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Abstract

After many years of slow but progréssive development, the wave energy industry is on the
cusp of breaking through the economic and technical barriers to full scale deployment of wave
encrgy electrical generating devices. As the major obstacles in device design are solved, and
with several devices in the water, the scope for increasing their efficiency through advanced
control techniques is now becoming clearer. In some cases, it would be advantageous to
integrate an advanced prediction of wave behaviour (of some tens of seconds into the future)
into these control methods. Past research on wave prediction has focused on utilising the
Fourier theorem to deconstruct wave records and then make predictions ahead in space, with
published results indicating promise. However, predicting ahead in time has so far not been
achieved. This thesis takes the Fourier theorem method of prediction to its logical conclusion
by exploring its limitations in predicting over both time and space. A discussion as to why
these limits should exist, and possible future work into the solution of the wave prediction
problem, are also presented.

A review of current devices under development, and the history and emergence of the
wave generating industry (which is a comparatively recent technology and still in its infancy),

are also included as appendices to the main thesis in order to put the work into context.



...that night, lying there, I experienced a sense of shame, which those who
swear by civilisation will certainly fail to understand, that civilised man can be
the worst vermin of the whole earth. For wherever he comes, he destroys the
wonderful equipose of Nature, and much as he bothers himself in his so-called

arts, he is not even capable of repairing the damage he causes . ..

Andreas Reischek // Yesterdays in Maoriland



Acknowledgements

I would like to thank my family and my long suffering wife for putting up with the lost
days caused by the writing of this thesis. Hopefully they will once again be able to get my

attention and possibly more than five minutes worth of conversation without the topics of

wave energy and FFTs cropping up.

On a serious note, I would like to thank my family for their support over the past 21
years of schooling and for their encouragement in keeping going. I would also like to thank
the University of Glasgow and the University of Canterbury for hosting me during this time
and providing much needed support and time to discuss my ideas. The technical staff,

in particular Stuart McLean for putting together the wave flume for us, deserve a special

mention.

A big thank you is due to my supervisors in Scotland and in New Zealand. Dr Dorrell
in Glasgow was very generous in making the study of this thesis possible and for trusting
me to work away from the confines of the University. For the many discussions and input
into my papers and especially for keeping my train of thought on track to be focused on one
single problem rather than trying to solve everything at once.

Dr Wood in Christchurch is deserving of a big thank you for making it possible to spend
a fruitful time in the company of lateral thinking Kiwis and for allowing me to enjoy one
of the most incredibly beautiful and determined countries in the world. The time in New
Zealand taught me that literally nothing is impossible and hopefully I've managed to bring
back with me some of the Kiwi attitude to life.

Thanks are also due to the EPSRC for funding this work and making the last three
years possible. An additional special mention must be made to the wave energy group at

the University of Edinburgh and especially Jamie Taylor for fielding all manner of wild and

wonderful suggestions.
And, before I forget, thanks to Bella and Whisky, despite making a mess of the living

room and eating most of the wallpaper, you've cheered me up no end.



Contents

1 Introduction 1
1.1 Problem genesis . . . . . . . .. . ... 2
1.2 Previousstudies . . . . . . . .. .. 3

1.2.1 Naito and Nakamura . . . . .. . . ... ... oL 3
1.22 Belmont . . . . .. . ... 3
1.2.3 Skourup and Sterndorff . . . . ... ..o 4
1.2.4  Voronovich, Holimes and Thomas . . . . . .. ... ... ... .. ... 4
1.2.5 Sulisz and Paprota . . . . . ... ... ... .. ... .. ... ... . )
1.26 Zhang . . . . .. d
1.27 Discussion . . . . . . ... 5
1.3 Thesis structure . . . . . . . .. 6

2 Basic Wave Theory 8

2.1 The basic wave equations . . . . . . . .. .. ... 8
2.1.1 Intuitive definitions . . . . . . . . ... ..o 8
2.1.2 Alrywaves. . . . .. e 12
213 Pressureasavariable. . . . ... .00 18
2.1.4 Superposition . . . . . . ... 19
2.1.5 Assumptions made . . . . ... .o 21

2.2 The wave spectrum . . . . . . . . . . . . e 21
2.2.1 The omnidirectional spectrum . . . . . .. ... .. 21
2.2.2 Spectral moments . . . . . .. ... 22
2.23 The directional spectrum . . . . . . .. .. 24

23 Energyandpower. . . . . . . . .. ..o 25

2.4 Height and period parameters . . . . . . ... ..o 28

28

2.4.1 From time histories . . . . . . . . . o



2.4.2  From omni-directional spectra . . . . . ... ...

2.4.3 Wind speed to wave height . . . . . ... ... ... 0. 30

3 Wave Generation, Spectra and Simulation 32
3.1 Wave generation by wind . . . . . . ... ..o oo 32
3.1.1 The energy balance equation . . . . . .. ... ... ... 33

3.1.2 Windinput W . . ... 34
3.1.3 Non-linear interactions I . . . . . . . .. ... ... ... ... .. 35
3.1.4 Dissipation of energy DD . . . . . .. .. 36
3.1.5 Timeline . . . . . . . . ... 38

3.2 Spectral representation of wave fields . . . . .. ... ... 39
3.2.1 Similarity theorems . . . . . . . . .. Lo 40
3.2.2 General spectra . . . . ..o 41
3.2.3 Directional spectra . . . . . .. ... 44

3.3 Wave modelling and time series simulation . . . . . . .. .. ... .. ..., 50
3.3.1 The wave modelling equations . . . . . . . . ... ... ... ... .. 50
3.3.2 Modeloutputs. . . . . . ... 50
3.3.3 Input wave-field files . . . . . . . .. .. .. ... 51

4 Measurement Technology 61
4.1 Omnidirectional wave measurement . . . . . .. ... .. ... ... ..., 61
4.1.1 Fixed measurement . . . . . . . .. ... ... 61
4.1.2 Sub-surface sensors . . . . . .. ... Lo 62
4.1.3 Sensors in buoys . . . ... Lo 63
4.1.4 Shipborne systems . . . . . ... 65
4.1.5 Omni-directional parameter extraction . . . . . . .. .. .. ... .. 65

4.2 Directional measurement . . . . . . ... 68
4.2.1 Triple point measurements . . . . . . . . . .. 68
4.2.2 Surface following buoys . . . . . . . ..o 70

4.3 Directional information extraction . . . . . . . . ..o 73
4.3.1 Angular harmonics . . . . . .. ... 73
432 Method . .. .. . . .. 74
4.3.3 DIWASP toolkit . . . . . . . . ... 75

4.4 Measurement for prediction . . . . . . ..o 76

i



4.4.1

4.4.2 A possible solution

Wave buoy vs wave staff . . . . . . ..

5 Spectral Analysis

5.1

9.2

9.3

5.4

Fourier series

0.1.1
5.1.2
5.1.3
0.1.4
9.1.5

Spectral density function

5.2.1
5.2.2

Example of spectral techniques

5.3.1
2.3.2
9.3.3
0.3.4

Correlation function

5.4.1
5.4.2
5.4.3
5.4.4

The trigonometric Fourier series . . . .
The complex Fourier series . . . . . . .
The Fourier transform . . . ... . ..
Sampling . .. .. ... .. ... ...

Discrete Fourier transform . . . . . . .

Energy spectral density . . . . . . . ..

Power spectral density . . . . . . . ..

The original wave record . . . . . . ..
Fourier representations . . . . . . . . .

Tucker’'s method . . . ... ... ...

Power spectral density representations

Definition . . . .. .. .. ... . ...
Power spectrum . . . . ... ... ...
Direct Fourier approach . . ... . . .

Correlation examples . . . . . . . . ..

6 Experiments

6.1

6.2

6.3

Basic models and the spatial FFT
The Spatial FFT . . . ... ... ...

6.1.1

6.1.2 Experiments . . . . . . . .. ..

Correlation and linear arrays

6.2.1
6.2.2

Fourier extension of time series

6.3.1
6.3.2

Correlation experiments . . . . . . . .

Linear array experiments . . . . . . . .

Basicsetup . .. ... ... ... ...

Initial time analysis . . . . . . .. . ..

11t

79
79
79
81
86
87
88
91
91
92
93
93
96
96
100
102
102
103
103
104

112



6.3.3 Prediction over distance . . . . .. ... L
6.3.4 Time and distance . . . . . . ...
6.3.5 Omni-directional prediction for a dircctional field . . . . . ... . ..
6.4 Wave tank experiments . . . . . . ... ..
6.4.1 Experimental equipment . . . . ... ... Lo
6.4.2 Data preparation . . . . . . .. . ... o
6.4.3 Trial prediction . . . . . . . . ...
6.4.4 Discussion . . . . . ...
Discussion
7.1 Transients . . . . . . . L
711 Trueerrors . . . . . ..
7.2 Other possible errors . . . . . . .. ..
7.2.1 Non-linearity . . . . . . .. ..o
7.2.2  Dispersion errors . . . . . . ... .o
7.3 Applications to wave device farms . . . ... .00
7.3.1 Device farm layout and instrumentation . . . . .. .. ... ...
7.4 Conclusion . . . . . . . .. L

Further Work

8.1 Alternate time series transforms . . . . . . . .. ... ... .. ... ..
8.1.1 Wavelet transform . . . . . ... .. ... oo
8.1.2 Hilbert Huang transform . . . . . . . . . ... ... ... ... ..
8.2 Second order theories . . . . . . . . . ..o
8.3 Time series prediction . . . . . . . ..
8.3.1 Recursive neural networks . . . . . .. ...
8.3.2 Faster methodologies . . . . . . . . . ...
8.4 Conclusion . . . . . . . .
Conclusion

A Brief History of the Wave Industry

A1 Introduction . . . . . . . . .
A.2 Basic wave properties . . . . . . . . ...

A21 Terminology . . . . . . . . . .

v

1

ii



A3

A4

A5

A6

A7

A8
A9

A.2.2 Potential resources . . . ... oL
The case for wave energy . . . . . . .. ... v
A.3.1 Alternate technologies . . . . . . . . ... v
A.3.2 Environmental impact . . . . . ... o \%
A33 Additional benefits . . . .. ... ..o o v
Basic device design . . . . . ..o vi
A.41 The oscillating water column . . . . . . . ... ... vi
A42 The overtopping device . . . . . . . . ... o vii
A.43 The point absorber . . . . . . .. ... ... vii
A4.4 Surging devices . . . . . .. vii
A.45 Mechanical devices . . . . . . .. .. viii
Problem areas . . . . . . . . .. ... viii
AS51 Cabling . . .. . . .. viii
AB5.2 Scaling . . . . . ... viii
A53 Gridstrength . . . . . . . . ... viil
A.5.4 Operations and maintenance . . . . . . . . . .. .. ..., ix
A.5.5 Design for survivability . . . . . .. ... ix
A5.6 Environmental concerns . . . . ... ... X
Early designs/patents . . . . . . . . ... X
A6.1 Prel945designs . . . . . .. ... X
A6.2 Masuda . . .. .. .. xi
A.6.3 Mauritius 1953-1966 . . . . . . . .. ..o xii
A.6.4 American buoy 1960s . . . . . . . .. ..o xii
UK government involvement . . . . . . . . . ... Xiii
AT1 1970soil erisis . . . . . . . .. Xiil
A.7.2 Initial investment . . . . . . . ... xiii
A7.3 Thefirst devices . . . . . . . Lo xiv
A.7.4 Economic realisation . . . . . .. .. ..o Xiv
A.7.5 Winding down the programme . . . . .. . ... XV
AT76 Alostdecade . . . . . . . . . .. XV
A7.7 Growing support . . . . . .« .. xvi
A.7.8 Post 2000 development . . . . . . ... ..o xvi
European Union involvement . . . . . . . . .« xvii

xviil

Rest of the World . . . . . . . . . . e



B.2

B.3

B4

B.5

B.6

B.7

B.8

A9.1 Oceania . . . .. .. ...,
A92 Asia . ... Xix
A93 North America . . .. .. ... ... Xix
xXi
A e xxi
B.1.1 Archimedes Wave Swing (1993-present) . . . . . .. . .. ... ... xxi
B.1.2 AquaBuOY (Late 90s-present) . . . .. .. ... ... .. .. .... Xxil
B o xxii
B.2.1 Backward Bent Duct Buoy (late 80s-present) . . . . . . .. .. .. .. xxii
B.2.2 Belfast Buoy (late 70s-1982) . . . . . .. ... ... ... ... ... xxiii
B.2.3 The Bristol Cylinder (late 70s-1982) . . . . . . . . ... .. ... ... xxiii
C xxiil
B.3.1 CETO, Seapower Pacific (2003-present) . . ... .. ... ... ... xxiii
B.3.2 Chinese OWC . . . . . . . . .. ... XXI1V
B.3.3 Cockerell's Raft (late 70s-1982) . . . . . .. ... ... .. ... ... Xxiv
B.3.4 Coventry Clams (1978 toearly 90s) . . . . . . .. . ... ... .. .. Xxiv
B.3.5 ConWEC (1994-present) . . . . . . . . . ... .. ... .. ... XXV
D o XXV
B.4.1 Danish Wave Power Float Pump (1989-1996) . . . . . ... .. .. .. XXV
B.4.2 DelBuoy (1982-late 80s) . . . . . . . . . ... ... XXVi
E XXVi
B.5.1 Ecovision Lilypad (late 70s-1990) . . . . . . . .. .. ... ... .. XXVI
B.5.2 Energetech OWC (late 90s-present) . . . . . . .. .. ... ... ... Xxvi
B.5.3 European OWC Pico Plant (early 90s-present) . . . . . . . .. .. .. xxvii
F o xxvil
B.6.1 Falnes Point Absorbers (early-late 70s) . . . . .. . . ... .. .. .. Xxvii
B.6.2 Floating Wave Power Vessel (early 80s-present) . . . . . . .. .. .. XXVil
B.6.3 FO3, Fred Olsen (2001 -present) . . . . . ... . . . .. .. ... xxviii
G o xxviii
B.7.1 Greek Pump System (2000-present) . . . . . . . . . . . ... xxviii
= XXViil
B.8.1 HRS Rectifier (late 70s) . . . . . . . .« . xxviii
xXxix

vi



B.9.1 Indian Oscillating Water Column Device (1982-present) . . . . . . .. Xxix
B.9.2 IPS buoy (1974-mid 90s) . . . . . - . o XXIX
B.9.3 The Islay OWC Projects (1983-present) . . . . o oo oo Xxix
B0 K . o o o o e XXx1
B.10.1 “Kaimei” (1977-early 80s) . . . . . - -« oo xxxi
B.ll L . . e e XXX1
B.11.1 Lancaster Flexible Bag (late 70s-1982) . . . . .« o« oo oo e xxxi
B.12 M . . o e xxxii
B.12.1 Manchester Bobber (2004-present) . . . .. .o XXxii
B.12.2 McCabe Wave Pump (1980-present) . . . . . .« oo oo oo xxxii
B.12.3 “The Mighty Whale” (1987-present) . . . oo oo o xxxil
B.12.4 Multi-Resonant Oscillating Water Column (early 80s-1988) . . . . . . xxxiil
B3N XXXill
B.13.1 NEL Oscillating Water Column Devices (1975-carly 80s) . . ... XxXiii
B14 O . o e XXXV
B.14.1 Ocean Motion International (1995-2004) . . . . . .. ... .o ov o XXXiv
B.14.2 Ocean Wave Energy Company (1978-present) . . . . .. ... -~ XXXiv
B.14.3 Ocean Wave Master (2002-2004) . . . . .« o oo e XXXIV
B.14.4 Offshore Wave Energy Limited (1999-present) . . . . . ... - - XXXV
B.14.5 OPT WEC (1994-present) . . . . . . . .« o« oo oo XXXV
B.14.6 ORECon - MRC1000 (2002-present) . . . . . .« oo oo vvem o XXXV
B.14.7 Oregon State University Buoy (2003 -present) . ... Xxxvi
B.14.8 OSPREY (1990-present) . . . . . . .« o oo oo XXXVI
B.14.9 Oyster - OWSC (2001-present) . . . . ... .- c-0 o0 xxxvil
BB P o o T XXXVil
B.15.1 Pelamis (1998-present) . . . . . .« oo Xxxvii
B.15.2 Pendulor (1981-present) . . . . . .« .- o cc T T xxxviii
B.15.3 PS FROG (mid 80s-present) . . . . .. . . oot Xxxvili
BU16'S . o e XXX Viil
B.16.1 Salters Ducks (Winter 1973-present) . . . .« - oo xxxvili
B.16.2 SARA WEC (1992-present) . . . . .. . - xl
B.16.3 SEADOG Pump (2002-present) . . . . . - oo xl
B.16.4 Searev (2001-present) . . . . . -ttt xl
xl

