
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Ratcliffe, Heather (2013) Electron beam evolution and radio emission in 
the inhomogeneous solar corona. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/4442/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4442/


Electron Beam Evolution and

Radio Emission in the

Inhomogeneous Solar Corona

Heather Ratcliffe, BSc, MMathPhys

Astronomy and Astrophysics Group

Department of Physics and Astronomy

Kelvin Building

University of Glasgow

Glasgow, G12 8QQ

Scotland, U.K.

Presented for the degree of

Doctor of Philosophy

The University of Glasgow

March 2013



2



For my parents, who surely started it all by naming me after an astronomer.



4

This thesis is my own composition except where indicated in the text.

No part of this thesis has been submitted elsewhere for any other degree

or qualification.

Copyright c© 2013 by Heather Ratcliffe

27th March 2013



Contents

List of Figures v

Abstract viii

Acknowledgements x

Table of Symbols xi

1 Introduction 1

1.1 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Coronal Density Profiles . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 The Solar Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Density Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.5 Solar Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Essential Plasma Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Langmuir Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Magnetoionic Modes . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Plasma Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Reconnection and Particle Acceleration . . . . . . . . . . . . . . . . . . 8

1.3.1 Acceleration Mechanisms . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Acceleration Region Diagnostics . . . . . . . . . . . . . . . . . . 9

1.3.3 X-Ray Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Bremsstrahlung and the Thick Target Model . . . . . . . . . . . 11



ii CONTENTS

1.4 Electron Beam Propagation and Evolution . . . . . . . . . . . . . . . . 12

1.4.1 Langmuir Wave Generation and Sturrock’s Dilemma . . . . . . 12

1.4.2 Beam Propagation in Inhomogeneous Plasma . . . . . . . . . . 13

1.5 Radio Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Coherent and Incoherent Emission . . . . . . . . . . . . . . . . 16

1.5.2 The Plasma Emission Mechanism . . . . . . . . . . . . . . . . . 17

1.5.3 Radio Burst Classifications . . . . . . . . . . . . . . . . . . . . . 18

1.5.4 Type III Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.5 Type V Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Observations of High Frequency Plasma Radio Emission . . . . . . . . 24

1.6.1 Classic Type III Radio Bursts . . . . . . . . . . . . . . . . . . . 24

1.6.2 Other Plasma Emission . . . . . . . . . . . . . . . . . . . . . . . 26

2 Langmuir Wave Diffusion in Inhomogeneous Plasma 28

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Beam-Wave Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 A Diffusion Treatment in 1-Dimension . . . . . . . . . . . . . . . . . . 31

2.3.1 The Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 The Diffusion Coefficient . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Wave Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4 The Diffusion Coefficient for Specific Spectra . . . . . . . . . . . 36

2.4 Diffusion in 3-Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 The Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Diffusion in Spherical Coordinates . . . . . . . . . . . . . . . . . 40

2.5 Effects of Diffusion on Waves and Electrons . . . . . . . . . . . . . . . 44

2.5.1 1-Dimensional Diffusion . . . . . . . . . . . . . . . . . . . . . . 44

2.5.2 Beam Aligned Fluctuations . . . . . . . . . . . . . . . . . . . . 44

2.5.3 Angular Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.4 Timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS iii

3 Quasilinear Simulations of Langmuir Wave Evolution 48

3.1 The Simulation Equations . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Simulations of a Maxwellian Beam . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Electron and Wave Distributions . . . . . . . . . . . . . . . . . 52

3.2.3 Parametrising the Effects of Diffusion . . . . . . . . . . . . . . . 55

3.2.4 Effects of Fluctuation Characteristic Velocity . . . . . . . . . . 58

3.2.5 Power-law Fluctuations . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.6 The Effects of Beam and Plasma Parameters . . . . . . . . . . . 60

3.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Simulations of the Collisional Relaxation of a Power-Law Beam . . . . 62

3.3.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Homogeneous Plasma . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 A Constant Density Gradient . . . . . . . . . . . . . . . . . . . 67

3.3.4 Density Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.5 Wave-wave Interactions . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.6 The Effects of Beam Density . . . . . . . . . . . . . . . . . . . . 76

3.4 Energy Transfer Due to Diffusion . . . . . . . . . . . . . . . . . . . . . 77

3.5 Hard X-ray Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Simulations of Radio Emission from Dense Coronal Loops 81

4.1 The Plasma Emission Mechanism . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 Simulating Plasma Radio Emission . . . . . . . . . . . . . . . . 83

4.2 3-D Equations for Scattering and Decay . . . . . . . . . . . . . . . . . 84

4.2.1 Ion Scattering Processes . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2 3-wave Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Decay versus Scattering . . . . . . . . . . . . . . . . . . . . . . 86

4.3 A Model for Plasma Emission . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Langmuir Wave Evolution . . . . . . . . . . . . . . . . . . . . . 87



iv CONTENTS

4.3.2 Fundamental Emission . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.3 Harmonic Emission . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Polarisation and the Weak Field Limit . . . . . . . . . . . . . . . . . . 95

4.4.1 Polarisation Change During Transport . . . . . . . . . . . . . . 96

4.5 Thermal Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Observed Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6.1 Conversion of Energy Density to Flux . . . . . . . . . . . . . . . 97

4.6.2 Source Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.3 Propagation Losses . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.4 Collisional Damping . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.5 Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.6 Angular Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Simulations of 2 GHz Plasma Emission . . . . . . . . . . . . . . . . . . 103

4.7.1 Complete Simulation Model . . . . . . . . . . . . . . . . . . . . 104

4.7.2 Scattering by Ions . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7.3 Wave-wave Interactions . . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Conclusions 116

Bibliography 121

A An Angle-averaged Model for Fundamental Radio Emission 131

A.1 Ion-Sound Wave Processes . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.2 The Crossed Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.3 Equations for L and S wave evolution . . . . . . . . . . . . . . . . . . . 136

A.4 Ion Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Figures

1.1 Temperature and density profiles of the chromosphere, transition region

and low corona. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The radio emission of the quiet Sun . . . . . . . . . . . . . . . . . . . . 14

1.3 An example radio dynamic spectrum. . . . . . . . . . . . . . . . . . . . 15

1.4 A flowchart of the plasma emission mechanism . . . . . . . . . . . . . . 16

1.5 An schematic radio dynamic spectrum. . . . . . . . . . . . . . . . . . . 18

1.6 A Type III burst group from Bleien Callisto. . . . . . . . . . . . . . . . 19

1.7 A Type III burst from Glasgow Callisto. . . . . . . . . . . . . . . . . . 21

1.8 A U-type burst from Glasgow Callisto. . . . . . . . . . . . . . . . . . . 23

2.1 Our Cartesian and Spherical coordinate systems. . . . . . . . . . . . . . 40

2.2 The thermal Langmuir wave spectrum. . . . . . . . . . . . . . . . . . . 45

3.1 Simulated electron and wave distributions for a Maxwellian initial beam. 53

3.2 Regions in the electron distribution. . . . . . . . . . . . . . . . . . . . . 56

3.3 Beam and tail electron energies for a Maxwellian initial beam. . . . . . 57

3.4 The Langmuir wave diffusion coefficient as function of wavenumber. . . 58

3.5 Beam and tail electron energies: variations with characteristic velocity. 59

3.6 Beam and tail electron energies: variations with fluctuation spectrum. . 60

3.7 Beam and tail electron energies: variations with beam and plasma pa-

rameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Electron and wave distributions for collisionally relaxing electron beam:

homogeneous plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



vi LIST OF FIGURES

3.9 Time-averaged electron flux: homogeneous plasma. . . . . . . . . . . . 66

3.10 Electron and wave distributions for collisionally relaxing electron beam:

plasma with a constant density gradient. . . . . . . . . . . . . . . . . . 68

3.11 Time-averaged electron flux: plasma with a constant density gradient,

or density fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.12 Electron and wave distributions for collisionally relaxing electron beam:

plasma with random density fluctuations. . . . . . . . . . . . . . . . . . 71

3.13 Electron and wave distributions for collisionally relaxing electron beam:

effects of wave-wave interactions. . . . . . . . . . . . . . . . . . . . . . 74

3.14 Time-averaged electron flux: effects of wave-wave interactions. . . . . . 75

3.15 Electron and wave distributions for collisionally relaxing electron beam:

effects of fully self-consistent wave-wave interactions. . . . . . . . . . . 76

3.16 Time-averaged electron flux: effects of beam density. . . . . . . . . . . 77

3.17 Energy loss rates of collisionally relaxing electrons. . . . . . . . . . . . 78

4.1 Wavenumber matching diagrams for harmonic plasma emission. . . . . 90

4.2 Normalised emission probabilities for harmonic plasma emission. . . . . 91

4.3 Fractional variations in the participating wavenumbers for harmonic

plasma emission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 The fraction of Langmuir waves contributing to harmonic plasma emission. 93

4.5 The optical depth for radiation in the corona. . . . . . . . . . . . . . . 100

4.6 Electron, Langmuir and harmonic electromagnetic wave distributions for

a collisionally relaxing electron beam: homogeneous plasma. . . . . . . 107

4.7 Electron, Langmuir and harmonic electromagnetic wave distributions for

a collisionally relaxing electron beam: weak inhomogeneity. . . . . . . . 108

4.8 The Langmuir wave and harmonic electromagnetic wave distributions for

a collisionally relaxing electron beam: homogeneous and inhomogeneous

plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.9 Time profiles of the Langmuir wave and radio energies. . . . . . . . . . 110



4.10 The peak energy in backscattered Langmuir waves, against the magni-

tude of plasma inhomogeneity. . . . . . . . . . . . . . . . . . . . . . . . 111

4.11 Electron, Langmuir and harmonic electromagnetic wave distributions for

a collisionally relaxing electron beam: wave-wave interactions. . . . . . 113

4.12 Electron, Langmuir and harmonic electromagnetic distributions for col-

lisionally relaxing electron beam: wave-wave interactions. . . . . . . . . 114



Abstract

This thesis considers the propagation of accelerated electron beams in plasma. We

consider the wave particle interactions these undergo which cause their evolution, the

effects of plasma density inhomogeneities on these interactions, and the effects this

may have on the production of hard X-ray and radio emission by the beam.

CGS units are used throughout.

Chapter 1 introduces the important background material on the Sun and solar

flares, and some basic plasma physics. We discuss the acceleration and propagation of

electrons beams and their production of hard X-ray emission, and the various observed

types of radio emission from the Sun. We end by discussing details of the mechanism

by which radio emission can be produced by beam generated Langmuir waves at GHz

frequencies.

Chapter 2 contains the mathematical derivation of the effects of plasma density fluc-

tuations on Langmuir waves. This is found to be described by a diffusion of the waves

in wavenumber space. We consider the situation in both one and three dimensions,

for elastic and inelastic scattering of the Langmuir waves, discussing how our model

expands on that previously considered in the literature, and develop a model for the

fluctuations applicable to the electron beams we consider in this thesis. We derive the

relevant diffusion coefficients for a few commonly observed density fluctuation spectra,

then end with a brief discussion of the expected effects of the Langmuir wavenumber

diffusion on the waves and electrons for a few representative cases.

Chapter 3 uses the model derived in Chapter 2 in quasi-linear simulations of elec-

tron beam evolution. We consider two initial electron beam distributions, either a



Maxwellian or a power law, and simulate the Langmuir wave generation and evolution,

and the back-reaction of this on the electron beam. We find an electron acceleration

effect to occur, and explore the parameters for which this is strongest. In addition we

consider the production of hard X-ray emission from an initially power law beam, and

the effects of the electron acceleration on this.

Chapter 4 considers the radio emission from an electron beam via the generation of

Langmuir waves. We first derive an angle-averaged model for emission at the second

harmonic of the plasma frequency, and combine this with the simulations from the

previous chapters. We include the effects of density fluctuations on the Langmuir

waves, and discuss how this affects the radio emission produced.

Chapter 5 concludes the thesis with a summary of the effects of density inhomo-

geneity on Langmuir waves, and consequently on fast electron beams and their hard

X-ray and radio emissions in the solar corona.

Appendix A contains the derivation of a mathematical model for radio emission

from an electron beam at the fundamental of the local plasma frequency, which is

unimportant in the parameter ranges considered in Chapter 4, but essential for radio

bursts in the higher corona and solar wind.
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ñ(x, t), ñ(q,Ω) Fractional density fluctuation (Equation 2.10)

〈XX〉 Autocorrelation of X in real or Fourier space

SX(x, t), SX(q,Ω) Spectrum of X in real or Fourier space (Equation 2.30)

D(k), Dij(k) Diffusion coefficient (1D and 3D) (Equations 2.32 and 2.46)√
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Chapter 1

Introduction

In this chapter, we first outline the structure of the Sun, focusing on the solar corona

and solar wind, and give a brief description of solar flares. We then introduce some

basic concepts and definitions from plasma physics which are necessary to model these

phenomena. We summarise previous theoretical and simulation work on the propaga-

tion and evolution of fast electron beams due to wave generation which is the topic of

Chapters 2 and 3 of this thesis, then discuss the radiation which fast electrons produce

in the corona and solar wind, in particular hard X-rays and radio emission. The general

nature of flare associated radio emission is summarised, followed by a more detailed

description of the emission from beams propagating in the corona and solar wind, and a

description of the observations and emission mechanism behind beam-generated radio

emission at high frequencies, which forms the focus of Chapter 4.

1.1 The Sun

1.1.1 Structure

The visible surface of the Sun is termed the photosphere, and is relatively cool, with

an average temperature of 5600 K. Above the photosphere is the chromosphere, a

plasma composed mostly of hydrogen and some helium, with an average temperature of

around 104 K, rapidly varying density (from approximately 1017 cm−3 to 1011 cm−3) and
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varying ionisation. It is approximately 2000 km thick, and named for its appearance as

a red flash at the beginning and end of solar eclipses, due to the strong Hα emission line

in its spectrum. Between the chromosphere and the overlying corona is the very narrow

transition region, less than 300 km thick, over which the density drops by several orders

of magnitude, while the temperature rises to over 106 K. This temperature rise is still

not fully understood, and the coronal and chromospheric heating problem is the topic

of much speculation. The temperature and density of the corona mean it is almost

completely ionised.

The corona is in a constant state of outflow, forming the solar wind. Open mag-

netic field lines, dragged by the solar rotation, spiral outwards in a pattern known as

the Parker Spiral. The solar wind has two components: fast, with velocity around

800km s−1, arising from regions of open magnetic field, where the field lines extend

into space; and slow, with velocity around 400km s−1, arising from regions of closed

magnetic field, which only connect to the heliosphere at much higher altitudes. The

influence of the outflowing solar wind extends to the Earth and beyond, eventually

terminating at the heliopause.

1.1.2 Coronal Density Profiles

A simple model for the coronal density profile may be derived by considering the case

of hydrostatic equilibrium, in which the gas pressure is balanced by the gravitational

force, and the whole system is unchanging in time. The resulting density profile as

a function of height can be easily derived (e.g. Aschwanden, 2006) and leads to an

exponential profile n(x) = n0 exp(−x/H) where x is radial distance measured from the

reference point at density n0, and H is the scale height, typically around 109 cm in the

corona.

Measurements of the density have been performed using several methods. The radio

bursts know as Type III and described below (Section 1.5.4) are one, as their frequency

traces the plasma frequency, and hence the electron density. They are observed over

a wide frequency, and therefore density range (e.g. McLean & Labrum, 1985), and so
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Figure 1.1: Simulated temperature and density profiles of the chromosphere, transi-

tion region and low corona. From Aschwanden (2006).

can be used to find the plasma density from the corona to the Earth and beyond (e.g

Leblanc et al., 1998). White light radiating from the corona, resulting from Thomson

scattering of photospheric radiation, and EUV or soft X-ray observations can give line-

of-sight integrated densities, while certain emission lines can return an absolute density

in some regions (Aschwanden, 2006).

Figure 1.1 shows a model of the temperature and density of the chromosphere,

transition region and low corona. The electron density is roughly exponential between

2×103 and 105 km height. Various models exist, from the original exponential profile of

Newkirk (1961) to several empirical power-law fits, such as the Baumbach-Allen (Allen,

1947) or Saito (Saito et al., 1977) models. In addition to this smooth gradation, there

may be large scale fibrous structuring, as the low plasma-beta implies transport across

field lines is inhibited; and also discrete structures.

1.1.3 The Solar Wind

While the hydrostatic approximation gives a reasonable density estimate for the quiet

corona, it was realised by Parker (1958) that the corona could not be in equilibrium, and
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must instead be constantly streaming outwards. For an isothermal ideal gas, assuming

radial expansion (expansion factor proportional to distance squared) the hydrodynamic

equations can be solved (e.g. Parker, 1958; Mann et al., 1999), and imply outwards flows

of several hundred km/s, in good agreement with the observed solar wind speeds. The

solar wind model of Parker (1958) also gives rise to the Parker spiral, as the Sun’s

rotation drags the open field lines into a spiral. The distance from the Sun to the

Earth along a magnetic field line is therefore approximately 1.2 AU.

1.1.4 Density Fluctuations

Both the corona and the solar wind show local inhomogeneities on a variety of scales.

Interplanetary scintillation (IPS) measurements, where a compact radio source is seen

to “twinkle” due to density fluctuations along the line of sight, have been used to

measure these in the solar wind (e.g. Cronyn, 1972; Smith & Sime, 1979) and closer

to the Sun (e.g. Coles & Harmon, 1989; Woo et al., 1995). The density dependence of

radio-wave propagation velocity in plasma was used by Celnikier et al. (1983) to find

the density between two closely spaced satellites in the solar wind and its variations over

time, again giving the spectrum of density fluctuations. In general, fractional density

fluctuations of up to around 10−3 have been observed at scales down to 100 km, which

will be considered in this thesis.

1.1.5 Solar Activity

Solar activity follows an 11 year cycle, with the next maximum predicted for late 2013.

Sunspots, cooler darker areas of the photosphere with strong magnetic fields, begin to

occur after the minimum of the cycle, drifting to smaller latitudes as the cycle proceeds.

Every cycle, the polarity of the global magnetic field of the Sun reverses.

Solar flares occur in sunspot groups because of their association with complex mag-

netic field structure. Flares are transient brightenings, lasting from tens of minutes to

a few hours, and releasing enormous amounts of energy, from 1028 to 1032 ergs or more

depending on their size. Historically, coronal mass ejections (CMEs), large clouds of
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plasma released from the corona, were considered to be a separate phenomenon from

flares, but more recently their interconnectedness has become clear. The term Solar

Eruptive Event has been coined to tie together both of these, and also the energetic

particles that can result from flare energy releases. Electromagnetic radiation, CMEs

and accelerated particles each carry significant fractions of the released energy.

The standard flare classification uses the emission as measured by GOES (the Geo-

stationary Orbiting Environmental Satellite). The total flux in soft X-Rays (wave-

lengths between 1 and 8 Å) is used, and the classes run from A through C then M, X,

X10, each with a flux 10 times that of the previous class. In general the occurrence

rate decreases as the class increases, with X-class flares being relatively uncommon,

while smaller flares are observed far more often.

The electromagnetic emission produced in flares covers the entire spectrum, from

radio waves through the visible to X-Rays and gamma rays. The bulk of this emission

is in visible and UV wavelengths (Woods et al., 2006). Radio emission and hard X-ray

emissions are produced by fast electrons, while soft X-rays may be produced during

the rise of a flare due to plasma heating, although this “pre-heating” is not seen in all

events.

1.2 Essential Plasma Physics

Plasmas are the fourth and commonest state of ordinary matter in the universe, and

are characterised by collective effects over large spatial scales, due to the ionisation of

the constituent atoms. We consider here fully ionised, single species plasma, consisting

of protons and electrons. This may be described using two temperatures, the electron

and the ion temperatures Te, Ti respectively. From these temperatures we obtain two

thermal speeds, vTe and vTi, and the sound speed vs given by

vTe =

√
kBTe

me

, vTi =

√
kBTi

mp

, vs =

√
kBTe(1 + 3Ti/Te)

mp

(1.1)

where kB is Boltzmann’s constant and me,mp are the masses of an electron and a

proton respectively.
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The characteristic frequency of electron oscillations is given by the (electron) plasma

frequency ωpe, and that for the ions by the ion plasma frequency ωpi which are

ωpe =

√
4πe2ne

me

, ωpi =

√
4πe2ni

mi

. (1.2)

Here e is the electronic charge and ne, ni are the (number) density of electrons and ions

respectively. In magnetised plasma, electrons gyrate around the magnetic field lines at

a frequency given by the electron cyclotron frequency

Ωce =
eB

mec
(1.3)

where B is the magnetic field strength, and c the speed of light. Finally, the (elec-

tron) Debye wavelength λDe = vTe/ωpe or its reciprocal, the Debye wavenumber kDe =

ωpe/vTe, are important as they give the maximum spatial scale over which charge sep-

aration can occur.

1.2.1 Langmuir Waves

Plasmas display quasineutrality, meaning there can be no charge separation on scales

larger than the Debye length, due to the significant restoring force of the electric field.

Because the ions are much more massive than the electrons, the electrons can oscillate

while the ions remain stationary, giving the stationary version of a plasma oscillation,

or Langmuir wave, which has a frequency of ωpe. The travelling version, with non-

zero wavenumber 0 < k ≤ kDe, is ubiquitous in plasma, giving its alternative name of

“plasma wave”. These are weakly dispersive, with ω ' ωpe + 3v2Tek
2/(2ωpe), and so

have frequencies very close to the plasma frequency. Plasma waves at very different

wavenumbers can therefore have very similar energies. The group velocity of Langmuir

waves is vg = 3v2Tek/ωpe, which is generally far less than the electron thermal speed,

so for many purposes their propagation can be neglected.

1.2.2 Magnetoionic Modes

In plasma with an ambient magnetic field, electromagnetic waves have two possible

modes of circular polarisation, depending on whether the electric field vector rotates
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in the same direction as an electron spirals around the field lines (O-mode), or the

opposite (X-mode) (e.g. Ratcliffe, 1959). Unpolarised radiation is the sum of these

two circular polarisation states. The O-mode propagates in plasma only above ωpe,

and has dispersion relation ω2 = ω2
pe + c2k2, identical to that of an electromagnetic

wave in unmagnetised plasma, while the X-mode cutoff is at ωX = ωpe+Ωce/2 and the

dispersion relation is
c2k2

ω2
= 1−

ω2
pe

ω2

ω2 − ω2
pe

ω2 − ω2
pe − Ω2

ce

. (1.4)

Because of the different group velocities, initially unpolarised radiation can acquire a

non-zero polarisation entirely due to propagation, as waves in one mode arrive before

the other.

In magnetised plasma, the Langmuir wave dispersion relation becomes

ω2 ' ω2
pe + 3k2v2Te + Ω2

ce sin
2 θ (1.5)

where θ is the angle between k and the magnetic field. These can be considered as

modified Z-mode waves (e.g. Melrose, 1976), which are the lower-frequency (ω < ωX)

branch of the X-mode waves just discussed.

1.2.3 Plasma Modelling

The self-consistent modelling of a plasma is a rather difficult problem. Moving charged

particles generate currents and thus electromagnetic fields, which in turn act upon the

particles, so the motions of the particles and evolution of the fields must be considered in

parallel. Further complications arise due to collective effects over large distances, which

characterise the plasma state. Ignoring self-consistency and using a single-particle

description, i.e. following the motion of a “test particle” in prescribed fields is helpful

in some cases, for example when deriving the trajectory of a particle in an external

magnetic field. In general however, we cannot follow the exact motion of each particle,

and must instead use a statistical description. This is the basis of plasma kinetic theory.

The problem addressed in this work of an electron beam in unmagnetised plasma

is well described by quasilinear theory (e.g. Drummond & Pines, 1964; Vedenov et al.,
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1962), which considers the particle and wave distributions in the limit where the back-

ground plasma contains far more energy than the beam. Non-linear effects may be

easily included, and in 1-D these equations are straightforward to simulate. Such sim-

ulations may be extended to large particle numbers and large spatial and time scales

without requiring excessive amounts of computing power, and so we use this approach

here.

On the other hand, particle-in-cell (PIC) simulations address the problem of self-

consistency directly, following the motion of the particles in electromagnetic fields, and

updating the fields according to the particle motions. Macroscopic quantities, such as

the electric and magnetic field and the plasma density, are calculated on a discrete

grid, while the particles are tracked individually as they move through this grid. Such

methods are very demanding computationally, especially for large space or time scales

or large numbers of particles. However as will be mentioned in Section 2.5.3 they are

useful as confirmation of the effects seen using our simulation method.

1.3 Reconnection and Particle Acceleration

1.3.1 Acceleration Mechanisms

The reconfiguration of magnetic field to a lower energy state, which may be facilitated

by magnetic reconnection, is the source of the vast amounts of energy released during

solar flares, with perhaps 20% of the free magnetic energy being released (Emslie et al.,

2004). This energy leads to particle acceleration, either in the energy release region

itself, or its vicinity.

DC electric field acceleration can occur in, for example, current sheets. Wave

turbulence, on the other hand, can also lead to acceleration due to the oscillating

electric fields of the waves. Wave particle interactions, such as those discussed below,

can transfer energy to and from particles, and at particular velocities the particles

can experience a net energy gain (Hamilton & Petrosian, 1992). The interactions are

resonant, and so high frequency waves such as Langmuir waves or whistlers are required
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to accelerate electrons.

Shock acceleration may be either first order Fermi acceleration, usually requiring

multiple shock crossings to reach the high energies observed (Toptygin, 1980), or second

order Fermi, if the particles are reflected by stochastically moving magnetic mirrors,

and statistically more likely to gain energy than lose it. This is important in some

contexts, for example in association with the shocks preceding CMEs and associated

with radio bursts (e.g. Mann et al., 1998).

1.3.2 Acceleration Region Diagnostics

The acceleration region lies at a height of ten to a few tens of Mm above the photo-

sphere, in the cusp of the flaring loop in the corona. Radio and HXR emission from

accelerated electrons provides several methods by which to derive this height and other

parameters of the acceleration region (reviewed by e.g. Aschwanden, 2002).

Electron Time of Flight Inferences

For example, electrons at a range of velocities, simultaneously injected into the loop

from the acceleration region, will reach the footpoints of the loop at different times.

Assuming no time dependence of the injection, the spectrum of the HXR emission pro-

duced at the footpoints (discussed in the next section) can be used to infer the emitting

electron distribution, and therefore the arrival times of electrons at different velocities,

which can be used to find the distance travelled by the electrons. Aschwanden et al.

(1996) found heights of 40 Mm for one flare event, known as the “Masuda flare”, after

Masuda et al. (1994), and the first event in which HXR emission was directly observed

above the loop-top, now ascribed to emission from a trapped electron population. The

height of this emission was measured to be close to 20 Mm, suggesting this trapping

is below the acceleration region and the point of reconnection. This geometry also

supports a stochastic acceleration mechanism, rather than large scale electric fields.
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Bidirectional Radio Bursts

Another extremely informative diagnostic of acceleration region height is offered by

bidirectional electron beams and their radio emission (Section 1.5.4). Here the accel-

erated electrons propagate both upwards along open field lines and downwards along

the closed field lines (e.g. Robinson & Benz, 2000), and produce radio emission at the

local plasma frequency. The point at which the two bursts join is then the location of

the accelerating region.

