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Abstract 
Following disease or injury to the CNS, the formation of a glial scar represents a 

physical and molecular barrier to repair. Although some therapies have promoted 

axonal sprouting into the lesion site, these fibres are often tangled and 

disorientated. To date, there has been little evidence of regenerating fibres 

successfully exiting the glial scar to reform functional connections. Furthermore, 

remyelination after disease or injury is limited, often consisting of shorter 

internodes of myelin and thinner sheaths. Thus, potential therapies aimed at 

enhancing CNS repair should support the outgrowth of neurites, guide their exit 

from the glial scar and perhaps aid remyelination. Since multiple factors impede 

the regeneration of the CNS, a combinatorial approach to therapies including 

cell-transplantation may be a more promising strategy. 

The focus of this thesis was to investigate the interactions of olfactory 

ensheathing cells (OECs) and Schwann cells (SCs) with CNS glia and neurons in 

order to determine their effects following transplantation in vivo. This was 

carried out by performing a detailed study in vitro, focusing on how these 

interactions could impact upon endogenous CNS myelination. Based on these 

observations, this thesis aimed to provide novel evidence that the use of one cell 

type may be more advantageous than the other for cell-mediated repair of the 

CNS. Furthermore, the use of a biodegradable scaffold was investigated for its 

ability to support a complex CNS system and to direct cellular alignment in vitro. 

It was hoped that the data provided from both strategies could aid the design of 

an optimised cell-seeded scaffold, with the long-term aim of designing an 

effective combinatorial strategy to enhance repair of the CNS. 

Previous studies using well defined myelinating co-cultures have demonstrated 

that they recapitulate many features of the CNS, allowing the study of neurite 

density and myelination, with correctly formed nodes of Ranvier. In this thesis I 

have shown that the addition of olfactory bulb-derived OECs (OB-OECs) to these 

cultures significantly enhanced oligodendrocyte myelination. Conversely, 

endogenous CNS myelination was significantly reduced by exogenously added SCs, 

which did not appear to ensheath axons with peripheral myelin. The addition of 

conditioned media derived from SCs (SCM) reduced oligodendrocyte myelination, 
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suggesting that this effect was mediated via SC-secreted factors. A direct 

biological comparison between purified OB-OECs and SCs demonstrated that SCs 

expressed significantly higher levels of connective tissue growth factor (CTGF) 

mRNA and protein. In addition, the antibody-mediated neutralisation of CTGF in 

SCM restored myelination to the level of untreated controls. Treatment with SCM 

and exogenous CTGF significantly reduced the differentiation of purified OPCs in 

culture in the absence of other glial/ neuronal influences. However, pre-

treatment of the astrocyte monolayer with CTGF or SCM, prior to its use in the 

myelinating cultures suggested that CTGF may also induce key changes in 

astrocytes, causing them to up or down-regulate their expression of vital factors 

which control the myelinating capability of oligodendrocytes.  

I have also demonstrated that biodegradable scaffolds fabricated from poly-ε-

caprolactone (PCL) supported the outgrowth of CNS neurons and proliferation of 

glia; whilst pre-embossed microgrooves promoted cellular alignment. 

Furthermore, when compared with a range of other biomaterials, excluding 

glass, PCL supported the highest level of oligodendrocyte myelination in the 

cultures. 

Taken together, data from this thesis suggests that OECs may be more beneficial 

than SCs in a cell-mediated repair strategy for the injured CNS, due to the 

latter’s negative effects on oligodendrocyte myelination in vitro. Since PCL has 

also been shown to support the differentiation and survival of a complex CNS 

culture system, this thesis may also provide novel information for optimising an 

OEC-seeded PCL scaffold for implantation in vivo to effectively promote CNS 

regeneration.
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1.1 Organisation of the Central Nervous System (CNS ) 

The Nervous System can be divided into the Central Nervous System (CNS) and 

the Peripheral Nervous System (PNS), which is then further categorised into the 

somatic and the autonomic PNS, with its enteric, sympathetic and 

parasympathetic branches (Figure 1.1). Comprising of the spinal cord and the 

brain, the role of the CNS is to process sensory information relayed from 

afferent fibres in the PNS and to co-ordinate motor outputs from the brain to 

various effectors via efferent fibres by propagating both electrical and chemical 

impulses. Furthermore, the spinal cord itself contains intricate neuronal 

circuitry which can mediate the control of various reflexes and central pattern 

generators. A delicate interplay between CNS and PNS nerves and support cells 

(glia) regulates all aspects of behaviour, such as the control of voluntary and 

involuntary movement, whilst also mediating the necessary changes to maintain 

homeostasis in response to environmental stimuli, such as changes in 

temperature or the sensation of pain.  

1.1.1 Basic Anatomy of the Spinal Cord 

The spinal cord itself is a long, thin almost-spherical bundle of nerves, which 

extends from the medulla oblongata (brain stem) and is protected by 33 spinal 

vertebrae (Figure 1.2). Although the vertebrae extend to the region of the 

coccyx where they are fused, the spinal cord terminates between the space of 

the first and second lumbar vertebrae at the connus medullaris, giving rise to 

the filum terminale. Thereafter, the continuing bundle of nerves that extends 

out from the cord without exiting the vertebral column is called the cauda 

equine, or “horse’s tail”.  

As well as the spinal vertebrae, the cord is surrounded by 3 meningeal layers; 

namely the most superficial dura mater, the arachnoid membrane and the 

innermost pia mater, which contains many of the blood vessels supplying oxygen 

and nutrients to the spinal cord. Furthermore, in between the arachnoid and pia 

mater in the subarachnoid space lies cerebrospinal fluid (CSF), which acts to 

cushion the spinal cord and to promote homeostasis by removing metabolic 

waste from the CNS via the blood brain barrier.  
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For each vertebra, a pair of spinal nerves containing both sensory (dorsal) and 

motor (ventral) roots emerge from the vertebral column at regular intervals, 

serving to connect the spinal cord to specific nerves innervating the rest of the 

body. Thus, there are 8 pairs of cervical spinal nerves, 12 pairs of thoracic, 5 

pairs of lumbar, 5 pairs of sacral and 1 pair of coccygeal spinal nerves (Figure 

1.2). The neuronal cell bodies of sensory fibres are located within a swelling 

known as the dorsal root ganglion in the periphery, with their afferent 

projections extending into the spinal cord via the dorsal roots. Conversely, the 

cell bodies of motor neurons are located throughout the cord, whilst their 

efferent fibres exit the spinal cord in the ventral roots (Figure 1.3). Dorsal roots 

and ventral roots come together and exit through the intervertebral foramina 

between each vertebrae to become mixed spinal peripheral nerves, which 

branch out to innervate specific regions in the periphery, with the exception of 

the C1 nerves which exit between the occipital bone and the atlas. 

Internally the spinal cord is composed of both gray matter and white matter, 

which contains axons that are ensheathed (myelinated) in a compact lipid/ 

protein layer known as myelin to provide insulation, thus promoting the rapid 

conduction of axonal electrical impulses. The centre of the spinal cord 

comprising the grey matter is shaped like a butterfly or the letter “H”, and 

contains the cell bodies of interneurons and motor neurons, neuroglia, 

unmyelinated axons and the dendrites of interneurons and motor neurons (Figure 

1.3). The projections of the gray matter (the “wings”) are called horns; namely 

the anterior, posterior and lateral horns. Neuronal cell bodies in the grey matter 

form functional groups of “nuclei”, such that the anterior grey horns innervate 

skeletal muscle, the posterior horns contain somatic and autonomic fibres and 

the lateral horns, present only in the thoracic, upper lumber and sacral regions 

of the spinal cord, contain autonomic motor nuclei which innervate smooth 

muscle, glands and cardiac muscle. 

White matter surrounds the grey matter, and contains mostly myelinated axons, 

of sensory, motor and interneurons, although there are some unmyelinated 

axons in this region. Unlike the grey matter, white matter is segmented into 

columns as opposed to horns, giving rise to the anterior, posterior (dorsal) and 
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lateral columns. Fibres within the white matter columns are organised into 

ascending (sensory) and descending (motor) tracts with a common function/ 

destination.  
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Figure 1.1 – A schematic of the organisation of the Nervous System. The nervous 
system (NS) can be divided into the central nervous system (CNS), comprising of 
the brain and spinal cord, and the peripheral nervous system (PNS). Further 
branches of the PNS include the somatic NS, which controls voluntary 
movement, and the autonomic NS, with its sympathetic, parasympathetic and 
enteric divisions, which control involuntary movement. The CNS processes 
sensory information from the periphery to co-ordinate all aspects of behaviour. 
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Figure 1.2 – The 33 vertebrae surrounding the human spinal cord. The spinal 
cord is surrounded by 33 bony vertebrae, beginning at the cervical region of the 
neck and terminating at the coccyx. Each vertebra can be named and numbered 
in accordance to its anatomical position, though the 3 most-caudal fused 
vertebrae constitute the coccyx. The spinal cord itself, however, arises from the 
foramen magnum and ends at the intervertebral space between the first and 
second lumbar vertebrae (L1, 2). There are 30 pairs of mixed spinal nerves, one 
arising from each spinal segment from the cervical to the sacral region, and one 
final pair of nerves exiting the cord at the coccygeal region. Diagram modified 
from http://www.spineuniverse.com/anatomy/vertebral-column.  
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Figure 1.3 – The basic internal anatomy of the spinal cord. The spinal cord can 
be divided into grey matter, containing neuroglia, the cell bodies of 
motorneurons and interneurons and unmyelinated axons, and the white matter, 
which contains mostly myelinated axons. The cell bodies of sensory neurons lie 
in the periphery in a swelling known as the dorsal root ganglia (DRG), whilst 
sensory fibres project into the spinal cord via the dorsal roots. Both the ventral 
roots (motor fibres) and dorsal roots (sensory fibres) come together to form pairs 
of right and left mixed spinal nerves. Through the centre of the spinal cord runs 
the central canal, which is continuous with the ventricles of the brain and 
contains cerebrospinal fluid (CSF). Modified from http://www.apparelyzed.com.  
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1.2 Glial Cells within the Nervous System 

Glial cells, or neuroglia, are present in abundance throughout the nervous 

system and are thought to be imperative for competent neurological functioning, 

as their Latin name would suggest. Their roles include helping to maintain 

homeostasis, aiding neurotransmission, forming myelin, providing trophic 

support and protecting neuronal cells and axons. In the CNS, astrocytes, 

oligodendrocytes and microglia carry out these various functions; whilst in the 

PNS, Schwann cells (SCs) and satellite cells constitute the glial population. 

Although they are not classed as major glial sub-type, Mϋller cells and Bergmann 

glia are also specialized radial glial cells related to astrocytes, which function in 

the retina and cerebellum, respectively (Del Cerro & Swarz., 1976; Mori et al., 

1976; Komine et al., 2007; Koirala et al., 2010; Kuang et al., 2012; Lin et al., 

2012). 

There is a clear segregation of both CNS and PNS glia in situ in the absence of 

disease or pathology. However, olfactory ensheathing cells (OECs) are present 

both in the peripheral olfactory mucosa and in the central olfactory bulbs, 

making them the only glial cell to span both the CNS and PNS under non-

pathogenic conditions. As well as playing vital roles in maintaining the healthy 

nervous system, glial cells have been widely implicated in disease and injury 

states; both in contributing to pathology and in modulating the repair of the 

nervous system. 
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1.2.1 Microglia 

Microglia are the resident macrophages of the CNS and the smallest glial cell 

type. Originally described by Rio-Hortego (1932), microglia are considered to be 

of mesodermal origin and it is thought that they migrate into the CNS during 

early development, where they adopt a highly branched, ramified morphology 

termed as “resting” in the intact CNS (Kettenmann et al., 2011). Following 

disease or injury, however, microglia become “activated” and they adopt an 

amoeboid phenotype with retracted branches (Rio-Hortego & Penfield, 1927; 

Aliosi, 2001; Xiang et al., 2006).  

The brain and spinal cord are considered to be immune-privileged, in that they 

are segregated from circulating immune cells by the blood brain barrier (BBB), 

which represents both a physical and immunological barrier, preventing the 

entry of foreign molecules and pro-inflammatory factors to the CNS (Janzer & 

Raff, 1987; Bouchaud et al., 1989; Janzer et al., 1993). Therefore, microglia 

function to maintain homeostasis by scavenging debris and by rapidly responding 

to insult (Liberto et al., 2004; Dissing-Olesson et al., 2007) by phagocytosing 

potential pathogens (Frautschy et al., 1992; Bauer et al., 1994; Neumann et al., 

2008). In addition, microglia contribute to the pro-inflammatory environment 

following trauma or disease by secreting cytokines such as IL-1α, IL1-β and TNF-α 

(Sawada et al., 1989; Auro et al., 1998; Davies et al., 1999; Clausen et al., 2005) 

The role of microglia in inflammation following spinal cord injury will be 

discussed in more detail in section 1.4.3. 

In non-pathological situations, microglia have also been implicated in a number 

of physiological processes, and contrary to previous beliefs, advances in imaging 

techniques have suggested that “resting” microglia are in fact highly motile in 

vivo in the healthy brain (Nimmerjahn et al., 2005). Several studies have 

provided evidence to suggest that microglia may be involved in the “synaptic 

pruning” that takes place to compensate for the over-population of neurons 

which occurs during development and to aid synaptic remodelling, particularly in 

areas such as the hippocampus (Perry et al., 1985; Dalmau et al., 1998; Fiske & 

Brumes, 2000). Data obtained from time lapse experiments has demonstrated 
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microglia engulfing retinal ganglion cells (RGCs) during synaptic remodelling of 

the visual system (Stevens et al., 2007; Huberman et al., 2008). In addition, as 

well as contributing to inflammation, microglia can also alleviate the 

inflammatory environment by phagocytosing apoptotic cellular debris, thus 

reducing the abundance of pro-inflammatory cytokines in the micro-environment 

(Magnus et al., 2001). Finally, microglia are also a source of growth factors, such 

as basic fibroblast growth factor (bFGF) and transforming growth factor beta 

(TGF-β) (Araujo & Cotman, 1992). 

1.2.2 Astrocytes 

Astrocytes, so-called due to their stellate morphology, are multi-process bearing 

cells present throughout the brain and the spinal cord. They are distinguishable 

by their expression of intermediate filaments composed of glial fibrillary acidic 

protein (GFAP) (Eng et al., 1971; Bignami et al., 1972), though they express 

other markers such as the intermediate filaments vimentin and nestin, as well as 

the calcium-biding protein, S100-β. Astrocytes fill the spaces between neurons 

and synapses, where their functions include the support of neurons and the 

regulation of neurotransmission by absorbing excess neurotransmitters, thus 

preventing the inappropriate spread of electro-chemical information 

(Westergaarde et al., 1995; Walz., 1989; Molnar et al., 2011). Furthermore, 

astrocytic end-feet from the brain and spinal cord parenchymal basal lamina 

form the glia limitans, or glial limiting membrane, which lies deep to the pia 

mater (Black & Waxman, 1985; Goto & Hashimoto, 1988; Wolburg & Risau, 1995) 

and forms part of the blood-brain barrier. 

1.2.2.1 Astrocyte Morphology and Classification  

In vivo, astrocytes exist either as long, multi-process bearing fibrous astrocytes 

found predominantly in the white matter or as protoplasmic astrocytes, which 

contain fewer and shorter branches and are most prevalent in the grey matter. 

Whilst the processes of fibrous astrocytes tend to have regular contours and are 

cylindrical and elongated, those arising from protoplasmic astrocytes are 

described as being irregular, flat sheet-like processes (Peters et al., 1976; Wilkin 
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et al., 1990). Astrocyte morphology in vitro, however, is classed as being either 

Type 1 or Type 2 based largely upon the findings of Raff and colleagues (1983 a, 

b). Using cultures derived from rat optic nerves, they demonstrated the 

existence of a sub-population of astrocytes, termed Type 1, which had a 

fibroblast like morphology and did not bind to tetanus toxin or to the monoclonal 

antibody, A2B5, which recognizes cell surface tetrasialogangliosides (Eisenbarth, 

1979). Conversely, Raff et al., (1983 a) described the presence of Type 2 

astrocytes, which were said to be neuronal-like in their morphology and able to 

bind both tetanus toxin and the A2B5 antibody. Whilst epidermal growth factor 

(EGF) was mitogenic for Type 1 astrocytes, it did not induce proliferation in 

Type 2 astrocytes. Raff and colleagues also reported that immunolabelling of 

cultures derived from white matter tissue indicated the presence of both Type 1 

and Type 2 astrocytes, whilst grey matter cultures only contained the former 

astrocyte sub-type.  

1.2.2.2 Astrocyte Development 

Astrocytes are though to be generated from precursors from the sub-ventricular 

zone (SVZ), which is derived from the neuroepithilium of the neural tube 

(Levison & Goldman, 1993, 1997; Luskin et al., 1993; Luskin & McDermott, 

1994). Perinatally, these precursors are said to arise in the cerebellum and they 

then migrate throughout the white matter (Milosevic & Goldman, 2002). It is 

postulated that the cells that make up the CNS are derived from neural stem 

cells (NSCs), which are multi-potent non-committed cells. However, evidence 

suggests that NSCs may in fact initially give rise to intermediate precursor cells 

with a semi-committed lineage. For example, glial-restricted precursors (GRPs) 

derived from NSCs can differentiate into astrocytes and oligodendrocytes, 

neuronal-restricted precursors (NRPs) and possibly astrocyte-restricted 

precursors (ARPs) (Liu & Rao, 2004; Dietrich et al., 2007). Raff and colleagues 

(1983) demonstrated the ability of the GRPs to differentiate into both astrocytes 

and oligodendrocytes in vitro depending upon the culture medium, whilst GRPs 

have also been shown to be present in the developing spinal cord from 

embryonic day 12 (E12), and are distinguishable from surrounding epithelial cells 

based upon their immunoreactivity with the A2B5 antibody (Rao et al., 1998).  
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In cultures derived from optic nerve, radial glial cells in the epithelium have also 

been shown to produce astrocyte precursor cells (APCs), which initially express 

Pax2, vimentin and cell-surface gangliosides labelled by the A2B5 antibody. 

Initially, these APCs are negative for GFAP and S100-β, though GFAP expression 

is eventually gained upon their differentiation into astrocytes, which is induced 

by CNTF and LIF in culture (Mi & Barres, 1999).  

Raff et al., (1983 b) showed that a common progenitor expressing both NG2 and 

platelet derived growth factor receptor α (PDGFRα) cultured from the neonatal 

rat optic nerve (denoted as the O-2A progenitor) could also give rise to either 

Type 2 astrocytes or oligodendrocytes depending upon the presence of serum. 

For example, culturing of these cells in foetal calf serum (FCS) resulted in their 

differentiation into Type 2 astrocytes, whilst an absence of serum in the culture 

medium induced oligodendrogliogenesis. GRPs are said to be distinct from O-2A 

progenitors in that they do not express NG2 or PDGFRα and they exhibit 

differential adhesive properties in response to laminin and fibronectin (Rao & 

Mayer-Proschel, 1997). Miller & Raff (1984) attempted to correlate these 

findings in vivo by demonstrating that fibrous astrocytes in the optic nerve of 

frozen tissue sections from the adult rat labelled with the A2B5 antibody, 

similarly to Type 2 astrocytes in vitro, whilst protoplasmic astrocytes from the 

cerebral cortex were A2B5 negative, like their Type 1 counterparts. Miller et al., 

(1985) also described the presence of 3 distinct glial populations in the optic 

nerve in vivo: galactocerebroside positive (GalC+ve) oligodendrocytes, A2B5 –ve/ 

GFAP +ve Type 1 astrocyte, which first appear embryonically, and A2B5+ve/ 

GFAP+ve Type 2 astrocytes, appearing  from post-natal day 7 onwards.  

However, the existence of Type 1 and Type 2 astrocytes derived from O-2A 

progenitors in vivo is difficult to prove and the previous findings have been 

contested somewhat by others. Espinosa De Los Monteros et al., (1993) 

demonstrated that pre-labelled O-2A progenitors injected into the neonatal rat 

brain differentiated into GalC +ve oligodendrocytes, and not Type 2 astrocytes. 

However, transplantation of an O-2A cell line, which demonstrated similar bi-

potential characteristics to O-2A progenitors in vitro, into glial-free areas of the 

adult rat spinal cord resulted upon their differentiation into both myelinating 
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oligodendrocytes and Type 2 astrocytes (Barnett et al., 1993). Whilst the work of 

Espinosa De Los Monteros et al., (1993) and others could indicate that the 

existence of a common progenitor for both the oligodendrocyte and Type 2 

astrocyte lineage is an artefact of in vitro culture, it is also worth considering 

the effects of age and CNS region (ie. spinal cord, cerebellum etc) on the ability 

of O-2A progenitors to differentiate into either cell type. Even subtle changes in 

the cellular composition of the micro-environment could greatly influence 

cellular behaviour by modifying paracrine/ autocrine signalling mechanisms as 

well as interactions with the extracellular matrix (ECM), thus altering cell-fate. 

Due to the lack of consistent in vivo evidence to prove the existence of Type 2 

astrocytes derived from O-2A progenitors, these cells have since been termed as 

oligodendrocyte precursor cells (OPCs). 

Free-floating sphere cultures can also be utilised to study NSC fate in vitro. 

Reynolds & Weiss (1992) initially demonstrated that neurospheres from the 

mouse striatum, which were responsive to the mitogenic properties of epidermal 

growth factor (EGF) possessed antigenic similarities to both neurons and 

astrocytes, such as the expression of Substance P and gamma-aminobutyric acid 

(GABBA), as well as GFAP (Doetsch et al., 1999; Laywell et al., 2000; Seri et al., 

2001). Furthermore, these spheres could be triturated and differentiated into 

astrocytes under culture conditions which included serum (Thomson et al., 2006, 

2008), though others have also demonstrated the ability of neurospheres to 

differentiate into oligodendrocytes and neurons (Maciaczyk et al., 2009; Darsalia 

et al., 2010). 

1.2.2.3 Astrocyte Differentiation 

It has been reported that the majority of astrocytes are generated during 

gestation and in the first 2 weeks postnatally in rodents (Skoff & Knapp, 1991). 

Thereafter, astrocyte numbers are said to remain fairly consistent throughout 

the adult CNS (Hommes & Leblond, 1967, Korr et al., 1973; Paterson, 1983). 

Cilliary neurotrophic factor (CNTF) secreted by Type 1 astrocytes has been 

shown to induce the differentiation of OPCs in vitro into Type 2 astrocytes 

(Hughes et al., 1988; Lillien et al., 1988). In addition, factors such as 
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interleukin-6 (IL-6), oncostatin M (OSM) and cardiotrophin-1 all from the IL-6 

family have also been shown to stimulate astrocyte differentiation in embryonic 

CNS and optic nerve cultures, possibly via the activation of the JAK/ STAT 

pathways, which induce GFAP expression (Gard et al., 1995; Johe et al., 1996; 

Bonni et al., 1997; Ochiai et al., 2001). Bone morphogenic proteins 2 and 7 of 

the TGF-β super-family have also been implicated in regulating aspects of 

astrocyte differentiation via activation of the Smad transcription factors (Gross 

et al., 1996). Furthermore, constitutively activating Notch in the E9 mouse brain 

induced the initial production of radial glial cells, which differentiated into 

astrocytes in the adult brain (Gaiano et al., 2000). It would appear that the 

delicate and timely balance of all of these factors, amongst others, is necessary 

for mediating the differentiation of astrocytes from their precursors. 

1.2.3 Oligodendrocytes 

The primary function of oligodendrocytes in the CNS is to ensheath axons in 

myelin by extending multiple processes which wrap around several axons, thus 

providing electrical insulation. Oligodendrocytes are smaller in size than 

astrocytes and lack GFAP+ve intermediate filaments; however, they contain large 

numbers of microtubules in their dynamic processes, unlike the latter glial cell 

type (Peters et al., 1991; Lunn et al., 1997), 

1.2.3.1 Oligodendrocyte Development 

Similarly to astrocytes and neurons, oligodendrocytes are thought to be derived 

from precursor cells arising from neuroepithelial cells in the SVZ (Hardy & 

Reynolds., 1991; Doetsch et al., 1997; Holz & Schwab, 1997). It has been 

reported that oligodendrocytes first appear in the optic nerves from birth and 

that oligodendrogliogenesis can continue for up to 6 weeks postnatally in rodents 

(Skoff et al., 1976; Barres & Raff, 1993; Baumann & Pham-Dinh., 2001).  

In the spinal cord, oligodendrocyte precursors arise in the ventral ventricular 

zone and then migrate dorsally during development (Warf et al., 1991). 

Thereafter, the dorsal regions acquire the ability to give rise to oligodendrocytes 
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during further development. Cultures of the thoraco-lumbar rat spinal cord 

demonstrated that the capacity for oligodendrogliogenesis was restricted to the 

ventral region of the spinal cord until approximately E14 (Warf et al., 1991). 

Studies of transgenic mice lacking a floor-plate have demonstrated its 

importance in inducing the development of ventrally derived oligodendrocytes, 

namely via the expression of sonic hedgehog (Shh), which induces the necessary 

transcriptional changes required for oligodendrocyte differentiation (Lu et al., 

2000; Zhou et al., 2000); and bone morphogenic proteins (BMPs), which 

negatively regulate oligodendrogliogenesis by promoting astrogliosis (Orentas & 

Miller., 1996; Pringle et al., 1996; McMahon et al., 1998; Liem et al., 2000). 

As discussed in section 1.2.2.2, oligodendrocytes most commonly differentiate 

from a pre-cursor, the O-2A progenitor/ OPC, which can also give rise to Type 2 

astrocytes in vitro (Raff et al., 1983). A subset of these OPCs is also thought to 

give rise to a population of adult NG2+ve OPCs. These so called NG2 cells are a 

distinct population of glia, which are antigenically and morphologically similar to 

OPCs, although they proliferate, migrate and differentiate more slowly, and 

have been described in abundance throughout the adult CNS (ffrench-Constant & 

Raff, 1986; Wolswijk & Noble, 1989; Reynolds et al., 1997; Butt et al., 1999; 

Horner et al., 2000; Dawson et al., 2003). Furthermore, NG2+ve glia are also said 

to have stem cell-like properties and are capable of prolonged self-renewal in 

vitro (Wren et al., 1992). 

Zhu et al., (2008) used transgenic mice engineered to express GFP derived from 

the NG2 lineage to demonstrate that these cells were able to readily 

differentiate into oligodendrocytes, and to a sub-set of protoplasmic astrocytes 

present only in the grey matter of the spinal cord but not in the white matter. 

Typically, however, NG2+ve glia are thought to preferentially give rise to 

oligodendrocytes in situ (Levine et al., 1988 a,b). Furthermore, Yoo & Wrathall 

(2007) suggested that there may be a bias towards oligodendrocyte 

differentiation from NG2 glia following CNS injury by culturing free-floating 

spheres and single cell suspensions derived from the spinal cord of injured and 

uninjured rats. They reported that whilst the NG2 cells co-expressed markers 

such as GFAP or CC1 in culture, suggesting their bi-potential for both astrocytes 
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and oligodendrocytes, NG2 glia from the injured spinal cord differentiated into 

oligodendrocytes but rarely astrocytes.  

1.2.3.2 Oligodendrocyte Differentiation 

The process of oligodendroglial cell maturation involves the progression of OPCs 

into terminally differentiated oligodendrocytes with myelin-forming capacity, 

via several intermediate stages. Oligodendrocyte differentiation can be assessed 

by morphological changes, including the formation of highly complex branching 

as maturation proceeds, as well as via the expression of several phenotypical 

antigenic markers, which can be transiently expressed through multiple stages of 

differentiation (Figure 1.5). It is estimated that the initial overpopulation of 

oligodendrocytes results in approximately 50% undergoing programmed cell 

death upon failing to myelinate (Knap et al., 1986; Barres et al., 1992). Trapp 

and colleagues (1997) reported that in the cerebral cortex of rats, approximately 

20% of the pre-myelinating oligodendrocyte population were degenerating 

between day 7 and day 21 after birth. Upon reaching maturation, 

oligodendrocytes become mitogenically unresponsive and lose their ability to 

migrate (Raff et al.,1978; Ranscht et al., 1982; Zhang & Miller, 1996). 

Typically, markers such as the A2B5 antibody recognizing gangliosides such as 

GT3 and its O-acetylated derivative, which are both down-regulated with 

increased differentiation and prior to the onset of myelination, can be used to 

identify OPCs (Eisenbarth, 1979; Dubois et al., 1986; Farrer et al., 1999). 

Furthermore, the cell surface proteoglycan, NG2, was also shown to be 

expressed in approximately 95% of A2B5+ve bipotential glia derived from the 

optic nerves (Stallcup & Beasley, 1987); whilst the expression of platelet derived 

growth factor receptor alpha (PDGFRα) is also commonly used as a means of 

identifying OPCs (Pringle et al., 1992). The expression of GalC and the binding of 

the oligodendrocyte 4 (O4) antibody, which recognises cell-surface sulfatides, 

seminolipids and a pro-oligodendrocyte antigen, are used to identify 

intermediate stages of differentiation, though both can persist throughout the 

maturation of oligodendroglial cells (Sommer & Schachner, 1981; Uchida et al., 

1981; Bansal et al., 1989). Mature oligodendrocytes and myelin sheaths can be 
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labelled with antibodies which recognise glycoproteins such as myelin basic 

protein (MBP), myelin oligodendrocyte protein (MOG) and proteolipid protein 

(PLP), amongst others (Baldwin & Carnegie, 1971; Lennon et al., 1971; Scolding 

et al., 1989). The antibody to PLP also recognises its splice variant, DM20, which 

can be detected in oligodendroglial cells before the onset of maturation and 

myelin formation thus, antibodies to PLP can also label less differentiated 

oligodendrocytes (Nave et al., 1987).  
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Figure 1.4 – The stages of oligodendroglial cell differentiation. Cells of the 
oligodendroglial lineage can be characterised in terms of their maturation status 
by their morphology and their expression of several antigenic markers. OPCs 
typically express NG2 and PDGFRα and label with the A2B5 antibody, which 
recognises cell-surface gangliosides. Intermediate markers include Gal C and the 
O4 antibody, which can also remain present in myelinating oligodendrocytes. 
Mature markers, such as PLP, MBP and MOG typically denote terminally 
differentiated oligodendrocytes and are also present throughout the myelin 
sheaths. The antibody to PLP also recognises its less mature isoform, DM20. 
Adult progenitors, thought to be derived from OPCs, express NG2 and PDGFRα 
and in some instances the O4 antibody. Although they are more branched than 
immature OPCs, they lack mature myelin markers, such as MBP, MOG or GalC. 
Modified from Zhang (2001) Nature Neuroscience Reviews 2: 840 -843 and 
www.frontiersin.org/NeuroendocrinScience/10.3389/fnins.2012.00010/full. 
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1.2.3.2.1  Factors Controlling Oligodendrocyte Differentiation 

The mechanisms which govern the differentiation of cells of the oligodendroglial 

lineage from progenitors into mature oligodendrocytes are highly complex and as 

yet, not fully understood. However, it is thought that an intricate balance of 

several factors which regulate survival, proliferation and differentiation are 

imperative for mediating these events. The presence of specific environmental 

cues can greatly influence the fate of progenitors; for example, the postnatal 

repertoire of growth factors favours gliogenesis as opposed to neurogenesis, thus 

most neurons are formed embryonically (Levison et al., 1993; Johe et al. 1996; 

Calver et al., 1998; Yandava et al., 1999). 

Platelet derived growth factor (PDGF), known to be secreted by Type-1 

astrocytes (Raff et al., 1988) is a potent mitogen and survival factor for 

oligodendrocyte precursor cells (OPCs) (Noble et al., 1988), which express the 

cell surface PDGFRα (of which there are α and β) (Hart et al., 1989a). Several 

studies have demonstrated the effects of PDGF on cells of the oligodendroglial 

lineage, such as the addition of increasing concentrations of PDGF in rat optic 

nerve cultures, which resulted in a significant decrease in the number of 

oligodendrocytes that underwent apoptosis (Barres et al., 1992). Furthermore, 

over-expression of PDGF in mice demonstrated the hyperproliferation of OPCs 

(Calver et al., 1998), thus emphasising the roles of PDGF on cell survival and 

expansion. Upon binding of PDGF, the PDGFR dimerises and subsequently 

activates signal transduction of anti-apoptotic pathways such as the phosphatidyl 

inositol 3 kinase (PI3-K) pathway. It is said that oligodendroglial cells eventually 

become mitogenically unresponsive to PDGF, perhaps due to disruption of 

downstream signalling pathways, thus inducing their differentiation (Hart et al., 

1989 b). 

Others expanded upon these findings by reporting that the heparin-binding 

growth factor, FGF, was also a potent mitogen for OPCs (Eccleston & Silberberg, 

1985). Unlike with PDGF alone, exposure to a combination of both bFGF and 

PDGF resulted in the sustained proliferation of perinatal OPCs in vitro and the 
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inhibition of their differentiation (Bogler et al., 1990; Noble et al., 1990). 

Furthermore, Wolswijk & Noble (1992) demonstrated that bFGF was also 

mitogenic for adult OPCs in vitro. McKinnon & colleagues (1991) reported that 

the synergistic effects of the combination of FGF with PDGF were likely due to 

the ability of FGF to positively regulate PDGFR expression on OPCs, as well as 

their sensitivity to PDGF; whilst PDGF was required to make bFGF treated OPCs 

motile (McKinnon et al., 1993). 

The actions of other regulators of oligodendrocyte maturation, such as 

transforming growth factor-beta (TGF-β), exert their effects by modulating the 

actions of PDGF (McKinnon et al., 1993) to cease proliferation and to enhance 

the differentiation state of cells of the oligodendroglial lineage. In addition, 

factors including neurotrophin 3 (NT3), neuregulin, glial growth factor-2 and 

leukaemia inhibitory factor (LIF); (Richardson et al., 1988; Barres et al., 1993; 

Cohen et al., 1996; Adachi et al., 2005) are also reported to be mitogenic for 

oligodendroglial cells. 

Insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-1) are 

also vital for regulating oligodendrocyte behaviour (McMorris et al., 1986; Ye et 

al., 1995, 2002). Ubiquitously present throughout the body, the effects of IGF-1 

and IGF-2 are mediated via the interaction with insulin-like growth factor 1 

receptor (type 1 IGF-1R). Binding to the IGF receptor leads to the subsequent 

activation of the anti-apoptotic pathways PI3-K and Akt, and thereafter, the 

activation of ERK-1 and ERK-2 which regulate the transcription of several cell 

survival factors, such as c-fos and c-jun (Feldman et al., 1997). IGFs under 

normal physiological conditions are usually bound to an insulin growth factor 

binding protein (IGFBP), of which there are 6 in total with differing structural 

characteristics depending upon their specialised function, so that their 

distribution can be targeted throughout the body whilst simultaneously 

stabilizing their metabolic clearance. In the CNS, it is thought that IGFs are 

produced by glial and neuronal cells and interestingly, IGF-1 is also reported to 

be abundant within the olfactory bulbs (Rotwein et al.,1988; Werther et al., 

1993; Russo et al., 1994) and olfactory epithelium (Federico et al., 1999). 
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The importance of IGFs and IGF-1R signalling on oligodendrocyte behaviour has 

unequivocally been demonstrated through various studies whereby treatment 

with IGF-1 in particular was shown to protect OPCs from glutamate induced 

excitotoxic death (Wood et al., 2007). Conditional knock out studies of IGF-1R in 

OPCs reported a decrease in the volume of the corpus callosum and anterior 

commissure, as well as a reduction in cell numbers of the NG2+ve and mature 

oligodendrocyte population and an overall reduction in myelination (Ye et al., 

2002; Zeger et al., 2007). Similarly, administration with IGF-1 into the rat spinal 

cord resulted in an increase in 2', 3'-cyclic nucleotide 3'-phosphohydrolase (CNP), 

which labels intermediate and mature/myelinating oligodendrocytes and myelin 

sheaths (Brunner et al., 1989), and an increase in overall myelin sheath 

formation (Goddard et al., 1999). 

As well as secreted factors, interactions with molecules within the extracellular 

matrix (ECM) can also affect the differentiation state of oligodendrocytes. For 

example, laminin has been demonstrated to potentiate the response of 

oligodendrocytes to growth factors such as PDGF (Frost et al., 1999; Colognato 

et al., 2002, Baron et al., 2003). Furthermore, the laminin-2 receptor α-

dystroglycan has been implicated in IGF-1 signalling in that si-RNA knock down 

studies of dystroglycan resulted in an inhibition of IGF-1-mediated 

differentiation of oligodendrocytes on a laminin substrate (Galvin et al., 2010), 

though it is not thought to play a role in cell survival. Conversely, the α6β1 

laminin receptor has been implicated more in the activation of the pro-survival 

pathways, PI3-K/ AkT (Colognato et al., 2002, 2004; Barros et al., 2009), thus 

suggesting that the effects of laminin on oligodendroglial cell behaviour may 

differ substantially depending upon receptor activation. 

In addition, Tenascin-C and Tenascin-R as substrates for oligodendroglial cells 

have been shown to inhibit aspects of maturation such as MBP expression (TnC), 

as well as oligodendrocyte process extension via Rho GTP signalling (TnC and 

TnR), and myelin formation (Kiernan et al., 1996; Nash et al., 2011). Studies of 

TnC KO OPCs suggested that whilst they demonstrated an increased rate of 

maturation, when cultured on PLL coated coverslips their survival was limited 

compared to wild-type controls, suggesting that the role of TnC in governing 
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oligodendroglial cell behaviour may be to confer protection against pro-

apoptotic signalling (Garwood et al., 2004). 

The Notch family is also considered to be important in mediating different 

aspects of oligodendroglial behaviour. The Notch receptor, present on OPCs, 

binds to its ligand, jagged 1 (expressed by astrocytes), to induce the activation 

of the transcription factors hairy and enhancers of split 1 and 5 (Hes1 and Hes5), 

which are suppressors of several genes controlling cell differentiation. Activation 

of the notch pathway controls the timely differentiation of oligodendrocytes, as 

was evidenced in a study of the rat optic nerve, whereby jagged 1 expression on 

the axons of retinal ganglion cells decreased temporally with the onset of 

myelination in the optic nerve tracts (Wang et al., 1998). Since the Notch 

receptor is said to be expressed in adult OPCs (Stidworthy et al., 2004) and in MS 

lesions (John et al., 2002), it is hypothesised to play a potential role in the 

remyelinative failure of the CNS during disease progression. However, Stidworthy 

and colleagues reported that the conditional knock down of Notch 1 in PLP 

expressing cells did not affect the rate of remyelination in a cuprizone lesion of 

the trigeminal tracts. Conversely, a study by Zhang et al., (2009) whereby Notch 

1 was inactivated in Olig 1 expressing cells in a mouse model of demyelination 

via administration of lysolethicin into the corpus callosum, remyelination was 

enhanced, thus suggesting that the inhibition of the Notch pathway mediated 

repair by suppressing the inhibition of oligodendrocyte differentiation. Whist 

PLP/DM20 is said to be a marker for both mature and immature oligodendroglial 

cells, Olig 1 expression is associated more with OPCs. Thus, these conflicting 

reports could be attributed to the differing maturation stages at which Notch 

was knocked down. Also, since both studies looked at remyelination in different 

areas, distinct differences in the surrounding cellular environment could also 

play a role in the control of oligodendrocyte differentiation and remyelination. 

The Wnt group, which consists of wingless and integration 3 (Wnt3), β catenin 

and transcription factor 4 (Tcf4), also acts upon oligodendrocytes to prevent 

their differentiation via the translocation of β catenin to the nucleus where it 

activates Tcf4 to suppress differentiation genes. Constitutively activated Wnt 

signalling in mice resulted in the delayed formation of myelin sheaths and the 
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appearance of mature oligodendrocytes, without an increase in OPC cell 

number, suggesting that the role of Wnt in oliogdendrocyte maturation is 

independent of proliferation (Feigenson et al., 2009). 

As mentioned throughout this thesis, cilliary neurotrophic factor (CNTF) is known 

to mediate aspects of oligodendroglial behaviour, such as cell survival, 

particularly against the activation of pro-apoptotic pathways via tumour necrosis 

factor alpha (TNFα) (Barres et al., 1993; Tsukamoto et al., 1995; D’Souza et al., 

1996). Proliferation of OPCs from the optic nerve is also said to be enhanced by 

increased expression of CNTF, whilst mice with ablated CNTF expression exhibit 

a reduction in OPC proliferation and eventual losses in oligodendrocyte numbers 

(Barres et al., 1996). CNTF also plays a role in oligodendrocyte maturation, in 

that an increase in CNTF in cultures of OPCs resulted in increased MBP 

expression compared with controls. The mechanisms underlying this CNTF-

mediated enhancement of differentiation do not appear to be oligodendrocyte 

specific, however, given that this treatment can also induce the differentiation 

of OPCs into astrocytes in culture depending upon the extracellular 

environment. Furthermore, myelination is enhanced by CNTF in vitro, probably 

indirectly via astrocyte secreted factors, (Nash et al., 2011) and in vivo when 

OPCs over-expressing CNTF where transplanted into the contused thoracic spinal 

cord of rats (Cao et al., 2010). 

1.2.3.2.2  Intrinsic Differentiation of Oligodendrocytes 

Whilst the importance of environmental cues on oligodendrocyte differentiation 

has been discussed, it has also been reported that oligodendrocytes may 

differentiate in response to intrinsic mechanisms. For example, cultures of OPCs 

derived from the embryonic brain proliferated a set number of times before 

forming oligodendrocytes around the time when the donor animals would have 

been born and thus, oligodendrogliogenesis would have begun (Abney et al., 

1981). Furthermore, Noble & Murray (1984) demonstrated that OPCs developed 

into oligodendrocytes in the presence of Type 1 astrocytes, regardless of the age 

of the astrocyte, which could arguably alter the micro-environment in which the 
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OPCs were grown. These findings were therefore interpreted as suggesting that 

intrinsic mechanisms within OPCs cells also controlled their differentiation. Most 

compellingly, studies of clonally related OPCs reported that these cells displayed 

a tendency to undergo differentiation after a similar number of divisions 

(Temple & Raff, 1986). It has been suggested that the cyclin-dependent kinase 

(Cdk) inhibitor, p27/Kip 1, progressively accumulates in OPCs as they proliferate 

and is present at high levels in oligodendrocytes, thus suggesting that the 

accumulation of p27 is part of the intrinsic counting mechanism that ceases 

precursor cell proliferation to initiate differentiation by arresting the cell cycle 

(Durand et al., 1997).  
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1.2.4  Myelination of CNS axons  

Myelination, first described by Virchow (1846), occurs by the wrapping of axons 

in lipid-rich extensions of the plasma membrane of oligodendrocytes in the CNS 

in order to improve their conduction velocity. A single oligodendrocyte is 

capable of extending multiple processes to simultaneously wrap several axons in 

myelin segments, known as internodes. These internodes of myelin are 

separated by nodes of Ranvier, whereby the axolemma is exposed to the 

extracellular space (Figure 1.5), thus allowing for action potentials to jump from 

node to node via Saltatory conduction. It has been reported that both NG2+ve glia 

and astrocytes contact axons at the nodes of Ranvier (Black & Waxman, 1988; 

Butt et al., 1999), though the reasons for this are not yet fully understood. 

Compact myelin can be characterized by the periodicity of electron dense and 

light layers; whilst the cytoplasmic loops, which form around the axon at the 

inner and outer ends of the myelin sheath, known as paranodal loops, represent 

less compact areas (Rosenbluth et al., 1995). Recent advances in ex vivo imaging 

have provided novel evidence to suggest that following initial axoglial contact, 

myelination may proceed by the initial spiralling of oligodendrocyte processes 

around the axon followed by the thickening up and spreading of “cuffs” of 

myelin which join together to form longer internodes; termed the ofiomosaic 

(serpent) model (Bauer et al., 2009; Sobottka et al., 2011; Ioannidou et al., 

2012). 

Myelination proceeds caudorostrally in the brain and rostrocaudally in the spinal 

cord, with the peak of myelination typically occurring in the first year of life in 

humans, although it can continue into adolescence in associated brain areas, 

such as the hippocampus (Yakolev & Lecours, 1966; Baumann & Pham-Dinh, 

2001).  
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Figure 1.5 – Oligodendrocyte myelination. A mature oligodendrocyte can extend 
its processes to wrap several adjacent axons in internodes of compact myelin, 
which is composed of several glycolipids and proteins to provide electrical 
insulation. Rapid transmission is achieved by Saltatory conduction, whereby 
action potentials propagate along gaps in the myelin internodes, known as nodes 
of Ranvier, where sodium channels are clustered, thus increasing velocity. 

1.2.4.1 Composition of Central Myelin 

The dry mass of myelin is comprised of approximately 70-85% lipids and 15-30% 

proteins. Of the lipid component, galactocerebroside is thought to be the most 

abundant, along with lecithin and cholesterol; whilst sphingomyelin is less 

prolific but is thought to strengthen the myelin sheath (Gregson et al., 1974; 

Jungalwala, 1974; Gould & Dawson, 1976). 

Proteolipid protein and myelin basic protein are the major proteins in central 

myelin (Omlin et al., 1982; Brenner et al., 1989) and are thought to be vital in 

regulating the compaction of myelin. For example, MBP/ PLP mutants show 

abnormalities in the major dense lines of their myelin sheaths (Klugmann et al, 

1997; Stoffel et al., 1997). The CNS-specific glycoprotein, myelin 

oligodendrocyte glycoprotein (MOG) is located in the most superficial layers of 

the myelin sheath (Linington et al., 1988). As such, MOG has been implicated in 
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the pathology of autoimmune disorders targeting the myelin sheath in that 

subsets of patients with neuromyelitis optica (NMO) (Kitley et al., 2012) and 

multiple sclerosis (MS) (Zhou et al., 2006; Elliot et al., 2012) demonstrate the 

presence of autoantibodies against MOG, which can trigger the activation of 

complement-induced cell death. Myelin-associated glycoprotein (MAG) is a minor 

protein component of the myelin sheath (Linington et al., 1984; Trapp et al., 

1987). 2’,3’-cyclic nucleotide 3’-phosphohydrolase, known as CNP, is not present 

in compact myelin layers but is abundant in the paranodal loops (Sprinkle et al., 

1980; Trapp et al., 1988). The aforementioned markers are only some of those 

found in the myelin sheaths. For example, labelling with the O4 antibody 

demonstrates its presence throughout the myelin sheath (Schiff & Rosenbluth, 

1995), and as yet there may be some myelin-specific proteins and lipids which 

remain undiscovered. 

1.2.4.2 Organisation of the Myelin Sheath in the CNS 

The myelin sheath contains a series of domains, namely the internode, the 

paranodal region and the juxtaparanode (Salzer et al., 2003), whereby the 

accumulation of myelin proteins and the correct organisation of specific 

molecules is thought to be crucial for maintaining axoglial contact and in 

mediating the function of the myelin sheath (Figure 1.6). For example, the 

neuronal-specific adhesion molecule neurofascin 186 (Nf186) is located at the 

nodes of Ranvier (Tait et al., 2000), along with voltage-gated sodium channels 

(Nav) (Rasband & Trimmer, 2001), which aid the propagation of action potentials 

along the axon. Ankaryin G has been reported as a requirement for the 

clustering of Nav channels (Zhou et al., 1998); although it has also been 

suggested that oligodendrocyte contact may induce Nav channel clustering at the 

nodes of Ranvier (Kaplan et al., 1997). The adhesion molecules contactin and 

axonal contactin-associated protein (Caspr) are observed at the paranodal 

regions of the axon (Einheber et al., 1997; Rios et al., 2000). Furthermore, the 

oligodendrocyte-specific adhesion molecule Nf155 is located at the paranodal 

loops where it apposes Caspr and contactin (Tait et al., 2000). The ablation of 

glia-specific Nf155 resulted in the gradual loss of paranodal axoglial junctions 

(Pillai et al., 2009), thus highlighting its importance in maintaining the structure 

of the myelin sheath. 
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Figure 1.6 – Organisation of CNS myelin sheaths. The formation of compact 
myelin requires the correct assembly of a serious of proteins, which are thought 
to mediate axonal/ oligo contact, such as neurofascin 155 and 186 (Nf155; 
Nf186), Caspr and contactin and Nogo along with its receptor, NgR1. Sodium 
channels (Nav) cluster at the nodes of Ranvier, whilst potassium channels are 
located at the juxtaparanodal region of the axolemma to aid the propagation of 
action potentials. The glycoprotein, myelin oligodendrocyte glycoprotein (MOG), 
is thought to be located in the most superficial layers of the myelin sheath; 
whilst myelin associated glycoprotein (MAG) is reported to be concentrated at 
the innermost layers of the myelin sheath, apposing the axolemma. CNP is most 
abundant at the paranodal loops. Diagram was drawn based on Mayer et al., 
(2012) Journal of Neurological Sciences. 319 (1-2) p 2-7, with modifications.  

1.2.4.3 The Role of Astrocytes in Myelination 

There is compelling evidence amongst the literature to suggest that astrocytes 

play a role in CNS myelination. Using a culture system of RGCs, purified OPCs 

and optic nerve-derived astrocytes, Watkins et al., (2008) demonstrated that the 

presence of these astrocytes enhanced the thickness of the myelin sheaths. In 

addition, Sørenson et al., (2008) reported that an astrocyte monolayer was 

imperative for the induction of myelination in embryonic spinal cord cultures 

derived from the rat. Using the same culture system, it was reported that direct 

modulation of the astrocyte monolayer phenotype using cytokines such as the 

pro-myelinating factor, CNTF, increased endogenous myelination (Nash et al., 

2011). In vivo, it has been demonstrated that astrocytes within the rat optic 

nerve begin to synthesize CNTF at the end of the first post-natal week, which 

correlates with the onset of myelination (Stockli et al., 1991; Dobrea et al., 

1992; Colello et al., 1995). ffrench-Constant and Raff (1986) also suggested that 

the so-called Type 2 astrocytes had a specialised role to play in regulating 
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myelination, given that their processes associated with nodes of Ranvier on 

myelinated axons and they were abundant throughout white matter tracts. 

Furthermore, GFAP expression is said to increase in the CNS during 

myelinogenesis (Jacque et al., 1980); whilst a null mutation for GFAP caused 

abnormal myelination (Liedtke et al., 1996). However, the precise mechanisms 

by which astrocytes mediate their effects on CNS myelination have yet to be 

fully elucidated.  

1.2.5 Schwann Cells 

Schwann cells (SCs) make up the most numerous glial cell population in the PNS, 

where their role is to myelinate axons and to assist in the regeneration of 

peripheral nerves following damage, which will be discussed in more detail in 

section 1.3.1. 

1.2.5.1 Schwann Cell Origin  

SCs originate from Schwann cell precursors (SCPs), which are derived from 

neural crest stem cells (NCCs) (Grim et al., 1992; Jessen et al., 1994; 

Riethmacher et al., 1997). The lateral migration of NCCs from the neural tube is 

said to drive their differentiation into melanocytes, whilst ventrally migrating 

NCCs become neurons and glia, suggesting that the fate of NCCs may be pre-

determined to some extent (Jessen & Mirsky, 2005). There is also evidence to 

suggest that transplanted NCCs can differentiate into cells of the 

oligodendroglial lineage following transplantation into the CNS of a 

dysmyelinated mouse model (Bindel et al., 2011). 

In rats, SCPs appear at approximately embryonic day 14-15 (E14-15), which then 

differentiate into immature SCs around E15-17 and finally mature myelinating 

and non-myelinating SCs from E18 onwards (Jessen et al., 1994; Dong et al., 

1995). (Figure 1.7). Although SCPs can produce neurons, it is thought that they 

are biased towards SC differentiation since they appear less responsive to pro-

neurogenic factors, such as BMP-2 (White et al., 2001; Kubu et al., 2002; Jessen 

& Mirsky, 2005). Furthermore, the numbers of SCPs declines as differentiated 
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SCs appear, whilst SCP-lacking mice mutants do not produce SCs (Britsch et al., 

2001), thus suggesting the likelihood that SCPs are responsible for generating 

SCs. It is postulated that the role of SCPs during development, asides from being 

a source of SCs, is to aid the survival of neurons. Prior to gliogenesis, SCPs 

associate closely with developing nerves and in mice lacking SCPs, neuronal 

survival is poor (Garratt et al., 2000). 