B.16.5 SEAWAVE SSG (2003-present) . . - -« -« - oo

vii



B.16.6 SPERBOY (Late 90s-present) . . . . . .« oo xli

B.16.7 Sri Lanka OWC (2000) . . . . . .« o oo xli
B.16.8 Swan DK3 . . . . . . . e xli
Bol7 T . . e xli
B.17.1 TAPCHAN (early 80s-1996) . . . . . . -« o oo oo xli
B.17.2 Technocean Hosepump (1980-mid 90s) . . ... oo e e xlii
B8V . . e e xlii
B.18.1 Vickers' OWC Device (late T0s-carly 80s) . . . .« o oo e xlii
B9 W e xliii
B.19.1 Waveberg (1979-present) . . . . . . .« oo xliii
B.19.2 WaveBob (late 90s—present) . . . . . . e xliii
B.19.3 Waveblanket (2005-present) . . . . .. .. xliii
B.19.4 Wave Dragon (1986-present) . . . . . . .« oo xliii
B.19.5 Wavemill (1993-present) . . . . . . . . o xliv
B.19.6 Waveplane (1994-present) . . . . . . ..o T xliv
B.19.7 Wave Rider (1997-present) . . . . . . . . -« oo xlv
B.19.8 WaveRoller (1999-present) . . . . . . . oo xlv
B.10.9 Wave Rotor (2001-present) . . . . . . . .o oo xlv

xlvi

C Publications

viii



List of Tables

2.1
2.2
2.3

3.1

5.1
5.2

6.1
6.2

7.1
7.2

The effect of depth on wavelength, & number and phase velocity . . . . . .. 17
Wave period parameters for an 18.6m/s Pierson-Moskowitz spectrum 29
Comparing Beaufort number to wind speed and wave height . . . . . . . .. 31
Comparison of statistical characteristics . . . . . . . . . . .. .. . ... ... 56
Statistical spectral characteristics of the original spectra . . . . . . . . . .. 93
Realisable bandwidth of experimental time series . . . . . . . . . ... . .. 96
Percentage errors in predicting over distance . . . . . . ... ... 136
Percentage errors in predicting omni-fitted spectra over distance . . . . . . . 142
Time taken for 0.5 Hz energy to propagate . . . . . ... ... ... ... .. 160

167

The summation of energies when assigned to multiple frequencies . . . . . .

ix



List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Showing the dimensions of a simple wave . . . . . . . .. ... ... ... ..
Group velocity of two superposed waves . . . . .. ... ... ...
Particle orbits for deep and shallow water . . . . . . .. .. .. ...
Simple long crested wave train . . . . . .. .. ...
Boundary conditions for the Airy equations . . . .. .. .. ... ... ...
Comparison of £ at 50 m contour and deep water . . . . . . ... ... ...
Comparison of wavelength at 50 m contour and deep water . . . . . . .. ..
Comparison of phase velocity at 50 m contour and deep water . . . . . . . .
Percentage deviation between deep water and 50 m results . . . . .. .. ..
Pressure attenuation for a range of wavelengths . . . . . .. ... .. .. ..
Superposition of many wave trains, with a North East swell present . . . . .
An omnidirectional spectrum for wind speed of 30 m/s . . . ... ... ...

Ful G0, f) fora30m/swind . . . . . .. .. ... ... . ... ...

Ywind . ...

The Pierson Moskowitz spectra for wind speeds 10 to 20 ms™" . . . . . . ..

Phillips spectrum for a 12 ms™

JONSWAP spectra for fetches 20-200km . . . . . . .. . .. ... ... ...
Mitsuyasu and JONSWAP spreading factors for Ujp = 20m/s . . .. . . ..
The directional spreading function using Mitsuyasu as the spreading factor .
The directional spreading function using JONSWAP as the spreading factor

Screen grab of animated wave model output . . . . ... ..o

Three time series taken at 10 m intervals . . . . . . . . . . . .. ...

Pierson-Moskowitz spectrum for a 186 ms™! wind . . . . . . .. ... ...

Amplitude line spectrum for a simulated P-M spectrum

Animation screen for an omni wave file

Comparison of simulated spectrum to the original

Non harmonic amplitude spectrum

10
11
12
14

16
16
138
19

20



3.14 Non Harmonic spectral density . . . . . . .. .. . ... ... ... .....
3.15 Time series for non harmonic simulation . . . .. . .. ... .. ... .. o8
3.16 Comparison of spectra for the non harmonic P-N spectra . . . . . . . . . | 59
3.17 Comparison of spectra for the harmonic directional case. . . . . . . . . . .. 99
4.1 Pendulum approximation to the path of a surface particle. . . . .. .. .. 77
9.1 Fourier series representation of a square wave . . . .. ... ... 80
5.2 Argand diagram for a Fourter coefficient . . . .. ... ... . ... ... .. 82
5.3 Complex frequency spectra . . . . . . . . . .. 83
5.4 Real frequency spectra . . . . .. ... 84
5.5 DPower spectrum for a square wave . . . . . . ... 85
9.6 Waveform sampled at t,=0.1s . . . . .. .. .. ... ... .. ... .. 87
5.7 Original spectral density . . . . . . . .. . .. ... . ... 94
5.8 Amplitude line spectra of simulated wave vectors . . . ... .. .. ... .. 94
5.9 Extract of the time series, f(t) . . . . . .. ... ... 95
5.10 Plot of the Magnitude and Phase of f(¢t) . . . .. ... ... ... ... ... 97
5.11 Plot of the real amplitude spectra of f(t) . . . . . . . . ... ... ... . .. 97
5.12 Estimated S(f) taken over one frequency . . . . . . .. ... ... ... ... 98
5.13 Estimated S(f) taken over 6 frequencies . . . . . . . . ... .. ... .. .. 99
5.14 Complex magnitude |F,,{ squared . . . . ... .. ... ... ... ... . .. 100
5.15 Real power or (2[F,[)2 . . . . . . .. 101
5.16 Comparison of calculated to original spectra . . . . . . ... .. ... .. .. 101
5.17 The autocorrelation of f(t) . . . . . . . .. .. . o 105
5.18 Power spectral density from autocorrelated f(t) . . . . ... ... ... ... 105
5.19 Co and Quad spectra calculated from direct fourier transforms . . . . . . .. 106
6.1 Simple test of a 2D travelling wave . . . . .. ... ... 109
6.2 Simple test of a 3D travelling wave . . . . .. ... ..o 110
6.3 Simple test of a 3D set of travelling waves . . . . . ... ..o 110
6.4 Showing the similarities between temporal and spatial sine functions . . . . . 111
6.5 An example of a spatial FFT of 3 wave trains with A = 100 m, 45 m and 23 m 112
6.6 Showing extraction angle a with regards to the x and y axes . . .. ... .. 113
6.7 Raw circle FFT file with blurring . . . . . ..« . . ... 114
6.8 Processed circle FFT results . . . . . .. . ..« .o 115

X1



6.9 MATLAB extract for correlation process . . . . . . .. ... . ... ... ..
6.10 MATLAB extract for correlation process . . . . .. ... .. ... ... ...
6.11 expected value of 7 for various ¢ . . . . . . ... L
6.12 Wavefront approaching at ¢ =80°. . . . . . . . .. ... ... ... ... ..
6.13 Error in expected value of 7 for various temporal sampling rates . . . . . . .
6.14 Error in expected value of 7 for various spatial sampling rates . . . . . . . .
6.15 A Uniform Linear Array . . . . . . . . . . . . . ... ...
6.16 ULA response with 8 sensors . . . . . . . . . . . . . .. .. ... ...,
6.17 ULA response with 64 sensors . . . . . . . . . . .o vt
6.18 ULA response with 128 sensors . . . . . . . . . . . . ...
6.19 ULA response for a DOA of 30° . . . . . . . . . . . ... ... ... ....
6.20 ULA response fora DOA of 60° . . . . .. .. ... ... ... . .... ...
6.21 ULA response for a DOA of 72° . . . . . . . . . .. .. ... ... .. ....
6.22 Layout of theoretical surface displacement measurements . . . . . . . . . ..
6.23 Spectra for the simulated omnidirectional wave field . . . . . .. . .. .. ..
6.24 Amplitude spectrum for the simulated omnidirectional wave field . . . . . . .
6.25 Extract of the reference time series . . . . . . ... ... ...
6.26 Time series from first threesensors . . . . . . .. . .. ... ... ... ..
6.27 Predicted time series at reference sensor . . . . . . ... ...
6.28 Prediction made over 50 m using Fourier coefficients . . . . . .. .. ... ..
6.29 Prediction made over 100 m using Fourier coefficients . . . . .. .. ... ..
6.30 Prediction made over 200 m using Fourier coefficients . . . . .. .. ... ..
6.31 Prediction made over 300 m using Fourier coefficients . . . . . . .. ... ..
6.32 Prediction made over 500 m using Fourier coefficients . . . . .. . . .. . ..
6.33 Prediction made over 1000 m using Fourier coefficients . . . . . . .. .. ..
6.34 Zero crossing method of transient elimination . . . . . .. .. .. ... ...
6.35 Accuracy of omni-directional predictions . . . . . ... .. o
6.36 Errors from varying N . . . . . . ...
6.37 Errors from varying T . . . . . . . . .
6.38 Prediction made over 50 m and ahead in time using Fourier coefficients . . .
6.39 Spectrum calculated by DIWASP . . . . . .. .. ... ... ... ...
6.40 omni fitted prediction to 50m . . . . . .. .o
6.41 omni fitted prediction to 100 m . . . . . . ..o

6.42 Errors in omni-fitted directional predictions

Xii

122

132



6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

8.1
3.2
8.3

Wave tank and sensor placement . . . .. .. ...,

Time series from sensor 1 showing oscillation . . . . . . . .. ... . ... .. 147
Time series from sensor 6 showing deviation . . . . .. ... .. ... .. .. 147
Motion of sensors relative to wave peaks . . . .. ... ..o 148
Sensor model fitted to x modulation. . . . . ... ... 150
Sensor model fitted for full modulation . . . . . . ... ..o 150
Time series and FFT using T=18.2s . . . . . .. ... ... ... ... ... 151
Prediction made at x =25 m . . . . . .. .. ... ... ... ... 152
Prediction made at z =3.0m . . .. ... . . .. ... ... ... 153
Prediction made at z =3.5m . . ... .. ... .. ... . ... ... .. .. 153
Prediction made at t =4.0m . . . . . .. .. ... ... 154
Prediction made at t =55m . . . . ... ... ... .. 154
Errors between prediction and target at 50m . . . . . . ..o 157
Errors between prediction and target at 100m . . . . . ... ... ... 157
Errors between prediction and target at 200 m . . . . . .. . .. .. ... 158
Errors between prediction and target at 300m . . . . . ... ... ... .. 158
Errors between prediction and target at 500 m . . . . . .. . ..o 159
Errors between prediction and target at 1000m . . . . .. . ... ... ... 159
Errors with wind speed minus the transient . . . . . . . .. . ... ... ... 161
Errors with N minus transient . . . . . . . .. .. ... ... . ... ... 162
Errors from source file N terms . . . . . ... .. ... 162
Prediction distance limited by 7°. . . . . . . . . . .. ... 163
The energy band represented by a Delta function . . . ... ... ... ... 165
Different representations in time of the same energy, top 1 freq, 2 fregs, etc . 168
Increased resolution through forward projection . . ... .. ...... ... 171
Layout of neural network . . . . . . . . . .. 176
Contents of delay line for recursive prediction . . . . . .. . .. ... .. .. 176

177

Time series prediction by neural network . . . .. ... .. ... ... ...

xiii



Chapter 1

Introduction

The development of new renewable energy generating devices has been gaining momentum
over the last two decades. Wind energy generation has grown at an increasing rate through
Europe and it is now a maturing industry with several standard turbine manufacturers,
using a few set arrangements (such as the doubly-fed induction generator connected to the
turbine via a gearbox, or a fixed-speed grid-connected cage-rotor induction generator also
connected via a gearbox), dominating the market. Attention is now turning to marine energy
generation via sea-wave or tidal energy. However, this industry is several decades behind the
wind energy industry in terms of development.

Serious development of wave energy devices began in the mid 70s with Prof. Salter’s
Ducks. At this time there was a crisis in the Middle East and the cost of oil had soared.
The western coasts of Europe receive some of the greatest concentrations of wave energy in
the world, this is largely due to the predominantly Westerly travel of storms coming from
the Atlantic. Prof Salter’s device aimed to capture this cnergy. Over the next ten years
there was interest in wave energy from many countries and a variety of devices emerged
to various stages of development. Unfortunately in the 80s, as oil prices came down and
nuclear power proliferated, funding to development programmes was cut. For the next 10
year period few developments went ahead, with the exception of some academic work and
a few demonstration installations. In the mid 90s public interest in renewable energy and
a new found understanding of human impact on the environment led to the reinstatement
of some funding for device developers. This has had an almost exponential cffect on the
number of devices currently being developed, these are document in Appendix B.

