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Abstract 

 

In chapter 1, bone structure, bone growth and development, osteoporosis in children and 

skeletal morbidities in children with acute lymphoblastic leukaemia (ALL) are discussed. After 

that, the mechanostat and the effect of whole body vibration (WBV) on bone health are 

considered. Finally, I examine diagnostic approaches to assess the musculoskeletal system. 

 

In chapter 2, the incidence and risk factors for skeletal morbidity in ALL children are 

determined. The medical records of all (n,186, male,110) children presenting with ALL 

between 1997 and 2007 and treated on UKALL97, UKALL97/01 or UKALL2003 were studied. 

Skeletal morbidity included musculoskeletal pain (MSP), fractures and osteonecrosis (ON). 

MSP was classified as any event of limb pain, muscle pain, joint symptoms or back pain that 

required radiological examination. Fractures and ON were confirmed by X-rays and MRI 

respectively. We found that skeletal morbidity, presenting as MSP, fractures or ON were 

reported in 88(47%) children of whom 56(63%) were boys. Of 88 children, 49(55%), 27(30%) 

and 18(20%) had MSP, fracture(s) or ON, respectively. Six (7%) had both fractures and ON. 

The median(10th,90thcentiles) age at diagnosis of ALL children without skeletal morbidity was 

3.9years(1.4,12), which was lower than in those with skeletal morbidity at 8.2years(2.2,14.3) 

(p<0.00001,95%CI:1.7,4.4). Children with ALL diagnosed over 8years of age were at 

increased risk of developing fracture(s) (p=0.01,odds ratio(OR)=2.9,95%CI:1.3,6.5), whereas 

the risk of ON was higher in those who were diagnosed after 9years of age 

(p<0.0001,OR=15,95%CI:4.1,54.4). There was no gender-difference in the incidence of 

skeletal morbidity. Children who received dexamethasone had a higher incidence of skeletal 

morbidity than those who were treated with prednisolone (p=0.027,OR=2.6,95%CI:1.1,5.9). 

We concluded that the occurrence of skeletal morbidity in ALL children may be influenced by 

age and the type of glucocorticoids (GCs). These findings may facilitate the development of 

effective bone protective intervention. 

 

In chapter 3, the aim is to investigate the influence of physical activity, age and mineral 

homeostasis over the first 12months of chemotherapy on subsequent skeletal morbidity. We 

reviewed 56 children who presented with ALL between 2003 and 2007 and treated only on 
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UKALL2003. The number of in-patient days over the first 12months of chemotherapy was 

collected and used as a surrogate marker of inactivity and lack of well-being. Data for serum 

calcium (Ca), phosphate (Pho), magnesium (Mg) and albumin were also collected over this 

period. Skeletal morbidity was defined as any episode MSP or fractures. We found that the 

median duration of in-patient days over the first 12months of treatment in children with no 

skeletal morbidity was 58days(40,100), whereas the median number of in-patient days during 

the first 12months in those children with any skeletal morbidity, MSP only or fractures only 

was 83days(54,131), 81days(52,119) and 91days(59,158), respectively (p=0.003). Children 

with skeletal morbidity and fractures particularly had lower levels of serum Ca, Mg and Pho 

compared with those without skeletal morbidity over the first 12 months of chemotherapy. 

There was a higher risk of skeletal morbidity in those who were diagnosed after the age of 

8years (p=0.001,OR=16,CI:3,80). Multiple regression analysis showed that the incidence of 

skeletal morbidity only had a significant independent association with age at diagnosis 

(p=0.001) and the number of inpatient days (p=0.03) over the first 12months (r=23). All 

children who were diagnosed after the age of 8years with an inpatient stay of greater than 75 

days in the first 12 months of the chemotherapy (n,14) had some form of skeletal morbidity 

(OR=64). The conclusion was that the incidence of skeletal morbidity in children receiving 

chemotherapy for UKALL2003 is associated with a higher likelihood of being older and having 

longer periods of inpatient stay. The close link between age and changes in bone mineral 

status may be one explanation for the increased bone morbidity in ALL children 

 

In chapter 4, the effects of two WBV regimens on endocrine status, muscle function and 

markers of bone turnover are compared. We recruited 10adult men with a median age of 

33years(29,49), who were randomly assigned to stand on the Galileo platform (GP) 

(frequency (f)=18-22Hz, peak to peak displacement (D)=4mm, peak acceleration (apeak) =2.6-

3.8g) or Juvent1000 (f=32-37Hz, 0.085mm,0.3g) platform (JP)  three times/week for a period 

of  eight weeks. The measurements were performed at five time points (T0, T1, T2, T3, T4) 

and performed in a four week period of run-in (No WBV), eight weeks of WBV and a four-

week period of washout (No WBV). The measurements included anthropometries, body 

composition measured by Tanita, muscle function measured by Leonardo mechanography 

and biochemical markers of endocrine status and bone turnover. The immediate term effect 

of WBV at 22Hz was associated with an  increase in serum growth hormone (GH), increasing 



 

 v 

from 0.07µg/l(0.04,0.69) to 0.52µg/l(0.06,2.4) (p=0.06),0.63µg/l(0.1,1.18)(p=0.03) ,0.21µg/l 

(0.07,0.65) (p=0.2) at 5minutes, 20minutes and 60minutes after WBV, respectively in the GP 

group. The immediate term effect of GP at 18Hz was associated with a reduction in serum 

cortisol from 316nmol/l (247,442) at 60minutes pre-WBV to 173nmol/l(123,245)(p=0.01), 

165nmol/l(139,276)(p=0.02) and 198nmol/l(106,294)(p=0.04) at 5minutes, 20minutes and 

60minutes post-WBV, respectively. At 22 Hz, GP was associated with a reduction in serum 

cortisol from 269nmol/l(115,323) at 60minutes before WBV to 214nmol/l(139,394)(p=0.5), 

200nmol/l(125,337)(p=0.08) and 181nmol/l(104,306)(p=0.04) at 5minutes, 20minutes and 

60minutes post-WBV, respectively. Median serum cortisol decreased after eight weeks of 

WBV from 333nmol/l(242,445) to 270nmol/l(115,323)(p=0.04). Median serum of the carboxy-

terminal telopeptide (CTX, bore resorption marker) reduced significantly after eight weeks of 

WBV from 0.42ng/ml(0.29,0.90) to 0.29ng/ml(0.18,0.44)(p=0.03). None of these changes 

were observed in the JP group. Therefore, WBV at a certain magnitude can stimulate GH 

secretion, reduce circulating cortisol and reduce bone resorption. These effects are 

independent of clear changes in muscle function and depend on the type of WBV that is 

administered.  

 

In chapter 5, the effect of WBV using GP on the bone health of children receiving 

chemotherapy for ALL was assessed. We recruited 16children with ALL with a median age of 

7.8years(5-13.8; 9males), who were randomized either to receive side-alternating WBV (f=16-

20Hz,D=2mm, apeak =1-1.6g)(n,9) or to stand on a still platform as a control group (n,7) for 

9minutes, once/week for four months. Measurements were performed at baseline, two-month 

and four-month assessing bone health (DXA and p.QCT), body composition and muscle 

function by imaging and biochemical assessment. DXA BMC data were corrected for bone 

area and presented as BMC z-score. We found that the median compliance rate measured 

as a ratio of actual completed minutes and expected minutes of WBV was 55%(17,100). The 

median percentage change of  total body BMC z score in the WBV group from baseline to 

four months dropped by 10%(-25,10)(p=0.1), whereas it was 87%(-203,4)(p=0.07) in the 

control group. The median lumbar spine BMC z-score (L2-L4) in the WBV group was -0.4(-

1.3,0.3) and -0.3(-1.4,1.5) at baseline and four months, whereas the respective data in the 

control group were  0.04(-0.6,2.4) and -0.1(-1.1,1), respectively. The median percentage 

change in LS-BMC z-score declined from baseline to four-month by19%(-349,365)(p=0.1) 
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and 75%(-1016,178)(p=0.1) in the WBV and control groups, respectively. We concluded that 

WBV is tolerated by children receiving chemotherapy. WBV might improve bone health in 

ALL children receiving chemotherapy  

 

Chapter 6 summarises the findings of this thesis, discussing recommendations for improving 

bone health in ALL children and exploring weaknesses inherent in registry data and limitation. 

To sum up exercise in ALL children may be most effective if started at the time of diagnosis in 

parallel with chemotherapy but user acceptability of WBV may not be high at this point. Also, 

where sufficient data are available, there is a need to compare outcomes between WBV and 

conventional exercise for improvement in children‟ bone health in order to find the optimal 

dose. Whereas in this thesis, the effect of WBV on the musculoskeletal and endocrine 

systems was assessed, for any further work, also it may be useful to consider the interactive 

effect of nutritional optimisation and Mg supplementation on bone health during 

chemotherapy.  
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1.1 Bone Structure  

1.1.1 Introduction 

Bone is a dynamic connective tissue and has several physiological functions. It provides 

mechanical support of muscle for locomotion and load bearing, protects vital organs such as 

brain, heart and lungs, plays a central role in controlling mineral homeostasis and supports 

the haemopoiesis in the bone marrow. Recently, it has been revealed that bone is an 

endocrine organ that may regulate glucose homeostasis, energy expenditure and 

testosterone production. This chapter gathers together some recent studies in bone 

physiology and bone cell biology and discusses the biochemical bone markers and bone 

growth and development. Skeletal complications in children with leukaemia will also be 

considered in this review. Furthermore, this chapter will explore bone biomechanics and 

whole body vibration (WBV) training and their effects on enhancing bone mass and strength. 

Finally, diagnostic approaches to musculoskeletal system and body composition 

assessments will be summarised. 

 

1.1.2 Anatomical Structure 

Bone has a remarkable variation in shape and size. Therefore, this variety allows human 

bones to be classified anatomically into three main categories: flat bones such as skull, 

scapula, mandible and ileum; short bones like foot and hand bones; and long bones 

(humours, femurs, tibia and fibula). The long bones (Fig.1.1) are composed of three 

physiologic sections: epiphysis, metaphysis and diaphysis (midshaft). The epiphyses are 

located at the peripheries, the diaphysis is found in the middle of bones and the metaphysis 

(developmental growth plate) is situated between the epiphysis and the diaphysis. The 

epiphysis and the metaphysis are derived from two different ossification centres and also 

separated from each other by an epiphysial cartilage plate, which is known as a growth plate. 

This layer plays a pivotal role in the longitudinal or linear growth during the puberty period. 

This cartilage matrix in the growth plate becomes completely calcified and converted into 

bone at the end of the growth time. The external layer of the bones is composed of a thick 

and dense calcified tissue which is known as the cortex (cortical or compact bone) and this 

type of bone accounts for 80% of adult human skeleton. This layer is mainly found in the 

centre of the mid-shaft and becomes progressively thinner towards the direction of the 
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metaphysis. The internal layer of bone is called trabeculae (also named cancellous or spongy 

bone) and comprises of 20% of total bone. Both trabecular and cortical bone (Tab.1.1) are 

made from the same bone cells and matrix, but they have different structure and 

organisation. There are two bone surfaces: periosteum, which covers both the external 

surface of the compact and cancellous bone, and endosteum, which lines medullary cavity 

and covers the trabeculae (1).  

 

 

 

 

 

 

 

 

 

 

Fig  1.1: Schematic structure of long bone (transverse and longitudinal section), viewing different 

structures: epiphysis, metaphysic, diaphysis and growth plate. 

 

 

Characteristic  Cortical bone Trabecular bone 

Calcified Bone 80-90% 15-25% 

Porous 10% 50%-90% 

Function Mainly protection Mainly metabolic 

 

Tab  1.1: The structural and functional differences between cortical and trabecular bones. 

Epiphysis 

Metaphysis

Diaphysis

Growth Plate 

Cortical Bone

Trabecular Bone

Bone Marrow
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1.1.3 Extracellular Matrix 

Extracellular matrix (ECM) is very abundant and is made from collagen fibres and non-

collagenous proteins (NCP). The organic matrix of bone comprises of about 85% to 90% 

collagen proteins (90% type I collagen) and the remaining is NCP. Collagens and minerals 

together play an important function in the biomechanical properties and functional integrity of 

bone (2). Collagen proteins are organised in a preferential way in order to increase bone 

toughness and reduce the risk of fracture. The mineral composition is formed mainly by 

spindle crystals of hydroxyapatite [Ca3(PO4)2(OH)2], which resist compression (Fig.1.2). The 

latter composition is present in the ground substance, on the collagen fibres and between 

them. Similarly, the hydroxyapatite is aligned along the fibrils of type 1 collagen. The ground 

substance is formed from NCPs and consists of glycoproteins and proteoglycans and are 

characterised by highly anionic complexes which might be responsible for bone 

mineralisation. As a result of a high ion-binding capacity, the ground substance might have a 

role in the calcification mechanism and increasing the affinity of hydroxyapatite crystals to the 

collagen fibre. Some NCPs may play a role in binding the collagen and minerals together (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig  1.2: Bone composition – around 70% is hydroxyapatite, 20% is organic matrixes, which are 

comprised of collagen protein (90% type1collagen) and non-collagenous proteins, and the remaining 

10% is water.   
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1.1.4 Collagen Fibres 

Collagen proteins are found mainly in skin, tendon and bone. They have the same protein 

structure and responsible for the structural integrity of the tissues. In bone, type I collagen is 

the most abundant fibrillar collagen in the ECM. Type I collagen accounts for about 90% of 

the organic mass of bone; this protein is released from fibroblasts, osteoblasts and 

odontoblasts in large quantities. Moreover, other collagen proteins such as types III, V and VI 

are found in loose connective tissues and bone matrix together with type I collagen. Type V 

collagen comprises about 5% of the organic bone matrix. In bone, type I collagen is 

incorporated into heterofibrils containing type V collagen. The bone matrix especially type I 

collagen provides flexibility of bone and is also responsible for its structural orientation. The 

molecular structure of type I collagen consists of three polypeptide chains, which are twisted 

around each other and organised in the form of a triple helix composed of two identical α1 

chains and one α2 chain. Each polypeptide chain has repetitive Gly-X-Y- repeating triplet 

(amino acids sequences), with proline and hydroxyproline residues in the X and Y position, 

respectively (Fig.1.3). A homozygous mutation in a gene that encodes for α1chains is fatal 

during a prenatal period, whereas, a heterozygous genetic abnormality of one α1 results in 

osteogenesis imperfecta (OI) type 1A phenotype. The chain α1 and α2 (Tab.1.2) are 

expressed by COL1A1 and COL1A2 genes respectively (4). 

 

The organisation of type I collagen in parallel array and cross linked telopeptides is formed 

after removing the procollagens. For instance, the carboxy-terminal propeptide of type I 

procollagen (PICP) and the amino-terminal propeptide of type I procollagen (PINP) of  the 

procollagen molecule are released during collagen synthesis by specific propeptidases. The 

indices of type I collagen fibril such as PICP and PINP can be measured in blood and urine 

and can be involved as bone formation markers. However, because of the peptides are also 

released from other different tissues such as skin and non-specificity for type I collagen, it 

reduces the sensitivity of these markers in bone formation (4). The pyridinoline cross-linked 

telopeptide domain of type I collagen (ICTP) and the cross-linked N-terminal telopeptide of 

type I collagen (NTX) represent cross linking structures of the collagen type 1 and are 

released during degradation of the mature type I collagen primarily in bone. Hence, it appears 

to be a potential marker of bone resorption (5). In metabolic bone diseases, the serum level 

of these  markers  increases owing to high levels of bone resorption (6). 
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The minor fibrillar type V collagen occurs predominantly in tissues as an α1(V)2 α2(V) 

heterotrimers that is widely expressed in type I collagen fibrils and may regulate the collagen 

diameter. Type V collagen can also be found in other molecular structures such as α1(V) 

α2(V) α3(V) heteromers that have been isolated from the placenta and α1(V)3 homomeres (7). 

The other trace amount of collagen fibres are summarised in the Tab.1.3 below. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig  1.3: The metabolism of type I collagen, procollagen is converted into collagen by removing 

propeptides. N represents amino-terminal end of the propeptide, C is carboxy-terminal end of the 

propeptide. It also shows α-chain composition of Gly-X-Y amino.  

 
 

COL1A1 COL1A2 

Chromosome 7 Chromosome 17 

α1 chains α2 chains 

51 exons 51 exons  

 

Tab  1.2: The differences between COL1A1 and COL1A2 genes in terms of locations, expression and 

the numbers of exons. 

 

 

 

α chainα chain

Amino acid Gly-X-Y- Gly-X-Y -Gly-X-Y -Gly-X-Y

Triple Helix

CN

Pro-collagen Propeptide Propeptide

Collagen  
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Protein Gene Function 
 

Type III collagen 
[α1(III)3] 

COL3A1, 2q24.3-31 Found in trace amount in bone,  
May regulate the collagen diameter 
 

Type V collagen 
[α1(V)2 α2(V)] 
[α1(V) α2(V) α3(V)] 

COL5A1, 19q34.2-34.3 It may regulate the collagen diameter 

Type X collagen 
[α1(X)3] 

COL10A1, 6q21-22.3 Produced specifically by hypertrophic 
chondrocytes of the growth plate, but 
may also be involved in bone 
mineralisation. 

 

Tab  1.3: The characteristic features of the minor fibrillar collagen protein in bone in terms of the gene 

location and the function.  

 

1.1.5 Non-Collagenous Fibres  

The NCPs account for 10–15% of the total bone proteins. A large amount of NCPs are 

produced by osteoblasts (endogenous sources), of which the major ones are osteocalcin 

(OCN), osteonectin (ONN), osteopontin and bone sialoprotein (BSP). Both OPN and BSP are 

important in the initiation of bone mineralisation process. OCN and ONN may have a role in 

controlling the size and speed of bone mineralisation process (8). Ninomiya et al. (9) reported 

that cortical and trabecular bones have different ratios of NCP. For example, OCN is more 

predominant in cortical bone, whereas ONN is higher in trabecular bone. Approximately, 25% 

of these proteins are derived from non-bone cells (exogenous sources) and arise from serum-

derived proteins and are predominately formed from albumin and α2-HS-glycoprotein. Some 

of these proteins are not specific to the bone tissue in human beings. NCPs are acidic in 

nature with high affinity to bone matrix and hydroxyapatite. The remainder of the exogenous 

sources contain potent growth factors such as transforming growth factor-β (TGF-β), platelet-

derived growth factor (PDGF), insulin like growth factor-1 (IGF-1), fibroblast growth factors 

(FGF) and interleukin-1(IL-1) in trace amounts, which may have a role in bone mineralisation. 

The local sources (endogenous) are derived from bone cells and can be categorised into 

three main groups:  proteoglycans,  glycoslyated proteins and gamma carboxylated proteins 

(4). Chondroitin sulphate proteoglycans like decorin and biglycan are found in small amount 

in the ECM of bone. The physiological role of these fractions in the bone tissue is not well 

defined; however, decorin has high affinity for the bone matrix, particularly type I collagen, 
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and might have a role in the mineralisation, whereas biglycan tends to be found in the osteoid 

and may have a function in the early stages of osteogenic processes and bone formation 

(10). 

 

1.1.6 Bone Minerals 

Bone mineral composition, hydroxyapatite [Ca3(PO4)2(OH)2] has a unique mechanical, 

protective and homeostataic function. This composition can be influenced by age, growth, 

hormones, diet and health condition. Generally, approximately 70% of adult human bone is 

formed from minerals. The mechanical rigidity and load bearing strength are dependent on 

calcium (Ca), hydroxyl-deficient analog of the geologic mineral and hydroxyapatite. These 

form large geologic crystals, while small crystals are formed from the carbonate, magnesium 

(Mg) and acid phosphate and no hydroxyl group, enabling them to be more soluble than the 

large crystals. Moreover, these small crystals act as reservoir for Ca, Mg and phosphate 

(Pho) ions. Bone mineralisation is initially performed by deposition of minerals in the collagen 

matrix. As bone tissue matures, the crystals increase in their size and become more 

organised. Crystal growth (addition of ions to the crystals) and crystal aggregations lead to 

enlargement in the crystal dimension (4). The chemical mechanism of crystal formation 

occurs in events, including nucleation, crystal growth and crystal proliferation. The nucleation 

process results from collision of ions or cluster of ions (Ca, Pho and hydroxide). This step 

consumes the highest energy for bone crystal formation and then organises ions clusters or 

the colliding ions in the final structure of crystal lattice, forming a crystal nucleus. After that, 

crystal growth is formed by adding more ions on the existing stable nuclei. This process 

requires less energy compared to the nucleation. Finally, the crystal proliferation is 

established by increasing the number of these nuclei on the surface (11). 

 

Mineral deposition occurs at discrete sites in the collagen matrix and these crystals increase 

in their size. This process is provoked by ECM vesicles, which are produced by chondrocytes 

and osteoblasts. These vesicles release Ca and Pho ions and several other enzymes that 

block degradation of bone mineralisation. ECM vesicles also contain proteins, acidic 

phospholipids and inorganic phosphate and all of these products play a vital role in apatite 

formation. The nucleation process may be influenced by macro-molecules such as collagen, 

osteopontin, BSP and bone acetic glycoprotein-75. These products can bind to Ca in solution 
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and on the apatite crystal surface. Moreover, bone mineralisation is regulated by 

phosphorylation and dephosphorylation. For instance, alkaline phosphatase induces 

phosphorylation and patients with deficiency of this enzyme (hypophosphatasia) have 

abnormal bone mineralisation mechanism. The crystal growth is also dependent on 

collagenous and NCP. Mg and strontium are dietary cations and can bind directly to the bone 

mineral and replacing Ca. This provides bone crystals that are less perfect, smaller and more 

soluble. Nonetheless, the solubility of crystals can be reduced by fluoride. Bisphosphonate is 

another compound, reducing bone solubility without affecting the size of crystals. Tetracycline 

antibiotics chelate Ca and bind to the newly formed bone with high affinity. Therefore, this 

property can be used as a histological quantitative marker of new bone formation. Several 

studies have related bone strength to bone architecture and bone mineral density (BMD). 

Some studies have also reported that the mechanical property of bone is dependent on the 

distribution and size of mineral crystals. Therefore, if there is a large amount of crystals such 

as in skeletal flourosis, the bone may become more brittle and more susceptible to fracture 

(12). 

 

In summary, bone material properties are greatly dependent on the amount of collagen 

proteins and the degree of mineralisation. This designation results in a proper combination of 

bone stiffness and toughness.  

 

1.1.7 Normal mineral homeostasis 

Normal mineral homeostasis is regulated to maintains serum levels (Ca, Pho, Mg), 

intracellular levels and also to optimize the mineral content in bone. This regulation is 

controlled mainly by two hormones, parathyroid hormone (PTH) and vitamin D. This complex 

mechanism principally occurs at three major target organs, the intestine, kidney and bone.  

 

Ca is the most abundant mineral element in the body. The total adult store of Ca is about 

1200gm in the form of hydroxyapatite [(Ca)10(PO4)6(OH)2] in bone which represents 

approximately 98%. Therefore, the serum Ca level reflects poorly the total body Ca. Serum 

Ca can be classified into two main types; ionized Ca (physiologically active) which is found  in 

the form of the free ionic fraction and the non-ionized Ca is mainly bound to albumin (90%) or 

anions such as citrate, bicarbonate and phosphorus. The Ca homeostatic system depends on 
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several important factors: PTH, vitamin D, Pho, and Mg. A small fall in ionized calcium will 

quickly lead to a rise in PTH secretion. PTH stimulates osteoclasts to induce bone resorption, 

increases renal Ca reabsorption and activates vitamin D-25-hydroxylation in the kidney. 

Ultimately, vitamin D increases the intestinal absorption of calcium and at the kidney 

increases tubular reabsorption of calcium.  

 

Approximately 85% of the 700gm of Pho in the adult is in the form of hydroxyapatite in the 

skeleton. Of the remaining 15%, 14% is intracellular, and only 1% is extracellular. The serum 

Pho level plays a vital role in mineral homeostasis therefore, it is important to maintain the 

serum levels of Pho between (0.81-1.45mmol/L). When serum Pho levels decrease, there is 

an increase in the conversion of 25(OH)D to 1,25(OH)2D in the kidney, thereby increasing 

gastrointestinal Pho absorption. Furthermore, it reduces the urinary excretion of Pho.  

Generally the relationship between Ca and Pho shows that a rise in serum Pho usually leads 

to a fall in serum Ca whereas a drop in serum Pho will conversely lead to an increase in the 

serum Ca.  

 

Mg is the second must abundant intracellular cation, with 67% of total body stores found in 

bone, 31% intracellular, and only 2% in the extracellular. Alterations of serum Mg within the 

normal range (0.7-0.85mmol/L) do not appear to affect the concentration of serum Ca. 

However, a rise in serum Mg may lead to suppression of PTH secretion which in turn may 

reduce serum Ca. The gastrointestinal absorption of Mg is independent on vitamin D. Mg 

reabsorption occurs along with Ca by specific Mg transport channels in the distal renal tubule 

(13).   
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1.2 Bone Cell Biology 

Bone tissue is maintained by cells which are involved continuously in the process of 

remodelling and modelling to adapt mechanical and physiological demands. These cells 

include osteoblasts, osteoclasts and osteocytes.  

 

1.2.1 Osteoblasts  

Osteoblasts are cuboidal, mononuclear and basophilic cells which are derived from 

undifferentiated local mesenchymal stem cells (MSC) (bone marrow stem cells or connective 

tissue stem cells) under stimulation of local growth factors such as FGFs, bone 

morphogenetic proteins (BMPs) and Wnt proteins. In addition, some transcriptional factors 

like Runx2, Sox9 and Osterix are also important in the differentiation of osteoblasts. The stem 

cells differentiate into pro-osteoblasts and then into mature osteoblasts (14). These cells 

produce bone matrix and are involved in bone mineralisation by releasing collagen, NCPs 

and alkaline phosphatase. Once they complete matrix production, some of them undergo 

programmed cell death (apoptosis) and others become lining cells and osteocytes (Fig.1.4), 

which are embedded in calcified bone and connected with each other by dendritic processes 

in the canaliculi (15). 

 

The cytoplasmic membranes of the osteoblasts are rich in alkaline phosphatase and have 

receptors for prostaglandin (PG) and PTH. They also express receptor activator of nuclear 

factor κβ ligand (RANKL), receptors for oestrogen, vitamin D, integrins and cytokines. 

Furthermore, they down regulate osteoclastogenesis by secreting cytokines in their 

membranes, particularly colony-stimulating factor-1 (CSF-1). Osteoblasts (Fig.1.4) also 

express osteoprotegerin (OPG), which can inhibit osteoclast differentiation by interrupting the 

RANKL/RANK interaction (16). OPG is a tumour necrosis factors-α (TNF-α) receptor family 

member and inhibits the final differentiation and activation of osteoclasts by blocking RANKL 

and by inducing their apoptosis (17). The Wnt signalling pathway in osteoblasts acts through 

receptors composed of Frizzled and low density lipoprotein related receptors5/6 

(LRP5/LRP6). The interaction between these components results in the intracellular 

accumulation of β-catenin, which in turn stimulates osteoblasts gene expression (18). The 

Wnt signalling pathway can be inhibited either by Dickopf family members through binding 
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with LRP5 or by sclersotin (Scl) through competing with LRP5/Frizzled protein complex. Bone 

alkaline phosphatase and type I collagen products are categorised as earlier markers for 

bone formation. On the other hand, OCN is released at the terminal stages of bone formation. 

In conclusion, the main functions of the osteoblasts are; firstly, formation of the ECM, 

secondly, expression of genes that are involved in bone calcification and stimulation and 

inhibition of osteoclasts through the interaction between RANK /RANKL and expression of 

OPG. 

 

Among the many local and systemic factors that control osteoblats, IGF-1 has an anabolic 

effect on bone formation. IGF releases collagen proteins from osteoblasts and reduce bone 

matrix degradation by inhibiting collagenase (19). They have a key role in bone turnover and 

bone growth (20). IGFs combine with a group of six secreted IGFBPs (1-6) with the IGFBP-4 

and IGFBP-5 being most abundant in bone. IGFBP4 has the ability to block the action of IGFs 

and inhibit bone formation. IGFBP-5 is a polypeptide chain and the amino terminal is attached 

with IGFs. This protein is released during endochondral formation and global knockout of 

IGFBP-5 in mice is associated with osteoporosis. On the other hand, a recent study has 

shown that IGFBP-5 inhibits BMP-2 induced osteoblast differentiation and function andblocks 

bone growth. According to this finding, IGFBP-5 inhibits IGF actions in bone cells (21). 

Vanderschueren et al. (22;23) demonstrated that androgens increase the rate of periosteal 

bone formation in males at puberty, whereas oestrogens decrease this rate, but stimulate 

endosteal bone apposition. Furthermore, oestrogens increase expression of Fas ligand in 

osteoblasts. Fas ligand pathways induce the apoptosis of pre-osteoclasts (24). There are 

many factors that promote osteoblast differentiation including BMPs, FGF, PDGF, PTH, PTH, 

PTHrP, vascular endothelial growth factor and peptides such as activin, inhibin and amylin 

(25).  
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Fig  1.4: Osteoblasts arise from the same pluripotent mesenchymal stem cell with chondroblasts 

adipocytes, myoblasts and fibroblasts. Under influence of several factors, mesenchymal stem cell will 

differentiate into the pre-osteoblast, osteoblast, osteocyte and bone-lining cell. 

 

1.2.2 Osteoclasts 

Osteoclasts are multinucleated giant cells (4-20 nuclei) present only in bone and they are 

responsible for bone resorption. Osteoclasts are originated from hematopoietic precursors of 

the monocyte-macrophage lineage as a result of an interaction with cells of the osteoblastic 

lineage (26). These cells usually found in bone surfaces and within lacuna. One or two cells 

only usually appear in the resorptive site. Under light microscope, the nuclei are 

heterogeneous in shape and size; this may be due to the asynchronous fusion of 

mononuclear cells. The cytoplasm appears foamy and characterised by a large number of 

molecules and many stacks of Golgi membranes. The most interesting features are the 

presence of ruffled borders and clear zones the (sealing zone) (15). The cells are attached to 

bone matrix by integrin receptors (αv B3, αv B5, α2 B1). These receptors bind to a specific 

sequence in the matrix proteins and also require a specific molecule in order to provide a 

proper adhesion to the matrix and cell motility. Differentiation of the osteoclasts requires 

several transcription factors at different stages. PU-1 and MiTf are required at the early stage. 

After that, macrophage colony-stimulating factor (M-CSF) proliferates monocytes and 

ensures expression of the RANK receptor. Under the right stimuli, monocytes and 

macrophages fuse together to form a pre-fusion osteoclast, an immature osteoclast and 

eventually a mature osteoclast, so that they begin the process of resorption of bone matrix 
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(Fig.1.5) (4). Moreover, there are several factors that are involved in osteoclastogenesis at 

different stages of development, including 1,25-dihydroxyvitamin D3, RANKL/RANK, M-CSF, 

IL-1 and TNF-α and PTH. Osteoclasts also express many autocrine and paracrine factors that 

regulate their own activity. A study shows that α9 B1 integrin is produced by osteoclasts at 

the very low levels and this integrin is a receptor for ADAM8 that play an important role in the 

later stage of osteoclastogenesis (27). Osteoclasts can express the receptors for PTH, 

oestrogen and vitamin D (4). Osteoclasts have several specific marker enzymes like tartrate-

resistant acid phosphates (TRAP). They have a large number of proton pumps (V-H+ 

ATPase) and proteolytic enzyme such as matrix metalloproteinase-9 (MMP-9) and cathepsin 

K in lysosomes. In addition; there are calcitonin receptors in these cells, which are located on 

the basolateral membranes (15). Osteoclasts release 1-2 protons for each Ca ions in order to 

stimulate decalcification and degradation of bone matrix. The electrogenic H-ATPase, a 

highly conductive chloride channel, chloride bicarbonate exchangers, carbonic anhydrase 

and accessory pumps have a physiological function in the secretion of protons across the 

ruffled border membrane to dissolve ECM (27). 

 

A balance between the activation and inhibitory factors that control osteoclastogenesis is 

important in dictating the level of bone resorption. Osteoclastogenesis (Fig.1.5) and 

osteoclast survival are promoted by RANKL and M-CSF, which are released from osteoblasts 

or stromal cells. RANK-RANKL interaction can be blocked by the decoy receptor OPG and 

RANKL expression can be upregulated by cytokines such as TNF-α and IL-1. PTH and GCs 

increase RANKL and decrease OPG. IL-1, IL6 and PGE2 have a positive impact on the 

release of RANKL (28). RANKL can also be promoted by 1,25-dihydroxyvitamin D; on the 

other hand, osteoclastogenesis can be inhibited by TGF-ß and estrogen. Oestrogen induces 

bone loss by downregulating IL-1, IL-6, M-CSF, RANKL and TNF-α (29;30), thus inhibiting the 

activation of osteoclast production. Besides proinflammatory cytokines, activated T cells can 

also secrete a number of the above factors (OPG, RANKL and M-CSF) that are involved in 

regulating osteoclast activity (31). Thyroid hormone (T3) is essential for osteoclast 

differentiation but T3-induced osteoclastogenesis is not regulated by RANKL/OPG 

interaction. T3 can induce osteoclast formation in the absence of osteoblasts and its effects 

on osteoclasts are likely to be mediated by other mechanisms such as increased expression 

of c-Fos and Fra-1 (32). The effect of thyroid-stimulating hormone (TSH) on bone is 
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independent of the circulating T3. The TSH receptor is expressed on the surface of both 

osteoclasts and osteoblasts. TSH inhibits bone cell differentiation and reduces bone turnover 

by suppressing LRP-5 and FLK-1 in osteoblast and by down-regulating RANKL in 

osteoclasts. An absence of TSH receptor signalling results in increased bone turnover in 

favour of bone resorption rather than bone formation (33).  

 

In conclusion, osteoclasts are involved in bone remodelling and induce bone resorption. A 

Large number of these steps require cell-cell and cell-matrix interaction (27). Tab.1.4 

summarises the differences between osteoblasts and osteoclasts. It is known that osteoclasts 

are catabolic and destroying bone and osteoblasts are anabolic and forming a new bone, but 

both together have very important function in bone health. Therefore, maintaining a balance 

between them has a positive impact on the musculoskeletal system (34).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  1.5: Osteoclasts are originated from monocyte/macrophage lineage. Osteoclast precursors are 

activated by binding MCSF (osteoblast products) and C-fms receptors. RANKL binds to RANK and 

stimulate the
i
 fusion of osteoclasts precursors resulting in the multinucleated immature osteoclast. This 

finally forms the mature osteoclasts with ruffled membrane borders against the bone surface from 

which they secrete acid and proteolytic enzymes forming a resorption lacuna. 
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Characteristics Osteoblasts Osteoclasts 

Origin Mesenchymal stem cells (MSC) Monocyte/macrophage lineage 

Structure Mononuclear, basophilic Multinucleated, acidophilic 

Function Bone formation Bone resorption 

Production Bone matrix, collagen and 

nocollagen proteins 

Proteolytic enzymes, MMP-9, 

cathepsin K, collagenase 

Receptors PTH, PG, vitamin D3, oestrogen, 

CSF1, RANKL 

calcitonin, CSF1, TNFα, PTH, 

RANK 

Fate Osteocytes, lining cells, 

Apoptosis 

Apoptosis 

 

Tab  1.4: The differences between osteoblasts and osteoclasts cells.  

 

1.2.3 Osteocytes  

Osteocytes are the most abundant cells in bone tissue (90%). They are the terminally 

differentiated cells of the osteoblast lineage (Fig.1.4). They are located within the lacunae and 

the canaliculi of the lacuno-canalicular network surrounded by bone matrix. The osteocyte 

cell bodies reside within lacunae from which long actin-rich slender cytoplasmic processes 

radiate through the canaliculi to connect with the surrounding osteocytes. Osteocytes have 

several functions including that of Ca sensor, a regulatory function in matrix maturation and 

mineralisation and mechanosensor (35). Mechanical loading induces fluid flow through the 

canalicular network leading to a fluid shear stress (FSS) at the cell membrane of osteocytes. 

FSS stimulates osteocytes to produce osteogenic factors such PGE2, COX and NO. These 

products play an important role in initiation of bone remodelling process, which depends on 

osteoclast and osteoblast activity. Recently, van Hove et al. (36) reported that the size of 

osteocytes is negatively correlated with BMD. The osteocyte size is relatively smaller in a 

condition associated with high BMD such as osteopetrosis, whereas these cells were 

relatively large and round in osteopenia and osteoarthritis (low BMD). Therefore, the 

osteocyte alignment and morphology are likely an important parameter in adaptation of bone 

to mechanical loading. The smaller cells are more sensitive to mechanical loading than the 

larger cells. According to the mechanostat theory (37) (Fig.1.6), the mechanical stimulus of 

bone is divided into four zones depending on different loading environments. Firstly, trivial 

loading zone, which is characterised by strain magnitude, is below 200μ-strains and the rate 
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bone resorption exceeds bone formation. If mechanical strain stays below this threshold, then 

bone remodelling by BMU will be activated in favour of bone resorption (disuse mode) 

resulting in net bone loss. Therefore, physical inactivity, reduced muscle strength and lack of 

weight bearing activities may result in osteoporosis (38). Secondly, normal physiological zone 

(bone remodelling) (200-2000μ-strains) where there is a balance between the rate of bone 

formation and bone resorption and this zone maintain bone strength. The third zone is 

overload zone (bone modelling) (2000-3000μ-strains), which induces new bone formation. 

Lastly, in the pathological overload zone (>4000 μ-strains) bone is subjected to higher risk of 

fracture. With the recent reports of increased bone fragility and osteoblastic dysfunction in 

osteocyte-ablated mice, the role of osteocytes in maintaining bone health has become 

increasingly important. It is found that osteocyte less mice are resistant to bone loss due to 

unloading, supporting the importance of these cells in mechanotransduction (39). Mechanical 

stimuli can be translated into intracellular signals by osteocytes through extracellular 

transmembrane receptors such as integrins and CD44, which stimulate bone remodelling 

through the production of secondary intracellular messengers including PGE2, 

cyclooxygenase-2 (COX-2) and NO (40). Proinflammatory cytokines such as TNFα can 

induce osteocyte apoptosis and in vitro studies suggest that mechanical loading can reduce 

TNF-α-induced apoptosis in osteocytes (41). On the other hand, mechanical unloading which 

occurs under conditions of microgravity and a long bed rest result in canaliculi fluid stasis and 

induce osteocyte apoptosis (41;42). Recently, it was reported that Scl secreted by osteocytes 

can inhibit bone formation by blocking a Wnt/β-catenin pathway antagonist through binding to 

LRP5/6. Furthermore, it has been found that hypersclerostinemia associated with immobilised 

patients may lead to reduced bone formation (43). 
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Fig  1.6:Mechanostat theory. The mechanical stimulus of bone to strain magnitudes resulting from 

different loading environments into four distinct zones: trivial load zone (<200 micro(μ)-strains), 

physiological loading zone (200-2000μ-strains), overload zone (2000-3000μ-strains) and pathological 

overload zone (4000μ-strains).  

 

1.2.4 Bone Remodelling  

Bone is a dynamic tissue, in which bone formation and bone resorption continue throughout 

life in response to mechanical and metabolic influences. This process is described as bone 

remodelling through which bone mass can be regulated. This process is coordinated by bone 

cells. The interaction of these cells is indicated as the „Basic Multicellular Unit‟ (BMU). This 

indicates that a coupling mechanism must keep a balance between bone formation and bone 

resorption and no adding bone (44). Bone remodelling is characterised by a balance between 

the amount of bone resorption and bone formation (coupled) and also plays a vital role in 

changing material properties (bone renovation) (45). The rate of BMU mechanism occurs at 

different levels in cortical and trabecular bone.  Although cortical bone represents 80% of total 

volume, the metabolic rate is 10times as high as in trabecular bone because the surface 

volume ratio is much larger (trabecular bone area represents 60% of the total bone surface). 

Therefore, approximately 5–10% of total bone is renewed per year. In the third decade of life, 

bone reaches to the peak bone mass and it is maintained with small variations, up to 50years 

of life. After that, bone resorption predominates and bone mass begins to decline (46). Bone 

remodelling is categorised into five phases: resting, activation, resorption, reversal and 

formation (Fig.1.7). These phases are conducted by complex interaction between osteoblast, 
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osteocytes and osteoclasts. Bone remodelling begins with activation (activation phase) of 

osteoclasts at a quiescent bone surface. Signals, which stimulate osteoclasts in these 

processes, are likely produced by bone deformation (strain) and apoptosis of osteocytes (47). 

Once osteoclasts are formed, a resorption phase is initiated by acidification and destruction of 

bone matrices. Subsequently, the osteoblasts appear at the same resorptive site and cover 

the bone surface (reversal phase). In a formation phase (the longest phase), osteoblasts 

secrete bone matrix and some of these cells differentiate into osteocyte and bone lining cells 

and the remainder undergo apoptosis and then transference to resting phase (48). In bone 

remodelling, osteoblasts and osteoclasts are working very closely in a cooperative manner 

and forming coupling mechanism (49;50).  

 

1.2.4.1 . Genetic Factors 

Genetic factors play an important role in determining the maximum bone mass, since up to 

80% of bone mass is genetically determined, whereas the remaining 20% is controlled by 

environmental factors and sex hormone levels during puberty (51). Several genetic 

polymorphisms are modulating bone mass in human beings such as vitamin D receptor gene, 

LRP5 and COLIA1 (51). It has been found that black women have greater mean levels of 

BMD at all skeletal sites compared with the other ethnic groups such as Asian, black, 

Hispanic and white females (52) 

 

1.2.4.2 Mechanical Factors 

Mechanical loading is essential for the correct development of bone. It is generally agreed 

that mechanical stimuli are detected by the osteocytes within lacunae and through this 

mechanism these cells produce ontogenetic factor such as PGs, nitric oxide (NO) and IGF-1, 

all of which stimulate bone formation (53). Bone remodelling in favour of bone resorption may 

occur in children with conditions that are associated with impaired mobility, such as cerebral 

palsy (CP), spinal cord injury, head injury, muscular dystrophy and spinal muscular atrophy 

(54). Many children will suffer from additional skeletal morbidity (SM) including scoliosis, fixed 

flexion deformities as well as joint subluxation and dislocation. In children with CP, 

pathological fractures are commoner at the femoral shaft and supracondylar region and this 

may be due to abnormalities of growth and presence of contractures in the major joints,  
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Fig  1.7: Bone remodelling is divided into the following phases: activation, resorption, reversal, 

formation and resting. In activation phase, osteoclasts are attracted to the resorption site. Then, the 

osteoclasts start to dissolve bone matrix in the resorption phase. In the reversal phase, osteoblast 

precursors differentiate into mature osteoblasts and migrate into the resorption area. In the formation 

phase, osteoblasts start depositing un-mineralised bone matrix in the resorption lacunae and, finally, in 

the resting phase; osteoblasts terminally differentiate into bone lying cells and osteocytes and then 

bone at rest. This bone remodelling process is controlled by several factors either in favour of bone 

formation or bone resorption.  

 

particularly knees and hips (55). In addition, there are several contributory factors including 

muscle weakness, malnutrition and use of anticonvulsants. In Duchenne muscular dystrophy 

(DMD), the use of GC as therapy for slowing down the progression of the muscular dystrophy 

may also contribute to the pathogenesis of secondary osteoporosis in DMD boys. In a 

longitudinal study of the use of deflazocort in 79 children with DMD who had regular spine X-

rays, the incidence of limb fractures was similar in the treated and untreated group (56). 
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Moreover, vertebral fractures only occurred in 20% of the treated group, no vertebral 

fractures were observed in the untreated group. Abnormalities in markers of bone turnover 

and may have lower BMD (57;58). However, lumbar spine BMD (LS-BMD)  is often preserved 

and should not be the sole means of assessing bone fragility (54). 

 

1.2.4.3 Neurovascular Factors 

Bone is like any other organ that is innervated by the nervous system and the nerve fibres are 

either primary afferent sensory or sympathetic fibres and often associated with blood vessels. 

Nerve fibres are found in the periosteum, bone marrow and mineralised bone, the periosteum 

achieve close sensory innervations. In cortical bone, nerve fibres run in Haversian and 

Volkmann canals (59). There are a number of neuropeptides containing receptors on bone 

cells such as vasoactive intestinal polypeptide, calcitonin gene-related peptide, pituitary 

adenylate cyclase activating peptides , neuropeptide Y, substance P, as well as classical 

neuromediators such as noradrenaline, serotonin and glutamate. These substances are 

important in the bone remodelling process (60). Moreover, vascularisation is essential for 

bone development, not only supplying blood cells, oxygen, minerals, ions, glucose, hormones 

and growth factors, but also playing an active role in bone formation and remodelling by 

mediating the interaction between osteoblasts, osteocytes, osteoclasts and vascular cells at a 

variety of levels. Studies show that over-expression of hypoxia inducible factor alpha in 

mouse osteoblasts results in profound increases in angiogenesis and osteogenesis, which 

are important in endochondral bone formation and bone repair following fracture (61). In the 

hypertrophic zone of growth plate, vascular invasion is down-regulated by Sox9 and, 

therefore, inhibition of Sox9 in the hypertrophic zone of the normal growth plate is essential 

for allowing vascular invasion, bone marrow formation and endochondral ossification (62).  