Boundary cap cells from the neural crest, which are involved in the formation of 

the boundaries between the CNS and PNS can also differentiate into subsets of 

neurons, satellite cells and the SCs in the dorsal and some ventral roots (Murphy 

et al., 1996; Maro et al., 2004). However, there are no boundary cap-derived SCs 

in limb nerves, suggesting the existence of 2 populations of SCs with differing 

origins. Following transplantation into the rodent CNS, boundary cap cells can 

also become neurons, oligodendrocytes and astrocytes according to fate-

mapping studies (Zujovic et al., 2011). 
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Figure 1.7 – Schwann cell differentiation from neural crest derived SCPs. SCPs 
from neural crest derived stem cells differentiate into immature SCs, which then 
give rise to mature myelinating and non-myelinating SCs. The low-affinity NGF 
receptor p75NTR labels cells of the SC lineage throughout differentiation, 
though its expression is lost in myelinating SCs. Similarly, whilst myelin protein 
zero (MPZ/P0) gene expression can be detected throughout the SC lineage, P0 is 
massively up-regulated at the protein level in myelinating SCs, whilst its 
expression is lacking in non-myelinating cells. Similar increases in myelin 
proteins such as MBP are also confined to pro-myelinating/ myelinating SCs, as is 
the expression of the transcription factor Krox-20. Whilst SCPs and immature SCs 
associate with bundles of axons, the establishment of 1:1 SC/axon relationships 
precedes the onset of myelination. Adapted from Jessen & Mirsky Nature 
Reviews Neuroscience (2006) 6 p671-682 and Zorick & Lemke Current Opinion in 
Cell Biology (1996) 8 p 870-876. 
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1.2.5.2 The Survival of Cells from the Schwann Cell  Lineage 

Prior to differentiation, the number of SCs being generated is carefully regulated 

by counterbalancing pro-survival and apoptotic mechanisms to ensure that the 

appropriate number of SCs is generated to match axonal numbers (Komiyama et 

al., 1992). Activation of the p75NTR can trigger pro-death signalling in SCs to 

reduce cell numbers, as in vitro studies have shown that SCs derived from p75NTR 

deficient mice show enhanced survival in response to serum and growth factor 

withdrawal (Syroid et al., 2000). Similarly, TGF-β, which can be expressed by 

SCs themselves, can also induce apoptosis, though this effect is likely to be 

under strict developmental control, since mature SCs are less susceptible to 

TGF-β-induced cell death (Parkinson et al., 2001).  

Conversely, axons are thought to be crucial sources of neuregulins, as NRG1 

accumulates in DRGs and axonal tracts during development (Marchionni et al., 

1993; Longart et al., 2004), where it is said to aid the survival of SCPs and 

increase their proliferation (Dong et al., 1995; Morris et al., 1999; Woldeyesus et 

al., 1999). However, this survival-enhancing effect mediated by axons is 

reciprocated, as SCP-deficient mice mutants showed limited neuronal survival in 

limb nerves (Garrat et al., 2000; Britsch et al., 2001). Unlike SCPs, which rely 

upon factors secreted by neurons, such as NRG1, for their survival (Dong et al., 

1995), immature and mature SCs can reduce their vulnerability to programmed 

cell death via autocrine signalling of factors such as IGFs, NT3, PDGFβ and LIF 

(Chen et al., 1998; Dowsing et al., 1999; Meier et al., 1999; Weiner et al., 1999). 

IGF-1 has been shown to rescue SCs from apoptosis induced by serum deprivation 

by inhibiting the JNK pathway, via activation of PI3K (Cheng et al., 2001). 
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1.2.5.3 Factors Influencing Schwann Cell Differenti ation 

Each stage of SC differentiation can be characterised by morphological and 

antigenic changes (Figure 1.7). The low-affinity NGF receptor p75NTR is commonly 

used as marker of non-myelinating SCs, and is present from the precursor stage 

and throughout differentiation until it is down-regulated in myelinating SCs 

(Bonetti et al., 1997). The expression of N-CAM follows a similar pattern 

throughout SC differentiation. The most striking antigenic difference between 

(pro) myelinating and non-myelinating SCs is the up-regulation of myelin 

proteins, including MBP and myelin protein zero (MPZ/P0) in the former cell 

type, which will be discussed in more detail in section 1.2.6.1 (Zorick & Lemke, 

1996; Jessen & Mirsky, 2006). Although it is more commonly associated as being 

an astrocytic marker, GFAP also labels non-myelinating SCs in vitro and in vivo 

(Garrat et al., 2000; Chen et al., 2006). The transcription factor SCIP/Oct 6 

(suppressed cAMP-inducible POU), is absent in myelinating SCs (Scherer et al., 

1994), whilst Krox-20 is up-regulated only in pro-myelinating and myelinating 

SCs. (Zorick & Lemke, 1996; Parkinson et al., 2005; Jessen et al., 2006). 

The control of SC differentiation is mediated via several factors. Whilst SOX10 is 

expressed by all NCCs, in SOX10 inactivated mice radial glia and SCPs are missing 

(Britsch et al., 1998, 2001, Paratore et al., 2001). Neuregulin 1β (NRG1) is also 

thought to be crucial for aspects of SC behaviour, given that pre-incubation of 

SCPs with neutralising antibodies to NRG1 reduced SC differentiation (Morrissey 

et al., 1995 a,b). Furthermore, NRG1 treatment of neural crest cells decreased 

neurogenesis in culture, suggesting a bias towards gliogenesis (Shah et al., 

1994). It has been postulated that the role of SOX10 may be to increase the 

receptiveness of SCs to NRG1, since SOX10 mutants decrease their expression of 

the NRG receptor, ErbB3 (Britsch et al., 1998). 

Similarly, Notch activation inhibits neurogenesis in cultures of SCs, which 

correlates with an increase in SC differentiation, thus suggesting that Notch 

could also be a key mediator in the direct or indirect control of gliogenesis 

(Morrison et al., 2000; Wakamatsu et al., 2000; Kubu et al., 2002), although its 

activation inhibits SC myelination (Woodhoo et al., 2009). TGF-β is also a 
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negative regulator of myelination in DRG cultures (Einheber et al., 1995; 

Guenard et al., 1995). 

Other transcription factors noted to affect myelination in SCs are SCIP/Oct 6 and 

Krox-20. The down-regulation of SCIP/Oct 6 coinciding with the onset of 

myelination is said to be necessary for the increased expression of myelin genes, 

given that SCIP suppresses the P0 and MBP promoters (Scherer et al., 1994). 

Conversely, Krox-20 is thought to be crucial in regulating myelination by 

suppressing the JNK pathway, since SCs from Krox-20 KO mice can establish 1:1 

relationships with axons but cannot initiate myelination or the necessary up-

regulation of myelin genes (Topilko et al., 1994; Zorick & Lemke, 1996; 

Parkinson et al., 2005; Jessen et al., 2006). 

As previously stated SCPs are multipotent but immature SCs appear to be 

committed solely to differentiating into mature myelinating and non-myelinating 

SCs, as evidenced by their resistance to pro-neurogenesis factors such as FGF-2 

and BMP-2 (Sherman et al., 1993; Morrison et al., 2000). Mature SCs can, 

however, de-differentiate into immature SCs, often in response to injury 

(Stewart et al., 1993; Scherer, 1997; Dupin et al., 2003). It is thought that the 

likelihood of an immature SC to take on a myelinating or non-myelinating 

phenotype is largely dependent upon axonal contact, with large calibre fibres 

inducing the induction of the former phenotype. Furthermore, these phenotypes 

are said to be reversible, in that a non-myelinating SC can transform into a 

myelinating SC when in contact with the correct axonal signal, and vice versa 

(Wilkins et al., 1997; Simons & Trotter, 2007).  
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1.2.5.4 Requirements for Culturing Schwann Cells 

In culture, reagents to elevate cAMP levels can be used to influence SC 

behaviour, thus mimicking the effects of axonal contact. It has been shown in 

vivo that an increase in the level of cAMP enhances the differentiation of pro-

myelinating SCs into myelinating SCs (Monuki et al., 1989, 1990; Wegner et al., 

2000, 2001). The combination of cAMP elevation and FGF-2 in vitro results in 

increased SC proliferation, whilst in the absence of FGF-2 SCs are encouraged to 

differentiate (Morgan et al., 1991). NRG 1 also enhances the proliferation of SCs 

in culture and its effects can be potentiated by the presence of forskolin (Raff et 

al., 1978; Morrisey et al., 1995). 

Typically, protocols for growing SCs include serum in the media, since serum 

deprivation can induce programmed cell death in SCs (Maurel & Salzer, 2000). A 

study by Stewart et al., (1991) demonstrated that the presence of serum wasn’t 

required to induce the mitogenic effects of PDGF, FGF or neuregulin. 

Conversely, without serum, which contains unknown quantities of growth 

factors, the mitogenic effects of TGF-β were abolished. Similarly, in serum-free 

defined media, SCs failed to form a basal lamina or to myelinate DRGs in co-

culture (Eldridge et al., 1987). However, these researchers demonstrated that 

the addition of human placental serum and chick embryo extract was sufficient 

to induce basal lamina formation and myelination in culture and this effect 

could also be reproduced when cultures were grown in the presence of serum 

and ascorbic acid.  Thus, the use of ascorbic acid in serum-containing media is 

now common place in DRG/SC co-cultures where myelination is being studied 

(Maurel et al.,2000; Melli et al., 2009; Limpert & Carter., 2010). 
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1.2.5.5 Schwann Cell Purification 

Early reports indicated the presence of both fibroblasts and SCs in peripheral 

nerves (Brockes et al., 1979). However, these researchers showed that in the 

absence of mitogens (other than those present in serum) fibroblasts divided 

rapidly in culture, whilst SCs divided more slowly. Furthermore, cultured 

fibroblasts expressed the Thy-1.1 antigen whereas SCs did not. Brockes & 

colleagues (1979) exploited these fundamental differences in order to generate 

purified cultures of SCs. They exposed 2 day old cultures to cytosine arabinoside 

(AraC) to kill off the rapidly dividing fibroblasts (Aguayo et al., 1975), before 

placing the remaining cells into medium containing an extract of bovine pituitary 

extract to support the growth of SCs. However, the resulting cultures were only 

80-90% pure. Thus, an antiserum to Thy-1.1 was added to cell suspensions along 

with rabbit complement to kill of any remaining Thy-1.1+ve cells. Thereafter, the 

cultures were reported to be approximately <95% pure for SCs. The use of AraC 

followed by a Thy-1.1 complement-mediated kill is now a commonly used 

protocol for generating highly purified cultures of SCs (Weinstein & Wu, 1999; 

Lakatos et al., 2000; Fairless et al., 2005; Honkanen et al., 2007; Higginson et 

al., 2012). 

 

1.2.6 Peripheral Myelination by Schwann Cells 

Myelination in the peripheral nervous system begins with the radial sorting of 

axons according to calibre and the establishment of 1:1 axon/SC relationships, 

from approximately E18 (Chen et al., 2003; Xu et al., 2005; Yang et al., 2005). 

This process requires the initial production of a layer of ECM by SCs, known as a 

basal lamina, as studies of β1-integrin deficient mice show defects in radial 

sorting (Feltri et al., 2002; Li et al., 2005; Benninger et al., 2007; Grove et al., 

2007; Nodari et al., 2007). The role of the basal lamina is to induce polarity of 

the SC/axon complex and to aid the orientation of the SC in relation to its 

environment and the axo-glial interface. The attachment of SCs to axons is 

postulated to be mediated via factors including nectin-like 1 (Necl1) in axons 

and nectin-like 4 (Necl4) in SCs, which accumulates at the periaxonal surface in 

the region where the myelin internode would develop (Maurel et al., 2007; 
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Perlin et al., 2007; Park et al., 2008). Gliomedin is also instrumental in 

facilitating this axo-glial contact, in addition to inducing the clustering of 

sodium channels to the nodes of Ranvier (Eshed et al., 2005; Feinberg et al., 

2010). 

Once this 1:1 relationship has been established, the SC extends its cytoplasmic 

folds several times around the axon to form compact myelin (Figure 1.8). Each 

layer consists of a double thickness of the plasma membrane, except at the 

innermost layer where part of the SC cytoplasm gets left behind (Bunge et al., 

1989). A SC synthesizes just one myelin internode on a single axon with two half 

nodes of Ranvier (Garbay et al., 2000). Unlike myelinated fibres in the CNS, 

peripherally myelinated axons are surrounded by a continual SC basal lamina 

(Raine, 1984). Non-myelinating SCs ensheathe groups of small calibre C fibres in 

a basement membrane, forming what are known as Remak bundles, whereby 

individual unmyelinated axons remain segregated by SC processes. It has been 

suggested that the role of non-myelinating SCs is to enhance neuronal survival, 

as mutant mice with extensive SC loss show limited survival of unmyelinated C 

fibres (Chen et al., 2003). 

 
 
Figure 1.8 – Myelination of Peripheral Axons. A 1:1 relationship is established 
between SCs (pale green) and axons in pro-myelinating cells (a), which coincides 
with the development of a SC basal lamina surrounding the SC/axon complex 
(dark blue). Myelination proceeds with the extension of the SC cytoplasm 
wrapping itself around a single axon several times to form 1 internode of myelin, 
which has a double thickness of the plasma membrane at each layer (b). 
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1.2.6.1 Composition of Peripheral Myelin 

The gross structure of the peripheral myelin sheath is similar to that of central 

myelin, in that it also contains myelin internodes, juxtaparanodes, paranodal 

loops and nodes of Ranvier (Peters et al., 1966; Nasu et al., 1987). Peripheral 

myelin sheaths also contain Schmidt-Lanterman clefts, which run spirally 

throughout the myelin sheath to increase space and to ensure access to all 

aspects of the myelin structure, though these are less common in the CNS 

(Ghabriel et al., 1980 a.b; Small et al., 1987; Baumann & Pham-Dinh, 2001).  

Like CNS myelin, peripheral myelin is also rich in lipids, which account for 

approximately 70% of its dry weight. However, the concentrations of specific 

lipids may vary between peripheral and central myelin. For example, 

sphingomyelin is more enriched in the PNS where it makes up approximately 20-

35% of the lipid content, versus 3-8% in the CNS (Norton, 1984). In addition, the 

ganglioside GM4 is notably absent from peripheral myelin, whilst LM1 is specific 

to the PNS (Fong et al., 1976; Chou et al., 1985; Fredman et al., 1991). 

Similarly, the protein composition of the myelin sheath can vary between the 

PNS and the CNS (Table 1.2). In the periphery, the major proteins are the 

glycoproteins P0 and PMP22, which are absent from the CNS, followed by MBP 

(Kitamura et al., 1976; Roomi et al., 1978; Smith et al., 1979).The importance of 

P0 has been demonstrated in P0 null mice, which lose the interperiodic lines 

associated with the compaction of the myelin sheath (Martini et al., 1995 a,b). It 

is postulated that the role of MBP is also to aid the compaction of the peripheral 

myelin sheath, as is the case in the CNS (Omlin et al., 1982; Martini et al., 1995 

a). Periaxin is another PNS-specific myelin protein, and is located at the 

periaxonal surface where it makes up 5% of the total myelin protein content in 

peripheral nerves (Shuman et al., 1983). PLP is present at relatively low levels in 

peripheral nerves; whilst MAG, present at the periaxonal space and in the 

paranodal loops and Schmidt-Lanterman incisures constitutes another minor 

protein in peripheral myelin (Sternberger et al., 1979; Trapp et al., 1989). The 

central myelin proteins MOG and OMgp are notably absent from the peripheral 

myelin sheath, though one group reported the presence of MOG mRNA associated 
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with SCs in rodents and primates, whilst non-myelinating SCs were shown to 

express cytoplasmic MOG in vitro (Pagany et al., 2003).  

 
 
Table 1.1 – Differences in myelin composition between CNS and PNS. Whilst PLP 
and MBP are the dominant proteins in CNS, constituting approximately 70% of 
the total protein in the myelin sheath, in the periphery the PNS-specific 
glycoproteins P0 and PMP22 constitute the majority of the protein content. 
Similarly, the contribution of O4 and GalC are slightly greater in the CNS than 
the PNS. Periaxin and P2 are also proteins specific to PNS myelin, whilst the 
minor glycoproteins MOG and OMgp are only found in central myelin. 
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1.2.7 Olfactory Ensheathing Cells (OECs) 

Olfactory ensheathing cells (OECs) were originally described as the Schwann cells 

of the olfactory system due to their antigenic and morphological properties 

(Gasser, 1956; De Lorenzo, 1957; Frisch, 1967; Doucette, 1990), but it became 

clear from further research that they are in fact a distinct and specialised 

population of glial cell, which can reside in both the PNS and the CNS (Barnett et 

al., 1993).  

 

Olfactory receptor neurons (ORNs) are responsible for detecting odour and 

transmitting sensory information via action potentials from the peripheral 

olfactory nerve in the olfactory mucosa (OM) to the centrally located olfactory 

bulbs (OBs), and then finally to the olfactory cortex via second order neurons, 

where this information can be processed (Gomez and Celli, 2008) (Figure 1.9). 

Unlike most adult CNS tissues, ORNs are unique in that they undergo 

neurogenesis throughout life to allow for normal cell turnover (approximately 

every 6-8 weeks; Carr & Farbman, 1993) and to replace cells damaged in 

response to noxious stimuli (Graziadei & Monti-Graziadei, 1978a, 1979; Farbman, 

1990, 1992). Furthermore, axons from regenerating ORNs are able to extend and 

transcend the boundary between the PNS and CNS, which is in contrast to other 

regenerating PNS axons, which fail to penetrate the dorsal root entry zone to 

successfully re-enter the CNS (Liuzzi & Lasek, 1987; Stensass et al., 1987; 

Carlstedt et al., 1989).  

 

The term “olfactory ensheathing cell” was assigned to these cells due to their 

ability to closely associate with ORNs by ensheathing many unmyelinated axons 

in a continuous basal lamina to form the olfactory nerves. In addition, OECs are 

hypothesised to be fundamental in mediating the continual neurogenesis of the 

olfactory system by directing neurite outgrowth, whilst guiding regenerating 

ORNs from the periphery to the centrally located olfactory bulbs (Graziadei & 

Monti-Graziadei, 1978a, 1979; Farbman, 1990, 1992; Lindsay et al., 2010).  
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Figure 1.9- Schematic depicting the central and peripheral regions of the 
olfactory system. The olfactory system consists of the peripheral olfactory 
mucosa located in the dorsal region of the nasal cavity and a central component, 
comprising of the olfactory bulbs (a). The olfactory mucosa can be further 
divided into the olfactory epithelium, containing olfactory receptor neurons 
(ORNs), and the lamina propria, which contains mesenchymal stem cells and 
OECs. During normal cell turnover or in response to noxious stimuli, globose 
basal and horizontal basal cells in the olfactory epithelium are stimulated to 
regenerate the olfactory epithelium, whilst regenerating axons from ORNs 
extend through the cribriform plate where they re-enter the CNS to synapse with 
2nd order neurons in the olfactory nerve fibre layer (ONL) in the olfactory bulbs 
(b). The regenerative capacity of the olfactory system has been widely 
attributed to the presence of OECs, which ensheath ORN axons, guiding them to 
their target destination, as well as the stem cells in the olfactory epithelium. 
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1.2.7.1 Development of OECs 

OECs are classically described as being derived from the olfactory placode 

(Verwoerd & van Oostrum, 1979; Couly et al., 1985; Chuah et al., 1991). 

However, a repeat of these original fate-mapping studies has suggested that 

OECs may be derived from the neural crest, as with SCs (Barraud et al., 2010). 

These researchers grafted the anterior neural fold, which forms the olfactory 

placode (Couly et al., 1985) from a GFP+ve donor into a wild-type host to show 

that the OECs present throughout the olfactory nerve were p75NTR+ve but negative 

for the expression of GFP, suggesting that they could not have migrated from the 

olfactory placode. Furthermore, NCCs are thought to form the lamina propria 

and Barraud et al., (2010) also reported that NCCs from GFP+ve donors labelled 

p75 NTR positive OECs in the olfactory nerves. This data could perhaps suggest a 

dual origin for the development of OECs. 

 

1.2.7.2  The Peripheral Olfactory System: Olfactory Epithelium 

The olfactory mucosa of the peripheral olfactory system is located in the dorsal 

region of the nasal cavity and is comprised of an olfactory epithelium and a 

lamina propria and both regions are compartmentalised by the presence of a 

basal lamina (Doucette, 1990). Within the epithelium, sustentacular cells 

provide support for olfactory receptor neurons (ORNs) (Schwob, 2002), whilst 

putative stem cells, the globular basal cells (GBCs) (Graziadei & Monti-Graziadei, 

1979; Caggiano et al, 1994; Huard et al., 1998) and horizontal basal cells (HBCs) 

(Mackay-Sim and Kittel, 1991; Carter et al., 2004; Leung et al., 2007) are 

thought to be responsible for replacing ORNs as well as other cellular 

components of the olfactory mucosa. More specifically, GBCs are thought to give 

rise to olfactory glia, neurons and the sustentacular cells of the olfactory system 

following moderate damage or normal cell turnover, whilst HBCs have been 

shown to give rise to GBCs as well as glia and the aforementioned cell 

populations. It is thought that the HBC response is more associated with severe 

damage to the olfactory system (Leung et al., 2007; Lindsay et al., 2010).  
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1.2.7.3 The Peripheral Olfactory System: Lamina Propria  

The lamina propria (LP) is the underlying connective tissue containing the 

extending axons of ORNs, which are organised into bundles as they traverse into 

the CNS (Graziadei, 1971; 1973). At approximately 0.1–0.4 µm in diameter, these 

axons fall below the threshold diameter for myelination and therefore, remain 

unmyelinated within the olfactory system (Field et al., 2003). However, these 

fibres are ensheathed in basement membrane by the peripheral OECs residing 

within the lamina propria as they course to the olfactory bulb in the CNS. Recent 

data has also demonstrated the presence of a STRO-1 positive population of 

mesenchymal-like stem cells (MSCs) in this tissue in the rat (Tomé et al., 2009) 

and in human tissue (Delorme et al., 2010; Lindsay et al., 2010). Furthermore, 

non-myelinating Schwann cells reside in the lamina propria, where they 

associate with unmyelinated sympathetic axons and blood vessels, though these 

cells are difficult to distinguish from OECs given their almost-identical antigenic 

and morphological profile.  

 

1.2.7.4 The Central Olfactory Bulbs 

The anatomy of the olfactory bulb is somewhat more complex than that of the 

mucosa. Positioned ventrally to the orbital surface of the frontal lobe of the 

brain, the olfactory bulb is comprised of, from the most superficial tissue level 

inwards: the outer olfactory nerve fibre layer, the glomerular layer, the external 

plexiform layer, the mitral cell layer, the internal plexiform layer and the 

granule cell layer (Doucette, 1990). ORNs penetrate the nerve fibre layer before 

going on to terminate and form specialised odour-specific synaptic 

configurations, known as glomeruli, within the glomerular layer with 

mitral/tufted cells, whose axons extend into the olfactory tract. Fine-tuning of 

odour recognition is mediated via the inhibitory regulation of these mitral cells 

by interneurons (granule cells) in the granule layer of the olfactory bulb. From 

the olfactory tract, mitral cell axons project to the olfactory cortex of the brain, 

which in turn outputs to brain regions such as the hypothalamus, hippocampus 

and amygdala to process important emotional/behavioural aspects of olfaction. 

The superficial layers of the olfactory bulb also contain OECs as well as 

astrocytes and meningeal fibroblasts (Doucette., 1990; Schwob et al., 1992). 
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1.2.7.5 The Myelinating Capacity of OECs 

Although Devon & Doucette (1995) reported the myelination of DRG neurites by 

OB-OECs in vitro in the absence of ascorbic acid, others have been unable to 

reproduce these results in vitro, regardless of the culture conditions (Plant et 

al., 2002), thus the issues surrounding the myelinating potential of OECs in 

culture has remained controversial. A recent study, however, has reported that 

OECs myelinated DRG neurites in culture in the absence of ascorbic acid, but 

that this process did not get underway until 3wks in vitro and 7 days after the 

induction of SC myelination in DRG/SC cultures containing serum and ascorbic 

acid (Babiraz et al., 2011). These findings could explain conflicting reports 

regarding the myelinating capacity of OECs in vitro.  As previously stated, ORNs 

are unmyelinated, thus OECs are non-myelinating cells in situ under non-

pathological circumstances. Whilst this is thought to be due to the fact that 

axons of ORNs fall below the threshold diameter at <1 µm, it could also be 

argued that the micro-environment of the olfactory system lacks the necessary 

cues to induce OECs into a myelinating phenotype. 

 

1.2.7.6 Growth Requirements for OECs 

Serum has been shown to aid the expansion of OECs in culture, although in its 

absence neonatal OECs adopt a more multi-process bearing phenotype (Barber et 

al., 1987), whilst embryonic cells become spindly under these conditions (Devon 

& Doucette, 1995). OB OECs, however, vary their morphology from spindly to 

stellate, regardless of whether or not they are grown in serum (Ramon-Cueto & 

Avila, 1998), thus demonstrating the plasticity of their phenotype (Franceschini 

& Barnett, 1996; van den Pol & Sanitarily, 2003; Vincent et al., 2005). 

 

Astrocytes are thought to secrete many factors that promote the growth and 

differentiation of many glial cell types and have, in particular, been shown to be 

mitogenic for oligodendrocyte precursor cells (Noble & Murray, 1984). 

Subsequent studies demonstrated that serum-free conditioned media from type I 

cortical astrocytes (astrocyte conditioned medium, ACM) was also a potent 

mitogen for OECs (Franceschini & Barnett, 1996). Further research indicated 

that ACM contained an isoform of the growth factor neuregulin hence, its 

mitogenic properties (Pollock et al., 1999; Yan et al., 2001). Though the effects 
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of ACM were said to be growth-restrictive after approx. 14 days in vitro in 

neonatal rat cells (Alexander et al., 2002), these authors also demonstrated that 

OEC proliferation could then be restored and maintained for up to 9 weeks by 

the addition of a mitogen mix (termed olfactory mitogen medium (OMM), 

containing fibroblast growth factor 2 (FGF2), forskolin and heregulin. Without 

this cocktail of growth factors, neonatal OECs cultured in serum alone were 

shown to cease proliferating after 3-4 weeks in vitro. Furthermore it was 

reported that neonatal cells cultured in the absence of mitogens (serum alone) 

often lost the expression of markers such as O4 and polysialylated (embryonic) 

neural cell adhesion molecule ((PSA)-E-N-CAM) (Alexander et al., 2002), though 

this could possibly be attributed to the presence of serum rather than to the 

lack of growth factors.   

 

Similarly, adult rat OB-derived OECs grown in serum-containing media 

supplemented with forskolin (2 µm, Sigma) and bovine pituitary extract (20 

µg/ml, Biomedical Technologies) (Takawi et al., 2002) were able to divide for up 

to 5 weeks in culture, whilst removal of these mitogens significantly reduced the 

ability of these cells to proliferate (Rubio et al., 2008). The culture of mouse 

OB-derived OECs also seems to require the presence of growth factors, namely 

forskolin and bovine pituitary extract, as described for rat OECs (Au & Roskams,  

2002; Richter et al., 2008), though these cells could not be expanded in rat 

OMM-ACM (unpublished data from Barnett lab). 

 

1.2.7.7 Characteristics of OECs 

Early analysis of glial cells from the olfactory bulb demonstrated their expression 

of glial fibrillary acidic protein (GFAP), a common marker for astrocytes (Barber 

& Lindsay, 1982; Denis-Donini & Stenoz, 1988), and p75NTR, which is typically 

used to define non-myelinating Schwann cells (Jessen et al., 1990; Ramon-Cueto 

& Nieto-Sampedro, 1992; Barnett et al., 1993; Pixley, 1996). However, there is 

also heterogeneity amongst OECs of the olfactory bulb in that the olfactory 

nerve layer in the bulb is subdivided into two layers, whereby only the OECs 

residing in the outer layer express p75NTR (Au et al., 2002). 
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It has been reported that two morphologically distinct populations of OECs can 

be observed in vitro, termed astrocyte-like and Schwann cell-like depending 

upon their antigenic profile (Ramon-Cueto et al., 1993; Franceschini & Barnett, 

1996). Although both cell types express S100β (Devon & Doucette, 1992; Franklin 

et al., 1996; Pixley, 1996; Barnett et al., 2000, Sasaki et al., 2006), Schwann 

cell-like OECs are spindly in morphology, much like Schwann cells, and widely 

express p75 NTR, however they demonstrate weak immunoreactivity to GFAP. 

Conversely, astrocyte-like OECs are strongly GFAP positive with little expression 

of p75NTR and are flat and multi-process bearing with a larger cytoplasm than in 

Schwann cell-like OECs. Ramon-Cueto et al., (1993) reported a tendency towards 

the multi-process bearing phenotype (i.e. astrocyte-like) when culturing from 

the adult rat OB, however, Huang and colleagues (2008) described the 

appearance of both phenotypes in adult cultures. Furthermore, they suggested 

that these distinct phenotypes could readily transform in culture thus 

demonstrating the plasticity of OECs.  

 

Neural cell adhesion molecule (NCAM) and its embryonic form (E-NCAM) have 

also been shown to be expressed by OECs cultured from an adult mouse. An early 

study by Miragall et al., (1988) demonstrated the expression of NCAM in all glia 

within the OB, as well as the expression of E-NCAM at the glia limitans within the 

nerve fibre layer of the OB, which is principally composed of OECs. Further 

studies in rat species have also highlighted the expression of polysialylated 

(embryonic) neural cell adhesion molecule ((PSA)-E-NCAM) in astrocyte-like 

OECs; an effect which is most likely to be observed when the cells are cultured 

in the absence of serum. Though (PSA)-E-NCAM expression was reduced with 

time regardless of culture conditions, it could be retained for longer when OECs 

were grown in serum-free media (Franceschini & Barnett, 1996).  

 

The oligodendrocyte 4 (O4) antibody is commonly used as a marker for 

oligodendrocytes and oligodendrocyte precursor cells (OPCs), however it can also 

label OECs, as originally demonstrated by Barnett et al., (1993). They observed 

O4 staining in the superficial layers of the olfactory bulb of neonatal rats and 

further labelling with p75 NTR confirmed that these cells were in fact OECs. 

Subsequent research has confirmed the expression of O4 antigens in mammalian 

OECs both in vitro (Doucette & Devon., 1994; Smith et al., 2002; Wewetzer et 
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al., 2005) and in vivo (Franceschini & Barnett, 1996, though this expression is  

lost with time in culture (Franceschini & Barnett ,1996).  

 

In addition, a wide panel of biomarkers, including laminin, vimentin, nestin and 

nerve growth factor (NGF), have also been described in OECs under particular 

culture conditions (summarised by Ramon-Cueto & Avila, 1998 and Kawaja et al., 

2009). Their expression is more variable, however, and less well documented 

than the aforementioned markers, perhaps making them less appropriate 

candidates for the identification of OECs. 

 

1.2.7.8  OECs Isolated from Human Tissue 

It is more acceptable to obtain human OECs from mucosal biopsies, since the 

procedure for isolating this particular niche of cells is relatively non-invasive, in 

comparison to the isolation of OB-OECs (Fèron et al., 2005; Mackay-Sim et al., 

2008; Mackay-Sim & St John 2010). However, Barnett et al., (2000) 

demonstrated that human OECs can also be cultured from olfactory bulbs 

obtained during surgery where a bulbectomy is a necessary part of routine 

surgery.  

 

Whilst both foetal calf serum (FCS) and ACM were shown to be mitogenic for 

human OB-OECs (hOB-OECs), culture in DMEM-FCS (10%) without additional 

factors caused the cells to lose their expression of p75NTR, making it more 

difficult to identify these cells as OECs. However, the addition of Hrg β1 and 

forskolin to DMEM-FCS (10%) caused the cells to retain their expression of p75NTR 

whilst also allowing them to proliferate in culture for up to 5 passages. These 

findings suggest that whilst human OB-OECs have similar growth factor 

requirements to rats, additional growth factors may be required for their long-

term culture so that they can be grown to confluency for transplantation. 

Olfactory bulbs from human cadavers can also be isolated during surgery to 

remove other organs for donation up to 3 hours after the onset of circulatory 

arrest, as an alternative source of hOB-OECs (MiedzybrodzkiI et al., 2006). 
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1.2.7.9 Purification of OECs 

In order to truly understand the regenerative potential of OECs, it is necessary 

to generate relatively pure cultures for transplantation to eliminate 

contaminating cells, such as meningeal fibroblasts. There are several 

methodologies which can be employed for this purpose, however positively 

selecting for a population of cells based upon their antigenic profile can produce 

highly pure cultures of cells. 

1.2.7.9.1 Easy Sep Purification 

The magnetic nano-particle system is a comparatively new means of purifying 

cells and is based upon the principle of using magnetic nano-particles to bind to 

cells which have been labelled with an antibody against a particular antigen of 

interest. A tube containing the cell/ antibody suspension is then placed into a 

specialised magnet forcing the nano-particles, which are bound to the +ve 

population of cells, to stick to the sides of the tube whilst unlabelled/ unbound 

cells can be poured out. This washing process is repeated up to 4 times and the 

remaining cell pellet is then spun down and re-suspended in the appropriate 

growth medium. A DIY EasySepTM kit (Stem Cell Technologies) containing mouse 

IgG1 can be purchased for the selection of p75 NTR positive cells, making this an 

appropriate tool for the purification of OECs. Using this methodology, cultures of 

OECs can be produced which are approximately 95-98% p75NTR positive (see 

Higginson & Barnett, 2010 for more details).  

1.2.7.9.2  FACS Sorting 

Fluorescence-activated cell sorting (FACS) is another antibody-mediated method 

for cell purification. Briefly, a heterogeneous mix of cells is labelled with a 

specific cell type antibody for 1-2 hr, followed by its fluorescent class specific 

secondary antibody for up to 45 minutes. The labelled cells are then placed in a 

FACS analyser which forms droplets of cells, which can be separated by magnetic 

charge and collected in different vials based upon the differential excitation and 

emission wavelengths of the fluorochrome associated with each secondary 
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antibody. It is possible to use more than one antibody to positively select for 

multiple populations within a heterogeneous cell mix. 

FACS was first described for the purification of OECs by Barnett et al., (1993), 

using olfactory bulbs taken from the rat as a source of tissue (Barnett & 

Roskams, 2008). In this context olfactory bulb cells were resuspended in the O4 

hybridoma supernatant, which also contained an antibody to galactocerebroside 

(GalC) and incubated at 4oC for 30-45 min, before the appropriate class-specific 

fluorescently labelled secondary antibodies were added. Using this methodology, 

the group were able to select for a population of cells that were positive for O4 

but negative for GalC, distinguishing them from oligodendrocytes. Staining of 

olfactory bulb sections with the O4 antibody confirmed their location in the ONL 

of the olfactory bulbs, indicating that these cells were in fact OECs. Though 

perhaps expensive due to the necessary use of specialised machinery, this 

methodology can be used to produce highly purified populations of OECs 

(Fairless et al., 2005; Tomé et al., 2007, Santos-Silva et al., 2007). 

1.2.7.9.3 Immunopanning 

Immunopanning is a third method that also involves purifying cells based upon 

their antigenic profile. Briefly, olfactory-derived cells can be plated onto tissue 

culture plastic dishes, which have been coated with p75NTR IgG as a means of 

purifying OECs. After several washes to remove unbound cells, attached cells 

could be removed from the dish as a relatively pure population (Ramón-Cueto & 

Nieto-Sampedro, 1994). 
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1.2.7.10 Summary of OECs 

In summary, OECs are a highly specialised type of glial cell which are thought to 

aid the continual regeneration of the olfactory system by ensheathing the axons 

of unmyelinated olfactory receptor neurons, guiding them from the periphery 

back into the CNS to form secondary functional connections with the mitral cells 

in the olfactory bulb. In light of this, OECs are proposed to be a suitable cell 

candidate for the transplant mediated repair of the CNS. However, differences 

in culture conditions and purification techniques can alter the antigenic profile 

of these cells as well as affect their purity, which may alter their efficacy as a 

treatment to promote repair. Thus, to fully maximise their repair potential it is 

necessary to have a full and comprehensive understanding of the complex 

biology surrounding the culture of OECs. 

 

  

 

 



 

51 
 

1.2.8 Antigenic Similarities Between OECs and SCs 

Given their antigenic and morphological similarities, Boyd et al., (2006) 

suggested that calponin may be a useful marker for distinguishing OECs from SCs, 

since they reported its expression in foetal OB-OECs but not in adult SCs. 

However, these findings were contested by Ibanez and colleagues (2007), who 

failed to detect calponin in cultured adult LP-OECs or in the peripheral olfactory 

system in vivo. These anomalies in findings could be attributed to the fact that 

LP-OECs and OB-OECs are thought to behave differently after transplantation 

(Richter et al., 2005), which may be due to differences in their antigenic and 

secretory profiles. It’s also worth noting the distinctions in donor age used in 

each study. Indeed, Tomé et al., (2007) reported that calponin was expressed by 

OB-OECs and SCs both of neonatal origin, perhaps suggesting that the expression 

of calponin could be associated with a more plastic phenotype found only in 

infancy.  

 

Global gene analysis of OEC and SC transcriptomes using gene-ontology 

overrepresentation analysis reported that 257 genes were up-regulated in OECs 

compared with SCs. Based upon their function, these changes could be grouped 

into genes associated with blood vessel development, migration and wound 

healing (Franssen et el., 2008). A microarray study by Vincent et al., (2005) was 

more specific in its findings, describing the up-regulation of specific genes, such 

as Chl1, Ccl2/MCP1 and Gro in OECs, which are said to modulate various aspects 

of immunological responses. Robinson & Franic (2001) reported that the action 

of Gro1 could be to control the proliferation of oligodendrocytes in cooperation 

with PDGF. Subsequent analysis by Vincent et al., (2005) using 

immunohistochemistry, however, revealed little or no expression of these 

proteins by either cell type. Furthermore, Chl1, a homolog to the L1 adhesion 

molecule, has been shown to be present in invading SCs following SCI (Wu et al., 

2011). 

 

Taken together, these findings highlight that there are currently no known 

markers which can definitively define OECs from SCs in vitro or in vivo, though 

the identification of such a marker would be of great benefit, particularly for 

transplantation studies where it is extremely difficult to distinguish grafted OECs 

from endogenous infiltrating SCs. 
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1.3  Damage to the PNS 

After damage to the PNS, neurons may undergo necrosis or apoptosis leading to 

cellular death. Alternatively, the neuronal cell body may remain intact after 

becoming transected from its axon, which, along with its myelin sheath, is then 

phagocytosed by macrophages (Stoll et al., 1989) (Figure 1.10). This process, 

which occurs over several days post-injury, is known as Wallerian Degeneration. 

However, the PNS is unique in that unlike the CNS, neurons residing in the 

periphery are able to regenerate remyelinated axons following trauma (Kraft, 

1972; Hentz, 1989; Bonnaud-Toulze et al., 1980; Gupta et al., 2004). 

In the first week or so post-injury, regenerating axons appear with highly motile 

projections, known as growth cones, at their leading edge. The initiation of the 

Rho/ ROCK pathway and its downstream pathways, including JAK/ STAT, JNK 

and MAPK, are thereafter thought to enable process extension by regulating 

cytoskeleton dynamics (Schwaiger et al., 2000; Kury et al., 2001; Boyd & 

Gordon, 2003; Sun et al., 2012). Once the regenerated axons have reached the 

distal ends, they begin to grow along the clefts in between non-myelinating SCs. 

Remyelination typically occurs over a period of approximately 3 weeks in 

rodents, though the newly formed internodes of myelin are shorter than those 

formed developmentally (Cragg & Thomas, 1964; Ghabriel & AlIt, 1977; 

Minwegen & Friede, 1985). This may explain why in severe cases of peripheral 

nerve injury, nerve function is often only partially restored (Minwegen & Friede, 

1985). 

Although there is some SC loss following injury, this is minimised to some extent 

by the autocrine secretion of pro-survival factors, as discussed in section 

1.2.5.2. Following injury to peripheral nerves, SCs can also de-differentiate, 

which may assist in the repair of peripheral nerves (Stewart et al., 1993; Scherer 

et al., 2001; Dupin et al., 2003; Chen et al., 2007; Vargas & Barres, 2007; 

Gordon et al., 2009). 
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It is said that the rate of regeneration occurs at approximately 1.5 mm per day 

according to a mathematical model, which includes regenerative failures, after 

an initial delay of approximately 3 days (Holmquist et al., 1993). In some 

instances, whereby the distance between the proximal and distal stumps is too 

great as occurs in more severe injuries, surgical intervention to bring both ends 

of the transected axon into close apposition is required, along with other 

possible therapeutic interventions to be discussed in section 1.5.2.2 (Aird, 1946; 

Dreissen, 1975; Nawabi et al., 2006; Sun et al., 2009). 

1.3.1 The Role of SCs in Peripheral Nerve Repair 

Arguably what confers the regenerative capacity of the PNS is the presence of 

bands of Bungner at the distal stumps of the transected axon, formed by 

proliferating SCs and the SC-produced basal lamina, which surrounds the axon 

prior to injury (Spencer & Schaumburg, 1977; Oldfors & Persson, 1982; Ohara & 

Ikuta, 1988). Bands of Bungner represent spared and viable tissue in which 

regenerating axons are contained within the milieu of SCs and excluded to some 

extent from the microenvironment induced by injury. In their absence, as occurs 

when the proximal and distal stumps are experimentally disjoined, the 

regeneration of peripheral nerves is significantly reduced (Weinberg et al., 1978; 

Roytta et al., 1988; Meeker et al., 1993; Watson et al., 1993). 

Whilst macrophages are said to phagocytose myelin debris (Perry et al., 1987; 

Lawson et al., 1994; Goodrum et al., 2004), SCs are also capable of this function 

following injury (Fernandez-Valle et al., 1995; Liu et al., 1995; Wang et al., 

2004). McQuarrie et al., (1985) reported through EM and immunohistochemistry 

studies of damaged peripheral nerve tissue that myelin fragments could be 

detected in the cytoplasm of SCs prior to the infiltration of macrophages. Post-

injury, SCs in fact mediate the infiltration of macrophages via the secretion of 

leukaemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 (MCP-

1) (Toews et al., 1998; Tofaris et al., 2002; Karanth et al., 2006). 
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SCs have also been demonstrated to be a vital source of growth factors following 

peripheral nerve injury. For example, levels of NGF are reportedly low in intact 

nerves but increase significantly in SCs after injury, as do levels of FGF 1 and 2 

and IGF 1 and 2 (Sobue et al., 1988; Hammarberg et al., 1998; Rogister et al., 

1999). Each of the aforementioned factors has been well-documented for their 

ability to promote neurite outgrowth (Lipton et al., 1988; Walicke et al., 1988; 

Sjöberg & Kanje, 1989; Yasuda et al., 1990; Inagaki et al., 1995; Jiang et al., 

1995). In addition, SCs express laminin and fibronectin, which also enhance 

neurite outgrowth, thus contributing to a growth-permissive ECM (Baron-Van 

Evercooren et al., 1982; Edgar et al., 1984; Lander et al., 1985; Millaruelo et al., 

1988; Culley et al., 2001). 

Whilst neurogenesis and neuronal targeting during development is not said to 

entail SCs (Grim et al., 1992; Riethmacher et al., 1997), their required presence 

for the regeneration of peripheral nerves would suggest that the mechanisms 

underpinning these two events are distinct. 
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Figure 1.10 – Peripheral nerve regeneration. In the initial stages of nerve 
damage, non-myelinating Schwann cells surround the injury site to phagocytose 
myelin debris (b) and to contribute to the Wallerian degeneration of the nerve. 
Thereafter, activated macrophages are recruited to the injury site to facilitate 
this process (c). Furthermore, non-myelinating SCs secrete axonal growth-
promoting neurotrophins at the site of the injury. In the coming weeks to 
months, regenerating fibres begin to appear, facilitated by the bands of Bungner 
formed at the distal stumps from the pre-existing Schwann cell basal lamina (d). 
The process of regeneration can take anything from weeks to years depending 
upon the severity of initial nerve damage (e).Modified from 
http://neurowiki2012.wikispaces.com/Secondary+Degeneration+Mechanisms. 
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1.4 Damage to the CNS 

Following disease or trauma to the central nervous system (CNS), injured 

neurons fail to regenerate competently, resulting in severe losses of function in 

damaged areas (Ramon y Cajal, 1928). Although there is some evidence of 

continual neurogenesis in areas of the adult CNS, such as the hippocampus 

(Eriksson et al., 1998; Nilsson et al., 1999; Yagita et al., 2001; Kamada et al., 

2004), by in large neurogenesis is limited, thus any damage to the CNS is 

permanent and irreversible. It is postulated that this lack of repair is due to a 

non-growth permissive environment post-injury/disease, as opposed to an 

intrinsic inability to regenerate.  

In the case of spinal cord injury (SCI), the effects can be catastrophic due to the 

disruption of vital tracts. In particular, damage to the descending motor 

pathways, such as the reticulospinal, corticospinal and tectospinal tracts of the 

lateral pathways, can result in significant losses of motor function and muscle 

tone; whilst damage to the ascending pathways, such as the spinocerebellar and 

spinothalamic tracts, causes debilitating sensory defects for the patient. The 

extent of functional loss relates to the area of the injury, in that damage to the 

cervical region of the cord typically results in deficits of all 4 limbs, whilst 

thoracic injuries often retain some upper limb function (Figure 1.7). Using the 

American Spinal Injury Association’s (ASIA) motor scale to assess the neurological 

function in ten groups of muscles and dermatomes, the severity of the injury can 

be described as either complete, where no motor or sensory function is 

preserved below the lesion, or incomplete, whereby varying degrees of function 

can be preserved. Incomplete injuries can also be classified as syndromes, such 

as Anterior Cord Syndrome, where damage to the anterior portion of the spine 

results in a loss of motor and sensory function although proprioception is 

retained; and Central Cord Syndrome, which typically results in a loss of function 

in the upper limbs but spared lower limb function (Waters et al., 1994 a,b; 

McKinley et al., 2007; El Masri et al., 2011). 
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Table1.2– Typical Functional deficits following damage to the spinal cord. The 
severity of damage following spinal trauma relates largely to the area of the 
injury. For example, cervical injures often result in either complete or partial 
loss of function in all 4 limbs, whilst lower thoracic injuries tend to affect the 
lower limbs and trunk stability. Injuries can be assessed as either complete or 
incomplete using the ASIA scale, which scores neurological function in ten areas 
of muscle and skin. Whilst complete injuries show a total loss of motor and 
sensory function corresponding to the site of the injury, incomplete injuries may 
result in a patient retaining varying degrees of sensory or motor function. 
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1.4.1  Pathology of a Spinal Cord Injury (SCI) 

The primary injury occurs as a result of direct trauma, causing localised 

axotomy, cell death and haemorrhaging, particularly in the grey matter (Bunge 

et al., 1994; Beattie et al., 2002; Norenberg et al., 2004) either as a result of 

contusion, transection or laceration of the spinal cord. During this time many 

oligodendrocytes are lost, even at sites distal to the initial injury (Emery et al., 

1998). It has been suggested that myelinated axons are particularly susceptible 

to the blunt trauma induced by contusion injuries, since the mechanical 

stretching forces exerted upon the axon are concentrated on the nodes of 

Ranvier under these circumstances (Maxwell et al., 1996).  

Thereafter, the secondary injury progresses and after approximately 6-8 hrs a 

penumbra of ischemic tissue surrounds the lesion core and oedema occurs (Guth 

et al., 1999). Usually within the first 24 hrs, Wallerian degeneration begins and 

the transected axons begin to degenerate distally to the site of the injury and 

demyelination persists. After the axon cytoskeleton is dismantled via 

mechanisms which are dependent upon ubiquitin and calpain (Glass et al., 2002; 

Zhai et al., 2003; Touma et al., 2007), the myelin sheath begins to degrade and 

macrophages infiltrate the lesion. The process of Wallerian Degeneration in the 

CNS, however, is said to occur far more slowly than in the PNS, with activated 

microglia occupying the site of the injury for several years after injury (Avellino 

et al., 1995; Lazar et al., 1999; Jander et al., 2001). Furthermore, George & 

Griffin (1994) reported that myelin and axonal debris were cleared after 30 days 

in vivo in the dorsal roots, whilst in the central dorsal columns, they persisted 

for up to 90 days. 

Haemorrhaging ceases after approximately 7-10 days, when the lesion site 

becomes filled with cellular debris (Beattie et al., 2002). A large degree of 

secondary damage can be attributed to the increased concentration of 

extracellular glutamate, which over-stimulates its AMPA, NMDA and kainite 

receptors to mediate Ca2+ dependent apoptosis of neurons and oligodendrocytes 

in particular (Mattson et al., 1991; Doble, 1999; Matute et al., 2001). However, 

the up-regulation of inflammatory cytokines may also be responsible for inducing 
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necrotic and apoptotic cell death after injury (Bartholdi et al., 1998; Carlson et 

al., 1998; Popovich et al., 1997). 

1.4.1.1 Formation of an Inhibitory Glial Scar 

Trauma to the CNS caused by injury or pathology induces varying degrees of 

astrogliosis as part of the secondary injury, whereby resident astrocytes undergo 

changes such as increased expression of GFAP, nestin, vimentin and chondroitin 

sulphate proteoglycans (CSPGS), in addition to becoming hypertrophic (Bignami 

& Dahl, 1976; Eng & Ghirnikar, 1994; Sofroniew, 2009; Sofroniew & Vinters, 

2010). A glial scar begins to form at the site of damage approximately 48 hrs 

post-injury, composed of these reactive astrocytes, fibroblasts and infiltrating 

microglia, which are thought to cause cavity and cyst formation, leading to 

enlargement of the initial wound (Balentine, 1978; Fitch & Silver, 1997; Zhang et 

al., 1997; Fitch Et al., 1999) (Figure 1.11). In addition, NG2+ve glia infiltrate the 

scar where they also undergo reactive gliosis, causing them to up-regulate their 

expression of the inhibitory CSPG, NG2, at their cell surface (Levine et al., 2001; 

Zhang et al., 2001; Jones et al., 2002). At the more chronic stages of glial scar 

formation (approx 3-4 wks), SCs have also been shown to infiltrate the lesion 

into areas which are less astrocyte-dense when the BBB has been breached (Buss 

et al., 2007; 2008). 

Although it was initially thought of as no more than a marker for damaged tissue 

and thereafter, purely a mechanical barrier to repair due to the altered ECM and 

increased collagen deposition (Windle & Chambers, 1950; Windle, 1954; Reir, 

1986), it is now widely accepted that the glial scar may play a vital role in 

impeding competent regeneration of the CNS by altering the molecular 

composition at the injury site (Fitch & Silver, 1997; McGraw et al., 2001; Silver 

& Miller, 2004). Whilst the glial scar is largely viewed as a negative consequence 

of CNS damage, in the acute stages of injury it functions to seal off the area 

from inflammatory infiltrates, thus reducing further secondary damage (Faulkner 

et al., 2004; Myer et al., 2006; Rolls et al., 2009). In mouse models of cortical 

stab wounds whereby astrocytes surrounding the injury site were ablated, a 
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prolonged infiltration of inflammatory mediators was reported, along with 

increased neuronal degeneration (Bush et al., 1999; Faulkner et al., 2004). 