Radio Hard X-ray Correlations

Finally, one-to-one associations between HXR emission and single Type III bursts

were seen by Kane et al. (1982), with further studies performed by e.g. Raoult et al.

(1985). It was concluded that the two kinds of emission were produced by similar

electron populations again propagating upwards or downwards along magnetic field

lines. Correlated HXR and radio observations can therefore be used to deduce the

height of the acceleration region (Reid et al., 2011). However, it should be noted that

while individual HXR and radio bursts may be correlated the overall numbers do not

match, with only around 1/3rd of observed HXR events showing associated Type III

emission (Benz et al., 2005).

1.3.3 X-Ray Emission

Hard X-Rays themselves account for only a small fraction of the energy released during

flares, but because of the relative simplicity of the bremsstrahlung cross-section and

the low optical depth of the solar atmosphere at HXR wavelengths, they are a very

powerful diagnostic for accelerated electrons, which carry large amounts of energy. The

recovery of the electron spectrum from the observed emission is by no means a simple

procedure, but reasonable models now exist which allow this to be done.

During flares, the HXR emission tends to follow a “soft-hard-soft” evolution (Kane

& Anderson, 1970), where its spectral index evolves in time: it is large (steep) in the

initial phase of the flare, decreases during the peak and then softens again in the decay
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phase. Occasionally the pattern is rather “soft-hard-harder”. This evolution may be

due to particle trapping or to changes in the acceleration efficiency or behaviour.

A large fraction of the released HXR energy is deposited in the chromospheric

plasma, leading to heating and therefore thermal bremsstrahlung emission in soft X-

rays (Emslie, 1989). This is the likely origin of the Neupert effect (Neupert, 1968;

Dennis & Zarro, 1993) where the time-integral of the HXR emission follows the time

profile of the thermal SXR emission, because the coronal plasma “integrates” the non-

thermal energy deposition.

1.3.4 Bremsstrahlung and the Thick Target Model

Bremsstrahlung emission by electrons in plasma is thermal when the emitting electrons

are at the ambient plasma temperature, and can also be thick or thin target, a thick

target being one in which the emitting electron loses its entire energy collisionally while

emitting. Thermal bremsstrahlung can produce soft X-rays from very hot plasma, such

as that generated during the fast electron bombardment of the chromosphere occurring

during flares.

A comprehensive review of bremsstrahlung cross-sections was given by Koch &Motz

(1959), including those for thick-target emission. The application of the thick-target

model to solar flare HXR emission was considered by various authors, for example

Arnoldy et al. (1968) and was extended to include the effects of partial ionisation (e.g.

Brown, 1973), and additional evolution of the emitting electrons.

However, assuming the simple thick target model can lead to overestimates of the

required electron spectrum in order to produce the observed HXR emission. In some

large flares, this overestimate can be particularly problematic as more electrons seem

to be required than are present in the entire acceleration region, with the discrepancy

historically referred to as the electron number problem.

It is clear that any processes which lead to additional energy losses during beam

propagation will increase the number of electrons that must initially be accelerated.

Langmuir wave generation by the beam (discussed in the next section) was thought to
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fall into this category, but simulations showed that the net effect of wave-generation

on the time-averaged electron flux was negligible (Hamilton & Petrosian, 1987; Mc-

Clements, 1987; Hannah et al., 2009; Hannah & Kontar, 2011). In Chapter 3 we will

discuss one possible means for Langmuir wave generation to instead reduce the re-

quired initial number of accelerated electrons, due to interactions between the waves

and ambient plasma density fluctuations.

1.4 Electron Beam Propagation and Evolution

Once a fast electron population has been produced, the exact acceleration mechanism

remaining unimportant for our purposes, they must propagate thorough the coronal

plasma. For a relatively weak beam, the magnetic field will guide this propagation, and

the beam can remain highly collimated (e.g. Muschietti, 1990). However, its evolution

due to collisional energy loss and pitch angle scattering are important in very dense

plasma, along with such effects as wave-particle interactions.

1.4.1 Langmuir Wave Generation and Sturrock’s Dilemma

An electron population whose distribution has a positive velocity gradient at some

velocity 1 (a “bump”), will be unstable to Langmuir wave generation (Section 2.2). We

note that the probability for this emission is independent of the magnetic field in the

weak field limit Ωce � ωpe.

Historically, it was believed that the loss of energy to Langmuir waves would cause

an accelerated electron stream to decelerate within only a few thousand metres (Stur-

rock, 1964), yet these streams were known, from observations of Type III radio bursts

(Section 1.5.4), to propagate over distances up to at least 1 AU. This apparent conflict

was known as Sturrock’s dilemma and appeared to be a significant problem.

Most solutions involved suppression of the beam-plasma instability causing the

wave generation (e.g. Grognard, 1985; Muschietti, 1990), and effects such as wave-wave

1The “Penrose criterion” implies that this must be 3vTe or larger for instability.
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interactions or density gradients were invoked in order to achieve this, including the

example of elastic angular scattering of the waves discussed in Chapter 2. However for

a spatially limited electron beam, it was found that the waves emitted by the electrons

at the front of the beam could be reabsorbed by those at the back, and energy loss

would thus be limited (Magelssen & Smith, 1977; Muschietti, 1990).

The numerical simulations by Kontar et al. (1998); Mel’Nik et al. (1999) showed

that this indeed occurs, and such a beam propagates as a “Beam-Plasma Structure”

(BPS), where the electrons are accompanied by a wave distribution, emitted at the front

and absorbed at the back. Such a structure has a fixed maximum propagation velocity

(Mel’Nik, 2003), dependent on density, and consistent with the observed velocities of

Type III radio burst producing streams (Section 1.5.4). Suppression of the beam-

plasma instability remains of critical importance in considerations of the beam-plasma

wave interactions, for example in the theory of radio bursts, but is not required in order

for the beam to persist.

1.4.2 Beam Propagation in Inhomogeneous Plasma

For a BPS propagating in inhomogeneous plasma, some of the waves will be lost from

resonance with the beam, and therefore not all of the energy can be reabsorbed (Kontar,

2001a). Some energy will be left behind in the form of Langmuir wave turbulence,

which will damp collisionally, or may interact with other wave modes, and can lead to

electromagnetic emission (specifically Type V bursts, see Section 1.5.5).

In addition, the simulations of Reid & Kontar (2010, 2012) following electron beams

propagating from the Sun outwards into the solar wind, found that wave particle inter-

actions in inhomogeneous plasma could substantially change the electron distribution

found at 1 AU, with an initially injected power law flattening at low velocities due to

the generation and subsequent evolution of the Langmuir waves. This was considered

also for a beam propagating downwards into the deep corona and chromosphere by

Hannah et al. (2013) who found that in this case additional high energy electrons were

produced, which could lead to enhanced HXR emission at some energies. A similar
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Figure 1.2: The radio emission of the quiet Sun, from Benz (2009).

effect will be shown in Chapter 3 of this thesis for a beam evolving due to collisional

effects.

1.5 Radio Emission

Radio emission from the quiet Sun follows the Rayleigh Jeans law,

Bω(T ) =
2ω2kBT

(2π)2c2
, (1.6)

where we have taken the classical limiting case ~ω � kBT . The observed whole Sun

emission in Solar Flux Units (sfu, 1 sfu=10−19erg s−1cm−2Hz−1) is shown in Figure 1.2.

Many kinds of bursty radio emission are also seen in association with solar flares and

active events, many of which are signatures of fast electron populations. An example

of a radio dynamic spectrum is shown in Figure 1.3 which displays many of these

types simultaneously (Benz, 2004), discussed briefly in the following sections. The

high frequency (2-4 GHz) continuum is gyrosynchrotron emission, while the very faint
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Figure 1.3: An example radio dynamic spectrum from the Phoenix-2 spectrometer.

After Benz (2004). The horizontal bands around 186, 300 and 600 MHz are from

terrestrial interference.

vertical stripes around 1-2 GHz at 9:34:00 are some form of quasi-periodic pulsations.

Groups of bright Type IIIs2 occur at 9:35:00 and 9:36:20 between 300 and 600 MHz,

and a reverse drift burst may be seen at 9:35:20 around 2 GHz. At low frequencies

the emission is a combination of Type II (emission associated with shock accelerated

electron beams) and Type V (smooth, long duration emission which follows Type III

bursts), although these are indistinct in this figure. The bright, short duration emission

around 640 MHz at 9:34:20 may be radio spikes.

In this work we focus on plasma emission at high frequencies from around 500 MHz

up to several GHz. However, the Type III bursts are observed to span the entire fre-

quency range from several GHz down to low kHz, and observations tend to focus on

coronal (10 MHz to a few hundred MHz) and Interplanetary (IP; kHz and low MHz)

2Type classifications are explained in Section 1.5.3.
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Figure 1.4: Flowchart of the plasma emission mechanism (adapted from Melrose

(2009)).

bursts, as bursts at higher frequencies are much more infrequent. Important implica-

tions for the higher frequency bursts are inferred from the lower frequency behaviour,

but the parameter regimes are very disparate and some features differ significantly.

At metric and decimetric wavelengths, there are also multiple varieties of short

duration emission. Some of these may be ascribed to a particular emission mechanism,

but in many cases the only classification is morphological. In general, the factors

considered are the bandwidth, duration, drift rate, substructures and general shape

(Benz, 2004).

1.5.1 Coherent and Incoherent Emission

Incoherent emission refers to emission by individual particles independently. The ther-

mal free-free emission which produces the quiet Sun background is of this type, as is

another important mechanism, gyrosynchrotron emission from mildly relativistic elec-

trons (e.g. Dulk, 1985). This is particularly important in regions of strong magnetic

fields, and at frequencies of a few to a few tens of GHz, as seen in Figure 1.3.
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Coherent emission, in contrast, arises from plasma collective effects, and therefore

emission occurs at either the electron plasma frequency ωpe, the electron cyclotron

frequency Ωce, the ionic equivalents ωpi,Ωci, or their harmonics. The exciting waves

are generally produced due to a plasma instability, and so coherent emission indicates

the presence of fast electrons, shocks, etc. The high frequency cutoff for observable

coherent emission associated with flares is probably around 10 GHz (Benz, 2004).

1.5.2 The Plasma Emission Mechanism

Plasma emission is a coherent emission mechanism in which electromagnetic radiation

is produced from Langmuir waves, and is the topic of Chapter 4 of this thesis. The key

feature is the involvement of Langmuir waves, generated by fast electrons, and so the

emission occurs at the plasma frequency or its second harmonic. The proposed plasma

emission mechanism is summarised in the books by Melrose (1980b); Tsytovich (1995),

although refinements and modifications are being continually suggested (e.g. Robinson

et al., 1994; Melrose, 2009; Tsiklauri, 2011). Reviews of the currently accepted mech-

anism etc are given by e.g. Dulk (1985); Bastian et al. (1998); Nindos et al. (2008);

Melrose (2009).

The outline of the mechanism is summarised in the flowchart in Figure 1.4. An

electron beam propagating though the coronal or solar wind plasma generates Langmuir

waves, and these in turn evolve, either decaying to ion-sound waves or scattering off

plasma ions, both of which generate backwards propagating (negative wavenumber)

Langmuir waves. These may then coalesce with a wave from the forwards spectrum to

produce an electromagnetic wave at twice the plasma frequency. Alternatively, an ion

sound wave and a Langmuir wave may coalesce, or a Langmuir wave may be scattered

by an ion directly into an electromagnetic wave, both of which produce emission at the

local plasma frequency.
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Figure 1.5: A schematic radio dynamic spectrum, showing the common radio bursts

and broadband, long duration emission. From Dulk (1985).

1.5.3 Radio Burst Classifications

Historically, three types of bright, transient radio bursts were known, and these were

labelled Types I through III in order of increasing rate of frequency drift df/dt. A

schematic dynamic spectrum is shown in Figure 1.5, which also includes the later

added Type IV and V bursts, and some continuum emissions.

The origins of Type I emission are not yet certain, while Types II, III and V are due

to propagating accelerated electrons. The Type II exciting beams are accelerated in

shocks, so the emission drifts slowly as the shock front moves. Type III exciting beams

are accelerated in association with flares and move very rapidly, giving fast drifting

bursts. Type V emission may be directly associated with a slow electron beam, or may

be due to Langmuir waves “left behind” after the beam has passed (Kontar, 2001a).

Type IV emission has several subtypes, all due to emission from trapped electrons,

either via the plasma mechanism or incoherent gyrosynchrotron emission.
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Figure 1.6: An example dynamic spectrum of a group of Type IIIs, from the Callisto

instrument in Bleien.

1.5.4 Type III Bursts

Type III radio bursts are the classic example of plasma emission from a propagating

electron stream, and display many characteristic features, which are discussed in the

following sections. Figure 1.6 shows a radio dynamic spectrum of a group of Type IIIs

which displays several of these features, and Figure 1.7 an expanded view of a Type

III around 80 MHz showing the frequency drift.

Frequency Drift

The electron beams which generate Type III bursts propagate at a significant fraction

of the speed of light, generally between 0.1 and 0.6 c. The beam therefore encounters

plasma with a density, and hence plasma frequency, which is rapidly changing. An

empirical relation for the frequency drift rates of Type IIIs is df/dt ' −0.01f1.84 for

f the frequency in MHz and df/dt the drift in MHz s−1 (Alvarez & Haddock, 1973;

McLean & Labrum, 1985) for bursts between 550 MHz and 74 kHz. This corresponds
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to a value of about 900 MHz s−1 at 500 MHz and 170 MHz s−1 at 200 MHz.

Brightness

The classic Type III bursts are characterised by very high brightness temperatures,

with the maximum observed Tb being of the order of 1015 K and occurring at 1 MHz.

For higher frequencies, typical measured brightness temperatures at 40 MHz are 1012 K,

dropping to only 108 K by 169 MHz, while the brightest are 1010 K and 109 K respec-

tively. For lower frequency IP bursts typical brightnesses at 100 kHz are 1013 K and the

brightest are around 1015 K (e.g. McLean & Labrum, 1985). At very high frequencies

bursts are rarer and less bright, reaching perhaps 108 K at a few GHz.

Source Sizes

Source sizes steadily increase with decreasing frequency from a few hundred MHz down

to kHz frequencies, measuring around 5′ at 169 MHz, 20′ at 43 MHz (e.g. McLean &

Labrum, 1985) and around 5◦ at 1 MHz and 50◦ at 100 kHz (Steinberg et al., 1985).

At 432 MHz, Saint-Hilaire et al. (2013) find sizes of 1.9± 0.8′.

Harmonic Structure

At frequencies in the MHz and kHz ranges, the bursts may be observed in Fundamental-

Harmonic (F-H) pairs, occurring very close to ωpe and 2ωpe respectively. The exact

observed F-H ratio is generally slightly below 1 : 2, explained by the time delay of the

fundamental due to its lower group velocity. For example, Wild et al. (1954) found a

ratio between 1.85 and 2.0, while Stewart (1974) found a range from 1.6 to 2.0 with

an average of 1.80± 0.14. The F component is almost never observed above 500 MHz,

and often has a lower starting frequency than the harmonic, so that the ratio of their

onset frequencies is closer to 1 : 3 or 1 : 5 (Suzuki & Sheridan, 1977).
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Figure 1.7: An example dynamic spectrum of a low MHz frequency Type III burst

with possible harmonic structure, and diffuse following emission, possibly Type V, from

the Callisto instrument in Glasgow.

Time Profile

This difference in starting frequency suggests that there are significant differences in

the emission mechanisms that produce the F and H components, which is confirmed by

measurements of their time profiles and polarisation. At a single frequency, the emission

shows a characteristic rapid rise and slow fall off, with different time constants for the

fundamental and harmonic components. Originally, the decay phase was thought to

be due purely to the collisional damping of the Langmuir waves. However, Aubier &

Boischot (1972) studied the rise-decay profiles of multiple bursts and found the two

times were correlated, implying that the excitation continues alongside the decay.

For the harmonic component, collisional decay of Langmuir waves may be less

important than their spectral evolution (Zhelezniakov & Zaitsev, 1975), as the emission

can only occur for waves with sufficiently large wavenumber, and for fundamental

emission involving ion-sound waves the damping rate of these will also be important.
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Empirical estimates of the decay rate were given by Alvarez & Haddock (1973) for

kilometric wavelengths and confirmed for higher frequencies by e.g. Benz et al. (1992).

Polarisation

Fundamental emission is observed to be O-mode polarised (see Section 1.2.2) with a

degree of polarisation anywhere from 0 up to 70%. Polarisations below 10% are rarer,

and completely polarised emission is never seen (e.g Suzuki & Sheridan, 1977; Dulk

& Suzuki, 1980; Wentzel, 1984). The harmonic is generally weakly O-mode polarised,

between 0 and 30% and most commonly around 10 % (e.g. Suzuki & Sheridan, 1977).

In F-H pairs the degrees of polarisation of the two components are weakly correlated,

with the harmonic always lower (e.g Suzuki & Sheridan, 1977; Dulk & Suzuki, 1980).

The degree of polarisation is not seen to correlate to the emission frequency, but does

vary with the source location on the solar disk (e.g. Suzuki et al., 1980).

Reverse Slope and U or J Type Bursts

In a normal Type III burst, the beam is accelerated and propagates along an open mag-

netic field line outwards from the Sun, and therefore into plasma of decreasing density.

Reverse slope (RS) bursts arise when the electron beam propagates downwards along

a field line, and thus travels into plasma of increasing density. More complicated mag-

netic structures can produce J or U type bursts, as seen in Figure 1.8, where the beam

travels along a closed loop and the plasma density gradient, and thus the frequency

drift, reverses (e.g. Labrum & Stewart, 1970). N bursts, named by Caroubalos et al.

(1987) are also occasionally seen, when a second reversal of the gradient occurs proba-

bly due to magnetic mirroring in the loop footpoints, as seen in the beam simulations

by Karlicky et al. (1996).

As noted in Section 1.3 the location of the acceleration region of the generating

electron beams can also be inferred from simultaneous observations of normal and

RS Type III bursts. Occasionally, false pairs can arise due to observational effects,

for example terrestrial interference leading to a perfectly symmetric pair (Benz et al.,
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Figure 1.8: An example dynamic spectrum of a U-type radio burst, from the Callisto

instrument in Glasgow.

2001). True pairs occur where two beams are produced, one moving upwards, the

other downwards, and the emission is observed with opposite drifts and very similar

starting frequency (e.g. Robinson & Benz, 2000). The exact background density of the

acceleration region is then known, from which the location can be found using a model

density profile.

1.5.5 Type V Bursts

At lower frequencies, 100 MHz and below, Type III bursts are often followed by Type

V emission, diffuse emission in the tail of the burst. Dulk et al. (1980) summarise

the observed properties of these bursts. They are low frequency, rarely starting above

120 MHz, and long duration, lasting around 200 seconds at 20 MHz. They generally

have a low degree of polarisation, below 10%, but in contrast to the accompanying

Type IIIs this is usually in the X-mode. The source sizes are usually comparable to

Type III sources, and increase rapidly as frequency decreases, while the heights are

also similar to those of Type IIIs. However their locations are often, although not
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always, different. Finally, their brightness temperatures are also comparable to the

accompanying Type III bursts. Plasma emission at the second harmonic appears to

be the origin of Type V bursts, with the difference in polarisation between the Type

Vs and the preceding Type IIIs explained by differences in the emission geometry, as

discussed in Section 4.4 and Willes & Melrose (1997).

1.6 Observations of High Frequency Plasma Radio

Emission

At frequencies of a few hundred MHz or more, Type III bursts occur that are similar in

many respects to the bursts at lower frequencies. The most significant difference is in

respect to the harmonic structure, with F-H pairs rarely observed above a few hundred

MHz, and never above 500 MHz. However the differences in density and temperature,

and specifically the ratio of Ti/Te mean that the mechanism proposed for IP bursts,

and confirmed through observations of Langmuir, ion-sound and electromagnetic waves,

cannot simply be extrapolated to higher frequencies (Benz, 2004). In addition, there

are several kinds of short duration emission also ascribed to the plasma mechanism

that show important differences from the lower frequency observations.

In Chapter 4 of this thesis we consider the simulation of plasma emission at GHz

frequencies, and so in this section we give more specific details of the features of GHz

radio emission. We highlight where this differs from that at lower frequencies, and

what can be inferred about the emission mechanism.

1.6.1 Classic Type III Radio Bursts

The statistical study of Type III bursts extending above 1000 MHz by Meléndez et al.

(1999) is the most comprehensive of its type, and provides key information about

burst behaviour at high frequencies. 160 bursts were analysed, two-thirds of which

had an RS component, and 5% of which were bidirectional (both normal and reverse

drift components). The peak fluxes were generally around 10 sfu (Solar Flux Units,
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1 sfu=10−19erg s−1cm−2Hz−1), and rarely over 100 sfu. By 7 GHz even the maximum

fluxes are barely 100 sfu (e.g. Benz et al., 1992) and the emission very rarely exceeds the

background. The durations, averaging a few 100 ms, were shorter than expected from

the extrapolation of the data for metric bursts, with correspondingly low bandwidths

of around 200 MHz.

Source sizes are difficult to obtain at the very high frequencies. At 432 MHz, Saint-

Hilaire et al. (2013) find values of 1.9 ± 0.8′, and extrapolating their observed trends

in the size from 151 to 432 MHz suggests sizes at 1 GHz of around 1′. For comparison,

the VLA observations of Willson et al. (1990) of unclassified bursts at 1.4 GHz give

source sizes around 2′.

For comparison, bursts at 169 MHz have typical fluxes between 10 and a few hun-

dred sfu, which we note is significantly over the thermal level due to the frequency

dependence of this, shown in Figure 1.2. They have durations of a few seconds and

source sizes around 4′ (Bougeret et al., 1970).

The empirical formula for the burst durations given by Alvarez & Haddock (1973)

for kilometric wavelengths, and for higher frequencies by Benz et al. (1992) was shown

by Meléndez et al. (1999) not to apply at very high frequencies. Instead the relation

is given empirically by τ = 17000f−0.6 for τ the duration in ms and f the emitting

frequency in MHz. The relation found by Elgaroy & Lyngstad (1972) for bursts at a

few 100 MHz also overestimates the duration by a factor of 2 or more.

The lack of F-H pairs above 500 MHz and the difference in starting frequency of the

two components at lower frequencies suggest that that there are significant differences

in the emission mechanisms producing the two components. Further evidence is offered

by the polarisation of the emission. Generally plasma emission occurs in regions where

the magnetic field is weak, and thus we can ignore its effects on the emission rates.

However, because in magnetised plasma the right and left hand circular polarisations

have different group velocities and low-frequency cutoffs (see Section 1.2.2), polarised

emission can be generated due to propagation effects.

As noted in the previous section, fundamental emission is observed to be O-mode

polarised with a degree of polarisation anywhere from 0 up to 70% in some cases,
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while the harmonic is generally weakly O-mode polarised, between 0 and 30%. Taking

this together with the polarisation statistics from Ma et al. (2012) in the range 600-

1500 MHz which suggest average values of around 20%, suggests that the only observed

component at high frequencies is the harmonic. This supports the discussion in Section

4.6.4 where it is found that only harmonic emission is able to escape dense parts of

the corona. A final interesting feature of polarisation is a tendency at high frequencies

for polarisation degree to increase with frequency, which can be explained by varying

magnetic field strength (Mercier, 1990).

1.6.2 Other Plasma Emission

Various spike-type emissions, characterised generally by their short duration and nar-

row bandwidths, are observed in the corona at high MHz and GHz frequencies (e.g.

Guedel & Benz, 1988; Allaart et al., 1990; Isliker & Benz, 1994). The emission mech-

anism is inferred from the observed characteristics and their correlations with better

known types of emission. For example, one class of spikes at decimetric wavelengths

(DCIM), are ascribed to electron-cyclotron maser emission primarily on the basis of

their frequency and polarisation, and occasionally observed harmonic structure (e.g.

Guedel & Benz, 1990; Fleishman & Yastrebov, 1994; Bastian et al., 1998).

Some of these spike events may be generated by plasma emission from Langmuir

waves, which provides another interesting direction for simulations of plasma emission.

Theoretically spikes are even more challenging than Type III bursts due to their more

complex structures. On the other hand, if we have fast electrons and an instability

to Langmuir wave generation we may expect that we should observe plasma emission,

and can give analytical estimates of its minimum brightness. The absence of emission

is therefore also informative.

Two examples of high frequency, short duration emission which may be easily as-

cribed to the plasma emission mechanism are given by the “blips” of Benz et al. (1983)

at frequencies from 500 MHz to the low GHz range, which are similar in several re-

spects to Type IIIs at MHz frequencies and are now known as “Narrowband Type
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IIIs” (Guedel & Benz, 1988), and the “microwave Type IIIs” observed at 3-5 GHz by

Staehli & Benz (1987) again similar to Type III emission. The latter have durations

of only 20-200 ms, which is however consistent with the empirical result of Alvarez &

Haddock (1973) when adjusted for frequency. Both of these have similar bandwidths,

polarisations and frequency drifts.

Narrow-band Type IIIs at frequencies of 1-2 GHz were also studied by Jǐrička et al.

(2001). These have bandwidths of around 150 MHz and total duration approximately 1

second, and are observed equally often as single bursts or in groups. They are identical

to Type IIIs in drift rates, brightnesses, duration at a single frequency etc, differing

only in bandwidth and therefore total duration. The statistical study of Meléndez et al.

(1999) discussed above also includes these narrow bandwidth emissions.



Chapter 2

Langmuir Wave Diffusion in

Inhomogeneous Plasma

2.1 Introduction

Fast electron beams occur in many plasma physics contexts, from lab experiments to

solar flares. These beams can become unstable to the generation of Langmuir waves, in

which case energy is transferred from the beam into the waves and the instantaneous

beam distribution will be changed. If no other evolution occurs, these Langmuir waves

are later reabsorbed by electrons at the same velocity as they were emitted, so there

is no net effect on the particle distribution (Hamilton & Petrosian, 1987; McClements,

1987). However, as we will show in this chapter and the next, redistribution of the

Langmuir waves in wavenumber space can act to redistribute energy between electrons

at different velocities, which can lead to electron acceleration.

In the Sun, the fast electron beams accelerated during reconnection in solar flares

are known to produce Langmuir waves if the distribution attains a reverse-slope in

velocity (see Section 1.4.1). Spectral evolution of these Langmuir waves can occur

due to density variations in the plasma, due to either wavemodes with wavelengths

comparable to the Debye length (e.g Vedenov et al., 1967; Goldman & Dubois, 1982;

Yoon et al., 2005), or longer wavelength inhomogeneities (e.g. Ryutov, 1969; Nishikawa
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& Ryutov, 1976; Smith & Sime, 1979; Kontar, 2001a; Kontar et al., 2012). Here we

consider the treatment of the effects of long wavelength plasma density fluctuations

using a new method based on a diffusion equation.

When an electron beam propagates into plasma of increasing or decreasing density,

the generated Langmuir waves will be shifted towards smaller or larger wavenum-

bers respectively. A randomly fluctuating density will lead to alternating shifts of the

Langmuir waves to smaller and larger wavenumbers, and as we will show, when this is

averaged over the ensemble of fluctuations it results in diffusion of the Langmuir waves

in wavenumber space.

In this chapter we develop a mathematical treatment of this diffusion process in

both one and three dimensions. We first show the derivation of the diffusion equation

and diffusion coefficients, then give examples of their functional form for different

density fluctuation spectra. We end with a brief theoretical discussion of the effects

of wavenumber diffusion on the Langmuir waves and electrons. This work has been

published in Ratcliffe et al. (2012).