With the high number of devices under development various governments and the Euro-

pean Union have tried to bind together knowledge by publishing reports on common arecas



where collaborative research would benefit the industry as a whole. This thesis is concerned
with one element of this mixed research, namely the short-term prediction of sca waves.
This introductory chapter is split into three sections dealing with the origin of the problem

tackled in this thesis, past studies in this area and the structure of the following report.

1.1 Problem genesis

The principles of energy extraction from sea waves come from the three basic motions:
pitch, surge and heave. If a buoy is placed in the water pitching describes a rotation about
its central point; surging is the movement of this point in a horizontal plane and heaving
is the motion in a vertical plane. Several methods, peculiar to cach device, exist to extract
energy from each of these motions, these are detailed more fully in Appendices A and B.

For extraction of energy to take place it is common to couple a power take off (PTO) to
one or more of these three motions. The PTOs on most devices are capable of being adjusted
to achieve a maximum power extraction. A simple example is that of two platforms hinged
by a hydraulic pump. As a wave passes, the two platform hinge will open and close causing
the fluid in the pump to be moved. In a passive setup, as is used at present, the complex
impedance of the joint is set to an average value and whatever shape and amplitude of wave
that arrives will work against this. If you were able to vary the complex impedance on a
wave by wave basis it would be possible to extract more energy from cach wave increasing
the output of the device. For this to work a short-term prediction of wave amplitude and
shape is required.

This principle was recognised in a recent report from the European Wave Energy The-
matic Network, published in March 2003 [1]. It examined in detail the progress being made
in wave and tidal devices and found that a strand of potential research common to all devices
was the requirement of a short term prediction of wave elevation at the device interface, as
discussed above.

At the present time several devices have made it from the drawing board to full scale
testing (see Appendix B). Much of the current testing of devices has been in ensuring the
survival of these devices and the verification that their power take off (PTO) systems are
capable of generating electricity to the grid.

The next step, as recognised by the EWEN report and device developers, is for the
development of PTOs to reach maximum economic extraction levels in a variety of sea

states. To this end the prediction of wave behaviour may assist in allowing the complex



impedance of devices PTOs to be set on a wave by wave basis. For this to take place a

method for the short term prediction of wave behaviour that is cost effective needs to be

developed.

1.2 Previous studies

The study of short term wave prediction has not been widely reported in the scientific
literature. In the field of offshore engineering, where this topic would naturally lie, interest
has been mainly in predicting the probable occurrence of extreme wave events. This type
of prediction is important to the oil, gas and shipping industries as it ultimately governs
the cost of large civil projects, e.g. oil rigs and new shipping vessels. This information is,
however, of interest to wave device developers in ensuring device survival, but not in the
precise control of PTOs.

The studies that concern the short term prediction of waves have focused largely on
predicting forces at a distance from the recorder rather than directly making a prediction of

surface elevation. The following papers are representative of current research.

1.2.1 Naito and Nakamura

This Japanese study [2] involved a wave tank with a simple wave device model. The wave
amplitude was measured at a small distance away from the device and at the device itself.
This measured data was then used to create a transfer function for the device and for the
propagation of the waves by using a Fourier decomposition and imposing causality. The
results presented for the extracted power of the device show good correlation to the incident

wave field. However, there is little data on the experimental equipment (i.e., the tank

dimensions) and the possible limits to their method are absent.

1.2.2 Belmont

Belmont has, over several years, studied the short term prediction problem [3]. He has

claimed that predictions up to 30 sec ahead in time are possible. The prediction model he
puts forward is based on the Fast Fourier Transform (FFT) of wave records taken either at
a fixed point or over a fixed time.

The claim made for a prediction 30 sec ahead may be debatable as it makes use of the

FFT method (the prediction in time using this method is proved later in this thesis not to



be very accurate). The wave model and prediction method also places very strict limits on
the type of wave-field that can be predicted, namely a very narrow swell spectrum with little
to no local sea state. Personal communication with various specialists in this area indicate
that, in Scottish waters, this situation will rarely occur.

The conclusions of the research also point to the use of a fixed time prediction being
more accurate than fixed point. A fixed point measurement is that taken from a wave buoy.
A fixed time measurement is a sampled wave clevation taken over a stretch of occan surface.
The fixed point method requires specialised measurement equipment which brings its own
technical difficulties (non-uniform sampling and wave shadowing). The equipment proposed
by Belmont must be sited at approximately twice the height of the highest wave crest above
the sea surface. This may be a reasonable proposition for an on-shore device but in the

offshore environment it would be prohibitively expensive.

1.2.3 Skourup and Sterndorff

This second order model [4] was developed in Denmark with a view to improving the de-
scription of wave kinematics at crests when considering loading forces on offshore structures.
The model was developed by splitting the complex time series into superposed first and
second order series. The second order series were presented as the sub and super harmonics
of the first order series. An FFT was initially taken to provide estimates for the first order
components. The second order series were then derived from this step and the reconstruc-
tion compared to the original. If the match was not sufficiently accurate then the iteration
process continued.

Numerical comparisons for second order Stokes waves showed good correlation. In real
water the model was tested at a scale of 1:10 with a maximum wave amplitude of 2 m
over a range of regular waves covering one full spectrum. The prediction was made over a
distance of 15 m with no prediction ahead in time. Additional tank testing of this method

was undertaken by the Pelamis device team [5], who achieved prediction results to 70 m with

good results.

1.2.4 Voronovich, Holmes and Thomas

A preliminary study of wave prediction [6] was undertaken at the University of Cork which
was based on the linear decomposition of wave elevation time series using the Fourier method.

The Fourier coefficients in the series were then used with standard linear wave equations



(Chapter 2) to propagate the wave field to a distant point. The spectrum used in generating
the wave-fields is relatively sparse, containing between 3 and 5 frequencies. The prediction

distance was 12 m without a prediction over time and returned promising results.

1.2.5 Sulisz and Paprota

This is a recent study investigating the propagation and evolution of linear and non-linear
wave packets [7]. The explanatory figures in the study report are ambiguous; however, it can
be assumed that the FFT of the time series from the first wave sensor was used to provide
initial conditions for a boundary value problem which was then solved for other sensors
placed at more distant locations. The maximum prediction distance was 8 m. An element

of prediction-over-time was suggested in the text but this was not followed in the report.

1.2.6 Zhang

Zhang’s work is the most extensive study found in the literature review. His first study 8]
repeated the technique of iteratively decoupling the higher order wave interactions from
the first order free waves. The method utilised two decomposition methods, applying one
where the frequencies of the wave vectors under consideration were close together, and an
alternative method when they were further apart. Again, the foundation of the method was
the FFT of a measured time series. Laboratory comparisons [9] showed good results for both
linear and non-linear wave-fields to a distance of 8 m.

In his second study [10], Zhang extended the technique and applied his methodology to
directional seas. By using three point measurements (i.e. acceleration, pitch and rotl angles
from a wave buoy) a directional spectrum can be fitted (Chapter 4) and the first order wave
vectors can be calculated. Zhang’s iterative procedure was then used to fit the second-order
effects. Laboratory test results [11] vielded satisfactory predictions to a distance of 22 m.

Real sea testing was conducted using pressure sensors on an offshore oil platform where

predictions to 59.4 m were achieved.

1.2.7 Discussion

All of the above studies have shown good prediction results in comparison to numerical
and laboratory testing. However, none of these studies indicated the limitations of the
methodologies proposed. At this point the question arises as to where the predictions diverge

from the true values. A second important issue is why these studies do not deal with the

S



prediction in time. A third point to note is that all of these studies have used fixed point
measurements in their experiments, whereas the most appropriate method available to device

developers is the wave buoy, which will move in the water.

In this thesis an exploration of the Fast Fourier Transform, when applied to a dispersive
wave prediction, is proposed. The limitations of the method are found for both the time
and distance cases and explanations are given based on the results obtained. Additional
methodologies will also be proposed to enhance the predictions, and an examination of the

possible measurement devices will be given.

1.3 Thesis structure

This thesis is split into the following chapters. The early chapters progress through the
background information necessary to understand the implications of the wave prediction

problem, before the experiments arc introduced and discussed.

1. Introduction A brief review of the applicable literature is given here and the formulation

of the problem presented in this thesis is described.

2. Basic wave theory This introductory chapter outlines simple wave theory to allow for

the development of further concepts.

3. Wave generation, spectra and simulation This chapter describes the generation and
mathematical representation of waves. The chapter concludes with an explanation of

the modelling assumptions made and the equations used in time series generation.

4. Measurement technology An overview of the available measurement technologies,
and a discussion concerning operational choices for offshore wave farms, is put for-
ward in this chapter.

5. Spectral analysis This chapter gives a discussion of the spectral techniques used through-

out this thesis.

6. Experiments A chronological discussion of the experiments, both computational and

laboratory based, undertaken during this study, is developed in this chapter.

7. Discussion An examination of the results returned in the experimental chapter, which

provides an explanation and discussion of their implications, is described here.



8. Future work This is a brief chapter presenting possible future research avenues.

9. Conclusion This chapter links together all the previous chapters, and reviews the work

and draws conclusions.

A. A brief history of the wave industry An appendix is included here in order to place
the wave industry into the context of modern energy studies and how it has advanced

from the early stages of device design to almost the brink wave farm commissioning.

B. Device design index A comprehensive list of past and present device designs is in-

cluded here as an appendix for completeness.

C. Publications Facsimiles of published works resulting from this study.



Chapter 2

Basic Wave Theory

This chapter aims to develop the basic theory of wave behaviour and to put forward some
of the mathematical concepts utilised in other areas of this thesis. The majority of this

chapter is derived from chapter 2 of [12] with additional information drawn from other

sources ({13], [14] and [15]).

2.1 The basic wave equations

In this section a simple travelling wave is put forward and the dimensions for describing

its structure and behaviour are given. After this, the Airy equations are presented and the

justification for their use is discussed.

2.1.1 Intuitive definitions

A one dimensional sinusoid is the starting point for many wave theories and for sea wave
prediction it is no different. A simple time-varying wave is:

2.1

¢(t) = asin (wt) (2.1)

This describes a basic time-oscillating quantity such as the displacement of the ocean’s
surface from rest, ((t). The frequency of the wave w is related to the time period 1" = =,

with the amplitude given by a.

This definition can be extended in the spatial x dimension to produce a travelling wave
by including, in the frequency term, the wave number k = %\E

((x,t) = asin (kz — wt) (2.2)
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Figure 2.1: Showing the dimensions of a simple wave

where A is the wavelength. The inclusion of the wave number makes this a progressive wave
travelling with a celerity (speed) of ¢ = % = 2 in a positive r direction. This type of
waveform is common in electromagnetic and acoustic applications.

For electromagnetic waves the relationship between the frequency w and wave number &

is a linear one

(2.3)

w = ck
where ¢ is the speed of light. A gravity wave on water is dispersive and has the relationship

w =gk (2.4)

where g is the acceleration due to gravity. This equation is valid for a wave travelling over
deep water. As a rough guide the depth of water is considered decp when h > % where h is
the depth of the water.

Due to its dispersive nature, as the frequency of the wave decreases, the wavelength and
phase velocity increase so that lower frequency waves travel faster than higher frequency
ones. This leads to the definition of a group velocity ¢, when considering a spread of wave
frequencies. Since the phase velocity changes with individual wavelength, ¢, s not equal to
any particular wave velocity ¢, in the group. As an example if two wave trains of slightlv
different wavelengths are superimposed to produce a beating wave then the envelope, which
carries the cnergy, travels at the group velocity. Fig. 2.2 shows this for two waves of almost
the same frequency, the arrows indicate the wave group progressing over distance. In deep
water a rough guide to the group velocity is

Cg = Cp/2 (2.5)
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Figure 2.2: Group velocity of two superposed waves

In a mixed sea state where different frequencies are present at both the upper and lower
ranges an average ¢4 is derived from the statistical properties of the sea state.

Fig 2.1 shows the basic dimensions of a simple dispersive wave as already discussed.
These are: the amplitude a (the height from the mean sea level to the crest of the wave),
the wavelength A (the distance between two successive peaks or troughs), the wave height
H (the height from the trough to the peak) and the depth & (the distance from the seabed
to the mean water surface). ¢ is the surface elevation and a positive value of £ will cause the
wave to progress from left to right along the positive x-axis with a velocity (celerity) of c.

So far the surface elevation only has been discussed. In many situations, the motion of
the water particles below this level are of interest. The particles on the surface describe a

circular orbit, as progress is made deeper into the water column (z negatively increasing)

the amplitude of these circular orbits decrease, this is shown in the left of Fig. 2.3. If the z

and z displacements of a particle are x and ¢ from its rest position:
x = aexp(kz) cos(kx — wt — @)
¢ = aexp(kz)sin(kz — wt — ¢)

where an additional phase term ¢ has been introduced.

10
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Figure 2.3: Particle orbits for deep and shallow water

The particles move forward in the wave crests and backward during the troughs. This
motion decreases in amplitude below the waves until it reaches a point where the water
becomes still. This effect is commonly experienced by divers who, upon entering a rough
sea, will be pushed and pulled backwards and forwards until they have attained enough
depth to be away from influence of the surface waves. Two further equations of use are: the
velocity of the water particles round their circular orbit:

kz
vy = ___.2”“;})< ) (2.8)

and the pressure fluctuation measured by a fixed sensor at a depth z:

p = pgaexp(kz)sin(kx — wt — @) (2.9)

The values of the particle displacement, particle velocity and pressure decrease rapidly with
depth. This result limits the extent to which bottom-mounted pressure sensors can be used
to record wave behaviour. In particular, the resolution of these devices is affected by the
depth of water in which they are placed.

It can be noted that with increasing wavelength and amplitude, the effect of a passing
wave train will be experienced to a greater depth. An example of this would be the destruc-
tion of coral reefs during tropical storms. Normal sea conditions exert little force on coral

reefs as wave amplitudes are usually small, but in storm conditions wavelengths are long and

11



A Simple Wave Vector Field
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Figure 2.4: Simple long crested wave train

amplitudes are high so the energy present in the waves is great and they are able scour the

coral from the sea bed.

The final modification to the simple wave equation is to vectorise the wave, i.e. include

the direction of travel 8 of a wave-train with respect to the x-axis so that

((z,y,t) = aexp(kz)sin(lx + my — wt — @) (2.10)

where [ = kcosf and m = ksind. An example of a long crested wave train with A = 100 m

and 6 = 0° is shown in Fig. 2.4.

2.1.2 Airy waves
So far the motion of a surface wave has been explained in terms of a travelling wave created by
the circular motion of water particles. This is an oversimplification of the natural process. A

fuller theory for describing the generation and propagation of ocean surface waves is complex

and will not be given in its entirety here. However, the following is a summarised version

of that appearing in Dean and Dalrymple [16] and will suffice in detail for the upcoming

discussion.