1.4.1.1.1 Growth-Inhibitory Molecules Up-regulated within the Glial Scar 

Reactive astrocytes associated with the glial scar have been shown to up-

regulate growth-inhibitory molecules such as the path-finding slit proteins and 

ephrin-B2 (Bundesen et al., 2003; Hagino et al., 2003) as well as CSPGs, 

including versican, neurocan, brevican, aggrecan and NG2 (Friedlander et 

al.,1994; Milev et al., 1994; McKeown et al., 1995; Yamada et al., 1997; Asher et 

al., 2000; Jones et al., 2003; Rhodes & Fawcett, 2004; Sandvig et al., 2004; 

Fitch & Silver, 2008).  Thus, extending neurites are limited in their outgrowth 

within the glial scar region without intervention. In particular, CSPGs have been 

demonstrated both in vitro (Canning et al., 1993, Inatani et al., 2001; Tom et 

al., 2004) and in vivo (Bradbury et al., 2002; Steinmetz et al., 2005; Houle et 

al., 2006) to be inhibitory to neurite outgrowth. Furthermore, meningeal 

fibroblasts have also been reported to up-regulate axonal growth-inhibitory 

semaphorins within the glial scar (Pasterkamp et al., 1998, 2001).  

The mechanisms involved in the inhibition of neurite outgrowth are postulated 

to involve the activation of the Rho-associated coiled coil kinase (ROCK) 

pathway, which negatively regulates actin dynamics at the leading edge of the 

axon (Gallo et al., 2004; Kalli et al., 2005). Thereafter, the collapse or 

retraction of the growth cone is induced, thus inhibiting neurite outgrowth 

(Dergham et al., 2002; Fournier et al., 2003; Monnier et al., 2003; Mimura et al., 

2006). In addition, ephrins have been reported to simultaneously cause the 

down-regulation of Rac and Cdc42 of the Rho GTPase family, which are 

responsible for the actin polymerisation and filopodia formation required for 

neurite extension (Wahl et al., 2000; Da Silva et al., 2003; LaPlante et al., 2004; 

Mulder et al., 2004). Semaphorin 3A has also been shown to reduce branching in 

cortical astrocytes in vitro, which may have detrimental effects on the path-

finding abilities of these neurons (Dent et al., 2004). 
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1.4.1.1.2 Myelin Debris within the Glial Scar 

In addition to those factors which are up-regulated after injury, components of 

myelin debris have also been shown to be inhibitory to neurite outgrowth, 

including MAG (Ng et al., 1996; Tang et al., 1997; Niederőst et al., 2002), OMgp  

(Wang et al., 2002; Vourc’h et al., 2003) and Nogo-66 (Nogo A) (Chen et al., 

2000; Fournier et al., 2000; Oertle et al., 2003). 

MAG, Nogo-66 and OMgp bind to the Nogo receptor, NgR, on the axolemma 

(Mikol & Stefansson, 1988; Mikol et al., 1990; Wang et al., 2002). In addition, 

p75NTR acts as a co-receptor for signalling (Wong et al., 2002) for each of these 

ligands. Knock-out studies of p75NTR reported that neurons were less susceptible 

to the inhibitory activity of myelin debris than in wild type controls (Wang et al., 

2002). MAG in particular has a high affinity for the gangliosides GDIa and GTIb, 

which facilitate its binding to NgR (Yamashita et al., 2002). Each ligand can 

associate with p75NTR either independently or together to form a complex, which 

transmits inhibitory signals to modulate the activity of RhoA. (Vinson et al., 

2001; Vyas et al., 2002; Wong et al., 2002; Yamashita et al., 2002); and to 

induce the inactivation of Rac1/Cdc42 (Niederost et al., 2002; Sandvig et al., 

2004).  

The phenomenon that myelin debris does not appear to be detrimental to 

neurite outgrowth in the PNS may be explained by the rapid response of 

Schwann cells and macrophages, which promptly clear myelin debris from the 

periphery, whilst this response lags in the CNS, as previously described (Stoll et 

al., 1989; Fernandez-Valle et al., 1995; Shen et al., 2000). Furthermore, MAG is 

present at concentrations ten fold less in the PNS compared to the CNS, 

constituting just approximately 0.1% of the total protein content of the 

peripheral myelin sheath (Quarles et al.,1973; Figlewicz et al., 1981; Baumann & 

Pham-Dinh, 2001). Neurotrophins have also been shown to overcome the myelin 

debris-mediated inhibition of neurite outgrowth by elevating cAMP and by 

activating the pro-survival ERK signalling pathways (Cai et al., 1999; Gao et al., 

2003). In peripheral nerve injury models whereby brain-derived neurotrophic 

factor (BDNF) was knocked out in SCs, regeneration was significantly reduced 
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(Wilhelm et al., 2012). This data could suggest that the expression of growth 

factors by SCs is important in mediating competent regeneration, perhaps due in 

part to their ability to overcome inhibitors of neurite outgrowth, such as myelin 

debris. 

In non-pathological conditions, it has been hypothesised that the roles of MAG 

and OMgp could be to prevent inappropriate sprouting of neuronal processes by 

inhibiting neurite outgrowth, particularly at the nodes of Ranvier (Huang et al., 

2005). Chang and colleagues (2010), however, dispute this hypothesis by stating 

that the antibodies previously used to label OMgp at the nodes were non-

specific. Furthermore, they reported no nodal abnormalities in OMgp null mice. 

 
 
Figure 1.11 – Schematic of the Glial Scar. Following disease or trauma to the 
CNS, a glial scar forms at the site of injury comprised of reactive astrocytes, 
meningeal fibroblasts and activated microglia, encapsulating a fluid filled cyst. 
Acutely, the role of the glial scar is to seal of the injury site to reduce the level 
of secondary inflammatory damage. In the chronic stages of glial scar formation, 
however, it represents a physical barrier to regeneration due to the altered ECM 
and a molecular barrier to repair via the presence of growth inhibitory 
molecules, such as CSPGs and myelin debris. Although some fibres can re-enter 
the glial scar, there is little or no evidence to suggest that they can successfully 
exit to reform functional connections. 
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1.4.1.2 Immune response to SCI 

Typically upon breaching of the BBB, classic inflammatory and wound healing 

mechanisms are triggered, including the activation of astrocytes, microglia and 

leukocytes, which release localised cytokines, such as TGF-β, IL-1 β and IL-6, 

contributing to the neurotoxic environment (Koyanagi et al., 1989; Armao et al., 

1997; Velardo et al., 2004; Arabi et al., 2006). TGF-β in particular has been 

shown to be up-regulated within CNS lesions and to amplify glial scarring (Smith 

et al., 2005; Okada et al., 2006; Wang et al., 2007). Thrombin, which is required 

for blood clotting at the injury site can also be neurotoxic by potentiating NMDA 

signalling, thus exacerbating Ca2+ dependent mechanisms of apoptosis (Gingrich 

et al., 2000). Furthermore, circulating antibodies from the periphery can 

activate complement proteins and microglia/ macrophages, causing them to 

secrete yet more neurotoxic cytokines, mediating cell death (Stahel et al., 1998; 

Kadota et al., 2000; Anderson et al., 2004; Ankany et al., 2006). 

In post mortem studies of spinal cord tissue taken from patients who survived for 

up to 1 year after injury, results demonstrated the presence of neutrophils, 

activated microglia and few macrophages as little as 24 hrs after the initial 

injury. Whilst neutrophils were present for only approximately 10 days after 

injury, microglia and macrophages persisted for several months (Fleming et al., 

2006). Furthermore, these researchers demonstrated oxidative activity in 

neutrophils and activated microglia, thus suggesting their ability to contribute to 

oxidative stress. Both cell types have been shown to be sources of the 

superoxide anion and nitric oxide post-injury, which combine to form the potent 

oxidant, peroxynitrite (Colton et al., 1987; MacMicking et al., 1992; Liu et al., 

2002). 

What this data suggests is that there may be a relatively short therapeutic 

window for intervention strategies to attenuate the inflammatory response 

following SCI, perhaps within the first 8-12 hrs. However, there is also evidence 

to suggest that aspects of the immune response may be beneficial to the repair 

of the CNS. For example, macrophages can take up glutamate, thus reducing 

excitotoxic cell death and exerting neuroprotective effects (Rimaniolac et al., 
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2000; Van Landeghem et al., 2001). In addition, the release of cytokines such as 

IL-1β has been shown to stimulate the production of nerve growth factor (NGF) 

(DeKosky et al., 1996; Fagan and Gage, 1990) and to induce neurite sprouting, 

thus facilitating CNS regeneration (McIntosh et al., 1996; Norenberg et al., 

2004). Therefore, a more measured therapeutic approach whereby only certain 

detrimental features of the immune response were ablated could be more 

beneficial for the treatment of CNS pathologies. 

1.4.2 Spontaneous Remyelination in the Damaged CNS 

As previously discussed, demyelination of damaged axons occurs as a 

consequence of spinal cord trauma (Waxman, 1992). However, whilst 

regenerative repair of axons is limited following disease or injury, there is 

evidence to suggest that a degree of spontaneous remyelination can occur in 

response to CNS damage, as was initially demonstrated in chemically-induced 

demyelinating lesions in adult cats (Bunge et al., 1960; 1961). Remyelination of 

demyelinated axons is said to be neuroprotective, since axonal degeneration is 

significantly increased in X-irradiated mice following a chemically induced 

demyelinating lesion (Irvine & Blakemore, 2008). Restoration of the 

remyelinating capacity of the animal, however, reduced axonal degeneration in 

this model. 

Recent research has also demonstrated that demyelination occurs to some 

extent in the human CNS following SCI and can persist for up to a decade in 

some patients (Guest et al., 2005; Cohen-Adad et al., 2011). However, the 

extent to which demyelination and remyelination occurs in humans following SCI 

is still unclear (Bunge et al., 1993; Emery et al., 1998; Abe et al., 1999). In 

rodent models of SCI, demyelination can be observed within the first 24 hrs after 

injury. Furthermore, Siegenthaler et al., (2007) reported that the extent of 

demyelination can vary depending upon the injury model; in that contusion 

injuries in rodents resulted in demyelination both at the lesion epicentre and at 

distances from the injury site. Conversely, hemisection injuries demonstrated a 

more focal pattern of demyelination, with little demyelination at distances from 

the lesion. Evidence of extensive remyelination can be witnessed by 
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approximately 12 weeks in spared fibres, however, there is evidence to suggest 

that demyelination may persist in small subsets of dystrophic fibres, though this 

occurrence is far less common  (Lasienne et al., 2008).  

It has been reported that remyelinated fibres possess shorter and thinner 

internodes of myelin, which some have reported to result in sub-optimal 

restoration of axonal conduction velocity (Griffiths et al., 1983; Talbot et al., 

2005; Lasienne et al., 2008). However, others have reported that axonal 

conduction is fully restored in remyelinating fibres and functional deficits caused 

by demyelination are reduced (Smith et al., 1979; Utzschneider et al., 1994; 

Jeffrey et al., 1979). These anomalies in findings could be attributed to 

variations in axonal calibre and the extent of remyelination, in that larger axons 

may repair less efficiently than their smaller counterparts. 

Keirstead and Blakemore (1997) provided the first evidence to suggest that 

remyelination in the adult CNS is not carried out by pre-existing 

oligodendrocytes, but rather via the recruitment of NG2+ve adult progenitors, 

which initially up-regulate their expression of NG2 and increase their rate of 

proliferation (Carroll et al., 1994; Redwine et al., 1998; Levine et al., 1999; 

McTigue et al., 2001). Thereafter, they differentiate into myelinating 

oligodendrocytes in response to injury (Gensert et al., 1997; Nishiyama et al., 

1997; Levine et al., 1999; Dawson et al., 2003; Fancy et al., 2004). NG2+ve glia 

have also been reported to increase their expression of the transcription factors 

Olig2 and NKx2.2, which is thought to aid their differentiation (Sun et al., 2001; 

Zhou et al., 2001). It is hypothesised that similar signals which promote 

developmental oligodendrocyte differentiation (ie. FGF, PDGF and IGF) also 

contribute to the maturation of NG2+ve glia into myelinating cells in an injury 

scenario (Patel & Klein, 2001). However, factors such as IL-1 and TNF-α may also 

be crucial, given that remyelination was impaired in rodent models whereby 

both of these factors were experimentally reduced (Arnett et al., 2011; Mason et 

al., 2001). A recent study by Huang et al., (2010) also highlighted the 

importance of the retinoid X receptor γ (RXR γ) in mediating spontaneous 

remyelination. Data from this study reported that not only was RXR γ expressed 

in remyelinating oligodendroglial cells in rodents, but that experimental knock 
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down of RXR γ inhibited oligodendrocyte differentiation in culture and inhibited 

remyelination by NG2+ve glia in vivo. 

In addition to NG2+ve glia, infiltrating SCs have also been reported to play a role 

in spontaneously remyelinating CNS fibres, preferentially in areas devoid of 

astrocytes (Blakemore, 1975; Snyder et al., 1975; Itoyama et al., 1983; Dusart et 

al., 1992; Felts et al., 2005). Remyelinating SCs are thought to migrate into the 

CNS via the cranial roots and blood vessels when the BBB is compromised; 

therefore SC-remyelination in the CNS is most abundant around the spinal and 

cranial nerves and around blood vessels (Baron-Van Evercooren et al., 1993; 

Duncan & Hoffman, 1997; Sim et al., 2002; Zawadzka et al., 2010). However, 

Zawadzka and colleagues (2010) also demonstrated using fate mapping studies of 

transgenic mice that NG2+ve glia could also produce myelinating SCs, as 

determined by their expression of SCIP/OCT6, the peripheral myelin protein, 

periaxin, and their lack of Olig2. 

In demyelinating diseases such as MS, remyelination can also be evidenced in 

some patients, particularly in the acute stages of the disease, with complete or 

partial repair of lesions, thereafter referred to as shadow plaques (Lassman et 

al., 1997; Patrikos et al., 2006; Chari, 2007). It is hypothesised that the ability 

of CNS axons to remyelinate may explain to some extent the “relapse and 

remission” pattern observed in some MS patients. However, with disease 

progression remyelination fails for reasons which are as yet not fully understood, 

although it is likely that the complex microenvironment of the diseased tissue 

may be responsible for this abortive repair strategy (Franklin, 2002). For 

example, it has been shown that CSPGs, present in abundance throughout glial 

scar tissue, can reduce remyelination by negatively affecting oligodendrocyte 

attachment and differentiation (Siebert & Olsterhout, 2011; Lau et al., 2012). 

A greater understanding as to the mechanisms which induce and impair 

endogenous remyelination could be vitally important for the treatment of CNS 

pathologies (Franklin & Kotter, 2008). 
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1.5 Strategies to Promote Repair of the Spinal Cord  

As discussed in the previous sections, spinal cord injuries are complex and multi-

faceted, thus there is currently a wealth of literature describing multiple repair 

strategies targeting specific aspects of regenerative failure, with reports of 

varying degrees of success. 

1.5.1 Pharmalogical Intervention 

An enzyme which removes the glycosaminoglycan (GAG) side chains from CSPGs, 

chondroitinase ABC (ChABC), has been used in the treatment of SCI models in 

vivo with conflicting results. Whilst several groups have reported increased 

axonal sprouting and, in some cases, functional recovery following treatment 

with ChABC (Bradbury et al., 2002; Huang et al., 2006; Barritt et al., 2008; 

Shields et al., 2008; Alilain et al., 2011; Starkey et al., 2012), others have 

reported contradictory findings. Kadakia et al., (2009) reported that whilst they 

did observe some increased collateral sprouting depending upon the site of the 

injection of ChABC and its position rostral or caudal to the injury, they did not 

observe any functional recovery as a result of treatment. However, technical 

differences may account for these discrepancies in that certain behavioural tests 

are more sensitive than others; whilst the severity of the lesion and time-course 

for treatment may also greatly affect the efficacy of ChABC.  

Inhibitors of the Rho pathway, such as C3 ADP-ribosyltransferase, have also been 

shown to promote neurite outgrowth in in vivo models of SCI (Ichikawa et al., 

2008; Boata et al., 2010). In addition, the inhibition of ROCK, the downstream 

effector involved in Rho signalling, using Y27632 also attenuates the inhibition of 

neurite outgrowth in vivo (Ling et al., 2007; Sagawa et al., 2007). However, an 

in vitro model of SCI recapitulating several key features of glial scar formation 

was used to demonstrate that C3 promoted neurite outgrowth into the cut or 

lesioned area; whilst Y27632 did not (Boomkamp et al., 2012). Nonetheless, this 

study also reported that Y27632 was able to enhance myelination and neurite 

density in the areas surrounding the lesion, suggesting that it may play a role in 
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neuroprotection or in enhancing plasticity of spared fibres. A combination of 

both of these compounds proved to be synergistic, with dose-dependent effects. 

The role of myelin debris and its signalling via NgR in impeding axonal 

regeneration in the CNS has been discussed in section 1.4.1.1.2. NEP1-40, an 

antagonist to NgR, has been shown to promote sprouting of seritonergic and 

corticospinal axons in a rodent model of thoracic SCI, in addition to increasing 

locomotor recovery (GrandPré et al., 2002; Li & Strittmatter, 2002; Cao et al., 

2008). 

Methylprednisolone, a corticosteroid drug used to suppress inflammation, has 

also been administered to patients with SCI within the first 8-10 hrs immediately 

following the injury (Bracken et al., 1990). In one study, patients receiving this 

treatment for 48 hrs (167 patients) showed significant clinical improvements of 

at least one neurological point after 6 mths compared to those who were only 

treated with methylprednisolone for 24 hrs (166 patients). However, those 

patients in the former group also showed a significantly increased occurrence of 

pneumonia compared with the latter (Bracken et al., 1997; 1998). Further 

clinical studies have shown no evidence of methylprednisolone improving 

neurological function in SCI patients (Ito et al., 2009) Thus, the use of 

methylprednisolone to treat SCI is controversial and clinical practice varies 

considerably between hospitals (Frampton & Eynon, 2006). 

What all of the aforementioned studies have in common is the fact that whilst 

they may report varying degrees of functional recovery and increased neurite 

outgrowth, they demonstrate very little anatomical evidence of extensive 

regeneration in vivo, whereby fibres within the lesion are able to successfully 

exit the graft to reform functional connections. 
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1.5.2 Cell Transplantation 

The transplantation of cells into the CNS is postulated to hold great promise in 

the treatment of CNS injury by replacing lost or damaged tissue or by enabling a 

transplanted population of cells to take on the vital functions lost as a 

consequence of injury or disease progression. 

Neural stem cells (NSCs) have been shown to promote a degree of functional 

recovery following their autologous transplantation into rodent models of SCI 

(Bambikidis et al., 2004; Karimi-Abdolrezaee et al., 2006; Parr et al., 2007). 

Karimi-Abdolrezaee and colleagues (2006) observed that of those NSCs 

transplanted into a contusion injury model, approximately 50% differentiated 

into OPCs or myelinating oligodendrocytes, correlating with improvements in 

behavioural scores.  

More promisingly, human-derived NSCs have also been xenografted into the 

rodent CNS, based upon the original work of Gumpel et al., (1987), who used 

CNS fragments from aborted embryonic tissue to demonstrate this phenomenon 

(Buchet & Baron-Van Evercooren; 2009; Buchet et al., 2011; Uchida et al., 

2013). Since then, researchers have been able to amplify the NSCs population in 

culture either as an adherent monolayer (Buc-Caron et al., 1995; Carpenter et 

al., 1999; 2001) or as free-floating spheres (Murray et al., 1997; Flax et al., 

1998; Vescovi et al., 1999; Uchida et al., 2000). Further research showed that 

the transplantation of human embryonic NSCs (hENSCs) into the intact brain and 

spinal cord of rodents resulted in their preferential differentiation into 

astrocytes and neurons, as opposed to oligodendrocytes (Fricker et al., 1999; 

Buchet et al., 2002; Englund et al., 2002). However, Cummings et al., (2006) 

reported that the transplantation of hENSCs into the contused rat spinal cord 

resulted in their extensive differentiation into myelinating oligodendrocytes. 

This data therefore appears to suggest that the host environment greatly 

influences stem cell fate post-transplantation. Similarly, whilst Jin and 

colleagues (2012) reported the differentiation of hENSCs into astrocytes, neurons 

and oligodendrocytes within the corpus callosum and white matter of the rodent 

spinal cord, they observed a lack of migratory ability when these cells were 
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injected into the corpus callosum. Nonetheless, transplanting OPCs pre-

differentiated from hENSCs into a cervical contusion model of SCI demonstrated 

improvements in forelimb function, compared to non-transplanted animals, and 

an increase in the number of spared fibres surrounding the lesion (Sharp et al., 

2010). Furthermore, human induced pluripotent stem cells (HiPSC) commonly 

derived from human fibroblasts can also be differentiated into OPCs, capable of 

extensive remyelination in a dysmyelinated mouse with no evidence of adverse 

complications (Wang et al., 2013). 

Mesenchymal stem cells (MSCs) have also been reported to induce some 

functional improvement, as assed by behavioural testing, as well as decreases in 

cavity formation following their transplantation into animal models of SCI 

(Ankeney et al., 2004; Osaka et al., 2010). Quertainmont et al., (2012) carried 

out a cytokine array of lesioned spinal cord tissue with or without MSC grafts and 

reported increased NGF expression, which correlated with enhanced 

neuroprotection and vascularisation following MSC transplantation. The source of 

the MSCs may greatly influence these properties, however, since Lindsay et al., 

(2012) demonstrated that human MSCs derived from the olfactory mucosa 

enhanced endogenous CNS myelination in vitro, whereas those derived from 

bone marrow did not. A study from Korea has already described the effects of 

transplanting autologous bone marrow-derived MSCs into patients with SCI (Park 

et al., 2012). This report claimed that of the 10 patients being studied, 3 were 

shown to have improvements in upper limb function, which correlated with 

improvements in electrophysiological testing. Furthermore, they described all of 

the individuals tested as having no adverse reactions as a result of cell 

transplantation. However, 3 out of 10 patients is an extremely small number to 

draw any substantial conclusions from. Furthermore, a more detailed follow-up 

of these patients over the course of several years may produce more accurate 

results. 

Cell transplantation is also considered as an important potential therapy for the 

treatment of demyelinating diseases (Blakemore et al., 1995; Duncan et al., 

1995; Archer et al., 1997). Windrem et al., (2004) reported that the 

transplantation of human foetal OPCs into the forebrains of the dysmyelinated 
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shiverer mouse resulted in extensive remyelination. Similar findings have been 

reported in organotypic slice cultures from these mice mutants (Bin et al., 

2012). OPC cell lines, namely the CG4 line, have also been shown to repopulate 

a glial-free X-irradiated demyelinated lesion with astrocytes and 

oligodendrocytes (Franklin et al., 1995), as did a clonal OPC line generated by c-

myc transduction (Barnett et al., 1993), suggesting their potential therapeutic 

use in  the treatment of demyelinating diseases. More promisingly, a recent 

Phase 1 clinical trial demonstrated the safety of transplanting allogenic HNSCs 

into patients suffering from leukodystrophy, with reports of modest myelination 

by the grafted cells (Gupta et al., 2013). 

The transplantation of non-stem cells, such as glial cells, has also generated 

much attention. It could be argued that transplanting cells with a pre-

determined fate may be advantageous in that it allows the researcher to exert 

more control over the experimental design, perhaps by limiting the likelihood of 

the graft differentiating into an undesired cell type. The use of SCs and OECs for 

cell-transplantation studies following CNS trauma is of particular interest, given 

their interesting and unique properties in situ. 

1.5.2.1 OEC Transplant-Mediated Repair of the CNS 

The regenerative capacity of the olfactory system has been widely attributed to 

the specialised supportive functions of OECs, thus making them an attractive 

candidate for cell-mediated repair of the CNS (Doucette, 1995; Franklin & 

Barnett, 1997; Ramon-Cueto & Avila, 1998). The expression of neural cell 

adhesion molecules (N-CAMs) in the plasma membrane of OECs has been 

hypothesised to provide an appropriate growth substrate on which olfactory 

axons can grow. Furthermore, OECs are said to be a source of nexin, nerve 

growth factor (NGF) and extracellular laminin (Miragall et al., 1988; Doucette, 

1990; Franceschini & Barnett, 1996), all of which are capable of promoting 

neurite extension.  

 

One of the earliest studies describing the role of OECs in promoting axonal 

regeneration out-with the olfactory system reported that following rhizotomy, 

transplanted adult OB-OECs from the rat enhanced the regeneration of DRGs 
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throughout the spinal cord. Furthermore, the authors reported that there was no 

inappropriate innervation of spinal segments by regenerating axons (Ramon-

Cueto & Nieto-Sampedro., 1994). Under normal conditions, the axons of 

peripheral DRGs are able to regenerate, however, they fail to transcend the glia 

limitans to re-enter the CNS (Carlstedt et al., 1989; Siegal et al., 1990). The 

injury model utilised by Ramon-Cueto and colleagues to challenge this theory 

involved transecting the dorsal roots and anastamosing them to the spinal cord 

at their point of entry. A repeat of this study, however, reported that there was 

little or no significant anatomical evidence of regenerating fibres following the 

transplantation of OECs, compared to animals whereby no cells had been 

transplanted (Riddell et al., 2004). Furthermore, these authors reported that 

there was no substantial electrophysiological data to suggest that functional 

connections had been re-formed following injury. However, it is worth noting 

that subtle differences in experimental techniques between these two research 

groups may at least partly explain anomalies in their findings. For example, 

whilst Ramon-Cueto et al., (1994) used adult OB-OECs, Riddell and colleagues 

transplanted neonatal OB-OECs. Donor age may be an important consideration 

for transplantation, since Coutts et al., (2012) recently reported functional 

differences in the ability of 3 donor ages of OB-OECs to remyelinate a 

demyelinated lesion in the adult rat spinal cord. In this study it was reported 

that embryonically-derived OECs supported the greatest level of remyelination. 

Furthermore, Ramon-Cueto and colleagues purified their OEC cultures by 

immunopanning with an antibody to p75NTR, whereas Riddell et al., used FACS as 

a method for purification based upon the expression of the O4 antibody and a 

lack of GalC in OECs. Novikova et al., (2010) pointed out that different 

methodologies for the purification of OECs could also greatly alter their 

properties. They reported that OECs purified by differential attachment 

promoted the regeneration of rubrospinal and raphaespinal fibres following 

cervical hemisection, as well as attenuating retrograde degeneration. However, 

OECs that had been purified using immunomagnetic beads failed to promote 

significant regeneration, though they did confer neuroprotection to spared 

fibres. 

 

Nonetheless, the work of Ramon-Cueto and Nieto-Sampedro has been expanded 

upon, with various degrees of success following the transplantation of OECs 

alone, or in combination with other therapies for a multi-faceted approach to 
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repair (Cao et al., 2004; Bunge et al., 2008; Ma et al., 2010). For example, some 

groups have demonstrated increased outgrowth of corticospinal fibres (Li et al., 

1998; Ramon-Cueto et al., 2000; Nash et al., 2002; Fouladi et al., 2003) and 

raphaespinal fibres (Ramon-Cueto et al., 1998, 2000; Lu et al., 2001; Ramer et 

al, 2004; Richter et al., 2005; Andrews & Stelzner, 2007). It has also been 

reported that the delayed transplantation of OECs is more efficacious at 

promoting repair than acute transplantation (Ramon-Cueto et al., 1998; Keyvan-

Fouladi et al., 2003; Lopez-Vales et al., 2007; Wu et al., 2011). 

 

Some improvements in behavioural testing have also been observed following the 

transplantation of OECs into models of SCI (Ramon-Cueto et al., 2000; Lu et al., 

2002; Li et al., 2003), suggesting a restoration of some function. Furthermore, 

Toft et al., (2007) demonstrated improvements in the electrophysiological data 

obtained from sensory neurons following transplantation of OECs into a wire 

knife hemisection. However, in spite of these improvements, this group saw no 

substantial evidence of significant axonal regeneration beyond the lesion. 

Similarly, others have reported that there is little evidence of long-distance 

axonal regeneration using OEC grafts (Li et al., 1998; Lu et al., 2002; Lopez-

Vales et al., 2006). Yamamoto et al., (2009) observed the restoration of forepaw 

function using OEC grafts, despite failing to observe significant amounts of 

regenerating fibres crossing the lesion. This data may suggest that the role of 

OECs in promoting repair following SCI could be in maximising neuronal plasticity 

and sprouting from spared fibres in order to aid functional recovery. 

 

Recent research has also focused on a direct comparison of the differential 

growth-promoting properties of OB versus LP-OECs, suggesting that LP-OECs are 

more migratory in vitro and more efficacious at promoting axonal regeneration 

and reducing scar formation in vivo than OB-OECs in a rat model of SCI (Richter 

et al., 2005). However, these findings cannot detract from the body of literature 

which reports the efficacy of OB-OECs in transplant scenarios (Ramon-Cueto & 

Nieto-Sampedro., 1994; Navarro et al., 1999; Huang et al., 2003; Guest et al., 

2006).  

 

To date, there have been a few examples of clinical trials of patients with SCI 

being transplanted with OECs. Following autologous transplantation of LP-OECs 

from 6 mths after the initial injury, researchers reported that whilst there were 
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no adverse affects associated with OEC treatment after 3 years, there were also 

no obvious signs of axonal regeneration or changes to the injury site, as assessed 

by MRI (Fèron et al., 2005; Mackay-Sim et al., 2008). Lima et al., (2006) 

demonstrated slightly more promising results in that 2 out of 7 of their patients 

showed improvements in function after autologous OEC-grafts, as determined by 

their scoring on the ASIA scale. However, one patient reported an increased 

level of neuropathic pain post-transplantation, whilst another patient showed 

deficits in function after OEC treatment. A follow up study by the same group, 

however, described that a combination of OEC transplantation with pre and 

post-operative rehabilitation resulted in 11 out of 20 patients showing functional 

improvements (Lima et al., 2010). However, functional recovery relies upon 

subjective analysis and may be subject to reporter bias, though Fèron et al., 

(2005) may have controlled for this to some extent by including a non-

transplanted group and “blinding” the assessors. That said, none of these studies 

demonstrated significant anatomical evidence of neuroregeneration following 

OEC transplantation. A study carried out in China using homologous transplants 

of foetal olfactory tissue reported that in addition to there being no functional 

gains in patients after treatment, 5 out of 7 patients showed an increased 

instance of pneumonia and meningitis with OEC grafts. 

 

In light of this evidence, autologous transplantation may be less detrimental for 

the patient. Whilst Barnett et al., (2000) described that human-derived OB-OECs 

became mitogenically unresponsive giving them a short life-span in culture, 

others have shown that human OECs take about 4-6 weeks to reach sufficient 

numbers for transplantation,  using NT-3 to aid their expansion (Bianco et al., 

2004; Fèron et al., 2005; Mackay-Sim et al., 2008). However, these results may 

be significant when considering the acute transplantation of OECs, whereby 

large numbers of cells would be required in the relative aftermath of the injury. 
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1.5.2.1.1 Remyelination of CNS Axons by OECs 

As previously described in this thesis, Devon & Doucette gave the first indication 

of the myelinating potential of OECs in vitro using purified DRG cultures (1995). 

Until a recent report by Babiraz et al., (2011) confirmed these early findings, 

the notion that OECs could myelinate in vitro was strongly contested. OECs have 

also been reported to remyelinate axons in vivo following their transplantation 

into the host injury site. They produce a typically peripheral pattern of myelin 

by wrapping cells in a 1:1 ratio, known as signet ring formation and they express 

P0, as would be traditionally observed in myelinating SCs (Franklin et al., 1996; 

Barnett et al., 2000; Sasaki et al. 2004; Lankford et al., 2008). However, others 

have suggested that this remyelination is actually carried out by infiltrating SCs 

(Takami et al., 2002; Boyd et al., 2004). To investigate this further, Lac-Z 

labelled OECs were transplanted into a mild contusion injury model in rodents. 

Results from this study showed that Lac-Z OECs did not associate with 

remyelinated fibres, but SC-like cells did, though these may also have been 

unlabelled OECs (Boyd et al., 2004). Similar labelling studies using GFP to 

identify transplanted OECs have contradicted these findings, reporting GFP-OEC 

mediated remyelination in ethidium bromide demyelinating lesions (Sasaki et 

al., 2006). The differences in these two reports could be attributed to donor age 

of the transplant cells, in that Boyd and colleagues used embryonic bulb OECs, 

whilst Sasaki et al., transplanted OB-OECs from a neonatal source. However, as 

previously discussed, Coutts et al., (2012) reported that although adult, neonatal 

and embryonically-derived OB-OECs were all capable of remyelination in a toxin-

induced model of demyelination, OECs from an embryonic source were most 

effective in this context. Thus, the injury milieu may be vastly different in a 

demyelinating lesion versus SCI, which could significantly affect the properties 

of transplanted cells. 

 

In summary, what this research highlights is that whilst anatomical sourcing and 

donor age may be important factors to consider when isolating and culturing 

OECs, purification techniques, growth factor supplementation and the length of 

time the cells spend in passage must also be taken into consideration (Richter et 

al., 2005; Kawaja et al., 2009; Higginson & Barnett, 2011; Tetzlaff et al., 2010). 

Variations in protocols from lab to lab may result in subtle/not so subtle 
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differences in the morphology and antigenic profile of OECs, which could in turn 

alter their capacity to promote neuronal repair.  

1.5.2.2 Schwann Cell Transplants to Repair the CNS 

Nerve grafts have been used extensively to mediate the repair of severely 

damaged peripheral nerves, whereby the gap between the proximal and distal 

nerve stumps is too great to consider surgical apposition without placing undue 

tension on the regenerating axon. In these circumstances, a segment of 

peripheral nerve can be taken from a lower functioning nerve from either the 

recipient (autograft) or from a donor of the same (allograft) or different species 

(xenograft). This segment of nerve is then anastomosed to either end of the 

transected axon in order to bridge the lesion. Results from these studies indicate 

that their success rate is high, with regenerating fibres being able to transcend 

the graft to reinnervate the distal nerve stumps (Osawa et al., 1987, 1990; Ide 

et al., 1990; Tajima et al., 1991; Best et al., 1999). A recent study has also 

demonstrated that peripheral nerve autografts were able to bridge a lesion of 

7cm in sheep, with reports of robust action potentials in regenerating fibres 

present throughout the graft (Forden et al., 2011).The effectiveness of this 

strategy to repair peripheral nerves may be at least partly attributable to the 

ECM-rich basal lamina in the graft, since studies of muscle grafts, which can 

form similar basal lamina guidance structures, have also reported their efficacy 

in promoting peripheral nerve regeneration (Fawcett & Keynes, 1986; Sehrbundt 

et al., 1991). 

Similarly, peripheral nerve grafts have been used as a means of bridging CNS 

lesions, with reports of extensive innervation of the grafts by CNS axons, though 

these fibres fail to exit the lesion site (Aguayo et al., 1978; Weinberg & Raine, 

1980; Matsuyama et al., 1995). For example, Richardson et al., (1980) 

transected the thoracic spinal cord in rats and then grafted autogolous sciatic 

nerve into the lesion in an attempt to enhance repair. They reported that the 

peripheral grafts became innervated by CNS axons and DRGs but despite this 

apparent regeneration, there was little or no functional recovery in these 

animals. However, autologous grafts of peroneal nerve, which were implanted 



 

77 
 

into the medulla oblongata induced the greatest degree of neurite outgrowth 

when the grafts were placed in close proximity to the cell bodies of CNS 

neurons, which may be an important consideration for the success of nerve 

grafts (Lammari-Barreault et al., 1991). Unlike the repair of peripheral nerves, 

the ability of nerve grafts to enhance the regeneration of CNS axons may be 

dependent upon the presence of SCs, as apposed to just their basal lamina. 

Studies of the lesioned diencephalon whereby nerve grafts with viable SCs were 

compared to those where the SCs had been ablated reported the presence of 

myelinated and unmyelinated fibres in the former graft only (Smith et al., 1988). 

Purified cell suspensions of mature SCs have also been transplanted into a 

variety of CNS lesions to mediate repair (Kuhlengel et al., 1990 a,b; Raisman et 

al., 1993; Brook et al., 1993, 2001; Cheng et al., 1996; Bachelin et al., 2005), 

with varying degrees of success. Pearse et al., (2004) reported increased 

sprouting of sensory fibres along with enhanced neurite outgrowth in 

seritonergic axons following SC transplantation in a rodent contusion model, 

although regeneration of the corticospinal tract was poor. Similarly, Keyvan-

Fouladi et al., (2005) demonstrated that the delayed transplantation of SCs 8 

wks after the initial injury resulted in some gains in fore paw function, though 

these only reached around 5-10% of control values. However, in combination 

with FGF and IN-1 antibody, which alleviates inhibitory myelin debris, human SC 

grafts induced some regeneration of the corticospinal tract, along with reduced 

die-back out-with the lesion site in a complete transection injury (Guest et al., 

1998). These differences in observations could be attributable to limited 

regeneration due to the presence of a more severe injury to begin with. 

Furthermore, the differing responses of sensory and motor axons following SC 

transplantation could also suggest that the requirements for achieving 

regeneration are distinct for each class of neuron. 

SCs can also be modified to enhance their repair potential following 

transplantation into a CNS lesion. For example, Girard et al., (2005) reported 

that the over-expression of BDNF and NT-3 in SCs that were transplanted into 

the lesioned spinal cord resulted in enhanced SC differentiation and reduced 

astrogliosis, correlating with a more robust functional recovery. Similarly SCs 
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engineered to over-express PSA-N-CAM showed enhanced migratory abilities 

compared with non-engineered cells following their transplantation into the CNS 

(Lavdas et al., 2006) 

Infiltrating endogenous SCs, which are thought to migrate in through the 

meninges and blood vessels, rather than via white matter tracts (Baron-Van 

Evercooren et al., 1993), have also been postulated to assist in the limited 

repair of the CNS, in that Beattie et al., (1997) reported that in contusion 

models, SCs were observed in close proximity to the limited numbers of 

regenerating fibres within the lesion site. 

Promisingly, the earlier findings of Morrissey and colleagues (1991), whereby 

cultures of human SCs required approximately 6 wks to reach sufficient numbers 

for transplantation, have since been improved upon. Casella et al., (1996) 

reported that growing human SCs on laminin in combination with the growth 

factors heregulin and forskolin resulted in the propagation of significantly larger 

volumes of human SCs in approximately half the time, which could be of great 

benefit for autologous transplant therapies. Furthermore, the FDA has recently 

given funding for Phase I clinical trials of SC transplants into patients currently 

living with SCI, to be conducted by the Miami Project to Cure Paralysis under the 

direction of Dr Mary Bartlett-Bunge and Dr Damian Pearse. 

Immature SCs may also hold therapeutic promise in the treatment of CNS 

pathologies, in that skin-derived precursors (SKPs) transplanted into the 

contused rat spinal cord were not only shown to promote a degree of locomotor 

recovery and remyelination following their differentiation into SCs, they also 

demonstrated enhanced integration and reduced astrogliosis compared with 

transplants of differentiated SCs (Biernaskie et al., 20007). Similarly, boundary 

cap cells have also been reported to differentiate into SCs with enhanced 

migratory abilities following their transplantation into the demyelinated rodent 

spinal cord (Zujovic et al., 2010).  
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1.5.2.2.1 Schwann Cell-Mediated Remyelination in the CNS 

There is sufficient evidence to suggest that both endogenous and exogenous SCs 

are capable of remyelinating CNS axons (Gilmore 1971; Blakemore, 1975; Pearse 

Baron-Van Evercooren et al., 1997; Pearse et al., 2005), although in the X-

irradiated spinal cord, SC remyelination is said to occur in astrocyte free regions 

when the glial limitans has been breached (Blakemore & Patterson, 1975; Sims & 

Gilmore, 1983; Gilmore & Sims, 1993). It has also been reported that 

peripherally remyelinated CNS axons exhibit normal clustering of sodium and 

potassium channels at the nodes of Ranvier and that conductivity can be 

restored, though in chronic injuries, some deficits in velocity can persist (Felts & 

Smith, 1992; Honmou et al., 1996; Black et al., 2006). 
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1.5.3 Fundamental Differences between OECs and SCs After 
Transplantation 

The previous sections highlight the view that there is sufficient evidence to 

support the use of either OECs or SCs in a transplant-mediated repair strategy. 

Each of these cell types is almost antigenically and morphologically comparable, 

making their definitive detection in vivo difficult (Barnett et al., 1993; Ramon-

Cueto., 1998; Wewetzer et al., 2002; Barnett, 2004). However, differences in 

key aspects of their behaviour, such as their ability to interact with resident 

glial cells in the CNS, may be vitally important when considering their 

transplantation in vivo.  

 

Whilst Schwann cells form boundaries and induce astrogliosis in co-cultures with 

astrocytes, OECs mingle readily in culture and do not cause reactive gliosis 

(Figure 1.12). This effect is thought to be mediated by differences in the 

secretory profile of Schwann cells versus OECs, since it has been demonstrated 

that conditioned media taken from Schwann cells causes OECs to form 

boundaries with astrocytes (Lakatos et al., 2000, 2003; Santos-Silva et al., 

2007). A recent detailed analysis of conditioned media from both OECs and SCs 

has suggested that highly sulphated heparin sulphates secreted by SCs may be 

responsible for this boundary formation, along with the expression of FGF 1 and 

9 (Higginson et al., 2012). The differential expression of N-cadherin has also 

been implicated to play a role in this phenomenon (Fairless et al., 2005); as has 

the response of SCs to astrocyte-secreted ephrins and aggrecan (Afshari et al., 

2010a, 2010b). Given the astrocytic composition of the glial scar, these findings 

could have significant consequences following transplantation of either cell 

type.  

 

Similar findings have been reported in vivo following the transplantation of OECs 

or SCs into the lesioned spinal cord. Lakatos et al., (2003) reported that SC 

grafts exacerbated the glial scar and increased the expression of CSPGs, 

compared with OECs; whilst transplanted LP-OECs were said to reduce scar 

formation (Ramer et al., 2004). Furthermore, a report by Plant et al., (2001) 

demonstrated an increase in CSPGs within the lesion following SC 

transplantation, particularly localised to the SC-graft interface.  
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Su & colleagues (2009) suggested that the injury environment may in fact favour 

OEC migration. They showed that TNFα, expressed by reactive astrocytes, 

increased the migration of OECs on a Boyden chamber assay. Furthermore, 

blockade of the TNFα receptor, TNFR1, on GFP-OECs reduced their ability to 

migrate into the lesion. Whilst this may be the case, Pearse et al., (2007) also 

highlighted that OEC survival after transplantation is significantly increased 

when OECs are not transplanted directly into the lesion, but at sites rostral or 

caudal to it. These findings appear to be echoed by Barakat et al., (2005) who 

reported that following transplantation into the epicentre of a contusion lesion, 

very few OECs survived compared with SCs. However, they do not report on any 

differences in the level of astrogliosis induced by each cell graft, and their 

results appear to show a self-contained SC graft with little evidence of migration 

or integration with the scar tissue. 

 

Furthermore, in chemically-induced demyelinating lesions, transplanted SCs do 

not appear to migrate significantly or to integrate in astrocyte-rich areas 

(Iwashita et al., 2000; Shields et al., 2000). In addition, infiltrating endogenous 

SCs in these lesions also favour areas devoid of astrocytes (Blakemore et al., 

1989). However, a recent study by Zujovic et al., (2012) reported that in a MOG-

induced rodent model of EAE, transplanted SCs were able to myelinate 

demyelinated axons in close proximity with host astrocytes. This data could 

suggest that the injury milieu may differ significantly between toxin-induced 

lesions and inflammatory models of demyelinating diseases, which could be 

significant for enhancing the integration of transplanted cells within the host 

tissue.  

 

 

In summary, although they are almost phenotypically indistinguishable from one 

another, OECs and SCs differ greatly in important aspects of their behaviour, 

such as their ability to interact with astrocytes. These findings could suggest 

that OECs may be a preferential candidate for use in cell-mediated repair of the 

CNS (Kocsis et al., 2009). However, further evidence that OECs exhibit more 

favourable behaviour than SCs following transplantation into the lesioned spinal 

cord could prove invaluable in developing cell-transplant therapies for eventual 

clinical use. 
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Figure 1.12 – OECs and SCs differ in their interactions with astrocytes. Whilst 
OECs mingle readily with astrocytes in vitro (a), SCs form boundaries whereby 
very few cells cross into the astrocyte territory (b); a phenomenon which is 
largely mirrored in vivo. In addition, SCs induce reactive astrogliosis, causing 
astrocytes to up-regulate their expression of GFAP and become hypertrophic. 
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1.5.3 Bioengineering Strategies to Promote CNS Repa ir 

The use of bioengineering strategies is quickly emerging as a potential therapy in 

the treatment of CNS trauma, by aiming to provide a more suitable growth 

substrate than the one present at the site of injury and to bridge the lesion 

(Verreck et al., 2005; Wen et al., 2006; Haile et al., 2007; Amado et al., 2008). 

Furthermore, biomaterials can be modified so as to enhance their properties, 

thus maximising their repair potential. For example, poly (β-hydroxybutyrate) 

can be impregnated with ECM to enhance cell adhesion and proliferation 

(Novikova et al., 2009); whilst chitosan can be formed into injectable hydrogels 

with variable mechanical strengths to best suit its application (Crompton et al., 

2007). Thus, a relatively soft hydrogel can mimic the microenvironment of CNS 

tissue, providing an optimised substrate for the growth of neural and glial cells 

(Dillon et al., 1998; Balgude et al., 2001). Tabesh et al., (2009) detail a list of 

suitability criteria for implantable biomaterials; such as high porosity to allow 

for the diffusion of waste and nutrients and high surface area to volume ratio to 

maximise cellular attachment. 

Furthermore, topographical cues such as grooves, ridges and pillars can also be 

incorporated into a range of biomaterials to influence cell behaviours, including 

adhesion, migration, proliferation and differentiation (Yim et al., 2005; Boland 

et al., 2008). Studies by Dalby et al., (2007, 2012) reported on the ability of 

nano-scale topography to induce osteogenesis in human MSCs, thus highlighting 

the potential use of bioengineered therapies in orthopaedic medicine. Similarly, 

these findings could be optimised to maximise the differentiation of NSCs to 

facilitate the repair of the damaged CNS. 

Previous studies have highlighted the use of bioengineering therapies in the 

repair of severe peripheral nerve injuries. Ribeiro-Resende et al., (2009) 

described how poly- ε -caprolactone (PCL) fibres with longitudinal microgrooves 

could be used to encourage the alignment of SCs in vitro and to encourage the 

formation of bands of Bungner, which are fundamentally important in the 

regeneration of peripheral nerves. In addition, microspheres of polylactide-

glycolic acid (PLGA) infused with glial derived neurotrophic factor (GDNF) 
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enhanced peripheral regeneration in rodent models of sciatic nerve injury (Wood 

et al., 2012). Biodegradable scaffolds can also be used as a way to bridge large 

lesions in peripheral nerve injury, thus facilitating repair (Dai et al., 2000; Yu et 

al., 2004; Hausner et al., 2007; Ding et al., 2011). 

In models of SCI, biodegradable scaffolds may be particularly useful in directing 

neurite outgrowth, with the aim of promoting the successful exit of re-

orientated regenerating fibres from the graft (Chew et al., 2007; Chen et al., 

2009). An in vitro study using PCL scaffolds embossed with a micro-pattern of 

grooves and ridges demonstrated their ability to promote neurite alignment and 

to allow myelination in cultures modelling the intact CNS (Sørenson et al., 

2007). However, after 3 weeks this alignment was decreased as cell density 

increased, indicating the need to investigate the effects of increased groove 

depth on long-term alignment. Patist et al., (2004) implanted poly (D,L-lactic 

acid) macroporous guidance scaffolds with or without impregnated BDNF. Their 

results showed that glial and neuronal cells more rapidly invaded BDNF scaffolds 

than those without. Furthermore, angiogenesis was almost doubled 8 weeks 

after implantation of BDNF scaffolds. However, whilst these scaffolds were well 

tolerated, there was little or no evidence of significant neurite outgrowth within 

the graft (Patist et al., 2004). These results highlight that the use of a 

biodegradable scaffold alone may not be sufficient in overcoming the multiple 

impediments to CNS repair. 
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1.5.3.1 Cell-Seeded Biomaterials for the Treatment of SCI 

Cell-loaded biodegradable scaffolds are also currently attracting attention for 

the possibility that this kind of combined therapeutic approach may be more 

effective in the treatment of complex injuries such as SCI (Xu et al., 1995, 1997; 

Moore et al., 2006; Kubinova et al., 2012). 

By in large, the body of research utilising cell-seeded scaffolds in models of SCI 

have mainly utilised SCs as a cell candidate, perhaps in a bid to recapitulate the 

guidance channels created by the SC bands of Bungner during the successful 

repair of peripheral nerves. Olson et al., (2009) reported that following thoracic 

transection of the spinal cord in rodents leaving a 2mm gap, surgically implanted 

biodegradable poly-lactic glycolic acid (PLGA) scaffolds seeded with NSCs or SCs 

resulted in significant increases in neurite outgrowth within the lesion. However, 

they failed to report the exit of regenerating fibres from the graft, or to observe 

any significant improvements in functional recovery with treatment. Similar 

findings were reported by Xu et al., (1997), who described enhanced axonal re-

growth within the lesion site but little or no exit of regenerating fibres. 

Furthermore, Hurtado et al., (2006) observed poor survival of exogenous SCs 

within the lesion site following the transplantation of pre-seeded poly(D.L lactic 

acid) porous scaffolds, corresponding with minimal neurite outgrowth. 

What these studies highlight is the importance of optimising repair strategies by 

selecting the most suitable biomaterial and scaffold design coupled with the 

most effective cell-candidate in order to overcome all aspects of the 

regenerative inhibition induced by SCI, thus maximising repair. 
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1.6 Closing Summary 

In summary, this literature review has highlighted that whilst peripheral nerves 

are capable of at least partial regeneration, largely mediated by the actions of 

SCs, the CNS is incapable of achieving such repair. The reasons for this include 

the inflammatory response, a lack of trophic support at the injury site and the 

formation of a physical and molecular barrier to regeneration induced by an 

astrocytic scar. Current singular strategies to enhance repair of the CNS, 

including inhibition of negative molecules associated with the glial scar and the 

implantation of biodegradable scaffolds, have reported some improvements in 

neurite outgrowth in animal models of SCI, though very little evidence of 

substantial long-distance regeneration.  

Much debate has also surrounded the issue of cell transplantation as a therapy, 

in terms of which is the most appropriate cell candidate for maximising repair, 

given that there is sufficient evidence to suggest that either OECs or SCs may be 

useful in mediating the repair of the damaged CNS. However, previous studies 

have shown that SCs illicit a negative astrocytic response and exacerbate scar 

formation following transplantation into SCI models, suggesting that OECs may 

be a more favourable candidate for repair. The discovery of novel evidence 

relating to other ways in which these two cell types differ in terms of their 

behaviour within a CNS environment could prove to be significant in the 

development of clinically relevant cellular strategies for treating SCI. 

By initially selecting the most appropriate cell-candidate, combinatorial 

approaches to SCI treatment, such as cell-seeded biodegradable scaffolds, could 

have more promising outcomes for neuroregeneration. 
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1.7 Thesis Aims 

The overall aim of this project was to provide novel evidence to support the use 

of either OECs or SCs as a preferential candidate for cell-mediated repair of the 

CNS by demonstrating key differences in their interactions with endogenous glia. 

Since little was known about the effects of either cell type on endogenous 

myelination in the CNS, the main focus of this thesis was to assess the ways in 

which OECs and SCs influenced the myelinating capacity of oligodendrocytes in 

vitro, and to establish, where possible, mechanisms for the resulting effects on 

myelination.  

Furthermore, as the use of a combined therapeutic approach is likely to be more 

efficacious in the treatment of the damaged CNS, this thesis also aimed to 

develop a biodegradable micro-grooved scaffold. The initial aims were to 

demonstrate the most appropriate biomaterial for supporting the survival and 

differentiation of a complex culture system of glia and neurons. Additional aims 

included investigating the effects of increasing groove depth on cellular 

alignment, with the aim of maximising long-term alignment.  