2.2 Beam-Wave Interactions

In this work we address the problem of beam-plasma wave interactions in the solar

corona and wind. As discussed in Section 1.4.1, the effects of the magnetic field on

the electron-wave interactions are negligible as we are generally in the weak-field limit,

Ωce � ωpe, but the electron beam must propagate along the magnetic field lines.

Moreover, the beam densities observed are often relatively small and so the situation

is handled well by the quasilinear approximation. We use equations based on those

given in e.g. Drummond & Pines (1964); Vedenov et al. (1962); Vedenov & Velikhov

(1963); Vedenov et al. (1967); Tsytovich (1995), and add the effects of collisions, and

wave-wave interactions, as necessary.

In this chapter, we will consider the Langmuir wave evolution in both one and

three dimensions. However, in our simulations of the beam-plasma interaction we use

a 1-dimensional model, and neglect the effects of particle transport. The physical
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situations where this model is applicable are discussed in Section 3.3.

In this 1-dimensional model we write the electron distribution function as f(v, t)

[electrons cm−3 (cm/s)−1] and the spectral energy density of Langmuir waves at wavenum-

ber k as W (k, t) [ergs cm−2] respectively. These are normalised so that∫
f(v, t)dv = ne (2.1)

with ne the plasma density in cm−3 and∫
W (k, t) dk = EL, (2.2)

the total energy density of the waves in erg cm−3. The equations describing the

electron-Langmuir wave interaction are

∂f(v, t)

∂t
=

4π2e2

m2
e

∂

∂v

(
W (k, t)

v

∂f(v, t)

∂v

) ∣∣∣∣∣
ωpe=kv

(2.3)

and

∂W (k, t)

∂t
− ∂ωpe

∂x

∂W (k, t)

∂k
=

ω3
peme

4πne

v ln

(
v

vTe

)
f(v, t) +

πω3
pe

nek2
W (k, t)

∂f(v, t)

∂v

∣∣∣∣∣
ωpe=kv

,

(2.4)

where ωpe is the local plasma frequency and ne the local plasma density.

The two terms on the right-hand side of the second equation correspond to spon-

taneous and stimulated emission of Langmuir waves respectively. This emission (and

the corresponding absorption) is resonant, meaning an electron at velocity v interacts

only with a wave at wavenumber k = ωpe/v, or alternately that the particle velocity v

and the phase speed of the wave, given by vph = ω/k, are equal. This is the Cerenkov

or Vavilov-Cherenkov condition, and the equations are derived in the limit of a par-

ticle in constant rectilinear motion. We note that this requires that the particles are

unmagnetised, i.e the effects of magnetic field on their motion are negligible.

In addition, we are restricted to the weak turbulence limit, where the energy in

Langmuir waves is far less than the energy of the background plasma, i.e.

W (k, t)

neTe

� (kλDe)
2. (2.5)
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For beam generated Langmuir waves this leads to a restriction on the beam density,

but this is easily satisfied for the beam densities we consider here.

It is easily seen that the electron distribution becomes unstable to the generation

of Langmuir waves when ∂f/∂v > 0. This may occur due to time of flight effects,

where fast electrons overtake the slower ones, or it can be due to collisional relaxation

(discussed later in Section 3.3), as the collision rate is roughly proportional to v−3, and

a “gap” distribution (Melrose, 1975; Wentzel, 1985) can be produced from an initially

power-law beam (e.g. Emslie & Smith, 1984).

The timescale for this beam-wave interaction can be found from Equation 2.4, and

is known as the quasilinear time. We use the condition ωpe = kv and approximate

∂W

∂t
' ωpe

ne

v2W
∂f

∂v
. (2.6)

Assuming a Maxwellian beam, with velocity vb, width ∆vb and density nb, given by

f(v) =
nb√
π∆vb

exp

(
−(v − vb)

2

∆v2b

)
, (2.7)

we find ∂f/∂v and evaluate the equation for a velocity of vb −∆vb. The result is

τql '
ne

ωpenb

. (2.8)

2.3 A Diffusion Treatment in 1-Dimension

The second term on the left-hand side of Equation 2.4 gives the effects of density

gradients on the Langmuir waves. In the case of a constant density gradient (e.g.

Kontar, 2001a) this term becomes

±δn

L

∂W (k, t)

∂k
, (2.9)

where δn is the change in density over the scale length L, and the sign is positive

for a decreasing density and negative for an increasing one. We immediately see that

an increasing gradient will shift the Langmuir waves to smaller wavenumbers, and

vice versa, while alternating gradients will cause alternating shifts in wavenumber. In

the next section we will see that this leads to a diffusion of the Langmuir waves in

wavenumber space.
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2.3.1 The Diffusion Equation

We write the plasma density as

ne[1 + ñ(x, t)] (2.10)

with ne the constant background density and ñ(x, t) the relative density fluctuation.

This relative fluctuation is assumed to be weak, i.e. ñ(x, t) � 1, and long wavelength,

λ � λDe, conditions often satisfied by the density perturbations the solar corona and

the solar wind (see Section 1.1.4).

The conditions of weak, long-wavelength fluctuations mean the fractional change

in Langmuir wavenumber is small, ∣∣∣∣1k ∂k∂x
∣∣∣∣� k (2.11)

and so we can make theWKB, or geometric optics, approximation. The long-wavelength

condition also allows us to treat the Langmuir waves as quasi-particles, averaging over

their spatial and time scales, which are far shorter than those for the density fluc-

tuations. In this case, we can describe the wave motion using standard equations of

motion describing their propagation and their momentum (equivalent to wavenumber)

change due to the action of a density gradient. These equations are (e.g. Whitham,

1965; Vedenov et al., 1967; Zakharov, 1974)

dk

dt
= F (x, t) (2.12)

dx

dt
= vg (2.13)

where k is the Langmuir wavenumber, vg their group velocity, given by vg = 3kv2Te/ωpe

and F (x, t) is the “force” acting on the waves due to the density gradients, which for

Langmuir waves is given by

F (x, t) =
∂ωpe(x)

∂x
= −ωpe

2

∂ñ

∂x
. (2.14)

These equations are equivalent to the conservation equation describing the evolution

of the spectral energy density W (x, k, t)

∂W (x, k, t)

∂t
+ F (x, t)

∂W (x, k, t)

∂k
= 0. (2.15)



2.3: A Diffusion Treatment in 1-Dimension 33

As noted above, we neglect the effects of spatial transport, i.e. a term ∂W/∂x. For

convenience we also omit the source terms due to electrons on the right-hand side (see

Equation 2.4) during this derivation.

From Equation 2.12 we can see that a random force, as arises due to random

density fluctuations, will result in random changes in the Langmuir wavenumber and

subsequently a diffusion of the Langmuir waves in wavenumber space. We can derive

the equation describing this process via standard procedures (e.g. Vedenov & Velikhov,

1963; Sturrock, 1966), the outline of which follows.

We decompose the spectral energy density of Langmuir waves W (x, k, t) into the

sum of its average and fluctuating parts W = 〈W 〉+ W̃ and substitute this expression

into Equation 2.15 to obtain

∂〈W 〉
∂t

+
∂W̃

∂t
+ F (x, t)

∂〈W 〉
∂k

+ F (x, t)
∂W̃

∂k
= 0. (2.16)

We then average this, and use the facts that, by assumption 〈F (x, t)〉 = 0 and by

definition 〈W̃ 〉 = 0. The result is

∂〈W 〉
∂t

= −〈F (x, t)
∂W̃

∂k
〉. (2.17)

Subtracting this from Equation 2.16 gives

∂W̃

∂t
= −F (x, t)

∂〈W 〉
∂k

−
˜(

F (x, t)
∂W̃

∂k

)
. (2.18)

This becomes

∂W̃

∂t
= −F (x, t)

∂〈W 〉
∂k

, (2.19)

by neglecting the term containing the product of the fluctuation W̃ and the force

F (x, t) as these are both small. Neglecting these products is the key feature of the

quasilinear approximation.

Integrating the equation for the fluctuations, Equation 2.19, gives

W̃ (x, k, t) = −
∫ t

0

F (x− vgτ, t− τ)
∂〈W 〉(x− vgτ, k, t− τ)

∂k
dτ, (2.20)
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which is substituted into Equation 2.17 to give the equation describing the diffusion of

wave energy in k-space:
∂〈W 〉
∂t

=
∂

∂k
D(k)

∂〈W 〉
∂k

(2.21)

where D(k) is the diffusion coefficient. Now we may drop the notation 〈〉 for the

average, and instead write simply

∂W

∂t
=

∂

∂k
D(k)

∂W

∂k
. (2.22)

2.3.2 The Diffusion Coefficient

The diffusion coefficient D(k) in Equation 2.22 is given by

D(k) =

∫ ∞

0

〈F (x, t)F (x− vgτ, t− τ)〉dτ (2.23)

where 〈F (x, t)F (x − vgτ, t − τ)〉 denotes the auto-correlation function of the force

F (x, t). In practice it is often useful to express this in terms of the spectrum of the

density fluctuations that are producing the force.

To do this, we Fourier transform F (x, t) in the the auto-correlation function,

〈F (x, t)F (x− vgτ, t− τ)〉, from space and time, (x, t), to wavenumber and frequency,

denoted (q,Ω), using the definition

F (x, t) =

∫ ∞

−∞
dq

∫ ∞

−∞
dΩF (q,Ω) exp [2πi(qx− Ωt)], (2.24)

and find

〈F (x, t)F (x′, t′)〉 =
∫ ∫ ∫ ∫

〈F (q,Ω)F (q′,Ω′)〉×

exp (2πi(qx+ q′x′ − Ωt− Ω′t′))dqdq′dΩdΩ′ (2.25)

where x′ = x − vgτ , t
′ = t − τ . We assume the force is stationary (auto-correlation

does not vary in time) and homogeneous (auto-correlation does not vary in space), and

so the auto-correlation can depend only on the differences x− x′ , t− t′. We therefore

require q = −q′ , Ω = −Ω′ and so the spectrum of the force, SF , must be given by

〈F (q,Ω) , F (q′,Ω′)〉 =: SF (q,Ω)δ(q + q′)δ(Ω + Ω′), (2.26)
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and the diffusion coefficient is

D(k) =

∫ ∞

0

dτ

∫ ∞

−∞
dq

∫ ∞

∞
dΩSF (q,Ω) exp [2πiτ(Ω− vgq)]. (2.27)

Then using the definition∫ ∞

0

dτ exp[2πi(Ω− qvg)τ ] =
1

2
δ(Ω− qvg) (2.28)

this becomes

D(k) =
1

2

∫ ∞

−∞
dq

∫ ∞

−∞
dΩSF (q,Ω)δ(Ω− qvg). (2.29)

Finally, we relate the spectrum of the force to the spectrum of density fluctua-

tions, Sn(q,Ω). The force on Langmuir waves is F (x, t) = −1
2
ωpe∂xñ(x, t) and so its

correlation function, assuming x′ = 0, t′ = 0 from the conditions of stationarity and

homogeneity, is 〈F (x, t)F (0, 0)〉 = (ω2
pe/4)∂xx〈ñ(x, t)ñ(0, 0)〉. Then using the Wiener

Khintchine theorem (a standard result in Fourier theory), which says that

SF (q,Ω) = FT 〈F (x, t)F (x′, t′)〉, (2.30)

twice we find that

SF (q,Ω) = FT [〈F (x, t)F (0, 0)〉] =
ω2
pe

4
(2πiq)2Sn(q,Ω). (2.31)

The diffusion coefficient is therefore finally

D(k) =
ω2
peπ

2

2

∫ ∞

−∞
dq

∫ ∞

−∞
dΩ q2Sn(q,Ω)δ(Ω− qvg), (2.32)

where by definition

〈ñ2〉 =
∫ ∞

−∞
dq

∫ ∞

−∞
dΩ Sn(q,Ω). (2.33)

The delta function, δ(Ω − qvg) implies that this is a resonant interaction, while the

factor of q2 means that fluctuations at large wavenumbers, i.e. small spatial scales, will

have a more significant effect than those at longer wavelengths.
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2.3.3 Wave Modes

In the previous section we outlined a standard mathematical derivation of a diffusion

equation describing the effects of a fluctuating force with arbitrary wavenumber and

frequency, q and Ω respectively. Now we develop this theory, firstly to consider fluctu-

ations due to a compressive wave mode, for which these must be related by the wave

dispersion relation, Ω = Ω(q), and in the next section to find the coefficient for specific

fluctuation spectra. To incorporate the restriction Ω = Ω(q) we define the spectrum

as Sn(q,Ω) = Sn(q)δ(Ω− Ω(q)) so that∫ ∞

−∞
dq

∫ ∞

−∞
dΩSn(q,Ω) =

∫ ∞

−∞
dqSn(q) = 〈ñ2〉. (2.34)

Substituting this into Equation 2.32 then gives

D(k) =
ω2
peπ

2

2

∫ ∞

−∞
dqq2Sn(q)δ(Ω(q)− qvg). (2.35)

Because of the delta function δ(Ω(q)− qvg), we have some constraints on the wave

modes we can consider in this model. For example, ion-sound waves have a dispersion

relation which is approximately Ω(q) = qvs, which would imply that the diffusion coef-

ficient is non-zero only where vs = vg, i.e at a single value of the Langmuir wavenumber.

However, other wave modes may be of interest, as are fluctuations with arbitrary spec-

trum.

2.3.4 The Diffusion Coefficient for Specific Spectra

Using Equation 2.32 we may evaluate the diffusion coefficient for some common density

fluctuation spectra, and examine how this affects its functional form.

Random Fluctuations

If we assume fluctuations that are random in space and time, their correlation function

is Gaussian, and therefore from Equation 2.30 so is the fluctuation spectrum. Taking

a spectrum given by

Sn(q,Ω) =
〈ñ2〉
πq0Ω0

exp

(
−q2

q20
− Ω2

Ω2
0

)
(2.36)
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where q0 and Ω0 are characteristic wavenumber and frequency, normalised so that∫ ∞

−∞
dq

∫ ∞

−∞
dΩSn(q,Ω) = 〈ñ2〉 (2.37)

the diffusion coefficient reads

D(k) = ω2
peπ

3/2 q0
v0

〈ñ2〉
(
1 +

v2g
v20

)−3/2

, (2.38)

where v0 = Ω0/q0 is the characteristic velocity of the fluctuations.

We see immediately that for these random fluctuations there will be two distinct

regimes of diffusion, depending on whether the density fluctuation characteristic veloc-

ity v0 is much larger than the Langmuir wave group velocity vg or vice versa.

In the former case, i.e v0 � vg, the diffusion coefficient becomes

D(k) = ω2
peπ

3/2

(
q0
v0

)
〈ñ2〉, (2.39)

and is independent of vg and therefore of the Langmuir wavenumber, k. This case

of a constant diffusion coefficient drives the system towards the steady state of a flat

Langmuir wave spectrum.

In the other extreme, i.e. v0 � vg, the coefficient is

D(k) = ω2
peπ

3/2

(
q0
v0

)(
v0
vg

)3

〈ñ2〉, (2.40)

and the diffusion is strongly dependent on the wavenumber k. Assuming that initially

D(k)∂W (k)/∂k is not everywhere zero then the steady state solution, ∂W (k)/∂t = 0

is proportional to k4, with more wave energy at large wavenumbers than the thermal

case.

A Power-law Fluctuation Spectrum

Also of interest are fluctuations with a turbulent power-law spectrum in wavenumber

at a single characteristic frequency, Ω0 with spectrum

Sn(q,Ω) = 〈ñ2〉
(
ζ − 1

q0

)(
q

q0

)−ζ

δ(Ω− Ω0) (2.41)
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for q > q0 and zero elsewhere, with spectral index ζ > 1. The lower limit on q is

necessary for normalisation. Fluctuations of this type have been observed in the solar

wind (e.g. Cronyn, 1972; Celnikier et al., 1983; Robinson, 1983), with spectral index

around 5/3, and were included in simulations of beam-wave interactions by Reid &

Kontar (2010) (see Section 1.4.2).

The diffusion coefficient is now

D(k) =
ω2
peπ

2

2
(ζ − 1)

(
q0
v0

)(
v0
vg

)3−ζ

〈ñ2〉. (2.42)

A power law index of ζ = 3 will again lead to a constant diffusion coefficient.

2.4 Diffusion in 3-Dimensions

In many cases we wish to consider density fluctuations which are isotropic or angu-

larly varying, and therefore we must treat the situation in 3-D. In the 3-dimensional

treatment the Langmuir wavenumber becomes a wavevector, and the density fluctua-

tion induced diffusion is now able to change both its magnitude and orientation. The

restrictions on wave dispersion relation due to the condition Ω = qvg found in 1-D are

relaxed in 3-D, allowing us to explicitly consider wave modes such as ion-sound waves.

Previously, treatments of Langmuir wavenumber diffusion (e.g. Nishikawa & Riutov,

1976) were restricted to elastic scattering, where the fluctuation frequency is much less

than the plasma frequency ωpe, and so is neglected. The Langmuir wave energy is

conserved by the scattering, and so the Langmuir wavevector can be modified only in

angle.

Here we derive the diffusion equation and coefficients for the general case, and

briefly discuss the differences between this and the elastic scattering case. For very low

frequency waves the modifications are negligible, but they are important in some cases.

For ion-sound waves the corrections due to inelasticity are small but non-zero, while

for fluctuations with arbitrary frequency (rather than an explicit dispersion relation,

Ω = Ω(q)) and high frequency components the corrections may be large.
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2.4.1 The Diffusion Equation

The conservation equation for the 3-dimensional wave spectral energy densityW (x,k, t)

[erg], analogous to Equation 2.15 is

∂W (x,k, t)

∂t
+ vg.∇W (x,k, t)− 1

2
ωpe∇ñ(x, t) · ∂W (x,k, t)

∂k
= 0, (2.43)

where vg = (3v2Te/ωpe)k is the group velocity, and the total energy density of the waves

is given by

EL(x, t) =

∫
dkW (x,k, t). (2.44)

We proceed as above, again neglecting the spatial transport term, to find the 3-

dimensional diffusion equation,

∂W (k, t)

∂t
=

∂

∂ki
Dij

∂W (k, t)

∂kj
. (2.45)

The coefficient is now a tensor, and is given in the general case by

Dij(k) = 2πω2
pe

∫
dΩ

∫
d3q

(2π)3
qiqjSn(q,Ω)δ (Ω− q · vg) (2.46)

where Sn(q,Ω) is the spectrum of the density fluctuations. This spectrum is normalised

so that ∫
d3q

∫
dΩSn(q,Ω) = 〈ñ2〉. (2.47)

For wave modes, with dispersion relation Ω = Ω(q), we write Sn(q,Ω) = Sn(q)δ(Ω−

Ω(q)) and find

Dij(k) = 2πω2
pe

∫
d3q qiqjSn(q)δ (Ω(q)− q · vg) . (2.48)

Here we have a dot product q · vg, and therefore additional freedom to specify a

dispersion relation and still satisfy the resonant condition (Ω(q)− q · vg) = 0 . So for

example we may put Ω(q) = |q|vs as is the case for ion-sound waves and still satisfy

the condition |q|vs = q · vg for more than one value of the group velocity. This may

be contrasted with Section 2.3.3 where we had Ω = qvg which strongly restricted the

possible wave dispersion relations.
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Figure 2.1: The Cartesian and spherical coordinate systems used in our derivations.

In the spherical system, θ is the angle to the parallel direction, and for the Langmuir

wavevector k under consideration φ = 0.

2.4.2 Diffusion in Spherical Coordinates

In the elastic scattering approximation previously considered in the literature (e.g.

Nishikawa & Ryutov, 1976; Goldman & Dubois, 1982; Muschietti et al., 1985), diffu-

sion occurs in angle only, and the problem is very easily treated using spherical polar

coordinates. In our more general case the diffusion tensor will have additional angular

and magnitude components. However, for the problem of beam-wave interactions, and

many other cases of interest, we may assume azimuthal symmetry, so there is no diffu-

sion in azimuth and the spherical coordinate expression remains a useful simplification.

We begin by defining two sets of coordinates, one Cartesian and one spherical,

as illustrated in Figure 2.1. We can then transform the diffusion equation and its

coefficients. In Cartesian coordinates, we define one axis to be parallel to the beam

direction, labelled as ‖, and two mutually perpendicular axes labelled, ⊥1,⊥2, giving

a standard right-handed Cartesian coordinate system. In our spherical coordinate

system, θ is the angle to the beam direction, and φ the azimuth, measured clockwise

around the beam direction. We now have the two equivalent representations of the

Langmuir wavevector, namely k = (k‖, k⊥1 , k⊥2) and k = (k, θ, φ).
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The Diffusion Equation in Spherical Coordinates

Equation 2.45 can also be written as

∂W (k, t)

∂t
= ∇k ·

(
¯̄D∇kW (k, t)

)
(2.49)

where ¯̄D denotes the diffusion tensor and ∇k is the gradient operator in k space. Then

using the definitions of ∇ and ∇· in spherical coordinates, and the assumption of

azimuthal symmetry which implies there can be no diffusion in φ we find

∂W (k, t)

∂t
=

[
1

k2

∂

∂k

(
k2Dkk

∂

∂k
+ kDkθ

∂

∂θ

)
+

1

sin θ

∂

∂θ
sin θ

(
Dθθ

k2

∂

∂θ
+

Dθk

k

∂

∂k

)]
W (k, t). (2.50)

The Components of ¯̄D

The diffusion coefficients Dθθ, Dkk, Dθk, Dkθ in Equation 2.50 are derived from the

Cartesian components (Equation 2.46 or 2.48) using standard tensor coordinate trans-

forms. For a given Langmuir wavevector k, using the assumption of azimuthal sym-

metry, we may define coordinates such that the azimuth of k is zero. Then taking Dθθ

as an example, we find

Dθθ = D⊥1 ⊥1 cos
2 θ − 2D⊥1 ‖ sin θ cos θ +D‖ ‖ sin

2 θ. (2.51)

Comparing this with the Cartesian expression in Equation 2.46, we see that by

defining the new quantities

qθθ = q⊥1q⊥1 cos
2 θ − 2q⊥1q‖ sin θ cos θ + q‖q‖ sin

2 θ (2.52)

qkk = q⊥1q⊥1 sin
2 θ + 2q⊥1q‖ sin θ cos θ + q‖q‖ cos

2 θ (2.53)

qkθ = qθk = sin θ cos θ(q⊥1q⊥1 − q‖q‖) + (cos2 θ − sin2 θ)q⊥1q‖ (2.54)

we may write simply

Dij(k) = 2πω2
pe

∫
dΩ

∫
dq

∫
d cos θ̄

∫
dφ̄

q2

(2π)3
qijSn(q,Ω)δ (Ω− q · vg) (2.55)

where q = (q, θ̄, φ̄) and qij stands for qθθ, qkk and qkθ.
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Evaluating the Diffusion Coefficients

Equation 2.55 is entirely general, but in many cases cannot be evaluated. One signif-

icant simplification is to introduce an isotropic wave dispersion relation Ω = Ω(q) =

Ω(|q|). The spectrum is then Sn(q,Ω) = Sn(q)δ(Ω−Ω(q)) and Equation 2.55 becomes

Dij(k) = 2πω2
pe

∫
dq

∫
d cos θ̄

∫
dφ̄

q2

(2π)3
qijS(q)δ (Ω(q)− q · vg) . (2.56)

In what follows, we introduce the notation cos θ = µ, cos θ̄ = µ̄ to shorten the

equations. Again, we note that the azimuth of the Langmuir wavevector, φ, is assumed

to be zero. We evaluate the dot product,

vg · q =
3v2Te

ωpe

k · q =
3v2Te

ωpe

kq
(
(1− µ2)1/2(1− µ̄2)1/2 cos φ̄+ µµ̄

)
(2.57)

and use the delta function to integrate over dφ̄. This gives us

Dij(k) = 2πω2
pe

∫
dq

∫
dµ̄

q2

(2π)3
qijSn(q) (2.58)

subject to the condition

(Ω(q)− q · vg) = 0, (2.59)

or using Equation 2.57

cos φ̄ =
Ω′ − µµ̄

(1− µ2)1/2(1− µ̄2)1/2
(2.60)

where Ω′ = Ωωpe/(3v
2
Tekq), and Ω′ ≤ 1.

Using this we evaluate the components qij in Equations 2.52-2.54 finding

qkθ = 0 (2.61)

qkk = q2Ω′(q)2 (2.62)

qθθ = q2
(
µ̄2 + µ2Ω′(q)2 − 2µµ̄Ω′(q)

)
/(1− µ2) (2.63)
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and so the non-zero diffusion coefficients are

Dkk =
ω3
pe

12π2v2Tek

∫
dqq3

∫
dµ̄Ω

′2Sn(q)×(
(1− µ2)(1− µ̄2)− Ω

′2 + 2µµ̄Ω′ − µ2µ̄2
)−1/2

(2.64)

Dθθ =
ω3
pe

12π2v2Tek

∫
dqq3

∫
dµ̄

µ̄2 + µ2Ω
′2 − 2µµ̄Ω′

1− µ2
Sn(q)×(

(1− µ2)(1− µ̄2)− Ω
′2 + 2µµ̄Ω′ − µ2µ̄2

)−1/2

(2.65)

where the limits on the µ̄ integrals are the solutions of (1−µ2)(1− µ̄2)−Ω
′2+2µµ̄Ω′−

µ2µ̄2 = 0 i.e µ± = µΩ′ ± (1− µ2)1/2(1− Ω
′2)1/2 (noting that Ω′ ≤ 1).

Isotropic Fluctuations

If we assume the fluctuations are isotropic, i.e. Sn(q) = Sn(|q|), then we can evaluate

the µ̄ angular integral and obtain

Dkk =
ω2
pe

216πv3Te(kλDe)3

∫
dqqΩ(q)2Sn(q) (2.66)

and

Dθθ =
ω2
pe

24πvTekλDe

∫
dqq3

(
1−

(
Ω(q)

3vTekλDeq

)2
)
Sn(q). (2.67)

From the resonance condition we have (Ω(q)/(3vTekλDeq)) ≤ 1 and so Dθθ is always

positive.

Elastic Scattering

We may recover the result for elastic scattering by setting Ω = 0, meaning there is no

change in energy due to scattering, in Equations 2.66 and 2.67, finding

Dkk = 0 (2.68)

and

Dθθ =
ω2
pe

24πvTekλDe

∫
dqq3Sn(q), (2.69)

as given by Muschietti et al. (1985). Diffusion occurs in angle only, at a rate indepen-

dent of the angle θ. Therefore it will tend to isotropise the Langmuir wave spectrum.
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2.5 Effects of Diffusion on Waves and Electrons

The detailed evolution of the beam-wave system may only be explored using simula-

tions, but we may infer the general behaviour by considering the form of the diffusion

coefficients, and looking at the limiting cases. We give here a brief theoretical discussion

of the simplest cases.

2.5.1 1-Dimensional Diffusion

In 1-D the wave spectrum evolves according to Equation 2.4,

∂W (k, t)

∂t
=

∂

∂k
D(k)

∂W

∂k
+

ω3
peme

4πne

v ln

(
v

vTe

)
f(v, t) +

πω3
pe

nek2
W (k, t)

∂f(v, t)

∂v
.

