware 

accelerator proof of concept design. The design and test of individual design blocks is 

discussed, the overall system architecture is presented and the results of testing and 

verification discussed. 
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EngD 2nd Year 

Industrial Sponsor: A2E Limited 

EngD Portfolio - Volume 2, Michael Gilroy 51 



Appendix IV: RAID 6 Accelerator Hardware Development 

Table of Contents 

1 INTRODUCTION ................................................................................................... 
53 

2 SYSTEM DESIGN .................................................................................................. 
54 

3 FPGA SYSTEM DESIGN AND TEST .................................................................. 55 

3.1 RAID 6 CODEC ................................................................................................... 
55 

3.2 DMA CONTROLLER ............................................................................................ 
57 

3.3 PCI IP BLOCK ..................................................................................................... 
57 

4 VERIFICATION & TESTING .............................................................................. 59 

5 RAID 6 HARDWARE SOFTWARE INTEGRATION ....................................... 
62 

6 HARDWARE RAID 6 PERFORMANCE ............................................................ 62 

7 CONCLUSIONS ...................................................................................................... 63 

8 REFERENCES ........................................................................................................ 63 

EngD Portfolio - Volume 2, Michael Gilroy 52 



Appendix IV: RAID 6 Accelerator Hardware Development 

1 Introduction 

The aim of this development phase was to produce a proof of concept design that could 

be used as a technology demonstrator of a functioning hardware RAID 6 accelerator. The 

only restrictions placed on the design of the hardware was that no third party IP blocks 

could be used. This was due to a desire to reduce the cost of the final product and to 

encourage development of new IP blocks for the sponsoring company. 

The proof of concept design was to be developed on a PCI development board with 

onboard FPGA [1]. An Altera Flex PCI development card was available from the project 

outset: this device is capable of supporting PCI data transfers of up to 64 bits at 66 MHz. 

Using this device, it was planned that a hardware accelerator operating on PCI 32 bit 

wide data bus at 33 MHz would be developed. From this design, it was hoped that the 

design could be easily modified to accommodate 64 bit wide data transfers and then 

increase the clock rate to 66 MHz. 

Upon completion of this phase in development, it was envisaged that a PCI-X based 

accelerator card with on board cache and SATA controllers would be designed and built. 

This would provide the means to develop and test the first production model. The original 

roadmap for the hardware development is shown below in Table 1. 

Table 1. 

Ql 2004 

Proof of 
Concept 

Demonstration 

Hardware roadmap for RAID6 controller 

Q3 2004 

Receive 

Prototype board 

for testing 4 

disk RAID6 

accelerator card 

Q4 2004 

Complete 

testing of 

prototype, 
begin 

manufacture 

Ql 2005 

First devices of 

production 

model ready for 

sale 

Q3 2005 

Development of 
15 disk RAID 6 

accelerator card 

complete 

Production models would be purchased using Altera's hardcopy programme to convert 

the FPGA design into an ASIC offering a lower unit cost than an individual FPGA and 

would reduce the expense and area of the accelerator components. Having begun 

production, larger more complicated arrays were to be supported using an updated 
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hardware accelerator which would support up to 16 disks. Beyond this stage it was hoped 

the product would prove successful, and, that an SoC would be developed which would 

allow the unit cost to drop and allow the accelerator card to be added directly into PC 

motherboards. 

2 System design 

Only the smallest RAID 6 arrays had to be tested and demonstrated for the proof of 

concept design. To test the RAID 6 codec in hardware the smallest RAID array 

containing 4 hard disk drives was selected to form the basis for all testing in the prototype 

stage. The hardware accelerator was to be implemented on the PCI based FPGA 

accelerator. This would provide a PCI bus interface, basic DMA controller and RAID 6 

encoder and decoder. 

fConfiguration T 
registers 

buffer 

Ii 
PCI Interface 

-4 

H 

'ý L__ 
_, 

I ý 
DMA Control 

registers 

DMA 
Controller 

T 

ECC 

T 
ý buffer 

Figure 1. RAID 6 accelerator FPGA design blocks 

The basic test platform used for both hardware and software development is shown 
below. The test platform was a standard PC system with a Pentium 11 processor running 
Linux kernel 2.6 [2]. The hardware accelerator was to be configured and controlled by 

the host CPU using a modified software RAID 6 driver [4]. All data was to be read into 

local memory by the CPU prior to being accessed by the hardware accelerator. Access to 

the 80 GB hard disk drives was provided by two Silicon Image Si3112 PCI SATA 

controllers [3]. Lack of direct access to the SATA controllers by the RAID 6 controller 

and the need for the CPU to configure and control the accelerator was recognised as 
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being an inefficient design, however, it reduced the amount of custom hardware that had 

to be developed for the initial prototyping stage. 

CPU 

RAID 6 
Hardware 

Accelerator 

PCI bus 

SATA SATA 
Controller Controller 

Hard disk I Hard disk 
drive drive 

-- -ý 
Hard disk 

drive 
Hard disk 

drive 

Figure 2. Shows the test system architecture used in proof of concept testing 

3 FPGA system design and test 

3.1 RAID 6 codec 

The RAID 6 encoding and decoding was performed by a Reed-Solomon codec developed 

for this project. The IP block was verified through simulation and shown to encode and 

decode all possible data combinations. A wrapper was added to the basic Reed-Solomon 

codec for this phase in the development. This wrapper added memory and control logic to 

the Reed-Solomon codec to facilitate its use as a hardware RAID 6 codec. The Reed- 

Solomon codec operated on 2-bit wide data inputs. Sixteen of these modules were 

instantiated in parallel to provide support for 32-bit wide data inputs, matching the data 

bus width of the PCI bus. 
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Control Data 

Figure 3. RAID 6 hardware codec. The additional control and memory RAM blocks 
added to the basic Reed-Solomon codec are shown here. 

As the Reed-Solomon codec expected to receive two disks worth of data simultaneously, 

the data memory was added to buffer the first disks worth of data prior to the reception of 

the second disks worth of data. The need to buffer the data limits the performance of the 

RAID 6 codec to operating of blocks of data up to the buffer size. The buffer limits were 

set to 4096 bytes of memory per memory block. This was the largest memory blocks that 

could be fitted on the FPGA with the rest of the system logic. Larger memory modules 

would have been desirable, as the software provided data in blocks of quadruple this size, 
however it was not possible to achieve this on the Flex FPGA. The memory blocks were 
implemented as RAM modules. RAM blocks were chosen over FIFO buffers to assist 

with the PCI bus transfers as there was no guarantee that a burst transfer would be 

successful and it may be necessary to resend data from the last successful block of data 

transferred. 

The RAID 6 codec was shown to operate in simulation for all possible data inputs. This 

was a repeat of the testing performed for the Reed-Solomon codec prior to the extra logic 

being added. 
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3.2 DMA controller 

A simple DMA controller was implemented which performed memory accesses from the 

PCI bus, passed the data to the RAID 6 codec, and wrote back the encoded data to a 

memory location on the PCI bus. The DMA controller was designed to connect directly 

to the PCI IP core and provide the necessary control signals to access data over the PCI 

bus. The DMA controller is controlled by a set of registers accessible through the PCI 

configuration register space or via PCI memory transactions. This double mapping of the 

control registers was performed to assist the software development as configuration read 

and write accesses had already been tested and were known to work. Memory transfer 

support was to be added to the driver at a later date once initial hardware testing had been 

performed. 

i 
Y_J 

DMA controller 
control registers 

Figure 4. DMA controller is configured via the PCI bus by the host computer. It then 
reads blocks of memory over the PCI bus passes the data to the RAID 6 codec, and 
writes back the encoded/decoded data over the PCI bus. 

3.3 PCI IP block 

The development of a custom PCI controller to provide PCI bus master and target 
functionality was made necessary due to the constraint of not utilising third party IP 

blocks. The PCI interface was based upon revision 2.3 of the PCI local bus specification, 
for full details of the PCI bus and its operation please refer to this specification [5]. 

The implemented PCI interface supports 

" 32-bit wide data transfers at up to 33MHz. 

" 32-bit addressing mode 

" 32-bit wide data transfers. 

" Bus master/target support 
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Control read/write 
accesses to PCI bus 

I 
Input 

Registers 

Master Target 
statemachine statemachine 

Configuration 
Registers 

Control signal & output generation 

Figure 5. PCI IP block implements both PCI master and target functionality. The 
core is configured via the configuration registers at synthesis. The target may be 

connected to a memory block accessed by PCI memory read/write transactions. 

The PCI controller design was separated into a PCI target controller and PCI master 

controller. The target functionality was designed to operate independently of the master 

functionality. The PCI target controller was designed such that is may be configured 

through the PCI configuration register block to appear as any desired target device or 

offer any required target functionality. The target was configured, for the purposes of this 

project to appear as a custom encryption device. 

The PCI master controller was designed to provide support for both single data transfers 

and burst data transfers. The PCI master controller ensures that all data transfers adhere to 

the PCI bus standard and controls the flow of data and addressing. 

For our system the target memory mappings were connected to the DMA controller 

control and status registers. The configuration registers were also extended to map to 

these same registers. 
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4 Verification & testing 
The RAID 6 codec was tested and verified as being operational using a stand alone 

simulation. The rest of the system was tested in one large system wide test bench. This 

reduced the need to produce models of the separate system components to model each 

individually. The test bench performed configuration of the PCI controller, mimicking the 

operations at system boot performed on a PC, then the DMA controller was initialised to 

perform checksum generation, recover single and double disk erasures and test all the 

functions performed by the host PC. 

PCI bus 1 'A W. OWN 
addressable 

memory 
Transaction F, Ca I ,i 

RAID 6 
generator accelerator 

Bus Monitor 

Testbench 

Figure 6. System test bench. Incorporated a bus monitor to verify PCI transactions 
and a region of memory accessible over the model of the PCI bus. 

Monitoring of the PCI bus to verify that transactions conformed to the PCI bus 

requirements was incorporated into the test bench. This allowed a large number of PCI 

transactions to be carried out with little in the way of manual checking being required. A 

model of a region of memory accessible via the PCI bus was added to enable the data and 

checksum data to be stored and accessed by the RAID 6 accelerator. 

To verify that the PCI core operated correctly proved to be both time consuming and 
awkward. A Verilog test bench was generated and initial simulations of the target and 
master device showed that the PCI core operated as expected and handled all supported 
transaction correctly. However, when the target controller was implemented on the PCI 
development board the test PC failed to boot into Linux. The development card offered 
no means by which to examine directly the PCI bus transactions which were taking place 
and the Flex FPGA did not offer support for Altera's SignalTap 11 on chip logic analyser. 

To assist in the debug of the hardware at this point it was requested that a PCI 
development board based upon either the Cyclone or Stratix FPGA device families be 
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purchased as these offered support for SignalTap II. This request was not met by the 

sponsor at this time. 

To allow development to continue it was necessary to be able to observe the transactions 

occurring on the PCI bus. To this end a PCI riser was purchased which allowed a logic 

analyser to be connected between the PCI bus and the FPGA development board. 

Unfortunately this proved to be an unsuccessful solution. When the riser was connected 

the FPGA failed to respond to PCI transactions and the computer would fail to boot. This 

was later determined to be a result of the PCI riser increasing the routing length between 

the PCI bridge and device beyond the maximum valid routing length. 

By connecting the PCI bus riser to the logic analyser and inserting into a spare PCI bus 

slot it was possible to capture valid PCI transactions between the various PCI devices. 

