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Summary 

A large part of the work described in this thesis is concerned with a theoretical 

characterisation of Magnetic Force Microscope (MFM) tip stray fields. The remainder 

of the thesis is concerned with a theoretical investigation of the accuracy of a 

practical method for characterising the MFM tip field - i. e. the electron tomography 

reconstruction method. 
The thesis begins with a brief discussion of the fundamentals of 

ferromagnetism and the importance of being able to determine the magnetic structure 

of a material. 
The second chapter considers several different methods which have been 

developed for determining the magnetic configuration of a material and particular 

attention is given to Differential Phase Contrast (DPQ Lorentz microscopy (this 

technique is the basis for three dimensional reconstruction of a MFM tip stray field 

using electron beam tomography) and Magnetic Force Microscopy. In the case of the 

latter a discussion of the need to characterise, the MFM tip field is given. 

The fundamental principles and the application of electron beam tomography 

for the investigation of MFM tip fields are discussed in Chapter 3. Two 

reconstruction algorithms - the Algebraic Reconstruction Technique (ART) and the 

Radon Transform Method (RTM) - are considered. The latter reconstruction 

technique is considered in more detail since it is used predominately in this thesis. 

The acquisition of the experimental data sets for tornographic reconstruction is also 

described in this chapter. 

In Chapter 4a theoretical investigation of the effect on the tip stray field of 

varying several physical tip characteristics is carried out. A tip model is constructed 

and its shape, height and the thickness of the film coating are all varied and the 

resulting tip stray field and line scan deflection data sets are investigated. A 

comparison of the deflection data generated by the tip model and that generated by a 

practical MFM tip is also carried out. It is found that the simulated deflection data 

from the tip model compared favourably with the experimental deflection data; 
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however there is found to be a contribution to the experimental deflection data sets 
for which the tip model does not account. Nonetheless, comparison of the 

experimental and simulated deflection data gave encouragement to extend the 

modelling to the cantilever and substrate portions of the tip assembly. 
In Chapter 5 the deflection data sets generated by a practical MFM tip 

magnetised in two separate cases is considered. Tip, cantilever and substrate models 

were constructed for each case and the simulated deflection data was found to 

compare favourably with the deflection data generated by the practical tip assembly. 
A theoretical investigation into the character of the stray field from the cantilever and 

substrate portions of the tip assembly is undertaken and the conclusion is that the 

magnitude of the stray field from the cantilever and substrate is small in the vicinity 

of the tip but is spread over a large distance and as a result contributes greatly to the 
deflection data generated by the MFM tip assembly. 

In Chapter 6, a theoretical investigation of the effect on the accuracy of the 

RTM reconstructed stray field that the cantilever and substrate contribution to the 

MFM tip assembly's deflection data set is undertaken. it is found that although the 

RTM reconstruction method can produce a relatively accurate representation of the 
MFM tip field, the cantilever and substrate contribution does reduce the accuracy of 
the reconstructed tip field. Two separate methods for reducing the error in the 

reconstructed tip field are considered. It is found that these methods produce very 

accurate representations of the tip field even when the exact cantilever and substrate 

contribution is not known. The accuracy of the tip assembly's stray field 

reconstructed using the ART is also considered and it is found that ART does not 

produce as accurate a representation of the MFM tip field as is obtained using RTM. 

The effect of the electron probe size and the manual alignment of the deflection line 

scans on the accuracy of the reconstructed stray field are also investigated. 

In Chapter 7 two more MIFM tips of a distinct physical character are modelled 

and their stray fields and deflection data sets are investigated. 

Conclusions and suggestions for further work are given in Chapter 8. 
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Chapter 1 

Ferromagnetism and Magnetic Materials 

1.1 Ferromagnetism 

A ferromagnetic material is one which possesses a spontaneous non-zero net 

magnetic moment below a well defined temperature called the Curie Temperature 

(Tc). Each atom of a ferromagnetic material has associated with it a magnetic dipole 

moment. This predominately arises from the spin of the unpaired electrons in the 3d 

or 4f shells - the orbital angular moment having been effectively quenched. Above 

the Curie Temperature the atomic magnetic moments of the material are randomly 

oriented due to thermal effects. 
The alignment of the magnetic moments in a ferromagnetic material was 

suggested by Weiss [1)[21 to be due to a molecular field (proportional to the 

magnetisation of the system) within the material. However, Weiss assumed that the 

atomic moments were localised on the atomic cores and thus his work is strictly only 

correct for materials such as in the lanthanide series, since the 4f electrons which 
determine the magnetic properties are tightly bound to the nuclei. 

The molecular field was ultimately explained by Heisenberg [31 who proposed 

a quantum mechanical interaction called the exchange interaction which acts 
between each atom and its nearest neighbours. The Pauli exclusion principle shows 
that the wavefunction describing a quantum mechanical system comprising electrons 
must be antisymmetric. The exchange energy between two individual particles due to 
the interaction of their spins S. '. and ý,, - is given by, 
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-J(rij)Si - Sj 1) 

where rij is the separation of the moments, and J(r) is the exchange integral which is 

positive for ferromapetic materials. The equation implies that the minimum energy 

state is when the atomic magnetic moments lie parallel to each other. 

1.2 Energy Considerations 

The magnetisation of a magnetic material will always seek to settle in a way that 

minimises the energy of the system [41 
. The total energy E,,,,, is made up from several 

contributing energies, 

Elo, =Eex+E.,, +Em+Ez (1.2) 

where E,,, is the exchange energy, E,. is the anisotropy energy, E. is the 

mapetostatic energy and E, is the Zeeman energy. These individual energy 

contributions are considered in the following sections. 

1.2.1 Exchange Energy 

The exchange energy of a magnetic material is due to the relative orientations of 

neighbouring magnetic dipoles. For a cubic structure, 

Af [(V 
a)' + (v, 6)' + (v r)'Pv 

v 

where a, A and y are the direction cosines of the magnetisatiOn vector (with respect 

to the crystal axes) and A is the exchange constant of the material given by, 
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nis 

a 
(1.4) 

In this equation a is the lattice constant of the material, n is a constant depending on 

the crystalline structure (n=l for simple cubic, 2 for body centred cubic and 4 for 

face centred cubic), J is the exchange integral and S is the magnitude of the spin of 

the magnetic moment. Thus, the exchange energy is a minimum when the spins of 

the material are parallel. This results in the material displaying a non-zero 

magnetisation. 

1.2.2 An6otropy Energy 

A magnetic material is considered to be anisotropic if the magnetisation of the 

material settles in a preferred direction in a zero field. This preferred direction is 

often called the 'easy axis' and is due to the crystalline nature of the material. 
Deviations of the material's magnetisation from an easy axis direction results in an 
increase of the anisotropy energy. 

For a cubic single crystal the anisotropy energy is well defined by the first 

two tenns of a series expansion. 

Ean f [KI(a 2J62 + #2 r2+Y2a 2) +K2a2,62r2ýV (1.5) 
v 

where K, and K2 are the anisotropy constants of the material which are dependant on 

temperature. For hexagonal or uniaxial crystals the anisotropy energy is given by, 

E, ul 
f [Ki(l 

- r2) + K2(1 _; y2)2pV (1.6) 
v 

where K, and K2 are again constants. The minimum anisotropy energy occurs when 

the magnetisation is directed along a preferred easy axis. 

3 



1.2.3 Magnetostatic Energy 

A uniformly magnetised magnetic material generates a large amount of magnetic 
poles on its surfaces. Magnetic poles are also generated inside the material where 
there is a divergent component of magnetisation. Such magnetic poles generate stray 
fields external and internal to the magnetic material. The field is often referred to as 
the dernagnetising field Hd, and is given by, 

Iv MY I M-n 
Hd =-f-v* LL dV+-f ý ýdS 4; r v r2 47r sr2 

where r is the position vector of the point in space at which the field is evaluated, 

and n is the outward pointing unit vector normal to the surface. Note that V-M is 

equivalent to the magnetic volume charge and M-n is equivalent to the magnetic 

surface charge. The subsequent energy contribution from the demagnetising field is, 

E,. =-I pof M- HddV 
2v (1.8) 

where go is the permeability of free space. The magnetostatic energy is very much 
dependent on the geometry of the sample. This energy is a minimum when the 

material forms a closed domain structure with no magnetic poles on the surface. 

1.2.4 Zeeman Energy 

The Zeeman energy arises from the interaction of a magnetic material with an 

external field and is given by, 

Ez -Nf M- HdV 
v 

(1.9) 
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where H is the applied field. In the minimum energy state the magnetic moments 

align along the direction of the applied field. 

Thus the magnetisation of a magnetic material will seek to settle in a way that 

minimises a combination of all the potential energy contributions described here. 

1.3 Domains and Domain Walls in Ferromagnetic Thin Films 

Ferromagnets are found to possess a spontaneous net magnetic moment below a well 
defined temperature called the Curie Temperature. To explain this Weiss [1)[21 

suggested the existence of magnetic domains in ferromagnets, in which the atomic 

magnetic moments were aligned parallel over a much larger volume of solid than had 

previously been expected. This was indirectly confirmed by the Barkhausen 151 effect 

in which the reorientation of domains caused discrete changes in the magnetic 
induction of a ferromagnet. Several years later Bitte r[61 directly confirmed the 

existence of domains from observations of patterns on the surfaces of ferromagnetic 

materials using a very fine magnetic powder suspended in a carrier fluid which was 

spread on the surface of the material . 
The boundaries between domains are known as domain walls. A domain wall 

is therefore a region of the material where the orientation of the magnetisation rotates 
from one domain to the orientation of the magnetisation in a neighbouring domain. 

The total angular displacement across a domain wall is often 900 or 180"- 

particularly in cubic materials as the cubic anisotropy ensures that directions at right 

angles to the magnetisation in a given domain are also magnetically easy axes. 
Domain walls are often found to be 10 to 100nm wide. There are various types of 
domain wall and the type which occurs is dependent on the specimen thickness. One 

dimensional diagrams of the 180' Bloch Wall[71,1800 Neel wallf8J and the 1800 cross- 
tie wall are illustrated in fig. 1.1. 
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Fig. LI: Diagram illustrating the in-plane view of the magnetisation of a thin film. 
(a) 180'Bloch wall, 
(b) 180'Neel wall, 
(c) 180'cross-tie wall. 
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In a Bloch wall (in fig. I. I(a)) the magnetisation of the ferromagnetic specimen 

rotates out of the plane of the thin film specimen. As the specimen thickness reduces 

a Neel wall can form (see fig. 1.1(b)) in which the magnetisation of the specimen 

rotates in the plane of the film. A cross-tie wall (see fig. 1.1(c)) is a combination of 

the Bloch and Neel walls in that the magnetisation vector rotates both in and out of 

the plane of the thin film specimen. 

1.4 Scope of this Thesis 

In this chapter we have discussed the origin of fen-omagnetism in a magnetic 

material. We have also discussed the total energy of a magnetic system and the fact 

that a magnetic material will always seek to settle in a configuration which 

minimises the total energy of the system. This minimisation of the total energy gives 

rise to regions of uniform magnetisation known as domains which arr, surrounded by 

domain walls. 
The specific domain structure of a magnetic material provides important 

information on the magnetic properties of the material. Knowledge of the domain 

structure is therefore vital for the study of materials such as magnetic recording 

media. Many techniques exist for the determination of magnetic domain structure 

and we will discuss several of these in Chapter 2. We will take a specific interest in 

magnetic force microscopy. 
A magnetic force microscope (MFM) is essentially a ferromagnetic tip 

scanned over a magnetic specimen. The tip-specimen interaction force is monitored 

and is used to generate the NIFM image. For quantitative information on the 

specimen magnetisation from the NfFM image we require to deconvolve the tip stray 
field from the image. To do this we must have a quantitative measure of the tip stray 
field. The desire to quantitatively characterise the MFM tip field is the principal 

concern of this thesis. In Chapter 3a practical technique for imaging the field from 

the ferromagnetic tip - called electron beam tomography - is discussed. 
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The main aims of this thesis are 1) to determine which physical 

characteristics of a MFM tip are the most important for defining the character of the 

tip stray field, 2) to determine the character of the stray field generated by the tip's 

associated structure, and 3) to determine the affect that the associated tip structure 
has on the tomographically reconstructed tip stray field. 

In Chapter 4 we discuss the construction of a model for a ferromagnetic 

MJFM tip. Several models are constructed and are used for a theoretical investigation 

into the character of the tip stray field. Following this in Chapter 5 we conduct a 
theoretical investigation into the character of the stray field generated by the tip's 

associated structure. Theoretical models constructed in Chapter 5 are then used in 

Chapter 6 to investigate the effect that the associated tip structure has on the 

tomographically reconstructed tip stray field. Comparisons between experimental 

and simulated reconstructed tip fields are also carried out. These allow us to 

comment with some authority on the accuracy (or otherwise) of the experimental 

reconstructed tip fields. Finally in Chapter 7 we conduct a theoretical investigation of 

the character of the field from two further ferromagnetic tips. 
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Chapter 2 

Magnetic Imaging Techniques 

2.1 Introduction 

As stated in Chapter 1, the specific domain structure of a magnetic material provides 
important information on the magnetic properties of the material. Thus any technique 

which provides a quantitative measure of a material's domain structure is of great 

use and we consider several such techniques in this chapter. We begin by briefly 

considering optical techniques in Section 2.2. Following this we consider both 

electron techniques (in Section 2.3) and then Magnetic Force Microscopy (MFM) in 

more detail since these techniques are fundamental to this thesis. 

2.2 Optical Techniques for Magnetic Imaging 

2.2.1 The Bifter Technique 

One of the simplest techniques developed for the observation of magnetic domains 

was first demonstrated by BitteP. Ms technique involves the use of a very fine 

magnetic powder suspended in a carrier liquid which is spread on the surface of the 

material under investigation. The fine magnetic particles of the Powder accumulate at 
regions on the material surface where the magnetic field gradient is greatest - this 
occurs where domain walls meet the material surface. The patterns formed in the fine 
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powder can be observed through an optical microscope. With modem ferrofluid 

preparations a resolution of better than approximately one micron is achievable. This 

technique is limited by the fact that it does not give any information about the 

domain wall structures or the direction of magnetisation within domains. 

2.2.2 Faraday and Kerr NUcroscopy 

Two further optical microscopy techniques make use of the Faraday and Keff 

effects [21 
. The Faraday effect manifests itself as the rotation of the plane of 

polarisation of light transmitted through a transparent medium in the presence of a 

magnetic field with component parallel to the direction of light propagation. The 
Kerr effect occurs when polarised light is reflected from the surface of a magnetic 

material and again results in a rotation of the polarisation of the light. Note that in 
both cases the rotation of the polarisation of the light is a linear function of the 

specimen's magnetisation. Investigations of the domain structures of magnetic 

samples using the Faraday effect is limited to thin transparent slices of a magnetic 

material. On the other hand the Keff effect can be used for imaging domain 

structures on the surfaces of any magnetic sample (provided the surface is smooth). 
We now consider electron techniques of magnetic imaging. 

2.3 Electron Techniques for Magnetic Imaging 

2.3.1 Lorentz Deflection of Moving Electrons 

Firstly we consider the important interaction between moving electrons and magnetic 
induction from a thin magnetic film [3) 

. Consider fig. 2.1 which shows a diagram of a 
thin magnetic film illuminated by a parallel beam of electrons. Note that the incident 
beam of electrons is perpendicular to the plane of the film. 

10 



0 H® 
// 

Fig. 2.1: Diagram showing the Lorentz deflection experienced by electrons passing 
through a magnetic thin film with a 180 'domain wall. 

Classically an electron moving with a velocity y in a magnetic induction B 

experiences a force F given by, 

F=evxB (2.1) 

This is known as the Lorentz force and results in the electrons deflecting from their 

original path through an angle given by, 

ß e. ý - 
ßL ý -, = li 

f B�(x, z)dz (2.2) 

where B., (x, z) is the y component of magnetic induction at point (x, z), e is the charge 

of an electron, A is the relativistically corrected electron wavelength and h is Plancks 

constant. In the special case that no stray field is escaping from the film and the film 

thickness t is constant, then equation (2.2) becomes, 

18L = 18, = 
eB I 

Al 
/I 

(2.3) 



where B, is the saturation induction of the film. Thus for a 50nm thick magnetic film 

with a saturation induction of 0.5T, electrons accelerated to 200keV will be deflected 

by 0.015mrad. This is significantly smaller than the first Bragg angle of a typical 

magnetic material which is of the order of 10mrads. 

Quantum mechanically, the interaction between moving electrons and the 

specimen was described by Aharonov and Bohm [41 
. They postulated that two 

electrons originating from the same point and travelling the same distance to another 

coincident point by different paths, have a phase difference which is proportional to 

the magnetic flux N enclosed by the two paths, see fig. 2.2. 

electron electrons 
source N 1,4Y rejoin 

Fig. 2.2: Diagram showing two electrons originating from the same point and 
rejoining at another point but travelling along different paths enclosing a magnetic 
flux N. 

The phase shift 0, is given by, 

27reN 
0= 

h 
(2.4) 

For a plane wave incident on a thin magnetic film (as in fig. 2.1) the phase shift 
between two electrons at points x, and x2 (on the x axis) is, 

x 4X2 2rei ý 
B, (x)dx -x')= h 

(2.5) 
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A magnetic film may therefore be considered to be a strong but slowly varying phase 

object, and Lorentz microscopy is in fact a technique for revealing phase contrast. 

2.3.2 Image Formation in a Conventional Transmission Electron 

Microscope (CTEM) 

Fig. 2.3 shows a diagram of the essential components of a CTEM. Situated at the top 

of the microscope is the electron gun which is the source of the electrons in a CTEM. 
The Phillips CM20 (Scanning) TEM at the University of Glasgow has a thermally 

assisted field emission electron gun (FEG). Here electrons are drawn from a sharp tip 
by an anode having a potential difference of approximately 4kV. A series of 
accelerator rings then raise the electron voltage to 200kV. The electrons then pass 
through two condenser lenses and the upper portion of the objective lens which 
control the position and the angular convergence of the electrons at the specimen. 
The lower objective lens is the image forming component and the intermediate 

lenses magnify and project the image onto the viewing screen. 

V FEG 

Condenser lens 1 

Condenser lens 2 

Upper Objective lens 
Specimen 
Lower Objective lens 

Intermediate lens 

Image plane 

Fig. 2.3: Diagram of the essential components of a CTEM. 
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If we assume that the electron source is very small and is situated far away from the 

specimen then we may take the incident electron waves as plane waves given by 

Vo(x, y) =e with k= 11A. On leaving the specimen the electron wave function 

becomes, 

Vfl 
(X9 

y) =f (x, Al. (x, y) (2.6) 

where ftx, y) is the specimen transmittance function and is equal to e'o("Y) where 
ýx, y) is the two dimensional extension of equation (2.5). 

At the diffraction plane the electron disturbance g(k.,, ky) is given by the 

Fourier Transform of the specimen's transmittance function, 

g(k,, ky)=FTff(x, y)l=fff(x, y)exp[-2)7i(kxx+kyy)ýxdy (2.7) 

The wave is then modified by the transfer function of the imaging system t(k,, ky) 

given by, 

#ý,, ky) = A(k.,, kjýýb (2.8) 

; dC 2+2 )2 

exp , 
A'(kx ky 

(2.9) 
2 

exp YdAzA(k2 +k2 (2.10) 1xy 

where A(kky) is the pupil function, which is equal to I within the objective aperture 

and 0 outside it, C, is the contribution from the spherical aberration of the objective 
lens, ýb is the contribution from the defocus, C, is the spherical aberration coefficient 
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and Az is the defocus. Note that for magnetic imaging the spherical aberration 

usually makes a negligible contribution to the final image [31 and therefore in equation 
(2.8) we can take 4ý =I- 

Thus the electron disturbance at the image plane T(xy) is the Fourier 

Transform of the modified electron disturbance at the diffraction plane, 

T(x, y) = FTfg(k,,, ky)t(kx, ky)l 

=ffg(k.,, k, )t(k.,, k, )exp[2ni(k., 
x+k, y)ýkxdky (2.11) 

The intensity of the image on the image plane I(xy) is given by the modulus squared 

of equation (2.11), 

I(X, Y) = 
IT(X, 

Yý2 (2.12) 

This details the formation of an image on the image plane. We know consider the 

Fresnel and Foucault modes for magnetic imaging in a CTEM. 

2.3.3 Fresnel mode of Lorentz Nficroscopy in a CTEM 
Fig. 2.4 shows a diagram describing the nature of the contrast obtained from the 

Fresnel mode of Lorentz microscopy. Note that the object plane is not coincident 

with the specimen plane (the objective lens is focused on a plane either above or 

below the specimen) thus phase changes are converted into intensity changes. 

Domain walls will therefore be observed as bright or dark lines due to a greater or 
lesser number of electrons in the defocus plane. Domains will be observed as a 

uniform background. Note that if the electron beam is sufficiently coherent then 

interference fringes will be observed in the bright bands representing domain walls. 
This is because of the interference between the overlapping wavefronts. 
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Intensity on upper plane 

Upper Plane 
-------------- ------ ---------------------------- -------- 

ower Plane 

Intensity on lower plane 

Fig. 2.4: Diagram of the Fresnel mode of Lorentz microscopy. Note that the object 
plane is either above or below the specimen thereby converting phase changes to 
intensity changes. 

Since the object plane is not coincident with the specimen plane then there is a non- 

zero defocus dz, thus in equation (2.8) ýi, is non zero. Also the objective aperture is 

generally not used in the Fresnel mode and we therefore take A(k", ky) in equation 
(2.8) to be effectively 1. Thus the electron disturbance at the image plane 'F(xy) is 

given by, 
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T(x, y) = FTJ g(kx, k, ); b 
(kx, ky)l (2.13) 

Recall from equation (2.12) that the electron intensity on the image plane is the 

modulus of equation (2.13) squared. 

The advantage of the Fresnel mode of Lorentz microscopy is that it is 

relatively easy to implement and gives high contrast images. However this mode 
does not provide any direct quantitative information on the mapetisation direction 

of domains and is therefore primarily used in the study of domain walls and domain 

geometry. 

2.3.4 Foucault mode of Lorentz AUcroscopy in a CTEM 

Fig. 2.5 shows a diagram illustrating the Foucault mode of Lorentz microscopy 
which is an in-focus imaging mode (unlike the Fresnel mode). For a specimen such 
as in fig. 2.5 (i. e. a thin film containing two domains with anti-parallel 
magnetisation) the zero order diffraction spot is split into two individual spots by the 
Lorentz deflections of the electrons passing through the specimen. An aperture in the 
back focal plane (the objective aperture) is used to hide one of the spots so that only 
electrons with a positive Lorentz deflection angle OL contribute to the final image 

observed on the image plane. This results in the domain with magnetisation out of 
the page in fig. 2.5 appearing bright and the domain with magnetisation into the page 
appearing dark on the image plane. 
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Fig. 2.5: Diagram of the Foucault mode of Lorentz microscopy. 

In equation (2.8) the pupil function A(k,, ky) will be non zero (since the objective 

aperture is used) and ý, =1 (since this is an in focus imaging mode and thus Az is 

zero). Thus the electron disturbance at the image plane is given by, 

T(x, y) = FTJ g(k., ky)A(k.,, ky)l (2.14) 

where the electron intensity at the image plane is given by equation (2.12). 

The Foucault mode of Lorentz microscopy is again relatively simple to 
implement and is a high contrast imaging mode. The advantage this mode has over 
the Fresnel mode of Lorentz microscopy is that not only does it give information on 
the geometry of the magnetic domains but also gives information on the direction of 
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the magnetisation in individual domains. However as with the Fresnel mode the 

Foucault mode does not provide quantitative information on the sample 

magnetisation. Nevertheless the Fresnel and Foucault modes of Lorentz microscopy 

complement each other and do allow an easy investigation of the magnetic properties 

of a thin film. 

2.3.5 Image Formation in a Scanning Transmission Electron Nficroscope 

(STEM) 

Fig. 2.6 shows a diagram illustrating the planes of interest for the operation of a 
STEM. 

exp(2; dkz) Condenser 
aperture plane t(kxky)exp(2; dkz) 

Objective 
lens 

Specimen vo(xy) 

JTX-XO, Y-yo)vo(xy) 

Detector I(XOIYO) 

plane 

Incident wave 
10 

Emergent wave k, 

Incident wave 
Emergent wave x 

output signal 

k, 

Fig. 2.6: Image formation in a STEM 

Let us take the electron wave illuminating the probe forming aperture to be a plane 

wave. The electron disturbance incident on the specimen plane, qfo(x, y), is the 

Fourier Transform of the electron wave function at the probe forming aperture, 
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(x, y) =ff t(k�, k, )exp[- 2ni(k., x, kyy)]dk., dky 

where t(k.,, k, ) is as defined in equations (2.8) to (2.10) with the pupil function, 

spherical aberration coefficient and defocus all referring to the probe forming lens. 

For reasons of mathematical expediency we assume that the electron probe 

remains stationary and centred on the optic axis whilst the specimen is scanned 

beneath it. If at a particular time a point on the specimen with coordinates (xoyo) is 

coincident with the optic axis then the electron disturbance leaving the bottom 

surface of the specimen may be written in the form, 

yfl(Xly) =f (x 
-X., y-Y. )VO (X, y) 

The detectors in a STEM are normally positioned in the far field with respect to the 

specimen so that the electron wave arriving at the detector plane is the Fourier 

Transfon-n of v, (x, y) . For a detector whose response function is R(k.,, ky) then the 

image signal I(xoyo) is given by, 

I(x(�y�)= ff R(kx, kjf f VI (x, y)exp[-27ü(kxx+kyy ýXdy12 dkxdky )]d 

(2.17) 

For a more detailed discussion on image formation in a STEM see Chapman [31 
. We 

now consider the Differential Phase Contrast (DPQ imaging mode implemented in a 

STEM. 

2.3.6 DPC mode of Lorentz Microscopy in a STEM 

The detector fitted to the JEOL 2000 and CM20 STEM's at the University of 
Glasgow is an eight segment photodiode made by oxford Instruments. The geometry 
of the detector allows the implementation of DPC and modified DPC (MDPC) 

modes of Lorentz microscopy (we consider the MDPC mode in Section 2.3.7). We 
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begin by considering the standard DPC imaging mode which was first introduced by 

Dekkers and de Lang [51 (1974) and was further developed for magnetic imaging by 

Chapman et al [61 (1978). Note that DPC imaging requires a four segment detector as 
illustrated in fig. 2.7(a). 

In the case of no specimen in the microscope column the lenses situated 
below the specimen (i. e. the post-specimen lenses) are used to ensure that the 

electron beam is centred on the detector, see fig. 2.7(a). It is clear that in this case 
there must be equal currents falling on each of the detector's quadrants and as a 

result the difference signals of the segments A-D and B-C will be zero. In the case of 

a magnetic specimen being present in the microscope column then the electron beam 

will be deflected by the specimen induction and as a result the current failing on the 

quadrants of the detector will not be equal, see fig. 2.7(b). Provided the deflection of 
the electron beam on the detector PL is small relative to the probe angle a then the 

difference signals A-D and B-C will be linearly proportional to the Lorentz 

deflection angle h and thus the integrated components of magnetic induction. 

Bright 
Field, 
Disc 

Fig. 2.7: Diagram illustrating the (a) centred and (b) deflected brightfield disc on 
the four segment detector. 
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Consider fig. 2.7(b) which shows the deflected bright field disc at the detector. If we 
denote the effective camera length of the Image Forming lens as L, then the radius of 

the bright field disc on the detector will be La (where a is the probe angle). If we 

assume that a is much larger than PL (typically a is of the order of at least five times 

larger than PJ then the signals recorded by individual quadrants of the detector will 
be approximately, 

IB ý- ID ý[4+ afl, Lý 
]I 

'= lC 
=[ afl, Lý 

]I 

where I denotes the intensity of the electron beam. It follows that the difference 

signal between the quadrants (B+D) and (A+C) is given by, 

(IB 
+ I, 

)) - 
(IA+ 

Ic) = 4afiLeI (2.20) 

This shows (using a classical argument) that the DPC signal is linearly proportional 

to the Lorentz deflection angle of the electron beam and is therefore also linearly 

proportional to the integrated magnetic induction. It therefore follows that DPC 

imaging can be used to map the integrated magnetic induction from a thin film, or 
the integrated magnetic induction escaping from a magnetic recording head or indeed 

from a Magnetic Force Microscope (MIFM) tip (we will consider MFM in Section 

2.4). We now consider the MDPC imaging mode of Lorentz microscopy. 

2.3.7 MDPC mode of Lorentz Microscopy in a STEM 

The DPC contrast from a real specimen always contains both magnetic and non- 
magnetic components (for example non-magnetic contrast arising from the 
crystalline structure of the specimen). In some cases the non-magnetic contrast from 
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a specimen dominates over the magnetic contrast making it almost impossible to 

extract any quantitative magnetic information. Since we are only interested in the 

magnetic contrast, the non-magnetic contrast is considered to be noise and any 

method for reducing this noise contribution is highly desirable. 

Fig. 2.8: Diagram of the 8 segment detector used in both STEM's at the University 
of Glasgow. Note thatfor MDPC imaging only segments A, AC and D are used. 

Chapman et al [71 (1990) introduced a simple modification to the existing DPC 

technique. The MDPC technique made use of an annular detector surrounding a 

standard four quadrant DPC detector, see fig. 2.8. MDPC images are acquired by 

using the annular detector which provides information about the position of the 
bright field disc (clearly the bright field disc must overlap onto the annular detector). 

The annular detector is relatively insensitive to any intensity modulations within it 

and as such is well suited for revealing the low spatial frequency component of the 

signal. Electrons in the central part of the bright field disc (detected by the standard 
DPC detector) contain no information about the low spatial frequency components 
(but do contain information about the higher spatial frequency component of the 

signal) and can only contribute to the noise in the image of a slowly varying object. 
Since the magnetic contrast of interest is of low spatial frequency and non-magnetic 

contrast (e. g. from the crystalline nature of the sample) is of a higher spatial 
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frequency then the MDPC detector detects magnetic contrast with a far higher signal 

to noise ratio than is possible from standard DPC imaging. 

