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Abstract  

Streptococcus pneumoniae or pneumococcus is included among major human 

pathogens and is responsible for a number of diseases including life-threatening 

conditions such as pneumonia, meningitis and sepsis.  Though pneumococcal 

vaccines are available, they provide limited coverage against infections as 

pneumococcus shows extensive variation, which also allows escape from 

vaccines and antibiotic resistance. It is armed with several virulence factors 

including capsule, surface proteins, enzymes and toxins, which are variably 

expressed and altogether determine pneumococcal virulence.   

 

The aim of this project was to study pneumococcal genetic variation and its 

effect on virulence, with a focus on pneumococcal capsule, which is considered 

the major determinant of virulence and is involved in interaction with host 

immune system.  It is the target for current vaccines and at least 93 

pneumococcal serotypes are known, which differ in pathogenicity. 

 

To study the effect of capsule on the pneumococcal virulence, capsule-switch 

mutants were constructed in three genetic backgrounds; TIGR4 (serotype 4, 

virulent), 403 (serotype 4, avirulent) and D39 (serotype 2, virulent) and were 

studied for variation in their in vivo and in vitro characteristics.  These mutants 

were compared with their parent strains and other mutants for effects of 

capsule switching on their growth, formation of capsular polysaccharide, 

capsular thickness, chain formation and virulence in murine models of infection 

using MF1 mice.  Significant differences were observed in behaviour of parent 

and mutant strains. 
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To develop a broader insight into pneumococcal virulence, avirulent derivative 

of strain TIGR4, 403 was genome sequenced and compared with TIGR4 for 

genetic mutations.  To study differences in gene expression both the strains 

were also compared using microarrays.  Genome analysis revealed only few 

mutations in strain 403 but microarray experiments showed 288 genes to be 

expressed differently in strain 403. 

 

Strain 403 was also tested as live attenuated vaccine to see if it could provide 

protection against the same and different serotypes, as it can be used as a 

vehicle for delivery of different polysaccharides to the host body along with the 

whole set of pneumococcal antigenome. Vaccine trials of 403 were not very 

fruitful as it failed to provide any protection through intranasal route though 

partial protection was observed in mice vaccinated intraperitoneally with 

significant differences in levels of bacteraemia, survival, weight and 

temperature losses on challenging with homologous strain.    
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1  Introduction: 

Streptococcus pneumoniae, commonly known as pneumococcus, is a facultative 

anaerobe that is gram-positive and grows in pairs and short chains. It is 

considered among major human pathogens and is responsible for several diseases 

including life-threatening conditions such as meningitis, pneumonia and sepsis 

(O'Brien et al., 2009).  Pneumococcal diseases cause considerable financial loss 

to the society and mainly affect children, the elderly and immunocompromised 

patients.  It is a highly transformable bacterium, which shows extensive 

variation and plasticity of its genome (Golubchik et al., 2012; Croucher et al., 

2011). 

  

Though pneumococcal research has completed more than hundred years and it 

has played a major role in the development of our insight into nature of genetic 

material, genetic transformation, infectious diseases and development of 

antibiotic resistance, pneumococcal diseases still cause significant morbidity and 

mortality around the world (O'Brien et al., 2009; Black et al., 2003; Austrian, 

1981).  The high transformability of pneumococcus has resulted in evolution of 

antibiotic-resistant strains that can mutate and avoid effects of vaccines 

(Brueggemann et al., 2007; Cartwright, 2002).    

 

1.1 Classification of pneumococcus: 

S. pneumoniae is closely related to Streptococcus mitis and Streptococcus oralis 

which reside in nasopharyngeal niches, though it can be differentiated from 

them on the basis of sensitivity to optochin, solubility in bile and specific anti-
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pneumococcal antibodies (Kilian et al., 2008; Whatmore et al., 2000). It has 

been classified into at least 93 serotypes on the basis of capsular structure and 

Quellung reactions, which can be visualized as capsular swelling and bacterial 

agglutination  when specific antibodies are used against homologous capsular 

components (Calix & Nahm, 2010; Park et al., 2007; Pai et al., 2006; 

Henrichsen, 1999). These serotypes vary in their distribution and virulence (Calix 

& Nahm, 2010; Park et al., 2007).  Since serotyping with anti-sera is expensive 

and cross-reactivity occurs, cheaper and more specific methods based on 

molecular techniques have been developed to type pneumococci with accuracy 

(Siira et al., 2012; Pai et al., 2006; Lawrence et al., 2003).  Though it has been 

an extremely useful tool for pneumococcal characterization, it has its limitations 

and provides only a broader classification scheme, which has encouraged the 

development of better molecular characterization techniques for the study of 

pneumococcal molecular epidemiology and ecology.  One of them is multi-locus 

sequence typing (MLST), which was described by Enright and Spratt (Enright & 

Spratt, 1998).  It allows genetic identification of isolates by the matching of 

internal sequence of seven housekeeping gene loci, which are: 

i. Glucose kinase (gki) 

ii. Shikimate dehydrogenase (aroE) 

iii. Glucose-6-phosphate dehydrogenase (gdh),  

iv. Signal peptidase I (spi) 

v. Transketolase (recP) 

vi. D-alanine-D-alanine ligase (ddl)  

vii. Xanthine phosphoribosyltransferase (xpt).   

Each allele is assigned a unique number after matching with sequences in online 

MLST database.  This unique number is then compared to those for other isolates 

in the database and each isolate is assigned a specific sequence type (ST).  As a 
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result isolates with all seven identical alleles of these 7 housekeeping gene loci 

share the same ST.  It is a powerful technique for online molecular 

characterization of bacterial isolates and provides an electronic portable method 

of comparison of evolutionary relationship of different species (Enright & Spratt, 

1999).  It has added a substantial amount of information about pneumococcal 

taxonomy and population dynamics.  Utilizing information obtained from MLST, 

it was reported that not only a variety of STs are present in each serotype, but 

also some STs are found in more than one serotype, indicating that pneumococci 

can switch their capsule type by acquiring  capsules of different serotypes from 

other strains (Pai et al., 2006; Mcgee et al., 2001; Coffey et al., 1998a; Coffey 

et al., 1996; Coffey et al., 1991; Munoz et al., 1991).  It was also reported that 

certain serotypes and STs were more related to invasive disease as compared to 

others (Hanage et al., 2005).  

     

This diversity in the pneumococcal genome, shown by molecular 

characterization has been explained by Distributed Genome Hypothesis (DGH), 

which proposes that pneumococci share a supragenome that enables them to 

shuffle their genetic contents in response to environmental stimuli (Hiller et al., 

2007).  Pneumococcus acquires new genetic material by different methods 

including horizontal gene transfer, the environment or from bacteriophages 

(Thomas et al., 2005).  This transfer not only takes place within the species but 

can also involve different bacteria residing in the same niche (Hakenbeck et al., 

1999).  Besides having a core genome, they possess additional genes, which may 

be strain specific.  These genes code for virulence factors that can be expressed 

in variable manner according to conditions of host environment (Hiller et al., 

2007). 
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As a result of this extensive variation in pneumococcal genome, despite all 

classification schemes, exact characterization of S. pneumoniae strains is only 

possible through whole genome sequencing, as strains that share the same 

serotype and ST not only vary in spectrum of symptoms they produce, but also 

differ in host selection (Forbes et al., 2008; Sjostrom et al., 2006).  As a part of 

this project we sequenced the complete genome of an avirulent type 4 strain 

and compared it with previously published TIGR4 genome to study genes 

involved in pathogenicity of serotype 4 pneumococci. 

 

1.2 Carriage dynamics of pneumococcus:   

S. pneumoniae is among predominant colonizers of human nasopharynx. 

Pneumococcal carriage rates have been reported to be different among various 

studies and populations (Bogaert et al., 2004) and carriage prevalence is quite 

high in developing countries as compared to developed ones, which results in 

higher exposure to different strains (Scott, 2007).  Colonization may begin very 

early in life and up to 95% of healthy individuals can be colonized in the first 

three years, who can carry up to four different serotypes simultaneously (Obaro 

& Adegbola, 2002).  This nasopharyngeal colonization may begin as soon as the 

very first day after birth, though duration of carriage may vary and can decline 

with increasing age (Gray et al., 1979).  It may be related to a number of risk 

factors such as use of antibiotics, smoking, asthma, ethnicity, over-crowding and 

proximity of adults with children (Bogaert et al., 2004).  

 

S. pneumoniae is accompanied by Neisseria, Haemophilus, Staphylococcus and 

other Streptococcus species in the nasopharynx (Bogaert et al., 2004), which 

creates a highly competitive environment for bacterial growth.  Pneumococcus 
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has developed certain features, which provides a competitive advantage over 

other colonizers of nasopharynx such as neuraminidase and hydrogen peroxide 

production, which inhibits their growth (Bogaert et al., 2004; Shakhnovich et al., 

2002; Pericone et al., 2002; Pericone et al., 2000). Though pneumococcal 

colonization is an important event in disease development, it also protects 

against occupation of nasopharyngeal spaces by other pathogens, reducing their 

chance of causing invasive diseases (Bogaert et al., 2004).   

 

1.3 Pneumococcal diseases and their burden: 

S. pneumoniae causes a number of diseases ranging from life-threatening 

pneumonia, meningitis and septicemia to painful otitis media and sinusitis 

(Cartwright, 2002).  These diseases not only cause great economic burden on the 

society but also cause considerable mortality around the world, especially in 

developing countries (Black et al., 2003).  According to World Health 

Organization (WHO) estimates of 2005, pneumococcal diseases kill 1.6 million 

humans annually, while the worst affected are children as their yearly mortality 

count due to pneumococcal diseases is about 0.7–1 million (WHO, 2008) and 

these diseases have an estimated death toll of approximately 11% (8–12%) of all 

deaths in non-HIV positive children less than 6 years of age (O'Brien et al., 

2009).  Another commonly affected group is the elderly, whose susceptibility to 

contract pneumococcal diseases increases due to decreasing immunity and 

antibody counts with increasing age (Simell et al., 2008). Chances of getting 

disease also increase in presence of co-morbidities, such as cardiac or renal 

disease, especially in hospitalized patients, where there is a very high rate of 

mortality among patients acquiring pneumococcal infections nosocomially.  

Influenza has also been shown to increase pneumococcal disease (Bogaert et al., 
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2004; McCullers & Rehg, 2002) resulting in higher mortality during epidemics and 

pandemics (Brundage & Shanks, 2008).  

 

1.3.1 Pneumonia and bacteraemia: 

S.  pneumoniae is the most common cause of infectious pneumonia acquired in 

the community and is responsible for up to 35% of cases in adults (Moine et al., 

1995).  It claims approximately 20% of all childhood deaths, chiefly in developing 

countries (Black et al., 2003).  It is characterized by inflammation of lung 

parenchyma accompanied by consolidation and exudation of alveolar spaces, 

which obstructs optimum gaseous exchange between lungs and bloodstream (van 

der Poll & Opal, 2009).   

 

A number of factors predispose an individual to pneumococcal pneumonia such 

as extremes of age, pulmonary, cardiac, hepatic or neurological disease, 

smoking, cancer, HIV, diabetes, alcohol abuse, recent hospitalization and 

previous pneumonia (Cardozo et al., 2008).  Pneumonia may lead to bacteraemia 

resulting in sepsis and death (Laterre et al., 2005), though bacteraemia 

occurring independently is not uncommon  (Myers & Gervaix, 2007; Kaplan et 

al., 1998).   

 
 

1.3.2 Meningitis: 

Inflammation of protective membranes of brain and spinal cord along with 

infection of cerebrospinal fluid (CSF) as a result of pneumococcal infection is 

called pneumococcal meningitis (Mook-Kanamori et al., 2011).  It is a serious and 

life threatening condition, characterized by a range of symptoms including 
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headaches, stiffening of the neck, seizures and coma, which may lead to death.  

Mortality ranges from 16-37%, with residual neurological sequel in 32-50% 

(Kastenbauer & Pfister, 2003; Durand et al., 1993).  Meningitis is generally 

preceded by initial pneumococcal infection elsewhere, in about 30% of cases by 

acute otitis media and in about 18% by pneumonia (Ostergaard et al., 2005), 

though pneumococci also have the ability to invade and infect central nervous 

system directly through olfactory neurons (Van Ginkel et al., 2003).   

 

1.3.3 Acute otitis media (AOM) 

Acute otitis media is (AOM) the commonest but relatively benign pneumococcal 

infection of middle ear cavity (Mahadevan et al., 2012; Monasta et al., 2012; 

Hausdorff et al., 2002). It is a cause of great economic burden on the society 

and in the US alone, costs about $5 billion per annum (Bondy et al., 2000).  

 

1.3.4 Other pneumococcal infections: 

Pneumococci are also responsible for some other infections which are relatively 

less common.  These infections include a number of relatively benign clinical 

problems, which are discussed in the following paragraphs. 

 

Infection and inflammation of conjunctiva, the transparent membranous 

covering of eye, is called conjunctivitis.  Conjunctivitis is generally caused by 

non-typable pneumococci (Williamson et al., 2008; Porat et al., 2006), which 

mainly occurs as outbreaks (Martin et al., 2003) though sporadic cases have been 

reported (Porat et al., 2006).  
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Pneumococci can also cause inflammation of internal layer of heart, called 

endocarditis, which may involve heart valves and inter-ventricular septum.  It 

may occur between 0.8-3.4% of patients having pneumococcal bacteraemia 

(Lindberg & Fangel, 1999).  Though it is not very common the outcome may be 

fatal  in up to 40-50% cases despite appropriate antibiotic therapy (Bruyn et al., 

1990). 

 

Pneumococcal infections can also lead to collection of pus in brain (cerebral 

abscesses) or lungs (empyema), which are quite uncommon but generally result 

in high morbidity and mortality (Carpenter et al., 2007; Eastham et al., 2004; 

Gransden et al., 1985).   

 

The problem of pneumococcal diseases is complicated because of the emergence 

of antibiotic resistant strains and their intercontinental spread (Jacobs, 2008; 

Van Bambeke et al., 2007; Jacobs, 2004) which might limit our choice of 

antibiotics in future.  

 

1.4 Pneumococcal virulence factors: 

Streptococcus pneumoniae is equipped with a large armamentarium of virulence 

factors, which are important for successful host colonization and subsequent 

invasive disease.  These will be discussed in following sections. 

 

1.4.1 Capsule: 

The capsule is a polysaccharide covering of the pneumococcal cell and is of 

prime importance as it is considered a major determinant of virulence.  It not 
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only helps to evade opsonins, inhibits complement activity and protects the 

pneumococcus from phagocytosis but also helps them avoid mucosal clearance 

by electrostatic repulsion (Melin et al., 2010; Henriques-Normark & Normark, 

2010; Nelson et al., 2007).  It is a complex structure and contains multiple 

sugars, in form of a sugar backbone containing side chains.  The backbone 

depends upon type, number and ring-size of monosaccharides, type and 

orientation of linkages, which are repeated numerous times to form structure of 

capsular polysaccharide (CPS).  Most commonly occurring monosaccharides 

include α or β-D-glucose, D-galactose, L-rhamnose and N-acetyl-α or β-D-

glucosamine (Bentley et al., 2006). 

  

The capsular locus is an extremely variable region and sequencing performed on 

90 serotypes by Bentley and co-workers has revealed its genetic diversity and 

shown that the capsular genes are almost always found between genes dexB and 

aliA and vary in size between 10 and 30 kb. Analysis of cps loci also shows 

presence of several different forms of each of important enzyme classes related 

to capsule synthesis.  Annotated proteins were also assembled into homology 

groups and various groups were observed including polysaccharide polymerases, 

flippases and a large number of transferases, responsible for variable expression 

of different components of capsule.  A large number of mobile elements was 

also noted (Bentley et al., 2006).  Analysis has also shown that the 5′ end 

contains some conserved genes (cpsA, cpsB, cpsC, cpsD and cpsE), related to 

processing, regulation and export of constituent sugars of capsular 

polysaccharide and and these sugars may have a role in attachment of 

polysaccharide to bacterial cell wall (Eberhardt et al., 2012). 
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Pneumococcus is capable of switching capsular type by horizontal gene transfer, 

which also allows it to escape from vaccines that are directed at particular 

capsular types (Coffey et al., 1998a). This has resulted in evolution of 

pneumococcal isolates of particular STs with several different serotypes (Coffey 

et al., 1999; Coffey et al., 1998b; Munoz et al., 1991),  though capsule switching 

can also result in decreased virulence (Kelly et al., 1994).   Different serotypes 

differ in their capacity to cause disease, and although we know that there are at 

least 93 serotypes, only 20% of these cause the majority of pneumococcal 

diseases (Hausdorff et al., 2000a; Hausdorff et al., 2000b).  

 

The highly conserved arrangement of cps genes amongst all strains helps 

naturally transformable pneumococcus to switch serotype through recombination 

(Brueggemann et al., 2007).  This genetic process can be imitated and otherwise 

isogenic capsule switch mutants can be constructed in the laboratory using 

various techniques (Sung et al., 2001; Kelly et al., 1994).  These mutants can be 

used as an experimental tool to study effect of capsule switching on virulence 

and other biological properties.    

 

In this project, capsule switch mutants were constructed in serotype 4 and 

serotype 2 genetic backgrounds.  These mutants were isogenic except capsular 

type and were used for studying variation in pneumococcal biology in relation to 

polysaccharide capsule. 

 

Pneumococci are also capable of altering their capsule expression in response to 

the environment, which results in phase variation.  Decreased expression results 

in a transparent phenotype, which is mainly adapted for colonization and is more 

transformable (Weiser & Kapoor, 1999).  Opaque colonies have higher level of 
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capsular expression and are more suitable for survival in blood and are more 

resistant to phagocytosis (Bruckner et al., 2004; Obaro & Adegbola, 2002; Weiser 

et al., 1994).  The transition between these phenotypes is considered an 

important factor that is related to change from carriage to invasive phenotype 

(Hammerschmidt et al., 2005). It has been reported that pneumococcal strains 

isolated from blood of infected animals had significantly increased levels of 

capsular mRNA as compared to those growing in vitro (Ogunniyi et al., 2002).  It 

was also observed that metabolically cheaper capsule types tend to be thicker 

and thus more likely to offer resistance against host immune response, which 

might lead to persistence in nasopharynx and subsequent infection (Weinberger 

et al., 2009).   

 

The pneumococcal capsule is very important from an immunological point of 

view as it enables the body to identify invading organisms and mount an 

appropriate immune response.  It is the main target for present polysaccharide 

and conjugate polysaccharide vaccines, which have been developed against 

several serotypes.   

 

We have also constructed capsule switch mutants of avirulent serotype 4 strain 

403 to study and compare effects of capsular switching on bacterial growth. 

 

1.4.2 Pneumococcal surface protein C (PspC) 

PspC is a highly variable choline binding surface protein, also called CbpA, PbcA, 

SpsA and Hic (Iannelli et al., 2002).  PspC proteins have  several functions, which 

include binding complement factors C3, factor H and  secretory portion of IgA 

(Dave et al., 2001; Janulczyk et al., 2000).  It also affects bacterial adherence 
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to pulmonary epithelium, colonization of nasopharyngeal tissue and invasion 

(Rosenow et al., 1997).  

 

The contribution of PspC in pneumococcal virulence can vary among different 

strains (Kerr et al., 2006).  It was reported that there is some variation in role of 

PspC among different strains as a PspC knock out in type 2, 3,19F and 4 had 

different effects on virulence in different serotypes (Kerr et al., 2006).  It was 

an interesting finding that no significant difference was observed in the survival 

rate of mice infected with type 2, 3 and 19F wild type and PspC-deficient 

mutants respectively, while survival time significantly increased in case of type 

4 mutants (Kerr et al., 2006).   It has been considered as a candidate for 

inclusion in protein-based vaccines.   

 

1.4.3 Pneumolysin: 

Pneumolysin is an important pore-forming toxin. It has a major role in 

pneumococcal pathogenesis (Mitchell & Andrew, 1997; Andrew et al., 1997) as it 

causes host cell lysis in many tissues (Hirst et al., 2003; Zysk et al., 2001; Zysk 

et al., 2000; Mohammed et al., 1999; Feldman et al., 1990).  It also targets the 

immune system in various ways and induces neutrophil necrosis (Zysk et al., 

2000), inhibits dendritic cell maturation and induces their apoptosis (Littmann et 

al., 2009).  It inhibits degranulation of monocytes and stimulates release of IL-1β 

and TNF-α to prevent pneumococcal clearance (Houldsworth et al., 1994; 

Nandoskar et al., 1986)  and inhibits lymphocyte response to infection. It can 

also activate complement through classical pathway without involvement of 

specific antibodies  (Mitchell et al., 1991; Paton et al., 1984).  It is well 
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conserved (Kadioglu et al., 2008) and is considered as a vaccine candidate for 

protein-based vaccines of the next generation. 

 

1.4.4 Pneumococcal surface protein A (PspA) 

PspA is another choline binding protein associated with virulence of 

pneumococcus and another candidate for protein based vaccines (Arulanandam 

et al., 2001).  PspA is also highly variable and is coded by mosaic genes, which 

have undergone extensive recombination (Heeg et al., 2007; Mollerach et al., 

2004).  It is considered to inhibit uptake of bacteria by phagocytosis (McDaniel et 

al., 1987) and prevents deposition of complement and its activation (Ren et al., 

2003).  It also interacts with lactoferrin and protects bacteria from 

apolactoferrin mediated killing (Shaper et al., 2004; Hammerschmidt et al., 

1999). 

 

These virulence factors with other important determinants of virulence are 

summarized in Table 1.1. 
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Table 1.1.Summary of pneumococcal virulence factors.  

  

Virulence Factor Description 

 

Capsular polysaccharide At least 93 serotypes (Calix & Nahm, 2010; Park et al., 2007)  and many non-typable strains (Park et al., 2012). 

 Resists complement, protects pneumococcus from phagocytosis (Melin et al., 2010; Hyams et al., 2010a; Hyams et al., 2010b). 

 Resists killing of phagocytosed bacteria (Peppoloni et al., 2010). 

 Influence growth in vitro  (Hathaway et al., 2012). 

 Helps to avoid mucosal clearance by electrostatic repulsion and helps in colonization (Nelson et al., 2007). 

 Important for development of immunity (Cohen et al., 2012). 

  

Cell wall and its components Made up of peptidoglycans and teicholic acids (Bui et al., 2012) though chemical structure may vary among strains (Draing et al., 2006). 

 Provides anchorage to the capsule (Eberhardt et al., 2012) . 

  

PspC (CbpA) Highly variable (Iannelli et al., 2002). 

 Binds factor H (Dave et al., 2001), which is a regulator of complement and has a role in adherence (Agarwal et al., 2010). 

 Effect varies with strain (Kerr et al., 2006) 

 Down-regulates classical pathway (Dieudonne-Vatran et al., 2009).  

  

Choline binding proteins B,C,D,E,F,G CbpD, CbpG, CbpE have role in colonization (Gosink et al., 2000). 

 Role in biofilm formation (Moscoso et al., 2006).  

 Role in adhesion (Rosenow et al., 1997). 

 CbpF Inhibits LytC and regulates pneumococcal autolysis (Molina et al., 2009).  

 CbpD is responsible for fratricide (Eldholm et al., 2009). 
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Pneumolysin Interacts with complement  (Yuste et al., 2005; Mitchell et al., 1991; Paton et al., 1984) . 

 Cause  cell damage and destroys ciliary activity  (Zysk et al., 2000; Mohammed et al., 1999; Mitchell & Andrew, 1997; Feldman et al., 1990). 

  

Autolysins 

 

Role in biofilm formation (Moscoso et al., 2006). 

 Cell wall degradation and remodeling, chain splitting(Las Rivas et al., 2002).  

region of cells (De Las Rivas et al., 2002) 

 LytA and LytC are responsible for fratricide (Eldholm et al., 2009).  

 LytB and LytC , have role in colonization (Gosink et al., 2000). 

 Lyt A is responsible for autolysis (Weiser et al., 1996). 

  

Hyaluronidase Increases epithelial damage caused by pneumolysin (Feldman et al., 2007).   

  

Neuraminidases Exoglycosidase that desialates host protective proteins (Dalia et al., 2010; Burnaugh et al., 2008; King et al., 2006). 

 Presence may vary among the strains (Pettigrew et al., 2006). 

 Also protects against colonization with other bacteria (Shakhnovich et al., 2002). 

 Facilitates biofilm formation (Soong et al., 2006). 

 Assists in invasion of neuroendothelium (Uchiyama et al., 2009).  

  

Hydrogen peroxide Causes epithelial damage and ciliary slowing (Feldman et al., 2002). 

 Inhibits other nasopharyngeal colonizers (Pericone et al., 2000). 

  

Pneumococcal surface protein A Highly variable (Heeg et al., 2007; Hollingshead et al., 2000). 

 Inhibition of complement activation (Tu et al., 1999) and deposition (Yuste et al., 2005). 

 Binds human apolactotoferring and lactoferrin and protects against phagocytosis (Shaper et al., 2004; Hakansson et al., 2001). 

  

Pneumococcal surface adhesin A 

Clp P 

Highly variable (Berry & Paton, 1996).  

 Protects against oxidative stress (Johnston et al., 2004). 
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Pneumococcal histidine triad proteins  

PhtA 

PhtB 

PhtE 

PhtA, PhtB and PhtD are required for lung infection (Hava & Camilli, 2002). 

Virulence 

 Inhibit complement (Ogunniyi et al., 2009). 

  

Pili Host cell adhesion (Barocchi et al., 2006). 
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1.5 Immunity against pneumococcus: 

Host defenses against pneumococcus utilize both arms of immune system and 

cell mediated and humoral mechanisms work in co-ordination for  development 

of immune response against the organism (Paterson & Orihuela, 2010; Malley, 

2010).  The roles of cell mediated and humoral mechanisms are briefly discussed 

below:  

 

1.5.1 Cellular Immunity: 

Neutrophils are phagocytic cells, which are the first responders to bacterial 

invasion.  As soon as pneumococcus is phagocytosed by neutrophils, lysosomes 

fuse with phagosome and convert it into phagolysosome, which mediates 

bacterial killing by oxidative and non-oxidative mechanisms (Standish & Weiser, 

2009; Klebanoff, 2005).  Neutrophils also kill bacteria extracellularly by 

releasing DNA, histones, and other proteins forming neutrophilic extracellular 

traps (NETs), which can bind bacteria and are bactericidal (Mori et al., 2012; 

Wartha et al., 2007; Urban et al., 2006).  They play a significant role in 

controlling pneumococcal infections as their impaired recruitment have been 

reported to result in severe pneumococcal pneumonia in mice (Nakasone et al., 

2007; Sun et al., 2007)  

 

Another group of phagocytic cells, which provide immunity against pneumococci 

are alveolar macrophages that engulf opsonized bacteria (Jonsson et al., 1985), 

release proinflammatory  cytokines and express various receptors that play a 

vital role in development of immunity (Koppe et al., 2012; Paterson & Orihuela, 

2010; Koppel et al., 2008).  Importance of their role can be understood by the 
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reports that the incidence of pneumonia was found to be higher in patients with 

impaired macrophage activity because of smoking cigarettes (Phipps et al., 

2010).  It was also shown that macrophage dysfunction leads to higher mortality 

in animal models (Arredouani et al., 2006; Arredouani et al., 2004), while their 

depletion reduces survival (Traeger et al., 2009).    

 

Adaptive immune response is mediated by T lymphocytes, which interact with 

dendritic cells and produce cellular immunity against pneumococci (Palucka & 

Banchereau, 2002).  These T lymphocytes are of three main types, helper T cells 

(TH), cytotoxic T cells (Tc) and regulatory T (TR) cells. Helper T cells are divided 

into three subtypes known as TH1, TH2 and TH17, which develop from naïve TH 

cells into one of these subtypes depending upon cytokine environment.  TH1 are 

produced mainly in response to viruses and intracellular bacteria that stimulate 

macrophages or natural killer (NK) cells and promote cellular immunity, which 

has been shown to provide protection in humans. TH2 mediated response is 

directed against toxins, allergens and parasites.  It acts by induction of 

cytokines, which promote production of antibodies by B cells and release of 

inflammatory mediators by mast cells.  These cells produce IFNγ, which 

contributes towards the development of immunity against pneumococci and 

other bacteria.  TH17 response develops under the influence of a number of 

extracellular and intracellular bacteria and fungi.  It mainly controls the balance 

between humoral and cell mediated immune responses and forms a bridge 

between these two by monocyte, macrophage and neutrophil recruitment.  They 

also have a role in production of anti-bacterial peptides by epithelial cells 

(Malley, 2010; Peck & Mellins, 2010; Zhang et al., 2009).   
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1.5.2 Humoral immunity and B lymphocytes  

B lymphocytes are nonphagocytic cells which are responsible for development of 

humoral responses against pneumococcal antigens (Moens et al., 2008).  These 

responses are very important for protection against pneumococcal diseases, as 

has been shown by successful utilization of capsular polysaccharide based 

vaccines and demonstration of protective antibodies against capsule and other 

antigens (Lipsitch et al., 2005).  Some of these responses are antigen dependent 

as capsular polysaccharide stimulates differentiated B cells independent of T 

cells, which results in failure of induction in young children (Casal & Tarrago, 

2003). In contrast, immune response against proteins is T cell dependent and 

stimulated B cells can develop into plasma cells and generate memory cells, 

resulting in antibody production, which has been reported in case of a wide 

range of pneumococcal  proteins (Giefing et al., 2008; Ogunniyi et al., 2007; 

Jomaa et al., 2006; Brown et al., 2001; Briles et al., 2000).  These antibodies 

have a significant contribution in development of immune response against 

pneumococci as they perform opsonization (Plotkin, 2008) and complement 

activation (Baxendale et al., 2008; Brown et al., 2002).  Patients with disorders 

related to antibody production have been reported to have increased 

susceptibility to pneumococcal infections (Phipps et al., 2010; Yuste et al., 

2008).    