This data was used to improve the test bench models and bus monitoring and assisted in 

the location of and correction of a number of design faults in the target PCI controller. 
The faults found related mainly to the correct timing for setting and de-asserting the PCI 

control signals. 

Re-testing the target PCI controller on the test PC still resulted in the failure for the 

system to complete the initial boot sequence. It was found that the PCI bus control 

signals, trdy and devsel, indicating the readiness of the target to respond to initial 

configuration read and write accesses were being held after the PCI bus transactions 

should have completed. This error was not observed during simulation and appeared to be 

the result of a timing failure in the FPGA. 

A considerable amount of time was spent trying to resolve this timing issue. Through 

close reference to the timing constraints for Altera's own PCI core for the Flex FPGA it 

was determined that the routing delay for certain PCI bus control signals failed to meet 
the minimum allowable setup and hold timing requirements. Reliance on the automatic 

place and route tools failed to produce a successful placement for the PCI IP block. By 

adding more stringent timing requirements to the internal signals controlling and 

connecting to those failing to meet the timing constraints it was possible to force the 

design to meet the timing requirements. 
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The target PCI core was then shown to operate correctly, responding to PCI configuration 

accesses and allowed access to a small memory space that was added to the design. 

Verification of the PCI master controller proved to be equally complicated as for the 

target controller once more due to lack of visibility of the bus and FPGA transactions. A 

simple programme was written in C to assist in the testing of the PCI master. The PCI 

based RAID 6 accelerator was detected by the programme, a region of memory for read 

and write transactions was setup and the DMA controller was configured to encode two 
blocks of 4096 bytes of data and write back the results to the reserved memory locations. 

The PCI master controller was shown to work successfully during these tests. 
Furthermore the RAID 6 codec and DMA controller were shown to operate correctly. 
The test programme was extended to verify the operation of the RAID 6 codec for all 

modes of operation. These tests were all passed successfully. 
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5 RAID 6 hardware software integration 

A device driver was developed to allow the RAID 6 hardware accelerator to be utilised 

on a PC running the Linux 2.6 kernel. When attempting to build RAID 6 arrays using this 

device driver the test PC repeatedly crashed or locked in an unusable state. It was not 

possible to capture the PCI bus activity at the time of the failure, nor were the software 
logs of any use in debugging the failed system response. 

After further debugging of the software driver it was determined that the failure was in 

part due to incorrect implementation of the device driver. Ultimately though, the device 

driver proved to be unstable and unreliable. It was not possible to conclusively state that 

the cause of this was exclusively a result of the software or hardware. Without the means 

to reliably capture the PCI bus transactions when failures occurred, verify the register 
transactions on the FPGA and determine the state of both the hardware and software at 
the time at which a failure occurred it was not possible to determine the cause of the 

observed system failures. 

6 Hardware RAID 6 performance 
Minimal results were gathered for the RAID 6 hardware accelerator when implemented 

on the FPGA. Using the software RAID tools available in Linux we were able to 
determine that during the build speed during the generation of a RAID 6 array was 
between on a5 and 31 MB/s. We were not able to successfully complete testing with the 
BONNIE benchmarking tool which we had used to quantify the performance of the 

software RAID 6 solution [6]. 
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7 Conclusions 
The PCI bus IP core which was generated has been shown to operate in basic bus 

transactions, however, for more complex burst transactions it is not possible to say for 

certain that the IP block functions correctly. The RAID 6 codes has been tested and 

verified as operating correctly by simulation. It has also been observed as operating 

correctly during testing on the FPGA development card. 

It was not possible to completely verify the hardware RAID 6 accelerator on the available 
FPGA development board with the facilities available for testing purposes. Further 

testing and development work will be required to verify the hardware operation and this 

would be best aided through the use of a more modern FPGA development platform 

which would allow on-chip logic analysis to be performed. 
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Overview: This document introduces the software RAID 6 device driver and the changes 

made to it to enable it to act as a hardware device driver for a custom RAID 6 hardware 

accelerator. The hardware software integration is also presented along with 

recommendations for future work based on this initial driver development phase. 
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1 Introduction 

To complement the design of the hardware RAID 6 accelerator a software based RAID 6 

device driver was developed to provide a benchmark for determining the benefits derived 

from the use of the RAID 6 hardware accelerator. It was also hoped that a software only 

solution could be used in an embedded system to perform the RAID 6 algorithm and so 

produce a low cost equivalent of the hardware system. It was also beneficial as it allowed 

the development of a software driver to proceed without the need of the completed 

hardware accelerator. 

Software development was initially carried out by Mr William Berrie targeting the Apple 

Power Mac G5. This decision was made as the sponsoring company was in discussions at 

the time with a potential customer for a software driver for the SATA controllers for 

Apple Power PCs. Development of software drivers for the Apple stopped after 6 weeks 
due to lack of support available for software driver development and the intended 

customer having abandoned the project. At this point it was decided to continue software 
development for Linux. 

Linux was selected due to ease of access to the source code and, in particular, the recent 

release of a preliminary RAID 6 algorithm for the 2.6 kernel [1]. It had been hoped that 

by modifying this RAID 6 software driver source code that support for the RAID 6 

hardware accelerator could be added and additional RAID 6 algorithms could be tested in 

a PC running Linux. It was noted from the outset that the software RAID 6 drivers did 

not work reliably and significant reworking of the code was required to ensure 
incorporate the RAID 6 algorithm and get the software drivers to work. 
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2 Software RAID 6 

The software RAID 6 driver provided the following functionality: 

" Register the driver with the Linux kernel. Allowing the use of standard Linux 
RAID array tools to generate and maintain RAID arrays. 

" Determine the best algorithm for the current hardware. The algorithm utilised to 
encode or decode data on the system was selected by measuring the throughput 
achieved on a number of different implementations, optimised for certain 
processor architectures, and selecting the algorithm which offered the highest data 
throughput rates. 

" Access to disk drives. 

" RAID 6 array generation functions 

" RAID 6 data recovery functions 

The first task undertaken was to introduce a software implementation of the algorithm 

used by the hardware RAID 6 accelerator. This allowed a familiarity to be developed 

with the operation of the device driver as well as assisting in determining how and where 

to add support for the hardware RAID 6 accelerator. 

During the testing of this algorithm a number of problems with the software driver were 
identified. The major issue noted was that the original driver did not work over a 

prolonged time period. The exact cause of this problem was never resolved. A number of 

updates to the source code were released during the testing phase and many of these were 
incorporated into our test software driver and managed to improve data throughput and 

system performance. Other issues included missing functionality for certain types of disk 

updates, although these were not needed for testing purposes, and the use of both old and 

new styles of kernel commands. As the 2.6 kernel had only recently been released, there 

was little literature providing support for development of source code for the kernel as 

yet. 

The CPU utilisation for the software RAID 6 device driver was between 10-20% during 

array generation. The software performed far better than had originally been expected. 
Indeed when operating on small file sizes the software performs exceptionally quickly 

thanks to the large amount of cache memory available. As the array size increases the 
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software is limited by the inefficiency in the early release of the driver. The software 

driver produced data throughput rates of between 25-50 MB/s during testing using the 

BONNIE benchmarking tool [2]. The generation of the RAID 6 array operated at data 

throughput rates of 10-20 MB/s. This figure was determined by performing queries with 

the software RAID mdadm tool [3]. 

3 Device driver for RAID 6 accelerator 
Three main changes had to be made to the the existing software RAID 6 driver to enable 

it to be used as a hardware device for the RAID 6 accelerator. First the driver had to 

check for the presence of the hardware accelerator. This was performed by scanning the 

attached PCI bus devices to locate the hardware accelerator. When detected instead of 

loading the software RAID 6 functions, replacement functions which utilised the 

hardware accelerator had to be added. Finally an interrupt handler had to be added to 

handle PCI interrupts generated by the hardware. 

The software driver provided three separate functions for RAID 6 calculations 

1. A checksum generation function for calculating the two checksums 

2. Single disk recovery, used to recover missing data during a single disk erasure 

3. Double disk recovery, used to recover missing data during a double disk erasure 

Three equivalent functions were generated for use with the hardware accelerator. Each of 

these functions converted the memory location for data into a PCI bus accessible address, 

configured the hardware accelerator to perform the correct encode or decode operations, 

initiate DMA transactions and sleep until the PCI interrupt was set. 

Initial testing of the device driver with the hardware accelerator caused the test PC to 

crash and no debug information could be retrieved from the test system. 

The cause of the system failures was determined to be a result of the incorrect use of 

various work queues and spin locks in the device driver. While waiting for the hardware 

interrupt from the hardware accelerator, to indicate completion of the RAID 6 

calculations, the device driver was being woken by a software interrupt and entering an 
invalid state. The cause of the locking was determined by moving the software driver 
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from using the interrupt based control to continually polling the DMA status register to 

determine when the hardware had completed all operations. Using this method it was 

possible to build a RAID 6 array. Unfortunately, the performance achieved using this 

method was very poor, resulting in array build speeds of around 100KB/s. 

By placing semaphores before the other locking mechanisms used within the device 

driver, it was possible to utilise the interrupt based solution. The other locking 

mechanisms were kept to keep to a minimum the differences between our modified 

device driver and the standard device driver. This improved the data throughput achieved 

through utilisation of the RAID 6 hardware accelerator and the array was generated at 

between 10-25MB/s. 

Although we were able to build and rebuild RAID 6 disk arrays using the hardware 

accelerator, as the disk storage capacity of the array was increase and data was written to 

the array, the test system would crash and the test system would require to be rebooted. 
The cause of this fault could not be determined as it could be the result of a fault in the 

implementation of the PCI IP core, a fault in the modifications added to the device driver, 

or a fault inherent in the original device driver being exasperated through the use of the 

hardware. 

EngD Portfolio - Volume 2, Michael Gilroy 69 



Appendix V: RAID 6 Software Development 

4 Conclusions 

Simple software programmes to drive the hardware appear to show the system operates 

correctly. However, these tests may be producing false positive results and hiding 

underlying problem with the hardware. Alternatively, the modified device driver could 

have introduced or be highlighting existing software errors. Once a more complete and 

stable software driver is available it may be possible to re-investigate the exact cause and 

nature of these errors. 

The software RAID 6 solution works reliably although inefficiently. The implementation 

of a model of the hardware RAID 6 accelerator implementation of the encoding and 

decoding algorithms was successful. The use of the software RAID 6 driver as a 

hardware device driver for the hardware accelerator has been investigated and found 

wanting. The main issues noted was the use of inappropriate locking mechanisms used in 

the software driver which appear to be unusable with the hardware. Due to the lack of 

readily available documentation on the new Linux kernel, the complexity of the software 
driver and continued uncertainty over whether the hardware or software is responsible for 

the system failures continued development can not continue until either more appropriate 

testing facilities become available and more complete documentation for coding device 

drivers for Linux kernel 2.6 are available. 
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Overview: This document presents the results of the successful testing and benchmarking 

of the hardware RAID 6 accelerator, under the A2E project codename of Arran stage II. 

Having presented the results, a number of potential products based upon the technology 

are proposed and the benefits and risks associated with each discussed. 
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1 Introduction 

A hardware RAID 6 accelerator has been developed and shown to operate for small disk 

arrays at speeds which out perform software based solutions. This document discusses 

current performance benchmarks observed for the RAID 6 hardware accelerator and from 

this, predicts performance figures for a number of derivative products based on the 

technology. These potential technologies are compared and contrasted with current and 
forthcoming products available from various competitors in these markets. 