The advantage of DPC and NIDPC modes of Lorentz microscopy is that they 

provide quantitative information on the components of magnetic induction 

perpendicular to the trajectory of the electrons. A standard incoherent bright field 

image (containing structural information about the specimen such as grain size, 

defects etc. ) is also recorded simultaneously (the bright field image being the sum 
image on the detector). The contrast of DPC and MDPC images is approximately a 
linear function of the Lorentz deflection angle which is itself a linear function of the 

integrated magnetic induction. Thus calibration of DPC images is relatively simple 

to implement. 

2.4 Magnetic Force Microscopy 

In 1985 Binning and Rohrerý83 invented the Scanning Tunnelling Microscope (STM) 

which is capable of high spatial resolution of the order 0.2nm. The essential feature 

of the STM is that the structural character of a specimen is revealed through the 

interaction between a sharp needle - the tip - and a flat electrode - the specimen. An 

image is formed by scanning the sample under the tip (or scanning the tip over the 

sample) in a raster fashion. Following the introduction of the STM several variants 

were rapidly developed and in each case the same principle of monitoring the 

interaction between a tip and sample was central to their operation. We now consider 

one specific variant of the STM and that is the Magnetic Force Microscope[91 

(MFM). 

In a MFM a sharp ferromagnetic tip is mounted on (or is sometimes part of) a 

sensitive cantilever. The cantilever itself is mounted on a piezoelectric bimorph 

which is used to control the static height of the tip or to oscillate it with a constant 

amplitude (typically in the range of I to 10nm). The magnetic specimen under 

investigation is scanned under the tip and the interaction force between the tip's 
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magnetisation and the stray field from the specimen results in the cantilever bending 

towards or away from the specimen. The deflection of the cantilever is measured by 

an optical sensor - usually an optical interferometer. This is known as the Static 

mode of operation of a MFM and gives a direct measurement of the interaction force 

between the tip and specimen. High spatial resolution has been achieved with this 

method (resolution of 10nm has been reportedI101) however this mode can be 

influenced by thermal drift. A method which overcomes this problem is the Dynamic 

mode of operation of a NIFM which measures the force gradient instead of the force 

itself. 

In the Dynamic mode the cantilever is set vibrating at a frequency close to its 

resonant frequency (which is typically 10 to IOOkHz). The specimen is again scanned 

under the tip and in this case the tip-specimen interaction changes the effective 

spring constant of the cantilever and thus alters its resonant frequency. This change 
in the frequency of vibration of the cantilever is reflected in a small change to the 

amplitude of the vibration. The change in the amplitude of vibration is measured by 

the optical interferometer and is included into a feedback loop which adjusts the 

signal to the Z piezo which maintains a constant amplitude of vibration of the 

cantilever. The signal to the Z piezo is used to generate the MFM image and 

represents a measure of the gradient of the interaction force between the tip and 

specimen. 

0 Lock In 

Oscillator 
output 
(force 
gradient) 

Optical Servo 
fibre Electronics 

Piezoelectric 
bimorph output tip 

sample (contour) 

Scanners 
cantilever 

Fig. 2.9: Block diagram of a magnetic force microscope. (Rugar et all"l) 
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The magnetic specimen under investigation is mounted on a stage whose in-plane 

position can be controlled by piezoelectric sensors (the sensors are excited to scan 

the specimen below the tip in a controlled manner). Fig. 2.9 shows a standard block 

diagram of an MFM. 

Fig. 2.10 shows a MLFM image of three separate tracks written in a magnetic 

recording media. If we assume, 1) that the recording media is smooth so that the 

MFM image does not include any contrast due to the topography of the specimen, 2) 

the tip magnetisation was not altered by the stray field from the specimen and 3) that 

the specimen magnetisation was not altered by the stray field from the tip (this is 

analogous to the tip and sample both being magnetically hard), then the MFM image 

represents a direct measurement of the component of the tip-specimen interaction 

force (or force gradient) normal to the cantilever. 

(a) 

(b) 

(c) 

Fig. 2.10: MFM image of three separate tracks (20, um in length) with transitions 
spacedevery (a) I. -5A&n, 

(b) 2.5A#n, 
(c) 5A&n apart. 

The total force experienced by the tip, Fip, is given by, 
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m 
lip sanoe + -r' 

)ýv (2.21) 

where Mip(-rl is the magnetisation of the volume element in the tip and 

Mperimen(r+rj is the specimen stray field acting on the elemental volume, see fig. 

2.11. Thus a MFM image maps the scalar component of the tip-specimen interaction, 

FmFm, given by, 

FuFm = F,, 
p -h (2.22) 

where h is the unit vector normal to the cantilever (again see fig. 2.11). 

Fig. 2.11: Geometry used in calculating the tip-specitnen interaction given in 
equations 2.22 and 2.23 (Grutterl 121). 

It is often the case that the specimen stray field is the quantity of interest - for 

example in magnetic recording applications. However as equation (2.22) shows, a 
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MFM image is a map of a convolution of the tip magnetisation and the sample stray 
field. It therefore follows that to extract quantitative information on the specimen 

stray field from a MFM image then we must have a quantitative knowledge of the tip 

magnetisation so that the specimen stray field may be deconvolved from the image. 

In the more complex (and more realistic) non-ideal case of MFM imaging 

where the magnetisation of the tip is altered by the stray field from the specimen, and 

the magnetisation of the specimen is altered by the stray field from the tip then we 

still require to have a quantitative knowledge of the tip magnetisation. However in 

this case knowledge of the initial tip magnetisation, the shape of the tip, the nature of 
its magnetic structure and a correct accounting for changes in the magnetisation of 

the tip and/or specimen will all have to be taken into account in order that a function 

for deten-nination of the required specimen stray field from a NffM image may be 

determined. 

This requirement to characterise quantitatively the magnetisation of a MFM 

tip is the motivation behind all the research undertaken for this thesis. In the next 

chapter we consider a technique for the quantitative determination of a tip stray field 

(from which a non unique tip magnetisation can be calculated) - called electron beam 

tomography. 
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Chapter 3 

Fundamentals of Electron Beam Tomography for 

the study of Magnetic Force Microscope Tips 

3.1 Introduction 

Tomography is the method for reconstruction of the interior of an object from its image 

projections obtained with a suitable radiation. Electron beam tomography is the term 

used when a transmission electron microscope is used to collect the projections which 

are then used to reconstruct the object in its entirety. Other types of tomography exist 

such as CAT-scan imaging (Computerised Axial Tomography) which uses density 

projections of biological samples obtained using X-rays, to reconstruct the original 

object. The only differences between electron beam tomography and CAT-scan imaging 

is the radiation and detectors used in the process of collecting the object's projections. 
Tomography was originally developed for the three dimensional imaging of 

non-crystalline biological structures - for example DeRosier and Klugil](1968) imaged 

chromosomes. The emergence of tomography coincided with the development of 

computers which allowed the processing of large amounts of data in a suitably short 

time. 
The three dimensional reconstruction methods used for tomography are 

traditionally classified into two groups - Fourier reconstruction methods and real space 

methocis'21(31 . Fourier methods are defined as algorithms which operate in Fourier space 

- in that the Fourier transform of the object is reconstructed from the Fourier 

transformations of the projections (the real space distribution of the object is then 
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obtained by inverse Fourier transformation). Real space methods, as the name suggests, 

are defined as those which carry out all reconstruction calculations in real space. 
Throughout this thesis we use electron beam tomography for the determination 

of MIFM tip fields. This technique was originally used to image magnetic recording 
head fields and was developed by a research group in Duisburg (Elsbrock et al. [41' 1985; 

Steck et al. 151,1990). Significant modifications to existing tomography techniques were 

required so that electron beam tomography could be used for the determination of a 

stray field - most importantly a density function of a biological specimen is a scalar 
function, whereas magnetic field is a three dimensional function. The projection of a 

magnetic field in electron beam tomography is a planar (deflection) vector. This is due 

to the fact that the electron-stray field interaction deflects the beam from its original 

path and the final deflection represents an integral of field components along the 

electron beam trajectory. 

The Duisburg group carried out their approach by using a scanning electron 

microscope (SEM) for the collection of the electron beam deflection data and a 

reconstruction technique based on the Fourier and Radon (61 transforms - this technique 

will subsequently be referred to as the Radon Transform Method (RTM). Note that 
RTM allows a determination of the three dimensional stray field from either component 

of the deflection data and is a Fourier reconstruction method. 
A separate technique for the reconstruction of recording head stray field was 

developed by Matsuda et al . 
171( 1990). This technique is based on the Algebraic 

Reconstruction technique (ART), which was originally developed for the three 
dimensional imaging of biological structures by Gordon et a] J81( 1970) but modified to 

deal with a vector function instead of a scalar function. An advantage of ART is that it 

can produce an accurate representation of the object of measurement with fewer 

projections - this therefore allows an ordinary tilting stage (say +/-5()) to be used. 
For stray field reconstruction using either the ART or RTM reconstruction 

techniques, the projections of the MFM tip fields are acquired in a STEM using DPC 

Lorentz microscopy (see Section 2.3.6). In this chapter we give a detailed introduction 

to the general principle, the mathematical description and the experimental 
implementation of electron beam tomography for the three dimensional imaging of 
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MFM tip fields. We consider both the ART and RTM methods but we pay special 

attention to the RTM method which is used extensively throughout this thesis. 

3.2 The General Principle of Three Dimensional Reconstruction 

and its Application to Determining the MFM Tip Field 

The principle of the three dimensional reconstruction of an object from its projections 

can be understood from the fundamental relationship between the object and its 

projections. In this thesis we make use of a Fourier Technique, i. e. the RTM 

reconstruction technique (and to a much lesser extent the ART which is a real space 

method), which we begin by considering in its basic scalar form - i. e. density electron 
beam tomography - in which a density function is suitable for defining the object of 

measurement. In Section 3.2.2 we discuss the derivation of the RTM tornographic 

algorithm for vector magnetic stray field and then we briefly consider ART in Section 

3.2.3. 

3.2.1 The Fourier Method 

The Fourier Transform provides an alternative representation of an object by breaking it 

down into a series of trigonometric basis functions. In the following, we make use of 

complex exponential waves of the form exp(2; dk - r) instead of sine and cosine 

functions for reasons of mathematical ease. Note that r= (x, y, z) is the position vector 

of the object, and k is the spatial frequency which gives the direction of the wave and its 

inverse wavelength. The object fl-r) can be built up from a series of these waves by 

linear superposition as, 

F(ý, )exýbfik 
, 

(3.1) 
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In this discrete form of the Fourier transform, the complex coefficients F(k.. ) contain 
information on the amplitude Aj, and phase (or phase shift with respect to the origin) 4 

of the associated wave 

(3.2) 

1( 
ImIF(kj)l" 

oj =tan -- (3.3) 
ReJF(ýJj) 

Note that F(k. ) can be written in the discrete form of the inverse Fourier transform of V 
fl_r) as, 

F(jj) f (!: )exý- 2; fik j 
(3.4) 

Thus we have a relationship betweenf and F. 

An important result relatingf and F is the Central Section Theorem which states 

that the two dimensional Fourier transform of the projection of an object is identical to 

a central section of the object's three dimensional Fourier transform (Crowther et a09), 
1970). It follows that the measurement of an object's projections allows a way to 

measure the Fourier transform of the object. Thus, by tilting the object through many 
different angular positions we should be able to measure its entire Fourier Transform. 

Fig. 3.1 shows the method by which the object of measurement is retrieved by inverse 

Fourier transformation from the object's projections superimposed on an array of 

equally spaced sampling points. 
Note from fig. 3.1 that the sampling points on the object's projections become 

more widely spaced as they increase in distance from the centre. To ensure that their 

maximum separation is consistent with the required reconstruction resolution the 

angular spacing of the individual projections must be sufficiently small. If we assume 

that the resolution of the reconstructed object is set to d, then the region in Fourier 
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Fig. 3.1: Diagram illustrating three dimensional reconstruction using the 
Fourier method. 

space in which the data must be acquired will be a sphere of radius Ild. This sphere 

must be larger than the size of the reconstructed object D, and so the minimum number 

of equally spaced projections is given as (Crowther er al-191,1970; Bracewell and 
Riddle"01,1967) 

AD N=- 
d 

(3.5) 

We now consider the application of this theory for the determination of NWM tip fields. 
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3.2.2 The Radon Transform Method for 3D Reconstruction of MFM Tip 

Fields 

In the following discussion the M]FM tip is characterised, within the Cartesian co- 

ordinate system shown in fig. 3.2. The stray field from the MIFM tip is to be measured 

on the plane aG which is in the x-z plane and at a distance of y=a from the tip apex. In 

the magnetic source-free half space (y>O), the magnetic induction B, and the magnetic 

field strength ff, are described by Maxwells equations as 

VxH=O (3.6) 

V-B=O (3.7) 

where B and the H are related by 

(3.8) 

and po is the permeability of free space. Because of equation (3.6) the magnetic field 

can be described by a scalar magnetic potential (D as, 

H= -grad(D (3.9) 

and 

V24) =0 

with equations (3.6) to (3.10) and the theory of harmonic functions, the magnetic field 

in the magnetic source free half space (i. e. y>O), can be written in integral form over the 

plane c)G as [4) 
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r-r 03B, (fO)dS 
2; r !: o 

I. 

in which r and r 0 are position vectors in the half space y>O and the plane dG 

respectively. 

MFM tip 
cantilever 
halfspace 

Measured 
plane dG: 

Y=O 

a 

Stray field in 
magnetic source free 
half space y>O 

Fig. 3.2: Diagram illustrating the MFM tip relative to the measurement plane. 

Now if we define the function K(-rro) as, 

K(2:, ro) - 2; r 
r- ro 

ir 
- fo 

I (3.12) 

then we can regard equation (3.11) as a two dimensional convolution of the function By 

with the function K. A two dimensional Fourier transform of equation (3.11) is now 

carried out. The N dimensional Fourier transform of a functionf is defined as, 
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FT ff 1=ff (r) ex -21rr_ýýn n 
gIn 

Thus, with the help of Fourier tables (Bracewell and RiddleElol, 1967) the two 
[4) 

dimensional Fourier transform of K is , 

k 
F-7ý 146, MW iW+2 exp(- 2ayjý) (3.14) 

where the symbol 9 represents the argument relative to which the transform is 

performed - in this case -r- 
Also, A is the two dimensional spatial frequency vector and ý 

is the unit vector along the y axis. Thus the full two dimensional Fourier transform of 

equation (3.11) can be written as, 

FT21B(o, i+ý exý- 2nyUk) - FT21BY (*, O)I(k) W 

Thus the magnetic field in the magnetic sourre free half space (i. e. B(ro, y) in y>O) can 

be deduced if the values of the normal component of field are known in dG (i. e. 

A(!:., O)). 
Multiplication of equation (3.15) with an arbitrary unit vector in the plane dG 

i(O) = icosO + isin 0 

leads to equation (3.17), where 0 is the rotation angle about the y axis. 

FT2(g(o, y)yj) = exý- 2xyjý) - Fr2jj(O) - 9(0,0)1(k) (3.17) 
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Thus, equation (3-17) allows a determination of the magnetic field B in the half space 

y>O if the spectra of an arbitrary tangential (to the plane dG) component of the magnetic 
field is known. 

Equations (3.15) and (3.17) therefore show that knowledge of the spectra (either 

of the normal component or of an arbitrary tangential component of the magnetic stray 

field) in the plane dG is sufficient to determine the whole three dimensional stray field 

in the magnetic source free half space defined by y>O. 
We now introduce the Radon transfort'n which allows the application of the 

theory detailed above (for determining the three dimensional stray field) via an 

experimental measurement in an electron microscope. The two dimensional Radon 
[121 transform of a functionf is defined as 

RT21f (!: )I (p, e(O)) =fff (f) - 8(p ý(O))d 2 
qt2 

where p and i(O) together define a straight line (p = !: - _ý(O)) along which the Dirac 

delta function is non zero. Thus, the two dimensional Radon transform of the function f 

is the integral off along the line p=!: - 1(0) 
. In Lorentz microscopy, the electron beam 

is deflected by the component of magnetic field perpendicular to the direction of the 

electron beam. The total deflection is therefore obtained by integrating this field 

component along the electron beam trajectory. if the electron beam is scanned in front 

of the MIFM tip in the plane dG and if the resulting electron beam deflection is small 
relative to the length of the electron beam 

Z 
trajectory, then measurement of the deflection of 

AJ 
_r 

the electron beam (in Lorentz microscopy) can be 4pe-10) 

approximated to the Radon transform of the 

0 magnetic field component perpendicular to and 
X 

line of integration along the line defined by the scanned electron 
beam. 

Fig. 3.3: Geometric representation 
of the coordinate system in the 
measuring plane dG. 
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[121 An important relation between the Radon transform and the Fourier transform is , 

FT IfI (si) = FT, I RT2 [f (3.19) 2 

with this relationship, equations (3.15) and (3.17) can be written using the Radon 

transform as, 

FT2fA(*lY)Y4(0)) = 
(-isin(s)i(O) + ý)exp(- 2; ryjý) - FTjjRT2[By(*, O)j(*, j(O))j(s) 

(3.20) 

FT If(*, y)ysi(o)) = 
(ý(o)+isin(s)ý)exp(-2nylý). FTlý O)RT2[B( 

(3.21) 

The Radon transforms RT2[By(*, O#p, ý(0)) and ý(O)RT2[p(*, O)j(p, j(O)) in equations 

(3.20) and (3.21) are the normal and tangential components of the deflection vector - 
which can be measured using DPC Lorentz microscopy. These components of the 
deflection vector are the input functions for determining the magnetic stray field from 

the MFM tip. If one of these input functions is known for all p and 1(0) - i. e. measured 

along all angles of rotation - then the stray field B(, ry) can be determined in the whole 
half space y>O using the following method. 

To reconstruct the field B(r, y) from its spectral representation in equation (3.20) 

or (3.21) we require to make use of the fact that the two dimensional inverse Fourier 

transform of a function is equivalent to a one dimensional inverse Fourier transform 

followed by a back projection of the function. This means that with an auxiliary 

function f (P, i(O), Y), which is defined by, 

FT, J: t(64(0), Y)ys) = 1ý - FT2 I!! (*, y)ysý(O)) (3.22) 

then the original stray field B(Cy) can be obtained by back projection of the auxiliary 
function, 
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B(!:, y) = BPff (e, *, y)I(E) (3.23) 

where BP is the back projection operator defined by the Radon Transfonn, 

-x 
Bpff (0,0, y 

)1: 912 ý 9ý3 fff (p, i 0), y) - g(p - Z: -i 0»dOdp 

00 (3.24) 

Thus, substitution of equation (3.20) into equation (3.22) gives us, 

FT, If (*, ý(O), y)ýs) = 1ý(-isin(s)i(O)+ ý)exp(- 2nyjý)- FT, I RT2 [By (e, O)](e, j(O))j(s) 

(3.25) 

The auxiliary function f (p, O), y) can then be obtained from the inverse Fourier 

transform (denoted FT, -'f 1) of equation (3.25), 

(p, i(O), y) = FT, -'IRHS of equation (3.25)1 

(3.26) 

= 
[FT. 

-'Jjý(-isin(s)ý(O)+ ý)exp[- 21ryjý]J*RT2 [By (mO)](*, j(O))](p) 

If we define the function C (which is often refen-ed to as the convolution kernel) as, 

f(p, y) = FTI-1 jjý(- i sin(s)i(O) + ý) exp[- 2xyjý]l (3.27) 

then equation (3.26) becomes, 

L(p, j(0), Y) = 
[f(p, 

yý RT2[By(*, O)Y*A0))](p) (3.28) 

The important point to note from equation (3.28) is that the auxiliary function can now 

be obtained from a convolution of the Radon transform RT2[B, (4oO)] with the 
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convolution kernel C(p, y). Thus the combination of equation (3.28) with equation 

(3.23) gives the stray field B(ry) in the half space y>O as, 

1! (z:, y) = BPIC(p, y)* RT2[B, (*, 0)](*, j(0»1(r) (3.29) 

Thus, equation (3.29) provides a solution for equation (3.20) in the magnetic source 
free half space y ý: 0. A solution for equation (3.21) can be obtained using a similar 

method but is not shown here. A flow diagram giving a summaiised overview of the 

process to determine the three dimensional stray field is shown in fig. 3.4. 

Determination of the normal or 
tangential components of the 

electron beam deflection vector 
using DPC Lorentz microscopy - 
i. e. determination of RT2[BY (*, O)l 

or i(O)RT2[g(*, O)1 in equations 
(3.20) and (3.21). 

Choose targetfunction - i. e. 
B(!:, fo) [can also choose the scalar 

magnetic potential 0(!: IfO)] 

Determination of the Convolution 
kernel C(p, y) - see equation (3.2 7). 

Convolution of the deflection vector 
component with the convolution 

kernel - see equation (3.28). 

Back projection - see equation (3.29). 

Targetfiinction B(r, ro) or (D(!:, Eo) - 

Fig. 3.4. Flow diagram illustrating a summarlsed overview of the process to determine 
the three dimensional strayfield. 
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In Section 3.3 we consider the experimental acquisition of the input functions given by 

the Radon transforms RT, [B, (*, O)](p, ý(0)) and &)RT, [B(9,0)](p, ý(0)) in equations 

(3.20) and (3.21) respectively. However before this we briefly consider the scalar and 

vector forms of the Algebraic Reconstruction Technique. 

3.2.3 The Conventional Algebraic Reconstruction Technique 

In the Algebraic Reconstruction Technique (ART), the object under investigation is 

defined to be a density function in three dimensional space. The object can be tilted 

around a single rotation axis and at each angular position an electron beam (or other 
form of radiation - e. g. X-rays) is scanned across the object. The interaction between the 

object and the electron beam defines a sectional plane through the object - 
perpendicular to the rotation axis - and results in a projection of the plane onto a line on 

the detector, see fig. 3.5. 

Scan of the 
electron 

:0 

"he object of 
wasurement 
n square grid 

Single 
tilt axis 

\\\\\\ Two-dimensional 
projection of 
the o0ject 

Fig. 3.5: Electron beams (or other radiation) illuminating an object 
and projecting the 3D object onto the detector plane. 
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Each sectional plane is reconstructed from the projections of different angular views of 

the object and the sections are combined to get the three dimensional reconstruction. 

The problem of reconstruction of a three dimensional density function is therefore 

reduced to the reconstruction of two dimensional sections of the object. 

For the conventional ART algorithm we assume that the density function of the 

object flr) is defined on a square grid of n non-overlapping elements as shown in fig. 

3.6. The discretisation of the grid should be as fine as possible and is related to the 

assumed spatial resolution in the projections. The object's projection is also divided 

into non-overlapping elements corresponding to the position of the scanning electron 

probe. 

Incident ray 

XÄJ 
Finite number of 
non -overlapping 
elements in a 
square grid 

Fig. 3.6: Diagram illustrating the geometry used in conventional ART. 

If we take Pj , where j=1,2, ..., m to be the elements of a projection then for every Pj 

there is a corresponding sub-region 4. in the grid of which Pj is the projection. Taking r 

to be a point on the grid then, 
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ff (r)dr = Pj j-- 1,2, (3.30) 
ji 

The approximation sign indicates that the process is not perfect as a result of the finite 

number of non-overlapping elements in the grid. This is the fundamental equation of 
ART from which all reconstruction algorithms for the unknown density function flr) are 
derived. 

To determine a discrete solution for equation (3.30) we must represent the 

reconstruction plane in a discrete fashion - similar to the grid in fig. 3.6. In doing this 

and by assuming that the unknown density functionftr) is a constant in each element of 

the reconstruction plane (and denotedfi where i=1,2, ..., n) then equation (3.30) becomes 

a set of simultaneous linear equations of the unknownfi, 

wij fi 

where wij is the ratio of the area of the electron path through each element of the 

reconstruction plane to the area of the plane itself Equation (3.31) is highly 

underdetermined since m<<n. It follows that the discrete solution is generally obtained 

by iterative techniques in which an estimate of the density functionsfi is con-ected by 

means of a comparison between the estimated and measured values weighted to take 

account of the area of the electron path through each element in the reconstruction 

plane. 

To utilise the ART algorithm to reconstruct the three dimensional tip stray field, 

a vector equivalent of equation (3.3 1) is required. 

3.2.4 The Magnetic Field Vector Algebraic Reconstruction Technique 

In a STEM, the interaction between a three dimensional magnetic field and moving 
electrons projects a two dimensional vector onto the detector plane. The derivation of 
the vector equivalent of equation (3.31) is now described. 
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We assume that the tip field is confined within the scanning area of the electron 
beam in the microscope. In the field-free chamber, the half space in front of the tip is 

divided into three regions along the electron trajectory, see fig. 3.7. In the first region 

(Region 1) the tip stray field is zero and the incident electrons travel with a constant 

speed. In Region 11 the tip stray field is non-zero and as a result the electrons are acted 

on by the Lorentz force and are deflected from their incident trajectory. The Lorentz 

force is given by, 

F =eyxB (3.32) 

where e is the electron charge, y is the electron velocity and -B 
is the tip stray field 

vector. 
Let si be a short distance in Region H and B. '. be the average value of the stray 

field B in si along the electron beam trajectory. The components of the electron beam 

deflection vector (which are parallel to the ý and q directions as the electrons traverse 

the distance si) are calculated by, 

-P ME) 

1/2 

dDý e s2 Byi (3.33) Tm-E 2 

dD 

=4ý- 
e s2 

B,,, (3.34) 
mE) 

1/2 

2 

The field in Region 1H is again zero and the electrons travel in a straight line to the 
detector plane at a distance L from the tip apex. 
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Incident electron In 
Region 1: B=O 

(a) 

Region 11: B, -O 

Region III: B=O 

(b) 

Plane Q 
reconstj 

Plane of- 
line scans 

Rotation axis 
0 Y7 C 

in the STEM 

Detectorplane 

MFM tip 

)7, Y 
i. e. the rotation axis 
in the STEM 

Reconstruction 
radius 

Fig. 3.7. Diagram illustrating the representation of the magnetic stray field in ART. Note 
that the (ý, ? 1, ý) co-ordinate system is fixed and defines the microscope co-ordinates 

while the (x, y, z) co-ordinate system is fixed to the MFM tip and defines the specimen 
co-ordinates. 
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We suppose that Region H is divided into equal elements, si -= s, and the total number of 

points across which the electron beam is scanned is m. Thus the total deflection of the 

electron beam on the detector plane is given by, 

=( 
eE) 

1/2 ( 
S2 

+ SL D6 -I Bj j=], 2,..., m (3.35) Tm 2 iEray(j) 

ry ME) 

112(S2 

+SL) 

, B., i j=], 2,..., m D =4, 
e 

-1 (3.36) 
2 iEray(j) 

The summation is over all the elements through which the beam has passed. In equation 
(3.35) D, ý is a function of component B., of the stray field, while in equation (3.36) D'V 

is a function of B., and B, as the tip is rotated about the rotation axis in fig. 3.7(b). Thus, 

the general form of equation (3.36) is, 

D1 =4 + COSO., Jý] 
, 

B.,, +sinO,,,. z, 2mE) 

"'( 

2 sL) 
., 

B (3.37) 
iEray(j) ir=-y (D 

j=], 2,..., m 

where the subscript mo denotes the m6h rotation angle. Equations (3-35) and (3.37) are 
the magnetic field vector versions of equation (3.31). This vector equivalent equation is 

again highly underdetermined and similar iterative methods to those described in 

Section 3.2.3 are required to reconstruct the three dimensional stray field. Note that to 

reconstruct the magnetic stray field using ART, both components of the deflection 

vector are required. We now consider the experimental acquisition of these deflection 

vectors. 
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3.3 Experimental Implementation of Electron Beam Tomography 

for MFM Tip Fields 

To reconstruct the three dimensional stray field from a MFM tip (using either the RTM 

or ART techniques) we require a complete set of the (digitised) electron beam 

deflection vector at a series of angular positions. These deflection data are extracted 
from DPC image pairs of the stray field (imaged in a STEM). The deflection data must 
be correctly aligned and taken from the same position in front of the tip prior to 

tornographic reconstruction. 

3.3.1 The DPC Image Collection in the CM20 (S)TEM 

The DPC Lorentz microscopy mode is performed in a CM20 STEM to measure the two 
dimensional projections of the integrated MIFM tip stray field - i. e. to measure the 

electron beam deflection vector which is linearly proportional to the tip stray field 

integrated along the electron trajectory. The NIFM tip assembly is mounted on a stub 

which is inserted into the specimen rod. The tip assembly is mounted on the stub at 
77.5* to the axis of the stub and hence at 12.50 to the optic axis - this is approximately 
the same angle as the cantilever is mounted in the MIPM- see fig. 3-8. To reconstruct the 
NIFM tip field using the RTM reconstruction technique we must collect deflection data 

at 10* intervals over a rotation range of 180*. However since the specimen rod can only 

be rotated over +/-50" this means that one change of position of the specimen stub 

through 900 in the specimen rod is required to determine the full deflection data sets. 
Note that all experimental deflection data presented in this thesis was provided by Prof. 

R. P. Ferrier and Dr. Steven McVitie. 
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.3 

=: E] 

z 

(a) (b) 

12.50 

Fig. 3.8: Diagram illustrating the MFM tip mounted on stubfor specimen rod in 
STEM. (a) Viewfrom end of specimen stub, 

(b) Viewfrom above showing the plane of reconstruction, i. e. the x-z plane. 

Fig. 3.9 shows an illustration of the geometry for the electron beam deflected by the 

stray field from the MFM tip oriented in one angular position. The electron beam scans 

parallel to the x-z plane at a fixed distance in front of the tip (Y= a constant typically 

-50nm) - this plane is the same plane on which the MFM tip field is reconstructed. The 

NIFM tip is rotated about the y axis at 10' intervals. The two components of the 

electron beam deflection vector are acquired by subtracting signals from opposite 

segments of the DPC detector. The detector orientation relative to the rotation axis and 

the excitation of the image forming lenses is set so that the signal pairs (A-C) and (B-D) 

represent the components of the electron beam deflection vector which are 

perpendicular and parallel to the reconstruction plane (i. e. the x-z plane) respectively. 
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Fig. 3.9: Diagram illustrating the experimental arrangementfor the 
implementation of DPC imaging of an MFM tip. 