 

1.2.4.4 Nutritional Factors 

Factors believed to influence bone accretion and peak bone mass include maintaining 

nutritional requirement such as Ca and vitamin D. Adequate Ca intake during childhood and 

adolescence is necessary to attain peak bone mass, which may play an important role in 

reducing the risk of bone fractures and osteoporosis later in life. The optimisation of Ca and 

Pho intake are especially important in adolescence. Peak bone accretion is achieved with an 
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average of 12.5years and 14years for girls and boys respectively. Approximately 40% of total 

lifetime bone mass is accumulated during adolescence in 3–4 years of increased bone mass 

acquisition (63).  

 

1.2.4.5 Glucocorticoids 

Glucocorticoids (GCs) have inhibitory effect on osteoblast number, increasing osteoblast and 

osteocyte apoptosis. These effects lead to suppression in the rate of bone formation (64). 

GCs have also stimulatory effect on osteoclasts by increasing cell differentiation and 

recruitment (65). Therefore, GCs induce rapid bone loss and increase the risk for 

osteoporotic fractures. GCs are commonly prescribed as anti-inflammatory and 

immunosuppressive agents in the treatment of several diseases such as chronic 

inflammatory diseases, asthma, cancer therapy, post-transplant and rheumatoid arthritis (66). 

Nevertheless, the long-term detrimental effects result in glucocorticoid-induced osteoporosis 

(GIO), which is considered the commonest cause of secondary osteoporosis. The catabolic 

effect of GCs on bone cells has various mechanisms. Generally, GCs decrease the rate of 

bone formation by inhibiting osteoblastogenesis and increase bone resorption by stimulating 

osteoclastogenesis. It has been found that MSC can be shifted away from osteoblasts into 

adipocytes by induction of GCs. They also inhibit bone matrix produced by osteoblasts as 

well as induce apoptosis of osteoblasts. Furthermore, the sensitivity of IGF-1 can be 

suppressed by steroids. Osteoclastogenesis can be promoted indirectly by increasing the 

expression of RANKL and decreasing the production of OPG, resulting in increased bone 

resorption (67). In addition, GCs reduce intestinal Ca absorption and increase renal 

execration rate of Ca (54). According to Wolff‟s law, bone development is dependent on the 

muscle forces. It is well known that muscle weakness can also be caused by GCs (67). 

Therefore, patients treated with GCs particularly during growth show a decline in the rate of 

bone formation, increase in vertebral compression fractures and suppression in linear growth 

(54;66). 

 

Approximately 5–10% of children may use GCs at some time during childhood (68). In adults, 

a rapid loss of BMD is observed in GC therapy particularly in the first year of treatment. Whilst 

this loss may persist throughout duration of treatment, it may reverse partially on cessation of 

GCs. A study in children receiving chemotherapy for leukaemia shows an imbalance between 
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markers of bone formation and bone resorption and reversibility (69). This is particularly 

marked during periods of high dose GC therapy. However, markers of bone formation remain 

low even during maintenance chemotherapy when children received relatively low doses of 

GC (69). Trabecular bone seems to be more sensitive than cortical bone to the catabolic 

effects of GC (70), but this is not universally reflected in fractures in children; in some 

conditions such as ALL children receiving GC therapy, appendicular fractures are commoner 

than fractures of the axial skeleton (71;72). However, a recent report shows that 16% of ALL 

children had vertebral fractures during the first month of chemotherapy (73). The largest 

study to evaluate the incidence of fractures among paediatric GC users was a case-control 

study involving over 37,000 children treated with four or more courses of oral GCs for a mean 

duration of 6.4 days (74). Compared with controls, GC-treated children had an adjusted odds 

ratio for fracture of 1.32 (95% confidence interval, 1.03-1.69). Moreover, the risk of fracture 

may depend on the dose of GC with an incidence of about 2.6% versus 1.6% in the low dose 

group (75). For the treatment of some conditions such as ALL, dexamethasone is preferred 

over prednisolone, and our group‟s preliminary data confirm previous observation of higher 

bone morbidity in those children receiving dexamethasone compared with prednisolone (71). 

In comparison with prednisolone, dexamethasone may be almost 10 times more potent at 

suppressing bone turnover (68). Besides GC, other chemotherapy, abnormal mineral 

homeostasis and even the disease process itself might affect bony morbidity (72;75). For 

example, methotrexate induces bone resorption and decreases bone formation, which may 

be treated with administration of antidote folinic acid (76).  

 

1.2.4.6 Adipocytokines 

Bone mass can be controlled by adipocytokines such as leptin and adiponectin. Leptin and 

adiponectin are polypeptide hormones produced primarily by adipocytes. Leptin is positively 

correlated with fat mass (FM) and controls body weight, whereas adiponectin is negatively 

correlated with FM. Leptin controls weight through specific receptors located in the 

hypothalamus. Adiponectin modulates energy storage and communicates primarily with 

skeletal muscle and the liver (77). A high bone mass is observed in leptin-deficient and leptin 

receptor-deficient mice, although they have hypogonadism and hypercortisolism. It shows 

also that intracerebroventricular infusion of leptin in leptin deficient and wild-type mice 

increases the rate of bone loss. This study suggests that leptin is a strong inhibitor of bone 
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formation (78). In contrast, adiponectin increases bone formation by inhibition of 

osteoclastogenesis – decreasing osteoclast numbers and blocking M-CSF and RANKL 

molecules – and stimulation of osteoblastogenesis – increasing mRNA expression of alkaline 

phosphatase and mineralisation activity of osteoblasts (79).  

 

1.2.4.7 Local Factors  

Bone remodelling is also regulated by local factors which are divided into two main groups: 

growth factors and cytokines. Generally, growth factors stimulate bone formation and 

cytokines stimulate bone resorption (Tab.1.5).  

 

 Growth Factors Cytokines 

 
Bone Formation 

BMP-2(+) 
BMP-4(+) 
BMP-6(+) 
BMP-7(+) 
IGF-I(+) 
IGF-II(+) 
TGF-β(+) 
FGF(+) 
PDGF(+) 

 
Adiponectin(+) 

 
Bone Resorption 

EGF(+) 
M-CSF(+) 
GM-CSF(+) 
PDGF(+) 
FGF(+) 
 

TNF-α(+) 
IL-1(+) 
IL-6(+) 
IL-8(+) 
IL-11(+) 
PGE1(+) 
PGG2(+) 
PGI2(+) 
PGH2(+) 
Leptin(+) 

 

Tab  1.5: Regulatory local factor in bone remodelling (+) stimulates bone formation and bone 

resorption. The stimulatory local factors are bone morphogenic protein (BMP), Insulin-like growth 

factor1 -2 (IGF-1, IGF-2), transforming growth factor (TGF), fibroblast growth factors (FGF) and 

platelet-derived growth factor (PDGF). The inhibitory local factors are epidermal growth factor (EGF), 

macrophage colony-stimulating factor (M-CSF), Granulocyte macrophage colony-stimulating factor 

(GM-CSF), tumour necrosis factors-α (TNF-α), Interleukin (IL-1,6, 8,11) and prostaglandins (PG).  
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1.2.5 Bone Modelling  

The cellular activity of bone modelling is similar to bone remodelling (48). In bone modelling, 

osteoclasts and osteoblasts are working at the same time, but at different sites or surfaces 

(Fig.1.5). For example, the osteoclast cells dissolve bone matrices at the endosteal bone 

surface and the cells osteoblasts form a new bone at the periosteal bone surfaces. Bone 

formation and bone resorption are uncoupling and the rate of bone formation is higher than 

resorption. Consequently, bone modelling causes  changes in bone shape and size (80). 

Bone modelling can be described as building up the skeleton.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 54 

1.3 Biochemical Markers of Bone Metabolism 

Different bone markers reflect different steps in bone formation or bone resorption and 

enzymatic activity of bone cells. Biochemical markers of bone metabolism are divided into 

two groups; bone formation markers and bone resorption markers. These makers can be 

measured either in blood or urine.  

 

1.3.1 Bone Formation Makers  

Bone formation markers reflect osteoblast activity; bone-specific alkaline phosphatase (BAP) 

and OCN are produced by osteoblast. The N-terminal and C-terminal extension peptides of 

procollagen are released during collagen synthesis.  

 

1.3.1.1 Bone Alkaline Phosphatase  

BAP is the most frequently used as a biochemical marker of osteoblastic bone formation due 

to the wide availability of inexpensive and simple detection methods. The serum level of BAP 

is highly specific and increases significantly in osteoporotic post-menopausal women. In 

leukemic children BAP is low throughout treatment, which suggests impaired osteoblast 

differentiation resulting from a direct effect of chemotherapy on bone (69). BAP is expressed 

in the early period of osteoblastic differentiation (81) and is produced in high amounts during 

the cycle of bone formation. Therefore, BAP represents a good indicator of osteoblast activity 

(82). BAP is a glycoprotein and functions as an ectoenzyme attached to the cell membrane 

by a hydrophobic glycosyl-phosphatidylinositol anchor. In humans, there are four gene loci 

encode alkaline phosphatase: placental alkaline phosphatase, germ cell alkaline 

phosphatase, intestinal alkaline phosphatase and tissue non-specific alkaline phosphatase 

(liver and bone). These four different genes produce four alkaline phosphatase isoenzymes. 

Both BAP and liver alkaline phosphatase are glycoproteins encoded by the same tissue 

nonspecific gene locus and they have the same amino acid sequences and are referred to as 

isoforms rather than isoenzymes (83). Approximately 95% of the circulating total alkaline 

phosphatase in humans is derived from bone and liver sources found in serum with a ratio of 

~1:1 (84). The four isoforms of BAP can be measured in human serum. These are two major 

isoforms (B1 and B2) and two minor isoforms (B/I and B1x) present in serum of 60% of 

patients with severe chronic kidney disease. The B/1 isoforms is mainly found in bone (70%) 
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and in 30% of cases in intestine. The major isoforms B1 and B2 may provide a clue as to 

where bone metabolism is active; cortical bone is richer in B1, whereas trabecular bone is 

richer in B2 (85).   

 

1.3.1.2 Osteocalcin   

OCN has low molecular mass (58KDa), 49amino acid peptides synthesised by osteoblasts 

and is vitamin K and D dependent (86). OCN is expressed in the later period of bone 

formation (81). Vitamin K stimulates the carboxylation process of OCN at positions 17, 21 and 

24 by adding glutamyl residues forming alpha-carboxylglutamyl residues, which in turn leads 

to increasing the affinity binding to the hydroxyapatite (87). Vitamin D has a direct stimulation 

on the OCN gene transcription (88). OCN can be found in two forms; the most abundant 

protein is present as NCP in bone matrix and the newly synthesised form of OCN is found in 

the circulation. Approximately 10–40% of OCN is released into the circulation and can be 

used as a reliable marker of bone formation (89). However, OCN is easily subject to 

degradation in circulation at residues 19–20 and 43–44 producing various sizes of OCN in the 

circulation (1–19 N-terminal, 20–43-mid-OCN, 43–49 C-terminal, 1–43 mid-N-terminal OCN, 

20–49 mid-C-terminal OCN). Some studies have reported that N-terminal OCN (1–19) may 

be released even during bone turnover (90). The instability of OCN might produce some 

problems in the specificity and sensitivity of the OCN assays. To overcome this problem, 

measuring of the N-terminal/mid molecule (1/3 of OCN) is more reliable to assess bone 

formation (91). Recently, it was shown that in addition to simply acting as a marker of bone 

formation, OCN plays an important role in regulating blood glucose homeostasis and energy 

metabolism. The activation of circulating OCN can result from the conversion of carboxylated 

form into decarboxylated form of OCN in the resorption lacuna in acidic media. The 

decarboxylated form of OCN stimulates B-cell proliferation and adiponectin in adipocytes. 

The decarboxylated OCN acts as a hormone favouring β-cell proliferation, insulin secretion, 

insulin sensitivity and energy expenditure (92;93). Another hormonal action of bone is 

mediated by an osteoblast-specific secreted molecule. OCN is able to induce testosterone 

production by stimulating the Leydig cells of testes but does not have an effect on estrogen 

secretion (94).   
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1.3.1.3 Procollagen Type I  Propeptides  

Procollagen type I propeptides are resulted from the degradation of procollagen in the 

process of type I collagen production. Type I collagen can also be found in other tissues such 

as skin, dentin, cornea, vessels, fibrocartilage and tendons. In bone, osteoblasts produce 

primarily  the collagen in the structure of pro-procollagen which then will be subject to 

cleavage at the amino and carboxy terminal  releasing these two molecule PINP and PICP, 

respectively (95). These propeptides circulate in blood, where they are used as markers of 

bone formation and can be measured by specific immunoassays (96). PICP is a single 

protein (115kDa), while PINP (70kDa) circulates as three different forms, including an intact 

trimer, a monomer and several fragments (97). However, the measurements of PINP show 

more validity in a clinical practice than PICP (98).  

 

1.3.2 Bone Resorption Markers  

The majority of bone resorption makers result from degradation products of bone collagen 

except for tartrate-resistant acid phosphatase. More recently, non-collagenous proteins such 

as BSP and osteoclast-derived enzymes such as cathepsin K and L have been applied as a 

marker of bone turnover. Bone resorption markers are divided into three groups: collagen-

related markers, NCP and osteoclastic enzymes.  

 

1.3.2.1 Hydroxyproline  

Hydroxyproline (OHP) is one index of total collagen degradation, and is formed around 12–

14% of the total amino acid content of collagen and produced intracellularly by post-

translational hydroxylation of peptide chain. Approximately 90% of OHP is metabolised in the 

liver, so that only 10–15% appears in urine (99). The urinary OHP is usually considered as an 

index of bone resorption marker. However, it is noticeable that a major part of urinary OHP is 

derived from the newly synthesised collagen. Moreover, OHP can be found in other tissues 

such as skin (100) and derived from other sources such as diet and C1q, which has collagen-

like sequences (101). The urinary OHP is, therefore, considered to be poorly correlated with 

bone resorption rate and has now been largely replaced by more specific and sensitive 

assays. 
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1.3.2.2 Urinary Hydroxylysine Glycosides 

Hydroxylysine is also an amino-acid used as a marker of bone resorption. Hydroxylysine 

results from collagen degradation. It is present in two forms: glycosyl-galactosyl-

hydroxylysine and galactosyl-hydroxylysine. The glycosyl-galactosyl-hydroxylysine form can 

be found in skin and C1q component, whereas galactosyl-hydroxylysine is present primarily 

in bone. It is not recycled and significantly metabolised during collagen turnover, and the 

levels are not influenced by diet (102). The measurements of urinary hydroxylysine provide 

more sensitive reflection of collagen breakdown than OHP (103).   

 

1.3.2.3 Urinary Pyridinoline 

The urinary excretion of pyridinium cross-links of collagen, pyridinoline and deoxypyridinoline 

can be used as a marker of bone resorption. Pyridinium, pyridinoline and deoxypyridinoline 

are non-reducible cross-links that bridge several collagen peptides and mechanically stabilise 

the collage chain within ECM (104;105). The cross-link components are released into the 

circulation and the urine due to breakdown of collagen stabilisers during bone resorption 

(106). These two components have several advantages. Firstly, their measurements are 

mainly influenced by degradation of mature cross-linked collagen and independent of the 

degradation of the newly synthesised collagens. Secondly, the urinary execration of 

pyridinium cross-links is intrinsic as their components are not taken up from food (107). 

Finally, they are also highly specific for skeletal tissue since pyridinoline is present in 

cartilage, bone, ligaments and vessels, while deoxypyridinoline is highly specific for bone and 

dentin. As tissue turnover is much higher in bone than the other tissues containing these 

proteins, the measurements of pyridinoline and deoxypyridinoline in serum or urine mostly 

reflect bone resorption (108). Gineyts et al. (75) have published a highly sensitive and 

specific method for measuring pyridinoline and deoxypyridinoline (109).  

 

1.3.2.4 Cross-linked Telopeptides of Type I Collagen 

The cross-linked telopeptides of type I collagen are derived from degradation of specific 

regions of the type I collagen, called the amino-terminal and the carboxy-terminal telopeptide. 

ICTP was the first collagen marker measured in serum by a radio-immunoassay (RIA) and 

can be assessed in serum and urine. In the past the ICTP assay was relatively insensitive for 
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measuring changes in physiological bone resorption (6). On the other hand, this assay has 

potentially a clinical application in the conditions that include local destruction of bone tissue 

such as multiple myeloma (110), metastatic bone disease (111) and rheumatoid arthritis 

(112). The carboxy terminal and the amino terminal telopeptide can also be assessed by 

another group of immunoassay, called CTX and NTX assays, respectively. Recently, a new 

assay was developed to measure serum CTX (ββ-CTX and αα-CTX) using sandwich ELISA. 

Furthermore, Rosen et al. (113) reported that the serum CTX assay was more sensitive for 

assessing efficacy of pamidronate treatment than NTX and free deoxypyridinoline (113). NTX 

has two α (α1,α2) chains in the N-terminal. The NTX assay is detecting the epitope on the α2 

chain by using a monoclonal antibody. However, this antibody has several cross reactions 

with other components such as skin collagen (114).   

 

1.3.2.5 Bone Sialoprotein  

BSP is an acidic phosphorylated glycoprotein (MW 70-80KDa) and is produced from different 

cells – primarily osteoblasts (115) and odontoblasts – and also found in osteoclast-like and 

malignant cell lines. BSP composes of 5–10% of NCP. The main function of BSP is 

stimulating the attachment of osteoclasts and osteoblasts as it has a Arg-Gly-Asp integrin 

recognition sequence (116). This protein has an affinity to α2 chain of collagen and stimulates 

the nucleation process of hydroxyaptite (117). Therefore, BSP plays an important role in bone 

cell matrix adhesion processes and mineralisation of ECM. In serum, the large proportion of 

BSP is bound to factor H, a major regulator of the alternate complement pathway (118). 

There are several immunoassays developed based on polyclonal antisera to measure the 

serum BSP. Based on clinical data, it is suggested that serum BSP can be used as an index 

for assessing bone resorption (119). It is found that serum BSP decreases after 

administration of bisphosphonate in post-menopausal women (120). 

 

1.3.2.6 Tartrate-Resistant Acid Phosphatase  

TRAP has five different isoforms are expressed by different tissues and cells such as 

prostate, bone, spleen, platelets, RBC and macrophages. However, the two main isoforms of 

TRAP are known as TRAP5a and TRAP5b with optimal pH of 5.0 and 5.6, respectively. 

Recently, it was shown that TRAP5b is secreted by osteoclasts, whereas the origin of 
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TRAP5a is still unknown. Therefore, the measurement of serum TRAP5b by specific 

immunoassays can be used as a marker of bone resorption. Moreover, Halleen et al. (121) 

reported that in osteoporotic patients, there was a negative correlation between BMD and 

TRAP5b, but not with TRAP5a.  

 

1.3.2.7 Cathepsin K 

Cathepsin K is the most abundant cysteine protease expressed and secreted by osteoclasts 

and during active bone resorption. In clinical practice, a mutation in this gene can lead to a 

condition known as pycnodysostosis (autosomal recessive), which is characterised by high 

BMD (osteopetrosis) and multiple fractures (122). Serum cathepsin K can be detected by 

immunoassays and may be a useful and specific biochemical marker of osteoclasts. 

Recently, a cathepsin K inhibitor (odanacatib) was tried as a new treatment for osteoporosis 

as it has a sustained suppression of bone resorption (123).  

 

1.3.2.8 Sclerostin 

Scl is produced by osteocytes under regulation of mechanical loading. Scl is a Wnt signalling 

antagonist. Recent data showed that non-ambulatory women have a higher level of serum 

Scl than control. Moreover, there is a negative correlation between BAP and Scl positive 

correlation with CTX. Therefore, the evaluation of serum Scl by ELISA can be a useful marker 

of bone resorption particularly in those who have mechanical unloading (124). 
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1.4 Bone Development and Growth 

Skeletal development is the development of the human skeletal system from the early days of 

gestational life until the bones have reached their peak of development in late puberty. There 

are two processes involved in bone growth and development: endochondral ossification 

(deposition of bone matrix on a pre-existing cartilage matrix, which occurs mainly in short and 

long bones) and intramembranous ossification (direct mineralisation of bone matrix produced 

by osteoblasts, which occurs mainly in flat bones).  

 

1.4.1 Endochondral Ossification  

Endochondral (Greek word means Endo=within and Chondral=cartilage) ossification takes 

place within a small piece of cartilage model (125). Bone development is started by formation 

of mesenchymal condensation, which then results in the initial cartilage model under the 

direction of local growth factors such as homeobox (hox) genes (126) TGF-β , FGF, BMP 

(127), Wnt protein, and also requires transcription factors Runx2 and osterix. These MSC 

condense and then differentiate into chondrocytes, which secrete collagen proteins such as 

II, IX, XI and aggrecan under the influence of transcription factors including Sox9. Then, the 

cartilaginous model grows (Fig.1.7) in its size through proliferation of the chondrocytes and 

through formation of specific cartilage matrix. In the centre of the cartilage model, there will 

be some changes including that the chondrocytes halt proliferating. Instead of these cells 

enlarging in their size (chondrocyte hypertrophy) and secrete matrix which are subsequently 

invaded by capillaries. Additionally, the composition of cartilage matrix is replaced by collagen 

X. After chondrocyte hypertrophy and cartilage matrix mineralisation, pre-osteoblasts, 

osteoclasts and blood vessels migrate into this region. The hypertrophic chondrocytes 

subsequently undergo apoptosis and pre-osteoblasts differentiate into mature osteoblasts, 

which predominately produce type I collagen. The collagen fibres at this stage are not tightly 

oriented and form a woven bone. This region is remodelled by invasion more osteoblasts and 

osteoclasts in order to form mature trabecular bone. All of these processes result in the 

formation of a primary ossification centre. The primary ossification begins in the shaft, and 

then proceeds outward from the medullary cavity and inward from the periosteum. Eventually, 

all cartilages are replaced by bone. The same mechanism occurs at the periphery of bones 

and forms secondary ossification centres. Once the shaft and epiphysis are ossified, cartilage 
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growth located between the primary and the secondary ossification centres is known as the 

growth plate (128).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  1.8: Bone development. The schematic diagram shows the serial steps of endocondral bone 

formation. 

 

1.4.2 Intramembranous Ossification 

Intramembranous ossification utilises a direct bone deposition by osteoblasts.  Perichondrial 

cells develop around the chondrocytes and both of these cells regulate each other. The 

genetic expression of the perichondrial cells is different from the chondrocytes by lacking of 

Sox9 gene. However, they can produce BMP and parathyroid hormone related peptide 

(PTHrP) that are of vital importance in the regulation and differentiation of the chondrocytes. 

They also have a role in differentiation of chondrocytes into pre-osteoblasts and then into 

mature osteoblasts under the influence of Indian Hedgehogs and other signalling molecules. 

These osteoblasts synthesise bone matrix (type I collagen) and form intramembranous bone 

surrounding the cartilage model. The remaining intramembranous bone undergoes 

remodelling processes by endosteal osteoclastic activity and periosteal osteoblastic activity 

forming the marrow space and periosteal new bone formation (periosteal calcification) 
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respectively. Haversian systems are formed in the areas surrounding the infiltrating blood 

vessels (129).  

 

In conclusion, we can see clearly that bone growth and development utilise both 

mechanisms. For instance, long bones such as the femur initially form and grow longitudinally 

by an endochondral ossification, but grow in diameter by the intramembranous ossification.  

 

1.4.3 Longitudinal Bone Growth  

Longitudinal bone growth takes place at the growth plate by endochondral ossification. 

Longitudinal growth depends on both proliferation and hypertrophy of chondrocytes in the 

growth plate. The rate of longitudinal bone growth is controlled by biomechanical factors and 

numerous systemic and local growth mediators that interact to regulate the activities of the 

growth plate chondrocytes. Lengthening of the appendicular bones is dependent on 

chondrocyte proliferation and differentiation in the epiphyseal growth plate of long bones, 

forming endochondral bone formation (20). The growth plate is an avascular tissue and is 

found near the ends of long bones and vertebrae. The chondrocytes in the growth plate are 

arranged into columns that parallel the longitudinal axis of the bone (130). ECM comprising 

collagenous and proteoglycan make longitudinal and transverse septae, which separate each 

column and each chondrocyte respectively (131). The growth plate has four stages of 

differentiation during growth period: resting zone (zone I), proliferative zone (zone II), 

hypertrophic zone (zone III) and terminal zone (zone IV) (Fig.1.8). Undifferentiated stem cells 

(resting zone) differentiate into chondrocytes. Then these chondrocytes in the centre of the 

growth plate enlarge proliferate (proliferative zone) and differentiate into further hypertrophic 

chondrocytes (from 6-10 times). The hypertrophic cells (hypertrophic zone) grow in columns 

in the direction of the long bone axis. However, the chondrocyte proliferation rate becomes 

very slow on the top of the growth plate and these cells are known as resting zone 

chondrocytes. The latter may serve as stem cells for the remaining chondrocytes (66;132). 

 

The hypertrophic cells are eliminated by apoptosis and this zone will be invaded by blood 

vessels and become completely calcified bone tissue. Eventually, the growth plate will be 

replaced by calcified tissue at the end of the growth period. This process is complex and  

controlled by a number of systemic and local autocrine/paracrine mechanisms (20).  
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Fig  1.9: The histological structure of the growth plate. It is categorised into three zones: resting, 

proliferative and hypertrophic (131). 

 

1.4.4 Systemic Control of Growth  

1.4.4.1 Growth Hormone 

GH is a single chain 191-amino acid polypeptide, secreted in pulsatile and intermittent 

manner from anterior pituitary gland under the control growth hormone releasing hormone 

(GHRH) and somatstatin, which are positive and negative regulators respectively. Although 

several hormones are important for the control of longitudinal growth, GH is considered to be 

the most important hormone regulating postnatal growth. Therefore, recombinant human GH 

(rhGH) is widely used to treat conditions that are associated with short stature such as 

Turner‟s syndrome and Prader Willi syndrome (133). Abnormal GH response is also 

prescribed in chronic inflammatory condition that has a negative impact on linear growth 

(134). A randomised controlled trial (RCT) shows that daily subcutaneous injections rhGH in 

children (n,22) with Crohn‟s disease (CD) can improve short-term linear growth (135). GH can 

also be induced by Ghrelin which has an important role in proliferation and differentiation of 

osteoblasts (136). GH stimulates growth at the growth plate by increasing cell size rather than 
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increasing cell number (137). GH receptors (GHR) can be expressed by chondrocytes and 

osteoblasts. The GHR is a type of the class 1 cytokine receptor super-family and composed 

of three components (Fig.1.9): an extracellular and a transmembrane and an intracellular 

domain. GH activates GHR through dimerisation of the extracellular domain. This leads to 

phosphorylation of the intracellular domain with the tyrosine kinase Janus kinase 2 (JAK2) 

and, subsequently, induces intracellular the signal transducers and activators of transcription 

(STAT1, STAT3, STAT5). STAT is the main pathway in the function of GH. STAT5 proteins 

often have two isoforms such as STAT5a and STAT5b. STAT1 null mice are associated with 

normal size, while STAT3 null mice are incompatible with life in the early embryonic stages 

(20). Kofoed et al. (138) reported that human mutation in STAT5b is associated with GH 

insensitivity and leads to a severe short stature. Interestingly, growth retardation and reduced 

circulating IGF-1 are found in STAT5b null mice, but not in STAT5a null mice. This might 

suggest that GH signalling is more effected by the STAT5b isoform (139). The GH signalling 

can be inactivated by suppressor of cytokine signalling-2 (SCOS2) through blocking STAT5 

or inhibiting phosphorylation in JAK2 (140). SCOS2 null mice display an increased 

longitudinal skeletal growth and wilder growth plates with wilder proliferative and hypertrophic 

zone. It also shows increased total cross sectional bone area, bone volume and trabecular 

thickness. The SOCS2 protein expression can be stimulated by TNF-α in the growth plate 

(141).  
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Fig  1.10: This diagram shows the mechanism of growth hormone (GH). GH activates the GH receptor 

(GHR)-associated tyrosine kinase JAK2 by phosphorylation (JAK2-P). This results in auto-

phosphorylation and to phosphorylation of the intracellular domain and stimulates the signal 

transducers and activators of transcription (STAT). Suppressor of cytokine signalling-2 (SCOS2) is also 

able to bind the GHR and may, therefore, block STAT5 and JAK2.  

 

1.4.4.2 Insulin-Like Growth Factors  

IGF-1 stimulates growth both prenatally and postnatally. IGF-1 is a single polypeptide chain 

produced mainly from liver under stimulation of GH. IGF-1 promotes longitudinal bone growth 

by increasing both size of the hypertrophic zone and the chondrocyte proliferation rate during 

the early stage of bone growth (142). The effect of IGF-1 at the proliferative phase is induced 

by shortening the time cycle rather than by clonal expansion (143). An in vitro study shows 

that the IGF-1 signalling pathway plays a vital role in regulating endochondral bone growth 

independently through the p44/42 mitogen activated protein kinase (Erk1/2) and phosphor-

inositide 3-kinase (PI3K) pathways (144). The cellular actions of IGF-1 are activated by a 

receptor tyrosine kinase (IGF-1R) and this receptor is expressed in the chondrocytes of 

growth plate. Binding IGF-1 to its receptors in the chondrocytes initiates a number of 

autophosphorylation reactions. The IGF-1 signalling pathway can be interrupted by different 

expressions such as TNF-α and IL-1 (145). IGF-1R null mice die shortly after birth and show 

disorganisation in chondrocyte pattern and abnormalities in vascularisation and mineralisation 

(146). Furthermore, the GHR/IGF-1R knocked out mice show a greater reduction in bone 

growth compared with individual gene mutation only in the IGF-1R and missing the GHR. In 

fact, the functional correlation between the GH and IGF-1 is still unclear. Nevertheless, IGF-1 
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can stimulate bone growth in the lack of GH. For example, the short stature in Laron 

syndrome can be improved by IGF-1 only (4). 

 

IGF-1 influences on chondrocyte functions is regulated, in part, by IGF-binding proteins 

(IGFBP) (147). IGF-1 circulates bound to one of the six IGFBPs (148) and IGFBP-3 

predominates in the circulation (90-95%) (149). Mukherjee and Rotwein. (21)  demonstrated 

that IGFBP-4 and IGFBP-5 predominate in bone. IGFBP-4 has ability to block the action of 

IGFs and inhibits bone formation. On the other hand, the exact function of IGFBP-5 remains 

controversial. IGFBP-5 is a polypeptide chain and the amino terminal is attached with IGF1. 

This protein is released during endochondral formation and it deposits in adult bone. Global 

knockout of IGFBP-5 in mice causes low changes in bone minerals or whole animal 

physiology. However, its overexpression has a significant detrimental effect on mineralisation. 

In contrast, other studies show that IGFBP-5 in combination with IGF-1 has both stimulatory 

and inhibitory effects on bone. However, it has been found that the BMP-2- induced 

osteoblasts differentiation can be blocked by IGFBP-5 and also suppress longitudinal growth 

and bone mineralisation in mice. Therefore, this study supports the inhibitory effect of IGFBP-

5 (21).  

 

The secretion of GH and IGF-1 decreases with age; the declining rate is much higher in men 

than women. The underlying mechanism could be related to either central or peripheral 

causes. The central causes might be due to decrease of the secretion of GHRH and over 

expression of somatostadin. The peripheral causes might be due to decline of the sex steroid 

activity and decreasing the physical activity. Therefore, the muscular performance and bone 

density decrease with age (20).   

 

In conclusion, GH and IGF-1 are considered as major regulators and stimulators of 

longitudinal bone growth. The effect of GH on growth plates are likely to be mediated 

predominately by locally produced IGF-1. Therefore, both of these compounds are found in 

each stage in chondrocyte differentiation, but at a varying degree. They, moreover, have a 

key role in bone remodelling and modelling processes.   
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1.4.4.3 Insulin  

Overweight and obese children grow faster, have accelerated bone maturation and start 

puberty earlier compared with normal weight peers. It has been suggested that elevated 

serum insulin levels in overweight children is responsible for stimulation longitudinal bone 

growth as they are often insulin-resistant. A recent study in mice has shown insulin increased 

growth of cultural metatarsal bones and cultured chondrocyte. Furthermore, after 

normalisation of insulin by pioglitazone, the increased longitudinal bone growth had been 

abolished, but weight did not change. This finding suggests that insulin level, not obesity, has 

a direct effect through receptors on skeletal maturation (150).  

 

1.4.4.4 Pro-inflammatory Cytokines   

Pro-inflammatory cytokines (IL-1, IL-6 and TNF-α) have an adverse effect on longitudinal 

bone growth. It has been shown that TNF-α induces an apoptosis in chondrocytes by 

increasing caspase-3 activity, whereas the cytokine (IL-1) inhibits proteoglycan synthesis by 

these cells (131). A recent report has shown that there is an improvement in linear growth in 

children with CD treated with Adalimumab (Anti-TNF-α ) (151). A direct effect of cytokines at 

the level of growth plate might provide an explanation for growth disorders in chronic 

inflammatory conditions (152). An indirect effect of pro-inflammatory cytokines on growth 

plate can be meditated through inhibition of anabolic hormones (GH, IGF-1 and sex steroid) 

(148). Furthermore, there are other multiple factors contributing to poor growth in patients 

with inflammatory diseases such as poor nutrition and GCs (148;152). IL-6 inhibits the 

formation of IGF-1/IGFBP-3 and increases the proteolysis of IGFBP-3 and this results in 

enhanced clearance of IGF-1(148).  

 

1.4.4.5 Glucocorticoids 

GCs may impair growth through a negative influence on the GH/IGH-1 axis by a reduction of 

GH secretion or altering IGF-1 sensitivity (148). At the level of the growth plate, GCs inhibit 

chondrocyte proliferation (153) and increase in apoptosis of terminal hypertrophic through 

down regulation of anti-apoptotic proteins (154). IGF-I can also prevent growth impairment 

resulting from dexamethasone by stimulating chondrocyte proliferation (153). A clear 

association of growth retardation has been reported with prolonged dose duration (155). In 
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children treated with GCs, particularly during growth, catch-up growth often follows 

completion of GCs treatment, but those patients might have reduced final height (54;66).   

 

1.4.4.6 Sex Steroids 

Sex steroids are important for the growth and maintenance of both the female and the male 

skeleton. It is found that estrogen plays an important role in the initiation of the pubertal 

growth spurt. Therefore, blocking the effect of oestrogen through a gene mutation such as 

ERα;hERKO man and aromatase P450 (CYP19; converts testosterone to oestrogen in boys) 

by a drug such as letrozole (aromatase inhibitor) can lead to immature bones, open growth 

plates and lack of pubertal growth spurt and continuation of linear growth (156). Estrogen 

hormone has direct and indirect effects on the bone longitudinal growth. The direct effect is 

influenced by stimulation of the estrogen receptors (ER) in the growth plate. Two different 

types of ER (ER-ß and ER-α) can be expressed in the growth plate and both of them release 

gene expression through stimulation of activating protein-1. It is found that ER-α can be 

expressed in all zones in the growth plate, whereas ER-ß are localised only in the 

hypertrophic zone. Each receptor is responding differently to estradiol concentration and has 

a dual effect on growth depending on the level of concentration. A higher concentration of 

estradiol is required to activate ER-ß compared with ER-α. The highest level of estradiol will 

occur at the end of puberty, when the growth plate fuses. The presence of ER-ß in the 

hypertrophic zone and their stimulation under high concentration of estrogens can speculate 

the significance of ER-ß in the growth plate fusion (156). This concentration of estrogens has 

also an inhibitory effect on bone growth mediated by preventing gene clonal expansion and 

halting the proliferating stage in the growth plate. Moreover, high doses of estrogen have an 

apoptotic effect on the hypertrophic zone and also facilitate osteoblast invasion in the growth 

plate. Subsequently, these can lead to an epiphyseal fusion. On the other hand, at a lower 

concentration, estrogen stimulates linear growth through increased secretion of GH and can 

also proliferate chondrocytes at the proliferative zone. It is reported that males with estrogen 

deficiency due to either ER gene mutation or a mutation in the aromatase gene result in tall 

stature syndrome. The growth can be influenced indirectly by estrogen. It is found that ER-ß 

and ER-α receptors are also expressed in pituitary gland and hypothalamus. Several studies 

demonstrated that GH levels are higher in prepubertal girls in comparison with prepubertal 

boys. This higher level could be related to the estrogen hormone (157). In girls, the estrogen 
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level is positively correlated with tibial length before menarche, but negatively after menarche 

(158). A recent study has shown that ER-α knockout mice have normal growth and normal 

sexual maturation during early life. This growth continues beyond the age when growth 

normally stops. Therefore, ER-α signalling in growth plate plays a vital role in growth 

cessation (159). 

 

Androgens have direct effects on linear growth via stimulation of all stages in the growth plate 

through androgen receptors. These receptors have been detected in all zones of the growth 

plate. The indirect effects can be induced by their aromatisation into oestrogens and 

interaction with ER-α. Androgens have biphasic action on growth plate similar to oestrogens. 

At the beginning of puberty, androgens increase endochondral bone formation, whilst at the 

end of puberty; they stimulate to close growth plate by conversion of testosterone into 

oestrogen. Osteoblasts-derived OCN can stimulate production of testosterone from testes 

(94). Moreover, androgens increase tibial length, periosteal bone formation in males at 

puberty, whereas estrogens decrease this rate, but they stimulate endocortical bone 

apposition (158;160).   

 

1.4.4.7 Thyroid Hormone 

Thyroid hormone is a critical regulator of bone development in humans. It plays a positive role 

in chondrocytes differentiation from proliferative zone into hypertrophic zone of the growth 

plate. Animal models found that thyroid hormone receptors (THR) are expressed in the 

proliferative zone, but not in the hypertrophic zone in the growth plate. The molecular 

mechanism of thyroid hormone is mediated by activation of Wnt-4/β-catenin signalling 

pathway. β-catenin promotes terminal differentiation of growth plate chondrocytes (161) 

(Fig.1.10).  

 

Children with hypothyroidism, thyroid hormone deficiency presented with bone age delay, 

disorganisation of the normal cartilage columns of the growth plates, impaired differentiation 

of growth plate chondrocytes into terminal stages and reduced thickness of the growth plates 

(161). In vitro studies suggested that the mechanism of growth arrest in hypothyroidism 

caused by disorganisation of chondrocytes in epiphyseal growth plate and also prevent them 

from differentiating into the hypertrophic zone. Two THR (THR-ß and THR-α1 and α2) have 
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been detected in the growth plate. However, THR isoforms expressed in all layers of the 

growth plate chondrocytes except in the hypertrophic zone. THR-α null mice cause complete 

growth arrest, disorganisation of epiphyseal growth plate chondrocytes and delayed skeletal 

maturation. On the other hand, THR-ß knockout mice result in no evidence of growth arrest, 

abnormalities in endochondral bone formation, or disorganisation of growth plate 

chondrocytes. Robson et al. (162) also reported that the effect of T3 on primary monolayer 

cultures of rat tibial growth plate increases the rate of cell proliferation rather than the number 

of chondrocytes. Many investigators have also noted that T3 organises chondrocyte 

proliferation in columns and plays a pivotal role in terminal differentiation of growth plate 

chondrocytes into the hypertrophic zone (162). Recently, the expression of THR-α can be 

activated by leptin and thyroid hormone also increases leptin signalling activity in growth plate 

cells (163). Thyroid hormone increases production of collagen type X, BAP and 

proteoglycans in the growth plate cartilage (132). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  1.11: Molecular mechanism of thyroid hormone (TH) in the growth plate. TH activates Wnt-4/β-

catenin signalling in growth plate chondrocytes. Then, β-catenin signals and promotes terminal 

differentiation of growth plate chondrocytes from the proliferative zone into the hypertrophic zone.  
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1.4.5 Local Control  

1.4.5.1 Paracrine/Autocrine 

The effect of GH on the chondrocytes in the growth plate is still controversial. GH stimulates 

the systemic production of IGF-1 from the hepatocytes and activates the undifferentiated 

chondrocytes in the growth plate in order to influence the IGF-1 function (somatomedin 

hypothesis). This hypothesis has been recently argued; hepatocyte IGF-1 knockout mice 

alone did not show growth retardation (164). Furthermore, vitro evidence has suggested that 

GH has a dual effect on the longitudinal growth in the growth plate (dual-effector theory). The 

finding is that GH stimulates longitudinal growth directly and enhances the local secretion of 

IGF-1 by stimulating transcription of the IGF-1 gene by autocrine/paracrine mechanisms 

(137). GH and IGF-1 stimulate the maturation of chondrocytes in growth plates at different 

levels. Therefore, GH plays an important role in pre-chondrocytes maturation at an early 

stage, whereas IGF-1 increases cell maturation at a later stage (137). The function and action 

of both GH and IGF-1 are independent and different. They have a synergistic effect when the 

two compounds are administered together. In transgenic animal models, it was found that GH 

but not IGF-1 stimulates the growth up to about two times comparing with their normal 

littermates (137). Thus, GH can be considered an ignition for growth. Hunziker et al. (143) 

reported that the final height of the growth plate in hypophysectomised rats, treated with GH 

and IGF-1, was similar, although IGF-1 took longer periods of time. GH deficiency during 

childhood is associated with low bone density and replacement restores the BMD at normal 

level (149). In addition, a mutation of GHR gene in humans (Laron Dwarfism) and animals 

results in a defect in postnatal growth. Studies show that mice missing GHR have shorter 

proliferative columns and fewer hypertrophic chondrocytes than normal. Therefore, these 

mice display a defect in the longitudinal growth of bones. GH has a local effect on the growth 

plate. It has been found that the longitudinal growth of the tibial bone can be enhanced by 

injection of GH into its growth plate. This action might be mediated by increased local 

production of IGF1. Subsequently, it increases chonodrogenesis through a paracrine and 

autocrine fashion (149). 
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1.4.5.2 Fibroblast Growth Factors 

FGFs are polypeptide proteins, which have a major role in proliferation and differentiation of 

different cell types in a human body (165). The expression and the function (Tab.1.6) of each 

individual FGF are variable according to the site of the action (166). FGFs have high affinity 

to the glycosaminoglycan heparin binding sites on cells. FGF-1 and FGF-2 are acidic and 

basic in nature respectively, and both are known to play a critical role in growth and 

differentiation of the musculoskeletal system. FGF-1 induces mainly chondrocyte 

proliferation. On the other hand, the mitogenic effect of FGF-2 is more potent than FGF-1. 

The FGFs transmit their signals through a family of four memebrane spanning tyrosine 

kinases (FGF-R 1-4). Endochondral ossification and intramembranous ossification can be 

disrupted by a mutation in these receptors. For instance, achondroplasia, hypochondroplasia 

and thanatophoric dysplasia are associated with dominant missense mutations in the FGFR-

3. It has been demonstrated that FGFs have an anabolic role in bone (167). Deletion of 

FGFR-3 in mice can lead to increase in the longitudinal development compared with the 

normal, while in humans activation of FGFR-3 due to point mutation at residue 380 amino 

acids (glycine to arginine) results in short proximal limbs known as achondroplasia (166). On 

the other hand, Krejci et al. (168) have suggested that the FGFR-3 has an inhibitory response 

on the chondrocyte proliferation after activation of STAT1 pathway. FGF-23 is an recognised 

member of the FGF family, and play an important role in phosphate homeostasis and 

skeletogenesis. A defect in FGF-23 can lead to different diseases such as autosomal 

dominant hypophosphatemic rickets, oncogenic osteomalacia , X-linked hypophosphatemia 

(169).    

 

FGF type Expression 

FGF-2 Osteoblasts, periosteum of bone, MSC of skull sutures 

FGF (7,8,17, 18) Perichondrium surrounding the growth plate 

FGF (4, 9) MSC of skull sutures 

FGF(18 ,20) Osteoblasts 

 

Tab  1.6: Fibroblast growth factors (FGFs) and their expression in humans. 
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1.5 Skeletal Morbidity in Children with Acute Lymphoblastic Leukaemia 

ALL is the commonest paediatric cancer representing about one third of all childhood 

malignancies. As the survival rate of childhood with ALL has improved dramatically (170) and 

the five-year survival rate is 93.5% (171), the short- and long-term side effects related to both 

the disease and treatment have gained interest. Among these, skeletal morbidity has been 

evidenced in a consistent fraction of ALL during chemotherapy, burdened by a significant 

high rate of skeletal morbidity such as musculoskeletal pain (MSP), fractures and ON (71;72). 