This document aims to detail the available markets, predict times to market and 

recommends a course of action to bring the RAID 6 technology to market. 
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2 RAID 6 

2.1 Technology Overview 

Storage requirements for home and business use continue to increase year on year. The 

protection and reliability of this data is becoming more critical. Currently Redundant 

Arrays of Independent Disks (RAID) storage technologies allow the combination of 

multiple disk drives to improve read/write performance or through the addition of 

redundant drives provide the ability to recover from disk failures. 

RAID 6 provides the ability to recover from up to two simultaneous disk failures. This 

necessitates two redundant drives in the array to hold the checksums generated by the 

RAID 6 encoding algorithm. A Reed-Solomon coding scheme is used to encode data 

using a hardware accelerator to increase performance. 

Whilst the likelihood of a double disk failure occurring is relatively low, the problem is 

that during recovery of a single disk error the probability of an unrecoverable read error 

occurring during the rebuild process is very high. For larger arrays, and particularly for 

lower cost disk drives, the probability is that this will happen every time the array is 

rebuilt. 
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Figure 1. Graph shows the probability of disk failures occurring on various sized arrays and drives 
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2.2 Proof of Concept Architecture Overview 

The proof of concept hardware has demonstrated the performance benefits of using 

hardware acceleration over a software only solution. The hardware accelerator has 

consistently outperformed the software only solution for rebuilding arrays and during 

double disk failures. 

The proof of concept hardware accelerator provided only RAID 6 acceleration, disk 

access, and setup and control of the array were handled by the host PC. The hardware 

accelerator operated over a PCI bus operating at 66 MHz with a bus width of 64 bits. 

Control was handled by a simple DMA controller. 

C DMA 
I Contorller 

C 
0 

E Memory 

i; ýý ýý 

RAID 6 
Accelerator 

FPGA 

Figure 2. Hardware accelerator implementation 

Our test computer was configured as follows: 

" Opteron 64-bit processor 

" Linux Fedora Core 3 Kernel 2.6.15.2 

" Si3124 four port SATA controller 

" Four 7200rpm 80GB DiamondMax Plus SATA disk drives 

" Arran RAID 6 hardware accelerator on an Altera Stratix FPGA 
r---- ------, 
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Figure 3. Test computer configuration 

ý LA 

PCI 64-bit 
66MHz 

I 

1 
ýý 

I 

L_ 

Disk 4 Disk 1 Disk 2, Disk 3 

CPU 
I PCI 64-bit RAID 6 

66MHz Accelerator 

EngD Portfolio - Volume 2, Michael Gilroy 76 



Appendix VI: Review of Arran Stage II 

3 System Development 

3.1 Hardware 

The hardware design was implemented and tested in stages. The PCI IP core was 
developed and tested first. The remainder of the system was connected to the PCI IP core 

as required to enable more of the functionality of the system to be developed and tested. 

The hardware development was targeted at an Altera Stratix EPS 125 on a PCI-X 

development board [1]. 

3.1.1 PCI IP Core 
The original PCI core, developed for use on the Altera Flex PCI development board, was 

used as a starting point for the development of a new re-usable IP core. Based upon 

requirements for a PCI core which was broadly compatible with the Xilinx PCI core, the 

top level interface of the PCI core was modified to more closely resemble the Xilinx 

solution. Minimal changes to the original PCI core logic were made [2]. Configuration of 

the PCI core to support various transaction types was setup through the configuration 

registers. 

The PCI core provides an interface to both PCI target and master functionality. The IP 

core functionality is controlled via the PCI configuration space registers at synthesis. This 

register space is setup via Verilog parameters. 

Initial testing and verification of the PCI core was carried out independently of the 

remainder of the system. The target interface of the core was tested by verifying that the 

configuration space registers could be read and written to. This was carried out on a 
Linux based server via standard command line instructions. With these instructions it was 

possible to detect the PCI device and read and write the configuration registers 

successfully. Using SignalTap it was possible to observe the PCI bus transactions and 

verify that the supporting test bench accurately reflected PCI bus transactions and the 

setup process during a PC boot sequence. 
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Table 1. Basic Linux PCI command line instructions to allow PCI devices 
to be read and written 

Command Description 

Lspci Command for showing all PCI busses and the attached PCI 

devices. 

Setpci Command allows individual PCI device register to be read 

or written 

Testing of memory read/write operations and bus mastering was carried out as part of the 

overall RAID 6 accelerator testing process. 

3.1.2 RAID 6 IP Core 
The algorithm selected for the initial design was a Reed-Solomon coding over a Galois 

Field GF(22) [3]. This limited the maximum number of storage devices to four, and 

therefore provided the optimal solution for a RAID 6 array with four storage devices. 

Although highly limited, the algorithm was the simplest and easiest to implement, 

requiring the fewest hardware resources. Multiple instances of the encoder and decoder 

logic could be instantiated in parallel to provide support larger or smaller data bus inputs. 

This design was re-used initially to minimise the amount of new design work required. 

A replacement design was later implemented to provide support for up to 16 disk drives. 

Again the smallest implementation was selected performing all operations over a Galois 

Field GF(24). This modified RAID 6 codec was implemented differently from the original 

codec. The new RAID 6 codec performs operations on 4-bit wide input data. As data is 

read one disk at a time, the codec processes data sequentially. The intermediate 

checksums are then stored in local memory until the next disk's worth of data is 

available. 
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control data 

RAID 6 codoc 

i 

Figure 4. Shows the modified RAID 6 codec. 

The codec requires the following control signal inputs: 

Signal name width Description 

data 4 bit Input data to be encoded or decoded 

Data_num 4-bit Disk number for the current data input 

Checksum_gen 1-bit Checksum generation mode 

Single_disk_failure 1-bit Single erasure recovery mode 

Double_disk_failure 1-bit Double erasure recovery mode 

ploc 4-bit Number of disk holding the first checksum 

Bloc 4-bit Number of the disk holding the second checksum 

Bad_pos 1 4-bit Location of first erasure 

Bad_pos2 4-bit Location of the second erasure 

rd checksum 2-bit Select the checksum/decoded data to read out 
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The codec was tested for all possible combinations for encoding and decoding 

operations. The testing was performed by simulation, encoding all possible input value 

combinations, simulating all combinations of single and double disk failure and 

recovering the lost data. By comparing the recovered data with what was originally input, 

it was shown that the functions operated correctly. 

3.2 Software 

Previously the software RAID 6 driver had been modified to utilise the RAID 6 hardware 

accelerator. Since this modified driver had been generated, several iterations of the 

unmodified driver had been released with a number of performance improvements. The 

latest driver was therefore used for development of a new device driver for the hardware 

RAID 6 accelerator. 

The modified driver replaced software operations for checksum generation and recovery 

of failed disks with functions which configured the hardware accelerator to perform the 

same operations. The latest Linux Device Drivers book was also available at this time [4]. 

This proved to be invaluable in assisting to modify the software driver to support 
hardware. The software driver was found to use spinlocks throughout the driver to control 

atomic operations. Whilst this locking mechanism can be quicker than the alternatives in 

a purely software architecture, they are not conducive to operation with hardware and 
hardware interrupts. All the spinlocks within the software driver were replaced with 

mutexs which can be used in a hardware device driver. No other modifications were 

made to the software driver 

3.3 Hardware software integration 

Initial testing of the hardware with the modified software driver were positive. The driver 

allowed RAID 6 arrays to be built, written to and read back from. Unfortunately it was 

noted that data corruption would occur when writing files greater than 10 MB to the disk. 

Also the array was found to contain inconsistencies after being rebuilt 

With the Stratix based FPGA development board it was possible to capture the 

transactions on the PCI bus to observe if the failures were a result of disk errors. 
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However, there was no easy means by which to determine if or when an error was 

occurring. To resolve this a test programme was written in C to check for different errors 

that could potentially be caused by the hardware. This programme generated known data 

in two regions of memory to represent two disks worth of data. These memory regions 

were made three times the necessary size with the data written to the middle section and 

the remainder of the data cleared to all zero. Two more regions of memory were created 

to store the checksum data. This additional memory was once more three times the size 

required and all cleared to zero prior to enabling the hardware. By making the memory 

regions larger than required it was hoped that any buffer underflows or overflows would 

be detected by checking if the memory region which should have contained all zeros 

contained data. 
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underflow 
detection 

Disk t data 
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Used for buffer 

underflow 
detection 

Disk 2 data 

All zero region 
Used for buffer 

underflow 
detection 

Checksum 1 
region. Initialised 

Iý... 

. 

i All zero region 
Used for buffer 

overflow 
detection 
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Used for buffer 

overflow 
detection 

to zero. 
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Used for buffer 

overflow 
detection 
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Checksum 1 
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All zero region 
Used for buffer 
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detection 

Figure 5. Shows the memory regions used to model the operations of the software driver. The 
hardware was expected to begin data accesses from the middle of the memory region to allow 
buffer overflow and underflow to be detected. 

The data held at all disk 1 locations was the same. The same was done for disk 2. This 

allowed us to know the exact data expected to be written to checksum 1 and checksum 2. 

Once the memory locations were configured the hardware was initialised to perform the 

RAID 6 checksum generation function and to write back the generated data to the 

checksum memory space. The software test programme then verified the result and that 

no data was written to the underflow or overflow regions. 

When run for 1000 iterations, there were found to be no errors recorded in the data 

received, nor were there any buffer overflows or underflows detected. Setting the test 
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programme to run until an error was recorded eventually found a buffer overflow after 

several hours of operation. Repeated testing showed the same problem occurred over 

shorter and longer time periods. There appeared to be no correlation to the time the 

device was operational and the buffer overflow occurring. 

Despite being able to capture the PCI bus transactions with SignalTap II, it was not 

possible to capture the buffer overflow on the logic analyser. The most likely reason for 

this being that the trigger was being missed due to the time it took to offload the previous 
bus transaction. The test programme was modified to add a wait period, of 10 

milliseconds, between performing each checksum generation. This provided sufficient 

time to allow SignalTap to output all the PCI transactions that took place during the 

previous checksum generation operation. This programme was left running for several 

days until the error was detected and SignalTap captured the error. 

It was found that the hardware was not properly flushing its output buffers when a target 

abort occurred. When this occurred, the hardware would attempt to resend the remaining 
data but did not always reset the counter for controlling the number of blocks of data to 

send to the correct value. Therefore the hardware attempted to send additional data 

beyond the region of valid memory locations, and occasionally to start from the wrong 

offset when beginning the next transaction. This was verified in simulation and corrected. 
Re-running the software test for all operations showed no fault could be found. These 

tests were repeated for single disk and double disk recovery. Again no errors were found. 

This buffer overflow could have resulted in the system crashes which were observed in 

the original project. Returning to testing with the hardware device driver, the reliability of 
the array improved and it was possible to build and rebuild RAID 6 arrays successfully. 
However, when run for a period of hours the array would fail and occasionally the system 

would crash. By observing the error logs when the system was operational, it was found 

that a spinlock was being utilised by the device driver. On closer examination of the 

software driver, it was found that the spinlock was being inserted into the driver through 

a macro added via a header file. Replacing this section of code with our mutex, the device 

driver became completely stable and all testing and benchmarking tools operated 
successfully using the hardware accelerator. 
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3.4 Benchmark results 

Performance was measured using Bonnie++, which measures data throughput achieved 

through a variety of read and write operations [5]. 

To determine the maximum throughput achievable using the test system the four drives 

were configured as just a bunch of disks (JBOD) , or RAID 0 array and running Bonnie 

++. This showed a maximum block read throughput of approximately 209 MB/s and a 

maximum write throughput of approximately 197 MB/s. This individual drives were 
limited to read and write speeds of around 50 MB/s. 