 

1.5.3 Role of complement: 

The complement system is an antimicrobial system that consists of numerous 

serum and membrane proteins, which participate in host defence by acting as 

opsonins, bactericidal and chemoattractive agents.  These proteins remain 
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present in blood in inactive form and can be activated by a number of factors. 

There are three pathways that activate complement called classical, alternative 

and mannose-binding lectin pathways (Walport, 2001a; Walport, 2001b).  Several 

pneumococcal proteins such as PspA, pneumolysin and phtD interact with 

complement and interfere with its function. Regardless of the activated 

pathway, the end result of complement activation is deposition of C3 convertase 

on pathogen surface, leading to breakdown of C3 into C3a and b, which finally 

leads to cleavage of C5 that draws neutrophils and macrophages (Hawlisch & 

Kohl, 2006).  Further assembly of component proteins and their insertion on the 

pathogen membrane results in its perforation, resulting in an influx of water and 

solutes into the cell causing bacterial cell lysis (Walport, 2001a).  Phagocytosis 

of S. pneumoniae has also been reported to be complement dependent (Yuste et 

al., 2008), which is mainly activated by classical pathway in case of 

pneumococcal infection (Brown et al., 2002).  The importance of the 

complement system and classical pathway has been described in a number of 

studies and it was observed that patients with dysfunctional complement have 

an increased tendency to develop pneumococcal disease (Yuste et al., 2008; 

Brown et al., 2002; Roy et al., 2002)., while the classical pathway was reported 

to be the most important in murine models of pneumococcal infections (Brown 

et al., 2002).   

 

1.6 Pneumococcal vaccines: 

Vaccines have been used for pneumococcal disease control for a very long time. 

Current vaccines against pneumococci employ capsular polysaccharide (CPS), 

which induces serotype-specific antibodies to activate and fix complement and 

induce opsonisation and phagocytosis by host phagocytes (Plotkin, 2008).  There 
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are two main vaccination strategies against pneumococcal infections, which are 

the use of purified CPS based pneumococcal capsular polysaccharide (PPV) and 

pneumococcal conjugate vaccines (PCV) that are prepared by conjugating CPS to 

immunogenic carrier proteins (Artz et al., 2003).  

 

PPV and PCV have certain drawbacks and certain advantages over each other.  

PCV, unlike PPV is known to reduce carriage as well as invasive pneumococcal 

disease (IPD) by included serotypes (O'Brien & Dagan, 2003; Obaro & Adegbola, 

2002).  The PPV23 vaccine serotypes 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 

12F, 14, 15B, 17F, 18C, 19F, 19A, 20, 22F, 23F and 33F covers for most of (>90%) 

of IPD in developed world.  Multivalent vaccines were found to be providing 

protection in about 80% of cases against invasive disease by serotypes, which are 

included in vaccine (Austrian, 1981).  A major limitation of PPV23 is that it is 

only effective in children older than two years of age and adults, as children 

younger than two are unable to mount an appropriate immune response to a 

polysaccharide vaccine because of insufficient development of immune 

mechanisms. 

 

PCV7 is used in the prevention of invasive disease in children younger than two 

years.  It consists of capsular polysaccharide from serotypes 4, 6B, 9V, 14, 18C, 

19F, and 23F combined with detoxified diptheria toxin (CRM147).  This 

conjugation results in a T-cell mediated response.  Introduction of PCV7 in 

vaccination program in the US in 2000 resulted in significant reduction in rate of 

incidence of pneumococcal diseases within a few years (Benninger, 2008; 

Fletcher & Fritzell, 2007; Mahon et al., 2006), even in HIV positive infants 

(Klugman et al., 2003) and elderly over 65 due to development of herd immunity 

(Mcbean et al., 2005).  
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A major problem with these vaccines is serotype replacement, which allows 

pneumococci to gradually escape the effects of vaccines by replacing capsular 

genes included in vaccines with those of uncovered serotypes (Brueggemann et 

al., 2007).  These bacteria can acquire a different type of capsule to escape 

vaccine-effects and continue to cause disease as has been observed with 

multidrug resistant clone 23F (Croucher et al., 2009; Coffey et al., 1998b; Munoz 

et al., 1991) whose variants have been found expressing different capsular types 

such as 19F, 14, 19A, 9N, 3 and serogroup 6 (Mcgee et al., 2001). Similar 

capsular switching have been reported for serotype 14 and 19A variants (Coffey 

et al., 1999; Coffey et al., 1998a; Coffey et al., 1998b).  These variants arise 

from capsular switching among different strains due to recombinational events 

in capsular biosynthesis cps operon (Coffey et al., 1999; Coffey et al., 1998a; 

Coffey et al., 1998b).  These changes in the capsule change the serotypes 

carried in the nasopharynx, which results in transmission of serotypes not 

included in the vaccine and rise in pneumococcal infections in the community 

(Brueggemann et al., 2007; Spratt & Greenwood, 2000).  

 

This phenomenon has been reported from around the globe as in Alaska native 

children, a 96% decrease in vaccine serotypes was noted from 2004, which was 

also accompanied by a 141% increase in non-vaccine serotypes, mainly due to 

infection by 19A (Singleton et al., 2007).  

 

There are serious concerns that limited coverage by these vaccines could result 

in spread of non-vaccine serotypes, which would render these vaccines 

ineffective in populations.  

 



   41 

A much better strategy would be to introduce vaccines that can provide serotype 

independent protection.  Such vaccines may be protein based, so that they can 

prevent pneumococcal disease independent of serotype.  

 

The use of protein-antigens, which are conserved across serotypes, could offer 

serotype-independent protection in all age groups for vaccines of the future.  

Surface exposed proteins are used to generate protective response and 

opsonophagocytosis of bacteria to clear them from host tissues though 

cytoplasmic proteins are more conserved (Ogunniyi et al., 2007; Jomaa et al., 

2006; Brown et al., 2001).  

 

Another possibility is of use of live attenuated vaccines.  Use of strains 

containing deletions of  major determinants of virulence has been noted to offer 

significant protection in mice and capsule deleted strains were able to generate 

serotype independent immunity (Roche et al., 2007). 

 

Whole-cell killed vaccines have also been tested and unencapsulated killed 

intranasal pneumococcal vaccine using cholera toxin as adjuvant was found to be 

highly effective in preventing colonization and also conferred protection against 

infection through other routes (Malley et al., 2004). A similar vaccine using an 

aluminium derived adjuvant, when given as injection induced both cell mediated 

and humoral immunity with a 30-fold higher antibody response as compared to 

previous approach (Malley & Anderson, 2012)  
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1.7 Aims of the project: 

Aims of this project were to investigate:  

1. The effect of capsular variation on pneumococcal biology. 

 

For this purpose otherwise isogenic mutants were constructed in three 

strains TIGR4, D39 and 403 expressing various serotypes, and were 

compared for variation in in vitro and in vivo characteristics.     

 

2. The genomic diversity in closely related strains of Streptococcus 

pneumoniae in order to understand the affects of mutations on 

phenotype.  

 

Non virulent type 4 strain 403 was genome sequenced and compared for 

differences with previously sequenced virulent serotype 4 strain TIGR4.  

Microarray analysis was also performed to study variation of gene 

expression among the two strains.   

 

3. The possibility of clinical application of capsule switching phenomenon.  

 

Avirulent strain 403 was also tested as a live attenuated vaccine without 

using any adjuvant. It was planned that its capsule switch mutants would 

also be tested as vaccines as a combination of live attenuated and whole 

cell killed vaccine.  Since 403 could not provide sufficient protection on 

its own, the capsule switch mutants were not tested as live attenuated 

vaccine.  
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2 Materials and methods: 

2.1 Bacterial strains: 

To study the effect of capsule switching on different genetic backgrounds, 

different bacterial strains were selected as recipient and donors of capsule 

genes on the basis of difference of their virulence and capsular polysaccharide 

structure.  

2.1.1 Wild type (WT) and capsule knock out bacterial strains: 

Three strains serotype 4 strain TIGR4, serotype 2 strain D39 and serotype 4 strain 

403 with different virulence and capsular structure were used in this study as 

the recepients of capsule genes.  Among these, TIGR4 is the most virulent, D39 

has intermediate virulence and 403 is an avirulent strain. 

Highly virulent serotype 8 strain ATCC6308, virulent serotype 3 strain OXC141 

and D39 were used as capsule donors.  Bioluminescent virulent serotype 3 strain 

A66.1 Xen10 was used for challenging mice vaccinated with 403. 

These strains and their capsule knock out mutants are summarized in Table 2.1. 
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Table 2.1  Wild-type and capsule knock out strains used in this study: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain Serotype Description 

TIGR4 Serotype 4 Wild type virulent strain 

403 Serotype 4 Avirulent strain derived from TIGR4 

D39 Serotype 2 Wild type virulent strain 

OXC141 Serotype 3 Wild type virulent strain 

ATCC6308 Serotype 8 Wild type highly virulent strain 

TIGR4j (P1672) 

 

 

_ Capsule knock-out TIGR4 

403j _ Capsule knock-out 403 

D39j _ Capsule knock-out D39 

A66.1 Xen10 Serotype 3 Virulent, Bioluminescent  
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2.1.2 Capsule switch strains: 

S. pneumoniae strains were modified using Janus technique so that they remain 

isogenic except for capsule locus (Trzcinski et al., 2003; Sung et al., 2001).  This 

technique has the advantage of double selection as it allows selection for 

incorporation of the cassette accompanied by the capsule knock out as well as 

the loss of Janus cassette resulting from capsule replacement (Trzcinski et al., 

2003; Sung et al., 2001).   It is a bicistronic cassette, which allows selection for 

its acquisition as well as removal and contains kanamycin resistance gene aphIII 

and streptomycin sensitivity gene rpsL as shown in Fig 2.1.   

 

Figure 2.1.  Schematic diagram of Janus cassette containing kanamycin resistance gene 
aphIII and gene rpsL conferring sensitivity to streptomycin.    Cassette is ligated with genes 
dexB and aliA, which flank capsular locus in S. pneumoniae. Figure constructed using CLC 
Genomics workbench(CLC Bio, Denmark) 

 

Using the Janus method, bacteria are first transformed with rpsL gene, which 

confers recessive streptomycin resistance in target bacteria as shown in Fig 2.2 

A.  When these bacteria are transformed with dominant allele rpsLR+, present in 

Janus cassette along with Kanamycin resistance cassette, they become sensitive 

to streptomycin and can be selected for kanamycin resistance.  Once this 

cassette is replaced, transformants can be selected for redevelopment of 

resistance to streptomycin and loss of kanamycin resistance (Sung et al., 2001) 

as shown in Fig 2.2 B and C. 
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Figure 2.2.  Mechanism of Janus transformation. (A)  Streptomycin sensitive wild type 
bacteria can be transformed with rpsL cassette conferring streptomycin resistance.  (B) 
Janus cassette flanked with identical genes can be used to replace the target gene, which 
also confers kanamycin resistance and streptomycin sensitivity.  (C)  Replacement of Janus 
cassette by another gene confers streptomycin sensitivity and kanamycin resistance.  
(Modified from Sung et al 2001) 

 

 

403, TIGR4 and D39 capsule genetic loci were replaced with this cassette, which 

was then replaced with different type of capsules as explained in Section 3.1.   

Switching of capsule genes was confirmed by Quellung reaction to check 

capsular serotype and correct positioning of capsule locus was confirmed by PCR 

with forward primers designed against specific genes present in respective 

serotypes and reverse primer against aliA, which is common flanking gene in all 

serotypes as shown in Fig 2.3.  
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Figure 2.3. Schematic diagram showing method of primer design for confirmation of correct 
placement of capsule locus.  TTM05 is forward primer designed against dexB while cps2AR 
is reverse primer designed inside capsule locus.  TTM06 is reverse primer designed against 
aliA gene while the forward primer is serotype specific, used to confirm correct serotype 
and its proper placement in recipient genome.  

 

Mutant capsule switch strains are summarized in Table 2.2. 
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Table 2.2. Capsular switch mutants strain. 

  

Strains Description 

 

TIGR4
2
 (TIGR4

2
3x)* Otherwise isogenic TIGR4 expressing serotype 2 capsule 

TIGR4
3
 (TIGR4

3
3x)* Otherwise isogenic TIGR4 expressing serotype 3 capsule 

TIGR4
8
 (TIGR4

8
3x)* Otherwise isogenic TIGR4 expressing serotype 8 capsule 

TIGR4
4
 (P1702) Otherwise isogenic TIGR4 retransformed with serotype 4 capsule 

 403
2
 (403

2
3x)* Otherwise isogenic 403 expressing serotype 2 capsule 

403
3
(403

3
3x)* Otherwise isogenic 403 expressing serotype 3 capsule 

403
8
(403

8
3x)* Otherwise isogenic 403 expressing serotype 8 capsule 

D39
8
(D39

8
3x)* D39 expressing serotype 8 capsule 

  

       *All 3x strains are three times back crossed strains. 
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2.2 Growth conditions: 

Pneumococcal strains were statically grown from a single colony in Brain Heart 

Infusion (BHI) broth (Oxoid, UK) at 37 C to mid log phase (OD600nm 0.6) and 

stored at -80 C in 1ml aliquots in BHI containing 15% glycerol (Sigma-Aldrich, UK) 

or in form of bead stocks (Pro-Lab Diagnostics, UK).  Strain purity was verified by 

streaking the culture on Blood Agar Base (BAB) (Oxoid, UK) supplemented with 

5% horse blood (E&O Laboratories, UK) on the next day and optochin sensitivity 

was confirmed (Mast diagnostics, UK).  Antibiotic concentrations used in 

selective media were 500 μg/ml kanamycin (Sigma-Aldrich, UK), 300 μg/ml 

streptomycin (Sigma-Aldrich, UK), 3 μg/ml chloramphenicol (Sigma-Aldrich, UK) 

and 1 μg/ml erythromycin (Sigma-Aldrich, UK).  

2.3 Preparation of pneumococcal genomic DNA: 

Strains were grown statically overnight at 37oC in 20ml BHI, and culture was 

centrifuged at 4000 x g at 4oC for 15 min to pellet the cells.  A BAB plate was 

aseptically streaked with culture to confirm purity and identity using an 

optochin disc (Mast diagnostics, UK) before centrifugation. The pellet was then 

resuspended in 1ml lysis buffer (10mM Tris, 100mM EDTA, 0.5% SDS) and 

incubated for an hour at 37oC.  Proteinase K (Invitrogen, UK) was added to attain 

a concentration of 20μg/ml and was incubated for three hrs at 50oC.  RNase A 

(Invitrogen, UK) was then added to a final concentration of 20μg/ml, and 

samples were incubated for half hour at 37oC.  Each sample was mixed gently 

with equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma-

Aldrich, UK) and centrifuged at 12,000 x g for 3 min.  Upper phase was separated 

and placed into a fresh tube of 1.5ml.  0.2 volumes of 10M ammonium acetate 
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(Sigma-Aldrich, UK) and 600μl analytical reagent grade absolute ethanol (Fisher 

Scientific, UK,) were added to samples and mixed gently.  Tubes were 

centrifuged at 12,000 x g for half an hour to form a DNA pellet.  Supernatant was 

decanted and pellet was dried in air for half an hour to remove any remaining 

ethanol and later suspended in 300μl PCR water and incubated at 65oC for 10 

min, with intermittent mixing.  The quality of DNA was assessed by running the 

DNA on 0.7% agarose gel with SYBR® Safe DNA Gel Stain (Life technologies, UK) 

and visualization using a Bio-Rad® Gel doc system (Bio-Rad, UK).   DNA was 

quantified using a Nanodrop ND-1000 spectrophotometer (Agilent Technologies, 

UK) 

Samples were then stored at 4oC if to be used shortly or -20 oC for long term 

storage. 

2.4 Transformation conditions: 

Bacteria were statically grown to OD600 0.1 in BHI containing 0.1 mM CaCl2.  

Competence was induced in TIGR4, 403 and their mutants by using 100ng/ml 

competence-stimulating peptide 2 (csp-2) while in D39 and its derivatives using 

100ng/ml csp-1. Bacteria were incubated 15 min at 37 oC.  One μg/ml DNA was 

used in transformation steps both for chromosomal DNA and purified PCR 

products. 

2.5 Optochin sensitivity: 

All parent and mutant strains were tested for optochin sensitivity to confirm the 

purity of strains by plating colonies on blood agar and placing 5 μg optochin disc 
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(Oxoid, UK).  Plates were incubated overnight at 37 oC to confirm a zone of 

growth inhibition around the disc. 

2.6 Serotyping: 

Capsular serotype of parents and transformants were determined by the 

Quellung test with serotype specific typing sera (Statens Serum Institute, 

Denmark).  Equal amount of bacterial suspension was mixed with type specific 

antiserum (Statens Serum Institute, Denmark), incubated for 10 min and 

examined under the microscope using an oil immersion lens at 1000X for capsule 

swelling. Agglutination was also observed macroscopically. 

2.7 PCR amplification: 

PCR amplification was performed to amplify the Janus cassette and confirmation 

of correct placement of transformed DNA using 150 ng of genomic DNA in 50 μl 

mixture comprising of 10 μl buffer, 5 μl 2mM dNTPs and 100nM each primer with 

4.5 U of Taq DNA polymerase (Invitrogen, USA) or 5 μl buffer, 5 μl 2mM dNTPs 

and 100nM each primer with 0.5 U of Pfu DNA polymerase (Stratagene, USA).  

PCR reaction consisted of initial denaturation of 3 min at 95°C and 30 cycles 

with every step comprising of 30 sec at 95°C, 25 sec at 5°C less than annealing 

temperature of primers, and 1 min/1000 base pairs of estimated product length 

at 72°C and a final incubation at 72°C for 4 min. 
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Table 2.3. Primers used in this study.   

    

Primer Sequence 

 

Description Reference 

CPSF 5'-GACCGTCGCTTCCTAGTT-3'   Forward primer dexB to amplify Janus cassette This study 

 

CPSR4 5'-AGCCTTAGCAGTTGTCAAAT-3' Reverse  primer aliA to amplify Janus cassette This study 

TTM05 5'-AAGGTGAGGAGATTGGGATGA-3' Forward primer dexB to confirm Janus cassette placement (Trzcinski et al., 2003) 

TTM06 5'-TGTCGCAGCCTTAGCAGTTG-3' Reverse  primer aliA to confirm Janus cassette placement (Trzcinski et al., 2003) 

Cps2AR 5'-CTGCCAAGTAAGACGAACTC-3' Reverse primer wzg to confirm capsule placement This study 

 

CPS1rmlDF1 5'-TCAAGCCAGTAGATTCCAGT-3' Forward primer rmlD specific for serotype 1 and 2. This study 

Cps3wchEF 5'-TTTCCAGACATAAACCATCCATCCGA-3' Forward primer wchE specific for serotype 3   This study 

 

Cps8wzy   5'-AGCTTGGTCTATGTATGCG-3' Forward primer wzyE specific for serotype 8   This study 

 

Cps1A 5'-CGACCGTCGCTTCCTAGTTGTGGCTAAC-3' Forward primer dexB to confirm capsule placement Bentley et al., 2006 

Cps1B 5'-GTCTTGAGCTTTGACTGCCGCGTATTCT-3' Reverse  primer aliA to confirm capsule placement Bentley et al., 2006 
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2.8 Janus Intermediates: 

Capsule knock-out strains were constructed using the Janus technique as 

discussed in Section 2.1.2 (Sung et al., 2001).  These knock-outs could be 

selected for the acquisition of capsule genes from other strains on blood agar 

plates supplemented with streptomycin. 

2.8.1 Janus Intermediate in 403 and TIGR4: 

The Janus intermediate strain of 403 was a kind gift from Professor Marc Lipsitch 

of Harvard School of Public Health (U.S) and TIGR4 from Dr. Jeremy Brown of 

University College London (U.K). 

2.8.2 Construction of Janus Intermediate in D39: 

Unencapsulated D39 was constructed using Janus cassette from TIGR4j.  The 

cassette was amplified using primers CPSF and CPSR4 against dexB and aliA and 

was cleaned using PCR purification kit (Qiagen,UK).  Strain D39 was statically 

grown to OD600 0.1 at 37oC in BHI containing 1mM CaCl2, incubated 15 min with 

100ng/ml csp-1 and was transformed with a gene conferring streptomycin 

resistance rpslR+.  Suspension was then incubated for 2 hrs before plating on to 

BAB plates supplemented with 300 µg/ml streptomycin (Sigma-Aldrich, UK).  

streptomycin resistant colonies were picked up and were replated on BAB plates 

supplemented with 300 µg/ml streptomycin (Sigma-Aldrich, UK) with an optochin 

disc (Mast Diagnostics, UK) to confirm purity and identity.  Streptomycin 

resistant strain D39S was statically grown to OD 0.1 at 37o in BHI containing 1mM 

CaCl2, incubated 15 min with csp-1 and was transformed with 1μg purified Janus 

cassette.  Suspension was incubated for another 2 hrs before plating on to BAB 
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agar plates supplemented with 500µg/ml kanamycin (Sigma-Aldrich, UK).  

Colonies were picked up and were re-confirmed by using two sets of primers, 

original primers CPSF, CPSR4 used for amplification of cassette and primers 

cps1A and cps1B in flanking sequence of cps locus.  Confirmed colonies were 

saved and purified PCR product from one of them was sent for sequencing to 

confirm insertion site of Janus cassette. 

2.9 Construction of cps transformants; 

Cps transformants were constructed in strains TIGR4j, 403j and D39j using 

genomic DNA from the following strains.  They are summarized in Table 2.4. 

Table 2.4. Capsule donor strains   

  

Strain Type of capsule  

D39 Serotype 2 

OXC141 Serotype 3 

TIGR4 Serotype 4 

ATCC6308 Serotype 8 

  

  

 

For each transformation genomic DNA from the donor strain was transformed 

into the capsule knock-out strains (Section 2.4) and 50 µl of the suspension was 

plated on to the streptomycin supplemented BAB plates.  For each capsular 

transformation, up to 24 morphologically different colonies were picked from 

the plates, incubated overnight and streaked on kanamycin and streptomycin 

plates simultaneously to confirm the loss of kanamycin resistance and 

redevelopment of streptomycin sensitivity.  The process is schematically 

summarized in Fig 2.4. 
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Figure 2.4. Schematic diagram explaining generation of capsule switch mutant. Capsule 
knock-out mutant (Kan

R
, Str

S
) is transformed with the genomic DNA from the donor strain 

that removes Janus cassette resulting in Kan
S
, Str

R 
phenotype that can be selected on 

streptomycin-supplemented BAB plates. 

 

Quellung reaction was performed to confirm the capsular type. DNA was purified 

from that mutant and used to retransform the unencapsulated janus strain into 

an encapsulated strain again. This back crossing was repeated thrice to construct 

three times backcross (3x back-cross) transformants (Fig 2.5).  Mutant strains 

constructed using the Janus technique are summarized in Table 2.2. 
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Figure 2.5. Flow-dagram showing process of back-crossing to produce 3x backcrossed 
mutant strains.  
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2.10 Characterization of mutant strains: 

2.10.1 Growth curves: 

To compare the effect of capsule switching on growth of the mutant strains, 

growth rates of parent, capsule switch and capsule donor strains in BHI (Sigma-

Alrdich, UK) were investigated and compared by constructing growth curves 

using three replicates.  Approximately 1 x 105  colony forming units/ml (cfu/ml) 

were taken in 20 ml BHI and growth rates were monitored by reading OD600 every 

two hrs for the first four hrs and every hour then onwards for up to 12 hrs.  

Blood agar plates were inoculated for calculation of viable counts.  Growth 

curves were plotted using these viable counts in GraphPad Prism 4 (GraphPad 

Software, USA). 

2.10.2  Sample preparation for electron microscopy: 

To compare the effect of capsule switching on capsular thickness, electron 

microscopy was performed at the EM facility at University of Glasgow with the 

help of Ms. Margaret Mullin and Dr. Lawrence Tetley.  The samples were 

prepared by Ms. Margaret Mullin using the following method. 

Bacteria were grown to OD600 0.4 and centrifuged at 2400 x g for 15 min.  Pallets 

were resuspended in 1ml PBS and washed thrice.  The samples were transported 

to the EM facility and were incubated in a solution of 2% paraformaldehyde 

(Sigma, UK) and 2.0% glutaraldehyde (Sigma, UK) in 0.15M cacodylate buffer 

containing 0.15% ruthenium red (Agar Sc, UK) and 0.0075% lysine (Sigma, UK) for 

30 min on ice.  Samples were washed with 0.15M sodium cacodylate and 
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incubated in 2% paraformaldehyde, 2.0% glutaldehyde containing 0.15% 

ruthenium red in cacodylate buffer for one and a half hour on ice. Following 

three washes with 0.15M sodium cacodylate for 5 mins, samples were fixed with 

1% osmium tetroxide and 0.15M sodium cacodylate for an hour on ice.  Samples 

were washed thrice with distilled water and were left in the dark in 0.5% uranyl 

acetate in distilled water for an hour and washed with distilled water twice for a 

minute.  Samples were dehydrated with ethanol according to the following 

scheme.  

0% Ethanol                   2x5mins 

50% Ethanol                  2x5mins 

70% Ethanol                  2x5mins 

90% Ethanol                  2x5mins 

Absolute Ethanol          4x5mins 

Dried Absolute Ethanol 4x5mins 

Dehydrated samples were then given four washes of five min each with 

propylene oxide and left on overnight incubation with propylene oxide/Epon812 

resin 1:1mix.  Samples were washed with Epon 812 resin several times the next 

day and were embedded in fresh Epon resin and polymerised at 60⁰C for up to 48 

hrs.  These specimens were ultrathin sectioned (60-70nm thickness) and were 

contrast stained in 2% methanolic uranyl acetate for 5 min and Reynolds lead 

citrate for another 5 min.  Images were captured by Ms. Margaret Mullin on a 

LEO912 AB transmission electron microscope (TEM).   
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2.10.3 Measurement of capsule thickness: 

Mean capsular thickness was calculated from measuring the completely extended 

capsular fibres at 3-7 points/bacterium in five bacteria. Measurements were 

taken using image processing software iTEM (Olympus Soft Imaging Solutions, 

Germany) on the areas where cell wall boundaries could be traced easily.  

2.10.4 Measurement of amount of capsule: 

To compare the effect of capsule switching on the amount of capsular 

polysaccharide,  amount of capsular polysaccharide was calculated with the help 

of semi-quantitative Stains-All assay using Stains-All stain (Sigma, UK) for 

detecting acidic polysaccharides (Hathaway et al., 2007; Hammerschmidt et al., 

2005).  Bacteria were cultured in BHI to OD600 0.3 and 0.6, 20μl was removed and 

diluted in PBS for plating and quantification.  Four ml culture was centrifuged at 

5000 x g for 10 min, washed twice with PBS and resuspended in 0.5 ml water.  

A solution was freshly prepared with 20 mg 1-ethyl-2 (3-(1-ethylnaphthho-(1,2-d) 

thiazolin-2-ylidene)-2 methylpropenyl) naphthho-(1,2-d) thiazolium bromide, 

60μl glacial acetic acid and 100 ml 50% formamide and 2ml was added to sample 

and OD640 was determined.  Two ml Stains-All solution was used as a blank. 

Values for 109 cfu were calculated from obtained readings. 

2.10.5 Transformation efficiency: 

To compare the effect of capsule switching on the transformability of 

pneumococci, transformation efficiency was calculated by transforming similar 

number of bacteria under similar growth conditions with 200ng plasmid 
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pVA838/ml and selecting for development of erythromycin resistance.  

Experiment was repeated five times and total colonies were used to calculate 

number of colonies/ng of plasmid DNA. 