No clear mechanism has been identified for causing skeletal morbidity in ALL children, but 

different risk factors, including the disease itself, chemotherapy, abnormal mineral 

haemostasis, physical inactivity and acquired GH insensitivity could be responsible for these 

complications in ALL children (172). ALL affects children at an age when peak BMD is being 

achieved. Bone mass increases rapidly during growth and puberty and reaches its peak in 

the third decade of life. Children treated for cancer during the period of normal accrual of 

peak bone mass may be at risk of reduced peak bone mass due to the disease process itself 

or the treatment received. These skeletal complications have been reported mainly at three 

different times; at diagnosis, during chemotherapy and following chemotherapy. This review 

will focus on the many risk factors that affect bone health in children treated for ALL at each 

period and possible managements (Fig.1.12.  
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Fig .12: shows Influences on bone in ALL children at three different times – at diagnosis, during 

treatment and after completion of chemotherapy – and the incidence of fractures at presentation and 

during treatment. Exercise and optimum nutritional supplement can be used as a preventative method, 

whereas bisphosphonate, GH therapy and therapeutic modulation can be applied as an interventional 

option of skeletal morbidity in ALL children.   
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1.5.1 Types of Skeletal Morbidities  

1.5.1.1 Musculoskeletal Pain 

MSP in ALL children can be defined a spectrum of skeletal clinical presentation including 

bone pain, joint swelling, joint tenderness, limping, osteomyelitis and septic arthritis. It is 

important that radiological images show no evidence of fractures or ON.  

 

1.5.1.2 Fractures 

Approximately 10-25% of all paediatric injuries are caused by fractures. It is reported that the 

incidence of fractures during childhood is higher in boys than girls. Around 80% of fractures 

are located in the upper extremities, whereas 20% and less than 5% are distributed in lower 

extremities and appendicular skeleton, respectively (173). 

1.5.1.3 Osteonecrosis 

ON can be defined as insitu death of bone tissue due to interruption of blood supply. It is 

frequently reported in children and young adults with ALL. ON can cause serious 

complications due to its effect on the large joints such as hips and knees which might lead to 

a long term disability. Although, several joints can be affected at the same time, the weight-

bearing joints (hips and knees) are most commonly involved (174). A recent report found that 

the rate of ON in ALL children aged above 10years is higher by about 5 times in the 

dexamethasone randomized group than in the prednisolone randomized group (175).  

Mattano et al (2012) reported that the incidence of ON can be decreased by giving 

dexamethasone in an alternate week schedule in stead of continuous 3-week schedule within 

the intensification course (176). Other risk factors of ON including genetics, age over 

10yeras, fat cells and drugs such as such as asparaginase might contribute to the risk. 

Although the pathophysiology of ON is not fully understood, the mechanism can be assumed 

by Fig.1.13. ON can be diagnosed clinically or/and radiologically (x-ray and MRI). However, 

ON can be difficult to diagnosis because around 20% of cases have clinical symptoms 

whereas 70% of asymptomatic children can be only confirmed by MRI. Management of ON is 

mainly supportive, but few cases can treated surgically including total replacement of the 
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affected joint. Several trails have shown that ON can be treated with bisphophonates, but 

their efficacy and long-term complications remains uncertain (177).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  1.13: The pathogenesis and pathology of osteonecrosis (ON).  

 

1.5.2 Skeletal Morbidity at Diagnosis  

Skeletal morbidity is frequently reported as initial symptoms in children with ALL and can 

reach up to 38%, and the fracture rate ranges from 6–16%. At diagnosis 11% of children with 

ALL have BMD z score  -2.00 or less (178). The major contributory factor of skeletal morbidity 

at diagnosis might be related to the disease process itself. It has been reported that ALL 

children are presented with vertebral compression in the first month of chemotherapy and 
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even before the start of chemotherapy (73;179-181). The abnormal bone metabolism and 

abnormal mineral haemostasis are considered the two main factors in skeletal morbidity in 

ALL children at diagnosis (Tab.1.7).   

 

 
Skeletal Morbidity At Diagnosis 

 

Study Numbers MSP Fractures ON Risk Factors 

Halton et al.1995 (179) 40 36% 10%   

Maman et al .2007 (180) 
 

765 34%   B cell precursor 
Lower WBC 
Lower Blast cells 

Sinigaglia et al. 2008 (181) 112 38% 6% -  

Halton, et al. 2009 (73) 186 - 16%  Low LS-BMD 
Back pain 

 

Tab  1.7: Skeletal morbidity at diagnosis of ALL and their risk factors. Skeletal morbidity includes 

musculoskeletal pain (MSP), fractures and ON. 

 

1.5.2.1 Bone Metabolism 

Leukaemia itself can cause low rate of bone turnover and acquired GH insensitivity (172). At 

diagnosis, the biochemical markers of bone formation and bone resorption are relatively low 

compared with the healthy control population (182). Moreover, Halton et al. (179) and 

Atkinson et al. (183) reported that children with ALL at diagnosis had low OCN level, low 

plasma 1,25-dihydroxyvitamin D and hypercalciuria indicating an effect of the leukemic 

process on bone turnover. It is also reported that LS-BMD and bone formation markers are 

reduced significantly at diagnosis (184). GH resistant state may also occur at the time of 

diagnosis, as suggested by increasing urinary excretion of GH and decreasing levels of GH 

binding proteins (GHBPs). In addition, both IGF-1 and IGFBP-3 are also low at the time of 

diagnosis (182). Bone metabolism may also be negatively affected by several serum factors 

secreted by leukemic cells such as the osteoblast inhibiting factor and PTHrP. It is reported 

that ALL children (n,9) aged 2–7years had higher levels of leptin (pro-inflammatory 

adipocytokines) and lower levels of adiponectin (anti-inflammatory cytokine) at diagnosis. A 

review published by Davies (172) concluded that a direct infiltration of leukemic cells into 

bone, which expand in the bone marrow spaces, may lead to damage of spongiosa. Age at 
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diagnosis (>10years) and low BMD z score in lumbar spine are considered independent risk 

factor for low BMD z score in lumbar spine and fractures (178). In previous studies, no 

correlation was observed between leukocyte count at diagnosis and markers of bone 

formation (172). However, Halton et al. (179) reported that there was a positive correlation 

between the MSP at the time of diagnosis and CD10-positive leukaemia and leukocyte 

counts less than 20X109 cells/L. Furthermore, a retrospective analysis in 783 children with 

ALL shows that musculoskeletal manifestation at the time of diagnosis is more likely to occur 

among those children with B cell precursor, low peripheral blood blasts and white blood cells 

(WBC) counts (180).  

 

1.5.2.2 Mineral Homeostasis 

Most ALL children have abnormalities mineral homeostasis at diagnosis; therefore, the 

leukemic cell process might have a major role in this mechanism (179). Atkison et al. (183) 

showed that over 70% of ALL children at the time of diagnosis had low plasma level of 

vitamin D.   

 

1.5.3 Skeletal Morbidity during Treatment  

A combination of chemotherapy, GCs, abnormalities in mineral homeostasis, physical 

inactivity and ongoing inflammation may lead to a further compromise in bone health during 

continuation therapy (172). Fractures during chemotherapy are reported to be six times 

commoner in these children compared with the healthy population (184). Skeletal morbidities 

in ALL children are more likely to occur in the peripheral skeleton and in older children 

(71;72). These complications may lead to further immobilisation and predispose the skeleton 

to further bone loss and osteoporosis. Furthermore, the type of leukaemia might have an 

influence on bone health in ALL children, supporting that T-cell type ALL group has lower 

level of total mean BMD z-score and higher level of ICTP during diagnosis than B-cell type 

ALL patients (185). Single nucleotide polymorphisms (SNP) have been shown to influence 

BMD in children with ALL. Haplotypes of the 5‟-end of vitamin-D receptor (VDR) are 

associated with decreased BMD in ALL children (186) (Tab.1.8).  
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Skeletal Morbidity During Treatment 

 

 

Study Numbers MSP Fractures ON Risk Factors 

Strauss et al. 2001 (71) 176  28% 7% Older >9years 
Males 
Dexamethasone 
 

Hogler et al.2007 (72) 122 12% 13% 12% Age >10years 

Maman et al .2007 (187) 765 34%   B cell precursor 
Lower WBC 
Lower Blast cells 
 

Hartman et al .2009 (188) 51  21%   

Mussa et al. 2010 (189) 44 34% 18% 7% Low BTT 

Winkel et al. 2009 (186) 69  13%  VDR 5‟-promoter 
SNPs 
 

Rayar et al. 2011 (178) 124  18%  Males 
Age>10years 
Dexamethasone 
Low LS-BMD z 
scores 
 

Cockle et al. 2011 (190) 22  36%  Low BMD 

 

Tab  1.8: The incidence and risk factors of skeletal morbidity that occurred during chemotherapy. 

Skeletal morbidity includes musculoskeletal pain (MSP), fractures and ON. Bone transmission time 

(BTT) is dependent on BMD and BTT is measured by QUS. Vitamin-D receptor (VDR) and single 

nucleotide polymorphism (SNP).  

 

1.5.3.1 Chemotherapy  

Chemotherapy nowadays is considered to be more curative in the majority of the ALL 

children and this success can be attributed to the development of improved chemotherapeutic 

regimens including the use of potent GCs such as dexamethasone. GCs are becoming an 

essential therapeutic intervention in childhood ALL protocols. GCs can, however, affect 

skeletal development through a variety of mechanisms (153). Studies show that there are 

alterations in bone turnover, short-term growth and bone mass during the course of 

chemotherapy. These alterations in bone-turnover favoured net bone resorption and more 



 

 80 

recent studies revealed that such changes were more likely to occur with dexamethasone 

than prednisolone even after adjusting for the former drug‟s greater potency (68). These 

observations are reflected in clinical reports of skeletal morbidity occurring more often in 

children receiving dexamethasone (71). Dexamethasone is the only GC used in the 

UKALL2003 protocol as it shows that dexamethasone has better CNS penetrance and anti-

leukaemic effect compared with prednisolone (191). However, children treated with 

dexamethasone have a greater risk of whole skeletal morbidity (MSP, fractures and ON) 

compared with those given prednisolone (71). Markedly low bone mass may not be a 

universal finding in children on chemotherapy (172); however, it seems that it is not the 

absolute bone mass but the fall in bone mass which is associated with a higher risk of 

fractures (183). Other drugs that could play a crucial role in adversely affecting bones include 

methotrexate; this may cause osteopathy and vincristine, which may affect bones indirectly 

through its mixed sensorimotor neuropathy effects. 

 

1.5.3.2 Bone Metabolism 

Serum levels of bone formation markers such as BAP and PICP declined immediately after 

the administration of chemotherapy (182). Most fractures occurred in the second year of 

chemotherapy with median duration of 18 months. Males and dexamethasone (71) and 

physical inactivity have been demonstrated to be independent risk factors for skeletal 

morbidity and reduced bone mineralisation. There was a significant reduction in BMD z score 

in ALL children particularly those over 11years of age. This may be because younger children 

have a greater rate of dexamethasone clearance than older ones (192). The low BMC z score 

over the six months of chemotherapy and by the end of 24months of chemotherapy can be 

used as a positive predictive value of 64% and 39% for fracture, respectively (183). A rapid 

decline in bone properties assessed by QUS was more observed in the first six months of 

chemotherapy and these problems persist throughout therapy (189). Chemotherapy has also 

an indirect effect on bone metabolism by suppressing factors that are important for bone 

maturation such as IGF-1 and IGF-BP3 (182).  

 

Furthermore, bone metabolism during the course of chemotherapy might be affected with the 

level of adipokines. Surprisingly, it is found that leptin deceased significantly whereas, 

adiponectin increases during maintenance phase. However, these adipokines gradually 
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returned to the normal levels during treatment (193). Another small cohort study in ALL (n,14, 

age ranges 3.4-16.7years) children shows that serum leptin increases during the course of 

chemotherapy particularly at 12months and 24months after diagnosis (194). The conflict in 

these results might be related to different study factors such as age, number and protocols. 

However, it is well known that leptin level is positively correlated with FM (77). The latter 

study also reported that there was a significant increase in fat mass percent (FM%) by 6,12 

and 24months of treatment (194).   

 

1.5.3.3 Abnormal Mineral Homeostasis  

Skeletal morbidities in ALL children might be related to the abnormal metabolic basis for Mg, 

Ca, Pho and vitamin D during the course of chemotherapy. Abnormal mineral homeostasis 

including hypocalcaemia, hypercalciuria and hypomagnesaemia are reported frequently in 

children with ALL during treatment (183;195). Atkinson et al. (195) demonstrated that 50% of 

ALL children had hypomagnesaemia and 56% of those cohort had hypocalcaemia. The 

subsequent study by the same group found that the incidence of hypomagnesaemia and low 

vitamin D in ALL children was 84% and 70%, respectively (183). Moreover, the level of 

vitamin D (≤60nmol/l), reported in the majority (81%) of children with ALL (190). The 

mechanism for development of abnormal mineral status might be related to a combination of 

leukaemic disease process and the influence of chemotherapeutic agents. This can be 

supported by plasma levels of Mg, BAP and OCN, which improved significantly after 

completion of treatment. High dose of GCs causes an immediate change in bone turnover as 

reflected by declining plasma OCN and increasing serum Mg significantly. In case of 

hypermagnesemia, this study hypothesised that release of intracellular Mg into circulation as 

large numbers of cells are destroyed following steroids. Cyclical steroid therapy and amino 

glycoside were correlated positively with excessive real loss of Mg. Therefore, the most likely 

contributing factor for hypomagnesaemia in ALL children was the excessive renal loss of Mg 

as the nutritional intake and Mg intestinal absorption were normal (183). Moreover, GCs 

might interfere with intestinal absorption of Ca and increase renal excretion of Ca, which 

results in secondary hyperparathyroidism. This induces bone turnover in favour of bone 

resorption.  
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1.5.3.4 Dietary Factors and Physical Inactivity 

ALL children do not meet the recommended daily intake of energy, protein Ca, Pho, iron and 

folate (195). However, treatment with GCs in children with ALL increases energy intake 

dramatically, and this effect might cause obesity characteristics among these patients (196). 

A recent study has shown also that the level of energy intake and physical inactivity in ALL 

children on dexamethasone was higher than healthy controls. Therefore, a high BMI z score 

in this group of children might result from using dexamethasone in ALL protocols (197). 

Furthermore, Hinds et al. (198) showed that dexamethasone therapy during the course of 

chemotherapy increases the level of fatigue and sleep time. Recently, three candidate gene 

polymorphisms (AHSG, IL6, POLDIP3) were discovered in paediatric patients receiving 

treatment for ALL, which are associated with sleep disturbance, but not with fatigue (192). No 

differences were observed in serum albumin levels, as proxy for nutritional status, between 

those children who had skeletal morbidity and with no skeletal morbidity (192). The physical 

activity decreases significantly in paediatrics cancer and more particularly during inpatient 

stay (199).  

 

1.5.4 Bone Mineral Decrements Following Treatment 

It is still controversial whether survivors of childhood ALL maintain low BMD after the end of 

treatment. Low BMD in survivors of childhood ALL is described in some studies (200-204). 

ALL are at high risk of impaired bone mass accretion hence the peak age of disease onset 

corresponds to the period of rapid growth and bone mass accumulation. Therefore, ALL 

survivors might suffer from low BMD compared with the healthy controls. Kaste et al. (205) 

showed that around 68% of ALL survivors had low BMD below the age and sex adjusted 

population mean; the incidence of vertebral compression in ALL survivors is 3.5% and 80% of 

them are males. Thomas et al. (206) found 24% of long-term ALL survivors had low BMD. A 

recent study has shown that the impact of chemotherapy in ALL survivors is more profound in 

LS-BMD than FN-BMD (203). There are several possible etiological factors for decreasing 

BMD including chemotherapy and GCs, cranial irradiation and genetic and familial causes. 

Other factors including poor nutritional intake and low level of physical inactivity might 

influence low BMD in ALL survivors (Tab.1.9). However, there is uncertainty whether 

survivors of childhood cancer continue to have a low BMD in the long term. A large cohort 
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study (n=7,414), found no significant increase in the fracture rates among survivors when 

compared with healthy siblings at median follow up of 23 years (207). 

 

1.5.4.1 Chemotherapy/Glucocorticoids  

Chemotherapy has a negative impact on bone health in ALL children survivors; ALL children 

who received higher doses of methotrexate and 6-Mercaptopurine (6-MP) have lower BMD z 

scores (205). Furthermore, high dose of methotrexate is associated with low BMD in lumbar 

spine (182;208). These findings are supported by a recent study, which reported that children 

who received chemotherapy with no CNS irradiation in their protocol have a slight reduction 

in LS-BMD and apparently normal FN-BMD (203). This might be explained by the high 

sensitivity of trabecular bone to the chemotherapy in the spine compared with the hips. On 

the other hand, Mandel et al. (187) showed that even FN-BMD are affected in those children 

who received high dose of methotrexate and GCs compared with age matched normal 

controls (187). Indeed, the negative effect of GCs on bone metabolism is well recognised 

(182).  

 

1.5.4.2 Cranial Irradiation 

Cranial irradiation is considered to have a detrimental effect on BMD and bone growth in ALL 

survivors (187). This could be explained by disruption in hypothalamic pituitary axis, which 

leads to GHD. Some data show that cranial radiation exposure of >24gray(Gy) is associated 

with low BMD (206). This effect is dose dependent (205).  However, within the “modern era” 

of leukaemia therapy, the CNS irradiation dose has shown a minimum effect on BMD as the 

incidence of GH dysfunction in those children who received CNS irradiation dropped 

significantly (203). Decreased dose and frequency of cranial irradiation in ALL protocols might 

explain the lack of effect of CNS irradiation on BMD compared with the previous study (187). 

Recently, Tonorezos et al. (209) reported that a history of cranial irradiation particularly 

among ALL female survivors was associated with higher leptin per kilogram fat mass. 

Moreover, female long-term survivors of childhood ALL who were treated without cranial 

radiation have a higher leptin level compared to controls (210).   
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Following Treatment 

 

Study Number BMD Bone Scan  Age at Study Risk Factors 

Kaste et al. 2001 (205) 141 58% 
(Low BMD) 

 
QCT 

10-30years 
 

Male sex, Caucasian race 
Cranial irradiation, High doses of antimetabolites 
 

Tillmann et al. 2002 (208) 28 Reduced 
LS-BMD 

DXA  Males, Low physical activity 
(iv) high dose of methotrexate 
 

Mandel et al. 2004 (187) 106 Reduced 
FN-BMD 

DXA 8-30years High dose of methotrexate, High dose of GC 
Protocol C  
 

Brennan et al. 2005 (211) 
 

53 Reduced Radial BMD 
Normal TB-BMD 
Normal  LS-BMD 

 

p.QCT 
DXA 

 

6-17years  

Kaste et al.2006 (212) 
 

57 59.6% 
(Low BMD) 

 

QCT 14-35years Older age at diagnosis, Nutrition, Alcohol 

Thomas et al. 2008 (206) 74 24% 
(Low BMD) 

DXA 23-37years Males, Short height, GH insufficiency 
Low IFG-1 Z score, Smoking 
 

Rai et al. 2009 (213) 424 31%(Low BMD) QCT 
 DXA 

9-40years  
 

Polgreen et al. 2012 (214) 319 Low BMC z score DXA 9-18yeras Physical inactivity, Hypogonadism, Lower LM, 
Higher IL-6 

Aldhafiri et al. 2012 (215) 51 12% BMC z score <-1.0 
8%   BMC z score <-2.0 

DXA 9-17years  

 

Tab  1.9: Bone mineral density (BMD) in survivors of childhood acute lymphoblastic leukaemia. The table also shows bone assessments (DXA and QCT), 

age range at the study time and risk factors for BMD deficits. Total body BMD (TB-BMD), Lumbar spine BMD (LS-BMD), Femoral neck BMD (FN-BMD).  
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1.5.4.3 Genetic/Familial  

Generally, bone health is highly influenced by genetic and ethnic factors. Many genetic 

polymorphisms are thought to contribute BMD (216). For example, six different missense 

mutations of the LRP5 gene might lead to the osteopetrosis (217), whereas inactivating LRP5 

gene mutations cause the osteoporosis-pseudoglioma syndrome (218). Furthermore, LRP5 

gene polymorphisms might have an effect on vBMD during childhood, possibly through 

effects on trabecular bone formation (219). Bone density may be influenced by genetic 

polymorphism of the corticotrophin-releasing hormone receptor-1 (CRHR1) gene in survivors 

of ALL children (220). ALL children who are carriers for polymorphism of the VDR at 5‟-end 

(Cdx-2/GATA) haplotype 3 have lower BMD than non-carriers (186). Caucasian race is 

another independent factor associated with low BMD in ALL survivors (212).    

 

1.5.4.4 Gender and Age 

Some studies have reported that males of ALL survivors are at higher risk of developing low 

BMD than females (205;208;212;220). This could be explained due to a delay in puberty 

progression in boys which might lead to a delay in the skeletal maturation. Furthermore, the 

skeletal response to oestrogens on bone accretion is greater than androgen. Another cause 

might be related to a longer duration of chemotherapy in boys (3years) than girls (2years) in 

UKALL2003. Furthermore, the toxic effect of cyclophosphamide on gonads is higher in boys 

than girls, which might also lead to a further delay in puberty and cause adverse effects on 

bone mineral accretion. Oral contraceptive pills in mature ALL survivors might also have a 

positive impact on bone health in females (205). Although males have higher incidence of low 

BMD than females, shorter females are at high risk of developing low BMD than shorter 

males (206). Older age at diagnosis is another independent factor associated with 

unfavourable BMD. Children diagnosed after 3.5years of age had lower BMD compared with 

those diagnosed before (208). Further studies are needed to reveal the responsible 

ethological factors for skeletal morbidities covered by these independent factors. 

 

1.5.4.5 Physical Inactivity  

Decreased physical activity has a negative impact on bone health (221). There are conflicting 

data as to whether physical activity is reduced (208;212) or not (222) in ALL survivors. 

Tillmann et al. (208) reported that the levels of physical activity in childhood ALL survivors are 
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lower than the control group, and females seem to be more at risk (223). Decreased physical 

activity may be due to increased weight or obesity in ALL survivors particularly those younger 

than 19years (224). On the other hand, a study has shown that no differences in the level of 

physical activity between the survivors of childhood ALL and healthy control (222).  

 

1.5.4.6 Nutritional Factors 

Poor nutritional intake, reduced vitamin D level and excessive alcohol consumption may have 

an impact on bone development in ALL survivors. Around one third of ALL survivors are not 

receiving the recommended dietary intake of Ca, vitamin D, Mg and potassium (224). 

However, most American children and adolescents did not meet recommended dietary intake 

of Ca (221). Furthermore, around 9% and 61% of the US healthy adolescent population have 

vitamin D deficiency (<15ng/dl) and insufficiency (15-29ng/dl) respectively (225). These 

results are quite similar to ALL survivors with the prevalence of vitamin deficiency at 11.5% 

and vitamin D insufficiency at 52% (226). Excessive alcohol consumption has been correlated 

with low BMD in ALL survivors (212).  

 

1.5.5 Management  

Attention to improve bone health in ALL children should occur at each follow up evaluation 

including primarily optimum nutritional intake, and regular exercise. Bisphosphonates, GH 

therapy and calcitonin can be alternatively beneficial in cases where fractures have already 

occurred (227). Management of skeletal morbidity in ALL children can be categorised into two 

groups; preventative measures such as optimum nutrition and regular exercise and 

therapeutic options such as bisphosphonates.  

 

1.5.5.1 Prevention  

1.5.5.1.1 Nutrition  

Adequate nutritional supplementation during the course of chemotherapy may be beneficial 

as a high intake of dairy products during childhood and adolescence is positively related to 

bone accretion at maturity (228). However, the optimum effect of Ca intake on bone mass 

accrual is synergistic with a good level of physical activity (229;230). Vitamin D 

supplementation has improvement in BMD for  a period of 6 months in patients with 
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secondary osteoporosis due to CP (231). Administration of 1,25(OH)2 vitamin D in ALL 

children during the first year of chemotherapy is able to increase LS-BMD (232). Mg 

supplementation may also ameliorate skeletal morbidities in ALL children as some trails show 

that Mg is able to increase the rate of bone formation (233;234). Lifestyle modification such 

as avoiding alcohol, caffeine and smoking play an important role in improving BMD 

particularly in ALL survivors. Therefore, adequate nutritional supply should be encouraged 

among all family members during the course of chemotherapy.   

 

1.5.5.1.2 Physical Activity 

The effect of physical activity to improve bone density and reduce BMD deficiency has been 

proved in multiple studies (235;236). Exercise regimens that increase muscle bulk or increase 

mechanical loading on the skeleton may prove beneficial for skeletal health (237). Hartman et 

al. (188) suggest that performing exercises at home is associated with relatively poor 

adherence in children with ALL. On the other hand, a recent study that recruited newly 

diagnosed children with ALL (n,9) concluded that an in-patient and home exercise 

programme during early therapy are well tolerated by ALL children and their parents (238). In 

young adult ALL survivors a simple, inexpensive and safe home based exercise programme 

improves the fitness level and decreases FM% (223). Mechanical loading can be achieved by 

a fixed regimen of weight bearing exercises or with the help of a WBV platform. These 

vibration stimuli may have beneficial effects on muscle function (239) and bone mineral 

density (240-242) and endocrine hormonal profile (243). A number of vibrating platforms are 

now available and some report a beneficial effect on bone mass in children with CP and 

young women (244;245). They may be as effective as weight bearing exercise, but have the 

advantage of shortening the time required for exercise by delivering the mechanical loading 

over a shorter period. It is also possible that they may have added beneficial effects on body 

composition. 
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1.5.5.2 Therapeutic Option  

1.5.5.2.1 . Bisphosphonate  

Recently, interventions that may improve bone health have included the use of 

bisphosphonate therapy, but this has only been used in those children with ALL, who suffer 

fractures during chemotherapy (246). Bisphosphonate particularly pamidronate can be used 

as therapeutic option for MSP score and ON (247). A recent study has shown that BMD has 

improved in children with secondary osteoporosis treated with short-term zoledronic acid 

(248). However, there is no clear guidance for the optimal treatment regimens in terms of 

choice of drug, route of administration, dosing schedule and treatment duration in those 

children who were diagnosed with secondary osteoporosis. Moreover, a number of different 

doses and preparations have been used till now and it is unclear whether they have a 

differential effect on functional outcomes such as pain and fractures (249). Treatment with 

bisphosphonates cause specific radiological features characterized by several horizontal lines 

of high density of cortical bone at the metaphysis of the distal radius and ulnar. Fortunately, 

these findings do not need further investigations when the patients presented at casualty 

department (250). Bisphosphonates therapy in children may initially be associated with an 

acute reaction such as fever, muscle pain, headache and vomiting and hypocalcaemia when 

administered intravenously. Some animal trials have reported that high dose of 

bisphosphonates has a negative impact on growth, but this has not been observed in 

children. Bisphosphonates should not be used during pregnancy and all women of 

reproductive age should have a pregnancy test because of concerns about teratogenicity 

which has not yet been confirmed in humans (251). Skeletal complications such as 

osteonecrosis (ON) of jaws have been described in adults but not children or adolescents 

(252). Administration of zoledronic acid in rats during tooth development might lead to several 

types of dental problems such as prevention of tooth eruption (253). Furthermore, another 

study in children suggested association between pamidronate infusion treatment and 

prolonged QT interval (254). This complication can lead to syncopes, severe arrhythmia and 

even sudden death. Whilst a safe upper limit for bisphosphonate therapy has not been 

established, the adverse effect of greatest concern in children is over-suppression of bone 

modelling and remodelling. Latrogenic osteopetrosis and pathologic fractures have been 
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described in a child treated for over two years with a relatively high dose of pamidronate 

(255). 

 

Using bisphosphonates as prophylaxis has not been considered in this population, possibly 

because of concerns about violation of the chemotherapy protocols. Furthermore, risks, 

benefits and long-term outcome of bisphosphonate use in this population should be 

addressed in a larger prospective, randomised trial. 

 

1.5.5.2.2 Growth Hormone Therapy 

GHD mostly occurs after cranial irradiation, and in ALL survivors may lead to low bone mass. 

A recent study has shown that GH therapy for two years in ALL survivors (age range 13-

21years) increases total body BMD (TB-BMD) and LM and decreases FM% (256). On the 

other hand, five-year therapy with GH in ALL survivors (age range 19-32years) with GHD 

shows no beneficial effect on BMD (257). These conflicting results can be explained by a 

variety of factors such as duration of treatment and age related to GH therapy response.  

 

1.5.5.2.3 Therapeutic Modulation  

Prophylactic cranial irradiation can be replaced by intrathecal and systemic chemotherapy in 

a standard chemotherapy in order to radiation-associated adverse effects such as second 

cancers, cognitive deficits and endocrinopathy. Previous clinical trials in paediatrics assessed 

the possibility of omitting the prophylactic cranial irradiation completely from treatment 

(258;259). Recently, Pui et al. (171) have concluded that prophylactic cranial irradiation could 

be totally omitted without compromising overall survival. GCs in treatment protocols could be 

replaced by a selective GC receptor modulator, AL-438 as it has similar anti-inflammatory 

efficacy and less side effects on bone (260).  
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1.6 Exercise as a Therapeutic Application of the Mechanostat Theory 

1.6.1 Mechanostat Theory 

Bone is a dynamic tissue that adapts to its loading environment. In all mammals, birds and 

reptiles of any size, age and sex, healthy load-bearing bones have more strength than are 

required in order to provide a protection from non-traumatic fractures. According to Wolff‟s 

law, bone mass and bone shape (geometry) are dynamically remodelled in order to meet the 

functional demands of the mechanical loading environment. Mechanostat theory is a 

theoretical mechanism by which load bearing bones maintain shape and strength in response 

to muscle strain and mechanical usage (50). Frost (49) proposed that bone modelling and 

remodelling can be variably altered by bone strain within specific ranges. The maximal 

mechanical forces induce bone modelling by activation of osteoblasts and osteoclasts on 

different bone surfaces and repair bone architectures in remodelling by formation and 

resorption on the same bone surface, and these processes are influenced by a number of 

other hormonal and environmental modulators (261). On the other hand, bone unloading can 

cause disuse osteoporosis leading to fractures and deterioration of body function (262). 

Therefore, mechanical loading stimulates bone formation through mechanotransduction, 

whereas unloading induces bone resorption by increasing in the levels of osteoclastic 

activities.  

 

There are some important terminologies of bone biomechanics which need first to be defined 

in order to understand the mechanostat such as stress and strain. Stress can be defined as 

force per unit area and can be classified into three different types: tension stress, 

compression stress and shear stress. Tension stress is developed when bone material is 

compressed and becomes longer, whereas in the compression stress, the applied force on 

bone area is in the opposite direction of the tension stress and bone material becomes 

shorter. Shear stress is developed when the direction of the parallel applied force is not in the 

same direction. The formula for stress is (Force (N)/area(m2); therefore, the stress unit is 

Pascal (N/m2). Strain is defined as the percentage change in bone length (bone deformation). 

For example, if a bone length is stretched or compressed to 1% of its original length, it has 

strain of 0.001(1000μ-strain) or 1% deformation. The formula for strain is (elongated bone-

original bone length/original bone length) (263).  
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The mechanostat initiates (Fig.1.14) bone modelling and remodelling mechanisms according 

to the level of mechanical strain on bone. Micro-damage fractures in bones can result from 

repeated bone strains. These small damages can be recognised and repaired normally 

particularly when strains remain below the micro-damage threshold (MDT). However, strains 

above MDT can lead to pathological fractures as a result of an ineffective repair mechanism 

and an accumulation of micro-damages (50). This suggests that in case of impairment of 

bone material properties (osteoporosis) can be compensated by improving bone mass when 

the mechanical bone strain level exceeds the „„modelling‟‟ threshold (Fig1.16). Moreover, it 

was concluded that oestrogen receptors play an important role in the osteoblasts‟ adaptive 

response to mechanical strain. Therefore, the changes in BMD at the hips in premenopausal 

women with high impact vertical jump exercise were greater in premenopausal women 

compared with postmenopausal women (264). 
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Fig  1.14: The mechanostat means the bone strength and mass are stimulated by bone strain from 

mechanical load. The mechanostat tries to keep mechanical strains between bone remodelling 

threshold (BRT) and bone modelling threshold (BMT) in order to prevent spontaneous fractures. 

Disuse and mild overload activate remodelling and modelling respectively. However, fractures can 

occur when the mechanical strain exceeds micro-damage threshold (MDT). BM stands for bone mass. 

This diagram demonstrates the relationship between bone mass and bone strains. Bones adapt their 

mass and structure in response to the demand of mechanical loading. Bone mass and strength 

increase when the bone strain levels exceed the bone modelling threshold BMT and vice versa. The 

thickness of the lines reflects bone mass.  
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1.6.2 Mechanotransduction in Bone 

Mechanotransduction is defined as the conversion of mechanical stimuli into intracellular 

signals. Mechanotransduction in bone has four stages: mechanocoupling, biochemical 

coupling, the sensor of the effector cell (osteocytes) and the effector cell response 

(osteoblasts and osteoclasts) (265). These processes play an important role in keeping the 

dynamic balance between bone formation and bone resorption. The mechanotransduction is 

dependent on the integrin family and actin cytoskeleton (Fig.1.15). The integrins are 

heterodimeric transmembrane proteins, comprising of α- and β-subunits (266). The integrins 

are cell-substrate adhesion proteins that initiate intracellular signalling and may serve as 

mechanosensor receptor in bone (267). The integrins are transmembrane receptors that 

physically connect ECM at one end and the actin cytoskeleton within osteocytes to the 

intracellular signalling molecules (265). Mechanically induced bone formation in mice can be 

reduced significantly by deletion of the β-subunit in cortical osteocyte of ulna (268). CD44 

(non-integrin) are also extracellular transmembrane receptors, which are attached the ECM to 

the cytoskeleton and are located in the osteocyte membrane (40). These receptors modulate 

the mechanotransduction through their further attachments to the extracellular membrane as 

well as the actin cytoskeleton. Mechanical loading applied to bone leads to flow of 

intracanalicular fluid surrounding the osteocyte. This mechanical force causes the 

deformation of the osteocytes membranes. Such bone cell deformation can stimulate 

intracellular biochemical responses. These signals produced by the molecule will be 

transmitted through an extensive network of dendritic processes which connect all 

osteocytes. Mechanotransduction induces new bone formation proceeded by expression of 

the transcription factor cFos and PG. Furthermore, FFS can induce cyclooxygenase-2 (COX-

2) and NO (266). These molecules are an important biochemical mediator of mechanical 

loading in bone (265). The intracellular Ca2+, inositol triphosphate (IP3) or cyclic adenosine 

monophosphate (c-AMP) are involved in the intracellular signals transduction pathways. It 

has been found that PG mainly PGE2 is secreted in bone tissue and cells during stress and 

stimulates new bone formation by promoting both proliferation and differentiation of 

osteoblastogenesis. Blocking COX2 or PGs in rats significantly reduces mechanically induced 

bone formation (269). NO may be involved as the osteoclast cell inhibitors during bone 

remodelling induced by mechanical loading (53). Furthermore, animal studies have shown 

that the production of NO is linearly proportional to the loading rate of mechanical stimuli. The 

mechanosensitivity of the osteocytes is increased by differentiation of osteoblasts to 

osteocytes. It has been shown that bone cells response to FSS is dependent mainly on the 
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frequency of mechanical loading rather than strain rate. Therefore, the osteogenic effect of 

high frequency, low magnitude mechanical stimuli might be similar to the osteogenic 

response to high impact activity (41;53). Recently, Rumney et al. (270) showed that 

increasing amounts of mechanical loading placed up osteoblasts (SaOS-2) stimulates ATP 

release and c-fos expression suggesting that these molecules are important for bone 

remodelling. The Wnt/β-catenin signalling pathway through LRP5 receptor has a complex role 

in skeletal mechanotransduction. Activation of this pathway leads to accumulation of 

intracellular β-catenin where it stimulates gene transcription (18). A reduction in the Wnt 

signalling level is likely to play a role in end-stage osteoblast differentiation. It has been found 

that stretching in human osteoblasts for 15min is able to down-regulate the Wnt signalling 

pathway and to up-regulate β-catenin levels (271). Furthermore, the Wnt/β-catenin signalling 

pathway in osteocytes can be activated by pulsating fluid flow at FSS of 0.7 ± 0.3 Pascal at 5 

Hz. Conversely, this pathway can be blocked by adding focal kinase inhibitor FAK inhibitor, 

phosphatidyl inositol-3 kinase inhibitor and NO synthase inhibitor (272). 

 

Several factors can have an effect on mechanotransduction process in bone. These factors 

are type and frequency of mechanical loading, age and gender. In fact, cyclical and 

intermittent mechanical loading, which gives the skeleton time off periods, is more effective 

than continuous mechanical loading in inducing the bone formation (273). 

Mechanotransduction is declined by aging; the rate of bone formation in nine months rats is 

18times that in 19months rats (274). Furthermore, gender affects bone mechanotransduction 

as the bone loss in male rats is higher than female rats when they are exposed to hind limb 

unloading for a period of two weeks (275).   
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Fig  1.15: Integrins are heterodimeric transmembrane proteins, comprised of α- and β-subunits. Integrins connect extracellular matrix (ECM) at one end and 

the actin cytoskeleton within osteocytes to the intracellular signalling molecules.The mechanotransduction consists of two compartments: extracellular 

signal pathway and intracellular signal pathway. Mechanical stresses are distributed through the ECM and sensed by the receptors (intigrin α- and β-

subunits) that are located on the osteocyte membrane. Then, the transducer molecules up regulate the production of NO, PGE2 ,c-Fos, and COX-2 . These 

products stimulate bone formation. 
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1.6.3 Fluid Shear Stress 

Osteocyte cells are the most abundant cell in bone and may indeed function as 

„‟mechanosensors‟‟ in bone. These cells are in contact with neighbouring osteocytes via long 

slender cell processes. The cell processes are located in canaliculi, which are filled with 

interstitial fluid. However, the matrix that surrounds the osteocytes and the cell processes is 

not calcified and thus they construct a three dimensional networks. Mechanical loading 

placed upon bone creates substrate deformation; the interstitial fluid is squeezed in the three 

dimensional network and moves along canaliculi. Therefore, the osteocytes cells respond 

indirectly to the mechanical stimuli and convert these stimuli into cellular signals 

(mechanotransduction). Moreover, it is known that the osteocytes are mechanosensors in 

adult bone tissue and the mechanosensitivity of these cells is mediated by the lacuno-

canalicular porosity (276). The fluid flow is sensed and transduced by osteocyte cell 

processes. The flow-derived stimulus that transports along canaliculi forms FSS and 

orchestrates the activities of the osteocytes in the remodelling process by stimulating the 

osteogenic factors such as NO and PGE2. These products are potent regulators of 

osteoblasts and osteoclasts during bone remodelling (41;277;278). The production of c-fos 

(osteogenic factor) from osteoblasts is greater when these cells are subjected to the 

combined effects of substrate strain and fluid flow than fluid flow alone (270;270). BMP7 is 

another product which induces endosteal bone formation in rats responding to mechanical 

loading (279). Recently, it was found that pulsating fluid flow in human bone cells (VDR+/+) 

up-regulates gene expression of BMP7, but it does not increase BMP7 in human bone cells 

with VDR-/- (280). It was also noted that osteocytes are more sensitive to flow-derived stimuli 

compared with other bone cells (42). Bacabac et al. (277) concluded that both the frequency 

and amplitude of mechanical stress has a potential effect on bone formation at both tissue 

and molecular levels. Furthermore, several studies have shown that the NO production by 

MC3T3-E1 osteoblast like cells in vivo and by osteocytes in vitro was dependent on the rate 

of FSS, fluid viscosity, amplitude and frequency of stress (278). In addition, Lee et al. (281) 

have reported PGE2 production from osteoblasts, which increased during hypoxic states 

such as disuse and fractures.  

 

In addition, mechanical loading can reduce osteocyte apoptosis by inhibition of TNF-α, which 

is one of the cytokines involved in the inflammatory processes and leads to osteocyte 

apoptosis, but has no effect on osteoblasts and periosteal fibroblasts (41;277;278). 

Application of mechanical loading on osteoblasts reduces the recruitment and differentiation 
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of osteoclasts by augmentation of OPG and reduction of RANKL expression, which in turn 

reduces the possibility of bone loss (282;283). On the other hand, mechanical unloading, 

which can be exposed under conditions of microgravity (eg. in space) and a long bed rest, 

could induce the osteocyte apoptosis. This can be either due to an increase of the TNF-α or 

decrease of the production of osteoclastic inhibitors (41;42).    

 

1.6.4 Bone Geometry  

Bone strength is also dependent on bone shape or geometric properties (Fig.1.16). Bone 

geometry is controlled by bone modelling and remodelling processes throughout life. These 

two processes active during the ageing process and are responsible for increasing periosteal 

diameter and endosteal through subperiosteal apposition and endosteal resorption, 

respectively (284).  
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Fig  1.16: Bone geometry; bone strength increases by increasing bone diameter with unchanged 

cortical thickness. Bone strength also increases by increasing cortical thickness with no change in 

bone diameter. Finally, bone strength rises by increasing bone diameter, even with thinner cortical 

thickness (284).        
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1.6.5 Bone Responses to Conventional Exercise  

There is overwhelming scientific evidence that people who have active lifestyles are healthier. 

Not only does exercise improve physical and mental health, it also increases bone and 

muscle strength, coordination and balance. Generally, conventional exercise is categorised 

into three main groups: isotonic (high intensity) – e.g. lifting, jumping and jogging – and 

isometric (low intensity) – e.g. stretching, pushing against a wall – and proprioceptive-

facilitative exercises. The latter needs some factors which are important in their performance: 

time, force, space and flow. Examples of this kind of exercise are walking on a line (dynamic) 

and standing on one foot (static). It is widely believed that the high intensity exercise has an 

important role in maximising peak bone mass and reducing rate of bone loss. Therefore, 

athletes have higher bone mass than non-athletic people (285;286) and in highly active 

children compared with those with more sedentary lifestyle (287;288). Muscles are attached 

to bones anatomically and physiologically, therefore, the development of muscle strength 

should be matched by the development of bone strength in order to prevent pathological 

fracture. This explains why athletes have stronger bones compared with non-athletes. In 

addition to physical activity, ground force reaction (GFR) plays a vital role in development of 

musculoskeletal system. That is why astronomers suffer from muscle atrophy and bone loss 

when they are exposed to zero gravity (GFR=0) (49;50;289;290). A systematic review 

reported that weight bearing exercises in children and adolescents including aerobics, circuit 

training, jogging, jumping, volleyball and other sports showed a positive impact on bone 

mass. These improvements were observed in TB-BMD, LS-BMD and FN-BMC (291). 

However, the mechanostat‟s function as an osteogenic stimulator may also depend on other 

factors like the intensity and duration of the exercise, optimal nutritional status and hormones 

(GH, IGF-1) (291). For instance, low-intensity exercise with or without Ca supplementation 

produces no changes in bone mass (292). This study has recently been supported by 

Constantini et al. (293), concluding that physical activity is positively correlated with BMD in 

vitamin D deficient girls and suggesting exercise is superior to other major environmental 

factors affecting bone health. Exercise has been shown to increase bone mass at all ages, 

but the most effective exercise intervention occurs during the timing of puberty height velocity 

(HPV) “Window of Opportunity‟‟, which is between 11–12 years in girls and 13–14 years of 

age in boys (294), whereas in pre-pubertal children (Tanner I) there is no change in bone 

mass and structure after exercise (295). However, Gunter et al. (296) reported that short term 

high impact exercise (jumping) in pre-puberty had a tremendous effect on bone mass in the 

interventional group compared with the control, and not only after finishing the exercise; the 
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responses remained significant three years post-exercise. However, the change in the quality 

of bone materials (properties) may persist for longer in the exercise group. The geometric 

bone changes (structural/properties) in early puberty girls doing jumping exercise for seven 

months may improve significantly compared with the control (295).  

 

Fast and slow sprint exercises (30 seconds) are able to induce GH secretion and the 

concentration of GH is higher in the fast group (297). These exercises also decreased total 

ghrelin concentrations but did not alter IGF-1 release (297). Furthermore, heavy resistance 

exercise protocols increase GH and testosterone in both males and females with variable 

results in both groups (298). Another study showed that serum IGF-1 in rats can be enhanced 

by swimming training in trained diabetic and trained control compared with sedentary diabetic 

(299). Therefore, conventional exercise is likely to increase the anabolic hormones (GH, IGF-

1 and testosterone) and decrease catabolic hormone (cortisol).      

 

In conclusion, changes in bone shape and size are related positively to mechanical loading 

and these changes are observed more commonly around the time of puberty. High impact 

exercise can improve bone health even in the presence of detrimental environmental factors 

such as vitamin D deficiency. However, there are some problems related to doing 

conventional training in children, for example, low compliance rate, stress fractures and 

injuries. Although conventional exercise might hold several benefits for the skeleton including 

reduction of bone resorption, increased bone formation and increased peak bone mass, this 

mechanical loading might have a negative impact on the musculoskeletal system and may be 

associated with a risk of skeletal fragility and tissue injuries. For instance, there is a higher 

incidence of stress fracture in marathon runners, military recruits and ballet dancers. 