Repeating the performance checks with Bonnie++ using software RAID 6 and hardware 

RAID 6 showed a definite improvement in using the hardware accelerator over the 

software only solution when a double disk failure or single disk failure had occurred. The 

hardware accelerator also generated the RAID array around 5-10MB/s faster than the 

software only solution, and performed data recover at a higher rate also. The complete 
Bonnie++ results for three iterations in each mode for both software RAID 6 and the 
hardware accelerated RAID 6 are shown in the tables below. 

It was noted the software was prone to unusual effects and suffered large drops in 

performance for short periods which resulted in low data throughput rates. This was not 

observed when using the hardware accelerator. 

The hardware accelerator appeared from these results to be using massive amount of CPU 

time when performing the Bonnie++ benchmarking tests. Through the use of cron, the 
Linux resource utilistation monitoring programme, it was found that this CPU utilisation 

was actually being used by Bonnie++ and not the hardware device driver. This was found 

to be a result of Bonnie continually checking if the data had been processed or not. The 

actual CPU utilisation of the hardware driver was found to be around 3-4% during all 
operational modes. The software driver CPU utilisation was found to be around 33% 

higher during normal operation increasing to over 50% higher during double disk 
failures. This was more in line with expectations. 
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Appendix VI: Review of Arran Stage II 

4 Product Solutions 

This section introduces and discusses the benefits and risks associated with the 

development of several potential products based upon the hardware RAID 6 accelerator. 

Whilst the current focus of continued design work will be based upon the existing 

hardware platform using the PCI/PCI-x bus, the following options consider what a final 

product may look like. 

4.1 Hardware accelerator 

4.1.1 Product Overview 
The current hardware accelerator may be developed into a commercial product providing 

hardware RAID 6 acceleration via a PCI-X bus. This should provide a performance boost 

over software in all modes of operation. The proof of concept implementation currently is 

limited by the PCI bus, moving to the higher speed PCI-X bus should ensure hardware 

consistently outperforms the software based RAID 6 algorithm. 
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Figure 6. Shows the RAID6 hardware accelerator 
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4.1.2 Estimated Costs and requirements 
To facilitate development, the purchase of an Altera Cyclone 11 (or other, equivalent, low 

cost FPGA) PCI-X development board would be required to qualify the existing design 

on these devices. This would also provide schematic diagrams for the board which could 
be used to reduce the design work required for the final product. Total cost for this board 

would be $995'. Conversion from the current Stratix FPGA design to a cyclone based 

implementation should take one week. 

The current PCI Core would have to be developed to support PCI-X operation to improve 

data throughput to maximise performance. This is estimated to take 3-4 weeks. 

Development of the board schematics and layout may be carried out in house at A2E. 

Overall BOM costs for the final product would be dominated by the FPGA and board 

manufacture costs. Worst case cost for the FPGA would be $1492. 

Aim for a purchase price less than 50% of current RAID 6 controller cards. 

Table 4. Commercially available hardware RAID controller card prices 

Part Description Price 

Intel SRCS16 6-port SATA RAID 0,1,5 £244.97 

controller 

Adaptec 2410SA 4 port SATA-2 RAID 0,1, £322.93 

5 controller 

Promise SuperTrak EX8300 8-port SATA-2 RAID 0,1, $370-400 

5,6 

Prices from Arrow US website for full price purchase 
Z Prices from Arrow US for one off purchase 
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4.1.3 Risk Assessment 
Both the PCI Core and RAID 6 hardware have been tested and verified already. 

Expansion to support PCI-X is not seen as a major risk as a development board for this is 

currently available. Also transition from a 64-bit PCI bus to PCI-X should be possible 

after boards have been manufactured. Use of Cyclone II development boards will allow 

the design to be tested and verified prior to manufacture and reduce risk of failure and 

reduce development time. The time required to develop this product is lower than any of 

the other options and will allow an early time to market. 

RAID 6 controllers are currently available, based around Intel's IOP 331/333 processors, 

offering higher data throughput than currently achieved on the FPGA based accelerator, 

thanks to the integration of SATA/SCSI controllers and the RAID acceleration. 

To maximise the available market for this product will require the development of 
Windows device drivers. Currently only Linux drivers are available for this hardware. 

Development of Windows drivers could be time consuming and complex. 

4.2 NAS solution 

4.2.1 Product Overview 
A basic network attached storage device could be developed based upon the existing 

accelerator design and utilising a NIOS processor and Avalon bus to provide access via 

Ethernet and USB II ports. 
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Figure 7. Shows a simple NAS device utilizing the RAID 6 accelerator and FPGA based system 
An alternative system could be developed using a small form factor PC based system. 

This would allow a lower cost FPGA to be utilised and would require minimal changes 

from the existing system design. 
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Figure S. Shows an embedded PC system with on-board RAID 6 hardware acceleration 

4.2.2 Estimated Costs and requirements 
For the FPGA based solution, sections of this design could be tested using currently 

available cyclone development boards, however, this design will necessitate the 
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development and manufacture of a prototype board to allow development to be 

completed successfully. Alternative architectures may also be considered with the entire 

system being built on a small form factor PC with hardware RAID 6 acceleration being 

made available over the PCI or other available bus. This alternative architecture would be 

easier to develop and would require minimal software and hardware changes. Overall 

costs of the final motherboard may be more expensive for an embedded PC based 

solution than an FPGA only solution. 

4.2.3 Risk Assessment 
PCI Core and RAID 6 hardware have been tested and verified already. Expansion to 

support PCI-X is not seen as a major risk as a development board for this is currently 

available. 

Only one set of device drivers required for this solution minimising software 
development requirements. 

FPGA based solution: 

Require the design and manufacture of a suitable development platform. 

" Limited expansion capability of design due to high level of customisation. 
" Large FPGA required increasing FPGA costs. 

" Embedded PC solution: 
" Development platforms available from Intel, AMD and VIA for embedded 

designs. These may be used to reduce development costs and times. 

" Existing system has been developed and tested successfully on a PC based 
system, therefore necessitating minimal changes to software for this architecture. 

4.3 RAID 6 hardware controller 

4.3.1 Product Overview 
Data throughput is limited by the read/write limits over the various buses on the PC 

system. Incorporation of hardware acceleration on the same expansion slot as the hard 
disk drive controller minimises this bottleneck. 

EngD Portfolio - Volume 2, Michael Gilroy 
89 



Appendix VI: Review of Arran Stage II 

FPGA 

HOST PC 
P(: I-X PCI-X 

W 
PCI -x 
Bridge ýql 

DMA 
controller 

RAID 8 
mcoderl 
Jecoder 

RAID 6 
controller 

SATA 

processor controller 

Figure 9. Shows a4 port RAID 6 hardware controller 

Data disk 
n 

Parity Disk 
1 

ftnlrý 
z 

4.3.2 Estimated Costs and requirements 
This design would require the use of an embedded processor on the FPGA with direct 

access to the hard disk drives and RAID 6 controller. Both processor and hardware 

accelerator would share access to DDR-RAM which would act as a local cache for data 

to be read/written from the hardware controller. 

A prototype board would be required to verify the system and allow testing and 

performance characterisation of the hardware acceleration. 

4.3.3 Risk Assessment 
PCI Core and RAID 6 hardware have been tested and verified already. 

Costs of a sufficiently large FPGA may prove prohibitive, further work will be required 

to determine what FPGAs will be appropriate. 

Both Linux and Windows drivers would have to be developed. 

4.4 Reconfigurable computing 

AMD has made available its Hyper Transport (HT) interface which is used to allow direct 

access to the CPU and RAM on AMD based motherboards. The use of this bus would 

enable direct access to memory used by the processor and enable the hardware RAID 6 

accelerator to vastly out perform the software based solution. This bus could also provide 

the bandwidth required to enable hardware acceleration of a wide number of algorithms. 
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Using the current hardware accelerator architecture and adding a HT IP block in place of 

the PCI IP block could allow the existing design to be rapidly deployed. This system 

could make use of the existing software driver with minimal changes being required. 

4.4.1 Estimated Costs and requirements 
This design would require the use of top of the range FPGA to enable support for the HT 

bus. This IP block would either need to be developed in house or purchased from a third 

party. Beyond this the existing hardware architecture should be readily implemented on 

this system. 

A prototype board would be required to verify the system and allow testing and 

performance characterisation of the hardware acceleration. 

4.4.2 Risk Assessment 
The RAID 6 hardware and software driver have been tested and verified already. 

The design and development of a suitable PCB may be prohibitive. 

The price premium attached to this device could be sufficiently high to justify the design 

work, however, the potential market would be far lower than that from using a PCI- 

X/PCI-e add-in card. 

No support for Intel based solutions. 
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5 Conclusions 

The RAID 6 hardware accelerator has been shown to operate correctly and has been 

verified over prolonged time periods as being stable and functionally correct. The 

accelerator has been shown to be limited by the reliance on the setup and configuration 

by the host CPU and maximum throughput is being curtailed as there is no direct access 

to the hard disk controller by the hardware accelerator. The hardware accelerator reduces 

CPU overhead by between 33%-50% and out performs the software only solution in 

recovering lost data and during both single and double disk failures. 

A number of products have been suggested based upon the hardware RAID 6 accelerator. 

The optimal solutions would be to design either a PCI-express based hardware RAID 6 

controller card with direct access to the hard disk drives, or to develop an accelerator on 

the Hyper Transport bus to provide hardware acceleration in a manner similar to that 

provided by the PCI hardware accelerator. 
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Overview: This document introduces the Altera Avalon bus specification and the benefits 

of migrating the hardware RAID 6 accelerator to this bus format. The hardware 

implementation is discussed and the testing and performance measurements are 

presented. 
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1 Introduction 
Having designed, tested and verified the operation of the hardware RAID 6 accelerator 

two options were considered viable for commercialising the design; selling the IP or 
designing and selling a piece of hardware which utilises the IP. To support both the 

development of a hardware RAID 6 controller and the sale of the IP it was decided to 

migrate the design to operate over the Avalon bus [1]. 

Two factors drove this decision. The first was the need for rapid development of the 
hardware RAID 6 controller with minimal new hardware to reduce the design time and 

complexity. By using the Avalon bus a large number of pre-verified IP blocks could be 

used in the design. The second reason, as Xilinx had released an equivalent IP block for 

their devices, it was considered beneficial to target the existing design at Altera devices 

and enable rapid and easy integration into the Altera design flow [2]. Soft IP blocks for 

Altera devices commonly offer both Avalon bus support as well as direct 
interconnectivity to the IP such as has already been produced. 
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2 Avalon based RAID 6 IP block 

2.1 Avalon Bus Overview 

The Avalon bus specification is a proprietary bus standard from Altera which provides 

peripheral to peripheral interconnect [1]. The Avalon bus specification defines the 

transfers and interconnect between a peripheral and a switch fabric. This switch fabric 

provides an interconnect structure between the peripherals on the bus to ensure any 

master can communicate with any slave without any prior knowledge of the interface for 

either. 

The Avalon bus specification supports a variety of transfer types and a peripheral may 

use those which best suit its requirements. Additionally the peripheral may have any 

number of slave and or master ports. The Avalon bus operates synchronously and uses 

separate address, data and control lines. 

2.2 SOPC builder Overview 

SOPC builder is a graphical tool which enables system designers to integrate off the shelf 
intellectual property (IP) blocks and custom hardware on an Avalon bus based 

architecture [3]. Providing IP on the Avalon bus enables it to be packaged to be 

integrated with Altera's SOPC builder programme. The tools to package custom 
hardware in a form suited for use from within SOPC builder is included with the tool. 