Once these aims had been addressed separately, it was hoped that these findings 

could provide novel data for the development of the optimum paradigm for 

promoting repair in an in vivo model of spinal cord injury using a 3D cell-seeded 

scaffold. Therefore, the focus of this thesis was divided between two themes:  

(i) investigating the effects of exogenous glial cells on oligodendrocyte 

myelination within an in vitro system recapitulating the intact CNS  

and  

(ii) developing the optimum scaffold design in vitro to maximise cell survival, 

proliferation and differentiation of a complex CNS system. 
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Chapter 2 

Materials & Methods
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2.1 Primary Cell Culture 

Cultures of astrocytes, oligodendrocyte precursor cells (OPCs) OECs, SCs and 

dissociated embryonic spinal cord cultures will be described in detail throughout 

this chapter. Firstly, in order to create a more permissive substrate for optimal 

cell attachment and growth, a positive charge was created on the surface of 

tissue culture flasks and glass coverslips by coating in poly-L-lysine (PLL; Sigma, 

Dorset, UK). Briefly, PLL solution was made up in distilled water (ddH20) to give 

a concentration of 13.3 µg/ml and added to a petri dish of autoclaved 13 mm 

glass coverslips (VWR International, Leicestershire, UK) or to Greiner flasks 

(Greiner Bio-One Ltd, Gloucestershire, UK), which were then incubated at 37 ºC 

for 30 min. After this period, the PLL solution was aspirated off and coverslips or 

flasks were washed with ddH20 and left to air dry in a sterile tissue culture hood, 

ready for use. 

 

Non-coated T75 cm2 Greiner flasks were used to culture neurospheres, whilst PLL 

coated flasks (both T75 cm2 and T25 cm2) were used to maintain all other cell 

populations. Cells were plated down onto PLL coated coverslips in 24 well plates 

(Corning Life Sciences, The Netherlands) prior to immunofluorescent labelling, 

and dissociated embryonic spinal cord cultures were cultured on coverslips and 

housed 2 per 35 mm petri dish (also Corning Life Sciences).  

 

Cultures were maintained in a humidified incubator, which was kept at a 

constant temperature of 37 oC with 7% carbon dioxide (CO2), and fed every other 

day, unless otherwise stated, by removing half the media and replacing with 

fresh. Media was prepared on a weekly basis and filtered sterile using a 0.22 µm 

filter (Sartorius Stadium, UK). Gibco Life Sciences (Paisley, UK) were the 

suppliers for all of the basic media used and each new bottle was supplemented 

with 25 µg/ml gentamycin (Gibco Life Sciences) upon opening, before being 

stored in the fridge. 
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2.1.1 Animal Use and Ethical Considerations  

Only Sprague Dawley (SD) rats, which were provided by Harlan Laboratories, UK, 

were used for work carried out during this thesis. Animals were housed in a 

secure animal facility and treated in accordance with Home Office Regulations 

under the Animal (Scientific Procedures) Act of 1986. A trained technician was 

responsible for the culling of the animals using a Schedule 1 method (namely C02 

exposure or lethal overdose of anaesthetic). Food and water were available ad 

libitum  

 

2.1.2. Olfactory Ensheathing Cell Preparation 

OECs were isolated from the olfactory bulbs of 7-day-old SD rat pups, as 

summarised in Figure 2.1. Briefly, animals were euthanized by lethal injection of 

pentobarbital and then decapitated to allow for the skin and the skull to be 

removed, thus exposing the brain and the olfactory bulbs (OBs). Using curved 

forceps, the bulbs could then be detached from the brain at the cribriform plate 

and scooped out before being placed into Leibowitz (L-15) medium to support 

cell survival in the absence of C02 equilibration (Gibco Life Sciences, Paisley, 

UK). Using a scalpel blade, the OBs were chopped finely to mince the tissue, and 

then incubated for 15-20 min at 37 oC in a bijou with 500 µl of collagenase (1.33 

%) and 500 µl of L-15 per 5-6 animals. The reaction was stopped by the addition 

of 1 ml of a mixture of soybean trypsin inhibitor (0.52 mg/ml Sigma Aldrich, 

Dorset, UK), bovine serum albumin (3.0 mg/ml Sigma Aldrich) and DNase to 

prevent cell clumping (0.04 mg/ml, Sigma Aldrich); collectively denoted as SD. A 

single cell suspension was prepared by passing the tissue through a series of 

needles, ranging from gauge size 19G down to 23G and the cells were then 

pelleted by centrifugation at a speed of approximately 1200 rpm for 4 min at 

room temperature before being resuspended in their optimum growth media in a 

PLL coated T25 cm2 flask. 

 

Though exact protocols for generating the most appropriate growth medium for 

OECs may vary from lab to lab and may also depend upon the age and source of 

the tissue, the use of a basic medium such as DMEM supplemented with 5-10 % 

serum to aid expansion is a commonly used base, which can then be further 

supplemented with growth factors. 
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As previously discussed in Chapter 1, Noble and Murray (1984) demonstrated the 

mitogenic effects of astrocyte-secreted factors (ACM) on oligodendrocytes, and 

this effect was subsequently observed in OECs in combination with fibroblast 

growth factor 2 (FGF2), forskolin and heregulin (Denoted as olfactory mitogen 

mix, OMM) (Franceschini & Barnett, 1996). Based upon these findings, our 

protocol for generating a growth-supportive medium for neonatal rat olfactory 

bulb-derived OECs (OB-OECs), termed OMM/ACM 10 %, was as follows: DMEM low 

glucose (Gibco Life Sciences, Paisley, UK) with 5 % (v/v) foetal bovine serum 

(Invitrogen, Paisley, UK), further supplemented with fibroblast growth factor 2 

(FGF2) (25 ng/ml; Peprotech, London, UK), forskolin  (5 x 10-7 M, Sigma Aldrich, 

Dorset, UK), heregulin (Hrg β1, 50 ng/Ml; R&D Systems, Oxon, UK), and finally 

ACM (1:5), which was collected from a confluent  T75 cm2 flask of astrocytes 

after 48 hr in serum free media (Alexander et al., 2002; Santos-Silva et al., 

2007). Cells were fed 3 times a week and grown to confluency in PLL-coated 

flasks. 

 

2.1.2.1 Olfactory Ensheathing Cell Purification 

OECs were purified by the use of a DIY EasySepTM kit (Stem Cell Technologies, 

Grenoble, France) approximately 5-7 days after the initial dissection (also 

described in review by Higginson & Barnett, 2011). Briefly, magnetic nano-

particles were used to bind to cells which had been labelled with an antibody 

against a particular antigen of interest (p75 NTR, nerve growth factor receptor, in 

this instance). A tube containing the cell/ antibody suspension (anti-p75 NTR, 

polyclonal rabbit; Abcam, Cambridge, UK) was then placed into a specialised 

magnet forcing the nano-particles, which were bound to the antigen +ve 

population of cells, to stick to the sides of the tube whilst unlabelled/ unbound 

cells could be poured out. This washing process was repeated 4 times using PBS 

(phosphate buffered saline, pH 7.4) containing 2% FBS, and the remaining cell 

pellet was spun down and re-suspended in 100 µl of OMM/ACM 10% to form a 

strip of cells, which was allowed to adhere to the flask for 15 min at 37 oC 

before being flooded with media. Allowing the cells to “sit-down” in this manner 

maximised their growth potential by encouraging the initial formation of dense, 

tightly packed colonies. 
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Immunostaining using p75 NTR as a marker for OECs revealed that whilst very few 

cells were positive for p75 NTR  within one hour of being plated down immediately 

following dissection (Figure 2.2 A), approximately 40% of the heterogeneous 

population appeared to express this marker  5 days later, prior to positive 

antigen selection using the EasySepTM kit (Figure 2.2 B). After purification using 

the aforementioned technique, approximately 98% of the cell population 

expressed p75 NTR, suggesting the presence of a highly purified culture of OECs 

(Figure 2.2 C). Whilst the above highlights that the expression of p75 NTR may be 

transient in early OEC cultures, it also demonstrates the usefulness of the 

EasySepTM kit as a tool for purifying primary cells. Once the cells had begun to 

reach confluency, they were passaged by light trypsinisation (0.1% in PBS) and 

split into several flasks and/or seeded onto PLL-coated coverslips in 24-well 

plates (after approx. 4-7 days) and maintained for no longer than 5 passages. 
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Figure 2.1 – Primary Culture of OECs. Olfactory bulbs were dissected out by 
removing the outer layers of the scalp to expose the brain. The tissue was 
chopped finely using a scalpel blade, placed into 500 µl of L-15 media and then 
enzymatically digested by collagenase (1.33%) at 37 ºC for 15 min. Soya bean 
trypsin inhibitor (SD) was added after this period to stop the reaction and the 
cell suspension was then triturated through a range of needles (21-23G). Cells 
were pelleted by centrifugation at 1200 rpm for 4 min and resuspended in 
OMM/ACM 10%, which was replaced (50:50) every 2 days. After 5-7 days, the 
heterogeneous cell mix was purified using an EasySep™ kit to produce a highly 
pure population of OECs, which could be confirmed by labelling with an antibody 
to detect p75 NTR expression. 
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Figure 2.2– Immunostaining of olfactory bulb tissue for p75NTR pre and post 
purification using an EasySep™ kit. After enzymatic digestion of the olfactory 
bulbs, a heterogeneous mix of cells was seeded down onto PLL coated coverslips 
and allowed to adhere for 30 min. Immunolabelling with a primary antibody 
against p75NTR and it’s corresponding fluorescently-conjugated secondary 
antibody revealed that very few of these cells expressed this marker at that 
time point (A). These same cells were then enriched in OMM/ACM 10% (optimum 
growth media for OECs) for 5 days and then stained immediately prior to 
purification. Approximately 40% of the population were then positive for p75NTR 
(B). One hour after purification using the EasySep™ kit to select for a p75NTR 
positive population of cells, approximately 98% of cells expressed this marker, 
suggesting that this methodology is effective at producing highly purified 
cultures of OECs. Cells remained rounded up for 1-2 hr until adequate focal 
adhesions had been made. Images were taken using an Olympus BX51 fluorescent 
microscope and Image Pro software using the x 40 objective. Scale bars = 50 µm. 

 

2.1.3 Schwann cell Preparation 

The sciatic nerves of P7 SD rats were dissected out and enzymatically digested 

to produce cultures of SCs (see Figure 2.3). Briefly, the pups were pinned out on 

a board, anterior surface down, and then 2 small incisions were made on either 

side of the sacro-lumbar region of the spinal cord. The sciatic nerves were 

exposed by continuing the incisions down each hind limb, cutting away the skin 

and then removing part of the piriformis muscle. Using forceps, the sciatic 

nerves were then gently pushed up to ensure that they were properly detached 

from the muscle and then a portion of approximately 5-6 mm of each nerve was 

removed, down to the area where the nerve bifurcates to give rise to the tibial 

and common fibular nerves. Tissue culture then proceeded exactly as described 

for OEC preparation, with the addition of 100 µl trypsin (0.25%, Invitrogen) as 

well as collagenase for digestion of the tissue. Cells were initially resuspended in 

10% FBS without any growth factors.  
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2.1.3.1 Purification of Schwann Cells 

Cells were maintained in 10% FBS for 48 hr without any additional factors which 

were specifically mitogenic for SCs in order to slow down their rate of 

proliferation. Purification was then performed by the addition of cytosine 

arabinoside (AraC, 10−5 M, Sigma, Dorset, UK) to the media for a further 48 hr in 

order to kill of rapidly dividing contaminating fibroblasts (modified from Brockes 

et al., 1979). Further purification was then carried out by trypsinising the cells 

and resuspending them in a small volume of serum free media with anti-Thy1.1 

antibody at room temperature for 15 min (1:50 supernatant, Sigma, Dorset, UK), 

followed by the addition of rabbit complement (1:4, Harlan Laboratories Ltd., 

UK) for 45 min at 37 ºC (Lakatos et al., 2000).The purified cell suspension was 

then pelleted by centrifugation and resuspended in 100 µl of 10% FBS plus 

heregulin (Hrg β1, 20 ng/ml; R&D Systems, Europe, Oxon, UK) and forskolin (10-6 

M), to form a small strip of cells in a T25 cm 2 flask, which were allowed to 

adhere at 37 ºC for 15 min before being flooded with media. As before, cells 

were passaged by light trypsinisation (0.1% in PBS) and split into several flasks 

and/or seeded onto PLL-coated coverslips in 24-well plates once they had 

reached confluency (approx. 4-7 days) and kept for approximately 5 passages.  
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Figure 2.3 – Primary Schwann cell culture. SC cultures were obtained by 
dissecting the sciatic nerves out of the hind limbs of P7 rats. The tissue was 
chopped finely using a scalpel blade, placed into 500 µl of L-15 media and then 
enzymatically digested by collagenase (1.33%) and trypsin (0.25%) at 37 ºC for 15 
min. Soya bean trypsin inhibitor (SD) was added after this period to stop the 
reaction and a single cell suspension was generated by triturating the tissue 
through a range of needles (21-23G). Cells were pelleted by centrifugation at 
1200 rpm for 4 min and resuspended in 10% FBS for 48 hr, after which cytosine 
arabinoside (AraC, 10−5 M) was added to the media for an additional 48 hr. 
Following this time period, cells were further purified by incubating with the 
anti-Thy1.1 antibody (1:50) in serum free media, followed by rabbit complement 
(1:4) to kill off contaminating fibroblasts. Cells were then spun down again and 
resuspended in 10% FBS containing heregulin (20 ng/ml) and forskolin (10-6 M, 
Sigma Aldrich, Dorset, UK). Using this method, a highly pure population of 
Schwann cells could be generated, as assessed by their expression of p75NTR 
(>95% expression). 
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2.1.4 Collecting Conditioned Media from Purified Ce lls 

To assess the effects of secreted factors derived from OECs and SCs on 

endogenous CNS cells, conditioned media (CM) was collected from purified 

cultures of each cell type by firstly growing cells to confluency in a T25 cm2 flask 

(approx 1.5 million cells/flask). Fresh media was then added to each flask (3 ml) 

and collected after 72 hr, before being filtered sterile (using a 0.22 µm filter, 

Sartorius) and stored at -20 oC until required. The cells were then re-fed and 

allowed to recover for a further 72 hr before the aforementioned procedure was 

repeated. A maximum of 2 collections per flask was performed and after this, 

the cells were not used for any further experimentation. When collecting CM, 

the media used for collection matched that which was required to maintain each 

of the cell types/cultures we were investigating, as opposed to the optimum 

growth media for the cells being collected from. Optimum media was, however, 

fed to SCs or OECs in between each collection (10% with heregulin and forskolin 

or OMM/ACM 10%, respectively). When treating cultures with CM, a 1:4 dilution 

was used with fresh media (1 part CM, 3 parts fresh media) unless otherwise 

stated. CM was always collected from cells which were approximately passage 3 

to allow for accurate comparisons to be made between conditions. 

2.1.5 Oligodendrocyte Precursor Cell (OPC) Cultures  

Cultures of OPCs were generated by firstly culturing cortical-derived astrocytes 

from P1 rats. Briefly, the outer layers of the cortex were dissected out (3 pups 

per flask), making sure to include the corpus callosum, whilst removing the 

meninges where possible. The tissue was then placed in L-15, minced using a 

scalpel blade and then collagenase (1.33%) digested for 15-20 min at 37 ºC. The 

reaction was stopped, as previously described, by the addition of SD and then 

the cell suspension was triturated through a 21G needle and spun down at 1200 

rpm for 4 min. The pellet was resuspended in 10% FBS and the cells were 

cultured for 10-14 days in a PLL-coated T75 cm2. After this period, a monolayer 

of OPCs had formed on top of a confluent sub-layer of astrocytes. To remove the 

OPCs, the flask was placed on a shaker for 2-3 hr and then the supernatant was 

removed and placed in a 90 mm petri dish for approx 20 min, whilst fresh 10% 
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FBS was added to the flask of purified astrocytes, which could then be used for 

further experiments. The shaken-off supernatant was removed from the petri 

dish (leaving behind the preferentially attached microglia) and spun down at 

1200 rpm for 4 min. OPCs were then resuspended in Sato media (adapted from 

Bottenstein & Sato, 1979) (defined serum free media: DMEM containing Sato mix, 

0.5 mg/ml insulin in 10 mM HCl (Sigma, UK), human transferrin (Sigma, UK), 

glutamine (100 mM; Sigma, UK) and gentamycin (100 mg/ml; Sigma, UK)), 

supplemented with the growth factors FGF (10 µg/ml) and platelet derived 

growth factor (PDGF 2 µg/ml; Peprotech, UK), and plated onto PLL-coated 

coverslips. Both of these growth factors are known to enhance the survival of 

OPCs, whilst allowing them to retain a progenitor-like phenotype. The cells were 

maintained in Sato plus growth factors for 5-7 days, replacing half the media 

with fresh media every other day. After this time period, FGF and PDGF could be 

removed and replaced with Sato alone (to promote OPC differentiation) or 

treated with Sato + conditioned media/experimental growth factors for the 

duration of the experiment (Raff et al., 1983).  

2.1.6 Myelinating Culture System  

Previously described by Thomson et al., (2006), this culture system involves 

generating a confluent monolayer of astrocytes and plating dissociated E 

embryonic day 15 (E15.5) spinal cord, containing neurons, spinal astrocytes, 

oligodendrocyte precursor cells and microglia, directly on top (Figure 2.4). After 

a period of 22-28 days, neurite density and myelination could be assessed using 

immunocytochemistry and fluorescence microscopy. The nature of this system 

enables the user to mimic the intact CNS, thereby allowing for the investigation 

of the complex interactions which occur between endogenous CNS cells and 

exogenously added glial cells, as well as the effects that a given factor may have 

upon the culture system. Throughout this thesis, the term “myelinating culture” 

will be used to denote the aforementioned system.  
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2.1.6.1 Generation of Astrocyte Monolayers 

Astrocyte monolayers were generated by harvesting neurospheres from the 

striatum of P1 SD rat pups (Figure 2.4). Briefly, the brains were cut mid-sagitally 

and the outer layers of the cortex pushed back to expose the striatum, which 

was then dissected out from each hemisphere and placed into L-15 media. For 

each preparation, approximately 3 heads per flask were used. The tissue was 

dissociated by trituration through a 21G needle and maintained in a non-coated 

T75 cm2 flask in media composed of DMEM/F12 (1:1), supplemented with 0.105% 

NaHCO3, 2 mM glutamine, 10% pen/strep, 0.6% glucose, 5 mM glucose, insulin (25 

mg/ml, Sigma), apotransferrin (100 mg/ml, Sigma), putrescine (60 mM Sigma), 

progesterone (20 nM Sigma) and sodium selenite (30 nM, Sigma); collectively 

termed as neurosphere media (NSM). The NSM was further supplemented with 

20 ng/ml of mouse submaxillary gland epidermal growth factor (EGF, R&D 

systems, Abingdon, UK). After the spheres had become confluent (approx. 5-6 

days) they were spun down at 800 rpm for 5 min and triturated again using a 21G 

needle in 1 ml of NSM before being placed in a new flask containing equal 

measures of fresh media and supernatant, giving a total volume of 20 ml, which 

was again supplemented with EGF (20 ng/ml). This process was carried out by 

way of proof of concept to ensure that the cells in suspension where in fact 

neurospheres and therefore capable of reforming spheres. Once the newly 

reformed spheres had reached a critical size (approx. 4-5 days), they were once 

again spun at 800 rpm for 5 min and triturated using a 21G needle. They were 

then resuspended in DMEM low glucose (Invitrogen, Paisley, Scotland) 

supplemented with 10% foetal bovine serum and 2 mM L-glutamine (10% FBS) to 

encourage their differentiation into astrocytes, before being plated down onto 

PLL coated coverslips in a 24-well plate. The monolayer was maintained by 

removing half the media and replacing it with fresh 10% FBS 3 times a week. A 

confluent monolayer could usually be observed 7-10 days after spheres were 

plated down. 
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2.1.6.2 Dissociated Embryonic Spinal Cord  

A pregnant SD rat was euthanized in a C02 chamber and the embryos were 

removed by sterilising the abdomen using 70% ethanol and making one large 

vertical and 2 lateral incisions through the muscle layers to expose the uterus at 

embryonic day 15 (E15.5). Each embryo was removed from its individual 

amniotic sac and decapitated, ensuring that the cervical plexus was left intact 

(located at cervical 1 region, containing fibres which innervate the face, scalp 

and neck). The upper 5-6 mm of the cord from each embryo was removed and 

stripped of all traces of meninges to avoid peripheral nerve contamination. By 

ensuring that the cervical plexus was present, the meninges could be removed 

more efficiently, thus minimising peripheral contamination. The tissue was then 

dissociated using trypsin (100 µl of 2.5%) and collagenase (1.33%) for 15 min at 

37 oC and then treated with 2 ml of SD. The cells were triturated through a 21G 

needle and centrifuged at 800 rpm for 5 min. The resulting cell suspension was 

resuspended in 2 ml of plating medium containing 50% low glucose DMEM, 25% 

horse serum, 25% Hanks balanced solution (HBSS) without Ca+ and Mg+, (Gibco 

Life Sciences, Paisley, UK) and 2 mM L-glutamine (Invitrogen) and then further 

diluted if necessary to give the desired cell density. The mixed culture could 

then either be plated onto an astrocyte monolayer on glass coverslips, or onto 

scaffolds depending upon the experimental conditions, at a cell density of 

150,000 cells/100µl (unless otherwise stated). After an incubation period of 2 hr 

to allow the cells to sit down, cultures were maintained in high glucose DMEM 

supplemented with 0.5 mg/ml insulin, 50 nM hydrocortisone, 10 ng/ml biotin, 

and a cocktail of hormones including 1 mg/ml apotransferrin,   selenium, 20 mM 

putrescine, 4 µM progesterone (differentiation media, DM+). After 12 days in 

culture, the insulin was removed from the media (DM-) to encourage the 

differentiation of oligodendrocyte precursor cells. Feeding took place 3 times a 

week by removing half the media and replacing with fresh. 
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Figure 2.4 – Schematic describing the methods for producing myelinating 
cultures. A confluent monolayer of astrocytes (labelled with glial fibrillary acidic 
protein, GFAP) was generated by differentiating neurospheres derived from the 
striatum of post-natal day 1 (P1) rats. A mixed population of cells containing 
astrocytes, neurons, oligodendrocyte precursor cells and microglia was produced 
by dissociating embryonic spinal cord tissue and then these cells were plated on 
top of the monolayer of astrocytes. After 26 days, neurites (labelled with SMI-31 
to detect phosphorylated neurofilaments) and oligodendrocytes and myelin 
sheaths (labelled with an antibody to proteolipid protein, PLP) could be 
visualised with immunofluorescence, whilst DAPI was used to label nuclei. 

Neurospheres 
from P1 rat 

striatum 

   Monolayer of Astrocytes 
(NsAs) 

GFAP DAPI 

E15 
dissociated 
spinal cord 

cells 
(mixed 

population 
of neural 

cells)  

SMI-31 PLP 



 

102 
 

2.1.7 Treatment of Myelinating Cultures  

In order to assess the biological effects of the interactions between SCs or OECs 

with endogenous CNS cells, each of these was added exogenously to a 

myelinating culture or allowed to “condition” the media which was used to 

maintain the cultures, when focusing solely on factors which may be secreted by 

each cell type. Conditioned media (CM) was also taken directly from OECs and 

SCs to treat cultures (as described in 2.1.4). When treating the cultures with CM 

or indeed, growth factors or antibodies, the standard protocol was to allow the 

cultures to become established for 12 days before beginning the treatments. 

Feeding was as previously described: every other day by removing half the media 

and replacing with fresh DM- containing CM or treatment at the appropriate 

concentration. Media containing the growth factors/antibodies/CM was freshly 

prepared every 3-4 days and stored at 4 oC between each use. Control cultures 

refer to those which did not have any exogenously added cells, nor were they 

exposed to any additional treatments during the culture period. 

 

2.1.7.1 Exogenous Addition of OECs or Schwann Cells  to Myelinating 

Cultures 

The embryonic spinal cord cells were prepared as described in 2.1.6.2 by 

enzymatic digestion of the tissue with collagenase and trypsin. During this 

incubation time, a flask of OECs and a flask of SCs were trypsinised (0.25%), 

centrifuged at 1200 rpm for 4 min and resuspended in plating media (PM) ready 

to be counted. The volume used for resuspension was kept as small as possible 

(usually around 200 µl, depending upon the confluency of each flask) so as to not 

to greatly alter the concentration of the spinal cord mix (150,000 cells/100µl). 

Calculations were then performed to work out the correct volume of each cell 

type to be added to the spinal cord mix in order to produce one cell suspension 

containing 5,000 or 10,000 OECs or SCs, as well as the spinal cord cells. For 

further experiments, cell suspensions containing spinal cord cells with both OECs 

and SCs together could also be prepared as outlined above. As previously 

described, the cultures were allowed to sit down for 2 hr before being fed the 

usual mix of DM+ and PM. Feeding was carried out exactly as normal, by replacing 
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half the media with fresh DM every other day and by removing insulin after D12 

(DM-).  

An alternative method was initially tested whereby the cultures were allowed to 

become established for 12 days before being removed from their culture dishes 

and placed into fresh dishes containing no media. OECs or SCs were then plated 

directly on top of each coverslip in a meniscus at the concentrations previously 

described, and incubated at 37 oC for 1 hr to aid their attachment. However, 

this method resulted in poor survival of the cultures (including controls, which 

were treated in the same manner), perhaps due to the mechanical stress 

exerted on each by the use of forceps and pipetting directly on top of the 

coverslips at a time when the cultures may be considered to be vulnerable. 

Similarly, higher concentrations of OECs or SCs were also tested but these again 

resulted in poor survival of the cultures, which may be attributed to an over-

loading of cells onto each coverslip.  

2.1.7.2 Conditioning of Myelinating Cultures by OEC s or Schwann Cells 

Myelinating cultures were allowed to establish for 12 days before treatment 

began. For each myelinating culture coverslip, 2 confluent coverslips of either 

OECs or Schwann cells were placed in the same dish. In this manner, cells were 

exposed to paracrine signalling from factors which may be being secreted by 

endogenous cells within the culture system (see Figure 2.5). Coverslips 

containing OECs or Schwann cells were replaced every feeding day as previously 

described.  

Conversely, CM was also collected directly from confluent flasks of OECs (OCM) 

or Schwann cells (SCM) in DM-. In this paradigm, the CM was collected in an 

environment where neither cell type was exposed to factors which were being 

secreted by endogenous cells within the myelinating culture. CM was filter 

sterilised before use and added to cultures at a 1:4 or 1:8 dilution with fresh DM. 

To assess the importance of the proteinaceous nature of CM, it was also heated 

for 1 hr at 55 oC (h.SCM) and then treated exactly as above. Each experimental 
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“n” number relates to a different batch of CM as well as a biological replicate of 

the myelinating cultures. 

 

Figure 2.5 – Methodology of conditioning myelinating cultures. Two confluent 
coverslips of Schwann cells (SCs) or OECs were placed in a 35 mm petri dish and 
allowed to condition a myelinating culture from day 12 onwards. SC/OEC 
coverslips were replaced every feeding day. In this way, the OECs and SCs were 
also exposed to factors being secreted by endogenous cells within the 
myelinating culture, which may have influenced their secretory profile. Black 
arrows denote SC or OEC coverslips, whilst the green arrow highlights the 
myelinating culture. 

2.1.7.3 Treatment of Myelinating Cultures with Conn ective Tissue Growth 

Factor (CTGF) 

After 12 days in vitro, cultures were treated with CTGF (38.3kD human 

recombinant protein GWB-932DB7; GenWay Biotech Inc, San Diego) every 

feeding day by removing half the media and replacing with fresh media 

containing the growth factor. In order to produce a dose response curve, a range 

of concentrations was used (500 pg/ml, 750 pg/ml, 10 ng/ml and 100 ng/ml). 

Each concentration was made up in fresh DM- , as opposed to being added 

directly to each dish, and the calculations were done to ensure that the final 

concentration in each dish closely matched those listed above after half the 

media had been removed and replaced with fresh. A shorter 11kD human 

recombinant CTGF (Peprotech, UK) was also tested exactly as above at a 
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concentration of 10 ng/ml. Both growth factors were said to have cross 

reactivity in rats. 

2.1.7.4 Treatment of Myelinating Cultures with a Ne utralising Antibody to 

CTGF 

A neutralising antibody to CTGF (rabbit polyclonal; LS Bio, UK) was added to SCM 

at a concentration of 10 ng/ml and the SCM was then added to cultures as 

before (1:4 with fresh media every other day). Controls for this experiment 

included SCM alone, antibody in DM- and no treatment. The data sheet 

recommended that a concentration of around 2 µl/ml of antibody should expect 

to neutralise 200 ng/ml of CTGF therefore, a concentration of 10 ng/ml should 

effectively neutralise 1 ng/ml. 

 

2.2 Immunocytochemistry  

Immunolabelling was assessed by use of a primary antibody against the antigen 

of interest followed by incubation with an isotype specific fluorescently-

conjugated secondary antibody (AlexaFluors; Molecular Probes, UK), which could 

then be visualised using a fluorescence microscope. The lists of primary and 

secondary antibodies used for work carried out during this thesis are given in 

Tables 2.1 and 2.2, respectively. Protocols for staining varied depending upon 

the location of the antigen (ie. internal or cell surface), however, all coverslips 

containing cells were initially fished out of 24-well plates or 35 mm dishes using 

forceps, blotted gently on clean tissue paper to remove excess media and 

housed in a black lidded box during the procedure (to protect photo-sensitive 

fluorochromes from bleaching whilst staining). In between each step of the 

protocol, coverslips were gently washed at least 3 times in PBS for no more than 

a few seconds. After the final step, an additional wash was carried out using 

ddH2O and coverslips were mounted cell-side down on frosted glass slides using 

Vectashield mounting media (Vector Laboratories LTD, Peterborough, UK). To 

label the nuclei, Vectashield containing DAPI (4',6-diamidino-2-phenylindole, a 

blue fluorescent stain that binds DNA) was used, however, this stain had to be 

excluded when a secondary antibody bound to a blue fluorochrome was used 

during triple labelling of cells (eg. AlexaFluor 350; absorption 346 nm, emission 
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442 nm). Slides were stored in closed boxes (again, to avoid bleaching) and 

stored at 4 oC. Microscopy was carried out within 7-10 days of staining to ensure 

that the slides had not faded. 

2.2.1 Using Cell Surface Markers for Immunocytochem istry 

When probing for an external or cell surface antigen, the staining was carried 

out live (pre-fixation) and primary antibodies were diluted in the cells own 

media and added to each coverslip at a volume of 50 µl for 20 min at room 

temperature. Following the washing steps, secondary antibodies also diluted in 

media were added for a further 20 min under the same conditions. Fixation was 

then performed using 4% paraformaldehyde and coverslips were washed and then 

mounted as previously described. 

2.2.2 Using Internal Markers for Immunocytochemistr y 

For internal antigens, cells were initially fixed using 4% paraformaldehyde for 15 

min at room temperature and then permeabilized with Triton X (0.1% Triton-X-

100 in PBS) for a further 15 min. It was also possible to fix and permeabilize in 

one step by adding ice cold methanol to the cells for 20 min at -20oC, however, 

since methanol can damage the epitopes of some antigens, this method of 

fixation/permeabilization was only used when labelling for GFAP. Cells were 

then blocked with blocking buffer (0.2% gelatine in PBS) for 15 min at room 

temperature to minimise non-specific binding of the antibody, before the 

addition of primary antibody diluted in blocking buffer for 1 hr at room 

temperature. Following the wash steps, the isotype-specific secondary antibody, 

also diluted in blocking buffer, was added for 45 min at room temperature. Cells 

were then washed and mounted as previously described. 

2.2.3 Using Cell Surface and Internal Markers  

When simultaneously labelling cells using cell surface and internal markers (eg. 

p75NTR, external; SMI-31 and PLP, internal), external markers were labelled first, 

as described in section 2.2.1. The external primary antibody was added in media 
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for 20 min at room temperature, followed by the addition of the corresponding 

secondary antibody for 20 min immediately after washing. Fixation, 

permeabilization and blocking steps were carried out as described in section 

2.2.2 and then staining for internal markers proceeded as previously described. 

Coverslips were mounted in the usual way, with or without DAPI depending upon 

the presence of a blue fluorescently conjugated secondary antibody.  

 

Antibody 
name 

Antigen Cellular 
Location 

Isotype Dilution  Source 

AA3 Proteolipid protein 
(PLP) and it’s 
isoform DM20 

intracellular Rat IgG 1:100 hybridoma 

SMI-31 Phosphorylated 
neurofilament 

Intracellular Mouse IgG1 1:1500 Abcam 

Anti-GFAP Intermediate 
filament, glial 
fibrillary acidic 

protein 

Intracellular Rabbit 
polyclonal 

1:500 Dako 

Anti-p75NTR Low affinity 
neurotrophin 

receptor for nerve 
growth factor 

Cell surface Mouse IgG1 
and rabbit 
polyclonal  

1:1, 1:100  Hybridoma, 
Abcam 

Anti-BrdU Bromodeoxyuridine; 
binds DNA during S-

phase of cell division 
labelling 

proliferating cells 

Intracellular Mouse IgG1 1:20 DAKO 

Anti-NG2 NG2, extracellular 
matrix molecule 
belonging to the 

CSPG family 

Cell surface Rabbit 
polyclonal 

1:100 Millipore 

O4 Oligodendrocyte 
4,cell-surface 
sulfatides and 
seminolipids 

Cell surface Mouse IgM 1:1 Hybridoma 

Anti-MBP Myelin basic protein 
(MBP) 

intracellular  Mouse IgG2A 1:200 Gift from 
Prof. Chris 
Linington 

Table 2.1 – Primary antibody list. Table 2.1 illustrates the list of primary 
antibodies which were used for immunofluorescent labelling of primary cells for 
work carried out during this thesis, along with details of the antigen that they 
detect, their isotype and working dilutions. 
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Isotype Conjugated fluorochrome Dilution Source 

Anti-mouse IgG1 555 (red) or 350 (blue) 1:600 Molecular Probes 
(AlexaFluor) 

Anti-rat IgG 488 (green) 1:600 Molecular Probes 
(AlexaFluor) 

Anti-rabbit Ig 488 (green) or 555 (red) 1:600 Molecular Probes 
(AlexaFluor) 

Anti-mouse IgM 488 (green) or (555) red 1:600 Molecular Probes 
(AlexaFluor) 

Anti-mouse IgG2A Fluorescein isothyocyanate (FITC, 
green) or Tetramethyl rhodamine 
Isothyocyanate (TRITC, red) 

1:100 Southern 
Biotechnologies 

Table 2.2 – Secondary antibody list. Table 2.2 lists all of the fluorescently-
conjugated secondary antibodies used for immunolabelling studies carried out 
for this thesis, as well as their working dilutions. 
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2.3 Quantification of Fluorescent Images 

Cells were imaged using an Olympus BX51 epifluorescent microscope and Image-

Pro software. For each condition, 2 coverslips were used and 10 images from 

each coverslip were taken by merging each colour channel to form a composite 

image, which could be saved as a TIFF file. When imaging myelinating cultures, 

the DAPI channel was not included so as not to interfere with the myelin 

quantification (section 2.3.2) Images could then be reopened in Image J (NIH 

systems, version 1.45) or Adobe Photoshop Elements 7.0 for further analysis to 

determine neurite density, the % of myelinated axons or to calculate cell 

numbers and their expression of markers of interest. 

2.3.1 Calculating Neurite Density 

For myelinating cultures, the SMI-31 positive neurites were generally 

fluorescently labelled with TRITC-conjugated (red) secondary antibodies, whilst 

the PLP-positive myelin sheaths and oligodendrocytes were labelled with FITC-

conjugated (green) secondary antibodies. In the instances where axons had to be 

labelled with a blue secondary antibody, each channel was captured on the 

microscope and then tinted using Image Pro software to ensure that neurites 

were red and PLP+ cells/sheaths were green. For quantitative analysis of neurite 

density, images were taken randomly to avoid bias using a 10x objective. Neurite 

density was then calculated by opening each image in Image J and splitting the 

channels (red and green). The threshold was then worked out for the red 

channel only to ensure that the amount of SMI-31 reactivity wasn’t skewed by 

over-exposure of the image. Using the histogram function, the software then 

produced two figures: the number of black pixels (representing neurite 

coverage) and the number of white pixels (background). To confirm that the 

programme was running effectively, a simple calculation could be performed to 

ensure that the number of black pixels + white pixels always equalled 1447680 

(total pixels). 
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The black pixel value was then expressed as a percentage of the total pixel 

value to give a value denoted as % neurite density using Microsoft Excel to 

perform the calculations: 

(Black pixels ÷ total pixels) x 100 = % neurite density 

2.3.2 Quantification of the % of Myelinated Axons 

Adobe Photoshop Elements 7.0 was used to edit images of myelinating cultures 

by manually drawing over myelin sheaths using a pure blue (Blue 255, Red 60 and 

Green 0) with a brush size 9 paint tool. Since the AA3 antibody that recognises 

PLP also recognises its isoform DM20, which can be expressed by OPCs, staining 

with this antibody also resulted in the labelling of immature and mature 

oligodendrocytes, as well as myelin sheaths. Thus, care had to be taken to 

ensure that only sheaths (and not cell bodies) were highlighted in blue to ensure 

accurate quantification of myelin. Whilst this method is arguably subjective, 

since analysis is performed by the same person throughout, it can be assumed 

that any inconsistencies will be averaged out across all conditions. Once the 

myelin has been manually drawn on all images, 3-4 representative images from 

each condition were opened in Image J and the average threshold for the green 

channel across the images was noted. This measure was taken to ensure, as with 

calculating neurite density, that the information shown in the green channel was 

neither over nor under-exposed. A custom made macro, which recognises the 

pixel value of where the blue (manually drawn sheaths) overlaps with the green 

channel (PLP staining), was then run on all images for each condition. These 

values were exported directly into Microsoft Excel, where they were expressed 

as a percentage of the total black pixel value (SMI-31 reactivity; see section 

2.3.1) to give a value denoted as % myelinated axons. 

(Blue overlying green pixels ÷ Black pixels) x 100 = % myelinated axons 
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2.3.3 Quantification of Cell Number 

As with all experiments, cell counts were performed on duplicate coverslips, 

taking 10 images from each for analysis. OPCs were cultured as described in 

section 2.1.5 for approx 5-7 days in Sato + PDGF and FGF before treatment 

began. After this period, some cells were kept in growth factors, whilst others 

were switched to Sato alone or Sato + SCM/ CTGF. Staining was then carried out 

1 and 5 days after treatment, using a antibody to detect NG2 (a chondroitin 

sulphate proteoglycan expressed on the surface of OPCs, see Table 2.1) and the 

O4 antibody (recognises cell surface sulphatides and seminolipids in immature 

and mature oligodendrocytes). Based upon the number of cells expressing each 

of these markers, coupled with a brief descriptive of their morphology, some 

assessment could be made regarding the level of cell differentiation under each 

condition. Using the same markers, the population of OPCs/oligodendrocytes in 

myelinating cultures could also be assessed at D12 and D18. Images were taken 

using a x40 objective and opened in Image J. To give a value for the total cell 

number, DAPI nuclei were counted and totalled using the Image J cell counter. 

The number of cells which did not express oligodendrocyte markers 

(contaminating astrocytes or microglia in OPC preps or astrocytes, neurons or 

microglia in myelinating cultures) was then subtracted from this value to give an 

approximation of the total DAPI count for the OPC/ oligodendrocyte population  

Each marker was calculated as a % by expressing the number of cells which 

labelled for the antigen of interest over the OPC/oligodendrocyte DAPI count to 

give % of cells expressing as a proportion of that population. 

(Cells expressing ÷ DAPI count) x 100 = % of cells expressing 
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2.3.4 Assessing Cell Proliferation 

To quantify proliferation, cultures were treated with bromodeoxyuridine (5-

bromo-2-deoxyuridine; BrdU), which is an analogue of thymidine. BrdU is used as 

a marker of cell proliferation due to the fact that it becomes incorporated into 

the DNA during the S-phase of division. Briefly, astrocytes were cultured onto 

glass coverslips or PCL scaffolds in 10% FBS, at a cell density of 100,000 cells/ 

100 µl for 7 days. After 6 days in vitro, BrdU (10 µM) was added into the media 

and left for approximately 16 hr.  

Cultures were then fixed using ice-cold methanol, which also permeabilized the 

cells. The cells were incubated at -20˚C for 10 min, washed in PBS with Tween 

(PBST 0.05%), and then further fixed using 0.2% paraformaldehyde for 1 min at 

room temperature. After washing in PBST 0.5%, 0.07 M sodium hydroxide was 

added to the cells for 10 min at room temperature. The cells were then washed 

again as before, and an antibody to BrdU (mouse IgG1, 1:20) was added for 45 

min at room temperature. Following this incubation, the cells were washed once 

again in PBST, and the relevant secondary antibody was added (anti-mouse IgG1) 

for 30 min at room temperature. The coverslips were mounted in Vectashield 

with DAPI, as previously described. The number of BrdU +ve nuclei were then 

counted per image, and 20 images per condition were quantified. Proliferation 

was given as the number of BrdU +ve cells dived by the total GFAP +ve population, 

and expressed as a %. 
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2.4 Quantitative Real-Time Polymerase Chain Reactio n 

(qRT-PCR) 

RNA was extracted using a commercial kit from Qiagen (RNeasy Mini Kit, #74104; 

Qiagen, United Kingdom) and converted to cDNA using a reverse transcription kit 

from Primer Design (# RT-nanoscript). Triplicates of each sample were used and 

the reaction was prepared in a 96 well plate. Mastermix containing SYBR 

Green®, a synthetic fluorescent dye that binds non-covalently to double 

stranded DNA emitting light (522 nm), was used to quantify mRNA expression 

(#Precision-SY; Primer Design, UK). By comparing the fluorescence emission 

between sample groups, the relative amount of DNA could then be quantified. 

The reaction was carried out using a 7900HT Fast Real-Time PCR System with 

SDS 2.3 software (Applied Bioscience, UK).  The software was set up to the 

conditions of the plate using a specific programme of thermocycling as 

illustrated by Table 2.3, whilst the housekeeping gene GAPDH was used as a 

reference gene. 

 Temperature (˚C)  Time (mm:ss) 

Step 1 95 10:00 

Step 2 (x40 cycles)   95 00:15 

 60 01:00 

Step 3 95 00:15 

 60 00:15 

Step 4 (dissociation) 95 00:15 

Table 2.3 - RT-qPCR methodology. A 96 well reaction plate was run through a 
7900 HT Fast Real-Time PCR System using a programme with 4 distinct stages of 
thermocycling at temperatures ranging from 60 – 95ºC to amplify the PCR 
product. 
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A “cycle threshold” (CT value) is the number of cycles required for the 

fluorescence to cross the threshold level (background level) and was given as the 

quantitative measurement. The higher the CT value, the more cycles were 

required to cross this threshold, indicating that there was a lower amount of the 

product there initially. An average of the three triplicate wells for each sample 

was taken and any outliers whereby the CT values differed by more than one 

cycle were removed. Values of 35 cycles or above were considered to represent 

little or no mRNA expression. 

CT values were expressed relative to a housekeeping gene (glyceraldehye-3-

phosphate dehydrogenase, GAPDH) using the comparative CT method (Lival & 

Shmittgen., 2001) to describe data in terms of a relative quantification of fold 

change (RQ value), using the following equations: 

∆CT = CT gene of interest - CT internal control (GAPDH) 

∆∆ CT =∆CT – CT gene of interest value in control sample 

RQ value = 2(-∆∆CT) 

Forward and reverse primers for connec0tive tissue growth factor (CTGF/CCN2), 

glial fibrillary acidic protein (GFAP), bone morphogenic protein 4 (BMP4), 

transforming growth factor β (TGF-β) and interleukin beta 1 (IL-β1) were bought 

from Primer Design and validated for use in rat cultures. 
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2.5 Enzyme Linked Immunosorbent Assay (ELISA) 

A classic “sandwich” ELISA was used for this study (Figure 2.6), whereby the 

antigen of interest was specifically immobilised on a 96 well plate, having been 

bound by a “capture” antibody, which had been allowed to coat the plate for 24 

hrs followed by 1-2 hr of a blocking agent and then the addition of the 

supernatant to be tested. A detection antibody, specific to the antigen of 

interest, was added to the plate and an isotype-specific antibody conjugated 

with horseradish peroxidase (HRP), followed by substrate solution was used to 

initialise the enzymatic reaction required to produce a colour change. For each 

experiment, a standard curve was produced using known concentrations of the 

antigen of interest to give a plot depicting the mean absorbance of each 

standard on the y axis against its known concentration on the x axis (Figure 2.7). 

 A spectrophotometer (Dynex Technologies MRX 2.02) using Revelation software 

(version 4.25) was used to read each plate by quantifying the amount of 

transmitted light from each well following the enzymatic colour change and 

converting this value to a concentration in pg/ml, based upon the absorbance 

for each of the known standards. A reliable standard curve was considered to be 

one where the O.D value did not exceed 0.2 for the “0” standard or 1.2 for the 

highest standard concentration. The plate was read for absorption at 405 nm, 

with a correction set at 650 nm. 

For all ELISA experiments, media was collected from confluent flasks of OECs, 

SCs and astrocytes and cells were counted from each flask so that data could be 

normalised to give a concentration per 100,000,000 cells. Supernatants were 

collected in the same media for all cell types within an experiment and this 

media was also tested on the ELISA plate as a control. To gain a more accurate 

insight into what may be being secreted by each cell type when present within a 

myelinating culture, supernatants were collected in DM (media used for 

myelinating cultures). However, it was suggested that the biotin present within 

the DM may affect the binding of the antibodies; therefore it was omitted for 
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these ELISA experiments. All antibodies and reagents were diluted according to 

the manufacturer’s protocol. 
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Figure 2.6 – Enzyme-linked immunosorbent assay methodology. A “sandwich” 
ELISA was used, whereby the antigen of interest was specifically immobilised to 
the plate by pre-coating each well with a capture antibody (A) for 24 hr. The 
plate was blocked to prevent non-specific binding of the antibodies and then the 
supernatant was allowed to bind for 1-2 hr at room temperature. Known 
concentrations of the antigen were also left to bind so that a standard curve 
could be produced. A specific detection antibody (B) then bound to the antigen 
and an isotype specific antibody (C) with a horseradish peroxidise (HRP) 
conjugate labelled the detection antibody. Finally, a liquid substrate was used 
to initialise an enzymatic colour change which could be quantified by a 
spectrophotometer. A darker colour indicated a higher concentration of the 
antigen being assayed.  
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Figure 2.7 – Typical standard curve produced for ELISA. By assaying known 
concentrations of the antigen being tested, a standard curve could be produced, 
plotting each concentration against its average absorbance (as detected by the 
enzymatic colour change). The amount of antigen in each sample could then be 
calculated based upon the absorbance from each well. 

2.5.1 Cilliary Neurotrophic Factor (CNTF) Expressio n by ELISA 

To assess the levels of CNTF in SCs, OECs and astrocytes, an enzyme-linked 

immunosorbent assay (ELISA) kit (Rat CNTF DuoSet ELISA Kit, catalogue No: 

DY557) was purchased from RayBiotech, Inc. (Insight Biotechnology, Middlesex, 

UK). Briefly, a 96-well well plate was coated with capture antibody overnight at 

room temperature, washed with PBS-Tween 0.05% (PBST 0.05%) and then 

blocked in 1% BSA in PBS for a minimum of 1 hr at room temperature. After each 

incubation stage, the plate was washed a further 3 times in PBST 0.05%. The 

standards and samples were added to the wells in duplicate and left at room 

temperature for 2 hr. Following another wash, Streptavidin-HRP was added to 

each well and left for 20 min, during which time the plate was placed away from 

direct light to avoid photoreactivity. Finally, substrate solution (1:1 mixture of 

Colour Reagent A (H2O2) and Colour Reagent B Tetramethylbenzidine) was 

added and left for 20 min (R&D Systems Catalogue # DY999) away from direct 

light before the addition of Stop solution (2N H2SO4). The plate was then read 

immediately to determine the optical density of each well. The reader was set 

to 450 nm, with wavelength correction set 420 nm to 570 nm. Readings from the 
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standards were used to create a standard curve, off which sample readings were 

read.  

2.5.2 Connective Tissue Growth Factor (CTGF) Expres sion by 

ELISA 

CTGF protein levels were assessed as above by using an ELISA kit from Peprotech 

(Peprotech EC. Ltd, London, UK; catalogue no: 900-K317) and following the 

manufacturer’s protocol. Unlike the aforementioned ELISA kit, the kit for CTGF 

did not provide a “Stop” solution. However, the plate was read after 20 min 

without further readings since we were not looking at the kinetics of CTGF 

expression. 

2.6 Western Blot Analysis 

To look at protein expression in astrocytes, monolayers were washed 3 times 

with PBS and then lysed using CelLytic M Cell Lysis Reagent (Sigma, Dorset, UK) 

for 15 min at room temperature. The cells were then scraped off the coverslip 

and spun down to remove debris. The concentration of total protein for each 

sample was measured using the Nanodrop (Invitrogen, Paisley, UK) so that equal 

concentrations of protein (5-10 µg) could be loaded for each condition into a 

NuPage 4-12% Bis-Tris Gel (Invitrogen, Paisley, UK) alongside rainbow molecular-

weight markers (Amersham International, Little Chalfont, UK). The gel was run 

for 45 min in Running Buffer (Invitrogen), with a constant voltage of 200 V. The 

gel was transferred using the iBlot system (Invitrogen, Paisley UK) and then 

placed into PBST (0.1%) containing 5% dried milk (Marvel) for at least 2 hr at 

room temperature. An antibody against GFAP (polyclonal rabbit; see Table 2.1) 

was diluted in the blocking agent and added to the membrane for 1 hr. 

After this period, the membrane was washed with PBST three times for 15 min 

and then incubated with an anti-rabbit horseradish peroxidase (HRP)-conjugated 

secondary antibody (anti rabbit, 1:10000, Santa Cruz;) for 1 hr at room 

temperature (also diluted in 5% powdered milk in PBST). Following a further 3 
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washes, the membrane was developed using an enhanced chemiluminescence  

kit (ECL plus, Amersham Biosciences) and visualised using a Konica Minolta 

SRX101A imaging system (Tokyo, Japan) and Kodak photo paper in a dark room. 

Optical densitometry was carried out using Image J, which attributed a pixel 

value to each band. Expression was then given as a ratio of the densitometry of 

each band relative to the densitometry of the GAPDH loading control for each 

condition. 

2.7 Preparation of Biomaterials  

All scaffolds were plasma etched after fabrication (Harrick Plasma Cleaner; 

Harrick Plasma, USA) using a Hi setting (740V DC, 40 mA DC, 29.6W) for 5 min  to 

aid sterilisation and to reduce the hydrophobicity of the substrate in order to 

enhance cell attachment, following an initial period of fabrication where little 

or no cells survived/remained attached. After plasma etching, the scaffolds 

were immediately placed into ethanol to avoid contamination before being 

rinsed thoroughly in ddH20 in a sterile tissue culture hood and then treated with 

13.3 µg/ml PLL, as described in section 2.1. Experiments on biomaterials were 

cultured under the aforementioned methodology and conditions, unless 

otherwise stated. 

2.7.1 Fabrication of the Poly- ε-caprolactone (PCL) Micropatterned 

Scaffold  

To explore the ways in which spatial parameters such as groove width or depth 

affected the survival and overall biology of glial cells, PCL scaffolds were 

prepared by initially washing high molecular weight PCL pellets (MW: 90,000; 

Sigma, UK) with methanol on a shaker platform, before placing them in a 400-

well grid so that each bead was equidistant from its neighbour. The grid was 

removed without displacing any of the beads, which were then fixed in place 

between two glass plates held by clips, and placed in an oven at 70 oC for 1 hr 

followed by an overnight cooling period. A small area of approx 1.5 cm2 was then 

cut out from the PCL sheet and placed on top of a glass slide on a hotplate at a 

temperature of 70 oC for 3-4 s. Once the PCL had started to soften, a quartz 
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template containing a micropattern was placed on top with a small amount of 

even pressure. The molten scaffold was then removed from the hotplate and 

allowed to cool thoroughly before the quartz template was lifted carefully, thus 

preserving the integrity of the micropattern, and removed from the glass slide. 

Each quartz template was pre-embossed with a topography of 5 defined areas of 

grooves and ridges at widths of 5-100 µm at a constant depth of either 5 or 10 

µm (Figure 2.8 b, 2.8 c).   