Considering only the diffusion term and assuming a constant diffusion coefficientD(k) =

const, it is clear that the steady state solution is a flat Langmuir wave spectrum. The

thermal level of Langmuir waves in collisionless plasma (given by Equation 3.5) is plot-

ted in Figure 2.2. Diffusion due to density fluctuations will then tend to increase the

Langmuir wave level at small wavenumbers. The analogous effect at large wavenum-

bers will not be seen, as above 0.3kDe the waves are very rapidly Landau damped by

the background electrons.

When we include an electron beam generating Langmuir waves, we expect to see

spreading of their spectrum in wavenumber and consequently spreading of the beam

in velocity space. The fraction of the waves which shift to smaller wavenumbers will

cause electron acceleration, which we investigate in the next chapter using numerical

simulations.

2.5.2 Beam Aligned Fluctuations

The 1-dimensional case discussed previously can be derived from the 3-dimensional

equations by a suitable choice of the density fluctuation spectrum. We define

Sn(|q|,Ω) = Sn(q,Ω)δ(|1− µ̄|), (2.70)
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Figure 2.2: The thermal level of Langmuir waves projected onto 1D and normalised

to kBTe, as a function of wavenumber k.

with arbitrary frequency, and the components in Equations 2.53 and 2.52 become

qθθ = 0 and qkk = q2 and so the diffusion coefficients are, using Equation 2.55, Dθθ = 0

and

Dkk = 4π2ω2
pe

∫
dΩ

∫
q4dqSn(q,Ω)δ(Ω− qvg). (2.71)

We may relate the 3-D spectrum to its 1-D counterpart via their respective nor-

malisations, Equations 2.33 and 2.47, finding S1D
n (q,Ω) = 2πq2Sn(q,Ω) and thus we

recover the diffusion coefficient as given by Equation 2.32 and the diffusion equation as

in Equation 2.22. This confirms that the 1-dimensional model discussed above exactly

describes the case of beam parallel density fluctuations.

2.5.3 Angular Diffusion

For a well collimated electron beam, the Langmuir waves generated will be confined to

the region in wavenumber space given by cos θ ∼ 1. The effects of inelastic scattering

in 3-D can then be considered in 1-D by rewriting Equation 2.50 in terms of the

independent variables k and k‖ where k‖ is the component of the wavevector parallel to

the beam direction, given by k‖ = k cos θ, and taking the limit cos θ ∼ 1, or equivalently
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k ∼ k‖, to obtain

∂

∂t
W (k‖, t) =

1

k2
‖

∂

∂k‖

(
k2
‖Dkk

∂

∂k‖

)
W (k‖, t)− 2

Dθθ

k‖

∂

∂k‖
W (k‖, t). (2.72)

The first term here is a diffusion of waves in the parallel direction due to the diffusion

in magnitude of the wavenumber, while the second is advection of the waves towards

smaller parallel wavenumber caused by the angular diffusion. This latter term will be

advective only in the limit cos θ ∼ 1, which becomes less applicable as angular diffusion

proceeds. However, while the Langmuir wave angular spread remains small, both terms

will lead to the transfer of energy from waves at larger parallel wavenumbers to those

at smaller parallel wavenumbers, and therefore cause energy transfer from slower to

faster electrons, leading to an acceleration effect.

Angular diffusion due to elastic scattering (e.g. Nishikawa & Ryutov, 1976; Gold-

man & Dubois, 1982; Muschietti et al., 1985) has been shown to lead to suppression of

the beam plasma instability by moving waves out of the resonant region in wavenum-

ber space. In most treatments however, the electron distribution is assumed to be

fixed. The combination of angular diffusion and wave absorption is treated as simple

absorption with a constant coefficient, and the energy transferred to electrons due to

this absorption is ignored.

From Equation 2.72 we may infer that in fact this energy reabsorption can lead to

electron acceleration and the formation of high energy tails in the electron distribution.

The 3-D PIC simulations by Karlický & Kontar (2012) consider the effects of Lang-

muir wave scattering due to wave-wave interactions, and confirm that in this case, the

reabsorption by the electrons of Langmuir waves at smaller wavenumbers indeed leads

to an acceleration effect.

We can compare the effects of magnitude and angular diffusion by evaluating the

diffusion coefficients in Equations 2.66 and 2.67 using a simple example spectrum. We

take

Sn(q,Ω) = C〈ñ2〉 for q1 < q < q2 (2.73)

= 0 else
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with C a constant giving proper normalisation, and a dispersion relation Ω(q) = qv0.

We find the ratio of the coefficients to be

Dkk

Dθθ

=
3

16

v2s/v
2
Te

(kλDe)2

(
1−

(
v0

3vTekλDe

)2
)−1

(2.74)

Then for plasma with equal ion and electron temperatures, Ti = Te = 1MK and

fluctuations with a velocity v0 ' vs the sound speed, this ratio is approximately

Dkk/Dθθ ' 0.04 for beam generated Langmuir waves at wavenumbers around 0.1kDe,

and 0.2 at 0.05kDe. We therefore expect that contributions from both effects may be

visible even for relatively low frequency fluctuations.

2.5.4 Timescales

Finally, we may give some general predictions regarding when the diffusion effects

are important, and which effects may dominate. In all cases, we have two competing

processes in operation: the quasilinear interaction between the electrons and waves, and

the diffusive process causing wave evolution. Clearly, the relative importance of these

processes will depend on their timescales. These are, for the former, the quasilinear

time (Equation 2.8),

τql =
ne

ωpenb

(2.75)

and for the latter, the diffusive time which may be approximated as

τD =
k2
0

D(k0)
(2.76)

with k0 the characteristic Langmuir wavenumber and D the appropriate diffusion co-

efficient, either for 1-D diffusion (see Equation 2.22), magnitude diffusion in 3-D (see

Equation 2.72) or convection due to angular diffusion in 3-D (see Equation 2.72) re-

spectively.

We expect the diffusive process to be significant for τD ∼ τql in each case, and

suppression of the beam-plasma instability to occur if τD � τql for a process which

causes the transfer of wave energy out of the resonant region in k space. We confirm

this numerically for the 1-D diffusion in Ratcliffe et al. (2012), and the next chapter.



Chapter 3

Quasilinear Simulations of

Langmuir Wave Evolution

An accelerated electron population which propagates down to the solar chromosphere

can produce HXR emission via bremsstrahlung (see Section 1.3.4). However, as they

propagate though the dense plasma, the electrons can lose significant energy due to

collisional effects and so to obtain a given electron distribution in the emission region,

far more electrons may have to be accelerated. Previously, wave generation was con-

sidered to be a pure energy loss process, and therefore expected to only increase the

initially required number of fast electrons. In general however, observations of the

HXR spectra can only reach down to around 20 keV and the spectrum below this is

unrecoverable from HXR. Therefore if we can transfer energy from energies below this

into the observable part of the spectrum, we will appear to have more energy in the

electrons.

In Section 2.5.2 we discussed the effects of beam parallel density fluctuations, and

suggested that these could lead to the acceleration of beam electrons. In addition we

concluded that 3-D diffusion due to, for example, isotropic fluctuations would include

a similar parallel diffusion component, and thus give a similar effect. In this chapter

we investigate electron acceleration using the mathematical treatment developed in

Chapter 2. We consider plasma similar to the solar corona, with density fluctuations
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similar to those which have been observed, and treat both a sample case of a Maxwellian

beam, in order to investigate the detailed effects, and the collisional relaxation of a

power law beam, to see the effects this acceleration may have in a physical situations,

and how it may be observed. A large part of this work has been previously published

in Kontar et al. (2012); Ratcliffe et al. (2012).

3.1 The Simulation Equations

In Section 2.2 we gave the quasilinear equations in homogeneous collisionless plasma,

Equations 2.3 and 2.4, as originally derived by Vedenov & Velikhov (1963); Vedenov

et al. (1967). However, in the dense plasma of the solar corona, collisional effects are

important for both electrons and waves, and so we must add terms describing these.

The collisional operator for electrons is given by (e.g. Lifshitz & Pitaevskii, 1981)

Stcol(f) = Γ
∂

∂v

(
f

v2
+

v2Te

v3
∂f

∂v

)
, (3.1)

where Γ = 4πe4ne ln Λ/m
2
e, with lnΛ the Coulomb logarithm. For the temperatures

and densities of the corona and solar wind, the empirical formulae of Sivukhin (1966)

give values for lnΛ of approximately 15-20. The collisional damping rate for Langmuir

waves is γcol ' Γ/4v3Te. For the parameters we use below, the collisional time is

τcoll ' 3.0× 10−4 s for electrons at vTe.

We include the diffusion operator describing the effects of beam-aligned density

fluctuations on the Langmuir waves from Equation 2.22, and obtain

∂f

∂t
=

4π2e2

m2
e

∂

∂v

(
W

v

∂f

∂v

)
+ Γ

∂

∂v

(
f

v2
+

v2Te

v3
∂f

∂v

)
, (3.2)

∂W

∂t
=

ω3
peme

4πne

v ln

(
v

vTe

)
f +

πω3
pe

nek2
W

∂f

∂v
− Γ

4v3Te

W +
∂

∂k

(
D
∂W

∂k

)
. (3.3)

The coefficient of diffusion, D, is given by Equations 2.38 or 2.42, depending on the

density fluctuation spectrum assumed.

The initial value problem, which is sufficient to reproduce the physics important

here, is solved using finite difference methods, discussed in general for partial differential
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equations in the books by e.g. Smith (1985); Thomas (1995), and for the specific case

of beam-plasma interaction in Takakura (1982); Kontar (2001b). We use explicit finite

difference schemes, first order in time and second order in velocity, or equivalently

wavenumber, space.

The code is written in FORTRAN 90, and based on that used in Kontar (2001a)

with additional modifications from Kontar & Pécseli (2002); Hannah et al. (2009) de-

scribing collisional effects and the interaction of Langmuir waves with ion-sound waves.

In Chapter 4 we add additional subroutines for the generation of electromagnetic emis-

sion. We use a variable timestep according to the stability criterion for the quasilinear

equations. The accuracy of the numerical schemes used is discussed in Kontar (2001b).

3.2 Simulations of a Maxwellian Beam

In order to illustrate the effects of Langmuir wave evolution it is useful to first consider

the simplest possible case of beam-wave interaction, by assuming a Maxwellian electron

beam. This case offers three significant simplifications. Firstly, the timescale for beam-

wave interaction is τql ' 2× 10−5 s and so collisional effects are negligible for electrons

of velocity v & 5vTe. Secondly, the condition ∂f/∂v > 0 for Langmuir wave growth

is immediately satisfied by such a beam, so waves are rapidly produced. Finally, the

plateau in the electron distribution produced due to the energy transfer from electrons

to waves (Melrose, 1980b) does not significantly evolve in time, in contrast to the case

of a beam formed either due to transport effects (e.g. Ginzburg & Zhelezniakov, 1958;

Melrose, 1975) or collisional relaxation (e.g. Emslie & Smith, 1984, or Section 3.3).

3.2.1 Initial Conditions

The initial electron distribution function f(v, t) [electrons cm−3 (cm/s)−1] is the su-

perposition of a Maxwellian background and a Maxwellian beam:

f(v, t = 0) =
ne√
2πvTe

exp

(
− v2

2v2Te

)
+

nb√
π∆vb

exp

(
−(v − vb)

2

∆v2b

)
(3.4)

where nb is the beam density, vb its average velocity and ∆vb its velocity space width.
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The initial spectral energy density of Langmuir waves W (k, t) [ergs cm−2] is set

to the thermal level. This is found from the simultaneous steady state solution of

Equations 3.2 and 3.3, ignoring the collisional terms and is

W (k, t = 0) =
kbTe

4π2
k2 ln

(
1

kλDe

)
, (3.5)

which agrees with the thermal level of plasma waves in a collisionless Maxwellian plasma

as given by (Kaplan & Tsytovich, 1973; Tsytovich, 1995).

In our first set of simulations, we fix the parameters of the beam and background

plasma, and vary only those of the density fluctuations. We consider plasma similar to

that in dense coronal loops. The electron and ion temperatures are approximately equal

here, in contrast to solar wind regions where generally the ion temperature is lower

(e.g. Newbury et al., 1998; Gurnett et al., 1979), and we take Te = Ti = 1 MK. The

background density is relatively high, ne = 1.2×1010 cm−3, which corresponds to a local

plasma frequency of ωpe/2π = 1 GHz. We take a beam of density nb = 105 ' 10−5ne,

which as will be seen leads to high levels of Langmuir waves, 105 over the thermal level

or more. The beam velocity is set to vb = 5× 109 cm s−1 and ∆vb = 0.3vb, in the mid

range of observed velocities of solar fast electron beams.

We begin by considering random density fluctuations, with Langmuir wavenumber

diffusion coefficient D(k) given by Equation 2.38. This coefficient contains three free

parameters, 〈ñ2〉, q0 and v0. However q0 appears only in the coefficient magnitude,

arising due to the normalisation of the RMS average density fluctuation. Qualitatively,

the effects of varying q0 are therefore identical to those of changing the RMS fluctuation

level
√

〈ñ2〉, so we may fix q0 without loss of generality. We set q0 = 10−4kDe.

The magnitude of relative density fluctuations
√
〈ñ2〉 ranges between 10−4 and 10−2

covering the range of values commonly observed in the corona (Cronyn, 1972; Smith

& Sime, 1979). If we assume the fluctuations are due to ion-sound waves, which may

exist (subject to Ti < Te) in the corona at appropriate frequencies, the characteristic

velocity will be the sound speed, vs = 1.8 × 107 cm s−1 for the plasma parameters as

stated, or approximately vTe/20. We consider a range of velocities around this, varying

v0 between 0.01vTe and vTe.
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3.2.2 Electron and Wave Distributions

Figure 3.1 shows the evolution of the electron and the wave distributions during the

initial quasilinear relaxation of the beam over the first few quasilinear times, and the

relaxed state reached at t = 100τql. The top left panel shows the results in homogeneous

density plasma. Langmuir waves grow rapidly over the first few quasilinear times,

forming a flat plateau after around 10τql. For this beam velocity and density, the

plateau in the electron distribution spans from 6vTe (E = 1.5 keV) to 16vTe (11 keV).

This plateau remains at 100τql, as shown by the red line, and will persist until collisional

effects begin to be important. Plateau destruction occurs on a timescale given by Γ/v3

where Γ is the collisional rate. This is approximately 1 second at v = 15vTe, of the order

of 104 or 105 quasilinear times, and is far longer than the duration of the simulations,

so these effects will not be seen.

Density Fluctuations

The other panels in Figure 3.1 show the electron and wave spectra in plasma with

fluctuating density. The bottom left panel, showing a moderate level of fluctuations,√
〈ñ2〉 = 3.7×10−3, gives the best illustration of these effects. The waves generated by

the beam spread rapidly in wavenumber space, with subsequent slight decrease of their

peak intensity. This spreading is mirrored in the electron distribution, and formation

of the plateau is slowed.

This may also be expressed as broadening the resonance between the waves and

electrons, since the process of generation of a wave at wavenumber k, its shift via

diffusion to a new wavenumber k ± ∆k, and subsequent absorption at velocity v =

ωpe/(k±∆k) can also be thought of as a resonant interaction at k and v, but with finite

width, as opposed to the delta function resonance seen in the quasilinear equations.

Dupree (1966) originally showed this for the case of particle diffusion in velocity, but

Langmuir wavenumber diffusion affects the resonance in a similar manner.

At large velocities we see an increase in the electron distribution f(v) from the

upper edge of the plateau to the highest velocities in the simulation. In other words,
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Figure 3.1: Electron distribution f(v) (top), and Langmuir wave spectral energy

density W (k) (bottom) for homogeneous (top left pair) and inhomogeneous plasma,

with q0 = 10−4kDe, v0/vTe = 0.3 and
√

〈ñ2〉 of 3.7× 10−4 (top right pair), 3.7× 10−3

(bottom left pair) and 1.2 × 10−2 (bottom right pair). Blue lines from dark to light

show the beam relaxation during the first ten quasilinear times, while the red shows

the relaxed state reached at t = 100τql.
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electrons have been accelerated. Because waves diffuse to both larger and smaller

wavenumbers, we also see changes in the electron distribution down to ∼ 6vTe. Below

this, the energy in background electrons is significantly more than that in the Langmuir

waves (the weak turbulence assumption, defined in Equation 2.5) and their effect is

not visible.

The other two panels in Figure 3.1 show the effects of stronger and weaker fluc-

tuations. For very weak fluctuations,
√

〈ñ2〉 = 3.7 × 10−4, there is slight spreading

of the Langmuir wave spectrum, giving a wider electron plateau and therefore slight

acceleration. Otherwise the relaxation proceeds as in the homogeneous case.

When the inhomogeneity becomes very strong, as illustrated by the bottom right

panel where
√

〈ñ2〉 = 1.2× 10−2, diffusion transports the waves out of their region of

excitation in k-space on a timescale which is much smaller than their growth timescale,

so the wave level is barely increased above the thermal level. As we can see, by time

t = 100τql the electron distribution remains essentially unchanged from the initial

distribution. Waves are produced and reabsorbed, but the broadening of their spectrum

due to diffusion occurs so rapidly that this absorption is mainly by the thermal electrons

at a few vTe, corresponding to wavenumbers near kDe, where there is far more energy

than is in the waves (see Equation 2.5 giving the limit of weak turbulence theory).

Thus we get suppression of the beam-plasma instability.

Elsewhere, the effects of suppression have been considered mainly in the context of

elastic angular scattering of Langmuir waves, as discussed in Section 2.5.3. Our treat-

ment confirms a related suppression effect due to diffusion in the Langmuir wavenumber

magnitude, rather than a direct shift k → k ± ∆k. Moreover, although we have as-

sumed here density fluctuations aligned with the electron beam, as noted in Section

2.5.3 isotropic fluctuations, or indeed any angular distribution with component along

the beam propagation direction will lead to diffusion in both angle and magnitude of

the wavenumber. Our treatment of inelastic scattering considers both possible effects

simultaneously, allowing their relative importance to be easily assessed.
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3.2.3 Parametrising the Effects of Diffusion

To find the timescale associated with wavenumber diffusion, we approximate the dif-

fusion equation, Equation 2.22, as

∂W

∂t
=

∂

∂k
D
∂W

∂k
' 1

∆k
D(kb)

∆W

∆k
(3.6)

for ∆k the shift of the Langmuir waves from the generation region out of resonance

with the beam, and D evaluated at a characteristic Langmuir wavenumber kb. For a

Maxwellian electron beam centred at vb, these can be evaluated using the resonance

condition, ωpe = kv and are

kb = ωpe/vb and ∆kb = ωpe

(
∆vb
v2b

)
. (3.7)

The parameters ωpe, vb and ∆vb are given above, and the timescale is therefore

τD =
(∆kb)

2

D(kb)
. (3.8)

The other important timescale in the system is that for beam wave interaction,

namely the quasilinear time, τql. These two timescales indicate the rates of energy

transfer by the two processes and thus the relative strength of wave generation and

wave diffusion. Therefore it is natural to consider their ratio

R =
τD
τql

(3.9)

when discussing the strength of the wave diffusion rather than the absolute magnitude

of the diffusion coefficient.

In the electron distributions in Figure 3.1 we see three distinct regions in velocity

space, illustrated in Figure 3.2. Below around 6vTe is the core region, where little or

no effect from diffusion is seen. From 6vTe and up is the “beam” region, containing

the beam electrons. Above 16vTe is the “tail” region, where we see the accelerated

electrons appearing. We set the upper limit in velocity at 30vTe. Thus the energy of

the initial Maxwellian beam is

E0 =

∫ 30vTe

6vTe

mev
2f(v, t = 0)dv (3.10)
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Figure 3.2: The initial electron distribution (black) and the relaxed state after 100τql

(red), showing the definitions of the various regions: the thermal core below 6vTe, the

beam above 6vTe (shaded blue), and the tail above 16vTe (shaded pink).

and we define the total energy in beam electrons at time 100τql as

Ebeam =

∫ 30vTe

6vTe

mev
2f(v, t = 100τql)dv (3.11)

and the tail electrons as

Etail =

∫ 30vTe

16vTe

mev
2f(v, t = 100τql)dv. (3.12)

In the homogeneous case at time t = 100τql, the beam energy is Ebeam = 0.76E0

and the tail energy Etail = 0.2E0 respectively. Generally, although not always, a beam

energy greater than this implies slowed relaxation of the beam, while an increased tail

energy implies electron acceleration, and so the ratios Ebeam/E0, Etail/E0 can be used

as a measure of the extent of suppression and/or acceleration. Also of interest is the

quantity Etail/ntail, the average energy of a single electron in the tail region, giving a

measure of the average energy gain of an individual tail electron. In the homogeneous

case this is 26 keV.

In Figure 3.3, we plot these ratios as functions of the parameter R for a range

of values of
√

〈ñ2〉 and v0. The three cases of diffusion in Figure 3.1 are marked by
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Figure 3.3: Plots of total beam (left) and tail (middle) electron energy and the

average energy of a tail electron (right) against the parameter R = τD/τql, for multiple

simulation runs. The three levels of inhomogeneity shown in Figure 3.1 are marked by

asterisks. The red dashed lines are third order polynomial fits to the data.

asterisks, and represent three distinct regions in R. In the strong inhomogeneity case,

with
√
〈ñ2〉 = 1.2 × 10−2 and R � 1, the beam-plasma instability is suppressed, so

the beam remains close to its initial Maxwellian form and we find Ebeam = 0.99E0 and

Etail = 0.21E0, while the average tail electron energy is unchanged.

Very weak inhomogeneity, with
√
〈ñ2〉 = 3.7× 10−4 and R � 1, has little effect on

the beam relaxation, so the beam energy is close to the homogeneous value, but the

tail energy is slightly increased due to the broadened plateau, giving Ebeam = 0.78E0

and Etail = 0.23E0. Comparing the total tail region energy to the average tail electron

energy suggests in this case we have accelerated a reasonable number of electrons,

but not to very large velocities, as seen in Figure 3.1. The intermediate case, with√
〈ñ2〉 = 3.7 × 10−3 and R ∼ 1, gives Ebeam = 0.95E0 and Etail = 0.35E0, and a

significantly increased average tail electron energy.

To summarise these findings, for R � 1 the density fluctuations are weak and re-

laxation proceeds as in homogeneous plasma with no change to the beam energy and

no electron acceleration. As the diffusion coefficient is increased and R approaches 1,

we begin to see substantial electron acceleration, quantified by the tail energy Etail,

due to the energy transfer from slower to faster electrons through Langmuir wave diffu-
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Figure 3.4: The diffusion coefficient (in normalised units) for a fixed level of fluctua-

tions,
√

〈ñ2〉 = 2× 10−3, and three values of the characteristic velocity, v0/vTe = 0.95

(solid line), 0.3 (dashed line) and 0.03 (dot-dashed line).

sion. Finally, when R � 1 we have strong diffusive broadening of the wave spectrum,

and thus suppression of the beam-plasma instability as wave energy is lost from the

resonant region on a much shorter timescale than τql. Moreover, in the region of strong

acceleration, the total tail electron energy is almost doubled, and is increased by more

than half over around 2 orders of magnitude in R around this.

3.2.4 Effects of Fluctuation Characteristic Velocity

For random density fluctuations we saw in Section 2.3.4 that there are two simple

regimes of diffusion when v0 � vg or vice versa. However, the values of v0 of interest

here lie primarily in the transitional region where v0 ∼ vg and thus the diffusion coef-

ficient shape is strongly dependent on this value. In Figure 3.4 we plot the diffusion

coefficient as a function of wavenumber k for three values of the fluctuation character-

istic velocity, v0. Significant dependence is seen around the main region of Langmuir

wave excitation, kb ∼ 0.1kDe (Equation 3.7), which is largely accounted for in our

definition of the diffusive timescale, τD.

To confirm that this is so, we can minimise the diffusive timescale with respect to v0,

finding that this occurs at v0/vTe = 3
√
3kb/kDe. Substituting kb for our parameters,
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Figure 3.5: Total and average tail electron energy against v0/vTe for a fixed level of

fluctuations,
√
〈ñ2〉 = 2× 10−3.

we find the maximum acceleration should occur for v0/vt ' 0.2. In Figure 3.5 we

plot the total and average tail electron energies as a function of v0 for a fixed level of

fluctuations,
√
〈ñ2〉 = 2 × 10−3, and see a clear peak at exactly this value of v0. The

dependence of the acceleration effect on characteristic velocity therefore accounts for

the vertical scatter of the points in Figure 3.3, which is confirmed by comparing the

range in 3.5, approximately ∆(Ebeam/E0) ' 0.04 and ∆(Etail/ntail) ' 1 keV, to that

in Figure 3.3.

3.2.5 Power-law Fluctuations

In Section 2.3.4 we calculated the diffusion coefficient for a turbulent power-law spec-

trum of density fluctuations. This coefficient is given by Equation 2.42, and was seen to

be similar in some respects to the coefficient for random fluctuations given by Equation

2.38. In Figure 3.6 we compare the acceleration effects due to these two coefficients for

a range of fluctuation parameters. We use power-law indices of 5/3 and 7/3, similar to

those observed in the solar corona and wind (e.g. Cronyn, 1972; Celnikier et al., 1983;

Robinson, 1983). The effects of acceleration for the two fluctuation spectra are seen

to be similar for the parameters considered here, but it must be noted that only a few

test cases have been run.
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Figure 3.6: Plots of total beam (left) and tail (middle) electron energy and the average

energy of a tail electron (right) against the parameter R = τD/τql for random (crosses)

and power-law density fluctuations (triangles). Power law indices are 5/3 and 7/3 and

the other fluctuation parameters vary within the limits described in the text.

Figure 3.7: Plots of total beam (left) and tail (middle) electron energy and the

average energy of a tail electron (right) against the parameter R = τD/τql. Various

values of
√
〈ñ2〉, v0 are shown. At ωpe = 1GHz we show: random fluctuations with

nb = 105 cm−3 (crosses) and nb = 104 cm−3 (squares), powerlaw fluctuations with

indices 5
3
and 7

3
(triangles). Finally for ωpe = 200MHz we show random fluctuations

with nb = 103 cm−3 (diamonds)

3.2.6 The Effects of Beam and Plasma Parameters

Thus far we have considered only the effects of changing the fluctuation parameters,

but we can expect the trends established for the chosen beam and plasma parameters
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to hold true when these quantities are also varied. The simulations presented in this

section show that this is indeed the case, but only within certain ranges.

Firstly, both of the relevant timescales, τql and τD, obey the same relation with

respect to the local plasma density, and thus varying this has no effect on the parameter

R. We show two cases of diffusion with ωpe = 200 MHz in Figure 3.7, and confirm that

the same relationships with R hold in this case.

The beam density, nb, controls the level of Langmuir waves generated, and therefore

could be expected to affect the acceleration process. However, as shown in Figure 3.7,

the effect is almost entirely accounted for by the dependence of R on the timescale τql,

and the same regimes of acceleration and suppression are seen. On the other hand, the

results for a beam density of nb = 103 cm−3 at 1 GHz (not shown in the figure) do not

behave as expected, showing neither acceleration nor suppression. This is due partly

to the influence of collisional effects on the beam and waves over the longer timescale

for relaxation of such a weak beam, and also to the small level of Langmuir waves such

a beam can generate. The acceleration relies on the redistribution of energy between

different Langmuir wavenumbers, and is thus limited by the amount of energy available

in waves.