SOPC builder is closely linked with Altera's NIOS II processor as it enables the 

generation of systems utilising this processor core as well as providing access to a wide 

range of supporting IP blocks for various memory interfaces and other pre-verified IP 

blocks. 

2.3 IP block design Design 

The previously designed RAID 6 hardware accelerator was controlled by a DMA 

controller which was tightly coupled to the PCI bus controller interface[4]. Whilst this 

architecture was sufficient for demonstration purposes, it limited the reusability of the 
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hardware accelerator. It was decided to modify this design to improve the reusability and 

structure of the IP block. 

The RAID 6 codec, which coded data using a reed-Solomon codec operating over a 

GF(16) was left unchanged from the previous design. The modifications to be made were 

the integration of a DMA controller, DMA control registers and an Avalon bus interface 

into the 1P block. 

2.3.1 DMA controller 

The DMA controller design had to be flexible enough to support the encoding and 

decoding of any combination of up to 16 disk arrays, as well as offering a ready solution 

for upgrading to support larger arrays in the future. The DMA controller has in the main 

to perform two main operations; read data from a memory location for each disk to be 

read, and write back either one or two encoded /decoded blocks to memory. In addition to 

the loading of data, the DMA controller ensures that the RS RAID 6 codec is configured 

correctly for performing the encoding and decoding operations on the received data. 

The DMA controller is configured and controlled via a set of control registers. These 

provided sufficient information to ensure that any combination of disk accesses may be 

made. They also provide configuration data for the RS codec and control logic. 

The four main functions of the control registers are: 

" To provide memory address offsets for accessing data associated with the various 
disk drives in the system for read and write operations. 

" To provide control information for the DMA accesses to ensure the correct 

number of memory locations are read and written as well as the correct number of 
bytes are accessed from each. 

" To provide configuration data for the codec to ensure proper encoding/decoding 

operations are performed. 

" To provide status information on the success or failure of the IP block or DMA 

controller. 
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The DMA controller operates under a number of assumptions. The first being that the 

data located at each memory offset is available from the clock cycle after the DMA 

controller is started and that the data located at each memory offset is of equal byte 

length. It is also assumed that all configuration and setup data for the RS codec will be 

provided prior to the DMA initiating operations, i. e. any disk erasures will have been 

detected prior to encoding or decoding being initiated. The IP block does not detect 

errors. Finally the DMA controller is configured to operate on a block size of 512 bytes 

or multiples there of. As a standard disk access should provide data blocks in 512 byte 

chunks as standard this value should always be valid. However, this may be changed by 

modifying a parameter in the HDL prior to synthesis. 

2.3.2 Wrapper design 

To support the design and development of Avalon bus based components, a simple bus 

wrapper was designed. As the Avalon bus offers support for a variety of transfer types, it 

was necessary to determine what support the hardware RAID 6 controller would need. 
The hardware RAID 6 accelerator requires a slave port to enable configuration of its 

DMA control registers. Both single and burst transfer support are desirable for the slave 

port. A single master port is required providing burst access to larger blocks of data for 

both read and write operations. 

Master 
Interface DMA Controller 

RAID 6 codes 

Slave 
Interface Control registers 

Avalon Bus 
wrapper 

Figure 1. Avalon bus wrapper 

The slave interface provides a simple state machine to control access to the control 

registers. Whereas the master interface merely renames and interconnects the Avalon bus 

signals to the DMA controller interface. 
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2.4 IP block generation 

The completed Avalon bus based RAID 6 hardware accelerator was packaged from 

within the SOPC builder tool. This resulted in the hardware accelerator being made 

available as a reusable IP core which could be readily interconnected with any of the pre- 

existing IP blocks provided by Altera or third parties. In particular, the NIOS II processor 

may now be used to configure and control the hardware accelerator and used to verify its 

operation on the Avalon bus. 
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3 System design 

The hardware system design was developed using the SOPC builder in Quartus II version 
6.0. The target hardware platform was an Altera NIOS II development board with a 

Cyclone II EP2C25 FPGA [5]. This is a low cost development board providing access to 

many features, including: 16 MB flash memory, 16 MB DDR SDRAM, a Cyclone 11 

EP2C25 FPGA, synchronous SRAM and serial port. 

3.1 FPGA Architecture 

To verify that the hardware accelerator had been correctly implemented on the Avalon 

bus, a simple system was implemented using SOPC builder. This system provides all the 

functionality required to use and test the hardware accelerator. 

FLASH NIOS II JTAG debug 
Processor port 

-----1- 

DDR SDRAM RAID 6 IP 
block 

Figure 2. System architecture for testing the Avalon bus based hardware RAID 6 

accelerator 

3.2 Software Development 

The RAID 6 IP block had to be shown to operate correctly for all supported Avalon bus 

transactions. A short programme was developed in the NIOS II Eclipse IDE which 

performed single and burst write and read transactions to the RAID 6 IP slave port. By 

writing and reading back these registers, the Avalon slave port functions of the wrapper 

were shown to operate correctly. 

The operation of the wrappers master port was more complex to test and verify. During 

the earlier development phases of the RAID 6 IP block software verification of the RAID 

6 operations had been performed by getting the hardware to encode a region of known 
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data, and using this and the coded data testing each single and double disk erasure was 

tested and the returned data verified against the original data set. This same approach was 

taken to test the Avalon bus based implementation. 

Regions of the DDR SDRAM were partitioned to represent two disk drives worth of data 

and two checksum disks. The RAID 6 IP block was then configured to perform checksum 

generations, and all combinations of single and double disk failures. Between each test 

the data contained on the DDR SDRAM was verified as being correct when compared to 

the original data. Confirmation of successful operation was output via the JTAG debug 

port. 

The RAID 6 IP block successfully performed all these encoding and decoding operations 

demonstrating that the Avalon bus master port had been implemented correctly. This 

software programme was used to test larger disk arrays by increasing the number of 

partitioned regions on the DDR SDRAM to be used. 

SOPC builder provides the ability to generate a simulation model based upon the 

hardware system and the NIOS II software. This simulation performs a number of checks 
to ensure that the Avalon bus specification is followed correctly. Having developed the 

software and demonstrated the RAID 6 IP block on the development board, the 

simulation was run to verify that no invalid transactions occurred on the Avalon bus. The 

test bench successfully completed all operations. 
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4 Conclusions 
The RAID 6 hardware accelerator has been successfully ported to operate on the Avalon 

bus and packaged for easy integration into Altera's Quartus II software. Additionally, this 

IP block has been demonstrated on a standard Cyclone II development board interacting 

with standard Altera IP cores and hardware interfaces. This offers a simple, cost 

effective, demonstration platform for the technology and should allow future customers 

to rapidly integrate and test the RAID 6 hardware accelerator in their own designs. 

The test system demonstrated here requires only interfaces to allow connectivity to a PC 

and a hard disk controller to enable the development and testing of a RAID 6 controller. 
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Appendix VIII: Avalon bus based hardware RAID 6 controller 

1 Introduction 

Hardware RAID controllers provide support for one or more RAID levels in hardware 

which may be transparent to the host computer. The RAID controller provides access to 

hard disk drives and performs RAID calculations as data is passed to and from the hard 

disk drive. This removes the processing burden for any RAID calculations from the CPU 

to the controller and should provide better data throughput than that achievable using a 

software RAID algorithm. 

A hardware RAID 6 accelerator IP block has been demonstrated and verified in 

hardware. A simple system is presented here for developing a hardware RAID 6 

controller based on this IP block on an FPGA. By developing this system it is hoped that 

any potential bottlenecks in the system may be located and this knowledge may be used 

to assist in the commercialisation of the technology. 
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2 System Design 

To support the development of a RAID 6 hardware controller a PCI Stratix FPGA 

development board is used in conjunction with a custom PMC daughter card. This 

daughter card provides access to a Serial ATA controller which may be accessed directly 

by the FPGA [1]. This system provides an interface to the host PC and access to four 

Serial ATA disk drives. 

2.1 FPGA Architecture 

The proposed FPGA system design is shown below in Figure 1, the hardware modules 

are all connected via the Avalon bus. 

Host PCI bus 
64-bit/66MHz 

PCI IP 
Core 

Setup & 
control register 

(memory 
mapped) 

Host DMA 
controller 

On-chip 
programme 

memory 

NIOS II 

On-chip data 
memory 

PCI Arbiter 

SATA DMA 
controller 

Flash 
controller 

Figure 1. Avalon bus based hardware RAID 6 controller 

2.2 IP block selection 

PCI IP 
Core 

PMC 
connection 

to 4-port 
SATA 

controller 

Where possible, the IP blocks were selected from those available from within Altera's 

SOPC builder programme [2]. If unavailable, or unsuitable, then custom blocks were 
designed and packaged to be instantiated from within SOPC builder. 

2.2.1 On-Chip memory 

It had originally been hoped that the Flash and DDR SDRAM modules on the FPGA 

development board could be used to provide data and programme memory for the CPU as 
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well as acting as a local cache for the hard disk data. However, it was found that the 

board was incompatible with the standard DDR SDRAM controller IP from Altera and 

that there was no Flash available for access by the FPGA. As a result on-chip memory 

was used as a substitute to enable development to continue. Whilst this may be faster than 

accessing the DDR SDRAM it, utilises additional system resources, and limits the 

amount of memory available for storing both software and data. 

2.2.2 PCI IP block 

The Altera PCI IP blocks were originally considered for use in this design to reduce 

design time and effort [3]. However, these IP blocks proved to use too much of the 

FPGA's resources and could not be made to fit on the FPGA with the rest of the system. 

As such, a previously generated custom PCI IP block was modified to operate on the 

Avalon bus. 

The PCI IP block required a number of modifications to make it compatible for operating 

over the Avalon bus. A set of control registers were added which enabled the memory 
locations addressable via the PCI base address registers (BAR) to be translated to 

addresses on the Avalon bus. These addresses may be set by an Avalon bus master. 
Address translation between the Avalon and PCI bus ranges was also incorporated. 

A simple DMA controller was added to the PCI core to perform data transfers between 

the Avalon bus and the PCI bus. A 512 byte data buffer was added to enable block 

transfers to progress without additional latency being added to the PCI bus transactions. 

To ensure that communication between the PCI bus clock domain and Avalon bus clock 
domain was handled correctly, a set of FIFO buffers were used to transfer data and 

control signals between both clock domains. 

Transactions over the PCI bus to Avalon bus were tested and verified through 

simulations. These showed that the PCI IP block operated correctly for all read and write 

operations. Two instances of this PCI IP block were implemented on the FPGA. The first, 

operates at PCI 64-bit 66 MHz and provides communication between the host PC and the 
FPGA. The second operates over a PCI bus at 32-bit 33 MHz, this provide access to a 
Silicon Image Si3114 four port SATA controller. 
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Figure 2. PCI IP block converted to run on the Avalon bus 

2.2.3 PCI bus arbiter 

The PCI bus arbiter which was generated grants control of the bus to each device which 

has asserted its request line in a round robin fashion. The arbiter is required to enable 

either the FPGA or SATA controller to gain control of the PCI bus interface connecting. 

At the PC end of the system arbitration, will be handled by an arbiter on the motherboard. 
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2.2.4 Setup and control registers 

The setup and control register provide a memory interface which appears to the host 

computer to be just like a normal PCI ATA disk controller's memory interface. 