2.10.6 Chain formation in selected strains: 

To study the effect of different capsules on bacterial chain formation, number of 

bacteria associating in particular types of chains was calculated.  For counting 

number of bacteria associated to form a particular type of chain, all bacteria in 

chains in phase were counted in ten fields at early, mid and late log phase.  

These chains were broadly classified in three groups short (2-4), medium length 

(5-10) and long chains (11+).  Since there was no major difference in three 

different growth phases except for increase in total bacterial count, only early 

log phase readings were considered for statistical analysis.    

2.11 Mouse infection studies 

2.11.1 Mice 

Animal experiments were performed in 6-8 weeks old out-bred MF1 mice 

obtained from Harlan Olac (UK).  Experiments were performed according to the 

UK Animals Act 1986 (Scientific Procedures Act) under Home Office project and 

personal license, approval was taken from the University of Glasgow Ethics 

Committee.  Mice were acclimatized for one week before the procedure and 

were housed at 20-22ºC with a 12h light/dark cycle.  Mice were challenged at 

16-18 weeks of age.  
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2.11.2 Preparation of standard inocula: 

Single colonies of S. pneumoniae serotype 4 strain TIGR4, serotype 3 strains Xen 

10 A66.1 and OXC141, and serotype 8 strain ATCC6308 were grown up to mid-log 

phase in BHI and I ml aliquots were stored in 10% glycerol at -80ºC.  After 24 hrs, 

viable counts were performed and 5x106 cfu/200µl were injected 

intraperitoneally (IP) into an MF1 mouse, which was sacrificed after 6 hrs under 

general anaesthesia by terminal exsanguination via cardiac puncture.  Blood was 

incubated overnight in 20 ml BHI at 37ºC and plated onto BAB plates to check 

sterility.   

To prepare standard inocula, a 1:50 dilution of overnight culture was grown at 

37ºC to an OD600nm 0.6, inoculated in pre-warmed BHI containing 15% fetal calf 

serum (FCS) and frozen at -80ºC in cryovials.  Cultures were checked for purity 

and cfu/ml in each culture was calculated using following method:  

After freezing for 24 hours, three vials for each strain were defrosted rapidly for 

2 min in a 37ºC water bath and were centrifuged for 5 min at 13000 x g at room 

temperature in a bench-top centrifuge. The supernatant was decanted and 

pellet was resuspended in 1ml PBS.  1:10 dilutions were made in sterile 

Dulbecco’s Phosphate Buffer Saline (DPBS) (Sigma-Aldrich, UK) in a round-

bottomed 96 well plate from 10-1 to 10-8.  Three spots of 20µl from each dilution 

were spotted onto BAB plates, which were divided into eight sectors and allowed 

to dry.  Plates were incubated overnight in a candle jar at 37ºC and sector where 

there were 10-70 colonies/20µl was used to calculate cfu/ml in following steps: 
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o The average is calculated in the first step: 

[(Spot 1) + (Spot 2) + (Spot 3)] /3 = average/60µl 

o Average/ml is calculated as:    

[average/60µl] x 50(cfu/ml) x dilution = average/ml 

2.11.3 Dose preparation of avirulent 403 strains: 

S. pneumoniae strain 403 was found to be avirulent in mice so glycerol stocks 

were used to immunize the mice.  Single colony was selected and grown up to 

mid-log phase in BHI and I ml aliquots were stored in 10% glycerol at -80ºC.  

After 24 hrs, viable counts were performed and cultures were streaked on BAB 

plates to check for purity and optochin sensitivity. Colony forming units/ml in 

each culture was calculated using previously described method.  

2.12 Vaccination of mice with 403 strains: 

2.12.1 Vaccination of mice with live 403 strains: 

Twelve week old MF1 mice were caged into group sizes of 10 and were bled from 

the lateral tail vein a day before immunization for obtaining baseline blood.  

Blood was then left overnight to clot at room temperature and was centrifuged 

the next morning at 13000 x g for 5 min. Serum was then stored in a fresh tube 

and was frozen at -80ºC.   
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For IN vaccination, mice were anaesthetised and vaccinated IN with 10µl across 

both nares either with sterile DPBS or 105 cfu of strain 403.  Three vaccinations 

were performed at fortnightly interval.  

For IP vaccination, mice were anaesthetized and vaccinated IP with 10µl into the 

peritoneal cavity either with sterile DPBS or 105 live 403 strains. Three 

vaccinations were performed at fortnightly intervals.  

Bleeds were taken and mice were left for a further fortnight before challenge 

with the virulent strains.   

2.12.2 Challenge of mice with virulent pneumococcal strains: 

Mice wer challenged with strains TIGR4, ATCC6308 and A66.1 Xen 10 to assess 

the protection provided by the vaccination.  Mice were also challenged with the 

capsule donor and capsule switch strains OXC141, D39, TIGR42, TIGR43, TIGR48, 

P1702 and D398 to assess the effect of capsule switching on the virulence of 

these strains.  Mice were inoculated and bled by Dr. Kirsty Ross, Dr. Carol 

McInally and Mr. Ryan Ritchie. 

Standard inocula were thawed and a dose was prepared right before challenging 

mice by diluting in sterile DPBS.  Viable counts were assessed just before and 

after the challenge and compared to ensure that number of viable inoculum 

counts remained the same during challenge and whether the correct dose was 

given. 
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2.12.2.1 Intranasal challenge: 

Mice were anaesthetized with 3.5% isofluorane/1.5% oxygen (1.5 litre/min) 

(Astra-Zeneca, UK) until loss of limb movement reflex.  Mice were challenged IN 

with required dose in 50µl of sterile DPBS and 25µl was administered to each 

nare.  Mice were then relocated to their cages and were left to recover in 

ventral position within their cage.  

2.12.2.2 Intraperitoneal challenge: 

IP challenge with the virulent pneumococcal strains was carried out by scuffing 

the mice at neck and administration of injection with the specific dose in 200µl 

of sterile DPBS into the peritoneal cavity.  

2.12.3 Imaging with bioluminescent strains: 

Imaging was performed by Dr. Kirsty Ross and Mr. Ryan Ritchie.  Mice challenged 

with bioluminescent strain Xen 35 A66.1 were anaesthetised and positioned 

within IVIS Spectrum (IVIS: Caliper Life Sciences, UK) imaging chamber inside 

masks with a constant flow of anaesthetic. Living Image® 3.1 software (Caliper 

Life Sciences, UK) was used for image acquisition.  Mice were exposed for five 

min before acquisition of initial bioluminescent images on large binning and field 

of view, which were kept consistent in all figures. Further images were taken 

with adjusted settings in case if there were saturated pixels in the regions of 

interest.  
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2.12.4 Retrieval of blood for viable counts from infected mice: 

After each challenge with the virulent strain, mice were bled from the tail vein 

at 6 hourly intervals post infection (hpi) to monitor development of bacteræmia 

and progression of infection. Blood samples were promptly diluted in sterile 

DPBS to prevent clotting.   

2.12.5 Plating of the blood for viable counts:   

Blood samples were immediately plated on BAB plates and counted the next day. 

For the purpose of statistical analysis, samples below detection limits were 

ascribed value just beneath the limits of detection, which depends upon the 

number of spots and the dilution factor. As 1 cfu from three spots of dilution 10-1 

equals 166.6 cfu/ml or log10 2.22, or 1 cfu from three spots of neat dilution 

equals 16.6 cfu/ml or log10 1.22 therefore the cfu/ml of blood is plotted as a log 

value with a detection limit of 2.2. 

2.12.6 Survival assessment and management of clinical 

symptoms during infection: 

For assessment of progression of disease, a clinical scoring system is utilized in 

our lab instead of taking death as end point.  It consists of monitoring for 

hunching, lethargy and piloerection.  On reaching a point where an animal 

doesn’t move when encouraged, it is considered moribund and is humanely 

culled using a Schedule 1 method.  Animals are also culled if they lose 20% of 

their body weight during the course of the infection. If an animal dies between 

the two readings, survival time is calculated as intermediate time between the 
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two time points, when animal was last scored and the time it was found dead to 

approximate time when animal became moribund.  

2.13 Western blots: 

TIGR4 whole cell lysate was prepared by growing bacteria to OD600 0.6 in a 30 ml 

culture and sonicating after 2x centrifugation and washing with PBS. Loading 

buffer was added to samples, and were incubated at 70⁰C for 10 min.  Precast 

gels (Invitrogen, UK) were used to run the samples. Running tank was filled with 

MES running buffer and 13 μl of sample + 2 μl of marker was added to the gel 

tank and was then run for 1 hr at 150V.  Gels were equilibrated in transfer buffer 

and run with 100 μl antioxidant at 100V for 1 hour to transfer to Hybond-C 

nitrocellulose membrane (Amersham Biosciences, UK). They were blocked 

overnight in 3% skimmed milk in 0.25mM Tris-NaCl (pH 7.4) with shaking 

overnight and then incubated for 2 hrs with shaking in 3% skimmed milk at 37ºC 

with 1:100 mouse sera.   Membranes were rinsed 3x in 0.25mM Tris-NaCl (pH 

7.4), incubated in 3% skimmed milk with 1:1000 HRP-linked secondary anti-

mouse IgG (Amersham Biosciences, UK) and washed 4x with 0.25mM Tris-NaCl 

and developed by placing in 4-Chloro-1- naphthol developing solution. Distilled 

water was used to stop the reaction.  
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2.14 Genome sequencing, microarrays and bioinformatic 

and statistical analysis: 

2.14.1 Complete genome sequencing: 

Whole genome sequencing of strain 403 was carried at The Sir Henry Wellcome 

Functional Genomics Facility, University of Glasgow by Dr. Pawel Herzyk and Ms. 

Julie Galbraith using Illumina® genome analyzer and paired end-sequencing 

method was used.  Using CLC Bio® Genomics Workbench, genomic alignments 

were performed by Dr. Andrea Mitchell between complete genome sequence of 

TIGR4 strain and consensus sequence, which was generated for strain 403.    

2.14.2 Microarray experiments: 

2.14.2.1 RNA extraction: 

Bacteria were grown in 15ml BHI at 37°C until an OD600 0.6 was reached.  Purity 

of culture was checked by aseptically streaking 10µl on to 5% blood agar and 

incubating overnight at 37°C.  Ten ml of culture was centrifuged at 5027 x g for 

5 min at room temperature in 15 ml centrifuge tubes.  The supernatant was 

discarded and pellet was frozen in liquid nitrogen immediately and stored at -

80°C.  For extraction, lysozyme TE buffer was prepared freshly using 10µl 1M 

Tris HCl (pH8.0) (Ambion/Applied  Biosystems,  UK ),  2µl  of  0.5M  EDTA  

(pH8.0)(Ambion/Applied Biosystems, United Kingdom) and 15mg of lysozyme  

(Sigma-Aldrich, UK)  in 1ml of nuclease free water (Ambion/Applied 

Biosystems,UK).  Two hundred µl of buffer (15 mg/ml) was added to the pellet 

and vortexed for 10 sec in a rotamixer (Hook and Tucker Instruments, UK) and 



   68 

incubated at room temperature.  Samples were incubated for 15 min and 

vortexed for 10 sec every 2 min.  Extraction was carried out using a Qiagen 

RNeasy Mini Kit (Qiagen, UK) according to manufacturer’s protocol. Five µl of the 

extract was separated for quality assessment on Agilent 2100 bioanalyser 

(Agilent Technologies, UK).  An integrity number above 9 was set as an indicator 

of high enough quality.  Quantification was performed using Nanodrop ND-1000 

spectrophotometer (Agilent Technologies, UK).  Remaining RNA was stored at -

80°C  

2.14.2.2 Microarray analysis of RNA from Strain 403:  

Expression experiments on strain 403 were performed in triplicates by Dr. Jenny 

Herbert (different broth cultures grown to mid log phase) by hybridizing 403 RNA 

against RNA from TIGR4 grown to mid-log phase.  Reactions were performed as 

per manufacturer’s protocols.  One Cy3 and one Cy5 labeled cDNA sample (2-

10µg) was prepared for each microarray by incubating at 70°C for 10 min with 

1µl random primers (Invitrogen, UK) and made up to 11µl with nuclease free 

water (Ambion/ Applied Biosciences, UK).  Samples were snap cooled on ice and 

centrifuged.  Hundred mM dithiothritol (DTT) 2.5µl, 5xFirst strand buffer 

(Invitrogen, UK) 5µl, dNTPs (containing 5mM dATP, 5mM dGTP, 5mM dTTP  and 

2mM  dCTP) 2.3µl,  Cy3  or  Cy5  dCTP  (GE  Healthcare,  UK)  1.7µl  and 200U/µl 

SuperScript II (Invitrogen, UK) 2.5µl  were added to each sample from TIGR4 and 

403 and solution was then incubated for 10 min in dark at 25°C and then at 42°C 

for 90 min in a Techegene thermal cycler (Bibby Scientific, UK). 

Prehybridization  solution (20 x Standard Saline Citrate (SSC)  (Ambion/Applied  

Biosciences,  UK) 8.75 ml,  20%  SDS  (Ambion/Applied  Biosciences,  UK) 250µl, 

100mg/ml bovine serum albumin (Sigma-Aldrich, UK) 5ml  and sterile double 
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distilled water (to make up 50ml)  was preheated  to  65°C and samples were 

soaked in  a  Coplin  jar  (Fisher  Scientific,  UK)  for  20  min  and placed in a 

Techne Hybridizer HB-1D (Bibby Scientific, UK).   Prehybridized arrays were 

washed for 1 minute with 400ml double distilled water and then with 400ml 

propan-2-ol (VWR International, USA) for another minute. Each array was 

centrifuged for 5 min at 1200 x g then stored in a box.   

Labelled samples were combined into a Qiagen mini-elute purification column 

(Qiagen, UK) and eluted according to manufacturer’s protocol.  14.9 µl of 

Cy3/Cy5 labelled sample was combined with 4.6µl of 20xSSC and 3.5µl of 2% SDS 

and the solution was heated at 95°C for 2 min in a Techegene thermal cycler 

(Bibby Scientific, Uk).  Arrays were covered by lifter slips (Erie Scientific 

Company, USA), and DNA samples were pipetted under, and array slides were 

then carefully placed into hybridization cassette, sealed and then incubated in 

water in dark at 65oC for 20 hrs in  a Techne-Hybridiser HB-1D (Techne, USA). 

After hybridization was complete, slides were first washed with shaking in a pre-

heated (65oC) buffer solution (1xSSC buffer, 0.05% SDS,) for 2 min and then again 

with a second buffer solution (0.06xSSC buffer) for 4 min followed by 

centrifugation at 800 x g for 5 min.   

2.14.2.3 Normalization for analysis of RNA expression: 

The arrays were scanned with ScanArray Express ™ (Packard Biosciences Biochip 

Technologies, USA) and generated TIFF images were entered into Bluefuse 

(BlueGnome Ltd , UK) for Microarrays 3.5 © BlueGnome Ltd using Channel 1 for 

Cy3 labelled image and Channel 2 for Cy5 labelled image.  Gridmap files were 

obtained from Bacterial Microarray Group at St George’s (BUG@S). Unreliable 
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results with a confidence estimate < 0.1 due to poor hybridization were 

excluded.  

Normalization  was  performed  by  importing  the  Output_fused.xls  files  into  

Genespring  GX 7.3.1  (Agilent  Technologies,  USA)  for  triplicate samples.  Dye 

swap procedure was not used.  Data generated by Genespring GX 7.3.1(Agilent 

Technologies, USA) was statistically analyzed using ANOVA.  Gene lists were then 

imported into Microsoft Office Excel, (Microsoft, UK) for comparison. 

2.14.3 Bioinformatics and statistical analysis: 

All bioinformatics work including genome comparison and primer designs were 

performed using CLC Bio® Genomics Workbench.  Sequence searches were 

performed using search engines from Kyoto Encyclopedia for genes and genomes 

(KEGG) (http://www.genome.jp/kegg), National Center for Biotechnology 

Information (NCBI) (http://www.blast.ncbi.nlm.nih.gov/Blast.cgi) and The 

comprehensive microbial resource (CMR) (cmr.jcvi.org). 

All statistical analysis was performed in Graph Pad prism. (GraphPad Prism 4.0, 

USA). 

 

 

 



   71 

3 Construction of capsular switch mutants:        

Pneumococcal capsule is an important virulence factor and is necessary for 

invasion and pathogenesis.  It protects pneumococcus from the host immune 

system by multiple mechanisms including evasion of opsonins, inhibition of 

complement activity, protection from phagocytosis and provides resistance from 

killing after phagocytosis (Peppoloni et al., 2010; Hyams et al., 2010a; Melin et 

al., 2010). It is electrostatically charged and helps them to avoid the mucosal 

clearance by electrostatic repulsion (Nelson et al., 2007).  It is a complex 

structure and is made up of multiple sugars bonded with each other to form a 

complete protective layer around the bacterial cell (Bentley et al., 2006).  

There are at least 93 known serotypes of pneumococcal capsule and it has been 

reported that pneumococci can switch between different serotypes under 

influence of environmental stress or therapeutic interventions (Golubchik et al., 

2012; Croucher et al., 2011; Brueggemann et al., 2007; Munoz et al., 1991; 

Coffey et al., 1991).  The above studies report natural capsular switching in a 

number of strains though enough data is not available to indicate whether 

capsular switching is a universal phenomenon or if only a few strains can switch 

capsules.  Many studies indicate that natural capsular switching events are not 

uncommon in the evolutionary history of pneumococcus.  A study analyzing 252 

isolates from Scotland reported frequent capsular switching by analyzing number 

of serotypes expressed by particular sequence types.  Many sequence types such 

as ST 311 (Serotypes 23, 23F, 3 and 9V), ST199 (Serotypes 15, 15B and 9A), ST66 

(Serotypes 9N, 9V), ST156 (Serotypes 14,9V and non-typable), ST113 (Serotypes 

11A, 18C and non-typable) were found to be expressing more than two 

serotypes, indicating capsular switching among these strains (Jefferies et al., 
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2004).  Another study in Finland, which analyzed 224 isolates from different 

cases in Finland also reported a number of sequence types such as  ST156 

(Serotypes 14,9V,19F), ST162 (9V,19F,14), ST199(15,19A,19F,35F) to be 

expressing more than two capsule types (Hanage et al., 2005). As many as nine 

different serotypes have been reported to be expressed by the multidrug 

resistant clone named Spain23F-1 including serotypes 6B, 9V, 14 19A, 19F, and 

23F, 3, 9N, and 15B. Another penicillin-resistant clone Spain 9V-3 was reported 

to be expressing serotypes 14, 9A,11 and 19 (Croucher et al., 2011; Porat et al., 

2006;  Mcgee et al., 2001).   A detailed study comprising of 240 isolates of 

Spanish 23F clone showed multiple capsule switching events, with one giving rise 

to whole sub-population of serotype 19A vaccine-escape mutants in the US 

(Croucher et al., 2011).  Similar findings have been reported in many other 

studies, which indicate that capsule switching is an important evolutionary 

phenomenon as it provides an important escape route from vaccines and other 

therapeutic interventions (Brueggemann et al., 2007; Sandgren et al., 2004;  

Porat et al., 2004; Ramirez & Tomasz, 1999; Nesin et al., 1998) as it can also be 

accompanied by acquisition of antibiotic resistance elements (Brueggemann et 

al., 2007) 

Analysis of the effects of capsule switching on pneumococcal biology in these 

naturally occurring mutants can be difficult and misleading due to the possibility 

of the presence of other unrelated genes as a result of acquisition of multiple 

genetic fragments.  To circumvent this issue, capsule switch mutants have been 

constructed, which remain isogenic except for the transformed capsule locus.  

These mutants have been used to study various aspects of pneumococcal 

biology.  Using the capsule switch mutants, it was reported by Battig and co-

workers that the pneumococcal capsule affects rate of growth in capsule switch 
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mutants (Battig et al., 2006; Sjostrom et al., 2006).  It has also been shown to 

affect pneumococcal virulence in a background-dependent manner by Kelly and 

co-workers (Kelly et al., 1994), while Sjostrom and co-workers showed that the 

capsular type is also related to colonization or invasion phenotype (Sjostrom et 

al., 2006).  

To study the capsular effects on pneumococcal biology, several studies have 

utilized capsule-switch mutants and reported various effects of capsule 

switching on the pneumococcal behaviour (Trzcinski et al., 2003; Kelly et al., 

1994), though data on virulence still remain deficient.  

To study role of capsule switching in pneumococcal virulence and other aspects 

of pneumococcal biology, mutants were constructed in three different 

backgrounds, the serotype 4 virulent strain TIGR4, serotype 2 virulent strain D39 

and the avirulent serotype 4 strain 403, expressing different capsule types.  

3.1 Janus intermediate strains: 

In this study capsule switch mutants were constructed using Janus technique 

(Sung et al., 2001), which has advantage of double selection over previously 

used techniques of capsule knock out and capsule replacement  (Pearce et al., 

2002). It is a bicistronic cassette, which allows selection for its acquisition as 

well as removal and contains kanamycin resistance gene aphIII and streptomycin 

sensitivity gene rpsL as discussed in Section 2.1.2.   
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The cassette was amplified and flanked with fragments of genes dexB and aliA, 

from S. pneumoniae strain R6, so that it can be used to knock out capsule locus 

(Trzcinski et al., 2003).  In this study the cassette was obtained from the Janus 

strain kindly provided by Professor Mark Lipsitch and was used to construct 

capsule-knock out mutant in serotype 2 strain D39.  The transformation removed 

the type 2 cps locus that is 20kb in size and contains 17 genes as shown in Fig 

3.1.   

 

  

Figure 3.1. Schematic diagram of capsular locus of serotype 2 strain D39, which was 
replaced by Janus cassette. It is 20kb in length and contains 18 genes.  Janus cassette, 
which was used to knock out capsule locus, was designed with flanking genes dexB and 
aliA. . Figure constructed using CLC Genomics workbench (CLC Bio, Denmark) 

 

 

Streptomycin resistant type 2 strain D39S was constructed from D39 and was 

transformed with Janus cassette to obtain unencapsulated mutant D39J.  The 

insertion of the cassette knocked out 20kb cps locus of D39S as schematically 

shown in Fig 3.2.   

 

 



   75 

 

 

 

Figure  3.2.  Schematic diagram showing replacement of serotype 2 D39 capsule locus by 
Janus cassette.   

 

Other intermediate strains used for construction of capsule switching 403 Janus 

intermediate and TIGR4 Janus intermediate were kindly gifted by Professor Mark 

Lipsitch and Dr. Jeremy S. Brown respectively. 

3.2  Construction of capsule switch mutants 

Capsule switch mutants expressing serotype 2, 3 and 8 capsules were 

constructed in three different backgrounds.  These mutant strains and their 

intermediates constructed during the back crossing process are summarized in 

Tables 3.1, 3.2 and 3.3.    
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Table 3.1. Capsular switch mutants in TIGR4 background. 

 

Strains Description 

 

TIGR4
2
o TIGR4j derivative of kan-rpsL+ ::cps2 by transformation with D39 chromosomal DNA. Km

s
 Sm

r
. 

 

TIGR4
2
1x TIGR4j derivative of kan-rpsL+ ::cps2 by transformation with TIGR4

2
o chromosomal DNA. Km

s
 Sm

r
. 1x backcross transformant. 

 

TIGR4
2
 2x TIGR4j derivative of kan-rpsL+ ::cps2 by transformation with TIGR4

2
1x chromosomal DNA. Km

s
 Sm

r
. 2x backcross transformant. 

TIGR4
2
 3x TIGR4j derivative of kan-rpsL+ ::cps2 by transformation with TIGR4

2
2x chromosomal DNA. Km

s
 Sm

r
. 3x backcross transformant. 

TIGR4
3
o TIGR4j derivative of kan-rpsL+ ::cps3 by transformation with OXC141 chromosomal DNA. Km

s
 Sm

r
. 

 

TIGR4
3
1x TIGR4j derivative of kan-rpsL+ ::cps3 by transformation with TIGR4

3
o chromosomal DNA. Km

s
 Sm

r
. 1x backcross transformant. 

 

TIGR4
3
 2x TIGR4j derivative of kan-rpsL+ ::cps3 by transformation with TIGR4

3
1x chromosomal DNA. Km

s
 Sm

r
. 2x backcross transformant. 

TIGR4
3
 3x TIGR4j derivative of kan-rpsL+ ::cps3 by transformation with TIGR4

3
2x chromosomal DNA. Km

s
 Sm

r
. 3x backcross transformant. 

TIGR4
8
o TIGR4j derivative of kan-rpsL+ ::cps8 by transformation with ATCC6308 chromosomal DNA. Km

s
 Sm

r
. 

 

TIGR4
8
1x TIGR4j derivative of kan-rpsL+ ::cps8 by transformation with TIGR4

8
o chromosomal DNA. Km

s
 Sm

r
. 1x backcross transformant. 

 

TIGR4
8
 2x TIGR4j derivative of kan-rpsL+ ::cps8 by transformation with TIGR4

8
1x chromosomal DNA. Km

s
 Sm

r
. 2x backcross transformant. 

TIGR4
8
 3x TIGR4j derivative of kan-rpsL+ ::cps8 by transformation with TIGR4

8
2x chromosomal DNA. Km

s
 Sm

r
. 3x backcross transformant. 
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Table 3.2. Capsular switch mutants in D39 background. 
 Strains Description 

 

D39S D39 but Sm
r
 by transformation with streptomycin resistance cassette. Km

s
 Sm

r
 

D39j D39 but cps::kan-rpsL
+ 

Km
r
 Sm

s
 

D39
8
o D39j derivative of kan-rpsL+ ::cps8 by transformation with ATCC6308 chromosomal DNA. Km

s
 Sm

r
. 

 

D39
8
1x D39j derivative of kan-rpsL+ ::cps8 by transformation with D39

8
o chromosomal DNA. Km

s
 Sm

r
. 1x backcross transformant. 

 

D39
8
 2x D39j derivative of kan-rpsL+ ::cps8 by transformation with D39

8
1x chromosomal DNA. Km

s
 Sm

r
. 2x backcross transformant. 

D39
8
 3x D39j derivative of kan-rpsL+ ::cps8 by transformation with D39

8
2x chromosomal DNA. Km

s
 Sm

r
. 3x backcross transformant. 
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Table 3.3. Capsular switch mutants in 403 background. 
 Strains Description 

 

403
2
o 403j derivative of kan-rpsL+ ::cps2 by transformation with D39 chromosomal DNA. Km

s
 Sm

r
. 

 

403
2
1x 403j derivative of kan-rpsL+ ::cps2 by transformation with 403

2
ochromosomal DNA. Km

s
 Sm

r
. 1x backcross transformant. 

 

403
2
 2x 403j derivative of kan-rpsL+ ::cps2 by transformation with 403

2
1x chromosomal DNA. Km

s
 Sm

r
. 2x backcross transformant. 

403
2
 3x 403j derivative of kan-rpsL+ ::cps2 by transformation with 403

2
2x chromosomal DNA. Km

s
 Sm

r
. 3x backcross transformant. 

403
3
o 403j derivative of kan-rpsL+ ::cps3 by transformation with OXC141 chromosomal DNA. Km

s
 Sm

r
. 

 

403
3
1x 403j derivative of kan-rpsL+ ::cps3 by transformation with 403

3
o chromosomal DNA. Km

s
 Sm

r
. 1x backcross transformant. 

 

403
3
 2x 403j derivative of kan-rpsL+ ::cps3 by transformation with 403

3
1x chromosomal DNA. Km

s
 Sm

r
. 2x backcross transformant. 

403
3
 3x 403j derivative of kan-rpsL+ ::cps3 by transformation with 403

3
2x chromosomal DNA. Km

s
 Sm

r
. 3x backcross transformant. 

403
8
o 403j derivative of kan-rpsL+ ::cps8 by transformation with ATCC6308 chromosomal DNA. Km

s
 Sm

r
. 

 

403
8
1x 403j derivative of kan-rpsL+ ::cps8 by transformation with 403

8
o chromosomal DNA. Km

s
 Sm

r
. 1x backcross transformant. 

 

403
8
 2x 403j derivative of kan-rpsL+ ::cps8 by transformation with 403

8
1x chromosomal DNA. Km

s
 Sm

r
. 2x backcross transformant. 

403
8
 3x 403j derivative of kan-rpsL+ ::cps8 by transformation with 403

8
2x chromosomal DNA. Km

s
 Sm

r
. 3x backcross transformant. 
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The placement and the position of cps locus in mutants were confirmed in three 

steps. 

1. Redevelopment of kanamycin sensitivity with simultaneous reacquisition 

of streptomycin resistance. 

2. Quellung reaction and agglutination confirming the gain of particular 

capsule.  Agglutination is shown in Fig 3.3 

 

 

 

Figure 3.3. Agglutination reaction confirming presence of type 3 capsule in 403
3 
resulting 

from reaction with serotype 3 antiserum (Statens Serum Institute, Denmark). (A) Negative 
control showing 403

3
 in PBS. (B) Positive control showing serotype 3 mutant TIGR4

3
 mixed 

with antiserum. 