3.2.7 Conclusions

To summarise this section, for the test case of a Maxwellian beam, we have found that

plasma density fluctuations can lead to a significant electron acceleration or suppression

of the beam-plasma instability. These effects occur for broad range of beam, plasma

and fluctuation parameters. The details of the density fluctuations change the effects

in relatively small ways, but their extent is controlled almost entirely by the single

quantity R, the ratio of the quasilinear and wave diffusion timescales. When R is

small, the diffusion process dominates, and the beam-plasma instability is suppressed.

When R is close to 1, there is significant acceleration. When R is much larger than 1,

there is no effect as the beam-plasma interaction is far more rapid than the diffusion

process. However, as the effect is due to energy transfer between different velocities by
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means of Langmuir wave evolution, a sufficiently large level of Langmuir waves must

be generated, and so we require a sufficiently dense beam.

3.3 Simulations of the Collisional Relaxation of a

Power-Law Beam

In the previous section we looked in detail at the effects of Langmuir wavenumber

diffusion for a simple test case of a Maxwellian beam. This served as a useful “shortcut”

for the production of Langmuir waves, as the initial beam distribution was already

unstable to their generation. However, in physical situations the accelerated electrons

often obey a power law distribution, with ∂f/∂v < 0 at all velocities, which only

becomes unstable to wave generation due to subsequent evolution.

In some situations, this instability arises due to “time-of-flight” effects. The faster

electrons outpace the slower ones, producing a distribution with more electrons at high

velocities than at lower ones and therefore a reverse slope. Coronal electron beams

typically have very high velocities, between 0.1 and 0.6 c. An electron beam moving

upwards from the acceleration region may be estimated to become unstable after a

minimum distance of approximately 109 or 1010 cm (Kane et al., 1982; Reid et al.,

2011). The timescale to become unstable is then between 0.1 s and a few seconds.

A reverse slope distribution can also be generated due to collisional effects. The

collisional term in Equation 3.2 is

∂f

∂t
= Γ

∂

∂v

(
f

v2
+

v2Te

v3
∂f

∂v

)
, (3.13)

which is roughly proportional to v−3, and so slower electrons will lose energy more

rapidly than faster ones. The result is called a “gap distribution” (Melrose, 1975;

Wentzel, 1985). At a plasma frequency of 2 GHz the collisional timescale for electrons

around vTe, which is given by v3Te/Γ, is approximately 10−4 s. A reverse slope can there-

fore be generated at velocities around 8vTe after at time of (8vTe)
3/Γ or approximately

10−2 s.
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In dense plasma it can therefore be interesting to consider the collisional relaxation

of the beam, as the timescale for this is shorter than that for transport effects to become

important, especially for the slightly slower beams. We use a 1-D model and consider

the evolution at a single spatial location. This provides a good model of, for example,

a very dense coronal loop. The results in this section have been published in Kontar

et al. (2012): the discussion as presented here has been written specifically for this

thesis.

3.3.1 Initial Conditions

We use the quasilinear equations, Equations 3.2 and 3.3, as in the previous section and

a diffusion coefficient given by Equation 2.38. The initial electron distribution is now

a Maxwellian background plasma plus a power law beam smoothly fitted to this:

f(v, t = 0) =
ne√
2πvTe

exp

(
− v2

2v2Te

)
+

2nb√
π vb

Γ(δ)

Γ(δ − 1
2
)

[
1 + (v/vb)

2
]−δ

. (3.14)

Here, Γ(δ) denotes the gamma function and appears due to the normalisation of the

distribution, while δ is the power law index for the energetic particles in energy space

and nb the number density of non-thermal electrons, nb � ne.

This distribution is a power law f(v, t = 0) ∼ v−2δ at high velocities v > vb = 10vTe

and flattens below this. This helps to fit the beam smoothly to the Maxwellian core,

and also means that collisional relaxation can more quickly lead to Langmuir wave

generation, as there are less electrons at low velocities than for a pure power law.

The initial electron distribution is normalised to the electron number density [elec-

trons cm−3], so that ∫ ∞

0

2nb√
π vb

Γ(δ)

Γ(δ − 1
2
)

[
1 + (v/vb)

2
]−δ

dv = nb. (3.15)

The thermal level of Langmuir waves when collisions are included is calculated as

in Section 3.2.1 by finding the steady state solution of Equation 3.3. We ignore the

beam electrons and consider only the Maxwellian core to obtain

W (k, t = 0) =
kbTe

4π2

k2 ln
(

1
kλDe

)
1 + ln Λ

16πne

√
2
π
k3 exp

(
1

2k2λ2
De

) ' kbTe

4π2
k2 ln

(
1

kλDe

)
(3.16)
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as used in the previous simulations.

We consider again dense coronal regions, in this case a slightly larger density of

ne = 5 × 1010 cm−3, corresponding to a local plasma frequency of ωpe/2π = 2 GHz.

The electron and ion temperature are again equal, Te = Ti = 1 MK. The power law

index of the initial beam is δ = 4, corresponding to an index of 8 in velocity space.

During the collisional relaxation of the beam, a large fraction of the initial energy

will be lost. To obtain a sufficiently large reverse slope ∂f/∂v, and therefore high levels

of Langmuir waves, we must take an initial beam density far higher than in the case

of a Maxwellian beam. We therefore take nb ' 109 cm−3, which leads to Langmuir

wave levels of 105 over thermal at their peak, sufficient for their modification to have

a strong effect on the beam evolution.

The simulations here require much longer run times than those in the previous sec-

tion as the evolution occurs on large multiples, several thousand or so, of the collisional

timescale. We therefore consider the evolution over ∼ 1 s which can require a simu-

lation run-time of several days, depending on which effects are considered. Thus we

cannot explore the parameter space in the same way as for the Maxwellian beam, and

instead present only a few sample cases. We begin with homogeneous plasma, then

add a constant plasma density gradient, then show a few examples of the effects of

Langmuir diffusion. Finally we directly consider the effects of wave-wave interactions

for which the participating wavenumbers are approximately equal, in addition to the

diffusion caused by small wavenumber fluctuations.

3.3.2 Homogeneous Plasma

When wave generation is ignored, the initial electron distribution of Equation 3.14 will

evolve due to collisions as shown in the left panel of Figure 3.8. The electrons lose

energy, the beam distribution decreases, and a reverse slope is generated over the first

∼ 0.1 s. The region of reverse slope gradually widens and moves to higher velocities as

time progresses, but at the same time the number density of electrons in the reverse

slope region decreases.
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Figure 3.8: Collisional relaxation of an electron beam in a plasma. Top: the electron

distribution function f(v). Bottom: the spectral energy density of Langmuir waves

W (k). The left pair show relaxation without Langmuir wave generation, the right pair

include this. Each coloured line shows the distribution at a different time, as shown in

the colour bar.

When we include the effects of wave generation, this reverse slope is quickly flat-

tened, as seen in the right panel of Figure 3.8. The collisional effects continually reform

the reverse slope, generating more Langmuir waves, and the combination gives a flat

plateau and high Langmuir wave level, with the plateau height gradually decreasing

as energy is lost due to collisions. At long times, the beam density becomes so low

that few waves are generated and eventually, on timescales of several seconds, the wave

level becomes so low that the distribution returns towards that of the collisions only

case. On even longer time scales all energy is lost from the beam electrons, and the

distribution returns to a Maxwellian at a slightly higher temperature than the initial

distribution.
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Figure 3.9: The time averaged electron flux spectrum [electrons keV−1 cm−2 s−1] as

a function of electron energy. The dashed line shows the flux if the beam remained the

initial power-law. The left panel shows the flux in the no-waves case, while the right

panel shows both this (black line) and the case including Langmuir wave generation

(blue line).

Time Integrated Electron Distribution

Because the slope in the electron distribution changes over time, and the reverse slope

region moves to higher velocity, we cannot define a simple beam-wave interaction time

like the quasilinear time in Equation 2.8, as this will be time dependent. This makes

it difficult to quantify when the diffusion of Langmuir waves in wavenumber will lead

to electron acceleration, and how the density fluctuation parameters affect this.

Instead we consider the time-averaged electron distribution as function of energy,

defined by

F (E) =
1

T

∫ T

0

f(E, t)dt, (3.17)

where

f(E, t) = f(v(E), t)mev(E) (3.18)

is the electron distribution as a function of energy. Here we consider the average over

T = 1 s. This time-averaged flux can be directly related to the HXR emission from

the electrons, as discussed later in Section 3.5. Here we simply note that changes in
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this flux due to Langmuir wave evolution will be visible observationally via this HXR

emission.

In Figure 3.9 we show this time-averaged flux for the initial beam, and for the

collisional evolution with and without wave generation. The latter are almost identical,

confirming the results in Hamilton & Petrosian (1987); McClements (1987); Hannah

et al. (2009); Hannah & Kontar (2011) that Langmuir wave generation only very weakly

affects the time integrated electron flux.

3.3.3 A Constant Density Gradient

The role of a density gradient in electron self-acceleration was originally considered

by e.g. Brěizman & Ryutov (1969); Ryutov (1969) in order to explain experimental

observations of electron acceleration during beam relaxation. In the context of solar

electron beams, the recent 1-D simulations by Kontar & Pécseli (2002) found such an

electron acceleration effect due to an increasing plasma density. We reproduce this

case here as it is a useful test for our simulations, and also calculate the time-averaged

electron flux to compare to the homogeneous case. It is also interesting to compare

this density gradient case to the fluctuating density considered in the next section.

Consider the Liouville equation, Equation 2.15:

∂W (x, k, t)

∂t
− ∂ωpe

∂x

∂W (x, k, t)

∂k
= Source terms. (3.19)

In the case of an increasing density gradient we have

∂ωpe

∂x
' ωpe

L
(3.20)

where

L ≡ ωpe(x)

(
∂ωpe(x)

∂x

)−1

=
ne(x)

2

(
∂ne(x)

∂x

)−1

(3.21)

is the characteristic scale of density inhomogeneity. The fractional change in Langmuir

wavenumber ∆k due to the inhomogeneity must be small, |∆k/k| � 1 in order that

we remain in the geometric optics (WKB) approximation (e.g. Vedenov et al., 1967).
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Figure 3.10: Electron and wave distributions as as in Figure 3.8, for homogeneous

plasma (left) and plasma with a constant density gradient as in Equation 3.20, with

L = 106 cm.

The shift in wavenumber experienced by the Langmuir waves is

∆k ' ±ωpe∆t

|L|
. (3.22)

From this we can estimate the required density gradient for a significant shift in k.

For a timescale of the order of the collisional time, 10−4 s, and a plasma frequency of

2 GHz, taking ∆k = 0.05kDe we find L ∼ 106 cm.

In Figure 3.10 we show the electron and wave spectra in plasma with a constant

density gradient of length scale L = 106 cm, and also the homogeneous case for com-

parison. Several interesting features may be seen. Firstly, as expected we see the

advection of Langmuir waves towards smaller wavenumbers, and the consequent trans-

fer of energy from small to large velocities. The plateau in the electron distribution is

broadened. The rate of energy loss from the beam is also decreased, with the widened
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plateau decreasing in height significantly slower than in the homogeneous or collisions-

only cases. Also of interest is the fact that the increased electron number density seen

between ∼ 40vTe and ∼ 80vTe not only exceeds the number in the homogeneous case

but also the number in the initial power law beam. After 1 s, at 60vTe we have a

tenfold or more increase in the electron distribution above this initial value.

In the left panel of Figure 3.11 we show the time averaged electron flux for the

homogeneous case and the case of a constant density gradient. Again there are several

features of interest. We see a clear increase in electron flux between around 20 and

200 keV, reaching perhaps an order of magnitude over the homogeneous case at its

peak. The flux also significantly exceeds that from the initial beam distribution. In

addition, there is a distinctive kink in the flux spectrum, which shows a relatively

linear distribution from 10 to 200 keV then drops sharply back to be the same as in

the homogeneous case.

We may conclude that the presence of a density gradient in the plasma is able

to produce electron self-acceleration in our simulation model, and moreover that this

change in the electron distribution has significant effects on the time-averaged electron

flux, and therefore the HXR emission.

3.3.4 Density Fluctuations

In the previous section we considered the effects of plasma density fluctuations on a

Maxwellian electron beam in detail, and saw a significant electron acceleration effect,

controlled primarily by the parameter R = τql/τD, the ratio of the beam-plasma interac-

tion and Langmuir wavenumber diffusion timescales. In the current case of a power-law

beam relaxing due to collisions, we cannot define a simple analog of the beam-plasma

interaction timescale found in Equation 2.8, as the actual Langmuir wave growth rate

is the convolution of wave growth and the growth of the reverse slope ∂f/∂v. How-

ever, we can still infer that the maximum acceleration effect will occur when the two

processes operate at approximately equal rates.

In addition, we saw that the details of the density fluctuation spectrum and pa-
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Figure 3.11: The time averaged electron fluxes. Dashed lines: the initial power-law

beam. Black lines: homogeneous plasma. Blue lines: constant density gradient (left

panel); fluctuating density (right panel).

rameters were comparatively unimportant. Therefore we consider here only random

fluctuations, with a diffusion coefficient given by Equation 2.38, assume as before that

q0 = 104kDe and take their characteristic velocity to be v0 = 107 cm s−1 = 0.3vTe and

the density fluctuation magnitude to be
√

〈ñ2〉 = 10−3. These parameters were found

by a few trials to lead to the most significant acceleration for these beam parameters.

The resulting electron and wave distributions are shown in Figure 3.12. In compar-

ison to the homogeneous or density gradient cases, we see that a fluctuating density

leads to spreading of the Langmuir waves to both larger and smaller wavenumbers,

with a consequent decrease in their peak value. However, compared to the density gra-

dient case, as expected, the acceleration effect is neither as significant, nor as sharply

cut off. The time-averaged electron flux shown in the right panel of Figure 3.11 again

shows a significant increase from around 20 keV up to 300 keV in this example, with

a kink around 200 keV, similar to the case of a constant density gradient shown in the

left panel.

One final point may be mentioned here. Because in this case the condition for

strong acceleration, R = 1, cannot be satisfied for the entire beam relaxation process,

it may be of interest to consider a time-varying level of fluctuations. The density
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Figure 3.12: Electron and wave distributions as as in Figure 3.8, for homogeneous

plasma (left) and plasma with random density fluctuations, given by Equation 2.38,

with parameters as stated in the text.

fluctuations will be damped by their interaction with Langmuir waves, and therefore

decay. A self consistent treatment of the problem is possible in the framework in the

previous chapter, by including the evolution of the density fluctuations. This has been

done in the past by, for example, Vedenov et al. (1967); Vedenov (1968), and would be

interesting to include in future simulations.

3.3.5 Wave-wave Interactions

Langmuir waves are subject to various scattering and decay processes and can them-

selves excite other wave modes. For instance, scattering off thermal ions can backscatter

a Langmuir wave, or transform it into an electromagnetic wave, as will be discussed

in the next chapter. Three-wave interactions of the form X + Y � Z are the pri-

mary source of ion-sound waves in the plasma, as their large damping rates mean they
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cannot persist and must be rapidly generated. In general there are two kinematically

allowed processes which can generate an ion-sound wave (denoted s) from a Langmuir

wave (denoted L), decay to a scattered Langmuir wave L′: L � L′ + s and decay or

coalescence giving an electromagnetic wave (transverse, denoted t) L± s � t.

The latter process will be considered in the following chapter as it is an essential

component in the plasma emission mechanism, but for the parameters considered here

may be shown to have negligible effect on the Langmuir waves. For the former process,

energy and momentum conservation state that the parent Langmuir wave at wavenum-

ber kL will scatter to approximately the opposite wavenumber kL′ ' −kL and produce

an ion-sound wave at wavenumber q ' 2kL. More precisely, the scattered wavenumber

is decreased by a small increment ∆k,

∆k

kDe

=
2

3

√
me

mi

√
1 +

3Ti

Te

∼ 1

30
(3.23)

and so successive scatterings will lead to the generation of Langmuir waves at smaller

and smaller wavenumbers. Eventually this forms a so-called Langmuir wave condensate

(e.g. Ziebell et al., 2001; Kontar & Pécseli, 2002; Ziebell et al., 2011) at very small

wavenumbers.

For waves with comparable wavenumbers, the quasi-particle treatment of Section

2.3.1 is no longer valid, and so we must consider these decays individually, using the

three-wave equations (e.g. Melrose, 1980b; Tsytovich, 1995). In practise, these equa-

tions may be reduced to 1-D in a similar manner to the quasilinear equations. Here

we use an implementation and simulation code as in Kontar & Pécseli (2002). We add

a source term Stdecay(W,WS) due to the decay L � L′ + s to the right hand side of

Equation 3.3 and a new equation to the set describing the evolution of the ion-sound

waves, described by their spectral energy density WS:
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∂WS(k)

∂t
=− 2γS(k)WS(k)

− α(ωS
k )

2

∫ (
W (kL)

ωL
kL

WS(k)

ωS
k

− W (kL′)

ωL
kL′

(
W (kL)

ωL
kL

+
WS(k)

ωS
k

))
×

δ(ωL
kL′

− ωL
kL

− ωS
k )dkL′ (3.24)

where kL is the initial Langmuir wavenumber and k′
L is the scattered wave.

The source term for the Langmuir waves is

Stdecay(W (k),WS(kS)) = αωk×∫
ωS
kS

[(
W (kL)

ωL
kL

WS(kS)

ωS
kS

− W (k)

ωL
k

(
W (kL)

ωL
kL

+
WS(kS)

ωS
ks

))
δ(ωL

k − ωL
kL

− ωS
kS
)

−

(
W (kL′)

ωL
kL′

WS(kS)

ωS
kS

− W (k)

ωL
k

(
W (kL′)

ωL
kL′

− WS(kS)

ωS
ks

))
δ(ωL

k − ωL
kL′ + ωS

kS
)

]
dkS

(3.25)

where we distinguish between kL = k − kS and kL′ = k + kS, and the constants α, β

and the sound wave damping rate are

α =
πω2

pe(1 + 3Ti/Te)

4nekbTe

β =

√
2πω2

pe

4nekbTi(1 + Te/Ti)2
, (3.26)

γS(k) =

√
π

8
ωS
k

[
vs
vTe

+

(
ωS
k

kvTi

)3

exp

[
−
(

ωS
k

kvTi

)2
]]

. (3.27)

Prescribed Ion-sound Wave Level

We begin with the simple situation of a fixed level of ion-sound waves, generated by

some external source. We set this to the thermal level,

WS(k) = kBTek
2
De

k2
De

k2
De + k2

(3.28)

and neglect its evolution.

The results are shown in Figures 3.13 and 3.14. The strong variations in Langmuir

wave level at small wavenumbers are due to repeated scatterings by the ion-sound

waves, the thermal level of which is relatively large at small wavenumbers. We see
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Figure 3.13: Electron and wave distributions as in Figure 3.8, for plasma with random

density fluctuations as in Figure 3.12, without (left) and with (right) scattering due to

a fixed level of ion-sound waves.

from Equation 3.23 that the Langmuir wavenumber k/kDe decreases by 0.03 on each

scattering. As will be seen in the next subsection, when the ion-sound waves are allowed

to evolve self-consistently these strong variations are not seen.

It should be noted that at the extreme high energies a relativistic treatment is re-

quired, and so the effect above around 300 keV is not meaningful. The most significant

differences in the two cases are seen at large energies, 100 to 300 keV, where we see

significantly more acceleration. The Langmuir wave scattering is particularly effective

at the small wavenumbers corresponding to these high velocities. The other interest-

ing feature of Figure 3.13 is the appearance of electrons at negative velocities. These

correspond to electrons accelerated by the back-scattered Langmuir waves.
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Figure 3.14: Time-averaged electron fluxes as as in Figure 3.9, for plasma with

random density fluctuations as in Figure 3.11. Top left: no wave-wave interactions.

Top right: fixed level of ion-sound waves. Bottom: fully self-consistent ion-sound wave

interactions.

Self-Consistent 3-Wave Scattering

Fixing the level of ion-sound waves can lead to energy being gained by the Langmuir

waves and not lost from the sound waves, but as the energy in sound waves is far

less than that in Langmuir waves, this effect is generally small. The self-consistent

treatment does however lead to slightly slower scattering because of the strongly peaked

sound wave spectrum, and the resulting Langmuir wave spectrum does not show as

clearly the successive scattering peaks. On the other hand, the main features of the

acceleration are preserved, although the exact spectral shape can be altered.
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Figure 3.15: Electron and wave distributions as in Figure 3.8, for plasma with random

density fluctuations as in Figure 3.12, and scattering due to ion-sound waves for a fixed

sound wave level (left) and in the self-consistent treatment (right).

An example of self-consistent ion-sound wave scattering with significant density

fluctuation induced wavenumber diffusion included is shown in Figures 3.15 and 3.14.

The main differences between the fixed and self consistent cases are seen to occur

around very small wavenumbers, or energies above 300 keV. In this regime, these

simulations start to become invalid due to relativistic effects, so the significance of this

is small.

3.3.6 The Effects of Beam Density

As the acceleration effect we are considering relies on the transfer of energy via Lang-

muir waves, we expect that a denser beam would allow more acceleration to occur.

This was confirmed already for the case of a Maxwellian beam. In Figure 3.16 we show

examples of the acceleration for beam densities of nb = 108 cm−3 and nb = 109 cm−3.
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Figure 3.16: Time-averaged electron fluxes for an initial beam with density nb =

108cm−3 (left) and nb = 109cm−3 (right) each showing the initial beam (dashed line),

the collisions only case (black line) and the case with fluctuating density (blue line).

In both cases, the “most effective” acceleration was found by a few trials: as expected

from the Maxwellian case the corresponding fluctuation parameters depend on beam

density in order that the timescales for the processes are comparable. We see that the

acceleration in both cases occurs in a similar region in energy: 20 to 200 keV in the

weaker beam case and 20 to 300 keV in the stronger beam case, but the magnitude of

the effect is strongly dependent on the beam density.

3.4 Energy Transfer Due to Diffusion

The acceleration process which we discuss is due to energy transfer between electrons at

different velocities, with the total energy of the system remaining constant. Therefore,

if we sum the energy loss and gain rate across electrons at all energies the result cannot

be positive. In the purely collisional case, the effective energy loss rate, 〈dE/dt〉eff can

be calculated analytically. This is done by assuming a single particle evolution (e.g.

Brown et al., 2009), and writing a continuity equation for the energy distribution

function in Equation 3.18. In Kontar et al. (2012) this is given as

∂f(E, t)

∂t
+

∂

∂E

(
〈dE
dt

〉efff(E, t)

)
= 0 (3.29)
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Figure 3.17: The effective energy loss rate of an electron 〈∂E/∂t〉eff at 0.5s. The-

oretical collisional losses, 〈∂E/∂t〉eff = −Γ
√

m3/(2E) (Equation 3.30) (black dashed

line). Numerical loss rates from simulation results for: collisional losses as in Figure

3.8 (black line); Constant density gradient as in Figure 3.10 (blue line); Random den-

sity fluctuations as in Figure 3.12 (red line); Wave-wave interactions in inhomogeneous

plasma as in Figure 3.13 (green line).

with solution in the purely collisional case

〈∂E/∂t〉eff = −Γ
√
m3/(2E). (3.30)

We can also calculate numerically the effective energy loss rates for the various simu-

lation models used. These are plotted in Figure 3.17.

The changes in energy loss rate are consistent with the observed acceleration. For

purely collisional evolution, this is small and negative, and varies slowly with energy.

Once density variations are considered, we see that the losses at small energy increase,

but those at larger energies decrease, and in fact become positive, i.e particles at

large energies are gaining energy. Density fluctuations lead to increased energy in fast

electrons, but net losses over the energy range shown in the figure. Ion-sound wave

interactions similarly show significantly increased overall losses, partly due to energy

transfer to backwards propagating electrons.
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3.5 Hard X-ray Flux

The electron flux averaged over the collisional lifetime of the electrons, F (E), is directly

related to the observed HXR emission via the cross-section for bremsstrahlung (Brown

et al., 2003), and although recovering the electron flux from the photon distribution is

difficult mathematically, it requires no assumptions about the physical processes which

may cause evolution of the electron distribution. In the previous few sections we have

seen that the evolution of Langmuir waves due to their interaction with plasma density

fluctuations can significantly affect this time-averaged electron flux, in contrast to the

situation in homogeneous plasma (Figure 3.8) where the changes are negligible. We

thus conclude that the Langmuir wave evolution will affect the observed HXR emission.

Specifically, we see significant changes in the electron flux above 20 keV, up to

around 200 keV. Below around 10-20 keV the HXR emission is dominated by the

thermal spectrum, and so this evolution transfers energy from the unobservable part of

the distribution to the observable energies. Thus the energy and number of electrons

required in the beam as a whole is reduced when compared to the purely collisional

case. Stated another way, we may obtain more intense HXR emission above 20 keV

from a less dense initial beam. Therefore, the processes discussed here are an important

consideration when interpreting such HXR spectra.

3.6 Conclusions

For a collisionally relaxing electron beam, the generation of Langmuir waves, and their

subsequent evolution due to variations in the plasma density, has been shown to lead to

a significant electron acceleration effect. This follows the conclusions for a Maxwellian

beam, where acceleration was also seen. We may extrapolate from the result in the

Maxwellian test case that the strongest acceleration occurs for R ∼ 1 that smaller scale

and or more intense density fluctuations will lead to more acceleration.

In the power law beam case, we may expect suppression of the beam plasma in-

stability due to very rapid diffusion to lead to the return of the electron spectrum to



80 3: Quasilinear Simulations of Langmuir Wave Evolution

the collisions only case, which is indistinguishable observationally from that of homo-

geneous plasma including Langmuir wave generation.

Small wavenumber (q ∼ kDe) ion-sound waves are generated automatically due to

the presence of high levels of Langmuir waves, and cause scattering of Langmuir waves

to smaller wavenumbers and therefore a similar acceleration effect. In this case the

acceleration can reach much larger velocities. However, in general, there is no signifi-

cant distinction observationally between the acceleration due to a density gradient, a

fluctuating density or ion-sound wave scattering, and the differences are only in degree.

For the plasma density and beam parameters chosen, the acceleration increases the

time-averaged electron flux in exactly the important range for observations, namely

between 20 and 200 keV, and can increase the flux by a few or perhaps ten times in the

most effective cases. Finally, we see that as the extent of acceleration is constrained

by the level of Langmuir waves generated, the acceleration will be more effective for

more intense beams. In other words, ignoring the effects of Langmuir wave generation

and evolution will lead to a significant overestimate of the required number of initially

accelerated electrons, and the magnitude of the overestimate will be larger the more

electrons there are in the initial beam.



Chapter 4

Simulations of Radio Emission from

Dense Coronal Loops

The high levels of Langmuir waves which can be generated by a fast electron beam

can, as discussed in Section 1.5.2, lead to intense radio emission. The classic example

of emission via this “plasma emission” mechanism is given by the radio bursts known

as Type IIIs. Their intense brightnesses indicate a coherent emission mechanism, and

their wide frequency range, with bursts observed from the low kHz up to 500 MHz, and

occasionally up to a few GHz, means that this mechanism must operate over a very

broad range of parameters. For example, in a high frequency coronal burst we may have

a density around 1010 cm−3 and a temperature of 1 MK, while for an interplanetary

burst at 1 MHz we have a density of 104 cm−3 and a temperature of perhaps 10000 K.