12



Equation formulation

In order to reach manageable solutions that can be easily worked with, certain assumptions
about the fluid in which the waves are travelling must be made. First of all the fluid must
be incompressible and since the density of sea water is relatively constant this property will

hold true. This is known as the continuity of mass

V. a=0 (2.11)

where @ is a vector of the three dimensional particle velocity and V is the gradient operator.

In terms of the velocity potential ¢

V. V=0 (2.12)

At all points throughout the fluid the velocity potential must satisfy the Laplace equation

D26 Po 0% .
2= L 4 7 = 2.13
Ve=gntapton =" (2:13)

A further assumption made is that the fluid particles are irrotational.
Axu=0 (2.14)

which leads to the existence of a stream function also conforning to the Laplace equation:

2,/ AVIUR 20/
I (2.15)

2
VY= dx? + dy? 022

Eq. 2.13 is a second order differential equation and is termed the governing equation.
In order to solve the governing equation some boundary conditions must be given, Fig. 2.5

shows these conditions for

Vipg=0, 0<z<) —-h<z<( (2.16)

At the seabed, which is assumed horizontal, the bottom boundary condition (BBC) is

dp
_5;_0

(2.17)

onz=—h

which essentially states that flow everywhere to the sea bed is tangential and no fluid will

cross this boundary.
At the free surface, ¢, two conditions must hold. The kinematic free surface boundary

condition (KFSBC) is
O¢ _ ¢ 0% on z = ((x.t) (2.18)

"0z Ot Oz oz
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Figure 2.5: Boundary conditions for the Airy equations

This is similar to the BBC and states that no fluid shall cross this boundary and that fluid

will flow tangentially to the free surface, ((x,t).

The second condition is the dynamic free surface boundary condition (DFSBC), which,

when the pressure at the free surface is taken as the gauge, p. = 0 becomes

—%‘?+% K%)Z (—g—?)z} +9¢ =C(t) (2.19)

This is an application of the Bernoulli equation to the free surface and dictates that the
pressure at any point on the surface boundary is a constant. In more complicated instances
where the pressure distribution over a surface is known, the equation can be adapted to
couple the pressure field to the wave system allowing the waves to become forced.

The final conditions that must be obeyed are the periodic lateral boundary conditions
(PLBC) which apply in both space and time:
oz, t) = o(x+At)

oz, t) = olet+T) (2.20)

This ensures that the solution repeats itself in time and space and that it can be extended

to describe a progressive wave train.

14
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Figure 2.6: Comparison of k& at 50 m contour and deep water

Solution

The full solution to this problem is given in, {16]. A first order solution to these equations
was given by Airy [17] in 1845 and will form the basis of much of the work put forward here.
The x and z particle elevations for a small-amplitude wave in water of depth h are
= aw cos(kx — wt — @) (2.21)
sinh kh

= aﬂ]k(L_F}12 sin(kx —wt — ¢) (2.22)

sinh kh
where h is measured from the sea bed and is taken as positive, z is measured from the mean
sea elevation and is negative with increasing depth as was shown in Fig. 2.1.

The phase velocity c, of the wave is now given by

Cp = \/gtanh kh (2.23)

1 2kh
_1 _ 2.24
= 5% (1 T Sinh 21{:}1,) (2.24)

These basic equations are all in terms of the local wave number k. In practice the data

and the group velocity as

available is usually the period T or the frequency f. As the phase velocity ¢, = A/T = w/k.
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Periodic term Deep water 30 m
freq (Hz) | Time (s) { & (m™") | A (m) |¢, (m/s) | k(m™) | X(m) |c¢ (m/s)
0.2 5 0.161 39.0327 7.8065 0.161 39.0327 7.80065
0.16667 6 0.1118 | 56.2072 | 9.3679 0.1118 | 56.2056 | 9.3676
0.14286 7 0.0821 | 76.5042 | 10.9292 | 0.0822 | 76.4629 | 10.9233
0.125 8 0.0629 | 99.9238 | 12.4905 | 0.0631 | 99.5615 | 12.4452
0.11112 9 0.0497 | 126.4661 | 14.0518 | 0.0503 | 124.8286 | 13.8698
0.1 10 0.0402 156.131 | 15.6131 0.415 151.2983 | 15.1298
0.0909 11 0.0333 | 188.9185 | 17.1744 | 0.0353 | 178.1325 | 16.1939
0.08334 12 0.0279 | 224.8286 | 18.7357 | 0.0307 | 204.8328 | 17.0694
0.07693 13 0.0238 | 263.8614 | 20.297 0.0272 | 231.1809 | 17.7831
0.07143 14 0.0205 | 306.0168 | 21.8583 | 0.0244 1 257.1158 | 18.3654
0.06667 15 0.0179 | 351.2947 | 23.4196 | 0.0222 J 282.6475 18.8432_J

Table 2.1: The effect of depth on wavelength, A number and phase velocity

then

w? = gk tanh (kh) (2.25)

In the ideal case, this equation would be used to calculate k from T or f but, as it cannot
be inverted it must be solved numerically using iteration techniques (this can be very com-
putationally expensive when a wide range of frequencies is considered). It can be seen that

the wave number will vary as the wave-train passes over a sea bed of variable depth.

The effect of depth

Table 2.1 gives a range of time periods with associated wave numbers, wavelengths and
velocities for deep water and 50 m depth. Figs. 2.6, 2.7 and 2.8 illustrate the various
parameters against time period at these two depths. The 50 m contour is regularly quoted
as an ideal depth for installing wave energy conversion devices.

It can be seen that in deep water, where tanh kh — 1, the approximation w? = gk is valid.
As the water depth decreases then the longer wavelengths will begin to experience drag from
the bottom. This means that the water particles (which were previously travelling in circular
orbits) will encounter friction with the sea bed and their orbits will become elliptical, this
process is shown to the right of Fig. 2.3. The effect of this is to slow down the phase velocity

of the wave and to some extent cause the wave amplitude to increase. The effect of this can
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Figure 2.9: Percentage deviation between deep water and 50 m results

be seen on any shallow sloping beach where the waves increase in height as they approach
the shore before eventually breaking.

For offshore wave devices at the 50 m contour the full Airy equations should be utilised.
At longer wavelengths, the water in which the devices would be typically situated is too
shallow for the deep water approximation to strictly hold true. The percentage deviations
from the deep water values increase for periods greater then 7 s (sce Fig. 2.9). One of the
most important results in terms of wave prediction is that the phase velocity changes as the

waves enter shallower water. This change in velocity will alter the distance travelled by the

wave in a set time period.

2.1.3 Pressure as a variable
Discussed in the analysis of the deep water equations, pressure is sometimes used as a

measurement variable and is also affected by the depth of water at which it is taken. The

Airy equation relating pressure fluctuation p at a depth h is given by

w sin(ka — wt — @) (2.26)

p=pga cosh kh
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Figure 2.10: Pressure attenuation for a range of wavelengths

For deep water, as h — oo, the pressure at depth z becomes

p = pgae™ sin(kz — wt — ¢)

From this, the relative falloff in pressure fluctuation with depth is

considerably greater.

2.1.4 Superposition

19

(2.27)

(2.28)

Which, as stated previously, leads to resolution difficulties if pressure sensors are sited in
deep water. Fig. 2.10 shows the attenuation due to depth for a range of wavelengths. For
longer wavelengths (i.e. 500 m and 1000 m) the pressure attenuation at 50 m depth will

be less than 50 % of its surface value, but for wavelengths less than this the falloff will be

An important concept to be addressed is that of superposition. In a linear first order system
many inputs can be added together and processed to reach a cumulative output that would

be the same as if each input had been processed separately then summed after the output.
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Figure 2.11: Superposition of many wave trains, with a North East swell present

Since small-amplitude Airy waves are linear they can be added to produce a more complex
sea state.

The simple periodic wave as described by Eq. 2.22 of this section with constant amplitude
can only be generated in a laboratory wave tank and will never occur naturally. In a wave
system generated by the wind (Chapter 3), the heights of successive waves and the elevation
along wave crests will vary. For most purposes this situation can be adequately described
by the linear superposition of a great number of different wave trains. This is because the

small amplitude equations are linear, so that the resultant elevation can be described by

C=C1+<2+<3+-~~Cn (229)

So, from Equation 2.7:

¢ = Z an exp(k,z) sin{l,x + mpy — wnt — ¢y)

where the components n are densely distributed in frequency and direction
l, = k,cos 8,

m, = k,sind,

and 6, is the direction of travel of the n'* component.
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An example of such a superposition is shown in Fig. 2.11 for a mixed sea state with a

dominant North Easterly swell.

2.1.5 Assumptions made
The following lists the assumptions made in formulating the first order theory for small
amplitude waves, [15].

1. The wave shapes are sinusoidal.

2. The wave amplitudes arc very small compared with wavelength and depth.

3. Viscosity and surface tension are ignored.

4. The Coriolis force and vorticity, which result from the Earth's rotation, are ignored.
5. The depth of the water is considered uniform, and the seabed is flat.
6. The waves are not constrained or deflected by land masses.

7. That real three-dimensional waves behave in a way that is analogous to a two-dimensional

model.

2.2 The wave spectrum

The wave spectrum is one of the key components in describing a wave field. This concept 1s
used for generating realistic wave fields from which to construct predictions. The following
sections set out the theory for introducing this concept. Further information on wave spectra

and their generation can be found in Chapter 3. Detailed information on Fourier theory and

spectral analysis will be given in Chapter 5.

2.2.1 The omnidirectional spectrum
If the elevation of the sea surface is measured above the origin of the co-ordinate system
(r =0,y = 0) then Eq. 2.30 looses dependency on z and y and reduces to

(1) =D ansin(wnl — &n) (2.31)

n

squaring this

CQ(Z) = Z Z AnQm Sin(wnt - (pn) Sin(wmt - ¢m)

n m
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and using trigonometric identities

Gy =33 %anam{COS[(w — 1= wp )t + (O — )]

n m

—cosl[(w — n+wn)t + (o0 — o))} (2.32)

allowing n = m, and taking the long termn average, while removing the oscillatory parts:
) 1. 9 3:
E=(t)=) -al (2.33)
n

This shows that the variance of the sea-surface elevation equals the sum of the variances
of its component wave-trains. Since the variance is proportional to the average energy per
unit area of the sea surface, the total energy of the wave system is just the sum of the
energies associated with individual wave-trains. This is a property of linear systems where
the component sinusoids have random phases.

If the output of a wave recording device is filtered to select only those frequencies on the
right-hand side of Eq. 2.31 with frequencies in the range f — Af/2 to f + Af/2, giving a

variance AF, then a function S{f) can be defined by

S(f) = AE/ASf (2.34)

S(f) will remain finite as Af — 0 and from this it can be seen that
= / S(f)df (2.35)
0

S(f) is called the “omnidirectional spectral density function”, and has units of m?/Hz. An
exarmnple is given in Fig. 2.12.

In practise it is not possible to continuously sample the sca surface elevation and an
estimate has to be made for a finite period of time/space, this is denoted as S(f). This

estimated spectrum will contain some element of random variability and is discussed in

Chapter 5.

2.2.2 Spectral moments

Some useful definitions and statistical results can be expressed in terms of the spectral

moments of the spectral density function S(f). The concept of a moment is taken from

mechanics where it is used to describe the turning effect of forces applied to various objects.
A common application is the calculation of the moment for rotating a beam fixed at a

central point. The opposite of this force will restore the equilibrium. In this application, if

22



800 T T T T T T T T T

700

600

500

400

S(f), m?/s

300}

200

100

1 i i L L 1 i
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
Frequency, Hz

Figure 2.12: An omnidirectional spectrum for wind speed of 30 m/s

the omnidirectional spectrum is represented as a two dimensional laminar shape, then the
first spectral moment is the balance point along the ordinate when the laminar shape is

vertical (i.e., as shown in Fig. 2.12).

In general the n'® spectral moment is given by
o ¢]
ma= [ 1S (2:30)
0
and it can be seen that the zero-moment is

oo
my = / S(f)df
0
= total variance (“energy”) of the wave spectrum

= (2.37)

A common use of the zero-moment is to define the significant wave height where

HmO = 4\/7’”0 (238)

The next few moments can be used to describe the spectral characteristics of ocean waves.

The first moment m, determines the mean wave frequency and mean wave period, hence

m (2.39)

W = -—

my
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and
= 27 mo
= — =27r— (2.40)

An alternative estimate of the mean frequency (period) is called the average frequency of

up-crossing of the mean level Ty (average period T,). This gives:

D=, /12 (2.41)
Mg
and
— 2
To=— =2r, |2 (2.42)
Wy Mo

In addition to the moments m,, the central moments 7, can also be used. These are

defined as

My = /Oo(w —w)"S(w)dw (2.43)
0
Thus:
My = my (2.44)
my =my — wmy =0 (2.45)
My = my — m—lz (2.40)
Mo

The central moment 7, is a measure of the concentration of the spectral wave energy around

frequency @. In other words an indication as to whether the spectra is narrow or wide band.

2.2.3 The directional spectrum
If, instead of using Equation 2.31, the full equation including directional terms (Eq 2.30)
was used, then the same result would be reached, i.e.,

E=2()=)_ 1 (2.47)

n

If it was now possible to filter in the directional wave-trains, i.e., those travelling between
6 + AB/2 and 0 — Af/2 in addition to filtering in terms of frequency, then by analogy to
Eq 2.34, the directional spectral density function S(f,6) can be defined by

AE  &FE \
_— ——) A—~48
SU9) = X7as ~ dfas (2:48)

It is usual to define S(f,#) as the product of the omnidirectional spectrum S(f) and a

normalised directional distribution G(6), therefore:
S(f.8) = S())G(8) (2.49)
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so that

/ G(0)do =1 (2.50)
0

An

In fact G(#) varies with frequency and will therefore be represented by G(4, f).
example of a full directional spectrum is shown in Fig. 2.13. A full description of the

directional spectra and its various formulations is given in Chapter 3.

2.3 Energy and power

The transmission and transformation of energy is a fundamental process in the progression
and dispersion of ocean surface waves. The concept of the wave spectrum and the develop-
ment of oceanic scale models of wave behaviour are based on tracking the energy balance
from inception to dispersal. Energy is important to many processes because it cannot dis-
appear; for example, if a transformation is made from the frequency domain to the time
domain the energy present before the transform should equal the energy present after. If it
is found that the energy does not balance then there must be an error in the transformation

process.

The total energy in a wave can be broken down into potential energy and kinetic energy.