  
   80 

 

 

 

 

Figure 3.3. Agglutination reaction confirming presence of type 3 capsule in 403
3 

resulting 
from reaction with serotype 3 antiserum (Statens Serum Institute, Denmark). (C) Test strain 
403

3 
mixed with antiserum.  Micrograph taken by Zeiss Acroscope Microscope at 40x. 

 

 

3.  PCR to confirm the presence and position of the cps locus were 

performed on each side, with one primer in the flanking region and other 

serotype specific primer within the capsule locus as shown in Figure 3.4 A 

and B (Schematic diagram in Section 2.1.2). 
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Figure 3.4. (A) Gel photo of PCR amplification for confirmation of transformation of serotype 
8 capsule in D39 showing a 2.5 kbp PCR fragment amplified with primers TTM05 and 
cps2AR confirming the position and placement of the left flank.  
Lane 1: 1 kb ladder 
Lane 2: PCR fragment from capsule donor strain ATCC6308 genomic DNA amplified with 
primer pairs TTM05 (dexB) and cps2AR (wzg). 
Lane 3: PCR fragment from recipient strain D39

8
 genomic DNA amplified with primer pairs 

TTM05 (dexB) and cps2AR (wzg) confirming identity of left flank in donor and recipient 
strains. 
Lane 4:  Positive control pneumolysin. 
Lane 5:  Negative control with no DNA. 
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Figure 3.4. (B) Gel photo of PCR amplification for confirmation of the transformation of type 
2 capsule in 403 showing approximately 2 kbp PCR fragment amplified with primers TTM06 
and rmlDF confirming position and placement of right flank along with confirmation of 
serotype.  
Lane 1: 1 kb ladder 
Lane 2: PCR fragment from capsule donor strain D39 genomic DNA amplified with primer 
pairs rmlDF (rmlD) present in serotype 2 capsule locus and TTM06 (aliA). 
Lane 3: PCR fragment from the recipient strain 403

2
 genomic DNA amplified with primer 

pairs rmlDF (rmlD) present in serotype 2 capsule locus and TTM06 (aliA). 
Lane 4:  Positive control pneumolysin 
Lane 5:  Negative control with no DNA. 

 

   

3.3 Capsule switch mutants:  

Capsular switch mutants were constructed in D39, TIGR4 and 403 to study 

effects of capsule switching on pneumococcal biology. 
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3.3.1 Type 2 capsule switch mutants: 

Type 2 capsule switch mutants were constructed in 403 and TIGR4 with genomic 

DNA extracted from D39.  The position of capsule was confirmed using primer 

sets as shown in Fig 3.5.    

 

  

Figure. 3.5. Schematic diagram of serotype 2 capsule locus.   The locus is approximately 
21kbp and consists of 17 genes.  Primers were designed to confirm presence and position 
of capsule along with the particular serotype.  

 

3.3.2 Type 3 capsule switch mutants: 

Type 3 capsule switch mutants were constructed in 403 and TIGR4 with genomic 

DNA extracted from OXC141.  These mutant forms large and mucoid colonies and 

could be identified with unaided eye (Fig 3.6). 
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Figure 3.6. Comparison of colony morphology 403,403
3 
and OXC141 grown on BAB plates 

supplemented with 5% Horse blood.   (A) 403
3 
(B) 403 (C) OXC141 
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Position of capsule was confirmed using primer sets as shown in Fig 3.7. 

 

Figure. 3.7. Schematic diagram of serotype 3 capsule locus.  The locus is 10 kbp and 
consists of 9 genes.  Primers were designed to confirm presence and position of capsule 
along with serotype 

 

3.3.3 TIGR4 type 8 capsular switch mutants: 

Type 8 capsule switch mutants were constructed in 403, TIGR4 and D39 using 

genomic DNA from serotype 8 strain ATCC6308.  These mutants also formed 

mucoid colonies and could be identified with unaided eye.  The capsule position 

was confirmed using serotype primer sets as shown in Fig 3.8.   

 

Figure 3.8. Schematic diagram of serotype 8 capsule locus.  The locus is 14 kbp and 
consists of 14 genes.  Primers were designed to confirm presence and position of capsule 
along with serotype. 
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All type 8 mutants were observed to be forming longer chains as compared to 

parent strains as shown in Fig 3.9. 

 

Figure  3.9. Micrographs of strains associating in chains. (A) D39 diplococci (B) D39
8
 long 

chains (C) ATCC6308 long chains.  Micrograph taken with Zeiss Acroscope Microscope at 
40x. 
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These capsule switch mutants were used in a number of downstream 

experiments to study effect of capsule switching on various in vitro and in vivo 

pneumococcal characteristics.  

 

3.4 Discussion: 

Capsular switching has an important role in pneumococcal pathogenesis as it 

provides an opportunity for them to escape from effects of vaccines, which 

specifically target pneumococcal capsules.  Capsular switching events have been 

reported to occur in several studies as a result of environmental stresses 

(Croucher et al., 2011; Brueggemann et al., 2007). These events are among 

countless transformations, which occur in pneumococci and contribute towards 

their diversity.  Pneumococci may acquire other genes along with the capsule 

genes that may contribute to a particular phenotype (Croucher et al., 2011; 

Brueggemann et al., 2007).  Because of the possibility of the presence of 

multiple genetic fragments, analysis of capsule switching and its effects on 

pneumococcal biology in naturally occurring capsule switch mutants may be 

misleading, as otherwise otherwise isogenic mutants are required to study the 

effects of capsule switching.  These mutants were constructed with or without 

using Janus technique, within the same and different genetic backgrounds and 

their variation in growth, colonization and virulence was studied (Trzcinski et 

al., 2004; Kelly et al., 1994).  One of the studies reported that the type of 

capsule and genetic background both are important for pathogenesis and 

capsular switching may or not increase pathogenicity of the organism, though 
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the study was done in different genetic backgrounds (Kelly et al., 1994).  

Another study showed that type of capsule affects the rate of growth and 

capsule switch mutants could colonize mouse nasopharynx but did not describe 

the effects of capsule switching on virulence (Trzcinski et al., 2003).   

Available literature also shows that naturally occurring capsule switching is more 

frequently reported for certain sequence types while a lot of others show more 

stable populations (Hanage et al., 2005; Jefferies et al., 2004).  It is not clear 

whether capsule switching is only limited to certain clones or if it is a more 

widespread phenomenon.  There is a possibility that switching capsule to certain 

types could grossly affect phenotype and reduce virulence, which might limit its 

spread and further propagation in the population as correlation of capsule type 

with in vitro growth rate has been reported, which itself is related to property 

of the strains being carriage or invasive (Battig et al., 2006)  

To study these processes in detail capsular switch mutants were constructed in 

three different back grounds, which could be compared with one another for a 

number of in vivo and in vitro characteristics and possible use as a live 

attenuated vaccine.   

Though characterization of these mutants is discussed in the next chapter in 

detail some striking differences were observed in the mutants expressing 

different capsular types.  All the serotype 8 mutants, regardless of their genetic 

background were found to be associating in long chains of about 20 

pneumococci.  This behaviour was similar to the capsule donor strain ATCC6308, 

which tends to form long chains and is a highly virulent strain.  Long chains have 

been associated with certain mutations (Barendt et al., 2009) and have been 

reported to favour colonization (Rodriguez et al., 2012).  It has also been 
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reported that pneumococci and other streptococci form very long chains when 

they are grown in immune serum (Ekstedt & Stollerman, 1960) and shorter chains 

are more suitable for invasive phenotype (Dalia et al., 2012).  Though the chain 

length might have an association with the invasiveness of strains but the in vivo 

behaviour has not been reported in the literature. 

Another remarkable feature was noted in TIGR42, which formed colonies which 

resembled unencapsulated pneumococci.  There is a possibility that due to the 

difference in the biochemical structure of serotype 2 and serotype 4 capsules 

TIGR42 is unable to sythesize enough capsular polysaccharide. 

TIGR43 and 4033 were found to phenotypically similar to their capsule donor 

strains OXC141, as compare to the parent strains, which might be due to the 

simple structure of serotype 3 capsule and relatively short cps locus of only 

10kb.  There is a possibility that it can be easily incorporated in other serotypes 

but it has been reported to affect different serotype backgrounds differently as 

Kelly and co-workers reported it to be detrimental to the serotype 5 and 

serotype 6B strains while Nesin and co-workers observed it to be beneficial for 

serotype 23F as it increased the virulence of the recipient strain. 

The effect of capsule switching on pneumococcal biology can be found in the 

following chapter which also includes a detailed discussion on capsule switch 

mutants previously used in different experiments.   
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4 Effect of capsule on pneumococcal biology 

The capsule is an important virulence factor for pneumococci. It has at least 93 

serotypes, which are structurally different from each other (Calix & Nahm, 2010; 

Park et al., 2007; Bentley et al., 2006).  Pneumococci have the ability to switch 

their capsule, which is clinically important as it may result in failure of current 

pneumococcal vaccines that target the polysaccharide capsule.  The biological 

process of capsule switching is not understood very clearly as it is not known if 

capsule switching is a universal phenomenon or if it can occur only with certain 

serotypes and certain genetic backgrounds and whether all genetic backgrounds 

can express all types of capsules.  To study effects of capsule switching on 

pneumococcal biology, experiments were performed to observe effects of 

different capsules on same and different genetic backgrounds. 

4.1 Effect of capsule switching on pneumococcal growth:   

Pneumococcal growth in vitro, especially length of lag phase, has been observed 

to be associated not only with capsule serotype but also with the virulence of 

pneumococcal strains (Battig et al., 2006).  Capsule type has been reported to 

affect pneumococcal growth (Hathaway et al., 2012), while deletion of capsule 

genes have also been reported to extend duration of lag phase of growth in vitro 

(Battig & Muhlemann, 2007).  Capsule switch mutants were studied for effect of 

different capsules in isogenic backgrounds TIGR4 and 403 by using viable counts 

as indicator of growth and no differences were found in the duration of lag phase 

of parent strains and capsule switch mutants (Fig4.1).   
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Figure 4.1 Length of lag phase of capsule switch mutants measured by viable counts using 
three replicate experiments under identical conditions starting with 10

5 
cfu.  Red arrow 

marks the end of lag phase in growth curve. Growth curves plotted in Graph pad Prism 
(GraphPad Prism 4.0, USA). 
(A) Similar duration of lag phase in serotype 4 virulent strain TIGR4 and its capsule switch 
mutants. 
TIGR4

2
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 2 capsule

 

TIGR4
3
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 3 capsule 

TIGR4
8
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 8 capsule 
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The statistical analysis of the slopes of growth curves also did not show any 

difference in the log phase of growth between capsule switch mutants and TIGR4 

as summarized in Table 4.1. 

Table 4.1.  Linear Regression analysis of the slope of the curve during the log phase of growth in 

TIGR4 and the capsule switch strains 

Strain Slope 

10
8
 

95% confidence 

interval 

10
8
 

P values versus 

TIGR4 

TIGR4 6.11 2.03-10.2  

TIGR4
2
 6.18 2.66-9.69 0.5216 

TIGR4
3
 5.94 2.34-9.55 0.8995 

TIGR4 
8
 7.08 4.93-9.22 0.4459 

 P1672 5.42 3.14-7.69 0.5932 

 
Analysis performed with GraphPad Prism 4.0, USA) 
TIGR4: Virulent type 4 strain 
TIGR4

2
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 2 capsule.

 

TIGR4
3
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 3 capsule. 

TIGR4
8
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 8 capsule. 

P1672: Unencapsulated TIGR4   

 

The extension of lag phase with deletion of capsule, as has been reported for 

strain D39 (Battig & Muhlemann, 2007) was also not seen in case of capsule 

knock out strain of TIGR4 (P1672).  Comparison of un-encapsulated TIGR4 

retransformed with serotype 4 capsule (P1702) also did not show any difference 

in growth pattern of the two strains (Fig4.2). 
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Figure 4.2 Comparison of the length of lag phase of capsule in TIGR4, unencapsulated 
TIGR4 (P1672) and TIGR4 retransformed with serotype 4 capsule. Curves were plotted using 
viable counts. Red arrow shows end of lag phase.  Data were plotted in Graph Pad Prism. 
(GraphPad Prism 4.0, USA). 

 

4.2 Effect of capsule switching on capsule-thickness: 

TIGR4, D39 and their capsule switch mutants were studied under electron 

microscope Leo 912AB (Leo, USA) to observe structural details of capsules of 

parent strains and their capsule switch mutants. Electron micrographs are shown 

in Fig 4.3. 
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Figure 4.3. Transmission Electron micrographs showing capsule switch, capsule donor and 
unencapsulated strains obtained with electron microscope Leo 912AB (Leo, USA).  
(A) Serotype 4 virulent strain TIGR4.  
(B) Serotype 2 virulent strain D39   
(C) Serotype 3 virulent strain OXC141  
(D) Serotype 8 virulent strain ATCC6308 
(E)  TIGR4 retransformed with serotype 4 capsule P1702  
(F)TIGR4

2
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 2 capsule.

 

(G) TIGR4
3
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 3 

capsule.
 

(H) TIGR4
8
: Otherwise isogenic TIGR4 capsule switch mutant expressing serotype 8 

capsule.
 

(I)P1672:  Capsule knock out strain TIGR4. 
(J) D39j: Capsule knock out strain D39. 
(K) D39

8
: Otherwise isogenic D39 capsule switch mutant expressing serotype 8 capsule. 

 

TIGR4 strain retransformed with serotype 4 capsule (P1702) was used as positive 

control to see if switching capsule and replacing it back with same type of 

capsule has any effect on pneumococcal capsule formation, while capsule knock 

out strains from D39 and TIGR4 were used as negative controls.   

K 
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Mean capsular thickness was calculated from measuring completely extended 

capsular fibres at 3-7 points/bacterium in five bacteria. Measurements were 

taken using image processing software iTEM (Olympus Soft Imaging Solutions, 

Germany) on areas where cell wall boundaries could be traced easily. 

Measurements taken on TIGR4 and P1702 showed that thickness of type 4 

capsule was the same as P1702 and there was no significant difference between 

them (Fig 4.4). 

 

Figure 4.4. Comparison of measurements of capsule thickness in virulent type 4 strain 
TIGR4 and TIGR4 retransformed with serotype 4 capsule P1702. Data plotted as a bar graph.  
Bars represent the mean ± SEM.  Unpaired t-test showed (GraphPad Prism 4.0, USA) that 
there was no significant difference in capsular thickness in TIGR4 and P1702. (Number of 
measurements TIGR4=29, P1702= 25)    
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TIGR4 expressing serotype 2 capsule showed significantly reduced capsule, which 

was thinner than both capsule donor serotype 2 strain D39 and parent TIGR4.  It 

was also compared with capsule knock out strain P1672 to see whether capsule 

formation was taking place or not, which showed some capsule formation in 

TIGR42 (Fig 4.5). 

 

Figure 4.5. Comparison of the measurements of capsular thickness in serotype 4 virulent 
strain TIGR4, serotype 2 virulent strain D39, Capsule knock-out P1672 and otherwise 
isogenic TIGR4 expressing serotype 2 capsule TIGR4

2
. Data plotted as a bar graph.  Bars 

represent mean ± SEM.  Unpaired t-test showed (GraphPad Prism 4.0, USA) that TIGR4
2
 

capsule was significantly thinner than TIGR4 (p<.0001) and D39 (p<.0001) while was 
significantly thicker than the unencapsulated strain P1672 (p<.0003). (Number of 
measurements TIGR4=29, D39=14, P1672=19 TIGR4

2
=28)    
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TIGR4 expressing serotype 3 and serotype 8 capsules also formed reduced 

capsules which were thinner than both parent and capsule donors (Fig 4.6).   

 

 

 

 

 

 

 

Figure 4.6. (A) Comparison of measurements of capsular thickness in serotype 4 virulent 
strain TIGR4, capsule donor and otherwise isogenic mutant strains. Comparison of capsular 
thickness in TIGR4, serotype 3 virulent strain OXC141 and otherwise isogenic TIGR4 
expressing serotype 3 capsule TIGR4

3
. Unpaired t-test showed (GraphPad Prism 4.0, USA) 

significant difference (p<.0001) while comparing TIGR4
3
 with TIGR4 and TIGR4

3
 with 

OXC141. (Number of measurements TIGR4=29, TIGR4
3
=40, OXC141=11) 
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Figure 4.6. (B) Comparison of measurements of capsular thickness in serotype 4 virulent 
strain TIGR4, capsule donor and otherwise isogenic mutant strains. Comparison of capsular 
thickness in TIGR4, serotype 8 virulent strain ATCC6308 and otherwise isogenic TIGR4 
expressing type 8 capsule TIGR4

8
.  Unpaired t-test (GraphPad Prism 4.0, USA) showed 

significant difference (p<.0001) while comparing TIGR4
8
 with TIGR4 and and TIGR4

8
 with 

ATCC6308. Data plotted as bar graphs.  Bars represent the mean ± SEM. (Number of 
measurements TIGR4=29, TIGR4

8
=40, ATCC6308=23) 

  

 

When type 8 capsule was expressed in a D39 background it was observed that 

thickness of serotype 8 capsule being expressed in serotype 2 background was 

same as compared with the capsule donor strain ATCC 6308 (Fig 4.7). 
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Figure 4.7. Comparison of measurements of capsular thickness in serotype 2 virulent strain 
D39, serotype 8 virulent strain ATCC6308 and otherwise isogenic D39 expressing serotype 8 
capsule D39

8
. Unpaired t-test showed (GraphPad Prism 4.0, USA) no significant difference 

between the capsular thickness of D39
8 

when compared with D39 and ATCC6308. Data 
plotted as bar graphs.  Bars represent the mean ± SEM.  (Number of measurements 
TIGR4=29, D39

8
=19, ATCC6308=23) 
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On comparison of thickness of serotype 8 capsule in different backgrounds, it 

was observed that serotype 8 was thicker in D39 background as compared to 

TIGR4 background (Fig 4.8). 

 

Figure 4.8. Comparison of measurements of capsular thickness in otherwise isogenic TIGR4 
expressing serotype 8 capsule TIGR4

8
, otherwise isogenic D39 expressing serotype 8 

capsule D39
8
 and serotype 8 virulent strain ATCC6308.  In

 
D39

8
, the capsule is much thicker 

than TIGR4
8
.  Unpaired t-test showed (GraphPad Prism 4.0, USA) significant difference 

(p<.0001) between capsule thickness of D39
8 

when compared with TIGR4
8
.  Data plotted as 

bar graphs.  Bars represent the mean ± SEM.  (Number of measurements TIGR4
8
=40, 

D39
8
=19, ATCC6308=23) 
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4.3 Capsular polysaccharide in capsule switch strains: 

Semi-quantitative Stains-All Assay was performed with Stains-All (Sigma-Aldrich, 

UK) and relative amount of capsular polysaccharide was measured.  Calculated 

value for 109 cfu showed significant differences in capsule formation in different 

capsule switch strains.  

It was observed that there was no difference in TIGR4 and TIGR4 strain replaced 

with type 4 capsule (Fig 4.9).  

 

Figure 4.9. Comparison of measurements of capsular polysaccharide for 10
9 

cfu by Stains-
All Assay of virulent serotype 4 strain TIGR4 and TIGR4 replaced with serotype 4 capsule 
P1702 using 3 replicate experiments for each.  Unpaired t-test showed (GraphPad Prism 4.0, 
USA) no significant difference between the two strains. Data plotted as bar graphs.  Bars 
represent the mean ± SEM.   
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There was significant difference between TIGR4 and TIGR42 while no detectable 

difference was observed in TIGR4 and its mutants expressing serotype 3 and 

serotype 8 capsules (Fig 4.10). 

 

Figure 4.10. Comparison of measurements of capsular polysaccharide for 10
9 

cfu by Stains-
All Assay in TIGR4 and capsule switch strains. otherwise isogenic TIGR4 strain expressing 
serotype 2 capsule TIGR4

2
, otherwise isogenic TIGR4 strain expressing serotype 3 capsule 

TIGR4
3
 and otherwise isogenic TIGR4 strain expressing type 8 capsule TIGR4

8
 using 3 

replicate experiments for each.  Unpaired t-test (GraphPad Prism 4.0, USA) shows 
significant difference (p<.005) between TIGR4 and TIGR4

2
.  Data plotted as bar graphs.  Bars 

represent mean ± SEM. 

 

On comparison of D39 and D398 it was observed that amount of capsular 

polysaccharide was significantly higher in D398 as compared to parent strain D39 

(Fig 4.11). 
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Figure 4.11. Comparison of measurements of capsular polysaccharide for 10
9 

cfu by Stains-
All Assay of virulent serotype 2 strain D39 and otherwise isogenic D39 expressing serotype 
8 capsule D39

8
 using 3 replicate experiments for each.  Unpaired t-test (GraphPad Prism 4.0, 

USA) shows significant difference between the two strains (p<.0001). Data plotted as bar 
graphs.  Bars represent the mean ± SEM.   
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4.4 Chain formation: 

It has been known for a very long time that S. pneumoniae is most commonly 

found in short chains and pairs. This phenomenon of chain formation has been 

studied in Group A streptococci and pneumococci for about half a century in the 

past and certain factors were reported to be affecting their chain length 

including temperature and pH (Ekstedt & Stollerman, 1960). Some pneumococcal 

and other streptococcal mutants have also been reported to be forming longer 

chains (Locke et al., 2007; Sanches-Puelles et al., 1986; Tomasz, 1968).  It has 

also been reported that growth in the presence of immune serum results in 

increase in chain length in different streptococcal groups (Stewardson-Krieger et 

al., 1977;Ekstedt & Stollerman, 1960). Relationship of longer chains with 

pneumcococcal virulence have also been described recently and it was shown 

that smaller chains are associated with increased virulence (Dalia & Weiser, 

2011). In capsule switch mutants it was noted that mutants expressing type 8 

capsule in TIGR4 and other backgrounds formed longer chains than TIGR4 itself. 

This phenomenon was observed in all serotype 8 strains, regardless of their 

virulence potential (Fig 4.12). 
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Figure 4.12. Chain formation in virulent serotype 4 strain TIGR4 and its otherwise isogenic 
capsule switch mutant expressing serotype 8 capsule TIGR4

8
.  TIGR4 organizes in smaller 

chains as compared to TIGR4
8
. Unpaired t-test (GraphPad Prism 4.0, USA) shows (A)  The 

number of bacteria forming short chains is significantly higher in TIGR4 (p<.0001).  (B)  
Number of bacteria forming medium sized chains is significantly higher in TIGR4

8 
(p<.0013).   

 
 
 
 

A 

B 
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Figure 4.12. Chain formation in virulent serotype 4 strain TIGR4 and its otherwise isogenic 
capsule switch mutant expressing serotype 8 capsule TIGR4

8
.  TIGR4 organizes in smaller 

chains as compared to TIGR4
8
. (C)  Number of bacteria associating in long chains is 

significantly higher in TIGR4
8 

(p<.0001). Data plotted as bar graphs.  Bars represent mean ± 
SEM. 
 
 
 
 
 
 

Similar behaviour was observed in D398 as D398 formed longer chains as 

compared to the parent strain D39, which tend to form short chains (Fig 4.13).  

4038  also showed the same behaviour (data not shown). 

 
 

 

C 
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Figure 4.13. Chain formation in serotype 2 virulent strain D39 and its capsule switch mutant 
expressing serotype 8 capsule D39

8
.  D39 organizes in smaller chains as compared to D39

8
. 

Unpaired t-test (GraphPad Prism 4.0, USA) shows (A)  Number of bacteria associating in 
short chains is significantly higher in D39 (p<.0001).  (B)  Number of bacteria associating in 
medium sized chains is significantly higher in D39

8 
(p<.0001).   
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Figure 4.13. Chain formation in serotype 2 virulent strain D39 and its capsule switch mutant 
expressing serotype 8 capsule D39

8
.  D39 organizes in smaller chains as compared to D39

8
. 

Unpaired t-test (GraphPad Prism 4.0, USA) shows (C) Number of bacteria associating in long 
chains is significantly higher in D39

8 
(p<.0001). Data plotted as bar graphs.  Bars represent  

mean ± SEM. 

 

 

On studying behaviour of parents it was observed that these strains 

phenotypically resemble serotype 8 strain ATCC6308, which formed longer chains 

as compared to shorter chains of D39 and TIGR4 (Fig 4.14). 
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Figure 4.14.  Percentage of bacteria organizing in different types of chains in parent strains.  
(A,B) Serotype 4 virulent strain TIGR4 and seroype 2 virulent D39 organize in smaller chains 
(C) Serotype 8 virulent strain ATCC6308 associates in medium and longer chains. Data 
plotted as bar graphs.   
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4.5 Transformation Efficiency: 

Pneumococci are naturally transformable bacteria and this transformability plays 

an important role in spread of antibiotic resistance, capsular switching and 

transfer of other important pathogenic factors.  Development of competence is a 

complex phenomenon involving multiple factors (Johnsborg & Havarstein, 2009) 

and develops for only a very short period during in vitro growth (Claverys et al., 

2006).  Although effect of antibiotics and stress (Johnsborg & Havarstein, 2009; 

Prudhomme et al., 2006; Claverys et al., 2006) is known to effect competence of 

pneumococci but no data is available on effect of capsule type or thickness on it 

though it can be assumed that capsule type, its charge, its thickness or density 

may have effects on bacterial competence due to physical hindrance. 

To study effects of capsular type, TIGR4 and its capsule switch mutants were 

compared for transformation efficiency using plasmid pVA838 and selecting for 

erythromycin resistance.    

Since capsule switching experiments involve selection for mutants which have 

been transformable and have picked up capsule genes, there is a chance that 

subset of population selected after three back-crosses is the most competent 

one as competence varies among the bacteria (Chen & Morrison, 1987), this 

method may lead to bias in results if the comparisons are made with parent 

TIGR4 instead of P1702 (TIGR4 backcrossed with type 4 capsule).  

To confirm the above assumption transformation assays were performed in TIGR4 

and P1702 and they were found to differ significantly from each other (Fig 4.15). 
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Figure 4.15. Comparison of transformation efficiency between serotype 4 virulent strain 
TIGR4 and TIGR4 retransformed with serotype 4 capsule P1702.  Unpaired t-test (GraphPad 
Prism 4.0, USA) showed significant difference between the two strains (p<.0001). Data 
plotted as bar graphs.  Bars represent mean ± SEM.   
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To study effects of capsule on transformation efficiency all comparisons were 

performed with P1702 strain (Fig 4.16).  

 

 

Figure 4.16. Comparison of transformation efficiency between virulent serotype 4 strain 
TIGR4, TIGR4 retransformed with serotype 4 capsule P1702, otherwise isogenic TIGR4 
expressing serotype 2 capsule TIGR4

2
, otherwise isogenic TIGR4 expressing serotype 3 

capsule TIGR4
3
 and otherwise isogenic TIGR4 expressing type 8 capsule TIGR4

8
.  Unpaired 

t-test (GraphPad Prism 4.0, USA) shows significant difference between P1702 and other 
capsule switch strains. TIGR4

2
 is significantly more transformable than P1702 (p<.03).  

While TIGR4
3
 and TIGR4

8
 are significantly less transformable than P1702 (p<.0001). Data 

plotted as bar graphs.  Bars represent the mean ± SEM.   

 

Correlation studies (GraphPad Prism 4.0, USA) showed that transformation 

efficiency in capsule switch mutants was not correlated with capsule thickness 

(Pearson’s R2 0.07, p = 0.72) or amount of capsule associated polysaccharide 

(Pearson’s R2 0.27, p = .48). 
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4.6 Virulence: 

To study virulence of capsule switch strains and to compare it with their 

parents, parent and capsule donor strains were initially tested in mouse models 

of intraperitoneal infection.  Infection studies with 105 cfu showed marked 

differences between four strains.   Median survival time for mice infected with 

ATCC6308 was 13 hrs, TIGR4 was 21 hrs, OXC141 was 21 hrs and D39 was 23 hrs 

(Fig 4.17). 

 

 

 

 

Figure 4.17.  Virulence of capsule donor and parent strains. Kaplan-Meier curve showing 
survival of mice infected intraperitoneally with 10

5 
cfu virulent serotype  2 strain D39, 

virulent serotype 3 strain OXC141, virulent serotype 8 strain ATCC6308 and virulent 
serotype  4 strain TIGR4,  All data plotted as percentage survival as a staircase line with 
points for all observations against hrs post infection. Five mice used per strain. 
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To study whether capsule switching has any effect on virulence, low doses of 

TIGR4 and P1702 were compared against each other, which showed no 

difference in virulence of the two strains (Fig 4.18). 