 

2.7.2 Fabrication of Scaffolds in a Range of Biomat erials 

In order to assess which biomaterial was optimal for enabling the survival and 

differentiation of the myelinating cultures, a range of potential substrates were 

tested, namely: low molecular weight PCL (MW 45,000; Sigma, UK), 

Polycarbonate (PCB, Bayer Makrolon OD2015), Polystyrene (PS, Proprietary 

grade), Poly-L-lactic acid (PLLA, IngeoTM Biopolymer D3001, Nature Works LLC), 

Poly(methyl) methacrylate (PMMA; Evonik Degussa Plexiglas® 6N). Each of these 

was dissolved in chloroform to give a resultant polymer concentration 10% (w/v), 

which was then fabricated into a membrane overlying a glass coverslip by spin 

coating. 

 

Briefly, glass coverslips (13 mm diameter) were placed in a spin coater and 150 

µl of polymer solution was applied on top before spinning at 2000 rpm for 15 s, 

with 200 rpm/s acceleration and 200 rpm/s deceleration (Figure 2.8 a). Each 

membrane was allowed to air-dry on top of the coverslip for approx. 1 min 

before being taken directly to the plasma cleaner to be treated as previously 

outlined. Polydimethylsiloxane (PDMS; Dow Corning, Hochheim, Germany) was 

prepared by mixing Sylgard 184 at a ratio 10:1 of base and curing agent, 

degassed for 20 min and cast against a fluorinated silicon wafer to achieve a flat 

substrate.  
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Figure 2.8 – Manufacturing of biomaterials. Biodegradable membranes in a range 
of biomaterials were spun onto glass coverslips using a spin-coater (a). To 
investigate groove depth and width, scaffolds were hot embossed using a hot 
plate and a pre-embossed quartz template (b) in order to produce a finished 
product which contained a micropattern of grooves and ridges of defined 
dimensions, ranging from 5-100 µm in width, at a constant depth of either 5 µm 
or 10 µm (c). 

2.8 Statistical Analysis  

For comparison of values between groups of conditions, data was analysed using 

paired Student’s T-test in Microsoft Excel, with 1 as the null hypothesis of the 

mean. All values were expressed as means ± the standard error of the mean 

(SEM). Significance was represented using p-values where values below 0.05 

were considered significant and were indicated by the presence of an asterisk. 

Two asterisks indicated results which were termed “highly significant”, since the 

p value was less than 0.01. For myelinating cultures, the percentage of 

myelinated neurites was expressed as a ratio of the control to give myelin 

arbitrary units, where the control value was always given as 1. Statistical 

analysis was only performed when a minimum of 3 biological replicates (n=3) was 

carried out. The term “preliminary” refers to data whereby less than 3 biological 

replicates were carried out; therefore no statistical tests were applied. The 

number of replicates (n) of an experiment is indicated in each figure legend 

throughout this thesis. 
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Results Chapter 3: 

Validating the Use of an In Vitro System for Studying 
Myelination and Glial Cell Behaviour 
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3.1 Introduction 

Given that glial cells are known to be implicated in the pathology of almost all 

diseases and injuries of the CNS, a thorough and comprehensive understanding of 

their complex interactions is imperative for the development of therapeutic 

strategies to promote repair. For example, the formation of an astrocytic glial 

scar has been associated with areas of neuronal loss following trauma or disease 

progression in Parkinson’s disease, amyotrophic lateral sclerosis, stroke and 

spinal cord injury, whereby the up-regulation of a host of pro-inflammatory 

cytokines and growth-inhibitory molecules prevents neurite outgrowth, whilst 

simultaneously containing the damaged area to prevent further cellular loss 

(described in section 1.4.1.1.) (Wu & Raine, 1992; Rudge et al., 1990; 

Daginakatte et al., 2008).  

Interestingly, some of what we now know about the mechanisms of glial scar 

formation has been derived from in vitro studies, designed to recapitulate one 

or more dimensions of the damaged CNS. For example, monocultures of 

astrocytes were used to demonstrate that plating directly onto Aβ peptide, the 

molecule associated with Alzheimer’s pathology, induced a hypertrophic, 

reactive astrocyte phenotype, with up-regulated expression of chondroitin 

sulphate proteoglycans (CSPG), all of which are typical characteristics of the 

inhibitory scar in vivo (Canning et al., 1993). Furthermore, it is now well-

documented through the use of co-cultures of glial cells that astrocytes form a 

boundary with Schwann cells (Lakatos et al., 2000) via complex mechanisms 

involving heparin sulphates, FGF9 (Higginson et al., 2012), FGF2 (Santos-Silva et 

al., 2007) N-Cadherin (Fairless et al., 2005) and the ephrins (Afshari et al., 

2010). This phenomenon is also mirrored in vivo given that Schwann cells are 

limited to the periphery by the presence of boundary cap cells at the dorsal root 

entry zones, and when transplanted into the damaged CNS, rarely integrate 

extensively with host astrocytes within the graft (Shields et al., 2000; Plant et 

al., 2001; Lakatos et al., 2003; Li et al., 2012).  

More complicated still are the glial/neuronal interactions underlying 

myelination. Although these mechanisms are not yet fully understood, they 
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involve concise and timely oligo-axonal contact mediated via numerous signalling 

pathways, as well as the presence of cytokines and astrocyte-secreted factors, 

such as cilliary neurotrophic factor (CNTF), which are thought to be crucial in 

regulating oligodendrocyte survival and differentiation (Talbott et al., 2008; Cao 

et al., 2010; Nash et al., 2011). Gaining a more precise knowledge of the 

detailed series of molecular events governing myelination may lead to significant 

breakthroughs in understanding and overcoming the barrier to competent, long-

term remyelination and repair of the diseased or damaged CNS. Given that such 

events require multi-faceted interplay between neuronal and glial cells, a 

system which accurately models all components of the CNS in vitro so that the 

behaviour of individual populations of cells could be accurately examined would 

prove invaluable in developing strategies to promote neurorepair.  

One such system, originally developed in murine cultures (Thomson et al., 2006, 

2008), makes use of enzymatically dissociated embryonic spinal cords to produce 

an assay containing a mixed population of neurons, spinal astrocytes, microglia 

and OPCs, which were plated onto PLL-coated glass coverslips (see section 2.1). 

Overtime, neurite outgrowth, OPC differentiation and myelination could be 

followed using immunocytochemistry and fluorescence microscopy for 

approximately 28 days in culture.  

This system was further developed for use in rat cultures (Sørenson et al., 2008), 

which was highly beneficial given that the majority of in vivo models of spinal 

cord injury are conducted in rats due to the technical challenges faced when 

conducting the required surgeries for such experiments. However, the 

availability of transgenic mice has seen an increase in the numbers of mouse 

models of SCI in recent years (Jacob et al., 2001, 2003; Joshi et al., 2002; Mure 

et al., 2004; Plemel et al., 2008; Cho et al., 2012). Results from Sørenson and 

colleagues demonstrated that unlike murine cultures, the survival of cells grown 

on PLL alone was poor in cultures derived from embryonic rat spinal cord tissue. 

However, when these cultures were grown on a monolayer of neurosphere-

derived astrocytes (Ns-As) cultures remained confluent and healthy for up to 28 

days, whilst oligodendrocytes could also be observed wrapping axons in correctly 

formed myelin sheaths, suggesting the existence of crucial astrocyte-dependent, 
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contact-mediated mechanisms and/ or secreted factor(s). Conversely, plating 

directly onto an OEC or SC monolayer resulted in poor neurite density with little 

or no myelination. However, if the underlying OEC or SC monolayer was dense 

then neurite density was improved (Sørenson et al., 2008). Although endogenous 

oligodendrocytes could successfully extend processes on an OEC substrate, they 

failed to ensheath axons and to form compact myelin. Thus, the methodology 

was adapted to include the initial seeding of a supportive astrocyte monolayer 

grown to confluency over a period of approximately 7 days, prior to culturing the 

embryonic spinal cord directly on top (collectively denoted as “myelinating 

cultures”; see section 2.1.6). 

Since the isolation of purified spinal cord-derived astrocytes is technically 

challenging, previous studies directly compared monolayers of cortical-derived 

astrocytes (Co-As) and Ns-As, with results suggesting that whilst there was no 

significant difference between the level of myelination observed on each, there 

was more variation on cultures grown on Co-As (Sørenson et al., 2008). This 

evidence, coupled with the knowledge that a high yield of confluent coverslips 

of Ns-As could be produced from a single flask of neurospheres (approx 96 

coverslips), justifies their use in this system. 

The results from Sørenson et al., (2008) may be somewhat unsurprising given 

that astrocytes have long been shown to influence cells within the 

oligodendroglial lineage, with astrocyte conditioned media (ACM) previously 

being utilised for its mitogenic properties on OPCs (Noble & Murray, 1984). More 

recently, using the myelinating culture system it was demonstrated that the 

astrocyte monolayer was a crucial source of CNTF, which is a known pro-

myelinating cytokine (Nash et al., 2011), amongst other factors. Additional 

evidence from this study further emphasised the importance of the astrocyte 

monolayer in use with this myelinating culture system, given that manipulation 

of the monolayer using reagents to induce astrocyte quiescence and reactivity 

(such as tenascin-C and CNTF) significantly altered the levels of myelination 

observed.  
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Previous characterisation of this system demonstrated that endogenous 

oligodendrocytes were able to form myelin internodes and nodes of Ranvier, 

with correctly assembled Nav channels, neurofascin and axonal contactin-

associated protein (Caspr) at the nodes, thus suggesting that the myelinating 

culture system presents itself as an appropriate system to accurately study 

myelination. Furthermore, not only can this system be used to study glial/axonal 

relationships under normal conditions, it has also been used as the basis for 

modelling the role of autoantibodies in demyelinating disease (Elliot et al., 

2012) and to demonstrate the effects of pharmaceutical reagents in their ability 

to enhance neurite outgrowth and myelination following spinal cord injury (SCI) 

in vitro (Boomkamp et al., 2012). In this manner, the role of any given 

molecule/ endogenous or exogenously added cell can be studied in a high 

throughput, low cost manner, which is not always possible in vivo without initial 

data to focus subsequent studies upon. 

3.1.1 Aims 

The aim of this chapter was to demonstrate the presence of the typical features 

of myelin formation in the cultures, which have been reported and published, 

including nodal proteins and a range of oligodendrocyte/ myelin markers. The 

reproducibility of the system was also explored, with some description given as 

to the amount of variability observed in the levels of myelination and neurite 

density in untreated cultures. Although there are endogenous spinal astrocytes 

present within the myelinating culture system, it may at times be advantageous 

to work in a system with fewer numbers of astrocytes (ie. no monolayer) so that 

the exact mechanisms of any factors which influence myelination could be 

dissected, to some extent, away from astrocyte-dependent effects. Thus, the 

role of increased cell density was examined as a means of enhancing the survival 

and differentiation of cultures grown in the absence of an astrocyte monolayer.  
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3.2 The Myelinating Cultures Express Several Myelin  
Proteins, with Correctly Formed Internodes and Node s of 
Ranvier 

As described in section 3.1 and in the materials & methods chapter (section 

2.1.6), the myelinating cultures used for this thesis were derived by 

enzymatically dissociating embryonic tissue from the spinal cords of E15.5 rat 

pups to produce a culture consisting of several classes of neurons, spinal 

astrocytes, microglia and OPCs. This cell suspension was then plated down at a 

density of 150,000 cells/ 100 µl onto a confluent monolayer of neurosphere-

derived astrocytes. After approx 22-28 days in culture, a carpet of neurites, 

along with oligodendrocytes and myelin sheaths, could be visualised using 

immunofluorescence.  

As oligodendrocytes mature, they alter their expression of several proteins in a 

temporal fashion, such that the appearance of a particular marker can be 

indicative of the maturation stage of a given cell, though many of these markers 

are transient, spanning one or more defined stages of differentiation (Figure 

3.1). Initial experiments showed the presence of oligodendrocyte 4 (O4) both in 

the myelin sheath (Figure 3.2 a) and in the cell body of highly branched, non-

myelinating oligodendrocytes (Figure 3.2 b). Similarly, both proteolipid protein 

(PLP) and myelin basic protein (MBP) were highly expressed in the myelin 

sheaths, with some staining observed in oligodendrocyte cell bodies. This cell 

body expression was more abundant when using antibodies against PLP since the 

splice variant encoded by the PLP gene, DM20, is recognised by the same 

antibody and is commonly expressed in the early differentiation stages of 

oligodendrocyte maturation. It is hypothesised that as maturation progresses, 

the ratio of DM20/PLP expression shifts so that PLP becomes the more 

dominantly expressed protein of the two, present in both pre-myelinating and 

myelinating oligodendrocytes (Levine et al., 1990). 

Further proof that the expression of these myelin markers is indicative of 

correctly formed myelin internodes is given in Figure 3.3, which depicts both the 

presence of nodes of Ranvier (3.3 a) and the expression of Caspr positioned at 
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the paranode (3.3 b). Correct assembly of nodal structures in the appropriate, 

highly specialised regions of the axon is vital for maintaining axonal integrity and 

enabling rapid Saltatory conduction. In the unmyelinated fibre, Caspr expression 

is said to be diffuse and highly distributed throughout the length of the axon and 

its expression down regulated and redistributed firstly to the juxtaparanode and 

then to the paranode as myelination commences (Einheber et al., 1997). Thus, 

the appearance of paranodal Caspr in these cultures would suggest the presence 

of correctly formed myelin sheaths.  

 
Figure 3.1 – The maturation stages of oligodendrocyte differentiation, as 
depicted by their expression of various markers. The stages of oligodendrocyte 
maturation can be identified by morphological changes within the cell, ranging 
from a polarised phenotype into a complex multi-process/ sheath bearing cell, 
as well as antigenically by using markers which are typically associated with a 
particular stage of differentiation. Classically, markers such as A2B5 and platelet 
derived growth factor receptor alpha (PDGFRα) are associated with the very 
earliest oligodendrocyte precursor cells, whilst markers such as proteolipid 
protein (PLP), myelin basic protein (MBP) and myelin oligodendrocyte 
glycoprotein (MOG) are used to depict myelinating cells and myelin sheaths. It’s 
important to note, however, that the expression of many of these protein 
markers is transient, given that the intermediate marker O4 can also be found in 
mature oligodendrocytes and in the myelin sheath, whilst PLP and its isoform 
DM20 are also present in non-myelinating and immature oligodendrocytes. 
(Modified from Zhang (2001) Nature Reviews Neuroscience. 2 840-843). 
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Figure 3.2 –The myelinating cultures demonstrate both intermediate and late 
markers of oligodendrocyte maturation and myelin formation. Embryonic rat 
spinal cord tissue was enzymatically dissociated to produce a culture of mixed 
neurons, spinal astrocytes, microglia and OPCs, which was plated directly on top 
of a supportive astrocyte monolayer (collectively termed “myelinating 
cultures”). Over a period of up to 28 days, neurite outgrowth and density could 
be quantified, along with the % of myelinated axons using immunofluorescence 
and Image J to calculate pixel values for both the red and green channels. By 
the end stage of culture, oligodendrocyte 4 (O4) antibody was detected in the 
myelin sheaths (a) as well as in highly branched oligodendrocyte cell bodies (b; 
white arrow). Evidence of early O4+ ensheathment and initial axonal contact 
was also observed in the cultures using O4 as a marker (b). Both myelin basic 
protein (MBP) and proteolipid protein (PLP) were evidenced in abundance in the 
myelin sheaths, and to some extent, in oligodendrocyte cell bodies. Images were 
taken using an Olympus BX51 epifluorescence microscope. Scale bars = 50 µm 
and 100 µm. SMI-31 labelled phosphorylated neurofilament in neurites. 
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Figure 3.3 – Nodes of Ranvier were present in the cultures, with correctly 
positioned paranodal Caspr. Myelinating cultures were grown as previously 
described on an astrocyte monolayer for up to 28 days prior to 
immunofluorescent labelling. Nodes of Ranvier could be observed in cultures, in 
between myelin internodes (a; white arrow), with the expression of axonal 
contactin-associated protein (Caspr) present at the paranode, suggesting the 
presence of correctly formed myelin (b). The asterisk (a) also appears to 
highlight the initial stages of oligo/axonal contact in between two internodes of 
myelin. Images were captured with an Olympus BX51 epifluorescence 
microscope. Scale bars = 50 µm. SMI-31 labelled phosphorylated neurofilament in 
neurites, an antibody to PLP labelled oligodendrocytes and myelin sheaths, 
whilst an antibody to Caspr depicted the location of the paranodal regions of the 
Nodes of Ranvier. 
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3.3 Natural Variation Occurs in the Levels of Myeli nation 
and Neurite Density Observed in each Untreated Cult ure 

To allow for multiple comparisons to be made at later stages across independent 

experiments, some thought was given as to how reproducible the myelinating 

cultures were, based upon the amount of variation there appeared to be in the 

levels of myelination and neurite density in each culture. Neurite density was 

calculated by immunostaining with SMI-31 followed by a TRITC-conjugated 

secondary antibody to label phosphorylated neurofilament and then using Image 

J to calculate the number of red pixels. This value was then expressed as a % 

over the total pixel number in each image; whist myelination was calculated by 

manually drawing over each myelin sheath using Adobe Photoshop. The number 

of pixels overlying the green myelin sheaths (by manually drawing) was then 

expressed over neurite density to give a % myelination (explained in more detail 

in section 2.3.1 and 2.3.2). The average values from 20 images were taken from 

20 biological replicates to deduce the average of the average, the standard 

deviation (SD), standard error of the mean (SE) and the co-efficient of variance 

of the mean (CV). 

Myelination between biological replicate was subject to some variability, with 

the lowest level of myelination being 2.78%, and the highest being 8.28% (Figure 

3.4 c), as illustrated in Figure 3.4 a and 3.4 b, respectively. The average % 

myelination across all experiments was 4.47%. Since SD and SE tend to increase 

proportionally with the mean, the CV was also calculated to give a more 

accurate indication of the degree of variance as follows: 

(SD/ average) x 100 = % CV 

 

Whilst a CV value of 27.69% indicated some variation in the levels of myelination 

observed throughout the experiments (Figure 3.4 c), generally CV values of less 

than 30% can be considered to be indicative of biological reproducibility. 

Furthermore, throughout this thesis the trend between each experiment was 
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always the same in that if myelination was low, then the control was also low, 

however the relative changes between conditions was reproducible. Therefore, 

in order to make comparisons between experiments, myelination data was 

standardised so that the % of myelination in control cultures was denoted as 1 

and each condition was represented as a proportion of 1, based upon their % of 

myelination. (eg. control of 4% and treatment at 2% becomes 1 and 0.5 in myelin 

arbitrary units, respectively). 

Conversely, the level of neurite density observed across experiments was highly 

reproducible, as evidenced in the CV value of 5.26%. Typical values for neurite 

density ranged from 69.69–80.97%, with an average value of 75.76% (figure 3.4 

c). 

 
 
Figure 3.4 – Analysis of multiple biological replicates indicates the level of 
variation throughout the myelinating culture system. The average of the 
average level of myelination and neurite density was calculated from 20 
biological replicates of untreated myelinating cultures grown on an astrocyte 
monolayer. Whilst the CV value for myelination was much higher than that for 
neurite density (c), this value was considered to be within the confines of 
reproducibility (<30%). Typical myelin values ranged from 2.78–8.28%, as 
illustrated in (a) and (b), respectively. Images were taken using an Olympus bx 
51 epifluorescence microscope. Scale bars = 100 µm. SMI-31 labelled 
phoshorylated neurofilament in neurites, whilst an antibody against PLP labelled 
myelin sheaths and oligodendrocytes. n=20. 
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3.4 Preliminary Results Suggest that Increasing the  Initial 
Seeding Density Enhanced Survival, though these 
Results were not Reproducible 

Previous data from Sørenson et al., (2008) indicated that the survival of 

dissociated cells from embryonic rat spinal cord tissue was poor when plating 

onto PLL alone in the absence of an astrocyte monolayer. By varying the initial 

seeding density from 150,000 cells/ 100 µl to 100,000, 200,000 and 300,000 

cells/ 100 µl, it was hypothesised that we may be able to improve the overall 

survival of the cultures without an astrocyte monolayer, perhaps by improving 

the likelihood of initial attachment. Since these cultures are a tool primarily for 

the investigation of myelination, it was hoped that a comparable level of 

ensheathment could be achieved by enhancing the survivability of the culture, 

negating the requirement for the presence of an astrocyte monolayer.  

Although there are many contact-mediated mechanisms and secreted factors 

which mediate oligodendrocyte behaviour, it has also been demonstrated that 

oligodendrocyte differentiation can be governed, to some extent, by intrinsic, 

temporal mechanisms in the absence of axonal influences (Abney et al., 1981; 

Raff et al., 1985). Furthermore, Rosenberg at al., (2008) demonstrated that the 

micro-environment in which oligodendrocytes were cultured could enhance their 

maturation in that a more dense culture resulted in enhanced differentiation of 

oligodendrocytes. The use of micro-beads bound to the surface of fixed axons to 

mimic a dense culture was sufficient in enhancing differentiation and myelin 

production in that particular study, concluding that geometrical constraints also 

appeared to play a role. Thus, it was hypothesised that increasing the initial cell 

density may serve to reproduce a dense enough micro-environment to stimulate 

oligodendrocyte differentiation in the absence of the astrocyte monolayer. 

Phase microscopy of the cultures grown without an astrocyte monolayer 

illustrated an apparent increase in neuronal density and the appearance of 

fasiculations with increased seeding density at day 9 (Figure 3.5 a-d). Whilst the 

maximum neurite density for cell densities of 100,000, 150,000 and 300,000 

cells/ 100 µl was reached at day 18, it continued to increase until around day 23 
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when 200,000 cells/ 100 µl were initially seeded (Figure 3.5 e-h). Although there 

were virtually no neurites left after 28 days in cultures when using 100,000 or 

150,000 cells on PLL alone, a neurite density of around 60% was observed at this 

time-point in cultures which were initially seeded with 200,00 cells/ 100 µl, 

whilst the seeding of 300,000 cells correlated with a neurite density of 

approximately 30% (Figure 3.5 i). 

Similarly, whilst there was no myelin observed in cultures seeded with 100,000, 

150,000 or 300,000 cells/ 100 µl, myelination was observed in cultures with an 

initial plating density of 200,000 cells (Figure 3.6 d). However, when compared 

to control cultures of 150,000 cells/ 100 µl grown on an astrocyte monolayer 

(Figure 3.6 a), both the level of myelination and neurite density appeared to be 

greatly reduced (Figure 3.6 c and d, respectively), though statistical significance 

could not be deduced on an n=2, given that repeats of this experiment were not 

reproducible.  

Interestingly, in higher density cultures where no axonal myelination was 

evidenced and neurite density was relatively low, PLP +ve oligodendrocytes were 

observed depositing flat sheets of myelin, thus suggesting their ability to 

differentiate in the absence of at least some axonal cues (Figure 3.7 a and b). In 

other areas, isolated clusters of confluent spinal astrocytes remained, though 

these were not in sufficient abundance to form a dense monolayer of astrocytes 

devoid of any gaps (Figure 3.7 c). 
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Figure 3.5 – Neurite density was greatest in the absence of an astrocyte 
monolayer when an initial seeding density of 200,000 cells/ 100 µl was used. 
Embryonic rat dissociated spinal cord cells were plated at a range of densities 
onto PLL coated glass coverslips in the absence of an astrocyte monolayer. 
Staining was carried out on days 18, 23 and 28 to assess levels of neurite density. 
Initial phase/ contrast images demonstrated an increase in neurite density with 
increased seeding density from as early as day 9 (a-d). Whilst maximum neurite 
density was reached at day 18 for all other cultures (e,f,h), it continued to 
increase until day 23 when 200,000 cells/ 100 µl were initially plated down (g). 
After 28 days in culture, neurite density was approximately 60% at 200,000 cells, 
though there were relatively little or no neurites present in lower density 
cultures. (i). Both phase/ contrast and fluorescence images were taken on an 
Olympus BX51 epifluorescence microscope. Scale bars=100 µm. n=2. SMI-31 
labelled phosphorylated neurofilament in neurites, whilst an antibody against 
PLP labelled myelin and oligodendrocytes. 
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Figure 3.6 – Myelination appeared to be greatly reduced in cultures grown in the 
absence of an astrocyte monolayer. Embryonic rat dissociated spinal cord cells 
were plated at a density of 200,000 cells/ 100 µl in the absence of an astrocyte 
monolayer. Comparisons were made to controls seeded at an initial density of 
150,000 cells/ 100 µl on an astrocyte monolayer. Though a small amount of 
myelin was present in cultures plated directly onto PLL at a density of 200,000 
cells/ 100 µl (b,c), this was at least 4 times less than the amount of myelin 
observed in control cultures (a,c). Neurite density also appeared to be reduced 
in these cultures (d). Images were taken on an Olympus BX51 epifluorescence 
microscope. Scale bars = 100 µm. SMI-31 labelled phosphorylated neurofilament 
in neurites, whilst an antibody against PLP labelled myelin sheaths and 
oligodendrocytes. n=2. 

 

 

 



 

137 
 

 
 
Figure 3.7 – Astrocytes and myelin-forming oligodendrocytes remained after 28 
days in vitro in spinal cord cultures initially seeded without an astrocyte 
monolayer. Embryonic rat dissociated spinal cord cells were plated at 300,000 
cells/ 100 µl onto PLL coated glass coverslips in the absence of an astrocyte 
monolayer and immunolabelling was carried out after 28 days in vitro. Although 
neurite density was greatly reduced and no myelin sheaths were observed under 
these conditions, surviving oligodendrocytes produced flat sheets of PLP+ve 
myelin membrane (a, b). Areas of dense spinal astrocytes were also present (c), 
though these were isolated and not confluent enough to create an intact 
monolayer. Images were taken using an Olympus BX51 epifluorescence 
microscope. Scale bars = 50 µm. Antibodies against glial acidic fibrillary protein 
(GFAP) were used to label astrocyte intermediate filaments, whist myelin and 
oligodendrocytes were stained with an antibody against PLP. DAPI labelled 
nuclei. n=2.  
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3.5 Discussion 

Although the myelinating culture system generated from rat dissociated spinal 

cord cells is a published method (Thomson et al., 2006, 2008; Sørenson et al., 

2008, Nash et al., 2011, Boomkamp et al., 2012; Elliot et al., 2012), this chapter 

has justified that the techniques used throughout this thesis are indicative of an 

in vitro system which correctly represents multiple features of oligodendrocyte 

differentiation and myelin formation. 

The use of antibodies against myelin proteins such as PLP and MBP can be used 

to label myelin sheaths and oligodendrocyte cell bodies, whilst the O4 antibody 

labelled multi-process bearing oligodendrocytes at the end stage of culture, as 

well as myelin sheaths (Figure 3.2). Furthermore, the presence of nodes of 

Ranvier and Caspr at the paranodes suggested that the myelin observed was not 

an artefact of in vitro culture (Figure 3.3). Demyelination studies have 

demonstrated aggregates of Caspr at the juxtaparanode immediately prior to its 

redistribution to the paranode with the onset of remyelination, suggesting its 

importance in facilitating essential oligo-axonal adhesions, which are required 

for maintaining myelin formation and compact ensheathment (Wolswijk et al., 

2003; Coman et al., 2006). Thus, these findings further illustrate the significance 

of demonstrating the presence of Caspr, with the correct paranodal location, 

within the myelinating cultures. Furthermore, previous electron microscopy 

studies reported that the myelination observed in these cultures was compact 

(Thomson et al., 2008). 

Statistical analysis of the myelinating culture system based upon findings from 

20 independent biological replicates, suggested that they are biologically 

reproducible, though there appears to be more natural variance in the levels of 

myelination observed across experiments, compared to neurite density (CV = 

27.69% versus 5.26%, respectively) (Figure 3.4). The reasons for this biological 

variability could be multiple; for example, natural variation in the abundance 

and availability of endogenous OPCs between different spinal cord dissections 

could be one plausible explanation. To minimise these effects, a strict protocol 
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was followed for each dissection, ensuring that at least 4-5 mm of each spinal 

cord (including the cervical plexus, which is rich in OPCs) was taken from the 

same number of cords each time. The bioavailability of secreted pro-myelinating 

factors may also be a contributing factor in the fluctuating levels of myelination 

observed. Indeed, the health and condition of the underlying astrocyte 

monolayer is highly influential on culture survival and myelination and may also 

vary from prep to prep. Ensuring that confluent, age-matched monolayers were 

used for each experiment should minimise this influence to some extent. 

Experiments designed to try to negate the need for an astrocyte monolayer, so 

that any effects on myelination which were non-astrocyte dependent could be 

studied in more detail, further demonstrated its importance. Though previous 

studies had suggested that the survival of the myelinating cultures on PLL alone 

was poor (Sørenson et al., 2008), it was hypothesised in light of the literature 

that cell-intrinsic mechanisms for differentiation and geometrical constraints 

may also play a role in oligodendrocyte maturation. Therefore, it was 

hypothesised that by increasing the initial seeding density and plating directly 

onto PLL, that the survival of the culture could be improved, allowing 

myelination to proceed as normal. Preliminary results suggested that whilst 

survival was limited in almost all other conditions, when seeding at a starting 

density of 200,000 cells/ 100 µl neurite density remained around 60% (Figure 

3.5; n=2), which was an improvement from previous reports of little or no 

survival in the absence of a monolayer of astrocytes (Sørenson et al., 2008). 

However, neurite density, along with myelination, appeared to be considerably 

lower under these conditions when compared with control cultures, where 

150,000 cells/ 100 µl were plated onto an astrocyte monolayer (Figure 3.6, n=2). 

Unfortunately, data from these experiments was not reproducible, thus 

modification of the myelinating culture system in this way does not appear to be 

a viable option. Nonetheless, the presence of flat, myelin sheets in higher 

density cultures with reduced neurite density suggested that certain mechanisms 

underlying myelin formation may be governed by oligodendrocyte cell-

autologous means, and perhaps to some extent, by the confines of the 

microenvironment in our system (Figure 3.7). 
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When utilising the myelinating cultures, there are a few technical caveats which 

require consideration. Firstly, though labelling with the SMI-31 antibody appears 

to specifically label phosphorylated neurofilament in neurites in control 

cultures, it appears to co-localise with DAPI in low density cultures. This staining 

pattern is unlikely to be true given that there seems to be an almost 100% 

nuclear staining with SMI-31 under these conditions. To offset this, only in 

cultures which were plated without an astrocyte monolayer, the level of SMI-31 

reactivity (red pixels per image) was calculated for an image containing no 

neurites and given to be 8.08% (Figure 3.8). This value was then deducted from 

all images for those particular experiments to prevent erroneously high values 

for neurite density due to the presence of non-specific SMI-31 reactivity.  

It is advantageous to use immunocytochemistry to quantify changes within the 

myelinating culture assay, given that it allows the user to visualise individual 

cells, cell contacts and myelin sheath formation; as opposed to Western blot 

analysis or PCR studies where only the expression of total proteins and 

transcripts are considered. With the latter techniques, the presence of late 

myelin markers may be misleading when assessing myelination given that several 

of these markers (PLP, MBP, O4) are present in abundance throughout 

oligodendrocyte cell bodies even in the absence of ensheathment. However, 

care must be taken when manually analysing data following immunolabelling to 

ensure that cell bodies and/or cell processes are not included as myelin (since 

antibodies to PLP and other myelin markers label both cell bodies and sheaths) 

(Figure 3.9). Though human error will occur, it is hoped that high repetition will 

lessen the likelihood of this skewing data. Furthermore, since data is 

standardised to myelin arbitrary units, the emphasis is upon relative changes in 

the amount of myelinated axons, as opposed to a definitive value of the % of 

myelinated axons per condition. 

Taken together, these data highlight the usefulness of the myelinating cultures 

as an optimised system for modelling and studying myelination and glial 

development in vitro. Given these findings, these cultures have been used for all 

subsequent experiments carried out during this thesis to assess the ways in 

which myelination can be influenced by exogenous glial cells. Furthermore, it 
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was hoped that their use may help to dissect out the precise mechanisms 

underpinning the ways in which myelination can be influenced, with the view to 

providing useful data to the field of cell transplant-mediated repair of the 

damaged CNS  

 
 
Figure 3.8 – Non-specific SMI-31 reactivity can be offset with a simple 
calculation. Rat embryonic spinal cord cells were plated onto PLL-coated glass 
coverslips in the absence of an astrocyte monolayer for up to 28 days prior to 
immunolabelling. In cultures with few axons, SMI-31 reactivity can be highly non-
specific (a,b). By working out the average SMI-31 reactivity using the same 
calculation as is used for calculating neurite density, a value of 8.08% was given 
and could be deducted from all subsequent images where neurite density was 
low in the absence of the astrocyte monolayer (c). SMI-31 was used to label 
neurites, whilst an antibody to PLP labelled oligodendrocytes and myelin and 
DAPI labelled nuclei. Scale bars = 100 µm. 
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Figure 3.9 – Manual quantification of myelin should ensure that only myelin 
sheaths are drawn over, at the exclusion of processes and cell bodies. 
Myelinating cultures were plated down onto an astrocyte monolayer on PLL-
coated glass coverslips. After approximately 26 days, cultures were 
immunolabelled and analysed using Image J and Adobe Photoshop to manually 
draw over myelin sheaths using the brush tool (b; shown in blue). Since 
antibodies against PLP label myelin sheaths, mature and immature 
oligodendrocytes (b, dotted circles) and the DM20 splice variant, care had to be 
taken to ensure that only myelin sheaths were drawn over. Though this system 
requires a degree of subjectivism from the user, it was hoped that by 
maintaining this standard throughout that relative changes across conditions 
would still be easily observed. SMI-31 labelled phosphorylated neurofilament and 
an antibody to PLP labelled myelin sheaths and oligodendrocytes. Scale bar=100 
µm. 
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Results Chapter 4: 

Investigating the Effects of Exogenously Added Glia l 
Cells on Endogenous Myelination by Oligodendrocytes  In 

Vitro 
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4.1 Introduction 

As described throughout this thesis, cell-mediated repair strategies have long 

been considered to be potentially beneficial in aiding functional recovery 

following damage to the CNS. Previous studies have perhaps focused more on the 

capacity of exogenously transplanted cells to promote neurite outgrowth and 

their ability to remyelinate demyelinated axons. However, very little research 

has been directed at understanding the ways in which cell transplantation into 

the CNS may affect the ability of endogenous oligodendrocytes to ensheath 

axons in central myelin.  

Both SCs and OECs have demonstrated an ability to modulate repair in several in 

vivo models of spinal cord injury (SCI), with varying degrees of success. For 

example, Ramon-Cueto and colleagues initially reported the ability of what they 

termed “ensheathing glia” to promote the regeneration of dorsal root axons 

after transplantation of these cells at the dorsal root entry zones (Ramon-Cueto 

& Nieto-Sampedro., 1994; Navarro et al., 1999), though these findings have been 

contradicted to some extent by others, as discussed in Chapter 1. 

More recent studies have expanded upon the early findings of Ramon-Cueto; 

such as the study by Verdú and colleagues (2003), who demonstrated through 

use of a photochemical lesion induced in adult rats that transplantation of adult 

olfactory bulb-derived OECs (OB-OECs) into the lesion site resulted in improved 

functional recovery. Furthermore, they reported reduced symptoms of pain, as 

assessed by behavioural testing, as well as an increase in the area of preserved 

spinal cord, thus suggesting the ability of OECs to exert neuroprotective effects 

following transplantation into the CNS. Similarly, transplants of SCs derived from 

sciatic nerves have been reported to promote axonal regeneration following 

transplantation into the damaged spinal cord (Kromer & Cornbrooks., 1985; 

Guénard et al., 1993; Harvey et al., 1994; Xu et al., 1995, 1997). For example, 

Pearse et al., (2007) reported that the transplantation of SCs into a thoracic 

contusion injury model produced moderate improvements in locomotor skills and 

hind limb co-ordination in injured rats (Pearse et al., 2007). 
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Although transplantation of neither OECs nor SCs has thus far managed to 

promote significant neurite outgrowth beyond the region of the glial scar, these 

previously reported small gains in functional recovery could be attributed to the 

ability of both SCs (Blakemore 1977; 1985; Brierly, 2001) and OECs (Franklin et 

al., 1998, Smith et al., 2001,2002) to remyelinate demyelinated CNS axons with 

peripheral myelin. Following ethidium bromide-induced demyelination of the 

dorsal columns, endogenous SCs were demonstrated to infiltrate the lesion site 

and remyelinate denuded axons with myelin protein zero (MPZ/ P0) positive 

peripheral myelin. Furthermore, both cell types were reported to induce a 

similar pattern of distribution of both potassium and sodium channels at the 

paranodal regions and nodes of Ranvier, respectively, as observed in intact axons 

which had been myelinated by oligodendrocytes (Black et al., 2006). Similar 

findings were also reported following transplantation of OB-OECs into areas of 

demyelination in the spinal cord, with specific nodal clustering of the sodium 

channel, Nav1.6, which is the dominant class present at the nodes of Ranvier in 

endogenously myelinated CNS axons. In addition, the correct assembly of nodal 

components following OEC transplantation also coincided with an increased 

conduction velocity in remyelinated axons (Dombrowski et al., 2006; Sasaki et 

al., 2006).  

Whilst these studies highlight the ability of both SCs and OECs to produce 

internodes of myelin with correctly assembled nodes of Ranvier in the CNS, it is 

unclear how subtle differences in the composition of peripheral versus central 

myelin may affect the long-term conductivity and integrity of peripherally-

myelinated CNS axons. For example, the presence of P0, peripheral myelin 

proteins 1 and 22 (PMP1, PMP22) and the lack of the CNS myelin protein, myelin 

oligodendrocyte glycoprotein (MOG), in peripheral myelin may have 

consequences for CNS axons remyelinated by OECs or SCs.  

When considering glial cell transplantation as a strategy to promote 

remyelination in demyelinating inflammatory diseases such as multiple sclerosis 

(MS), whereby auto-antibodies to CNS myelin surface proteins such as MOG are 

thought to play a role in pathogenesis (Elliot et al., 2012), a lack of such 

proteins in the myelin sheath may be beneficial in conferring additional 

neuroprotection to CNS axons undergoing immune-mediated demyelination. 
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However, as discussed in Chapter 1, a study by Pagany et al., (2003) also 

reported the presence of MOG mRNA throughout the periphery in rats and 

primates, hypothesised to be associated with SCs. Immunolabelling failed to 

detect MOG at the protein level in SCs in vivo, although its presence was 

demonstrated in the cytoplasm of non-myelinating SCs in vitro, but absent from 

the plasma membrane where it would be abundantly expressed by 

oligodendrocytes. This data therefore suggests that the expression of MOG may 

be differentially regulated in SCs and oligodendrocytes.  

In the case of SCI, these differences in myelin protein composition, along with 

variations in the lipid content of myelin, such as the presence of the ganglioside 

LM1 found exclusively in peripheral myelin sheaths (Chou et al., 1985), may be 

important when considering cell-mediated therapies to induce repair, whereby 

remyelination is an important consideration for adequate functional recovery. It 

could therefore be suggested that the most efficacious repair strategy long-term 

would be one that not only enhanced neurite outgrowth but facilitated the role 

of endogenous oligodendrocytes to remyelinate CNS axons with characteristic 

central myelin. 

Thus, it was hypothesised that by elucidating the ways in which both SCs and 

OECs may differ in their ability to affect the myelinating capability of 

endogenous oligodendrocytes, that those findings could be used to advocate the 

preferential use of one cell type over the other as being potentially more 

effective for cell-mediated repair of the CNS. 

4.1.1 Aims 

The aim of this chapter was to investigate the ways in which OECs and SCs 

affected the ability of endogenous oligodendrocytes present within our CNS 

culture system to myelinate axons. Furthermore, this chapter aimed to assess 

whether these influences, if present, were due to contact-dependent 

mechanisms or the presence of factors which were being secreted by either cell 

type. 
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4.2 Exogenous OECs Enhanced Endogenous 
Myelination In Vitro, Whilst SCs Reduced 
Oligodendrocyte Myelination 

Initially, purified cell suspensions of OECs were trypsinised, spun down and 

resuspended in plating media to calculate cell densities. Either 5,000 or 10,000 

OECs were then seeded onto the myelinating coverslips at day 12; a process 

which involved using forceps to lift coverslips containing the myelinating culture 

into a dry Petri-dish and seeding the OECs directly on top in a meniscus. After an 

incubation period of 1 hr at 37 °C to allow the OECs to attach to the coverslip, 

the myelinating cultures were flooded with media composed of 50% of their 

current media (containing any secreted factors) and 50% fresh media. 

However, several repeats of this experiment using this methodology (n=4) 

demonstrated limited survival of the cultures after 26 days (Figure 4.1 a-c). In 

some instances where few axons remained there was evidence of OECs lining up 

alongside, and even ensheathing, axons (Figure 4.1 d, e), though there was no 

co-localisation with PLP. Thereafter, the protocol was modified so that purified 

cell suspensions of OECs or SCs were added into the mixed embryonic spinal cord 

cell suspension and plated directly on top of an astrocyte monolayer from day 0, 

as described in section 2.1.6. Control cultures did not receive any exogenously 

added cells.  

After 26 days in culture, the level of myelination was significantly higher after 

the addition of 10,000 OECs (Figure 4.2 c, f) compared with control cultures 

(Figure 4.2 a, f) or myelinating cultures containing 5,000 OECs (Figure 4.2 b, f) 

(n=3, p values=0.04 and 0.03, respectively). Although there appeared to be a 

slight decrease in the level of myelination observed with the addition of 5,000 

OECs compared with control, this trend was not significant (p value=0.29). 

Furthermore, the survival of OECs throughout the culture period was 

demonstrated by the presence of p75NTR +ve cell bodies (Figure 4.2 d, e), which 

were not observed in control cultures. However, the presence of p75NTR did not 

co-localise with PLP in the myelin sheaths. Neurite density was not affected by 

the exogenous addition of OECs. 
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Conversely the addition of SCs to the myelinating cultures reduced the level of 

myelination detected after 26 days in culture. Whilst myelination was not 

completely abolished under these conditions, the addition of 5,000 SCs or 10,000 

SCs significantly reduced the level of myelination compared to controls (Figure 

4.3 a, b, c, f) (n=3, p values <0.01). The % of myelinated fibres observed in 

cultures containing 10,000 exogenous SC versus cultures where 5,000 SCs were 

added was also significantly lower (p value=0.04). As was the case in cultures 

where OECs were added, SCs were still present at the end point of the 

myelinating cultures at a similar density to remaining OECs (Figure 4.3 d, e). 

Neurite density remained consistent for all conditions, at approximately 75%. 

Higher cell densities of OECs and SCs were also tested (15,000 and 20,000 

exogenously added cells) to investigate whether or not the effects of OECs or 

SCs on the culture system could be titrated out. However, these cultures showed 

limited survival, possibly due to over-confluency and subsequent depletion of 

vital growth factors within the culture media. 



 

149 
 

 
Figure 4.1 – Seeding OECs onto established myelinating cultures from day 12 
limited the survival of the cultures. Purified OECs were seeded on top of 
established myelinating cultures on an astrocyte monolayer at day 12 by fishing 
out the coverslips of myelinating cultures and placing them into a dry Petri dish. 
Either 5,000 or 10,000 OECs were then seeded directly on top of the myelinating 
cultures in a miniscus. After 1 hr to enable attachment the cultures were fed 
and maintained for a further 14 days as usual, prior to immunolabelling. 
Mechanically fishing out coverslips in order to seed 5,000 or 10,000 OECs 
resulted in poor survival of the myelinating cultures (b, c). In some cultures 
where few fibres remained, however, OECs were observed extending along 
neurites (d, e; white arrows), thought they did not co-localise with PLP. Images 
were taken using an Olympus BX51 epifluorescence  microscope. Scale bars=100 
µm and 50 µm, respectively. An antibody to p75NTR labelled OECs, an antibody to 
PLP labelled myelin sheaths and oligodendrocytes and SMI-31 labelled 
phosphorylated neurofilament in neurites. n=4. 
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Figure 4.2 – The addition of 10,000 OECs significantly enhanced the level of 
myelination in cultures. 5,000 or 10,000 OECs were added to the mixed 
embryonic spinal cord cell suspension and plated down onto a confluent 
monolayer of neurosphere-derived astrocytes. After 26 days, the level of 
myelination in control cultures (a, f) or cultures where 5,000 OECs had been 
added (b, f) was significantly less than that of cultures containing 10,000 OECs 
(c, f). Whilst there appeared to be a slight reduction in the level of myelination 
between control cultures and cultures with 5,000 exogenous OECs, this 
difference was not significant. OECs were present at the end stage of culture (d, 
e) but did not appear to associate with the myelin sheaths. SMI-31 was used to 
label phosphorylated neurofilament in neurites, an antibody to PLP labelled 
oligodendrocytes and myelin sheaths and an antibody to p75NTR labelled OECs. 
Scale bars=100 µm and 50 µm. n=3.* = p values <0.05. 
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Figure 4.3 - The addition of either 5,000 or 10,000 SCs significantly reduced the 
level of myelination in cultures. 5,000 or 10,000 SCs were added to the mixed 
embryonic spinal cord suspension and plated down onto a confluent monolayer 
of neurosphere-derived astrocytes. After 26 days, the level of myelination in 
cultures containing either 5,000 (b, f) or 10,000 SCs (c, f) was highly significantly 
less than that of control cultures (a, f). Myelination was also significantly lower 
in cultures containing 10,000 SCs, compared to those where only 5,000 SCs were 
added (f). SCs could still be detected after 26 days in culture using an antibody 
to p75NTR (d, e) but did not appear to associate with the myelin sheaths. SMI-31 
was used to label phosphorylated neurofilament in neurites, whilst an antibody 
to PLP labelled oligodendrocytes and myelin sheaths. An Olympus BX51 
epifluorescence microscope was used to capture all images. Scale bars = 100 µm 
and 50 µm. n=3.* = p values <0.05, ** = P values <0.01. 
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4.3 The Positive Effects of OECs on Endogenous 
Myelination may be Dominant to the Negative Effects  
Exerted by SCs  

As in section 4.2, purified suspensions of OECs and SCs were trypsinised, 

resuspended and counted so that 5,000 or 10,000 of each cell type were added 

together into the mixed embryonic spinal cord suspension and plated onto an 

astrocyte monolayer. Controls included the addition of each cell type to the 

myelinating cultures on their own, as well as no exogenous cells being added, as 

seen in previous experiments. 

Preliminary results suggested that the mechanisms which induced the increase in 

myelination observed when 10,000 OECs were added to the myelinating cultures 

may be dominant to the negative effects exerted by SCs, given that the addition 

of a combination of both cell types appeared to increase the level of myelination 

almost two-fold above control levels, and marginally more than the addition of 

10,000 OECs alone (Figure 4.4 a, f, g, h).(n=1). As previously shown (Figure 4.2), 

the addition of 10,000 OECs alone (Figure 4.4 c) significantly increased 

myelination (n=4, p value=0.04), whilst 5,000 or 10,000 SCs (Figure 4.4 d, e) 

alone significantly reduced the level of myelination compared to control (n=4, p 

values=0.04 and <0.01, respectively). Neurite density was not affected by any 

treatment. 

Furthermore, it appeared likely that this increase in myelination was in fact due 

to an enhancement of the endogenous myelinating capacity of the culture 

system as opposed to the likelihood that either SCs or OECs were contributing to 

this phenomenon by exogenously myelinating axons in peripheral myelin, since 

labelling with an antibody to detect P0 in cultures containing both cell types 

demonstrated a lack of this abundant peripheral myelin protein in the myelin 

sheaths (Figure 4.5 b). Interestingly, however, punctate P0 staining was evident 

in these cultures in the cell bodies of bi-polar cells with typical morphological 

characteristics of both OECs and SCs. There was no evidence of this staining in 

control cultures which did not contain exogenously added glial cells, suggesting 
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that this pattern of staining is unlikely to be non-specific and that control 

cultures are not likely to contain contaminating peripheral glia (Figure 4.5 a). 

Observations from co-culture assays of GFP labelled OECs and non-labelled SCs, 

whereby each cell type was cultured in an adjacent strip on a glass coverslip and 

allowed to migrate towards each other for 5 days (adapted from confrontation 

assays, Lakatos et al., 2000) suggested a mingling of both cell types, as 

demonstrated by the presence of GFP-OECs on either side of the seeding 

“boundary” (Figure 4.6 b, denoted by dotted yellow line). Since the culture of 

GFP-OECs was only approximately 70% GFP+ve, (Figure 4.6 a) it is also possible 

that p75NTR+ve cells on either side of the border could be OECs or SCs. Although 

this data in no way suggests that either or both cell type was still present after 

26 days in the myelinating cultures, it may offer some interesting insight into 

the ways in which OECs and SCs could interact with each other in culture, 

resulting in synergistic effects on endogenous myelination.  

Whilst these results are inconclusive and preliminary, since subsequent repeats 

resulted in the “sloughing off” of cultures from coverslips, perhaps due to the 

increased presence of proliferative factors, it may be worth considering them for 

future experiments when investigating the implications of an OEC mediated 

repair strategy, since SCs often migrate into the injury site via the spinal roots 

and surrounding blood vessels when the glia limitans is breached following CNS 

injury (Franklin and Blakemore., 1985, Baron-Van Evercooren et al., 1993). Thus, 

it would be useful to confirm these findings in order to demonstrate whether or 

not OECs can still exert beneficial effects on endogenous myelination in the 

presence of SCs in vitro. 
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Figure 4.4 – The addition of a combination of both SCs and OECs appeared to 
enhance myelination above control levels. Combinations of 5,000 OECs plus 
5,000 SCs, or 10,000 OECs plus 10,000 SCs were added to the mixed embryonic 
spinal cord suspension and plated down onto an astrocyte monolayer. Control 
cultures contained no exogenously added glial cells, whilst additional controls 
included adding either OECs or SCs alone to the myelinating cultures. 
Preliminary results suggested an increase in myelination compared to controls 
after 26 days in culture when combinations of both cell types were added, 
resulting in an almost two-fold increase in myelination with the addition of 
10,000 OECs + 10,000 SCs (a, f, g, h) (n=1). 10,000 OECs alone (c, h) significantly 
increased the level of myelination compared to controls and cultures containing 
5,000 OECs (b, h) (n=4), whilst the addition of 5,000 SCs or 10,000 SCs (d, e) 
significantly decreased the level of myelination versus control cultures (a, h) 
(n=4). Neurites were labelled with SMI-31 to detect phosphorylated 
neurofilament and an antibody to PLP labelled myelin sheaths and 
oligodendrocytes. Images were taken on an Olympus BX51 epifluorescence 
microscope. Scale bars=100 µm. * = p values < 0.05, ** = p values <0.01. 
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Figure 4.5 – No MPZ/P0 staining was detected in the myelin sheaths in cultures 
containing a combination of OECs and SCs. 10,000 OECs plus 10,000 SCs were 
added together to the mixed embryonic spinal cord cell suspension and plated 
down onto an astrocyte monolayer. Control cultures contained no exogenously 
added glial cells. Preliminary observations suggested that OECs and SCs were not 
forming peripheral myelin after 26 days in culture, since there was no 
detectable presence of MPZ/P0 ensheathing axons (b). There was, however, 
punctate MPZ/P0 staining in the cell bodies of cells with similar morphologies to 
both OECs and SCs. This staining pattern appears to be true given that there was 
little evidence of non-specific staining using this antibody in control cultures 
where no exogenous glial cells were added (a). Images were taken using an 
Olympus BX51 epifluorescence microscope. Scale bars=50 µm. DAPI labelled 
nuclei, SMI-31 labelled neurites and an antibody to MPZ/P0 was used to detect 
the peripheral myelin protein, myelin protein zero. 
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Figure 4.6 – GFP-OECs appear to mingle with SCs in co-cultures. GFP-OECs were 
plated into a strip directly adjacent to, but not touching, an identical strip of 
SCs on 2 PLL-coated 13 mm2 glass coverslips. After 5 days, GFP+ve cells could be 
observed on either side of the boundary where each cell type was initially 
seeded (denoted by broken yellow line), suggesting a mingling of both OECs and 
SCs (b). Cultures of OECs were only approximately 70% GFP+ve, (a) thus, cells 
which were positive for p75NTR could represent either SCs or the remaining 30% 
of the OEC population. Images were taken using an Olympus BX51 
epifluorescence microscope. Scale bars=50 µm (a) and 100 µm (b). DAPI labelled 
nuclei, whilst an antibody to p75NTR labelled OECs and SCs. GFP denotes green 
fluorescent protein, which OECs were labelled with using a lenti-virus. n=1.  