3.3.2 Extraction of the Input Deflection Data Sets (for tomographic 

reconstruction using RTM) from the DPC Image Pairs 

The input data for tomographic reconstruction of the MFM tip field is a series of electron 

beam deflection vectors in a plane in front of the tip. A DPC image pair gives a two 
dimensional map of the two components of the electron beam deflection vector for the 

MFM tip oriented in one specific angular position. Line scans are therefore extracted 
from each DPC image pair perpendicular to the rotation axis and at the same distance in 

front of the tip. The complete set of line scans (over 180c' at 10' intervals) defines the 

plane in which the MFM tip stray field is reconstructed, see fig. 3.10. 
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Note that the line scans in fig. 3.10(a) have been manually aligned about a 

common peak deflection value - the scans in fig. 11 O(b) are aligned by a corresponding 

amount. The need to manually align the deflection line scans is due to the lack of any 

clear common system of co-ordinates for the scans. The method of aligning the scans 

about a common peak deflection value is an approximate technique and is considered in 

more detail in Chapter 6. 
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C? 1ý C> C14 Cl) 
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(a) (b) 

Fig. 3.10: Experimental DPC signal variation. /or the Complete data setfrom a 
standard Digital Instrumenis (DI) MFM tip. (a) Line scans sensitive to induction 

component nonnal to the measurement Plane. (b) Line scans sensitive to induction 

component in the measurement plane. These results are for a tip which has been 

inagnetised along its avis. 

Also note that the line scans extracted from the DPC images (see fig. 3.10) do not 

decrease to zero at the ends of the scans. The effect of this character of the deflection 

line scans on the ART and RTM reconstructed MFM tip field is considered in detail in 

Section 6.9. 
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3.4 Summary 

The RTM reconstruction technique is based on the Fourier Transform and its 

relationship to the Radon Transformation. As a result the RTM technique requires input 

deflection data sets over a rotation range of 180'. In RTM the Radon Transform of the 

stray field is approximated to a straight line in the measuring plane, thus RTM is a 

linear technique and is subject to error when the stray field is strong - however this is 

not an issue for the study of NIIFM tip fields. The RTM reconstruction algorithm is 

derived for a magnetic source free half space and any reconstruction must satisfy this 

condition. 

The ART reconstruction technique is an algebraic method. There is no 

limitation to the magnetic source, provided the reconstruction region is large enough to 

contain the full extent of it's source stray field. Note that ART can provide reasonable 
details of the object of measurement from input deflection data sets over less than a 

1800 rotation range. 
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Chapter 4 

Theoretical Investigation of the Character of MFM 

Tip Stray Fields and Integrated Stray Fields 

4.1 Introduction 

The subject of magnetic force microscopy and the necessity to characterise the 

microscope's tip field have been discussed in Chapter 2. It is the purpose of this 

chapter to investigate - by means of computer simulation - the character of the MIFM 

tip field and the effect on the tip field of varying certain physical parameters. The 

results from modelling an idealised tip unifon-nly magnetised in a direction pointing 

towards the apex of the tip are discussed. 

We begin in Section 4.2 by describing the construction of a NIFM tip model 

and the calculation of the stray field and the line scan deflection data from the model. 
In Section 4.3 a selection of tips of various shapes are constructed and an 
investigation of the effect of the tip shape on the character of the tip stray field and 

the line scan deflection data is undertaken. The benefits of constructing these tip 

models instead of using a point monopole or a point dipole approximation to the 

MFM tip field are also discussed. In section 4.4 the effect on the tip field and the 

deflection data sets of varying the parts of the tip coated with thin film is considered. 
In section 4.5 the effect on the tip's field and its deflection data sets of varying the 

thickness of the film coating the tip is investigated. Finally a summary of the results 
from this chapter is presented in Section 4.6. 
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4.2 Calculation of Simulated Deflection Data Sets 

4.2.1 Calculation of the Stray Field from a Uniformly Magnetised Block 

Consider a uniformly magnetised block as in fig. 4.1, with dimensions 2L, by 2L2 by 

2L3. The magnetic scalar potential, (D, of such a block is given by Rhodes and 

Rowlands"' as, 

q)(X, y, Z) =f «m .?! ds (4.1) 
47r 

. rfu-t 
JJR 

where M=(OM,, O) with A the saturation magnetisation of the block and n the 

outward pointing unit normal vector to each face of the block. It is assumed that 

V. M=0 in the calculations. Note that the integration is over the entire surface of 

the block, although in this case M. n *0 only for the top and bottom surfaces of the 

block which can be considered as sheets of positive and negative surface charge of 

density M-q- Equation (4.1) may now be written, 

4M dxdz" >(x'Y'z) = 47 47r _L, _L, 
[(x 

0)2 + (y x L2)2 + (Z _Z 
t2 

(4.2) 
m 

-L 
ýi dxdz' 

41r [(X 
ý)2 

_X+ (y + L2 )2 +(Z_ Z/)2 
t2 

The magnetic field strength -H, can now be calculated simply by, 

m(X, Y, Z) = -V(D(x, Y, Z) (4.3) 
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, I, 
L2, L. 3) 

Fig. 43: Coordinate system usedfor calculating the magneticfield intensity at 
point (x, y, z) from a uniformly magnetised block of dimensions 2L, by 2L2 by 2L3- 
Note that r' is the vectorfrom the origin to the surface of the block andR is the 
vectorfrom the surface of the block to the point (xy, z). 

the components of H being, 

H- Okp(X'Y'Z), Hy 
x-&H, : =- (4.4) 

dy dz 

The integral in equation (4.2) is carried out over dx' and dz' which are independent of 

the differentiation which is performed over (xyz), therefore the differential can be 

taken inside the integral. The resulting calculations for the magnetic field strength H 

are listed in Appendix 1. 

For construction of a suitable tip model the magnetised block is not used 
directly, rather sheets of magnetic charge are combined together in an attempt to 

mimic the magnetic material attached to the tip. 
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4.2.2 Calculation of the Stray Field from a Sheet of Magnetic Charge 

Density M, 

Consider a sheet of magnetic charge of density M,, as in fig. 4.2, with dimensions L, 

by 1-3- If we take the y-direction as the outward pointing normal, and M=(OM,, O), 

then equation (4.1) becomes, 

m' ý7 dxdz' 
4; 7 00 

[(X 
f)2 + y2 +(Z �)2 (4.5) 

_X -Z 
t2 

The magnetic field strength H, can be calculated using the same method as described 

in the previous section. The resulting calculations for the magnetic field strength 

generated by a sheet of magnetic charge density M, are similar to those listed in the 

appendix. 
Clearly a sheet of positive magnetic charge density, as considered here, is not 

physically realistic. However a combination of these charge sheets can be used to 

calculate magnetic fields from physical objects, such as the magnetised block in the 

previous section. It is my intention to use this charge sheet as the building block of 

all models constructed. An example of calculation of the stray field from a triangular 

thin film is given in the next section. 

uniformly 
magnetised 
charge sheet 

x 

Fig. 4.2: Coordinate system usedfor calculating magneticfield intensity in 
free space from a uniformly magnetised charge sheet of density Ms. 
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4.2.3 Calculation of stray field from a triangular thin film 

Consider a uniforrnly magnetised triangular shaped thin film constructed from three 

rectangular sheets of magnetic charge density as in fig. 4.3(a). To calculate the 

magnetic field strength H, at some point P outside the volume of the thin film, 

requires the problem to be reduced into three manageable parts. Thus the stray field 

H at point P due to each charge sheet which make up the edges of the thin film must 
be calculated individually and summed together to get the total field at P due to the 

entire thin film. 
Firstly H is calculated at point P due to side A of the thin film. To do this it is 

required to use a simple rotational transformation of the axes so that point P is 

considered relative to the primed axes of fig. 4.3(a). Once this is achieved, the stray 
field at point P due to charge sheet A can be calculated relative to the primed axes 

using the method described in section 4.2.2. Once the three components of H have 

been calculated relative to the primed axes they must be transformed back relative to 

the original set of axes. The stray magnetic field from side A at point P relative to the 

(x, y, z) axes of fig. 4.3(a) has now been calculated. 
The calculations of the fields at P due to sides B and C are similar to the 

above description. For each side a combination of translation and rotational 

transformations of the axes are used to manoeuvre the axes into the correct positions 

to calculate the stray field H, using the method described in section 4.2.1. Once H 

has been calculated relative to the double primed axes of fig. 4.3(b) for side B, and 

the triple primed axes of fig. 4.3(c) for side C, the three components of -H 
in each 

case must be inverse transformed back relative to the original (xy, z) axes of fig. 

4.3(a). The three individual field contributions due to sides A, B and C at point P are 

then summed together to get the final field H at point P relative to the (xyz) axes 
due to the entire triangular thin film. 

The extension of this method from calculating the stray field from a 

triangular thin film of magnetic material to calculating the stray field from a thin film 

of magnetic material of arbitrary shape, is simple. The only proviso on the shape of 

the thin film, is that it is geometrically made up of flat surfaces or else its shape may 
be approximated to a combination of flat surfaces. In the following parts of this 
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chapter and the next, this method is used to combine many different sized charged 

planes together in an attempt to model the stray magnetic field from the magnetic 

thin filin material attached to the tip/cantilever/substrate structure. 

s,;, lp A ideA 

(a) Coordinate s, vstem usedjor 
calculatingfield contribution 
from SIdeA. 
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(b) Coordinate system usedfor 
calculating field contribution 
fýotn SideB. 
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X 

(c) Coordinate system usedjbr 
calculating field contributions 
from SideC. 

Fig. 4.3: Coordinate systems usedjbr calculating magnetic field intensity 
I. nftee spacefi-om a uniformly magnetisedtriangularshaped thinfilln. 
Sides A, B and C are shaded as indicated. The magnetisation of thefilm is 
directed along the positiveY direction. 
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4.2.4 Calculation of the Deflection Values from a Triangular TMn Film 

Consider again the triangular shaped thin film from the previous section. The method 
for calculating the stray field from such a thin film has been described. In this 

section, the method for calculating the deflection of an electron beam at the detector 

plane in a STEM, due to the passage of the beam through a region of space occupied 
by the stray field from the thin film is described. 

The stray field from the film gives rise to a Lorentz force on the electron 

beam which is deflected from its original path. The deflection vector, d, of the 

electron beam from its incident path at the detector plane is given by, 

d= camera length x 8L (4.6) 

where the camera length is the effective distance between the specimen and the 

detector plane and the Lorentz deflection angle, PL, is given as, 

)6L = 
eA f Bdz 
h 

(4.7) 

(similar to equation 2.2) where the integral is over all z, and B represents the 

component of the magnetic induction normal to the electron beam trajectory. 

in practical calculations Of PL, the integral in equation (4.7) was 

approximated to a discrete summation. Hence equation (4.7) becomes, 

)6L = 
eA BAz- 
h 

(4.8) 

Thus as Az --ý 0 the summation in equation (4.8) tends to the integral in equation 

(4.7). Therefore, provided the interval Az is taken to be so small that the magnetic 
induction does not vary greatly over that distance then this approximation is 

acceptable. 
It has now been detailed how to calculate the stray magnetic field strength H, 

from a uniformly magnetised thin film of arbitrary shape. From this it was then 
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described how to calculate the deflection of an electron beam from its original path 

due to the interaction of the electron beam with the stray field from such a film. 

Therefore it is now possible to simulate DPC images of the stray fields from thin 

films. In the following sections of this chapter, models of tips are constructed using 

combinations of triangular shaped thin films. The stray fields and the deflection data 

sets generated by the tip models are then calculated using the methods described 

above. 

4.3 Tip Shape and its Effect on Stray Fields/Integrated Stray 

Fields 

First we consider a perfectly smooth cone shaped tip coated with a thin film which is 

uniformly magnetised along the tip axis. The line scans within a deflection data set 

generated from such a tip mounted in a STEM and rotated about its own axis 

(perpendicular to the optic axis of the STEM), would be expected to be identical due 

to the rotational symmetry of the tip's geometry and magnetic configuration. Now 

consider fig. 4.4 which are SEM images of a typical Digital Instruments (DI) thin 

film coated MFM tip. The images appear to show the tip to be three sided at its apex, 

while further down it is at least four sided. It would therefore be expected that for 

this real MFM tip mounted in a STEM and rotated about its own axis (again 

perpendicular to the optic axis of the STEM), the line scans in the deflection data 

sets generated would not be identical due to the asymmetric nature of the tip's 

geometry. 
Therefore it is expected that the tip shape will affect the distribution of the tip 

stray field and therefore the line scans within its deflection data sets. To what extent 

the tip shape affects the shape of the line scans within the deflection data sets is 

unclear. In the following sections a selection of model tips are considered in an 

attempt to understand the degree to which the tip shape affects the character of the 

stray field and integrated field. 
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Fig. 4.4: SEM images of a typical DI MFM tip. The images show the 
I. rregular shape of the tip. In (a) the image shows the tip to be three sided 
at the apex andfour sidedfurther down. Notice in (b) three sides are 
visible, while in (c) on1v two sides are visible. 

The shape of each tip considered is shown in projection in fig. 4.5, and each tip is 

taken to be 15gm high. T1pI is a four sided pyramid with a thin film on each face 

apart from its square base. Each thin film is a triangular prism of magnetic material 

uniformly magnetised in the plane of the film and in a direction pointing towards the 

apex of the tip (see Section 4.2.3). The stray field from each of the four separate thin 
films is calculated using a similar method to that described in the previous section 
(section 4.2). Tip2 is a three sided pyramid with a right angled triangular base, while 
Tip3 is a four sided pyramid with a kite shaped base. In both cases each face apart 
from the bases of the tips are coated in triangular prism shaped thin films of 

magnetic material uniformly magnetised in a direction pointing towards the apex of 

the tips. 

The thin film material coating each tip model was taken to be a 40nm thick 
CoCr alloy with a known saturation induction of 0.5T. 
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Fig. 4.5: Diagram of tip models 1,2 and 3. Arrows indicate the direction of 
magnetisation of the thin film coating the tips. All tips are 15, Wn high. Note that the 

f the page. (a)Tipl: Four sided tip with square base. v axis is out o 
(b)Tip2: Three sided tip with right angled triangular base. 
(c)Tip3: Four sided tip with a kite shaped base. 

4.3.1 Stray Field and Integrated Stray Field from Model Tipl 

4.3.1.1 Stray Field Calculated Directly frorn Model TipI 

For model Tipl oriented such that its axis was parallel to the reconstruction plane 

normal - see fig. 4-6(a) - the three dimensional stray field was calculated at the 

reconstruction plane using the method described in section 4.2.3. Fig. 4.7(a) shows 

grey scale images of the stray field components calculated directly from the model, 

Line scans were taken horizontally and vertically (i. e. the x and z directions of 

fig. 4.6(a)) across the peak value of the component of field normal to the plane of 

reconstruction (y component) and are shown in fig. 4.7(c). For field scans such as 

these, the definition of the asymmetry of a scan is taken as the distance between the 

position of the peak field value and the centre of the FWHM as a fraction of the 

FWHM of the scan. The half maximum value is defined as the mid-point of the 

maximum and minimum values of scan, while the centre of the FWHM is taken as 

the midpoint between the positions of the half maximum values of the scan. In the 

following this fraction will be referred to as the asymmetry index of the scan. 

Using this definition, it is found that the scans in fig. 4.7(c) have an 

asymmetry index of zero. In other words each scan is symmetric about the position 

of its peak field value. The reason for the symmetric nature of the scans is that the tip 
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considered is symmetric about the x and z axes of fig. 4.6(a) and therefore so are the 

stray fields generated. 

piane oj 

reconstn 
Tip 

60nm 

(a) Tip] oriented so that its axis is 
parallel with the reconstruction 
plane normal. 

V 

plane of 
reconstruction 

x tip axis 
60nm 

(b) Tip] oriented so that its axis is at 
12.5 'to the reconstruction plane 
normal. 

Fig. 4.6: Orientation of model Tip] with respect to the reconstruction plane. 

Now, a practical MFM tip is mounted in the MFM such that its axis is at 

approximately 12.5' to the normal of the sample surface. It is therefore the stray field 

at a plane, just in front of the tip, whose normal is at 12.5' to the tip axis that is of 

interest. Thus, for model TipI oriented such that its axis was at 12.50 to the 

reconstruction plane normal - see fig. 4.6(b) - the three dimensional stray field was 

calculated (directly from the model) at the reconstruction plane and is shown in fig. 

4.7(b). 

Note that the general form of each of the calculated field components in fig. 

4.7(b) is similar to the corresponding component in fig. 4.7(a). Once again horizontal 

and vertical field scans (i. e. scans across the x and z directions of fig. 4.6(b)) were 

taken across the peak value of the component of field normal to the plane of 

reconstruction (y component) and are shown in fig. 4.7(d). 

Using the definition given above for the asymmetry index of a field scan, it is 

found that the horizontal field scan in fig. 4.7(d) has an asymmetry index of zero 
(indicating that the scan is symmetfic about the position of its peak field value). This 

plane of 
reconstruction 
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Fig. 4.7: Gre 
-v scale images ofthe three dimensional strayfield calculatedfrom model 

Tip I oriented as in Jig. 4.6(a) and (b) andfield scans taken across tile component oj' 
field normal to tile plane oj'calculation. 
(a) Stray field calculatedftom Tip I oriented as in jig. 4.6(a). 
(b) StraY field calculatedjrom Tip I oriented as I'll fig. 4.6(b). 
(c) Horizontal and vertical (i. e. tile x and z directions offig. 4.6(a)) scans taken across 

y component ojfield in (a). Note that the scans are identical- thus tile appearance 
of 0111Y One Scall. 

(d) Horizontal and vertical (i. e. thex and z directions offig. 4.6(b)) scans taken across 
y component fleld in (b). 
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is expected since the model tip is symmetric about the z axis of fig. 4.6(b) and 

therefore so is its stray field. 

The vertical field scan in fig. 4.7(d) is found to be non symmetric about its 

peak field position; it has a non zero asymmetry index of 0.027. This result is also 

expected since the tip model oriented as in fig. 4.6(b) is not symmetric about the x 

axis and therefore its stray field is not expected to be symmetric either. Note that an 

asymmetry index of 0.027 is a small fraction of the FWHM of the scan. In fact the 

calculated distance between the peak field position and the centre of the FWHM of 

the scan is found to be 6nm. This distance is well below the resolution available from 

the CM20 STEM (at the University of Glasgow) operated in low mag scanning DPC 

imaging mode (which is of the order of 20-30nm) and in this context can be 

considered to be insignificant in a practical experiment. 
It is therefore concluded that the symmetric nature of the stray fields (at the 

reconstruction plane) calculated directly from model Tipl oriented as in figs. 4.6(a) 

and (b) are effectively identical. 

Note that the FWHM of the horizontal field scans in figs. 4.7(c) and (d) differ 

by 2nm, while the FWHM of the vertical field scans in figs. 4.7(c) and (d) are 

identical. Furthermore, the peak value of the component of field normal to the plane 

(y component) is 46mT for the tip oriented as in fig. 4.6(a), and 47mT for the tip 

oriented as in fig. 4.6(b). These differences in the magnitude and the spatial 

definition of the calculated stray fields are small (being less than 2%) and may be 

considered insignificant in a practical experiment. 
We therefore conclude that the stray field at the reconstruction plane 

generated by Tip I oriented as in fig. 4.6(a) and that generated by Tip I oriented as in 

fig. 4.6(b) are effectively identical since the spatial definition, the peak field values 

and the asymmetric nature of the stray fields differ by only a small percentage (less 

than 2% in each case). The suggestion is that mounting the tip on the NIFM at 12.5* 

to the normal of the sample surface will have little effect on the character of the tip 

stray field at the reconstruction plane, and therefore will have little effect on the tip- 

sample interaction. 
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4.3.1.2 Integrated Stray Field Calculated from Model Tipl 

Now consider the simulated integrated field line scan data sets generated by Tipl. 

Figs. 4.8(a) and (b) show the data sets generated by Tipl rotated about an axis 

parallel with its own axis (i. e. the tip rotated about the y axis of fig. 4.6(a)). Figs. 

4.8(c) and (d) show the data sets generated by Tipl rotated about an axis at 12.50 to 

its own axis (i. e. the tip rotated about the y axis of fig. 4.6(b)). 

Note that although figs. 4.8(a) and (b) appear to show only one line scan for 

each set, there are in fact 36 scans in each set. It is found that the FWHM of the 

scans in fig. 4.8(a) vary in value by up to 2nm (this is due to the fact that the tip 

model is not fully rotationally symmetric about the rotation axis and therefore the 

integrated field line scans generated by the model are not identical). This variation in 

FWHM (of 2nm) is not large enough to be visible in the scans of 10nm resolution. 
For the integrated field line scans such as in figs. 4.8(a) and (c), the definition 

of the asymmetry of a scan is equivalent to that for a field scan given earlier. That is, 

the asymmetry is defined as the distance between the peak integrated field value and 

the centre of the FWHM of the scan divided by the value of the FWHM of the scan. 

This fraction is again referred to as the asymmetry index of the integrated field scans. 
Fig. 4.8(e) plots the asymmetry index of each scan in the data sets of figs. 

4.8(a) and (c). Note that for the tip rotated about its own axis (i. e. the y axis of fig. 

4.6(a)) the integrated field line scans generated have an approximate asymmetry 

index of zero. However for the tip rotated about an axis at 12.5' to its own axis (i. e. 

the y axis of fig. 4.6(b)) the integrated field line scans generated have a significant 

non zero asymmetry index. The maximum value of the asymmetry index for the 

scans in fig. 4.8(c) is 0.106 which corresponds to a distance between the positions of 

the peak integrated field value and the centre of the FWHM of just over 10% of the 

value of the FWHM of the scan. The minimum value of the asymmetry index for the 

scans in fig. 4.8(c) is zero. The angular positions of the tip for generation of the line 

scans of maximum and minimum asymmetry index are separated by 90' about the 

rotation axis. Note that for the scans in fig. 4.8(c) the calculated distance between the 

position of the peak integrated field and the centre of the FWHM is Onm at its 
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Fig. 4.8: Inlegrated. field linescans generated by Tipl rotated about the y 
uves oj'Jig. 4.6(a) and (b). 
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minimum, and 138nm at its maximum (which corresponds to 5 or 6 pixels on a real 
deflection line scan). 

Therefore, the simulated integrated field line scans generated by Tipl 

oriented as in fig. 4.6(a) and rotated about the y axis are not identical to the 

integrated line scans generated from the same tip model, oriented as in fig. 4.6(b) and 

rotated about that y axis. The difference between the asymmetric nature of the scans 

in each case although small would be measurable in a real experiment. 

4.3.1.3 Comparison of the Calculated and Reconstructed Stray Fields from Tipl 

The stray fields calculated at the reconstruction plane from model Tipl oriented as in 

figs. 4.6(a) and (b) are found to be effectively identical. The corresponding integrated 

fields however, have been found to be clearly distinguishable from one another. 
Therefore, in order to determine whether the character of the stray field reconstructed 
from the simulated integrated field line scans (using the RTM reconstruction 

technique) is consistent with the field calculated directly from the tip model, a 

comparison of the reconstructed and calculated fields is now carried out. 
The three dimensional stray field was reconstructed from each of the 

simulated rotation data sets in figs. 4.8(c) and (d) using the RTM tomographic 

reconstruction method (see section 3.4) and the average is shown in fig. 49(a). Fig. 

4.9(b) shows the corresponding three dimensional stray field calculated directly from 

the tip model at the reconstruction plane. The field components in fig. 4.9(b) are the 

same as those shown earlier in fig. 4.7(b). 

Once again horizontal and vertical field scans were taken across the 

component of field normal to the reconstruction/calcuiation plane and are shown in 

figs. 4.9(c) and (d). From the fact that it is difficult to separate the scans in both figs. 

4.9(c) and (d) indicates that there is an excellent agreement between the normal field 

components calculated directly from the model and reconstructed from the simulated 

rotation data sets. Indeed, it is also found that the in-plane components of the 

calculated and reconstructed fields compare favourably. Note that this agreement is 

also found between the stray fields calculated directly from Tipl oriented as in fig. 

4.6(a) and the stray field reconstructed from the line scans obtained from Tipl 

rotated about the y axis of fig. 4.6(a) (i. e. the line scans shown in fig. 4.8(a) and (b)). 
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We therefore conclude that the stray field calculated directly from the tip 

model is in excellent agreement with the field reconstructed (using RTM) from the 

simulated rotation data sets generated by the model. It follows (from Sections 4.3.1.1 

and 4.3.1.2) that although the integrated stray fields generated by model Tipl 

oriented as in figs. 4.6(a) and (b) are clearly distinguishable, we can still expect the 

stray field reconstructed from these simulated rotation data sets (i. e. in fig. 4.8) to be 

effectively identical. We now consider the stray fields and integrated stray fields 

generated by Tips2 and 3. In each case the tip models are assumed to be oriented 

such that the tip axes are at 12.50 to the reconstruction plane normal (similar to Tipl 

oriented as in fig. 4.6(b)). 

4.3.2 Stray Field and Integrated Stray Field from Model Tip2 

4.3.2.1 Stray Field Calculated Directly from Model Tip2 

The three dimensional stray field was calculated directly from model Tip2 at the 

reconstruction plane and is shown in fig. 4.10(a). Once again horizontal and vertical 
field scans were taken across the peak value of the component of field normal to the 

plane of reconstruction (y component) and are shown in fig. 4.10(b). The horizontal 

field scan was again found to have an asymmetry index of zero, indicating that the 

stray field is symmetric about the position of its peak value. The asymmetry index of 
the vertical field scan is non zero - equalling 0.060 - corresponding to a calculated 
distance between the position of the peak field and the centre of the FWHM of 12nm 

(this distance is again below the resolution typically available from the STEM 

operated in DPC imaging mode). The implication is that the asymmetric character of 
the stray field from model Tip2 would not be resolvable when reconstructed (using 

RTM) from deflection line scans of 20-30nm resolution (imaged in a CM20 STEM 

operated in low mag scanning DPC imaging mode). 
Thus the conclusion is that the asymmetric nature of the stray field generated 

by Tip2 would not be measurably different to the asymmetric nature of the stray field 

generated by Tipl despite the fact that the magnetisation distributions are different 

for each tip. 
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4.3.2.2 Integrated Stray Field Calculated from Model Tip2 

Figs. 4.1 l(a) and (b) shový- the integrated field line scan rotation data sets generated 
by model Tip2. Fig. 4.11 (c) plots the asymmetry index of each scan in fig. 4.11 (a). 

The maximum ý alue of the asymmetry index is found to be 0.162 which corresponds 

to a distance of 267nm between the position of the peak integrated field and the 

position of the centre of' the FWHM of the scan. This distance is approximately 

equi ý alent to 9 or 10 pixels on a real deflection line scan. The minimum value of the 

asymmetry index is zero. The angular positions of the tip for the generation of line 

scans of maximum and minimum asymmetry index are again separated by 90' about 

the rotation axis. 

Thus, although the asymmetnc nature of the stray fields generated by TIpsI 

and 2 can be considered effectively identical, the integrated field line scan rotation 
data sets should be measurably different in a real experiment. 

3C 

2tý 

E C 

(a) In teg rated field line scans sensitive 
to induction normal to the plane o 
reconsiniction qeneraied by Tip2. 

12 

8 

E C 

-4 

(b) Integratedfield line scans 
sensitive to induction in the plane of 
reconstruction generated by Tip2. 

02 ------ --- 

016 

Plot oj, tlltl (Isvill/mIn 0 12 

Mdex o 'the '11tegrated 
008 

field line Scalls ill (a). E 
E 004 

0 

10 20 30 

. 004 

line scan 

Fig. 4.11: haegraiedfield line scalls cah"'I"Iedfi-On, model Tip2. Also shown is a 
plot ofthe asymnietry index ofthe scans ill (a). 

73 

m Icr on a microns 



4.3.3 Stray Field and Integrated Stray Field from Model Tip3 

4.3.3.1 Stray Field Calculated Directly from Model Tip3 

The three dimensional stray field from Tip3 (the model which most closely 

resembles the DI tip shown in fig. 4.4 - if we ignore the three sided character of the 

tip at its apex) was calculated at the reconstruction plane and is shown in fig. 4.12(a). 

Once again horizontal and vertical field scans were taken across the peak value of the 

component of field normal to the plane of reconstruction and are shown in fig. 

4.12(b). The horizontal scan was found to have an asymmetry index of zero, again 

indicating that the field is symmetric about the position of its peak value. The 

asymmetry index of the vertical field scan is again non zero, at 0.102. The calculated 

distance between the position of the peak field and that of the centre of the FWHM is 

24nm - approximately at the limit of the resolution achievable from a STEM 

operated in DPC imaging mode. 
The implication is that the asymmetric character of the stray field from model 

Tip3 may just be resolvable when reconstructed (using RTM) from deflection line 

scans of 20-30nm resolution (imaged in a STEM operated in DPC imaging mode). 

However, the distance between the position of the peak field and the centre of the 

FWHM of the scan will certainly not be greater than I pixel on a real reconstructed 
field plane. 

Thus the conclusion is that the asymmetric nature of the stray field generated 

by Tip3 may just be measurably different from the asymmetric nature of the stray 

field generated by Tipl or Tip2 however the difference is small. 
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4.3.3.2 Integrated Stray Field Calculated from Model Tip3 

Figs. 4.13(a) and (b) show the integrated field line scan rotation data sets generated 
by model Tip3. Fig. 4.13(c) plots the asymmetry index of each scan in fig. 4.13(a). 

The maximum value of the asymmetry index is found to be 0.244 which corresponds 

to a distance of 254nm between the position of the peak integrated field and the 

position of' the centre of the FWHM of the scan. This distance is approximately 

equivalent to 9 or 10 pixels on a real deflection line scan. The minimum value of the 

asymmetry index is again zero. The angular positions of the tip for the generation of 
line scans of maximum and minimum asymmetry index are again separated by 90' 

about the rotation axis. 