  

 

 

 

Figure 4.18.  Virulence of serotype 4 virulent strain TIGR4 and TIGR4 retransformed with 
P1702. Kaplan-Meier curve showing survival of mice infected with 10

3 
cfu

 
TIGR4 and P1702 

intraperitoneally.  All data plotted as percentage survival as a staircase line with points for 
all observations against hrs post infection.  Survival analysis showed there was no 
significant difference in survival time between the two groups by log rank test. All data 
plotted as percentage survival as a staircase line with points for all observations against hrs 
post infection. Five mice used per strain. 

 

 

Mice infected with TIGR42 showed no sign of infection and survived till the end 

of experiment (Fig 4.19). 

 



  
   120 

 

 

 

 

Figure 4.19.  Virulence of serotype 4 virulent strain TIGR4, otherwise isogenic TIGR4 
expressing serotype 2 capsule TIGR4

2
 and serotype 2 virulent strain D39. Kaplan-Meier 

curve showing survival of mice infected intraperitoneally with 10
5
 cfu.  All data plotted as 

percentage survival as a staircase line with points for all observations against hrs post 
infection.  Survival analysis showed there was a significant difference in survival time 
between the two groups by log rank test. Five mice used per strain. 

 

 

TIGR43 showed marked attenuation (p=.002) as compared to TIGR4 and capsule 

donor strain OXC141.  Median survival time in mice infected with TIGR43 was 37 

hrs as compared to 21 hrs in those infected with TIGR4 (Fig 4.20).  
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Figure 4.20.  Virulence of serotype 4 virulent strain TIGR4, virulent strain OXC141 and 
otherwise isogenic TIGR4 strain expressing serotype 3 capsule. Kaplan-Meier curve 
showing survival in mice infected with 10

5
 cfu intraperitoneally.  Survival curve in mice 

infected with TIGR4
3 

showed marked attenuation as compared to the capsule donor and the 
parent strain.  All data plotted as percentage survival as a staircase line with points for all 
observations against hrs post infection.  Survival analysis showed there was a significant 
difference in the survival time between the TIGR4 and TIGR4

3
 by log rank test (p=.002). Five 

mice used per strain. 

 

TIGR48 also showed marked attenuation (p=.002) as compared to TIGR4 and 

capsule donor strain ATCC6308.  Median survival time in mice infected with 

TIGR48 was 78 hrs as compared to 21 hrs in those infected with TIGR4 (Fig 4.21). 
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Figure 4.21.  Virulence of serotype 4 virulent strain TIGR4, serotype 8 virulent strain 
ATCC6308 and otherwise isogenic TIGR4 strain expressing serotype 8 capsule TIGR4

8.
 

Kaplan-Meier curve showing
 
survival of

 
in mice infected with 10

5 
cfu intraperitoneally. 

Survival curve of TIGR4
8 

showed marked attenuation as compared to capsule donor and 
parent strains.  All data plotted as percentage survival as a staircase line with points for all 
observations against hrs post infection.  Survival analysis showed there was a significant 
difference in the survival time between TIGR4 and TIGR4

8
 by log rank test (p=.002). Five 

mice used per strain. 

 

 

D398 expressing type 8 capsule in D39 background showed a markedly different 

behaviour than TIGR4 as D398 showed a very high virulence, which was similar to 

ATCC6308 as compared to D39 and mice infected with D398 showed same median 

survival time as those infected with ATCC6308 (13 hrs) as compared to those 

infected with D39 (23 hrs) (Fig 4.22).   
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Figure 4.22.  Virulence of serotype 2 virulent strain D39, serotype 8 virulent strain ATCC6308 
and otherwise isogenic D39 expressing serotype 8 capsule D39

8 
in mice infected with 10

5 
cfu 

intraperitoneally. Kaplan-Meier curve showing survival of D39
8 

showed marked increase in 
the virulence as compared to the parent strain D39.  All data plotted as percentage survival 
as a staircase line with points for all observations against hrs post infection.  Survival 
analysis showed there was a significant difference in the survival time between the mice 
infected with D39 and those with D39

8
 by log rank test (p=.002). Five mice used per strain. 

 

 

4.7 Adaptability of the capsule-switch strains: 

It is well-known that animal passage increases virulence of bacteria as passaged 

bacteria are generally used to infect animal models as standard inoculum 

(Saladino et al., 1997; Canvin et al., 1995).  Bacteria, while infecting animals, 

have been reported to differentially express their virulence factors including 

capsular genes (LeMessurier et al., 2006; Ogunniyi et al., 2002; Mahdi et al., 

2008). Pneumococcal capsule has also been reported to be differentially 

regulated during different stages of pathogenesis (Hammerschmidt et al., 2005) 

and highly encapsulated bacteria were found to be highly virulent (Kim & 

Weiser, 1998).   
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To test the adaptability of capsule switch strains, those recovered from animals 

were reused to infect a new set of animals to see if their virulence can reach the 

virulence-level of TIGR4 strains.  It was observed that there was significant 

increase in virulence of animal-passaged strains but they still remained less 

virulent than TIGR4 (Fig 4.23 and 4.24).   

 

Figure 4.23  Virulence of serotype 4 virulent strain TIGR4, animal passaged otherwise 
isogenic TIGR4 strain expressing type 3 capsule  TIGR4

3
A and otherwise isogenic TIGR4 

strain expressing serotype 3 capsule TIGR4
3
. Kaplan-Meier curve showing survival in mice 

infected with 10
5 

cfu intraperitoneally.  Survival curve of TIGR4
3
A showed marked increase 

in the virulence as compared to TIGR4
3
.  All data plotted as percentage survival as a 

staircase line with points for all observations against hrs post infection.  Survival analysis 
showed there was a significant difference in survival time between mice infected with 
TIGR4

3 
and TIGR4

3
A (p=.002) and those with TIGR4

 
and TIGR4

3
A (p=.002) by log rank test. 

Five mice used per strain. 
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Figure 4.24 Virulence of serotype 4 virulent strain TIGR4, animal passaged otherwise 
isogenic TIGR4 strain expressing serotype 8 capsule TIGR4

8
A and otherwise isogenic 

TIGR4 strain expressing type 8 capsule TIGR4
8
 in mice infected with 10

5 
cfu 

intraperitoneally.  Kaplan-Meier curve showing survival of TIGR4
8
A showed marked increase 

in virulence as compared to TIGR4
8
.  All data plotted as percentage survival as a staircase 

line with points for all observations against hrs post infection.  Survival analysis showed 
there was a significant difference in survival time between mice infected with TIGR4

8 
and 

TIGR4
8
A (p=.001) and those with TIGR4

 
and TIGR4

8
A (p=.002) by log rank test. Five mice 

used per strain. 

 

 

4.8 Discussion: 

Capsule switching is an important evolutionary process in pneumococci, which 

allows them to change and adapt according to environmental pressures.  In the 

current era of intercontinental travel, pneumococcal vaccines and widely 

available effective antibiotics, it has become an extremely important tool for 

them to spread globally as it not only allows them to escape from effects of 

natural immunity and vaccines but also helps in spread of drug-resistant strains 

across the globe.   
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Since different capsules have different chemical composition and sugars needed 

for their construction have to be supplied by the metabolic and transport 

machinery of the pneumococcus (Bentley et al., 2006), there is a possibility that 

pneumococci of all genetic backgrounds cannot express all types of capsular 

polysaccharides and it is only possible for certain types to accept and express 

few different capsular types. Capsule switching events are frequent and may 

occur as a response to environmental stresses (Golubchik et al., 2012; Croucher 

et al., 2011; Brueggemann et al., 2007) and are mainly facilitated by high 

homology of up-stream and downstream regions across the capsule, as the 

capsule locus is located between two genes called dexB and aliA (Bentley et 

al.,2006).  It is already known that there are gross differences in the genetic 

constitution of capsule locus and biochemical structure of capsular 

polysaccharide of different serotypes (Bentley et al., 2006). Many studies 

indicate that these differences may be related to their virulence, their 

interaction with the host and many in vitro and in vivo characteristics as the 

capsule is one of the major determinants of pneumococcal biology (Hyams et al., 

2010; Battig & Muhlemann, 2007; Sandgren et al., 2004; Sjostrom et al., 2006; 

Hausdorff et al., 2000a; Hausdorff et al., 2000b; Kelly et al., 1994).  Capsule 

switching has been reported more frequently in some specific genetic 

backgrounds, which have altered their capsule type more than once and have 

spread across the globe whereas in some serotypes switching has not been 

reported such as serotype 1 (Croucher et al., 2011; Coffey et al., 1998b; Munoz 

et al., 1991). 

All strains used in these experiments have been genome sequenced except 

ATCC6308, which will be sequenced by our lab in the near future.  They were 

chosen in order to maximize observations on pneumococcal diversity by selecting 
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strains of different virulence, having different in the size of capsule locus as all 

of them demonstrate differences in all these categories.  These differences can 

be summarized in Table 4.2: 

Table 4.2. Characteristics of Parent and capsule donor strains 

Strain Cps Locus size Median Survival Time of Mice infected with 10
5 
IP   

TIGR4  20.9 kbp 21 hrs 

D39 21.6 kbp 23 hrs 

OXC141 10.7 kbp 21 hrs 

ATCC6308. 14.4 kbp 13 hrs 

   

 

The biochemical structure of the capsular polysaccharide of these strains is also 

different and is summarized in Table 4.3.  

Table 4.3. Capsule constitution of parent and capsule donor strains 

Strain Capsule Constitution  

TIGR4   Galactose, N-Acetyl mannosamine, N- Acetyl 

fucosamine, N Acetyl galactosamine 

21 hrs 

D39    Glucuronic Acid, Glucose and Rhamnose 

23 hrs 

OXC141 

 

 

 

 

OXC141 

   Glucuronic Acid, Glucose 

ATCC6308.    Glucuronic Acid, Glucose, Galactose, 

  

 

A number of studies have previously used capsule switch strains and their 

findings have significantly contributed to understanding of biology of capsule 

switching. Kadioglu et al. (2002) and Abeyta et al. (2003) have used a D39 

mutant expressing type 3 capsule.  Kadioglu et al. (2002) used an otherwise 

isogenic D39 FP50 expressing serotype 3 capsule, which was PCR amplified from 

virulent strain A66 and inserted using homologous recombination with kanamycin 

cassette.  They reported that infectivity of strains was affected by both serotype 

and genetic background in a site-dependent manner as A66 and the mutant 

behaved similarly in nasopharynx, while the mutant was also cleared easily from 

lungs as compared to the wild type.  Capsule-switch mutant was also found to be 
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avirulent in case of intranasal infection (Kadioglu et al., 2002).  Abeyta et al. 

(2003)  used a D39 expressing serotype 3 capsule JD803, which was constructed 

by transforming D39 with serotype 3 genomic DNA from a strain containing 

erythromycin resistance marker inserted within capsule locus (Abeyta et al., 

2003). They reported that mutant showed increased deposition of C3b as 

compared to serotype 3 wild type strain, though it was less than D39 (Abeyta et 

al., 2003).  These findings are also supported by recent studies using multiple 

capsule switch strains of TIGR4 (Melin et al., 2010).  D39 expressing serotype 3 

mutant was also reported to be similar in virulence as compared to D39 in both 

intraperitoneal and intravenous infection (Kelly et al., 1994).  A similar type 5 

mutant expressing type 3 capsule was reported to be avirulent as compared to a 

type 6 mutant expressing type 3 capsule, whose virulence increased as compared 

to parent type 6 strain (Kelly et al., 1994).  Though it is difficult to compare 

these mutants as they were not isogenic though it can be inferred that both 

genetic background and capsule contribute towards virulence, and infectivity 

may be site-specific.  Two studies have also used spontaneously arising capsular 

switch strains.  Nesin et al. (1998) using naturally switched 23F strains 

expressing type 3 capsule reported that virulence was affected by capsule type 

as these mutants were lethal as compared to parent 23F which were non-lethal 

even at high doses using intraperitoneal route of infection.  Another study using 

a serotype 14 strain and its naturally switched mutant expressing type 9V 

capsule did not find any difference in virulence of the two strains using 

intranasal route of infection (Mizrachi Nebenzahl et al., 2004).   During this 

study, instead of using non-isogenic strains or naturally occurring capsular switch 

strains, mutant strains were constructed in isogenic background as described 

earlier (Trzcinski et al., 2003).  These strains can be considered more reliable as 
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the chances of genetic variation are less as compared to naturally occurring 

capsule switch strains, which might harbour other small mutations.  

In this study, using capsule switch mutants, the effect of capsule was studied on 

a number of biological properties of pneumococcus including growth, chain 

formation, transformability and virulence.   

Since capsule incurs a considerable metabolic cost, it was proposed earlier that 

the capsule effects pneumococcal growth in vitro. In contrast to previous 

research which indicates that unencapsulated strains grow slower than 

encapsulated strains (Battig & Muhlemann, 2007) capsule-switch strains may 

have growth deficiencies (Trzcinski et al., 2003) and more recently that growth 

is dependent on capsular type (Hathaway et al., 2012), our studies with TIGR4, 

TIGR4 capsule switch mutants and unencapsulated TIGR4 did not show any 

detectable growth deficit in our TIGR4, its capsule switch and unencapsulated 

mutant strains in BHI.  We also did not find any growth deficit in unencapsulated 

TIGR4 strain as compared to wild-type TIGR4. TIGR4, its capsule switch mutants 

and capsule knock-out Janus intermediate all had similar lag phase length, and 

similar curve in log phase of growth.  We also did not find any shortening in the 

lag phase in unencapsulated TIGR4 as has been reported for D39.  Our findings 

show that rate of pneumococcal growth in TIGR4 is independent of presence or 

absence of capsule or capsule type though it is a complex structure and has a 

long and complicated synthetic pathway. Our findings could be explained by 

difference of methodology in obtaining readings for plotting growth curves, as in 

our studies growth curves were plotted by taking a known number of colony 

forming units as starting inoculum and plotting curve using viable counts in 

contrast with other studies which used certain quantity from a subculture 
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containing unknown number of bacteria from overnight growth and plotted 

curves using optical density, which can be different for same number of bacteria 

and can vary with the degree of capsulation (Hathaway et al., 2012; Battig et 

al., 2006; Trzcinski et al., 2003)  

Electron microscopy and Stains-All Assay demonstrated differences in capsule 

formation in parents and capsule switch strains and it was observed that TIGR42 

had the thinnest capsule with the least amount of polysaccharide formation.  

TIGR43 and TIGR48 formed significantly less amount of capsule as compared to 

TIGR4 and their donor strains.  D398 demonstrated differences in formation of 

capsular polysaccharide as compared to TIGR48 and though capsule thickness of 

D39, D398 and ATCC6308 was similar, D398 formed much more capsular 

polysaccharide as compared to parent strain D39.  Formation of capsular 

polysaccharide seems to be related with both the genetic background and 

capsule constitution.  Decrease in formation of capsular polysaccharide could be 

explained on the basis of biochemical structure of capsules as TIGR4 capsular 

polysaccharide mainly contains acetylated amino sugars and does not have 

glucose, galactose, rhamnose and glucuronic acid as its constituents.  There is a 

possibility that an ample supply of some of these sugars cannot be maintained by 

TIGR4 sugar transport and synthesis mechanisms.   The above hypothesis is also 

supported by the fact that D39 made plenty of type 8 capsule, which contains 

galactose instead of rhamnose found in D39 capsule, which is a non-house 

keeping sugar and is uniquely found in type 2 capsule among our capsule switch 

strains.  It has a separate pathway of synthesis with genes rmlA, rmlC, rmlB and 

rmlD located within the type 2 capsule locus, which contains three rhamnose 

units as its structural constituents (Bentley et al., 2006).  These genes are also 

present in some other pnuemococci such as serogroup 6, serogroup 7, serogroup 
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17, serogroup 18 and serogroup 19 though they differ in number of repetitive 

rhamnose subunits.  There is a possibility that TIGR4, if spontaneously acquires 

one of these capsules may be unable to incorporate repetitive units of rhamnose 

in its capsular polysaccharide structure and may become attenuated due to 

insufficient capsule information, though TIGR4 capsule switch mutants 

expressing simpler capsular polysaccharide with just one rhamnose unit have 

been constructed and reported to be forming capsules with proper thickness 

(Hyams et al., 2010b). Simplified capsular polysaccharide structures are shown 

in Fig 4.25. 

.  

Figure 4.25. Schematic diagrams of capsular polysachharide structures showing constituent 
sugars (A) Serotype 2 capsule. (B) Serotype 3 capsule. (C) Serotype 4 capsule (D) Serotype 
8 capsule.  Redrawn with modification and simplification from Bentley et al. (2006).   
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It might also be inferred that capsule switching may be related to 

transformability as many pneumococci that are not transformable would not be 

able to accept and thus switch to newer capsule types.  There is a possibility 

that thickness, density, capsular charge or type of capsule also plays a role in 

the transformability of pneumococci as they might offer a physical or charge 

barrier to DNA molecules coming in contact with pneumococcus, though our 

studies did not establish a statistical correlation between capsular thickness or 

amount of capsule with transformability of our capsule switch mutants.  Since 

during construction of capsule-switch strains only those colonies are picked 

which have integrated the capsule genes, there was a chance that after three 

times back crossing, capsule switch strains might be the most transformable ones 

and might give a false value if compared with parent TIGR4 strains.  The 

comparison of TIGR4 and capsule switch strain expressing type 4 capsule showed 

significant difference in transformability of the two strains. To remove the bias 

all analyses were done by comparing capsule-switch strains with strain P1702, 

which showed TIGR42 to be significantly more transformable as compared to 

P1702, TIGR48 was comparatively less transformable while TIGR43 was the least 

transformable among capsule switch strains. Transformability might be related 

to biochemical constitution of capsule and there is a possibility that after 

acquiring certain capsules the population may become more transformable or 

less transformable depending upon the type of capsule. 

Chain formation is a characteristic feature of pneumococci and they tend to 

associate themselves in variable number of chains.  Significance of number of 

bacteria per chain is not clearly understood but it has been reported in the past 

that very long chains are associated with decreased virulence (Ekstedt & 

Stollerman, 1960).  More recently, Dalia and Weiser (2011) also showed that 
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decrease in length of chain is associated with increased virulence and allows 

evasion of complement, though host immune system responds by agglutinating 

antibodies to overcome this strategy (Dalia & Weiser, 2011). It has also been 

reported that some mutant strains show longer chains as compared to normal 

strains (Barendt et al., 2009; Sanches-Puelles et al., 1986).  The results showed 

that pneumococci expressing type 8 capsule tend to form longer chains, 

consisting of 12-30 pneumococci.  Relationship of chain-length with virulence 

could not be established as though D398 and ATCC6308 were highly virulent, 

TIGR48 was attenuated as compared to parent TIGR4 strain, though it showed 

adaptability and there is a possibility that it might reach to virulence of TIGR4 

with repeated animal passage or become more virulent.  There is a possibility 

that longer chains pose difficulty in phagocytosis and are associated with 

increased virulence contrary to the findings of Dalia and Weiser (2011), similar 

to the phenomenon observed in Mycobacterium tuberculosis (Hunter et al., 

2006). 

To study the effects of capsule switching parents and capsule switch strains were 

tested in intraperitoneal mouse model of infection.  Results showed that the 

process of capsule switching itself does not affect virulence as mice infected 

with TIGR4 and P1702 did not demonstrate any difference in virulence. Results 

also showed that different capsules have different effects on virulence of a given 

strain while same capsule can have different effects on strains of different 

genetic background.  These variations might be due to effects of  biochemical 

structure on complement deposition, which is vital for development of host 

immunity against the pneumococcus (Abeyta et al., 2003; Winkelstein, 1981).  

These complement proteins are organized in three pathways classical, 

alternative and mannose-binding  lectin  pathways, which  are serially activated 
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to opsonize bacteria (Walport, 2001a; Walport, 2001b).  Activation of 

complement results in deposition of cleaved complement protein C3b on the 

surface of bacteria which can cause opsonophagocytosis  by interacting with 

complement receptors present on neutrophils (Lambris et al., 2008), resulting in 

death of bacteria within phagolysosome (Standish & Weiser, 2009).  Since the 

pneumococcal capsule resists opsonization by complement by multiple 

mechanisms including inhibition of IgG and C-reactive protein binding and 

reduction of degradation of surface bound C3b (Hyams et al., 2010a) variation in 

its thickness or density may completely uncover or partially expose the surface 

structures, which can then directly interact with the complement, resulting in 

subsequent phagocytosis.  It has also been shown that susceptibility to 

complement-mediated killing is serotype dependent (Hyams et al., 2010a) and 

resistance to complement-mediated lysis is more related to capsular serotype 

than genetic background (Melin et al., 2010) so a change in serotype might result 

in variation of virulence.  

It was also observed that passage of strains through animals significantly 

increased virulence of less virulent strains but it was still not comparable to 

TIGR4. Increase in the pneumococcal virulence with animal passage is a known 

phenomenon (Chiavolini et al., 2008), it is not clear yet whether this was due to 

change in expression of capsule genes, increased capsule formation or other 

changes in the pneumococcal biology.  An increase in capsular expression in vivo 

has been reported in several studies (Ogunniyi et al., 2002; Mahdi et al., 2008), 

thought others did not find any change in capsular expression in vivo in mouse 

models of infection (LeMessurier et al., 2006; Orihuela et al., 2004).   Since 

increase in expression of many virulence factors have been reported with 

exposure to animals in a number of studies (Mahdi et al., 2008; LeMessurier et 
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al., 2006; Orihuela et al., 2004; Ogunniyi et al., 2002), there is a possibility that 

exposure to the animal environment might have allowed selection of those 

strains, which are able to adapt to the environment more readily and repeated 

passage through animals might render them equally or more virulent as TIGR4.  

It can be inferred that capsule switching is not a universal phenomenon and a 

successful capsule switch is only possible with suitable combination of genetic 

background and capsule type so there would be limitations in development 

vaccine escape mutants, which could possibly spread and cause treatment 

issues. 

Having compared effects of capsule switching on pneumococcal biology, the 

whole genome sequence of avirulent strain 403 was obtained and was compared 

with genome sequence of virulent TIGR4 strain to find genome-wide changes 

responsible for differences in virulence.  To study the differences in expression 

of different virulence factors, microarray experiments were performed, 

comparing 403 gene-expression with that of TIGR4. 
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5 Comparison of an avirulent strain 403 with 

virulent strain TIGR4 using whole genome 

sequencing and microarray. 

S. pneumoniae is an extremely diverse organism having a highly variable genomic 

content due to which different strains vary significantly in terms of virulence and 

other biological properties.  The highly transformable pneumococcal genome 

easily allows mutations, which may result in an increase or a decrease in 

pathogenicity of a particular strain.  The best way to understand the nature of 

these mutations and to study their effect is to compare the target strain with a 

standard strain in terms of genetic content, gene expression and other in vivo 

and in vitro characteristics.  This approach must involve the complete genome 

sequence as the first and foremost step as a complete, high quality genome 

sequence ensures smooth progress during all downstream work, and can explain 

phenotypic variation among the strains.  It also permits identification of genomic 

regions harboring mutations and enables in silico comparison of different 

genomes using BLAST (Basic Local Alignment Search Tool) or other software.  

Microbial genome sequence analysis has been an important approach to 

understanding the biology of different microorganisms since the complete 

genome of Haemophilus influenzae was published in July 1995 (Fleischmann et 

al., 1995).  It has been utilized for comparison of different streptococci 

including pneumococcus (Lanie et al., 2007) and other organisms (Ellison et al., 

2008; Howard et al., 2006) and has been a useful approach to identify 

pathogenic factors and to improve the understanding of the mechanism of 

microbial pathogenicity.  Identification of genetic differences between 
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pathogenic and non pathogenic strains allows definition of phylogenetic 

relationships between them and may help in identification of potential 

therapeutic targets for medical interventions, which has been the major goal of 

bacterial comparative genomics.  

Avirulent strain 403 is particularly interesting as it is derived from virulent strain 

TIGR4, which is opposite to what has been suggested in serogroup 6 strains that 

virulent pneumococcal strains tend to have evolved from carriage strains 

(Robinson et al., 2002).  In addition to this, since there are serotype specific and 

tissue specific virulence factors that are affected by transcriptional regulation, 

we also performed microarray experiments comparing 403 with TIGR4 to identify 

key genes responsible for altered phenotype in 403, which revealed more 

differences between the two strains and showed altogether 288 genes to be 

differentially expressed in 403 as compared to TIGR4 as summarized in Table 

5.5. 

403 and TIGR4 are both sequence type 205, serotype 4 strains , a serotype which 

is frequently implicated in cases of invasive pneumococcal disease (IPD) and 

have been also been observed to cause invasive disease in animal  models of 

pneumococcal infection (Sandgren et al., 2005; Sandgren et al., 2004).  Their 

characteristics are summarized in Table 5.1. 
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This chapter compares 403 with TIGR4, and discusses the nature of 

spontaneously arising single nucleotide polymorphisms (SNPs) in 403.  In 

addition, relative transcription patterns determined by microarray analyses, and 

possible effects of these differences have been discussed.   

5.1 Comparison of virulence of 403 and TIGR4: 

Strain 403 was evaluated for its virulence potential in mouse model of sepsis and 

a group of MF1 mice were challenged intraperitoneally with 1 x 105 cfu, using 

the same quantity of virulent TIGR4 strain as control.  It was observed that not 

only were these strains were avirulent but also that they failed to produce any 

bacteraemia.  All the 403 challenged mice survived until the end of experiment 

as compared to their TIGR4 counterparts, which reached the end point by 30 hrs 

(Fig 5.1).  

Table 5.1. Comparison of TIGR4 and 403 

Strain Serotype MLST Type Virulence 

TIGR4 4 205 Virulent 

403 4 205 Avirulent 

G 
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Figure 5.1. Kaplan-Meier curve showing survival of MF1 mice challenged IP with 1 x10
5
 

cfu/200 µl with Streptococcus pneunomiae strains 403 and TIGR4.  All data plotted as 
percentage survival as a staircase line with points for all observations against hrs post 
infection.  Median survival time for TIGR4-challenged mice was 18 hrs as calculated by log 
rank test (GraphPad Prism 4.0, USA). Five mice were used in each group. 

 

 

5.2 Genomic comparison of 403 and TIGR4: 

Whole genome sequencing of strain 403 was carried out using Illumina® paired 

end-sequencing.  Genomic alignments were performed between complete 

genome sequence of TIGR4 strain and the consensus sequence, which was 

generated for strain 403, resulting in an almost complete sequence alignment 

with only few discrepancies, which are discussed in following sections.      
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Sequence alignments showed high homology shared by the two strains, without 

any remarkable chromosomal rearrangements. However, 35 single-nucleotide 

polymorphisms (SNPs) were identified in strain 403, some of which resulted in 

altered amino acid sequence in coding regions of annotated genome, while 6 

SNPs were present in intergenic regions. These SNPs affected several classes of 

genes, including biosynthetic pathways of several macromolecules, competence, 

DNA repair, cell division and fermentation.  It can be easily speculated that 

changes in structure or function of translated products might contribute towards 

the altered phenotype and pathogenicity of 403.   

22 Insertion-deletions and a 12 base pair deletion (1132424-36 of reference 

strain) were also found in 403, which are being analyzed in our lab as a separate 

project, and only possible effects of the SNPs will be discussed in this chapter. 

5.2.1 SNPs in intergenic region: 

On analysis of genome sequencing data, six out of thirty five SNPs were found in 

intergenic regions. These are summarized in Table 5.2.  

Most of the SNPs present in intragenic regions were not associated with any 

change in expression profile of surrounding genes.  SNP present at positions 

476404, 730678, 1622058 and 1622059 were not found to be affecting genes 

present upstream and downstream to them and only two SNPs at positions 

463629 and 463630 were associated with expression profile change of their 

surrounding genes as shown in Table 5.2. 
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Table 5.2. SNPs in the inrtragenic regions and genes upstream and downstream to the SNPs with expression profile change in two genes. 

Consensus Reference Reference Variation Upstream genes Downstream Genes 

463629 463630 G A Hypothetical protein (Sp0482)  1.25+ 

 

ABC transporter (Sp0483)  1.14- 

463630 463631 A G Hypothetical protein (Sp0482) 

 

ABC transporter (Sp0483) 

476404 476406 G T Na/Pi cotransporter II related protein (Sp496)  

 

 

 

Hypothetical protein (Sp0497) 

730678 730678 C T Petpidyl prolyl cis trans isomerase(Sp0771)   

 

Hypothetical protein (Sp0772) 

 

 

1622058 1622066 G A ABC transporter (Sp1717)  

 

Hypothetical protein (Sp1718) 

 

1622059 1622067 A G ABC transporter (Sp1717) 

 

Hypothetical protein   (Sp0718) 
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These two SNPs were found to be associated with altered expression profile of 

genes present upstream and downstream to them, hypothetical protein gene 

(Sp0482) located upstream to them was up regulated while the ABC transporter 

present downstream to them (Sp0483), was down regulated.  