The potential energy results from the elevation of the water particles above the mean sea
level and the kinetic energy is due to the fact that the water particles are in orbital motion

throughout the fluid when the wave is in motion.
Considering a column of water of unit area whose surface is raised a distance ¢ above the

mean sea level. The potential energy required to raise the column by this amount is

pyC*
T = (2.51)

The kinetic energy associated with the motion of water particles in the same wave has heen

shown by Lamb [{18] and Dean and Dalrymple {16} to be

9¢* o ne
By = ETE— (2.52)

Combining these two equations will give the total energy per unit of surface area

2
pae” (2.53)
g

E=F,+F =
This equation is a function of surface elevation only and neither the depth of water nor the
frequency of the wave will affect the energy present. This shows that the energy in the wave
is split equally between the potential energy and kinetic energy. In deep water the energy is
usually contained within half a wavelength of the surface, [14].

There is a simple analogy that can be made here between the flow of energy in a wave
system and the flow of energy in an A.C. electrical power system. In a wave, the kinetic
energy is cycling energy due to the motion of the water particles. To a first order this does
not cause the transfer of energy from one system point to another, i.e, it is not a power flow
and cannot be utilized as an energy source. However, energy can propagate from one point
of the system to another in the form of a flow of sea waves, which is a flow of potential
energy. This is a power flow component.

This is analogous to real power in an A.C. power system, which is the flow of energy from
one point of the system to another (and similarly for the flow of potential energy in a seca
wave). Additionally the reactive power, which is the cycling of energy around the system
with no net power flow from one point to another (this cycling occurs twice per voltage
cycle and is associated with the cycling between stored magnetic field encrgy in inductive
components and stored electric field energy in capacitive components). This raises the point
that only 50% of the energy in the deep sea system can be converted into usable energy,
and to do this, then a wave energy converter should be a matched load. If the wave system

has a characteristic impedance, then the wave converter should have an impedance that is
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the complex conjugate of this characteristic impedance to obtain maximum sea wave energy

extraction.

However this analogy may not be entirely true as certain devices will extract potential
and kinetic energy from the waves raising the energy extraction to greater than 50%. For
example a point absorber will extract the potential energy by following the heave but a
device akin to the Pelamis or wave dragon will extract some kinetic energy also.

The power, or energy flux, contained in a wave is a multiple of the energy per unit area
times the velocity at which this energy is travelling. For an omni-directional single frequency
wave this is simply the phase velocity of the wave, ¢,. For a real situation where many waves
are present the group velocity, ¢, must be considered. This can also be termed the energy
transport [13] and in a similar vein a mass transport can also be defined. In an ideal situation
the wave particles will travel in a perfect circle and remain always in the same mean position.
In reality they will be continually displaced by a small distance over time this is known as
the Stokes drift and this is equivalent to the mass transport of water particles due to the

incident wave field.

To show the calculation for a full sea state, the definition of S(f) in Eq. 2.34, gives
: 1 ‘
SHAf =D §ai (2.54)
where the sum is taken over those component wave trains whose frequencies lie in the range
f—Af/2and f+ Af/2. Thus, using Eq. 2.53, for a given spectrum, the total energy per
unit area of the sea surface is

E = pg/S(f)df = pgmyg
E = pg(H?/16) (2.55)

where H, is the significant wave height (given later in Eq. 2.58). For a unidirectional wave

system, the power transported per metre of crest length is
P=p [ DS (2.56)

If a directional spectrum is considered, then this formula gives the power being transported

across a fixed circle of unit diameter.

For deep water, using Eq. 2.36, this becomes
2 3
po= S s
4n
ng*

= —M_
a7
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2.4 Height and period parameters

As has been previously stated, when discussing the properties of spectral moments, having
general parameters to describe a complex wave field is very useful. The moments as already
highlighted can be combined to present generalised height and time parameters. The follow

is taken almost entirely from Tucker, [12], as alternate reference material did not in gencral

deal with this subject in as much detail.

2.4.1 From time histories

Some of the parameters derived from a time history are shown below

is the range of elevation between two zero-upcrossings of the mean water level

h.

-~
2

hen is the height of a crest above the mean water level

hem is the depth of a trough below mean water level
h. is the difference in level between a crest and the succeeding trough
t. is the time interval between two successive up-crossings of the mean water level
t. 1s the time interval between two successive crests.

T, is the mean value of . over the length of a particular time-history

In practice, h. and t, are not commonly derived from time-history records, and interest

is given over more to the zero-crossing parameters.

In early work on wave prediction, the term “Significant wave height” was applied to the
highest one third of zero-upcross waves. This is the average crest-to-trough height of the
highest one third of waves and was chosen as being close to the wave height reported by visual
observers aboard vessels. However no relationship was ever found to relate this parameter
to the other more fundamental wave parameters and its use is now largely historical.

The parameter now in general use and also called the “Significant wave height”. which

is denoted as H, or H,,9 and is defined by
H,0 = 4/ my (2.58)

where my is the variance of sea surface elevation and comes from the zeroth spectral moment.

The value of H,,y can be derived by the manual Tucker-Draper method [19].
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Symbol Title Description Moment | Value

definition (s)

Tk Energy Period | Total wave power in deep m_y1/mo 12.51

2
water = £-Tgpm,

Ty or T | Mean period | 1/average frequency of the mo/my 11.27

spectrum
T, or T, Zero-crossing | The average period of the my/my 10.3%
period ZCIO-UPCIOsS waves
Ty Integral period | The T, of the integral of m_y/mg 13.00

the record

Tar or T, | Modal period | The period at which S{f) None 14.60

or peak period has its highest value
Ty Calculated Approximation to the m_ymy /m | 15.00
peak period modal period

Table 2.2: Wave period parameters for an 18.6m/s Pierson-Moskowitz spectrum

The individual values of h, and ¢, within a particular wave record are found to be related
to each other. In general, a higher value for h, means a longer ¢.. The majority of these
parameters are of interest in the forecasting of extreme wave behaviour and not for general

concern in the prediction of waves. However, they can prove useful in quick checks to

determine if prediction and simulation results are approximately correct. Table 2.2 gives

various wave period parameters for a 18.6 m/s Person-Moskowitz spectra, this is a widely

used spectral formulation in Ocean Engineering and is defined later in Chapter 3.

2.4.2 From omni-directional spectra

A first step in analysing a wave record is to take its FF'T and then to construct its spectrum.
The sea-state parameters are generally computed at this time and stored with the spectrum.
It is common for the spectral moments from m_y to my to be calculated and from these
moments, the “spectral” values of H,,o and T.. T, is also often recorded, it is defined as
1/f, where f, is the peak of the spectrum. As the low-frequency limit of significant wave
energy is approximately 0.03H z [12], the integration for the moments usually extends from
the lowest frequency estimate which includes this, to a high frequency limit which, in the

case of wave buoy measurement, is often taken as just below the heave resonance. In some
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instances, a “Phillips tail” can be added above the high frequency limit to replace the lost
part of the spectrum (as described in Chapter 3). In cases where the wind speed is low,
the energy of the spectrum will tend to fall into the higher frequency range. This data is
generally lost when selecting the upper limit for calculating the spectral moments, but it
must also be noted that the response of the measuring device in the low wind scenario is

likely to be corrupted.

Hyno as defined in Section 2.4.1, is in almost universal use as the height parameter but
a whole range of other period parameters are also utilised in papers published over the past
50 years.

From communications theory, Rice [20], with random noise signals, showed that for a

Gaussian signal

T. = (mo/my) (2.59)

T. = mean value of t, = /(ma/my) (2.60)

A large amount of existing theory dealing with ocean surface waves treats the problem in
probabilistic terms. With much of the existing research focused on extreme wave height
prediction for use in civil engineéring projects where storm limits are required.

Certain problems exist with parameters that are dependent on negative or higher order
moments, primarily through raising the frequency term to high powers, which will tend to
favour high frequencies. At the higher frequencies the signal will tend to be dominated by
noise terms which are amplified and skew the results. During the course of this study the
parameters that are dependent on moments from 0 through to 2 have been most stable

and are in agrement with the theoretical values given by Tucker [12] and replicated here in

Table 2.2.

2.4.3 Wind speed to wave height

Table 2.3 is taken from [15] and shows how wind speed is related to significant wave height.

It also relates these values to the Beaufort Wind Scale which is more often heard in the

general context of television or radio weather forecasting.
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Significant

Beaufort Name Wind Speed
Number (mean) wave height
m/s km/hr H oo

0 Calm 0.0-0.2 0.0-0.72 0
1 Light air 0.3-1.5 1.08-5.4 0.1-0.2
2 Light breeze 1.6-3.3 5.76-11.88 0.3-0.5
3 Gentle breeze 3.4-5.4 12.24-19.44 0.6-1.0
4 Moderate breeze 5.5-7.9 19.8-28.44 1.5
b) Fresh breeze 8.0-10.7 28.8-38.52 2.0
6 Strong breeze 10.8 13.8 38.88 49.68 3.5
7 Near gale 13.9-17.1 50.04-61.56 5.0
8 Gale 17.2-20.7 | 61.92-74.52 7.5
9 Strong gale 20.8-24.4 74.88-87.84 9.5
10 Storm 24.5-28.4 88.2-102.24 12.0
11 Violent storm 28.5-32.7 | 102.6-117.72 15.0
12 Hurricane > 32.7 > 118 > 15

Table 2.3: Comparing Beaufort number to wind speed and wa
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Chapter 3

Wave Generation, Spectra and

Simulation

The generation and propagation of waves across the surface of any body of water is a com-
plicated process that is at yet not fully understood by modern science. In order to make
engineering approximations for the prediction of wave behaviour, information on the growth
and evolution of wave fields is necessary. In this chapter, the present state of knowledge is
briefly described as well as the manner in which oceanography and ocean engineering choose
to represent the processes. The linearisation and approximations required to run a simu-

lation of wave behaviour in near to real time are then presented and the model structure

discussed.

3.1 Wave generation by wind

The subject of this section has been widely covered in the literature and a full treatise on
the theory is not required. The following overview is based on Tucker [12] with additional
information from Townson [14] and Brown et. al. [15]. For a full account of the mecha-
nisms involved in the generation and propagation of wave energy see Komen et. al. [21] or
Massel [22].

As with many physical processes the analysis of the generation and propagation of a
wave considers the conservation and movement of energy between different mediums. The
ultimate source of this energy is the sun. The energy from the sun differentially warms the
earth and causes areas of low and high pressure. The formation of storms and winds follow.

The energy has been transformed from solar to wind energy. The mechanism for the transfer
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of this energy to the waves is still under debate but it can best be summed up as an energy

balance equation.

3.1.1 The energy balance equation

The process of wave generation can be initially described using two examples: waves on a
small stretch of water such as a loch and storm-force waves as generated by a hurricane.

First, consider a wind passing over the surface of a loch. On a calin day the water will be
still. With a slight breeze the surface will be deformed by capillary waves, largely sustained
by surface tension. On a gusty day small waves will have formed and on a day when high
winds are blowing true gravity waves will have developed and will be running up onto the
shore. The wave will develop in magnitude across the loch and break onto the shore facing
the oncoming wind.

A second, more extreme case, is to consider a hurricane blowing in the Caribbean. Winds
in excess of 64 knots will feed energy into the wave system over a prolonged period of time,
developing seas with significant wave heights greater than 15 m. This wave energy will

remain in the system until it has been dispersed. If the storm is mainly blowing in an

easterly direction then the waves can leave the Caribbean basin and progress across the
Atlantic eventually meeting a land mass several days later to break on its shores.
Although these are simplified accounts, the above examples include all the elements of

the wave equation. The equation has to account for the input energy, the energy dissipation

and the change in stored energy with time and space. Hence:

oF oF
— 1 (c — = I+ D 3.1
5 + (cg + Uyq) - W+ 1+ (3.1)

where F is the spectral density of energy per unit area at a frequency w and position x, ¢, is
the group velocity at w, Uy is the speed of the wind-driven current, W is the rate of energy
transfer from the wind, 7 is the rate of non-linear transfer among the frequency components,
and D is the rate of energy dissipation. In the real sea, U, is small compared to ¢, over the
range of interest and the equation reduces to

oF OF

ST + cg—&{

In a fully-developed sea, i.e., one in which the energy input from the wind is balanced

=W+1+D (3:2)

against the energy dissipated in the waves, the equation becomes W = [+ . This is because
the first term on the left-hand side indicates a changing sea state with time while the second

left-hand term indicates a changing sea-state with respect to distance.
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3.1.2 Wind input W

As indicated in the previous section it is the winds which blow continuously over the surface
of the sea that are the source of ocean waves. When a wind blows across a hard surface,
it generates turbulence. On a dry dusty day this turbulence can be seen by observing the
vortexes or mini-whirlwinds that form. This is caused by patterns of alternating high and low
pressure. These patterns can be resolved into harmonic components travelling in different
directions at different speeds. Although not a true solid surface, the surface of the sea is
much more dense than air so friction is developed between the two layers and so turbulence
1s generated. Some of the pressure pattern harmonics will have the correct wavelength and
velocity to resonate with the water waves, i.e., they are travelling with the same velocity as
the phase velocity of the wave, and with the same wavelength, and therefore it can transfer
energy to it. This method was first put forward by Phillips [23] and is sufficient to deal with
linear growth, although for well developed waves of longer wavelength and higher amplitude
an interactive mechanism is required where the pressure differences on the sea-surface are
driven by the waves themselves.

A theory was put forward by Miles [24] and modified by Janssen [25] to explain how this
occurs. What is required is for a high pressure to develop on the upwind side of the wave
where the water level is dropping, and a lower pressure on the downwind slope where the
water is rising. These pressures will then do work on moving the water particles and feed
energy into the wave. It can be thought of as the same process that creates and moves sand
dunes along a beach.

Inside a water wave, if the force due to the linear acceleration is integrated up a vertical
column, it just balances the change in weight of a column due to a change in surface elevation,
leaving a constant pressure at the water surface. For a wave travelling under still air, the
air particle movements are the reverse of the water particle movements in the wave, and
the dynamic and static pressures add instead of subtracting. If an air pressure sensor was
floated on top of the wave then the change in air pressure would be 2p,gH, where p, is the
density of air and H is the wave height. Since it is in phase with the wave profile there is
no energy exchange between the two mediums.