Thus, despite the fact that the three tip models represent three different 

magnetisation distributions, they have all been found to generate stray field of 

remarkably similar character to one another. However, although the integrated fields 

generated by each tip model are similar to one another, they differ to the extent that 

they are all distinguishable from one another in a practical experiment. 
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4.3.4 Comparison of the Simulated Integrated Field Line Scans Generated by 

Tipsl and 3 with the Deflection Line Scans Generated by a DI NIFM Tip 

We now compare a selection of the simulated integrated field line scans generated by 

Tips I and 3 with the corresponding deflection line scans generated by the DI tip to 

investigate whether the character of these simulated integrated fields compare 

favourably with experimental deflection data. 

The DI tip (coated with a CoCr alloy) was magnetised by the application of a 
large field directed along the tip axis. The tip assembly was mounted in the 

microscope such that the tip axis was at 12.50 to the rotation axis - see Section 3.4. 

The tip was rotated in the microscope and a full DPC deflection data set was taken. 

The line scans were extracted from the DPC image pairs at approximately 50nm in 

front of the tip. The full line scan deflection data set is not presented in this chapter 

(but will be introduced in Chapter 5), instead a selection of line scans from the data 

sets are shown in figs. 4.14 and 4.15. The corresponding simulated integrated field 

line scans generated by Tipsl and 3 are also shown. An indication of the relative 

angular position of the tip for each scan is given. 
Note that the integrated field line scans generated by Tip I have been scaled to 

facilitate the comparison of the asymmetric character of the simulated and 

experimental deflection data. Also note that the deflection line scans generated by 

the DI MFM tip have been modified by the subtraction of a large variable vertical 

shift value from each scan. The subtraction of the vertical shifts from the scans does 

not invalidate the comparison of the simulated and experimental deflection data 

since we are initially only interested in the shape character of the deflection line 

scans generated by the DI tip. The origin of the variable vertical shifts of the scans 

will be dealt with in Chapter 5. 

Fig. 4.14 shows a comparison of the experimental deflection line scans 

(generated by the DI tip) sensitive to induction normal to the plane of reconstruction 

with the corresponding simulated integrated field line scans (generated by Tipsl and 
3). It is clear that both sets of simulated line scans compare favourably with the 

experimental deflection data. In fig. 4.15 the experimental deflection line scans 

sensitive to induction in the plane of reconstruction generated by the DI tip are 

compared to the corresponding simulated integrated field line scans. In this case, 
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there is again reasonable agreement between the experimental and simulated 
deflection data. Note that the integrated fields calculated from the tip models do not 
include contributions from the cantilever and substrate portions of the tip assembly. 
This is a possible reason for any disagreements between the characters of the 

experimental and simulated integrated field. 

We therefore conclude that both Tipsl and 3 are possible models for the DI 

MFM tip magnetised by the application of a large field directed along the tip axis. 
The above comparison therefore justifies the construction of these tip models to 

investigate the character of the MFM tip stray field. In the following section we 

investigate the accuracy of approximating the tip field to be the stray field from a 

point magnetic monopole or a point magnetic dipole. 

4.3.5 Comparison of the Stray Fields and Integrated Fields from model 
TipI with the Stray Fields and Integrated Fields from a Point Magnetic 

Monopole and a Point Magnetic Dipole 

in previous investigationSf2jf3l into the character of the NIFM tip stray field, 

theoreticians and experimentalists have tended to approximate the tip field to be the 

stray field from a point magnetic monopole or a point magnetic dipole. Using one of 
the tip models from the previous sections (Tipsl, 2 or 3), we can investigate the 

accuracy of these approximations to the tip field. Firstly however, we consider the 
relationship between a MFM tip's net magnetic moment and it's stray field. 

The magnetisation of a magnetic material at a point is the magnetic moment 

per unit volume. Therefore the net magnetic dipole moment of a model tip is 

calculated as the vector sum of the products of the magnetisation and the volume of 

each thin film (note that for each tip model the magnetisation of each thin film is 

constant since they are magnetically saturated). 
Using this method the (normalised) magnitude and directions of the net 

magnetic moments of Tips 1,2 and 3 relative to the reconstruction plane normal were 

calculated and are listed in Table 4.1. Also listed in this table are the asymmetry 
index of the stray fields calculated from the tip models (calculated from the vertical 
field scans taken across the peak field value of the component of field normal to the 
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plane of reconstruction), and the maximum asymmetry index of the integrated field 

line scans generated by each tip model. 

Tabk 43: Asymmetry of stray fields and integrated stray fields generated by the tip 

models 
Tip Normalised Net Angle between not Asymmetric Max asymmetric 

Model magnetic Moment magnetic moment of tip Index of Index of 
of model tips model and reconstruction stray field Integrated field 

plane normal line scans 
1 1 12.5" 0.027 0.106 
2 0.856 18.20 0.060 0.162 
3 0.922 21.40 0.102 0.244 

The clear suggestion from Table 4.1 is that the larger the angle between the tip's net 

magnetic moment and the reconstruction plane normal, then the more asymmetric the 

tip stray field and integrated stray field can be expected to be. In Section 4.4 the 

accuracy of using the character of a tip's integrated field as a guide to the character 

of the tip's stray field is discussed in detail. 

We now compare the stray field from model Tip I with the field from a point 

magnetic dipole and the field from a point magnetic monopole. Note that the dipole 

we will consider is of equivalent magnitude and direction to the net magnetic 

moment of Tipl. (given in Table 4.1), while the monopole is of an equivalent 

magnitude to the net magnetic charge of Tipl. 

For the point monopole and dipole approximations to the model tip field we 

require that the monopole and dipole be positioned in space so that their individual 

stray fields at the reconstruction plane are of a similar magnitude and spatial 
distribution to the field from Tipl. In the following, the method for positioning the 

point dipole is described. Note that this method was also used for the point monopole 

approximation. 
It was not clear where to position the dipole to fulfil the criteria described 

above and therefore the dipole was first arbitrarily positioned on the tip axis oriented 
in a direction parallel to the tip's net magnetic moment. The position of the dipole on 
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the tip axis was then altered so that the field generated by the dipole at the 

reconstruction plane was of a similar magnitude to the field from Tipl (note that the 

dipole was moved further away or closer to the position of the tip apex depending on 

whether the dipole field at the reconstruction plane was respectively larger or smaller 

than the magnitude of the tip field). The dipole was finally positioned on the tip axis 

at 300nm from the tip apex (the final position of the monopole was 100nm from the 

tip apex). 
The individual stray fields generated by the monopole and the dipole were of 

a similar character to the field generated by Tipl (see fig. 4.8(b)) but are not shown 
here. Instead line scans taken across corresponding field components (generated by 

the monopole, the dipole and model Tipl) are shown in figs. 4.16(a) and (b). 

The FWHM of the field scan in fig. 4.16(a) taken across the component of 
the monopole field normal to the plane of reconstruction was found to be 250nm, 

while the corresponding FWHM of the dipole field component is 300nm. The 

FWHM of the scan taken across the normal component of field from Tipl is 221nm. 

Furthermore, the peak value of the monopole field scan, the dipole field scan and the 

scan generated by TipI is 46mT in each case. It is therefore clear that the fields 

generated by each of the monopole and the dipole do compare reasonably with the 

field from model Tipl. We now consider the integrated fields generated from each 

individual magnetic source. 

Figs. 4.16(c) and (d) show a comparison of corresponding integrated field 

line scans generated by the point monopole, the point dipole and the model tip. It is 

clear that there is qualitative agreement between the characters of the integrated tip 
field and the integrated field from the monopole and dipole. However, the magnitude 

and spatial definition of these integrated fields do not compare favourably with the 

integrated field from model Tip L 

Hence, it is clear that we can determine a point monopole or a point 
dipole (of specific magnitude and position in space) which generates stray field at the 

reconstruction plane comparable to the field generated by the tip model. However, 

the monopole and the dipole integrated fields do not compare favourably with that 

from the tip. 
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We now consider the case of a point monopole or dipole which generates integrated 

field line scans comparable to that from the model tip. A discussion on the 

agreement between the stray fields generated by the tip model and the 

monopole/dipole is then given. 
The magnitude and the position on the tip axis of the monopole and dipole 

were empirically determined so that they each generated integrated field line scans 

comparable to that generated by the tip model, see figs. 4.17(a) and (b). In this case 
the monopole was positioned 450nm from the tip apex, while the dipole was 

positioned 750nm from the tip apex. It is clear that the integrated fields generated by 

each of the monopole and the dipole do compare reasonably with the integrated tip 
field (the monopole is arguably a more accurate approximation to the integrated tip 
field). However, field scans taken across corresponding components of field 

generated by each magnetic source - see figs. 4.17(c) and (d) - indicate that both the 

monopole and the dipole stray fields significantly differ from the model tip field 

(relative to the agreement between the integrated stray fields). 

It has therefore been shown that it is not possible for a point magnetic 

monopole or a point magnetic dipole to generate both stray field and integrated stray 
field comparable to that generated by a tip model. In Chapter 5 we construct models 
for the cantilever and substrate portions of the tip assembly and in doing so will be 

guided by experimental deflection line scan data sets generated by the DI tip. We 

therefore crucially require a tip model which generates both a stray field and an 
integrated stray field which are comparable to that generated by a practical MFM tip. 
We therefore conclude that both the point monopole and the point dipole are not 

accurate approximations to the NIFM tip and are not suitable for the investigations 

undertaken later in this thesis. 
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4.4 Contribution to the Tip Stray Field and Integrated Stray 

Field from Various Portions of the Thin Film Tip Coating 

Previous investigations into the character of the magnetic state of MFM tips as a 
function of uniform external magnetic field [41 have concluded that the magnetic 

material coating the top 0.7gm of the tip (i. e. film within 0.7gm from the tip apex) is 

the most important for defining the character of the tip field. In this section, the 

contribution to the stray field from different portions of a thin film MFM tip will be 

investigated using two models. The first tip model - which will be referred to as the 

Uniformly Magnetised Tip (UMT)- represents a NIFM tip uniformly magnetised in a 
direction pointing towards the tip apex (similar to Tipl) - see fig. 4.18. The second 

tip model is referred to as the Non-Uniformly Magnetised Tip (NUMT) and for this 

model we ignore the contribution to the tip field from the magnetic charge planes at 

the base of each thin film - see fig. 4.18. The NUMT model represents a MFM tip 

predominately magnetised in a direction pointing towards the tip apex. However, the 

magnetic film at the base of the tip is in a domain configuration which reduces the 

magnetostatic energy of the system. This is analogous to an axially magnetised tip 

with a flux closure domain structure at its base. 

magneti 
thin film 
coating 

MFM tip ---- 

For the NUMT model 
ignore the contributio 
to the fieldfrom these 
charge planes. 

magnetic 
thin film 
coating 

h 

15. wn 

Fig. 4.18: Diagram of model Tip] partially coated with thin film from the apex 
down. Note that for the NUMT model ignore the contribution to the stray fieldfrom 
the charge planes nearest the base of the tip. 
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The three dimensional stray field was calculated from each tip model at the 

reconstruction plane for various portions of the tips coated with thin film (h=0.25gm, 

0.5l. Lm, Igm, 3gm, 5gm, lOgm and 15ýLrn in fig. 4.18). Field scans were then taken 

across the peak value of the component of field normal to the plane of reconstruction 

and a selection generated by the UMT model are shown in fig. 4.19(a). Fig. 4.19(b) 

plots the peak field values of the scans in fig. 4.19(a) and of the scans generated by 

the NUMT model, while fig. 4.19(c) plots the FWHM of these scans. 
Note from fig. 4.19(b) that the peak value of the field generated by the UMT 

model with thin film coating the top 3gm of the model only (i. e. h=3ltm) is 45mT, 

while the corresponding field value generated by the same tip model entirely coated 

with film (i. e. h=15gm) is 46mT. Also, the FWHM of the field scan generated by the 

3Am thin film tip model is 214nm, while the FWHM of the scan generated by the 

fully coated tip model is 221nm. Thus, both the magnitude and the FWHM of the 

field scan generated by the 3jam thin film tip differ from the field scan generated by 

the fully coated tip by only a relatively small amount - less than 3% in each case. 

In contrast, the character (i. e. the magnitude and FWHM) of field scans 

generated by the UMT model with less than the top 3lLm coated with film (i. e. 

Wl. Lm) differ significantly from the field generated by the fully coated tip - see figs. 

4.19(b) and (c). 

The suggestion therefore is that the thin film coating approximately the top 

3grn of the UNIT model is the most important for defining the character of the tip 

stray field (i. e. the magnitude and the spatial distribution of the tip field). The film 

coating beyond 3ýLrn from the apex has little influence on the character of the stray 

field immediately in front of the tip. 

Further, from figs. 4.19(b) and (c) we find for the NUMT model, that the 

magnetic material within approximately iltm from the tip apex is the most important 

for defining the character of this tip field. In this case, both the magnitude and 
FWHM of the field scan generated by the NUMT model with thin film coating the 

top Igm of the model only (i. e. h=lgm) differ from the field generated by the fully 

coated NUMT model by less than 5% - again a relatively small difference. The 

NUMT models with film coating less than the top iltrn (i. e. h<Igm) generate fields 
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Fig. 4.19: Field scans generated by the UMT model of varying h (seefig. 4.18). 
Also shown are plots of the peak field values and the FWHM of the scans 
generated by the UMT model and the NUMT model. 
Note that r, / pollu ý ill (/, ) (111, npn, ww ill(, U, I I/ modcl, while the blue points 
represent the NUMT model. 
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significantly different in character to the field generated by the NUMT model fully 

coated with film. Therefore the suggestion is that the thin film coating the top Igm 

of the NUMT is the most important for defining the character of the tip field (the 

film beyond Il. Lm from the apex having little influence on the character of the field 

immediately in front of the tip). 

The models considered above suggest that the magnetic thin film within I- 

3gm of the tip apex is the most important for defining the character of the tip stray 

field. The portion of thin film tip responsible for the character of the field is, 

however, dependant on the magnetic configuration of the tip film. 

We now consider the integrated field generated by both the UMF and the 
NUMT models. Fig. 4.20(a) shows a selection of integrated field line scans 

generated by the UMT model with film coating various portions of the tip. Fig. 

4.20(b) plots the peak integrated field values of the scans in fig. 4.20(a) and of the 

integrated field line scans generated by the NUMT model, while fig. 4.20(c) plots the 

FWHM of these scans. 

The important point to note from figs. 4.20(b) and (c) is that the character of 

the integrated field (i. e. the magnitude and FWHM of the integrated field line scans) 

generated by the UMT model is still significantly affected as the portion of the tip 

coated with film increases beyond 34m from the apex (i. e. h>3gm). The character of 

the integrated field generated by the NUMT model also continues to change 

significantly as the portion of the tip coated with film increases beyond Igm from the 

apex (i. e. h>Igm). 

This changing nature of the integrated fields generated by the UMT and the 

NUMT models suggests that portions of the thin film tip which do not significantly 

contribute to the character of the stray field immediately in front of the tip, do 

however, significantly contribute to the character of the integrated field. This 

suggests that these portions of the thin film tip generate a smaller field over a larger 

distance (relative to the field from the tip film at the top of the tip) which when 
integrated has a significant effect on the character of the integrated tip field. This 

therefore implies that using the integrated field line scan data sets to assess the 

character of a tip field may be subject to significant error. 
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4.5 Thickness of Thin Film Coating and its Effect on 

Fields/Integrated Fields 

The magnetic thin film material deposited onto an MFM tip is generally sputtered or 

evaporated onto the tip. The resulting thickness of the film deposited is not known 

exactly. Therefore in this section the effect of varying the thin film coating thickness 

on the tip stray field and integrated field is investigated. 

The three dimensional stray field was calculated from model Tipl (coated 

with various thickness of film) and field scans were then taken across the peak value 

of the component of field normal to the plane of reconstruction and are shown in fig. 

4.21(a). Fig. 4.21(b) plots the peak values of the scans in (a), while fig. 4.21(c) plots 

the FWHM of the scans. 
It is not clear what the exact relationship between the stray field and the tip 

film thickness is, however, the important point to note is that the magnitude and the 

FWHM of the field scans increase for increasing tip film thickness. Therefore the 

model suggests that not only does the magnitude of the tip field increase for thicker 

film coatings but the tip field also broadens for thicker film coatings. 
Fig. 4.22(a) shows a selection of line scans taken from the integrated field 

line scan data sets generated by the tip model coated with various thickness of film. 

Plots of the peak integrated field values of these scans, fig. 4.22(b), and the FWHM 

of the scans, fig. 4-22(c), are also shown. Note that the peak integrated field values 

and the FWHM of the integrated field line scans increase for increasing film 

thickness. 
The implication from these results is that for thicker film coatings, the tip 

stray field (although increasing in magnitude) becomes less sharp. Therefore, since 

the MFM's resolution is determined by the spatial distribution of the tip field, the 

model suggests that for higher NIFM imaging resolution the thin film tip coating 

should be kept to a minimum thickness (with the proviso that the tip-sample 

interaction can still be measured). 
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4.6 Summary 

All the tip models considered are an approximation of the geometry of the DI MFM 

tip. In particular the film at the apex of the practical N4FM tip is smooth, rounded and 

continuous (this can be deduced from any TEM images of the tip apex) while the 

film at the apex of each tip model is sharp and discontinuous - see fig. 4.18. Since we 

have concluded (in Section 4.4) that the film in the vicinity of the tip apex is the 

most important for defining the character of the tip field immediately in front of the 

tip, we might expect that a practical N4FM tip will generate a broader stray field than 

the tip models. However, due to the fact that the three tip models - each representing 

a different magnetisation distribution - generate stray fields of similar character to 

one another, we conclude that approximating the geometry of the tip apex (which is 

required to construct a tip model) will not significantly affect the character of the 

calculated field. 

Although the integrated fields generated by the tip models (TipsI, 2 and 3) 

are distinguishable from one another, they do all display a similar character (with 

Tipl generating the least asymmetric integrated field, then Tip2 and finally Tip3 

generating the most asymmetric integrated field - see Table 4.1). In Section 4.3.4, the 

integrated field line scans generated by model Tipsl and 3 (the tips generating the 

least and most asymmetric integrated field) were compared to the deflection data 

generated by the DI MFM tip and were found to compare favourably. This suggested 

that Tipsl and 3 (and therefore the intermediate case - Tip2 ) were possible models 
for the DI tip. 

In contrast, in Section 4.3.5 we concluded that it is not possible to determine 

a point monopole or a point dipole (of specific magnitude and position in space) 

which generates stray field and integrated stray field comparable to that generated by 

a tip model. Since we require models which generate stray field and integrated fields 

comparable to that generated by a DI NEFM tip, the monopole or dipole 

approximations to the MIFM tip are not suitable for the following investigations. 

Instead, in Chapters 5,6 and 7 we continue to use magnetic charge planes to 

construct models of the tip, cantilever and substrate portions of the tip assembly. 
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Chapter 5 

Individual Contributions to a Tip Assembly's 

Line Scan Deflection Data Sets from the Tip, 

Cantilever and Substrate Portions of the Assembly 

5.1 Introduction 

Using a variety of models, the previous chapter dealt with investigations of the 

character of the stray fields and integrated stray fields generated from the thin film 

material attached to an MFM tip. In reality, however, the models used in Chapter 4 

are too simplistic to characterise the stray field/integrated stray field from a real 
NIFM tip, since a real MFM tip is also attached to a cantilever and substrate. 
Generally the entire tip/cantilever/substrate structure, which we will refer to as the 

tip assembly, is sputtered with the thin film magnetic material which coats the 

unshielded parts of the structure equally. Therefore, it is to be expected that at any 

point in free space, the magnetic induction measured from the tip assembly will have 

contributions from the thin film material coating the cantilever and substrate in 

addition to that on the tip. 
Fig. 5.1 shows the line scan deflection data sets generated from a Digital 

Instruments (DI) Nff-M tip coated with CoCr alloy; this was magnetised by the 

application of a large field (-I. OT) directed along the tip axis. The tip assembly was 

rotated in the microscope about an axis at 12.5' to the tip axis (see Section 3.4). The 

line scans were extracted from DPC image pairs and are approximately 50nm in 

front of the tip. In the following this case will be referred to as the Axial Case. 
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Fig. 5.1: Deflection line scan data set generated by DI MFM tip 
magnetised as in the Axial Case (i. e. tip assembly magnetised by 
application ofa largefield --1. OT - directed along the tip axis). 
(a) Line scans sensitive to induch . oil normal to the plane of reconstruction. 
(b) Line scans sensi . live to induction in the plane of reconstruction. 
(c) Plot oj'the average value of'the end-points of each scan in (a). 
(d) Plot oj'the average value of'the end-points of each scan in (b). 

Deflection data provided by Prof. R. P. Ferrier and Dr. S. Mc Vitie. 
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magnetised as in the Transverse Case (i. e. tip assembl ,v magnetised by 
application oj'a lutýgefield - -0.7T - directed along the cantilever axis). 
(a) Line scans sensitive to induction normal to the plane of reconstruction. 
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(c) Plot ofthe average value of'the end-points oftach scan in (a). 
(d) Plot oj'the average value oj'the end-points of each scan in (b). 

Deflection data provided bY Prof. R. A Ferrier and Dr. S. Mc Vitie 
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Note the large vertical spread of line scans within each deflection data set. 

This behaviour is not observed in the simulated integrated field line scans generated 

by the tip models in Chapter 4. However there is a distinct similarity between the 

general shape of the scans and those generated by the tip models. This clearly 

suggests that the tip portion of the tip assembly is largely responsible for defining the 

shape of the scans in fig. 5.1, while the vertical offset arises presumably from 

contributions from the magnetic film on the cantilever and substrate. 

The line scans shown in fig. 5.2 arise from the same tip as in fig. 5.1 but re- 

magnetised by the application of a large field (-0.7T) directed along the cantilever 

axis. Once again a full rotation data set is shown. In the following this will be 

referred to as the Transverse Case. 

Note the large spread of line scans within each deflection data set which are 

similar but not identical to the spread of scans in the data sets of fig. 5.1. Also note 

the similarity in shape between the line scans in fig. 5.2 and those generated by the 

tip models. Once again this suggests that the tip portion of the tip assembly is largely 

responsible for defining the shape of the scans in fig. 5.2 but that the offset in the 

scans originates from the magnetic material attached to the cantilever and substrate. 
The shape of the scans in fig. 5.2 varies to a much greater degree than those 

in fig. 5.1. This may be a character of the integrated fields generated by the same part 

of the tip assembly responsible for the vertical shifts of the scans. Alternatively and 

possibly more plausibly, this may suggest that the magnetic configuration of the tip 

portion of the tip assembly has been modified after re-magnetisation by a field 

directed along the cantilever axis. Thus a further investigation into possible magnetic 

configurations of the tip portion of the tip assembly and its contribution to the 

deflection data sets is required [see Section 5.21. 
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Figs. 5.3(a) and (b) show a DPC image pair of the tip and cantilever portions 

of the tip assembly magnetised as in the Axial Case. The images are sensitive to 

induction in orthogonal directions and are taken from a full rotation data set of low 

magnification images of the tip and cantilever portions of the tip assembly. Both 

images show magnetic induction escaping from various regions along the tip and 

cantilever surfaces. These images (as indeed all the images in the full data set) 

clearly illustrate that there is stray field contributions from the cantilever. 

Figs. 5.3(c) and (d) show a DPC image pair of the tip, cantilever and part of 
the substrate portion of the tip assembly (in the lower half of the images) magnetised 

as in the Axial Case. It is also clear that there are stray fields escaping from the 

surfaces of the substrate. 

(a) 

(c, 

I 
S_ IL 

(b) 

(d) 

Fig. 5.3: (a) and (b) Low magnification DPC images of the tip and 
cantilever porlions of the tip assembly magnetised as in the Axial Case. 
(c)and (d) Low magnification DPC images of thefront edge of the 
substrate portion of the tip assembly (in the lower half of the images) 
magnetised as in the Axial Case. 

Arrows indicate the direction of induction sensitivity. 
Images provided by Prof. R. P. Ferrier and Dr. S. Mc Vitie. 
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The images of fig. 5.3 show that the thin film mateiial attached to the 

cantilever and substrate portions of a real MFM tip assembly does generate stray 

fields. These fields contribute to the total field immediately in front of the tip portion 

of the assembly and therefore contribute to the character of the tip assembly's 

deflection data sets. Thus an investigation into the character of the stray fields and 

integrated stray fields generated by the cantilever (section 5.3) and substrate (section 

5.4) portions is required. The investigations will consider whether the cantilever and 

substrate portions are responsible for the variable vertical shifting of the scans in 

figs. 5.1 and 5.2, and if so, what effect these have on the (ART and RTM) 

reconstructed tip fields (in Chapter 6). A summary of the important points to note 

from this chapter is given in section 5.5. 

5.2 Tip Contribution to the Experimental Deflection Data Set 

Generated by a MFM Tip Assembly 

As discussed above, the tip models discussed in Chapter 4 suggest that the tip 

portion of the tip assembly is largely responsible for defining the shape of the scans 
in fig. 5.1. Further, the existing tip models are a suitable starting point for an 
investigation into the possible magnetic configuration of the tip portion of the 

assembly magnetised as in the Axial and Transverse Cases. 

5.2.1 Tip Portion of the Tip Assembly Magnetised as in the Axial Case 

Clearly the similarity between the shape of the integrated field line scans generated 
by the tip models in Chapter 4 and the line scans in the data sets generated by the DI 
MFM tip assembly magnetised. as in the Axial Case suggests that the tip portion of 
the tip assembly has a magnetic configuration similar to that of the tip models (see 
Section 4.3.4). In other words, the magnetic film coating the tip portion of the 

assembly appears to be magnetised towards the tip apex. 
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5.2.2 Tip Portion of the Tip Assembly Magnetised as in the Transverse 

Case 

The shapes of the scans in fig. 5.2 vary to a much greater degree than those in fig. 

5.1. As discussed above, this may suggest that the magnetic configuration of the tip 

portion of the tip assembly has been modified after application of the field directed 

along the cantilever axis. An investigation into possible magnetic configurations of 

the tip portion of the assembly magnetised as in the Transverse Case was undertaken. 
Figs. 5.4(a), 5.5(a) and 5.6(a) show three plausible magnetic configurations 

for the tip (dimensions identical to Tipl in Chapter 4) magnetised by a field applied 

along the direction of the cantilever axis (i. e. along the positive z direction). The 

corresponding integrated field line scan data sets generated by these tip models are 

also shown. It is clear that the shape of these line scans bear little resemblance to the 

scans in fig. 5.2. Thus the conclusion is that the net magnetisation of the tip portion 

of the assembly magnetised as in the Transverse Case does not settle along the 

direction of the magnetising field (i. e. along the cantilever axis). 
The similarity between the shape of the integrated field line scans generated 

by the tip models of Chapter 4 and the scans in fig. 5.2, suggests that the tip models 

of Chapter 4 are possible models for the tip portion of the assembly magnetised as in 

the Transverse Case. However, the greater variation of the shape of the scans in fig. 

5.2 than those in fig. 5.1 might suggest that the tip portion has a component of 

magnetisation directed along the axis of the cantilever. Thus we decided to 

investigate the integrated field line scans generated by tip models with a net 

magnetisation rotated away from the tip axis. 

The model tips considered were constructed by combining the tip model 

magnetised as in the Axial Case (see fig. 4.5(a)) with any one of the tip models 

shown in figs. 5.4 to 5.6. The simulated integrated field line scans generated by these 

models were then compared to the deflection line scans in fig. 5.2. 
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Fig. 5.5: (a) Another possible magnetic configuration of the tip model magnetised as in 
the Transverse case. (b) Line scans sensitive to induction normal to the plane of 
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Fig. 5.7 shows a comparison of deflection line scans generated by the DI tip 

(sensitive to induction normal to the plane of reconstruction - see fig. 5.2) with the 

line scans generated from a tip model constructed by combining approximately 90% 

of the tip magnetised in the Axial Case (see Tipl in fig. 4.5(a)) with 40% of the tip 

magnetised as in fig. 5.4 - these simulated contributions were combined in 

quadrature. Note that the size of the component contributions to the final model tip 

magnetisation were systematically deduced to give a best fit comparison between the 

simulated and experimental deflection data. An indication of the relative angular 

position of the tip for each line scan is given. 
It is clear that the simulated line scans compare favourably with the 

experimental (DI tip) deflection data. Fig. 5.8 shows a comparison of the 

experimental deflection line scans (sensitive to induction in the plane of 

reconstruction) with the corresponding simulated scans generated by the same 

combination tip model. Once again the simulated line scans compare favourably with 

the experimental deflection data. Thus the suggestion is that the tip portion of the 

assembly magnetised as in the Transverse Case is predominately magnetised along 

the tip axis (even after it has been subjected to a large field applied along the 

cantilever axis). Our investigations suggest that the component of tip magnetisation, 
directed along the cantilever axis is relatively small and the tip model magnetised as 
in fig. 5.4 is a possible model for this component. 

Note that other models for the tip portion of the tip assembly magnetised as 
in the Transverse Case were constructed from a combination of the model tip 

magnetised as in the Axial Case with either of the tips in figs. 5.5 and 5.6 (these tip 

models are not shown here). The shapes of the simulated integrated field line scans 

generated again compared favourably with the experimental deflection line scans 

shown in figs. 5.7 and 5.8 (these simulated integrated field line scans are not shown 
here). We therefore conclude that the tip portion of the assembly magnetised as in 

the Transverse Case is predominantly magnetised along the tip axis. The component 

of magnetisation directed along the cantilever axis is small and it is not clear which 

of the models in figs. 5.4 to 5.6 best resembles this component. 

104 



20 

15 

(a) 10 
E 

5 

0 

-5 

25 

20 

15 

E 

5 

0 

-5 

20 

15 

to 

5 

0 

-5 

-10 

m icrons 

microns 

Relative orientation of the 
tip assembly about the 
rotation axis in the STEM 
for the line scans shown. 
Note that the rotation axis 
points out of the page. 