Alternatively, very low mechanical signals, induced through WBV platforms, can improve 

bone quality and quantity. Therefore, the use of low level mechanical signals to strengthen 

bone in children with low bone mass may be relevant not only to the treatment of existing 

skeletal fragility, but, by enhancing peak bone mass and retaining it through adulthood, this 

reduces the risk of osteoporosis and fractures later in life.  
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1.7 Whole Body Vibration 

Vibration exercise is a new neuromuscular training method which has been introduced in a 

variety of clinical situations as an alternative method to improve muscle mass and bone 

density. Although vibrations used to be detrimental to humans, it has been shown that this 

form of exercise has no serious harm, is potentially safe and efficient as well as achievable 

with a high compliance. The first application of vibrations training in athletes was in 1985 by 

Nazarov and Spivak (300). Since then several scientific studies have emerged in this area 

(243;301;302). Vibration stimuli exert positive effects on muscle strength and bone mineral 

density. Deformations of bone (tissue strain) can be stimulated by mechanical loading such 

as weight lifting. The strain is dependent on magnitude. However, recently, high-frequency 

vibration has been reported to have an anabolic effect on the bone health of children with CP 

(245). Gusi et al. (303) proposed that the eight months course of WBV training is able to 

inhibit bone loss and reduce the incidence of osteoporosis in high-risk people.  

 

1.7.1 Types of WBV Devices 

Vibration exercise is mostly practised as WBV. Currently, WBV can be delivered by two broad 

categories of exercise devices that are currently available on the market (Fig.1.17). Firstly, 

WBV platforms reciprocate vertical displacements on the left and right side of a fulcrum, 

whilst type (sinusoidal vibration or side alternating vibration) generates higher lateral than 

vertical acceleration and has a potential movement around the hip and lumbo-sacral joints 

(less vibration to the trunk) (304). Secondly, WBV platforms have a plate oscillating up and 

down in vertical direction, both legs extend and stretch at the same time with a direct 

acceleration to the trunk. In contrast, this type is likely to produce greater strain in the vertical 

axis than in the lateral axis (303). Abercrombly et al. (305) reported that a greater peak 

acceleration cannot be tolerated in the vertical vibration mode as compared with the side 

alternating. Furthermore, the WBV platforms can be classified into two categories according 

to their peak acceleration; low intensity WBV platforms when produces gravity (g) force less 

than 1g regardless of frequency and high intensity WBV platforms (g force is more than 1g) 

(306). An example for a low-intensity WBV platform is the Juvent 1000 platform and a high-

intensity WBV platform is Galileo platform. Other WBV devices available on the market are 

PowerPlate®  and Fit Vibe®. 
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Fig  1.17: Two different movements of WBV plates: side alternating vibration and the whole plate 

oscillating up and down plate (vertical vibration). 

 

1.7.2 Physical Principle and Recommendation  

The physical definition of vibration is a forced oscillation, where energy is transferred from a 

vibratory platform (actuator) to a human body (resonator). The vibrations are produced by 

motors under the platforms (307). The intensity of WBV depends on the frequency (f) (Hertz, 

Hz) and peak to peak displacement (D) (millimetres, mm) (displacement from the lowest to 

the highest point of the total vibration excursion) and the amplitude (A) (mm), which is the 

maximum displacement from equilibrium (the half of total displacement) (Tab.1.10). The peak 

acceleration (apeak)(ms-2) is calculated by either these two formulas (apeak=2x2תXf2XD) or 

(apeak==A(2תf)2) and peak acceleration is expressed as multiples of earth‟s gravity 

(apeak/9.81g) to produce a force equal to gravitational force (306;308).The g force produced by 

the vibratory plate is positively correlated with the frequency and peak-to-peak displacement 

(308-310). In typical WBV sessions, the subjects stand on the device in a still position or 

perform dynamic movements. There are different forms of WBV devices such as no standing 

free, holding on to a railing or lying on tilt tables. It is recommended to report the type of 

footwear (barefoot, socks, shoes, others) and body posture and standing (straight or knee 

and hip flexed) (311). It is also recommended that the subjects should have a firm stance on 

the WBV platform in order to achieve well-defined vibration parameters (243;301;302;307). In 

the various studies, the frequency of vibrating platforms usually ranges from a few Hz to 50Hz 

and the extent of amplitude ranges from micro millimetres to a few millimetres. The range of 

peak acceleration is from 0.1g to 10g. The time of exposure of vibration sessions ranges from 

few seconds to a half hour and takes place from once a week to everyday per week. In most 

studies, vibration sessions have several bouts of vibration exposure which are separated by 

rest intervals. The entire duration of WBV interventions ranges from a few weeks to one year 
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(306;311;312). A study has shown that there is not much difference in the rate of cortical 

bone formation and trabecular bone formation in women with low BMD, who were exposed to 

the WBV for 2minutes/day (30 Hz, 0.3g) and the others for 10minutes /day. On the other 

hand, no response was found in the women who used the same device more than 

2minutes/day as well as in the control group. Therefore, it was presumed that the biologic 

response to WBV initiated triggered rather than accumulated (244).  

 

The amount of vibration energy transmitted through the human body is dependent on 

musculoskeletal stiffness (mainly tendons) and damping properties (muscle and bone). As 

the human body is not rigid, the transmission of vibratory stimuli through muscles tendons 

which work as spring-like elements produces mechanical energy. Therefore, the compression 

and expansion of these elements occur at the time of vibration up stroke and down stroke, 

respectively. Vibrations produce an accumulative energy in the mass spring resonator, where 

the frequency of the actuator is equal to the frequency of the resonator. This accumulation of 

energy can result in a greater increase in the vibration amplitude in the resonator compared 

with the actuator. This will lead to catastrophe due to increased internal forces within the 

resonator. Nevertheless, this amplitude amplification can be prevented by damping elements 

of the muscles and bones. This will lead to absorption of energy and thus generate heat. 

Standing on the vibrating platforms properly can help to prevent resonance and provide firm 

stance. For instance, posing weight on the forefoot can reduce the transmission of vibration 

to the trunk and the head (307).  

 

Whilst WBV is a promising alternative to load-bearing exercise and muscle training, the onset 

of beneficial action may be slower compared with pharmaceutical treatment of osteoporosis 

and this needs further evaluation. In addition, WBV programmes may be compromised by 

poor adherence to the exercise regimen and they have been reported to raise the incidence 

of fracture particularly in elderly individuals (22). To sum up, the maximum benefits of WBV 

training may be dependent on appropriate frequency, amplitude, magnitude, posture and 

stance.  
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1.7.3 Mechanism 

The exact mechanism of WBV is still poorly understood. However, the mechanism of WBV 

might be related to the hypergravity effect that challenges the body to work harder to 

compensate gravitational loading (the acceleration reaches up 15g where 1g is the 

acceleration due to the earth‟s gravitational field or 9.81m/s2) (310). A large number of studies 

hypothesise that transmission of mechanical vibrations applied to the tendon of a skeletal 

muscle in man stimulates an involuntary tonic stretch reflex contraction of this muscle and 

reciprocal relaxation of its antagonists, which in turn causes frequent muscle contractions 

(313). Vibrations cause muscle deformation, which leads to elicit dynamic stretch sensitive 

receptors of muscle spindles (307). Vibration stimuli can be sensed by three muscle spindle 

receptors: primary receptors (Ia afferent fibers), secondary receptors (II afferent fibers) and 

Golgi tendon organs (Ib afferent fibers) (314). Vibrations are more effective in the primary 

endings and the secondary endings than Golgi tendon organs (314). This will produce 

impulses transmitted in the CNS through trains of group la afferent pathway, which 

correspond to the frequency of the vibration. The afferent impulse produces two results within 

the CNS; firstly, it causes tendon reflex depression alpha motor neurones (efferent) 

concerned with phasic monosynaptic reflexes (primary endings or Ia afferent). Secondly, it 

causes the tonic contractions of muscle (tonic vibration reflex) by activation of a polysynaptic 

pathway (secondary endings or II afferent) (315)(Fig.1.18). Roelants et al. (316) concluded 

that WBV (f=35Hz and D=5mm) caused a different muscle activation in the legs to a 

magnitude that ranged from 13% to 82% of maximal muscle contraction. Nevertheless, 

vibrations are not able to elicit tonic vibrations reflexes when the amplitudes are very small 

(A<1mm) (314). Therefore, the anabolic effect of WBV on bone might be produced by 

different mechanisms. The anabolic effect of vibratory stimuli on muscle and bone is not well-

recognised (317).  Several animal and human studies have shown that mechanical loading at 

low magnitude and higher frequency might have more osteogenic response than the 

mechanical loading applied at natural frequency. Mechanical vibration at high frequency 

(45Hz) can reduce early bone loss and stimulate bone formation in post-ovariectomised rats 

(318). The anabolic effect of WBV on bone can be explained by several hypotheses (Fig 

1.19). Firstly, the muscle contractions produced by WBV might stimulate bone formation rate 

through mechanotransduction, FSS mechanism or stochastic resonance phenomenon. The 

second hypothesis is that WBV can increase muscle strength, which in turn needs to be 
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adapted by strong bones through the mechanostat theory. Thirdly, WBV induces anabolic 

hormones (e.g. GH, IGF-1 and testosterone) and inhibits catabolic hormones (e.g. cortisol); 

such hormones have a positive effect on bone and muscle mass (endocrine response). 

Lastly, WBV might improve the rate of blood flow in muscle and bone which supplies the 

nutrients required to build bones and muscles (vascular response).  

 

Parameters  Definitions 
 

Units 
 

Frequency (f) 
The repetition rate of the cycles of oscillations per 
second 
 

Hz 

Peak-to-peak displacement  
(D) 

Displacement from the lowest to the highest point of 
the total vibration excursion 
 

mm 

Amplitude (A) 

The extent of vertical displacement from equilibrium 
position 
 
 

mm  

Peak acceleration (apeak) The acceleration power or the force of the movement 
g(m/s

2
) 

 

 

Tab  1.10: The biomechanical parameters used in WBV training.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  1.18: WBV stimulates muscle spindle and motor neurons which initiates a frequent muscle 

contraction.  
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Fig  1.19: The Musculoskeletal and Endocrine Responses of WBV. The anabolic effect of WBV on 

bone can be explained by four pathways. Firstly, WBV stimulates bone directly through fluid shear 

stress (FSS). Secondly, WBV increases dynamic muscle strength. Thirdly, WBV induces the release of 

growth hormone (GH), Insulin-like growth factor-1 (IGF-1) and testosterone (Testo) secretions and 

decreases serum cortisol levels. Fourthly, WBV might increase blood flow to muscle and bone which 

lead to improve bone density.  

 

1.7.4 Musculoskeletal Response 

1.7.4.1 Bone 

There are several reports about the anabolic effect of WBV on BMD, improving bone strength 

and bone properties (244;245;302;319;320). The exact mode of action of WBV on bone is still 

not wholly understood; but it might be explained by some theories. Garman et al. (321) 

suggested that very small-amplitude oscillatory accelerations can induce trabecular bone 

formation in vitro without or negligible bone deformation (strain). They also assumed that the 

movement of osteocyte nuclei within lacuna was greater in this scenario compared with the 

direct strain on the calcified matrix. Verschueren et al. (22) also suggested that the response 

of bone tissue to high frequency stimuli could be related to FSS rather than a direct response 

to bone strain. Tanaka et al. (322) also hypothesised that the response of cortical bone 

formation to the vibratory stimuli could be related to the mechanical noise released from a 

vibration and this noise is known as stochastic resonance. This phenomenon can enhance 
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the osteogenic response of bone tissue by stimulating mechanoreceptors such as muscle 

spindle (322;323).  

 

Nevertheless, Judex et al. (324) have a different opinion about the underlying mechanism of 

WBV. They proposed that the FSS, which depends on the strain magnitude, is unlikely to be 

the underlying mechanism of high frequency-low magnitude stimuli since two high frequency 

regimes (45 and 90Hz) with the same strain magnitude generated different anabolic effects 

on bone tissue. They suggested that the possible mechanism could be related to the direct 

sensitivity of bone cells to the high-frequency oscillatory motion itself. The mechanosensor 

bone cells (osteocytes) respond to the low magnitude, high frequency vibrations by 

increasing COX-2 secretion and decreasing RANKL and PGE2 releases. These soluble 

factors released from the osteocytes prevent osteoclastogenesis (325) and, therefore, might 

induce bone formation rate. WBV training for eight weeks (3times/week) in post-menopausal 

women was associated with in a significant reduction in NTX when compared with sham 

vibration exposure (326).  

 

The anabolic effect of mechanical strain on bone tissue depends on their frequency. In other 

words, the mechanical stimuli with low frequency require higher amplitude (strain) in order to 

influence new bone formation. Therefore, 1Hz mechanical load needs at least 1000µ-strain to 

induce cortical bone formation. On the other hand, the same result can be achieved by 50µ-

strains at 30Hz, whereas only 5µ-strains (0.1g) can stimulate trabecular bone mass (Fig.1.20) 

(61). Low magnitude, high frequent vibrations might improve trabecular bone formation even 

when applied for very short duration. According to these data, bone modelling and 

remodelling might be initiated by active biological bone formation products rather than 

stimulated by the repair of micromanages. The osteogenic mechanism of mechanical 

stimulation could be related to inducing additional osteoblasts instead of increasing their 

activity (245;302). Gilsanz et al. (244) recommended that the time of exposure to the WBV 

exercise (30Hz, 0.3g) should be at least 2min/day in order to stimulate cortical and trabecular 

BMD. According to the previous study (244), the low magnitude and high frequent strains in 

women with low BMD did not increase the cross sectional diameter of the femurs, even 

though they increased the cortical bone formation in these bones. It means that the WBV 
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stimuli may have greater effects on the endocortical bone formation than the periosteum 

(Fig.1.21).  

 

 

 

 

 

 

Fig  1.20: This diagram illustrates that the anabolic activity of cortical bone can be stimulated by only 

2% of the peak strain (1000 µ-strain) that occurs when the frequency increases from 1Hz to 30Hz. The 

loading rate decreases the loading strain.  

 

   

 

 

 

 

 

Fig  1.21: The cross sections of long bone resembling hollow tubes. The effect of the WBV exercise 

results from increasing the endoosteal surfaces of long bones.   

 

In recent years it has been shown that trabecular bone formation increases with increasing 

vibration magnitude from 0.1 to 0.9 g. Chirstiansen and Silva. (327) reported that trabecular 

bone volume response to WBV did not show a dose-dependent response to increasing 

vibration magnitude in mice. They also demonstrated that trabecular bone volume of the 

skeletal sites closest to the ground such as the proximal tibial metaphysis and distal femoral 

metaphysis may be likely affected due to decreases in vibration magnitude with distance from 

the source of stimuli. However, another study concluded that the mice vibrated at 0.3g did not 

induce any changes in trabecular bone volume at the proximal tibial metaphysis and distal 

femoral metaphysis. Therefore, these results did not correspond with a dose-dependent 

response to increasing magnitude. However, this conclusion is not constant with another 

study established by Judex et al. (324). They showed a significant rise at the same sites at 45 

Hz, 0.25g, 10min/day for days a week. The reason for such discrepancy is not obvious, even 

though it may be related to different gender, age or methods.  
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1Hz                                     Cortical bone (+)        30 Hz
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1Hz                                     Cortical bone (+)        30 Hz



 

 109 

An animal study showed that low magnitude, high frequency stimuli (90Hz,0.15g, 

10minutes/day/4weeks) have potential effects on stimulating bone growth by increasing bone 

formation and reducing disuse osteoporosis (324). Another research demonstrated that the 

low magnitude WBV (45Hz,0.3g,15minutes/day/3weeks) can suppress the osteoclastic 

activity only in trabecular bone and can induce the bone formation activity only in the cortical 

bone (328). On the other hand, Garman et al. (321) showed that the extremely low magnitude 

oscillatory accelerations (45Hz,0.6g,20minutes/day/3weeks) did not influence the osteoclastic 

activity neither in trabecular bone nor cortical bone, but they can stimulate the metaphysial 

trabecular bone formation by about 70% in the in the absence of weight bearing. It was also 

found that the NO and COX-2 production from the MC3T3-E1 cultured cells (osteoblasts) in 

vitro were linearly correlated with the applied peak frequency (277;329). 

 

Moreover, Tanaka et al. (318) demonstrated that mechanical loading at higher frequency 

applied on MC3T3-E1 cells has more osteogenic response than the mechanical loading 

applied at normal frequencies. This study suggested that the high frequency, low magnitude 

mechanical loading increased the sensitivity of osteoblasts by stochastic phenomena. 

Furthermore, the OCN mRNA expression was upregulated by sinusoidal vibratory stimuli, 

with low amplitude and high frequency. Additionally, MMP-9 gene expression, which 

increases in osteoblasts during osteogensis, was also elevated in low amplitude and high 

frequency mechanical stimuli. 

 

It has been demonstrated in recent meta-analysis data that WBV has a positive effect on 

BMD, particularly in children, adolescents and post-menopausal women (330). This shows 

that WBV significantly increased LS-BMD and trabecular vBMD in children and adolescents. 

In postmenopausal women, the effect of WBV was more pronounced in hip BMD. However, 

Raun et al (240) reported that LS-BMD is more sensitive to WBV than FN-BMD. They 

explained that the transmission of vibration is in the same direction of lumbar spine. No 

positive effect of WBV in adults might be explained by a higher rate of WBV transmissibility to 

the ankle and hip in children than in adults (331). It is also assumed that a growing skeleton 

in children and adolescents makes WBV more sensitive in these populations than adults and 

postmenopausal women. Furthermore, the metabolic rate in adult‟s skeleton is less active 

than children‟s and adolescent‟s skeleton, which might lead to less responsiveness of 
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mechanical stimuli produced by WBV. Another possibility for not improving bone density in 

adults is related to the study methodology either in a small sample size or insufficient 

statistical power calculation in this population (330). According to this report, the optimal 

target population for WBV is firstly children and adolescents and secondly postmenopausal 

women. On the other hand, Wysocki et al. (306) reported that there is little evidence on the 

benefits of WBV for improving BMD in study populations. Another systematic review and 

meta-analysis of RCT reported that WBV does not have effect on BMD in postmenopausal 

women (332). These two reviews did not involve studies that recruited children or healthy 

adults with normal BMD. Other studies show that the anabolic effects of high frequency, low 

level magnitude strains would be more beneficial in subjects with low body weight and with 

low BMD. Supporting data show that mice with low BMD have a greater response to the 

vibratory stimuli than mice with high BMD (244).  

 

Tab.1.11 summaries a number of randomised clinical studies of WBV. Diversity in WBV 

protocols was reported, frequency ranges from 12Hz to 90Hz, peak to peak displacement 

ranges from <50 um to 12mm and g force range from 0.2g to 5.09g. Those studies reporting 

significant improvement in BMD can be categorised into two groups; firstly, studies applying 

frequency at more than 30Hz and peak to peak displacement less than 100µm and whose g 

force is usually less than 1g; secondly, studies using frequency at less than 30Hz and peak to 

peak displacement more than 1mm and whose g force is usually over 1g. Therefore, no 

recommendations can be presented for improved bone parameters. However, the optimal 

frequency ranges from 20–30Hz for a minimum of eight weeks‟ duration of WBV exercise is 

likely to promote BMD (333). A higher frequency of WBV does not necessarily increase the 

anabolic threshold of bone tissue. A recent study has shown that low-intensity (0.3g) 

vibrations at 60Hz increases bone mass in children with CP, but no positive results were 

observed at a higher frequency (90Hz) (334).   

 

Although several clinical trials of WBV are promising as regards a new modality for 

prevention and treatment of osteoporosis, more research is required to understand the 

efficacy and the optimal dose of WBV training. Irregularities in study design and WBV 

protocol and poor quality trail are responsible for inconsistent results. There is no fixed 

protocol for the parameters of WBV. The optimal frequency, amplitude, acceleration, duration 
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and time of exposure and direction of vibrations to stimulate bone formation in humans are 

not yet clear. It is also possible that combining WBV training with other forms of exercise such 

as high-load resistive exercise may be more effective in inhibiting bone loss due to prolonged 

bed rest than high-load resistive exercise alone (335).  
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Study Group Study  Parameters Assessment Results 

Torvinen et al. 2003 (336) Healthy adults 
(19-38years) 
(n,56) 

RCT f=25-45Hz 
D=2mm 
G=2-8g 
Direction=Vertical 
Time=4min/3-5timies/week 
Duration=8months 

p.QCT 
Bone markers 

No changes in BMD and bone markers 
Increases vertical jump height  

Russo et al. 2003 (337) Post-menopausal 
Women (n,29) 

RCT f=12-28Hz 
D=- 
G>1g 
Direction=- 
Time=6min/twice/week 
Duration=6months 

p.QCT 
Bone markers  

Inhibits loss of cortical BMD in tibia in the 
WBV group 

Rubin et al. 2004 (319) Post-menopausal 
Women (n,78) 

RCT f=30Hz 
D=55um 
G=0.2g 
Direction=Vertical 
Time=20min/day 
Duration=1year 

DXA Inhibited loss of FN-BMD and LS-BMD in the 
WBV group 

Ward et al.  2004 (245) Children with 
disability (n,20) 

RCT f=90Hz 
D=100um 
G= 0.3g 
Direction= sinusoidal 
Time=10min/5times/wk 
Duration=6months 

QCT Improvement in trabecular BMD in tibia the 
WBV group 

Verschueren et  al . 2004 
(22) 

Postmenopausal 
women (n,70) 

RCT f=35-40Hz 
D=1.7-2.5mm 
G= 2.28-5.09g 
Direction= - 
Time=10min/3times/week 
Duration=6months 
 

DXA 
Bone Markers 
 

Improvement in FN-BMD, no change in bone 
markers 

Gilsanz et al. 2006 (244) Women (15–20 
years) with low 
BMD(n,48) 

RCT f=30Hz 
D <50 um 
G= 0.3g 
Direction= sinusoidal 
Time=10min/day 
Duration=12months 
 

QCT Increased cortical bone in femur 
Increased trabecular bone in lumbar spine  
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Gusi et a.l 2006 (303) Postmenopausal 
women (n,28) 

RCT f=12Hz 
D=6mm 
G=5g 
Direction= Sinusoidal 
Time=1-6min/3times/week 
Duration=8months 
 

DXA Improvement in FN-BMD, no change in LS-
BMD 

Raun et al. 2008 (240) Post-menopausal 
Women (n,116) 

RCT f=30Hz 
D=10mm 
G=0.3g 
Direction=? 
Time=10min/5times/week 
Duration=6months 
 

DXA Increased in LS-BMD and FN-BMD in the 
WBV group 

Beck  et al. 2010 (338) Postmenopausal 
women (n,47) 

RCT f1=30Hz    f2=12.5Hz 
D1=50um   D2=4mm 
G1= 0.3       G2=1 
Direction1=Vertical 
Direction2=Sinusoidal 
Time1=15min/2time/week 
Time2=6mins/2times/week 
Duration=8months 
 

DXA 
QUS 

Inhibited loss of FN-BMD and LS-BMD in the 
WBV groups 

Wren et al. 2010 (339) Children with CP 
(n,31) 

RCT f=30Hz 
D=- 
g= 0.3g 
Direction= - 
Time=10min/day 
Duration=6months 
 

CT Increased cortical BMD in the WBV group.  

Ruck et al. 2010 (340) Children with CP 
(n,20) 

RCT f=12-18Hz 
D=2-4mm 
G= 2.6g 
Direction= sinusoidal 
Time=9min/5times/week 
Duration=6months 
 
 

DXA No changes in BMD 
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Bemben et al.  2010 (341) Postmenopausal 
women (n,55) 

RCT f=30-40Hz 
D=2-4mm 
G=2-2.8g 
Direction=- 
Time=2min/3times/week 
Duration=8months 
+Resistance training 
 

DXA 
Bone Markers 
 

No changes in BMD and bone markers 

Verschueren et  al . 
2011(342) 

Postmenopausal 
women (n,113) 

RCT f=30-40Hz 
D= 
G=1.6-2.2g 
Direction=? 
Time=15min/3times/week 
Duration=6months 
+Vitamin D 
 

DXA Hip BMD increased significantly in the 
intervention and the control group  

Turner et al. 2011 (343) Postmenopausal 
women(n,39) 

RCT f=12Hz 
D=50um 
G=0.3g 
Direction=Vertical 
Time1=20min/1time/week 
Time2=20min/3times/week 
Duration=8weeks 
 

Bone Markers 
BAP 
NTX 

Time2 exposure caused a reduction marker 
of bone (NTX) resorption when WBV 

Von-Stengel et al. 2011 
(344) 

Post-menopausal 
Women (n,108) 

RCT f1=12.5Hz- f2=35Hz 
D1=12mm   D2=1.7 
G1=            G2= 
Direction1=Vertical 
Direction2=Sinusoidal 
Time=15min/3time/week 
Duration=12months 
 

DXA LS-BMD increased in the two WBV groups; 
more pronounced in the first group. 

Slatkovska et al.  2011 
(345) 

Post-menopausal 
Women (n,202) 

RCT f=30-90Hz 
D<50um 
G=0.3g 
Direction=? 
Time=20min/day 
Duration=12months 

DXA 
p.QCT 

No changes in BMD 
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Tab  1.11: Clinical trials of WBV: characteristics of participants, study type, WBV parameters, bone assessment and the results. . Frequency (f), peak to 

peak displacement (D) 

 

 

 

 

 

 

 

 

 

 

 

Reyes et al.  2011  (334) Disabled children 
(n,65) 

RCT f1=60Hz- F2=90Hz 
D1=           D2=- 
G1= 0.3g   G2=0.3g 
Time=5min/day 
Duration=6months 
WBV was delivered to the radii and 
femurs 
 

QUS Increased BMD at the radius with frequency 
60Hz 

Ligouri et al. 2012 (346) Healthy Adult 
(n,10)(6male) 
Age 18-22yeras 

RCT f=15-26Hz 
D=4.16 
G=? 
Direction= Sinusoidal 
Time=20mins/3times/week 
Duration=12week 

DXA Increased BMD  at the lateral and 
posterioranterior view of the spine 
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1.7.4.2 Muscle  

Vibrations usually increase motor activity and electromyography (EGM) activity during 

contractions. WBV with frequencies 30, 40 and 50Hz has shown to elicit a greater response 

in the EMG activity in the vastus lateralis muscle compared with the control group with the 

highest response at 30Hz (347). In contrast to the previous study, vibrations at frequency 

65Hz and amplitude 1.2mm applied to the biceps tendon with two different loads could not 

activate EMG (348). Therefore, an increase in vibration amplitude and frequency may not be 

beneficial in enhancing maximal effort contractions and submaximal muscle contractions can 

induce a greater acute enhancement in neuromuscular performance (EMG activity) (349). It is 

reported that EMG activity is more common with side alternating vibrations (305). 

Furthermore, metabolic power rate can be increased by vibration exercise due to the 

increased muscular activity (304). Recently, Zange et al. (350) have shown that the amount 

of ATP consumption in an isometric contracting calf muscle can be boosted by about 60% 

when WBV training has been added (f=20Hz and D=4mm). Hence, the amount of ATP 

turnover in muscle can be increased during vibrations, this might lead to enhanced 

intramuscular temperature. Cochrane et al. (351) reported that WBV training (26Hz and 

D=66mm) can also elevate intramuscular temperature.  

 

The effects of WBV in muscular performance and muscle mass have shown conflicting 

results. Several studies have shown that WBV has a positive influence on muscular 

performance and body balance. Torvinen et al. (352) reported that vertical jump height 

increased significantly by about 8% after eight months of WBV training in healthy young 

adults. Another study by the same group concluded that the four-month WBV training 

enhanced vertical jump height and jumping power in young, healthy, nonathletic adults (353). 

In postmenopausal women aged 58-74years, six months of WBV is an efficient training 

method and is effective as conventional exercise in enhancing muscle movement and jump 

efficiency (354). Additionally, WBV training (3months) leads to improvement in muscle 

function in cystic fibrosis patients (355). Ten weeks of WBV inhibit the loss of muscle strength 

and mass associated with age-induced sarcopenia in older women (356). Moreover, the short 

term effect of WBV increases the vertical jump height and improves flexibility performance 

(357;358). The combination of WBV with high intensity resistance exercise is more effective 

for increasing muscle strength than resistance training alone (341). Moreover, a meta-
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analyses study has concluded that WBV training has a beneficial effect in enhancing muscle 

strength in older populations (332). The effectiveness of WBV on muscle performance might 

be dependent on WBV parameters (359). Torvinen et al. (357) demonstrated that WBV 

amplitude is positively correlated with muscle performance while others suggested that 

frequency is the most important variable in WBV (360;361). The combination of these two 

parameters determines the acceleration magnitude of magnitude. Another study reported that 

the short-term effect of WBV training with the different g forces (control,2.16g,2.80g,4.87g 

and 5.83g) and the frequency (0,30,40,35 and 50Hz) and the amplitude (0,2-4mm,2-4mm,4-

6mm and 4-6mm) produced no changes in the muscle performance in young healthy men, 

but in women the 2.80g (35Hz) and 5.83g (50Hz) showed a significant change in counter 

jump movements (353;360).  

 

Dynamic muscle strength increased significantly following six-month training of WBV 

combined with vitamin D supplementation in postmenopausal women; however, there was no 

significant difference compared with the control group who also received only vitamin D (342). 

In this study there is no clear evidence that the improvement in muscle strength resulted 

either from WBV or vitamin D supplementation as there is a positive correlation between 

serum concentration of vitamin D and muscle power and force (362). Creatine kinase (CK) is 

a marker of muscular lesion and commonly elevated after intensive exercise (running/walking 

downhill) due to rhabdomyolysis (363). Recently, it was shown that side alternating WBV 

training in combination with dynamic exercise (f=26Hz and A=15mm) can double the level of 

serum CK in 25% healthy adults (364). It is well known that dynamic exercise can increase 

accumulation of lactate in muscle and blood (365). It is also reported that lactate 

concentration can be elevated after WBV training (364;366;366).  

 

Vibratory stimuli have a potential to stimulate proprioceptors on the sole of the foot and 

anterior cruciate ligament. These receptors play an important role in the body balance and 

postural stability (367). WBV (six weeks) improves balance and mobility in elderly people 

(368). It is reported that WBV training increases walking speed, stride duration and length 

and cadence in Parkinson‟s diseases (369;370) and has beneficial effects on muscle 

strengthening, balance and walking ability in the elderly (371;372) and in individuals with 

spinal cord injury (373). 
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1.7.4.3 Hormonal Response  

The endocrine system may play an important role in determining the individual‟s response to 

the exercise. WBV exercise has been shown to increase acutely testosterone and GH in 

healthy young individuals (n,14) after a single bout of 10minutes (243). It is reported that 

there is a significant increase in testosterone and GH and a decrease in the serum 

concentration of cortisol in healthy young men after 10minutes of WBV exercise (6minutes, 

26 Hz, peak-to-peak displacement of 4 mm; acceleration,17g) (243). In healthy adults (n,9) 

the level of GH increased significantly after the first bout of WBV, whereas the second bouts 

(with a 2-h interval) of WBV are associated with blunting of GH responsiveness to the second 

stimulus (366). However, both Di Loreto et al. (374) and Cardinale et al. (375) did not find any 

acute changes in testosterone and cortisol in healthy individuals (n, 9, 10 respectively) 

undergoing 5 and 20minutes of WBV exercise, albeit with relatively small amplitude and 

frequencies of 27 and 30 Hz respectively. In addition, Di Loreto et al. (374) measured 

glucose, insulin, glucagon, adrenaline, noradrenaline, GH and IGF-1 and reported a small fall 

in glucose levels and a rise in adrenaline. Recently, hormonal fluctuations have been 

observed in elderly individuals following a single session of WBV (376). IGF-1 levels were 

elevated immediately, 1hr and 2hr post WBV plus static squat (slight knee flexion) vs. levels 

observed with static squat alone (376). Immediately following the WBV session, cortisol levels 

were higher in those who static squat alone; however, by 1 hr and 2 hr post treatment, 

cortisol concentrations were reduced below pretreatment levels with WBV plus static squat 

and static squat alone (376). In contrast, no differences were observed in testosterone or GH 

concentrations between treatment groups (376). It is reported that no reduction in body 

weight, total body fat or subcutaneous fat was observed after 24 weeks WBV training in non-

athletic young females (377). However, eight months training of WBV in combination with 

resistance training in postmenopausal women is effective in reduction of total FM% (378). 

Tab.1.12 summarises the studies showing acute hormonal responses to WBV.  
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Study Populations  Parameters GH IGF-1 Testost Cortisol Glucose 

Bosco et al. 2000 
(243) 

14(males) 
25±4.6years 

f=26Hz 
D=4mm 
Duration=10mins 

Increased - Increased Decreased  - 

Di Loreto et al. 2004 
(374) 

10(males) 
39±3years 

f=30Hz 
D= 
Duration=25mins 

No change No change - No change Decreased 

Cardinale et al. 2006 
(375) 

9(males) 
22±2years 

f=30Hz 
D=1.5-3mm 
Duration=20mins 

- No change No change -  

Erskine et al. 2007 
(379) 

17(males) 
22.3±2.7year

s 

f=30Hz 
D=4mm 
Duration=20mins 

- Not 
measured 

No change No change - 

Fricke et al.  2009 
(380). 

20 
(10females) 

f=26Hz 
D=2mm 
Duration=5mins 

Increased 
(males) 

Decreased  
(females) 

- - - Decreased 

Cardinale et al. 2010 
(376) 

20 
(11females) 
70years(66-

85) 

f=30Hz 
D=4mm 
Duration=5mins 
 

No change Increased No change Increased/ 
Decreased  

- 

Sartorio et al. ,2010 
(366) 

9(males) 
23±2years 

f=35Hz 
D=5mm 
Duration =15mins 

Increased - - - - 

 

Tab  1.12: Acute hormonal responses to WBV exercise. Frequency (f), peak to peak displacement (D) 
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1.7.4.4 Vascular Responses  

The systematic effects of vibratory exercise include increasing heart rate; systolic blood 

pressure and oxygen uptake have been recorded after exercise. Unexpectedly, diastolic 

hypotension has also been reported in the vibratory exercise group and the reason for that 

could be arterial vasodilatation (381). WBV (f=26Hz, D=6mm) increases the blood volume in 

the peripheral blood circulation of quadriceps and gastrocnemius muscles from 6.5cm/s to 

13cm/s (382). Furthermore, side-alternating vibrations in health adults with frequency 26Hz 

and D=6mm for 9minutes result in a dramatic increase in popliteal blood flow by 100% as 

measured by a Doppler ultrasound machine (382). Several studies show the skin blood flow 

as assessed by laser-Doppler flowmetry can be enhanced by WBV training (381;383;384). It 

has also been reported that a 5minutes bout of WBV (f=50 Hz,D=4mm)) in health adult people 

(n,14,9males) increases superficial skin temperature of lower legs, total hemoglobin and 

deoxyhemoglobin (385). Thus WBV‟s influence on peripheral circulation might improve BMD 

and muscle strength through increasing the amount of nutrients required by these tissues. It 

is reported that WBV increases the oxygen uptake, heart rate and blood lactate levels to 

values comparable to moderate exercise (381;386). 
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1.7.5 Clinical Applications  

WBV is currently being examined as a prevention and treatment for several conditions 

(Tab.1.13). However, other studies have produced conflicting results with regard to the utility 

of WBV for the treatment of these conditions.  

 

Conditions Examples 

Osteoporosis  Postmenopausal women (344) 
Cerebral palsy (339) 
Patients with low BMD (244) 
 

Muscular performance  Osteogenesis imperfecta (387) 
Multiple sclerosis (388) 
 

Balance and stability Elderly people (368) 
Parkinson‟s disease (369) 
knee osteoarthritis (389) 
 

Pain management  Low back pain (390) 
Fibromyalgia (391) 
 

Glycaemic control   Improving glycaemic control in type 2 diabetes patients (392)  
 

Rehabilitation  Improvement in walking distance and decreasing in the 
requiring for a sit-stand test in chronic obstructive pulmonary 
disease (393) 
Reduce muscle pain and enhance recovery after football 
exercise (394) 

 

Tab  1.13: The clinical applications of WBV 

 

 

1.7.6 Possible Concerns  

Although many studies show some beneficial effects of WBV on musculoskeletal system and 

hormones, there are several concerns regarding safety features.. There are some 

occupational hazards associated with vibrations such as low back pain, the Raynaud‟s 

phenomena, plantar fasciitis, blurred vision, tinnitus and intraocular dislocation (306). 

Vibrations with the frequency between 5 and 15Hz can lead to low back pain and may 

contribute to circulatory problems such as Raynaud‟s phenomena (302). However, the level 

of chronic back pain in post-menopausal women can also be reduced by applying WBV 

training (240). The exposure limits have been recommended by agencies such as the 

International Safety Organisation (ISO). It shows that when the magnitude of WBV is below 
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0.56g and the frequency between 20-90Hz, these are not pathogenic to the musculoskeletal 

system, whereas the magnitude of WBV that exceeds 1g might be harmful to the body (328). 

Therefore, it is extremely important to develop correct recommendations for WBV parameters 

as over exposure of WBV might lead to injury (361). Erythema and itching in the legs have 

been recorded in some cases after a vibratory exercise session, which disappears within a 

few minutes. The reason for that could be related to increasing blood flow in the lower limbs 

(381), which might lead to stimulation of mast cells and histamine release. However, long 

adverse effects of the low magnitude, high frequency loading treatment have not been 

observed or reported (395).  

 

1.7.7 Future Direction 

WBV exercise could provide a therapeutic intervention to the patients who have a high risk of 

fractures due to low BMD such as postmenopausal women, children with muscular disorders 

and CP and patients who receive GCs and chemotherapies. Applying WBV in ALL children 

receiving chemotherapy may have a beneficial effect as the anabolic bone effect of WBV is 

more pronounced in children and adolescents particularly with low BMD. However, the 

optimal dose of the WBV exercise and the systematic response to the different doses require 

further research in order to maximise the beneficial effects of vibratory exercise.   
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1.8 Diagnostic Approaches to Musculoskeletal System   

1.8.1 Methods for Measurements of Paediatric Bone 

The role of DXA, p.QCT and QUS, Leonardo mechanography and maximal isometric grip 

force (MIGF) in the clinical assessment of bone, muscle and body composition parameters in 

children are considered (Tab.1.14). It is important to understand some terms related to these 

methods; firstly, bone area (BA, cm2) represents bone size or volume and can be either in 

two-dimensional projections (cm2) or in a three-dimensional projection (cm3). Secondly, bone 

mineral contents (BMC) are defined as amount of bone material in the measured area (g). 

Thirdly, bone mineral density (BMD) represents mass per volume (BMC/BA). If the BA is 

measured in two-dimensions (cm2) and in three-dimensions (cm3), this will result in aBMD 

(g/cm2) and vBMD (g/cm3) respectively.  

 

1.8.1.1 Dual Energy X-Ray Absorptiometry  

DXA was developed in the late 1980s and became the most common method used to screen 

osteoporosis in post-menopausal women. Subsequently, DXA measurements of BMC and 

BMD rapidly increased in paediatric research and clinical practice (396). The fundamental 

principle of DXA is the measurement of transmission of X-rays, produced at high and low 

energies at a stable X-ray source. The calculated mass attenuation of the soft tissue and 

bone can be differentiated by these two energies (397). The radiologist is required to evaluate 

precisely patient position and region of interest (ROI) in each measurement. Lumbar spine 

should be centralised and straight, with visualisation of last rib pair and upper of sacrum. 

Personal belongings such as jewellery should be removed, if possible. L1-L4 is ROI and will 

be selected automatically. The image should include the entire vertebral body with a 

minimum adjacent soft tissue. For hip evaluation, the femoral shaft should be parallel with the 

long axis of the image with only a small part of the minor trochanter visualised. There should 

be no overlap between the trochanters and the femoral neck or acetabulum. The ROIs are 

the femoral neck, trochanter, intertrochanteric and total hip. Whole body DXA measures TB-

BMC and aBMD (398). There is some controversy about including head in TB-BMC or BMD 

in paediatric bone measurement. This is due to a large contribution of heads in bone density. 

Lumbar spine and total body less head (TBLH) are the most preferable skeletal sites for 

assessing BMC and aBMD in growing children, whereas the FN-BMC and FN-BMD are not 
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highly accurate and reproducible in this age group of children. It is very crucial in children with 

normal growth or delayed growth; BMC and BMD results should be adjusted for absolute 

height or height age, or compared with paediatric reference data that provide age-, gender- 

and height-specific z scores (399). Two types of standard deviations (SD) are often described 

in DXA results T-score and z score. The T-score compares the patients BMD to the optimal 

peak bone density for the same gender. Clinical diagnosis of osteoporosis is based on T-

score BMD in postmenopausal women and in men age 50 and over. The T-score is restricted 

in adult bone DXA, not applicable for children. Instead, a z score of BMD is more appropriate 

in paediatrics. A z score is also SD score of BMD based on same age peers and sex, height 

and weight (400). However, this approach is not completely appropriate for those children 

suffering from abnormal growth pattern, delayed sexual maturation and chronic inflammation. 

Furthermore, Areal bone density will be underestimated in smaller bones in short individuals 

and overestimated in larger bones in tall individuals of the same age and gender. A numbers 

of methods have been developed to accommodate differing bone size. According to the 

ISCD, paediatric bone density will be significantly low if BMD z score is less than or equal to -

2.0, adjusted for age, gender and body size, as appropriate (399). The ISCD recommended 

that lumbar spine and TBL-BMC and aBMD of DXA results in children with linear growth or 

maturational delay should be adjusted for absolute height or height age, or compared with 

paediatric reference data that provide age, sex and height-specific z-scores in order to have 

appropriate results (396). Moreover, Kalkwarf et al. (401) evaluated a large number of 

children by DXA and found the LMS curve method (statistical method) might be more 

appropriate in identification of low BMC or BMD in children rather than SD. This method has a 

greater accuracy in providing a wide range of reference data particularly at low and upper 

ends of distribution. These z scores are only suitable when comparing average size children 

in population based studies. Therefore, in children (5-19years) with chronic diseases such as 

IBD, to reduce the effect of bone size on BMC values, the predicted TB-BMC and LS-BMC 

(L2-L4) can be calculated for bone area by regression models. The TB-BMC and LS-BMC z 

scores corrected by bone area (size) can be obtained by these models (402). This method is 

currently used in our team‟s research and is dependent on the calculation of predicted and 

percentage predicted bone area (PPBA) for age and gender. Therefore, a short child with 

small bones would have a low PPBA. TB-BMC z score and LS-BMC BMC z score (L2-L4) 

was calculated by using a regression formula for males and females in order to minimise the 
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effect of bone size on BMC values (402). Bone mineral apparent density (BMAD) is another 

frequent method for bone size adjustment used in paediatric DXA. BMAD was developed to 

minimise the size-related effects of DXA aBMD measurements. BMAD at lumbar spine can 

be calculated by estimating the vertebral depth as the square root of the area measured by 

DXA (Bone area). Then, the vertebral volume is calculated by simply multiplying the height x 

width(BA) x depth (403). For example, in the case of a 7.4 years child with BMC 19.24g and 

bone area 17.45, the calculated aBMD age matched is 19.24/17.45=0.743g/cm2, whereas the 

BMAD=19.24/(17.45xsequre root 17.45)= 0.26g/cm3. Recently, Zemel et al. (404) have 

shown that DXA BMC/BMD z scores adjusted for height for age z-score (HAZ) provided the 

least biased approach for estimating the effect of short (or tall) stature on measures of BMD. 

Adjustments using HAZ were the least biased compared with age z score, height age z score, 

height z score and BMAD. Therefore, this approach can be applied to assess the effect of 

short or tall stature on BMC/BMD z score.    

 

Recently, ISCD (2007) stated that osteoporosis should not be diagnosed in children based 

solely on DXA BMD (399). The Society‟s position is that the diagnosis of osteoporosis in 

children necessitates the co-existence of a clinically significant fracture and a low BMD or 

BMC. Long bone fractures of the lower limbs, compression fractures of vertebrae and two or 

more long bone fractures of upper limbs are considered significant clinical history of fracture. 

Low BMC or BMD is defined as a BMC or aBMD z-score that is less than or equal to -2.0, 

adjusted for age, gender and body size, as appropriate. Whilst it is prudent not to label 

children with a sole abnormality of a low BMC or BMD with osteoporosis, it is becoming 

increasingly clear that children with chronic diseases can suffer fractures without necessarily 

having a particular low size-adjusted BMC or BMD (405). Perhaps a fall in bone mass may be 

a better indicator of fractures in children with chronic disease and requires further 

investigation (406) 

 

DXA is characterised by relatively fast procedure, low dose of ionising radiation and low cost. 