 

157 
 

4.4 The Negative Effects Mediated by SCs on 
Endogenous Myelination Were Induced by Secreted 
Factors, as Opposed to Contact-Dependent Mechanisms  

Conditioned media (CM) was collected in differentiation media (DM; used to 

maintain myelinating cultures) from equally confluent flasks of both SCs and 

OECs over a 3 day period and filtered sterile before use (see also section 2.1.4). 

It was then added to myelinating cultures thrice weekly from day 12 onwards at 

a dilution of 1:4 with fresh DM, allowing an initial period whereby the cultures 

could become established. Control cultures were fed only with DM. 

After 26 days, the level of myelination observed in cultures whereby Schwann 

cell conditioned media (SCM) was added was highly significantly lower than in 

control cultures (Figure 4.7 a, b, d) (n=4, p value< 0.01). A lack of Caspr staining 

in these cultures, compared to controls, demonstrated the unlikelihood that 

internodes of myelin lacking in PLP or immunoreactivity to the O4 antibody had 

formed under these conditions (Figure 4.8). 

The addition of OEC conditioned media (OCM), however, produced variable 

results, with cultures often showing poor survival following this treatment 

(Figure 4.7 c). It was hypothesised that this may be due to an over-growth and 

subsequent sloughing off of the cultures due to the mitogenic effects of OECs. 

Thus, CM was also diluted down to 1:8 and tested in the same way as above. 

Under these conditions, though not completely diminished, myelination was still 

significantly reduced compared to controls with the addition of SCM (Figure 4.9 

a, b, d) (n=3, p value=0.03). Furthermore, OCM that had been diluted down to 

1:8 prior to use was no longer detrimental to the survival of the myelinating 

cultures, with myelination under these conditions comparable to controls but 

significantly more than in cultures which were treated with  SCM at a dilution of 

1:8 (Figure 4.9 c, d) (n=3, p value=0.04).  



 

158 
 

 
 
Figure 4.7 – SCM at 1:4 significantly reduced the level of myelination compared 
to control cultures, whilst OCM was detrimental to the survival of myelinating 
cultures. Conditioned media was collected from SCs (SCM) or OECs (OCM), 
diluted with fresh differentiation media (1:4) and added to myelinating cultures 
every other day from day 12. After 26 days, the level of myelination following 
SCM treatment was significantly lower compared to controls (a, b, d). Overall, 
the survival of cultures treated with OCM was poor and thus, myelination could 
not be quantified (c). Images were taken on an Olympus BX51 epifluorescence 
microscope. Scale bars=100 µm. Myelin sheaths and oligodendrocytes were 
labelled with an antibody against PLP and SMI-31 labelled phosphorylated 
neurofilament in neurites. n=4. ** = p value < 0.01. 
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Figure 4.8 – There was no evidence of Caspr staining in cultures which were 
treated with SCM, indicating a lack of correctly formed nodes of Ranvier. SC 
conditioned media (SCM) was collected in differentiation media and added to 
myelinating cultures from day 12. After 26 days, immunolabelling with an 
antibody against the intermediate oligodendroglial marker, oligodendrocyte 4 
(O4), demonstrated a lack of O4+ve myelin sheaths in SCM treated cultures (b) 
compared to untreated controls (a). Furthermore, in control cultures axonal 
contactin associated protein (Caspr) was located at the paranode, indicating the 
presence of correctly formed myelin internodes (a), and absent from cultures 
which had been treated with SCM, suggesting a lack of myelin formation in these 
cultures. An Olympus BX51 epifluorescence microscope was used to capture 
images. Scale bar=50 µm. An antibody to O4 was used to label oligodendrocytes 
and myelin sheaths, whilst SMI-31 labelled phosphorylated neurofilament in 
neurites.  
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Figure 4.9 – SCM at a dilution of 1:8 was still negative for endogenous 
myelination, whilst OCM was comparable to control. Conditioned media was 
collected from SCs (SCM) or OECs (OCM), diluted with fresh differentiation media 
(1:8) and added to myelinating cultures every other day from day 12. The level 
of myelination following SCM treatment at 1:8 was significantly lower compared 
to control cultures (a, b, d). In cultures treated with OCM, myelination was 
comparable to controls but significantly higher than in SCM treated cultures. (c, 
d). Images were taken on an Olympus BX51 epifluorescence microscope. Scale 
bars=100 µm. Myelin sheaths and oligodendrocytes were labelled with an 
antibody against PLP, whilst SMI-31 labelled phosphorylated neurofilament in 
neurites. n=3. *= p value <0.05. 
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4.4.1 If the Conditioning Paradigm Involved Cross-T alk Between 
SCs and the Myelinating Cultures, Endogenous Myelin ation Still 
Appeared to be Reduced. 

In order to assess whether or not the secreted factors from SCs promoted 

paracrine signalling of factors from endogenous axons/glia in the myelinating 

cultures, thus affecting myelination, 2 coverslips of SCs were placed in a Petri 

dish and allowed to continually condition one coverslip containing a myelinating 

culture from day 12 onwards. Coverslips of SCs were replaced every other day 

(as described in section 2.1.7.2). Unlike when conditioning with SCM generated 

directly from flasks of SCs, conditioning in this way enabled “cross-talk” 

between SCs and the cells present within the myelinating cultures, which could 

potentially have influenced the secretion of factors from both SCs and 

endogenous CNS cells in the cultures.. 

Previously this experiment was carried out in the Barnett lab by Besma Nash 

(Nash et al., 2011) using OECs on coverslips to condition myelinating cultures 

instead of SCs. Results from those experiments indicated that OEC coverslip 

conditioning resulted in a significant increase in the level of myelination 

compared to unconditioned controls (n=3, p value < 0.05). Initial results using 

coverslips of SCs appeared to demonstrate that conditioning in this way, as 

opposed to using SCM collected in the absence of cross-talk, still resulted in a 

reduction in the level of myelination, compared to controls (Figure 4.10). 

Furthermore, conditioning in this manner resulted in the almost complete 

ablation of myelination in the cultures along with a slight decrease in neurite 

density (Figure 4.10 b, c), though PLP+ve oligodendrocytes were still evident in 

SC-conditioned cultures (n=2). 
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Figure 4.10 – Conditioning the myelinating cultures using 2 confluent coverslips 
of SCs ablated myelination in experimental cultures versus control cultures. 2 
coverslips of SCs, which were replaced every other day, were used to condition 1 
myelinating culture coverslip in a petri dish from day 12. Preliminary results 
suggested that there was virtually no myelin in conditioned cultures versus 
controls, though PLP +ve oligodendrocytes were present (b, d). Neurite density 
was also BX51 epifluorescence reduced in SC conditioned cultures (c). Images 
were captured on an Olympus  microscope. Scale bars = 100 µm. Neurites were 
labelled with SMI-31 to detect phosphorylated neurfilament and an antibody 
against PLP labelled myelin sheaths and oligodendrocytes. n=2. 
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4.5 The Reduction in Myelination Observed in SC/ SC M 
Treated Cultures was not Due to Demyelination 

Though this chapter has demonstrated that exogenously added SCs and 

treatment with SCM significantly reduced the level of myelination compared to 

control cultures, it was unclear whether or not this decrease was due to (i) 

myelinated fibres forming and then demyelination occurring (due to the 

presence of SC-secreted factors), or (ii) the inhibition of the endogenous 

myelinating capacity of the cultures. 

To test these two hypotheses, myelinating cultures were allowed to develop as 

normal until day 26, and then SCM was subsequently added every day for 4 days, 

before immunofluorescent labelling was carried out at day 30. Untreated 

cultures were stained at both day 26 and day 30. Results demonstrated that the 

addition of SCM to established (myelinated) cultures was not detrimental to the 

level of myelination observed (Figure 4.11). By day 30, there was a slight 

increase in the level of myelination in both untreated (Figure 4.11 b) and SCM 

treated cultures (Figure 4.11 c) versus day 26 cultures, and though a temporal 

increase in the amount of myelination is to be expected, neither increase was 

significant compared to control (n=3, p values=0.18, 0.29). This data therefore 

suggests that SCM prevents the formation of myelin as opposed to causing 

demyelination to occur in established CNS cultures. 
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Figure 4.11 – SCM does not cause demyelination in established myelinating 
cultures. SCM was added to cultures every day for 4 days from day 26 before 
immunolabelling was carried out. Untreated cultures were stained on day 26 and 
day 30. Whilst the addition of SCM (c) appeared to slightly increase myelination 
compared to untreated controls (a), this increase was not significant. 
Myelination appeared to increase slightly with time regardless of treatment 
though this change was also non-significant (b). Neurite denstity was unaffected 
by treatment. Images were taken using an Olympus BX51 epifluorescence 
microscope. Scale bars = 100 µm. An antibody to PLP labelled myelin sheaths 
and oligodendrocytes and SMI-31 labelled phosphorylated neurofilament in 
neurites. n=3.  
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4.6 Discussion 

Data from this chapter demonstrated that 10,000 exogenously added OECs 

significantly increased the level of endogenous oligodendrocyte myelination 

compared to controls in a myelinating culture system (Figure 4.2). The addition 

of 5,000 or 10,000 SCs, however, significantly decreased the level of myelination 

versus cultures which lacked the addition of exogenous cells (Figure 4.3). 

Furthermore, preliminary data suggested that the combination of OECs and SCs 

together resulted in an increase in myelination above the level of control and 

marginally higher than that observed when 10,000 OECs were added alone, 

which may imply that the positive effects of OECs on endogenous myelination 

are dominant to the inhibitory effects of SCs (Figure 4.4). Data from CM studies 

showed that the significant effects of SCs on endogenous myelination were 

mediated via secreted factors, even when these factors were considerably 

diluted (Figures 4.7, 4.9). In addition, when exposed to paracrine/autocrine 

signalling from endogenous cells in the myelinating cultures, SCs still exerted a 

negative effect on myelination suggested that their expression of inhibitory 

factors was not mediated via cross-talk. Indeed, in this particular experimental 

paradigm myelination was almost completely ablated, suggesting that the SC-

secreted factors which negatively affect myelination were possibly at higher 

concentrations compared to when conditioning with SCM derived from SCs grown 

in monoculture. 

Whilst this data shows that SCs are continually negative in every paradigm, with 

evidence suggesting that these negative effects are mediated via secreted 

factors, OECs have a positive influence on myelination when exogenously added 

to cultures and only when conditioning in a scenario which directly exposes them 

to factors being secreted by the myelinating cultures (2 coverslip conditioning 

method, Nash et al., 2011). These findings suggest that the effects of OECs on 

endogenous myelination may be partly contact-dependent and partly 

attributable to cross-talk with resident CNS neuronal and glial cells. Thus, it is 

likely that the mechanisms that are involved with each cell type and the ways in 

which they influence oligodendrocyte myelination are highly complex and 

possibly entirely distinct from one another. 
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Whilst initial experiments suggested that the addition of OECs to the myelinating 

cultures from day 12 was detrimental to the survival of the cultures, this is not 

necessarily an indication that OECs were in some way inhibitory. A more 

plausible explanation is that the mechanical strain of lifting delicate cultures 

from one dish to another at what is arguably a critical point in their 

development resulted in limited survival of the cultures. Indeed, subsequent 

experiments whereby the control coverslips were also “fished” out at day 12 

using forceps resulted in little or no cells remaining at day 26. Thus, the 

protocol was adapted to negate the need to fish coverslips from dish to dish by 

adding OECs or SCs from day 0 in a mixed cell suspension with the embryonic 

spinal cord cells. 

Though the results are only preliminary, the combination of both OECs and SCs 

together mediating an increase in myelination suggests the possibility of a 

synergistic dynamic between these two distinct populations of glial cells (Figure 

4.4). Indeed, Au et al., (2007) speculated at this relationship by demonstrating 

the ability of OECs to enhance the capacity of SCs to-mediate the outgrowth of 

dorsal root ganglia (DRG) via the OEC expression of secreted protein rich in 

cysteine (SPARC) and it’s interactions with laminin-1 and transforming growth 

factor-β (TGF β). Furthermore, the ability of OECs to promote migration of SCs 

in vitro, even on an astrocyte monolayer, was also demonstrated by Cao and 

colleagues (2007). Several repeats of this experiment were carried out to no 

avail, with most of the cultures sloughing off before the end stage. The protocol 

was adapted to incorporate feeding on a daily basis in a bid to combat over-

expenditure of vital nutrients due to the confluent nature of these cultures 

however, this did not improve their durability. Perhaps future considerations 

should include lowering the density at which the myelinating cultures are 

initially seeded to, for example, 100,000 cells/ 100 µl instead of 150,000 cells/ 

100 µl.  

Furthermore, it was virtually impossible to determine whether or not both the 

exogenously added OECs and SCs survived for 26 days in the myelinating 

cultures, given that both cell types express p75NTR and there is currently no 

known marker which can distinguish one cell type from the other. In order to 
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address this, OECs (or SCs) could be labelled using a lenti-virus encoding green 

fluorescent protein (GFP) prior to adding them to the myelinating cultures. 

However, this strategy may not be entirely useful, given that any labelled p75NTR 

cells, which were not GFP+ve, could also represent a population of non-infected 

OECs, as opposed to surviving SCs. 

It was not surprising that neither cell type appeared to myelinate in our 

cultures, as evidenced by a lack of P0 staining in the myelin sheaths (Figure 4.5), 

given that previous work has demonstrated the requirement for ascorbic acid 

and serum in the culture media to induce basal lamina formation and subsequent 

myelination by SCs (Eldridge et al., 1987); both of which are absent from the 

media used to maintain myelinating cultures. Though Devon and Doucette (1995) 

reported the myelination of DRG neurites by OB-OECs in vitro in the absence of 

ascorbic acid, the issue surrounding the myelinating potential of OECs in culture 

has remained controversial until recently (Babiarz et al.,2011; see also chapter 

1).  

However, the observation of P0 staining in the cell bodies of what appeared to 

be SCs and/or OECs exogenously added to the myelinating cultures may be at 

odds with reports in the literature. For example, Brockes et al., (1981) 

demonstrated that fixed cultures of non-myelinating SCs did not express P0 and 

that its induction was only mediated upon close contact with an axon (Brockes 

et al., 1980). Mirsky et al., (1980) also demonstrated that whilst freshly 

dissociated SCs expressed P0, this expression was quickly down-regulated in 

culture, suggesting the importance of a continual axon/glial interaction. This 

observation could therefore suggest that remaining OECs and SCs in these 

cultures had up-regulated their expression of P0 in response to close interactions 

with axons within the culture, perhaps signifying their myelinating potential. It 

may also be a phenomenon produced by the culturing of a combination of OECs 

and SCs alongside endogenous neuronal/glial influences, therefore further 

studies would be necessary to confirm these observations. 
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The results from this chapter seem to demonstrate that the ability of OECs to 

enhance endogenous myelination are somewhat dependent upon direct 

interactions with endogenous glia/neurons within the culture (Figure 4.2), as 

well as via the possible modulation of the OEC secretome induced by paracrine 

signalling, as evidenced in the 2 coverslip conditioning paradigm (see also Nash 

et al., 2011). OECs are known for their plasticity, acting as a source of trophic 

support by secreting factors such as nerve growth factor (NGF) to guide 

regenerating olfactory receptor neurons back to the olfactory bulb, as well as 

modulating their interactions with axons to induce some aspects of repair 

following transplantation into the damaged CNS (Graziadei & Graziadei., 1979 

a,b; Graziadei et al., 1979; Ramon-Cueto et al., 1998; Keyvan-Fouladi et al., 

2003, Li et al., 2003; Toft et al., 2007).  

It appears, however, that the factors secreted by SCs are sufficient in limiting 

the myelinating potential of endogenous oligodendrocytes in vitro, regardless of 

external influences, such as cross-talk with axons and glia (Figure 4.7, 4.9). 

Though there is currently little evidence to suggest that this is the case in vivo, 

a report by Shields et al., (2000) demonstrated that whilst endogenous 

oligodendrocyte myelination still occurred in ethidium bromide-induced 

demyelinating lesions within the brain, SC transplantation altered the repair 

dynamics such that there was a shift towards peripheral myelin being the 

dominant type in lesioned areas, with oligodendrocytes tending to be limited to 

areas which were heavily populated by astrocytes and devoid of SCs around the 

lesion centre. 

Taken together, data from this chapter has suggested that the transplantation of 

OECs, and possibly a combination of both OECs and SCs together, may be optimal 

in promoting competent functional recovery of the CNS, given their ability to 

promote neurite outgrowth, remyelinate axons in vivo and enhance endogenous 

CNS myelination in vitro. Although SCs also present several promising attributes 

for enhancing CNS repair, the observation that they appear to limit the 

formation of CNS myelin in vitro may need to be considered when optimising 

transplantation studies to provide maximum efficacy. 
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Results Chapter 5: 

Identifying the SC-Secreted Factors, Which Negative ly 
Affect Endogenous Myelination In Vitro 
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5.1 Introduction 

Data presented in Chapter 4 demonstrated the novel findings that SCs negatively 

affected the formation of endogenous myelination by oligodendrocytes in vitro. 

Although the mechanisms which regulate oligodendrocyte myelination are 

complex and as yet not fully elucidated, several factors have been implicated 

for their role in oligodendrocyte survival and maturation, such as PDGF (Noble et 

al., 1988; Raff et al., 1988; Richardson et al., 1988) and IGFs (McMorris et al., 

1986; Ye et al., 1995, 2002; Wood et al., 2007) (see Chapter 1).  

Recently, connective tissue growth factor (CTGF/ CCN2) has also emerged as a 

possible negative regulator of oligodendrocyte myelination. Stritt et al., (2009) 

demonstrated using adenovirus-mediated CTGF expression that CTGF blocked 

the excessive differentiation of oligodendrocytes in vitro and in vivo. Though 

CTGF does not have one clear receptor, it contains various binding domains and 

interaction sites for heparin sulphate proteoglycans, integrins and IGFs, amongst 

others (Figure 5.1). By pre-incubating IGF-containing media with CTGF prior to 

feeding mixed neuronal cultures, Stritt and colleagues postulated that the 

resulting reduction in the maturation of oligodendrocytes in culture was due to 

the sequestering of essential IGFs by CTGF. 

CTGF is a ubiquitous 38kD secreted protein, which is encoded by a gene 

belonging to the immediate early gene family, known as the CCN 

(Cyr61/CTGF/nov) family. It is involved in various physiological functions, such 

as cell adhesion, migration, proliferation and angiogenesis. Furthermore, its role 

in fibrogenesis and wound healing has been extensively studied (Chen et al., 

2000, 2001; Wang et al., 2003; Minhas et al., 2011; Seher et al., 2011). For 

example, exogenously added CTGF increased fibroblast proliferation and 

migration, as well as collagen deposition in a wound healing model (Alfaro et al., 

2012); whilst CTGF expression was also significantly up-regulated during the 

repair of corneal wounds in vivo (Robinson et al., 2012; Shi et al., 2012), thus 

suggesting a vital role in repair. CTGF has also been implicated in pathologies, 

such as liver fibrosis in that patients with non-alcoholic fatty acid liver disease 

showed an increased expression of CTGF compared with healthy controls (Colak 
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et al., 2012), although the expression of CTGF in these patients was not thought 

to be directly associated with disease progression or residual liver function, 

since CTGF levels remained elevated in patients even when clinical scores 

improved (Bauer et al., 2012). However, increased levels of CTGF can be used as 

biomarkers to predict the onset of liver cirrhosis (Kovalenko et al., 2009; Zhang 

et al., 2010). An understanding of its role in the CNS is somewhat limited; 

however, recent studies have demonstrated a correlation between increased 

CTGF expression and neurodegenerative diseases. 

Spliet et al., (2003) reported that CTGF expression was increased in patients 

with amyotrophic lateral sclerosis (ALS) compared with healthy controls. 

Furthermore, these authors described a significant up-regulation of CTGF in 

motor neurons, the targets of ALS, suggesting a possible role for CTGF in 

neurodegeneration in this particular disease. In rat models of Parkinson’s disease 

(PD), whereby pathology was induced by administering a neurotoxin to stimulate 

degeneration of dopaminergic neurons, CTGF was also significantly increased in 

the acute stages of the disease onset (McClain et al., 2009). It has also been 

reported using patient-derived glioma tumour cells that a micro-environment 

rich in CTGF may increase the invasiveness of tumours. The aforementioned 

studies illustrate the fact that CTGF could be a potential therapeutic target in 

several neurodegenerative diseases. To date, however, the work carried out by 

Stritt & colleagues (2009) is the only direct indication that CTGF may also be 

involved in regulating the myelinating potential of oligodendrocytes, making it 

an interesting candidate for further study. 

In summary, the mechanisms underlying oligodendroglial survival and maturation 

are highly complex. They are likely to be mediated, however, via a delicate 

balance of those factors which promote survival and proliferation and those 

which enhance differentiation to ensure the timely maturation of 

oligodendrocytes and to control cell numbers during normal development. 

Therefore, altering these signalling dynamics via over-expression or suppression 

of one or more of these factors directly or indirectly could greatly alter several 

aspects of oligodendroglial cell behaviour with varying consequences. 
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Figure 5.1 – Structure of Connective tissue growth factor. CTGF (CCN2) is a 38 
kD peptide which has been implicated in cell functions such as cell migration, 
proliferation and angiogenesis throughout the body. It contains several 
characteristic binding domains, such as the insulin growth factor (IGF) binding 
domain at its N-terminus and a heparin sulphate proteoglycan (HSPG) at its C-
terminus, as well as several other interaction sites thus, mediating its diverse 
range of functions. 

5.1.1 Aims 

Further to the findings that SCs inhibit endogenous myelination via secreted 

factors, the overriding aim of this chapter was to identify this candidate. This 

was carried out by i) studying the differences in the expression of known factors 

which affect myelination in SCs compared with OECs and Ns-astrocytes; and ii) 

assessing whether these factors, if differentially expressed by SCs, negatively 

affected oligodendrocyte myelination in vitro.  
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5.2 Both OECs and SCs Secrete Comparable Levels of 
the Pro-Myelinating Factor CNTF 

Previous data from the lab had suggested a role for CNTF in promoting 

myelination in our culture system, therefore we decided to examine if OECs and 

SCs secreted different levels of this trophic factor by carrying out an ELISA. 

Conditioned media (CM) was collected from confluent flasks of OECs and SCs and 

from 2 coverslips of neurosphere-derived astrocytes (Ns-astrocytes), prior to 

their use as a monolayer for the embryonic spinal cord mix. CM was collected in 

DM (myelinating culture media) and concentrations were normalised to give a 

value/ 106 cells. Independent batches of CM in quadruplet were taken from each 

cell type and each sample was run in triplicate on the ELISA plate (see section 

2.5 for more details). 

From the ELISA data, it was shown that Ns-astrocytes secreted significantly more 

CNTF protein than OECs or SCs, at around 700 pg/ml versus 250 pg/ml or 180 

pg/ml, respectively (Figure 5.2) (n=4; p values <0.01). Although OECs appeared 

to secrete slightly more CNTF than SCs, this value was not significant (p 

value=0.24). Interestingly, there appeared to be more variation in the amount of 

CNTF secreted by different batches of Ns-astrocytes than by biological replicates 

of OECs or SCs, with values ranging from 500 pg/ml up to 1 ng/ml. 

In light of these findings, it was hypothesised that SCs were also likely to secrete 

a factor/ factors which were inhibitory to myelination and perhaps dominant in 

their effects over the pro-myelinating actions of CTGF. 
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Figure 5.2 – Ns-astrocytes secrete significantly more CNTF than OECs or SCs. CM 
was collected from confluent flasks of OECs (OCM) and SCs (SCM) and from 
coverslips of Ns-astrocytes (ACM) prior to their use as a monolayer for 
myelinating cultures. Values were normalised to give concentrations/ 106 cells. 
Using a rat ELISA kit for CNTF it was found that significantly more CNTF protein 
was present in ACM, than in OCM or SCM. Whilst there appeared to be a slight 
increase in the concentration of CNTF secreted by OECs compared with SCs, this 
difference was not significant. n=4 batches of CM. ** = p values < 0.01. 
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5.3 The SC-Secreted Factor(s) which Negatively Affe ct 
Endogenous Myelination are Proteinaceous 

To further investigate the nature of the SC-secreted factors which negatively 

affect oligodendrocyte myelination, SCM was heat treated at 55 °C for 1 hr to 

alter the tertiary/ quaternary structure of secreted proteins. Denaturing in this 

way is usually sufficient in changing the conformation of a protein such that its 

binding affinity and function can be reduced. SCM and heat-treated SCM (h.SCM) 

were mixed, as before, with fresh DM media (unheated to ensure the presence 

of essential growth factors) at a dilution of 1:4. 

As shown previously in Figure 4.6, SCM added to the cultures from day 12 

onwards significantly reduced the level of myelination compared to controls. 

However, heat treatment of the same batches of CM significantly restored the 

level of myelination compared to SCM treatment alone (Figure 5.3) (n=4, p 

values < 0.01). Although this increase appeared to supersede the amount of 

myelin observed in control cultures, it was not statistically significant (p 

value=0.07). Neurite density was unaffected by treatment. 
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Figure 5.3 – Heat treatment of SCM significantly restored the level of 
myelination compared to the addition of SCM alone. SCM was collected as 
before in DM and added to the cultures every other day from day 12. Each batch 
of CM was also heat treated at 55 °C for 1 hr (h.SCM), before being diluted with 
fresh media (1:4, as with SCM). As previously shown, SCM significantly reduced 
the level of myelination compared to control values (a, b, e), whilst h.SCM 
treatment (c) significantly restored the level of myelination compared to 
treatment with SCM alone (b). Although the increase in myelination with h.SCM 
appeared to surpass the level of myelination in controls, this was not significant. 
Neurite density was not significantly affected by any of the treatments (d). 
Images were captured using an Olympus BX51 epifluorescence microscope. SMI-
31 labelled phosphorylated neurofilament and an antibody against PLP labelled 
oligodendrocytes and myelin sheaths. Scale bar=100 µm. n=4. ** = p values < 
0.01. 
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5.4 SCs Express Significantly More Connective Tissu e 
Growth Factor (CTGF) mRNA and Protein than OECs 

As discussed in the introduction to this chapter, CTGF has recently emerged as a 

possible negative regulator of oligodendrocyte myelination (Stritt et al., 2009). 

To determine if there was a difference in the expression of CTGF mRNA between 

OECs and SCs, RNA was extracted from 3 biological replicates of purified cultures 

of comparably confluent cells and converted to cDNA using a commercial kit. 

The relative amount of CTGF mRNA expressed by each cell type was then 

assessed by RT-qPCR, with each sample being run in triplicate (described in 

section 2.4). Supernatant was also collected from confluent flasks of OECs and 

SCs in DM and from coverslips of Ns-astrocytes and assessed for CTGF protein 

content using an ELISA kit (section 2.5.2). In addition, h.SCM was analysed to 

assess the levels of CTGF which could be detected after heat treatment. As with 

previous ELISA experiments, concentrations were given as a concentration per 

106 cells. 

Although RT-qPCR only gives a relative indication of changes in expression 

standardised to an internal housekeeping gene, as opposed to information 

relating directly to the specific amount of gene expression, data from these 

experiments demonstrated that there was ap aproximately a 20-fold increase in 

CTGF mRNA in SCs than in OECs. (Figure 5.4) (n=3, p values <0.01). These 

observations were confirmed at the protein level using a CTGF ELISA kit. An 

average value of approximately 500 pg/ml of CTGF was present in SCM, which 

was significantly greater than the amount secreted by astrocytes by 

approximately 40% (p value=0.03). Similarly, SCM contained approximately 3 

times and 5 times as much CTGF than OCM and h.SCM, respectively. (p 

values=0.02 and <0.01) (Figure 5.4 b) (n=4 batches of CM). Although ACM 

appeared to contain more CTGF than OCM and h.SCM, this increase was not 

significant. 

Taken together, these data demonstrate the presence of a factor which has been 

reported to be inhibitory for myelination, CTGF, at significantly higher levels in 

SCM than in the CM from other glial cells. 
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Figure 5.4 – SCs express significantly more CTGF at both the gene and protein 
level than other glial cells. RNA was extracted from purified SCs and OECs, 
converted to cDNA and analysed using RT-qPCR to give a relative fold change in 
CTGF expression, normalised to the house keeping gene GAPDH (a). To confirm 
these findings at the protein level, CM was collected from OECs, SCs and Ns-
astrocytes in DM and tested using a CTGF ELISA kit. Heat treated SCM (h.SCM) 
was also analysed. Values were normalised to give a concentration/ 106 cells (b). 
SCs expressed almost a 20-fold increase in CTGF mRNA expression, compared 
with OECs (a). Similarly, SCM contained significantly greater levels of CTGF 
protein than ACM, OCM or h.SCM (b). There was no significant difference 
between the amounts of secreted CTGF when comparing ACM, OCM and 
h.SCM.(b). * = p values <0.05; ** = p values <0.01. n=3 biological replicates for 
RT-qPCR; n=4 batches of CM for ELISA.  
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5.5 Exogenously Added CTGF Significantly Reduced th e 
Level of Endogenous Myelination In Vitro  

Since previous data from this thesis demonstrated that SCs secrete a factor/ 

factors which negatively affect myelination and CTGF expression was higher in 

SCs than in OECs or astrocytes, exogenous CTGF was added to the myelinating 

cultures from day 12 onwards to assess its affects on oligodendrocyte 

myelination. As previously described, CTGF has been reported to be inhibitory 

for myelination both in vitro and in vivo by sequestering IGFs, which are 

essential for oligodendrocyte maturation, at its N-terminus insulin growth factor 

binding domain (Stritt et al., 2009). 

Initially, full length human recombinant CTGF protein (38kD; GenWay Biotech) 

with cross-reactivity in rats was added to the cultures every other feed day at 

concentrations ranging from 500 pg/ml (the average detectable amount in SCM 

by ELISA) up to 100 ng/ml. Preliminary results demonstrated that the addition of 

CTGF at all concentrations reduced the levels of myelination compared with 

controls by at least 50% or more (Figure 5.5; n=2). However, further repeats 

using this peptide proved inconclusive. 

Another human recombinant CTGF peptide containing only the C-terminus of the 

molecule (Figure 5.6) was subsequently tested (11 kD; Peprotech). This peptide 

was also said to have cross-reactivity in rats. Results from these studies showed 

that the addition of 10 ng/ml of CTGF from day 12 onwards (Figure 5.7 b) 

significantly reduced the level of myelination compared to controls (Figure 5.7 

a) (n=3, p value <0.01). Neurite density was not significantly affected by the 

addition of CTGF. No other concentrations were tested using this reagent. 

As observed in previous experiments, PLP immunoreactivity in cultures treated 

with CTGF demonstrated that PLP+ve oligodendrocytes were present even 

although myelination was significantly reduced. Thus, these results suggest that 

myelination is inhibited in spite of the presence of oligodendrocytes. 
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Figure 5.5 – Preliminary results from the addition of a full-length CTGF peptide 
to the myelinating cultures demonstrated a decrease in the level of myelination 
compared with control. A 38kD CTGF peptide was added to the myelinating 
cultures every other day from day 12. Myelination appeared to be reduced by at 
least 50% or more for all conditions compared with controls (f). Though 
myelination was reduced, PLP+ve oligodendrocytes were evidenced across all 
conditions (a-e). The average concentration of CTGF present in SCM as detected 
by ELISA was denoted on the graph, at approximately 500 pg/ml (f). 
Oligodendrocytes and myelin sheaths were labelled with an antibody against PLP 
and SMI-31 labelled phosphorylated neurofilament in neurites. n=2. Scale 
bars=100 µm. 
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Figure 5.6 – Shorter length CTGF peptide. An 11kD human recombinant CTGF 
peptide from Peprotech was also tested for its effects on endogenous 
myelination in the cultures. This particular peptide contained only the C-
terminus and all of its binding domains. Unlike the full-length CTGF, it lacked, 
amongst other things, the insulin growth factor binding domain, said to underpin 
the mechanisms by which CTGF inhibits oligodendrocyte maturation. 
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Figure 5.7 – The addition of a shorter CTGF peptide to the myelinating cultures 
from day 12 significantly reduced the level of myelination compared with 
controls. An 11 kD CTGF peptide containing only the C-terminus of the molecule 
was added to the cultures at a concentration of 10 ng/ml every other day from 
day 12. After 26 days in culture, myelination was significantly reduced in CTGF 
treated cultures (b, d), compared with controls (a, d), though there still 
appeared to be oligodendrocytes present in the cultures. Neurite density was not 
significantly affected by CTGF treatment (c). Images were captured using an 
Olympus BX51 epifluorescence microscope and an antibody against PLP labelled 
myelin sheaths and oligodendrocytes, whilst SMI-31 labelled phosphorylated 
neurofilament in neurites. Scale bars=100 µm. n=3. ** = p values <0.01. 

 

 



 

183 
 

5.6 Neutralising CTGF in SCM Restored the Level of 
Myelination, Compared to SCM Treatment Alone 

To further confirm that the inhibitory nature of SCs on endogenous myelination 

by oligodendrocytes in vitro was at least in part due to the presence of SC-

secreted CTGF, a neutralising antibody to CTGF was used. 

A rabbit polyclonal neutralising antibody to CTGF (LsBio, see also section 

2.1.6.4) was added to SCM at a concentration of 10 ng/ml (based upon a 

calculation of the effective neutralisation of up to 1 ng/ml of CTGF). As with all 

CM experiments, SCM was mixed with fresh DM at a dilution of 1:4 prior to the 

addition of the antibody and then added to the myelinating cultures every other 

day. To ensure that the SCM being tested was inhibitory to myelination as in 

previous experiments, the same batches of CM which received the neutralising 

antibody were also tested on the myelinating cultures without antibody. As a 

further control, the antibody was also added to DM alone from day 12 onwards. 

As previously demonstrated, SCM significantly reduced the level of myelination 

compared with control cultures (Figure 5.8 b) (p values < 0.01). Adding a 

neutralising antibody against CTGF to SCM before adding it to the cultures 

significantly restored the level of myelination compared with SCM treatment (c, 

e) (p values < 0.01), though this increase was not significantly greater than the 

level of myelination in controls. Treatment with the antibody alone also did not 

significantly affect the level of myelination compared with controls, though 

there was some variability with this treatment (e). Neurite density was not 

significantly affected by the addition of a neutralising antibody to CTGF. n=3 

throughout. 
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Figure 5.8 – Neutralising CTGF in SCM significantly increased the level of 
myelination compared with compared with SCM treatment alone. A mouse 
monoclonal neutralising antibody to CTGF was added to SCM or DM at a 
concentration of 10 ng/ml. SCM was then diluted with fresh media (1:4) and 
added to cultures every other day from day 12. As positive controls the same 
batches of SCM minus neutralising antibody were also added to cultures to 
ensure that they exerted inhibitory effects on endogenous myelination (b). As 
previously demonstrated, SCM significantly reduced the level of myelination 
compared with controls (a, c, e). Treatment of SCM with the neutralising 
antibody to CTGF significantly restored the level of myelination versus 
treatment with SCM. However, although this increase appeared to exceed the 
level of myelination observed in controls, this trend was not significant. The 
addition of the antibody alone to DM did not significantly alter the level of 
myelination compared with controls, though this amount was significantly 
greater than myelination following SCM treatment (e). Neurite density was not 
significantly affected by any of the treatments. Images were taken using an 
Olympus BX51 epifluorescence microscope. SMI-31 labelled phosphorylated 
neurofilament in neurites and an antibody against PLP was used to detect 
oligodendrocytes and myelin sheaths. Scale bar=100 µm. n=3. ** = p values 
<0.01.  
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5.7 Discussion 

Data from this chapter has demonstrated that whilst Ns-astrocytes secreted 

significantly more CNTF than OECs or SCs, the amount of this pro-myelinating 

factor expressed by the latter cell types was comparable (Figure 5.2), thus 

suggesting that SCs may also secrete dominant factors which are inhibitory to 

myelination. Heat treatment of SCM to 55 °C for 1 hr significantly restored 

myelination compared with SCM treatment alone, therefore suggesting that the 

myelin-inhibitory factors within SCM were proteinaceous and likely denatured 

during this process (Figure 5.3).  

Results from RT-qPCR studies comparing purified SCs and OECs demonstrated 

that SCs expressed significantly higher levels of the peptide CTGF, which has 

been reported to be inhibitory for oligodendrocyte myelination, than OECs 

(Figure 5.4 a). These findings were confirmed at the protein level by ELISA 

analysis of SCM, OCM, Ns-ACM and h.SCM, which revealed that SCM contained 

significantly higher amounts of CTGF protein than was present in all other CM 

(Figure 5.4 b).  

Although results from the exogenous addition of a full-length CTGF peptide to 

the cultures were inconclusive (Figure 5.5), 10 ng/ml of an 11kD human 

recombinant CTGF containing only the C-terminus (Figure 5.6) demonstrated 

that myelination was significantly reduced after CTGF treatment compared with 

controls (Figure 5.7). The likelihood that SC-secreted CTGF was at least partly 

responsible for the SC-mediated inhibition of oligodendrocyte myelination was 

given further weight by data obtained from studies whereby a neutralising 

antibody to CTGF was added to SCM. These data showed that the addition of the 

antibody into SCM, prior to its administration to the myelinating cultures, 

resulted in significant restoration of myelination compared to SCM treatment 

alone. An additional indication that this increase in myelination was due to 

competent neutralisation of CTGF, as opposed to the non-specific action of the 

antibody itself, was demonstrated in that the presence of the antibody in 

control media given to cultures did not significantly alter the level of 

myelination compared with controls without antibody (Figure 5.8). 



 

186 
 

Although I have not investigated the mechanisms governing the ability of OECs to 

increase endogenous myelination, as aforementioned ELISA data demonstrated 

that OECs secrete the pro-myelinating factor CNTF. Thus, OECs may enhance 

oligodendrocyte myelination by potentiating the pro-myelinating effects of the 

astrocyte monolayer (Nash et al., 2011) by contributing to the bioavailability of 

CNTF in the cultures. Furthermore, OECs could also secrete a plethora of 

additional factors which contribute to their actions on endogenous myelination. 

Although SCs were shown by ELISA to secrete CNTF, they were also a source of 

relatively high concentrations of CTGF; the negative effects of which appeared 

to be dominant to the pro-myelinating effects of CNTF. An interesting 

observation was the degree of variability in the concentration of CNTF expressed 

across different batches of ACM, ranging from 500 pg/ml to 1 ng/ml (Figure 5.2). 

These findings could to some extent explain why the level of myelination is 

variable across experiments, given that the availability of pro-myelinating 

factors can increase or decrease 2-fold with different batches of astrocytes. 

These results also highlight the importance of the astrocyte monolayer in our 

culture system, given their increased expression of CNTF compared with other 

glial cells. 

The expression of CTGF by glial cells is a relatively novel field, however a 

microarray study by Vincent et al., 2005 reported that neonatal rat OECs 

expressed a higher level of CTGF mRNA than SCs; results which appear to 

directly contradict our findings (Figure 5.4 a). However, these findings were not 

said to be significant. Furthermore, they reported that CTGF expression 

appeared to be slightly greater in cultured OECs than in SCs, although this 

difference was less apparent in vivo in SC-rich tissues in the adult rat. The 

apparent discrepancy between my findings and those of Vincent et al., (2005) 

may reflect differences in the preparation of OECs for each study. For example, 

OECs used for this thesis were isolated and purified from the olfactory bulbs by 

positive selection based upon their expression of p75NTR, using a system of 

immunomagnetic nano-beads. In contrast, the methods employed by Vincent and 

colleagues differed somewhat. They combined cells from the (peripheral) 

olfactory mucosa, a tissue rich in multiple cell types (Lindsay et al., 2010), with 

olfactory nerve fibre layer (ONFL) tissue. Arabinoside C (AraC) was then added 

to cultures to eradicate contaminating fibroblasts. Thus, their tissue may have 
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contained both peripherally and centrally-derived OECs with the possibility of 

other contaminating cell types. It has previously been reported that OECs from 

the two tissue sources may have different properties, in that LP-OECs were 

reported to be more migratory in vivo after transplantation and to exert 

differential growth-promoting properties than OB-OECs (Richter et al., 2005). 

Thus, this data may also highlight the possibility that lamina propria-derived 

OECs (LP-OECs) and olfactory bulb-derived OECs (OB-OECs) could differ in their 

expression of CTGF, amongst other factors.  

In addition to demonstrating an increase in CTGF expression at the protein level 

in SCM compared with OCM or ACM, ELISA data from this chapter also highlighted 

that heat treatment of SCM significantly reduced the level of detectable CTGF 

compared to untreated SCM (Figure 5.4 b). Given that the addition of h.SCM to 

the myelinating cultures significantly restored the level of myelination compared 

to SCM treatment alone (Figure 5.2), this observation suggests that the activity 

of CTGF was abolished in h.SCM, possibly via heat denaturing of the protein to 

alter its binding structure. Whilst the protein would still have been present in 

h.SCM, its tertiary/ quaternary structure could have been modulated such that 

its function was impaired, along with its ability to bind to a sandwich ELISA, thus 

reducing the amount of CTGF detected.  

Perhaps the most novel and interesting findings from this chapter allude to the 

possible mechanisms by which CTGF exerts its inhibitory effects on myelination. 

Although it was previously reported that CTGF inhibited oligodendrocyte 

myelination in vitro by sequestering IGFs (Stritt et al., 2009), data from my 

studies using an 11kD CTGF, which lacked the IGF binding domain, also 

demonstrated its ability to significantly reduce myelination in our cultures, 

compared with controls (Figure 5.7). Whilst there is no denying the importance 

of IGF signalling on oligodendrocyte maturation (McMorris et al., 1986; Bartlett 

et al., 1991; Mozell & McMorris., 1991; Goddard et al., 1999) and the likelihood 

that its sequestration would impair this process, results from this chapter open 

up the possibility that other mechanisms may also underpin the actions of the 

CTGF-mediated inhibition of myelination. Furthermore, Stritt and colleagues do 

not confirm their findings by adding CTGF to cultures which were maintained 
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with pro-myelinating factors other than IGF-1 to further validate their proposed 

mechanism. The importance of integrins on oligodendrocyte differentiation has 

been discussed in Chapter 1, thus it could be hypothesised that the presence of 

the integrin interacting site at the C-terminus of CTGF could also be involved in 

its dysregulation of myelination. Similarly, HSPGs have been reported to play a 

role in the adhesion of oligodendrocytes and the possible mediation of their 

polarisation, the morphological change which precedes process extension and 

subsequent differentiation (Yim et al., 1993). Therefore, the interaction of 

oligodendrocyte HSPGs with the HSPG binding domain of CTGF could also 

conceivably alter oligodendrocyte behaviour. However, these suggestions are 

purely speculative and would require confirmation via thorough 

experimentation. 

The notion that SCs are likely to secrete a host of pro-myelinating factors in 

addition to CTGF may be apparent when considering data from both the heat 

treatment of SCM (Figure 5.3) and the antibody neutralisation of CTGF in SCM 

(Figure 5.8). Whilst both of these treatments significantly restored the level of 

myelination compared to SCM alone, both also demonstrated a trend to increase 

myelination beyond the level of control. This data could suggest that by negating 

the inhibitory actions of CTGF, other factors may be able to exert positive 

effects on endogenous myelination within the cultures. 

Thus, data from this chapter has highlighted the novel findings that mature SCs 

can inhibit CNS myelination in vitro via the secretion of CTGF. Whilst these 

effects can be overcome, these results further demonstrate the need for careful 

selection of the most appropriate candidate when considering cell-based 

therapies for repair, given that remyelination is likely to be an important 

consideration for functional recovery (Murray et al., 2001; Duncan et al., 2009). 

These results have also drawn attention to the fact that CTGF signalling in the 

context of myelination may be more complex than previously reported. What 

remains unclear is whether or not CTGF mediates its effects by acting directly 

upon the oligodendrocyte or via an indirect mechanism. For example, CTGF may 

target other endogenous CNS cells, which are then triggered to affect 

myelination. However, it is possible that a combination of both mechanisms is at 
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play. Identifying these means may aid the development of novel therapeutic 

strategies for the treatment of CNS injury and demyelinating diseases.  
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Results Chapter 6: 

Investigating the Mechanisms Involved in the SC-
Mediated Inhibition of Endogenous  

Myelination In Vitro 
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6.1 Introduction 

Thus far, work carried out for this thesis has demonstrated that SCs expressed 

more of the myelin inhibitory growth factor, CTGF, than OECs and that 

neutralisation of this factor in SCM negated the SC-mediated reduction of 

myelination in our cultures. Taken together, these results strongly suggest that 

the secretion of CTGF by SCs is at least partly responsible for their inhibitory 

effects on myelination in vitro, although the precise cellular targets of CTGF are 

unknown. On the one hand, CTGF may act directly upon the oligodendrocyte to 

alter its differentiation state and ultimately its myelinating capacity by 

interfering with the bio-availability of important mediators of myelination; or by 

affecting the signalling of several factors which influence oligodendroglial 

maturation (as discussed in Chapter 5).  

On the other hand, CTGF could also alter the biology of other endogenous 

glial/neuronal cells, such as the astrocytes within the culture, causing them to 

up or down-regulate vital factors which affect oligodendrocyte behaviour. It 

appeared less likely that the axons were the target of CTGF, since neurite 

density was largely unaffected by the majority of CTGF/SCM treatments reported 

throughout this thesis. However, given that previous studies have demonstrated 

the importance of an astrocyte substrate in vitro (Sørenson et al., 2008) as well 

as the effect that modulating the astrocyte phenotype had on oligodendrocyte 

myelination (Nash et al., 2011); it seemed plausible that astrocytes could be a 

potential target of CTGF. Furthermore, since the structure of CTGF is such that 

it contains several distinct binding domains and interaction sites (see Figure 5.1), 

which can mediate the induction of multiple signalling pathways, it is also 

possible that CTGF could negatively regulate oligodendrocyte myelination via 

both direct and indirect mechanisms. 

Early evidence that SCs may affect the ability of endogenous oligodendrocytes to 

myelinate axons and that astrocytes may be involved in this mechanism has 

previously been reported in vivo, although the data was not necessarily 

interpreted in this way at the time. For example, Blakemore (1975) 

demonstrated that following lysolecithin-mediated demyelination of the spinal 
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cord in adult rats, infiltrating SCs and endogenous oligodendrocytes remyelinated 

axons. However, central and peripheral myelin were segregated by the 

reconstitution of the glia limitans/ glial limiting membrane, a thin membrane 

comprised of astrocyte foot processes which acts as a protective barrier to the 

CNS, after approximately 3 months. In this lesion, SCs tended to myelinate axons 

out-with the glia limitans and oligodendrocytes predominantly ensheathed those 

within.  

Conversely, in X-irradiation studies of the dorsal columns of neonatal rats, 

whereby the glia limitans did not reform so competently it was demonstrated 

that SCs and oligodendrocytes were able to mingle and remyelinate within close 

proximity in areas devoid of astrocyte processes and to some extent in astrocyte-

rich areas where the astrocytic basement membrane was lacking (Blakemore & 

Patterson, 1975; Sims & Gilmore., 1983). In addition, Blakemore was able to 

determine that the extent of SC remyelination was directly related to the degree 

of astrocyte depletion by using a 6-aminonicotinamide (6-AC) induced lesion. 

This method resulted in a more wide-spread and extensive loss of endogenous 

glial cells, and demonstrated an even greater level of SC remyelination in the 

place of endogenous oligodendrocyte myelination (Blakemore, 1975). 

Furthermore, in demyelinating lesions induced by the glio-toxin, ethidium 

bromide (EB), which also resulted in the loss of local endogenous glial cells, 

remyelination was predominantly carried out by infiltrating SCs whilst 

oligodendrocyte myelination was limited to the edge of the lesion, which was 

typically devoid of SCs but rich in astrocytes (Blakemore, 1982; Graςa & 

Blakemore, 1986). Similar studies in EB-induced lesions of the rat brain have also 

reported that whilst SC transplants extensively remyelinated denuded axons, 

their migration and myelinating capacity was limited to astrocyte free areas 

(Shields et al., 2000). The findings of Harrison (1985) may slightly contradict the 

aforementioned studies as they reported that SC remyelination in the spinal 

cords of irradiated and lysolecithin treated rats was limited in some instances, 

even in areas where the glia limitans was disrupted. However, they postulate 

that these findings may have been due to whether or not the perivascular glia 

limitans was intact, thus altering the root of entry for infiltrating SCs and 

possibly limiting their accessibility to areas of demyelination.  
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Studies which demonstrated that X-irradiation with a critical dose of 40 Grays 

prevented spontaneous endogenous remyelination (Blakemore & Crang, 1985; 

1988) allowed researchers to investigate the cellular interactions between 

transplanted oligodendrocytes and other glial cell populations in demyelinated 

lesions. Blakemore & Crang (1989) reported that following the aforementioned 

lesion and subsequent transplantation of a mixed non-shaken culture of 

oligodendrocytes, OPCs and Type-1 cortical astrocytes, oligodendrocytes were 

able to remyelinate the lesion extensively in the non-irradiated cord. With 

transplantations of shaken cortical cultures (thus removing O-2A/OPC lineage 

cells), oligodendrocytes failed to successfully remyelinate and invading SCs 

became the dominant myelinating cell within the lesion. Most compellingly, 

when the myelinating potential of infiltrating SCs was reduced by the critical 

dose of X-irradiation (4O Grays), oligodendrocyte remyelination was similar 

following transplantation of shaken and unshaken cells, suggesting that the 

failure of oligodendrocytes within shaken cultures to remyelinate extensively was 

mediated by the presence of invading SCs. Franklin et al., (1992) added to these 

findings by reporting that in transplants containing SCs and Type-1 astrocytes 

which were devoid of OPCs, SC remyelination in the presence of astrocytes was 

not impeded as in previous studies. Thus, these findings suggested a specific role 

for transplanted or endogenous OPCs in mediating the astrocyte-dependent 

inhibition of SC remyelination in CNS lesions. 

In summary, the above studies appear to highlight that in several models of 

demyelination, central and peripheral myelin were predominantly segregated by 

the presence of astrocyte processes within the glia limitans and that when this 

membrane was intact, SC infiltration within the lesion was limited. However, in 

astrocyte-free zones or in areas where the glia limitans was disrupted, 

infiltrating SCs extensively remyelinated denuded CNS axons to a greater extent 

than endogenous oligodendrocytes. Similarly, oligodendrocyte remyelination in 

the presence of astrocytes appeared to be dependent upon the exclusion of 

infiltrating SCs, thus alluding to an inhibitory relationship between SCs and 

oligodendrocytes in vivo. Although these results appear to indicate that SC-

remyelination in the damaged CNS may be hindered by the physical barrier 

represented by endogenous astrocytes, which may limit their entry into the CNS, 

it may also be worth exploring whether or not SCs are capable of impeding 
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oligodendrocyte myelination in an astrocyte-dependent manner via biochemical/ 

molecular mechanisms. 

As discussed throughout this thesis, astrocytes are a source of vital factors for 

neuronal and glial cell survival, proliferation and differentiation, such as PDGF 

(Noble et al., 1988; Richardson et al.,1988) and CNTF (Power et al., 2002; Nash 

et al., 2011). However, following disease or injury to the CNS, astrocytes 

undergo gliosis and are known to up-regulate their expression of chondroiton 

sulphate proteoglycans (CSPGs), which are inhibitory to axonal outgrowth (Dow 

et al., 1993, DeWitt et al., 1994; Lemons et al., 1999; Asher et al., 2000). 

Interestingly CSPGs have also been shown to impair oligodendrocyte process 

extension in vitro, whilst inhibition of CSPGs with xyloside following 

demyelination (Lau et al., 2012), or chondroitinase treatment in a spinal 

contusion model resulted in improved remyelination and OPC migration, 

respectively.  