Z 

tip assembly 

X4 

Fig. 5.7: Comparison ofa selection of deflection line scans (sensitive to induction 
normal to the reconstruction plane) generated by the DI MFM tip assembly 
inagnetised as in the Transverse Case with the simulated integratedfield line scans 
generated b, va tnodelfbr the tip portion of the assembly also magnetised as in the 
Transverse Case. 
Ae tip model was constructed by combining approximately 90% of the tip model 
inagnetised as the Axial Case with 40% ofthe tip magnetised as in fig. 5.4(a). 
Note that the deflection line scans generated by the DI tip - which are taken from the 
data set ilifig. 5.2(a) - have had a constant deflection value subtractedfroln them. 
The value subtracted was the average value ofthe end-points of the scans. 

105 

microns 



6 

(a) 

4 

2 

0 

-2 

-4 

-6 

-8 

-10 

-12 

8 

6 

4 

2 

12 

10 

8 

6 

2 

0 

-2 

-4 

-6 

microns 

m icrons 

microns 

Relative orientation of the 
tip assembly about the 
rotation axis in the STEM 
for the line scans shown. 
Note that the rotation axis 
points out of the page. 

, 

77-)- 

tip 

LJ x 

Fig. 5.8: Comparison oj'a selection of deflection line scans (sensitive to induction in 
the plane oj'reconstniction) generated b*y the DI MFM tip assembly magnetised as in 
the Transverse Case with the simidated integ rated field line scans generated by a 
tnodeljOr the tip portion oj'the assenibl ,y also inagnetised as in the Transverse Case. 
Die tip model was constructed b, N, combining approximately 90% of the tip model 
magnetised in the A-vial Case with 40% of the tip inagnetised as in fig. 5.4(a). 
Note that the tlýflection line scans generated by the DI tip - which are taken from the 
data set in jig. 5.2(b) - have had a constant deflection value subtractedfrom them. 
Pie value subtracted was the average value of the end-points ofthe scans. 

106 



5.3 Cantilever Contribution to the Experimental Deflection Data 

Set Generated by a MFM Tip Assembly 

In this section we consider possible magnetic configurations of the cantilever film 

and the stray fields and integrated stray fields which they generate. Figs. 5.9(a) and 
(b) show SEM images of the cantilever portion from which the dimensions of a 

model were determined - see fig. 5.9(c). 

z 

4.5Mý'. '. * 

v 

.... . ........... ... 
15, wn 13. Junt 

18. lwn 

211.9A#n 

3. IA#n 

5, wn 5, um 

(c) Diagram of cantilever model. 

Fig. 5.9: SEM images of the cantilever portion of the tip assembly and the 
cantilever model deferminedfrom them. 
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In all the following calculations it is assumed that only the top surface of the 

cantilever (the side with the tip attached) is coated in a CoCr alloy with a saturation 

magnetisation equivalent to a saturation induction of 0.5T. Therefore each of the five 

individual faces on the top surface of the cantilever model is coated with a thin film 

of the same thickness. The method used to calculate the stray field from the thin 

films attached to the cantilever model is similar to the method described in section 
4.2. 

5.3.1 Cantilever Portion of the Tip Assembly Magnetised as in the Axial 

Case 

A number of models for the cantilever film magnetised as in the Axial Case were 
constructed and a selection of them are considered in the following. Fig. 5.10(a) 

shows one possible magnetisation for the cantilever model (i. e. model CAJ); the 

magnetising field was directed out of the page. For the determination of this 

magnetic configuration it was assumed that the magnetisation of each of the five 
individual thin films which make up the cantilever model were magnetised in the 
plane of the film. A plausible magnetic configuration for the model was then 

estimated taking into account the geometry of the model and the direction of the 
magnetising field. The integrated field line scans generated by the model CAJ are 
shown in figs. 5.1 O(b) and (c). 

The first thing to note is that the line scans in fig. 5.10 do not display a large 

variable vertical shift character comparable to that observed in the experimental data. 
The maximum integrated field value of the line scans in fig. 5.10 is approximately 
IOTnm. This value is very much smaller than the maximum vertical shifts in figs. 5.1 

and 5.2, and indeed of the peak integrated field values generated by the tip models in 
Chapter 4 (approximately 25Tnm). 

Figs. 5.11(a) and 5.12(a) show another two possible magnetisation 
distributions for the cantilever film magnetised by a field directed out of the page 
(i. e. models CA-2 and CA_3). The same criteria as used in the construction of the 

previous model was also used here. Therefore the magnetic configurations of models 
CA-2 and CA-3 were again estimated taking into account the geometry of the model 
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and the direction of the magnetising field. The integrated field line scans generated 

by these models are shown in figs, 5.11 (b) and (c) and figs. 5.12(b) and (c). 

Once again note that in both cases the line scans generated by the models do 

not display a large variable vertical shift character comparable to that in figs. 5.1 and 
5.2. The maximum integrated field values of the simulated line scans is again much 

smaller than the maximum vertical shifts in figs. 5.1 and 5.2, and of the peak 
integrated field values generated by the model tips in Chapter 4. 

Thus the cantilever models discussed above (i. e. models CA_I, CA. 2 and 
CAJ) cannot explain the large vertical shifts observed in the experimental line scans 

and we may conclude that it must be the magnetisation of the substrate film which is 

responsible. Nevertheless we still need to be able to determine the contribution from 

the cantilever film to the tip assembly's deflection data sets and consequent 

reconstructed stray field. In order to help decide on the best model it was decided to 

simulate the 2-D distribution of integrated field in the vicinity of the tip and to 

compare this with the observed integrated induction. 

Two DPC image pairs of part of the tip and cantilever portion of the DI tip 

assembly were chosen from a full rotation data set of low magnification images of 

the tip assembly magnetised as in the Axial Case - see figs. 5.13(a) and (c), (e) and 

(g). As usual the images in each pair were sensitive to induction in orthogonal 
directions. Investigations of the 2-D distribution of the integrated fields generated by 

models CAJ, CAj and CA-3 was undertaken. The integrated fields generated by 

the cantilever models CA-1 and CA-2 were found to compare unfavourably with the 

experimental deflection data (these comparisons are not shown here). This indicates 

that these models are not possible models for the magnetisation distribution of the 

practical cantilever. However, the integrated field generated by cantilever model 
CAj was found to compare favourably with the experimental deflection data. 

Fig. 5.13 shows the DPC image pairs of the DI MFM tip and the 

corresponding simulated images calculated from cantilever model CAJ. The first 

DPC image pair (see fig. 5-13(a) and (c) for the experimental DPC image pair and 
fig. 5.13(b) and (d) for the corresponding simulated DPC image pair) is of the tip and 

cantilever oriented such that the view is looking down the axis of the cantilever. The 

second DPC image pair (see fig. 5.13(e) and (g) for the experimental DPC image pair 
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and fig. 5.13(f) and (h) for the corresponding simulated DPC image pair) is at 90' to 

this about the rotation axis. Note that the tip model used in the simulated DPC 

images was Tip I from Chapter 4 (see fig. 4.5). 

A visual comparison of the images in fig. 5.13 suggests that there is 

reasonable qualitative agreement between the corresponding simulated and 

experimental DPC images. For a further comparison, line scans were taken across 

the DPC images and are shown in fig. 5.14 (an indication of where the scans were 
taken on the images is given). It is clear from these scans that there is good 

agreement between the character of the simulated and experimental deflection data. 

Note that the contribution to the experimental DPC images from the substrate 

portion of the DI tip assembly has not been taken into account in the simulated DPC 

images. Also, note that the magnetic domains in the model cantilever film are 

extended over a larger area than we might expect in a practical situation (notice the 

variation of DPC contrast along the edges of the DI cantilever in fig. 5.13 - this is 

consistent with what we expect from substantially smaller magnetic domains than the 

model cantilever domainst"). These are two possible reasons that the agreement 
between the simulated and experimental deflection data is not better. Nevertheless, 

we conclude that the cantilever model CAj is a possible model for the cantilever 

portion of the tip assembly magnetised as in the Axial Case. 

Note that the tip model used in the simulated DPC images is coated with 
CoCr thin film of 40nm thickness. This tip model generates integrated field line 

scans of comparable magnitude and FWHM to the line scans in fig. 5.1 (ignoring the 

variable vertical shift). However in order to obtain simulated DPC images of 

comparable contrast to the experimental DPC images, the thin film coating on the 

cantilever model was required to be 120nm thick, that is 3 times the thickness of the 

thin film coating the tip. This may suggest that the sputtering of thin film onto the tip 

assembly is uneven. The steep sloping sides of the tip relative to the cantilever may 
be coated with a thinner film than the cantilever. The model therefore suggests that a 
further experimental investigation into the thickness of thin film coating the different 

portions of the tip assembly is required. 

An alternative explanation for the larger than expected cantilever contribution 

to the tip assembly deflection data set is that (with the thickness of film coating the 
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tip and cantilever portions the same) the practical cantilever film has extended 

magnetic volume and surface charge regions not accounted for in the model. The 

magnetic volume charges (V -M) arise in regions where the divergence of the 

cantilever film magnetisation (M) is non zero (i. e. V-M# 0). Further surface 

charges (M-n) may aiise from the fact that the practical cantilever film is not as 

smooth as the model film (see the underside of the cantilever in the DPC images in 

fig. 5.3) and as a result has a larger amount of surface charges than the model. We 

now briefly consider the character of the stray field generated from the cantilever 

model CA-3. 

Fig. 5.15(a) shows a field scan (of the component of field normal to the plane 

of reconstruction) calculated directly from the cantilever model CA-3 at the plane of 

reconstruction. Fig. 5.15(b) shows a corresponding field scan (of the component of 
field normal to the plane of reconstruction) calculated directly from the tip model 

(i. e. model Tipl used in the simulated DPC images in fig. 5.13) at the plane of 

reconstruction. 
In the vicinity of the peak tip field (i. e. on the reconstruction plane), the field 

from the cantilever is less than I mT and varies by less than 0.1 mT. The peak tip field 

on the reconstruction plane is 46mT. Thus, the models suggest that the cantilever 

field on the reconstruction plane is small (being less than 2% of the peak tip field) 

and effectively constant (since changes in the cantilever field of the order of O. ImT 

can be considered to be insignificant in a practical experiment). 

Now consider the horizontal axes on the graphs shown in fig. 5.15. Note that 

in fig. 5.15(a) the field scan component calculated from the cantilever model is 

800l. tm in length, while the scan in fig. 5.15(b), calculated from the tip model, is only 

8gm in length. The FWHM of the field scan in fig. 5.15(a) is approximately 57gm, 

while the corresponding FWHM of the scan in fig. 5.15(b) is approximately 220nm. 

Thus the tip field immediately in front of the tip dominates over the field 

from the cantilever. However, the large spread of the cantilever field ensures its field 

integrals are significant as figs. 5.12(b) and (c) show. Furthermore, note that since 

the tip field tends to zero at infinity faster than the field from the cantilever, the 

cantilever field in fact becomes the dominant contribution to the stray field at 
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distances ot'greater than approximately 20ptm from the tip. In Chapter 6 we consider 

the effect that the cantilever (and substrate) contribution to the tip assembly's 

deflection data sets has on the accuracy of the (ART and RTM) reconstructed tip 

field. Firstly however-, we consider possible magnetisation distributions for the 

practical cantilever film magnetised as in the Transverse Case. 
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(a) Field scan calculated directl 1, 
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reconstruction plane. 

(b) Field scan calculated 
directlyfrom the tip model at 
the reconstruction plane. 

Fig. 5.15: Field scan components calculated in the plane of'reconstruction from 
cantilever model CA_3 and model Tip]. 

5.3.2 Cantilever Portion of the Tip Assembly Magnetised as in the 

Transverse Case 

For the cantilever film magnetised as in the Transverse Case only two models were 

constructed. Fig. 5.16(a) shows one of these models (model CT 1); the magnetising 

field was directed along the cantilever axis as indicated. For the determination of this 

magnetic configuration it was again assumed that the magnetisation of each of the 

five individual thin films which make up the cantilever model were magnetised in 

the plane of the film. A plausible magnetisation for the model was then estimated 

taking into account the geometry of the model and the direction of the magnetising 

field. The integrated field line scans generated by model CT-1 are shown in figs. 

5.16(b) and (c). 
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Once again the magnitude and distribution of the line scans does not compare 
favourably with the scans in figs. 5.1 and 5.2. A comparison of the 2-D distribution 

of integrated field from CT-I with the observed induction (this comparison is not 

shown here) also gave poor agreement. This indicates that cantilever model CT I is 

not a suitable model for the cantilever film magnetised as in the Transverse Case. 

The second model for the cantilever film magnetised as in the Transverse 

Case - model CT-2 - is shown in fig. 5.17(a). Note that the same criteria as used in 

the construction of the previous cantilever models was also used in this case. An 

investigation of the 2-D distribution of the integrated field from the model cantilever 

was again undertaken. 

Thus once again two DPC image pairs of part of the tip and cantilever portion 

of the DI MFM tip assembly were taken from a full rotation data set of low 

magnification images of the DI MFM tip assembly magnetised as in the Transverse 

Case - see figs. 5.18(a) and (c), (e) and (g). As usual the images in each pair were 

sensitive to induction in orthogonal directions. 

Fig. 5.18 shows these experimental DPC image and the corresponding 

simulated images calculated from cantilever model CT-2. The first DPC image pair 
(see fig. 5.18(a) and (c) for the experimental DPC image pair and fig. 5.18(b) and (d) 

for the corresponding simulated DPC image pair) is of the tip and cantilever oriented 
in such a way that the view is looking down the axis of the cantilever. The second 
DPC image pair (see fig. 5.18(e) and (g) for the experimental DPC image pair and 
fig. 5.18(f) and (h) for the corresponding simulated DPC image pair) are at 900 about 

the rotation axis. Note that fig. 5.17(a) shows the magnetic configuration of the tip 

portion of the simulated DPC images. The tip model again has identical dimensions 

to that of Tipl in Chapter 4. Also, the direction of the model tip's magnetisation is 

reversed from the Axial Case. This is required so that the contrast in the simulated 
DPC images from the tip and cantilever models is consistent with the contrast 

observed in the experimental DPC images. 

A visual comparison of the images in fig. 5.18 suggests that there is 

reasonable qualitative agreement between the simulated and experimental DPC 

images. Once again line scans were taken across the simulated and experimental 
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(a) Magnefic configurations of the tip and cantilever models used in the 
simulated DPC iniages of the Transverse Case infigs. 5.18. 
Note that the magnetising field is directed along the positive z direction. 
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DPC images and are shown in fig. 5.19 (an indication of where the scans were taken 

on the image is given in fig. 5.18). From a comparison of the corresponding 

simulated and experimental scans in fig. 5.19 it is clear that there is very good 

agreement between the character of the simulated and experimental DPC images. 

Once again note that the agreement between the simulated and experimental 

deflection data could have been improved upon if the contribution from the substrate 

portion of the tip assembly had been taken into account in the simulated DPC 

images. Further modification of the large magnetic domains of the model cantilever 
film may also have improved the agreement between the simulated and experimental 
deflection datat". Nevertheless, cantilever model CTI-2 is taken to be a possible 

model for the cantilever portion of the DI tip assembly magnetised as in the 

Transverse Case. 

Note that the magnetic film coating the cantilever model was 120nm thick, 3 

times the thickness of the film coating the tip model (see Section 5.3.1 for possible 

explanations for this). We now briefly consider the character of the stray field from 

cantilever model CT 2. 

Fig. 5.20(a) shows a field scan (of the component of field normal to the plane 

of reconstruction) calculated directly from the cantilever model 0ý_2 at the 

reconstruction plane. Fig. 5.20(b) shows a corresponding field scan (of the 

component of field normal to the plane of reconstruction) calculated directly from 

the tip model (magnetised as in fig. 5.17(a)) at the reconstruction plane. 
In the vicinity of the peak tip field (i. e. on the reconstruction plane) the 

cantilever field is again less than ImT and varies by less than O. ImT. The peak tip 
field on the reconstruction plane is -46mT. Thus, the models again suggest that 

(similar to the Axial Case) the cantilever field on the reconstruction plane is small 

(being less than of 2% of the peak tip field) and effectively constant. 

Now consider the horizontal axes on the graphs shown in fig. 5.20. Once 

again note that in fig. 5-20(a) the field scan calculated from the cantilever model is 

800gm in length, while the scan in fig. 5.20(b) calculated from the tip model is 8grn 

in length. 

We therefore conclude that the tip field immediately in front of the tip 
dominates over the field from the cantilever. However, the large spread of the 
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cantilever field ensures its field integrals are significant as figs. 5.17(b) and (c) show. 
Furthermore, since the tip field tends to zero at infinity faster than the field from the 

cantilcNer, the field from the cantilever becomes the dominant contribution to the 

straN field at distances of greater than approximately 20gm from the tip. We now 

consider possil-fle niagnetisation distributions for the substrate film magnetised as in 
the Axial and Transverse Cases. 
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5.4 Substrate Contribution to the Experimental Deflection Data 

Set Generated by a MFM Tip Assembly 

From the models considered in the previous sections the implication is that the 

vertical offset of the scans in figs. 5.1 and 5.2 must originate from the magnetic 

material attached to the substrate portion of the tip assembly. Figs. 5.21(a) and (b) 

show SEM images of the substrate from which the dimensions of a model were 
determined - see figs. 5.21(c). 
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Fig. 5.21: SEM images of the substrate portion of the tip assembly and the 
substrate inodel determinedfrom them. 
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In all the following calculations the top surface and sides of the substrate are coated 

with a film of 120nm thickness. The film is the same CoCr alloy as used in the 

previous tip and cantilever models. The method used to calculate the stray field from 

the thin films attached to the substrate model is similar to the method described in 

section 4.2. 

5.4.1 Substrate Portion of the Tip Assembly Magnetised as in the Axial 

Case 

We first investigated possible models for the substrate film magnetisation for the 

case of the magnetising field directed along the tip axis. For each substrate model 

constructed it was assumed that the individual films which make up the model were 

magnetised in the plane of the film. 

The first substrate model - SAJ - which generated a distribution of 

integrated field line scans comparable to the vertical distribution of the experimental 

deflection line scans in fig. 5.1 is shown in fig. 5.22(a). The magnetisation 

distribution of this model was estimated by taking into account the geometry of the 

model and the direction of the magnetising field. The integrated field line scans 

generated by the model, figs. 5.22(b) and (c), and plots of the average values of the 

end-points of each line scan, figs. 5.22(d) and (e), are shown. For a comparison, plots 

of the average values of the end-points of each of the experimental deflection line 

scans in fig. 5.1 are also shown. 
Note that the substrate model SAJ does generate data sets of vertically 

shifted line scans. This indicates that the substrate portion of the tip assembly is the 

source of the vertical shifts observed in the data sets of figs. 5.1 and 5.2. This 

substrate model was taken as a starting point for further investigations aimed at 
improving on the agreement between the experimental (DI tip assembly) and 

simulated deflection data. 

Fig. 5.23(a) shows another possible magnetic configuration for the substrate 

magnetised as in the Axial Case - i. e. substrate model SA_2. In this case it was 
decided to assume that the magnetisation of the film on the top surface of the 

substrate was in a flux closure configuration; therefore there are no free magnetic 

124 



View looking 
into sidefil(VA 
Of substraft, 

A oldl of 1), 

View looking 
into side faces 
of substrate 

y +--j 

z 

x into page 

View looking into 
thefrontfaces of 

IWO PUK" the substrate 

(a) Lyloded plan view ofniodel SA-1 - magnetising field directed along positive y 

40 100 

20 80 

60 

-20 

40 

. 40 

-00 
100 

-120 

microns 

(b) Integratedfield line scans 
(. vensiiive to induction normal to the 
plane of reconsiruction) generated 
by the substrate model. 

40 

20 

0 

-20 

Tnm 
-40 

-60 
-80 
100 
120 

(d) Plots (-)J*tlie average value qfthe 
end-points oj'each scan in (b) and qf 
the experimental scans infig. 5. l(a) 

20 

-20 

-40 

-60 

-80 

(c) Integratedfield line scans 
(sensitive to induction in the plane 
ofreconstruction) generated by the 
substrate model. 

100 
80 

50 

40 

Tnm 20 

c 
-20 

-40 

-60 

-80 

(e) Plots of the average value of the 
end-points oj'eu(--Ii scan in (c) and of 
the experimental scans in fig. 5.1(b) 

Fig. 5.22: A possible modelfor the substrate portion of the tip assembly magnetised as 
I. n the Avial Case. In (d) and (e), ,, m, ///, , r, 1,1 "', 1,1/11, ''1 1/h, N )/ 
m, Nilnlt/4 iý, (i s(olo, while bluescalls /)/Of /he alTraKi, Value Ofthe end-poinis Offhe 

r/ . mental th, flection lim, scansshown I'lifig. 5.1. 

125 

'x 

0 

m icrons 



, -j 

z 

x ge 

View looking 
into side faces 
of substrate 

v x out qf'page 

View looking 
into side faces 
of substrate 

y I-j 

z 

x into page 

y View looking into 

X *-ý thefrontfaces of 
z into page= the substrate 

(a) Exploded plan view of model SA 
-2 - magnetising field directed along positive y 

direction. Note: the magnetisation of the film on the top surface of the substrate is in a 
flux closure configuration (therefore there are noftee magnetic poles on thisfilm). 

20 

10 

0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 

m1crons 

(b) Integratedfield line scans (sensitive 
to induction normal to the plane of 
reconstruction) generated by substrate 
model. 

20 

10 

0i 
-10 

-20 E 

-30 

-40 

-50 

-60 

-70 

(d) Plots of the average value of the 
end-points of each scan in (b) and of 
the experimental scans in fig. 5. ](a) 

80 

60 

40 

20 

0 

-20 

-40 

-60 

-80 
iiiiI 

microns 

(c) Integratedfield line scans 
(sensitive to induction in the plane of 
reconstruction) generated by substrate 
model. 

80 
60 

40 

20 

o 

-20 

-40 

-60 

-80 1-----, -, 
(e) Plots ofthe average value of the 
end-points of each scan in (c) and of' 
the experimental scans in fig. 5.1 (b) 
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poles on this film. This is a feasible assumption since the magnetising field is 

directed perpendicular to the plane of the film on this surface, The integrated field 

line scans generated by the model, figs. 5.23(b) and (c), and plots of the average 

value of the end-points of each of the simulated and experimental deflection line 

scans (in fig. 5.1), see figs. 5.23(d) and (e), are also shown. 

Once again the vertical distribution of the simulated line scans does compare 

reasonably with the experimental deflection data. This reinforces the suggestion that 

the substrate portion of the tip assembly is the source of the large variable vertical 

shift character of the experimental deflection line scans. 
Using model SA-2 as a starting point and with the aim of improving the 

agreement between the simulated and experimental deflection data, several further 

models were constructed. Fig. 5.24(a) shows one these models - i. e. substrate model 
SAJ. Once again we assumed that the magnetisation of the film on the top surface 

of the substrate is in a flux closure configuration (and therefore there are no free 

magnetic poles on this film). The integrated field line scans generated by the model 

are shown in figs. 5.24(b) and (c), as are plots of the average values of the end points 

of the simulated and experimental deflection line scans in figs. 5.24(d) and (e). 

Note that model SA-3 generates a vertical distribution of simulated line scans 

which gives the closest agreement with the experimental deflection line scans in fig. 

5.1. However, the agreement between the simulated and experimental deflection data 

could be improved by 1) including the contribution to the simulated deflection data 

sets from the tip and cantilever portions of the tip assembly, and 2) modifying the 

magnetic domain structure of the model substrate film since the existing model 
domains are larger than we might expect in a practical situationil 1. Nevertheless, we 

conclude that the substrate model SA-3 is a possible model for the substrate portion 

of the tip assembly magnetised as in the Axial Case. We now consider the character 

of the stray field generated by substrate model SAJ. 

Fig 5.25(a) shows a field scan (of the component of field normal to the plane 

of reconstruction) calculated directly from the substrate model SA-3 at the 

reconstruction plane. Fig. 5.25(b) shows a corresponding field scan (again of the 

component of field normal to the plane of reconstruction) calculated directly from 

model Tipl (see fig. 4-5) at the reconstruction plane. 
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In the \icinitý of the peak tip field (i. e. on the reconstruction plane) the 

substrate field is found to he of the order of 2xlO-1 mT and vanes by less than 

10 2rnT. The peak tip field on the reconstruction plane is approximately 46mT. Thus 

the suggestion is that in the Nicinitý of the tip, the field from the substrate portion of 

the tip assernhlý is sniall (heing onlý a fraction of one percent of the peak tip field) 

and effectiveIN constant (since changes in the substrate field of the order of than 

10 'mT are insignificant in a practical expeniment). 
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(a) Field scall calculated direal v 
from the substrate model tit the 
reconstruction plane. 

(b) Field scan calculated 
directlYfrom the tip model at 
the reconstruction plane. 

Fig. 5.25: Field scan components calculated in the plane ofreconstruction from 

thesubstrate model SA-3 model and model Tipl. 

Nkm consider the horizontal axes on the graphs shown in fig. 5.25. Note that 

in tig. 5.25(a) the field scan calculated from the substrate model is 2cm in length. 

While the scan in fig. 5.25(b), calculated from the tip model, is again only 8ýLrn in 
length. Thus, the tip field immediately in front of the tip dominates over the field 

from the substrate. likme\er, the large spread of the substrate field ensures its field 

integrals are sigmfik: ant its figs. 5.24(b) and (c) shoýý. In Chapter 6 we consider the 

effect that the SUbstrate (and cantileýer) contribution to the tip assembly's deflection 
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data sets has on the accuracy of the reconstructed tip field. Firstly however, we 

consider possible magnetisation distributions for the practical substrate film 

magnetised as in the Transverse Case. 

5.4.2 Substrate Portion of the Tip Assembly Magnetised as in the 

Transverse Case 

Several models were constructed for the substrate portion of the tip assembly 

magnetised as in the Transverse Case. Fig. 5.26(a) shows one of these possible 

magnetic configurations for the substrate film - substrate model ST 1. As in the 

previous section it was assumed that the magnetisation of each of the magnetic films 

which make up the substrate model were magnetised in the plane of the film. A 

plausible magnetisation for the model was then estimated by taking into account the 

geometry of the model and the direction of the magnetising field. Note that the 

integrated field line scans generated from the model STI-I are shown in figs. 5.26(b) 

and (c) as well as plots of the average values of the end-points of the simulated line 

scans in figs. 5.26(d) and (e) (for comparison plots of the average values of the end- 

points of the experimental line scans in figs. 5.2 are also shown). 
Once again note that the line scans generated by substrate model ST_1 are 

vertically shifted by a variable amount. This again reinforces the suggestion that the 

substrate portion of the tip assembly is indeed the source of the vertical shift 

character of the scans in the experimental deflection data sets of figs. 5.1 and 5.2. 

Furthermore, note from both figs. 5.26(d) and (e) that a comparison of the average 

values of the end points of the simulated line scans with the average values of the 

end points of the experimental line scans in fig. 5.2 indicates that the vertical 

distribution of the simulated scans does compare favourably with that of the 

experimental deflection line scans. 

Again note that the agreement between the simulated and experimental 

deflection data could have been improved upon if the contribution to the simulated 

integrated field from the tip and cantilever portions of the tip assembly had been 

taken into account. Further modification of the large domain configurations of the 

model substrate film may also have improved the agreement between the simulated 

130 



Out t)/' page 

Vicý% lookmý 

I. nto side 1(1( , els 

x oul (if pao 

View looking into 
thefrontfaces of 

(a) Model ST-1. Z 1111" jUg(= the substrate 

Magnetisinglield direcled along negative z direction. 

120 

100 

80 

E 60 

40 

20 

0 
.7C? Cý 7 

microns 

(b) Integratedfield line scans (sensitive to 
induction nonnal to the plane oj' 
re(, oiistritc, ti'oii), ýetier(ited by substrate model. 

IOD 

OD 

OD 

40 

20 

(d) Plots ýfthe average value oj'the end- 
poitits ()j t, (ich scan in (b) and ofthe 
experimental scans infig. 5.2(a). 

80 

60 

40 

20 

0 

-20 

-40 

-60- 

-80 - 

microns 

(c) Integratedfield line scans 
(sensitive to induction in the plane oj* 
reconstruction) generated by 
substrate model. 

E 

(e) Plots of the average value of the 
end-points of each scan in (c) and of 
the experimental scans infig. 5.2(b). 

Fig. 5.26: A possible modelfor the substrate portion of the tip assembly magnetised 
(is in the Transverse Case. In (d) and (e), /-(, (/ ý((m s /)/(, t III(, I lcnliýc rahic ofthe clid- 
/)0/111ý 0/ MIII I/, i 1,, / //11, \, 1/1\, while blue scansplot the average value ofthe end- 
points rMit'll fill dtflectimi Ime scans shown infig. 5.2. 

View looking 
into side faces 
of substrate 

z 

x into page 

L 

cl - c'1 �� 

__ __ 

131 



and experimental deflection data. Nevertheless, substrate model ST-1 is taken to be a 

possible model for the substrate portion of the DI t1p assembly magnetised as in the 

Transverse Case. We now briefly consider the character of the stray field from this 

I-nodel. 
A field scan (of the component of field normal to the plane of reconstruction) 

calculated clirectlý from the substrate model ST-1 at the reconstruction plane is 

sho%kii in fig. 5.27(a). Fig. 5.27(b) shows a corresponding field scan (of the 

component of field normal to the plane of reconstruction) calculated directly from 

the tip model (magnetised as in the fig. 5.17(a)) at the reconstruction plane. 
Note that once again in the vicinity of the tip the field from the substrate is of 

the order of2x 10-linT and varies by less than 10-1mT. Thus the models again suggest 

that in the % icinitý of the tip the substrate field is small (being only a fraction of one 

percent of the peak tip field) and effectively constant. 