5.2.2 Synonymous SNPs: 

Seven SNPs resulted in synonymous mutations and did not cause any change in 

the amino acid sequence of translation product.  Though variable effects of 

synonymous SNPs are not reported for bacteria but they have been shown to be 

associated with certain disease conditions in humans, (Chen et al., 2010; Ho et 

al., 2010) hence there remains a possibility of these SNPs may be associated 

with altered biology of 403 as some of them occur in genes vital for 

pneumococcal growth and pathogenesis including capsule biosynthesis, DNA 

replication and repair and competence as shown in Table 5.3. 
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1
   Gene annotation in TIGR4 

2
    Nucleotide in the reference genome TIGR4 

3
    Nucleotide in consensus sequence of 403  

4
    Amino acid change in 403 

5
    Position of the SNP in 403 consensus sequence 

6
    Position of the SNP in the reference sequence  

7    Expression profile change. 

 

Table 5.3. Synonymous SNPs in 403 and expression profile change in 403. 

Gene  TIGR4
1
 

**Anno

tation 

Reference
2
 Variation

3
 Amino Acid Change

4
 Consensus

5
 Reference

6
 Expression Profile change

6
 

Capsular polysaccharide 

biosynthesis protein, putative 

Sp0103 

 

C T - 106332 106332 - 

DNA polymerase IV Sp0458 T G - 431222 431223 - 

Gln-2 Sp2245 G A - 807984 807984 - 

glyA Sp1024 G T - 967258 967257 1.78+ 

RecN; DNA repair protein Sp1202 C T - 1135386 1135396 - 

Prolyl oligopeptidase family protein Sp1343 C G - 1267209 1267219 - 

ComF;competence protein 

ComF,putative 

Sp2207 G T - 2127991 2127997 - 
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Microarray analysis did not show any change in expression profile of these genes 

except glyA which codes for a serine hydroxymethyltransferase that is involved 

in multiple metabolic pathways such as glycine, serine and threonine 

metabolism, lysine degradation, methane metabolism and cyanoamino acid 

metabolism and is responsible for reversible interconversion of glycine and 

serine with tetrahydrofolate, which serves as one-carbon carrier.  Expression 

profile changes are summarized in Table 5.3. 

5.2.3 Non synonymous SNPs: 

The rest of the 22 mutations were found to be non synonymous and were 

associated with change in amino acid sequence of genes, though microarray 

showed only four of these genes to be differentially regulated in 403.   This 

finding does not rule out a malfunctioning translational product, which might 

contribute towards avirulence of 403.  Differentially regulated genes with SNPS 

are summarized below. 

1. Sp1161, which is putative acetoin dehydrogenase complex, E3 component, 

dihydrolipoamide dehydrogenase, was found to be upregulated along with 

Sp1162 and Sp1163 which are E1 and E2 components of same enzyme and 

are involved in multiple metabolic processes including metabolism of 

alanine, serine, threonine, pyruvate, glycine and aspartate, dergradation 

of valine, leucine and isoleucine, glycolysis and gluconeogenesis, 

regulation of NAD/NADH ratio and carbon storage (Xiao & Xu, 2007). 
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2. Sp1645 (relA) which codes for GTP pyrophosphokinase and involved in 

cellular adaptation to atypical conditions was also found to be 

upregulated.  It has been reported that relA mediates uptake and 

utilization of certain ions under nutritionally stressed condition and does 

not play much important role when nutrients are abundantly present.  It 

is known to be an important virulence factor which helps bacteria to 

adapt during disease progression (Kazmierczak et al., 2009). Since it is 

known to cause repression of rRNA synthesis and affect patterns of gene 

transcription, protein synthesis and enzyme activation (Wolz et al., 2010), 

there is a possibility that mutation causing amino acid change from valine 

to phenylalanine in relA product along with a 1.5 increase in expression 

might be the reason for generalized increase in aminoacid acquisition and 

decreased synthesis of ribosomal proteins in 403.   

3. Sp1003, which codes for conserved hypothetical protein and Sp0272, 

which is ribosomal protein S7 gene were found to be down regulated. 
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Table 5.4.  SNPs present in 403. 
Gene TIGR4 Annotation Reference Allele Var Reference Consensus Amino Acid Change 

Cell Envelope:       

Capsular polysaccharide biosynthesis protein Cps4E Sp0350 G A 324506 324505 Asp173Asn 

       

Cofactors, Prosthetic groups and Carrier Biosynthesis        

gor; Glutathione reductase Sp0784 A G 737108 737108 Cys382Arg 

       

Cell Division:       

Cell division protein FtsW, putative Sp1067 T G 1001704 1001704 Phe143Val 

       

Fermentation:       

Acetoin dehydrogenase complex, E3 component, 

dihydrolipoamide dehydrogenase,putative  

Sp1161 T G 1096817 1096817 Asn395Thr 

MATE efflux family protein Sp1164 C G 1101585 1101585 Arg405Pro 

MATE efflux family protein Sp1164 G C 1101586 1101586 Arg405Gly 

       

Carbohydrate and Energy Metabolism:       

lacD:Tagatose 1,6-diphosphate aldolase Sp1190 C G 1127020 1127021 Val300Leu 

lacD;Tagatose 1,6-diphosphate aldolase Sp1190 G C 1127021 1127022 Cys299Trp 

recP-1 Sp1615 G A 1517039 1517030 Ala173Val 

       

Degradation of proteins:       

Prolyl oligopeptidase family protein Sp1343 G C 1267220 1267210 Thr120Arg 

       

DNA metabolism:       

Type II DNA modification methyltransferase, putative Sp1431 G T 1350621 1350612 Glu291Stp 
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Gene TIGR4 Annotation Reference Allele Var Reference Consensus Amino Acid Change 

Adaptations to Atypical conditions:       

relA; GTP pyrophosphokinase Sp1645 C A 1543556 1543547 Val140Phe 

       

Transcription:       

rpoC; DNA-directed RNA polymerase subunit beta Sp1960 C T 1862985 1862977 Gly1113Glu 

       

DNA Interactions:       

bglG family transcriptional regulator Sp2131 G A 2042324 2042318 Thr647Ile 

       

Nucleoside/Nucleotide metabolism       

adk; Adenylate kinase Sp0231 C T 204679 204679 Ala40Val 

       

Transport       

ABC transporter, substrate-binding protein Sp0145 G C 146055 146055 Leu181Phe 

ABC transporter, ATP-binding protein Sp1918 G T 1828206 1828198 His218Gln 

Phosphate ABC transporter, ATP-binding protein, putative Sp1397 C A 1320529 1320520 Asp244Tyr 

       

Hypothetical proteins:       

Hypothetical protein Sp1003 G C 947167 947168 Val59Leu 

Hypothetical protein Sp1334 G T 1257186 1257176 Pro58Gln 

Hypothetical protein Sp1715 A G 1618223 1618214 Glu130Gly 

       

Ribosomal Proteins:       

30S ribosomal protein S7 Sp0272 A G 247805 247805 Lys90Glu 
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Other genes harboring SNPs having important biological functions are: 

1. Sp0350:  Also known as cps4E  encodes a glycosyl-phosphotransferase that 

transfers glucose-1-phosphate units to growing undecaprenyl phosphate 

glycolipid (Cartee et al., 2005).  It has been reported that disruption of 

this gene does not affect the viability of bacteria (Xayarath & Yother, 

2007;Hava & Camilli, 2002) though cps4E mutants were found to be 

capsule deficient but good biofilm formers. Capsule deficient mutants 

were also found to be good at biofilm production (Munoz-Elias et al., 

2008).  

2. Sp0231 or adk, which codes for an adenylate kinase and is required for 

proper maintenance and growth of cell, was reported among essential 

genes by allelic replacement mutagenesis (Song et al., 2005). 

3. SP1960 or rpoC, which is a DNA dependent RNA polymerase was also 

reported to be among essential genes by allelic replacement mutagenesis 

(Song et al., 2005).  

4. Sp1190 or lacD which codes for tagatose 1,6-diphosphate aldolase and is 

an important enzyme in galactose metabolic pathway, where it converts 

D-tagatose 1,6-bisphosphate  to glycerone phosphate  and D-

glyceraldehyde 3-phosphate.  Though lacD itself did not show decreased 

expression but a number of other genes related to galactose metabolism 

showed lesser levels of expression as compared to TIGR4.  
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All above genes have important biological functions and it can be predicted that 

functional disruption of any one of these genes alone or in combination might 

result in loss of pathogenicity as some of these mutations were also found to be 

affecting expression of genes that play important roles in pneumococcal 

metabolism, its regulation and virulence.   

A microarray analysis revealed even more difference between the two strains 

and showed altogether 288 genes to be differentially expressed in 403 as 

compared to TIGR4 as summarized in Table 5.5 and discussed below. 

5.3 Expression patterns in 403:  

5.3.1 Surface Structures and virulence factors: 

Pneumococcal surface is composed of three major components which include 

polysaccharide capsule, peptidoglycan cell wall and cell membrane.  These 

layers are also embedded with surface proteins which are very important for 

pneumococcal virulence and interaction with host cells and their expression 

levels can affect virulence of any strain.   In our microarray studies we observed 

altered expression levels of a number of genes related to surface structures in 

403 and most of these showed decreased expression levels.  Important surface 

related genes with altered expression levels are discussed below. 

1. strH is an exoglycosidase, which resists neutrophilic opsonophagocytic 

killing in the human body and act in conjugation with two other virulence 

factors, a neuraminidase NanA, and a beta-galactosidase BgaA (Dalia et 

al., 2010). BgaA did not show altered expression in 403, while NanA is 

known to be non-functional in TIGR4 due to a frame-shift mutation 
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(Pericone et al., 2002). It has been shown that they reduced deposition of 

C3 component of the complement on surface of pneumococci, which 

provides an escape route against phagocytic killing.  As pneumococcus 

encounters a number of glycoconjugates on host epithelial surface 

including membrane associate glycoproteins and mucin (Lodish et al., 

2000), and these glycosidases modify them to assist in colonization and 

subsequent invasion of cells (Burnaugh et al., 2008), a 1.5 fold decreased 

expression of strH along with absence of neuraminidase A might 

contribute towards attenuation of 403.   

2. pulA is another downregulated gene that codes for a putative pullulanase 

present on pneumococcal surface, which codes for a protein called SpuA.  

It was shown to play a role in binding to a number of complex 

carbohydrates including submaxillary mucin, asialofetuin  and fetuin and 

exhibiting strepadhesin activity in Group A streptococci (Hytonen et al., 

2003).  Pullulanase deficient mutants have also been observed to be 

deficient in cell adhesion (Hytonen et al., 2006). 

3. MurB and MurF are other two enzymes less expressed in 403, which are 

critical for cell wall synthesis and important drug targets.  Their 

decreased expression may be related to defects in cell wall synthesis 

(Smith, 2006; El Zoeiby et al., 2003).    

4. CpoA is a downregulated gene that encodes for a glycosyl transferase and 

mutations in cpoA have been reported to affect pneumococcal 

competence along with beta-lactam resistance (Grebe et al., 1997). 
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Some other genes coding for hypothetical proteins and proteins of unknown 

functions were also noted to have lower expression in 403 as compared to TIGR4, 

while only one notable gene Sp0378 coding for choline binding protein J involved 

in adherence, was found to be expressing highly in 403 as compared to TIGR4.  

Reduced expression of these genes may contribute towards lack of pathogenicity 

of 403 as proteins coded by these enzymes are vital for invasion of tissues and 

expression profile of surface factors favors a colonization phenotype as 

compared to an invasive one. 

5.3.2 Genes related to metabolic pathways: 

5.3.2.1 Carbohydrate metabolism 

Pneumococcus can metabolize a few sugars such as glucose, sucrose, raffinose, 

lactose, trehalose, inulin and maltose as sources of energy (Hava & Camilli, 

2002).  A number of genes coding for enzymes participating in galactose 

metabolism such as galM, glmS, galK, galT, aga, nagB and fructose metabolism 

such as fruB were down-regulated though genes coding for enzymes related to 

glucose metabolism were upregulated along with those coding for enzymes of 

gluconeogenesis such as acetoin dehydrogenase complex, which indicates 

preferential utilization of glucose over other resources in 403. 

Genes adhE and adh are iron and zinc containing alcohol dehydrogenases 

involved in anaerobic metabolism, which were observed to have lower 

expression levels in 403 as compared to TIGR4.   
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5.3.2.2 Amino acid and protein metabolism: 

Analysis of data over amino acid synthesis showed that genes coding for enzymes 

related to metabolism of basic amino acids including arginine and lysine were 

downregulated (argF, arcA and proC) though those related to synthesis of 

aromatic amino acids including phenylalanine, tyrosine and tryptophan 

biosynthesis (pheA, tyrA, aroC, trpA, trpB, trpC, trpD and , trpG) and 

hydrophobic amino acids were up-regulated.  Another important gene nspC 

coding for carboxynorspermidine decarboxylase was found to be down-regulated, 

which is known to participate in a number of metabolic processes including 1 

and 2 methylnaphthalene degradation, 3-chloroacrylic acid degradation, alkaloid 

biosynthesis, benzoate degradation, phenylpropanoid biosynthesis, purine 

metabolism, pyruvate, tryptophan and tyrosine metabolism. 

A number of ribosomal proteins were also observed to have decreased expression 

including rpsD, rpsJ, rplC, rplB, rpsN, rpmD, rpsG, rplM, rplA, rpsP, rplT,pepF, 

rpmA, rplL, rpsR , rpsB and tsf.  

5.3.2.3 Transport proteins: 

A number of transporters related to various metabolic pathways were found 

downregulated in 403 which include fruA (fructose specific), Sp1682 (Sugar ABC 

transporter, permease protein), Sp1683 (Sugar ABC transporter, sugar-binding 

protein), Sp0063  (PTS system, IID component), Sp1684 (PTS system, IIBC 

components),  rafF (Sugar ABC transporter, permease protein),   rafE (Sugar ABC 

transporter, sugar-binding protein),  malX (Maltose/maltodextrin ABC 

transporter, while choline transporters proWX and proV and genes related to 
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phosphate ABC transport system pstC, pstA, pstB and phoU were found to be 

expressing highly in 403. 

Differences in expression profiles of the two strains are summarized in Table 

5.5. 
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Table 5.5.  Differentially regulated genes in strain 403. 

 

 

 

Differentially regulated Genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Virulence determinants 

 

    

pulA; Putative alkaline amylopullulanase Sp0268 0.251 0.678 2.7- 

xseA; Exodeoxyribonuclease VII, large subunit Sp1207 0.767 0.987 1.29- 

nanA; Neuraminidase A, authentic frameshift Sp1693 0.279 0.953 3.42- 

     

     

Cell Envelope     

strH; Beta-N-acetylhexosaminidase Sp0057 0.715 1.073 1.5- 

Lipoprotein Sp0149 0.836 0.999 1.19- 

cps4G; Capsular polysaccharide biosynthesis protein cps4, 

Putative identification 

Sp0352 0.744 0.989 1.33- 

Membrane protein Sp0637 0.654 0.96 1.47- 

Conserved hypothetical proteins: Sp1851 0.251 0.727 2.9- 

cpoA; Glycosyl transferase CpoA Sp1075 0.852 0.986 1.16- 

murB;UDP-N-acetylenolpyruvoylglucosamine reductase Sp1390 0.762 1.025 1.35- 

murF;UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-

diaminopimelate--D-alanyl-D-alanyl ligase 

Sp1670 0.792 1.044 1.32- 

Cell wall surface anchor family protein Sp1992 0.639 1.033 1.62- 

     

Stress related     

General stress related protein 24, putative Sp1804 0.572 0.958 1.67- 

     

DNA repair, recombination and modification     

MutT/nudix family protein Sp0119 0.708 1.192 1.68- 

dnaG; DNA primase Sp1072 0.693 0.945 1.36- 
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Differentially regulated Genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

DNA repair, recombination and modification     

ligA; DNA ligase, NAD-dependent Sp1117 0.711 1.06 1.49- 

rexA;Exonuclease RexA Sp1152 0.904 1.053 1.16- 

MutT/nudix family protein Sp1669 0.849 1.014 1.19- 

cbf1; Cmp-binding-factor 1 Sp1980 0.699 1.017 1.45- 

     

Carbohydrate and Energy Metabolism     

galM; Aldose 1-epimerase Sp0066 0.576 0.992 1.72- 

glmS; Glucosamine--fructose-6-phosphate aminotransferase Sp0266 0.576 0.989 1.72- 

fruB; 1-phosphofructokinase, putative Sp0876 0.173 0.692 4- 

nagB; Glucosamine-6-phosphate isomerase Sp1415 0.552 0.931 1.69- 

npl; Putative N-acetylneuraminate lyase Sp1676 0.427 0.918 2.15- 

galK; Galactokinase Sp1853 0.311 0.757 2.43- 

galT; Galactose-1-phosphate uridylyltransferase Sp1852 0.291 0.669 2.3- 

Putative dextran glucosidase DexS Sp1883 0.164 0.616 3.76- 

aga; Galactose metabolism Sp1898 0.182 0.567 3.12- 

rpe; Ribulose-phosphate 3-epimerase Sp1983 0.773 0.97 1.25- 

adhE; Alcohol dehydrogenase, iron-containing Sp2026 0.148 0.764 5.16- 

adh; Alcohol dehydrogenase, zinc-containing Sp2055 0.376 0.944 2.51- 

malP; Glycogen phosphorylase family protein Sp2106 0.403 0.883 2.19- 

malQ; 4-alpha-glucanotransferase Sp2107 0.38 0.815 2.14- 

fcsK; Putative L-fuculose kinase fucK Sp2167 0.367 0.762 2.08- 

     

Aminoacid metabolism and Acquisition     

cad; Lysine decarboxylase Sp0916 0.447 0.938 2.1- 

speE; Spermidine synthase Sp0918 0.431 0.916 2.13- 
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Differentially regulated Genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Aminoacid metabolism and Acquisition     

proC; Pyrroline-5-carboxylate ,Amino acid biosynthesis: 

Glutamate family 

Sp0933 1.018 1.161 1.14- 

arcA; Arginine deiminase Sp2148 0.296 0.846 2.86- 

argF; Ornithine carbamoyltransferase Sp2150 0.415 0.853 2.06- 

     

     

     

Nucleoside/Nucleotide metabolism     

purF; Amidophosphoribosyltransferase Sp0046 0.546 0.934 1.71- 

purH: Phosphoribosylaminoimidazolecarboxamide 

formyltransferase/IMP cyclohydrolase 

Sp0050 0.542 1.049 1.94- 

pyrG; CTP synthase Sp0494 0.794 1.031 1.3- 

nspC; Carboxynorspermidine decarboxylase Sp0920 0.53 1.079 2.04- 

mtf; 5-methylthioadenosine/S-adenosylhomocysteine 

nucleosidase, 

Sp0991 0.905 1.032 1.14- 

tdk; Thymidine kinase Sp1018 0.935 1.104 1.18- 

udk ; Uridine kinase Sp1208 0.798 1.167 1.46- 

guaA Sp2072 0.167 1.074 6.43- 

carB; Carbamoyl-phosphate synthase, large subunit Sp1275 0.529 1.017 1.92- 

apt; Adenine phosphoribosyltransferase Sp1577 0.636 0.995 1.5- 

     

Cofactor, Prosthetic Group and Carrier  Metabolism     

ispA; Geranyltranstransferase Sp1205 0.819 1.075 1.31- 

mvaS; Hydroxymethylglutaryl-CoA synthase Sp1727 0.805 0.948 1.18- 

Thiamine pyrophosphokinase Sp 1982 0.778 1.001 1.29- 

     

Reguatory Functions:     

lacR; Lactose phosphotransferase system repressor Sp0875 0.169 0.647 3.83- 

     

     



  157 

     

Differentially regulated Genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Reguatory Functions:     

Serine/threonine protein phosphatase Sp1201 0.745 0.922 1.24- 

Putative transcriptional repressor Sp1203 0.784 1.044 1.33- 

Putative fucose operon repressor Sp2168 0.487 0.932 1.91- 

     

Transcription     

rpoE; Putative DNA-directed RNA polymerase, delta subunit Sp0493 0.692 0.94 1.36- 

rnc; Ribonuclease III Sp1248 0.99 1.111 1.12- 

aspB; GTP-sensing transcriptional pleiotropic repressor CodY  Sp1584 0.618 1.055 1.71- 

     

     

Translation and Protein Synthesis     
rpsD; Ribosomal protein S4 Sp0085 0.648 1.047 1.62- 
trmU; 5-methylaminomethyl-2-thiouridylate-      
Methyltransferase Sp0118 0.834 1.011 1.21- 
rpsJ; Ribosomal protein S10  Sp0208 0.634 0.98 1.55- 
rplC;  Ribosomal protein L3 Sp0209 0.781 1.026 1.31- 
rplB; Ribosomal protein L2 Sp0212 0.754 1.084 1.44- 
rpsN ;Ribosomal protein S14  Sp0222 0.724 1.085 1.5- 
rpmD; Ribosomal protein L30  Sp0228 0.649 0.995 1.53- 
rpsG; Ribosomal protein S7 Sp0272 0.667 1.024 1.54- 
rplM; Ribosomal protein L13  Sp0294 0.704 1.023 1.45- 
RNA methyltransferase, TrmH family  Sp0486 0.622 1.124 1.81- 
rplA; Ribosomal protein L1 Sp0631 0.606 1.074 1.77- 
rpsP; Ribosomal protein S16 Sp0775 0.576 0.958 1.66- 
rplT; Ribosomal protein L20 Sp0961 0.615 0.97 1.58- 
pepF; Oligoendopeptidase F  Sp0979 0.74 1.044 1.41- 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Translation and Protein Synthesis     
Protease maturation protein, putative Sp0981 0.936 1.104 1.18- 
Ribosomal large subunit pseudouridine synthase Sp1099 0.435 0.878 2.02- 
rpmA; Ribosomal protein L27 Sp1107 0.66 0.968 1.47- 
rplL; Ribosomal protein L7/L12 Sp1354 0.635 0.939 1.48- 
rpsR; Ribosomal protein S18  Sp1539 0.644 0.925 1.44- 
rplM; Ribosomal protein L13  Sp0294 0.704 1.023 1.45- 
rplA; Ribosomal protein L1 Sp0631 0.606 1.074 1.77- 
rpsP; Ribosomal protein S16 Sp0775 0.576 0.958 1.66- 
rplT; Ribosomal protein L20 Sp0961 0.615 0.97 1.58- 
pepF; Oligoendopeptidase F  Sp0979 0.74 1.044 1.41- 
Protease maturation protein, putative Sp0981 0.936 1.104 1.18- 
Ribosomal large subunit pseudouridine synthase Sp1099 0.435 0.878 2.02- 
rpmA; Ribosomal protein L27 Sp1107 0.66 0.968 1.47- 
rplL; Ribosomal protein L7/L12 Sp1354 0.635 0.939 1.48- 
rpsR; Ribosomal protein S18  Sp1539 0.644 0.925 1.44- 
ksgA; Dimethyladenosine transferase Sp1985 0.815 1.099 1.35- 
rpsB; Ribosomal protein S2  Sp2215 0.618 1.028 1.66- 
tsf; Translation elongation factor Ts  Sp2214 0.602 0.995 1.65- 
htrA; Serine protease Sp2239 0.844 1.077 1.28- 
     

Unknown functions     
GTP-binding protein Sp0004 0.754 0.998 1.32- 
Hypothetical protein Sp0099 0.561 0.941 1.68- 
Conserved hypothetical protein Sp0100 0.611 1.155 1.89- 
Hypothetical protein Sp0223 0.783 1.056 1.35- 
Hypothetical protein  Sp0270 0.757 1.029 1.36- 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Unknown functions     
Conserved hypothetical protein  Sp0409 0.25 1.004 4.02- 
Hypothetical protein Sp0703 0.402 0.974 2.42- 
Hypothetical protein Sp0704 0.472 0.968 2.05- 
Conserved hypothetical protein Sp0742 0.703 0.987 1.4- 
KH domain protein Sp0776 0.508 0.899 1.77- 
Conserved hypothetical protein Sp0783 0.63 1.108 1.76- 
Hydrolase, haloacid dehalogenase-like family Sp0805 0.677 0.985 1.45- 
Conserved hypothetical protein  Sp0919 0.488 0.975 2- 
Hypothetical protein  Sp0987 0.825 0.988 1.2- 
Conserved hypothetical protein Sp1003 0.605 1.031 1.7- 
Conserved hypothetical protein  Sp1004 0.362 0.912 2.52- 
Hypothetical protein  Sp1142 0.888 1.086 1.22- 
Conserved domain protein Sp1174 0.588 1.07 1.82- 
Conserved hypothetical protein Sp1384 0.787 0.986 1.25- 
Oxidoreductase, putative Sp1472 0.428 0.917 2.14- 
Hypothetical protein Sp1476 0.705 1.045 1.48- 
Hypothetical protein Sp1477 0.755 0.971 1.29- 
Conserved domain protein, authentic frameshift Sp1532 0.668 1.006 1.51- 
Conserved domain protein Sp1533 0.654 0.988 1.51- 
Isochorismatase family protein Sp1583 0.637 0.933 1.46- 
Conserved hypothetical protein Sp1685 0.428 0.893 2.09- 
Conserved hypothetical protein  Sp1801 0.687 1.23 1.79- 
Hypothetical protein  Sp1802 0.564 0.996 1.77- 
Hypothetical protein Sp2071 0.545 0.986 1.81- 
Hypothetical protein Sp2105 0.646 0.958 1.48- 
Hypothetical protein Sp2182 0.369 0.801 2.17- 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Tranporters     
PTS system, IID component Sp0063 0.541 1.087 2.01- 
secY; Preprotein translocase, SecY subunit Sp0230 0.81 1.025 1.27- 
ABC transporter, ATP-binding protein Sp0483 0.884 1.012 1.14- 
Sodium:alanine symporter family protein  Sp0408 0.591 1.091 1.85- 
ABC transporter, ATP-binding protein Sp0707 0.462 0.93 2.01- 
Amino acid ABC transporter, ATP-binding protein Sp0709 0.491 0.889 1.81- 
fruA; PTS system, fructose specific IIABC components Sp0877 0.259 0.711 2.75- 
Amino acid permease family protein  Sp1001 0.591 0.884 1.5- 
Putative transporter, FNT family  Sp1215 0.406 0.92 2.27- 
uraA; uracil permease  Sp1286 0.486 1.138 2.34- 
Sugar ABC transporter, permease protein  Sp1682 0.32 0.783 2.45- 
Sugar ABC transporter, sugar-binding protein Sp1683 0.308 0.843 2.74- 
PTS system, IIBC components  Sp1684 0.305 0.837 2.74- 
ABC transporter, permease protein Sp1688 0.212 0.725 3.42- 
ABC transporter, permease protein Sp1689 0.337 0.718 2.13- 
ABC transporter, substrate-binding protein Sp1690 0.282 0.678 2.4- 
rafF; Sugar ABC transporter, permease protein Sp1896 0.255 0.599 2.35- 
rafE; Sugar ABC transporter, sugar-binding protein Sp1897 0.223 0.597 2.68- 
secE; Putative preprotein translocase, SecE subunit Sp2008 0.751 0.978 1.3- 
malX; Maltose/maltodextrin ABC transporter Sp2108 0.374 0.833 2.23- 
     

Transposase     
IS1167, transposase, degenerate Sp0572 0.687 0.941 1.37- 
IS66 family element, Orf3, degenerate, This gene has an N-
terminal truncation, and is interrupted by an RUP element. 
IRleft = deleted. IRright = GTAACCGCCCAATAACGAAG.  