The total radiation exposure for whole body scan is below 13micro-sievert, which is 

significantly below the dose limits of 5000 micro-sievert recommended by the Federal Drug 

Administration Regulation for exposures from medical research procedures in children (400). 

On the other hand, it has several limitations; firstly, DXA measurements are expressed as a 
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two dimensional aBMD (g/cm2), which depends on bone size and cannot assess the true 

vBMD (g/cm3); secondly, DXA cannot differentiate between cortical and trabecular bone; 

thirdly, inaccuracies result from changes in body composition; and, finally, limited reference 

data for paediatrics (400). True vBMD depends on both BMC and bone size in a three 

dimensional projection. BMC can be measured precisely by DXA, whereas the bone size in 

three dimensions cannot be assessed by DXA as it is unable to measure bone depth. 

 

1.8.1.2 Peripheral quantitative computed tomography  

p.QCT has been developed since the 1970s (400) and the first publication was in the early 

1990s (407). p.QCT allows paediatric investigators to measure true vBMD, bone geometry 

(periosteal, endosteal diameters and cortical thickness), bone strength (strain index and 

fracture load) and body compositions (lean and fat) in the peripheral skeleton (400). p.QCT 

images are generally obtained from the forearm or lower limb. In the forearm, images are 

taken at 4% and 20% of radial length (distal to proximal). Total BMC, trabecular vBMD and 

total cross sectional area are assessed mainly at 4% of radial length, whereas cortical 

thickness, cortical bone area, cortical vBMD, stress-strain index (SSI) (mm3) and periosteal 

and endosteal circumferences are measured mainly at 20% of radial length. In the lower 

limbs images are taken at four different positions (4%, 14%, 38%, 66%) of the tibiae length 

(from distal to proximal) (400). Each site has specific bone measurements; at 4% position the 

distal metaphysis of the tibia is more accurate to determine trabecular vBMD (g/cm3), 

strength data (fracture load (N) and SSI) is more appropriate at 14%-38% of the tibial length. 

Cortical thickness, cortical bone area, cortical vBMD and body composition data (muscle and 

fat) are more accessible at 66% of tibial length (408). p.QCT has several advantages over 

DXA. Firstly, it has ability to provide a three-dimensional image, and thus, it can measure true 

vBMD rather than aBMD. Secondly, it can differentiate between cortical and trabecular bone. 

Thirdly, it can measure bone size and geometry (400). On the other hand, total cross-

sectional bone area, cortical bone area, periosteal and endosteal circumferences and cortical 

thickness can be evaluated by p.QCT (409). Measurement of bone geometry properties plays 

a vital role in determination of bone strength. Therefore, this technique can provide fracture 

load of measured bone. In addition, p.QCT is characterised by low dose of radiation. 

However, p.QCT underestimates cortical vBMD when the cortical thickness is below 2mm. 

Technically; it provides error reading when there is movement during the procedure (400). 
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1.8.1.3 Quantitative Ultrasound  

In 1984, QUS was firstly developed to assess calcaneal bone status in adults. QUS has 

gained popularity in both clinical and research fields and has become an acceptable method 

to screen osteoporosis in elderly people (410). Two measures are important in QUS; SOS 

and BUA. BUA and SOS rise with greater bone connectivity and higher in normal than 

osteoporotic subjects. It is found that BUA parameter is mainly influenced by trabecular 

separation and bone connectivity, whereas SOS is mainly influenced by trabecular separation 

(411). SOS is the ratio between the traversed distance and the transit time (m/s). SOS (m/s) 

is dependent on several factors, including bone density, bone structure and elasticity. 

Attenuation is defined as the energy which is lost during transmitting ultrasound waves 

through materials. There is a linear relationship between total attenuation and the frequency. 

The slope of attenuation relying on the frequency in decibel per megahertz (dB/ MHz/cm) has 

been known in clinical practice in BUA (400).There is a positive relationship between the SOS 

and age, physical activity, weight and height. Zadik et al. (412) also observed that the SOS at 

radius increased sharply during the first five years in both genders. After that, there was a 

much slower decrease over the next five years. During puberty, the SOS again increased 

substantially at 11years and 14years of age for girls and boys respectively. A diagnostic 

sensitivity of QUS can be influenced by significant changes in cortical bone distribution during 

growth; however, it can be improved by calculating z score. The major advantages of QUS 

are low cost, greater speed, increased portability, accessibility and no ionised radiation. 

Moreover, QUS can be applied successfully and precisely in infants from 24 weeks gestation 

through to full term as the SOS increases with gestational age (413). On the other hand, the 

actual bone deficit cannot be identified by QUS such as BMD and BMC (400). Furthermore, 

the variability between the QUS and DXA measurements make the sensitivity of QUS in 

assessing bone abnormalities relatively low. It is also reported that the correlation between 

hip BMD and calcaneal QUS is more positively with BUA rather than SOS especially after 12 

months training in healthy adult men (414)  .  
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 DXA p.QCT QUS 

Region of 
interest  

Total body 
Spine 
Hips 
Arms 
Legs 

Radius 
Tibia 

Radius 
Tibia 
Phalanx 
Calcaneus  

Parameters BA 
BMC 
aBMD 
BMC/BMD Z-score 
BMD T-score 
BMAD 

BA 
BMC 
vBMD 
Bone geometry  
Bone strength  

SOS 
BUA 
Percentile  
Z-score 

Advantages Accessible 
Accepted 
Low cost 
Low dose of radiation  

Non-invasive 
Measures true v-BMD (three 
dimensional)  
Measures bone strength 
Measures bone geometry 
Differentiate between cortical 
and trabecular bone  
Low dose of radiation 

Fast/easy 
Low cost 
No ionized radiation  
Portable  
 

Disadvantages Cannot measure v-BMD Difficult in young children  
Variability of trabecular BMD 
throughout the metaphysic at 
different positions of the 
measurements   
Movement artifacts, 
Dose not differentiate clearly 
between the inner margin of 
cortical bone and the outer 
margin of trabecular bone, 
particularly close to the 
growth plate 
The resolution can be 
improved by using thinner 
slices   
Wide ranges in trabecular 
BMD measured at different 
times (baseline-6minths)  
(415).  
No reference data for tibial 
scans 

Can not measure 
BA,BMC, BMD 
 

 

Tab  1.14: The difference between three bone assessment methods (DXA, p.QCT and QUS) in terms 

of region of interest, bone parameters, advantages and disadvantages. BA bone area, BMC, bone 

mineral content, areal bone mineral density (aBMD), volumetric bone mineral density (vBMD), BMAD 

bone mineral apparent density, SOS speed of sound, BUA broadband ultrasound attenuation.  
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1.8.2 Muscle Function Assessment 

Muscles are connected to bones anatomically and physiologically. Therefore, the 

development of muscle mass should be matched with the development of bone mass and 

properties in order to prevent fracture (237). This explains why athletes have stronger bones 

compared with non-athletes. In addition to physical activity, gravity (GFR) plays also a vital 

role in the development of the musculoskeletal system. In the present studies, the 

assessment of muscle function can be done by Leonardo mechanography and MIGF.  

 

 

1.8.2.1 Leonardo Mechanography 

Leonardo Mechanography (Novotecc Medical GmbH, Pforzheim, Germany) is a device used 

to assess the dynamic (kinetic) parameters deriving from motor performance. Leonardo 

Mechanography has two parts: the mechanography software (Version 4.2-b05.53-RES was 

used in this thesis) and the Leonardo ground reaction force platform (GRFP) hardware 

(Fig.1.22). The ideal place for the GPFP is concrete (solid and even surface). These two 

components are connected to each other by USB cable and the software analyses data after 

patients jump on the GPFP. There are three types of jump: single two leg jump (s2LJ), 

multiple one leg jump (m1LJ) and heal rise test (HRT) chair rising test (CRT) (416). There are 

three phases for the measurement: However, before a subject steps onto GPFP, it is 

important to make a zero adjustment for the platform by pressing a zero adjust button on the 

computer screen. Phase1: the subject steps on the GPFP and stands straight and still for at 

least two seconds with each bare foot (wearing only socks) on each force measurement 

plate. At the end of phase 1, a single beep will be heard to ready the subject for the next 

phase. In phase 2, the subject is asked to perform a jump. Phase 3: after the measurement 

itself, the subject is asked to stand still on the GPFP for a few seconds until it is indicated by 

a double beeping sound (416). The measurement can be repeated three times and the 

highest reading of the highest jump is selected. The main measurement outcome of the 

Leonardo mechanography is described in Tab.1.15 A few studies measure muscle 

performance using mechanography (237;355;362;380;417-420). 
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A recent study has shown that coefficient of variation (CV) for the Leonardo mechanography 

measurements in children ranged from 3.4–7.5% s2LJ, m1LJ and HRT, whereas it was 

higher for CRT (16%) (416). The CV results can be either influenced by jumping with shoes 

or jumping with bare feet. This indicates that it is necessary to standardise the measurement 

method condition. Shosed foot seems to have low CV compared with bare foot apart from the 

Vmax test (421). A positive correlation between GFR assessed by the Leonardo 

mechanography and body size in paediatrics are observed. Therefore, mechanography is a 

novel device that assesses muscle function in children and adolescents (417). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  1.22: Leonardo mechanography consists of two parts: the mechanography software installed in the 

computer and the Leonardo ground reaction force platform (GRFP) hardware with chair.  
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Measurement Abbreviation Units Preferable Test 
 

Esslinger Fitness Index* E.F.I % s2LJ 

Jump Efficiency Efficienc % s2LJ 

Jump Height JH m s2LJ 

Velocity maximum V max m/s s2LJ,HRT,CRT 

Maximum force F max tot kN All tests 

Maximum force in the left leg F max L kN m1LJ, s2LJ 

Maximum force in the right leg F max R kN m1LJ, s2LJ 

Maximum force differences between legs diff. F max % m1LJ, s2LJ 

Maximum force related to body weight F max tot rel Fg* All tests 

Maximum power P max tot kW s2LJ,HRT,CRT 

Maximum power in the left leg P max L kW s2LJ 

Maximum power in the right leg P max R kW s2LJ 

Maximum power differences between legs Diff. P max % s2LJ 

Maximum power related to body weight P max / kg W/kg s2LJ,HRT,CRT 

Energy store by pre-tension muscle E Store / kg mJ/kg All tests 

 

Tab  1.15: Esslinger fitness Index (E.F.I) represents correlation between maximum power related to 

body weight and age for both sexes compared with reference data population. A value of 100% is 

equal to the average of the reference group (422). Jump efficiency is efficiency of movement and is the 

maximum power relative to maximum force. Jump height measured by metre (m), the maximum jump 

velocity is the maximum lift off velocity measured by meter/second (m/s). The unit of maximum force to 

lift off of the jump is kilo-Newton (kN), the unit of maximum power to lift off of the jump phase of the 

jump is kilo-Watt (kW). Maximum force/power differences between legs during lift off phase of the jump 

(kN/kW). The maximum force related to body weight is Fg (Xtimes the body weight of the subject) and 

the Maximum power related to body weight measured by Watt/kilogram (W/kg).The unit of Energy 

store by pre-tension muscle can be defined when the subject bends his knees before the lift off 

movement; at this stage, the muscle increases length as well as force, which is equivalent to a spring 

storing energy when compressed or extended. This energy is used to increase the force and power 

output for the lift off of the jump. The unit is mega joules per kilogram (mJ kg). Each outcome can be 

mainly determined by different (416). 
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1.8.2.2 Maximal Isometric Grip Force 

MIGF is a simple reliable method used to determine the maximum handgrip strength. 

Handgrip strength is an important test to evaluate physical fitness. There are several types of 

devices used to measure MIGF such as the Jamar the Saehan, the Biodex dynamometers, 

Myogrip and Martin Vigorimeter. No much difference is observed between the Jamar and the 

Biodex dynamometers, and Myogrip in the validity and reliability of these instruments 

(423;424). In adults, the coefficient variance (CV) of the Jamar dynamometer (6%) is lower 

than the Biodex dynamometers (17%) (425). The Jamar dynamometer is a reliable instrument 

to evaluate MIGF in children aged from 6–12years (426). MIGF is dependent on age, gender, 

BMI and ethnicity (427). BMD in post-menopausal women has a positive correlation with 

MIGF (428) and some research suggests MIGF can be used as a predictive value for 

osteoporosis (429). Low MIGF can be applied as a predictive value for poor hospital outcome 

in children with critical condition (430). It is reported that men have a higher MIGF than 

women and with the peak measurement at 35 years of age and then decreases continuously. 

Positive influencing factors with MIGF are forearm circumference, hand size, body mass and 

height (431). The reference data for MIGF should be adjusted for age and gender rather than 

height (427;432). In our studies, A Jamar handgrip dynamometer (Preston, Jackson, MI, 

USA) was used to measure forearm muscle force in dominant and non-dominant arm and the 

highest measurements were recorded. The MIGF (N) data were converted into age and 

height based SDS in children (433). The participants were asked to squeeze as hard as 

possible. In adult measurements (Chapter 4), the elbow was fully extended, whereas in 

children with ALL study (chapter5), the hand was flexed at 90°.  

 

1.8.3 Body Composition Assessment  

There are several techniques that are used to measure body composition in paediatrics. 

However, some of these techniques cannot be practically used such as hydrostatic 

underwater weighing to determine body FM and body LM. We used three main approaches to 

assess body composition in this thesis: anthropometry, Bioelectrical impedance and DXA.  
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1.8.3.1 Anthropometry 

The actual measurements of height and weight and BMI can be converted into SDS for 

chronological age using 1990 UK standards (434;435). The anthropometric measurements 

SDS are more practical in the paediatric population than the 3rd centile; this would reduce the 

false positive rate reading (436). BMI has been recommended for evaluating overweight and 

obesity in children and adolescents in the clinical setting and it is a useful proxy measure of 

adiposity (437). Calculates of BMI based on weight and height (BMI=weight/height2) have 

been available for many years (438).The advantages of BMI is its cheap cost and relative 

ease of use; it can also be used as screen test for obesity in children. The limitations of BMI 

include high reading of BMI, which does not always mean obesity. Because the BMI 

calculation depends on weight and height, BMI does not differentiate between FM and LM. 

For example; the BMI of athletes is high because of the level of LM not from FM (439). 

Therefore, additional research on alternatives or adjuncts to BMI is needed. 

 

1.8.3.2 Bioelectrical Impedance  

Bioelectrical impedance is an extremely popular method for assessing body composition. The 

mechanism of bioelectrical impedance is based upon the conduction of an applied electrical 

current at multiple frequencies in the body. The flow of a low frequency current is dependent 

on the amount of water found in the human body. The highest percentage of water in the 

human body is found in LM, and the least amount in fat and bone (Fig.1.23). Therefore, 

muscle tissue has low resistance to electrical currents and bone and fat tissue have high 

resistance to electrical currents (440). This technique finally estimates total body water 

(TBW), fat free mass (FFM) and FM% (441). The technique is simple, non-invasive, relatively 

cheap and applicable to individuals of almost all ages. However, bioelectrical impedance 

results can be influenced by the level of hydration and the density of the FFM, which are not 

stable among individuals (440). Furthermore, this technique does not provide accurate 

measurements of body composition in overweight or obese children because of the large 

errors in individual estimates (442;443). Because of these limitations, this technique is not 

recommended for measuring body composition by researchers, clinicians and practitioners 

(444). There are different devices used to measure bioelectrical impedance such as Tanita 

and Xitron Hydra. In our study, we assessed body compositing by using foot-to-foot Tanita 
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TBF-300 (Tanita Corp., Tokyo, Japan) that delivers a current with a single frequency of 50 

kHz. The measurements were performed in a standing position barefoot, with two footpad 

electrodes in contact with soles and heels on both feet and following the manufacturer‟s 

instructions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  1.23: Schematic diagram of Bioelectrical impedance assessments; total body weight, total body 

water (intracellular and extracellular water) (TBW), free fat mass (FFM) and fat mass (FM). 

 

 

1.8.3.3 Dual Energy X-Ray Absorptiometry  

DXA is an accurate and precise method of measuring soft tissue body composition. The basic 

principle of DXA was described earlier. Compared with bioelectrical impedance analysis, DXA 

has been validated in many populations (445). DXA can provide a recommended method for 

assessing body composition in obese children adolescents aged 5–21 years. There are some 

concerns that size and shape of obese children might exceed the scanning area, which leads 

to some tissue being missed out of the scanning area (446). However, this problem can be 

reduced by applying a half body DXA scan (447). The body composition parameters 

assessed by DXA includes FM%, FM and LM in different area of human body (total body, 

trunk, arms and legs).  
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1.9 Aims 

ALL is the most common childhood malignancy. With the survival rates improving to over 

90% (171), research has focused on the recognition and reduction of treatment-related 

morbidity. Skeletal morbidity, characterised by MSP, fractures and ON is frequently reported 

in ALL children at diagnosis, during chemotherapy and thereafter. Morbidity in these children 

has a negative impact on the quality of life, which might lead to immobility and also require 

surgical interventions. This thesis presents four studies which examine the extent of skeletal 

morbidity in children with ALL and then explore the use of physical activity as a means of 

improving bone health. The specific aims of the four studies performed are outlined as follows 

(Fig.1.24).  

 

1.9.1 Skeletal Morbidity in Children Receiving Chemotherapy for ALL (Chapter Two) 

Aim:  To determine the incidence rate and risk factors of skeletal morbidity (MSP, factures 

and ON) in children treated for ALL, we performed a retrospective study of ALL children 

treated with chemotherapy at the Royal Hospital for Sick Children, Glasgow  between 1997 

and 2007 on two consecutive protocols (UKALL97/01 and UKALL2003).  

  

1.9.2 Skeletal Morbidity in Children Receiving Chemotherapy for ALL and Its 

Association with Mineral Homeostasis and Duration of Inpatient Stay (Chapter Three) 

Aim: To investigate the influence of in-patient stay, age and mineral status (Ca, Pho, Mg) 

over the first 12 months of chemotherapy on subsequent skeletal morbidity, we collected data 

retrospectively from ALL children treated with UKALL 2003 from 2003 to 2009.  

 

1.9.3 A Comparison of the Effect of Two Types of Vibration Exercise on the Endocrine 

and Musculoskeletal System (Chapter Four) 

Aim: To assess the short-term and medium-term effects of sinusoidal and vertical WBV 

delivered through the Galileo platform (GP) and the Juvent1000 platform (JP), respectively on 

a range of outcome measures related to the endocrine and musculoskeletal system. We 

performed this study in the normal healthy adult men aged 20-50years.  
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1.9.4 A Randomised Controlled Trial of the Effect of Vibrational Exercise on the Bone 

Health of Children with ALL (Chapter Five) 

Aim: To explore the feasibility using WBV in children receiving chemotherapy for ALL and 

assess its effect on bone health and body composition. The study was performed 

prospectively in children with ALL, who presented to the Royal Hospital for Sick Children 

between 2005 and 2009. In this study ALL children randomised into either receiving WBV or 

acting as control.  
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Fig  1.24: The summary of the hypothesis and aims for the studies in the present thesis. 

 

 

 

Study 1
Hypothesis: Leukaemia and chemotherapy might have a

detrimental effect on bone health.

Aim: To determine the incidence rate and risk factors of

skeletal morbidity in children treated for ALL.

Study 2
Hypothesis: Physical inactivity and abnormal mineral 

homeostasis might have a negative impact on bone.

Aim: To investigate the influence of in-patient stay and 

mineral status on subsequent skeletal morbidity .

Study 3
Hypothesis: Different WBV training might have different

effects on the endocrine and musculoskeletal system. 

Aim: To compare the effects of two regimens of WBV on

endocrine status and musculoskeletal system. 

Study 4
Hypothesis: WBV training in ALL children might have a 

beneficial effect on bone health

Aim: To explore the feasibility using WBV in ALL children

and assess its effect on bone health and body composition
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Chapter 2 

 

 

 

 

Skeletal Morbidity in Children Receiving Chemotherapy 

For Acute Lymphoblastic Leukaemia  
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2.1 Abstract  

Background: Children receiving chemotherapy for ALL may be susceptible to skeletal 

morbidity. 

Aim: To determine the incidence and risk factors for skeletal morbidity in ALL children.  

Patients and Methods: The medical records of all (n,186,male:110) children presenting to a 

single centre with ALL between 1997 and 2007 and treated on UKALL97, UKALL97/01 or 

UKALL2003 were studied. Skeletal morbidity included MSP, fractures and ON. MSP was 

classified as any event of limb pain, muscle pain, joint symptoms or back pain that required 

radiological examination. Fractures and ON were confirmed by X-rays and MRI respectively.  

Results: Skeletal morbidity, presenting as MSP, fractures or ON were reported in 88(47%) 

children of whom 56(63%) were boys. Of 88 children, 49(55%), 27(30%) and 18(20%) had 

MSP, fracture(s) or ON respectively. 6(7%) had both fractures and ON. The median 

(10th,90thcentiles) age at diagnosis of ALL in those children without skeletal morbidity was 

3.9years(1.4,12)which was lower than in those with skeletal morbidity at 

8.2years(2.2,14.3)(p<0.00001,95%CI:1.7,4.4). Children with ALL diagnosed over 8years of 

age were at increased risk of developing fracture(s) (p=0.01,OR=2.9, 95%CI:1.3,6.5) 

whereas the risk of ON was higher in those who were diagnosed after 9 years of 

age(p<0.0001,OR=15,95%CI:4.1,54.4). There was no gender-difference in the incidence of 

skeletal complications. Children who received dexamethasone had a higher incidence of 

skeletal morbidity than those who were treated with prednisolone(p=0.027,OR=2.6,95%CI: 

1.1,5.9). 

Conclusion: The occurrence of skeletal morbidity in ALL children may be influenced by age 

and the type of GCs. These findings may facilitate the development of effective bone 

protective intervention.  
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2.2 Introduction  

Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer with a 5year 

survival rate of over 80% (448). With the sustained improvement in survival rates, attention 

has been directed towards recognition and prevention of disease and treatment-related 

morbidity. Over the last two decades, skeletal morbidity is increasingly being recognized as a 

major problem in these children and may occur at diagnosis as well as during or following 

treatment (449). It may present as MSP, fractures, ON, pain or loss of mobility and deformity, 

with resultant adverse consequences on quality of life. Different underlying causes and 

mechanisms may explain several MSP symptoms in ALL children. In this study MSP included 

any event of limb pain, joint and muscle symptoms or back pain that required diagnostic 

imaging and no evidence of fractures and ON. The most common causes for evaluating MSP 

were trauma, infection and joint swelling such as haemarthrosis. A clear understanding of this 

group of complications may enable the institution of rational strategies that can improve bone 

health. Whilst the aetiology of skeletal morbidity in this group of children may be multifactorial 

and include the disease itself, chemotherapy, poor nutrition, mineral abnormalities, physical 

inactivity, low LM and ongoing inflammation (172), GC therapy is well known to be associated 

with poor skeletal development in many clinical conditions in childhood and may play a vital 

contributory role in the skeletal morbidity in children receiving chemotherapy for ALL (450). In 

ALL, GC therapy, as well as other intensive therapy, is associated with abnormalities of 

markers of bone turnover that favour bone resorption (182) and these abnormalities may be 

more pronounced in those children who receive dexamethasone rather than prednisolone 

(68). An increased predisposition towards skeletal morbidity in children receiving 

dexamethasone has been observed by Strauss et al. (71) but not by other investigators (72). 

Over the last decade, the chemotherapy protocols for the treatment of ALL in the United 

Kingdom have evolved from a clinical trial where children received either dexamethasone or 

prednisolone (UKALL97/01) to solely dexamethasone (UKALL2003). The aim of the current 

study was to perform a retrospective survey of the extent of skeletal morbidity encountered in 

children treated on these protocols and to investigate the relationship of this morbidity to 

therapy and patient related factors. 
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2.3 Methods 

2.3.1 Patients  

The medical records of 186 consecutive patients (male,110) who were diagnosed between 

January 1997 and December 2007 to the Royal Hospital for Sick Children in Glasgow with a 

diagnosis of ALL were examined for information regarding skeletal morbidity including MSP, 

fractures and ON until 6 months after the last diagnosis. The median follow up for boys and 

girls was 5.7years (1.9,10) and 5.9years (2.3,10), respectively (NS). The median (10th,90th 

centiles) age at presentation  for the whole cohort was 5.3years (1.7,13.7) and there was no 

significant difference between the median age at diagnosis of boys at 5.6years(1.7,12.6) and 

girls at 5.3years(1.7,13.7). Skeletal morbidity included MSP, fractures and ON. MSP was 

defined as any event of limb pain, joint and muscle symptoms or back pain that required 

diagnostic imaging. Fractures were confirmed by X-ray whereas ON was confirmed by XR 

and MRI imaging. Location of skeletal morbidity, gender distribution, age and details of 

chemotherapy at presentation of skeletal morbidity were also recorded. Of the 186 children, 

12 did not survive and 10 children proceeded to bone marrow transplantation.  

 

Between 1997 and 2001, children were randomized to receive prednisolone or 

dexamethasone according to UKALL97. However, dexamethasone was the steroid 

administered to all patients during intensification blocks of therapy on this protocol 

irrespective of steroid randomisation. From 2001 to 2003, all children received 

dexamethasone as GC therapy according to UKALL97/01 and from 2003 onwards, children 

were treated with dexamethasone as part of UKALL2003. Of the 186 children, 31 were 

randomized to receive prednisolone; 6 were treated by high-risk ALL (HRL); 2 were treated 

by infant leukaemia regimen; 82 received dexamethasone as part of UKALL97 or 97/01 and 

65 (26, 10, 28 regimen A, B and C respectively and 1 treated by infant leukaemia regimen) 

children received dexamethasone as part of UKALL2003. Therefore, the total number of 

children who were treated with dexamethasone was 146.  Dexamethasone was converted 

into prednisolone equivalence by multiplying its dose by a conversion factor of 6.67 based on 

the relative anti-inflammatory responses. The total dose of GCs for both protocols was 

calculated as prednisolone and prednisolone equivalence (Tab.2.1).  The total amount of 

GCs was lower in the prednisolone treated children than the prednisolone-equivalence dose 
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(dexamethasone treated children) in the UKALL97/01 (Tab.2.1). Comparing steroid doses 

between the UKALL97/01 and UKALL2003 protocols, shows that the calculated doses of 

prednisolone in the UKALL97/01 was slightly lower than the doses of pred-Equivalent 

(dexamethasone) in the UKALL2003. Boys had a longer duration of GCs and, therefore, a 

higher cumulative dose of GCs.   

 

2.3.2 Statistical Analysis 

Results are presented as medians and 10th and 90th centiles. Statistical analysis was 

performed with XL STAT V7·0 (Addinsoft, Paris, France), Minitab15 (Minitab, Coventry, UK) 

and MS Excel 2003 (Microsoft Corp, Redmond, WA). Difference between groups was 

assessed using the Mann Whitney U test and the Pearson Correlation, logistic regression and 

the Chi squared test were employed to assess any association between groups of variables. 

The study was approved by the local Ethics Committee as an audit of a standard treatment 

protocol. 
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UKALL97, 97/01 

Gender Girls A, B Boys A, B Girls C Boys C 

Duration (week) 
 

112 164 118 169 

 
Total Pred (mg/m

2
) 

 

7728 10328 6728 9328 

Total Dex   
Pred-Equivalent (mg/m

2
) 

 

1230 
8204 

1652 
11019 

1067 
7117 

1490 
9938 

 
 Pred 

Pred-Equivalent (mg/m
2
/week) 

69 
73 

62 
67 

57 
60 

55 
58 

UKALL2003 
 

Gender Girls A, B Boys A, B Girls C Boys C 

Duration (week) 112 164 118 170 

Dex (D1) (mg/m
2
) 

Pred-Equivalent 
1080 
7203 

1470 
9805 

1010 
6736 

1430 
9538 

 
Dex(D2) (mg/m

2
) 

Pred-Equivalent 
 

1160 
7737 

1550 
10338 

  

Pred-Equivalent (D1) 
Pred-Equivalent (D2) mg/m

2
 /week 

64 
69 

60 
63 

57 56 

 

Tab  2.1: The cumulative dose of prednisolone and/or dexamethasone in the UKALL97, UKALL97/01 

and the UKALL 2003 protocol. Each protocol was classified into A, B, C regimens.  Dexamethasone 

doses were converted to prednisolone equivalents by multiplying the dexamethasone dose by a 

conversion factor of 6.67 which is based on the relative anti-inflammatory properties of the two drugs. 

In the UKALL97/01, children were randomized to receive either prednisolone or dexamethasone, 

whereas in the UKALL2003, children were randomized to treatment intensification; delayed 

intensification I (D1) and delayed intensification II (D2). 
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2.4 Results 

2.4.1 Skeletal morbidity 

Skeletal morbidity, as MSP alone, fracture(s) or ON were reported in 88(47%) of the 186 

children, and 56(63%) were boys (Fig.2.1). Of the 88 children, MSP alone, i.e. without any 

evidence of fracture(s) or ON was present in 49(55%) of whom 29(59%) were boys. Fractures 

alone occurred in 21(23.8%) of whom 16(76%) were boys and ON alone in 12(13%) of whom 

7(58%) were boys. A further 6(6.8%) children had both fractures and ON. Therefore, the total 

incidence of MSP, fractures and ON was 49/186 (26%), 27/186(14.5%) and 18/186(9.7%), 

respectively.   

 

2.4.2 Timing and age  

Whilst the median age at diagnosis of ALL was 5.3years(1.7,13.6) for the whole cohort 

(Fig.2.2), the median age at diagnosis of those children without skeletal morbidity was 

3.9years(1.5,12) and lower than in those with skeletal morbidity 8years(2.2,14.3) 

(p<0.00001,95%CI:1.7,4.4). The median age at diagnosis of ALL in those children with MSP 

was 6.4years(2,14). The median age at diagnosis of ALL in those children with a fracture was 

8.3years(2.1,13.8) and lower than that for children with ON at 

12.2years(6.8,14.9)(p=0.0077,95%CI:1.1,6.3). Furthermore, the median age of children at 

diagnosis of fracture(s) was 10years(4.8,16) and at diagnosis of ON was 

13.8years(9.6,18)(p=0.002,95%CI:1.6,6.6). The first fracture occurred after a median duration 

of chemotherapy of 18.7months(4.3, 35) whereas the first event of ON occurred at a median 

of 29 months(8.8, 48) after the start of chemotherapy (NS). Six (33%) out of the 18 children 

with ON had Total Body Irradiation (TBI) and the remaining 12(67%) were just treated with 

standard anti-leukaemia chemotherapy (SAC). The median age at diagnosis of ALL in those 

children with ON who were treated with TBI was 11.4years(5,14) and lower than  for children 

with ON treated with SAC at 12.2years(9,14)(p=0.4,95%CI-5.7,1.8). The median age of 

children at diagnosis of ON in the former and the latter was 13.8years(10,18) and 

14years(10,18)(p=0.9,95%CI:-3.5,3.5), respectively. The median time from diagnosis of ALL 

to first diagnosis of ON was 17months(3,49) and 46months(29,73) in the SAC and TBI 

respectively (p=0.02,95%CI:8.0,39.0). Children over 8years at diagnosis had a significant 
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(p=0.01, OR=2.9, 95% CI:1.3,6.5) risk of developing fractures whereas the risk of ON was 

seen in children over 9years at diagnosis (p<0.0001,OR=15.9, 95%%CI:4.14:54.37).  

 

2.4.3 Sex Distribution  

No sex differences were observed in any form of skeletal morbidity. The incidence of MSP in 

boys and girls was almost equal 29/110(26%) and 20/76(26%), respectively whereas the 

incidence of fractures in boys at 21/110(19%) was over twice compared to girls at 6/76(8%). 

In addition, there was no difference in the incidence of ON between boys at 11/110(10%) and 

girls at 7/76(9%). The median age at time of fracture(s) in girls was 10.2years(3.7,12.4) which 

was almost similar to boys at 9.9years(5.2,16.2). The median age at diagnosis of ON in boys 

occurred at 14.6years(10.6,18.5) and in girls at 13.1years of age(9.6,15.8)(NS). 
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Fig  2.1: The distribution of skeletal morbidity by protocol and distribution of children who suffered from 

musculoskeletal pain (MSP) only, fractures, osteonecrosis (ON) or a combination of ON and fractures. 

(a) each skeletal morbidity in the whole cohort who received 5 different protocols (UKALL97 and 

UKALL97/01(n,113),UKALL2003(n,64), HRLALL(n,6) and infant leukaemia regimen(n,3)).(b) the 

distribution of each skeletal morbidity in those children who were treated by prednisolone (UKALL97). 

(c) The distribution of each skeletal morbidity in those children who were treated with dexamethasone 

(UKALL97/01). (d) The distribution of each skeletal morbidity in those children who were treated by 

dexamethasone (UKALL 2003). 
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Fig  2.2: Median, 25
th
, 75

th
 centiles, minimum and maximum values for age at (a) diagnosis of ALL for 

the whole group (b) diagnosis of ALL for those who had no skeletal morbidity, diagnosis of ALL for 

those who had skeletal morbidity, (d) diagnosis of ALL who had musculoskeletal pain (MSP), (e) 

diagnosis of ALL who had fractures and (f) diagnosis of ALL who had osteonecrosis (ON)  (g) 

diagnosis of fractures (h) diagnosis of ON. *p=0.01, **p<0.0001. 
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Fig  2.3:  The distribution of skeletal morbidity in ALL children in boys and girls. No sex differences 

were observed in any form of skeletal morbidity 

 

 

2.4.4 Glucocorticoids  

Children treated with prednisolone had a lower incidence of skeletal morbidity than those 

treated with dexamethasone by about 2.6times (p=0.027, 95%CI:1.1,5.9) (Fig.2.1). MSP 

alone as a feature of skeletal morbidity occurred in 49 children in total. This group consisted 

of 6/31(19%) children who were treated with prednisolone and 40/146 children (27%) treated 

with dexamethasone; 3/6 children (50%) were treated with HRL and no skeletal morbidity was 

observed in children who received the infant protocols (n,2). The incidence of fractures in 

those children who were treated with prednisolone and dexamethasone was 3/31(9.6%) and 

24/146(16%), respectively. The incidence of ON in those children who were treated with 

dexamethasone was higher at 16/146(11%) than in those children who were treated with 

prednisolone and HRL regimen at 1/29(3.5%).  
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2.4.5 Site of Skeletal Morbidity 

The 88 children with complaints of skeletal morbidity had 246 x–ray examinations. In order of 

frequency, 134(54%) examinations were performed in lower limbs (foot, tibiae, fibulae, knees 

and femora), 63(26%) in axial bone (spine and pelvis) and the remaining 49(11%) in the 

upper limbs (hands, radii, ulnae, humeri) (Fig.2.4-.5). In the 28 cases who had fractures, 

16(57%) children had a single fracture, 7(25%) children had two fractures and the remaining 

5(18%) had more than two fractures. Of a total of 43 fractures, 22(51%) occurred in the lower 

limbs of which 10 occurred in the feet. Fractures in the upper limbs occurred in 17(40%) 

cases of which 14 occurred in the hands (n,3) and forearms (n,11). In the remaining 4(9%) 

cases, fractures occurred in the spine. Amongst the 35 cases of ON, 13, 9 and 7 cases 

occurred in the knees, hips and shoulders, respectively. ON was multifocal in 10/18(55%) 

children who were affected. 

 

 

 

 

Fig  2.4: The proportion of sites (lower limbs, upper limbs and axial skeleton) affected by skeletal 

morbidity as judged by (a) X-rays performed for MSP  (b) the distribution of fractures and (c) the 

distribution of ON.  
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Fig  2.5: The location of skeletal morbidity (MSP, facture and ON) in lower limbs, spine and upper 

limbs.   

 

2.5 Discussion 

This current review represents the largest systematic single centre study of skeletal morbidity 

in children who received chemotherapy for ALL in the United Kingdom. By defining skeletal 

morbidity as those events of MSP that required radiological imaging our study may have 

underestimated the incidence of skeletal morbidity. However, despite this limitation, the study 

showed that MSP was sufficiently severe to require imaging in about half of children with ALL. 

In about half of this group of children with MSP, there were no abnormal findings on imaging 
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and in the other half; there was clear evidence of a fracture or ON. Thus, a quarter of children 

had skeletal morbidity which was confirmed on imaging. These results show a markedly 

higher incidence of skeletal morbidity than those reported by Mitchell et al (451), who 

reported the incidence of osteopenia and ON in over 1600 children with leukaemia who 

received dexamethasone or prednisolone in ALL97 and ALL99. This study was aiming to 

improve event free and overall survival and did not look specifically to the incidence of 

skeletal morbidities particularly MSP and fractures.  However, our results are generally similar 

to those reported for fractures and ON by previous investigators (71-73;183;184). Trabecular 

bone, as found in the axial skeleton, is more sensitive to GIO induced osteoporosis (452). 

However, the current study, as well as previous studies, tends to suggest that fractures are 

more likely to be identified in the appendicular skeleton in children receiving ALL 

chemotherapy. This observation may represent a selection bias as diagnostic imaging may 

only have been undertaken in those children where there was clinical concern. Given that 

vertebral fractures can be difficult to diagnose in children and that symptoms may overlap 

with general muscular and postural pain (453), it is possible that fractures in the axial 

skeleton may not be identified without systematic radiological screening of the spine. Detailed 

vertebral morphometry studies performed recently in 186 children with ALL suggested that 

16% may have a vertebral deformity consistent with a compression fracture (73;453). 

However, these vertebral compressions were assessed within 30 days of diagnosis, and 

could be viewed as presenting features rather than complications of therapy.   

 

Our finding of a clear association of fractures with dexamethasone administration has only 

been described by one other group of investigators (71;453). GCs are an essential 

component of treatment for ALL. Compared to prednisolone, dexamethasone has enhanced 

lymphoblast cytotoxicity and penetration of the central nervous system, even at a dosage that 

is equipotent for GC effect. This finding has led to the substitution of dexamethasone for 

prednisolone in the treatment of ALL and to improved event-free and overall survival (451). 

However, dexamethasone is associated with increased toxicity (451) with more marked 

adverse effects on growth, bone turnover and surrogate biochemical markers of FM and 

insulin sensitivity in children with ALL (68;454). The extent of GC effect may be variable and 

the concept of „one equipotent dose for GC effect‟ needs to be reconsidered as it may be an 

end-organ specific phenomenon. Our observation that ON was almost exclusively associated 
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with the use of dexamethasone is also notable and may reflect on the aetiology of this 

condition. Despite relatively minor differences in prednisolone equivalent doses in the 

dexamethasone group vs the prednisone group (less than 10%), we observed a threefold 

greater incidence of musculoskeletal morbidity in the dexamethasone treated group. 

 

Our observation that ON was more commonly associated with the use of dexamethasone is 

also notable and may reflect on the aetiology of this condition but needs to be confirmed in 

larger studies. The incidence and distribution of symptomatic ON in the current study was 

similar to that reported in previous studies (71;455). The lack of sexual dimorphism, earlier 

timing, association with large joints, particularly in the weight bearing appendicular skeleton, 

and almost exclusive association of ON with dexamethasone emphasizes the fact that the 

aetiology of ON is different to that of fractures. Studies on animals with steroid-induced ON in 

the femoral head show hypertrophy and hyperplasia of marrow fat cells and lipid deposition in 

osteocytes (456). In addition, hyperlipidaemia secondary to GC administration has also been 

linked to the occurrence of ON (457). Although, the onset of ON in ALL children treated with 

TBI occurred later compared to those who were treated with SAC, the age of this cohort at 

diagnosis of ON was almost similar in both treated groups. This might be explained by the 

fact that the  TBI group was diagnosed at an early age.   

 

There are other drugs in the chemotherapy protocol that have been reported to adversely 

affect bone health. Most notably, these include methotrexate (182) which can induec an 

osteopathyand vincristine which may indirectly affect bone health through reduced physical 

activity. L-Asparaginase induced coagulopathy has previously been reported to be associated 

with ON (458) and in larger cohorts of patients it would be useful to explore the combined 

effect of dexamethasone and the more effective forms of asparaginase that have been 

introduced over the last decade. Therefore, the calculating of cumulative dose of these drugs 

in this study may have a negative impact on the final outcomes.   

 

There were a number of other important findings in this study that may shed further light on 

the different aetiology of fractures and ON. ON was more likely to occur in older children and 

MSP, as the sole finding without any radiological findings of skeletal morbidity, and fractures 

were more likely to occur in younger children. ON in SAC group was more likely to occur 
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earlier, whereas, fractures were more likely to occur at a later stage of treatment. Not only do 

these findings point to a difference in the aetiology of these GC-related adverse effects but 

they also help in developing a rationale for the timing and nature of bone-protective 

interventional strategies. According to these findings, therapy duration and onset of puberty 

might be an influential risk for fractures and ON respectively. The early onset of ON in girls 

and late onset in boys in our study may also support the correlations between ON and 

puberty.  

 

The observation that fractures tend to occur later in maintenance therapy maybe explained by 

the multifactorial aetiology of low bone mass in these children, the accumulation of  the 

different effects of GCs, and an imbalance between low bone strength and increasing activity. 

However, the timing was later than that described by others (71;72) and may reflect 

differences in the chemotherapy protocols. The predisposition of the older child to skeletal 

morbidity is recognised; children may be more sensitive to interference with skeletal 

development during the peripubertal and adolescent growth phases, when bone mass 

increases due to a disproportionately greater increase in bone formation than resorption. This 

process of bone mass accretion is linked to the direct and indirect effects of sex steroids on 

bone through the growth hormone axis and muscle development. It is, therefore, possible that 

children are more likely to fracture around the peripubertal period if the normal process of 

bone acquisition is disrupted. It is also possible that older children are more likely to localize 

MSP to specific parts of the skeleton.  

 

A sex difference in fracture incidence with a higher incidence in boys has been described 

before (71). Whilst our study also shows this difference, the results were not statistically 

significant. Interestingly, a recent study in children with asthma reported that boys receiving 

oral GCs were more likely to suffer osteopenia than girls (459).  

 

It is important to critically evaluate the results of the whole study. First, the retrospective 

design of this study relied on data that had been gathered from the medical case notes. 

Another limitation of this study is that recorded fractures were only those which were 

“clinically apparent” as some fractures will have been missed or were “occult” (STOPP).  
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Furthermore, the cumulative doses of GCs calculated were from the ALL protocol and did not 

represent the real dose administered to each individual patient. 

 

In summary, this report represents the first detailed study of the skeletal morbidity associated 

with contemporary protocols of chemotherapy for the treatment of childhood ALL in the UK. 

At least a quarter of children develops confirmed ON or fractures, typically at around the end 

of the first year and the second year of chemotherapy, respectively. These data may facilitate 

the institution of appropriately timed regimens that reduce skeletal morbidity.  
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Skeletal Morbidity in Children Receiving Chemotherapy for 

Acute Lymphoblastic Leukaemia and Its Association with 

Mineral Homeostasis and Duration of Inpatient Stay  
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3.1 Abstract  

Background: Reduced activity, older age and abnormal bone mineral status are considered 

as important determinants of poor bone health in children with acute lymphoblastic leukaemia 

(ALL). The independent contribution of these factors towards skeletal morbidity requires 

further investigation.    

Aim: To investigate the influence of activity, age and mineral status over the first 12 months 

of chemotherapy on subsequent skeletal morbidity. 

Patients and Methods: The medical records of 56 children presenting with ALL between 

2003 and 2007 and treated on UKALL2003 were reviewed for the number of in-patient days 

over the first 12 months of chemotherapy as a surrogate marker of inactivity and lack of well-

being. Data for serum Ca, Mg Pho, albumin were also collected over this period. Skeletal 

morbidity was defined as any episode MSP or fractures.  

Results: The median duration of in-patient days over the first 12months of treatment in 

children with no skeletal morbidity was 58days(40,100) whereas the median number of in-

patient days during the first 12months in those children with any skeletal morbidity, MSP only 

or fractures only was 83days(54,131), 81days(52,119) and 91days(59,158), respectively 

(p=0.003). Children with skeletal morbidity and fractures particularly had lower levels of 

serum Ca, Mg and Pho compared to those without skeletal morbidity over the first 12 months 

of chemotherapy. There was a higher risk of skeletal morbidity in those who were diagnosed 

after the age of 8 years(p=0.001,OR=16,CI:3,80). Multiple regression analysis showed that 

the incidence of skeletal morbidity only had a significant independent association with age at 

diagnosis (p=0.001) and the number of inpatient days(p=0.03) over the first 12 months (r=23). 

All children who were diagnosed after the age of 8 years with an inpatient stay of greater than 

75 days in the first 12months of the chemotherapy (n,14) children had some form of skeletal 

morbidity (OR=64). 