Now consider the horizontal axes on the graphs in fig. 5.27. Once again the 

substrate field is given o%er 2cm. while the tip field is given over 8gm. Thus as 

expected the tip field immediately in front of the tip dominates over the field from 

the substrate. However, the large spread of the substrate field ensures its field 

integrals are significant as figs. 5.27(b) and (c) show. 
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5.5 Sununary 

The deflection data sets generated by the DI MFM tip magnetised in the Axial and 
Transverse Cases were presented in this chapter. The vertical shift character of these 

deflection line scans was not predicted by the tip models considered in Chapter 4 and 

therefore the implication was that this variable vertical shift character originated 
from the magnetic material attached to the cantilever and substrate portions of the tip 

assembly. 
Several possible models for the magnetic configuration of the cantilever and 

substrate portions of the tip assembly were constructed. These suggested that 

although the cantilever contribution to the deflection data sets is significant, it is the 

substrate portion of the DI tip assembly which is responsible for the vertical shifts of 

the experimental deflection line scans. 
Investigations into the character of the stray field from each of the cantilever 

and substrate portions found that in the vicinity of the peak tip field, the cantilever 

and substrate fields are small (being less than 2% and 1% of the peak tip field 

respectively) and effectively constant. In fact we find that the tip field immediately in 

front of the tip dominates over the combined cantilever and substrate field. However, 

the small cantilever and substrate fields are spread over a large distance which results 
in large cantilever and substrate field integrals. In the following chapter (Chapter 6) 

we investigate the effect on the accuracy of the (ART and RTM) reconstructed tip 

stray fields of this large contribution from the cantilever and substrate to the tip 

assembly deflection data sets (i. e. to the input data sets for tomographic 

reconstruction). 
Note that in the pursuit of suitable models for the substrate portion of the tip 

assembly magnetised as in the Axial and Transverse Cases, the 8gm line scans in the 

deflection data sets in figs. 5.1 and 5.2 were used as a guide. Calculations from the 

models of the substrate portion of the tip assembly magnetised as in the Axial and 
Transverse Cases suggest that the stray field from the substrate extends over a 
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distance of the order of 10-2M . Thus, the line scan deflection data sets in figs. 5.1 and 

5.2 only give a very small section of the substrate's field integral as a guide for 

determining possible magnetic configurations of the substrate. Therefore wider 
deflection line scans would better facilitate the search for possible models of the 

substrate portion of the tip assembly. 
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Chapter 6 

Investigation of the Effect on the Reconstructed Stray Field 

of the Cantilever and Substrate Contribution to the Tip 

Assembly's Line Scan Deflection Data Sets 

6.1 Introduction 

For a DI N4FM tip assembly, the measured deflection line scans contain a large 

background contribution which investigations indicate originates from the cantilever 

and substrate portions of the assembly (see Sections 5.3 and 5.4). Further 

investigations have also indicated that the field from the cantilever and substrate 

portions is small in the immediate vicinity of the tip where the tip field dominates. 

However the long range nature of the stray fields from the cantilever and substrate 

ensures that their field integrals are not insignificant. It is the aim of this chapter to 

investigate the effect that the cantilever and substrate contribution to the tip 

assembly's deflection data sets has on the accuracy of the reconstructed field when 

we use line scans taken over the relatively small spatial range necessary to ensure the 

required spatial resolution of approximately 25nm in the tomographic deten-nination 

of the MFM tip field. In the following section we investigate the accuracy with 

which stray field is reconstructed (using the RTM method) from 'well behaved' line 

scan deflection data sets (containing line scans which decrease to approximately zero 

at their extremes) generated by the tip portion of the tip assembly. In Section 6.3 we 

consider the accuracy of the field reconstructed from 'non-well behaved' deflection 

data sets generated by the cantilever and substrate portion of the assembly. 
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Subsequently, in Section 6.4 the accuracy with which the field is reconstructed from 

the entire model tip assembly is investigated. Following this the stray field 

reconstructed from the experimental deflection data sets generated by the DI tip 

assembly is considered (Section 6.5) and then a simple method for reducing the error 

in the reconstructed field values is described (Section 6.6). In Section 6.7 we 

consider the accuracy of stray field reconstructed using the ART method. Finally we 

investigate the error introduced into the reconstructed field from the finite size of the 

electron probe (Section 6.8) and from possible misalignment of line scans in the 

input deflection data sets (Section 6.9). 

6.2 Comparison of the Calculated and Reconstructed Stray Fields 

from the Model Tip 

Recall from Section 4.3.1.3 that a comparison of the average stray field reconstructed 
from each of the orthogonal simulated integrated field line scan data sets generated 
by model Tipl (in figs. 4-8(c) and (d)) was found to be effectively identical to the 
field calculated directly from the tip model. This comparison of the calculated and 

reconstructed fields serves as a proof that the RTM reconstruction technique does 

produce an accurate representation of a self consistent three dimensional stray field 

provided the input deflection data sets contain 'well behaved' line scans which 
(approximately) decrease to zero at their extremes. 

6.3 Comparison of the Calculated and Reconstructed Stray Fields 

from the Combined Cantilever and Substrate Model 

Now consider figs. 6.1(a) and (b) which show the simulated rotation data sets of 

orthogonal components of integrated field generated by the combined cantilever and 
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substrate model which resembles most closely the tip assembly magnetised as in the 

Trans\crse Case (i. e. the cantilever model magnetised as in fig. 5.17(a) and the 

substrate model magnetised as in fig. 5.26(a)). It has already been established that the 

field frorn the cantilever alone extends over a distance of approximately 800ýtm, 

while the field from the substrate extends over a distance of approximately 2cm. 

Hoýýeýer, the integrated field line scans which are used to reconstruct the combined 

canti'le-er and substrate field are only 8ýtm wide. Thus, using the data sets in fig. 6.1 

as the input data sets for tomographic reconstruction means that only a relatively 

small section of the combined cantilever and substrate integrated field is used to 

reconstruct its stray field (note that for an accurate reconstruction of a stray field, 

both the ART and RTM methods require input deflection line scans which decrease 

to zero at their extremes). It is therefore the aim of this section to investigate the 

accuracy with which the combined cantilever and substrate field is reconstructed 

from these 'truncated' data sets and consequently to assess the error in the 

reconstructed field aiising from the use of truncated data in a practical 

reconstruction. We first consider the accuracy of the average stray field reconstructed 

from both rotation data sets before considering the accuracy of the field 

reconstructed frorn each individual rotation data set. 
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Fig. 6.1: Simulated rotation data sets of orthogonal integratedfield components 
generated b, v the combined cantilever and substrate models magnetised as in the 
Tratisverse Case. 
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6.3.1 Average Stray Field Reconstructed from the Two Rotation Data 

Sets 

Consider the average three dimensional stray field shown in fig. 6.2(a) which was 
reconstructed from the two rotation data sets of orthogonal components of integrated 
field generated by the combined cantilever and substrate model. The three 
dimensional stray field calculated directly from the cantilever and substrate model at 
the reconstruction plane is also shown in fig. 6.2(b). Note that the reconstructed field 

plane is bounded by a circle of diameter equal to the width of the deflection line 

scans, while the field calculated directly from the combined cantilever and substrate 
model is shown over the whole plane. 

A visual comparison of the corresponding field components in fig. 6.2 
indicates that there are significant differences between the calculated and 
reconstructed fields. Most notably the contrast at the edges of the reconstructed field 

plane bears no resemblance to the corresponding calculated field. As a further 

comparison line scans were taken across the calculated and reconstructed field planes 
and a selection are shown in figs. 6.2(c) and (d). 

Fig. 6.2(c) shows horizontal scans taken across the normal component (y 

component) of the calculated and reconstructed fields. From these scans it is found 

that the reconstructed field values are at least five times larger than the calculated 
field. Note that a similar disagreement is also found between the corTesponding in- 

plane components of the calculated and reconstructed fields - for example see fig. 
6.2(d). 

We therefore conclude that the average of the stray fields reconstructed from 

each of the 'truncated' data sets generated by the combined cantilever and substrate 

model does not compare favourably with the calculated field (this is expected due to 

the fact that the input deflection line scans do not decrease to zero at their extremes). 
However it was noted that the behaviour of each component of the reconstructed 
field differed depending on which data set was used in the RTM reconstruction 
technique. Hence a more detailed examination of the accuracy with which each field 

component is reconstructed from each of the orthogonal data sets is justified. 
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Fig. 6.2: Average strayfield reconstructedfrom the rotation data sets infig. 6.1, 
and the strayfield calculated directlyfrom the cantilever and substrate model. 
Also shown are field scans taken across the calculated and reconstructedfields in 
(a) and (b). 
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greenscmis are iakeii across Me ct I'll (b). 
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6.3.2 Stray Field Reconstructed from the Rotation Data Set Sensitive to 

Induction Normal to the Plane of Reconstruction 

The three dimensional stray field was reconstructed from the simulated rotation data 

set sensitive to induction normal to the plane of reconstruction (see fig. 6.1(a)) 

generated by the combined cantilever and substrate model. The three dimensional 
field was also calculated directly from the cantilever and substrate model at the 
reconstruction plane. These three dimensional stray fields are not shown here, 
instead field scans were taken across the calculated and reconstructed field planes 
and are shown in fig. 6.3. 

The horizontal and vertical field scans taken across the normal component of 
the calculated and reconstructed fields, shown in figs. 6.3(a) and (b), indicate that the 

normal component of the reconstructed field does not compare favourably with the 

corresponding field component calculated directly from the combined cantilever and 

substrate model. The normal component of the reconstructed field is at least 5-6mT 

larger than the corresponding calculated field values (which are less than ImT). Figs. 

6.3(c) and (d) however, clearly show a very good agreement between the field scans 
taken across the corresponding in-plane components of the calculated and 
reconstructed field. In fact the in-plane components of the reconstructed field are 
found to agree with the calculated field values within approximately O. ImT. Note 

that the rapidly oscillating field values at the edges of the reconstructed field scans 
are not real effects but instead are artefacts of the RTM reconstruction technique due 

to the integrated field line scans not going to zero at their extremes. 
We therefore conclude that the truncated nature of the line scan rotation data 

set (sensitive to induction normal to the plane of reconstruction) does effect the 

accuracy of the normal component of the reconstructed field. However, the accuracy 

of the in-plane components of the reconstructed field are not significantly effected in 

this case. 
Note that the input rotation data set (sensitive to induction normal to the 

plane of reconstruction) is a measure of the normal component of field integrated 

along several thousand microns of the electron beam trajectory. However, the RTM 

method (incorrectly) assumes that all the field contributions to this rotation data set 

are contained in the area defined by the reconstruction plane (i. e. an g2 ý, M2 plane in 
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Fig. 6.3: Comparison offield scan components calculated directlyfront the combined 
cantilever and substrate model (see fig. 6.2(b)) with scans taken across the strayfield 
reconstructedftom the simulated rotation data set (sensitive to induction normal to the 
plane oj'reconstruction infig. 6-1(a)). 
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front of the tip). Therefore the normal component of field reconstructed using the 

RTM method (reconstructed over an 82 gm 2 plane) contains all the cantilever and 

substrate contributions to the input rotation data set. This is the reason that the 

normal component of the reconstructed field is not an accurate representation of the 

normal component of the combined cantilever and substrate field. 

Furthermore, the rotation data set (sensitive to induction normal to the plane 

of reconstruction) does not contain any direct information on the in-plane 

components of the stray field. Therefore the assumption that all the normal 

component field contributions to the rotation data set are contained in the area 
defined by the reconstruction plane does not effect the in-plane components of the 

reconstructed field. Therefore the in-plane components of the reconstructed field are 

accurate representations of the in-plane components of the cantilever and substrate 
field. 

6.3.3 Stray Field Reconstructed from the Rotation Data Set Sensitive to 

Induction in the Plane of Reconstruction 

We now consider the three dimensional stray field reconstructed from the rotation 
data set sensitive to induction in the plane of reconstruction (i. e. the data set in fig. 
6.1 (b)). The three dimensional field was again calculated directly from the cantilever 
and substrate model at the reconstruction plane. Once again these three dimensional 

stray fields are not shown here - instead field scans taken across the calculated and 
reconstructed field planes are shown in fig. 6.4. 

Figs. 6.4(a) and (b) show horizontal and vertical scans taken across the 

normal component (y component) of the calculated and reconstructed fields. Clearly 

there is excellent agreement between the calculated and reconstructed fields. In fact 

the normal component of reconstructed field is found to agree with the calculated 
field values within approximately 0.15mT. Again note that the rapidly oscillating 
field values at the edges of the field scans are not real effects but are an artefact of 

the RTM reconstruction technique due to the integrated field line scans not going to 

zero at their extremes. Figs. 6.4(c) and (d) show scans taken across the in-plane 

components (x and z components) of the calculated and reconstructed fields. In this 

case the agreement between the calculated and reconstructed field values is not good. 
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Fig. 6.4: Comparison offield scan components calculated directlyfrom the combined 
cantilever and substrate model (seefig. 6.2(b)) with scans taken across the strayfield 
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Thus the conclusion is that the truncated nature of the line scan rotation data 

set (sensitive to induction in the plane of reconstruction) affects the accuracy of the 

in-plane components of the reconstructed field. However, the accuracy of the normal 

component of the reconstructed field is not affected. 
Once again note that the input rotation data set (sensitive to induction in the 

plane of reconstruction) is a measure of the in-plane components of field integrated 

along several thousand microns of the electron beam trajectory. However, the RTM 

method (incorrectly) assumes that all the field contributions to this rotation data set 

are contained in the area defined by the reconstruction plane. Therefore the in-plane 

components of field reconstructed using the RTM method (reconstructed over an 

8gm 2 plane) contain all the cantilever and substrate contributions to the input 

rotation data set. This is the reason that the in-plane components of the reconstructed 
field are not an accurate representation of the in-plane components of the combined 

cantilever and substrate field. 

Furthermore, the rotation data set (sensitive to induction in the plane of 

reconstruction) does not contain any direct information on the normal component of 

the stray field. Therefore the assumption that all the in-plane component field 

contributions to the rotation data set are contained in the area defined by the 

reconstruction plane does not effect the normal component of the reconstructed field. 

Therefore the normal component of the reconstructed field is an accurate 

representation of the normal component of the cantilever and substrate field. 

We have found that the average stray field reconstructed from the 'truncated' 

rotation data sets of orthogonal integrated field components generated by the 

combined cantilever and substrate model does not compare favourably with the field 

calculated directly from the model. However further investigations (for example see 

Section 6.4) have also found that the accuracy with which each field component is 

reconstructed is significantly better from one rotation data set than from the other. 

This suggests that by selecting the different components from the two 

reconstructions of the three dimensional stray field we can achieve a much more 

accurate determination of the field. In the following section we investigate the 

accuracy with which stray field from the model tip assembly can be reconstructed 
from 'truncated' data sets using this approach. 
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6.4 Comparison of the Calculated and Reconstructed Stray Fields 

from the model Tip Assembly 

Figs. 6.5(a) and (b) sho", the simulated rotation data sets of orthogonal integrated 

field components generated by the model tip assembly magnetised as in the 

Transverse Case (i. e. the tip and cantilever models magnetised as in fig. 5.17(a), and 

the substrate model magnetised as in fig. 5.26(a)). In previous studies"] the 

experimentalists have tended to present the reconstructed field as the average of the 

field reconstructed from both the orthogonal line scan data sets. Hence in this section 

\ýe ý01 first consider the accuracy of the average stray field reconstructed from both 

rotation data sets before considering the accuracy of the field reconstructed from 

each indi% idual rotation data set. 
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6.4.1 Average Stray Field Recoiistructed froni both Rotation Data Sets 

Cow, ider lig. 6.6(a) which shows the average of the stray field reconstructed from Z7, 

each of the rotation data sets shown in fi,,. 6.5. The three dimensional stray field 

calculated directly from the model tip assembly at the reconstruction plane is also 

shown in fig. 6.6(b). 

Once again note from a visual comparison of the corresponding field 

components in fig. 6.6 that the contrast at the edves of the reconstructed field planes 

is not observed in the calculated field. This again suggests that at least at the 

periphery of the reconstructed area there is a significant difference between the 

calculated and the reconstructed field components. Field scans taken across each of 

the field components are shown in fig. 6.7. 
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V4 

Fig. 6.6: (a) Average oj' the stray fielil rec-onstructed ftom the simulated rotation 
data sets generated bY the model tip assembl -v 

niagnetised as in the Transverse Case. 
(b) Stra 

, %jield calculated directly ftom the Model til) asse"IblY magnetised as in the 
Transverse Case. 

In fig. 6.7(a) the scans were taken horizontally across the components of stray field 

normal to the plane of reconstruction (y component) and are 2jtrn in length. The 

IAVI IM ofthe calculated field scan is found to be 21 8nm, while the FWHM ofthe 
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reconstructed field scan is 217nm. Also, the peak value of the normal component of 

the calculated field (y component) is 46mT, while the corresponding reconstructed 

field value is 44mT. 

Thus in the central region of the reconstructed field plane, the cantilever and 

substrate contribution to the tip assembly's rotation data sets does not effect the 

accuracy of the spatial definition of the average normal component of reconstructed 

field. However the cantilever and substrate contribution does result in an almost 

constant error (of approximately 5% of the peak tip field) in the field values of the 

normal component of reconstructed field in this central region. Fig. 6.7(b) shows the 

same horizontal field scans as in fig. 6.7(a) but with the reconstructed field scan 

superimposed on the corresponding calculated field scan. The fact that it is difficult 

to separate the calculated and reconstructed field scans highlights the excellent 

agreement between the spatial definition of the normal component of the calculated 

and reconstructed fields in the central region of the reconstructed field plane. 
Now consider the field scans shown in figs. 6.7(c) and (d) which were taken 

across the full 8tLm height and width of the reconstruction plane. Note that the 

difference between the calculated and reconstructed field values is greatest at the 

ends of these field scans. 
The conclusion is that away from the central 'peak field' region of the 

reconstructed plane (i. e. further than approximately Igm from the position of the 

peak field) the cantilever and substrate contribution to the tip assembly's rotation 
data sets does significantly effect the accuracy of the average field reconstructed 
from the data sets. However in the central 'peak field' region (i. e. within 

approximately Iýtm of the position of the peak field) the accuracy of the 

reconstructed field is much improved - giving an almost constant (5% of the peak tip 

field) error in the reconstructed field values - and is considered unlikely to be 

significant in a practical experiment where random noise effects will mask errors of 

such magnitude. Nevertheless we now consider the accuracy of the stray fields 

reconstructed separately from each of the rotation data sets in fig. 6.5. 
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6.4.2 Stray Field Recoiistructed froin Each of the Ortliogoiial Rotatioii 

Data Sets 

The three dimensional straN field reconstructed from the rotation data set sensitive to 

induction normal to the plane of reconstruction (see fig. 6.5(a)) using the RTM 

reconstruction technique is shown in fia. 6.8(a). The three dimensional field 

reconstructed from the rotation data set sensitive to induction in the plane of 

reconstruction (see fig. 6.5(b)) is shown in fig. 6.8(b), while the three dimensional 

field calculated clirectlý from the model tip assembly at the reconstruction plane is 

shown in fig. 6.8(c). 
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Fig. 6.8: (a) Slru 
" vfield reconstructedfirom the simulated rotatioll ilata set sensitive 

ro induction nonnal to the plane oj'ret -onstruction (see jig. 6.5(a)) generated by the 
model tip assembl ,v magnetised as in the Transverse Case. 
(b) Sira 

,v 
field reconstructed fi-oin the simulated "Wation data set sensitive to 

induction in the plane oj'reconstrjj(-jjo, j (see fig. 6.5(b)) generated bv the model tip 
asseinblv magneiised as in the Transverse Case. 
(c) Stray field calculated directlyftom the model tip assembýv magnetised as in the 
Transverse Case. 
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Note that the normal component (y component) of the reconstructed field in fig. 

6.8(a), and the in-plane components (x and z components) of the reconstructed field 

in fig. 6.8(b) all display contrast about the edges of the reconstructed field plane 

which is not observed in the calculated field - see fig. 6.8(c). This contrast at the 

edges of the reconstruction plane is due to the RTM method (incorrectly) assuming 

that all the field contributions to the rotation data sets are contained in the area 

defined by the reconstruction plane (i. e. an 8 2ý, M2 plane in front of the tip). 

A visual comparison of the in-plane components of the reconstructed field in 

fig. 6.8(a), and the normal component of the reconstructed field in fig. 6.8(b), with 

the calculated field in fig. 6.8(c) suggests that there is excellent agreement between 

these corresponding components of the calculated and reconstructed field; this is 

confirmed by line scans taken across the calculated and reconstructed field planes 

and shown in fig. 6-9. 

The scans in figs. 6.9(a) and (b) were taken horizontally and vertically across 

the normal components of the stray field in fig. 6.8. It is clear from these scans that 

the normal component of field reconstructed from the rotation data set sensitive to 

induction in the plane of reconstruction is in excellent agreement with the 

corresponding calculated field component. However, the normal component of field 

reconstructed from the rotation data set sensitive to induction normal to the plane of 

reconstruction does not compare favourably with the corresponding calculated field 

component. 
For the in-plane components of field reconstructed from the rotation data set 

sensitive to induction normal to the plane of reconstruction, there is good agreement 

with the corresponding calculated field components - as the scans in fig. 6.9(c) and 

(d) show. The x component of this reconstructed field agrees with the corresponding 

calculated field component within approximately 0-5mT, while the z component 

agrees with its corresponding calculated field component within approximately ImT. 

The field scans in figs. 6.9(c) and (d) also show that the in-plane components of field 

reconstructed from the rotation data set sensitive to induction in the plane of 

reconstruction do not compare favourably with the corresponding calculated field 

components. 

150 



30 

20 

10 

0 

'E -10 

-20 

-30 

-40 

-50 C) 04 M 

microns 
(a) Scans taken (horizontally) across the 
normal components (y components) of the 
calculated and reconstructed model tip 
assemblyfield. 

15 

10 

5 

0 

5 

-10 

-15 

-20 
1iiiii 

C? Cý 17 CD N CO 

microns 

(c) Scans taken across the (in-plane) 
x components of the calculated and 
reconstructedfield. 

40 

30 

20 

10 

0 
E 

- 10 

-20 

-30 

-40 

-50 
I? Cý 1: 1 -NM 'T 

microns 

(b) Scans taken (vertically) across the 
normal components (y components) of the 
calculated and reconstructed model tip 
assemblyfield. 

50 

40 

30 

20 

E 
10 

0 

-10 

-20 1iiii .1 Cý 0 C14 M 

microns 
(d) Scans taken across the (in-plane) 
z components of the calculated and 
reconstructedfield. 

Fig. 6.9: Comparison offield scan components calculated directly from the model tip 
assembly magnetised as in the Transverse Case (see fig. 6.6(b)) with scans taken across 
the strayfield reconstructedfrom each ofthe simulated rotation data sets infig. 6.5. 
Note that the x, y and z components referred to above correspond to the components in 
fig. 6.6. 
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The results above are consistent with the results discussed in Section 6.3. The 

conclusion, therefore, is that for an accurate representation of the stray field from a 
MFM tip assembly we must reconstruct each of the stray field components from only 

one of the orthogonal rotation data sets. In particular, the normal component of field 

reconstructed from the rotation data set sensitive to induction in the plane of 

reconstruction, and the in-plane components of field reconstructed from the rotation 

data set sensitive to induction normal to the plane of reconstruction give the most 

accurate representation of the 3-D tip assembly stray field (reconstructed from non 
'well behaved' line scan deflection data sets using the RTM method). In Section 6.5 

we will consider the stray field reconstructed from the experimental deflection data 

sets in fig. 5.2 generated by the DI MFM tip. However, prior to this a simple check 
for the consistency of the orthogonal line scan rotation data sets is described. 

6.4.3 Simple Check for the Consistency of Orthogonal Rotation Data 

Sets 

Consider the scans in fig. 6.9(a) taken horizontally across the normal components of 
the stray field in fig. 6.8. The FWHM of the calculated field scan (taken across the y 
component in fig. 6.8(c)) is 218nm, while the FWHM of the reconstructed field 

scans (taken across the y components in fig. 6.8(a) and (b)) are 222nm and 217nm 
(respectively). In fig. 6-9(b) the scans were taken vertically across the normal 
components of field in fig. 6.8. In this case the FWHM of the calculated field scan is 
222nm and the FWHM of the reconstructed field scans (taken across the y 
components in figs. 6-8(a) and (b)) are 220nm and 223nm (respectively). 

The important point to note from above is that in the central region of the 

reconstruction plane (i. e. approximately Igm from the peak field), the spatial 
definition of each of the reconstructed normal components of field compares 
favourably with the corresponding calculated field component. Therefore in a 

practical experiment, a simple check to ensure that the orthogonal rotation data sets 

are consistent with one another, is to compare the spatial distribution of the normal 

component of field reconstructed from each of the two data sets. Anything less than a 
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close agreement between the spatial character of the reconstructed field components 

suggests an error in the experimental set-up or in the recording of data. 

6.5 Consideration of the Stray Fields Reconstructed from the 
Deflection Data Sets Generated by the DI MFM Tip 

The DI MFM tip assembly's three dimensional stray field was reconstructed from the 
line scan deflection data set sensitive to induction normal to the plane of 
reconstruction (i. e. the data set in fig. 5.2(a)) and is shown in fig. 6.10(a). The three 
dimensional field reconstructed from the corresponding simulated deflection data set 
generated by the model tip assembly magnetised as in the Transverse Case (i. e. the 
data set in fig. 6-5(a)) is also shown in fig. 6.10(b). 

Note that the normal components (y components) of the reconstructed fields 

in figs. 6.10(a) and (b) display contrast at the edges of the planes, whereas the in- 

plane components of the reconstructed fields (x and z components) do not. For a 
further comparison, scans were taken across each of the reconstructed field 

components in figs. 6.10(a) and (b) and a selection are shown in figs. 6.10(c) and (d). 
It is clear that the field values of the scans in fig. 6.10(c) (taken horizontally 

across the normal components of field) increase towards the ends of the scans. From 

previous investigations of the model tip assembly's stray field (in Chapters 4 to 6) 

we know that this is not a character of the model field but is instead a character of 
the normal component of field reconstructed from a truncated rotation data set 
(sensitive to induction normal to the plane of reconstruction) using the RTM 

reconstruction technique. Since the rotation data set (generated by the DI Nffm tip 
and shown in fig. 5.2(a)) used to reconstruct the field in fig. 6.10(a) is also of a 
truncated nature, we therefore conclude that the increasing field values towards the 
ends of the experimental field scan in fig. 6.10(c) is not a character of the DI MFM 

tip field. 
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In Section 6.4.2 we found that the in-plane components of the reconstructed 

model field (shown in fig. 6.10(b)) were an accurate representation of the in-plane 

components of the model tip assembly field. Note from the scans in fig. 6.10(d) 

taken across the z components of field in figs. 6.10(a) and (b), that there is a 

favourable agreement between the experimental and model field scans. In this case 

the field values tend to zero at the ends of the scans unlike the normal components of 
field reconstructed from the same rotation data sets. A similar level of agreement is 

also found between the x components of the experimental and model reconstructed 
fields. We therefore conclude that the in-plane components of the reconstructed DI 

MFM tip field in fig. 6.10(a) are an accurate representation of the in-plane 

components of the field from the tip. 

Now consider the DI MFM tip field reconstructed from the line scan 
deflection data set sensitive to induction in the plane of reconstruction (i. e. the data 

set in fig. 5.2(b)) shown in fig. 6.1 I(a). The three dimensional field reconstructed 

from the corresponding simulated deflection data set generated by the model tip 

assembly (i. e. the data set in fig. 6.5(b)) is shown in fig. 6.1 I(b). 

In this case we observe that the in-plane components of field display contrast 

at the edges of the planes, whereas the normal components of field do not. Field 

scans were again taken across the reconstructed field components in figs. 6.11 (a) and 
(b) and a selection are shown in figs. 6.1 1(c) and (d). 

Note that the field scans in fig. 6.11 (c) (taken horizontally across the normal 

components of field) tend to zero at the ends of the scans. Indeed the character of the 

experimental field scans compare favourably with the character of the corresponding 

model field scans. In Section 6.4.2 we found that the normal component of field 

reconstructed from the rotation data set sensitive to induction in the plane of 

reconstruction, gave the most accurate representation of the normal component of the 

field. We therefore conclude that the normal component of the reconstructed DI 

MFM tip field in fig. 6.11 (a) is an accurate representation (within experimental 

errors) of the normal component of the DI MFM tip field over all but the very 

extremes of the reconstructed field plane. 
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Further note that the scans in fig. 6.11 (d) taken across the z components of 
field, increase towards the ends of the scans. Once again, we know from previous 

investigations that this is not a character of the field from the model tip assembly but 

is instead a character of the in-plane components of field reconstructed from a 

truncated rotation data set sensitive to induction in the plane of reconstruction using 

the RTM reconstruction technique. We therefore conclude that the increasing field 

values towards the ends of the experimental field scans in fig. 6.11(d) is not a 

character of the DI MFM tip field but is instead due to the truncated nature of the 

input data set used in the RTM reconstruction technique. 

We have therefore found that the character of the stray fields reconstructed 
from the DI NIFM tip's deflection data sets is very similar to that of the fields 

reconstructed from the model tip assembly's deflection data sets. This has allowed us 

(through investigations in Sections 6.1 to 6.4) to comment with some authority on 

the accuracy of the stray field reconstructed from the DI MFM tip's deflection data 

sets in fig. 5.2. The conclusion therefore is that the in-plane components of field in 

fig. 6.10(a) (reconstructed from the rotation data set sensitive to induction normal to 

the reconstruction plane) and the normal component of field in fig. 6.1 I(a) 

(reconstructed from the rotation data set sensitive to induction in the reconstruction 

plane) give the most accurate representation of the DI NfFM tip field. In the 

following section a further method for determining an accurate representation of an 
MFM tip field is discussed. 
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6.6 Method to Reduce the Error in the Average Stray Field 

Reconstructed from Both the Rotation Data Sets Generated by the 

Tip Assembly 

As stated previously, in Section 6.4, experimentalists have tended to present the 

reconstructed field as the average of the field reconstructed from each orthogonal 

line scan data set. Our investigations have determined that this procedure does not 

yield an accurate representation of the three dimensional MFM tip field. However, a 

simple method to reduce the error in the average reconstructed field is described in 

the following. 