Ginzburg & Zhelezniakov (1958) first proposed a mechanism by which these bursts

could be produced, and this has been subsequently discussed and modified by various

authors (e.g. Sturrock, 1964; Zheleznyakov & Zaitsev, 1970; Smith, 1970; Smith et al.,

1976; Melrose, 1980c; Goldman, 1983; Dulk, 1985; Melrose, 1987). Yet in spite of the

large amounts of work invested in the problem, the exact details of their production are

still not fully understood. It is known that they occur due to an accelerated electron

beam propagating in the decreasing density plasma of the corona and solar wind, which

generates Langmuir waves and subsequently electromagnetic emission at the plasma
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frequency.

There are thus three main factors which influence their production. Firstly, the

details of electron beam acceleration and propagation; secondly, the production of the

Langmuir waves and their spectral evolution; and finally, the process of converting

some fraction of the Langmuir wave energy into electromagnetic emission. In addition

to these factors, when considering remotely observed radiation we must account for the

effects of propagation, such as time delay in the emission, scattering and absorption.

In the solar wind it is possible to make in situ measurements of electric field, and

so infer the levels of Langmuir waves, and also to measure the electron distribution

function. Low frequency compressive electrostatic modes are also found in association

with these Langmuir waves, which may be identified as ion-sound waves (e.g. Lin et al.,

1986; Gurnett & Anderson, 1977; Gurnett & Frank, 1978; Thejappa & MacDowall,

1998), and provide further evidence regarding the evolution of the Langmuir waves,

and the production of radio emission. However, deeper in the corona, the observed

radio emission is the primary diagnostic of the Langmuir waves. Where such emission

occurs, we can find a lower limit on the Langmuir wave levels required, but in general

it is very difficult if not impossible to analytically relate the level of Langmuir waves

to the level of radio emission.

Simulations are therefore essential to address the details of the Langmuir wave

evolution, and the inclusion of radio emission in these is necessary to relate this to

observations. In this chapter, we first develop a model of plasma radio emission, and

subroutines allowing this to be incorporated into our code from the previous chapter.

We then consider effects of plasma density inhomogeneities on radio emission due to

their effects on the Langmuir waves and electrons, for the model of a collisionally

relaxing electron beam in dense plasma.

4.1 The Plasma Emission Mechanism

The mechanism behind plasma emission was outlined in Section 1.5.2. For emission

at GHz frequencies which we consider here, only harmonic emission will be of interest.
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This is largely due to the very large optical depth for fundamental emission (see Section

4.6.4), and also the low efficiency of the fundamental emission mechanisms. Thus, the

processes of interest are the decay L � L′ + s and scattering by ions L + i � L′ + i′

of Langmuir waves, and the coalescence of two Langmuir waves to produce emission

at twice the local plasma frequency, L + L′ � t. The observational features of the

emission at these frequencies were outlined in Section 1.6.

4.1.1 Simulating Plasma Radio Emission

We know that the production of plasma radio emission depends intimately on three

related processes: the production and evolution of an electron beam, the subsequent

Langmuir wave generation and evolution, and the final step of conversion into electro-

magnetic emission. Thus, simulations of Type III bursts may approach the problem

from several perspectives. For example, considering only the beam transport allows

us to find the frequency drift of the burst, and explore how its frequency-time profile

depends on factors such as the beam velocity and the geometry of the magnetic field

lines along which the beam propagates. This has been done by several authors and

provides interesting results (e.g. Karlicky et al., 1996; Robinson & Benz, 2000; Ledenev

et al., 2004).

Considering Langmuir wave generation provides some additional information on

the brightness of the radio emission. However, in general this depends on the exact

spectrum of the Langmuir waves, and therefore to see the details of the time profile at

even a single frequency, and explain the rise-decay profiles and the exact shape of the

dynamic spectrum, we must address all three factors simultaneously. On the other hand

treating any one possible effect in full is a significant undertaking, both theoretically

and from a computational perspective. Therefore, there is a trade-off between the level

of detail in any one step, and the ability to consider the whole process for a variety of

parameters. Here we employ simple but well justified models of each step, in order to

investigate specifically the effects of plasma inhomogeneity on the emission.

The most significant simplification, which we have discussed in previous chapters, is
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to assume the dynamics of the electrons and Langmuir waves lie along a single spatial

dimension. Detailed simulations of beam propagation and Langmuir wave production

were performed by Kontar et al. (1998); Mel’Nik et al. (1999) and have recently been

extended (Kontar & Reid, 2009; Reid & Kontar, 2010) to follow a beam from the sun

all the way to 1AU. The evolution of the Langmuir waves due to density fuctuations

was shown to have significant effects on the Langmuir wave spectrum. Similar effects

for the downwards moving beams which generate HXR emission were found by Hannah

et al. (2013).

For a weak beam, with a small initial angular spread, the magnetic field of the

corona and solar wind is sufficient to maintain a quasi-one-dimensional beam (Muschi-

etti, 1990), as the electrons will propagate along the field lines. In this case, the

ion-sound waves generated from Langmuir wave decays will also be restricted to this

same direction. However, the electromagnetic emission occurs primarily at a signif-

icant angle to the parent Langmuir wave, specifically around π/4 for harmonic and

π/2 for the fundamental. Moreover, the emission probabilities have strong angular

dependence, as do the participating wavenumbers. Our first step is therefore to define

a model of the emission geometry, and use this to derive a mathematical treatment of

the emission. This is the topic of the next section.

4.2 3-D Equations for Scattering and Decay

It is necessary to distinguish between processes described as “scattering” and those

described as “decay” or “coalescence”, the former involving the interaction of a wave

with an individual plasma particle, either an electron or an ion, while the latter involve

coherent motions of the plasma, i.e another wave mode. The equations describing the

scattering and decay/fusion processes in 3-D are given in the books by Melrose (1980b);

Tsytovich (1995) and are reproduced in the next sections.

A weak magnetic field, where Ωce � ωpe, has little or no effect on the emission

probabilities for plasma emission processes (e.g. Melrose & Sy, 1972) and so we use

the equations for unmagnetised plasma. However, as we will discuss in Section 4.4, the
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field cannot be completely neglected in plasma emission, as it affects the polarisation

states of the resulting waves.

4.2.1 Ion Scattering Processes

Described by σ+ i � σ′ + i′, where σ, σ′ denote wave modes, these describe the action

of scattering by an individual plasma particle, for our purposes an ion, i, averaged over

their distribution, which in this case is thermal and described by a Maxwellian. The

change in momentum of the wave during scattering is absorbed by the ion, but this is

small and so we may neglect the evolution of the ion distribution, instead assuming it

very rapidly returns to thermal. The product wave can be of the same species, or a

different species.

Writing Wσ,k, ω
σ(k) for the spectral energy density, wavevector and frequency of

wave type σ, the equations in 3-D describing the process σ + i � σ′ + i′ are:

dWσ(kσ)

dt
=

∫
dkσ′

(2π)3
wσσ′

i (kσ′ ,kσ)×[
ωσ

ωσ′
Wσ′(kσ′)−Wσ(kσ)−

(2π)3

Ti

ωσ − ωσ′

ωσ′
Wσ(kσ)Wσ′(kσ′)

]
(4.1)

and

dWσ′(kσ′)

dt
=

∫
dkσ

(2π)3
wσσ′

i (kσ′ ,kσ)×[
ωσ′

ωσ

Wσ(kσ)−Wσ′(kσ′)− (2π)3

Ti

ωσ′ − ωσ

ωσ

Wσ′(kσ′)Wσ(kσ)

]
. (4.2)

The probability wσσ′
i depends on the wave modes involved, but for scattering of Lang-

muir waves it is

wσσ′

i =
Cion|êσ · êσ′|
|kσ′ − kσ|

exp

(
− (ωσ′ − ωσ)

2

2|kσ′ − kσ|2v2Ti

)
, (4.3)

with the constant

Cion =

√
πω2

pe

2nevTi(1 + Te/Ti)2
, (4.4)

and êσ a unit vector in the direction of the electric field of the wave mode σ. Langmuir

waves are longitudinal so that ê ‖ k, while electromagnetic waves are transverse so

ê ⊥ k.
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4.2.2 3-wave Decays

Described by σ � σ′ + σ′′, the three wave processes describe either decay due to

the presence of another wave mode, or fusion of two existing wave modes. We write

Wσ,k, ω
σ(k) for the spectral energy density, wavevector and frequency of waves in

mode σ. Then energy and momentum conservation are described by the equations

k = k′ + k′′ and ωσ(k) = ωσ′
(k′) + ωσ′′

(k′′) and we have

dWσ(k)

dt
=ωσ(k)

∫ ∫
wσσ′σ′′(k,k′,k′′)×[

Wσ′(k′)

ω′
Wσ′′(k′′)

ω′′ − Wσ(k)

ω

(
Wσ′(k′)

ω′ +
Wσ′′(k′′)

ω′′

)]
dk′dk′′ (4.5)

dWσ′(k′)

dt
=− ωσ′

(k′)

∫ ∫
wσσ′σ′′(k,k′,k′′)×[

Wσ′(k′)

ω′
Wσ′′(k′′)

ω′′ − Wσ(k)

ω

(
Wσ′(k′)

ω′ +
Wσ′′(k′′)

ω′′

)]
dkdk′′ (4.6)

and

dWσ′′(k′′)

dt
=− ωσ′′

(k′′)

∫ ∫
wσσ′σ′′(k,k′,k′′)×[

Wσ′(k′)

ω′
Wσ′′(k′′)

ω′′ − Wσ(k)

ω

(
Wσ′(k′)

ω′ +
Wσ′′(k′′)

ω′′

)]
dkdk′ (4.7)

where wσσ′σ′′(k,k′,k′′) is the emission probability. The form of this depends strongly

on the wave modes involved, and again is dependent on their electric field directions, ê.

The probabilities for relevant processes are given in the following derivations (Equations

A.1 and 4.11).

4.2.3 Decay versus Scattering

Coherent oscillations of the plasma particles can exist only when their damping rate is

far less than their frequency. For ion-sound waves, which are oscillations of the electrons

and ions, the requirement that γs � ωs requires that we have Ti � Te, and we cannot

speak of a decay process involving ion-sound waves unless this condition is satisfied.

On the other hand, scattering by individual ions, neglecting plasma collective effects,
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is also important, and this is particularly efficient when Ti = Te. The two processes

are not entirely distinct: both are scattering by plasma ions but the former involves

collective motion of these, and is therefore a resonant interaction. It turns out that

the effects of decay when Ti � Te and of scattering when Ti = Te are very similar, to

within a numerical factor of 4 or so (Tsytovich, 1995).

In addition to this, when Ti � Te the wavenumber matching conditions for decay

may mean that this cannot proceed, and scattering may be important, although its

efficiency is small for this ratio. Thus, in order to consider the full range of temperature

ratios observed in the solar corona and solar wind (e.g. Newbury et al., 1998; Gurnett

et al., 1979), which range from Ti/Te . 0.1 to 1 or even 2, we must consider both

the decay and scattering formulations, and employ the correct one for the parameters

chosen, to avoid overestimating the effects on Langmuir waves.

4.3 A Model for Plasma Emission

4.3.1 Langmuir Wave Evolution

In the previous chapters we described a model of Langmuir wave generation from

a collisionally relaxing beam including the effects of ion-sound wave scattering, and

perturbations in the ambient plasma density. However, we focused on the effects on

the beam-generated Langmuir waves with k > 0 and the consequent effects on the

electron distribution. For plasma emission, we are specifically interested both in the

backscattered Langmuir waves with k < 0 and the exact spectrum of ion-sound waves

(when Ti � Te and these can exist).

Therefore, here we combine Equations 3.2 and 3.3 for the beam-wave interactions

including the effects of plasma density fluctuations, with Equations 3.24 and 3.25 de-

scribing scattering by ion-sound waves, and in addition consider a term in the Langmuir

wave equation describing scattering by individual ions. Beginning from Equation 4.1,

noting that as σ and σ′ are the same species we sum the contributions from the two

equations, we substitute a 1-dimensional Langmuir wave spectrum, which is non-zero
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only along the direction of the electron beam, given by

W 3D(k) = WAv(k)δ(|1− cos θ|). (4.8)

Then we have cos θLL′ = 1 and the ion scattering is described by

dWAv
L (kL)

dt
=

∫
dkL′

Cion

|kL − kL′|
exp

(
− (ωL − ωL′)2

2|kL − kL′|2v2Ti

)
×[

ωL′

ωL

WAv
L (kL)−WAv

L (kL′)− (2π)3

Ti

ωL′ − ωL

ωL

WAv
L (kL′)WAv

L (kL)

]
. (4.9)

From a computational perspective, this equation is cumbersome to simulate be-

cause of the remaining integral over dkL′ . However, the exponential factor means the

integrand is sharply peaked around ωL ' ωL′ , which allows us to consider the integral

over only a small range in kL and thus speed this up considerably.

4.3.2 Fundamental Emission

Fundamental emission at ωpe generally does not occur at frequencies above a few hun-

dred MHz. Our simulations consider the situations of equal or almost equal electron

and ion temperatures, where ion-sound waves are strongly damped and thus contribu-

tions to the Langmuir wave spectrum from the processes L ± s � t can be ignored.

Direct scattering of Langmuir waves into fundamental emission, L + i � t + i′ also

has negligible effect on the Langmuir waves. An angle-averaged model for the radio

emission is given in Appendix A, as this will be important for future work on lower

frequency emission, but is omitted here for brevity.

4.3.3 Harmonic Emission

We focus instead on the process of harmonic emission due to the coalescence of two

Langmuir waves, i.e L + L′ � t. Writing the participating wave vectors as k1,k2

for the Langmuir waves and kT for the electromagnetic wave, and further writing
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k1 = (k1, θ, φ), the general equation for the process is

dWT (kT )

dt
=ωT

kT

∫ ∫ ∫
wLLT (k1,k2,kT )k

2
1 sin θ×[

WL(k1)

ωL
k1

WL(k2)

ωL
k2

− WL(k)

ωL
k1

WT (kT )

ωT
kT

− WT (kT )

ωT
kT

WL(k2)

ωL
k2

]
dk1dθ1dφ1

(4.10)

with probability

wLLT (k1,k2,kT ) = πωpe
(k2

2 − k2
1)

2(kT × k1)
2

16menek2
Tk

2
1k

2
2

δ(ωT
kT

− ωL
k1
− ωL

k2
) (4.11)

and the condition k1 + k2 = kT .

The “head-on-approximation” (HOA) where the coalescing Langmuir waves are

almost parallel was proposed in early models of plasma emission (e.g. Melrose & Sten-

house, 1979). This implies that kT � kL, as kT must be at a non-zero angle to

the parent Langmuir wave or the emission cannot occur. However, if we consider

an electromagnetic wave at approximately twice the local plasma frequency we have

ω = (ω2
pe+k2c2)1/2 ' 2ωpe and therefore the typical wavenumber is kT ' (

√
3vTe/c)kDe.

For beam generated Langmuir waves we have typical wavenumbers of kL ' (vTe/vb)kDe,

so for a typical beam velocity of vb ' 0.3c we have kT/kL ∼
√
3vb/c ' 0.5 which is by

no means small. Therefore we wish to find a better approximation than the HOA.

An Approximate Emission Geometry

Firstly, we define the angle θLT to be the angle between the forwards Langmuir wave

with wavenumber k1 and the electromagnetic wave with wavenumber kT , as shown in

the vector diagrams in Figure 4.1. The complications then become clear if we consider

the emission equation. In the HOA we have to good accuracy that (|kT−k|2−k2)2/k2
2 '

k2
T cos2 θ and also that k1 ' k2, so the entire angular dependence of the probability

is via a term like cos2 θLT sin2 θLT . Relaxing the HOA introduces additional angular

dependence into the probability because, as shown in Figure 4.1, the solution for k2

from the wavenumber matching also depends on θLT .

Taking the conservation conditions k1 + k2 = kT and ωk1 + ωk2 = ωT
kT

we can find

their solutions as a function of kT . Then we can find the exact emission probability
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Figure 4.1: Vector diagrams of wavenumber matching for harmonic emission in several

configurations. k1, k2 are the forwards and backwards Langmuir wavevectors, and kT

is the resulting electromagnetic wavevector.

from Equation 4.11. In Figure 4.2 we plot this for several values of the electromagnetic

wavenumber kT , along with the probability in the HOA approximation. In all cases

the probability shows quadrupolar forms, and the differences from the simple HOA

solution decrease as the electromagnetic wavenumber increases. Most importantly,

both the angle of the peak, and the width of the probability remain similar. If we also

consider the average of the two lobes, there is very little difference from the simple

HOA.

Therefore, it seems reasonable to assume, when solving the wavenumber matching,

that all emission occurs at θLT = π/4, which is the angle of maximum emission prob-

ability in the HOA and very close to it in the exact solution. Then we independently

calculate an angle-averaged probability using these solutions. From the width of the

emission probability curves, it is reasonable to assume emission occurs only within the

angular range [π/8, 3π/8], which covers its full-width-half-maximum (FWHM).

For a particular electromagnetic wavenumber there will be a range of values for

k1, k2 depending on the angle of emission θLT , whereas our approximation assumes

that θLT = π/4. We now calculate the size of the variation in k1, k2 for emission within

the angular range [π/8, 3π/8]. In Figure 4.3 we plot the difference in value at π/8 and

3π/8, divided by the value at π/4, i.e. ∆k/k =
∣∣(kπ/8 − k3π/8

)∣∣ /kπ/4, as a function of

the electromagnetic frequency. Clearly, for frequencies very close to 2ωpe the similarity

in magnitude of k1 and kT means that the angular effects become more important.

However, above around ωEM/ω = 2.02 we have a reasonable approximation, with
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Figure 4.2: Polar plot of normalised emission probability from Equation 4.11 against

the angle θLT . Lines from red to green are for increasing magnitudes of kT , and the

black line shows the probability in the HOA.

Figure 4.3: Fractional variation in k1 and in the ratio k1/k2 due to variations in the

angle of k1 and kT . We define ∆k/k =
(
kπ/8 − k3π/8

)
/kπ/4, and plot this as a function

of electromagnetic frequency ωEM

variation of less than 6% in k1. The ratio k1/k2 is even more dependent on the angle

θLT , but again, above ωEM/ω = 2.02 the variation is below 15%.

The implications of this variation in k1, k2 may be summarised as follows. We

consider emission to come from Langmuir waves at a wavenumber kL, where in fact

the emission is from a weighted average over a band of kL ±∆kL, the weighting in the
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average has a form similar to sin2 θ cos2 θ, and ∆kL is of the order 5% or less. On the

other hand, for the purposes of our simulations, the average need only be taken over

two, or perhaps a few grid points. For example, for a kL simulation grid of 250 points

covering kL from 0 to 0.4kDe we require averaging over only 3 grid points at k = 0.1kDe

and for a slightly more coarse gridding no averaging is needed at all.

The final consideration relates to the angular distribution of the Langmuir waves. In

the previous paragraphs we assumed that a wave existed at the calculated wavevector

k2, regardless of the angle between k1 and k2. At a value of ωEM = 2.02ωpe and

θLT = π/4, the angle between k1 and k2 is π/16 and at ωEM = 2.1ωpe this has decreased

to less than π/32. Thus, provided we have Langmuir waves with an angular spread of

half-angle at least π/16 there are waves with the necessary wavevectors for coalescence

to proceed.

To further account for these angular effects, we can calculate the fraction of the

waves within the angular spread that can take part in the coalescence, which will

depend on the assumed angular spread, and the required angle between k1 and k2, and

therefore the electromagnetic frequency ωEM . This is plotted in Figure 4.4 for various

values of the angles involved. Above 2.02ωpe this fraction is above approximately 0.5

for the values considered, so a half angle of at least π/12 in the Langmuir waves is

sufficient to ensure our estimate is within a factor of around 2 of the true value.

Taking all this into account, we can say that the approximation of taking θLT = π/4

for energy and momentum conservation and using an angular averaged probability as

found in the next section, we will obtain a good agreement in magnitude with the

angular averaged true 3-D emission provided that the emission frequency is above

approximately ωEM/ωpe ' 2.01, the Langmuir wave spectrum does not contain very

narrow spikes, of width < 5% in Langmuir wavenumber, and the Langmuir waves

are fairly isotropic over an angular spread with half angle at least π/12. The second

two conditions are generally satisfied for our purposes as we consider the presence of

ambient plasma density fluctuations, which will tend to smooth out any spikes and

produce an angular spread, as described in Section 2.5.3.
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Figure 4.4: The participating wave fraction as a function of electromagnetic fre-

quency. Left: for θLT = π/4 and Langmuir waves over a cone with half-angle of π/6

(black), π/9 (blue), and π/12 (red). Right: for a Langmuir wave half-angle of π/6 and

θLT of π/4 (black), π/8 (red) and π/2 (blue).

Harmonic Emission Equations

Now we use the geometry just described to derive angle-averaged equations for the

coalescence process. For clarity, we label the Langmuir wave spectrum with wavenum-

bers parallel to the beam direction as the forwards spectrum, and those antiparallel as

backwards. We assume these both cover a small angular spread ∆Ω, with a half angle

of at least π/12. Then we define

W f
L(k1) =

1

∆Ωk2
1

WAv,f
L (k1) , W

b
L(k2) =

1

∆Ωk2
2

WAv,b
L (k2) (4.12)

within ∆Ω, and zero elsewhere, while the electromagnetic emission is assumed to cover

a cone of half angle π/4 in each lobe of the emission probability, and therefore a solid

angle of π, so we have

WT (kT ) =
1

πk2
T

WAv
T (kT ). (4.13)

Now we proceed exactly as for the case of fundamental emission, by defining the
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angle averaged probability as

〈P 〉 = 1

∆Ω

∫ ∫
∆Ω

(k2
2 − k2

1)
2 sin2 θLT
k2
2

sin θdθdφ

and substituting the definitions in Equations 4.12 and 4.13 then considering in turn

each term in the square brackets in Equation 4.10.

The result is

dWAv
T (kT )

dt
=ωT

kT

∫
dk1δ(ω

T
kT

− ωL
k1
− ωL

k2
)〈P 〉×[

k2
T

k2
2

π

∆Ω

WAv,f
L (k1)

ωkL1

WAv,b
L (k2)

ωL
k2

− WAv
T (kT )

ωT
kT

(
WAv,f

L (k1)

ωL
k1

− WAv,b
L (k2)

ωL
k2

)]
.

(4.14)

The final integral over k1 is evaluated using the delta function δ(ωT
kT
−ωL

k1
−ωL

k2
), which

leads to a factor of

ωpe

3v2Te

1

(2k − kT cos θLT )
. (4.15)

As a simple approximation to the probability, we can take the value assuming

θLT = π/4 to solve for the k1, k2 values, and then take the peak value of the probability

multiplied by its fractional FWHM, which is ' 1/2. Taking sin θLT =
√
2/2 we have

〈P 〉 = (k2
2 − k2

1)
2

4k2
2

. (4.16)

Combining all of these factors we finally obtain

dWAv
T (kT )

dt
=ωT

kT

πω2
pe

48menev2Te

(k2
2 − k2

1)
2

4k2
2(2k1 − kT

√
2/2)

×[
k2
T

k2
2

π

∆Ω

WAv,f
L (k1)

ωkL1

WAv,b
L (k2)

ωL
k2

− WAv
T (kT )

ωT
kT

(
WAv,f

L (k1)

ωL
k1

− WAv,b
L (k2)

ωL
k2

)]
,

(4.17)

which describes electromagnetic emission due to Langmuir wave coalescence in our

approximation, with the angle-averaged spectral energy densities given by Equations

4.12 and 4.13.
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4.4 Polarisation and the Weak Field Limit

In the preceding discussion we neglected the magnetic field, because in the weak field

limit, Ωce � ωpe, the emission probabilities are effectively the same as in the unmag-

netised case. However, as we briefly mentioned earlier, even a weak magnetic field has

significant effects on the polarisation of the electromagnetic emission.

For fundamental emission, it was originally proposed that the polarisation should be

100% in the O-mode, because the X-mode has a cutoff at ωX ' ωpe+Ωce/2. Considering

the intrinsic bandwidth of the emission due to the dispersion, the necessary magnetic

field strength to obtain 100% polarised emission can be estimated, and at 100 MHz

this value is well below the inferred fields (e.g Melrose, 1980b).

The observed polarisation values for lower frequency fundamental Type III emission

of between 30 and 70% (Section 1.6.1) therefore require explanation. Scattering during

propagation is certainly able to reduce the degree of polarisation, but cannot explain

why fully polarised emission is never seen. Wentzel (1984) therefore proposed that

the emission was depolarised to some extent within the source region itself, and that

this was inherent to the emission process. Further change during scattering can then

explain the range of observed values.

The case of harmonic emission is more complicated. Melrose & Sy (1972); Melrose

et al. (1978) and the correction by Melrose et al. (1980) treated the case of head-on

Langmuir wave coalescence, and found that the angular spectrum of the Langmuir

waves dictates whether the emission is O or X-mode. However, as was shown by Willes

& Melrose (1997), when the HOA is relaxed the percentage polarisation is very differ-

ent, and when the difference in forwards and backwards Langmuir wavenumbers are

accounted for, emission tends to favour the O-mode. However the Langmuir wavenum-

ber and angular distributions are essential to decide both the mode and the degree of

polarisation. While some geometries of harmonic emission may allow weakly X-mode

polarised emission to be produced, very strong X-mode polarisation is not possible.

On the other hand, for emission occurring at an angle of π/4 to the ambient magnetic

field, as we assume in the model of the previous section, the results of Willes & Melrose
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(1997) suggest polarisation of around 10 to 15 % in the O-mode, consistent with the

observations.

4.4.1 Polarisation Change During Transport

We also note that further changes in the degree of polarisation can occur during propa-

gation from source to observer. For example, mode coupling due to magnetic fields (e.g.

Zheleznyakov & Zlotnik, 1964), and scattering due to low-frequency waves (Wentzel,

1984; Melrose, 1989), or kinetic Alfven waves (Sirenko et al., 2002) have all been con-

sidered, and can all lead to significant changes in polarisation degree.

4.5 Thermal Emission

In thermal plasma, there will be electromagnetic emission due to thermal bremsstrahlung,

giving a thermal source term

P (ω) =
16πe6ninen(ω)lnΛ

3m2
ec

3vTe

√
2

π
(4.18)

(e.g. Melrose, 1980a, Equation 3.81), for the power radiated per unit volume, per unit

frequency over all angles. Now for electromagnetic waves we have n(ω) =
(
1− ω2/ω2

pe

)1/2
=

ck/ω and in plasma we can approximate ni = ne from quasineutrality. We have, as-

suming P (k) is isotropic,

P (k) = P (ω)/(4πk2dk/dω) (4.19)

and so with k2dk/dω = n(ω)ω2/c3 we obtain

P (k) =

[
e2ω4

pelnΛ

3ω2vTe

√
2

π

]
. (4.20)

Finally, assuming isotropy, we can change this to an angle-averaged spectral energy

density by multiplying by 4πk2, finding

PAv(k) =
4πk2e2ω4

pelnΛ

3ω2vTe

√
2

π
. (4.21)
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Now by Kirchoff’s law, in optically thick plasma in thermal equilibrium the emission

must be balanced by an absorption with coefficient γd given by

PAv(k) = γd(k)(4πk
2kbTe). (4.22)

Then we find

γd =

[
4πe2lnΛ

3mev3Te

√
2

π

](
ω4
pe

ω2

)
. (4.23)

As expected we then have that

dWth(k)

dt
= P (k)− γdWth(k) = 0 (4.24)

i.e. the emission and absorption are in equilibrium for the thermal spectrum. We add

these two terms to our equations for electromagnetic evolution: a thermal source term

P (k) given by 4.21 and a damping term −γdW (k).