Conclusion: The incidence of skeletal morbidity in children receiving chemotherapy for ALL 

is associated with a higher likelihood of being older and having longer periods of in-patient 

stay. The close link between age and changes in bone mineral status may be one 

explanation for the increased bone morbidity in ALL children.     
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3.2 Introduction  

As the survival rate for acute lymphoblastic leukaemia (ALL) has reached over 80%for 

children (448) increasing attention has being paid to the skeletal morbidities that are often 

reported in these children (72;460). Although bone morbidity may be present soon after 

presentation, most studies suggest that symptomatic skeletal morbidity, including fractures 

occur after the first 12months of therapy. The timing of the skeletal morbidity may point to an 

insult that occurs in the initial part of the chemotherapy period. Physical activity plays an 

important role in maintenance of bone health (237) and it is possible that children on 

chemotherapy are inactive during the early stages when they are undergoing particularly 

intensive chemotherapy (237;461). It is also possible that intensive chemotherapy that is 

delivered over the first few months of the chemotherapy protocol has a greater adverse effect 

on bone health, either through direct (179)  or indirectly, through an effect on mineral 

homeostasis (195). Amongst the drugs that play an important contributory role, GCs and, 

particularly, dexamethasone, are considered important (182). GCs may exert their effects on 

bone health through a number of mechanisms including abnormalities of mineral homeostasis 

(179;195).  

 

Increased Mg losses through the kidneys and lower serum Mg concentration have previously 

been described to be associated with lower bone mineral content in animal studies 

(183;462;463). There are a number of reasons why serum Mg may be lower in children on 

ALL chemotherapy since increased urinary excretion of Mg has been reported as a cause for 

low serum Mg in children with ALL. For instance, aminoglycoside antibiotics and steroids 

induce excessive renal loss of Mg eventually leading to the observed hypomagnesaemia 

(195).  In addition, it is unclear whether this link between serum Mg and low bone mineral 

content is causal or an association which simply reflects the clinical state of the child. 

Previous studies have not investigated a link between serum Mg and actual skeletal 

morbidities.  

 

Previous studies have reported that most skeletal morbidity in ALL children receiving 

chemotherapy occurs during the second year when children receive maintenance therapy 

(72;460). Therefore, our hypothesis was that the abnormal mineral homeostasis and long 

duration of inpatient stay which occurred over the first 12 months of the treatment might be 
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crucial in the development of subsequent skeletal morbidity in the second year of 

chemotherapy.  

 

3.3 Methods 

3.3.1 Patients  

Children who were diagnosed with ALL between July 2003 and December 2007 and treated 

by any one of the three arms of UKALL2003 (Regimen A,B and C)  (464) at the Royal 

Hospital for Sick Children in Glasgow were eligible for the study. The 64 children with these 

criteria included 4 children who received a stem cell transplant, 3 children who did not survive 

and 1 child who was less than one year of age; these children were excluded from 

subsequent analysis. Information about skeletal morbidity was collected from the medical 

records from July 2003 to September 2009 with a median follow up period of 4years (2.5,6). 

Those children with skeletal morbidity were divided into those with MSP and/or fractures. 

MSP was defined as any event of limb pain, joint and muscle symptoms or back pain that 

required diagnostic imaging also including those children who had ON.  MSP and fractures 

were all confirmed by radiological images (X-rays and MRI).  

 

Over the first of 12 months of chemotherapy, each single serum measurement for Ca (Ca) 

phosphate (Pho), magnesium (Mg) and albumin concentration was collected retrospectively 

and then the average serum concentration of Ca, Pho, Mg and albumin for each child was 

calculated as the median (10th and 90th centiles) of all the individual measurements for that 

child from month 1 to month 12. Information on the number of inpatient days over the first 12 

months of chemotherapy for each child was collected from the medical records was 

calculated from the first day of diagnosis to 12 months post chemotherapy and used as a 

surrogate marker of the clinical state of the child as well as relative inactivity. 

 

3.3.2 Statistical Analysis 

Results are presented as mean for normally distributed data and as median and 10th-90th 

centiles for data which were not normally distributed. Intergroup differences were assessed 

using t-tests or ANOVA for normally distributed data and Mann-Whitney tests or Kruskal-

Wallis tests for other data. Binary logistic regression was used to assess the association 
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between skeletal morbidity in general with other factors and ordinal logistic regression was 

used to assess the relationships between MSP and fractures to other factors. Statistical 

analysis was performed with Minitab16 (Minitab, Coventry, UK), with significance set at a 

level of 5%. The confidence intervals (95%CI) and Odds Ratio (OR) were also calculated. 

The study was approved by the local Ethics Committee as a retrospective case note analysis 

of a standard treatment protocol. 

 

3.4 Results 

3.4.1 Patient Characteristics 

Details of the 56 children studied are outlined in Tab.3.1. The children who received 

chemotherapy Regimen C had the highest number of in-patient days over the first 12 months 

at a median of 96days(61,140), followed by regimen B at 74days(60,84) and then regimen A 

at 58days(43, 86). The difference between regimen A and regimen B was highly significant 

(p=0.0001). The median serum Mg in children who received regimen A was 0.85mmol/L 

(0.77,0.93) and higher than that in Regimen B at 0.76mmol/L(0.72,0.83) and Regimen C at 

0.79mmol/L(0.74,0.84)(p=0.01 and p=0.003, respectively). The total number of X-rays in all 

patients with skeletal morbidity (n,34) was 147 and the total number of fractures which 

occurred in 16 children was 21(Fig.3.1). 
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Characteristics  No SM* SM* MSP Fractures P Value 

 
Total  Events 

 
22(m,12) 

 
34(m,21) 

 
18(m,10) 

 
16(mm,11) 

  

 
Events in  2nd first 12 months 

 
22(m,12) 

 
22(m,14) 

 
11(m,5) 

 
11(m,9) 

  

 
Events in children diagnosed <8years 

20(61%) 13(39%) 9(27%) 4(12%)   

 
Events in children diagnosed >8years 

2(9%) 21(91%) 9(39%) 12(52%)   

 
Age at Diagnosis of ALL(years) 

 
4.7(2.6,7.6) 

 
9(3.5,13.5) 

 
7.5(4.2,14) 

 
10(3,13) 

 
0.001 

 
First Record Of SM (months) 

 
* 

 
16(4,35) 

 
15.5(3.2,36) 

 
18.7(6.3,35.5) 

  

 
Regimen A(n,26) 

 
14(54%) 

 
12(46%) 

 
6(23%) 

 
6(23%) 

  

 
Regimen B(n,8) 

 
0 

 
8(100%) 

 
4(50%) 

 
4(50%) 

  

 
Regimen C(n,22) 

 
8(36%) 

 
14(64%) 

 
8(37%) 

 
6(27%) 

  

 
No of Assays (Ca) 

 
95(71,144) 

 
131(86,187) 

 
128(82,163) 

 
140(95,198) 

 
0.003 

 
No of Assays (Pho) 

 
5(70,144) 

 
130(81,181) 

 
126(76,156) 

 
142(98,193) 

 
0.005 

 
No of Assays (Mg) 

 
76(54,112) 

 
104(57,158) 

 
95(51,140) 

 
114(72,165) 

 
0.02 

 
No of Assays (Alb) 

 
76(50,120) 

 
107(66,147) 

 
104(61,132) 

 
116(78,170) 

 
0.02 

 

Tab  3.1: The incidence of skeletal morbidities (SM), musculoskeletal pain (MSP) and fractures during chemotherapy. The median of age at diagnosis of 

ALL(10th,90th) in those children with SM, the median age at SM and the time of SM were measured in each categories. Distribution of SM in each protocols 

(A,B,C). the median number of assays of Ca, Pho, Mg and Alb (albumin) were measured over the first 12 months of chemotherapy. p value differences 

between No SM and SM. 
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Fig  3.1: the distributions of skeletal morbidities, musculoskeletal pain (MSP) and fractures from time of diagnosis (0 month to 48 months). From 0-12months 

of chemotherapy, serum calcium (Ca), phosphate (Pho), magnesium (Mg), albumin (Alb) and in patient stay (IPS) were collected retrospectively. 
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3.4.2 Total Duration of In-patient Stay over the First 12 Months of Chemotherapy  

The median duration of in-patient days over the first 12-months of treatment in children with 

no skeletal morbidity was 58days (40,100) and the median number of in-patient days during 

the first of 12 months in those children with skeletal morbidity was 83days (54,131)(p=0.003); 

in those children with MSP-only and fractures-only, median duration of in-patient days were 

81 days (52,119) and 91days (59,158), respectively. The median number of in-patient days 

over the first 12-months in those children (n,22) who only had skeletal morbidity in the second 

year was 82days(53,101) and remained significantly higher than children with no skeletal 

morbidity in the second year (p=0.01)(Fig.3.2).The children who had a total in-patient stay of 

more than 75 days (n,28) during the first 12-months were more likely to have skeletal 

morbidity (OR=5.9%,CI:1.5,15.7). This relationship existed even when children who had 

skeletal morbidity in the same period were excluded from the analysis (OR=3.8, 

95%CI:1.1,13). There was no association between age and inpatient stay (p=0.54) (Fig.3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  3.2: Median duration of inpatient days over the first 12 months of chemotherapy for children with no 

skeletal morbidity (SM), for children with SM and for those children who only had SM after the first first 

12 months * p<0.05.  
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Fig  3.3: The relationship between in patient stays over the first year of the chemotherapy and age at 

diagnosis of ALL (r=0).  

 

 

3.4.3 Mineral Status over the First 12 Months of the Chemotherapy  

Over the first 12 months of chemotherapy, children with skeletal morbidity and fractures had 

lower trend levels of serum Ca, Pho and Mg compared to those without skeletal morbidity 

(Fig.3.4). However, unlike Ca and Pho, serum Mg remained persistently low in those children 

with skeletal morbidity 0.79mmol/l(0.77,0.88) compared to those with no skeletal morbidity 

0.82mmol/L(0.77,0.9)(p=0.02,) (Fig3.5). Furthermore, skeletal morbidity rates were higher in 

those children with Mg levels below 0.80mmol/L compared to children with Mg levels above 

0.79mmol/L(r=0.13,p=0.004,). There were no differences in the median serum albumin 

between the groups (Tab.3.2). There was a negative association between serum Mg and the 

age at diagnosis of leukaemia (r=0.18,p=0.001)(Fig.3.6). The median serum Mg was lower in 

those children diagnosed after the age of 8years at 0.78mmol/L(0.74,0.81) compared to those 

diagnosed before the age of 8years at 0.83mmoml/L(0.77,0.92)(p=0.001). The rate of 

hypomagnesaemia in the whole cohort over the first 12 months of chemotherapy occurred in 

54% in children.  
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3.4.4 Age at Diagnosis and Inpatient Stay 

Age at diagnosis of leukaemia was associated with a higher risk of skeletal morbidity with an 

OR of 16 (95%CI:3,80) in those who were diagnosed after the age of 8years. The data were 

further analysed by stratifying the children depending on whether they were over or under 

8years at diagnosis and whether they had a total number of in-patient days that exceeded 75 

days or not (Fig.4). Five (26%) of the first group of children (n,19) who were diagnosed before 

the age of 8years with in-patient stay of  less than 75 days had skeletal morbidity. Eight 

(57%) children in the group who were diagnosed before the age of 8years with total in-patient 

stay greater than 75 days in the first year (n,14) had skeletal morbidity 

(OR=4,95%CI:1.5,15)). The third group included children who were diagnosed after the age 

of 8years with a total in-patient stay of less than 75 days in the first 12 months of 

chemotherapy (n,9); 78% of this group had skeletal morbidity(OR=16,95%CI:3,80). The fourth 

group included children who were diagnosed after the age of 8years with an inpatient stay of 

greater than 75 days in the first 12 months of chemotherapy (n,14); all children had some 

form of skeletal morbidity . Hence, the OR for the last group can be calculated manually by 

(4X16=64) (Fig.3.7). 
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Fig  3.4: The changes of serum calcium (Ca), phosphate (Pho) and magnesium (Mg) over the first 12months of chemotherapy in children with no skeletal 

morbidity (No SM; black circles) and with skeletal morbidity (SM; red squares). 
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Fig  3.5: Median serum Ca, Pho and Mg from month 1 to month 12 of chemotherapy in children with no skeletal morbidity (SM) (n,22),  skeletal morbidity 

(SM) (n,34) and with fractures (n,16). *p<0.05, no SM v SM and p** <0.05 no SM V v fractures. 
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Fig  3.6: The relationship between median serum magnesium (Mg) and age at diagnosis of ALL in  

children without skeletal morbidity (No SM), musculoskeletal pain (MSP) and fractures.  

 

 

 No SM MSP Fractures Ref Range 

Ca 2.29(2.2,2.34) 2.26(2.21,2.32) 2.25(2.15,2.34) 2.2-2.7mmol/L 

Pho 1.4(1.3,1.5) 1.42(1.3,1.5) 1.4(1.25,1.52) 0.8-1.5mmol/L 

Mg 0.82(0.77,0.9) 0.8((0.75,0.87) 0.77(0.72,0.88)* 0.75-0.8mmol/L 

Albumin 35(31,38) 33(30,37) 34(29,38) 32-45g/L 

 

Tab  3.2: Median (10
th

 and 90
th
 centiles) serum Ca, Pho, Mg and albumin over the first 12 months of 

chemotherapy in children with no skeletal morbidity (SM), musculoskeletal pain only (MSP) and 

fractures.* Difference between no SM and Fractures, p<0.05. 
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Fig  3.7: Likelihood of skeletal morbidity (SM) in relation to age and total in-patient stay. (A) Children 

diagnosed at less than 8years of age and who had a total duration of inpatient stay  of less than 75 

days; (B) Children who were diagnosed at less than 8years of age and who had a total duration of 

inpatient stay of more than 75 days; (C) Children who were diagnosed at more than 8years of age and 

who had a total duration of inpatient stay of less than 75 days; (D) Children who were diagnosed at 

more than 8years of age and who had a total duration of inpatient stay of more than 75 days. OR = 

Odds Ratio compared to Group A. 

 

 Univariate Analysis Multivariate Analysis 

Age at Diagnosis OR=1.3   p=0.002 OR=1.3  p=0.003 

In-patient stay  OR=1.1  p=0.01 OR=1.1  p=0.01 

Serum Mg OR=1.1  p=0.01 OR=1.1  p>0.05 

 

Tab  3.3: The regression models (Univariate and multiple regression analysis) shows the correlation 

between skeletal morbidity (SM) and 3 independent factors, age at diagnosis, in-patent stay over the 

first year of chemotherapy and serum magnesium (Mg).   
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3.4.5 Multivariate Analysis 

Univariate regression model showed a significant association between skeletal morbidity and 

the age at diagnosis of ALL(r=0.18,p=0.001), the number of inpatient days in the first 12 

months of chemotherapy (r=0.07,p=0.02) and serum Mg over this period (r=0.06,p=0.036). 

However, multiple regression analysis showed that the incidence of skeletal morbidity was 

only associated to age at diagnosis (r=0.23,p=0.001) and the number of inpatient days 

(r=0.23,p=0.03) over the first 12 months (Tab.3.3). 

 

3.5 Discussion 

Although skeletal morbidity has been reported to be common in children with ALL (71;72;460) 

the pathophysiology of bone disease in this population remains unclear. Bone mineral status, 

physical activity and age are amongst the factors that have been suggested as possible 

contributors towards an increased risk (72;195;208). However, to our knowledge, this is the 

first study which has investigated the association between actual skeletal morbidity and these 

factors.  

 

Previous studies in children receiving chemotherapy for ALL have raised the possibility that 

the observed increased incidence of bone morbidity may be related to low serum Mg 

concentrations (183;195).  In other clinical scenarios, elevated serum Mg has been reported 

to be associated with PTH suppression in peritoneal dialysis patients (465) and elderly 

patients with fractures of long bones have been reported to have lower serum Mg compared 

to those without fractures (466). Furthermore, Mg depletion in normal subjects may cause 

osteoporosis due to hypocalcaemia, impaired PTH secretion, and low serum concentrations 

of 1,25-dihydroxyvitamin D(1,25-(OH)2D) (467). Rude et al. (468) demonstrated that Mg 

therapy in gluten-sensitive enteropathy patients resulted in a rise in PTH and an increase in 

bone density.  In animal models, Mg is mitogenic for osteoblasts and may increase osteoblast 

activity (469); its depletion has been reported to be associated with in vitro inhibition of 

osteoblast proliferation and raised concentrations of pro-inflammatory cytokines (463;470). 

Mg supplementation of ovariectomized rats suppresses the increased bone resorption 

resulting from ovariectomy by inactivating osteoclasts (234).  Recently, a study has reported 

that short-term oral Mg supplementation in postmenopausal osteoporotic women increases 
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serum osteocalcin levels and decreases urinary deoxypyridinoline levels indicating a 

reduction in bone turnover (233).  

 

In children on ALL chemotherapy, cyclical dosing with steroids may disturb the intracellular 

Mg concentration as well as lead to excessive renal loss of Mg (183;195). Indeed, our study 

observed that hypomagnesaemia occurred in 54% in children on chemotherapy and this was 

similar to previously published data (471). Our study also showed the likelihood of skeletal 

morbidity was associated with a lower serum Mg concentration. However, on multivariate 

analysis, serum Mg per se was not the contributory variable but it was the age of the patient 

which was the important variable. Children with fractures tended to be older and had lower 

serum Mg as compared to the other groups. Our observation that serum Mg showed a 

significant correlation with age is consistent with previous reports of a relationship between 

age and serum Mg in healthy individuals (472;473). Mg supplementation can increase bone 

density and arrest bone loss in osteoporotic subjects (474) and its supplementation in 

children with ALL and hypomagnesaemia is associated with a variable rise in serum Mg and 

as well as a rise in OCN levels (195). It is possible that this variability response is age 

dependent and needs further exploration. 

 

Musculoskeletal complications have been associated with several risk factors such as GCs 

and methotrexate therapy, cranial irradiation decreased physical activity and nutritional 

deficiency leading to altered in Ca, vitamin D and Mg metabolism (460;475).  

 

The current study also showed a significant association between skeletal morbidity and the 

number of inpatient days (marker of inactivity) over the first 12 months of chemotherapy. This 

association existed even after excluding all skeletal morbidity that occurred during the first 

12months of chemotherapy. On the other hand, it may provide a useful integrated measure of 

well-being as children on chemotherapy who may have a number of underlying reasons for 

being unwell and inactive. Based on the  mechanostat model, reduced motor activity will lead 

to low bone strength (38). Tillmann et al.  (208) reported that ALL treated with chemotherapy 

alone had reduced lumbar volumetric BMD and were physically less active than their healthy 

controls. The current study showed that skeletal morbidity in the second year of 
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chemotherapy was about four times higher in those children who stayed over 75days in the 

first 12months of chemotherapy.   

 

The present study has certain limitations that need to be taken into account. Firstly, the study 

was designed retrospectively. Secondly, blood samples were collected at irregular intervals; 

therefore phosphate levels may have simply reflected recent phosphate ingestion from food. 

Furthermore, the abnormal results of mineral homeostasis (hypocalcaemia, hypomagnesemia 

and hypophosphatemia) might have treated with their supplementations. The other 

parameters such as 25-OHD and PTH were not measured routinely during the course of 

chemotherapy. However, including these measurements in this analysis would have given a 

greater insight into mineral homeostasis during ALL treatment. The higher number of assays 

undertaken in may reflect the general wellbeing ALL children and therefore it may have 

skewed the results.  

 

In summary, older age and higher total duration of inpatient stay during the first 12 months of 

chemotherapy are associated with an increased likelihood of skeletal morbidity in children 

with ALL. A predisposition for lower serum Mg may be an explanation for the increased 

susceptibility to skeletal morbidity in older child but this requires further study. Interventions 

that target the older child who is less active or spends a higher amount of time as an inpatient 

over the first 12months of chemotherapy may be most effective in improving bone health in 

children on ALL chemotherapy.  
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4.1 Abstract  

Background: Whole body vibration (WBV) is a novel training intervention but a comparison 

of different methods of WBV has rarely been performed.  

Aim: To compare the short and medium term effects of two regimens of WBV on endocrine 

status, muscle function and markers of bone turnover.  

Patients and Methods: Over a period of 16 weeks, 10 men with a median age of 33years 

(range,29,49), were randomised to stand on the Galileo platform (GP) or Juvent1000 platform 

(JP) three times/week. The total study duration was 16 weeks with measurements performed 

in a four- week period of run-in, 8 weeks of WBV and a 4 week period of washout. These 

measurements included an assessment of anthropometry, body composition, muscle function 

and biochemical markers of endocrine status and bone turnover. To assess immediate 

effects of WBV, measurements were also performed at 60minutes before and 5,30 and 

60minutes after WBV. 

Results: GP at 22 Hz was associated with an immediate increase in serum GH, rising from 

0.07µg/l(0.04,0.69) to 0.52µg/l(0.06,2.4)(p=0.06), 0.63µg/l(0.1,1.18)(p=0.03), 0.21µg/l 

(0.07,0.65)(p=0.2) at 5minutes, 20minutes and 60minutes after WBV, respectively. An 

immediate effect was also observed in median serum cortisol which reduced from 316nmol/l 

(247,442) before WBV to 173nmol/l(123,245)(p=0.01),165nmol/l(139,276)(p=0.02) and 

198nmol/l(106,294)(p=0.04) at 5minutes, 20minutes and 60minutes after WBV, respectively. 

Median serum CTX reduced significantly after 8 weeks of WBV training in the GP group from 

0.42ng/ml(0.29,0.90) pre-WBV to 0.29ng/ml(0.18,0.44) at the end of WBV training (p=0.03). 

Over the 8 weeks, there was a reduction in median serum cortisol in the GP group from 

333nmol/l(242,445)(pre-WBV) to 270nmol/l(115,323)(WBV)(p=0.04). None of the changes 

observed in the JP group reached statistical significance. Neither group showed any 

significant effect on muscle function, IGF-1, testosterone, leptin, C- reactive protein (CRP), 

creatine kinase (CK), insulin or other markers of bone turnover. 

Conclusion: WBV can stimulate GH secretion, reduce circulating cortisol and reduce bone 

resorption. These effects are independent of clear changes in muscle function and depend on 

the type of WBV that is administered.  
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4.2 Introduction  

In whole body vibration (WBV), the vibration platform delivers high frequency mechanical 

stimuli with small amplitude which are transmitted through the body where they introduce 

mechanical loading to the musculoskeletal system through bone, muscle and sensory 

receptors (395). Although WBV is an increasingly popular form of training that has been 

reported to have beneficial effects on bone health (245;395), muscle mass 

(309;357;476;477), and hormonal profile (243), the underlying mechanisms that explain these 

effects remain unclear (243;360). WBV can be delivered by two broad categories of exercise 

devices: devices that reciprocate vertical displacements on the left and right side of a fulcrum 

(sinusoidal vibration) and generate higher lateral than vertical acceleration and devices that 

have a plate which oscillates up and down in a vertical axis (vertical vibration) (304) and 

which produce greater strain in the vertical axis than in the lateral axis (303). Given that WBV 

may represent an effective non-pharmacologic, user-friendly, therapeutic intervention for 

osteoporosis and sarcopenia (310); there is a need for more critical evaluation and 

comparison of the systems that deliver this stimulation. 

 

The devices that deliver WBV can be broadly categorised according to their peak 

acceleration; low intensity WBV platforms which produce a gravitational force less than 1 g 

regardless of frequency and high intensity WBV platforms (g force of more than 1 g) (306). An 

example for a low-intensity WBV platform is the Juvent 1000 platform and a high-intensity 

WBV platform is Galileo platform. Physical exercise is closely linked to a diverse range of 

hormonal effects and although there are some studies which have investigated the short-term 

effects of WBV on the endocrine axis, there is a scarcity of knowledge about the medium-

term effects of WBV on endocrine targets that are reported to be responsive to physical 

exercise. In addition, there are currently no studies that have compared the effect of the two 

different methods of WBV on the endocrine profile as well as muscle function. This study 

was, therefore, performed to compare the effects of sinusoidal and vertical WBV delivered 

through the Galileo platform (GP) and the Juvent1000 platform (JP), respectively on a range 

of outcome measures related to the endocrine and musculoskeletal system. It was 

hypothesized that WBV with different magnitudes may elicit different patterns of 

musculoskeletal and endocrine responses. Therefore, different doses in each platform have 
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been tested in this study in order to obtain the optimal dose of the WBV exercise and the 

systematic response to these different magnitudes.  

 

4.3 Method and Material 

4.3.1 Subjects 

All potential candidates had a physical examination to determine their general health and 

were excluded if they had any chronic illness, recent fractures, skeletal anomalies or 

implants. Following informed consent, 14 healthy men were recruited to the study but 4 

subjects withdrew as one subject had a hamstring injury before starting WBV and the 

remaining 3 could not attend the exercise visits. A total of 10 men with a median age of 

33years (range, 29, 49) completed the study. Ethics approval was obtained from the 

University of Glasgow Research Ethics Committee. 

 

4.3.2 Study Procedures 

An initial interview was conducted to describe the purpose and the aims of the study 

and the tests that would be performed. The total study duration was 16 weeks and 

was divided into three periods; a Run-In period of 4 weeks, a WBV period of 8 

weeks followed by a 4 week Wash Out period (Fig.4.1). The measurements were 

performed at 5 time points (T0, T1, T2, T3, and T4). T0 was at the beginning of the 

Run-In period; T1, T2 and T3 were at the beginning, half-way and the end of the 

WBV period; and, T4 was at the end of the Wash-Out period. To assess the short-

term effect of WBV, multiple samples were collected at T1, T2 and T3 at 60minutes 

before WBV and 5, 30 and 60minutes after WBV. To assess the medium-term 

effects, samples collected at T0 and the first sample collected at T1 were jointly 

analysed as pre-WBV, samples collected at T2 and T3 were jointly analysed as 

WBV and those collected at T4 were referred to as post-WBV. The blood samples 

were collected between 08.00 and 09.00am, after a minimum of 8 hours of fasting. 

The participants were not allowed to consume food and drinks during the treatment. 

All blood samples were collected via an indwelling venous cannula and centrifuged 

at 2600-2800 rev/minute for 10min, and the serum was subsequently stored at -

70C. 
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Fig  4.1: Study protocol consists of 5 time points (T0-T4) over a period of 16 weeks. At T0, the participants were randomised into two groups; GP and JP. At 

T0 and T4, weight, height, muscle function, body composition and a fasting blood sample were collected.  WBV was performed for a period of 8 weeks from 

T1 to T3, 3times/week with different frequency and duration. The measurements at these time points were similar to T0 and T4. In addition, 4 fasting blood 

samples were also collected at T1, T2 and T3; the first sample was collected was 60minutes before WBV and the others were collected at 5, 20 and 

60minutes after WBV. 
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4.3.3 Exercise Regimen 

At T0, all participants were randomised to receive WBV by the Galileo device (Novotec, 

Pforzheim, Germany) or Juvent 1000 DMT (Juvent Medical Inc, Somerset, USA) on 3 days 

every week over the WBV period. For the Galileo platform (GP), the WBV intensity   used for 

the first 4 weeks(from T1 to T2) was at the frequency of 18Hz, the peak-to peak displacement 

4mm and the acceleration 2.6g whereas,   the second 4 weeks(from T2 to T3); the frequency 

increased up to 22Hz,  the peak-to peak displacement remained constant at  4mm and the 

acceleration, 3.8g. All exercise of GP was supervised and each exercise visit consisted of 3 

bouts of WBV with each bout lasting for 3minutes with one minute rest in between the bouts. 

For the Juvent platform  (JP), the WBV intensity was kept constant at  32-37Hz of frequency 

with a peak-to peak displacement 0.085mm and an acceleration of 0.3g for 10minutes in the 

first 4 weeks (from T1 to T2) whereas, and 32in the second 4 weeks (from T2 to T3), the 

duration of exposure doubled to 20minutes for each session. Details of the WBV regimen are 

outlined as recommended by the International Society of Musculoskeletal and Neuronal 

Interactions (311). The WBV parameters that were used in this study were chosen as they 

have previously been reported to exert a beneficial effect on musculoskeletal health 

(326;478). All participants were instructed to stand still on the vibration platforms without 

shoes and, in the case of GP, with slight flexion of the knees.  

 

4.3.4 Body Composition and Muscle Function 

Anthropometry included height, weight and body composition measurements were performed 

using a Harpenden Stadiometer and Tanita (TBF-300,Tokyo,Japan), respectively. Muscle 

force, power, velocity and jump height were assessed by Leonardo mechanography (Novotec 

Medical,Pforzheim, Germany). A two-leg jump was assessed as a counter movement with 

freely moving arms and the subjects were instructed to jump as high as possible.  Vertical 

jump height (cm), power max total (kW), power max / kg (W/kg), efficiency (%) and Esslinger 

Fitness Index (EFI) (%) were all assessed. Each participant was asked to jump at least three 

times at each time point and the result of highest jump was included. Handgrip strength was 

assessed with the Jamar handgrip dynamometer (Preston, Jackson, MI, USA) using the 

dominant arm and the highest measurements were recorded.   
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4.3.5 Biochemical Assays 

The short effect of WBV was assessed by measuring serum growth hormone (GH), cortisol, 

creatine kinase (CK) and glucose and the medium term effect was assessed by measuring 

markers of bone turnover, Insulin, Insulin-like growth factor 1 (IGF-1), Testosterone, Leptin 

and C-reactive protein (CRP). Serum bone-specific alkaline phosphatase (BAP) was 

measured by Ostase® BAP immunoenzymetric assay (immunodiagnostic systems Ltd (IDS 

Ltd, Boldon,UK) with an intra-assay CV of 5.5% to 7.3%. Serum osteocalcin (OCN) was 

measured using N-MID® osteocalcin ELISA (IDS Ltd, Boldon, UK) with an intra-assay CV of 

3.3% to 9.7%. Serum cross linked C-telopeptide of type I collagen (CTX) was determined 

using serum crossLaps® ELISA (IDS Ltd, Boldon, UK) with an intra-assay CV of 1.9% to 

4.2%. Serum tartrate-resistant acid phosphatase 5b(TRAP5b) was detected by using bone 

TRAP(r) Assay (IDS Ltd, Boldon,UK) with the intra-assay CV of 1.7% to 3.4%. Serum 

sclerostin (Scl) was detected by using TECO Sclerostin Elisa Kit (Pathway Diagnostic Ltd, 

Dorking, UK) with an intra-assay CV of 1.1 % to 3.9%.  Serum GH and insulin were measured 

by the Siemens Immulite 2000 Erlangen, Germany. Between-run CV was less than 5% for 

both measurements. Serum IGF-1 concentration was determined using IGF-1 ELISA kit 

(Mediagnost IGF-1, Reutlingen, Germany), with an intra-assay CV of 5.5% to 9.5%. Serum 

cortisol concentration was evaluated using Architect Cortisol (Abbott Diagnostics, Abbott 

Park, USA) with an intra-assay CV of 6.8% to 10%. Serum testosterone concentration was 

determined using Abbott automated immunoassay platform (Abbott Diagnostics, Abbott Park, 

USA). Between-run CV was from 3% to 5%. Serum leptin concentration was determined by 

an in-house RIA with an intra-assay CV from 2.8% and 6%. Serum CK and glucose were 

measured using CK Kit and glucose reagent kit respectively (The ARCHITECT c System, 

Abbott Laboratories). Within-run coefficients of variation for CK and glucose were (from 3.4% 

to 4.1%) and  (from 1.6% to 2.6%), respectively. CRP was assessed by CRP Vario (Sentinel 

Diagnostics, Abbott Diagnostics) with an intra-assay CV from 3.6% to 8.6%.  

 

4.3.6 Statistical Analysis 

Results are presented as median and ranges and inter-group differences were assessed 

using Mann-Whitney tests or Kruskal-Wallis tests. Statistical analysis was performed with 

Minitab16 (Minitab, Coventry, UK), with significance set at a level of 5%. The correlation 
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between the variables was measured by regression test and r-value. Furthermore, ANOVA 

test (General linear Model) has been done for repeated measures may be more appropriate 

for the serial measurements. The short term effect of biochemical markers was assessed by 

the changes occurred from the measurements before the WBV training (-60minutes) and 

after WBV training (5, 20, 60 minutes) respectively. The data for the three study periods, run-

in, WBV and wash-out were analysed by studying data at T0 and T1 for run-in, data at T2 and 

T3 for WBV and data at T4 for wash-out.  

 

4.4 Results   

4.4.1 Baseline Characteristics  

Tab.4. 1 shows the results for all the physical and biochemical measurements of the two 

groups over the study period. The reported median vibration training compliance for both 

study groups was 100%(18,100).  

 

4.4.2 Body Composition and Muscle Function 

In the GP group, median jump height at pre-WBV(T0-T1) was 41cm(32,51) and 44cm(41,55) 

during the WBV sessions (T2-T3)(p=0.08) as compared to 44cm(41,52)(p ,0.12) at post-WBV 

(T4). In the JP group, median jump height was 46cm(35,55) , 45cm(32,52) and 49cm(33,55) 

pre-WBV, during WBV sessions(p=0.6) and at post-WBV(p=0.9), respectively. There were no 

significant changes in the other parameters of muscle function (Fig.4.2). There were also no 

significant changes in body composition. 
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Fig  4.2: The changes in the vertical jump (T0-T4) height measured by mechanography in the Galileo group and Juvent group. 
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4.4.3 Short-term Effect of Exercise on Biochemical Markers  

At 18Hz, GP was associated with a non-significant increase in serum GH, but at 22Hz, serum 

GH rose from 0.07µg/l(0.04,0.69) at 60minutes pre-WBV  to  0.52µg/l(0.06,2.4) (p=0.055), 

0.63µg/l(0.1,1.18)(p=0.026), 0.21µg/l(0.07,0.65)(p=0.2) at 5minutes, 20minutes and 

60minutes post-WBV, respectively. In contrast, JP was not associated with any significant 

change in serum GH (Fig.4.3). At 18Hz, GP was associated with a reduction in serum cortisol 

from 316nmol/l(247,442) at 60minutes pre-WBV to 173nmol/l(123,245)(p=0.01), 

165nmol/l(139,276)(p=0.02) and 198nmol/l(106,294)(p=0.04) at 5minutes, 20minutes and 

60minutes post-WBV, respectively. At 22 Hz, GP was associated with a reduction in serum 

cortisol from 269nmol/l(115,323) at 60minutes before WBV to 214nmol/l(139,394)(p=0.5), 

200nmol/l(125,337)(p=0.08) and 181nmol/l(104,306)(p=0.04) at 5minutes, 20minutes and 

60minutes post-WBV, respectively. In the JP group there were no significant changes in 

serum cortisol (Fig.3). Serum CK, as a marker of the effect of exercise on muscle, did not 

show any significant change in either of the two groups with different frequency and 

durations. There was no significant change in serum glucose in both groups (Tab.4.2).   
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Fig  4.3: Short term effect of WBV on serum cortisol. GP group had WBV at frequency of 18Hz at (T1) and 22Hz at (T2,T3). JP group stood for 10minutes at 

(T1) and 20minutes at (T2,T3).  *p<0.05. 
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Fig  4.4: Short term effect of WBV on GH. GP group had WBV at frequency of 18Hz at (T1) and 22Hz at (T2,T3). JP group stood for 10minutes at (T1) and 

20minutes at (T2,T3). *p<0.05. 
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4.4.4 Medium Term Effects on Biochemical Markers 

Median serum CTX, a marker of bone resorption fell significantly over 8 weeks of WBV 

training in the GP group from 0.42ng/ml(0.29,0.90) pre-WBV to 0.29ng/ml(0.18,0.44) at the 

end of WBV training (p=0.029). After 4 weeks of stopping exercise, median serum CTX of the 

post-WBV measurement increased to 0.45ng/ml(0.40,0.66)(p=0.01). There were no 

significant changes in the JP group. WBV was not associated with any significant change in 

BAP, OCN, TRAP5 and Scl in either group (Tab.4.3). Over the 8 weeks, there was a 

reduction in median serum cortisol in the GP group from 333nmol/l (242,445)(pre-WBV) to 

270nmol/l(115,323) (WBV)(p=0.04)(Fig.4.4). GH, IGF-1, testosterone, leptin, CK and insulin 

did not show any significant changes over the period of exercise (Tab.4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  4.5: Medium term effects of WBV on serum cortisol and serum CTX. The data are presented for three study periods; run-in (T0 to T1), WBV (T2,T3) and 

wash-out (T4). *p<0.05. 
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4.5 Discussion   

WBV with Galileo and Juvent was well tolerated with a high rate of compliance in the study 

population. Apart from very mild itching, which was experienced particularly over the shins 

and thighs and which has been reported previously (386), the exercise regimens were not 

associated with any adverse reactions. In addition, the current study showed that, over the 

short-term, exercise with GP was associated with increased serum GH and decreased 

cortisol concentration. The lowering of circulating cortisol was also observed over the medium 

term and this fall was also associated with a reduction in bone resorption.  

 

The exact mechanism of WBV is still poorly understood. However, the most commonly cited 

mechanism of WBV is that it applies tonic vibration (313). Roelants et al. (316) concluded that 

WBV led to activation of lower limb muscles to a magnitude that ranged from 13% to 82% of 

maximal muscle contraction. However, vibration cannot elicit tonic reflexes when the 

amplitude is less than 1mm (314). Therefore, the anabolic effect of WBV on bone may be 

produced by other mechanisms. Furthermore, the effect of WBV on the musculoskeletal 

system may be dependent on a range of WBV parameters (frequency, amplitude and g 

force)(314). Torvinen et al. (357) demonstrated that WBV amplitude is positively correlated 

with muscle performance while others believed that frequency is the most important variable 

in WBV (360;360;361).  

 

Vibratory exercise has been suggested to have a beneficial effect on muscle strength. 

Previous studies have suggested that over the short-term, WBV can increase vertical jump 

height (239;358;479;480). Although we did not assess the immediate effect of WBV on jump 

performance, there was no significant change in muscle function over the 8 weeks for either 

vibratory platform. We did observe a positive trend for an improvement in vertical jump height 

in those subjects who stood on the Galileo platform but it is possible that we may have 

observed a significant change with a larger sample size or over a longer period of study. Our 

study was based on previous research that has reported significant changes in biochemical 

parameters after WBV. Over a similar study period to ours, Wyon et al. (239) found that 6 

weeks of WBV at 35 Hz for 5minutes twice a week increased vertical jump height and another 

group has recently reported that 4 weeks of WBV training (three times a week with a 

frequency 40-Hz, 4-mm) could improve muscle function when added to the conventional 

training of basketball players (479). However, improved muscle function over such periods is 
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not a universal finding as reported in a 14 week study of WBV training (30-to 35-Hz frequency 

and 4 mm) in female basketball players (481).   

 

Previous studies of the acute hormonal responses to WBV exercise have so far reported 

variable results. However,  the investigators reported a significant increase in testosterone 

and GH and a decrease in the serum concentration of cortisol in healthy young men after 

10minutes of WBV exercise (6minutes, 26 Hz , peak-to-peak  displacement  of 4 mm; 

acceleration,17g) (243). The association between exercise and immediate GH secretion is 

well established (482), but the association between serum GH secretion and WBV in young 

men is variable with some reporting a rise (243;366) and some reporting a lack of association 

(374;376). In the current study, GH increased significantly only in the GP group when the 

frequency was 22Hz, suggesting that the effect on GH secretion may be dependent on 

exercise intensity.  

 

The changes that we observed in serum cortisol immediately after WBV have also been 

reported by others (243;376). The exercise intensity can be measured by the volume of 

oxygen consumed while exercising at maximum capacity. This is known as VO2 max (the 

maximum amount of oxygen in millilitres used in one minute per kilogram of body weight) 

.Furthermore, several studies report that the moderate to high intensity exercise as 

characterised by VO2 max of 60-90% is associated to an increase in serum cortisol, but low 

intensity exercise actually resulted in a reduction in circulating cortisol levels (483;484). The 

reported VO2 max of WBV is less than 50% (381) and, therefore, WBV can be classified as 

low intensity exercise.  Elevation of CK and lactate dehydrogenase following various forms of 

exercise are previously documented (485). Recently, it was shown that side alternating WBV 

training in combination with dynamic exercise can double the level of serum CK in 25% 

healthy adults (364). In this study, we assessed exercise intensity by measuring serum CK 

and there was no difference between the two study groups. In peripheral tissues, 

corticosteroid hormone action is determined, in part, through the activity of 11-

hydroxysteroid dehydrogenases (11-HSD), two isozymes which interconvert hormonally 

active cortisol (F) and inactive cortisone (E). 11-HSD type 2 (11-HSD2) inactivates F to E in 

the kidney; whilst 11-HSD type 1 (11-HSD1) principally performs the reverse reaction 

activating F from E (486). Intense physical exercise has been reported to be associated with 
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an increase in the conversion of cortisone to cortisol by stimulating 11-HSD1 activity (487) 

whereas low intensity exercise results in a reduction in circulating cortisol levels (483;484). In 

addition, GH may inhibit 11β-HSD1, increasing conversion of cortisol to cortisone (486) and in 

the raised GH following exercise may be one possible mechanism for the observed reduction 

in circulating cortisol over the short-term as well as the medium term. It might argue that the 

significant drop rate in the cortisol level following WBV in the GP is possibly related to its level 

in the circadian normal peak in the morning and falls over time in the afternoon. However, this 

change has not been observed following WBV in the JG. 

 

WBV has been reported to be osteogenic in several animal models (302;321;395), however; 

in humans this is less clear. Recent studies suggest that whole-body vibration (WBV) can 

improve measures of bone health for certain clinical conditions and ages (245;319). Our 

results did not show any positive effects on osteoblast activity but there was a significant 

negative effect on osteoclast activity as observed by a decrease in serum CTX, a marker of 

bone resorption, in the Galileo group. Our results are consistent with previous reports of 

suppressed osteoclast activity after 15minutes of daily WBV in mice (328). WBV at 1.5g may 

also be associated with reduced pyridinoline crosslinks production in aging mice (488). More 

recently, WBV training for 8 weeks (3times/week) in post-menopausal women was associated 

with in a significant reduction in N-telopeptide-x when compared with sham vibration 

exposure (326). The reduction in bone resorption in these studies, as well as ours, may be 

due to the observed reduction in circulating cortisol. TRAP5b, another marker of bone 

resorption also reduced in both groups but the reduction was not significant. It is possible that 

the positive effect on bones is mediated via osteocyte signalling and we, therefore, measured 

Scl which increases in response to unloading through antagonizing Wnt/β-cantenin signalling 

(43).  Our results suggest that in these healthy young adults, the reduction in biochemical 

markers of bone resorption was independent of changes in Scl. 

 

A number of important limitations need to be considered. The most important limitation lies in 

the fact that the small size sample was underpowered for the outcomes because the size of 

the pilot study was unknown. As the number of participants was small, the effect of outliers 

may have been greater and skewed the results. The inclusion of a non-intervention group 

would have enabled a more detailed analysis of the cortisol results and distinguished whether 
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the rate of fall of cortisol was more than expected in the intervention groups. Furthermore, 

two months of WBV exposure may not have been sufficient to stimulate any musculoskeletal 

adaptations, particularly in muscle performance. A lack of familiarisation tests prior to 

baseline assessment may have led to results confounded by learning effects. 