Read/write accesses to these registers by the host PC are handled as would normal PCI 

ATA control registers. Additionally, any accesses to these registers are loaded into a 
FIFO buffer to be read by the NIOS 11 processor to determine the correct response. The 

NIOS II accesses the FIFO registers over the Avalon bus. The NIOS has direct access to 

the registers via a separate Avalon slave port and can ensure the correct response is input 

to the appropriate registers. 

2.3 RAID 6 IP block 

The RAID 6 IP block has been verified and tested on the Avalon bus already. Although 

designed to operate as a RAID 6 codec, RAID 5 is supported by default as it is simply a 
RAID 6 array with the second checksum erased. Support for RAID 0 and RAID I had 

been hoped to be added by making the NIOS II processor handle the necessary operations 
in software. 

2.4 DMA controllers 

The DMA controllers are the standard Altera DMA controller IP blocks. These are 

configured by the NIOS II processor to transfer blocks of data to and from the on chip 

memory across the PCI bus. 

2.5 NIOS 11 processor 

The NIOS II processor is a 32-bit microprocessor from Altera which operates over the 
Avalon bus on their FPGAs [6]. In this system, the NIOS II processor was envisaged as 

providing the overall system control. The NIOS II would respond to disk accesses from 

the host PC by issuing read and write commands to the SATA controller, initialising 

RAID 5 or RAID 6 array calculations on the hardware accelerator, performs and manages 
RAID 0 and RAID I in software. 
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3 Simulation and synthesis 
The PCI bus IP blocks and the RAID 6 IP blocks were verified and tested through a series 

of test benches. Both the PCI core and the RAID 6 IP blocks had previously been tested 

and shown to operate in hardware. The remainder of the system it was hoped could be 

tested in hardware on the development platform. 

During synthesis of the design, it was found that the system was too large to be 

implemented on the FPGA. A number of changes were attempted to make the FPGA fit. 

However, it was impossible for the hardware controller to be made to fit on the FPGA. 

As a result of this and time constraints the hardware development has been halted. 

4 Software Development 

4.1 Host PC device driver 

By designing the hardware RAID 6 controller to appear as a standard disk controller to 

the host PC it is hoped that no device driver should be necessary to enable read/write 
accesses to be performed to the hard disk drives attached via the RAID controller. 

The selection and configuring of the hardware controllers RAID level should be made 

possible by developing a device driver to initialise the hardware controller to operate 

under the desired RAID level. This was envisaged as having to be run only once when the 

array was first configured with the hardware controller storing the configuration in an 
EEPROM or other such device. 

In addition to configuration of the array, the device driver was also to detect warnings 
from the hardware controller when a disk failure or other error occurs. These messages 

should then be passed on to the user. 

4.2 Hardware controller software driver 

The hardware controller through the NIOS II processor was required to provide support 
for following operations: 

" Determine the nature of received ATA commands. 
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" Perform read/write accesses to the hard disk drive 

" Perform read/write accesses over the PCI bus retrieve/return data 

" Configure RAID 6 operations 

" Determine if an erasure has occurred 

" Report disk errors to the operating system. 

This programme was to be developed in C and slowly built up and tested in hardware to 

ensure all operations could be handled correctly by the NIOS II processor. 
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5 Analysis 
A hardware development platform and FPGA system architecture for testing a complete 
hardware RAID 6 controller has been shown. Due to a lack of resources on the FPGA it 

was not possible to test the system and determine the data throughput and performance of 

the hardware controller. 

The software requirements for the hardware controller have been examined and 

presented. It is hoped that for basic disk accesses and enabling testing of these, no 

software driver would be required for the host PC. This should enable the hardware 

controller software to be developed and tested more quickly than if a complete software 

device drive had to be developed for the PC. This should also help establish the exact 

cause and location of any hardware-software integration problems more rapidly as there 

should only be one software programme to debug at a time. 

To enable development to continue, a number of solutions that may fit on the available 
FPGA are proposed. The RAID 6 controller may be removed from the design and the 
hardware controller could be used as a hard disk controller to determine the maximum 

throughput achievable. The PCI bus interface to the host PC may be removed and the 

performance of the RAID 6 IP block for encoding the hard disk drive may be measured. 
Between these two systems the actual data throughput for the RAID 6 controller may be 

extrapolated. 
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Project Barra 

October, 2005 

Overview: This document introduces the work undertaken by the Research Engineer to 

design a PMC daughter card to provide access to a SATA controller via a PCI bus to the 

hardware development board. Also presented is the work undertaken to support and 

provide guidance to a group of MSc students in a project which was to test the PCB and 

expand the RE's PCI IP block to offer PCI-X support. 
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1 Introduction 

A PCI-X FPGA development board has been made available for design and testing of a 

PCI bus based RAID 6 accelerator. This development board also provides a standard PCI 

Mezzanine Card (PMC) interface which allows small daughter cards to be added to the 

existing board and connected via a PCI bus interface [1], [2]. 

th 

th 

Figure 1. Shows the PCI-X development board and PMC connectors 

To assist in the development of a RAID controller card it is desirable for the RAID 

accelerator on the FPGA to be able to access the hard disk drives directly. To achieve this 

functionality, it is proposed that a PMC daughter card be designed to provide access to a 

PCI Serial ATA controller. Additionally, it was decided that the daughter board should 

provide the means by which additional logic could be added to the design. To this end a 

mini-PCI connector was to be added to the daughter card. 
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Figure 2. Proposal for PMC daughter card 

t 

th 

EngD Portfolio - Volume 2, Michael Gilroy 119 



Appendix IX: Project Barra 

2 PCB design 

The schematic design for the daughter card was carried out using Orcad 10.1. The design 

was implemented such that either the min-PCI connector or the SATA controller would 

be attached. Selection of the correct device is performed by populating the correct pull-up 

resistors on the PCB. A Silicon Image Si3114 was selected as the SATA controller [3]. 

This device was provided as a free sample by Silicon Image for this project. The Si3114 

provides connectivity to four first generation SATA ports via a single PCI bus 

connection. 

To allow the PCB to connect to the PCI-X development board, the PMC connectors were 

placed on the bottom of the PCB with the SATA controller, SATA connectors and min- 

PCI connector all on the top of the board. 

E 
IN 

Figure 3. Daughter card PCB bottom view 

Three PMC connectors were added to the PCB. Only PMCO and PMC 1 contained 

electrical connections. PMC2 was added to provide extra stability when the board was 

connected to the host board. 
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Figure 4. Daughter card PCB top view 
The daughter card was implemented on a6 layer PCB with the layout being performed in 

house by A2E. Two daughter card PCBs were manufactured and were hand soldered by 

the RE. 
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3 MSc Student Project 

At the time this design was beginning the ISLI had requested that A2E provide an MSc 

project for a small group of students. It was decided that the students would verify the 

previously developed PCI IP block, modify it to operate as a PCI-PCI bridge and using 

the daughter card would demonstrate the operation of the device by connecting to a mini- 

PCI based wifi card. If they had time it was hoped that they could expand the design to 

function operate on a PCI-X bus. 

Three students undertook this project, two handling hardware design and one handling 

the supporting software. It had been hoped that the students would be able to produce a 

functioning PCI-PCI bridge in a short time period to allow early access to the mini-PCI 

connector and perform testing of the daughter card PCB. Unfortunately the students 

performing the hardware design struggled to understand what they were to achieve and 

never managed to complete the PCI-PCI bridge, nor the expansion to add support for 

PCI-X. The software student managed to produce some useful tools for automatically 

configuring the PCI core configuration registers. 
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4 Conclusions 

A PMC daughter card has been designed and manufactured to provide additional 

functionality to the FPGA development board. This board remains untested. The student 

project was unable to complete the expansion of the PCI IP block to support PCI-X or act 

as a PCI to PCI bridge. However, the students did help to increase the confidence in the 

reliability of the PCI IP block. 
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Customer project 

October, 2004 

Overview: This document introduces the work undertaken by the RE during a customer 

project. This project was undertaken to enable the RE to develop the skills required to 

specify, design, manufacture and test PCB board designs. This project provided the RE 

with the opportunity to carry out all these tasks as part of a small design team at the 

sponsoring company. 
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1 Introduction 

1.1 Overview 

This project provided an appropriate learning opportunity in the use of schematic design 

entry, PCB board layout and manufacture, the processes involved in selecting, purchasing 

and designing with various circuit components as well as allowing close interaction with 

the other members of the hardware design team in A2E. 

The Accelera SP-3000 series project was carried out by A2E on behalf of one of their 

customers, Aspex Semiconductor, to upgrade their existing SP-2000 Accelera series. 

1.2 Overview of Accelera 

Aspex employed A2E to develop the next generation of their Accelera product line. 

Aspex Semiconductor's current Accelera product consists of a PCI based development 

system to allow software and system development by their customers of their software 

programmable Linedancer processor. 

The Linedancer is described by Aspex Semiconductor as: 

"Aspex' LinedancerTM device is a 100% software programmable processor which offers 

unmatched performance to deliver unique flexibility and scalability. LinedancerTM 

delivers stellar performance per dollar compared to existing solutions. " [1] 

The current generation of Accelera board, the SP-2000 series, was based around a 

standard PCI card providing: 

" Installation into desktop PCs, workstations and servers 

" PCI Mezzanine Card (PMC) Interface [2]: 

o High speed external I/O direct to the card eliminates I/O bottleneck on 

main system PCI bus 

o Allows the addition of customer specific daughter cards for rapid 

system prototyping 

" Local Data Store: 
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o Synchronous SRAM for maximum performance or synchronous 
DRAM for maximum density 

Applications of the Accelera board include: multimedia processing, signal, image and 

video processing, and volumetric visualisation and 3D graphics. All of the target 

applications require high bandwidth data transfer. 

1.3 Summary of Accelera Upgrade 

The initial upgrade requirements included increasing the Accelera board support from 

two Linedancer modules to four, providing DMA support to the PCI bridge and add 

additional, larger, on board DDR SDRAM replacing the current SRAM and SODIMM 

sockets. The initial design proposal suggested the use of an FPGA to provide the PCI 

bridging mechanism between the PCI bus and the Linedancer modules. 

During further discussions it was decided that a PCI-X based system would be more 

appropriate and at this stage it was decided that an Intel chipset, the IOP315, should be 

used [3], [4]. This provided a PCI-X-to-PCI-X bridge with built in DMA, message 

queuing, an X-Scale processor and additional features not in the original requirements 

such as Gigabit Ethernet support. 

It was also decided to split the design cycle into two phases; the first developing a demo 

board, the SP-3146 and the second, developing the completely upgraded system for the 
SP-4000 series. This document details the design and development of the SP-3146 and 
SP-4000 series. 
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2 Hardware Design & Implementation 

2.1 Overview 

The hardware architecture was based upon the SP-2000 series development platform with 
following enhancements: 

" Quad Linedancer capability each with discrete programme and discrete data 

memory 

" PCI-X bridge with 4-channel DMA provided by Intel 1OP315 processor chipset 

" Use of additional functionality available from IOP315 to provide: 

" Flash memory 

" Additional ARM compliant processor with memory 

The platform upgrade was to be implemented on a standard PCI-X form factor PCB. 

CPLD 

1OP315 Chipset 

CPLD 80314 
PCI"PCI"X Bndage Iý yi 

iv oDanoer 

80200 
X-Scale Prooessor 

Host System PCI-X Conneaar 

Figure 1. Shows the proposed Aspex PCB architecture. 
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2.2 Design Process 

The design progressed through the following stages: 

" Specification 

" Schematic entry 

" Layout 

" Manufacture 

" Test 

The initial specification was provided by the customer. Working with the other members 

of the design team, the RE was responsible for component specification and design of 

large areas of the final board. The RE was also responsible for initial contact with the 

layout engineers and developing an estimate of the final board layout. 