Other astrocyte-associated factors such as TGF-β have also been reported to play 

a role in oligodendroglial behaviour, though TGF-β has been reported to enhance 

oligodendrocyte differentiation by ceasing the proliferative signalling 

mechanisms induced by PDGF (McKinnon et al., 1993). TGF-β is a member of the 

TGF-β super-family, which also contains bone morphogenic proteins (BMPs), 

growth and differentiation factors (GDFs), activins/ inhibins, glial cell line 

derived neurotrophins (GDNFs). It consists of 3 isotypes, 1, 2 and 3, and is a 

ubiquitously expressed cytokine with anti-proliferative effects throughout the 

body, whilst also playing a major role in fibrosis and inflammation. TGF-β 

expression has been reported to be up-regulated in astrocytes within the 

extracellular protein-rich glial scar following CNS injury (Unsicker et al., 1991; 

Lagord et al., 2002) and in chronically active and inactive demyelinating lesions 

in MS (De Groot et al., 1999). Furthermore, TGF-β1 has been reported to induce 

astrocyte hypertrophy and cause up-regulation of ECM components such as 

laminin and fibronectin in vitro, suggesting that it may play a role in glial scar 

formation. Furthermore, it has also been shown to activate CTGF (Grotendorst et 

al., 1996) via interactions with the ERK and JNK signalling pathways (Xie et al., 

2004). 
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As aforementioned, BMPs (BMP2-BMP20) are members of the TGF-β super-family, 

and were originally characterised by their ability to regulate ectopic bone and 

cartilage formation (Chen et al., 1991; Nakase et al., 1994). However, they have 

also been reported for their integral role in regulating polarity in the neural tube 

during embryonic development, thus confining oligodendrogliogenesis to the 

ventral ventricular zone; a process which is regulated by BMP4 and its 

antagonists, noggin and chordin (Takahashi et al., 1996; Monsoro-Burq et al., 

1996; Huang et al., 2004; Meulemans et al., 2004). BMP and BMP receptor 

expression (BMPR1A, BMPR1B and BMPRII) has been detected in astrocytes, 

oligodendrocytes, microglia and axons within the adult rat spinal cord (Miyagi et 

al., 2012). In addition, Sabo et al., (2011) reported that following cuprizone-

mediated demyelination of the corpus callosum, BMP4 expression was up-

regulated in astrocytes and oligodendrocytes, whereby it was said to induce 

proliferation of both cell types, which correlated with a reduction in 

oligodendrocyte maturation. However, administration of the BMP4 antagonist, 

noggin, resulted in an increase in oligodendroglial differentiation and in increase 

in myelin production. In models of experimental autoimmune encephalomyelitis 

(EAE), BMP4 expression was also said to increase with the onset of disease and 

peak with severity (Ara et al., 2008). It has been postulated that the actions of 

BMPs influence the fate of bi-potential cells, particularly in the case of OPCs, 

which showed an increased predisposition to differentiate into astrocytes rather 

than oligodendroglial cells following treatment with BMPs, though this effect 

could be reversed by FGF treatment (Mabie et al., 1997; Grinspan et al., 2000). 

Whilst data from this thesis appears to strongly indicate that SC-secreted CTGF 

induces a reduction in endogenous oligodendrocyte myelination in vitro, it has 

thus far been unclear which cellular targets and signalling mechanisms were 

involved in mediating this effect. Re-examining previous published data from in 

vivo studies of demyelination could indicate that oligodendrocyte remyelination 

may be inhibited to some extent by SCs via astrocyte-dependent mechanisms. As 

astrocytes are key components of the glial scar and a rich source of both pro and 

inhibitory factors for myelination, it could be postulated that modification of 

their secretory profile through paracrine signalling could have significant effects 

on oligodendrocyte behaviour. Equally, given the physiologically diverse 

structure of CTGF, it could also be possible that its effects on inhibiting 
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endogenous CNS myelination are mediated via direct interactions with 

oligodendroglial cells; or via a combination of both mechanisms. 

6.1.1 Aims 

The aim of this chapter was to determine if astrocytes were the target of CTGF 

in the inhibition of myelination. Experiments were carried out in which astrocyte 

monolayers were incubated with SCM or CTGF prior to their use in the 

myelinating culture system, and myelination was assessed as normal after 26 

days. Further aims included assessing transcriptional changes in astrocytes of 

factors specifically relating to scar formation or the inhibition of myelination 

following CTGF/SCM pre-treatment. In addition, this chapter aimed to 

investigate whether or not CTGF was able to influence the differentiation state 

of OPCs in a non-astrocyte dependent manner.  
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6.2 Pre-treatment of the Astrocyte Monolayer with S CM or 
CTGF Reduced Endogenous Myelination and 
Oligodendrocyte Differentiation In Vitro 

As stated previously in Chapter 5, CTGF does not appear to have one distinct 

receptor however; integrins have emerged as a major class of possible receptors 

which can interact with CTGF (Babic et al., 1999; Gao et al., 2004, 2005; 

Schober et al., 2001). Consisting of 20 alpha subunits and 8 beta subunits, the 

primary role of integrins is to respond to environmental cues by interacting with 

components of the ECM to modulate several aspects of cell behaviour, such as 

adhesion and migration. In primary cultures of neurosphere-derived astrocytes 

(Ns-As), punctate α1 and α2 staining were both evidenced. Commonly associated 

with collagen or laminin binding, this kind of staining indicated the possibility for 

CTGF to interact with astrocytes via integrin receptors. (Cambier et al., 2005; 

Hirota et al., 2011) (Figure 6.1). Whilst it is highly unlikely that these are the 

only integrins expressed by astrocytes in vitro, as demonstrated in the literature 

(Milner et al., 1999, 2001, 2006; Gladson et al., 2000), the expression pattern 

evidenced appeared to be valid in that isotype controls showed little or nor 

background staining (Figure 6.1). 

Initially, astrocytes were pre-incubated with SCs according to the methodology 

described in Chapter 2.5, namely that 2 confluent coverslips of SCs were placed 

in a Petri dish and allowed to condition a confluent coverslip of Ns-As for 4 days. 

During this time, cultures were fed once by removing half the media and 

replacing with fresh 10% FBS. Following pre-conditioning, the astrocyte coverslip 

was removed, rinsed gently in PBS and used as a monolayer for the mixed 

embryonic spinal cord cells as per the myelinating culture methodology. Some of 

the Ns-As coverslips were also retained for further analysis (see also section 6.3). 

After 26 days in culture, myelination appeared greatly reduced, as did neurite 

density, though to a lesser extent (Figure 6.2; n=2). Furthermore, astrocytes 

which had been pre-conditioned by SCs displayed characteristics that were 

typical of gliosis, such as hypertrophy and an apparent increase in the intensity 

of GFAP immunoreactivity (as assessed by fluorescence) prior to their use in the 
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myelinating cultures. This phenotype would typically be observed in vitro during 

astrocyte and SC boundary formation (Lakatos et al., 2000; Fairless et al., 2005, 

De Silva et al., 2007, Higginson et al., 2012) (Figure 6.2 c, d).  

To assess whether or not this reduction in myelination was simply due to the 

survival of fewer axons with the potential to become myelinated, astrocytes 

were also pre-treated every day for 4 days with SCM (in 10% FBS) and CTGF (11 

kD peptide, 10 ng/ml), as well as with SCM and CTGF containing a neutralising 

antibody to CTGF at a concentration of 100 ng/ml (estimated to neutralise 

approximately 10 ng/ml CTGF) (see Figure 6.3 for more details). It was 

hypothesised that pre-treatment in this way would be less severe than the 

previous methodology, given that SC-secreted factors, including CTGF, would 

likely be at lower concentrations in diluted CM. Furthermore, there would be no 

direct competition for nutrients from SCs being co-incubated with astrocytes (as 

in Figure 6.2), which could impair the ability of the monolayer to support a 

myelinating culture.  

Results from pre-treatment in this manner indicated that both CTGF and SCM 

pre-treatment of the astrocyte prior to its use in a myelinating culture resulted 

in a great reduction in the level of myelination observed after 26 days, compared 

with controls (Figure 6.4; n=2). Furthermore, the addition of a neutralising 

antibody to CTGF in cultures where the astrocyte was pre-treated with SCM or 

CTGF (Figure 6.4 d and f, respectively) appeared to restore myelination to a 

similar level as in control. The addition of anti-CTGF to astrocyte monolayers 

which were not pre-treated with CTGF or SCM did not appear to alter the level of 

myelination compared with control cultures (Figure 6.4 b). Neurite density did 

not appear to be affected by any of the treatments (Figure 6.4 g). 

Although this preliminary data seemed to indicate the involvement of the 

astrocyte in mediating the CTGF-induced inhibition of endogenous myelination, it 

was unclear if the reduction in myelination correlated with impaired 

oligodendroglial cell differentiation within the cultures. To investigate this, 

astrocytes were pre-treated with CTGF and then set up in a myelinating culture 
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as previously described, and immunostaining was carried out after 16 days in 

vitro using antibodies to detect NG2 and the expression of the O4 antibody, as a 

means of assessing oligodendrocyte maturation. Preliminary results from these 

studies indicated that whilst the majority of the oligodendroglial cells within the 

culture expressed O4 in the absence of the earlier marker NG2, this figure was 

reduced by approximately 10% following CTGF pre-treatment of the astrocyte 

(Figure 6.5; n=2). These results seem to indicate that oligodendrocyte 

maturation was impaired by this treatment, given that CTGF pre-treatment also 

resulted in approximately 6% more of the oligodendroglial population expressing 

both NG2 and O4, which is typical of the transient stage of differentiation. 

Furthermore, whilst there were very few cells within control cultures which 

exclusively expressed the OPC marker NG2, preliminary data suggested that 

there were 8 times as many of these cells in CTGF astrocyte pre-treated cultures 

(Figure 6.5 c). It is unlikely that this increase in OPC numbers, however small, in 

treated cultures was due to the increased proliferation of OPCs, since 

oligodendroglial cell counts (excluding those which did not label for either 

marker to eliminate astrocytes, microglia and neuronal cells) indicated that cell 

numbers were relatively unchanged in treatment versus control (45 ± 2.17 and 

50.1 ± 3.59, respectively).  

Thus, this preliminary data suggests that the actions of CTGF in reducing 

endogenous myelination may be mediated via astrocyte-dependent mechanisms, 

with a resulting reduction in the differentiation state of oligodendrocytes within 

our cultures. However, this data needs to be replicated to demonstrate 

statistical significance before any real conclusions can be drawn. 
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Figure 6.1 Astrocytes derived from neurospheres expressed both the α1 and α2 
integrin receptor sub-units in vitro. Neurospheres were generated from culturing 
the dissociated striatum of neonatal rats for approximately 7-10 days. After this 
period, 10% FBS was used to induce the differentiation of neurospheres into 
astrocytes, which were cultured to confluency for a further 7 days prior to 
immunostaining. Immunofluoresence for both the α1 (a) and α2 (c) integrin 
subunits was evidenced by way of punctuate staining on the cell surface. Isotype 
controls (e) showing little or no background staining indicated that this staining 
was unlikely to be an artefact. An antibody against GFAP labelled astrocyte 
intermediate filaments (b, d). Images were captured with an Olympus BX51 
epifluorescence microscope. Scale bar=50 µm. 
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Figure 6.2 – Pre-conditioning of the astrocyte monolayer with SCs greatly 
reduced myelination and neurite density, whilst also inducing morphological 
changes characteristic of reactive hypertrophy in astrocytes. Confluent 
monolayers of astrocytes were generated by differentiating neurospheres in 10% 
FBS. Two confluent coverslips of purified SCs were then placed in a Petri dish 
and allowed to condition a single astrocyte coverslip for 4 days. Feeding 
occurred once during this time. The astrocyte monolayer was rinsed in PBS and 
used in the myelinating cultures as normal. Preliminary results indicated that SC 
pre-treatment (b, f) greatly reduced the level of myelination compared with 
controls (a, f). Furthermore, neurite density also appeared to be reduced (e). SC 
pre-conditioning induced morphological changes typical of gliosis and boundary 
formation, with an apparent increase in the intensity of GFAP immunoreactivity 
(c, d) after 4 days of treatment. SMI-31 labelled neurites, an antibody against 
PLP labelled myelin sheaths and oligodendrocytes, GFAP stained astrocytes and 
DAPI depicted nuclei. Scale bars=100 µm (a, b) and 50 µm (c, d) Images were 
captured with an Olympus BX51 epifluorescence microscope. n=2.  
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Figure 6.3 – Pre-treatment of the astrocyte monolayer with SCM or CTGF plus or 
minus a neutralising antibody to CTGF. A second methodology of pre-treating 
astrocytes prior to their use in myelinating cultures was devised whereby CM was 
taken from SCs and diluted with fresh 10% FBS at a ratio of 1:4 before being 
added to the cultures every day for 4 days. A neutralising antibody to CTGF (100 
ng/ml, neutralises ~10 ng/ml of CTGF) was also added to diluted SCM and then 
used to treat cultures as above. The 11 kD CTGF peptide was added to 10% FBS, 
ensuring that the final concentration would be approximately 10 ng/ml in each 
dish during the course of normal feeding, whereby half the media was removed 
and replaced each time. Similarly, the neutralising antibody to CTGF was also 
added to media containing CTGF peptide at a concentration of 100 ng/ml. 
Controls included feeding with 10% FBS (as per normal astrocyte conditions) and 
the addition of anti-CTGF to 10% FBS without the addition of SCM or CTGF. After 
4 days of treatment, the astrocytes were rinsed briefly in PBS and then used as a 
monolayer for myelinating cultures, and some were also retained for further 
analysis. 
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Figure 6.4 – Pre-treatment of astrocytes with CTGF or SCM greatly reduced 
myelination compared with controls. Astrocytes were pre-treated every day for 
4 days with 10% FBS mixed with either SCM, CTGF, SCM + neutralising antibody to 
CTGF or CTGF + neutralising antibody. Additional controls included 10% FBS plus 
the antibody. Preliminary data suggested that pre-treatment of the astrocyte 
monolayer with both SCM (c) and CTGF (e) greatly reduced the level of 
myelination compared with controls (a, h). This effect, however, was reversed 
by the antibody-mediated neutralisation of CTGF (d, f). Furthermore, the 
antibody alone did not appear to affect myelination (b). In all conditions, neurite 
density was unaffected. SMI-31 labelled neurites, and the antibody against PLP 
labelled myelin sheaths and oligodendrocytes. Scale bars=100 µm. Images were 
captured with an Olympus BX51 epifluorescence microscope. n=2.   
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Figure 6.5 – Pre-treatment of astrocytes with CTGF prior to their use as a 
monolayer reduced the differentiation of endogenous oligodendroglial cells 
within the myelinating cultures. Astrocytes were pre-treated over a 4 day period 
with 10% FBS containing 10 ng/ml of CTGF (b), before being used as a monolayer 
in the myelinating culture system. Immunofluorescent labelling was carried out 
after 16 days in vitro. Preliminary data suggested that whilst the majority of 
oligodendroglial cells expressed O4 alone, there was an apparent 8-fold increase 
in the NG2 progenitor population along with a slight increase in the number of 
cells which transiently expressed both markers and a decrease in those 
exclusively expressing O4, suggesting a reduction in oligodendrocyte 
differentiation (c). An antibody against NG2 labelled OPCs and early lineage 
oligodendroglial cells, whilst the O4 antibody recognised both intermediate and 
mature oligodendrocytes. DAPI labelled nuclei. Scale bars=50 µm. Images were 
taken using an Olympus BX51 epifluorescence microscope, n=2.  
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6.3 Preliminary Data Suggested that SCM and CTGF Pr e-
Treatment Caused Transcriptional Changes in Astrocy tes  

Following astrocyte pre-treatment with SCM or CTGF or pre-conditioning with SC 

coverslips, some of the astrocyte monolayers were retained for further analysis. 

RT-qPCR and Western blot studies (see sections 2.4 and 2.6, respectively) were 

employed to investigate whether or not astrocytes altered their expression of 

factors associated with glial scar formation or the inhibition of oligodendrocyte 

maturation as a consequence of pre-treatment. Two coverslips from each 

condition were examined for each technique, whilst samples were loaded in 

triplicate for RT-qPCR studies. Results from RT-qPCR experiments were 

standardised to control and expressed relative to a housekeeping gene (GAPDH) 

to give a relative indication of fold change in expression (RQ value), rather than 

any information directly relating to the amount of mRNA in each condition. 

Quantitative analysis of Western blots was calculated by assessing the optical 

densitometry of each band from its pixel value in Image J, and this value was 

expressed relative to the loading control for each condition (GAPDH). 

Preliminary results indicated approximately a 3.5 and 4.5 fold change in the 

expression of both GFAP and BMP-4 respectively, following CTGF pre-treatment, 

compared with untreated astrocytes (Figure 6.6; n=2). Similarly, SCM appeared 

to increase expression of both markers by approximately 2.5 - 3 times, compared 

to controls. The expression of BMP-4 in astrocytes which were pre-treated with 

CTGF was also up-regulated approximately 2-fold, compared with SCM treated 

cultures. Smaller increases in TGF β expression were observed following SCM pre-

treatment, and to a lesser extent pre-treatment with CTGF, compared with 

controls. Repetition of these experiments is needed to provide evidence of 

statistical significance. 

From Western blot analysis, the expression of GFAP did not appear to be greatly 

altered at the protein level by pre-conditioning with SC coverslips (Figure 6.7; 

n=2). As an additional control, 3 coverslips of astrocytes were also placed 

together in a Petri dish to ensure that any changes which may have occurred 

were due to the presence of SC-derived factors and not related to the physical 
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constraints of housing 3 coverslips/dish, as opposed to 2 coverslips in our normal 

experimental procedure. For example, by placing 3 coverslips in a dish, it is 

possible that there may be a greater demand for nutrients on the cultures and 

perhaps increased autocrine signalling of astrocyte-secreted factors. However, 

GFAP levels in the “3 coverslip control” were relatively comparable to those 

observed in the untreated (2 coverslip) control. 

 
 
Figure 6.6 – SCM and CTGF pre-treatment of astrocytes may cause them to alter 
their expression of mRNA for GFAP, BMP-4 and, to a lesser extent, TGF β. RNA 
was extracted from astrocytes which had been pre-treated with CTGF or SCM for 
4 days and converted to cDNA using a commercial kit. RT-qPCR was carried out 
to assess fold changes in mRNA expression (RQ value), which were standardised 
to control levels and relative to the housekeeping gene, GAPDH. Preliminary 
results suggested that CTGF pre-treatment caused astrocytes to up-regulate their 
expression of both GFAP and BMP-4 mRNA compared with untreated controls. 
Similarly, SCM pre-treatment also induced the up-regulation of GFAP and BMP-4 
mRNA versus controls, in the magnitude of 2–3 times. Compared to pre-
treatment with SCM, CTGF pre-treatment resulted in a greater increase in BMP-4 
mRNA expression. Subtler increases in TGF-β expression were also observed 
following SCM pre-treatment and to a lesser extent, astrocyte pre-treatment 
with CTGF compared with controls, though these may not be significant upon 
repetition. n=2.   
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Figure 6.7 – GFAP protein does not appear to be greatly altered following SC 
pre-conditioning of the astrocyte. 2 coverslips of SCs were allowed to condition 
a single confluent astrocyte coverslip for 4 days. As an additional control, 3 
coverslips of astrocytes were also placed together in a Petri dish for 4 days. 
Quantitative values were made by calculating the optical densitometry (pixel 
value) for each band and expressing this as a value relative to the loading 
control/ housekeeping protein for each condition (GAPDH). After conditioning, 
astrocyte coverslips were rinsed in PBS and lysed for use in Western blot studies. 
Preliminary results suggested that astrocyte pre-conditioning by SCs did not 
greatly alter the expression of GFAP. Similarly, GFAP levels remained relatively 
unchanged in the 3 coverslip control, compared with both SC-pre conditioning 
and untreated controls. n=2.  
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6.4 Treatment of Purified OPCs with SCM or CTGF 
Inhibited their Differentiation by Altering the Exp ression 
of Oligodendroglial Markers and Inhibiting Morpholo gical 
Changes Associated with Maturation 

Purified cultures of OPCs were generated by shaking cortical astrocytes to 

displace the top-dwelling layer of progenitor cells (see also section 2.1.5). 

Differential attachment was then used to eradicate contaminating microglia 

(which preferentially attach to tissue culture plastic) and the resulting cell 

suspension was cultured on glass coverslips in a 24-well plate in Sato media 

(DMEM-BS modified by Bottenstein & Sato, 1979) supplemented with the 

mitogens FGF and PDGF to promote self renewal and to maintain the OPCs as 

progenitors (Noble et al., 1990; Bögler., 2001). After 4-5 days, all media was 

removed and coverslips were rinsed gently with PBS before treatment began. 

SCM (collected in Sato/ DMEM-BS) and CTGF (11 kD; 10 ng/ml) were added to 

Sato media and used to treat cultures every other day for 7 days. Controls 

included maintaining some coverslips in OPC growth factors (GF) to represent the 

progenitor population, and feeding others with Sato alone, which induces the 

normal differentiation of OPCs into mature oligodendrocytes. NG2 and O4 were 

used as markers to assess the degree of maturation following each treatment. 

After 7 days there were significantly more cells following GF treatment, as 

assessed by counting DAPI+ve nuclei, compared with other treatments, which 

would be expected given that both FGF and PDGF are known to enhance 

proliferation and to aid expansion of OPCs (Noble et al., 1988; Wolswijk & Noble, 

1992) (Figure 6.8 e; p values= <0.05). There were no significant differences in 

the cell counts when comparing any other treatments. The % of cells expressing 

NG2 alone (in the absence of O4) was significantly less in Sato media (Figure 6.8 

b), compared with GF treatment (Figure 6.8 a) (p value=0.03) or treatment with 

SCM (Figure 6.8 c; p value=0.02) or CTGF (Figure 6.8 d; p value=0.03). This sub-

set of cells would typically represent an early lineage/progenitor population of 

oligodendroglial cells and there were virtually no cells matching this description 

based upon the expression of NG2 alone, as would be expected in Sato media 

which is used to induce OPC differentiation. There was a slight reduction in the 

amount of cells solely expressing NG2 in both treatments compared with GF 
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controls, however these changes were not significant (p values= >0.05.). Equally, 

there was a significantly greater proportion of cells in the transient stages of 

differentiation (expressing both NG2 and O4) in GF conditions, compared with 

Sato treatment (p value=0.02); or following treatment with SCM or CTGF 

compared to Sato conditions (p values=0.02). Again, there were slightly less cells 

expressing both markers following treatment with SCM or CTGF compared with 

GF conditions, although this was not significant (p values= >0.05). Approximately 

80% of the cells which had been treated in Sato alone solely expressed O4 (in the 

absence of NG2), and this value was significantly greater than the % of cells 

expressing O4 alone in GF cultures (p value= <0.01), and in SCM (p value= <0.01) 

or CTGF treated cultures (p value=0.01), thus suggesting the induction of a less 

differentiated phenotype following treatment. However, there was a 

significantly greater proportion of cells labelling with the O4 antibody in the 

absence of NG2 following treatment with SCM (p value=0.03) or CTGF (p 

value=0.04) compared with GF controls. When comparing SCM treatment with 

CTGF treatment, there were no significant differences across all comparisons. 

Taken together, these results suggest that whilst the majority of OPCs grown in 

Sato media lose their expression of NG2 to label with the O4 antibody after 7 

days in vitro, the cells grown in GF are less differentiated, being fairly evenly 

spit between a typical NG2+ve progenitor population and a sub-set of cells in the 

transient stages of differentiation (expressing NG2 and the O4 antibody). 

Treatment with SCM or CTGF, however, resulted in significant shifts in marker 

expression suggesting that although these cells were more differentiated than 

those grown in GF, they were significantly less differentiated than OPCs which 

were grown in Sato media alone. 

When carrying out these experiments, it was also noted that whilst cells from 

each condition could express the same marker, their morphology was often 

markedly different. This is unsurprising giving that markers such as the O4 

antibody can be expressed in the intermediate stages of oligodendrocyte 

differentiation and then persist throughout maturation, with O4 antibody 

labelling frequently being observed in the myelin sheath. Therefore, a system of 

quantifying differentiation based upon characterising morphology was also used 
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to re-analyse images as a more sensitive means of assessing oligodendrocyte 

maturation. Adapted from the methodology published by Huang et al., (2011) to 

also include a descriptive term for progenitor cells, this system involved 

characterising cells as pre-simple, simple, complex and membrane forming to 

describe the level of branching and myelin formation in each cell (Figure 6.9 a). 

Values were given as % morphology of the total oligodendroglial population.  

Quantification using this system confirmed that the majority of cells in GF 

conditions retained a pre-simple morphology with little obvious branching, 

typical of a progenitor cells (Bögler et al., 1990). This value was significantly 

higher than the % of cells displaying this morphology following incubation in Sato 

media (p value= <0.01) and SCM or CTGF treatment (p values=0.03). However, 

there was also a higher proportion of cells with this morphology following SCM or 

CTGF treatment compared with Sato media alone (p values= <0.01). 

Furthermore, the % of cells with a simple morphology (mostly primary branching) 

was significantly higher in Sato media (p value=0.04) and SCM or CTGF treatment 

(p values=0.03, 0.02) compared with GF conditions. There was no significant 

difference in the % of cells displaying this morphology in either treatment (CTGF 

or SCM) versus Sato media conditions (p values= >0.05). Virtually none of the 

cells grown in GF exhibited a complex (highly branched) morphology, and this 

value was highly significantly less than in Sato media (p value= <0.01) and in SCM 

or CTGF-treated cultures (p values=0.02 and 0.04, respectively). In addition, 

there were also significantly fewer cells with complex morphologies after both 

the aforementioned treatments (SCM or CTGF) compared with Sato media (p 

values=0.02). Finally, whilst there wasn’t a great deal of myelin membrane 

formation for any conditions, there was significantly more when OPCs were 

grown in Sato media compared to GF conditions or SCM and CTGF treatment. 

There were no significant differences when comparing myelin membrane 

formation in treated cultures (SCM/ CTGF) versus GF conditions (p values= 

>0.05). 

This data indicated that SCM or CTGF treated OPCs were more differentiated 

than those grown in GF, but significantly less so than OPCs grown in Sato media. 

Interestingly, however, these differences appeared to be significant in the very 
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early stages of morphological maturation as well as in the formation of complex 

branching and maturation, whilst intermediate stages of differentiation did not 

seem to be significantly altered, based upon morphological characterisation. 
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Figure 6.8 – The expression of OPC differentiation markers is significantly 
reduced following treatment with SCM or CTGF. OPCs were shaken from cortical 
astrocytes and contaminating microglia were eliminated via differential 
attachment to tissue culture plastic. Cells were maintained in Sato media 
supplemented with FGF and PDGF for approximately 5 days to allow for 
expansion. After this period, some were kept in growth factors (GF) (a) to retain 
their progenitor phenotype, whilst others were placed in Sato media without 
further supplementation (b) to encourage their differentiation into 
oligodendrocytes. Treatments included the addition of SCM (c) or CTGF (d) (10 
ng/ml) to Sato media. Cells were fed/ treated every other day for 7 days before 
immunofluorescent labelling. Cells counts were considerably higher in 
proliferative GF media compared with all other conditions, as would be expected 
(e). There were no obvious differences in the cell counts when comparing SCM or 
CTGF treated cultures with those grown in Sato media. Treatment with SCM, 
CTGF or GF significantly increased the proportion of cells which expressed NG2 in 
the absence of expression of the O4 antibody (f). However, although there were 
slightly less cells in this category following treatment with SCM or CTGF 
compared with GF, this reduction was not significant. Similarly, the number of 
cells expressing both markers simultaneously was significantly greater in GF 
conditions and in SCM or CTGF treated cultures, compared with Sato conditions. 
Whilst there appeared to be a slight decrease in the % of cells expressing NG2 
and the O4 antibody after treatment, this reduction was not significant. 
Approximately 80% of oligodendroglial cells grown in Sato media expressed the 
O4 antibody without NG2 immunolabelling and this value was significantly higher 
than that observed in GF conditions, or with SCM or CTGF treatment. The % cell 
expressing the O4 antibody (in the absence of NG2 expression) was also 
significantly greater after SCM or CTGF treatment versus GF conditions. There 
were no significant differences in expression when comparing SCM treatment 
with CTGF treatment. Antibodies against NG2 labelled early lineage/ progenitor 
cells whilst the O4 antibody labelled intermediate to mature oligodendrocytes. 
Scale bars=50 µm An Olympus BX51 epifluorescence microscope was used to 
capture all images. * = p values < 0.05; ** = p values < 0.01. n=3.  
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Figure 6.9 – OPCs treated with SCM or CTGF were significantly less 
differentiated than those cultured in Sato media, based upon morphological 
classification. OPCs were shaken from cortical astrocytes and contaminating 
microglia eliminated via differential attachment. Cells were maintained in Sato 
media supplemented with FGF and PDGF for approximately 5 days to aid their 
expansion. After this period, some were kept in growth factors (GF) to retain 
their progenitor phenotype, whilst others were placed in Sato media without 
further supplementation to encourage their differentiation into 
oligodendrocytes. Treatments included the addition of SCM or CTGF (10 ng/ml) 
to Sato media. Cells were fed/ treated every other day for 7 days before 
immunofluorescent labelling. Quantification was carried out by assessing cells 
according to their morphology (a) as a % over the total oligodendroglial cell 
count. “Pre-simple” described cells which were either bipolar or exhibited very 
little branching of their processes. The term “simple” was assigned to cells 
where there was evidence of moderate primary branching and the cells were no 
longer polarised. “Complex” described cells with extensive primary and 
secondary branching, whilst “membrane” was used to characterise cells which 
formed flat sheets of myelin membrane and were considered to be terminally 
differentiated. Results showed that there were significantly more pre-simple 
cells in GF cultures and SCM or CTGF cultures compared with Sato media 
conditions (b). However, the % of pre-simple cells was also greater in GF cultures 
versus SCM or CTGF treatment. GF treatment gave rise to significantly fewer 
cells of simple morphology compared to all other treatments, whilst there were 
no differences in the occurrence of this classification when comparing Sato 
cultures to those which had been treated with SCM or CTGF. Very few cells 
which were cultured in GF displayed a complex morphology and this value was 
significantly less than that observed in Sato media. Whilst there was a 
significantly greater proportion of complex cells detected following SCM or CTGF 
treatment compared with GF conditions, there was a significantly lower % of 
these cells when comparing these treatments to Sato media controls. Membrane 
formation was significantly reduced in all conditions compared with Sato media 
cultures. For all comparisons, there were no significant differences when 
comparing SCM treatment to CTGF treatment. Antibodies against NG2 labelled 
early lineage/ progenitor cells whilst the O4 antibody labelled intermediate to 
mature oligodendrocytes. An Olympus BX51 epifluorescence microscope was used 
to capture all images. * = p values < 0.05; ** = p values < 0.01. n=3.  
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6.5 Discussion  

Data from this chapter has demonstrated that CTGF may exert its inhibitory 

effects on endogenous myelination via both direct effects on the differentiation 

of oligodendrocytes and via indirect mechanisms, since preliminary data has 

suggested that modulation of the astrocyte monolayer by SCM/ CTGF also greatly 

inhibited myelination and reduced oligodendrocyte differentiation in the 

myelinating cultures. Furthermore, initial results suggest that astrocyte pre-

treatment with SCM or CTGF may induce transcriptional changes in factors which 

mediate aspects of glial cell behaviour. 

Whilst neurite density was reduced in cultures where the astrocyte monolayer 

had been pre-conditioned in a Petri dish for 4 days with 2 confluent coverslips of 

SCs (Figure 6.2), this may have been due to deterioration of the health of the 

astrocyte due to the depletion of vital nutrients being utilised by 3 coverslips as 

opposed to the normal 2 used in controls. Equally, SCs are known to induce 

astrocyte reactivity and it has been demonstrated that in our culture system, the 

phenotype of the astrocyte is vitally important in supporting adequate survival 

and myelination of the cultures (Nash et al., 2011). Thus, the resulting poor 

neurite density may have been due to the induced reactive astrocyte phenotype 

being less supportive for the culture, as opposed to the actions of SC-secreted 

factors on the neuronal population since SCs have been well characterised for 

their expression of factors, such as laminin and NGF, which are known to support 

neurite outgrowth. 

To assess this observation further, astrocytes were also pre-treated with SCM or 

CTGF (11 kD, 10 ng/ml) plus or minus a neutralising antibody to CTGF (Figure 

6.3). In this paradigm, SCM was diluted in 10% FBS, therefore SC-secreted factors 

were likely to have been at lower concentrations than in the previous 

experiments, where 2 coverslips of SCs were continually secreting into the 

shared astrocyte media for 4 days. Preliminary results from these experiments 

indicated that even though neurite density was not reduced, myelination was 

still greatly inhibited following SCM or CTGF pre-treatment of the astrocyte 
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monolayer, suggesting a direct inhibition of myelination. Interestingly, there was 

no obvious difference in myelination with SCM pre-treatment versus pre-

treatment with CTGF. In addition, antibody-mediated neutralisation of CTGF 

restored myelination in both conditions, suggesting that CTGF may be the sole or 

dominant factor in mediating this astrocyte-dependent inhibition of endogenous 

myelination (Figure 6.4). Analysis of the myelinating cultures after 16 days in 

vitro suggested that there were slight changes in the differentiation state of 

endogenous oligodendrocytes following CTGF pre-treatment of the astrocyte 

monolayer, in that there appeared to be a greater % of NG2 labelled progenitors 

in these cultures and a reduction in the number of cells which labelled with the 

O4 antibody compared with untreated controls (Figure 6.5). However, since this 

experiment has only been carried out on 2 biological replicates, it needs to be 

repeated to ensure the statistical significance of our preliminary findings  

RT-qPCR analysis of pre-treated astrocytes prior to their use in the myelinating 

cultures suggested that there may be an up-regulation in the mRNA expression of 

BMP-4 and GFAP in treated astrocytes compared with their untreated 

counterparts (Figure 6.6). As discussed in the introduction to this chapter, up-

regulation of GFAP is associated with reactive astrogliosis, commonly associated 

with the glial scar in vivo. BMP 4 on the other hand has been shown to inhibit 

oligodendrocyte differentiation (as observed in astrocyte pre-treated myelinating 

cultures), whilst enhancing OPC proliferation. Therefore, it may be worthwhile 

treating the myelinating cultures (following astrocyte monolayer pre-treatment) 

with BrdU and then double-labelling with antibodies against NG2 and BrdU to 

assess proliferation of the endogenous oligodendroglial population. There also 

appeared to be a greater increase in BMP-4 mRNA expression following CTGF pre-

treatment when compared to its expression in SCM pre-treated astrocytes. This 

could indicate that the SCM concentration of CTGF was less than the 10 ng/ml of 

exogenous CTGF peptide which was used to treat astrocytes. However, changes 

in message may not necessarily have related to significant changes at the protein 

level given that both treatments inhibited myelination comparably. It was 

hypothesised that since TGF-β, a growth factor associated with glial scar 

formation, is known to activate CTGF expression that paracrine signalling of 

CTGF to the astrocytes may have caused them to up or down-regulate their 

expression of TGF-β as part of a positive/negative regulatory loop. However, 
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there appeared to be only slight increases in TGF-β expression following 

treatment.  

Further clarification of these results at the protein level, perhaps using an ELISA 

kit, would be required to prove that pre-treatment of astrocytes with SCM or 

CTGF caused them to up-regulate their expression of BMP-4 protein, in 

particular. Furthermore, to demonstrate definitively that this factor mediates 

the astrocyte-dependent inhibition of oligodendrocytes induced by CTGF, noggin 

(the antagonist of BMP-4) could be added to astrocyte monolayers during pre-

treatment and prior to their use in the myelinating cultures. If myelination was 

restored following this treatment then this would strongly suggest that BMP-4 up-

regulation in astrocytes was highly involved in mediating the CTGF-induced 

inhibition of CNS myelination. It is also possible that several factors could be up 

or down-regulated in response to CTGF/ SCM treatment and some of these may 

also relate to the control of myelination, therefore a full microarray analysis of 

pre-treated versus untreated astrocytes could also provide useful information 

about important transcriptional changes. 

Western blot analysis (Figure 6.7) of SC-conditioned astrocytes suggested that 

there was little difference at the protein level for GFAP expression compared 

with untreated controls. However, Figure 6.1 suggested clear morphological 

differences in astrocytes which had been treated versus those which hadn’t. 

Furthermore, though it requires formal quantification, immunoreactivity for 

GFAP appeared to be brighter in treated versus untreated astrocytes. However, 

it could also be argued that changes in morphology can cause certain markers to 

appear brighter as the protein becomes more concentrated in the redefined 

cytoplasm (Figure 6.1 c, d).  

Although the findings from this chapter are preliminary, they certainly suggest 

that the astrocyte may be partly responsible for the CTGF mediated inhibition of 

myelination and that astrocyte pre-treatment may also cause transcriptional 

changes in important regulatory factors of myelination. These findings are novel 

in that Stritt et al., (2009) concluded that since they did not observe any losses 
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in the number of GFAP +ve cells, astrocytes were unaffected by CTGF and that the 

oligodendrocytes were the primary targets for this growth factor.  

Furthermore, Schwab et al., (2000, 2001) demonstrated using human brain tissue 

from infarct/ trauma patients and rat brains post stab injury, that CTGF was 

acutely up-regulated in a sub-set of reactive astrocytes, particularly in and 

around laminin +ve structures, suggesting a possible role for CTGF in modulating 

the BBB. From this study, the acute expression of CTGF and its up-regulation in 

reactive astrocytes, coupled with the knowledge that CTGF is known to play a 

role in regulating components of the ECM, could suggest that CTGF may also be 

involved in glial scar formation in vivo. Furthermore, peri-lesional astrocytes and 

astrocytes in areas devoid of obvious neuropathology expressed little or no CTGF 

(Schwab et al., (2000, 2001). In rat models of SCI, similar up-regulation of CTGF 

was observed in reactive astrocytes and also in invading fibroblasts and 

endothelial cells at the lesion site (Conrad et al., 2005). Patients with ALS also 

showed an increased expression of CTGF in reactive astrocytes, whilst little or no 

glial CTGF expression was detected in healthy patients (Spliet et al., 2003). It is 

therefore not novel that CTGF may induce astrocyte reactivity; however, our 

findings that SCs are a source of CTGF may be relevant when considering their 

interactions with astrocytes in vivo, particularly in a SC transplant scenario. It 

could be hypothesised, given our findings and the work of others, that the 

induction of boundary formation and astrogliosis induced by SCs could be at least 

partially attributable to the SC expression of CTGF. Thus, as well as potentially 

inhibiting oligodendrocyte myelination, SCs could also exacerbate scar formation 

via their secretion of CTGF. 

Results from the treatment of OPCs with SCM or CTGF indicated that both 

treatments significantly altered their differentiation into oligodendrocytes as 

assessed by their expression of NG2 and the O4 antibody, as well as their 

morphological characteristics (Figure 6.8/ 6.9), when compared to Sato 

conditions. Whilst there was evidence that a small proportion of SCM/ CTGF 

treated cells were able to differentiate into “complex” oligodendrocytes, 

suggesting their maturation, they were significantly hindered from doing so, 

compared with cultures which were grown in Sato media. This data indicated 



 

219 
 

that CTGF also inhibited oligodendrocyte differentiation via mechanisms which 

were astrocyte non-dependent in vitro.  

Since the expression of oligodendroglial markers was reduced but not completely 

inhibited by treatment, but morphology was significantly altered by OPC 

treatment with SCM or CTGF, it could be hypothesised that CTGF directly inhibits 

oligodendrocyte process extension in the absence of astrocytes. Uhm and 

colleagues (1998) demonstrated that the treatment of OPCs with an agonist to 

PKC enhanced their process extension, whilst also inducing their up-regulation of 

the ECM modulator, matrix metalloproteinase-9 (MMP9) on an astrocyte 

substrate. Furthermore, in vivo studies demonstrated that MMP9 expression 

peaked with the onset of myelination, suggesting its role in process extension 

and myelination (Oh et al., 1999; Larsen et al., 2006). These reports could 

suggest an interesting link to the data demonstrated in this chapter, in that 

CTGF also regulates components of the ECM and could therefore play a role in 

oligodendrocyte process extension via similar mechanisms to those previously 

reported. Also of note is the finding that MMP9 regulates process extension on an 

astrocyte substrate, given that oligodendrocytes have been shown to remyelinate 

in vivo in astrocyte rich areas (as discussed in the introduction to this chapter). 

To correlate our findings with those of Uhm and to elucidate the mechanisms 

governing the CTGF-mediated inhibition of oligodendrocyte maturation and 

process extension, OPCs could be treated with CTGF and then analysed using RT-

qPCR for their expression of MMP9. A down-regulation of MMP9 mRNA (and 

further confirmation at the protein level) following SCM or CTGF treatment could 

suggest that CTGF inhibits endogenous CNS myelination by inhibiting MMP9-

mediated oligodendrocyte process extension. 

In summary, data from this chapter has indicated that astrocytes are likely to 

play a role in the CTGF-mediated inhibition of endogenous myelination, possibly 

via the up-regulation of BMP-4 which reduces oligodendrocyte maturation. 

However, CTGF also works via astrocyte-independent mechanisms to significantly 

inhibit oligodendrocyte differentiation, and these mechanisms could perhaps 

involve hindering process extension through interactions with the ECM. Whilst 

these two mechanisms appear to be exclusive, within the myelinating cultures, 
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as it would be in vivo, it is possible that a combination of both of these 

mechanisms is at play in inhibiting oligodendrocyte maturation. Taken together, 

results from this chapter have provided further evidence to suggest that the 

transplantation of differentiated SCs without suitable modification may not be 

the most functionally beneficial following SCI due to the undesirable effects of 

mature SCs on endogenous CNS glia.  
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Results Chapter 7: 

Developing the Optimum Design In Vitro for a  
Cell-Seeded Biodegradable Scaffold to  

Promote CNS Repair 
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7.1 Introduction 

The data reported throughout this thesis, in combination with what is known in 

the literature, has indicated that whilst SCs are able to promote neurite 

outgrowth following transplantation into the damaged CNS, their efficacy may be 

limited given that they form boundaries with astrocytes (Lakatos et al., 2000) 

and inhibit CNS myelination in vitro via the secretion of CTGF (Chapter 5). 

Therefore, OECs may be the more favourable candidate for transplant-mediated 

repair of the injured CNS, as they naturally co-exist with astrocytes in the 

olfactory bulbs and, as this thesis has shown, enhance endogenous 

oligodendrocyte myelination in vitro. However, previous transplantation studies 

have demonstrated that whilst OECs can enhance neurite outgrowth and restore 

functional recovery to some extent, regenerating neurites rarely exit the glial 

scar and their re-growth and orientation is often random and disorganised 

(Barnett & Riddell., 2007; Toft et al., 2007; Fitch et al., 2008). For this reason 

the concept of using a biodegradable scaffold to bridge the lesion was conceived. 

By introducing topographical guidance cues such as grooves and ridges, it was 

postulated that neurite outgrowth could be directed in order to maximise the 

reorganisation and reformation of functional neuronal connections (Flynn et al., 

2003; Stokols et al., 2004; Patist et al., 2004; Nomura et al., 2006). Nonetheless, 

spinal cord injuries are complex and multi-faceted, and competent repair is 

limited due to the presence of both physical and molecular barriers to 

regeneration. Therefore, a combined therapeutic approach using a 

biodegradable scaffold seeded with OECs could be a promising strategy for 

maximising functional recovery following damage to the CNS, such as in spinal 

cord trauma. 

Although the focus of this thesis was on CNS repair, bioengineering strategies can 

be used to combat a host of medical and scientific problems, such as the design 

of competent drug delivery strategies using nanoparticles (Harmia et al., 1986; Li 

et al., 1986; Verdun et al., 1990; Feng et al., 2009 Chen et al., 2012; Madan et 

al., 2012); and in the manufacturing of medical implants for bone repair (Narang 

et al., 1975; Rubin & Marshall 1975; Fan et al., 2008; Lovald et al, 2009; Pilliar 

et al., 2012). Certain biomaterials may be deemed optimal for a particular 

problem, based upon their biochemical and mechanical properties; such as 
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degradation time, durability and ease of manipulation/ modification. Thus, 

selecting the most appropriate biomaterial is vitally important in order to 

maximise the effectiveness of a given bioengineering strategy.  

One example of a commonly used biomaterial is polycarbonate, which is a type 

of plastic easily altered by heat, known as a thermoplastic. It is known for its 

strength and high transparency to visible light, as well as its ability to bend at 

room temperature without becoming brittle and breaking, thus making it an 

attractive biomaterial. Polycarbonate has been used in the development of 

implantable biodegradable neuronal recording devices, which degrade after 

approximately 220 days in vivo (Lewitus et al., 2011). Furthermore, 

polycarbonate-urethane has also been demonstrated for its use in bone implants 

where it effectively cushion joints and minimizes bone degradation caused by 

shearing (Elsner et al., 2010; Zur et al., 2011; St John & Gupta 2012). 

Poly(methyl) methacrylate (PMMA) is another transparent thermoplastic, which is 

often used as a more economical alternative to polycarbonate. It has previously 

been demonstrated to be biocompatible within the human body and was formally 

used in the manufacturing of contact lenses (Millidot et al., 1979; Mandell et al., 

1982) prior to its replacement with a more gas-permeable alternative. It has also 

been used in the bioengineering of dental implants (Leigh 1975; Klawitter et al., 

1977; Peterson et al., 1979), as well as for the effective delivery of antibiotics to 

combat orthopedic infections (Shipley et al., 1981; Grieben 1981; Vécsei & 

Barquet 1981). Scaffolds bioengineered from polystyrene (another thermoplastic) 

have also been used to induce different aspects of cell behavior, such as 

differentiation and proliferation in rat mesenchymal stem cells in vitro (Wang et 

al., 2012). Although little is currently known about their role in promoting CNS 

repair, it may be worth investigating the aforementioned biomaterials for use in 

this context, given their current application in a range of bioengineering 

paradigms and the ease at which they can be modified by heat.  

Poly-L-lactic acid (PLLA), which is produced by polymerizing lactic acid from 

natural sources, is also an attractive candidate for use in bioengineering 
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strategies given its ability to degrade within a period of 2 years, leaving behind 

non-hazardous lactic acid. As with the previously described polymers, PLLA is 

used extensively in implants to aid bone/ cartilage formation (Chang et al., 

2007; Izal et al., 2012; Schofer et al., 2012). However, PLLA has also been 

demonstrated to enhance neurite outgrowth and Schwann cell migration 

following implantation into the site of peripheral nerve injury (Ngo et al., 2003; 

Cai et al., 2005), as well as to facilitate neurite alignment and the infiltration of 

host cells in the transected thoracic spinal cord in rats (Wang et al., 2009). 

In addition, poly-ε-caprolactone (PCL) has been recognised for its potential 

application within the field of biomedical engineering, perhaps due to its low 

melting point of 60 °C, as well as its moderate degradation time of 

approximately 1 year by physiological hydrolysis of its ester bonds. In addition, 

previous work from the Barnett lab demonstrated that a 2D PCL scaffold 

embossed with a serious of micro grooves and ridges ranging from 12.5–25 µm 

wide promoted the alignment of neurites in vitro, as well as supporting 

myelination within the myelinating culture system described in this thesis 

(Sørenson et al., 2007, 2008). However, over time the alignment of these 

cultures decreased as the topographical cues were lost with increased cell 

density, thus posing a potential problem for their use in long-term repair 

strategies. Subsequent studies have also demonstrated the use of PCL as an 

appropriate substrate for enhancing the directed outgrowth of regenerating 

neurites in both the peripheral and central nervous system in vivo (Hwang et al., 

2011; Neal et al., 2011; de Luca et al., 2012), as well as in enhancing the 

differentiation of neuronal cells in vitro (Nisbet et al., 2008).  

Furthermore, the 2D PCL scaffolds used by Sørenson and colleagues can be 

developed into a 3D “Swiss-roll” structure (Figure 7.1) containing a series of 

pores, as well as a micro-pattern (Seunarine et al., 2008). The pores aid the 

diffusion of nutrients throughout the core of the scaffold, as would be required 

for its effective use in vivo, whilst the pillars retain separation between the 

layers of the PCL, thus maintaining the integrity of its structure. It is hoped that 

the modification of the scaffold in this way may ultimately lead to the 

development of an implantable device which could be used as part of a 



 

225 
 

combinatorial therapeutic approach for the treatment of SCI, by enhancing 

neurite outgrowth and orientation, as well as maximising cell survival. However, 

prior to the integration of such an intricate scaffold to the complex CNS 

environment, further investigation as to the effects of topography on distinct 

neuronal/ glial populations needs to be investigated in vitro. Furthermore, to 

ensure the optimal scaffold design, it may be worth investigating other 

commonly used biomaterials for their ability to support CNS behaviour relating to 

functional repair, such as myelination. 

In summary, whilst OEC-mediated cell transplants have demonstrated their 

potential in promoting neurite outgrowth following SCI, combining this kind of 

therapy with the implantation of an optimised micropatterned scaffold may 

maximise functional recovery by aiding the effective orientation of regenerating 

fibres in vivo, thus combating the physical and molecular impediments to repair. 
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7.1.1 Aims 

The main aim of this chapter was to examine the potential of a biodegradable 

micro-patterned PCL scaffold to support the growth and survival of glial and 

neuronal cells. This was carried out by:  

(i) Demonstrating the ability of PCL to support a range of glial cells, including 

OECs, which would ideally be used in a cell-seeded scaffold strategy in vivo  

(ii) Assessing whether or not increasing the depth of the topography could 

promote a more prolonged cellular alignment as cell density increased.  

(iii) Determining if PCL was the optimum substrate for use in this context by 

comparing it to a range of other biomaterials, which were assessed for their 

ability to support myelination in vitro using the myelinating culture system  

 
 
Figure 7.1- 3D “Swiss roll” structure of a PCL scaffold. PCL can be embossed 
with a micro-pattern of grooves (red arrow) with defined dimensions to enhance 
cellular alignment (a). To produce a model which may perhaps be more suitable 
for use in vivo, pillars (red asterisk) can also be introduced to this scaffold to 
allow it to maintain its structural integrity when rolled into a 3D structure, which 
should support cell growth and alignment throughout each layer (b). By 
incorporating pores into the design of the scaffold, nutrients should be able to 
diffuse freely throughout its structure, thus improving cell survival. Scanning 
electron microscopy was used to capture these images, which were provided by 
Toby Lammel. 
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7.2 Cell Attachment Was Improved by Plasma Treating  
Poly-L-Lysine Coated PCL Scaffolds 

Initial experiments culturing primary cells on poly-L-lysine (PLL)-coated PCL 

scaffolds demonstrated poor attachment and survivability, which was thought to 

be due to the hydrophobicity of the scaffold surface. Plasma, which is a state of 

matter similar to gas, contains a proportion of particles which are charged ions. 

Thus, plasma-treatment/ plasma etching can be used to change the surface 

chemistry of a given substrate to make it more or less permissive for attachment 

by altering its charge (Yang et al., 2002; Wan et al., 2004; Zhao et al., 2006). To 

investigate whether or not plasma-treatment could improve cell attachment in 

our cultures, PCL scaffolds were prepared as previously described (2.7.1) and 

treated with plasma after fabrication (Harrick Plasma Cleaner; Harrick Plasma, 

USA), using a Hi setting for 5 min (740V DC, 40 mA DC, 29.6W). PCL scaffolds 

were immediately placed into ethanol to ensure their sterile transfer into a 

tissue culture hood, where they were coated in PLL as previously described (see 

section 2.1). Neurosphere-derived astrocytes were seeded onto the PCL scaffolds 

in 10% FBS at a density of 50,000 cells/ 100 µl. After 3 days, the DNA dye DAPI 

was used to identify nuclei under a fluorescent microscope in order to formally 

quantify the number of cells remaining in plasma-treated PCL scaffolds versus 

those which were untreated. 