Sp0644 0.751 0.98 1.3- 
Transposase Sp1064 0.329 0.871 2.65- 
Transposase  Sp1582 0.748 1.013 1.35- 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Transposase     

Transposase, IS200 family  Sp1622 0.333 0.892 2.68- 
Transposase Sp1905 0.712 1.022 1.44- 
     

Signal Transduction     
hk07;putative sensor histidine kinase Sp0155 0.545 0.925 1.7- 
treP; Trehalose PTS system, IIABC components Sp1884 0.127 0.588 4.63- 
     

     

Upregulated Genes in 403     

Virulence     
Choline binding protein J  Sp0378 1.097 1.023 1.07+ 
Putative immunity protein Sp1988 1.308 1.035 1.26+ 
     

Membrane proteins     
Putative membrane protein  Sp0858 1.424 1.01 1.41+ 
Membrane protein Sp0859 1.488 1.086 1.37+ 
     

DNA repair, recombination and modification     
Putative type I restriction-modification system, S subunit, DNA 
metabolism: Restriction/modification 

Sp0505 2.165 1.002 2.16+ 
MutT/nudix family protein  Sp0794 1.487 0.96 1.55+ 
DNA polymerase III, epsilon subunit/ATP-dependent helicase 
DinG, DNA metabolism: DNA replication, recombination, and 
repair  

Sp0802 1.259 0.965 1.3+ 
Putative endonuclease Sp1251 1.873 0.981 1.91+ 
nth; endonuclease III  Sp1279 1.348 0.954 1.41+ 

     

Carbohydrate and Energy Metabolism     
PEP-utilizing enzymes family protein Sp0795 1.528 1.027 1.49+ 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Carbohydrate and Energy Metabolism     
gapN; Glyceraldehyde-3-phosphate dehydrogenase  Sp1119 2.587 1.033 2.5+ 
Acetoin dehydrogenase complex, E3 component  Sp1161 1.668 1.006 1.66+ 
Acetoin dehydrogenase complex, E2 component Sp1162 1.52 0.958 1.59+ 
Putative acetoin dehydrogenase, E1 component  Sp1163 1.508 0.939 1.61+ 
 fer; Ferredoxin  Sp1605 1.507 1.021 1.48+ 
recP-2; Transketolase  Sp2030 1.488 0.939 1.58+ 
gpsA; Glycerol-3-phosphate dehydrogenase (NAD(P)+)  Sp2091 1.154 0.928 1.24+ 

     

Aminoacid biosynthesis and Acquisition     
IlvN; Acetolactate synthase, small subunit,Putative Sp0446 2.558 1.246 2.05+ 
Transulfuration enzyme family protein, authentic point 
mutation 

Sp1214 1.8 0.987 1.82+ 
leuB; 3-isopropylmalate dehydrogenase, authentic point 
mutation 

Sp1257 1.391 0.965 1.44+ 
glyA; Serine hydroxymethyltransferase Sp1024 1.9 1.067 1.78+ 
Integrase/recombinase, phage integrase family  Sp1159 1.279 0.995 1.29+ 
Putative chorismate mutase Sp1296 2.334 1.049 2.22+ 
pheA; Prephenate dehydratase  Sp1369 1.822 1.046 1.74+ 
aroA; 3-phosphoshikimate 1-carboxyvinyltransferase Sp1371 1.614 1.014 1.59+ 
tyrA; Chorismate synthase  Sp1373 1.471 1.09 1.35+ 
aroC; Chorismate synthase Sp1374 1.206 0.986 1.22+ 
lysA; Diaminopimelate decarboxylase  Sp1978 1.635 1.015 1.61+ 
trpA; Tryptophan synthase, alpha subunit Sp1811 2.731 0.965 2.83+ 
trpB; Tryptophan synthase, beta subunit  Sp1812 3.245 1.167 2.78+ 
trpC; Indole-3-glycerol phosphate synthase Sp1814 3.317 0.957 3.47+ 
trpD; Anthranilate phosphoribosyltransferase Sp1815 3.12 1.046 2.98+ 
trpG; Anthranilate synthase component II Sp1816 3.079 1.122 2.74+ 
asnA; Aspartate-ammonia ligase Sp1970 1.616 0.997 1.62+ 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Nucleoside/Nucleotide metabolism     
Phosphorylase, Pnp/Udp family Sp0075 2.498 1.027 2.43+ 
Integrase/recombinase, phage integrase family Sp0506 1.494 0.964 1.55+ 
pyrC; Dihydroorotase, multifunctional complex type  Sp1167 1.27 1.039 1.22+ 
ung; Uracil-DNA glycosylase  Sp1169 1.394 1.039 1.34+ 
Putative type II restriction endonuclease Sp1222 1.164 1.045 1.11+ 
mutY; A/G-specific adenine glycosylase Sp1228 1.422 1.009 1.41+ 
relA; GTP pyrophosphokinase Sp1645 1.456 0.99 1.47+ 
aroF; Phospho-2-dehydro-3-deoxyheptonate aldolase  Sp1700 1.236 0.963 1.28+ 
     

Cofactor Metabolism     
 ribC; Riboflavin synthase, alpha subunit Sp0177 2.468 1.14 2.16+ 
pdxK; Phosphomethylpyrimidine kinase,putative  Sp1598 2.031 1.081 1.88+ 
5-formyltetrahydrofolate cyclo-ligase family protein Sp2095 1.695 1.017 1.67+ 
     

Fatty Acid Metabolism     
fabG; Oxidoreductase, short chain dehydrogenase/reductase 
family  

Sp0793 1.614 1.03 1.57+ 
     

Transcription     
Putative transcriptional regulator Sp0461 2.013 0.971 2.07+ 
Transcriptional regulator Sp1130 1.243 0.971 1.28+ 
PolyA polymerase family protein Sp1554 1.35 1.017 1.33+ 
     

Translation     
truA; tRNA pseudouridine synthase A Sp1599 2.057 1.065 1.93+ 
tyrS; tyrosyl-tRNA synthetase  Sp2100 1.534 1.09 1.41+ 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Post translational protein alterations     
pepT; Peptidase t   Sp1008 2.048 0.947 2.16+ 
lplA; Lipoate-protein ligaseputative  Sp1160 1.841 1.002 1.84+ 
Serine/threonine protein kinase  Sp1732 1.213 0.975 1.24+ 

     

Unknown functions     
Conserved hypothetical proteins Sp0024 1.878 1.023 1.84+ 
Hypothetical protein Sp0133 1.219 1.098 1.1+ 
Conserved hypothetical protein  Sp0239 1.879 0.97 1.96+ 
Hypothetical protein Sp0448 1.98 1.005 1.97+ 
Hypothetical protein Sp0449 2.127 0.999 2.13+ 
Conserved hypothetical protein  Sp0482 1.278 1.019 1.25+ 
Conserved hypothetical protein Sp0785 1.527 1.067 1.43+ 
Hypothetical protein Sp0792 1.604 1.016 1.58+ 
Hypothetical protein Sp0901 1.348 0.998 1.35+ 
hemK;HemK protein Sp1021 1.722 1.039 1.66+ 
Sua5/YciO/YrdC family protein  Sp1022 1.867 1.018 1.83+ 
Acetyltransferase, GNAT family  Sp1023 1.824 1.042 1.75+ 
Hydrolase, haloacid dehalogenase-like family Sp1171 1.506 0.997 1.34+ 
Conserved domain protein Sp1175 1.276 1.077 1.18+ 
crcB protein Sp1294 1.895 0.984 1.93+ 
crcB2;crcB protein  Sp1295 2.211 1.11 1.99+ 
DHH subfamily 1 protein Sp1298 1.43 0.921 1.55+ 
 Amidohydrolase family protein  Sp1356 3.178 1.048 3.03+ 
 Psr protein  Sp1368 1.745 1.089 1.6+ 
Conserved hypothetical protein Sp1393 1.611 1.003 1.61+ 
Conserved hypothetical protein Sp1462 1.853 0.989 1.87+ 
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Unknown functions     
Acetyltransferase, GNAT family Sp1464 1.931 1.058 1.83+ 
Hypothetical protein Sp1465 1.791 0.948 1.9+ 
ATP-dependent RNA helicase, DEAD/DEAH box family Sp1483 1.195 0.997 1.2+ 
Hypothetical protein Sp1493 1.623 0.933 1.74+ 
Conserved hypothetical protein Sp1564 1.3 1.015 1.28+ 
Conserved hypothetical protein  Sp1565 1.454 1.091 1.33+ 
Rrf2 family protein Sp1636 1.194 0.971 1.23+ 
Metallo-beta-lactamase superfamily protein  Sp1646 1.489 0.984 1.51+ 
Hypothetical protein Sp1862 1.558 1.002 1.55+ 
Conserved hypothetical protein  Sp1922 1.493 1.016 1.47+ 
Hypothetical protein Sp1925 1.538 0.967 1.59+ 
Conserved hypothetical protein  Sp1967 1.163 0.937 1.24+ 
Hypothetical protein  Sp2004 2.669 1.17 2.28+ 
Hypothetical protein Sp2005 2.857 0.789 3.62+ 
Conserved hypothetical protein Sp2143 1.969 0.949 2.07+ 
SPFH domain/Band 7 family Sp2156 1.585 0.933 1.7+ 
     

Transport     
Xanthine/uracil permease family protein  Sp0287 1.567 1.053 1.49+ 
ABC transporter, ATP-binding protein Sp0720 1.326 1.049 1.26+ 
Potassium uptake protein, Trk family  Sp0480 1.249 0.943 1.32+ 
livH; Branched-chain amino acid ABC transporter Sp0750 1.577 1.008 1.56+ 
ABC transporter, ATP-binding protein Sp0786 1.296 0.956 1.36+ 
DNA primase, DNA metabolism: DNA replication, 
recombination, and repair 

Sp1071 1.907 1.038 1.84+ 
bta; Bacterocin transport accessory protein Sp1499 1.31 0.925 1.42+ 
ntpC; v-type sodium ATP synthase, subunit C  Sp1319 1.599 0.787 2.03+ 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Transport     
ABC transporter, permease/ATP-binding protein Sp1357 3.205 1.093 2.93+ 
ABC transporter, permease/ATP-binding protein Sp1358 2.842 1.079 2.63+ 
aatB; Amino acid ABC transporter, amino acid-binding protein Sp1500 2.671 1.05 2.54+ 
Amino acid ABC transporter, ATP-binding protein Sp1501 2.813 1.065 2.64+ 
Amino acid ABC transporter, permease protein Sp1502 3.036 1.122 2.71+ 
Cation efflux family protein, Sp1552 1.479 1.071 1.38+ 
Oxalate:formate antiporter Sp1587 1.982 1.057 1.88+ 
Sodium/dicarboxylate symporter family protein, authentic 
frameshift  

Sp1753 1.401 1.06 1.32+ 
proWX: Choline transporter  Sp1860 1.697 0.967 1.75+ 
proV; Choline transporter  Sp1861 1.69 0.984 1.72+ 
amiC; Oligopeptide ABC transporter, permease protein AmiC Sp1890 1.164 1 1.164+ 
ABC transporter, ATP-binding protein  Sp2003 3.335 1.059 3.15+ 
ABC transporter, permease/ATP-binding protein Sp2073 1.86 1.002 1.86+ 
ABC transporter, permease/ATP-binding protein  Sp2075 1.747 1.013 1.72+ 
pstS; Phosphate ABC transporter, phosphate-binding protein Sp2084 3.742 1.086 3.45+ 
pstC; Phosphate ABC transporter, permease protein Sp2085 3.417 0.93 3.67+ 
pstA: Phosphate ABC transporter, permease protein  Sp2086 3.729 1.001 3.73+ 
pstB: Phosphate ABC transporter, ATP-binding protein Sp2087 3.589 0.867 4.14+ 
phoU; Phosphate transport system regulatory protein PhoU Sp2088 3.919 0.924 4.24+ 
     

Transposons     
IS66 family element, Orf2, interruption  Sp1313 1.314 1.017 1.29+ 
Putative IS1239, transposase, degenerate Sp1515 1.363 1.086 1.26+ 
Transposase OrfA Sp1927 1.161 0.909 1.28+ 
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Differentially regulated genes in 403 Annotation in TIGR4 Expression in 403 Expression in TIGR4 Fold Change in 403 

Transposons     
Transposase OrfB Sp1928 1.072 0.969 1.11+ 
Transposase, IS116/IS110/IS902 family, degenerate Sp2074 1.211 0.962 1.26+ 
IS1381, transposase OrfB Sp2079 1.095 0.931 1.18+ 
     

Signal Transduction     
DNA-binding response regulator Sp2000 2.227 0.999 2.23+ 
hk11; Putative sensor histidine kinase  Sp2001 2.881 1.216 2.37+ 
     

     

     

     

     

     

     

     

     

     

     

     

     

     

 

 

 

 

    



  168 

 

5.4 Discussion 

S. pneumoniae is an organism which is found globally and continues to cause 

significant morbidity and mortality across the continents.  The ubiquitous nature 

of pneumococcal carriage and infections was only possible due to very high 

carriage rate in human population that results from high plasticity of 

pneumococcal genome and its capability to adapt to a number of environments 

which vary in terms of population dynamics, antibiotic use, vaccination coverage 

and competition with other colonizers.  This high plasticity of pneumococcal 

genome results in variation of pathogenicity of different strains and might result 

in a mutation, which can render a strain completely non-pathogenic.  The two 

strains can be compared in several ways but the most appropriate one is 

complete genome sequencing as it has the advantage of being extensive and it 

can identify minor differences in the two genomes with precision. 

403 is a strain, which was isolated in our lab and was found to be completely 

non-pathogenic in mouse models of sepsis.  Since the records suggested that this 

strain evolved from TIGR4, we decided to sequence it to get the complete 

genome sequence of this strain, which would provide a concrete basis for the 

future investigations and will ensure quality of downstream research work in the 

lab.   

Genome comparison of the two pneumococcal strains was not very complicated 

as both the strains have remarkable similarity. Complete assembly of 403 

sequences against TIGR4 revealed only a few differences between the two 

strains and only 35 SNPs were present in 403, which might be responsible for 
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phenotypic difference between the two strains.  Though six of these SNPs were 

in intergenic regions, and other seven mutations were synonymous and were not 

associated with any amino acid change, the rest of them were located in 

functionally important genes which could contribute towards decreased 

virulence of strain 403. 

Microarray analysis showed differential regulation of 288 genes, some of which 

are critical for pneumococcal virulence and have been reported as being 

essential for pneumococcal growth.  The list also includes a very large number of 

ABC transporters and proteins of unknown function, whose contribution in 403 

phenotype cannot be assessed.  

It was observed that a number of genes related to carbohydrate metabolism 

were differentially regulated in 403 and among sugars (glucose, sucrose, 

raffinose, lactose, trehalose, inulin, maltose and galactose)  utilized by 403 

(Hava & Camilli, 2002), genes related to fructose metabolism (fruB, glmS) and 

transport (fruA), galactose metabolism (galM, , galK, galT, aga, nagB), trehalose 

transport (treP), maltose/maltodextrin transport (MalX) and other sugar 

transporters(raff, rafE, Sp0063, Sp1682, Sp1683 and Sp1684) were down-

regulated though genes coding for enzymes related to glucose metabolism(gapN, 

gpsA and Sp0795) were upregulated along with those of gluconeogenesis such as 

acetoin dehydrogenase complex, which indicates preferential utilization of 

glucose over other resources in 403.  There is a possibility that downregulation 

of metabolism and transport of other sugars in 403 is due to preferred glucose 

utilization, which has a known suppressive effect upon the use of other sugars 

called carbon catabolite repression or CCR.   This repressive effect of glucose 
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over other sugars has been known for more than half a century and was first 

described by Jacques Monod in 1942 (Gorke & Stulke, 2008).  It is defined as:  

“….a regulatory phenomenon by which the expression of functions for the use of 

secondary carbon sources and the activities of the corresponding enzymes are 

reduced in the presence of a preferred carbon source………. (Gorke & Stulke, 

2008).” 

Also known as “diauxie,” it has been observed in a number of organisms and 

studied in detail and has been extensively reviewed by Gorke and Stulke, and 

Duetcher in 2008 and Vinuselvi in 2012 (Vinuselvi et al., 2012; Deutscher, 2008; 

Gorke & Stulke, 2008).  In S. pneumoniae a gene CcpA related to CCR has been 

identified, which is known to affect expression of a number of virulence factors 

according to changes in nutrient availability.  CcpA expression was not altered in 

403, but the role of one or more genes coding for “proteins of unknown 

functions” causing the same effect cannot be excluded. 

Iron and zinc containing alcohol dehydrogenases adhE and adh were also 

observed to have lower levels of expression in 403 as compared to TIGR4, which 

may compromise the organism’s ability to effectively colonize and invade host 

tissues as it would need a fully functional anaerobic metabolism for adaptation 

to low-oxygen environments within the host since it relies heavily on 

fermentation and is a facultative anaerobe.  Gene adh was also reported to be 

among essential genes for pneumococcal virulence (Hava & Camilli, 2002). 

It was also observed that genes coding for enzymes related to metabolism of 

basic amino acids including arginine and lysine were downregulated (argF, arcA 

and proC) though those related to synthesis of aromatic amino acids including 
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phenylalanine, tyrosine and tryptophan biosynthesis (pheA, tyrA, aroC, trpA, 

trpB, trpC, trpD and , trpG) and hydrophobic amino acids were up-regulated.  

Decreased synthesis of arginine appears related to reduced production of 

spermidine (as indicated by decreased expression of speE, spermidine synthase), 

which is among polyamines and has an important role in cellular growth, 

proliferation and stabilization and maintenance of subcellular organelles, and 

membrane systems (Murray et al., 2003).  Another downregulated gene nspC 

coding for carboxynorspermidine decarboxylase might be an important 

contributor responsible for 403 phenotype as it participates in a number of 

metabolic processes including 1 and 2 methylnaphthalene degradation, 3-

chloroacrylic acid degradation, alkaloid biosynthesis, benzoate degradation, 

phenylpropanoid biosynthesis, purine metabolism, pyruvate, tryptophan and 

tyrosine metabolism. 

Decrease in expression of ribosomal proteins including rpsD, rpsJ, rplC, rplB, 

rpsN, rpmD, rpsG, rplM, rplA, rpsP, rplT,pepF, rpmA, rplL, rpsR , rpsB and tsf 

might be related to over-expression of relA/Sp1645 (Table 5.5) as it has been 

reported to have important role in E. coli and other gram-negative organisms, 

where it decreases RNA synthesis and ribosomal proteins, increases synthesis of 

amino acids, and alters transcription pattern (Dennis & Nomura, 1974).   Though 

its role in S. pneumoniae is not detrimental in presence of abundant nutrients 

but it is mainly required in nutritional stress (Kazmierczak et al., 2009), its up-

regulation along with decreased ribosomal protein expression indicates that 403 

probably grows under stressful conditions and there is a possibility that it is 

unable to adapt to eukaryotic host environment as adaption is not only required 

during nutritional scarcity and stress but is also required to develop a symbiotic 

relationship with the host, which is the first step towards invasion. 
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Among the transport proteins, genes related to phosphate ABC transport system 

pstS, pstC, pstA, pstB and phoU were found up-regulated.  It has been reported 

for gene pstS that its expression levels increase during infection and they are 

responsive to availability of phosphate (Orihuela et al., 2004).  More recently, 

the role of the pst sytem in phosphate transport was described in Streptococcus 

mutans and it was reported that this system is also important for biofilm 

formation and proper growth (Luz et al., 2012).   Genetic regulation of this 

system is complex and involves a regulon called Pho regulon that is under the 

influence of a two component regulatory system (Lamarche et al., 2008).  

Though reasons of up-regulation of the whole operon along with phoU, which is 

the repressor, cannot be explained on the basis of available literature, and are 

unclear, it can still be assumed that it has some contribution towards the 

phenotype of 403.   

Though exact reasons for altered biology of 403 remains unclear, the complete 

genome sequence and array data has provided the picture of an evolutionary 

point in the phylogenetic history of this organism.  There is a possibility that 

differences in sugar and protein metabolism and changes in surface proteins 

might lead towards a phenotype, which is unable invade the host body and cause 

disease. 

Strain 403 was also tested as a live attenuated vaccine to see if it was protective 

against challenge with the same as well as different serotypes. Since its 

complete genome sequence is known and its biological behaviour was studied in 

detail, it was thought that once it is proven immunogenic, it can be easily 

altered to increase immunogenicity and any changes in its behaviour could also 



  173 

be predicted and analyzed on the basis of genome sequence and array data. It 

can also be made untransformable to prevent further changes in its genome. 
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6 Avirulent pneumococci as live cell vaccines       

Different types of vaccines have been utilized for more than two centuries 

against infectious diseases. They have been a major weapon against micro 

organisms and their use has significantly reduced morbidity and mortality 

associated with infectious diseases (Plotkin, 2005).  Different strategies being 

used for vaccination against infectious diseases include use of killed whole cell 

vaccine, live cell attenuated vaccines, toxoids, capsular polysaccharides, 

polysaccharides conjugated with proteins and recombinant proteins (Plotkin, 

2005).  Among these, polysaccharides and protein-conjugated polysaccharide 

vaccines have been major vaccination strategies against pneumococcal diseases.  

Due to the availability of these vaccines along with antibiotics as easier 

alternatives, other vaccination strategies were never given due importance in 

pneumococcal research until recently as the human efforts were mainly directed 

towards development of newer and better antibiotics and improvement of 

existing vaccines.  Because of certain limitations associated with these vaccines, 

the last few years have seen a surge in research directed towards development 

of alternative vaccine strategies (Barocchi et al., 2007), which include 

development of protein based vaccines (Swiatlo & Ware, 2003), use of whole-

cell killed vaccines (Malley & Anderson, 2012; Lu et al., 2010; Malley et al., 

2004; Malley et al., 2001) and live cell attenuated vaccines (Kim et al., 2012; 

Roche et al., 2007).  

A number of pneumococcal proteins have been tried in different formulations as 

it has been observed that protection provided by proteins would be serotype 

independent (Moffitt & Malley, 2011; Ogunniyi et al., 2007; Tai, 2006; Swiatlo & 
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Ware, 2003).  Whole cell killed vaccines and live attenuated vaccines have also 

been tried against pneumococcal diseases and both have provided promising 

results.  They simultaneously deliver many antigens, which induces immunity in 

vaccinated animals.  It was observed that when unencapsulated pneumococci 

were used intranasally as whole cell killed vaccine with cholera toxin as 

adjuvant, it was not only able to prevent nasopharyngeal colonization but also 

protected against pulmonary infection by capsulated pneumococci (Malley et al., 

2001). Similar vaccine in aluminium derived adjuvant, when given as injection 

induced both cell mediated and humoral immunity with a 30 fold higher antibody 

response as compared to the previous approach (Malley & Anderson, 2012). It 

has also been shown that this immunity was inducible in μ MT −/− mice that are 

incapable of producing antibodies, while mice lacking T lymphocytes or lacking 

CD4+ T cell responses (MHC II-deficient mice) were not protected (Malley et al., 

2005). On the other hand, live attenuated unencapsulated pneumococcal strains 

used as intranasal vaccine were shown to induce mucosal as well as systemic 

protection in mice, which was serotype independent and did not require any 

adjuvant (Roche et al., 2007).  It was also shown that this protection was 

antibody mediated and also required T cells as a significant increase was noted 

in the levels of IgG in serum and IgA in nasal washes of immunized mice.  This 

protection was not seen in μ MT −/− and MHC II-deficient mice (Roche et al., 

2007). 

Strain 403 was tested as live attenuated vaccine, as it is an avirulent derivative 

of TIGR4 and was noted to be able to colonize the mouse nasopharynx, though 

its virulence potential was not reported (Trzcinski et al., 2003).  It was found to 

be avirulent in a chinchilla model (Personal communication with Dr. Stephen 

Pelton). This strain was selected to be tested as live cell vaccine as it offers 
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advantage of simultaneous delivery of many immunogens including capsule, 

which could result in stimulating anticapsular antibodies along with cell 

mediated response to protein antigens.  Its longer presence in the nasopharynx 

could be translated into a more persistent immune response as it would also 

mean longer exposure to immunogens.  Capsule switch mutants of this strain can 

also allow simultaneous delivery of different types of capsules which can replace  

conjugated vaccine as a cheaper alternative and easy to prepare formulation.     

6.1 403 as live cell vaccine: 

Before using strain 403 as vaccine it was necessary to evaluate its virulence 

potential in animal models and establish if it is actually harmless to them.  MF1 

mice were challenged intraperitoneally with 1 x 105 cfu/50 μl, using the same 

quantity of virulent TIGR4 strain as control.  It was observed that not only was 

403 avirulent but it also failed to produce any bacteraemia. 

6.2 Safety of strain 403 as a live-attenuated vaccine:  

Strain 403 was also assessed for safety before it could be tested as live 

attenuated vaccine.  It was observed that mice inoculated with 403 lost some 

weight during the initial 12 hrs post-inoculation but recovered as compared to 

their counterparts as shown in Fig 6.1.   
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Figure 6.1. Post-inoculation weight loss in MF1 mice inoculated with 10

5
 cfu/200 μl strain 

403 IP, as compared to mice challenged with 10
5
 cfu/200 μl TIGR4 IP.   

A. Comparison of weight loss in both the groups during the first 12 hrs.  Loss in TIGR4 
infected group is more pronounced.   
B.  Weight loss in mice inoculated with 10

5
 cfu/200 μl 403 IP.  Mice recovered after 36 hrs as 

compared to their TIGR4 counterparts which did not survive beyond 30h.  Data is plotted as 
box and whiskers plot with the horizontal line in the box representing the median. Weight 
changes were compared by paired t-test (GraphPad Prism 4.0, USA). 



  178 

 

  

Some temperature drop was also noticed in mice challenged with 403 during the 

first 12 hrs of challenge, though it was not statistically significant (Fig 6.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Post-inoculation temperature drop during the first 12 hrs in MF1 mice inoculated 
with 10

5
 cfu/200 μl strain 403 IP and mice challenged with 10

5
 cfu/200 μl TIGR4 IP. 

Temperature data is plotted as a box and whiskers plot with horizontal line in the box 
representing the median.  Changes within a group were compared by paired t-test 
(GraphPad Prism 4.0, USA).  Decrease in temperature was more pronounced in mice 
infected with TIGR4 as compared to their counterparts challenged with 403, which gradually 
recovered within 24 hrs.  

 

6.3 IP Vaccination with strain 403: 

Two groups of out-bred MF1 mice were used to assess potential of 403 strains as 

live-attenuated vaccine.  Mice were vaccinated intraperitoneally with either 5 x 

106 403 cfu/200µl re-suspended in PBS or PBS alone.  Booster doses were given 

on day 14 and day 28.  Mice were left for a month before they were challenged 

with TIGR4 strains. 
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On challenging IP with 105 cfu/200µl TIGR4 suspended in PBS, vaccinated mice 

survived significantly longer than their counterparts (p=0.0018) though only 20% 

of vaccinated mice survived till the end of the experiment. Development of 

symptoms was also slower in the vaccinated group (Fig 6.3).   

 

 

 

 

 

Figure 6.3. Survival curve of mice 3x vaccinated IP with 5 x 10
6 

cfu of strain 403/ 200μl PBS 
or PBS only and challenged with 1x10

5 
cfu/200 μl TIGR4 IP.  Mice vaccinated with 403 strains 

survived longer than control mice and 20% survived till end of experiment.  Median survival 
time for vaccinated mice was 42 hrs as compared to that of 18 hrs for control mice.  Survival 
analysis showed there was a significant difference in survival time between the two groups 
by log rank test (p=0.0018). All data plotted as percentage survival as a staircase line with 
points for all observations against hrs post infection. 
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Level of bacterial load in vaccinated mice was also different as compared to 

non-vaccinated group and former showed decreased bacteraemia as compared to 

the latter.  Levels of bacteraemia were significantly different at the 12 hour 

time point.  All the analyses were performed while all mice were alive unless 

stated otherwise. 

The first mouse from the control group was culled at 12 (hours post infection) 

hpi and the next two were sacrificed at 18 hpi after they reached moribund 

state.  There was significant difference in bacteraemia levels in the two groups 

at 6 and 12 hour time points (Fig 6.4-6.5).  A continuous drop in bacteraemia 

was observed in vaccinated group after a peak at 24 hrs, which reached the 

lowest level at 42 hrs, where mice had to be sacrificed because they had 

reached moribund state. 
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Figure. 6.4. Comparison of bacterial load during 6-18 hrs post-challenge with 1x10
5 

cfu/ 200 
μl TIGR4 IP in mice 3x vaccinated IP with 5 x 10

6 
cfu of strain 403/ 200μl PBS and control 

group given PBS only.  Groups were compared with Mann-Whitney test (GraphPad Prism 
4.0, USA).  Circles mark individual mice. Horizontal dotted line represents the limit for 
detection. Horizontal bar represents median. (A)  Bacteraemia count at 6 hpi.  There was 
significant difference between PBS control and vaccinated mice (p=-0079) (B) Bacteraemia 
count at 12 hpi.  There was a significant difference between PBS control and vaccinated 
mice (p=-0079) (C) Bacteraemia count at 18 hpi.  Statistical analysis was not performed for 
this time point as one of the control mice had been sacrificed at 12 hpi. 

   
 



  182 

 

Mann Whitney’s test showed significant difference (p=.0079) in the bacterial 

load between the two groups at 6 and 12 hrs (GraphPad Prism 4.0, USA) as 

shown in Fig 6.5. 

 

Figure 6.5. Comparison of bacterial load at different time points in mice challenged with 
1x10

5 
cfu/ 200 μl TIGR4 IP in groups vaccinated IP with 5 x 10

6 
cfu of strain 403/ 200μl PBS 

and 200 μl PBS only.  Mann Whitney’s test showed significantly different bacterial load at 6 
and 12 hour time points (GraphPad Prism 4.0, USA).  Statistical analyses were not 
performed beyond 12 hrs.  First mouse in the control  group died at 12 hrs, while first 
mouse in the vaccinated group died at 42 hrs. Dotted line represents the limit for detection. 