For a phase change to exist and for energy transfer to occur there must be friction
between the two layers. Relaxing the still air condition and allowing a following wind to
blow, a turbulent boundary layer is created therefore inducing a phase shift giving the correct

conditions for energy transfer from the wind to the wave. This process will occur when the
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wind speed exceeds the phase velocity of the wave.
Snyder et al [26] took measurements of air pressure over waves under active generation
which produced a formula for the wind input W, which is the work done on the waves by

the wind at a vector wave number k where, for Us cos > ¢,:

SE(K) pa [ Us
"/ = = U.2— — COS U — 3.
W (k) 5 0 2/)W . cosf —1 (3.3)

However, for Us cos 6 < ¢, then
W(k) =0 (3.4)

For Eq. 3.3:
W (k) is the rate of energy input per unit area per unit range of k

E(k) is the rate of spectral density of the waves in terms of energy per unit area per unit

range of k
Us is the wind speed at a height of 5 m

6 is the angle between the wind direction and the direction of wind travel

Pa 18 the air density
pw 1s the water density

is the phase velocity of the waves with wave number k

w =2nf

The equation shows that for high wind speeds, the wind feeds energy into the waves over a
wide range of wave directions, but as the wind speed approaches the phase velocity the range
of wave directions that can be added to narrows. This results in directional spreading where
energy is widely distributed for higher frequencies but concentrated in a narrow directional

range for lower frequencies. Formulas utilising this behaviour will be given later in this

Chapter.

3.1.3 Non-linear interactions I

During the 1970s there was much interest in developing models for statistically predicting
wave behaviour on an oceanic scale. A key part of this was developing an understanding of

how the energy present in a wave system can be transferred between different frequencies,
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e.g., why does the energy present at a system source at the higher frequencies (i.e., the centre
of a storm) translate to a low frequency swell that arrives on distant shores?

The assumption of linearity and superposition will no longer hold for steep waves such
as those found in developing wave systems. But, this non-linearity is generally weak, so
a linear superposition of sinusoidal waves can be initially assumed to investigate how the
nonlinearities cause interactions.

. G, the second-order nonlinear-

Starting with the component surface elevations ¢y, (s, . .

ities produce terms that are multiples of these, i.e., in general terms
Cnm = K’mnCnCnl (35)

where K, is a factor which can be calculated from hydrodynamic analysis

If ¢, and (, have vector wave numbers k, and k,, and frequencies w, and w,,. then
substituting the relevant wave equations and multiplying out shows that (,,, consists of
two components, one with a vector wave number k,,.(+) = k, + k,, and a frequency

Wnm(+) = wp + Wi, and the other with a wave number k,,,(~) = k, — k,, and a fre-

qUeNCY Wy (—) = wp — wm. For second order interactions there are no cases where K, (+)
and wnm(+) obey the dispersion relationship for a free wave, and the same is true for the
difference components. Hence, all second-order components are tied waves and cannot build
up by resonant interactions.

This being said, Hasselmann [27] showed that for third order interactions, certain com-
binations of vector wave numbers can produce resultant components which do obey the
dispersion relationship and which are therefore capable of building up by resonance. He
further went on to show that energy could be transferred from one part of the wave spec-
trum to another. In particular energy from the higher frequencies is transferred to the lower
frequencies, extending the low frequency range of the wave. With the JONSWAP spectrum
(Section 3.2.2) it is also possible for energy from the mid-part of the spectrum to be moved to
higher frequencies. The breaking of waves may also account for much of the energy transfer

during the early stages of growth from higher to lower frequencies. Komen [21] expands

upon this concept.

3.1.4 Dissipation of energy D

The second balancing force of W = I + D is the energy that is dissipated. The two most

important processes in deep water wave analysis are losses due to molecular viscosity and
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wave breaking. However, inshore, the processes of shoaling and refraction also become

important as can be observed in the SWAN modecl [28].

Loses due to viscosity

The theory of molecular viscosity and its effects have been long known (Lamb [18]). For
lightly damped waves, viscous attenuation causes the amplitude to decay with time but has
little affect on other aspects of a waves behaviour, such as frequency. For the light damping
condition to hold the proportional energy loss per cycle should be small which is the case
for the wavelengths of interest.

Viscosity is a linear phenomenon, so that, for a given wavelength, the shear forces gen-
erated are proportional to the wave amplitude, and the energy loss due to the amplitude

squared. If a spatially-uniform wave-train is generated then allowed to decay, the rate of

loss would therefore be

dE(t) —E(1) 36)

dt T.

where 7, is a constant with the dimension of time. Solving the first order differential equation

for E(t) will give

E(t) = Fyexp(—t/7.) (3.7)
or, in terms of amplitude:
A(t) = Agexp(—t/7,) (3.8)
Lamb gives the formula for 7, as
2
A (3.9)

Tg =
8Ty

where X is wavelength and v is kinematic viscosity.

Viscosity is only really a serious problem if dealing with short wavelengths, (much less
than 0.5 m), or for wave-trains that are being tracked over a great distance or a long time.
For example, a wavelength of 25 m will need to travel 16400 km to decay to 1/e of its initial

value. The width of the Pacific Ocean, for comparison, is 17600 km at the equator.

Energy loses due to whitecapping

For the range of the spectrum that we are interested in the more dominant method of energy
loss is whitecapping. This occurs when the amplitude of the wave has exceeded its physical
maximum imposed by H, = 0.14\. Whitecapping is scen as white foam forming at the peak

of the wave as it begins to break and the water becomes aerated. If the wave has grown
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exceedingly high then the centre of gravity of the upper wave, that above the mean sea level,
will overtake the centre of gravity of the lower part of the wave causing it to topple over.
This process is more cominonly seen as breaking waves at the shoreline.

Theoretical treatment is difficult, but models for computerised wave prediction make
use of adjustment factors in the standard wave spectra to approximate the process into
something akin to real life. Hasselmann [29] proposed a formula based on the integral wave

steepness parameter
7710@‘1

g'z

where @ = 27 f = 27m; /my and m,, is the n'* spectral moment.

G = (3.10)

Komen, Hasselmann and Hasselmann [30] examined the energy balance requirements to

produce the Pierson-Moskowitz spectrum (Section 3.2.2), and concluded that they got the

best results by using

Spis(k) = —3.33 x 10~ (ﬁ)Qw ( a >2 E(k) (3.11)

@
Where,
Spis(k)dk is the rate of energy dissipation per unit area of the sea-surface from a range

of vector wave number dk.
apyy is the value of & calculated for the Pierson-Moskowitz spectrum.
E(k) is the spectral density in vector wave number terms.

Eq. 3.11 can be restated in terms more commonly used as:

2 ~ 2
Spis(w,0) = =333 x 107° (£) w( c ) E(w,0) (3.12)

api

Note that & is proportional to the wave energy and Sp;s is proportional to H;!,. Whitecap-

ping therefore gives a tight control over the amplitude of a wave, reinforcing the assumnption

made with regard to the maximum height before breaking H, = 0.14\.

3.1.5 Time line

Having given definitions for the terms involved in the energy transfer of a developing sea

state, mention must be given to the time line of evolution and the terms applied.

Fully developed sea

The simplest state to describe is the fully developed sea. The size of waves is governed both

by the wind speed and the unobstructed distance over which the wind has been blowing.
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known as the fetch. Provided the fetch is extensive, and the wind has been blowing at a
constant velocity an cquilibrium state in the encrgy balance equation is reached (as discussed

earlier where W = I 4 D). In this balancing condition the size and shape of the waves do

not change.

Young sea
A young sea occurs before the equilibrium condition for a fully developed sea is reached.
This happens at the start of a storm when the waves are gradually gaining in height and

energy is being transferred between different frequencies of the spectrum.

Swell sea

This occurs after the wave-field has left its source area and the local wind is no longer
contributing. The higher frequencies of the fully developed spectrum gradually feed their
energy into the lower ranges resulting in waves of lesser amplitude but longer wavelength.

This is generally what you see arriving at the coast and what wave device developers are

looking for.

Real sea

A real sea will in general consist of several swell seas and a locally generated young sea
depending on local conditions. For the west coast of Scotland, swells can arrive from storms
in the Southern Ocean, the Caribbean, the North West Atlantic and the seas around Iceland.
In addition to this, a local young sea will almost always be present. If a storm begins to

form in the local area then a fully developed sea can be produced and mask the presence of

any swell seas that are arriving.

3.2 Spectral representation of wave fields

Further exploration of wave generation theory leads to the need for dimensional analysis

techniques. Although the underlying principles of wave generation are understood, the

mathematics cannot be succinetly stately.
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Figure 3.1: Phillips spectrum for a 12 ms~" wind

3.2.1 Similarity theorems

Consideration of the energy balance equation and the concepts developed in the previous
sections suggests that a saturation point will be reached for the upper frequencies where
the spectrum will be governed by the local physical parameters of spectral density S(w),
the densities of air p, and water p,,, gravity g and frequency w. Taking the densities of air,

water and gravity as constant, Phillips [31] suggested that the saturated spectrum should

follow the form of:

S(w) = ag’w™® (3.13)

A simple spectral formula can be derived from this

S(f) = ag’@m)~'f > for f> fo (3.14)
= 0for f < f, (3.15)

where
(3.16)

peak frequency fo = g/2rUyo
a = 0.0081 is an empirical constant and Ujq is the wind speed at 10 m. Fig. 3.1 shows a
plot of the spectrum. It is only defined above the peak frequency since the formula does not

account for the lower frequency effects.
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Massel [22] gives several other formulations for the basic saturation spectrum involving
the variation of o and arguments that the saturation limit should decay as w™*. The more
common approach is to follow the argument put forward by Kitaigorodskii [32] (original
paper in Russian).

The spectrum of interest is normally limited by the fetch over which a steady wind has

been blowing. This adds the fetch X and the wind speed « to the basic Phillips equation so

that
" 2 _5 uw gXxX ‘
g u
where
uw/g = @ = dimensionless frequency (3.18)
gX/u* = ¥ = dimensionless fetch (3.19)

and F is an unknown but universal function. Putting the equation in this form means that
for any spectra measurements taken in a locally-generated sea, w®S(w)/g? plotted against @

for any value of r, will result in the same basic shape.

3.2.2 General spectra

While Phillips and Kitaigorodskii carried out the initial investigations for analysis of the
upper reaches of spectral saturation, real experiments were required to correctly define the
spectra for the most energetic part of the spectra below the peak frequency. In common with
all the proposed spectra is a set of power functions which are multiplied by an exponential

function. A general form for the spectral density function is:

S(w) = Aw Pexp [—Bwi], (3.20)

in which A, B,p and q are free parameters.

The following are some of the spectra in use.

The Pierson-Moskowitz spectrum

This spectrum represents a fully developed sea where the phase speed is equal to the wind

speed and the spectrum is saturated. Using field data. Pierson and Moskowitz [33] proposed

that -
T g 3.21
S(w) = agw™" exp [ B <w(]19,5> J o
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Figure 3.2: The Pierson Moskowitz spectra for wind speeds 10 to 20 ms™

where a = 8.1 x 107* and B = 0.74 are empirically-derived parameters. The one variable in
the equation is the wind speed ;95 at an elevation of 19.5 m above the sea surface. This
was the elevation of the measurement equipment during the experiment: however it can be
changed to other heights (Tucker [12]). Most other formulae take the wind speed at a height
of 10 m and a simple relationship is Uy = 0.93U95. Fig. 3.2 shows the Pierson-Moskowitz
spectra for a range of wind speeds. The increase of energy density, and thus significant wave

height, with wind speed is clearly seen here. It is common when simulating a wave-field to

work with these spectra as an initial trial.

A form of Eq. 3.21 in terms of the frequency of the spectral peak w, is useful in formulating

other spectra and is given by
5 A\
5 _-& w 0 o
S(u}) = ﬂgzu) 0(‘Xp '—:1‘ <—) (322)
An alternate form in terms of spectral peak frequency f, is also given here:

| 1
S() = ag2m) ' exp | -7 <§> (3.23)
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Figure 3.3: JONSWAP spectra for fetches 20 200km

The JONSWAP spectrum
Using a large-scale measurement experiment carried out in 1968 and 1969 (the Joint North

Sea Wave Project - JONSWAP), the shape of a spectrum when related to fetch was consid-

ered and a modification to the Pierson-Moskowitz spectrum was proposed (Hasselmann et

al. [34]).

. 5/ w\ 7 .
S(w) = ag?wPexp | —= | = 0 3.24
(W) = avgw ™" exp [ 1 (wp> J , ( )
in which
. (w— “‘}1))2 0 ¢
0 = exp [—W (325)
and
og=0,forw<w,orw=w, (3.20)
o =0 forw>w, (3.27)
~=3.3 (3.28)
g\ 022 ‘
a = 0.076 (;—/2—) (3.29)
~0.33
9\ (9X .
p =TT (F) (W) (3.30)
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As can be seen, the first term on the right-hand side of Eq. 3.24 is identical to the Pierson-
Moskowitz spectrum (Eq. 3.22). The second term on the right-hand side given in detail in
Eq. 3.25 is a peak enhancement factor which raises the peak of the spectrum according to
the fetch distance. It is designed to simulate the development of a wind sca before it is fully
developed. In this spectrum « and w, are now dependent on fetch.

Fig. 3.3 shows examples of the spectrum for a wind speed of 20 m/s and fetches of
20 km to 200 km. The development of the spectrum with distance more closely mirrors
the natural evolution of a spectrum than the Pierson-Moskowitz, with the density of the
spectrum increasing with distance and the width of the peak narrowing over greater fetch.
Wind speed has a similar effect.

In taking the JONSWAP spectrum to a long fetch ca‘se‘, it should ideally result in the
Pierson-Moskowitz formulation. Instead it retains its enhanced peak. Several attempts have

been made to resolve this and other inconsistencies, these are detailed in Tucker [12] and

Massel [22].

Swell and additional spectra

Alternative formulations to the JONSWAP and Pierson-Moskowitz spectra have been pro-
posed using different data sets and are given in Massel [22]: Donelan, Wallops, Krylov,
Davidian and TMA. Of use in the prediction of waves for wave energy devices is the swell
spectrum proposed by Davidan (translation in Massel [22]). In contrast to the Pierson-
Moskowitz and JONSWAP spectra, where the waves are forced, when the wind speed drops
the waves begin to attenuate and become free waves. The wind can still sustain saturation
at the higher frequencies but, for lower frequencies, the energy tends to the lower range and
reduces the non-linear effects. The proposed spectrum has the form:

S(w) = 6mo(w,) " <f—> —6exp ~1.2 (i) —SJ (3.31)

p

3.2.3 Directional spectra

So far the wave spectrum has been considered as omnidirectional. In a real situation the
spectrum also shows directional spreading which can be represented as many superposed
wave-trains travelling in different directions. The energy transfer that occurs between the

wind and the wave system ensures that energy around the peak frequency is concentrated

about the mean direction in which the wind is blowing. For higher and lower frequencies
the energy is more spread out in all directions.
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Knowledge of the directional spectrum is more sparse than that of the point spectrum
due to the limitations in instrumentation (for a discussion see Chapter 4). The common
method for defining a directional spectrum S(f,6) is to fit a directional spreading function

D(0. f) to a recorded point spectrum S(f) so that

S(f.8) = S(/)D(8.]) (3.32)

Am/:DUﬁﬁzl (3.33)

‘The total energy in the point spectrum will remain unaffected, but will be given to wave

provided that

vectors travelling in different directions.