Recall (from Sections 5.3.2 and 5.4.2) that the field calculated from the 

combined cantilever and substrate model (magnetised as in the Transverse Case) was 
found to be almost insignificant (<ImT) relative to the peak tip field. Also, recall 
(from Sections 6.2 and 6.4.1) that the error in the average reconstructed model tip 

assembly field (reconstructed from both the orthogonal line scan rotation data sets 

generated by the model tip assembly in fig. 6.5) was almost entirely due to the 

cantilever and substrate contribution to the tip assembly's rotation data sets. Thus a 

method to subtract the cantilever and substrate contribution from the rotation data 

sets would significantly reduce the error in the average reconstructed field while 

excluding the (effectively insignificant) cantilever and substrate contribution to the 

tip assembly's reconstructed stray field. 

In Chapter 5 we concluded that the tip portion of the practical MFM tip 

assembly was largely responsible for the shape character of the deflection line scans 
in figs. 5.1 and 5.2. We also concluded that the cantilever and substrate portion was 

responsible for the vertical shifts of the same deflection line scans. Thus, for the 

rotation data sets generated by the model tip assembly magnetised as in the 

Transverse Case (see fig. 6.5) we decided to approximate the removal of the 

cantilever and substrate contribution to subtracting a constant deflection value from 

each scan in order that the average value of the extremities of each scan was zero, 

see fig. 6.12. From a visual comparison of the modified deflection line scans in fig. 

6.12 with the line scans generated by model Tipl in Chapter 4 (see fig. 4.8(c) and 
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(d)) it is clear that the shape of the modified line scans varies to a much greater 
degree than the shape of the unmodified scans from Tipl. This highlights the 

approximate nature of the removal of the cantilever and substrate contribution from 

the tip assembly rotation data sets which we consider. 
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Fig. 6.12: Modified rotation data sets of orthogonal integrated field components 
generated b-y the model tip assembly magnetised as in the Transverse Case. Note 
each line scan has had a constant deflection value subtractedfrom it. 

The three dimensional stray field was reconstructed from each of the modified 

rotation data sets (in fig. 6.12) and the average is shown in fig. 6.13(a). The stray 
field calculated directly from the model tip assembly at the reconstruction plane is 

also shown in fig. 6.13(b). A visual comparison of the corresponding field 

components suggests that there is a very good agreement between the calculated and 

reconstructed fields. Note that the average reconstructed field does not display 

contrast at the edges of the reconstructed plane - unlike the field in fig. 6.6(a) 

reconstructed from the unmodified data sets. Once again, as a further comparison, 
field scans were taken across each of the calculated and reconstructed field 

components and a selection are shown in fig. 6.13(c) and (d). 
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(a) Average strayfield reconstructedfroin the modified rotation data sets in fig. 6.12 
generated by the model tip assembly. 

(b) Strayfield calculated directlyfýom the model tip assembly. 
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Fig. 6.13: Three dimensional strayfields reconstructedfrom the modified rotation 
data sets in fig. 6.12 and calculated directly from the model tip assembly. 
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The scans in fig. 6.13(c) were taken horizontally across the normal 

component of the calculated and reconstructed fields. From the fact that the scans are 
difficult to separate indicates that there is excellent agreement between the normal 

components of the calculated and reconstructed fields. Note that the difference 

between the calculated and reconstructed fields is greatest at the extremities of these 

scans and is of the order of ImT - which is approximately 2% of the peak tip field. 

This level of agreement is also found when a comparison of the in-plane components 

of the calculated and reconstructed fields is carried out, for example see fig. 6.13(d). 

Thus, the approximation to the removal of the cantilever and substrate 

contribution from the tip assembly's rotation data sets, described above, does 

significantly improve the accuracy of the average field reconstructed from the data 

sets. We now consider the application of this method to the deflection data sets 

generated by the DI MFM tip in fig. 5.2. 

In this case, each line scan in the experimental deflection data sets in fig. 5.2 

(generated by the DI MFM tip) had a constant deflection value subtracted from it so 

that the average value of the extremities of each line scan was approximately zero. 
The three dimensional stray field was then reconstructed from each of the modified 

experimental deflection data sets and the average was taken. This three dimensional 

stray field is not shown here, instead scans were taken across the field components 

and a selection are shown in fig. 6.14. For comparison scans taken across the in- 

plane components of the field in fig. 6.10(a) (reconstructed from the unmodified 
experimental deflection data set in fig. 5.2(a) sensitive to induction normal to the 

plane of reconstruction), and the normal component of the field in fig. 6.11(a) 
(reconstructed from the unmodified experimental deflection data set in fig. 5.2(b) 

sensitive to induction in the plane reconstruction) are also shown. These 

reconstructed field components have been determined to be the most accurate 

representation of the tip field - see Sections 6.3 and 6.4. 

Note that the field scan components in fig. 6.14, reconstructed from the 

modified deflection data sets, decrease to approximately zero at their extremes. This 

is consistent with what we expect of the MFM tip stray field. Also note that 

corresponding field scan components in fig. 6.14 compare favourably with one 

another. This suggests that the average of the fields reconstructed from each of the 

161 



modified deflection data sets does give an accurate representation of the three 

dinicilsiomil DI NIFAI tip stra) field. 
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the modified deflection dattiscis. 

We therefore conclude that the different methods described in this section and in 

Section 6.4 both produce accurate representations of the MFM tip field (within 

experimental errors) using the RTM reconstruction technique. We now consider the 

accuracy ofthe stray field reconstructed using the ART reconstruction technique. 
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6.7 Stray Fields Reconstructed Using ART 

It has now been clearly proven in this Chapter that the RTM reconstruction technique 

is a proficient tool for the accurate determination of three dimensional stray field 

from line scan deflection data sets of a truncated nature. In this section we now 

consider the accuracy with which stray field is reconstructed using the ART 

reconstruction technique. We first consider the model tip field reconstructed using 
ART then we consider the field reconstructed from the deflection data sets generated 
by the model tip assembly. 

6.7.1 Consideration of the Accuracy of the ART Reconstructed Model 

Tip Field 

We first consider the stray field reconstructed using ART from the rotation data sets 
generated by the tip model magnetised as in the Transverse Case (see fig. 5.17(a)) - 
recall from Chapter 3 that ART uses both orthogonal deflection data sets for a 
combined determination of the three dimensional stray field. The three dimensional 
field was also calculated directly from the tip model at the reconstruction plane. 
These three dimensional stray fields are not shown here, instead field scans were 
taken across the calculated and reconstructed field planes and are shown in fig. 6.15. 

From an inspection of the field scans in fig. 6.15 it is clear that the ART 

reconstructed field is not as accurate a determination of the tip field as the RTM 

reconstructed field was found to be - cf fig. 6.9. In fact for the scans in fig. 6.15(a) 

taken horizontally across the normal components of field, we find that the FWHM of 
the calculated field scan is 220nm, while the FWHM of the reconstructed field scan 
is 355nm. For the scans in fig. 6.15(b) taken vertically across the same components 

of field the FWHM of the calculated field scan is 225nm, while the FWHM of the 

reconstructed field scan is 360nm. 

The peak value of the normal component of the calculated field is 46mT, 

while the corresponding reconstructed field value is 45mT. Thus although there is 

only a small error in the magnitude of the ART reconstructed field (less than 2%) 

there is a large error (approximately 50%) in the spatial definition of the ART 
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reconstructed field. We therefore conclude that ART does not produce a more 

accurate representation of the stray field than is available from the RTM 

reconstruction technique. 

The inaccuracy of the ART reconstructed tip field was initially thought to be 

due to the truncated nature of the model tip's rotation data sets (see figs. 4.8(c) and 
(d) - notice that the line scans in both data sets do not go to zero at their extremes). 
We therefore decided to investigate the accuracy ofthe stray field reconstructed from 

orthogonal rotation data sets which were not of a truncated nature. Fig. 6.16 shows 
just such a data set pair generated by a model tip of height 0.5, um; the line scans arc 

approximately zero at the edges. 
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Fig. 6.16: Simulated rotation data sets oj'orthogonal integratedfield components 
generated by a model tip oj*height 0.5, wn. 
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The stray field was reconstructed from these rotation data sets using ART. The stray 

field was also calculated directly from the tip model at the reconstruction plane. 

Once again these three dimensional stray fields are not shown here, instead field 

scans were taken across the calculated and reconstructed field planes and are shown 

in fig. 6.17. 

Notice (from the scans in fig. 6.17) that there are still significant differences 

between the calculated and ART reconstructed fields. This suggests that even with 
fiwell behaved' input data sets the ART method does not produce as accurate a 

representation of the stray field as is obtained from the RTM reconstruction 

technique. In fact we find that the error in the ART reconstructed field is of a similar 

magnitude to the error in the previous ART tip field reconstruction. For the scans in 

fig. 6.17(a) taken horizontally across the normal components of field we find that the 

FWHM of the calculated field scan is 177nm, while the FWHM of the reconstructed 
field scan is 268nm. For the scans in fig. 6.17(b) taken vertically across the same 

components of field the FWHM of the calculated field scan is 179nm, while the 

FWHM of the reconstructed field scan is 270nm. 

The peak value of the normal component of the calculated field is 38mT, 

while the corresponding reconstructed field value is 36mT. Thus in this case we 

again find that although there is only a small error in the magnitude of the ART 

reconstructed field (again less than 2%) the error in the spatial definition of the ART 

reconstructed field is large (being again approximately 50%). We therefore again 

conclude that ART does not produce a more accurate representation of the stray field 

than is available from the RTM reconstruction technique. We now consider the stray 
field reconstructed from the truncated rotation data sets generated by the model tip 

assembly. 
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Fig. 6.17: Field scans taken across the calculated and ART reconstructed model 
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components in figs. 6.6 and 6.8. 
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6.7.2 Consideration of the Accuracy of the ART Reconstructed Model 

Tip Assembly Stray Field 

Fig. 6.18(a) shows the stray field reconstructed using the ART method from the 
deflection data sets (in fig. 6.5(a) and (b)) generated by the model tip assembly 

magnetised as in the Transverse Case, Fig. 6.18(b) shows the field calculated directly 
from the tip assembly model. 

ClearlY there is no agreement between the reconstructed field and the 

calculated field and the field scans in figs. 6.18(c) and (d) taken across the calculated 

and reconstructed field components reinforce this fact. 

We therefore conclude that ART does not produce an accurate representation 

of stray field, and in fact the accuracy of the ART reconstructed field decreases as the 
input deflection data sets become more truncated in character - thus the RTM 

reconstruction technique is preferred for reconstructing MFM tip stray field. 

We now consider an unavoidable source of error in experimental deflection 

line scans (such as in figs. 5.1 and 5.2). 
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6.8 Affect of the Electron Probe Size on the Measured Electron 

Beam Deflection Data and the Subsequent Accuracy of the 
Reconstructed Stray Field 

All the simulated stray field values (and consequently the simulated integrated field 

values) calculated in Chapters 4,5 and 6 have been calculated at infinitesimal points 
in space. In a practical experiment this is analogous to deflection values measured by 

an electron probe of infinitesimal size. However, in a STEM operated in DPC 

imaging mode a cone of electrons is focused to a disk of finite size. The entire cone 

of electrons is deflected by stray field in a finite region of space and this is what is 

measured at the detector plane. 
If we assume that the cone of electrons is predominately deflected by stray 

field in the region of the focused electron disk then the experimental deflection line 

scans in figs. 5.1 and 5.2 can be approximately considered to represent a convolution 

of the shape of the focused electron probe with the DI MFM tip's integrated field. To 

obtain the correct integrated field from the tip assembly the shape of the electron 

probe must be deconvolved from the experimental deflection data. However this is 

only possible if an accurate measurement of the size of the electron probe is carried 

out. For the experimental deflection data sets in figs. 5.1 and 5.2 the probe size was 

assumed to be in the range of 20 to 40nm in diameter (the sampling distance was 

approximately 35nm); however an accurate measurement was not made. Therefore 

the aim of this section is to investigate the effect of the electron probe on the 

measured deflection line scans and on the subsequent RTM reconstructed field. 

In the following, the electron probe was approximated to a one dimensional 

Gaussian distribution given by [21 
, 

(x) =11 expl -X' / 20r2 1 

2; T u 
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where or= FWHMIVln 2-56 and the multiplying factor 
II 

was chosen so that 27r a 

f- (x)dx =I (6.2) 

Note that the probe 'size' can be considered to be equivalent to the FWHM of the 

Gaussian distribution. 

The integrated field line scans in the orthogonal data sets generated by model 
Tipl in Chapter 4 (see fig. 4.8(c) and (d)) were convolved with various sized probe 
functions to simulate the integrated field measured in a STEM. Fig. 6.19(a) shows 

the central 2gm portion of one integrated field line scan convolved with a variety of 

probe sizes. From the fact that it is difficult to separate the individual scans suggests 

that the probe size has little effect on the measured deflection data. Nevertheless fig. 

6.19(b) shows a plot of the peak integrated field values of the scans in fig. 6.19(a), 

while fig. 6.19(c) shows a plot of the FWHM of the scans. 

If the assumption that the electron probe used for the measurement of the 

deflection line scans in figs. 5.1 and 5.2 was approximately 20 to 40nm in diameter 

is correct, then the graphs in fig. 6.19 suggest that the magnitude of the measured 

peak deflection values (of the scans in figs. 5.1 and 5.2) can be expected to be 

approximately 2-3% lower than the deflection values that would be measured by an 

ideal (infinitesimally small) probe. Also the FWHM of the deflection line scans (in 

figs. 5.1 and 5.2) can be expected to be 34% larger than the FWHM of the scans 

measured by an ideal probe. Clearly as the probe size increases the effect on the 

magnitude and spatial character of measured deflection line scans will be more 

significant. 
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The three dimensional fields reconstructed from the 'measured' simulated 

deflection data sets are now considered. Field scans taken across the components of 

field normal to the reconstruction plane (reconstructed from the deflection data set 

sensitive to induction in the plane of reconstruction since this has been determined to 

be the most accurate representation of the normal component of stray field) are 

shown in fig. 6-20(a). Fig. 6.20(b) shows a plot of the peak field values of the scans, 

while fig. 6.20(c) shows a plot of the FWHM of the scans. 

These graphs indicate the effect that a finite sized electron probe has on the 

accuracy of the stray field reconstructed from line scan deflection data sets measured 

in a STEM. Once again, if the diameter of the electron probe (used to measure the 

experimental deflection data in figs. 5.1 and 5.2) is 20 to 40nm, then we can expect 

the magnitude of the stray fields reconstructed from these data sets (in figs. 5.1 and 

5.2) to be approximately 6-7% smaller than the correct stray field. Also, the spatial 

definition (FWHM of the normal component of field) of the reconstructed stray field 

can be expected to be 7-8% wider than that of the correct stray field. Again, as the 

probe size increases, the effect on the magnitude and spatial character of the 

experimental reconstructed field will be more significant. 

Hence the finite size of the focused electron probe will effect the precision of 

the stray field reconstructed from measured deflection line scans. However, provided 

that 1) the electron probe is of a similar size, or smaller than the sampling distance, 

and 2) the cone of electrons in the STEM is predominately deflected by stray field in 

the immediate vicinity of the focused electron disk, then the effect is expected to be 

small. 
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6.9 Stray Field Reconstructed From Incorrectly Aligned 

Integrated Field Line Scans 

A further possible source of error in the stray field reconstructed from an 

experimental line scan deflection data set arises from the alignment of the line scans 
in the data set. When the rotation data sets are collected (using DPC imaging) it is 

impossible to set the position of the tip in the images with sufficient accuracy to 

establish a common axis. Thus the individual line scans are frequently aligned 

manually about a common peak deflection value prior to tomographic reconstruction. 
This therefore assumes that the peak deflection value of each scan occurs at the same 

position on the line scan. However this is not always a valid assumption as the 
integrated field line scans generated by Tip2 in Chapter 4 show; see fig. 6.21(a) and 
(b). We find that the position of the peak integrated field values of the scans in fig. 

6.21(a) varies by up to 35nm on the horizontal axis - fig. 6.21(c) shows the central 
500nm of the scans in fig. 6.21(a), from which the variation in the peak value 

position is clearer. In this section we consider the effect that this horizontal 

misalignment of line scans within a data set has on the accuracy of the reconstructed 
field. 

The stray field was reconstructed from the correctly aligned line scans shown 
in fig. 6.21 (a) and N generated by Tip2. The field was also reconstructed from the 

same line scans but with a horizontal misalignment so that the position of the peak 
integrated field values coincide (see fig. 6.21(d) which shows the central 500nm of 

the scans sensitive to induction normal to the plane of reconstruction). The line scans 

sensitive to induction in the plane of reconstruction were incorrectly aligned by an 

equal amount. These three dimensional reconstructed stray fields are not shown here. 

Instead horizontal and vertical field scans were taken across the components of field 

normal to the plane of reconstruction and are shown in fig. 6.22. 
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The fact that it is difficult to separate the field scans in figs. 6.22(a) and (b) indicates 

that there is an excellent agreement between the reconstructed fields. In fact we find 

that the FW1 IM of the horýizontal field scans in fig. 6.22(a) are 204nm for the field 

reconstructed frorn the correctly aligned line scans and 202nm for the field 

reconstructed from the incorrectly aligned line scans - effectively an insignificant 

cri-or. Further, the vertical field scans in fig. 6.22(b) are both found to have FWHM 

of 200nm, while the peak value of the component of field over which the scans are 

taken is found to be 43rnT in both cases. 
We therefore conclude that an en-or in the horizontal alignment of the line 

scans (such as above) within an experimental deflection data set will not 

significant]) effect the accurac) of' the reconstructed stray field. 
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6.10 Discussion and Summary 

Two methods for obtaining an accurate reconstruction of the 3-D MFM tip stray field 

from non 'well behaved' input deflection data sets (i. e. deflection data sets 

containing line scans which do not decrease to zero at their extremes - similar to the 

experimental deflection data sets presented in Chapter 5) using the RTM 

reconstruction method were demonstrated in this chapter. 

The first method (see Sections 6.3 and 6.4) involved reconstructing the 3-D 

stray field from each of the tip assembly's orthogonal deflection data sets. The in- 

plane components of field reconstructed from the deflection data set sensitive to 
induction normal to the plane of reconstruction, and the normal component of field 

reconstructed from the deflection data set sensitive to induction in the plane of 

reconstruction were found to be accurate representations of the tip assembly's three 

stray field components. 
The second method for accurate reconstruction of the tip field from the non 

'well behaved' deflection data sets using the RTM reconstruction technique required 

a modification of the input deflection data sets (see Section 6.6). In this case a 

constant deflection value was subtracted from each deflection line scan so that the 

average value of the ends of each line scan were approximately zero. This is an 

approximate method for subtracting the cantilever and substrate contribution from 

the tip assembly's deflection data sets. The 3-D stray field was reconstructed from 

each of the modified orthogonal deflection data sets and the average was taken. This 

method also gives an accurate representation of the NIFM tip field. 

In Section 6.7 an investigation into the accuracy of the stray field 

reconstructed using the ART method was carried out. It was found that stray field 

reconstructed from 'well behaved' line scan deflection data sets using the ART 

reconstruction technique was not as accurate a representation of the tip field as the 
field reconstructed from the same deflection data sets using the RTM technique. In 

fact the less 'well behaved' the input deflection data sets to the ART reconstruction 

technique were, then the less accurate the (ART) reconstructed field was found to be. 

We therefore conclude that the RTM reconstruction technique is the most accurate 

reconstruction technique tested in this chapter (for reconstructing stray field from 

178 



'well behaved' and non 'well behaved' deflection data sets) and is therefore 

preferred for investigations of MFM tip stray fields. 

References 

[1] Liu, Y (1996), 'Electron Beam Tomography of Recording Head Fields' PhD 

Thesis 

[21 Private communication with Dr. S. McVitie 

179 



Chapter 7 

Characterisation of the Stray Field 

from Two Further MFM Tips 

7.1 Intro uction 

The tip models considered in Chapters 4,5 and 6 were all constructed with the 

intention of simulating the stray field from one specific DI MFM tip (recall that we 

considered the DI tip magnetised in the Axial and Transverse Cases). In this chapter 

we now consider two further NIFM tips, each of different type from the previous DI 

tip and each constructed with the intention of generating stray field of a specific 

character. In Section 7.2 we consider a DI tip partially coated with thin film. This tip 

was produced with the purpose of maximising the resolution achievable from the DI 

tip. in Section 7.3 we consider another thin film tip but in this case the tip has a 

groove made by ion milling at its apex. The purpose of the groove is to encourage 

the remanent tip magnetisation to align in a direction perpendicular to the groove and 

in the plane of the cantilever. This arrangement allows the tip to be sensitive to 

components of induction parallel to the surface of a specimen in the MFM. 
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7.2 The Partially Coated DI MFM Tip 

The first generation of MFM tips employed in magnetic force microscopy were fine, 

electrochemically etched wires such as iron, nickel and cobaltf'l. Several studies [2)[3) 

of these tips found that the radius of curvature of the tip and the tip-specimen 

separation are the main factors which limit the achievable resolution in the MFM. 

Thus the magnetic volume of the tip is important in defining the resolution. Since 

higher spatial resolution magnetic imaging is always desirable, it follows that NIEFM 

tips of lower magnetic volume are required. This led to the introduction of thin film 

MFM tips. We now consider one practical method proposed for maximising, the 

spatial resolution achievable from a thin film MIFM tip by minimising the magnetic 

volume of the tip. 
A silicon Nanoprobe tip from DI was partially coated with a Co thin film by 

Tom Pfaffelhuber of Regensburg University in Germany. The magnetic film was 

evaporated from a point source with the intention that only two faces of the tip (as 

well as parts of the cantilever and substrate) be coated - see fig. 7.1. The tip was then 

magnetised by the application of a large field directed along the tip axis and a full 

deflection line scan rotation data set was taken. 

/ 
Co thin film 
source 

UP cantilever substrate 

Fig. 7.1: Diagram illustrating the directional evaporation of Co thin film onto the 
rip assembly structure. Only the surfaces of the tip assembly which are directly 
exposed to the source will be coated with film. 
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To determine whether a partially coated DI tip mounted in a MIFM can achieve a 
higher spatial resolution than is possible from an identical DI tip entirely coated with 
film, we require to compare the character of the stray fields generated by each tip. A 

comparison of the stray field from the partially coated DI tip with the field 

reconstructed from the deflection data sets in fig. 5.1 (generated by a separate DI tip 

entirely coated with film and magnetised as in the Axial Case) would have been 

carried out but for the fact that the thickness of film coating each tip is not known 

precisely and this influences the peak field and the spatial character of a tip's stray 

field (see Section 4.5). Instead an extensive theoretical investigation comparing the 

stray fields generated from a model tip partially coated with film and the field from a 

tip entirely coated with film of the same thickness is required. However, prior to this, 

a comparison of the deflection line scans generated by the partially coated DI tip with 

simulated integrated field line scans generated by a model of this DI tip is conducted. 

Fig. 7.2 shows a diagram of a possible model for the DI tip partially coated 

with thin film. For this model it was assumed that the film evaporated onto the DI tip 

coated the front two faces only. Note that this model will subsequently be referred to 

as the Two Sided Tip. Also note that the effective geometry of the model tip is 

identical to that of Tip 3 in Chapter 4. 

Direction of 
evaporation 
of thin film 
onto lip 

x 
sy 

Fig. 7.2: Diagram of a model for the partially coated DI MFM tip. Note that the 
geometry of the model is identical to that of Tip 3 in Chapter 4 (see fig. 4.5). 
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A full integrated field line scan rotation data set was calculated from this tip model 

and a selection of these line scans are shown in fig. 7.3. Also shown are the 

corresponding experimental deflection line scans generated by the partially coated DI 

MFM tip. Note that the deflection line scans generated by the DI tip have been 

modified by the subtraction of a large variable vertical shift value from each scan. 
Figs. 7.3(a) and (b) show a comparison of simulated and experimental 

deflection line scans sensitive to induction normal to the plane of reconstruction. 
There is reasonable agreement between corresponding scans. A similar level of 

agreement is also found between the simulated and experimental line scans sensitive 

to induction in the plane reconstruction, see figs. 7.3(c) and (d). Note that the 

contribution to the experimental deflection data sets from the cantilever and substrate 

portions of the partially coated DI tip assembly have not been taken into account in 

the model. This is a possible reason that the agreement between the simulated and 

experimental deflection line scans is not better. 

The agreement between the simulated and experimental deflection line scans 
justifies the use of the Two Sided Tip model to investigate the character of the 

partially coated DI tip field. We now compare the stray fields and integrated stray 
fields generated by the Two Sided Tip with that from model Tip3 in Chapter 4 (note 

that model Tip3 is coated with a film of equal thickness and represents a DI tip 

entirely coated with film). In the following, model Tip3 will be referred to as the 

Four Sided Tip. 
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Fig. 7.3: Comparison oj'u selection of'deflection line scans generated by the 
parfiall ' ý' coated DI MFM tip with simulated integratedfield line scans generated 
by the Two Sided Tip. 
Note that the scans in (a) are separated by 90'about the rotation axisfronz the 
scans in (b). The same is true oj'tlze scans in (c) and (d). 
Also note that the experimental deflection line scans generated by the DI tip have 
had a constant deflection value subtractedftoln them. The value subtracted was 
the average value of the end-points oj'the scans. 
Further note that M( i an \ ýi ci, I/( (/ /'N 1/1(' /)(11-1111/h coalt'd /)/ Iip, 
while Ilw Nue. sca/is /)j, tht, 'I'it-0 Sided Tip model. 
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Full simulated integrated field line scan rotation data sets were calculated 

from each tip model and a scan taken from each data set (sensitive to induction 

normal to the plane of reconstruction) is shown in fig. 7.4. The magnitude and the 

FWHM of the scan generated by the Two Sided Tip is 14Tnm and 1200nm 

respectively. The corresponding magnitude and FWHM of the scan generated by the 

Four Sided Tip is 23Tnm and 850nm. Thus, as expected (due to the fact that the Two 

Sided Tip is coated in a significantly smaller volume of magnetic material than the 

Four Sided Tip), the magnitude of the integrated field generated by the Two Sided 

Tip is smaller than that from the Four Sided Tip. Also note that the FWHM of the 

integrated field generated by the Four Sided Tip is significantly smaller than the 

FWHM of the integrated field from the Two Sided Tip. This is due to the fact that 

Four Sided Tip model contains it larger amount of negatively polarised magnetic 

charge planes than the Two Sided Tip - these tend to reduce the FWHM of the 

integrated field. These points are aenerally expected and tell us little about any 

difference between the character of the stray fields from the Two and Four Sided 

I ps. 
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Fig. 7.4: Simulated in teg rated field line scans (sensitive to induction normal to the 
reconstruction plane) generated by the Two and Four Sided Tips. 
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The stray field was therefore reconstructed from the two orthogonal rotation data sets 

generated by the Two Sided Tip and the average was taken. The average three 

dimensional field reconstructed from the two orthogonal rotation data sets generated 
by the Four Sided Tip was also determined. The spatial distribution of these 3-D 

fields was comparable but the fields are not shown here. Instead horizontal and 

vertical scans were taken across the components of field normal to the reconstruction 

plane and are shown in fig. 7.5. 
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(b) Verticalfield scans taken across 
the normal components offield. 

Fig. 7.5: Scans taken across the nonnal components of the Two and Four Sided Tip 
Model reconstructed stra ,v 

fields. 
Note that ,,, / hoi c lwcli tok(, 11 m f/w Iwrmo/ (0111pollem ofille F0111- sldcd 
/ q) licl, /, while blue scans have been taken across the nonnal component qf the Two 
Sided Tipfield. 

The peak value of the normal component of field from the Two Sided Tip is found to 
be 14mT, while the corresponding peak value of the field from the Four Sided Tip is 

40mT. Further, in fig. 7.5(a) the FWHM of the field scans were found to be 218nm 
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for the Two Sided Tip, and 220nm for the Four Sided Tip. In fig. 7.5(b) the FWHM 

of the scan taken across the field from the Two Sided Tip was found to be 214nm, 

while the corresponding FWHM of the scan taken across the field from the Four 
Sided Tip was found to be 225nm. 

Thus the magnitude of the stray field generated by the Two Sided Tip is 

significantly smaller than the field generated by the Four Sided Tip. Also, although 
the FWHM of the Two Sided Tip field is smaller than the field from the Four Sided 
Tip the difference is small - being less than approximately 5%. This suggests that the 

spatial resolution available from a partially coated DI MFM tip (of comparable 

geometry to the model) will be only marginally higher than the resolution available 
from a DI tip entirely coated with thin film. Other methods exist for increasing the 

spatial resolution achieved in Magnetic Force Microscopy such as sharper MFM tips 

and lowering the tip-specimen separation [4101 
. However it is a combination of these 

methods as well as reducing the volume of magnetic material coating the MFM tip 

which need to be implemented to increase the spatial resolution significantly. We 

now consider one further MFM tip. 

7.3 The Seagate Grooved Tip 

Recall from Section 2.4 that a MFM image represents a two dimensional map of a 

convolution of the tip magnetisation and the sample stray field. Due to the Theory of 
Reciprocityý 61 we can alternatively regard a N4FM image as a map of a convolution of 

the tip stray field and the specimen magnetisation. Thus, to determine quantitatively 

a specimen's magnetisation from a NIFM image, we must deconvolve the tip stray 
field from the image. It therefore follows that for quantitative MFM imaging a tip 

with a known stray field distribution is required. 
We have previously considered MFM tips (i. e. the DI tip magnetised as in the 

Axial and Transverse Cases and the partially coated DI tip considered in Section 7.2) 

which have been found to be predominately magnetised along the tip axis (even after 
the application of a large field directed along the cantilever axis for the DI tip 
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magnetised as in the Transverse Case). In this section we now consider a N4FM tip 

which was specifically designed so that a large component of its remanent 

magnetisation be directed perpendicular to the tip axis (i. e. in the plane of the 

cantilever). This was required to give a field which could be used to investigate the 

spatial variation of the magnetoresistive (MR) sensitivity over the area of an MR 

sensor designed for data read back from hard disks [71 
. The tip was manufactured by 

Seagate and had a groove ion milled at its apex. The groove was measured from 

SEM images to extend approximately 6gm down the tip and to be approximately 
200nm wide. The bottom of the groove is assumed to be parallel to the sides of the 

tip. A magnetic film was sputtered onto the structure after the groove was formed 

(the thickness of this magnetic film is not known). The tip was designed with the 
intention that a series of magnetic dipoles be set up across the groove (when exposed 
to a magnetising field) thereby generating the required stray field distribution. 