The system design was based on the utilisation of off-the-shelf components and re-using 

as much of the existing board design as possible to allow a rapid and easily verifiable 

system to be developed. The two Intel devices were used as the starting point for new 
design work. The schematics for the 80314 were not available from Intel at the start of 
the design, also, the specification for this chip changed as the project developed as Intel 
found new issues and tried to resolve them. This caused a number of difficulties during 

the design entry as the chip specification was changed from allowing the PCI-X bridge to 

connect to both 5V and 3.3V PCI slots to only 3.3V. This necessitated a redesign of the 
boards PCI connector to ensure the keying for 5V support was removed. It also limited 

the use of the board for the customer. 

The RE was responsible for the schematic entry of the entire design with the exception of 
the power supplies. All work was subject to on-going review. Minimal changes were 
made to the design of the board when compared with the previous revision. The major 
changes were the new Intel chipset, upgrading to DDR-SDRAM, and utilisation of 
smaller passive components. 

EngD Portfolio - Volume 2, Michael Gilroy 
129 



Appendix X: Customer Project 

Once the major components from the design had been entered estimated layouts were 

produced to guide the board layout engineer. A selection of these are shown below. At 

this stage the design was still utilising SODIMM RAM modules. 
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Figure 2. Diagram 2. Layout proposal 1 

Figure 3. Layout proposal 2 
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Through discussions with the layout engineer and after an initial placement of the major 

components it was found that the design would not fit on a standard PCI-X PCB. It was 

therefore necessary to reduce component size for passive components and RAM modules. 
These recommendations were passed onto the customer who agreed to the changes. 

2.3 Demo Design 

Prior to completion of the initial board design for the demonstration boards, a number of 

components had to be sourced, specifications checked and verified as matching the 

requirements of the design. This involved searching both online via supplier and 
distributor websites and through face to face discussions with representatives from 

different distributors. These face to face discussions with the Intel representative allowed 

us to acquire the Intel IOP315, Flash and RAM modules in time to build the 
demonstration board. 

For the demonstration design, it was necessary for the boards to have all of the 

components on the board though not necessarily connected. To this end an auto-route of 
the design was performed and the boards built on time. The demonstration boards did not 
have the Linedancers, CPLDs, JTAG, or memory modules routed. 

2.4 Implementation of the SP-4000 

The implementation of the final SP-4000 board required minimal changes from the 
demonstration board. The majority of the work carried out at this stage was verification 

of the design and constraining the board layout. In addition to this work the RE was 
responsible for implementing various setup and control functions for the Linedancer 

modules on the on board CPLDs. 
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3 Testing 
A small number of test boards were manufactured to allow initial testing of the design to 

be undertaken. These PCBs were populated with only one fully functioning Linedancer. 

During testing a number of issues with the design were found. A number of the PCI 

signals should have had pull up resistors for those instances when a Linedancer was not 

populated. This was found by analysis of the PCI bus and observing incorrect bus 

sequences. The power-up sequence was also an issue and was resolved through a 

modification to the populated resistors on the board. 

The customer provided a number the software programmes to debug the devices. This 

testing with software located highlighted an issue with the JTAG programming line. The 

reset line was constantly on due to a missing pull-up resistor. Resolving this issue 

allowed the design to be verified as operating correctly for all the supplied tests. 

-- --_. - . wý 

. 't n"t/'1t" 
.! 

ýýr. 
t:. ý. L+"3r1t'st. rtü'" 

. V, 0.1 ^-" " YH`f'"+"'°, t^, s7iY, diýiiý"ý5... 

ýý ._ if "--,.. ý. , (-; - ý) ,-ý.:. -ý. iý: 4' qib"W " rsra0r. 01VQ41 
f"' 't ýrýýý 

"ýý fýý, `ýýYpýýr ' ý, 
`p ̀ . ýt "+ýfFaýýý j '" ýtýýý ýtý ýý ý. ý, 1 ýf 'iif141 ý: 

ý, 

tIý4 
1rj ýpýýý.... ý-c ýtr rý f . rcý. ý. ý3:. ý. s-tý: i ý, r.. ý..,. . 1. r aCt .. t :. t k1-, ý.,.. , I_ 1 

_'ý4 

Ni ,t 4d 
'ý. --1... i.. . F. ý. 

ý. 
ý5,4 

'; ýra r: n"ta ', ' ýýfn'kti157ý t' ;*.: " 7-r- ý" 
-. .-ý ýa., ý. sý, ýý ý ,ý+ý ýý, 

ý ý; ". ... (_ 
_I.. .... .,., -+1ý1-d'r'f'. lrýýýý-ý +lL. {. w'r"iý ý 

, 

ý, ', 'ýý P. R°¢ 

,.. ° 
.. 

i 1+ýYrý tiJ'ý.:... r... v. ý.. G. ýr:. i.. ''ý+ý7 ý.. 1a`. ä L. '. ý. 

ý. . ý, 1 ý _. y , ý' 
. 
ýýý 

ý`...,.. -. ...,. ... 
^ý ' 

. 
ý. 

_r" 
. '. r 

1- . -,,, tl - r. -r' %. #Stttltt]12riY'7it7Pi: li]i'I )r'! F 

Figure S. 

`ý. tiý týr. ýEf 
i'ý f. nx {ýýiý 

111. ý.. t4v, 4i. -t - 

It M-22"Y 3JA 0,1. 
{I': � 

Showing the top side of the final board layout 

, ; -. iý? ý; #ßt; ' ! '" 

EngD Portfolio - Volume 2, Michael Gilroy 
132 



Appendix X: Customer Project 

4 Analysis Of Project 

This project provided the opportunity to learn how to develop a hardware design from an 

initial specification through to manufacture and test. The RE was developed the skills 

required to use Orcad Schematic capture, provide design constraints, and follow naming 

conventions and structure that enable a design to be carried forward to the layout stage 

rapidly and successfully. The RE was also gained an insight of the communication 

necessary between those involved in each stage of the project to ensure a smooth and 

efficient transition from stage to stage in a projects life cycle. 

The project was successful in that the board was built and delivered on time. The design 

could have been improved if the issues such as missing pull-up resistors had been spotted 

prior to manufacture. It would also have been easier to complete the design successfully 
had the specification updates from Intel been available prior to the project starting. 

Figure 6. Diagram Showing the top side of the populated design 

Figure 7. Showing the bottom side of the populated design 
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1 Introduction 

The disk storage market suffered a steep decline between 2000 and 2001 from which it is 

still recovering [1]. The disk storage market is defined by IDC as systems including three 

or more hard disk drives. It is our belief that this market is the prime target market for a 

RAID 6 based storage system. 

2 Market Leaders 

The major players in the storage market place based on revenue as of Q3 2003 are 

detailed below: 

Table 1. Disk storage systems market shares based upon worldwide revenue 
at Q3 2003. Reults from IDC. 

Company Market share by 

revenue (%) 

EMC 28.9% 

HP 25.6% 

IBM 11.5% 

Network 

Appliances 
8.6% 

Dell 6.9% 

Hitachi 6.5% 

Sun Microsystems 3.8% 

Others 8.2% 
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3 Trends 

3.1 Market Growth 

The disk storage market is recovering from a decline of approximately 20% from 2000- 

2001 [1]. 

" Revenue for Q3 2003 is down approximately 0.3% when compared with revenue 
in Q2 2002 [1]. 

" Total disk capacity sold Q3 2003 increased 36% with a price drop per megabyte 
of approximately 30% [2]. 

3.2 Market value 

The disk storage market is worth approximately $19.5 billion a year [2]. The external 

RAID market generated revenue of $2.7 billion from Q3 2002 to Q3 2003 [3]. 

4 Analysis 

The storage market has a large number of major players vying for dominance within the 

market. Nonetheless, smaller companies continue to control just over 8% of the market, 

or just under $2 billion dollars a year in potential revenue. Entry to the market is therefore 

expected to be viable as the market offers opportunities for both large and small vendors. 

Whilst growth has recently been on the decline this has been a direct consequence of a 

decrease in the cost of hard disk drives, rather than a decrease in storage requirements. 

Based upon the fact that storage requirements continue to increase, it is reasonable to 

assume that the need for reliable storage solutions will increase also. 

RAID storage solutions have shown a noticeable growth from 2003 to 2004, however, 

there are not as yet widely adopted RAID 6 storage solutions from the major vendors. It 

is assumed that this will not remain the case indefinitely. It is therefore important to aim 

to deliver a solution over the coming year to provide a sufficient lead over the major 

players in developing a hardware solution. This will permit the hardware solution to be 

sold to the major players whilst their competitors develop their own solutions. 
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1 Introduction 
This document discusses the current trends and performance of disk storage systems, to 

provide analysis for the marketing potential of A2E's RAID 6 storage solutions. The 

proposed solutions are for the development of a PCI based RAID 6 hardware controller 

with on board SATA controller, or RAID 6 implemented over the AMD HyperTransport 

bus. We define the market and market segments of interest and focus upon the market 
trends of the major vendors to determine a set of recommendations of market segment to 

target and to identify a plausible marketing strategy. 

2 Executive summary 
The disk storage systems market continues to grow year on year. A large section of the 

market is currently held by a small number of large vendors, however up to 23% of the 

market is held by smaller vendors [1]. The largest of the disk storage system providers 
have in the recent past seen profits grow rapidly year on year with IDC predicting a 50% 

growth in storage capacity demand annually until 2010 [2] with an estimated market 

value of around $5 billion per quarter, as at Ql 2006. 

RAID 6 controller cards currently demand a premium as do hardware based RAID 5 

controller cards. 

AMD has recently achieved a 20% share (-1.2 million units for 2006) of the server 

processor market place worldwide. 
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3 Storage Market 

3.1 Key players 

The key players within the storage market are: HP, IBM, EMC, Sun Microsystems, Dell, 

Hitachi. The storage market place is heavily segmented into hardware and software 

solutions and technologies. Based upon storage disk systems and management software 

revenue figures for 2005 and 2006, an estimated value of $44 billion may be attached to 

this market [3]. EMC has estimated a figure of approximately $55 billion for the coming 

year [4]. 

3.2 Market segmentation 

The world wide storage market place is segmented into: 

1. Software: backup and archive, content management, storage management, 
network management, etc 

2. Hardware: External storage, SAN, NAS 

3. Services: Storage services, IT management services 
Three types of consumer must be considered. 

1. Large corporate customers: Utilising large scale high storage capacity systems 
with requirements for always on always available data solutions. Price of less 
concern than performance and matching requirements. 

2. SMEs: Utilising large to small scale storage systems and requiring minimum IT 
skills and support services. More price sensitive though willing to pay for more 
expensive pre configured solutions. 

3. Home Users: Typically requiring plug and play solution low cost and ease of use. 
Consumers can be further segmented by their willingness to adopt technological 

advances. The early adopters whose outlook is `I must have the latest thing; if it's new 

technology or the latest fashion I want it', the majority, who require encouragement to 

use the new technology; and the laggards, who come late to the technology once it is 

mature. The RAID 6 technologies being discussed are most likely to be of interest to 

large corporate customers and SMEs and early adopters in the consumer market. 
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3.3 Trends 

The storage market continues to increase in sales volume and growth year on year. The 

largest of the disk storage system providers have in the recent past seen profits grow 

rapidly year on year with 1DC predicting a 50% growth in storage capacity demand 

annually until 2010 [2] with an estimated market value of around $5 billion per quarter, 

as at QI 2006. 