Several formulations for the directional spreading function exist and are given in the
following sections. Information on the extraction of directional spectra from measurements

and the formulation of spectral harmonics are detailed in Chapter 4.

The cosine-power models
Pierson et al. [35] made the first historical attempt to model the directional spreading of

wave energy by proposing that

D(9) = 2 cos? 8, for, —

<p<Z (3.34)
m 2

vo| =

As a first approximation it was reasonable but it neglected energy spreading in directions
normal to the wind and it was assumed to apply equally to all frequency components.

From field studies conducted with a pitch and roll buoy, Longuet-Higgins et al. [36]

proposed an extended formula such that

825_1 F2(S+1) (9_9m>
- CcOS
n T(2s+1) 2

28
L —m<f<T (3.35)

D(b,s) =

where 8, is the main peak frequency direction, s is a function of frequency and I' is a gainma
function given by:
o
I'(z) = / t*exp " dt (3.36)
0

Several formulations for the spreading parameter s(f) have been proposed. In common
with all the formulations is that s(f) is large at the spectral peak and smaller as it moves to

lower and higher frequencies. In most experiments the parameter was found to be asymmetric

decreasing faster on the lower frequency side.

45



20(' L T

18+ Mitsuyasu

16

14+

12

» 10

JONSWAP

l I

0.2 0.25

0 0.05 0.1 0.15
Frequency, Hz

Figure 3.4: Mitsuyasu and JONSWAP spreading factors for Uy = 20 m/s

[37] proposed the following based on cloverleaf buoy data:

. 5
B (i) for f < f,

Mitsuyasu et al.

Sp o
< f ~2.5 .
;; = (f—p> for f > f, (3.37)

where f, is the frequency at the peak of the spectrum and s, is the value of s at the spectral

peak given by

U 25 |
s, = 115 (—E) (3.38)
Cp
Uyo 1s the wind speed at a height of 10 m and ¢, is the phase speed at the spectral maximum
ep = 9/27 [,
As a result of the JONSWAP experiment Hasselmann ct al. [38] proposed an additional
form for a developing sea:
. p
A (i) (3.39)
sp jl)
in which for [ < 1.05f,:
s, = 697
o= 4.05
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or, for f > 1.05f,

s, = 977
u o= -233-145 (l—]—lg - 1.17)

Cp
Obtaining plots of the two spreading functions is complicated by the apparently conflict-
ing methods of calculating the peak spectral frequency f, for a wind speed of 20 m/s at 10

elevation. Massel [22] using the wind speed at 19.5 m for a P-M spectrum, Uyg s = {/10/0.93,

U

obtains a peak spectral frequency of 0.0593 Hz.
Tucker [12] (p.p. 100) gives the definition of peak spectral frequency as

0.877¢g ,
_ 3.41
fp 2nlU1g5 ( )

and obtains a figure of 0.0637 Hz. Later in the same text (p.p. 200), while demonstrating
the properties of Mitsuyasu's spreading function, the definition is given as

0.88¢g
_ 3.42
fp 271'[]10 (3 )

which results in f» = 0.0687 Hz. Replacing U, with U5 will give the 0.0637 Hz result.

Alternatively, according to Mitsuyasu's original paper, the non-dimensional frequency is
defined in terms of the wind speed at a 10 m elevation and a fetch X. Choosing a very large

fetch (500 km), to approximate to a fully developed spectrum, the following results:

2ol _ g ( 9X ) 0
g U120 ‘
18.8¢ [gX\ "% .
- I 3.43
fp 27TU10 <U120> ( )

Unfortunately this does not asymptotically approach a fully developed state until the fetch

is exceedingly large.
On closer examination Massel [22] appears to have made a rounding error in Eq. 3.77
(his text). In checking the original Pierson paper [33] the equation should read

Uiosfy =0.14 (3.44)
g

and on substituting for Uyg5 = U;p/0.93 a peak spectral frequency of 0.639 Hz is found.
To correct Tucker (12] on p.p. 200, a factor of 0.8184 relating to a wind speed at 10 m
as stipulated by Mitsuyasu must be used in place of the 0.88 given. This results in

Yo _ 8184 (3.45)

Cp
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Figure 3.6: The directional spreading function using JONSWAP as the spreading factor
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giving a peak spectral frequency of 0.639 Hz which matches the corrected Massel formula.
Taking these corrections into account, the two formulae for the spreading function are
given in Fig. 3.4 for a fully developed sea. The full directional spreading functions for
fully developed seas are given in Figs. 3.5 and 3.6. The Mitsuyasu function gives a sharper
directional spread than the squatter JONSWAP spread. Tucker [12] gives a further discussion
of the two spreading ‘factors, but the differences between the two may lie in the methods of

measurement and instrumentation errors.
As a further minor point, the directional spreading equation (Eq. 3.35), as quoted several

times in Tucker [12], will return erroneous results when a mean directional frequency other

than 0 rad/s is used. Returning to Cartwright [39] the correct formula should read

9 - 9171 2
COS 5

The modulus of the cosine term must be taken or negative values will result. Upon raising

s271 T2 (s + 1)
m [(2s+1)

—r<f<nm (3.46)

) f— —

D(8,s) =

these negative values to the power of 2s complex numbers arise giving incorrect results.

Alternate spreading models

The following are given very briefly as they are not utilised in the experiments, but for

comprehensive coverage and references see Massel [22].

The wrapped-around Gaussian model is an exponential alternative to the cosine power

series and is defined as:

p
202

D(9,f)=0\/1§;exp [(6—9 )ZJ for —oco < (8186, <+oo (3.47)

Unlike the cosine series, the tails of the function which are greater than 7 wrap round and

add to the centre. In storm waves it approximates to Eq. 3.35.

Von Mises is a formula based on modified Bessel functions of zero-order [y.

explccos(f — 6,)] (3.48)

1
D(ﬁ, f, C) = m

where c is a measure of concentration about the spectral peak. A value of ¢ = 0 results in the
waves arriving equally from all directions. A higher value of ¢ will tighten up the spectrum.

Donelan [40] suggests a hyperbolic type model may be appropriate, which ha,s the form

D, f) = %/3 cosh™[3(6 — 6,)] (3.49)
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3.3 Wave modelling and time series simulation

As a pretext for developing prediction routines for ocean waves a selection of wave records
from real measuring devices would have been ideal. Unfortunately this data was not avail-
able for this study. This lack of déta is largely due to the costs involved in siting wave
measurement devices and the sometimes commercial nature of the data returned. There are
also technical difficulties involved in siting two devices in close proximity that are picked up
on in Chapter 4. Instead, wave records had to be simulated from the spectra given in the
previous section using the linear superposition of plane wave vectors. The method for this

simulation, as well as input and output files, are presented below.

3.3.1 The wave modelling equations

For a simulation of wave records to take place within a reasonable period of time it was
decided that a linear assumption should be made and that the superposition of many wave
vectors would not result in serious errors. An additional assumption was made in that the
waves would be propagating over an even bottomed surface and wave breaking effects could
be ignored. Therefore Eq. 3.50 can be used for modelling:

N M
C(z,y) = Z Z ay, sin(k, T cos by, + kyysing,, —w,t — ¢é,,) (3.50)

n=11m=1
where the input parameters are obtained from a separate wave-field file, and the output
¢(z,y) is calculated for (z,y) points, which is also given as a separate file. The model is
broken down into these sections to allow for maximum flexibility and repeatability of tests.
For example, the wave-field and the output file can be retained while the main modelling
equations are changed and new outputs compared to old. Similarly, the position of output

sensors can be changed and the experiment repeated. In particular, a sensor setup can be

tested for a range of input values.

3.3.2 Model outputs

The wave model gives its outputs in two separate forms: an animation to visualise the
wave-field and a time series for individual data points.

Fig. 3.7 shows a screen capture of the wave model output using a full directional spectrum
as input with a mean direction of 0° and wind speed Uy of 18.6 m. A problem occurs with

the definition of the direction of wind direction. Oceanographers work with compass angles
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Figure 3.7: Screen grab of animated wave model output

i.e. 0° being due north and the angle increasing clockwise. Mathematically it is simpler to
work in a cartesian co-ordinate system with 0° being directed along the positive x-axis and
the angles increasing anticlockwise towards the positive y-axis. For the prediction problem
it is simpler to think of everything in terms of the cartesian system as complications with
the re-scaling of axes can easily lead to errors. If real wave data had became available it
would have had to have been re-organised to fit the cartesian system and any results again
transformed back to the compass system.

The other output available is in terms of a time series which is generated for a set of x-y
points and given in a separate file. This is provisionally termed a wave staff file as it mirrors
the data that would be recorded by a fixed wave staff or wave gauge (Chapter 4). This
method is faster than making the full calculations for the animated model. It also allows
the flexibility of being able to obtain a wave record for any point you desire. Fig 3.8 shows

three examples of the time series produced by this method.

3.3.3 Input wave-field files
In order to run the wave model a file containing wave vector details is required. Three levels

of complexity in the generation of this file exist.
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Figure 3.8: Three time series taken at 10 m intervals

Manual input

This is the simplest input case where the desired wave frequency, amplitude and direction

of propagation are given as the input to a text file. The information from this file is used to

generate the additional wave vector parameters using the following equations.

w
T
A
k

Cp

= 2nf
= 1/f
g1*
27
= 2n/A

= w/k

(3.54)
(3.55)

A correction is made to the k, ¢, and A parameters based on a value for depth. As indicated

in Chapter 2. the depth of water over which the waves are propagating affects the shape

of the wave as dictated by the dispersion relationship (Eq. 2.25). The correction to the

parameters is brought about through an iteration loop. These parameters are subsequently

written to a separate text file to be used as inputs to the wave model.

The primary purpose of this file is for testing various routines where a single wave in a
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Figure 3.9: Pierson-Moskowitz spectrum for a 18.6 ms™! wind

prescribed direction is required. An example would be in the diagnostic testing of directional

wave buoy code where a single frequency wave vector can be used to check the correlation

between two time series.

Omnidirectional input

In order to make the simulation of wave behaviour more realistic the spectra discussed in
Section 3.2.2 must be simulated. Any of the spectra may be used but only the Pierson-

Moskowitz formulation is available at this time (Eq. 3.56) where
2 —4 p=5 NI QK
S(J) = apng’(2m) ™ Pexp [-3(1o/ )] (3.56)
In addition to the wind speed and direction, the required number of frequency terms
between 0 and 0.5 Hz is also needed. The upper limit of 0.5 Hz is chosen here as wave
measurement devices are seldom able to return useful results above this limit (Tucker [12]).
With this information the frequency step Af can be calculated. The frequency information
is then adjusted so that each frequency is given at the centre of a frequency band of width

Af.

An example of a Pierson Moskowitz spectrum with 100 frequency components is given
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Figure 3.10: Amplitude line spectrum for a simulated P-M spectrum

in Fig. 3.9. To convert the spectrum values into amplitudes Eq. 3.57 is used:

a(f) = VS(f)2A] (3.57)

The line amplitude spectrum is shown in Fig. 3.10. The shape closely matches that of the
original P-M spectrum.

Using the amplitude, frequency and wind direction parameters, the same equations that

nput file are invoked to produce the output file of wave vectors.

were used for the manual 1

Additionally, a random phase component s also calculated with a value between +7 for each

wave vector. An example of this spectrum as simulated is shown in Fig. 3.11. To provide a

means of comparing the spectral characteristics of the wave records, the spectral moments

of the input spectra (Eq. 3.58) are caleulated from m~2 to m* and stored along with some

time period characteristics where:

M
mt =3 f(m)"S(J(m)mAS (3.58)

Unfortunately, for discrete spectra, only the lower moments can accurately be calculated

so that the significant wave height H,no, integral period T; and energy period T are the
parameters available for comparison.
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Figure 3.11: Animation screen for an omni wave file
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Figure 3.12: Comparison of simulated spectrum to the original.
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Simulation Tuckeﬂ
Hopp 8.53 8.4
T; 11.3 11.27
Tk 12.52 12.51

Table 3.1: Comparison of statistical characteristics
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Figure 3.13: Non harmonic amplitude spectrum

To confirm the simulation as being an exact instance of a Pierson-Moskowitz spectrum,
the resulting records can be processed with the methods that are discussed in Chapter 5 to

give the simulated spectrum, this is compared to the original spectrum in Fig. 3.12 and the

moments are given in Table 3.1 with results taken from Tucker [12].

The method of simulation of a wave-field so far presented does have one significant

drawback.

seas do not display this characteristic it would be beneficial to eliminate the possibility of

0.45

unintentionally periodic behaviour before prediction attempts were made.

Instead of using wave vectors spaced at nA f a random spacing would hopefully climinate

For example, 99 uniformly distributed random

the periodic nature of the final records.

o0

0.5

The records will tend to be periodic with 1/Af. As it is known that real
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numbers are generated in the range 0 to 0.5 Hz; 0.5 is added to these numbers to ensure an
upper limit and they are placed in ascending numerical order. The distance between each
frequency is then calculated to give a series of 100 randomly-spaced A f, values. The centre
of each of these new frequency bins (a frequency band Af,) is found, giving the two desired
series: a random normally-distributed series of frequencies and the width of the frequency
bin corresponding to each frequency.

The amplitude of each frequency bin must be proportionate to the energy contained in the
range of the wave spectra which it is to represent. The basic equation a, = /S(f.)2A [,
gives this relationship. Fig. 3.13 shows the randomly spaced nature of the frequencies.
Previously, as shown in Figs. 3.9 and 3.10, the amplitude spectra can be seen to exactly
match the shape of S(f). This was due to the harmonic nature of the chosen frequencies.
The new representation shows that there is more variation in amplitude from S(J) whilst
still retaining the overall shape. In places where the wave vectors are more densely packed
in frequency the amplitudes are correspondingly reduced to maintain the energy in that part
of the spectrum.

Fig. 3.15 shows the time series produced by using this non-harmonic method. It can be

seen that the series is no longer periodic but the spectrum derived from this time series is of
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Figure 3.15: Time series for non harmonic simulation

the same order of magnitude and shape as the original, the comparison between the original

and simulated spectra are shown in Fig. 3.16.

Directional input

The next level of sophistication in the model is to gencrate simulations for a full direc-

tional sea implementing the equations from Section 3.2.3. This is achieved by a two-stage
process. First of all the omni-directional spectrum is calculated; this is a P-M spectrum.

The directional spreading function D(6, f) is calculated separately.