The Seagate MIFM tip was magnetised in three different ways and for each a 
full line scan rotation data set was taken. A model of the Seagate tip was constructed 

- see fig. 7.6 - for the purpose of assisting in the determination of possible 

magnetisation distributions for the three cases. We now consider the deflection data 

sets and consequent reconstructed stray fields generated by the Seagate tip. 

x- 
5.9, um 

15, wn 

Groove 

z 

(i) View looking onto the side of the tip. (ii) View looking down onto 
the top of the tip. 

Fig. 7.6: Diagram of the model of the Seagate tip. Note that the 
geometry of the model is the same as Tipl in Chapter 4 (seefig. 4.5). 
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7.3.1 The Seagate Tip Magnetised by a Large Field Directed in the Plane 

of the Cantilever and Nornial to the Groove 

We first consider the Seagate tip magnetised by the application of a large field 

directed normal to the cantilever axis and in the plane of the cantilever (i. e. directed 

normal to the groove). This will subsequently be referred to as the Normal Case. 

Several possible models for the magnetic configuration of the Seagate tip were 

constructed and are shown in fig. 7.7. Full simulated integrated field line scan 

rotation data sets were calculated from each tip model but are not shown here. 

Instead a selection of line scans generated by the tip model GT_1 (see fig. 7.7(a)) are 

shown in fig. 7.8. Also shown are the corresponding deflection line scans generated 
by the Seagate tip. Note that the experimental deflection line scans have again been 

modified by the subtraction of a large variable vertical shift value from each scan. 

Dirc(lioll (ý/ 
-ma 

I'll ý field 

1¶ 

(a) Tip modei GT-J. (b) Tip model GT-2- (c) Tip model GT-3. 

Fig. 7.7: Three possible magnetic cmiligurations oj'tlle Seagate tip magnetised as in 
the Normal Case. Note that each individual Jill', is magnetised in the plane qj'the 
jilm. Also note that the +'s und -'s indicate the directions oj'the series of dipoles set 
up across the groove. 
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(c) Scans sensitive to induction in the 
plane of reconstruction. 
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(b) Scans sensitive to induction 
nonnal to the plane of reconstruction. 
Scans separatedfrom the scans in (a) 
by 90 'about the rotation axis. 
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(d) Scans sensitive to induction in 
the plane of reconstruction. Scans 
separatedfronz the scans in (c) by 
90 'about the rotation axis. 

Fig. 7.8: Comparison of a selection of deflection line scans generated by the 
Seagate tip magnetised as in the Normal Case with the simulated integratedfield 
line scans generated by tip model GT I (seefig. 7.7(a)). 
Note that the scans in (a) and (c) are separatedfrom the corresponding scans in 
(b) and (d) by 90'about the rotation axis. 
Also note that the deflection line scans generated by the Seagate tip have had a 
constant deflection value subtractedfrom them. The value subtracted was the 
average value of the end-points of the scans. 
Further note that the blue scans vvere generated by the partiall 'v coated DI tip, 
while thc rcil ý(ons lvere, cxlwrawd /)v the TwoSi I ded 1,1/) 
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Figs. 7.8(a) and (b) show a comparison of experimental and simulated line scans 

sensitive to induction normal to the plane of reconstruction. It is clear from a visual 

comparison of the con-esponding line scans that there is reasonable agreement 

between the character of the simulated and experimental deflection data. This is also 

found for a comparison of simulated and experimental deflection line scans sensitive 

to induction in the plane of reconstruction, see figs. 7.8(c) and (d). Therefore the 

suggestion is that tip model G711 is a possible model for the Seagate tip magnetised 

in the Normal Case. 

Note that in the absence of detailed information on the Seagate tip film 

thickness, a similar level of agreement can also be achieved for comparison of these 

experimental deflection line scans with the simulated deflection data generated by tip 

models GT-2 and GT 3. However, the thickness of film coating each tip model must 
be modified accordingly (to ensure the tip models generate stray field of comparable 

magnitude to the experimental tip field). Therefore the tip models GTI-2 and G7J 

are also possible models for the Seagate tip magnetised in the Normal Case. 

The tip models therefore suggest that the Seagate tip is predominately 

magnetised normal to the groove (however it is not clear which tip model best 

resembles the practical tip). We now consider the stray field reconstructed from the 

deflection data sets generated by the Seagate tip and make a comparison with the 

fields reconstructed from the rotation data sets generated by the tip models. 
Fig. 7.9(a) shows the 'best fit' three dimensional field reconstructed from the 

orthogonal deflection data sets generated by the Seagate tip (i. e. the in-plane 

components have been reconstructed from the deflection data set sensitive to 

induction normal to the plane of reconstruction, while the normal component of field 

is reconstructed from the deflection data set sensitive to induction in the plane of 

reconstruction - see Sections 6.3 and 6.4). Fig. 7.9(b) shows the corresponding three 

dimensional field reconstructed from the simulated rotation data sets generated by tip 

model GT-1. 

A visual comparison of the corresponding field components clearly suggests 

that the experimental and simulated reconstructed fields are very similar. Field scans 

were taken across each of these field components and a selection are shown in figs. 

7.9(c) and (d). From these scans it is clear that there is good agreement between the 
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(a) Stray field reconstructedfrom the deflection data sets generated by the Seagate 
tip magnetised as in the Nonnal Case. 

(b) Strayfield reconstructedfrom the simulated deflection data sets generated tip 
model GT-I (seefig. 7.7(a)). 
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(d) Horizontal scans taken across the 
y components of the reconstructed 
fields above. 

Fig. 7.9: Strayfields reconstructedfrom the rotation data sets generated by the 
Seagate tip magnetised as in the Normal Case and the tip model GT I (see fig. 
7.7(a)). 
Also shown are scans taken across the reconstructedfields in (a) and (b). 
Note that the blue scans are taken across the reconstructedfields ill (a), while 
the rci/mall s an , hlkc,, ilcro. s, ý flic recoll's I/. //, -te'd 11"ids ill (1)). 
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simulated and experimental reconstructed fields. Note that a similarly favourable 

agreement can also be obtained from a comparison of the experimental reconstructed 
field with the field reconstructed from the rotation data sets generated by tip models 
G7ý_2 and GT-3 (however the thickness of each model tip film must be modified 

accordingly to achieve agreement with the experimental deflection data). 

In Section 5.2.2 we concluded that the DI MFM tip magnetised as in the 

Transverse Case was still predominately magnetised along the tip axis even after the 

application of a large field directed along the cantilever axis. In this section we 

conclude that a groove ion milled at the tip apex does encourage the tip 

magnetisation to settle in the plane of the cantilever and normal to the groove. Note 

however, that without a measure of the Seagate tip film thickness it is not clear 

which of the tip models in fig. 7.7 best represents the Seagate tip magnetisation. We 

now consider the Seagate tip re-magnetised by the application of a large field 

directed in the plane of the cantilever and parallel to the cantilever axis. 

7.3.2 The Seagate Tip Magnetised by a Large Field Directed Along the 

Cantilever Axis 

The Seagate tip was re-magnetised by the application of a large field directed along 

the cantilever axis (i. e. in the groove direction). This will subsequently be referred to 

as the Transverse Case. 
Several possible models for the magnetic configuration of the Seagate tip 

magnetised as in the Transverse Case were constructed and are shown in fig. 7.10. 

Full line scan rotation data sets were again calculated from each tip model but are not 

shown here. A comparison of the line scan deflection data sets generated by the 

Seagate tip with the data sets generated by the tip models (GT 4, GT-5 and G7ý_6) 

was carried out as was a comparison of the experimental and simulated fields 

reconstructed from these data sets (these comparisons are not shown here), The 

agreement between the experimental and the simulated data was poor and this 

indicated that the tip models (in fig. 7.10) did not represent possible magnetisation 

distributions for the Seagate tip film in this case. 
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(a) Tip model GT 4. (b) Tip model GT 5. (c) Tip model GT 6 

Fig. 7.10: Three possible magnetic configurations of the Seagate tip magnetised as 
in the Transverse Case. Note that each individual film is magnetised in the plane of 
the film. Also note that the +'s and -'s indicate the directions of the series of dipoles 
set up across the groove. 

However, it was observed that the stray field from the Seagate tip magnetised as in 

the Transverse Case was very similar to the field from the same tip magnetised as in 

the Normal Case (i. e. the tip considered in Section 7.3.1), see figs. 7.11 (a) and (b). 

As a further comparison, field scans were again taken across each of the field 

components and a selection are shown in figs. 7.11 (c) and (d). It is clear from these 

scans that there is excellent agreement between the experimental reconstructed 
fields. Note that a comparison of corresponding deflection line scans generated by 

the Seagate tip magnetised as in the Normal and Transverse Cases were also found to 

give good agreement, see fig. 7.12. 

We therefore conclude that the magnetisation of the Seagate tip magnetised 

in the Transverse Case is still predominately directed in the plane of the cantilever 

and normal to the groove, despite the application of a large field directed along the 

cantilever axis. It follows that the tip models in fig. 7.7 (i. e. GT-1, GT 2 and GT 3) 

represent possible magnetisation distributions for the Seagate tip film magnetised in 
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(a) StraYfield reconstructedfroln the deflection data sets generated by the Seagate 
tip magnetised as in the Nomial Case. 

(b) Stray field reconstructedfrom the deflection data sets generated by the Seagate 
tip inagnetised as in the Transverse Case. 

2 

E 

-6 

-7 
I? 1ý 70 CN CO 

m Icrons 

(c) Horizontal scans taken across the 
x components of the reconstructed 
fields above. 

6 

4 

E 

-6 1iI 
I? Cý 70 CN 

microns 

(d) Horizontal scans taken across the 
y components of the reconstructed 
fields above. 

Fig. 7.11: Stray fields reconstructedfrom the rotation data sets generated by the 
Seagate tip inagnetised as in the Nonnal and Transverse Cases. 
Also shown arefield scans taken across the reconstructedfields in (a) and (b). 
Note that the blue scans are taken across the reconstructedfields in (a), while 
the r, 'd ý,, m ý are Ijk,,,, a, roý \ I//(' rc( moirlicicil /WhA ill (b). 
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(b) Scans sensitive to induction in 
the plane of reconstruction. Scans 
separatedfrom the scans in (a) by 
90 'about the rotation axis. 
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(d) Scans sensitive to induction 
normal to the plane of reconstruction. 
Scans separatedftonz the scans in (c) 
by 90'about the rotation axis. 

Fig. 7.12: Comparison of a selection of corresponding deflection line scans 
generated by the Seagate tip magnetised as in the Normal and Transverse Cases. 
Note that the scans in (a) and (c) are separatedjýoni the corresponding scans in (b) 
and (d) by 90'about the rotation axis. 
Also note that all the deflection line scans have had a constant deflection value 
subtractedfrom them. The value subtracted was the average value oj, the end- 
points of the scans. 
The red m mis wert, Q('11com'd /rom 1ý11(401'd 11 \m 1/1(' 11 (111 N 
( '(o ,, while the blue scans ivere generated. from the Seagate tip magnetised as in 
the Normal Case. 
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this case. Ho\\e\-er, in the absence of detailed information on the Seagate film 

thickness it is agam not clear ýNhich tip model best represents the experimental tip. 

We now consider the Seagate tip re-magnetised by the application of a large field 

directed normal to the plane ofthe cantilever. 

7.3.3 Tlie Seagate Tip Nlagiietised by a Large Field Directed Aloiig the 

TipAxis 

The Seagate tip ýýas re-magnetised hý the application of a large field directed along 

the tip axis. This will subsequently be referred to as the Axial Case. A possible 

model for the Seagate tip rnagnetised in this manner is shown in fig. 7.13. A full 

integrated field line scan rotation data set was calculated from the model but is not 

shown here. Instead a comparison of a selection of simulated deflection line scans 

(sensitive to induction normal to the plane of reconstruction) O'enerated by the tip 

model GT 7 with the corresponding experimental deflection line scans generated by 

the Seagate tip is shown in fig. 7.14. 

01 

III, modc/ OL ý- 

Fig. 7.13: A possible magnetic (wlifigill-ation oj'the Seagate tip magnetised us in the 
Axial Ca. sc. Note that each individual. 111in is magnetised ill the plane qj'thefilm. Also 
note that the +'s indicate polarity of' the magnetic charge density (it the groove 
e(lges. 
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(a) Scans sensitive to induction 
nonnal to the plane of reconstruction. 

5 

E 

- 10 

-15 

-20 
0- C11 M It 

microns 

(b) Scans sensitive to induction 
non-nal to the plane of reconstruction. 
Scans separatedfrom the scans in (a) 
by 90'about the rotation axis. 

Fig. 7.14: Comparison of a selection of deflection line scans (sensitive to induction 
normal to the plane of reconstruction) generated by the Seagate tip magnetised as in 
the A-vial Case with simulated deflection line scans generated by tip model GT 

- 
7. 

Note that the scans in (a) are separatedfrom the corresponding scans in (b) by 90' 
about the rotation axis. Also note that the experimental deflection line scans have 
had a constant deflection value subtractedfrom them. The value subtracted was the 
average value of the end-points of the scans. 
The n-d (aii, licic ,, cm, rowd /; -"/Il Ilic 1/1 1/1(' Cuse, 
while the blue scans the tip model GT-7. 

It is clear from a visual comparison of the corresponding line scans in fig. 7.14 that 

the character of the simulated integrated field does not compare favourably with the 

experimental deflection data. This was also found for a comparison of corresponding 

simulated and experimental deflection line scans sensitive to induction in the plane 

of reconstruction but is not shown here. This suggests that the Seagate tip 

magnetised in the Axial Case is not entirely magnetised along the tip axis - even after 

it has been exposed to a large field applied along that direction. We now consider the 

stray field reconstructed from the deflection data sets generated by the Seagate tip 

and make a comparison with the corresponding field from the tip model GT-7. 
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Fig. 7.15(a) shows the 'best fit' three dimensional field reconstructed from 

the deflection data sets generated by the Seagate tip. Fig. 7.15(b) shows the 

corresponding three dimensional field reconstructed from the simulated rotation data 

sets generated by tip model GT-7. 

A visual comparison of the corresponding field components clearly suggests 
that the character of the simulated and experimental reconstructed fields are very 

similar. Field scans were again taken across each of the corresponding field 

components and a selection is shown in figs. 7.15(c) and (d). From these scans it is 

clear that there is agreement between the simulated and experimental reconstructed 

fields. However the experimental reconstruction indicates a sharper field directed 

along the tip axis. 
Recall from Section 4.4 that the tip film coating approximately the top I to 

3ýtm of the tip (depending on the magnetic configuration of the tip) was found to be 

the most imporlant for defining the character of the tip stray field. Thin film coating 

the tip beyond 3gm from the apex was found to have little influence on the character 

of the field immediately in front of the tip. However this portion of the magnetic film 

was found to influence significantly the character of the integrated field generated by 

the tip. Thus, the implication from the fact that there is good agreement between the 

simulated and experimental reconstructed fields is that at least the top I to 3gm of 

the Seagate tip film is predominately magnetised along the tip axis. The poor 

agreement between the simulated and experimental deflection line scans, however, 

suggests that the film beyond 3gm from the apex of the Seagate tip is not 

pmdominately magnetised along the tip axis. 
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(a) Strayfield reconstructedfrorn the deflection data sets generated by the Seagate 
tip magnetised as in the Axial Case. 

(b) Strayfield reconstructedfrom the simulated deflection data sets generated tip 
model GT-7 (seefig. 7.13). 
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Fig. 7.15: Stray fields reconstructedfrom the rotation data sets generated by the 
Seagate tip magnetised as in the Axial Case and the tip model GT 7 (see fig. 7.13). 
Also shown are field scans taken across the reconstructedfields in (a) and (b). 
Note that the blue scans were taken across the reconstructedfields in (a), while the 
1-ceilm -till's wcrc taki'll I/Ic )-ccoll'sirm ved /11 (h). 
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We now consider another possible model for the Seagate tip magnetised in 

the Axial case, see fig. 7.16. The film coating the top 3grn of the tip model is 

magnetised axially, while the rest of the film is magnetised in the plane of the 

cantilever and normal to the groove (similar to the Seagate tip magnetised in the 
Normal and Transverse cases). A full integrated field line scan rotation data set was 

calculated from the tip model. A selection of these simulated line scans with the 

corresponding experimental deflection line scans generated by the Seagate tip are 

shown in fig. 7.17. 
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*y 1ý 
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(i) View looking onto (ii) View looking down 
the side of the tip. onto the top of the tip. 

Fig. 7.16. Another possible magnetic configuration of the Seagate tip magnetised as 
in the Axial Case. Note that the top 3pn of the tip film is magnetised axially, while 
the rest of the tip film is magnetised in the plane of the cantilever and normal to the 
groove. 

A visual comparison of the con-esponding line scans in fig. 7.17 indicates that there 

is some agreement between the simulated and experimental line scans. However 

there are also some significant differences in the character between corresponding 

scans. This may be due to the fact that the contribution to the experimental deflection 

data sets from the cantilever and substrate portions of the Seagate tip assembly has 

not been taken into account in the model. 
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(b) Scans sensitive to induction normal 
to the plane of reconstruction. Scans 
separatedfrom the scans in (a) by 60' 
about the rotation axis. 
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(d) Scans sensitive to induction in the 
plane of reconstruction. Scans 
separatedfrom the scans in (c) by 60' 
about the rotation axis. 

Fig. 7.17: Comparison of a selection of deflection line scans generated by the 
Seagate MFM tip magnetised in the Axial case with simulated integratedfield line 
scans generated b'y the tip model GT 8. 
Note that the scans in (a) are separated b'v 60'about the rotation axisfrom the scans 
in (b). The same is true of the scans in (c) and (d). 
Also note that the experimental deflection line scans generated by the Seagate tip 
have had a constant deflection value subtractedfrom them. The value subtracted was 
the average value of the end-points of the scans. 
Further note that Ilw red scon s ýwrc tý,, m rawd lip, while the blue 
scans were generated bY the tip model GT-8. 
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The character of the stray fields reconstructed from the simulated and 

experimental line scan deflection data sets were found to compare favourably - as the 

field scans in fig. 7.18 show. We therefore conclude that tip model GT_8 is a 

possible model for the Seagate tip magnetised in the Axial case. 
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(a) Horizontal scans taken across the 
(In-plane). v components oj'tlie 
recoi i st ru cted fields. 
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(b) Horil-ontal scans taken across the 
nonnal components (y components) 
of the reconstructedfields. 

Fig. 7.18: Comparison offield scan components reconstructedfrom the line scan 
deflection data sets generated by the Seagate tip magnetised ill the Axial case and 
file lip model GT-8. 
Note that it t/ ýttw s 101 C 10kcil I( wsý 1/w htld t, cI1ChIICd b\ //1(' 111) modc/ 
GI\,, while bluescalls have been taken across thefieldgenerated by the Seagate tip 
Illaglu'list'll ill flu. A. Vial case. 

It has been shown that the magnetisation of the experimental Seagate tip is 

predominately in the plane of the cantilever and normal to the groove provided the 

niagnetising field is directed in the plane of the cantilever. Since the grooved 

character of the Seagate tip is the only significant physical difference to the DI tips 

considered in earlier sections, we conclude that the groove does facilitate the 

remanent magnetisation settling in the plane of the cantilever and normal to the 

groove. 
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7.4 Summary and Conclusions 

The models considered in Section 7.2 suggest that similar spatial resolution is 

achievable from a DI MFM tip either partially coated or entirely coated with 

magnetic film. However the magnitude of the stray field from the partially coated tip 
is significantly smaller than that from a fully coated tip. Therefore a partially coated 
DI tip (mounted in an MFM) will alter a sample magnetisation to a lesser extent than 

an identical tip fully coated with magnetic material (while still achieving a similar 

spatial resolution). It follows that the partially coated DI MIFM tip will be useful for 

imaging 'softer' magnetic materials (i. e. materials for which the large field from the 
fully coated DI tip effects the specimen magnetisation significantly). 

In Section 7.3, the grooved character of the Seagate tip was found to facilitate 

the remanent magnetisation settling in the plane of the cantilever and normal to the 

groove (provided the magnetising field is directed in the plane of the cantilever). 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

The work described in this thesis was concerned with a theoretical characterisation of 

the stray field from a MFM tip and the structure on which it is built. We also 
investigated the accuracy of practical methods (i. e. electron beam tomographic 

reconstruction methods) for characterising the tip field. 

The experimental line scan deflection data sets generated by a DI N4FM tip 

assembly were presented in this thesis. Possible tip, cantilever and substrate models 
for the DI tip assembly were constructed. These models indicated that in the vicinity 

of the tip, the tip field dominates over the combined cantilever and substrate field. 

However the small cantilever and substrate field (relative to the peak tip field) is 

spread over a far larger distance than the tip field. The large spread of the cantilever 

and substrate field ensures that their field integrals are large and therefore the 

cantilever and substrate contribution to the tip assembly's deflection data sets is 

significant. With regard to the experimental line scan deflection data sets generated 
by the DI MFM tip (see figs. 5.1 and 5.2), the models suggest that the tip portion of 
the DI tip assembly is predominately responsible for the shape character of the 
deflection line scans, while the cantilever and substrate portion is responsible for the 
large vertical shifts of the experimental scans. 

Both the ART and RTM reconstruction methods require 'well behaved' input 

deflection data sets containing line scans which decrease to zero at their extremes to 
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produce an accurate reconstruction of the 3-D tip stray field. The large cantilever and 

substrate contribution to the experimental deflection data sets was therefore expected 

to effect the accuracy of the reconstructed tip assembly field. However, two methods 

for obtaining an accurate reconstruction of the 3-D MFM tip stray field from non 

4 well behaved' input deflection data sets using the RTM reconstruction technique 

were demonstrated. 

The first method involved reconstructing the 3-D stray field from each of the 

tip assembly's orthogonal deflection data sets. The in-plane components of field 

reconstructed from the deflection data set sensitive to induction normal to the plane 

of reconstruction, and the normal component of field reconstructed from the 

deflection data set sensitive to induction in the plane of reconstruction were found to 

be accurate representations of the tip assembly's three stray field components. 

The second method for accurate reconstruction of the tip field from the non 

'well behaved' deflection data sets using the RTM method required a modification of 

the input deflection data sets. In this case a constant deflection value was subtracted 

from each deflection line scan so that the ends of each line scan were approximately 

zero (this is an approximate method for subtraction of the cantilever and substrate 

contribution to the tip assembly deflection data sets). The average of the 3-D stray 

field reconstructed from each of the modified orthogonal deflection data sets also 

gives an accurate representation of the MFM tip field. 

Investigations into the accuracy of the stray field reconstructed using the ART 

technique were also undertaken. It was found that stray field reconstructed from 'well 

behaved' line scan deflection data sets using the ART method was not as accurate a 

representation of the tip field as the field reconstructed from the same deflection data 

sets using the RTM technique. In fact the less 'well behaved' the input deflection data 

sets to the ART method were, then the less accurate the reconstructed field was found 

to be. 

In conclusion, the RTM method is the most accurate reconstruction technique 

tested in this thesis (for reconstructing field from 'well behaved' and non 'well 

behaved' line scan deflection data sets) and is therefore preferred for investigations of 

MFM tip stray fields. 
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8.2 Future Work 

In this section possible future work is discussed. 

1. A theoretical investigation into the effect of the electron probe size on the 

measured deflection data was undertaken in Section 6.8. We concluded that provided 
1) the cone of electrons in the STEM is predominately deflected by stray field in the 

immediate vicinity of the focused electron disk, and 2) the focused electron probe is 

of a similar size or smaller than the sampling distance, then the effect on the 

measured deflection data is small. An extension of this work would be to formulate a 

technique for deconvolution of the electron probe from the measured deflection data 

(by approximating the electron probe to be a 2-D Gaussian distribution). Therefore a 

smaller sampling distance could be used in a practical experiment and the original 
deflection data could be deconvolved from the measured deflection data and 

consequently a higher spatial resolution achieved. 

2. Using existing tip, cantilever and substrate models and by constructing 

specimen models, the tip-specimen interaction could be simulated. With knowledge 

of the initial model tip and specimen magnetisation distributions, an iterative 

technique for deconvolution of the tip stray field from the simulated NIFM images 

should be sought. 

3. Possible magnetisation distributions for the tip portion of the DI tip assembly 

were investigated briefly using the LLG Micromagnefics Simulaloý" (this package 

solves the Landau-Lifshitz-Gilbert (2) equations using finite difference methods). The 

relatively large scale of the tip structure means that realistic tip models require several 
days (even weeks) computation to determine a suitable remanent tip magnetisation. 
However, small portions of the tip film can be modelled separately provided suitable 
boundary conditions are used. Preliminary investigations modelling the top 0.5gm 

portion of the tip film (from the tip apex) have shown promise. Further investigations 

are warranted. 
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Appendix I 

In Chapter 4 the equations required for the calculation of the magnetic field from a 
uniformly magnetised block were given. The three components of H are now 
calculated from equations (4.2) and (4.3) and the following notation is used, 

x -x'= aZ- Z' =y 

x-L, =a- y-4 =b- z- L3 = C- (1) 

x+ L, -= aý y+ L2 = b+ z+ L3 = C+ 

Equation (4.2) is now used to give the three components of H. 

Comvonent H,, 

The expression for 4, using the substitutions in (1) is, 

m a. c. a. C. 
adadr adady ff (2) 4; r 22+ r2]y2 

- 
ff 

222 ]72 
a- c- [a + b- a-r-[a +b++r 

These are two very similar integrals and we consider one only with the substitutions 
to=a2 +b2 +y2 and dw=2ada then, 

a, 
C. a. 
f dy f 

d(o 
221+r2 ]Y2 

dy (3) 
2a -V )/2 [a +b 
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this integral is easily solved as, 

11, f2 dy 
2]Y2 

lln(r 
+ [a 2+b2+ y2lY2 

,. - 
[a + b2 +y C- 

Thus the complete expression for 11ý, is calculated as the sum of several terms like 

equation (4) and is given by, 

m2+ 
C2 

]Y2 
In c+ +[a 

2 
+b 

2+ C2 
]Y2 

H= -' 
ýIn(c+ 

+[a + b2 
++-+ r 41r 

2+ C2 
]Y2 2+ Cl 

]Y2 
- In( c +[a-' +b- -)+ 

In( c- +[a' +b _ 

-In c, +[a 2 +b2 + C2 
]Y2 

+In c +[a 2 +b 2+ C2 
J/1/2 

22+ C2 
]Y2 2y 

+ In( c- + [a- + b+ 
-)- 

In( c- +[a+ +b2 +c! j 2 (5) 

Component H, 

From equation (4.2) the expression for H., using the notation described in equation 

MIS, 

c, a, 

Hv = 
Mý 

b-ý! 
dady 

-- b, f f 
dady 

(6) 
4; r c- a- [a 2 

+b 
2 +y2o c- a- 

222 I/V2 [a +b+ +y 

Again we have two double integrals with the basic form being, 
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C. a, 
ýdy f2 da 

] Y2 

aja +b 2 +y2 
(7) 

Integrating this with respect to the variable ais a standard integral which leaves, 

a dy (8) 
(b 2 +y2)(a2 +b + y2)y 

Solving this integral is complicated and requires several substitutions - the first being 

y =utant9 with u2 =a2 +b2 and dy=useC2 &d&, so that the terms of equation 

(8) are of the fonn, 

C. I usec- 

"[u2-aI+u2 tan 
2 91[u 2+ 

u' tan' z9) 
Y2 

sec Odd cos Odd 
[u2 sec2 L9- a2] [U2 a2 Cos 2 

using basic trigonometric rules. This equation can be further simplified by, 

I., cos Od t9 cos WO 
[b2 

f 
[u2 +b2 -a2cos2 t9j +a' sin' 0] 

and now the substitution v=a sin 0 with dv =a cos Odd means that, 

(9) 

(10) 

dv 

a+ V2, 

ft; 
7- + v2, 

on substituting the variables back in this gives, 
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tan-' 
asin 

tan-' 
2 

b [a 2 
+b 

2 ]/ 2 

This cumbersome expression is the basic form of the component Hy which from 

equation (6) is, 

M' a, Cý H, tan sin tan' v 4; r b- (a, 2 
+b 

1 )/2 

- tan-' a., 
sin tan C_ tan-' a- sin tan-' C+ 

b T2 b- 22 )Y2 
, 
(a, 2 +b-2) 2 (a- +b- 

NN 

" tan-I a- 
sin tan 

C_ tan-' 
a+ 

sin tan 
C+ 

b2+b_2 )Y2 b+ (a+ 2+ b+ 2 )Y2 

c 

" tan a+ 
si tan C_ + tan-, 

a- 
sin tan' + 

b+ (a+ 2 
+b +2)y2 

b+ (a- 2+ b+ 2 )Y2 

- tan-' 
a- 

si tan -, 
c- 

b+ (a- 2+ b+') 

Comimnent H. 

The calculation of H. from equation (4.2) involves solving the following integral, 

". a. W ad y c, a, Wady 
(14) M; ff2 

Y2 22 ]Y2 4; r 
-11[a 

+b+2 + , -a 
[a +b2 +Y2 (- a- y 
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the similarity between equations (2) and (14) is clear. In fact the calculations are 

identical with y replacing ot so that the full expression for H, is given as, 

Mý 114., 
[a2 

+b2 + C2 
IY2 

+-+y ln(a+ + [a' + b' + c2 41r + 

22+ C2 
]Y2 2 

+b 
2+ 

C2 
]Y2 

In( a- +[a +b-)+ In( a- + [a_ 
+ 

I a, + [a 2+b2+ C2 
]Y2 

+In a, +[a 
2+b2+ 

C2 
JY2 

++-+++ 

2+ 
C2 

02 
22+ 

C2 + In(a- + [a- + b. 2 )- 
In( a_ +[a- +b+ + 

]Y2 
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