4.6 Observed Fluxes

In order to relate the results of our simulations to observed emission, we must first

convert the angle-averaged spectral energy densities into fluxes, which requires that we

specify the size of the emitting source. Then we must add the effects of absorption or

scattering in the source and during propagation. For harmonic emission these effects

are smaller than for the fundamental, and the time delay experienced by the radiation

during propagation is also less, but these effects cannot be neglected.

4.6.1 Conversion of Energy Density to Flux

The total flux is given by

F = USd
1

4πR2
0

vgr
d

(4.25)

where U is the energy density of the source, S its area, d its length (along the direction

of the beam) and R0 is its distance from the observer, and vg is the group velocity

of the radiation. The flux as a function of frequency ω is then given by dF/dω. The
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energy density U relates to the angle-averaged spectral energy density by

U =

∫
dkWAv(k) =

∫
dωWAv(ω) (4.26)

and we have

WAv(ω) = WAv(k)
∂k

∂ω
=

WAv(k)

vg
. (4.27)

Therefore

F (ω) = WAv(ω)
S

4πR2
0

vgr = WAv(k)
S

4πR2
0

. (4.28)

For emission at GHz frequencies the source is small (see Section 4.6.2), and located at

approximately 1 AU from the observer, so we may apply the small angle approximation

and find S/(4πR2
0) = θ2/4 where θ is the half-angle of the source in radians. In this

case we have

F (ω) = WAv(ω)
θ2

4
vgr = WAv(k)

θ2

4
. (4.29)

4.6.2 Source Size

Source size measurements were discussed in Section 1.6.1 where it was concluded that

sizes observed at 1 GHz are around 1′. We can also make a reasonable estimate of the

linear size of the emitting region, and calculate the angular size. This is sufficiently

accurate for the purposes of estimating the observed flux from our simulations. Taking

a linear size of 109 cm, located at a distance of 1 AU, and using the small angle

approximation we obtain an angular extent of 0.2′, in reasonable agreement with the

measurements, as some angular scattering may be expected.

4.6.3 Propagation Losses

Langmuir waves have a very small group velocity, and so the loss of waves from the

emission region due to propagation is negligible. However, electromagnetic radiation

has a group velocity given by

vg =
∂

∂k
(ω2

pe + c2k2)1/2 =
c

ω
(ω2 − ω2

pe)
1/2 (4.30)
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where ω is the frequency of the emission and ωpe the local plasma frequency, and this

approaches c for ω � ωpe.

For radiation in plasma of changing density this becomes

vg(x) =
c

ω0

(ω2
0 − ω2

pe(x))
1/2 (4.31)

where ω0 is the frequency of the original emission, and ωpe(x) is the local plasma

frequency, which depends on position.

We model the effects of radiation escape by adding a term(
∂WAv(k)

∂t

)
esc

= −vg
d
WAv(k) (4.32)

where d is the size of the emitting region, to our equation for the evolution of the

electromagnetic wave spectral energy densities.

4.6.4 Collisional Damping

In the corona, inverse bremsstrahlung is a significant cause of attenuation of electro-

magnetic radiation, with damping rate as given in Equation 4.23, namely

γd =

[
4πe2lnΛ

3mev3Te

√
2

π

](
ω4
pe

ω2

)
=: C

(
ω4
pe

ω2

)
(4.33)

which depends on position via the local plasma frequency. Assuming isothermal

plasma between the radiation source and the observer1 and writing the frequency and

wavenumber of the emission at the source as ω0, k0, we have the group velocity as in

the previous section, and an optical depth given by definition as

τ =

∫ x0

0

γd(x)

vg(x)
dx. (4.34)

Substituting the expression for γd the optical depth becomes

τ(ω0) =

∫ x

0

dx
C

cω0

(
ωpe(x)

4

(ω2
0 − ωpe(x)2)1/2

)
. (4.35)

1As will be seen, given an exponential density profile, the damping is only significant for a relatively

short fraction of the total path length, and therefore this assumption is in general reasonable.
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Figure 4.5: Left: The optical depth for fundamental and harmonic plasma emission,

assuming a exponential density profile with scale height H = 1× 109 cm as function of

the plasma frequency at height of emission. Right: The optical depth for fundamental

and harmonic plasma emission from a local plasma frequency of 1 GHz, as function of

H the scale height of the model exponential density profile.

Clearly this diverges as ω0 → ωpe(0) because the group velocity goes to zero.

Now the plasma frequency relates to the density via

ω2
pe(x) =

4πe2

me

ne(x) (4.36)

and so

τ(ω0) =
C

cω0

(
4πe2

me

)∫ x

0

dx

(
ne(x)

2

(n0,k − ne(x))1/2

)
. (4.37)

Now we assume an exponential density profile with a fixed scale height H, so that

ne(x) = n0 exp(−x/H) where n0 is the density at the source, and find

τ(ω0) =
4CH

3cω0

[
ω3
0 −

√
(ω2

0 − ω2
pe(0))

(
ω2
0 + 0.5ω2

pe(0)
)]

. (4.38)

In Figure 4.5 we plot the optical depth as a function of frequency for a given scale

height, H = 1 × 109 cm, and also the optical depth as a function of scale height for

a frequency of 1 GHz. Clearly, at frequencies much above 0.6 GHz there can be no

escaping fundamental emission for this choice of scale heightH, and at 1 GHz no escape

of fundamental emission for any reasonable choice of H. For the harmonic the situation
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is better, but there will still be significant collisional damping, and at frequencies much

larger than 1 GHz the escape fraction is rather small.

A similar conclusion was reached by e.g. Benz et al. (1992) and Karlicky (1998)

for an exponential density profile, who suggest that harmonic emission can be the only

escaping component, and moreover even this likely requires fibrous structures in the

corona, with emission occurring in dense areas with small cross sectional area and

escaping through the less dense surrounding plasma.

For our purpose, which is an estimation of the observed flux due to a given spectral

energy density of emission, this exponential density profile, with fixed scale length, is

sufficient. For the corona, reasonable values of H are around 1 to 5× 109 cm.

4.6.5 Time Delay

The time delay experienced by electromagnetic emission in propagating from where it

is emitted to where it is observed also depends on frequency

∆t =

∫ xobs

0

dx

vgr(x)
, (4.39)

where xobs is the distance from the source to the observer. Substituting for the group

velocity gives

∆t =
ω0

c

( me

4πe2

)1/2 ∫ xobs

0

dx(n0,k − ne(x))
−1/2. (4.40)

Again assuming an exponential density profile ne(x) = n0 exp(−x/H), we use the

substitution, s = (ω2
0 − ω2

cn0 exp(−x/H))1/2. Then dx = ds(−2)Hs(s2 − ω2
0)

−1 with

ωc = 4πe2/me. Now we have

∆t =
−2Hω0

c

∫ (ω2
0−ω2

cn0 exp(−xobs/H))1/2

√
ω2
0−ω2

cn0

ds

s2 − ω2
0

. (4.41)

This may be evaluated using partial fractions. We assume

1

s2 − ω2
0

=
As+B

s− ω0

+
Cs+D

s+ ω0

, (4.42)

and find the constants A,B,C,D, which gives

∆t =
−2Hω0

c

∫ (ω2
0−ω2

cn0 exp(−xobs/H))1/2

√
ω2
0−ω2

cn0

ds

[
−s+ ω0 +

1
2ω0

s− ω0

+
s+ ω0 − 1

2ω0

s+ ω0

]
. (4.43)
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Performing this integral gives

∆t =
−2Hω0

c

[
1

2ω0

ln(|s− ω0|)− ln(|s+ ω0|)
](ω2

0−ω2
cn0 exp(−xobs/H))1/2

√
ω2
0−ω2

cn0

. (4.44)

Now the distance xobs for a coronal source is approximately 1AU and much larger

than H, and so we can apply the binomial expansion to the upper limit,

(ω2
0 − ω2

cn0 exp(−xobs/H))1/2 ' ω0 −
1

2
ω2
cn0 exp(−xobs/H) (4.45)

and use this in the argument of ln(|s− ω0|).

The time delay is therefore finally

∆t =
1

c

xobs +H

ln

(
4ω2

0

ω2
pe,0

)
+ ln

∣∣∣∣∣∣
√

ω2
0 − ω2

pe,0 − ω0√
ω2
0 − ω2

pe,0 + ω0

∣∣∣∣∣∣


 , (4.46)

with ω0 the frequency of the emission and ωpe,0 the local plasma frequency in the

emitting region.

4.6.6 Angular Scattering

Radio observations at microwave and decimetre wavelengths rarely show fine structure

on spatial scales below around 20′′ at 1.5 GHz and around 40′′ at 300 MHz, which

can be explained by angular scattering of the radiation during propagation (Bastian,

1994). Density fluctuations on a variety of scales have been measured in the corona

at a few solar radii by various techniques (e.g. Coles & Harmon, 1989; Spangler et al.,

1996; Grall et al., 1997), and in the solar wind (e.g. Cronyn, 1972; Celnikier et al.,

1983; Robinson, 1983). Various analytical (e.g. Bastian, 1994; Cairns, 1998; Arzner &

Magun, 1999) and numerical (e.g. Riddle, 1972; Itkina & Levin, 1992) treatments of

their effects have been attempted, with the general conclusion that at high MHz and

GHz frequencies, scattering will produce sources of size at least 10 to 20′′. The extent

of this effect is far larger for emission at the fundamental, and tends to increase at

lower frequencies, becoming very significant for IP bursts, where the source size can be

approximately doubled (Steinberg et al., 1985).
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However, for harmonic radiation the effects of angular scattering are likely to be

small with respect to the size of the source itself, although any spatial structure within

the source will be smeared out. Angular scattering is therefore unimportant for our

purposes, although it will certainly occur due to the small-scale density fluctuations

which we consider in our emission model.

4.7 Simulations of 2 GHz Plasma Emission

Combining the model for plasma radio emission derived in the previous sections with

the model of beam-wave interactions used in Chapters 2 and 3, we now simulate the

radio emission from a collisionally relaxing beam in inhomogeneous plasma. This work

is currently begin prepared for publication as Ratcliffe & Kontar (2013). As discussed

in Section 3.3, the formation of a reverse slope in the electron distribution will be

mainly due to collisional effects for the case of dense plasma, considered over short

spatial scales. Because of the high density we consider, the emission is purely at

the harmonic, with the fundamental component produced inefficiently and unable to

escape.

The effects of plasma density fluctuations on the Langmuir waves in this model were

considered in the previous chapter. In general, we found a decrease in the peak wave

level, but significant increases at small wavenumbers. We also saw that collisional

relaxation leads to a Langmuir wave spectrum which drifts to smaller wavenumbers

over time. As mentioned in Section 1.5.4 and by e.g. Zhelezniakov & Zaitsev (1975)

the spectral evolution of the Langmuir waves is a significant factor in the rise and decay

of the harmonic emission due to the strong constraints on participating wavenumber.

We therefore expect the spectral evolution due to density fluctuations will play an

important role in the emission.
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4.7.1 Complete Simulation Model

Equations for Electron and Wave Evolution

We state here the entire set of equations which we simulate, dropping the superscripts

Av as all spectral energy densities are now angle-averaged . Only plasma emission at

the harmonic is considered, because the fundamental is very weak, and cannot escape

from plasma of such high density (see Section 4.6.4).

For the electrons we have (Equation 3.2)

∂f

∂t
=

4π2e2

m2
e

∂

∂v

(
WL

v

∂f

∂v

)
+ Γ

∂

∂v

(
f

v2
+

v2Te

v3
∂f

∂v

)
, (4.47)

while for the Langmuir waves we have (Equation 3.3)

∂WL

∂t
=
ω3
peme

4πne

v ln

(
v

vTe

)
+

πω3
pe

nek2
WL

∂f

∂v
− Γ

4v3Te

WL+

∂

∂k

(
D(k)

∂WL

∂k

)
+ Stdecay(WL,WS(kS)) + Stion(WL), (4.48)

with the coefficient of diffusion, D(k), given by Equation 2.38. The source term due

to ion scattering is (Equation 4.9)

Stion(WL(k)) =

∫
dkL′

Cion

|kL − kL′|
exp

(
− (ωL − ωL′)2

2|kL − kL′|2v2Ti

)
×[

ωL′

ωL

WL(kL)−WL(kL′)− (2π)3

Ti

ωL′ − ωL

ωL

WL(kL′)WL(kL)

]
(4.49)

and that due to ion-sound wave decays is (Equation 3.25)

Stdecay(WL(k),WS(kS)) = αωk×∫
ωS
kS

[(
WL(kL)

ωL
kL

WS(kS)

ωS
kS

− WL(k)

ωL
k

(
WL(kL)

ωL
kL

+
WS(kS)

ωS
ks

))
δ(ωL

k − ωL
kL

− ωS
kS
)

−

(
WL(kL′)

ωL
kL′

WS(kS)

ωS
kS

− WL(k)

ωL
k

(
WL(kL′)

ωL
kL′

− WS(kS)

ωS
ks

))
δ(ωL

k − ωL
kL′ + ωS

kS
)

]
dkS

(4.50)

where we distinguish between kL = k − kS and kL′ = k + kS. For the ion-sound waves



4.7: Simulations of 2 GHz Plasma Emission 105

(where these can exist) we have (Equation 3.24)

∂WS(k)

∂t
=− 2γS(k)WS(k)

− α(ωS
k )

2

∫ (
WL(kL)

ωL
kL

WS(k)

ωS
k

− WL(kL′)

ωL
kL′

(
WL(kL)

ωL
kL

+
WS(k)

ωS
k

))
×

δ(ωL
kL′

− ωL
kL

− ωS
k )dkL′ (4.51)

where kL is the initial Langmuir wavenumber and k′
L is the scattered wave and the

constants α, β and the sound wave damping rate are given by (Equations 3.26 and 3.27

respectively):

α =
πω2

pe(1 + 3Ti/Te)

4nekbTe

β =

√
2πω2

pe

4nekbTi(1 + Te/Ti)2
, (4.52)

γS(k) =

√
π

8
ωS
k

[
vs
vTe

+

(
ωS
k

kvTi

)3

exp

[
−
(

ωS
k

kvTi

)2
]]

. (4.53)

For the harmonic emission we have

dWH
T (kT )

dt
= Stll

′t
harm − γdWT (kT ) + P (kT )−

vg
d
WT (kT ) (4.54)

where γd is the collisional damping rate (Section 4.6.4)

γd =

[
4πe2lnΛ

3mev3Te

√
2

π

](
ω4
pe

ω2

)
, (4.55)

the thermal emission is (Section 4.5)

P (k) =
4πk2e2ω4

pelnΛ

3ω2vTe

√
2

π
, (4.56)

and the term vg/d, where d is the size of the emitting region, accounts for propagation

losses (Section 4.6.3). The source term is given by 4.17:

Stll
′t

harm =ωT
kT

πω2
pe

48menev2Te

(k2
2 − k2

1)
2

4k2
2(2k1 − kT

√
2/2)

×[
k2
T

k2
2

π

∆Ω

WL(k1)

ωkL1

WL(k2)

ωL
k2

− WT (kT )

ωT
kT

(
WL(k1)

ωL
k1

− WL(k2)

ωL
k2

)]
. (4.57)
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Plasma Radio source

Plasma frequency, νpe 1 GHz Emission mode Harmonic

Plasma density, ne 1010 cm−3 Density scale height 109 cm

Electron temperature, Te 1 MK Source size 109 cm

Ion temperature, Ti 0.5-1 MK Langmuir spread, ∆Ω π/16

Debye wavenumber, kDe 16 cm−1

Collisional time, τcoll 10−4 s

Beam Density fluctuations

Spectral index, δ 4 RMS fluctuation
√

〈ñ2〉 10−5 to 10−3

Beam velocity, vb 5× 109 cm s−1 Velocity, v0 107 cm s−1

Beam density, nb/ne 10−3 to 10−2 Wavenumber, q0 10−4kDe

Table 4.1: Simulation parameters.

Initial Conditions

We take a plasma density of ne ' 1010 cm−3, corresponding to a plasma frequency of

νpe = ωpe/(2π) = 1 GHz.

The initial beam and Langmuir wave distributions are as in Section 3.3, namely

f(v, t = 0) =
ne√
2πvTe

exp

(
− v2

2v2Te

)
+

2nb√
π vb

Γ(δ)

Γ(δ − 1
2
)

[
1 + (v/vb)

2
]−δ

(4.58)

and

W (k, t = 0) =
kbTe

4π2

k2 ln
(

1
kλDe

)
1 + ln Λ

16πne

√
2
π
k3 exp

(
1

2k2λ2
De

) , (4.59)

and the initial radio spectral energy density WH
T (kT ) is set to the thermal level, i.e.

WH
T (kT , t = 0) = 4πkbTek

2
T . (4.60)
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Figure 4.6: The electron distribution function f(v) (left); the spectral energy density

of Langmuir waves W (k) (middle); and the harmonic radio brightness temperature

Tb(k) (right) for a collisionally relaxing electron beam in homogeneous plasma. Each

coloured line shows the distribution at a different time, as shown in the colour bar.

Beam and plasma parameters are given in the text.

Propagation Effects and Observed Fluxes

From the angle-averaged spectral energy density WH
T (kT ) for harmonic emission, we

can estimate an observed flux, given by

F (ν) = 2πF (ω) = WT (kT )
πθ2

2
exp (−τ(ω)), (4.61)

where ν is the frequency, ν = ω/2π, θ is the observed angular extent of the source,

which we take as 1′ (see Section 4.6.2) and τ(ω) is the optical depth from Equation

4.38. The density scale height is H = 109 cm, as in Table 4.1.

4.7.2 Scattering by Ions

We begin by considering the emission in plasma with equal ion and electron temper-

atures, Ti = Te = 1 MK. In this case, ion-sound wave interactions cannot occur, and

the generation of backscattered Langmuir waves is due to scattering by individual ions,

given by Equation 4.49. We take a beam density of nb = 108 cm−3 ' 10−2ne, a velocity

of vb = 5×109 cm s−1 and a velocity space power law index of 4. Collisional relaxation
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Figure 4.7: As Figure 4.6 for inhomogeneous plasma with
√

〈ñ2〉 = 1× 10−4.

proceeds as in the previous chapter on the collisional timescale τcoll, and we consider

the evolution over one to two thousand τcoll, after which the levels of backscattered

Langmuir waves have decreased and the radio emission peaked.

In Figure 4.6 we show the electron distribution, the Langmuir wave spectral energy

density and the harmonic radiation brightness temperature for the case of homoge-

neous plasma. The exponential factor in the backscattering probability in Equation

4.49 means that only wavenumbers of magnitude close to the wavenumber under con-

sideration can contribute to the backscattering. Spontaneous scattering, described by

the first two terms in square brackets in Equation 4.9, proceeds fairly slowly, and gives

a smooth backwards Langmuir wave spectrum. Once a small level of backscattered

waves is present, stimulated emission can occur, as given by the third term in square

brackets, involving the product WL′WL. This proceeds much more rapidly but because

of the factor of ωL′ − ωL in this term, only regions with a locally positive gradient

dW (k)/dk can contribute. The resulting backscattered Langmuir wave spectrum is

therefore irregular.

This effect is seen clearly in the plots of the Langmuir wave spectral energy density

and radio flux shown in Figure 4.8, giving the observed radio emission in sfu calculated

using Equation 4.61 with parameters as in Table 4.1. The calculated fluxes of a few to

a few hundred sfu in the strongest case are in good agreement with the observed fluxes
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Figure 4.8: The Langmuir wave spectral energy density and radio emission in sfu

over the first 0.4 s of beam evolution. Top: Langmuir wave spectral energy density

W (k) normalised to the thermal level, against wavenumber k on the vertical axis, and

time on the horizontal axis. Bottom: the radio flux in sfu as a function of frequency,

ν = ω/(2π), including the effects of absorption during propagation. The source size

and plasma density profile are as in Table 4.1, and the observed background flux from

a thermal source of this size is ∼ 10−2 sfu. Left to right, top to bottom: homogeneous

plasma, weak diffusion, moderate diffusion and strong diffusion (see definitions in text).

of high frequency plasma emission (Section 1.6.1). On the other hand, we note that

these fluxes are calculated assuming a simple exponential density profile, which for the

parameters chosen gives a factor exp(−τ) of approximately 1/50. More efficient escape



110 4: Simulations of Radio Emission from Dense Coronal Loops

EnsDiffMoreWeak

Figure 4.9: The energy above thermal (Equations 4.62, 4.63) in Langmuir waves

(solid line), backscattered Langmuir waves only (dotted line), and radio emission (blue

line), normalised by the thermal levels, against time. Left to right, top to bottom:

homogeneous plasma, and weak, moderate and strong inhomogeneity (see definitions

in the text).

can therefore lead to fluxes up to 50 times larger.

In Figure 4.8 we show three cases of density fluctuations, chosen using the results

of the previous chapter, as well as the homogeneous case. The characteristic velocity

and wavenumber of the fluctuations are fixed at v0 = 107 cm s−1 and q0 = 10−4kDe

respectively. For the RMS fluctuation magnitude, “weak” diffusion has
√

〈ñ2〉 = 4 ×

10−5, “moderate” diffusion has
√

〈ñ2〉 = 1× 10−4 and “strong” diffusion has
√

〈ñ2〉 =

3 × 10−4. Although this range is small, it covers the interesting cases for these beam

and plasma parameters.

As the strength of the Langmuir wavenumber diffusion increases we see more and

more smoothing of the backscattered emission, and a reduction in its peak magnitude.

At the same time, the removal of waves from the forwards spectrum is also suppressed,

and the levels of emission significantly reduced.
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Figure 4.10: The peak energy in backscattered Langmuir waves, max(Eb
L) (see Equa-

tion 4.62), against the RMS magnitude of plasma inhomogeneity,
√

〈ñ2〉.

To quantify the reductions, we calculate the non-thermal energy in the Langmuir

waves, backwards Langmuir waves and electromagnetic emission, given by

EL =

∫ kDe

−kDe

[W (k)−WTh(k)] dk , Eb
L =

∫ 0

−kDe

[W (k)−WTh(k)] dk (4.62)

and

EH =

∫ ω(k)=2.1

ω(k)=2.0

[W (k)−WTh(k)] dk. (4.63)

We plot these in Figure 4.9. The saw-tooth oscillations seen around 0.3 to 0.4 s are a

numerical effect due to the finite wavenumber grid used in the simulations. The relation

between the harmonic emission and the backscattered Langmuir waves is clearly seen,

as the rise of EH closely tracks Eb
L. However, at later stages, the drift of the maximum

Langmuir wave level towards smaller wavenumbers, where the conversion to harmonic

emission occurs more rapidly, can become important and the emission level can increase

despite continuing decrease of the total and backwards Langmuir wave energy. This is

clearly seen around 0.15 to 0.3 s for fluctuations of weak or moderate strength.

On the other hand, for the strongest fluctuations shown, we see that the onset of

rapid stimulated scattering is strongly suppressed and the level of backwards waves is

decreased by more than an order of magnitude. Figure 4.10 shows the peak energy in

backscattered waves as a function of the RMS fluctuation magnitude, and displays a

very sharp reduction for a level of
√
〈ñ2〉 = 3× 10−4. The energy in radio emission is
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similarly decreased, and remains above the thermal level for only a very short time, in

contrast to the 0.4 s or more duration in the less inhomogeneous cases. Thus, despite

having the same energy in initial electrons, and a very similar energy in the forwards

Langmuir waves, the Langmuir wavenumber diffusion can suppress the backscattering

and therefore the emission.

Finally we note that the intrinsic band width of the emission due to ion-scattering

is rather large, 50 MHz at 1 GHz plasma frequency, and the emission shows an intrinsic

frequency drift due to the drift of the Langmuir wave peak to lower frequencies during

the collisional relaxation process.

4.7.3 Wave-wave Interactions

For plasma with a larger electron temperature than ion temperature, the backscattering

of Langmuir waves can occur due to interactions with ion sound waves. We consider

here a temperature ratio of Ti = 0.5Te, for which ion-sound waves are still heavily

damped, but the 3-wave decay process are allowed. The decay L + s � L′ gives

more efficient Langmuir wave backscattering than the ion-scattering process and so for

simplicity we switch off the latter and consider only the former.

In Figures 4.11 and 4.12 we show the resulting electron distributions, and the Lang-

muir, ion-sound and electromagnetic wave distributions over time for a beam density

of nb = 107 cm−3, including the effects of decay L+s � L′, for plasma inhomogeneities

of RMS magnitude
√

〈ñ2〉 = 10−3 and
√

〈ñ2〉 = 10−4 respectively. As before, we see

a slow drift of the Langmuir wave peak from large to small wavenumbers due to the

collisional relaxation, but now there is additional scattering of the Langmuir waves to

small wavenumbers. The Langmuir waves backscatter to smaller wavenumbers, k−∆k

(see Section 3.3.5) and so the radio emission occurs for slightly smaller wavenumbers,

giving an intrinsic bandwidth of only about 25 MHz, half that seen in the ion-scattering

case.

On the other hand, for ion-sound wave decays, even much stronger inhomogeneity,

with
√

〈ñ2〉 = 10−3, does not drastically decrease the backscattering, and we obtain
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Figure 4.11: The electron distribution function f(v) (top left); the spectral energy

density of Langmuir waves W (k) (top right); the spectral energy density of ion-sound

waves Ws(k) (bottom left); and the harmonic radio brightness temperature Tb(k) (bot-

tom right) for a collisionally relaxing electron beam in inhomogeneous plasma. Each

coloured line shows the distribution at a different time, as shown in the colour bar.

We set Ti = 0.5Te and nb = 107 cm−3. The effects of ion-sound wave interactions are

included, as well as density fluctuations with RMS magnitude of
√

〈ñ2〉 = 10−3.

emission reaching a brightness temperature of 2 × 108 K, corresponding to a flux of

around 20 sfu.

4.8 Conclusions

A collisionally relaxing electron beam of initial density 107 or 108 cm s−3 will produce

harmonic radio emission due to the plasma mechanism. Our simulations show emission

at a single value of the local plasma frequency with brightness and duration in good



114 4: Simulations of Radio Emission from Dense Coronal Loops

Figure 4.12: As Figure 4.11 for density fluctuations with RMS magnitude of
√

〈ñ2〉 =

10−4.

agreement with observations. The above quoted fluxes are derived by assuming a

simple model for the escape of emission, and so could be increased by up to perhaps 10

times if the escape were more efficient. Using the results of Willes & Melrose (1997) we

infer the emission will be weakly O-mode polarised, up to around 15 %, also in good

agreement with observations.