Treatment of the PCL scaffolds with plasma prior to PLL-coating significantly 

increased the number of cells which were present after 3 days in vitro, by 

approximately 5 times (Figure 7.2) (n=3; p value= <0.01). Thus, for all 

subsequent fabrications, scaffolds were plasma treated as above prior to their 

use.  
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Figure 7.2 – Plasma treatment of PCL scaffolds prior to cell-seeding significantly 
increased cell attachment. PCL scaffolds were treated in a plasma cleaner for 5 
min at a high setting to alter their surface chemistry, before being coated with 
13.3 µg/ml of PLL. Neurosphere derived astrocytes were then seeded at a 
density of 50,000 cells/ 100 µl in 10 % FBS. After 3 days in vitro, DAPI labelling of 
nuclei revealed that there were approximately 5 times more cells remaining on 
PCL scaffolds which had been plasma treated (b), compared to those which were 
untreated (a). Images were taken using an Olympus BX51 epifluorescence 
microscope. Scale bars=100 µm. ** = p values <0.01.  
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7.3 Glial Cells Followed the Orientation of the 
Micropattern by “Aligning” with Grooves 

Ns-Astrocytes were plated onto high molecular weight PCL scaffolds (h.MW PCL; 

see section 2.7.2) at a density of 50,000 cells/ 100 µl and cultured for 7 days in 

10% FBS, prior to immunolabelling with antibodies to GFAP. Each scaffold 

contained defined areas of groove widths, including 5, 25 and 50 µm, at a 

constant groove depth of 5 µm (Figure 7.3). Similarly, myelinating cultures were 

plated directly onto scaffolds and cultured for 7 days in DM, although this was 

done in the absence of the usual astrocytes monolayer in order to accurately 

assess the response of endogenous oligodendrocyte and neurites to topography. 

After 7 days, astrocytes displayed a typical protoplasmic morphology with little 

or no orientation of their processes when cultured on PCL without grooves (no 

topography) (Figure 7.4 a). However, on groove widths of 25 µm or less, 

astrocytes appeared to reside within the grooves, extending their processes in 

the direction of the topography giving them an “aligned” appearance. However, 

as groove widths increased to 50 µm, this alignment was lost, with astrocytes 

cultured under these conditions displaying characteristics similar to those 

cultured on areas of no topography (Figure 7.4 b-d). 

When culturing myelinating cultures on the scaffolds in the absence of the 

astrocytes monolayer, there was little or no evidence of neuronal survival. 

However, O4 +ve branched oligodendrocytes were present after 7 days, suggesting 

their ability to survive and differentiation to some extent on the PCL scaffolds 

(Figure 7.4 e-h). Furthermore, oligodendrocytes also displayed some alignment 

of their processes in the direction of the micro grooves, though this decreased as 

the width of the grooves increased to 50 µm.  

Purified OECs (see section 2.1.2) were also seeded onto PCL scaffolds at a 

density of 50,000 cells/ 100 µl and cultured in their optimum growth media 

(OMM/ACM 10%) for 7 days. In this manner, investigation into their potential for 

use in a cell-seeded scaffold designed to promote CNS repair could be carried 
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out. After 7 days, OECs were still present on the scaffolds (Figure 7.5). Although 

OECs are a polarised cell, they were randomly orientated in the absence of 

topography (Figure 7.5 a, e), as they would be in culture. However, in response 

to microgrooves, OECs became greatly aligned with the direction of the 

topography, particularly at groove widths of 25 µm or less (Figure 7.5 b, c). 

Figure 7.3 – PCL scaffolds were hot-embossed with 3 defined areas of a micro-
pattern of grooves and ridges to promote cellular alignment. PCL scaffolds were 
hot embossed using a quartz template containing areas of topography with 
groove ridges of 5 µm, 25 µm and 50 µm at a constant depth of 5 µm. An 
Olympus microscope was used to take phase/ contrast images of the scaffolds. 
Scale bars=50 µm.  
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Figure 7.4 – Astrocytes and oligodendrocytes aligned preferentially with groove 
widths of 25 µm or less. Ns-Astrocytes were seeded onto micro-patterned 
scaffolds at a density of 50,000 cells/ 100 µl and cultured in 10% FBS for 7 days 
(a-d). Mixed embryonic spinal cord cells were also seeded onto scaffolds at 
150,000 cells/ 100 µl in the absence of the typical astrocyte monolayer (e-h). 
Astrocytes appeared to be confined within the grooves and were observed 
extending their processed in the direction of the topography when the width of 
the groove was 25 µm or less (b, c), giving them a more “aligned” appearance 
than those grown in the absence of topography (a). This alignment was lost when 
astrocytes were cultured on areas of groove widths of 50 µm (d). Whilst culturing 
embryonic spinal cord cells in the absence of an astrocyte monolayer resulted in 
little or no axons remaining after 7 days, branched oligodendrocytes were still 
present at this time (e-h). Similarly to astrocytes, oligodendrocytes also 
appeared to extend and align their processes in the direction of the topography 
with a preference for groove widths of 25 µm or less. Groove depths were 
consistent for all conditions at 5 µm. An antibody to GFAP and the O4 antibody 
labelled astrocytes and oligodendrocytes, respectively, whilst DAPI labelled 
nuclei. Images were captured using an Olympus BX51 epifluorescence  
microscope. Scale bar=25 µm. n=2. 
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Figure 7.5 – OECs align with microtopography. Purified OECs were seeded onto 
micro-patterned PCL scaffolds at a density of 50,000 cells/ 100 µl and cultured 
in optimal growth media (OMM/ACM 10%) for 7 days. OECs appeared randomly 
orientated in the absence of topography, as is shown in panel (a) and panel (e), 
which illustrates the interface between an area of microgrooves and no 
topography (represented by broken yellow line). In areas embossed with a 
micropattern (b-d), OECs appeared to be confined within the grooves and were 
observed extending their processes in the direction of the topography, though 
this alignment was less apparent when the width of the grooves exceeded 25 µm 
(d). Groove depths were consistent for all conditions at 5 µm. An antibody to 
p75NTR labelled OECs, whilst DAPI labelled nuclei. Images were captured using 
an Olympus BX51 epifluorescence microscope. Scale bar=25 µm (a-d), and 100 
µm (e). n=2. 
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7.4 Increasing Groove Depth Improved Alignment as C ell 
Density Increased 

Previous work by Sørenson et al., (2007) demonstrated the ability of PCL 

scaffolds to support both the alignment of neurites and the subsequent 

myelination of axons within the myelinating culture system. However, their 

findings also demonstrated that as the density of the culture increased, the 

degree of alignment decreased. To try to optimise the design of the PCL 

scaffolds to best support their use as part of a long-term therapy to promote 

neurite outgrowth and functional repair, the depth of the groove was increased 

from 5 µm to 10 µm. As groove widths of 25 µm were shown to be optimal for 

alignment, both within this thesis and by Sørenson and colleagues, all other 

groove widths were excluded for this experiment. Ns-Astrocytes were seeded 

onto micro-patterned PCL scaffolds at densities of both 50,000 and 100,000 

cells/ 100 µl and cultured in 10% FBS for 14 days. A previously published scoring 

system of 1-5 was used to describe the degree of alignment (Sørenson et al., 

2007), and scoring was carried out by 4 “blinded” assessors to produce average 

alignment scores for each condition. 15 images per condition were analysed for 

each biological replicate (n=2). 

Whilst alignment scores decreased with increased cell density in spite of an 

increased groove depth (Figure 7.6), scores remained at least 1 point higher in 

conditions where astrocytes were grown on 10 µm deep grooves, versus growth 

on a micropattern with a depth of 5 µm at a comparable cell density. The 

highest alignment score was observed when approximately 50,000 cells were 

seeded onto PCL scaffolds with a groove depth of 10 µm (Figure 7.6 b), which 

resulted in an average score of 4, indicating that 60-80% of the astrocytes were 

described as being aligned in the direction of the micropattern. Conversely, the 

lowest alignment score obtained (asides from “no topography”) was 1.5 when 

100,000 astrocytes were plated onto scaffolds with a groove depths of 5 µm, 

indicating that only approximately 20-30% of the astrocytes were considered to 

be aligned. At the same cell density, the average alignment score was 3.5 when 

astrocytes were grown on scaffolds with 10 µm deep grooves, suggesting that 

approximately 60-70 % of the cells were classified as aligned (n=2).  
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To determine the effects of groove depth on improving neurite alignment, 

myelinating cultures were also cultured onto an astrocytes monolayer and grown 

on PCL scaffolds containing a micropattern of grooves with a constant width of 

25 µm and a depth of 10 µm for 26 days. Whilst preliminary observations 

indicated that increasing groove depth resulted in enhanced neurite alignment at 

the end-stages of culture when compared directly to cultures grown in the 

absence of topography (Figure 7.7), the overall reproducibility of the myelinating 

cultures was poor on h.MW PCL scaffolds, thus preventing formal quantification 

of this data. 

In summary, whilst PCL appeared to support the growth and alignment of OECs, 

astrocytes and oligodendrocytes, myelination within neuronal cultures was 

variable. Furthermore, although an increase in groove depth did maintain 

alignment to a certain extent as cell density increased, deeper grooves may need 

to be considered for use in vivo to promote the long-term alignment of neurites 

required to support competent regeneration. 
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Figure 7.6 – Increasing the depth of the groove in micro-patterned PCL scaffolds 
improved alignment scores as cell density increased. Ns-Astrocytes were plated 
onto patterned PCL scaffolds with grooves at a constant width of 25 µm and a 
depth of either 5 µm (a,c) or 10 µm (b,d) and cultured in 10 % FBS for 14 days. 
The degree of cellular alignment was assessed on a scale of 1-5 by 4 independent 
and blinded assessors, based upon a previously published scoring system and 
average scores for each condition were given. Alignment scores decreased with 
an increase in cell density for both groove depths, however by increasing the 
groove depth to 10 µm scores remained on average at least a point higher when 
compared to the same cell density on shallower grooves (e). An antibody to GFAP 
labelled astrocytes, whilst DAPI labelled nuclei. Images were taken using an 
Olympus BX51 epifluorescence microscope. n=2. Scale bar=50 µm.  
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Figure 7.7 – Neurites were aligned on groove depths of 10 µm after 26 days in 
culture. Myelinating cultures on an astrocytes monolayer were cultured on PCL 
scaffolds containing either no topography (a), or a serious of grooves and ridges 
with a constant width of 25 µm and a depth of 10 µm for 26 days. 
Immunolabelling and fluorescent microscopy were carried out after this period. 
Neurite alignment appeared to be greater on micropatterned scaffolds compared 
with unpatterned scaffolds (a), with bundles of fibres orientating in the direction 
of the topography (b). Small amounts of myelin were also present, ensheathed 
around axons in the direction of the micropattern (b). SMI-31 labelled 
phoshorylated filament in neurites and an antibody against PLP labelled 
oligodendrocytes and myelin sheaths. Images were taken using an Olympus BX51 
epifluorescence microscope. Scale bar=100 µm. 
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7.5 Inconsistent Myelination May be due to Induced 
Astrocyte Reactivity, as Opposed to Toxicity of PCL  

As previous experiments for this thesis have demonstrated, myelination in 

cultures grown on h.MW PCL scaffolds was generally inconsistent and 

irreproducible, thus making formal quantification difficult. To assess if these 

anomalies were due to the possibility that PCL could be leaching something 

which was detrimental to one or all components of the culture system over time, 

sterile PCL beads were placed in a Petri dish containing the 2 glass coverslips 

with myelinating cultures grown on an astrocyte monolayer and left to 

“condition” the culture for 26 days. Feeding was carried out every other day by 

removing half the media and replacing with fresh DM as normal. 

Immunofluorescent labelling of neurites and myelin sheaths revealed that the 

addition of PCL beads into the microenvironment did not significantly alter the 

level of myelination observed after the usual 26 day culture period (Figure 7.8; 

n=3, p value= >0.05) (data also described in Donoghue et al., 2013). These 

results suggest that the low levels of myelination observed in our cultures on PCL 

scaffolds were unlikely to be due to toxic chemicals leaching from the PCL 

substrate itself. 

As this thesis and multiple other publications have demonstrated extensively, 

modulation of the astrocyte either via paracrine/ autocrine signalling or in 

response to environmental cues, such as changes to the ECM, can greatly alter 

their ability to support myelination (Levison et al., 2000; Albrecht et al., 2002; 

Nash et al., 2011). Thus, it was hypothesised that astrocytes grown on a h.MW 

PCL scaffold may be in a more reactive state compared with their counterparts, 

which were cultured on glass coverslips. To assess this, Ns-astrocytes were 

seeded at a density of 100,000 cells/ 100 µl onto PCL scaffolds with groove 

widths of 25 µm, at a constant depth of either 5 µm or 10 µm, as well as onto 

scaffolds with no topography. As an additional control, comparisons were also 

made to astrocytes grown on glass coverslips. After 7 days, some cultures were 

lysed for Western blot analysis, whilst others were treated with BrdU prior to 

immunofluorescent labelling to assess proliferation. As with previous 
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experiments, results from Western blot studies were quantified by working out 

the optical density/ pixel value for each band and expressing this as a ratio over 

the density of the loading control (GAPDH). 

GFAP expression was significantly up-regulated when comparing astrocytes grown 

on micropatterned PCL substrates (Figure 7.9) to those grown on glass coverslips 

(a condition which typically supports myelination) (n=3; p values= <0.05). Whilst 

PCL without topography demonstrated a slight trend for an increase in GFAP 

expression compared with coverslip controls, this value was non-significant (p 

values= >0.05). Similarly, the differences between GFAP expression in astrocytes 

grown on a micropattern versus those grown on unpatterned PCL was also non-

significant (p values= >0.05). 

Whilst treatment with BrdU followed by labelling with an antibody to detect its 

presence in proliferating cells indicated a trend for an increase in the % of 

proliferating astrocytes which were grown on glass coverslips (Figure 7.10 a) and 

PCL scaffolds without a topography (Figure 7.10 b), compared to those grown on 

micropatterned PCL (Figure 7.10 c,d), this trend was not significant (n=3; p 

values= >0.05). In general, the rate of proliferation given as a % of proliferating 

cells over the total GFAP +ve population was less than 13% for all conditions. 

Thus, this data indicates that whilst h.MW PCL does not seem to have a negative 

affect on myelination by leaching soluble factors, it may be inducing some 

characteristics of astrocyte reactivity, such as increased GFAP expression, 

though hyperproliferation was not evident in these cultures. Altering the 

phenotype of the astrocytes in this way could greatly reduce their ability to 

support myelination in our system.   
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Figure 7.8 – Conditioning of cultures grown on glass coverslips with PCL beads 
did not affect myelination. Myelinating cultures on an astrocytes monolayer 
were grown on glass coverslips for 26 days as normal prior to immunolabelling. 
From day 1, PCL beads were added to the Petri dish and allowed to “condition” 
the culture media. The addition of PCL to the culture environment (b) did not 
affect myelination (d) or neurite density (c).compared to untreated controls (a). 
SMI-31 labelled neurites, whilst an antibody to PLP labelled myelin sheaths and 
oligodendrocytes. p values= >0.05. Scale bar=100 µm. n=3. 
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Figure 7.9 – GFAP expression was significantly increased when astrocytes were 
cultured on micropatterned scaffolds, compared to those on glass coverslips. Ns-
astrocytes were seeded onto PCL scaffolds with and without topography at a 
density of 100,000 cells/ 100 µl. Cells were cultured for 7 days in 10 % FBS prior 
to lysing for Western blot analysis. Comparisons were made to astrocytes which 
were grown under the same conditions on glass coverslips. Quantification was 
given as the optical density of each band normalised to a GAPDH loading control 
(b). GFAP expression was significantly up-regulated on scaffolds with grooves of 
both 5 and 10 µm depth compared to those on glass coverslips (a, c). Whilst 
there appeared to be an increase in GFAP expression in unpatterned PCL 
compared with coverslip controls, this value was not significant. Similarly, the 
differences between all PCL conditions were also non-significant. n=3. * = p 
values <0.05.   
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Figure 7.10 – The rate of proliferation was not significantly altered in astrocytes 
grown on PCL substrates. Astrocytes were seeded onto either unpatterned PCL 
scaffolds or those with groove widths of 25 µm and a depth of either 5 or 10 µm, 
at a density of 100,000 cells/ 100 µl. Comparisons were made to astrocytes 
grown on glass coverslips under the same conditions. After 6 days, cultures were 
treated with BrdU for approximately 16 hrs prior to immunolabelling. The rate of 
proliferation was given as the number of BrdU+ve cells as a % of the total 
GFAP+ve population. Whilst there appeared to be a trend for increased 
proliferation in cultures grown on glass coverslips and in the absence of 
topography (a,b) compared to the rate of proliferation on micropatterned 
surfaces (c,d), these changes were not significant (e). For all conditions, 
approximately 13% or less of the total astrocyte population were undergoing 
proliferation at the point of immunolabelling. An antibody against GFAP labelled 
astrocytes, whilst an antibody to detect BrdU labelled proliferating cells. DAPI 
depicted nuclei. p values= >0.05. Scale bars=100 µm. n=3.  
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7.6 A Lower Molecular Weight PCL was the Optimal 
Substrate for Supporting Myelination when Compared to a 
Range of Other Biomaterials  

Since myelination did not appear to be supported by the h.MW PCL used in 

previous experiments, a range of other biomaterials were investigated for their 

ability to support a complex CNS system enabling competent 

myelination.Throughout this thesis, scaffolds were fabricated using PCL with a 

molecular weight of 90,000 (Sigma Aldrich, UK). However, a lower molecular 

weight PCL substrate (MW 45,000; Sigma Aldrich, UK) was also investigated, 

along with polycarbonate, polystyrene, poly(methyl)methacrylate (PMMA) and 

poly-L-lactic acid (PLLA). To fully assess the effects of the substrate, topography 

was excluded from these experiments, thus unpatterned membranes of each 

biomaterial were spun onto glass coverslips to make their handling easier 

(section 2.7.2 for more details). Astrocyte monolayers were plated down as 

usual, followed by the seeding of the mixed embryonic spinal cord cells on top. 

Immunolabelling and fluorescent microscopy were carried out after 26 days in 

culture. Dr Peter Donoghue fabricated the scaffolds used in these experiments, 

whilst I performed the cell culture and analysis. The following results are 

published in Donoghue et al., (2013). 

PMMA, PLLA, polycarbonate and polystyrene supported relatively low and 

comparable levels of myelination, which was significantly less than control 

coverslips. Whist myelination was greatest on glass coverslips, low molecular 

weight PCL (l.MW PCL) produced a level of myelination which was not 

significantly different to this control (Figure 7.11) (n=3; p values= >0.05). 

Similarly, the level of myelination observed in cultures grown on a l.MW PCL 

substrate was significantly higher than that achieved on all other substrates 

(n=3; p values= <0.05). Although it has not been included in this thesis, Donoghue 

et al., (2012) also directly compared l.MW PCL to h.MW PCL to demonstrate that 

myelination on the latter substrate was significantly lower (n=3; p values= 

<0.05). Neurite density was not significantly altered in any condition. 
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Taken together these findings demonstrate that l.MW PCL may be the most 

appropriate biodegradable substrate for aiding functional recovery after SCI, 

given its ability to support neurite outgrowth and the complex cellular 

mechanisms, which lead to myelination. Furthermore, the data indicates that 

factors such as the molecular weight of a polymer may be a vitally important 

consideration when optimising bioengineering strategies.  
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Figure 7.11 –PCL best supports myelination compared to a range of biomaterials 
other than glass. Myelinating cultures on an astrocyte monolayer were seeded 
onto unpatterned membranes of low MW PCL, polycarbonate, polystyrene, PMMA 
and PLLA and cultured as normal for 26 days in DM media. Comparisons were 
made to controls cultured in the same way on glass coverslips (a). The highest 
level of myelination was observed on glass coverslips, with polycarbonate (c), 
polystyrene (d), PMMA (e) and PLLA (f) supporting a significantly lower amount of 
myelination. Asides from coverslip controls, low MW PCL best supported 
myelination at a level which was significantly higher than the other biomaterials 
tested. Neurite density was not significantly altered across all conditions. SMI-31 
labelled neurites and an antibody against PLP labelled oligodendrocytes and 
myelin sheaths. Images were taken on an Olympus BX51 epifluorescence 
microscope. Scale bars=100 µm. n=3. *= p values <0.05. This figure was modified 
from Donoghue et al., (2013) Tissue Engineering Part A. 19 (3-4) p 497-507.  
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7.7 Discussion 

Data from chapter 7 has indicated that PCL is able to support the growth and 

survival of astrocytes, oligodendrocytes and OECs. Furthermore, by introducing a 

micropattern consisting of a serious of grooves and ridges, cell growth could be 

orientated in the direction of the micropattern, with a preference for grooves 

with 25 µm width or less (Figure 7.4, 7.5). Previous studies had reported a 

decrease in cellular alignment as cell density increased, thus masking 

topographical cues, when the depth of the grooves was consistently 5 µm 

(Sørenson et al., 2007). However, by increasing groove depth to 10 µm, cellular 

alignment was prolonged to an extent as cell density increased (Figure 7.6). 

Whilst initial observations suggested that neurite alignment could also be 

prolonged after 26 days in vitro by increasing the depth of the micropattern, 

myelination on the whole was poor and not greatly reproducible when cultures 

were grown on a h. MW PCL substrate (Figure 7.7). This did not appear to be due 

to toxicity issues relating to PCL, since conditioning of myelinating cultures on 

glass coverslips with PCL beads did not affect myelination or neurite density 

(Figure 7.8). However, phenotypic analysis of astrocytes grown on PCL versus 

glass coverslips demonstrated that GFAP expression was increased under these 

circumstances, perhaps indicating reactivity (Figure 7.9), although significant 

hyperproliferation was not evident (Figure 7.10). Introducing a lower molecular 

weight PCL greatly improved its ability to support myelination at a level which 

was significantly greater than other biomaterials tested (with the exception of 

glass coverslips), including the original h.MW PCL (Figure 7.11) (Donoghue et al., 

2013). 

More detailed analysis is required to assess the effects of longer term culture on 

the survivability of OECs grown on PCL substrates, in order to further justify 

their use in the design of a cell-seeded scaffold. Future experiments could 

involve BrdU treatment and labelling of OECs grown on scaffolds versus coverslip 

controls to determine their rate of proliferation in response to PCL. Longer 

cultures of OECs grown on PCL substrates for up to 4 weeks would also be useful 

in determining the effects of time and increased cell density on their long-term 

alignment. If the alignment of OECs could be maintained by increasing groove 
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depth, as it appears to be with astrocytes, it would be interesting to determine 

if neurites were therefore able to “align” with the orientated OECs as the 

density of the culture increased, despite the underlying topography being 

masked by their growth. Given the role of OECs in guiding and ensheathing 

regenerating olfactory receptor neurons (ORNs) from the periphery in situ, it is 

conceivable that neurite outgrowth could be directed by initially establishing 

alignment in OECs within the scaffold, thus encouraging neurites into the graft 

and guiding their exit from the glial scar in vivo.  

The observation that myelination was poor on h.MW PCL (MW 90,000) appeared 

to contradict the findings of Sørenson et al., (2007), who demonstrated the onset 

of myelination on PCL scaffolds after 3 weeks using the same myelinating culture 

system. Evidence from this thesis has suggested that this may be due to a change 

in the reactivity status of astrocytes grown on PCL, rendering them less 

supportive of myelination. However, studies using BrdU to assess proliferation 

may not have been the most accurate way to determine reactivity based upon 

hyperproliferation. As cell density increases, proliferation decreases as cells 

become contact inhibited by the confines of their microenvironment. Indeed, the 

physical constraints of the microenvironment induced by the presence of grooves 

and ridges on the PCL substrate may have induced contact inhibition in 

astrocytes cultured under these conditions, thus reducing their rate of 

proliferation. Future analysis of this sort could include plating astrocytes at a 

lower density and carrying out BrdU treatment and subsequent antibody labelling 

within 3 days of seeding to provide more accurate information. 

These anomalies in findings, along with the apparent induced reactivity in 

astrocytes, could be due to vital differences in the mechanical properties of the 

PCL used in each study. For example, the PCL used to fabricate scaffolds for use 

in the work carried out by Sørenson and colleagues had a molecular weight of 

65,000 (Sigma Aldrich, UK), as opposed to the 90,000 MW PCL initially used for 

this thesis. Furthermore, as previously described, l.MW PCL (45,000) appeared to 

support myelination at a significantly greater level than h.MW PCL (Figure 7.11) 

(see also Donoghue et al., 2013). This data could indicate the importance of the 

specific properties of a given biomaterial in relation to their function. Indeed, 
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the molecular weight of a polymer can relate to its strength, with a higher 

molecular weight representing a stiffer substrate. Previous studies have reported 

the importance of substrate stiffness on regulating cellular behaviour, such as 

proliferation, differentiation and even neurite elongation (Engler et al., 2006; 

Khatiwala et al., 2007; Jiang et al., 2008). For example, Balgude et al., (2001) 

demonstrated that the outgrowth of DRGs decreased as the stiffness of the 

agarose hydrogel on which they were grown on increased. They explained this 

observation according to the theory of Heidemann & Buxbaum (1994), who used 

a “tension-pull” model to describe the way in which the growth cones of 

extending neurites responded to the mechanical properties of their surface to 

mediate outgrowth. 

In order to justify the use of OECs in a combinatorial approach to enhance CNS 

repair, it is important to confirm the early findings from this thesis relating to 

the effects of exogenous OECs on oligodendrocyte myelination by repeating 

these experiments on PCL. Equally, for considering scaffold use in vivo, where 

directed neurite outgrowth is vitally important, a balance must be achieved 

between designing the optimal topography as well as the correct cellular 

composition of the scaffold. However, although l.MW PCL lends itself well to 

supporting the growth and differentiation of endogenous CNS cells leading to 

myelination, its mechanical properties are such that it loses its structural 

integrity when “hot-embossed” to introduce a micropattern. These findings are 

not uncommon given that molecular weight often specifically relates to the 

transition temperatures of polymers, therefore altering their thermal properties. 

Thus, l.MW PCL is perhaps currently unsuitable for future studies, whereby the 

cellular response to topography is an important consideration, until its 

fabrication can be optimised. Whilst the PCL used by Sørenson et al., (2007) may 

have been an ideal candidate, it has since been discontinued by its 

manufacturers (Sigma, UK). However, further work carried out by Dr Peter 

Donoghue demonstrated that although myelination was poor on h.MW PCL 

substrates after the usual 26 days in culture, by 46 days the level of myelination 

was comparable to that observed in control cultures, where there was no obvious 

demyelination (Donoghue et al., 2013). Furthermore, it was shown that this 

delay in myelination was due to the secretion of an astrocytic factor(s), which 

appear to support the findings from this thesis that astrocytes grown on PCL 
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show characteristics of reactivity, such as an increased expression in GFAP. By 

identifying this factor it may be possible to optimise the scaffold design in such a 

way that astrocyte reactivity is not induced or exacerbated by a PCL substrate in 

vivo, thus improving its suitably for enhancing repair in the damaged CNS. 

In summary, a scaffold made from PCL incorporating a micropattern of grooves 

and ridges with an optimal depth may be used to direct cellular outgrowth 

throughout the glial scar. By eventually incorporating OECs into a porous 3D 

scaffold design it is hoped that both the physical and molecular barriers to 

regeneration can be overcome and that the non-permissive scar environment can 

be modified in such a way to enable cell survival and differentiation, as well as 

neurite outgrowth, thus maximising functional recovery. However, prior to its 

effective use in vivo, this system must be fully optimised in vitro in order to 

provide a comprehensive understanding with regards to the response of all 

endogenous glial/ neuronal cells and their responses to PCL and topography. 
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Chapter 8 

Final Discussion 
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8.1 Summary of Main Findings 

8.1.1 OECs and SCs Differ Significantly in Their Ef fects on 
Oligodendrocyte Myelination 

I have demonstrated using myelinating cultures that the addition of OB-OECs 

enhanced the level of oligodendrocyte myelination; whilst exogenous SCs 

significantly reduced endogenous CNS myelination in vitro. Furthermore, neither 

OECs nor SCs appeared to myelinate CNS axons in our culture system, as 

evidenced by a lack of P0 staining in the myelin sheaths. The mechanisms 

governing each of these effects appear to be distinct, in that SCs secrete a 

factor(s) which negatively affects oligodendrocyte myelination in culture, 

regardless of whether or not the SCs were exposed to paracrine signalling from 

endogenous CNS glia and neurons. Conversely, OECs enhance endogenous CNS 

myelination only when they are exogenously added to the cultures or when they 

directly secrete factors into the media shared by the myelinating cultures, thus 

exposing them to paracrine signalling. When CM was collected from OECs in the 

absence of endogenous CNS glial/ neuronal influences, it did not affect 

oligodendrocyte myelination (Chapter 4). 

It is unclear from this thesis which factors were involved in mediating the OEC-

induced increase in endogenous CNS myelination, although ELISA data 

demonstrated that purified OECs grown in isolation were a source of the pro-

myelinating factor, CNTF, at comparable levels to SCs. It could be hypothesised 

that the interactions between OECs and endogenous CNS glia and neurons could 

cause them to up-regulate their expression of CNTF, thus enhancing myelination. 

Similarly, there may be several other pro-myelinating factors, which could be up 

or down-regulated in OECs in response to their exposure to endogenous CNS 

cells. For example, brain-derived neurotrophic factor (BDNF) has been shown to 

be expressed by OECs in vitro (Woodhall et al., 2001; Lipson et al., 2003; 

Pastrana et al., 2007) and throughout the olfactory system, where it is thought 

to support neurogenesis (Jones et al., 2007). Furthermore, in cuprizone models 

of demyelination whereby BDNF had been knocked down, there was a reduction 

in the NG2+ve progenitor population and deficits in the extent of remyelination in 

the corpus callosum (VonDran et al., 2011). In the context of SCI, McTigue et al., 
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(1998) also demonstrated that the transplantation of fibroblasts engineered to 

express BDNF into the contused rat spinal cord resulted in a significant increase 

in the number of regenerating fibres present within the graft, as well as 

increased MBP expression, suggesting enhanced remyelination. Taken together, 

this data could partially explain how OECs, as a source of BDNF, are able to 

promote neurite outgrowth in vivo and to enhance oligodendrocyte myelination 

in vitro by aiding the initial expansion of OPCs. This hypothesis could also 

correlate with my observation that concentrated OCM resulted in an over-

confluency of the myelinating cultures, causing them to “slough off”; an effect 

which could be mediated by the presence of potent mitogens (such as BDNF) in 

OCM (Chapter 4). An interesting future study could be to directly compare the 

transcriptomes of OECs grown in isolation with those grown under the influence 

of CNS cells using a microarray to detect any differences in expression at the 

gene level, which could later be confirmed using ELISA, Western blotting or 

immunocytochemistry. Data generated from this kind of investigation could 

provide novel evidence to support the view that the ability of OECs to promote 

CNS repair could be modulated by their interactions with the cellular 

environment at the injury site. 

8.1.2 The SC-Induced Inhibition of CNS Myelination is Mediated 
via the Expression of CTGF 

Biological comparisons between purified OECs and SCs suggested that whilst both 

cell types secreted comparable levels of the pro-myelinating factor, CNTF, SCs 

expressed significantly higher levels of CTGF mRNA and protein than OECs 

(Chapter 5). Furthermore, I have demonstrated that the neutralisation of CTGF 

in SCM restored the level of myelination (Chapter 5). A previous study by Stritt 

et al., (2009) reported that CTGF negatively regulated oligodendrocyte 

myelination in vitro and in vivo; an effect that they postulated to be mediated 

via the sequestering of insulin, which is known to enhance oligodendrocyte 

maturation and myelination (Brunner et al., 1989; Ye et al., 2002; Zeger et al., 

2007), by CTGF. However, my thesis also provided novel evidence to suggest 

that CTGF signalling may be more complicated than originally thought, given 

that the use of a CTGF peptide lacking an IGF binding domain still resulted in a 

reduction in oligodendrocyte myelination in vitro (Chapter 5). Experiments from 

this thesis on purified OPCs have shown that CTGF can act directly upon 
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oligodendroglial cells to inhibit their antigenic and morphological maturation in 

vitro. Furthermore, preliminary data has also suggested that astrocytes may be 

involved in this process, via the secretion of secondary factors which negatively 

regulate myelination, such as BMP4 (Chapter 6); or potentially via the down-

regulation of pro-myelinating factors. As discussed in Chapter 6, BMP4 is known 

to negatively affect oligodendrocyte differentiation and myelination (Huang et 

al., 2004; Meulemans et al., 2004; Ara et al., 2008; Sabo et al., 2011) and has 

also been reported to be up-regulated by reactive astrocytes in a contusion 

model of SCI (Wang et al., 2011). It has been suggested that BMP4 could exert its 

effects on myelination by inducing the down-regulation of the transcription 

factors, Olig 1 and Olig2, which are required for oligodendrocyte differentiation 

(Lu et al., 2000; Zhou et al., 2000; Cheng et al., 2007). Thus, the possible 

mechanisms by which CTGF could negatively regulate endogenous CNS 

myelination are likely to be highly complicated and may involve multiple 

overlapping pathways, as summarised in Figure 8.1. 

Future work could focus on directly comparing the properties of untreated 

astrocytes, LPS-induced reactive astrocytes and SCM/CTGF-treated astrocytes, 

perhaps using a microarray or chemokine/ cytokine arrays, in order to identify 

other possible mediators which may be involved in the SC/CTGF induced 

inhibition of oligodendrocyte myelination. For example, CXCL10 has been 

reported to be up-regulated in vitro in astrocytes which do not support 

myelination; whilst neutralisation of this factor restored the level of myelination 

to control values (Nash et al., 2011). Similarly, CXCL12, which has been shown to 

stimulate MBP production and to enhance oligodendrogliogenesis in vitro, has 

been demonstrated to be activated by astrocytes in cuprizone models of 

demyelination in the corpus callosum (Patel et al., 2012). The increased 

expression of this cytokine was reported to induce OPC proliferation and to aid 

remyelination in acute lesions. Conversely, remyelinative failure in this 

particular disease model correlated with the down-regulation of CXCL12 in 

astrocytes. Therefore, CTGF could induce multiple changes in the secretory 

profile of astrocytes, which could impact negatively upon oligodendrocyte 

myelination. However, the preliminary data from this thesis relating to the 

indirect role of astrocytes in the CTGF inhibition of myelination must initially be 

repeated in order to demonstrate statistical significance before any further 
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conclusions can be drawn from these experiments. Thereafter, a neutralising 

antibody to BMP-4 could be used to treat myelinating cultures where the 

astrocyte substrate had been pre-conditioned with SCM or CTGF prior to its use 

as a monolayer. If myelination was restored in these cultures, provided that the 

addition of the antibody alone to control cultures had no significant effect, this 

data could suggest that SC-secreted CTGF can reduce the myelinating capability 

of oligodendrocytes by inducing the up-regulation of BMP-4 in astrocytes.  
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Figure 8.1 – Schematic of hypothesised signalling mechanisms of CTGF. Evidence 
from this thesis has shown that SC conditioned media (SCM), which contains 
CTGF, and/or CTGF alone significantly reduced the differentiation of purified 
OPCs in culture. Based upon the literature, this direct inhibition of 
oligodendrocyte maturation could be due to the sequestering of vital pro-
myelinating factors by CTGF, or via the CTGF-induced down-regulation of MMP9 
in oligodendroglial cells, which is known to mediate aspects of process 
extension. SC-secreted CTGF (and other possible factors) could also affect 
myelination indirectly, by enhancing astrocyte reactivity. Reactive astrocytes 
could then increase their expression of negative mediators of myelination, such 
as BMP4, which may induce the down-regulation of vital transcriptional factors 
in oligodendrocytes, namely Olig1 and Olig2. BMP4 could also negatively affect 
myelination via unknown mechanisms, which may not necessarily directly block 
the differentiation of oligodendrocytes. Furthermore, previous studies have 
shown that reactive astrocytes are also a source of CTGF after injury, which 
could exacerbate the SC-induced block on oligodendrocyte differentiation by 
enhancing the bioavailability of CTGF at the lesion site. Due to the highly 
complex nature of the CTGF molecule, it is possible that CTGF affects 
myelination through multiple pathways. Furthermore, its signalling mechanisms 
are also likely to involve several unknown mediators of glial and neuronal cell 
behaviour, culminating in this reduction in oligodendrocyte myelination.  
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8.1.3 A Biodegradable Poly- ε-caprolactone (PCL) Scaffold 
Supports a Complex CNS System of Neurons and Glia 

In the interest of providing novel evidence towards the development of a 

combinatorial repair strategy for the treatment of SCI, data from this thesis has 

also shown that from a range of biomaterials tested, PCL was the best substrate 

for supporting myelination in vitro, to a level which was comparable to that 

obtained on glass coverslips (Chapter 7). Furthermore, micro-patterned PCL was 

shown to support the survival of OECs and astrocytes in culture, and to induce 

their alignment in response to topography. Given that it has also been shown to 

be biodegradable and well-tolerated in vivo (Woodward et al., 1985; Darney et 

al., 1989; Kweon et al., 2003; Tay et al., 2007 a,b), this data could suggest the 

suitability of PCL for fabricating an implantable cell-seeded device, which could 

enhance the directed outgrowth of neurites, perhaps promoting their successful 

exit from the graft. Further work would be required to modify this scaffold 

design for use in long-term cultures in order to overcome the loss of cellular 

alignment, which occurs with increased cell density. In addition, PCL scaffolds 

can be fabricated into 3D structures containing pores to aid diffusion throughout 

its structure; however, this design may need to be modified for in vivo use to 

ensure the successful implantation of such a structure into a more complex 

injury model, such as a contusion lesion (Seunarine et al., 2006; Sun et al., 

2011). 

8.2 Correlation of Findings In Vivo 

Whilst Stritt & colleagues (2009) demonstrated that adenovirus-mediated 

administration of CTGF into the corpus callosum of mice significantly reduced 

oligodendrocyte differentiation and myelination, relatively little is known about 

the expression of CTGF in the CNS and the possible role that it may play in both 

normal development and disease pathology. Heuer et al., (2003) demonstrated 

the increased expression of CTGF mRNA associated with neurons in layer VII of 

the adult mouse cortex, whereas the expression of CTGF was reported to be 

moderate in the forebrain and in the nucleus of the olfactory tract. Similar 

expression patterns were observed in embryonic mice from approximately E16. 

Interestingly, these researchers did not report any findings of CTGF expression in 
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non-neuronal cells within the CNS. Furthermore, these researchers reported that 

cerebral trauma did not result in increased CTGF expression, despite the 

presence of extensive gliosis (Heuer et al., 2003). However, these findings are at 

odds with a previous report from Spliet et al., (2003), who showed that CTGF 

was significantly up-regulated by reactive astrocytes in the ventral horn and 

white matter, and to a lesser extent in motor neurons, in post-mortem tissue 

derived from patients suffering from amyotrophic lateral sclerosis (ALS). Schwab 

et al., (2000, 2001) also demonstrated the up-regulation of CTGF associated with 

reactive astrocytes in human patients after cerebral infarction using 

immunohistochemistry (as discussed in Chapter 6). Furthermore, in the context 

of SCI, Conrad et al., (2005) reported the increased expression of CTGF in 

reactive astrocytes, fibroblasts and endothelial cells associated with blood 

vessels following a dorsal column lesion in rats. In the aforementioned study, the 

expression of CTGF was prominent in the acute stages of pathology, suggesting 

that the ability of CTGF to induce collagen deposition and to modulate the ECM 

may be fundamental in glial scar formation (Frazier et al., 1996; Grotendorst, 

1997; Dammeier et al., 1998; Lasky et al., 1998; Mori et al., 1999; Blom et al., 

2001; Stratton et al., 2001).  

However, the findings from this thesis that SCs are also a source of CTGF in vitro 

are novel and may provide interesting insights into the mechanisms driving SC-

induced astrogliosis. Whilst heparin sulphates, FGF9 and N-cadherin have 

previously been implicated in SC/astrocyte boundary formation (Fairless et al., 

2005; Santos-Silva et al., 2007; Higginson et al., 2012), SC-secreted CTGF could 

also be an important mediator in this process. Furthermore, by inducing 

astrocyte reactivity, SCs could actually drive the secretion of CTGF by 

astrocytes, thus exacerbating the non-permissive environment arising after CNS 

injury via autocrine and paracrine signaling. This could be demonstrated to some 

extent using RT-qPCR and ELISA to determine any differences in CTGF expression 

in untreated astrocytes compared with SC/ CTGF pre-treated astrocytes. 

It is more difficult to correlate my findings with relevant in vivo data with an 

emphasis on oligodendrocyte myelination, since the majority of OEC or SC 

transplantation studies focus on reporting the ability of these exogenously added 
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cells to myelinate, as apposed to the ways in which the myelinating capability of 

oligodendrocytes may be affected. As discussed extensively throughout this 

thesis, early work has suggested that SC remyelination overtakes endogenous 

remyelination in the CNS in toxin-induced models of demyelination, and that 

both central and peripherally myelinating glia are predominantly segregated by 

the presence of astrocytic end-feet (Blakemore, 1975; Blakemore & Patterson., 

1975; Sims & Gilmore, 1983).Whilst this in no way proves that SCs are inhibitory 

to oligodendrocyte myelination in vivo, via the secretion of CTGF or other 

factors, it may suggest an interesting correlation which requires further 

investigation. However, work carried out in the lab of Prof Edgar Meinl by 

graduate student Hema Mohan in 2010 reported the up-regulation of CTGF mRNA 

in remyelinated lesions, active demyelinating lesions and in chronic inactive 

lesions in tissue obtained from MS patients (http://edoc.ub.uni-

muenchen.de/12467/2/Mohan_Hema.pdf). Although these findings were not 

expanded upon or demonstrated at the protein level, the biggest increase in 

CTGF expression compared to healthy white matter was observed in chronic 

lesions, whereby remyelination by oligodendrocytes had ceased. It was unclear 

from this study which cells were expressing CTGF; however similar up-

regulations were also noted in TGF-β, FGF5 and NT4/5, suggesting that whilst 

CTGF could potentially play a role in the remyelinative failure of the CNS by 

endogenous glia, other factors are likely to be involved. 

8.3 Implications for Cell Transplant-Mediated Repai r of 
the CNS 

Data from this thesis, along with previous observations in the literature, could 

suggest that the transplantation of SCs into a spinal cord lesion may inhibit the 

myelinating capacity of oligodendrocytes, in addition to exacerbating glial scar 

formation. Although transplanted SCs have been shown to myelinate CNS axons 

in peripheral myelin in injury models (Gilmore 1971; Blakemore, 1975; Felts & 

Smith, 1992; Honmou et al., 1996; Baron-Van Evercooren et al., 1997; Pearse et 

al., 2005; Black et al., 2006), it is unclear what the long-term implications would 

be of ensheathing CNS axons in a myelin coating which has fundamental 

differences in its composition. Thus, these observations could be interpreted as 

suggesting that OECs may be a more suitable candidate for cell-mediated repair 
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strategies, given their ability to support neurite outgrowth (Ramon-Cueto et al., 

2000; Lu et al., 2002; Li et al., 2003), to remyelinate CNS axons in vivo (Franklin 

et al., 1996; Barnett et al., 2000; Sasaki et al. 2004; Lankford et al., 2008) and 

to enhance endogenous myelination in vitro (Chapter 4). However, my 

preliminary findings that the exogenous addition of both OECs and SCs resulted 

in increased endogenous myelination, above the level of controls, could suggest 

that cell-transplantation therapies combining both cell types could be more 

effective in the treatment of SCI (Chapter 4). The synergistic effects of OECs and 

SCs combined in transplantation studies have also been touched upon by other 

groups, in that OECs are thought to secrete SPARC, which is said to enhance the 

growth promoting abilities of SCs (Au et al., 2007; Cao et al., 2007; You et al., 

2011). However, it has also been shown that CM from SCs causes OECs to form 

boundaries with astrocytes in vitro (Santos-Silva et al., 2007; Higginson et al., 

2012). Therefore, this undesirable effect could also be induced in vivo following 

the transplantation of both cell types. 

Donor age could also be an important consideration for maximising the 

effectiveness of SC-mediated transplants, as discussed in section 1.5.2.2. Toma 

et al., (2001) demonstrated that skin-derived precursor cells (SKPs) could be 

cultured from human scalp tissue and maintained in culture for up to 50 

passages. In addition, these progenitor cells could give rise to neural-crest 

derivatives, including SCs, though it has been suggested that protocols need to 

be refined in order to generate sufficient numbers of adult SKPs for 

transplantation (Biernaskie et al., 2006). Furthermore, the transplantation of SC 

precursors (SCPs) derived from embryonic rat nerves resulted in their 

differentiation into myelinating SCs, which displayed enhanced survivability and 

integration with host astrocytes, compared to transplanted differentiated SCs in 

EB demyelinating lesions (Woodhoo et al., 2007). In addition, transplanted SCPs 

were reported to increase neurite outgrowth, as well as reducing glial scar 

formation and the expression of CSPGs at the lesion site, compared with non-

transplanted controls, in contusion and dorsal column crush injury models 

(Biernaskie et al., 2007; Agudo et al., 2008). Given that they do not appear to 

induce astrogliosis, it would be interesting to investigate whether or not SCPs 

differ from SCs in their ability to alter the myelinating potential of 

oligodendrocytes. If so, then SCPs could also be a very suitable choice of 
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candidate for autologous cell-mediated repair of the damaged CNS. Similarly, 

transplanted boundary cap cells show enhanced potential to produce more 

migratory SCs post-transplantation, thus potentially alleviating the problems 

associated with poor SC graft/host integration (Zujovic et al., 2007). Induced 

pluripotent stem cells derived from human fibroblasts are also an interesting 

candidate for CNS repair given the non-invasive means by which these cells can 

be generated for autologous transplantation, in addition to their ability to 

produce CNS derivatives with no undesirable effects post-transplantation (Wang 

et al., 2013). 

8.4 Critical Analysis of Findings 

One possible criticism of the body of work carried out for this thesis may be that 

it was solely carried out in vitro. Whilst in vivo clarification would be necessary 

for the formation of clinically relevant conclusions, in vitro work can provide 

valuable information which often translates in vivo. In the context of this thesis 

in particular, the mechanisms of SC/astrocyte boundary formation and reactive 

gliosis was originally described in vitro (Lakatos et al., 2000) before being 

confirmed in vivo (Plant et al., 2001; Lakatos et al., 2003). Similarly, Stritt et 

al., (2009) firstly demonstrated the ability of CTGF to inhibit oligodendrocyte 

maturation and myelin formation in culture before validating these findings in 

the corpus callosum. A further criticism could be that the culture system used 

throughout this thesis demonstrated the effects of exogenous glia on CNS 

myelination, as opposed to remyelination. I have discussed in Chapter 1 that 

remyelination, as occurs to some extent in the adult CNS following disease or 

injury, is carried out by adult NG2+ve glia, which are distinct from the immature 

OPCs giving rise to myelinating oligodendrocytes developmentally (ffrench-

Constant & Raff, 1986; Wolswijk & Noble, 1989; Keirstead & Blakemore, 1997; 

Reynolds et al., 1997; Butt et al., 1999; Dawson et al., 2003). Although the 

precise mechanisms governing remyelination are unclear, adult NG2 glia are 

thought to respond to similar factors as OPCs, such as FGF, PDGF and IGFs, 

though they are less mitogenically responsive than neonatal OPCs and divide 

more slowly (Wolswijk & Noble, 1992; Engel & Wolswijk, 1996; Shi et al., 1998). 

Thus, it is conceivable that adult NG2 progenitors could respond in a similar 
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fashion to immature OPCs following exposure to CTGF, though this suggestion is 

merely speculative and would require appropriate experimental validation. 

It could also be critiqued that the focus of this thesis lies predominantly with a 

single factor, CTGF. Whilst I have shown that the antibody-mediated 

neutralisation of this factor in SCM reversed the inhibition of oligodendrocyte 

myelination in vitro, it is highly possible that several other factors play a role in 

modulating this important aspect of SC behaviour. This is particularly evident 

when considering the data from my CTGF neutralising experiments (Chapter 5), 

which showed that there was a trend for increased myelination above the level 

of control when the effects of CTGF were ablated, thus suggesting the presence 

of less dominant pro-myelinating factors in SCM. For example, SCs have been 

shown to express IGFs and LIF (Meir et al., 1999; Tofaris et al., 2002; Feng et 

al., 2010), which are both said to promote oligodendrocyte maturation (Brunner 

et al., 1989; Mayer et al., 1994; Goodard et al., 1999). As previously discussed, 

the mechanisms by which SCs induce astrocyte reactivity, thus indirectly 

reducing myelination, may be multi-factorial (Fairless et al., 2005; Santos-Silva 

et al., 2007; Higginson et al., 2012). 

8.5 Future Perspectives 

In addition to those experiments indicated throughout this discussion, there are 

a number of other studies which could be carried out in order to further this 

research and to provide evidence of its clinical relevance. Firstly, whilst I have 

reported the expression of CTGF in SCs in culture, it would be interesting to 

investigate the presence of CTGF in the sciatic nerve, particularly during 

Wallerian degeneration and the subsequent repair of peripheral nerves. Also, I 

have shown that OB-OECs enhance endogenous oligodendrocyte myelination; 

however it would be worthwhile demonstrating the reproducibility of this 

phenomenon using LP-OECs, given that LP-OECs are relatively more easily 

accessible from the dorsal nasal cavity, perhaps making them a more attractive 

candidate for autologous transplantation. Most importantly, it would be 

necessary to confirm these findings in vivo by investigating the response of 

endogenous oligodendrocytes to transplanted OECs and SCs in both SCI models 
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and demyelinating lesions. Homozygous CTGF null mice die perinatally due to 

skeletal dysplasia (Baguma-Nibasheka & Kaplar, 2008; Doherty et al., 2010). 

However, in order to prove definitively that SC-secreted CTGF is an important 

mediator of the inhibition of oligodendrocyte maturation in vivo, SCs from 

transgenic mice whereby CTGF was conditionally knocked down only in SCs could 

be transplanted into the damaged CNS and the resulting effects on endogenous 

remyelination and astrogliosis could be studied.  

Furthermore, whilst this thesis has provided novel evidence to suggest that the 

differential expression of CTGF in OECs and SCs correlates with fundamental 

differences in their behaviour, a more comprehensive analysis should be carried 

out in order to identify other factors which could be involved in the OEC-

mediated enhancement of oligodendrocyte myelination, as well as those which 

could induce the SC-inhibition of this process. Once these factors had been 

identified and validated at the protein level, they could be added as exogenous 

peptides to an appropriate assay, such as the myelinating culture system, to 

determine their effects on oligodendrocyte behaviour. A study of this kind could 

also highlight interesting differences in the secretory profile of OECs and SCs, 

which may regulate important aspects of their behaviour unrelated to their 

effects on endogenous CNS myelination.  

Ultimately, immunohistochemistry of human tissue derived from the lesioned 

spinal cord or from MS patients, as discussed previously, for the expression of 

factors like CTGF, could help to build a profile relating to its potential role in 

pathological processes such as scar formation and remyelinative failure in the 

CNS. Such evidence could support the view that SCs, as a source of CTGF in 

vitro, may not be the most suitable candidate for the cellular repair of the CNS.  
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8.6 Closing Remarks 

This thesis aimed to provide novel evidence to identify key differences in SC and 

OEC behaviour, which could be clinically relevant in a transplant scenario. In 

addition to meeting the aims of this thesis, my findings could also provide a 

useful contribution to the field of cell-transplantation by highlighting the ways 

that OECs and SCs differ in their interactions with endogenous CNS glia, and the 

effects that this could have on endogenous remyelination. Therefore, these 

observations may be an important consideration for selecting the most 

appropriate cell candidate to promote the competent long-term functional 

repair of the damaged spinal cord. In combination with my other findings, I 

would propose that an OEC-seeded PCL scaffold, as opposed to a scaffold seeded 

with differentiated SCs, could be more clinically beneficial for the treatment of 

SCI and less likely to induce negative host responses, such as exacerbated 

astrogliosis and the inhibition of endogenous oligodendrocyte maturation and 

myelin formation. 
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