 

On monitoring and scoring for hunching, lethargy and piloerection clinically, 

vaccinated mice showed delay in the appearance of symptoms as compared to 

the control group, and clinical scores were significantly different at 12 hour time 

point (Fig 6.6). 
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Figure 6.6. Clinical score comparison at 12 hour time point of control group inoculated IP 
with 200 μl PBS and mice 3x vaccinated with 5 x 10

6 
cfu of strain 403/ 200μl PBS and 

challenged with 1x10
5 

cfu/ 200 μl TIGR4 IP.  Data plotted as a bar graph.  Bars represent 
mean ± SEM.  Unpaired t-test showed (GraphPad Prism 4.0, USA) that here was a significant 
difference in clinical scores at 12 hour time point between the two groups.   

 

6.4 Vaccination develops reactivity in mouse sera: 

To confirm if mice developed serological reactivity against TIGR4 strain, western 

blots were performed using mouse sera as a source of primary antibodies against 

TIGR4 cell lysate (Fig 6.7).  
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Figure 6.7. Western blot using pre-immune and post-immune sera from vaccinated mice as 
source of primary antibodies against TIGR4 cell lysate.  10 µl of ladder and sample was 
loaded in lanes. Molecular weights of major bands are indicated with the help of arrows. 
Serum was used in 1/100 while secondary anti-mouse antibodies were used at 1:1000 
dilution.  
(A) Pre-immune Sera. 
Lane 1: Protein ladder. 
Lane 2: Positive control using TIGR4 lysate in a previously immunized mouse. 
Lane 3: Protein ladder 
Lane 4: Pre-immunization serum from Mouse M1 
Lane 5: Protein ladder 
Lane 6:  Pre-immunization serum from Mouse M2 
Lane 7: Protein ladder 
Lane 8: Pre-immunization serum from Mouse M3 
Lane 9: Protein ladder 
Lane 10: Pre-immunization serum from Mouse M4 
Lane 11: Protein ladder 
Lane 12: Pre-immunization serum from Mouse M5 
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Figure 6.7. Western blot using pre-immune and post-immune sera from vaccinated mice as 
source of primary antibodies against TIGR4 cell lysate.  10 µl of ladder and sample was 
loaded in lanes. Molecular weights of major bands are indicated with the help of arrows. 
Serum was used in 1/100 while secondary anti-mouse antibodies were used at 1:1000 
dilution.  
(B) Post immune sera.  
Lane 1: Protein ladder 
Lane 2: Post-immunization serum from Mouse M1 
Lane 3: Protein ladder 
Lane 4:  Post immunization serum Mouse M2 
Lane 5: Protein ladder 
Lane 6: Post immunization serum Mouse M3 
Lane 7: Protein ladder 
Lane 8: Post immunization serum Mouse M4 
Lane 9: Protein ladder 
Lane 10: Post immunization serum Mouse M5. 
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Western blot showed that antibodies had developed in mice after vaccination 

against TIGR4 proteins and serum after vaccination of mice was reactive against 

them.   

6.4.1.1 Mouse serum also reacts with the type 4 capsular antigens: 

Quellung reactions are an important tool to show if anticapsular antibodies had 

developed in vaccinated mice as they are considered important defence 

mechanism and help in providing protection against pneumococcal infection.  

Quellung reactions performed using sera from vaccinated mice were positive 

against TIGR4 as well as 403. 

Further experiments were performed to see effects of vaccine administration 

through IN route, effect of vaccination on challenge with lesser number of 

bacteria and protection against different serotypes  

6.4.2  Intraperitoneal immunization and low dose challenge: 

10 MF1 mice were divided into two groups, and were given PBS or vaccinated 3x 

with strain 403 as described previously in Section 1.3. 

Mice were challenged intraperitoneally with 5 x 103 cfu/ 200µl and were bled 6 

hourly and monitored for development of clinical symptoms during the course of 

the experiment.   

As compared to previous experiment, median survival time of both groups 

increased by thirty hrs.  There was not statistical difference between the two 

groups.  There was one survivor in the vaccinated group which was able to clear 

A 
C 

E 
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the infection after reaching a relatively high level of bacteraemia but two of the 

vaccinated mice had to be sacrificed earlier in experiment (Fig 6.8).     

 

 

 

Figure 6.8. Survival curve of mice challenged with 5 x 10
3 

cfu/ 200 μl TIGR4 IP in groups 3x 
vaccinated IP with 5 x 10

6 
cfu of strain 403/ 200μl PBS and 200 μl PBS only. Mice vaccinated 

with 403 strains survived longer than unvaccinated mice and 20% survived till the end of 
experiment though survival analysis did not show any statistically significant difference in 
survival time between the two groups.  Median survival time for vaccinated mice was 72 hrs 
as compared to 48 hrs for control mice (GraphPad Prism 4.0, USA). All data plotted as 
percentage survival as a staircase line with points for all observations against hrs post 
infection. Five mice used in each group.  

 

There was no statistical difference in the bacteraemia in the two groups.  In 

vaccinated mice, after a very high level of bacterial load of 108 cfu/ml at 24 
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hour time point, the count dropped back to 106 cfu/ml at 30 hrs though only 20% 

survived beyond 72 hrs (Fig 6.9). 

 

 

 

Figure 6.9.  Comparison of the bacterial load in mice challenged with 5 x10
3 

cfu/ 200 μl 
TIGR4 IP in groups 3x vaccinated IP with 5 x 10

6 
cfu of strain 403/ 200μl PBS and 200 μl PBS 

only. Graph shows no notable difference in bacterial load in two groups.  Dotted line 
represents limit for detection. 

 

 

Individual mouse-data is shown in Fig 6.10. 
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Figure 6.10. Comparison of bacterial load during 6-36 hrs post-challenge with 5x10
3 

cfu/ 200 
μl TIGR4 IP in mice vaccinated 3x IP with 5 x 10

6 
cfu of strain 403/ 200μl PBS and control 

group given PBS only.  Groups were compared with Mann-Whitney test (GraphPad Prism 
4.0, USA).  Circles mark individual mice. Horizontal dotted line represents the limit for 
detection. Horizontal bar represents the median. (A)  Bacteraemia count at 6 hpi.  (B) 
Bacteraemia count at 12 hpi.  (C) Bacteraemia count at 18 hpi.  (D) Bacteraemia count at 24 
hpi.   
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Figure 6.10. Comparison of bacterial load during 6-36 hrs post-challenge with 5x10
3 
cfu/ 200 

μl TIGR4 IP in mice vaccinated 3x IP with 5 x 10
6 
cfu of strain 403/ 200μl PBS and control 

group given PBS only.  Groups were compared with Mann-Whitney test (GraphPad Prism 
4.0, USA).  (E) Bacteraemia count at 30 hpi.  (F) Bacteraemia count at 36 hpi.   
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Though both groups did not show much difference in levels of attained bacterial 

load there was significant difference in clinical symptoms between the two 

groups (p= 0.0317)( (GraphPad Prism 4.0, USA).  The vaccinated group lost less 

weight as compared to the control group though it was not statistically 

significant (Fig 6.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11. Comparison of weight and clinical symptoms at 30 hrs time points in mice 
challenged with 5 x 10

3 
cfu/ 200 μl TIGR4 IP.  Vaccinated group was 3x inoculated IP with 5 x 

10
6 

cfu of strain 403/ 200μl in PBS and control group was given PBS only.  (A) Comparison 
of clinical scores.  Unpaired t-test showed significant difference in clinical symptoms 
(GraphPad Prism 4.0, USA).  Bars represent the mean ± SEM (B) Comparison of weight-loss. 
Weight changes are plotted as a box and whiskers plot with horizontal line in the box 
representing median.   

 

B A 

B 
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6.4.3 Intranasal Immunization of mice: 

Thirty MF1 mice were divided into two groups.  The first group was vaccinated 

intranasally with 5 x 107 cfu/10µl under general anaesthesia, while control group 

was given 10 µl PBS. Intranasal booster doses were given on day 14 and 28 and 

sample bleeds were taken before each vaccination and on day 42. 

6.4.3.1 Intranasal challenge of mice with TIGR4 shows weak trends: 

Five mice were taken from each group and were challenged intranasally with 

5x106 cfu TIGR4/50µl.  Twenty percent of vaccinated mice survived and cleared 

infection as compared to none surviving in the control group (Fig 6.12).    

             

Figure 6.12. Survival curve of mice challenged with 5x10
6 

cfu/ 50 μl TIGR4 IN. Vaccinated 
group was vaccinated IN with 5 x 10

7 
cfu of strain 403/ 10μl in PBS and control group was 

given 10 μl PBS only.  20% survival was seen in vaccinated group. All data plotted as 
percentage survival as a staircase line with points for all observations against hrs post 
infection.  Log rank test did not show any significant difference between the two groups.  
The median survival time for both the groups was 54 hrs. Five mice were used in each 
group. 
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There was no significant difference in levels of bacteraemia the two groups (Fig 

6.13). 

 

Figure 6.13. Bacteraemia during 36 hrs post IN infection in mice challenged with 5x10
6 

cfu/ 
50 μl TIGR4. Vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of strain 403/ 10μl in 

PBS and control group was given 10 μl PBS only.  There was no significant difference in 
level of bacteraemia between the two groups. Five mice were used in each group. 

 

The first vaccinated mouse died at 45 hrs before any of control group mouse, 

though the last one to be culled at 72 hrs also belonged to vaccinated group.  

One of the mice from vaccinated group cleared infection and survived till the 

end of experiment. 
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6.4.3.2 Intranasal challenge of mice with A66: 

Five vaccinated and five control mice were challenged intranasally with 

bioluminescent serotype 3 strain A66.1 using 5 x 106 cfu/50 µl dose.  The results 

did not show any significant differences between the two groups.  There were no 

survivors in any group, though 40% mice from vaccinated group reached 96 hour 

time point as compared to 20% from the control group (Fig 

6.14).

 

Figure 6.14.  Survival curve of mice challenged with 5x10
6 

cfu/ 50 μl bioluminescent strain 
A66.1 IN.  Vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of strain 403/ 10μl in PBS 

and control group was given 10 μl PBS only.  There was no significant difference in the two 
groups.  All data plotted as percentage survival as a staircase line with points for all 
observations against hrs post infection. . Five mice were used in each group. 

 

Group analysis did not show significant differences in bacteraemia in vaccinated 

group as compared to control group, on excluding vaccinated mouse M5 as it 
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showed exceptionally high bacteraemia levels, some difference could be seen in 

the two groups though it did not reach statistically significant level (Fig 6.15). 

 

Figure 6.15.  Bacteraemia and thoracic photon emission in mice challenged with 5x10
6 

cfu/ 
50 μl bioluminescent strain A66.1 IN. The vaccinated group was 3x vaccinated IN with 5 x 
10

7 
cfu of strain 403/ 10μl in PBS and control group was given 10 μl PBS only.  (A)  

Bacteraemia from 0-48 hrs in the two groups. (B) Bacteraemia from 0-48 hrs excluding 
outlier M5. (C) Thoracic photon emission from 0-48 hrs.  (D)  Thoracic photon emission from 
0-48 hrs excluding M5. Five mice used for each group. 

  

Bacteraemia results were consistent with images when compared with Thoracic 

Photon Emission recorded by the IVIS imaging system (IVIS: Caliper Life Sciences, 

UK), which is an optical imaging system for non-invasive monitoring of disease 

progression without killing the animals at each stage.  It records photon emission 
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from diseased animal and uses this data with 3D reconstruction of these images 

to localise source of bioluminescence, allowing visualisation of the spread of 

infection within the body of living animal (Fig 6.16).  

 

 

 

Figure 6.16.  IVIS images showing photon emission in mice challenged with 5x10
6 

cfu/ 50 μl 
bioluminescent strain A66.1 IN.  Vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of 

strain 403/ 10μl in PBS and control group was given 10 μl PBS only.  Control mice are on left 
(M6-M10) and vaccinated mice on the right (M1-M5).  
(A) 0 hr time point. (B) 6 hr time point.  Infection developing in M5. 
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Figure 6.16.  IVIS images showing photon emission in mice challenged with 5x10
6 

cfu/ 50 μl 
bioluminescent strain A66.1 IN.  Vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of 

strain 403/ 10μl in PBS and control group was given 10 μl PBS only.  Control mice are on left 
(M6-M10) and vaccinated mice on the right (M1-M5). (C) 12 hr time point.  Infection 
developed in M5. (D) 18 hr time point. Progression of infection in M5.   
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Figure 6.16.  IVIS images showing photon emission in mice challenged with 5x10
6 

cfu/ 50 μl 
bioluminescent strain A66.1 IN.  Vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of 

strain 403/ 10μl in PBS and control group was given 10 μl PBS only.  Control mice are on left 
(M6-M10) and vaccinated mice on the right (M1-M5). (E) 24 hr time point. Infection has also 
appeared in M9. (F) 30 hr time point.  Infection has developed in several mice in both the 
groups.  
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Figure 6.16.  IVIS images showing photon emission in mice challenged with 5x10
6 

cfu/ 50 μl 
bioluminescent strain A66.1 IN.  Vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of 

strain 403/ 10μl in PBS and control group was given 10 μl PBS only.  Control mice are on left 
(M6-M10) and vaccinated mice on the right (M1-M5). (G) 36 hr time point. (H) 42 hr time point.  
Infection can be seen particularly around the lung areas in heavily infected mice.  
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Figure 6.16.  IVIS images showing photon emission in mice challenged with 5x10
6 

cfu/ 50 μl 
bioluminescent strain A66.1 IN.  Vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of 

strain 403/ 10μl in PBS and control group was given 10 μl PBS only.  Control mice are on left 
(M6-M10) and vaccinated mice on the right (M1-M5). (G) 36 hr time point. (I) 48 hr time point.  
Full blown infection in M5, M7, M9 and M10 

 

IVIS data did not show any significant difference in progression of infection in 

two groups.  

6.4.3.3 Intranasal challenge with ATCC6308: 

Both the groups were challenged with highly virulent type 8 strain ATCC6308 

using 5x 103 cfu/50 µl dose.  One of the unvaccinated mice (M7) did not develop 

any bacteraemia, so it was excluded from all analyses, while a vaccinated mouse 

(M4) developed very high bacteraemia and became sick before all the others.  

The analysis was performed with and without M4.  
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There were no survivors in any of the group, and there was no difference in 

survival.  

 

Figure 6.17. Survival curve of mice challenged IN with 5x10
3 

cfu/ 50 μl strain ATCC6308. 
Vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of strain 403/ 10μl in PBS and 

control group was given 10 μl PBS only.  There was no difference in survival of two groups.  
All data plotted as percentage survival as a staircase line with points for all observations 
against hrs post infection. 

 

 

Initial group analysis showed that the level of bacteraemia was higher in 

vaccinated mice as compared to control mice.  On analyzing results by excluding 

outlying mouse M4, vaccinated mice showed to have developed lower level of 

bacteraemia as compared to controls (Fig6.18).    
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Figure 6.18. Bacterial load of mice challenged IN with 5x10
3 

cfu/ 50 μl strain ATCC6308. 
Vaccinated group was vaccinated IN with 5 x 10

7 
cfu of strain 403/ 10μl in PBS and control 

group was given 10 μl PBS only.  (A) Bacteraemia including vaccinated outlier M4. (B) 
Bacteraemia excluding vaccinated outlier M4.  

 

The analysis of bacteraemia at different time points was performed including 

and excluding outlier M4.  Though difference of level of bacteraemia did not 
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reach statistically significant levels there were clear trends of decreased 

bacteraemia in vaccinated group as compared to control group after exclusion of 

M4 (Fig 6.19). 

 

Figure 6.19. Comparison of bacterial load during 18-48 hrs post-challenge IN with 5x10
3 
cfu/ 

50 μl strain ATCC6308. The vaccinated group was 3x vaccinated IN with 5 x 10
7 
cfu of strain 

403/ 10μl in PBS and control group was given 3x 10 μl PBS only.  Groups were compared 
with Mann-Whitney test (GraphPad Prism 4.0, USA).  Circles mark individual mice. 
Horizontal dotted line represents the limit for detection. Horizontal bar represents the 
median. (A)  Bacteraemia count at 18 hpi.  (B)  Bacteraemia count at 18 hpi excluding M4 
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Figure 6.19. Comparison of bacterial load during 18-48 hrs post-challenge IN with 5x10
3 
cfu/ 

50 μl strain ATCC6308. The vaccinated group was 3x vaccinated IN with 5 x 10
7 
cfu of strain 

403/ 10μl in PBS and control group was given 3x 10 μl PBS only.  Groups were compared 
with Mann-Whitney test (GraphPad Prism 4.0, USA).  Circles mark individual mice. 
Horizontal dotted line represents the limit for detection. Horizontal bar represents the 
median. (E) Bacteraemia count at 30 hpi. (F) Bacteraemia count at 30 hpi excluding M4.  (G) 
Bacteraemia count at 36 hpi.  (H) Bacteraemia count at 36 hpi excluding M4. 
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Figure 6.19. Comparison of bacterial load during 18-48 hrs post-challenge IN with 5x10
3 

cfu/ 
50 μl strain ATCC6308. The vaccinated group was 3x vaccinated IN with 5 x 10

7 
cfu of strain 

403/ 10μl in PBS and control group was given 3x 10 μl PBS only.  Groups were compared 
with Mann-Whitney test (GraphPad Prism 4.0, USA).  Circles mark individual mice. 
Horizontal dotted line represents the limit for detection. Horizontal bar represents the 
median. (I) Bacteraemia count at 48 hpi. (J) Bacteraemia count at 48 hpi excluding M4 

 

 

Though data obtained from this experiment was spread but conclusion can still 

be drawn that IN vaccination with 403 was not effective in protecting against 

ATCC6308 challenge.  

In summary, intranasal vaccinations not only failed to provide complete 

protection against the same serotype which was used for vaccination but also 

there was almost no protection against serotypes other than one used to 

vaccinate mice, though weak trends of decreased bacteraemia were observed in 

some mice for homologous strain.  

6.5 Discussion: 

The quest for new vaccine targets is intense than ever as pneumococcal diseases 

are rising at an alarming rate.  The current vaccines, which use different types 

of pneumococcal capsular polysaccharide (CPS) and induce antibodies that are 
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serotype-specific, are capable of activating and fixing the complement and 

promote opsonisation and phagocytosis (Plotkin, 2008).  There have been 

consistent efforts for discovery of newer pneumococcal vaccines targeted 

against proteins that could act against all strains regardless of serotype.  

Whole cell killed vaccines have been used in a number of studies as it can induce 

immunity by delivering bulk of pneumococcal antigens and induce serotype 

independent immunity by humoral as well as cell mediated mechanism (Malley & 

Anderson, 2012).  The observation that intranasal whole cell killed vaccine 

containing unencapsulated pneumococci prevents colonization as well as 

pneumonia by capsulated pneumococci when administered with cholera toxin 

(Malley et al., 2001) and induces both cell mediated and humoral immunity 

when used with aluminium derived adjuvants (Malley & Anderson, 2012) makes 

whole cell killed vaccines a promising approach.  

Live attenuated unencapsulated pneumococcal strains used without adjuvant as 

intranasal vaccine have also been shown to induce mucosal as well as systemic 

serotype independent protection in mice (Roche et al., 2007).  This protection 

was also shown to involve both humoral and cell mediated immunity (Roche et 

al., 2007). 

As a combination of the above two approaches, we tested serotype 4 avirulent 

strain 403 intraperitoneally and than intranasally to observe the magnitude of 

protection in vaccinated mice.  The idea behind using live attenuated strain was 

to stimulate multiple immune mechanisms by delivering many immunogens at 

one time along with longer exposure as nasopharyngeal colonization would 

expose antigens other than capsule. Since the capsule gets down-regulated in 

the nasopharynx (Weiser et al., 1996; Weiser et al., 1994) there was a possibility 
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that other pneumococcal proteins will also get longer  exposure in nasopharynx 

along with the capsule, which could result in stimulation of both arms of immune 

system and induce capsule-specific antibodies as well as CD4+ cell mediated 

immunity.  Results of vaccination by intraperitoneal route showed only partial 

protection against homologous strain though there were significant differences 

in levels of bacteraemia, survival, weight and temperature losses, while 

heterologous strains were not tested.  On the other hand, intranasal vaccination 

and challenge with homologous strains showed trends of decreased bacteraemia 

though it did not reach statistically significant levels at most time points.  It also 

did not provide any protection against heterologous strains.         

It is quite clear that strain 403 on its own, if used as a vaccine, is not strongly 

immunogenic and is not able to provide complete protection against infection, 

especially through intranasal route.  The data obtained from these experiments 

is quite variable though some of its fluctuation can be attributed to use of out-

bred MF1 mice.  Another reason for variation in data could be route of 

administration as it might affect the efficacy of vaccine as differences in 

magnitude of immune response related to route of administration have been 

reported in the literature.  Hirabayashi and co-workers (1990) have reported 

superiority of intranasal route over other routes for hemagglutinin vaccine used 

in conjugation with cholera toxin against influenza A virus (Hirabayashi et al., 

1990), similar observations were reported by Tamura and co-workers (1992) 

while comparing intranasal vaccination route with subcutaneous route of 

vaccination for the same vaccine (Tamura et al., 1992).  Though Gai and co-

workers (2008) reported superiority of IP vaccination over IN route while 

vaccinating against SARS coronavirus with inactivated virus (Gai et al., 2008), 

Meitin et al. (1991) while vaccinating against H1N1 with inactivated H1N1 have 
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also reported superiority of Intraperitoneal route (Meitin et al., 1991).  In case 

of pneumococcal vaccination, Malley and Anderson (2012) have reported that 

intraperitoneal immunization with whole cell killed vaccine administered with 

aluminium based adjuvants produced >30 fold superior antibody response as 

compared to the intranasal route (Malley & Anderson, 2012). These observations 

show that route of administration may affect efficacy of vaccine and an 

efficacious vaccine might become inefficient due to change in the site of 

delivery.    

Though strain 403 does not provide complete protection against pneumococcal 

infection as live attenuated vaccine but it was noted to have some effect 

through intraperitoneal route.  Immunized mice not only showed decreased 

bacteraemia levels but also survived significantly longer than control mice. It is 

tolerated well, and does not produce any bacteraemia on its own.  Moreover, 

sera from them were reactive against pneumococcal proteins ranging in size 

from 62-188 kd that might include pspA, pspC, IgA proteases, Srt, Pht and other 

proteins of unknown function, which are among surface associate proteins and 

have been reported to be involved in development of immunity in humans 

(Giefing et al., 2008).  It was also observed that sera from immunized mice were 

able to agglutinate serotype 4 pneumococci.  Considering the above facts, there 

is a possibility that 403, if combined with a suitable adjuvant can provide better 

protection than used alone as this approach have been shown to work with 

avirulent shigella strains as it was observed when avirulent shigella strains were 

given with cholera toxin and heat labile enterotoxin and their mutated versions, 

enhanced the immunogenicity of  live attenuated shigella strains was observed 

(Hartman et al., 1999). If immunogenic potential of 403 can be enhanced, it will 

prove to be a safe vaccine, which would be cost-effective, easy to produce and 
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administer. The strain 403 also offers and added advantage that its capsule-

switch mutants can be produced, (Some constructed and discussed in chapter 3), 

and used in the same way as a polysaccharide conjugate vaccine as a number of 

403 mutants expressing different capsular types can be administered together in 

live or killed form.  This can also help in dealing with vaccine escape 

phenomenon as in case of emergence of a vaccine escape serotype, 403 

expressing that particular serotype causing infections can be added to the 

regimen to produce protection for newly emerging serotype.  

Based on the information gathered from the work presented in this chapter, a 

number of experiments can be done to further investigate the potential of 403 

as live attenuated vaccine and enhance its immunogenicity.  Intraperitoneal 

immunizations can be performed by supplementing the vaccination mixture with 

appropriate quantity of suitable adjuvants to see if this could enhance 

immunogenicity of the vaccine.  In case of positive results, vaccination process 

can be repeated with capsule switch mutants to enhance options of vaccination.   
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7 Concluding thoughts and final discussion: 

The aim of this thesis was to study the effect of genetic variation on 

pneumococcal biology.  As a part of this project capsule switch mutants were 

constructed in three genetic backgrounds and were compared for effect of 

capsular switching on their biological characteristics. EM and capsule 

polysaccharide measurements showed differences in capsule formation in 

capsule switch mutants and it was seen that amount of capsular polysaccharide 

and capsular thickness was different in different mutants as compared to each 

other and with the parent, though expression of capsular genes could not be 

investigated due to time constraints. It was also observed that capsular 

switching is not always beneficial for the organism and it can actually decrease 

the virulence as the same capsule was observed to be having different effects on 

different genetic backgrounds.  This might be the reason that capsule switch 

mutants of only certain MLST types have been reported and switching of certain 

capsular serotypes (such as serotype 1) have not been observed.  Our findings 

also suggest that capsular switching might not be a universally favorable 

phenomenon despite high homology of the flanking regions (Bentley., 2006) and 

a successful capsule switch would only be possible if it is supported by a suitable 

genetic background.  This information can be considered encouraging as it can 

be assumed that vaccine escape phenomenon will have its limitations and only a 

few types of vaccine escape mutants will emerge in the future and magnitude of 

this problem will be smaller than it is generally thought.  These findings might 

influence future vaccine design as if the possible emergent vaccine escape 

mutants can be predicted in a population by studying the population dynamics 

and serotype distribution, it would be possible to alter the vaccine coverage to 
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cover the expected emerging serotypes and create herd immunity in the 

population. 

We observed that presence or absence of the capsule does not have an effect on 

any phase of the growth of TIGR4 and D39 strains in BHI, though it has major 

effects on transformability and tendency of pneumococci to associate in chains.  

Further investigations such as microarrays could reveal the effect of capsule 

switching on expression of genes elsewhere in the pneumococcal genome, which 

might increase our knowledge about the relationship of the capsule to the rest 

of the genome and the dynamics of capsule switching and explain the 

relationship of the capsule genes with the genetic background.  

The effect of chain formation on pneumococcal virulence needs to be studied in 

detail using animal models.  Our findings have shown that capsule type may 

result in formation of longer or shorter chains, but conclusions could not be 

drawn about the effects of chain length on bacterial virulence.  Further studies 

observing the chain formation in the infected animal might provide a conclusive 

answer. 

We studied the avirulent strain 403, which is a derivative of highly virulent and 

well-studied strain TIGR4 for investigation of genetic basis for its lack of 

virulence.  Both the strains were compared by whole genome sequencing and 

microarray analysis.  Genome analysis revealed only a few mutations in strain 

403, but microarray showed 288 genes to be expressed differently in this strain.  

Though exact reasons of the non-virulent nature of strain 403 remains unknown 

but it was observed that several genes related to key metabolic pathways had 

different expression profiles as compared to TIGR4.  There is a possibility that 

differences in expression of genes related to carbohydrate and protein 
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metabolism or transport systems in the two strains might be responsible for the 

non-virulent nature of 403.  Though there are limitations of microarray analysis 

and this approach requires further confirmation and validation of findings by RT-

PCR, it has documented the genes that can be further investigated. In addition, 

if the exact genetic cause of the avirulence of 403 can be found, it can serve as 

an interesting drug target. Any drug that can target a particular gene or its 

product, can result in the loss of virulence of highly virulent invasive strains and 

can serve as a treatment modality for the invasive pneumococcal disease.    

Strain 403 was also tested as a potential live attenuated vaccine as it was 

thought to function as a vehicle capable of delivering the complete set of 

pneumococcal antigens.  Since it can colonize the nasopharynx it was also 

thought that longer exposure will aid to the development of better immune 

response and would be able to induce serotype independent immunity by 

humoral as well as cell mediated mechanisms. It was further theorized that if 

403 could provide sufficient protection, its capsule switch mutants could also be 

used as a vaccine, combining several serotypes in a single dose, without 

conjugating to any adjuvant.  This approach could particularly be useful as it 

would only require the construction of capsule switch mutants of every serotype, 

their conversion to non-transformable forms by the knock-out of competence 

genes and administration according to the requirement of each population along 

with a suitable adjuvant. 

Though trial of 403 was not very successful as it failed to provide any protection 

through intranasal route but partial protection was observed through 

intraperitoneal route and significant differences were noted in levels of 

bacteraemia, survival, weight and temperature losses against the homologous 
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strain. There is still a possibility that 403 as a live attenuated vaccine can be 

improved by addition of a suitable adjuvant, which if successful, could provide a 

cheaper alternative for present vaccines.  It has the potential to serve as a 

comobination of live attenuated and whole cell killed vaccines as it would 

provide the antigen exposure for prolonged period of time resulting in the 

development of immunity which would be directed agasint the capsular 

polysaccharides as well as other proteins.  Another most important feature of 

the proposed vaccine is cost effectiveness, as once constructed and prepared, 

bacterial strains can be stored and supplied in unlimited quantity for unlimited 

period of time.  If immunogenicity can be improved, 403 along with its capsule 

switch mutants have the potential to become an easy to use and cost-effective 

vaccine, which can be easily produced in bulk and altered when needed.  
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