 

In summary, WBV, as delivered through the Galileo platform was associated with a 

measurable increase in circulating GH and a decrease in circulating cortisol. These changes 

were not associated with any changes in muscle function over this period but a significant fall 

in bone resorption was, nevertheless, observed. It is possible that some of the beneficial 

effects of WBV on bone health are mediated through its effects on bone turnover through 

alteration in GH and cortisol production rather than through muscle function.  
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T0 T1 T2 T3 T4 

Weight (kg) GP 75(72,82) 74(71,82) 75(74,83) 75(70,82) 74.6(72,82) 

 JP 74(72,86) 75(73,87) 74(70,87) 74(72,87) 73(70,86) 

MGF (kg) GP 43(35,51) 49(42,53) 47(43,57) 45(35,53) 45(35,48) 

 JP 49(32,53) 45(32,62) 48(35,58) 45(31,49) 43(30,53) 

BMI GP 24(23,28) 24(23,28) 25(23,28) 24(22,28) 24(22,28) 

 JP 24(23,29) 23(23,30) 23(23,30) 23(23,30) 23(23,30) 

FAT% GP 17(16,25) 18(16,23) 19(15,34) 17(15,23) 18(16,22) 

 JP 19(17,29) 19(18,28) 19(17,30) 19(18,30) 19(17,27) 

FM (kg) GP 13(12,19) 14(12,18) 15(11,18) 12(11,17) 14(12,18) 

 JP 14(12,25) 14(13,24) 14(12,26) 14(13,26) 14(12,23) 

FFM (kg) GP 62(56,63) 61(57,63) 63(56,65) 60(57,65) 60(58,64) 

 JP 61(59,62) 60(58,62) 61(59,62) 60(43,61) 60(58,63) 

TBW (kg) GP 45(41,46) 45(42,46) 46(41,47) 44(42,47) 44(42,46) 

 JP 44(43.5,45) 44(43,45) 44(43,45) 43(43,44) 44(42,46) 

EFI(%) GP 91(73,92) 90(72,98) 92(76,101) 91(78,97) 86(80,99) 

 JP 93(86,107) 86(84,114) 92(87,111) 91(82,120) 86(83,114) 

Jump Height (cm) GP 41(32,51) 41(39,51) 43(41,50) 45(43,55) 44(41,52) 

 JP 51(35,55) 42(36,52) 43(35,52) 48(32,52) 49(33,55) 

F max (kN) GP 2.13(1.65,2.81) 1.88(1.60,2.72) 1.94(1.75,2.43) 1.79(1.60,2.28) 1.92(1.63,2.21) 

 JP 1.87(1.77,2.77) 2.11(1.73,2.63) 2.24(1.77,2.48) 2.27(1.70,2.55) 2.00(1.73,2.75) 

P maxt (kW) GP 3.51(3.18,3.93) 3.76(3.16,4.03) 3.84(3.41,4.1) 3.80(3.53,4.08) 3.71(3.54,3.95) 

 JP 3.85(3.58,4.43) 3.72(3.50,4.77) 3.80(3.53,4.7) 3.90(3.27,4.98) 3.71(3.22,4.66) 

Efficiency (%) GP 78(56,87) 81(67,92) 82.5(76,88) 85(80,93) 82(80,90) 
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 JP 91(59,101) 87(63,00) 87(64,98) 91(61,95) 86(57,103) 

CK (IU/L) GP 203(68,300) 141(64,462) 185(97,390) 149(84,261) 168(126,270) 

 JP 136(118,234) 135(77,150) 123(104,338) 125(83,185) 117(78,253) 

Leptin (ng/ml) GP 8.4(7,16.6) 9.6(4.7,11.9) 6.6(6.4,12.4) 13.1(5.4,13.2) 9.8(4.2,13.2) 

 JP 9.2(6.7,14.9) 8.9(5,21.3) 10(3.7,23.9) 11(6.6,14.8) 8.2(5.1,14.7) 

Insulin (uU/ml) GP 6.4(4.6,21.8) 7.3(3.8,17.3) 4.4(2.2,9.7) 10.6(0.3,24.4) 7.1(5.2,10) 

 JP 10.7(5.2,14.3) 7.7(4.6,10.2) 9.6(4.3,11.3) 7.55(4.8,16.1) 8.9(7.1,27.7) 

Testo (nm/L) GP 16(13,28) 18(12,26) 16(12,28) 16(10,30) 17(12,31) 

 JP 20(9,21) 18(10,25) 22(12,24) 19(12,21) 19(9,22) 

GH (µg/l) GP 0.14(0.04,0.73) 0.05(0.04,1.03) 0.09(0.04,0.30) 0.04(0.04,0.69) 0.09(0.04,3.68) 

 JP 0.07(0.04,0.22) 0.04(0.04,0.15) 0.05(0.04,0.23) 0.07(0.04,0.09) 0.04(0.04,0.31) 

IGF1 (ng/ml) GP 246(21,289) 240(207,479) 223(183,282) 231(166,347) 214(210,348) 

 JP 200(179,228) 208(159,257) 200(132,233) 187(132,266) 173(118,209) 

Cortisol (nmol/l) GP 351(242,445) 316(247,442) 284(225,285) 255(115,323) 341(203,433) 

 JP 367(175,444) 289(202,454) 272(133,342) 332(28,380) 337(268,380) 

Glucose ( mmol/L) GP 5.0(4.5,5.4) 4.3(3.7,5.7) 4.8(4.7,5.7) 5.6(4,6.3) 5.1(4.4,5.8) 

 JP 5.6(5.3,5.8) 5.3(4,5.6) 5.3(5,5.5) 5.3(5.1,6) 5.3(4.9,5.7) 

BAP (µg/l) GP 19(10,32) 20(10,25) 14(12,14) 14(14,36) 16(5,49) 

 JP 13(12,33) 16(10,20) 12(11,26) 12(7,17) 13(9,28) 

OCN (ng/ml) GP 17(11,19) 17(14,23) 18(14,22) 18(5,24) 18(15,29) 

 JP 19(10,28) 18(11,25) 18(12,30) 12(7,26) 17(9,26) 

CTX (ng/ml) GP 0.48(0.30,0.86) 0.35(0.29,0.90) 0.28(0.20,0.38) 0.29(0.18,0.44) 0.45(0.40,0.66) 

 JP 0.65(0.19,1.18) 0.41(0.20,0.70) 0.31(0.15,1.09) 0.43(0.30,0.48) 0.38(0.29,0.77) 

TRAP5b (ng/ml) GP 3.2(1.9,6.2) 3.8(2.2,5) 2.4(1.9,4.7) 3.9(2.3,5) 4.1(0.5,6.8) 
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 JP 2.8(2.14,3.6) 1.9(1,3.9) 2.7(2.1,3.8) 1.62(1.61,2) 3(1.4,4) 

Scl (ng/ml) GP 0.38(0.16,0.60) 0.31(0.02,0.53) 0.22(0.18,0.32) 0.39(0.19,0.52) 0.37(0.20,0.54) 

 JP 0.27(0.23,0.85) 0.37(0.19,0.84) 0.41(0.21,0.79) 0.30(0.07,0.55) 0.30(0.05,0.81) 

Jump Height/FM GP 3(1.7,4.2) 2.9(2,3.9) 2.8(2.2,4.2) 3.6(2.5,4.3) 3.1(2.2,4.3) 

 JP 3.6(1.4,4.1) 3(1.5,3.6) 3.3(1.4,4.2) 3.4(1.4,3.9) 3.3(1.7,4.3) 

Jump Height/FFM GP 0.65(0.50,0.82) 0.7(0.6,0.8) 0.7(0.6,0.8) 0.7(0.6,0.9) 0.7(0.6,0.8) 

 JP 0.83(0.58,0.90) 0.68(0.6,0.86) 0.69(0.58,0.85) 0.7(0.5,1.1) 0.8(0.5,0.9) 

Leptin/FM ratio GP 0.64 0.68 0.44 1.0 0.70 

 JP 0.65 0.63 0.71 0.78 0.58 

 

Tab  4.1: Physical and biochemical parameters at every time point (T0-T4) in GP group and JP group. Weight, grip force (GF), body mass index (BMI), Fat 

mass (FM), free fat mass (FFM), total body water (TBW), Esslinger Fitness Index (EFI), force maximum total (F max), power maximum total (P max), growth 

hormone (GH), insulin like growth factor-1 (IGF-1), bone specific alkaline phosphatase (BAP), osteocalcin (OCN),  Serum cross linked c-telopeptide of type I 

collagen (CTX), Tartrate-resistant acid phosphatase 5b(TRAP5b), sclerostin (Scl) and creatine kinase (CK),Jump height adjusted forFM(Jump Height/FM),. 

Jump height adjusted forFFM (Jump Height/FFM), Leptin/FM ratio. 
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   GP   

  -60 minute +5 minute +20 minute +60 minute 

GH (µg/l) 18Hz 0.05(0.04,1.03) 0.11(0.05,1.5) 0.11(0.04,2.83)* 0.16(0.04,1.02) 

 22Hz 0.07(0.04,0.69) 0.52(0.06,2.47) 0.63(0.10,1.18) 0.21(0.07,0.65) 

      

Cortisol 
(nmol/l) 18Hz 316(247,442) 173(123,245)* 165(139,276)* 198(106,294)* 

 22Hz 269(115,323) 214(139,394) 200(125,337) 181(104,306)* 

      

CK (IU/L) 18Hz 141(64,462) 172(76,489) 137(65,422) 155(79,492) 

 22Hz 167(84,390) 157(78,329) 153(77,350) 147(94,343) 

      

Glucose 
(mmol/L) 18Hz 4.3(3.7,5.7) 4.5(3.4,4.8) 5.4(3.7,5.5) 5.3(3.7,5.8) 

 22Hz 5.4(4,6.3) 5.4(4.6,6.1) 5.7(4.6,6.1) 5.6(4.6,5.9) 

      

   JP   

  -60 minute +5 minute +20 minute +60 minute 

GH (µg/l) 10mins 0.04(0.04,1.52) 0.04(0.04,0.48) 0.05(0.04,0.12) 0.04(0.04,0.20) 

 20mins 0.05(0.04,0.23) 0.05(0.04,0.72) 0.05(0.04,0.27) 0.08(0.04,0.68) 

      

Cortisol 
(nmol/l) 10mins 289(202,454) 220(190,315) 231(133,282) 211(111,270) 

 20mins 301(328,380) 206(97,352) 187(99,352) 209(133,353) 

      

CK (IU/L) 10mins 135(77,150) 134(88,154) 140(89,145) 136(109,414) 

 20mins 123(83,338) 138(92,348) 135(86,340) 142(85,341) 

      

Glucose 
(mmol/L) 10mins 5.3(4,5.6) 4.9(4.1,5.6) 5.1(4.1,5.4) 4.7(4.2,5.8) 

 20mins 5.3(5,6) 5.3(4.2,6.3) 5.1(4.2,5.9) 5.1(4.8,5.4) 

 

Tab  4.2: Short term effect of WBV on biochemical parameters in GP and JP groups. These markers 

included serum GH, cortisol, CK and glucose. These measurement were taken at four discrete time 

points; 60minutes before WBV (-60minutes), 5minutes(+5min), 20minutes (+20minutes) and 60minutes 

(+60minutes), after completing the WBV training, respectively.*significant difference from -60min, p 

<0.05    
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Tab  4.3: Medium term effect of WBV on biochemical parameters in GP and JP groups. These 

parameters included serum leptin, insulin, testosterone, GH, IGF-1, cortisol, glucose, BAP, OCN, CTX, 

TRAP5b, Scl and CK. The measurements were assessed at three different times; run-in (T0, T1), WBV 

(T2, T3) and wash-out (T4). 
1 

significant difference between pre-WBV and WBV (p<0.05).  
2 

significant 

difference between WBV and post-WBV (p<0.05).   

 

 

 

 

 

 

 

 TP Pre-WBV (T0,T1) WBV(T2,T3) Post-WBV(T4) 

Leptin (ng/ml) GP 9(4.7,16.6) 9.5(5.4,13.2) 9.8(4.2,13.2) 

  JP 9(5,21.3) 11(3.7,23.9) 8.2(5.1,14.7) 

Insulin (uU/ml) GP 6.8(3.8,21.8) 8.4(0.3,24.4) 7.1(5.2,1) 

 JP 8.5(4.6,14.3) 7.6(4.3,16.1) 8.9(7.1,27.7) 

Testos (nm/L) GP 17(12,28) 16(10,29) 17(12,31) 

 JP 19(9,25) 20(12,24) 19(9,22) 

GH (µg/l) GP 0.09(0.04,1.03) 0.07(0.04,0.69) 0.09(0.04,3.68) 

 JP 0.05(0.04,1.52) 0.05(0.04,0.23) 0.04(0.04,0.31) 

IGF1 (ng/ml) GP 243(207,479) 227(166.6,347) 214(217,384) 

 JP 204(159,257) 193(132,266) 173(118,209) 

Cortisol (nmol/l) GP 333(242,445) 269(115,323)
1 

341(203,433) 

 JP 299(157,454) 324(133,380) 337(268,428) 

Glucose (mmol/L) GP 4.9(3.7,5.7) 5.4(4,6.3) 5.1(4.4,5.8) 

 JP 5.3(4,5.8) 5.3(5,6) 5.3(4.9,5.7) 

BAP (µg/l) GP 19(9,31) 14(12,36) 16(5,49) 

 JP 13(10,33) 12(7,26) 13(9,28) 

OCN (ng/ml) GP 17.(11,22) 17(5,24) 18(14,29) 

 JP 18(10,27) 16(7,30) 17(9,25) 

CTX (ng/ml) GP 0.42(0.29,0.90) 0.29(0.18,0.44)
1
 0.45(0.40,0.66)

2
 

 JP 0.54(0.19,1.18) 0.39(0.15,1.09) 0.38(0.29,0.77) 

TRAP5b (ng/ml) GP 3.5(1.9,6.2) 3.3(1.9,5) 4.1(0.5,6.8) 

 JP 2.4(1,3.9) 2.3(1.6,3.8) 3(1.4,4) 

Scl (ng/ml) GP 0.35(0.02,0.60) 0.27(0.18,0.52) 0.37(0.20,0.54) 

 JP 0.32(0.19,0.85) 0.31(0.07,0.79) 0.30(0.06,0.81) 

CK (IU/L) GP 172(64,462) 167(84,390) 168(126,270) 

 JP 135(77,234) 123(83,338) 117(78,253) 
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5.1 Abstract  

Background: There is a need to reduce the bone morbidity that is observed in children 

receiving chemotherapy for acute lymphoblastic leukaemia (ALL). 

Aim: To assess the effect of Whole Body Vibration (WBV) on the bone health of children 

receiving chemotherapy for ALL.  

Patients and Methods: In this four-month trial, 16 children with ALL (age 5 to 13.8 years; 

nine boys) were randomised either to receive side-alternating WBV (Galileo, Novotec, 

Pforzheim, Germany)(16-20Hz, 2mm (peak to peak displacement), 1-1.6g)(n,9) or to stand on 

a still platform as a control group (n,7) for  9minutes, once/week for four months. 

Measurements were performed at baseline, two-month and four-month assessing bone 

health (DXA and p.QCT), body composition and muscle function by imaging and biochemical 

assessment. DXA BMC data were corrected for bone area and presented as BMC z-score.  

Results: The median compliance rate measured as a ratio of actual completed minutes and 

expected minutes of WBV was 55%(17,100). The median percentage change of TB-BMC z-

score in the WBV group from baseline to four-month was -10%(-25,10)(p=0.1), whereas it 

was -87%(-203,4)(p=0.07) in the control group. The median LS-BMC z-score (L2-L4) in the 

WBV group was -0.4(-1.3,0.3) and -0.3(-1.4,1.5) at baseline and four-months, whereas the 

respective data in the control group were 0.04(-0.6,2.4) and -0.1(-1.1,1), respectively. The 

median percentage change in LS-BMC z-score from baseline to four-month was -19%(-

349,365)(p=0.1) and -75%(-1016,178)(p=0.1) in the WBV and control groups, respectively.  

Conclusion: WBV is tolerated by children receiving chemotherapy. WBV may prevent the 

deterioration in bone mineral density that is seen in children on chemotherapy and requires 

further study.  
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5.2 Introduction 

Acute lymphoblastic leukaemia (ALL) is the commonest paediatric cancer representing about 

one third of all childhood malignancies. As the survival rate of ALL has improved dramatically  

(448), the adverse effects that may occur during chemotherapy, as well as after completion of 

therapy have gained greater attention. Adverse bone health has now been well documented 

in children receiving chemotherapy and may be manifested overtly as skeletal fractures (71-

73;460) or sub-clinically, as changes in markers of bone turnover and bone density, which are 

characteristic of an overall state of bone loss (68;182;489). The osteoporosis that occurs in 

these children has a multifactorial aetiology and includes bone marrow involvement in the 

disease process, hypogonadism, nutritional and mineral deficits, reduced physical activity and 

long-term use of drugs such as GCs, methotrexate and vincristine, which can cause a 

combination of myopathy, osteopathy and neuropathy (172;490). Whilst tailoring the use of 

such chemotherapy agents to match the risk profile of each patient may reduce the likelihood 

of adverse effects in the future, there is a need to explore interventions that are targeted 

specifically at improving bone health.  

 

Physical activity, which is known to influence bone mass accretion, particularly in childhood 

(491), is often reduced in children on chemotherapy as well as after completion of therapy 

(198;199). In addition, there is an association between length of inpatient stay and 

subsequent fractures (492). Exercise regimens that increase muscle bulk or increase 

mechanical loading on the skeleton may prove beneficial for skeletal health (237), but 

performing exercise at home in children with ALL is associated with poor adherence (188). 

Mechanical loading can be achieved by a fixed regimen of weight bearing exercises or with 

the help of a whole-body vibration (WBV) platform, which delivers vibration stimuli that have 

been investigated to have beneficial effects on muscle function (493) and bone mineral 

density (242). It is also possible that WBV is as effective as weight bearing exercise, whilst 

shortening the time required for the exercise. In this study, we explore the feasibility of using 

WBV in children receiving chemotherapy for ALL and assess its effect on bone health and 

body composition.  
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5.3 Subjects and Methods  

5.3.1 Patients  

The study was performed in children with ALL who presented to the Royal Hospital for Sick 

Children, Glasgow, UK between 2005 and 2009. Those children who were less than four 

years old or who had started chemotherapy less than four months previously were excluded 

as were children who had completed their chemotherapy more than two years previously. Of 

the 79 (Fig.5.1) children who presented during the study period, 23 were recruited into the 

study and randomised into either receiving WBV or acting as control and 56 children were 

excluded for a range of reasons. In the WBV group, two children withdrew from the study 

even before starting the WBV regimen. Another child had an accidental fall at home after one 

session of WBV regimen and suffered a vertebral fracture and was withdrawn from the study 

and, finally, one child suffered a seizure at home after three sessions of WBV and withdrew 

from the study; the seizure was, itself, attributed to the neurotoxic effects of chemotherapy. In 

the control group, three children declined to participate in the study because they were not 

adherent.  
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Fig  5.1: Consort diagram for the study. The total number of children who were diagnosed with ALL 

between 2005 and 2009 was 79. 56children were excluded from the study because of the listed 

reasons; 23children were eligible of whom 7. The remaining 16children were randomised into the WBV 

group (9) and the control group (7).  

 

 

 

 

 

79 children with ALL

2005-2009 Excluded(n,56)

. <4yrs (n,13)

• Declined (n,13)

• Moved (n,11)

• Osteonecrosis (ON) (n,8)

• Not contactable (n,5)

• Deceased (n,2)

• Relapsed (BMT) (n,2)

• Down ‟s syndrome (n,1)

• Autistic (n,1)
Enrolled (n,23)

Completed (n,16)

• Control (n,7) 

• Intervention (n,9)

Withdrew (n,7)

• Control Group (n,3 ) 

Not adherence (n,3)

• WBV Group(n,4)

Before WBV (n,2)

Vertebral fracture at home (n,1)

Neurotoxic Seizure (n,1)
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5.3.2 Chemotherapy Treatment  

ALL children received therapy as part of the Medical Research Council trial of childhood ALL 

treatment -UKALL2003. The treatment plan included sustained induction, and consolidation 

with two or three blocks of intensive chemotherapy, followed by chemotherapy maintenance 

for two years for girls and three years for boys through any one of three arms (Regimen A, B, 

C). During induction therapy dexamethasone was administered for 28 days and then tapered 

over the next seven days (Fig.5.2). Regimen A was reserved for children younger than 10 

years old and those with a white cell count less than 50x109/L. Regimen B was reserved for 

children who were over 10 years old or had a white cell count greater than 50x109 /L. Those 

children, who had a poor response to the two previous regimens, were positive for minimal 

residual disease at day 29 or had unfavourable cytogenetic results were allocated to regimen 

C. The duration of treatment for regimens A and B was shorter in girls (112-114weeks) 

compared with boys (164-166weeks), whereas the treatment duration in regimen C was 

longer in both girls (118weeks) and boys(170weeks). The total dose of dexamethasone 

received over that period was 1080mg/m2, 1470mg/m2, 1010mg/m2, 1430mg/m2 for girls 

receiving regimens A or B, boys receiving regimens A or B, girls receiving regimen C and 

boys receiving regimen C, respectively. 

 

Randomisation was performed at recruitment following stratification into two-month blocks 

based on time from diagnosis. Amongst the 16 children who completed the study, 9 were 

randomised to the WBV group and 7 to the Control group. There were no significant 

differences between the two groups (Tab 5.1). The total duration of the study period in each 

child was 20 months and consisted of a four-month intervention period followed by a 16-

month period of observation (Fig.5.3). Measurements were performed at baseline, two-month 

and four-month after start of the intervention. Information on any skeletal morbidity including 

MSP and fractures was collected retrospectively, as well as prospectively from the point of 

recruitment. The study was approved by the National Research Ethics Service and informed 

consent was obtained from all parents and children, where appropriate. 
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Fig  5.2: The UKALL2003 (regimen A, B and C).  

Regimen A – Single Delayed Intensification. There are five stages of treatment: Induction (from 1 to 5 weeks), Consolidation (from 6 to 8 weeks), Interim 

Maintenance Number 1 (from 9 to 16 weeks), Delayed Intensification Number One (1DI) (from 17 to 23 weeks) and Maintenance Cycle (from 24 to 35 

weeks) in each cycle repeated eight times in girls and12 times in boys. Those who were randomised to double Delayed Intensification (2DI) had extra 

Interim Maintenance Number 2 following (1DI) (from 24 to 31 weeks) and Delayed Intensification Number Two (2DI) (from 32 to 38 weeks) and 

Maintenance Cycle (from 39 to 50 weeks) in each cycle repeated six times in girls and 11 times in boys. The duration of treatment is 112 weeks in girls and 

164 weeks in boys.   

Regimen B – children have the same treatment cycles as regimen A. Additionally, there is standard BFM consolidation (duration five weeks) following 

induction to 10 weeks. Interim Maintenance Number one (from 11 to 18 weeks), Delayed Intensification Number One (1DI) (from 19 to 25 weeks) and 

Maintenance Cycle (from 26 to 37 weeks) in each cycle repeated eight times in girls and 12 times in boys. Those who were randomised to double Delayed 

Intensification (2DI), had extra Interim Maintenance Number 2 following (1DI) (from 26 to 33 weeks) and Delayed Intensification Number Two (2DI) (from 34 

to 40 week) and Maintenance Cycle from 39 to 50 weeks in each cycle repeated six times in girls and 11 times in boys. The duration of treatment is 114 

weeks in girls and 166 weeks in boys.   

Regimen C – there are additional stages of treatment including induction (duration, five weeks), Augmented BFM consolidation (duration, nine weeks), 

Interim Capizzi maintenance I (duration, eight weeks), Delayed intensification I (duration, eight weeks); Interim Capizzi maintenance II (duration, eight 

weeks), Delayed intensification II (duration, eight weeks) and finally Maintenance cycles. The duration of treatment is 118 weeks in girls and 170 weeks in 

boys.   

Bone marrow aspirates (BM), intrathecal methotrexate (IT MTX), pegylated L-asparaginase (Oncaspar), vincristine (VCR), dexamethasone, 6-

mercaptopurine, Cotrimoxazole, oral methotrexate (MTX), Doxorubicin (Adriamycin), Cytarabine (ara-C), Daunorubicin (only regimen B and C), 

Cyclophosphamide (only regimen B and C), IV methotrexate (Regimen C).  
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Group 
 

Sex 
 

Age 
(years) 

Puberty 
Stage 

Comp 
(%) 

In-Patient 
Stay 

Regimens 
 

Chemo 
duration 

D-MIGF 
SDS 

ND-MIGF 
SDS 

WBV1 M 5.0 1 17 0 C 44 1.5 0.1 

WBV2 F 5.0 1 34 11 A 14 1.7 0.2 

WBV3 M 6.0 1 89 1 A 16 1.7 0.1 

WBV4 F 10.0 2 45 0 A 8 1.9 0.2 

WBV5 M 12.6 2 100 1 B 20 2.1 0.1 

WBV6 M 13.3 3 40 0 A 14 2.2 0.1 

WBV7 M 14.9 4 89 0 C 24 2.4 0.1 

WBV8 F 15.5 4 94 0 C 16 2.1 0.2 

WBV9 F 15.6 4 55 27 C 20 2.1 0.2 

C1 M 5.3 1 - 0 A 18 1.8 0.1 

C2 F 6.7 1 - 0 A 6 1.7 0.2 

C3 M 6.8 1 - 0 A 20 1.8 0.1 

C4 F 7.3 1 - 3 A 8 1.9 0.2 

C5 M 7.7 1 - 11 C 16 1.7 0.1 

C6 F 7.9 1 - 18 A 8 1.6 0.2 

C7 M 13.8 2 - 3 C 18 2.2 0.1 

Median (WBV)  12.6  55 0  16 2.1 0.1 

Median (C)  7.3  - 3  16 1.8 0.1 

P Value  0.2   0.6  0.3 0.3 0.9 

 

Tab  5.1: Patient characteristics assessed at baseline (BL). 9children in the WBV group (WBV1-9) and 7children in the control (C1-7) group. The age and 

puberty (Tanner stages) were assessed at BL. The compliance rate (comp %) and inpatient stay were evaluated from BL to four-month. The regimens 

(A,B,C) and duration of chemotherapy (months) were assessed in these two groups. Maximal isometric grip force (MIGF) of the dominant hand (D) and non-

dominant hand (ND) were measured at BL. The median values of these measurements and the differences (p value) between the WBV group and the 

control group were calculated.   
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Fig  5.3: Study protocol. Measurements were performed at BL, 2month and 4month, 8months and 20month after start of the intervention. The WBV group 

stood on a vibratory platform (9minutes) once a week for four months and the control group spent the same time standing on a still platform. The 

measurements included clinical assessment, anthropometry measurements, Maximal isometric grip force (MIGF), blood samples to assess bone markers; 

DXA and p.QCT were performed at BL, 2, 4,8 and 20month. No DXA and p.QCT at 2month visit.   

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5

4 months 4 months 12 months 

Children either stand on  a vibratory or still 

platform (9minutes) once a week every week 

for 18 weeks  (4 months)

Follow up assessments Primary outcomes 

p.QCT
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MIGF

Blood tests

Anthropometry 
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p.QCT

DXA

MIGF

Blood tests

Anthropometry 

Clinical 

assessments 

Baseline

+++-

+++-

++++

++++

++++

++++
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5.3.3 WBV Exercise 

The WBV schedule was adapted from a previous report that had used the same WBV system 

in children with neuromuscular disease and bone fragility disorders (306;387). Details of the 

WBV regimen are outlined as recommended by the International Society of Musculoskeletal 

and Neuronal Interactions (311). During the intervention period, the children who were 

randomised to WBV stood on the Galileo vibratory platform with both feet (Novotec, 

Pforzheim, Germany) once a week for a total of 9minutes, which was divided into three 

sessions of 3minutes of WBV with a one minute period of rest in between WBV. The 

participants were standing freely on the device, but the young children usually had support 

from their parents mainly in the first week. The participants were asked to remove their shoes 

and stand on the platforms wearing socks. The feet were placed at an equal distance from 

the centre of the platform and the legs were flexed at the knees and hips at 10 degrees. The 

device has a motorised board that produces side to side vibrations (sinusoidal) around a 

fulcrum in the mid-section of the platform. Several studies had frequency settings that 

changed, either during an individual vibration session or during the intervention study period 

(395). In the present study, the intensity of WBV exercise increased gradually through 

increasing the frequency in order to improve exercise tolerance in ALL children and to 

prevent falls during platform use. Therefore, during the first and second treatment months, 

sessions were performed using a vibration frequency (f) of 16Hz and 18Hz, respectively, and 

in the last two months the frequency was set at 20Hz. The amplitude of displacement (A) was 

set at 1mm (total peak to peak displacement (D) was 2mm) and remained static over the 

study period. The peak acceleration (apeak) is calculated by either these two formulas 

(apeak=2x2תXf2XD) or (apeak== A(2תf)2) and peak acceleration is expressed as multiples of the 

earth‟s gravity (apeak /9.81g) (306;308). Therefore, the calculated gravitational force for three 

different frequencies of 16, 18 and 20 Hz were 1, 1.3 and 1.6g, respectively. The control 

group spent the same time standing on a non-vibratory platform (natural frequency). All the 

sessions in the WBV and control group were supervised by the research team and occurred 

when the children were attending the haematology clinic for routine care.  

 

5.3.4 Anthropometry 

Height was measured using a Harpenden stadiometer and weight using a standard clinical 

balance. The weight, height and BMI were expressed as SDS.  
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5.3.5 Bone Densitometry 

DXA scan (Lunar Prodigy,GE Medical Systems, Waukesha, Wisconsin, USA) was performed 

to assess bone parameters and body composition. To minimise the effect of bone size on 

BMC values, the predicted total body and lumbar spine (L2-L4) were calculated for bone area 

as previously described (402). Bone mineral content (BMC) data measured by DXA were 

corrected for bone area and presented as BMC z-score. Tibial volumetric BMD and surrogate 

markers of bone strength were also determined by peripheral quantitative CT scan (p.QCT) 

(Stratec XCT 2000, Software version 6.00, Pforzheim, Germany)  at the 4% and 66% site and 

stress-strain index (SSI) (mm3) at (38%). In addition, lean and fat areas were assessed at the 

66% site. The pQCT scans with any movement artifacts and other potential problems were 

excluded and repeated in order to have sufficient quality to be included in this study. 

 

5.3.6 Biochemical Assays 

All blood sample collections coincided with routine clinic visits; samples were centrifuged at 

2600-2800 rev/minute for 10min, and the serum was subsequently stored at -70C. Serum 

bone-specific alkaline phosphatase (BAP) was measured by Ostase® BAP 

immunoenzymetric assay (Immunodiagnostic Systems Ltd (IDS Ltd, Boldon, UK) with an 

intra-assay CV of 5.5% to 7.3%. Serum osteocalcin (OCN) was measured using N-MID® 

osteocalcin ELISA (IDS Ltd, Boldon, UK) with an intra-assay CV of 3.3% to 9.7%. Serum 

cross linked C-telopeptide of type I collagen (CTX) was determined using serum crossLaps® 

ELISA (IDS Ltd, Boldon, UK) with an intra-assay CV of 1.9% to 4.2%. Serum sclerostin (Scl) 

was measured using TECO Sclerostin Elisa Kit (Pathway Diagnostic Ltd, Dorking, UK) with 

an intra-assay CV of 1.1% to 3.9%.   

 

5.3.7 Motor Performance and Physical Activity 

Handgrip strength was assessed as maximal isometric grip force (MIGF) with the Jamar 

handgrip dynamometer (Preston, Jackson, MI, USA) using the dominant and non-dominant 

arm and the highest measurements were recorded. The MIGF (N) data were converted into 

age and height based SDS (433).  The test was performed in sitting position with elbow 

flexed at 90° and the children were asked to squeeze as hard as possible. The total inpatient 
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stay during the study period (baseline to four-month) was collected in both groups as a 

surrogate marker of physical activity.   

 

5.3.8 Statistical Analysis  

The outcome variables were expressed as percentage change between the baseline visit and 

the four-month visit in each of the two groups. Data were presented as median and ranges 

and inter-group differences were assessed using Mann-Whitney tests, 1-Sample Wilcoxon, 

Chi-square test or Kruskal-Wallis tests. Descriptive statistics and significance were 

determined using the Minitab16 software (Minitab, Coventry, UK), with significance set at a 

level of 5% (P<0.05).  

 

5.4 Results 

5.4.1 Patient Characteristics 

At baseline, age, gender, chemotherapy duration and regimens were not significantly different 

between the two groups (Tab 5.2-3). No fracture was reported in the WBV group and the 

control group prior to the study. Six children in the WBV group and three children in the 

control group had a history of skeletal pain requiring a radiological assessment. Over the 24 

months following recruitment into the study, two children (one in each group) had a history of 

MSP assessed by X-rays from baseline to four-month. Five (55%) children in the WBV group 

and three (42%) controls had a history of MSP evaluated by x-rays and two sustained 

fractures (one in the WBV group and one in the control). The onset of fracture from the 

baseline visit of the study was 15-months in the WBV and six-months in the control (Tab 5.4). 

The median duration of in-patient days from baseline to  four months was 0day(0,27) and 

3days(0,18) in the WBV group and the control group(p=0.6), respectively. 

 

5.4.2 Compliance  

Of nine children randomised to WBV for four months, four children had WBV once a week, 

two had WBV once every two weeks and the remaining three had WBV less than once every 

two weeks. The median duration of WBV per week was 5minutes (1.5, 9). The median 

compliance rate measured as a ratio of actual completed minutes and expected minutes of 
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WBV was 55% (17,100). No immediate adverse effects were reported apart from very mild, 

transient itching of the legs immediately following the WBV in three children (33%).  

 

5.4.3 Bone Densitometry  

The median TB BMC z-score (Tab. 5.5-6) in the WBV group was -0.6 (-1.3, 2.3) at baseline 

and remained similar at -0.6 (-1.2,2) at four months (Fig.5.4). In the control group, median TB 

BMC z-score was 0.03(-0.1,1) at baseline and -0.01(-0.1, 0.2) at four-month. The median 

percentage change of TB-BMC z-score in the WBV group from baseline to four-month was -

10%(-25,10)(p=0.1) and in the control group -87%(-203,4)(p=0.07). For TB-BMC z-score, 3/9 

children (33%) in the WBV group and 2/ 7 (28%) children in the control group showed an 

improvement from baseline to four-month (p=0.8). The median LS-BMC z-score in the WBV 

group changed from -0.4(-1.3,0.3) at baseline to -0.3(-1.4,1.5) at four-month, whereas in the 

control group, median LS BMC SDS was 0.04(-0.6,2.4) at the baseline and decreased to -

0.1(-1.1,1) at four-month. The median percentage of LS-BMC z-score in the WBV group from 

baseline to four-month was -19%(-349,365)(p=0.1) and in the control group -75%(-

1016,178)(p=0.1). In LS-BMC z-score, 2 children out of 9(22%) in the WBV group and 1 out 

of 7 (14%) children showed a positive improvement from baseline to four-month (p=0.7). 

There was no correlation between the percentage changes of TB-BMC z-score and LS BMC 

z-score with age of children at the time of four-month. The median percentage change of FN-

BMD in the WBV group and in the control group from baseline to four-month was -2.8%(-

5.6,4.1) and 11.1%(0.8,19)(p=0.008, 95%CI(3,20)).  

 

On assessment by p.QCT(Tab.5.7-8), the median percentage change of total area (TA) at the 

66% site from baseline to four-month was 5%(-4,16)(p=0.04,95%CI(0.01,12) and 

2.3%(1.3,12.6)(p=0.03,95%CI(1.5,12)) in the WBV group and the control group, respectively. 

No significant changes were observed in the trabecular BMD (at 4%), and the stress-strain 

index (SSI) (mm3) at (38%) and cortical BMD at 66% of the tibial length comparing between 

the two groups at each time point of study visit.  
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Fig  5.4: The individual measurements of total body bone mineral content z score (TB-BMC-z score) and lumbar spine BMC z scores (LS- BMC z score) at 

baseline (white box) and four-month (black box). There were 9children in the WBV (1-9) group and 7children in the control group (1-7). 
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5.4.4 Body Composition 

In the WBV group, the median percentage change from baseline to four-month in total body 

FM% (TB-FM%) was 4% (-5, 44)(p=0.1), whereas in the control group, the median 

percentage in the same time was 0.2% (-10,8)(p=0.8) (Tab 5.9-10). The median percentage 

change from baseline to four-month in (TB-FM) in the WBV group was 10%(-7,49) (p=0.04, 

95%CI(1.3,27)) and in the control group this was 8% (-10,17)(p=0.4) (Tab.5.9-10). The 

median percentage change of total body LM (TB-LM) in the WBV group was 4%(-

3,10)(p=0.2) and in the control group this was 3.6%(0.2,8) (p=0.01,95%CI(1.8,6.7)). The 

median percentage change from baseline to four-month in the leg-FM and leg-LM in the WBV 

group was 12.7% (-13,27) (p=0.04,95%CI(0.4,20)) and 4.4% (0.4,11) (p=0.004, 

95%CI(1.7,9)), respectively, and in the control group, the median percentage change in leg-

FM and LM in the same time period was 8%(-7,22) (p=0.07) and 6%(3,17) 

(p=0.02,95%CI(4.5,15), respectively. In the WBV group, the median percentage change of 

arm FM%, arm FM and LM from the baseline to four-month was 9%(-8,33) 

(p=0.04,95%CI(0.4,19), 16%(-6,37) (p=0.01,95%CI(6,28), and 5%(-3,12) 

(p=0.02,95%CI(1,9)), respectively. In the control group, the percentage change of arm FM%, 

arm FM and LM in the same time was 3%(-12,10)(p=0.4),7%(-16,36)(p=0.2) and 3.4%(-9,17) 

(p=0.2), respectively. On comparing the two groups, no significant difference was observed in 

any parameters of body composition at four-month.  

 

5.4.5 Motor Performance 

The median measurement of the height-adjusted MIGF SDS of the dominant hand at 

baseline was -1.3(-2.8, -0.5) and -0.9(-3.2,0.8) for the WBV group and the control group 

respectively, and at four-month it increased to -0.9(-3.6,2.6)(p=0.1) and -0.4(-2.2,1)(p=0.1) in 

the WBV group and the control group, respectively. No difference was observed between the 

WBV group and control group at the four-month visit. 

 

5.4.6 Biochemical Markers 

In the control group, median serum BAP was 50µg/l(30,57), 64µg/l(45,67) and 65µg/l(39,81) 

at baseline, two-month and four-month, respectively and in the WBV group, median BAP was 

39µg/l(27,82), 44µg/l(20,89) and 47µg/l (18,70) over the same period. The median serum 

OCN in the control group were 18ng/ml(6.8,37), 18ng/ml(9,31) and 28ng/ml(18,76) at 
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baseline, two-month and four-month, respectively, and in the WBV group, median serum 

OCN was 14.8ng/ml(11,18), 28ng/ml(8.6,101) and 16ng/ml (6.6,46) over the same period. In 

the control group, median serum CTX was 18ng/ml(7,37), 18ng/ml (9,31) and 28ng/ml (18,76) 

at baseline, two-month and four-month, respectively, and in the WBV group, the median OCN 

was 15ng/ml(11,18), 28ng/ml(8.6,101) and 16ng/ml(6.6,46) over the same period. Median 

serum CTX measurement in the control group was 1.3ng/ml (1,1.8), 1.7ng/ml (0.26,2.1) and 

1.6ng/ml(0.72,1.86) at baseline, two and four-months respectively; whereas the median 

serum CTX measurement in the WBV group 0.8ng/ml(0.07,1.4) at baseline and remained at 

0.8ng/ml(0.59,1.4) and 0.9ng/ml(0.52,1.54) at two and four-month (Fig.5.5). In the control 

group, median serum Scl was 0.28ng/ml(0.22,0.42) and 0.35ng/ml(0.23,0.57) at baseline and 

four months, respectively (p=0.6) and in the WBV group, median Scl was 

0.45ng/ml(0.22,0.48) and 0.22ng/ml(0.15,0.46) (p=0.3) at the same time point. 

 

5.4.7 Follow Up Assessments  

The first follow up was conducted four months after cessation of the intervention. Ten children 

were completed eight-month; seven children were in the WBV group and the remaining three 

were in the control group. In the WBV group, there was a significant improvement in the 

median percentage change of FN-BMD from four months to eight months (1.6%(-4, 5) (0.03 

95%CI(-8,-0.4)) compared with the change that occurred from baseline to four-month [-2.8% 

(-7,4)]. No significant changes were observed in any of other bone parameters and body 

composition at eight-month compared with four-month. The second follow up was conducted 

at 20-month from the baseline visit (16 months after cessation of the intervention). Six 

children were completed 20-month; four children were in the WBV group and the remaining 

were in the control group. No significant changes were observed in any of other bone 

parameters and body composition at 20-month compared with four-month and eight-month 

(Tab.5.5-7).  
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Fig  5.5: The level of serum bone markers. The measurements are bone-specific alkaline phosphatase (BAP) and osteocalcin (OCN), cross linked C-

telopeptide of type I collagen (CTX) and sclerostin (Scl). The reference ranges (10
th
,90

th
centiles) for BAP, OCN and CTX in children aged from 4years to 

16years are (48µg/l,121µg/l), (47ng/ml, 191ng/ml) and (2ng/ml, 3.8ng/ml), respectively. The reference ranges for Scl in males and females are (021ng/ml, 

1.27ng/ml) and (0.31ng/ml,0.81ng/ml),respectively. 
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 Total Body (TB) Lumbar spine (LS) Femoral neck (FN) Leg Arm 

Group 
 

BMC 
(g) 

BA 
(cm) 

BMC z 
score  

BMC 
(g) 

BA  
(cm) 

BMC Z 
score  

BMC 
(g) 

FN-BA 
(cm) 

BMD 
(g/cm

2
) 

BMC (g) 
 

 BA 
(cm) 

BMD 
(g/cm

2
) 

BMC 
 (g) 

BA 
(cm) 

BMD 
(g/cm

2
) 

WBV1 616 790 2.29 12 20.2 0.31 2.1 3.1 0.69 165 236 0.70 52 96 0.55 

WBV2 515 694 0.31 10 20.3 -0.82 1.9 3.1 0.63 106 196 0.54 37 80 0.47 

WBV3 741 970 0.36 15 22.3 0.23 2.3 3.8 0.60 216 345 0.62 63 116 0.54 

WBV4 1209 1390 -0.06 21.7 25.6 0.21 2.9 3.8 0.77 447 498 0.88 95 164 0.58 

WBV5 1190 1548 -1.29 19.4 29 -1.09 2 4 0.49 398 544 0.73 97 174 0.56 

WBV6 1349 1524 -0.50 23.5 30 -0.63 2.6 4 0.64 452 559 0.80 137 211 0.65 

WBV7 1740 2033 -1.24 29.8 39 -1.28 4.1 5 0.83 685 738 0.92 233 326 0.71 

WBV8 2118 1999 -0.01 31.3 31.3 0.13 3.9 4.5 0.86 734 674 1.08 265 310 0.85 

WBV9 1948 1976 -0.06 42.4 40.8 -0.43 3.4 4.5 0.77 696 713 0.97 181 252 0.72 

C1 613 891 0.03 13.4 21.8 -0.12 1.8 3.2 0.58 156 265 0.59 50 96 0.52 

C2 624 812 0.14 12.5 19 1.61 1.7 3.2 0.54 162 261 0.62 41 83 0.49 

C3 703 852 0.26 11.6 17.9 2.42 1.9 3.1 0.62 194 243 0.61 60 108 0.55 

C4 1083 1245 -0.02 19.2 25.3 0.04 2.5 3.7 0.68 395 459 0.86 87 149 0.58 

C5 651 875 0.89 10.2 19.6 -0.10 2.1 4.2 0.50 173 292 0.59 48 97 0.50 

C6 1053 1254 -0.03 17.6 23.7 0.28 2.4 3.7 0.64 343 452 0.76 83 148 0.56 

C7 1352 1583 -0.11 18.7 26.7 -0.58 3.1 4.1 0.75 511 512 1 103 171 0.60 

Median(WBV) 1209 1524 -0.06 21.7 29 -0.43 2.6 4 0.69 447 544 0.80 97 174 0.58 

Median(C) 703 891 0.03 13.4 22 0.04 2.1 3.7 0.62 194 292 0.62 60 108 0.55 

P Value 0.2 0.2 0.4 0.08 0.04 0.2 0.1 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.2 

 

Tab  5.2: Bone parameters measured by DXA at BL in the WBV group and the control group. 

 Total body bone mineral content (TB-BMC), total body bone area (TB-BA), total body bone mineral content z score (TB-BMC z-score), lumbar spine bone 

mineral content (LS-BMC), lumbar spine bone area (LS-BA), lumbar spine bone mineral content z score (LS-BMC z-score), Femoral neck bone mineral 

content (FN-BMC), femoral neck bone area (FN-BA), femoral neck bone mineral density (FN-BMD) Leg bone mineral content (Leg-BMC), leg bone area 

(Leg-BA), leg bone mineral density (Leg-BMD)Arm bone mineral content (Arm-BMC), arm bone area (Arm-BA), arm bone mineral density (Arm-BMD) 

Median for each measurements was calculated in both groups. P value presented the difference between the WBV group and the control group.  
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Group 
 

Trab vBMD 
(mg/cm

3
) 

 SSI 
mm

3
 

Total bone CSA  
(mm

2
) 

Cort vBMD 
(mg/cm

3
) 

Cort CSA 
(mm

2
) 

FA  
(mm

2
) 

Position 4% 38% 66% 66% 66% 66% 

WBV1 228 298 359 924 109 1094 

WBV2 117 343 373 937 71 1565 

WBV3 175 378 446 983 100 1318 

WBV4 226 602 494 1024 215 4092 

WBV5 222 592 428 1058 171 3269 

WBV6 139 825 460 1077 192 2912 

WBV7 156 1221 653 1084 267 1366 

WBV8 169 1120 584 1171 326 1708 

WBV9 147 1352 659 1079 249 4448 

C1 117 501 463 935 93 1550 

C2 304 399 324 1039 116 1699 

C3 119 372 555 900 57 1530 

C4 324 589 644 968 132 2530 

C5 - - - - - - 

C6 194 647 435 1040 172 3150 

C7 271 882 465 986 209 4498 

Median(WBV) 169 602 460 1058 192 1708 

Median(C) 233 545 464 977 124 2114 

P Value 0.3 0.5 0.9 0.1 0.2 0.7 

 

Tab  5.3: Bone parameters measured by p.QCT at BL in the WBV group and the control group.  