For equal temperature plasma, Ti = Te, the only source of backscattered Lang-

muir waves is the process of scattering by plasma ions. Spontaneous scattering is a

slow process, but stimulated scattering can occur rapidly. However, as we have seen,

plasma density fluctuations lead to the diffusion of the Langmuir waves in wavenumber

space, and can prevent the onset of rapid stimulated scattering. In this case, very few

backscattered Langmuir waves are produced and consequently very little radio emis-

sion. This is seen to occur for a very low level of fluctuations,
√

〈ñ2〉 = 3 × 10−4 for

the parameters considered here.
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The magnitude of relative density fluctuations
√
〈ñ2〉 commonly observed in the

corona and solar wind range from 10−4 and 10−2 (e.g. Cronyn, 1972; Smith & Sime,

1979; Coles & Harmon, 1989, and Section 1.1.4). Assuming equal ion and electron

temperatures, we infer that only in the least inhomogeneous case will radio emission

be seen. Clearly this is only proven in cases where our model of a collisionally relaxing

beam adequately captures the Langmuir waves dynamics: however the effects of den-

sity inhomogeneity on the onset of stimulated ion scattering may extrapolate to other

situations.

On the other hand, if Ti = 0.5Te we can consider scattering due to ion-sound waves,

which occurs much more rapidly, and is less affected by inhomogeneities. However, the

ion temperature in the corona at the frequencies we consider is generally thought to

be equal to the electron temperature, and so the ion sound waves cannot exist and

scattering must be due to ions.

Thus, in the case where Ti = Te, our model suggests that it is possible to obtain a

large number of Langmuir waves at positive wavenumbers, but, due to their diffusion in

wavenumber caused by plasma inhomogeneity, not obtain very high levels of waves at

negative wavenumber and thus not produce visible levels of harmonic radio emission.



Chapter 5

Conclusions

During solar flares, vast amounts of energy are released from the Sun’s magnetic field, a

fraction of which goes into accelerating electrons. This thesis has considered the prop-

agation of such a fast electron beam in the plasma of the solar corona, and its visible

signatures in the form of hard X-ray and radio emission. When a beam propagates

along a magnetic field line downwards into the dense chromosphere, it can produce

hard X-rays via bremsstrahlung, and the spectrum of these will be affected by the evo-

lution of the electron distribution during transport. Radio emission can be produced

during propagation via the generation of Langmuir waves, and the spectrum of this

will therefore depend strongly on the electron and Langmuir wave distributions.

It has long been known that a propagating beam can become unstable to the gen-

eration of high levels of Langmuir waves, either due to transport effects, where faster

electrons outpace slower ones, or to collisional effects due to the velocity dependence of

the collisional operator. It is also well known that Langmuir waves are strongly affected

by density inhomogeneities, and that this can potentially lead both to electron-self

acceleration in certain experimental setups, and to suppression of the beam-plasma

instability, and thus the relaxation of the electron beam to a plateau.
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Langmuir Wavenumber Diffusion

We have considered here primarily the effects of a fluctuating plasma density, with long

wavelength and small relative density change, such as is observed in the solar corona

and solar wind. Chapter 2 outlined the development of a mathematical model for the

interaction of such fluctuations with Langmuir waves, previously published in Ratcliffe

et al. (2012), both in the full 3-D treatment of inelastic scattering, an extension of the

previously considered elastic scattering treatment in the literature, and also for the

1-D situation of beam aligned density fluctuations.

We found that the Langmuir waves will diffuse in wavenumber space. In 3-D this

wavenumber diffusion occurs both in angle, as for the elastic scattering case, and

also in magnitude, resulting in a significant modification of the parallel wavenumber,

that is the wavenumber projected onto the beam direction. When the back reaction

of Langmuir waves on the beam electrons is considered, this will result in electron

acceleration.

Electron Acceleration

We also expect to see an electron acceleration effect due to beam-aligned density fluctu-

ations. Chapter 3 presented quasi-linear simulations of the beam-Langmuir wave inter-

actions, including the Langmuir wavenumber diffusion, and confirmed that this indeed

occurs. We considered first the test case of a Maxwellian initial beam, as in Ratcliffe

et al. (2012), where the beam distribution is given by f(v) ∝ exp(−(v − vb)
2/∆v2b)

with vb the beam velocity and ∆vb its width. This is unstable to Langmuir wave

generation and thus quickly relaxes to form a plateau. We simulated the effects of

Langmuir wavenumber diffusion over a very broad range of parameters for the beam,

the background plasma, and the density fluctuations, and considered both random fluc-

tuations, and those obeying a power-law distribution with wavenumber, as observed in

the corona.

Overall, we found that the acceleration depends primarily on the ratio of the

timescales for the wavenumber diffusion and for the beam-plasma interaction, with
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most effect when these are approximately equal. When the wavenumber diffusion is

the faster process, we see suppression of the beam-plasma instability, as the waves are

removed very rapidly from resonance with the beam electrons, and so no acceleration

can occur. The exact spectral shape of the density fluctuations and their characteristic

velocity, v0, were found to have small additional effects on the extent of the electron

acceleration. For example, for a given level of fluctuation intensity, the strongest ac-

celeration occurs when v0 ∼ vTe/10. These effects are not accounted for simply by the

ratio of the diffusion and beam-wave interaction timescales.

Beam Generated Hard X-Ray Emission

Next, we considered the case of a power-law electron beam, relaxing due to collisional

interactions, as in Kontar et al. (2012). In very dense plasma, this relaxation can

produce instability to Langmuir wave generation significantly more rapidly than the

electron time-of-flight effects that dominate in less dense plasma. Our model therefore

applies to, for example, a beam in a very dense coronal loop, with background plasma

density nb ∼ 1010 cm−3, over timescales of around 0.1 s or so. Langmuir waves are

generated by the beam, but later reabsorbed, and so the electron distribution averaged

over the electron’s collisional lifetime is unaffected.

However, when the evolution of the Langmuir waves due either to a density gradient,

a fluctuating plasma density, or to wave-wave interactions is considered, the time-

averaged electron flux is strongly affected. Energy is shifted from electrons at energies

below around 20 keV to the region between 20 and 200 keV. Above 200 keV the

effects are small. The time-averaged electron flux is directly related to the hard X-ray

emission generated by the beam, which is generally observed only above around 20 keV,

as thermal emission dominates below this energy. Thus, the Langmuir wave evolution

is seen to shift significant numbers of electrons in energy space from the unobservable

part of the distribution to the HXR emitting part.

The time-averaged electron flux can be increased by an order of magnitude or more

at around 100 keV. Thus if we ignore the effects of Langmuir wave generation and
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evolution and assume an accelerated electron beam evolving purely collisionally, the

number of initially accelerated electrons derived from hard X-ray observations will be

overestimated by up to this amount. Moreover, it was found that the acceleration

effect was strongly dependent on the initial beam density, and so this overestimate is

more significant the more electrons there are in the initial beam.

Radio Emission

The high levels of Langmuir waves generated by fast electron beams in plasma can

also lead to very bright radio emission. The mechanism for this was discussed in the

Introduction, and in Chapter 4 we developed a simulation model for this emission at

the second harmonic of the local plasma frequency. Emission also occurs at the plasma

frequency, but in dense plasma, as considered here, this is generated inefficiently, and

cannot escape as the optical depth is very large.

Emission at the second harmonic relies on the generation of an initial Langmuir

wave population by the electron beam, and the subsequent backscattering of these

to negative wavenumbers. A wave from the forwards and backwards population may

then coalesce to produce radio emission. However, the emission probability is strongly

angularly dependent, and so we must average over assumed distributions of the angles

of the Langmuir wavenumbers to the direction of beam propagation. The processes

may then be included in our simulations from Chapter 3.

We used this model to simulate the radio emission at 2 GHz for a collisionally

relaxing beam in very dense plasma, considering both the backscattering of Langmuir

waves due to individual plasma ions, which is important in plasma of equal ion and

electron temperatures, and also the decay of a Langmuir wave to an ion-sound wave

and a backscattered Langmuir wave, as in Chapter 3. This work is currently being

prepared for publication (Ratcliffe & Kontar, 2013).

We found that the brightness and duration of the simulated radio emission for both

homogeneous and weakly inhomogeneous plasma are in good agreement with observa-

tions, and moreover the theoretical predictions for the polarisation of the emission in



120 5: Conclusions

our model also agree well with observed values for high frequency plasma emission.

However, the process of scattering by plasma ions was seen to be strongly affected by

the wavenumber diffusion of Langmuir waves due to plasma density inhomogeneities.

Significant suppression of the backscattering, and consequently the radio emission,

was seen to occur for fluctuations of very low magnitude. The observed strengths of

inhomogeneity in the corona often exceed this limit, and in this case our simulations

suggest it is possible to have high levels of beam generated Langmuir waves without

generating significant radio emission, as the backscattered wave population remains

small.

On the other hand, when the assumption of equal temperatures is relaxed, the

additional backscattering process due to the decay to ion-sound waves can operate, and

this leads to high levels of backwards Langmuir waves even in strongly inhomogeneous

plasma, and corresponding levels of radio emission.

Closing Remarks

To conclude, we have considered the effects of plasma density inhomogeneities on Lang-

muir waves, and consequently on propagating fast electron beams, and their hard X-

ray and radio emission. Strong effects of electron acceleration and enhancement of the

hard X-ray emission were seen. We have also simulated beam-generated radio emission,

finding results that are in good agreement with observations. The inclusion of density

inhomogeneities in these simulations show that in inhomogeneous plasma, this radio

emission can be suppressed, despite the presence of high levels of Langmuir waves.

Density inhomogeneities are generally agreed to commonly exist in the corona, and

so the generation of Langmuir waves by fast electrons and their subsequent evolution

have been shown to be vitally important considerations in the evolution of coronal fast

electron beams and their emission.
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Appendix A

An Angle-averaged Model for

Fundamental Radio Emission

The mechanism behind plasma emission at the fundamental was discussed in Section

1.5.2. Firstly, we must consider the evolution of the Langmuir waves due to their

decay L � L′ + s and scattering by ions L+ i � L′ + i′, as in Chapter 4. In addition

we have an analog of this ion-scattering, in which a Langmuir wave is scattered into

an electromagnetic wave, L + i � t + i′, and two processes involving ion-sound wave

interactions, namely L+ s � t, L � t+ s.

Ion-sound waves have been directly observed in the solar wind in correlation with

Langmuir waves and Type III bursts (e.g. Gurnett & Anderson, 1977; Gurnett & Frank,

1978). Lin et al. (1986) suggested that the decay to electromagnetic waves L � t + s

was the most likely generating process for this turbulence, but it is now generally

thought that Langmuir wave decay L � L′ + s produces the ion-sound waves and

these drive the production of fundamental electromagnetic emission (Melrose, 1982;

Robinson et al., 1994). Thejappa et al. (1993) show that ion-scattering cannot explain

Type III emission at kHz wavelengths, but Mel’Nik & Kontar (2003) show that the

brightness of coronal bursts can be explained by the ion-scattering process alone.

Thus, in a complete theory of fundamental plasma emission in both the corona and

solar wind, or more specifically in regions with either Ti ' Te or Ti � Te, we must
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consider both processes. In general, the dominant one is determined by the existence of

ion-sound waves, but due to the different functional forms of the two probabilities, their

relative efficiencies are also dependent on wavenumber. In this case the two can both

be significant, or there can be a transition from one to the other during the emission

process.

A.1 Ion-Sound Wave Processes

First we consider the process L + s � t. For fundamental emission, the frequency

of the daughter electromagnetic wave must be close to the plasma frequency, and

therefore from the dispersion relation ω =
(
ω2
pe + c2k2

T

)1/2
we know the electromagnetic

wavenumber must be small. Then considering the energy and momentum conservation

conditions, we see that the wavenumbers must satisfy kT � kL ' −kS, and so the

Langmuir and ion-sound wave will coalesce very nearly head-on.

Supposing in addition that the beam-generated Langmuir waves are confined to a

small range in angle around the beam direction, the geometry becomes quite simple.

The emission probability appearing in Equations 4.5 to 4.7 for the process L + s � t

is (e.g. Tsytovich, 1995)

wLST (k,kL,kT ) =: Cfundω
S
k

|kT × k|2

k2
T |kL|2

δ(ωT
kT

− ωL
kL

− ωS
k ) (A.1)

Cfund =
πω3

pe

(
1 + 3Ti

Te

)
ωT
kT
4neTe

(A.2)

where the wavevectors are denoted kT for the electromagnetic wave, k for the ion-

sound wave and kL for the Langmuir wave. This probability is proportional (via the

cross product) to sin2 θST , where θST is the angle between the parent ion-sound or

Langmuir waves and the resulting electromagnetic waves, and is therefore zero for an

electromagnetic wave propagating in the same direction as the initial Langmuir wave,

and maximised for perpendicular emission.

On the other hand, given the relatively broad emission probability, the smallness

of the electromagnetic wavenumber, and the expected angular spread of the Langmuir
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waves, we can make the approximation that the electromagnetic emission is almost

isotropic. Therefore we combine wedge shaped Langmuir and ion-sound wave spectra

with an isotropic electromagnetic wave spectrum. We define

WL(k) =
1

∆Ωk2
WAv

L (k) (A.3)

within ∆Ω the small solid angle occupied by the parent waves, and zero elsewhere,

with WAv
L (k) defined by

WAv
L (k) =

∫ ∫
k2 sin θWL(k)dθdφ, (A.4)

and

WT (k) =
1

4πk2
WAv

T (k) (A.5)

where again we define WAv
T (k) by

WAv
T (k) =

∫ ∫
k2 sin θWT (k)dθdφ. (A.6)

Now we write the participating frequencies as ωS
k , ω

T
kT
, ωL

kL
respectively, and rewrite

the integral in the general equation 4.5 using spherical coordinates, k = (k, θ, φ) finding

dWT (kT )

dt
=ωT

kT

∫ ∫ ∫
wLST (k,kL,kT )k

2 sin θ×[
WS(k)

ωS
k

WL(kL)

ωL
kL

− WS(k)

ωS
k

WT (kT )

ωT
kT

− WT (kT )

ωT
kT

WL(kL)

ωL
kL

]
dkdθdφ (A.7)

with probability given above by Equation A.1. The momentum conservation condition

kL+k = kT has been used to implicitly perform the integral over kL, and we note also

the energy conservation condition ωT
kT

− ωL
kL

− ωS
k = 0 in the probability.

Now we substitute our definitions of the angle-averaged spectral energy densities,

Equations A.3 to A.6 and perform the angular integrals. For the first term in the

square brackets we require∫ ∫
k2 sin θ sin2 θST

WS(k)

ωS
k

WL(kL)

ωL
kL

dθdφ. (A.8)

Substituting for WL,WS gives

WAv
S

∆ΩωS
k

WAv
L

k2
L∆ΩωL

kL

∫ ∫
∆Ω

sin θ sin2 θSTdθdφ,
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and we assume the average value of sin2 θST is well defined and given by∫ ∫
∆Ω

sin θ sin2 θSTdθdφ = ∆Ω〈sin2 θST 〉 (A.9)

to obtain
WAv

S (k)

ωS
k

WAv
L (kL)

k2
L∆ΩωL

kL

〈sin2 θST 〉

assuming that the Langmuir and ion-sound wave vectors both lie within ∆Ω.

Similarly, for the second term in square brackets we find∫ ∫
k2 sin θ sin2 θST

WS(k)

ωS
k

WT (kT )

ωT
kT

dθdφ =
WAv

S

ωS
k

WAv
T (kT )

4πk2
Tω

T
kT

〈sin2 θST 〉

and similar for the third.

We have
d

dt
WAv(kT ) = 4πk2

T

d

dt
W (kT ) (A.10)

and so substituting the results just found for the terms in square brackets in Equation

A.7 we get

dWAv
T (kT )

dt
=ωT

kT
Cfund〈sin2 θST 〉

∫
dkωS

k δ(ω
T
kT

− ωL
kL

− ωS
k )×[

WAv
S (k)

ωS
k

k2
T

k2
L∆Ω

WAv
L (kL)

ωL
kL

− WAv
T (kT )

ωT
kT

(
WAv

S (k)

ωS
k

+
WAv

L (kL)

ωL
kL

)]
.

(A.11)

Now we perform the integral over k using δ(ωT
kT

− ωL
kL

− ωS
k )

1, which gives a factor

of ωpe/(3v
2
Tek) assuming that kT � k and k ' kL.

Finally, we evaluate the average 〈sin2 θST 〉 over a sphere, which gives a value of 1/2

and so we obtain

dWAv
T (kT )

dt
=
πω4

pevs

(
1 + 3Ti

Te

)
24v2TeneTe

×[
WAv

S (k)

ωS
k

k2
T

k2
L∆Ω

WAv
L (kL)

ωL
kL

− WAv
T (kT )

ωT
kT

(
WAv

S (k)

ωS
k

+
WAv

L (kL)

ωL
kL

)]
(A.12)

1For a delta function of a function, the integral is∫
dxg(x)δ(f(x)) =

g(a)

|f ′(a)|
, f(a) = 0
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with the angle-averaged spectral energy densities given by Equations A.3 to A.6.

A few restrictions should be noted on the equation just derived. Firstly, some

angular spread in either the Langmuir or ion-sound wave spectrum is required to

supply the small transverse momentum of the electromagnetic wave. Secondly, the

assumption of isotropy of the electromagnetic emission is improved as this angular

spread increases.

A.2 The Crossed Process

In addition to the process L+s � t just considered, there is a related process L � s+t,

called the “crossed” process because the S wave crosses from one side of the equation

to the other. Alternately, we can write both together as L ± s � t. In this case, the

probabilities are the same, but there are some sign changes. Firstly, in the wavenumber

matching we have now kL = kT + k and so the Langmuir and ion-sound wave are now

approximately parallel and in the same direction, secondly the frequency matching

condition becomes δ(ωT
kT

− ωL
kL

+ ωS
k ), and finally the general equation now reads[

WS(k)

ωS
k

WL(kL)

ωL
kL

− WS(k)

ωS
k

WT (kT )

ωT
kT

+
WT (kT )

ωT
kT

WL(kL)

ωL
kL

]
(A.13)

Following the exact same procedures as in the previous section gives us the equation

dWAv
T (kT )

dt
=
πω4

pevs

(
1 + 3Ti

Te

)
24v2TeneTe

×[
WAv

S (k)

ωS
k

k2
T

k2
L∆Ω

WAv
L (kL)

ωL
kL

− WAv
T (kT )

ωT
kT

(
WAv

S (k)

ωS
k

− WAv
L (kL)

ωL
kL

)]
(A.14)

where the final term has changed sign with respect to Equation A.12.

The most significant difference between this process and the previous one is the

condition for saturation, dW (kT )/dt = 0. Because of the sign change, saturation can

occur only if

WT =
k2
T

k2
L∆Ω

WLWS

WS −WL

(A.15)

which requires that WS > WL. Because in general the energy in Langmuir wave

decay produced ion-sound waves is a small fraction of that in the parent L waves, this
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condition is unlikely to be satisfied, and thus the electromagnetic waves can continue

to grow.

Also of note is the fact that, due to the differences in the wave-number conservation

equations, a population of ion-sound waves can satisfy the matching for either or both

of the processes L ± s � t. In the Type III bursts in the solar wind, decay of a

Langmuir wave to an electromagnetic wave plus an ion-sound wave is likely to be

dominant (Robinson et al., 1994).

A.3 Equations for L and S wave evolution

In general, the energy in the electromagnetic waves is a very small fraction of that in the

parent Langmuir waves, and so the effects of plasma emission at either the fundamental

or the harmonic on their evolution can be neglected. For ion-sound waves, the situation

is less clear, as their generation due to L � t+ s and due to Langmuir wave scattering

L � L′ + s can be comparable. Therefore we must generally include the effects of the

L± s � t processes on the ion-sound waves. In 3-D we have:

dWS(k)

dt
=− ωS

k

∫ ∫ ∫
wLST (k,kL,kT )k

2
L sin θL×[

WS(k)

ωS
k

WL(kL)

ωL
kL

− WS(k)

ωS
k

WT (kT )

ωT
kT

− WT (kT )

ωT
kT

WL(kL)

ωL
kL

]
dkLdθLdφL

(A.16)

which we treat exactly as for the electromagnetic equation and obtain

dWAv
S (kS)

dt
=
πω4

pevs

(
1 + 3Ti

Te

)
24v2TeneTe

×[
WAv

S (k)

ωS
k

WAv
L (kL)

ωL
kL

− WAv
T (kT )

ωT
kT

(
WAv

S (k)

ωS
k

± WAv
L (kL)

ωL
kL

)]
(A.17)

where the sign is “+” for the L+ s � t process and “−” for L � s+ t.
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A.4 Ion Interactions

In the originally proposed plasma emission mechanism (Ginzburg & Zhelezniakov,

1958) fundamental emission was produced via the interaction with plasma ions, L+i �
t+ i′. The equation for evolution of the electromagnetic waves in 3-D is:

dWT (kT )

dt
=

∫
wLT

i (kT ,kL)×[
ωT

ωL

WL(kL)−WT (kT )−
(2π)3

Ti

ωT − ωL

ωL

WT (kT )WL(kL)

]
dkL

(2π)3
(A.18)

with probability

wLT
i (kT ,kL) =

Cion sin
2 θLT

|kT − kL|
exp

(
− (ωT − ωL)

2

2|kT − kL|2v2Ti

)
(A.19)

and

Cion =

√
πω2

pe

2nevTi(1 + Te/Ti)2
(A.20)

where θLT is the angle between the initial Langmuir wave and the scattered electro-

magnetic wave.

In general this process is slower than the 3-wave processes involving ion-sound

waves, but if we consider a regime where Ti ' Te and ion-sound waves cannot exist,

then the ion-scattering process is the only possibility. The ion-scattering probability is

greatest when Ti ≥ Te, and falls rapidly for Ti � Te.

The ion-scattering probability is dipolar and in this case we make the approximation

that scattering tends to produce electromagnetic waves perpendicular to the initial

Langmuir wave. Like the previous section, we take the L waves as constant over a

small solid angle, and assume the electromagnetic emission is also constant over the

same area, a reasonable assumption given the slow variation of the probability around

θLT ' π/2. We write

WL(k) =
1

∆Ωk2
WAv

L (k) with WAv
L (k) =

∫ ∫
k2 sin θWL(k)dθdφ (A.21)

for k within ∆Ω and zero elsewhere, and

WT (kT ) =
1

∆Ωk2
T

WAv
T (kT ). (A.22)
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Due to the exponential factor in the probability, scattering is negligible unless ωL '

ωT and so we have kT � kL and |kT −kL| ' kL. Then the only angle dependent factor

in the probability wi
LT is from sin2 θLT . Writing kL = (kL, θ, φ) and kT = (kT , θT , φT )

we require∫ ∫
dφd cos θ sin2 θLT

[
ωT

ωL

WL(kL)−WT (kT )−
(2π)3

Ti

ωT − ωL

ωL

WT (kT )WL(k)

]
.

(A.23)

Substituting the definitions in Equations A.21 and A.22 and defining the angle average

of sin2 θLT as in the previous section by∫ ∫
∆Ω

d cos θdφ sin2 θLT = ∆Ω〈sin2 θLT 〉, (A.24)

Equation A.23 becomes[
ωT

ωL

WAv
L (kL)

k2
L

− WAv
T (kT )

k2
T

− (2π)3

Ti

ωT − ωL

ωL

WAv
T (kT )W

Av
L (k)

∆Ωk2
Lk

2
T

]
〈sin2 θLT 〉 (A.25)

Now we substitute the definition of WAv
T (kT ) into the LHS of Equation A.18 and

take 〈sin2 θLT 〉 = 1/2 to find

dWAv
T (kT )

dt
=

∫
dkL

Cion

2kL
exp

(
−(ωT − ωL)

2

2k2
Lv

2
Ti

)
×[

ωT

ωL

WAv
L (kL)

k2
L

− WAv
T (kT )

k2
T

− (2π)3

Ti

ωT − ωL

ωL

WAv
T (kT )W

Av
L (kL)

∆Ωk2
Lk

2
T

]
(A.26)

with the angle-averaged spectral energy densities given by Equations A.21 and A.22.

As for the Langmuir wave case, we have an integral to evaluate numerically, but

again we can restrict to only a small range in kL, in this case defined by ωL ' ωT .


	List of Figures
	Abstract
	Acknowledgements
	Table of Symbols
	Introduction
	The Sun
	Structure
	Coronal Density Profiles
	The Solar Wind
	Density Fluctuations
	Solar Activity

	Essential Plasma Physics
	Langmuir Waves
	Magnetoionic Modes
	Plasma Modelling

	Reconnection and Particle Acceleration
	Acceleration Mechanisms
	Acceleration Region Diagnostics
	X-Ray Emission
	Bremsstrahlung and the Thick Target Model

	Electron Beam Propagation and Evolution
	Langmuir Wave Generation and Sturrock's Dilemma
	Beam Propagation in Inhomogeneous Plasma

	Radio Emission
	Coherent and Incoherent Emission
	The Plasma Emission Mechanism
	Radio Burst Classifications
	Type III Bursts
	Type V Bursts

	Observations of High Frequency Plasma Radio Emission
	Classic Type III Radio Bursts
	Other Plasma Emission


	Langmuir Wave Diffusion in Inhomogeneous Plasma
	Introduction
	Beam-Wave Interactions
	A Diffusion Treatment in 1-Dimension
	The Diffusion Equation
	The Diffusion Coefficient
	Wave Modes
	The Diffusion Coefficient for Specific Spectra

	Diffusion in 3-Dimensions
	The Diffusion Equation
	Diffusion in Spherical Coordinates

	Effects of Diffusion on Waves and Electrons
	1-Dimensional Diffusion
	Beam Aligned Fluctuations
	Angular Diffusion
	Timescales


	Quasilinear Simulations of Langmuir Wave Evolution
	The Simulation Equations
	Simulations of a Maxwellian Beam
	Initial Conditions
	Electron and Wave Distributions
	Parametrising the Effects of Diffusion
	Effects of Fluctuation Characteristic Velocity
	Power-law Fluctuations
	The Effects of Beam and Plasma Parameters
	Conclusions

	Simulations of the Collisional Relaxation of a Power-Law Beam
	Initial Conditions
	Homogeneous Plasma
	A Constant Density Gradient
	Density Fluctuations
	Wave-wave Interactions
	The Effects of Beam Density

	Energy Transfer Due to Diffusion
	Hard X-ray Flux
	Conclusions

	Simulations of Radio Emission from Dense Coronal Loops
	The Plasma Emission Mechanism
	Simulating Plasma Radio Emission

	3-D Equations for Scattering and Decay
	Ion Scattering Processes
	3-wave Decays
	Decay versus Scattering

	A Model for Plasma Emission
	Langmuir Wave Evolution
	Fundamental Emission
	Harmonic Emission

	Polarisation and the Weak Field Limit
	Polarisation Change During Transport

	Thermal Emission
	Observed Fluxes
	Conversion of Energy Density to Flux
	Source Size
	Propagation Losses
	Collisional Damping
	Time Delay
	Angular Scattering

	Simulations of 2 GHz Plasma Emission
	Complete Simulation Model
	Scattering by Ions
	Wave-wave Interactions

	Conclusions

	Conclusions
	Bibliography
	An Angle-averaged Model for Fundamental Radio Emission
	Ion-Sound Wave Processes
	The Crossed Process
	Equations for L and S wave evolution
	Ion Interactions