EngD Portfolio - Volume 2, Michael Gilroy 144 



Appendix X11: Disk Storage Market Revicµ 

4 Disk Storage Market 

4.1 Key players 

This study concentrates on the key players in the disk storage market' by operator, these 

are: HP, IBM, EMC, Sun Microsystems, Dell, Hitachi. The disk storage market place is 

estimated to be worth approximately $20 billion in 2006 based upon the most recent 

figures [4], [5]. 
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Figure 1. Worldwide revenue for in the disk storage systems market QI 2006 
[4], [5] 

4.2 Market segmentation 

Market segmentation may be made by characterising the devices as 

1. Enterprise level: Devices of this class offer many terabytes of storage capacity 
and very high data throughput rates, with prices starting from around $40,000. i. e. 
the IBM DS6000 series offering support for 34TB of storage and costing $97,000 

1 Disk storage system is defined by IDC as a set of storage elements including controllers, cables, and host 
adaptors, associated with three or more disks. A system may be located inside or outside a server cabinet. 

EngD Portfolio - Volume 2, Michael Gilroy 145 



Appendix XII: Disk Storage Market Review 

2. Mid-range: Devices of this class offer storage capacities from around 1-1 OTB 
with pricing ranging from $5,000-$40,000. i. e. the IBM DR550 series offering 
storage capacities from 1 TB-7TB and costing -$40,000 

3. Low end: Largest sub class ranging with a wide range of products from 0.1 TB- 
3TB of storage space and costing from $100-$3,000. 

Enterprise and Mid-range products will tend to be offered with support contracts and high 

levels of software and technical support. Also at this higher end of the market a complete 

storage solution will normally be sold, rather than the underlying technology. These 

market segments, whilst more tolerant of higher cost solutions, appear to be overly 

complex to target at this stage. The most likely routes to entry in this market would be to 

develop a brand name and products over time, or to sell on solutions to the current leaders 

in this particular market segment. 

At the lower end of the market however there is greater scope for new entrants. Success 

in the lower end of this market this may be used to prove the technology to larger 

vendors, develop a brand name and promote the technology to the higher end of the 

market. 

EngD Portfolio - Volume 2, Michael Gilroy 
146 



Appendix XII: Disk Storage Market Review 

5 RAID Controller Solution 

The RAID controller market is split into low price, low performance, PCI based RAID 

accelerator cards, and PCI-X/PCI-express based mid to high range products. The low end 

market is highly cost sensitive with prices starting as little as £l0. This price point and 

market segment offers little return on investment and is currently unsuited to the 

hardware RAID 6 accelerator market. 

Mid range to high end RAID controller cards again vary widely in price and performance. 
There are currently limited suppliers for hardware RAID 6 solutions that have been 

identified. These and the high performance RAID 5 controller cards are the market 

segments of greatest interest. 

Focusing on the RAID 6 controller market there are three providers of RAID 6 solutions. 

" Intel 

" Hp 

" Adaptec 

Of these three, only Intel provides RAID 6 utilising a Reed-Solomon coding scheme, 

offering support for array striping and the best performance when compared with 

competing solutions. Intel is promoting its XScale architecture (recently purchased by 

Marvell) with Promise, Ario, and Areca. 

HP has had, for a number of years, a RAID 6 product based on a hardware and software 

combination to provide double disk redundancy on its high end systems. This appears not 

to be a true hardware RAID 6 solution. 

Adaptec also has a RAID 6 solution which again is based on a hardware software 

combination to build and regenerate the array. 

Purchase prices vary greatly for RAID controller cards as can be seen from the table 
below. The general trend is that the more disk ports and higher speed the interface board 

the higher the purchase price. 

EngD Portfolio - Volume 2, Michael Gilroy 
147 



Appendix XII: Disk Storage Market Review 

Table 1. Examples of current RAID controller card pricing from PC World Business 30'h 
June 2006 

Manufacturer Device Interface RAID support Disk Cost 
connections 

HP Storage controller PCI RAID I 2-port £9.78 
(RAID) SATA 

Adaptec RAID 1210SA PCI RAID 0,1, JBOD 2-port £30.95 
Storage controller SATA 

Adaptec RAID 1420SA PCI-X RAID 0,1,10, 4-port £67.18 
Storage controller JBOD SATA 11 

Promise FastTrak SX4100 PCI RAID 0,1,5,10, 4-port £151.39 
Storage controller 66 MHz JBOD SATA 

Intel RAID Controller PCI 64- RAID 0,1,5,10, 6-port £197.73 
SRCS16 - Storage bit 50 SATA 
controller 

Adaptec 2820SA Storage PCI-X RAID 0,1,5,10, 8-port £320.74 
controller 50 SATA 11 

Whilst Promise has reportedly released its initial RAID 6 controller cards with support 

from 8 to 16 hard disks, accurate pricing for these devices was not readily available. 

Prices quoted in press releases suggest a retail price of around $850 for the 16 port model 

[11]. HP's RAID 6 solution is integrated into their Proliant storage range, however from 

their website the 6-port SATA RAID controller may be purchased for $399 and the 8-port 

SATA RAID controller for $729. 

6 Opteron Processor Solution 

AMD has released its HyperTransport (HT) bus standard allowing interconnection 

directly to the Opteron processors via spare CPU sockets on motherboards. The AMD 

Opteron processor currently accounts for 22.1% of the x86 server processor market 

worldwide for Q1 2006 taking total sales over the $1 billion dollar mark for the first time 

[8]. IDC estimates that global world wide server market will grow from 7.7 million units 
in 2006 to 9.6 million units in 2008 [10]. Almost all of these Opteron processors will be 

utilised in systems with high data storage requirements which will require some form of 

RAID system be implemented. Using the current estimates for 2006 we could predict a 

potential market of 50% of Opteron sales which could benefit from hardware acceleration 
for RAID storage solutions. However, from this potential market it is more likely that 
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between 1-5% would be willing to pay the premium to have the storage algorithms 

carried out on the HT bus. This would give an estimated annual volume of between 

42,500-8,500 units. 

To enable development for systems on the HyperTransport bus will require significant 
investment in new and unproven technology in a new and untested market. With Xilinx 

now providing a RAID 6 IP core it may only be a matter of time before a competing 

solution is released for this platform, potentially from the co-processor hardware 

manufacturers themselves. 
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7 Market Trends 

The following trends have been noted during the market research. 

The larger vendors for disk storage systems build their systems around third party 
hardware and software. There is a current trend to move towards Serial Attached SCSI 

and Serial ATA disks drives replacing the previous parallel standards. 

The introduction of RAID 6 solutions for larger storage arrays containing more than 8 
disks is increasing thanks to a number of new RAID 6 controller cards. 

RAID controller cards increase in purchase cost in relation to the number of drives 

supported and the use of hardware control and acceleration. There is also a premium on 
64-bit and PCI-X based controller cards. 

RAID 6 controllers command a premium in price which rapidly increases dependant 

upon the number of disk drives supported by a given device. There appears to be a market 
for 4-port RAID 6 controller cards, though there is a clear trend aiming towards support 8 

or more drives as the standard. 

RAID controller cards are currently being manufactured for both PCI-X and PCI-express 

busses. Server class motherboards are currently being manufactured with both PCI-X and 
PCI-express bus support. There are relatively few server class motherboards which do not 
have PCI-X slots available. Therefore there would appear to be no immediate advantage 
to developing for the PCI-express bus. 

EngD Portfolio - Volume 2, Michael Gilroy 
150 



Appendix XII: Disk Storage Market Review 

8 Marketing recommendations 

8.1 Strategic positioning 

A decision has to be made as to the markets which A2E desires to target. 

The strategic options available include: 

" Manufacture and sell A2E branded RAID 6 controller cards 

" Sell RAID 6 controller hardware to third party vendors 

" Sell RAID 6 IP 

" Implement HyperTransport based RAID 6 solutions 

With Xilinx providing a RAID 6 solution for its FPGAs it has to be assumed that there is 

a market for RAID 6 IP blocks. Selling directly to Xilinx customers may now prove to be 

difficult as the have the option of using Xilinx's own 1P and this brand name will most 
likely carry more weight than that of A2E. However, Altera as yet has no comparable 

product. A2E currently has a RAID 6 IP block which has been demonstrated to operate 

successfully in hardware along with supporting device drivers and test platform. This 

may be enough to convince Altera to market the 1P block on their own website and 

enable them to compete with Xilinx. 

Based upon the retail value attached to the mid to high end RAID controller market this 

would appear to be an obvious point of entry to this market. There are a number of routes 

that would be possible to take to enter the market. 

" Manufacture and sell A2E branded RAID 6 controller cards 

" Sell RAID 6 controller hardware to third party vendors 
The production of A2E branded hardware would be necessary in the short term as 

product demonstrators and to support future development. Once developed the design 

could be sold on or licensed to third parties to re-brand. More complete performance 

metrics will be necessary to convince third parties of the performance gains of the A2E 

design over the Intel approach. 

The market to develop co-processor/hardware acceleration for AMD Opteron servers 

offers a new niche market willing to pay for added performance. The potential of this 
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market has yet to be realised and A2E has the opportunity to be a leader in this area. 
However, a number of caveats apply here. A2E would be reliant upon DRC for the 

provision of suitable hard solutions and to some extent access to their customer base. 

Also with Xilinx releasing a RAID 6 IP core for their devices it has to be assumed that 

there is a risk of DRC or another company utilising the Xilinx solution over the 
HyperTransport bus. 

The recommended position for the short term is to approach Alters with regards to 

marketing RAID 6 IP and continuing development of a RAID 6 controller card whilst 

targeting potential customers interested in the technology. 

8.2 Product 

The product requirements for selling a RAID 6 IP block include: 

" RAID 6 IP block 

" Simulation file 

" Datasheets 

" Software drivers 

" Test platform 

" Customer support 
Currently A2E have met all of these requirements, however it would be recommended to 

manufacture and test custom FPGA development boards prior to release to customers. 
Documentation and supporting materials would also require further review prior to 

customer release. 

The product requirements for a RAID 6 hardware controller based upon equivalent 

products would be: 

" PCI-X interface 

" Minimum of 6 hard disk drives (4 data, 2 checksum) 

" Support for RAID 0,1,5,6, JBOD and various combinations 

" Windows Device Drivers 

" Linux Device Drivers 
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A2E is currently working on completing all of the above requirements for a RAID 

controller card. 

8.3 Price 

The following general principles can be recommended for a RAID controller card: 

" The market is willing to pay a premium for RAID 6 technology at the moment. 

" Retail prices for a RAID 6 controller in the coming year should be approximately: 

o it 50- £200 - for 4-port SATA RAID 6 controller 

o £200-£400 for a8 port SATA RAID 6 controller 

o £400+ for a 16 port SATA RAID 6 controller 
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9 Conclusions 
There is an increased interest in RAID 6 for storage solutions as can be seen by the 

number of new products currently or soon to be released supporting RAID 6 and the 

recent release of a RAID 6 IP core by Xilinx. The market for such technologies looks set 

to increase rapidly in the coming year as storage requirements are expected to increase 

for the foreseeable future and RAID based solutions continue to offer the best 

performance/cost results. With an increase in the use of lower cost and lower reliability 

SATA drives RAID 6 will allow storage array capacities to increase to meet the rising 

demand. Marketing of the various product offerings should begin immediately to locate 

interested parties and to enable early realisation of market potential. 
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