Trabecular volumetric bone mineral density (Trab v BMD), stress-strain index of tibial length (SSI), total bone cross sectional area (CSA), cortical volumetric 

BMD (Cort vBMD), cortical cross sectional (Cort CSA), fat area (FA). P value presented the difference between the WBV group and the control group.  
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. Group 

 

Number of  
X-ray before 

BL 

Site 
of X-ray 

 

Last X-ray before 
BL 

Months 

Fracture 
before 

 BL 

Number of X-
ray after 

 BL 

Site 
of X-ray 

 

Onset of X-ray 
after BL 
months 

Onset of 
fracture after BL 

months 

WBV1 - - - - - -  - 

WBV2 1 Foot 4 - 1 Foot 22 - 

WBV3 - - - - 1 Elbow 6 - 

WBV4 1 Ulna 3 - 2 Foot 14 - 

WBV5 - - - - 1 Hand 2 - 

WBV6 4 Knees 24 - - - - - 

WBV7 3 Ankle/Feet/ Radius 10 - 3 
Foot/Lumbar 

spine 15 15 

WBV8 1 - 2 - - - - - 

WBV9 3 Ankles/Elbow 6 - - - - - 

C1 2 Radius/Ulna 7 - - - - - 

C2 - - - - 1 Shoulder 6 6 

C3 - - - - - - - - 

C4 1 Foot 8 - - - - - 

C5 - - - - 1 Foot 17 - 

C6 - - - - - - - - 

C7 1 Lumbar spine 17 - 1 Knee 1 - 

Median (WBV)   5 - -  14 - 

Median (C)   8 - -  6 - 

P Value         

 

Tab  5.4:  The rate of skeletal morbidity in the WBV group and the control group occurred before and after BL. The history of X-rays prior and after BL 

includes the number of X-ray, the sites of X-ray and the onset (months) of X-rays and fracture from BL.  
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%(BL-4) 

 
WBV1 

 

 
WBV2 

 
WBV3 

 
WBV4 

 
WBV5 

 
WBV6 

 
WBV7 

 
WBV8 

 
WBV9 

 
Median 

WBV 

 
C1 

 
C2 

 
C3 

 
C4 

 
C5 

 
C6 

 
C7 

 
Median  

C 

TB-BMC 6.9 46.9 7.4 0.9 1.9 -0.6 0.7 1.5 -2.5 1.5 8.9 8.1 6.0 5.2 -0.6 7.1 5.4 6.0* 

TB BA 4.6 -17.1 5.8 1.2 -0.3 1.1 0.4 1.6 -2.1 1.1 6.7 3.9 6.7 5.8 0.2 8.5 3.3 5.8* 

TB BMC z score -14.0 -33.0 -59.0 -10.0 9.0 -25.0 1.0 0.0 3.0 -10 -124.0 1.0 -32.0 -104.0 -87.0 -203.0 4.0 -87 

LS BMC 7.2 4.6 -0.2 2.5 -0.1 0.6 8.0 16.5 -0.8 2.5 5.4 10.6 14.6 -4.0 -1.9 14.9 1.4 5.4 

LS BA -4.36 -7.09 0.94 1.84 1.72 2.60 8.47 16.50 0.66 1.7 3.39 6.88 14.74 -0.08 8.38 2.28 1.87 3.3 

LS BMC z score 365.8 159.3 -53.4 -30.8 -11.0 -25.5 -11.9 -348.8 -18.7 -18.7 -100.3 -35.6 -74.8 -452.2 -1016.2 177.5 -16.3 -74.8 

FN BMC 12.0 -7.7 -2.6 -1.3 -0.5 0.8 5.7 -5.3 -3.2 -1.3 12.8 21.1 3.1 0.8 -23.1 16.2 15.0 12.8 

FN BA 7.7 -4.2 0.3 4.2 -0.7 3.2 6.6 -2.0 3.3 3.2 5.6 3.7 4.2 2.4 -35.4 4.6 0.5 3.7 

FN BMD 4.2 -3.7 -2.8 -4.9 0.0 -2.6 -0.7 -7.1 -6.3 -2.8 6.7 16.7 -0.8 -1.8 19.1 11.1 14.5 11 

Leg  BMC 15.0 22.5 10.7 -1.1 6.5 5.2 0.5 1.8 -5.2 5.2* 18.6 9.3 -14.8 2.5 1.7 10.1 9.5 9.3* 

Leg BA 7.2 16.3 5.2 10.6 1.8 5.0 0.9 1.3 -4.9 5.0 11.7 2.7 9.5 3.5 4.8 7.7 8.8 7.7 

Leg BMD 7.3 5.3 5.3 -2.6 4.6 0.0 -0.5 0.5 -0.4 0.5 5.8 6.6 1.1 -0.9 -2.9 2.0 0.5 1.1* 

Arm-BMC 23.6 7.4 12.1 4.0 9.4 -7.4 0.0 -0.3 46.4 7.4 9.1 28.1 3.1 7.6 2.9 -0.6 5.8 5.8* 

Arm BA 15.6 6.3 10.3 1.8 8.6 -4.3 1.8 2.3 -24.1 2.3 10.4 21.7 4.6 2.7 3.1 -2.0 1.8 3.1 

Arm BMD  6.9 0.6 2.0 1.9 1.0 -2.9 -1.7 -2.6 -0.3 0.6 -0.8 5.2 -0.5 5.3 -0.2 1.1 4.0 1.1 

 

Tab  5.5: Bone parameters measured by DXA showing the percentage changes from BL to 4-month (%(BL-4)) and  the median of these percentage 

changes  in the WBV group and the control group.* represents the significant difference (p<0.05) between BL and 4month.  
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Time 

 
WBV1 

 
WBV2 

 
WBV3 

 
WBV4 

 
WBV5 

 
WBV6 

 
WBV7 

 
WBV8 

 
WBV9 

 
Median 

WBV 

 
C1 

 
C2 

 
C3 

 
C4 

 
C5 

 
C6 

 
C7 

 
Median C 

TB-BMC BL 617 515 742 1209 1191 1349 1741 2118 1949 1209 613 625 704 1083 651 1053 1352 703.8 

 4 660 757 797 1220 1214 1341 1754 2150 1901 1220 668 676 746 1139 647 1128 1425 745.9 

 8 750 591 805  1159  1710 2284 2077 1159   768 1175 707   767.7 

 20   951  1277  1887 2355  1582   928  780   854.1 

TB BA BL 790 694 970 1390 1548 1524 2033 1999 1976 1524 891 812 852 1245 875 1254 1583 891 

 4 826 575 1026 1407 1544 1541 2042 2031 1934 1541 951 844 909 1317 877 1360 1636 951 

 8 897 780 1035  1521  2008 2165 2077 1521   933 1325 943   943 

 20   1181  1612  2147 2141  1877   1098  1003   1051 

TB BMC BL 2.2 0.31 0.36 -0.06 -1.29 -0.50 -1.24 -0.01 -0.06 -0.06 0.03 0.14 0.27 -0.03 0.90 -0.03 -0.11 0.03 

z Score 4 1.9 0.21 0.14 -0.07 -1.17 -0.62 -1.23 -0.01 -0.05 -0.05 -0.01 0.14 0.18 -0.05 0.11 -0.10 -0.10 -0.01 

 8 1.5 -0.46 0.11  -1.29  -1.25 -0.02 -0.06 -0.06   0.16 -0.03 0.06   0.06 

 20   -0.25  -1.22  -1.18   0.01  -0.72   0.05  0.04   0.04 

LS BMC BL 12.0 9.9 15.2 21.7 19.4 23.5 29.9 31.3 42.4 21.7 13.4 12.6 11.7 19.2 10.3 17.6 18.8 13.4 

 4 12.8 10.4 15.1 22.3 19.4 23.7 32.3 36.5 42.1 22.3 14.1 13.9 13.4 18.5 10.1 20.2 19.0 14.1 

 8 13.8 10.5 17.0  18.9  29.6 37.0 43.8 18.9   11.2 18.3 10.6   11.2 

 20   18.5  22.2  36.4 40.7  29.3   14.4  12.3   13.3 

LS BA BL 20.2 20.3 22.3 25.6 29.1 30.4 39.1 31.3 40.8 29.1 21.8 19.0 18.0 25.3 19.7 23.7 26.7 21.8 

 4 19.3 18.9 22.5 26.1 29.6 31.2 42.4 36.5 41.1 29.6 22.6 20.4 20.6 25.3 21.3 24.3 27.2 22.6 

 8 20.3 19.5 25.2  29.4  38.0 36.1 41.5 29.4   17.8 25.1 20.4   20.4 

 20   25.9  31.9  45.1 37.1  34.5   21.0  23.8   22.4 

LS BMC BL 0.32 -0.82 0.23 0.22 -1.10 -0.64 -1.28 0.14 -0.44 -0.44 -0.13 1.62 2.42 0.04 -0.10 0.28 -0.58 0.04 

z score 4 1.47 0.49 0.11 0.15 -1.22 -0.80 -1.43 -0.34 -0.52 -0.34 -0.26 1.04 0.61 -0.15 -1.13 0.78 -0.68 -0.15 

 8 1.02 -0.05 -0.51  -1.29  -1.14 -0.19 -0.41 -0.41   2.37 -0.15 -0.44   -0.15 

 20   -0.37  -1.20  -1.31 0.08  -0.79   0.79  -1.36   -0.28 

FN BMC BL 2.2 1.9 2.3 3.0 2.0 2.6 4.2 3.9 3.5 2.6 1.9 1.8 2.0 2.6 2.2 2.4 3.1 2.2 

 4 2.4 1.8 2.3 2.9 2.0 2.6 4.4 3.7 3.4 2.6 2.1 2.1 2.0 2.6 1.7 2.8 3.6 2.1 

 8 2.5 1.2 2.3  2.1  4.1 3.8 3.6 2.5   2.2 2.9 1.3   2.2 

 20   2.4  2.0  4.3 4.4  3.3   2.7  2.1   2.4 

FN BA BL 3.1 3.1 3.8 3.8 4.0 4.0 5.0 4.6 4.5 4.0 3.2 3.2 3.1 3.8 4.3 3.7 4.2 3.7 

 4 3.3 3.0 3.8 4.0 4.0 4.2 5.3 4.5 4.7 4.0 3.4 3.3 3.3 3.9 2.8 3.9 4.2 3.4 

 8 3.4 2.0 3.9  4.1  5.1 4.5 4.7 4.1   3.3 3.9 2.3   3.3 
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 20   3.8  4.2  5.0 4.6  4.4   3.7  3.6   3.7 

FN BMD BL 0.70 0.63 0.60 0.77 0.50 0.65 0.84 0.86 0.77 0.70 0.58 0.54 0.63 0.68 0.51 0.65 0.75 0.63 

 4 0.73 0.61 0.59 0.73 0.50 0.63 0.83 0.80 0.73 0.73 0.62 0.64 0.62 0.67 0.60 0.72 0.86 0.64 

 8 0.73 0.62 0.59  0.51  0.79 0.83 0.76 0.73   0.65 0.73 0.59   0.65 

 20   0.62  0.48  0.86 0.95  0.74   0.73  0.56   0.65 

Leg  BMC BL 165 107 216 447 399 452 685 734 696 447 156 163 194 396 174 344 512 194 

 4 190 131 239 442 425 475 688 748 660 442 185 178 166 406 177 379 560 185 

 8 234 118 249  415  728 753 728 415   180 438 212   212 

 20   309  460  723 831  591   243  245   244 

Leg BA BL 236 196 345 498 544 559 738 674 713 544 265 261 243 459 292 452 512 292 

 4 253 228 363 551 554 587 745 683 678 554 296 268 266 475 306 487 557 306 

 8 293 203 376  573  661 695 730 573   286 488 331   331 

 20   434  586  757 714  650   348  355   352 

Leg BMD BL 0.70 0.55 0.63 0.89 0.73 0.81 0.93 1.09 0.98 0.81 0.59 0.62 0.62 0.86 0.60 0.76 1.00 0.62 

 4 0.75 0.58 0.66 0.87 0.77 0.81 0.92 1.10 0.97 0.81 0.62 0.66 0.62 0.86 0.58 0.78 1.01 0.66 

 8 0.80 0.58 0.66  0.72  0.91 1.08 1.00 0.80   0.63 0.90 0.64   0.64 

 20   0.71  0.78  0.96 1.16  0.87   0.70  0.69   0.69 

Arm-BMC BL 53 38 63 96 98 137 234 265 182 98 51 41 61 88 49 84 104 61 

 4 65 41 71 100 107 127 234 264 266 107 55 53 62 95 50 83 110 62 

 8 69 27 75  109  223 276 184 109   65 104 57   65 

 20   90  124  245 288  185   98  67   82 

Arm BA BL 96 80 116 164 174 211 326 310 252 174 96 83 108 149 97 148 171 108 

 4 111 85 128 167 189 202 332 317 191 189 106 101 113 153 100 145 174 113 

 8 116 56 135  196  317 324 261 196   116 1 110   110 

 20   156  211  342 333  272   151  128   140 

Arm BMD  BL 0.55 0.47 0.55 0.59 0.56 0.65 0.72 0.86 0.72 0.59 0.53 0.50 0.56 0.59 0.50 0.57 0.61 0.56 

 4 0.59 0.47 0.56 0.60 0.57 0.63 0.70 0.83 0.72 0.60 0.52 0.52 0.56 0.62 0.50 0.57 0.63 0.56 

 8 0.60 0.47 0.55  0.56  0.70 0.85 0.70 0.60   0.56 164.00 0.52   0.56 

 20   0.58  0.59  0.72 0.86  0.65   0.65  0.52   0.58 

 

Tab  5.6: Bone parameters measured by DXA in the WBV group and the control group at baseline (BL), 4, 8 and 20-month. The median of bone 

measurements was calculated at each time point in both groups.  
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%(BL-4) 

 

WBV2 

 

WBV2 

 

WBV3 

 

WBV4 

 

WBV5 

 

WBV6 

 

WBV7 

 

WBV8 

 

WBV9 

 

Median 

WBV 

C1 

 

C2 

 

C3 

 

C4 

 

C5 

 

C6 

 

C7 

 

Median 

C 

Trab vBMD (4%) 28.9 17.0 11.8 -1.4 -8.0 -2.1 -1.9 2.8 12.8 2.8 33.

6 

-39.2 9.0 -15.2 - 5.9 22.2 7.5 

SSI (38%) 25.4 -2.6 13.6 13.6 0.7 0.6 0.3 -0.9 -1.6 0.6 -

10.

6 

-26.0 -20.4 20.0 - 
-

12.4 

3.9 -11.5 

Total Bone CSA 

(66%) 

62.0 -4.6 3.6 10.5 1.6 4.9 1.3 10.5 -3.1 3.6 4.1 21.5 -25.1 -32.5 - 5.1 17.7 4.6 

Cort vBMD 

(66%) 

-9.1 0.8 -2.0 -2.3 0.0 -1.3 0.6 -2.0 0.8 -1.3 -0.2 -3.6 7.5 10.6 - 0.8 -6.5 0.3 

Cort CSA (66%) -17.2 53.3 4.2 -6.5 -1.3 -6.0 -1.3 -3.9 -1.0 -1.3 13.

9 

-9.1 127.5 49.9 - 13.4 2.0 8.0 

FA (66%) -5.0 23.2 -21.5 3.3 2.3 9.5 19.4 34.3 -9.3 3.3 - 1.0 11.3 37.6 - 12.3 25.8 -5.7 

 

Tab  5.7: Bone parameters measured by p.QCT showing the percentage changes from baseline to 4-month (%(BL-4)) and  the median of these percentage 

changes in the WBV group and the control group. * the difference (p<0.05) between BL and 4month. 
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Paramerters  
 

Visit 
 

WBV1       
 

WBV2 
 

WBV3 
 

WBV4 
 

WBV5 
 

WBV6 
 

WBV7 
 

WBV8 
 

WBV9 
 

Median 
WBV 

C1 
 

C2 
 

C3 
 

C4 
 

C5 
 

C6 
 

C7 
 

Median 
C 

Trab vBMD 
(4%) 

BL 228 118 176 227 223 140 156 170 147 170 118 304 119 324  194 272 233 

4 294 138 197 224 205 137 153 174 166 174 157 185 130 275  206 332 195 

8 236 54 178  174  152 374 223 178   133 376    255 

20       154 136 208 154   143     143 

SSI 
(38%) 

BL 298 343 378 602 592 825 
 

1221 1120 1352 602 501 399 372.3 589  647 882 545 

4 374 334 429 684 596 830 1226 1110 1331 684 448 295 296 707  567 916 507 

8 396 426 468  611  1297 1302 1391 611   326   716  521 

20     518  729 1504 1459 1094   333     333.2 

Total bone CSA 
(66%) 

BL 359 373 446 494 428 460 653 584 659 460 463 324 555 644  435 465 464 

4 582 356 463 545 435 482 662 645 638 545 482 394 416 434  457 547 446 

8 505 389 512  424  657 569 605 512   475 463    469 

20   474  462  687 680  577   452     452 

Cort  vBMD 
(66%) 

BL 924 937 983 1024 1058 1077 1084 1171 1079 1058 935 1039 900 968  1039 986 977 

4 839 944 963 1000 1058 1064 1091 1147 1088 1058 933 1002 967 1071  1047 922 985 

8 984 936 957  1097  1095 1180 1095 1095   925 1053    989 

20       1003 1089 1154 1089   962     962 

Cort CSA 
(66%) 

BL 109 71 100 215 171 192 267 326 249 192 93 116 57 132  172 209 124 

4 90 109 105 201 169 180 264 313 247 180 106 105 130 198  149 213 140 

8 62 103 119  174  263 328 251 174   109 218    164 

20   153  175  263 321  219   145     145 

FA  
(66%) 

BL 1094 1565 1318 4092 3269 2912 1366 1708 4448 1708 1550 1699 1530 2530  3150 4498 2114 

4 1039 1929 1034 4228 3345 3187 1630 2293 4033 2293 1062 1716 1703 3481  2761 3338 2238 

8 916 2200 1124  3449  1385 2119 4281 2119   1190 3445    2317 

20   1778  3675  1629 2345  2345   2197     2197 

 

Tab  5.8:  The p.QCT measurements in the WBV group and the control group at BL, 4, 8 and 20month. The median of bone measurements was calculated 

at each time point in the both groups.  
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Parameters  
 

WBV1 
 

WBV2 
 

WBV3 
 

WBV4 
 

WBV5 
 

WBV6 
 

WBV7 
 

WBV8 
 

WBV9 
 

Median 
(WBV) 

C1 
 

C2 
 

C3 
 

C4 
 

C5 
 

C6 
 

C7 
 

Median 
C 

TB FM% 4.5 6.0 10.6 0.7 4.0 -5.4 43.8 7.9 -4.9 4.5 -1.1 8.4 -10.3 0.2 6.6 -0.4 1.8 0.2 

TB FM 6 15 25 5 10 0 50 19 -7 10* -1 17 -10 9 12 6 8 8 

TB LM 4.0 7.0 9.7 3.8 1.8 10.3 -2.9 6.5 -2.7 4.0 0.2 3.6 3.4 8.3 2.6 6.8 5.0 3.6* 

Trunk FM% -13.2 7.8 16.4 0.5 3.9 -6.8 92.6 7.6 -2.1 3.9 -1.5 11.0 -11.6 -1.8 13.9 1.6 2.5 1.6 

Trunk FM -11.7 20.2 36.6 7.2 9.6 -0.2 97.5 17.0 -9.0 9.6 -7.0 12.4 -11.3 10.3 18.2 5.2 10.2 10.2 

Trunk LM 5.7 8.8 12.5 6.3 1.8 12.7 -7.6 4.8 -5.0 5.7 -5.3 -3.6 4.7 13.7 1.0 2.3 4.7 2.3 

Leg FM% 9.0 2.9 4.7 0.6 3.8 -3.5 17.5 8.0 -6.5 3.8 -4.8 3.4 -7.6 1.4 2.1 -3.5 0.2 0.2 

Leg FM 12.7 13.7 15.4 2.3 9.5 3.7 27.6 25.3 -13.0 12.7* 1.6 22.4 -7.3 9.2 8.3 8.6 6.2 8.3 

Leg LM 4.4 8.6 7.8 1.2 1.7 10.9 3.7 10.7 0.4 4.4* 8.9 15.5 3.4 6.1 5.0 16.7 5.7 6.1* 

Arm FM% 33.3 11.8 16.5 1.6 5.9 -8.6 11.3 0.0 9.4 9.4* 3.2 10.5 -12.6 6.7 1.7 -2.2 3.9 3.2 

Arm FM 37 16 37 9 16 -6 19 8 22 16* 7 37 -17 2 17 3 10 7 

Arm LM 2.0 0.1 12.6 6.2 4.3 10.9 5.0 8.5 -3.2 5.0 3.4 16.8 -0.1 -9.4 13.9 7.0 2.2 3.4 

 

Tab  5.9: Body composition measured by DXA. The percentage changes of body composition of DXA results from BL to 4 months (%(BL-4)) and  the 

median of  these percentage changes in.the WBV group and the control group.  

Total body fat mass percent (TB FM%), total body fat mass(TB FM), total body lean mass (TB LM). trunk fat mass percent (Trunk FM%), trunk fat 

mass(Trunk FM), trunk lean mass (Trunk LM),  leg fat mass percent (Leg FM%), leg fat mass(Leg FM), leg lean mass (Leg LM), arm fat mass percent (Arm 

FM%), arm fat mass(Arm FM), arm lean mass (Arm LM).  

* the difference (p<0.05) between BL and 4month. 
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Parameters 
 

Visit 
  

WBV1 
 

WBV2 
 

WBV3 
 

WBV4 
 

WBV5 
 

WBV6 
 

WBV7 
 

WBV8 
 

WBV9 
 

Median 
(WBV) 

C1 
 

C2 
 

C3 
 

C4 
 

C5 
 

C6 
 

C7 
 

Median 
C 

TB FM% BL 13.3 25.0 21.6 42.5 47.6 44.2 13.7 31.5 51.2 31.5 17.9 32.2 25.3 41.9 21.2 45.3 49.8 32.2 

 4 13.9 26.5 23.9 42.8 49.5 41.8 19.7 34.0 48.7 34.0 17.7 34.9 22.7 42.0 22.6 45.1 50.7 34.9 

 8 15.9 25.7 20.6  48.1  14.3 37.7 50.9 25.7   22.4 44.2 24.4   24.4 

 20   25.3  48.7  19.1 39.7  32.5   26.4  27.2   26.8 

TB FM BL 2564 4855 4728 18730 24254 20187 6168 15867 39637 15867 4122 7827 6154 14866 4916 16906 25451 7827 

 4 2713 5604 5902 19641 26684 20241 9232 18871 36670 18871 4081 9165 5522 16196 5488 17933 27537 9165 

 8 3420 5487 5140  26142  6711 21502 38888 6711   5610 18140 6094   6094 

 20   7275  28781  10201 24133  17167   7914  7539   7727 

TB LM  BL 16125 14557 17129 25338 26746 25522 38725 34455 37776 25522 18929 16462 18174 20629 18291 20406 25510 18929 

 4 16770 15570 18797 26294 27217 28162 37610 36700 36750 27217 18973 17062 18795 22343 18765 21788 26776 18973 

 8 18147 15870 19871  28208  40073 35524 37499 28208   19457 22935 18906   19457 

 20   21518  30265  43246 36636  33451   22099  20142   21121 

Trunk FM% 
  

BL 9.1 21.9 19.5 40.3 49.0 43.9 9.4 31.4 52.3 31.4 13.4 30.0 25.9 39.9 14.4 45.1 51.3 30.0 

4 7.9 23.6 22.7 40.5 50.9 40.9 18.1 33.8 51.2 33.8 13.2 33.3 22.9 39.2 16.4 45.8 52.6 33.3 

8 10.5 25.2 16.8  48.0  11.8 38.8 53.3 25.2   23.1 42.3 17.2   23.1 

 20   23.4  49.4  19.2 40.1  31.8   27.8  19.5   23.7 

Trunk FM BL 775 1913 1848 7718 12136 9290 2121 7992 21396 7718 1481 3445 2966 6394 1568 8033 11220 3445 

 4 684 2300 2524 8271 13307 9272 4188 9353 19480 8271 1377 3873 2632 7053 1854 8453 12360 3873 

 8 1002 2990 1932  12578  2747 11039 20028 2990   2709 7978 1869   2709 

 20   3008  14558  5015 12016  8516   3723  2384   3054 

Trunk LM BL 7551 6838 7631 11421 12612 11876 20485 17476 19550 11876 9562 8042 8479 9623 9343 9762 10653 9562 

 4 7985 7442 8585 12136 12836 13390 18938 18317 18580 12836 9055 7751 8877 10944 9440 9984 11149 9440 

 8 8520 8875 9385  13633  20500 17424 17542 13633   8997 10880 8967   8997 

 20   9869  14895  21167 17916  16405   9679  9837   9758 
 

Leg FM% BL 21.1 34.7 27.4 49.2 50.2 48.6 21.1 35.1 54.1 35.1 27.0 40.6 27.8 49.1 33.3 50.8 53.7 40.6 
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 4 23.0 35.7 28.7 49.5 52.1 46.9 24.8 37.9 50.6 37.9 25.7 42.0 25.7 49.8 34.0 49.0 53.8 42.0 

 8 24.1 33.1 27.4  52.0  19.7 40.5 52.2 33.1   24.8 50.5 36.1   36.1 

 20   30.5  51.3  22.4 42.5  36.5   28.5  39.2   33.9 

Leg FM BL 1232 2060 2070 8276 8723 7627 2937 5753 13824 5753 1837 2995 1921 6180 2488 6384 10600 2995 

 4 1388 2342 2389 8467 9552 7909 3747 7211 12033 7211 1867 3666 1781 6751 2695 6930 11253 3666 

 8 1657 1688 2293  9639  2964 7863 14387 2964   1802 7372 3165   3165 

 20   3080  10037  3950 8929  6440   2610  3820   3215 

Leg LM BL 4453 3881 5498 8545 8651 8068 10968 10650 11725 8545 4962 4377 4984 6415 4982 6179 9141 4984 

 4 4650 4215 5927 8646 8797 8946 11370 11792 11768 8797 5403 5054 5155 6806 5230 7211 9658 5403 

 8 5226 3419 6078  8895  12119 11572 13180 8895   5457 7240 5605   5605 

 20   7004  9532  13715 12070  10801   6559  5923   6241 

Arm FM% BL 11.4 23.7 20.0 42.8 47.6 47.5 15.0 31.2 48.1 31.2 19.0 35.2 28.6 43.3 23.7 46.2 46.6 35.2 

 4 15.2 26.5 23.3 43.5 50.4 43.4 16.7 31.2 52.6 31.2 19.6 38.9 25.0 46.2 24.1 45.2 48.4 38.9 

 8 17.9 25.9 21.3  50.7  12.5 33.8 47.2 25.9   22.6 48.3 25.1   25.1 

 20   25.5  51.2  13.3 39.1  32.3   26.7  31.6   29.2 

Arm FM BL 211 405 403 1888 2473 2319 680 1548 3431 1548 370 706 711 1568 407 1705 2549 711 

 4 290 469 551 2061 2880 2172 808 1678 4186 1678 397 967 592 1601 475 1753 2807 967 

 8 382 304 508  3035  585 1939 3465 585   590 2006 583   590 

 20   729  3273  764 2479  1622   1003  812   908 

Arm LM BL 1589 1302 1609 2523 2719 2559 3849 3418 3696 2559 1575 1300 1779 2055 1312 1985 2925 1779 

 4 1621 1303 1812 2679 2837 2838 4043 3708 3577 2837 1629 1519 1778 1862 1495 2124 2990 1778 

 8 1755 869 1871  2950  4080 3802 3874 2950   2020 2145 1737   2020 

 20   2133  3115  4960 3860  3488   2758  1762   2260 

 

Tab  5.10: Body composition measured by DXA in the WBV group and the control group at (BL), 4, 8 and 20 months. The median of each measurement was 

calculated at each time point from the BL measurements in both groups. 
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5.5 Discussion  

Over the last decade WBV has received considerable attention as a possible method for 

promoting bone mass (494). However, there is little published evidence that WBV benefits 

bone mass, particularly in children (495). The most promising effect in children was observed 

in those with CP (245;319) but the magnitude was relatively low and a more recent report has 

been unable to confirm these findings (332;496). In children, osteoporosis secondary to 

chronic disease is not unusual, particularly in those who are receiving chemotherapy for ALL 

(183;189). The aetiology of this osteoporosis is multifactorial, but as inactivity may play a 

large role, it was deemed appropriate to consider a study of WBV in these children. Thus, the 

current report represents the first attempt at studying this interventional regimen in this group 

of children. 

 

The peak incidence of ALL in childhood is between 2 and 5 years of age and a number of 

children were excluded as they were considered to be too young to stand on the vibrating 

platform. Given that previous studies have suggested that it is the older child with ALL who 

may be predisposed to osteoporosis (71;192;460) and the current study suggested that 

compliance was greater in the older child, WBV may be a suitable method for delivering 

exercise to the older child with ALL. However, a conclusive exploration of the effect of WBV 

on bone health in this group of patients will require a larger sample size. 

 

The number of children in whom BMD fell when assessed by DXA was greater in the control 

group compared with the WBV group raising the possibility that WBV may prevent the 

deterioration in BMD, which is often described in these children during chemotherapy and can 

be a predictor of subsequent fractures (183;188;189). This finding can be supported by   

other studies, which have shown that WBV has a positive effect on reducing the risk of 

osteoporosis by increasing LS-BMD in postmenopausal women (344;497). Markers of bone 

turnover did not show any significant difference between the two groups as well as within the 

group. 

 

The changes in total and leg body composition which were assessed by DXA were counter to 

what would have been expected. The increase in TB-FM and leg-FM were more prominent in 

the WBV group, whereas in the control group, the percentage change of TB-LM and leg-LM 

from the baseline to the four-month visit was more pronounced. One of the contradictory 
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finding in this study was the total LM increased in the control group whereas the total FM and 

leg FM increased in the WBV group. This could be related to puberty difference, age and 

chemotherapy responses between these two groups rather than WBV training. However, 

previous animal studies have reported that WBV is associated with a reduction in adipocyte 

numbers and FM (498;499). However, assessment by p.QCT did show an increase in lean 

area, which was greater in the control compared with the WBV group, but it was not 

significantly different. 

 

The lack of stark changes in bone density (BMD) as well as muscle mass may have a number 

of explanations. Firstly, it is possible that a more profound effect may be exerted with a more 

intensive and longer period of WBV. Other studies suggest that WBV training may only be 

effective at improving leg muscle strength (354;377), BMD (242) and fall risk (368) when the 

subjects participated in training sessions at least three times a week. However, this may not 

be practically feasible in children ongoing chemotherapy especially when the chemotherapy 

may last for almost three years. It is possible that targeted exercise such as WBV does not 

need to be delivered throughout the chemotherapy period. Previous studies suggest that the 

peak incidence of fractures is at 18 months after start of chemotherapy, particularly in those 

children who are older and spend more time in hospital. Delivering WBV for a few months 

prior to this critical point may be sufficient. Previous studies by our group have observed that 

children on ALL chemotherapy often have reduction in serum Mg (492) and it is possible that 

inadequate bone mineral status may hinder a beneficial effect of exercise. However, there 

were no differences in the bone mineral status of the two groups (data not shown). The drugs 

these children receive for chemotherapy include agents such as vincristine and methotrexate, 

which may induce a transient neuropathy (500;501) or alter mechanotransduction within bone 

(502), thus altering the mechanism through which WBV exerts an effect on bone. 

 

The mechanism of the osteogenic effect of WBV stimuli is not entirely clear. It is possible that 

the response of bone tissue to high frequency stimuli could be related to fluid shear stress 

rather than a direct response to bone strain (503). Additionally, the response of cortical bone 

formation to the vibratory stimuli could be related to the mechanical noise that is released by 

the vibrations (322). This phenomenon can enhance the oestrogenic response of bone tissue 

by increasing the mechanosensitivity of osteocytes. However, a daily intervention of low-level 
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high frequency vibration for one year can also increase the bone density in the hind limb of an 

adult sheep (503). In a previous study of WBV in young healthy adults, we reported a fall in 

serum cortisol and a fall in circulating markers of bone resorption, independent of any 

detectable changes in muscle function (504), suggesting that some of the effects of WBV on 

bone health may be independent of the effect of muscle function. However, the adults who 

were studied had WBV on multiple days of the week and were in good general health and it is 

likely that these factors influenced the observed association between WBV and the endocrine 

effects.  

 

The limitations created by a small sample size, a lack of power calculation and no health 

control can have profound effects on the results. The discrepancy between the WBV group vs 

control group, and the effect on biasing results in relation to: more patients in pubertal age 

range in the WBV group, more patients on high risk regimens in WBV group and the 

problems of patients being at different points in their chemotherapy schedule at times of 

assessment, even though the two groups were similar for chemotherapy weeks. Furthermore, 

this was a longitudinal study, but time points were compared with cross-sectional reference 

data within the groups as there was no control, this introduces a bias and may have masked 

some actual changes in bone outcome parameters. It is reported that serum levels of bone 

formation markers such as BAP and PICP declined during chemotherapy (182). Our results in 

Fig 5.5 showed low levels of bone markers particularly in the serum levels of CTX and OC. 

This might have a negative impact on WBV training to improve bone health in ALL children 

during chemotherapy. Frequent morbidity related to leukaemia had a negative impact on 

patients‟ compliance and adherence to the study protocol. As the study established and 

evaluated in the hospital during follow up, the adherence to the protocol was also interrupted 

by infrequent visits to the oncology clinic and other issues such as holidays.  

 

In conclusion, this preliminary study suggests that WBV may reduce the fall in BMD that is 

often observed in children on chemotherapy and this effect needs further exploration in a 

larger group of children.  
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6.1 Discussion and Conclusion    

The main aim of is the line of work undertaken as part of this thesis was to reduce the rate of 

skeletal morbidity in ALL children as these complications have been frequently described in 

this group. These skeletal complications can present at various times during the course of 

leukaemia. The aetiological process of skeletal complications in ALL children can be 

categorized into two main groups; Firstly, direct causes such as leukaemia itself and 

chemotherapy. Secondly, independent factors such age, gender, nutritional status and 

physical activity might have an indirect effect on bone health in ALL children. Therefore, the 

direct causes make these complications inevitable. The early recognition of such skeletal 

morbidities and their risk factors are vital to facilitate the institution of rational strategies for 

monitoring and optimising bone health in ALL children. Minimising these complications has 

multiple advantages such as reducing a disease comorbidity, which might have positive 

impacts on the patient and parents. Furthermore, less skeletal complications lead to a 

reduction in the amount of radiation exposure to the patients and the radiological staff. Some 

of these complications such as ON can be treated only by a surgical intervention. Immobility 

which resulted from these complications might have a further problem on bone health and 

increase the rate of BMD loss. A large number of investigations such as X-rays, DXA and 

MRI are required for assessing these skeletal complications and which in turn might have a 

burden on the cost of health care. 

Four different studies have been conducted in this thesis. The first two studies (chapter 2&3) 

were collected retrospectively and aiming to explore the incidence rate of skeletal morbidity in 

children with leukaemia and their risk factors such as age, GCs, physical inactivity and 

abnormal mineral homeostasis. In the third study (chapter 4), the objective was to 

prospectively compare and assess the effect of two different types of WBV on endocrine and 

musculoskeletal systems in healthy adult men.The final study (chapter 5) was aiming to 

investigate the effect of WBV mainly on bone health in children with ALL.  

 

The first study confirms the finding from previous reports (177;178;240;255;545) that skeletal 

morbidity was common in children with ALL during therapy. This study also showed that the 

majority of skeletal morbidity occurred at around the second year of starting chemotherapy. 

These data suggest that bone health of those groups of children could be improved through 
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introduction of some preventive measures in the first year of chemotherapy. In addition, the 

risk of developing fractures and ON was higher in older children than younger children. A 

recent report showed that older age and low LS-BMD z score during continuation therapy 

were considered to be independent predictors of fractures in ALL children  (178). In 

comparison to previous studies, this study also suggests that fractures in ALL children were 

more likely to be identified in the lower limbs. On the other hand, the most commonly 

fractured site in children is the forearm (173). A recent study conducted by Kohler et.(210) 

showed that cortical bone changes in radius did not differ between ALL children and control, 

however, tibial cortical cross sectional was reduced significantly in ALL children. This can be 

explained either by that the pathophysiology of fractures in ALL children compared to normal 

children population might be different or the effect of leukaemia disease and chemotherapy 

were more pronounced in the lower limbs. This observation may under estimate vertebral 

fractures because their symptoms can overlap with general muscular and postural pain (453). 

Although, the fracture rate was higher in upper limbs compared to spine, the total number of 

required X-ray was higher in spine. This can support that the routine radiological images 

might be not sensitive tools to confirm such type of fractures. The prospective STOPP study 

demonstrated that vertebral fractures occur frequently in children with ALL and may be 

asymptomatic. They required a detailed morphological such as lateral thoracolumbar spine 

radiographs to confirm diagnosis (73).  The previous group also showed that there is a clear 

association between skeletal morbidities and dexamethasone. Recently, Rayar et al. (178) 

found that 30% of fractures during chemotherapy was in ALL children treated with 

dexamethasone compared to 10% in ALL children treated with prednisolone. Furthermore, 

type of GCS and low BMD z score during the chemotherapy were independent predictors of 

fractures. Alos et al (505) reported that vertebral fractures at diagnosis, back pain and a 

reduction in LS-BMD z-score can be applied as a predictor for developing fractures at 12 

months of chemotherapy. We were also interested in describing the spectrum of morbidities 

associated with factures and ON in our patients. Multiple fractures (≥2) and multifocal ON 

were affected in 34% and 55%, respectively.  

 

Although the first study reported that the skeletal morbidities are commonly associated with 

ALL children (460), the pathophysiology and mechanism of these complications remains 

unclear. It has been claimed before that abnormal mineral status and physical inactivity might 



 

 230 

be possible contributors towards an increased risk of developing these abnormalities 

(72;195;208). Therefore, the second study was designed to investigate a possible metabolic 

basis for these complications or to determine their associations with abnormal mineral 

homeostasis during the course of chemotherapy and physical inactivity. Abnormal bone 

metabolism is known to frequently occur in children with leukaemia. However, no studies 

have thoroughly examined the association between actual skeletal morbidities and changes 

in mineral homeostasis. We found that children with MSP and fractures generally had lower 

levels of serum Ca, Pho and Mg compared with those without skeletal morbidities over the 

first 12 months of chemotherapy. It is of note that serum levels of these markers were mostly 

abnormal during the first three months of chemotherapy (Fig 3.4). Although the majority of 

serum levels of these parameters remained within the normal values over the study period, 

the trends generally were lower in those children with MSP and fractures. There is no clear 

explanation for this finding, however, further studies are need to assess the daily intake of 

Ca, Pho and Mg and the urinary execration of these minerals in ALL children during the 

course of chemotherapy. This data and previous studies inform that serum Mg correlated 

significantly with age in healthy individuals (472;473). However, on multivariate analysis, 

serum Mg per se was not the contributory variable, but it was the age of the patient which 

was the important variable. Therefore, these finding might shed light on the management of 

skeletal morbidities in those children by Mg supplementation in particularly older children. Mg 

supplementation in ALL children having hypomagnesaemia is associated with a variable rise 

in serum Mg and a rise in OCN levels (195). Increasing OCN might explain why oral Mg 

supplementation improves insulin sensitivity (506). On the other hand, oral daily oral single 

dose of Mg supplementation in normal, non-Mg-deficient, young adult men is able to 

suppress bone turnover by reducing the biochemical markers of bone formation (OCN) and 

resorption (ICTP), compared with the control subjects (507). Several studies show that oral 

Mg supplementation might have a beneficial effect on bone health; however, introducing this 

element in the chemotherapy protocol might require a longitudinal RCT study, which certainly 

takes decades to prove this effect.  

 

This study also showed a significant association between skeletal morbidities and the number 

of inpatient days (marker of inactivity). Previously, it was reported that ALL treated with 

chemotherapy alone had reduced lumbar volumetric BMD and were physically less active 
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than their healthy controls (208). Every physical activity during childhood is highly 

recommended to improve bone health (491), is often reduced in children on chemotherapy as 

well as after completion of therapy (198;199). Exercise can reduce the risk of fractures, 

increase bone strength and reduce the number of falls. Moreover, exercise regimens that 

increase muscle bulk or increase mechanical loading on the skeleton may prove beneficial for 

skeletal health (237), but performing conventional exercise at home in ALL children might be 

associated with poor adherence (188). Mechanical loading can also be delivered by vibratory 

exercise via WBV platforms. It is also possible that WBV is as effective as weight bearing 

exercise, whilst shortening the time required for the exercise.  

 

In the third study, we examined the effect of two different types of WBV on healthy adult men. 

This study was, therefore, performed to compare the effects of sinusoidal and vertical WBV 

delivered through the GP and the JP, respectively, on a range of outcome measures related 

to the endocrine and musculoskeletal system. Based on the result of this study, WBV was 

well tolerated with a high rate of compliance in the study population. Apart from very mild 

itching, which was experienced particularly over the shins and thighs, the exercise regimens 

were not associated with any adverse reactions. In addition, the current study showed that, 

over the short term, exercise with GP was associated with increased serum GH and 

decreased cortisol concentration. The lowering of circulating cortisol was also observed over 

the medium term and this fall was also associated with a reduction in bone resorption. 

Therefore, it can be hypothesized that WBV delivered at a certain magnitude was able to 

produce a positive impact on bone health either directly by suppressing osteoclasts or 

indirectly through stimulating GH and reducing cotrisol levels.  

 

Therefore, the hypothesis of the fourth study was based on the previous study as WBV 

exercise delivered by GP might be able to reduce the risk of developing skeletal morbidities in 

ALL children receiving chemotherapy. Compared with the previous study, the time of 

exposure to WBV training (once a week) was less frequent, whereas the total duration of the 

intervention was longer (four months). However, the WBV schedule was adapted from a 

previous report that had used the same WBV system in children with neuromuscular disease 

and bone fragility disorders (306;387). The current report represents the first attempt at 

studying the WBV regimen in this group of children. The main finding in this study was that 
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the number of children in whom BMD fell when assessed by DXA (LS and TB-BMD) was 

greater in the control group compared with the WBV group, raising the possibility that WBV 

may prevent the deterioration in BMD, which is often described in these children during 

chemotherapy and can be a predictor of subsequent fractures (183;188;189). This finding can 

be supported by several studies, which have shown that WBV has a positive effect on 

reducing the risk of osteoporosis by increasing LS-BMD in postmenopausal women 

(344;497). Markers of bone turnover did not show any significant difference between the two 

groups as well as within the group.  

 

Although the rate of bone loss was higher in the control group compared with the WBV group, 

this change did not reach significant levels. This could suggest that WBV training once a 

week for a period of 4months was not beneficial in improving BMD. The lack of positive 

results may be explained by several reasons. First, although the study was based on a 

reasonable concept, it may not be possible to maintain a positive result by undertaking WBV 

exercise at this dose. A large number of studies suggested that WBV training may be a 

feasible and effective way to improve isometric/dynamic leg muscle strength (316), BMD 

(242) and decreased fall risk (368) when the subjects participated in training sessions at least 

three times a week. Furthermore, the adherence and compliance to the exercise programme 

was frequently interrupted in this group of children mainly due to the disease itself and 

chemotherapy adverse effects such as fever, neurtropaenia and MSP. The median age of the 

WBV group was slightly older than the control group. This may be an important factor for the 

lack of significant results as several studies have reported that the older age children with 

ALL children had higher incidence of skeletal morbidity (492). Another possible explanation 

for this negative finding is that GCs have suppressed bone formation in our cohort study as 

dexamethasone is the mainstay of the therapy for UKALL2003. 

 

These data suggest that short term training of WBV in ALL children may not able to produce 

in long-term beneficial effects on bone development. However, further studies are necessary 

to assess the effect of long term and frequent training of WBV on bone outcomes and fracture 

rate in ALL children.  
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6.2 Future Direction  

Finally, I would like to present directions for future research in the field. Further research is 

needed to determine if WBV exercise in ALL children may reduce the risk of developing 

skeletal morbidities and fractures and increase BMD. In order to do this, it is essential to 

know the highest risk age group and the duration and the time of WBV exposure. There is a 

need for systematic monitoring of bone health similar to that being currently performed in the 

STOPP studies (73). Future studies should select those children over 8years as these groups 

have the highest risk factor for developing skeletal morbidities. Furthermore, exercise may be 

most effective if started at the time of diagnosis in parallel with chemotherapy but user 

acceptability of WBV may not be high at this point. Also, where sufficient data are available, 

there is a need to compare outcomes between WBV and conventional exercise for 

improvement in children‟s bone health. Whereas in my studies, the effect of WBV on the 

musculoskeletal and endocrine systems was assessed, for any further work, also it may be 

useful to consider the interactive effect of nutritional optimisation and Mg supplementation on 

bone health during chemotherapy.  
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