37) equations are used to calculate the spreading function and the cosine power

In this instance, the

Mitsuyasu |

model, proposed by Cartwright [39] is utilised. The spectrum is multiplied by the directional

spreading function and all of the wave vectors are calculated using Eqs. 3.51. An example of

the directional spectrum as an animation was shown in Fig. 3.7. To prove this has no effect

on the original spectrum, the time series at a chosen point was again analysed, Fig. 3.17

I spectrum and one recovered from

shows a comparison between the original omni-directiona
8 Hz, but if

a directional sea simulation. There is a discrepancy, with the large spike at 0.

the area under both graphs is considered, the total energies would appear to be similar.
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120 T T T T T T

— estimated S(f) 1|
= = orignal S(f)

100

80

60

S(f), m&/Hz

40+

201

0!‘ 1 1 ) 1 L L I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

frequency, Hz

Figure 3.16: Comparison of spectra for the non harmonic P-M spectra
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Figure 3.17: Comparison of spectra for the harmonic directional case.
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The non-harmonic version of this input file is also available. This follows the same

procedure as for the onmi-directional input file.

Superposed inputs

For creating real directional seas, the superposition of several local and swell sea states could
be used. It is proposed that this may be possible, however there may be an issue here. In
adding multiple seas together, it is highly likely that some frequency/direction bins will
hold more energy than can be supported and it will have to be dissipated to other arcas of

the spectrum. In the real sea this would occur through white capping and wave breaking.

Further rescarch is required to model this.
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Chapter 4

Measurement Technology

The usefulness of a prediction of wave behaviour in the short-term will ultimately stand
or fall on the available wave data. In real operational circumstances this data is obtained
from wave measurement devices. This chapter aims to present the available measurcement
equipment and briefly describe the methods used for conditioning and presenting wave data.
Devices used for omni-directional measurements will be presented first. The directional

equipment will then be detailed and a discussion of specific problems associated with the

prediction problem will conclude the chapter.

4.1 Omnidirectional wave measurement

The ultimate aim of all of these devices is to make a recording of surface elevation or some
derived parameter for a fixed point. From this time series recording a wave spectrum and

the spectral characteristics can be calculated (see Chapter 5). The parameters can then be

used to fit one of the general spectra (as given in Chapter 3).

4.1.1 Fixed measurement

These devices are generally known as wave staffs. They are commonly mounted on an

available structure such as an oil platform or where the resultant data merits the building of
a special structure. One issue with these devices is that they must be mounted at least 10

m away from any sizeable structure, such as the solid base of an oil rig, since reflected wave

energy can interfere with records.
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Stepped-contact staffs

These are an early form of device. A series of electrodes is mounted on the staff at vertical
intervals. As the sea surface rises it successively shorts out the electrodes, as it falls they

become open-circuit. Errors are common due to sea-water making a filin over the clectrodes.

Resistance-wire staffs

With these devices two parallel wires are stretched vertically a fixed distance apart. The sca
shorts across the bottom of the wires, so that the resistance across the top terminals changes
linearly with the wave elevation. Another variation is to coil a wire around an insulating
rod. The problem of film forming also occurs in this case. They can be effectively used in

model tanks as they can be cleaned prior to use.

Capacitance-wire gauges
In this method a single wire is stretched vertically through the water looped under a structure

then returned to the surface. The capacitance between the two ends of the wire is then

measured. Again a filin will form over the wires and they can become fowled with sea weed

and other bio-organic material.

The Baylor wave gauge

This consists of two vertical parallel steel wire ropes stretched under tension through the
sea-surface. They form an electrical transmission line terminated at its lower end by the sea.
The impedance of this line is measured at a fixed frequency and transformed to an implied

wave height. They are widely used on oil rigs but are often struck by supply boats as they

need to be moored well away from the platform.

4.1.2 Sub-surface sensors

This family of sensor design can be mounted on the sea-bed but it is more usual for them
to be mounted on platforms or surface-piercing piles for ease of maintenance. They can be
self contained, with data stored and recovered from the device, or shore-connected via a

cable. Shore connection is the preferred method to prevent loss of data due to malfunction

or damage.
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Pressure sensors

The pressure at a fixed point under a wave system fluctuates in phase with the waves, the
relationship is given in Eq. 2.26. The pressure oscillation decreases with mereasing depth
(while the mean pressure increases). This attenuation leads to a loss of accuracy for higher
frequencies and the data must be compensated for this. There is much disagreement as to

the manner of compensation, Massel [22] gives a brief overview of the discussion.

Inverted echo-sounders

Installing an echo-sounder looking upwards would initially secin like a good idea. These
devices have been suggested from time to time but suffer from a major flaw. A storm will

cause the sea to aerate and distort the signal reflected back to the device rendering them of

little use.

Particle velocity meters

In principle, a horizontal current meter can be used to measure the orbital wave particle
velocities and then convert them to surface elevation. But the data cannot easily be converted
to wave elevation if there is significant spread of wave direction (Tucker [12]). However

if combined with a wave gauge it can be used as a viable method for directional wave

measurement.

4.1.3 Sensors in buoys

The devices in this chapter have so far had the specific siting requirements of either requiring
a structure, as in the case of staffs, or having a limitation to depth, as in the case of sub-
surface devices. For offshore applications where there are no structures available or the depth

of water is too great, buoy devices are almost universally chosen.

Accelerometer buoys

A small buoy (roughly 2 m in diameter), floating on the surface of the sea will tend to move
with the same elevation as the waves. Commonly these have a flat response to 0.5 Hz. If the
vertical acceleration of the buoy is recorded it can be integrated twice to give the elevation.

The data can then be transferred to shore by radio telemetry or to a service vessel or oil

platform.
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The basic problem with this type of accelerometer is mounting it so that it stays vertical.
There are only two practical options available: inertial stabilisation (usually by means of
a gyroscope), or mounting the accelerometer on a short-period pendulum or its equivalent,
which allows it to adjust to the apparent vertical.

Gyros are not practicable on a small battery-powered buoy because too much power is
drawn. The alternative is to suspend the accelerometer on a heavy horizontal disc in a sphere
of fluid. The compound pendulum formed by the water and the disc is adjusted to have a
natural period of 40 or 120 sec which does not tilt significantly at wave frequencies and its
axis stays effectively vertical. The acceleration is then integrated twice to give the surface
elevation.

Double integration corresponds to multiplying the frequency spectrum by 1/w! (= —1/w?
in amplitude). Hence, any low frequency noise is amplified which leads to large drifts in the
time-history unless it is filtered out.

The buoys must be moored securely but in a way that allows them to rise and fall with
the highest waves to be measured (which may exceed 30 m crest-to-trough in exposed UK
waters). An important part of the mooring is to use a 15 m length of rubber cord which can
stretch, but this may not have enough give so the mooring must be arranged to be flexible
also. This is commonly achieved by using a floater and sinker arrangement. Allender et al [41]
found evidence that the Waverider, and other buoys with similar moorings, under-record the
very highest waves, either by being dragged through the crests or by going around them.

There was also evidence that they can overturn temporarily in one or two of the highest

waves.

Spar buoys

The general concept of this type of buoy is of a buoyant cylindrical spar riding vertically in
the water with a heavy weight or damper plate at its lower end. Neglecting viscosity, the
only vertical force that can act on the spar is the pressure on its bottom face. If this is
deep enough to be below the action of the waves, the spar will not rise and fall. Such buoys

have to be in the region of 100 m long, with a correspondingly large diameter to make them

strong. Therefore these are major projects.
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4.1.4 Shipborne systems

These were the first systems to produce reliable recordings. They were mounted inside
weather ships and provided good data of wave clevation during storms. Many of the major
spectral formulations originated from these recordings.

T'wo sensor boxes were mounted symmetrically on either side of a ship. Each contained a
vertical accelerometer on a critically-damped short-period pendulumn, and a pressure sensor
connected to the sea through a hole in the side of the ship. The accclerometer outputs were
each integrated twice and added to the corresponding pressure signals giving, in each case,

the surface elevation relative to a fixed horizontal plane.

4.1.5 Omni-directional parameter extraction

A common characteristic of all the measurement devices so far described are the discrepancies
between their recorded signals and the real sea-state they are attempting to measure. The
time series from each device must be corrected to account for these apparent errors before

meaningful use. As pressure sensors are most affected and commonly used, the correction

methods for these devices are now described.

Pressure sensor correction

The pressure sensor response is adversely affected at high frequency depending on the depth
at which they are sited. To a certain extent, this can be corrected by Fourier Transform
Filtering. The point at which the correction to the frequency exceeds a multiplication factor

of 5 is, generally, the limiting point since, above this factor, the noise from the sensor, rather

than any data, will tend to be amplified.

Other sources of noise can also affect these sensors, namely:

Digitisation noise The lowest precision bit can represent a significant error at the higher
frequencies due to the range that must be covered.

Wave harmonics In a local-wind sea, non-linearity causes much whitecapping. The har-
monics associated with these waves are due to their fundamental having a longer wave-
length than their free-wave equivalents. This leads to reinforcing of the recorded higher
frequencies.

Dynamic pressures This depends on the design of the housing for the pressure sensor.

The dynamic pressure fluctuation due to local orbital velocities can adversely affect



the wave record.

Doppler effects These are due to tidal and other currents. The frequency measurements

due to these effects are related to the classic dispersion relationship.

Corrections methods exist for all of these problems and are discussed in Tucker [12].

Available parameters
After correction to the recorded time series for instrumental problems, the most common
method of analysis is to take the FFT of a time series to create the spectrum and spectral

moments. This process is given in Chapter 5.

An early method of parameter extraction was introduced by Cartwright [42] and devel-
oped by Tucker [19] and Draper [43]. For a wave record, the mean level is drawn in by hand

and the number of zero-crossing waves N, counted. The length of the record is then divided

by N, to give the zero crossing period 7.

The two highest peaks and two lowest troughs are identified and measured by hand and

termed A,B,C and D. Let

H = A-C

Cartwright went on to show that

[T

H1 = 2(277100[)' (1 + O.289a_1 - 0.247&__2)

aaf—

Hy = 2(2mea)?(1+ —0.211a_; — 0.103a_,) (4.2)

where a = N, and mg is the mean-square surface displacement (zero spectral moment).

From these H,,, can be found as usual from
H0 = 4/mg (4.3)

An additional method for calculating spectral moments from the time series rather than
spectra is given in Massel [22]. Suppose the time series consisted of N samples of a series

¢(nAt). The nth spectral moment can be calculated from

g .
My = o Z(C(/‘) - Q)" (4.4)
k=1
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where ( is the mean of the record. From this definition the first central moment or the mean

value is given by
s 1

H1 = C - .]\_/ ZCN (45>

The second central moment or standard deviation which gives the concentration of cnergy

about the mean frequency is

|
N 3

o 1 -2 R
H2 = 0¢ = [N-l;(gn C) } (4())

The third and fourth central moments can also be given by

N2
H3 = (N—l)(N—Q)mx (4.7)
N(N? = 2N 4+ 3)mg — IN(2N — 3)m2

Ha = , (4.8)

(N —=1)(N = 2)(N - 3)

From these equations the general spectrum parameters given in Chapter 2 can be derived.

An additional parameter not yet defined is the measure of bandwidth. The most commonly

, 7
Y= ("”“Z’Q - 1) (4.9)

my

used definition is

which is the normalised radius of gyration of the spectrum about its mean frequency f;. In
physical terms imagine forming the spectrum shape from a laminar sheet again. The moment

of inertia about the axis f = 0 is my. The moment of inertia about the mean frequency fi,

i.e., the centre of gravity, is my — fZmy.

For very narrow bandwidths v « 0; for the Pierson-Moskowitz spectrum v = 0.425 and
for the JONSWAP spectrum, with the parameters given in Section 3.2.2, v = (.39.
Another useful parameter is the wave steepness which is defined as the crest-to-trough
height /wavelength and for a low amplitude sinusoid is given by
2rh
= {7172 (4.10)
For fully developed sea states, the formulation can be approximated to

2nH
yo— o 4.11
S, /T2 (4.11)

The time series recorded by a device can also be fitted to one of the general spectra
through use of its derived spectral moments. Tucker [12] details these methods. This is
usually done to allow a hypothesis of spectrum development to be verified. Or, in other

cases, spectra can be fitted to a time series in order to determine if multiple sea states are
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present. If the spectrum for a local wind sea can be found and fitted it can be used to filter
this energy from a sea state to leave behind a possible swell sea.
In the case of wave prediction this method of spectrum fitting for local seas may prove

beneficial because it can be filtered out leaving the more powerful swell data.

4.2 Directional measurement

Directional measurement devices do not produce results which are immediately useful. They
instead produce time-series of wave elevations, accelerations, surface tilts, etc. These out-
puts are filtered into frequency bands and then the wave encrgy in each of these bands is
distributed according to its direction of travel. Recalling that the full directional spectrum
is

S(f,6) = S())G(/.6) (412)
where S(f) is the omni-directional spectrum and G(f, 6) expresses how the energy at fre-

quency f is distributed by direction of travel.

There are generally two ways in which time series for constructing the directional wave
spectra are measured. In the first case, a number of variables are measured at a point,
e.g., the pitch, the roll and heave of a surface following buoy, or the pressure and the two

horizontal components of the particle velocity. The second procedure is to use an array of

devices to measure surface elevations.

4.2.1 Triple point measurements

The term ‘point measurement’ includes buoys which are free to move with the wave particle
displacements, and closely-spaced arrays which effectively measure gradients of pressure
or the rate of change of the wave slope. Apart from the clover-leaf buoy (Section 4.2.2),
these devices all measure variables along 3 axes in space (z,y, 2), although these may not
necessarily be the same variable: for example, it is common practice to measure the elevation
of the sea surface or pressure in the z-axis and the two components of the horizontal particle
velocity. All these combinations use the same basic method of analysis. Hence, they all give
the point spectrum S(f) plus two of the components of the first two angular harmonics of
G(f,9).

The full theory on how the directional information is derived will be presented in Sec-

tion 4.3.2, but a quick explanation using a pitch-roll-heave buoy will be useful before de-
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scribing the devices themselves. Defining pitch as the north-south tilt of the buoy and roll
as its east-west tilt, if an omnidirectional wave is coming from the west, the buoy will roll
but not pitch. The roll angle will lag behind the heave displacement by a quarter of a cycle,
or /2 in phase. If it is coming from the east, the roll will lead the heave by 7/2. Thus, the
buoy can distinguish between positive and negative directions of travel.

An omnidirectional wave coming from slightly south of west will canse pitching and rolling
in phase with one another. They will both lag the heave by 7/2, but be 100 % coherent with
it in this simple case, i.e., they will have the same waveform but be displaced in phase. A
wave coming from slightly north of west will cause pitching in antiphase with the roll. The
pitch will now lead the heave by 7/2. If all three wave trains are coming at the same time
there will be pitching. but it will not have a coherent phase relationship with the roll. The
coherence between pitch and heave will also be zero, but that between roll and heave will
still be high.

It can be seen that in broad terms, directional information is contained iu the coherences
and in the relative amplitudes and phases of the signals. These arc measured by the auto
and cross power spectra (defined in Chapter 5). In Section 4.3.2 it will be shown that the
data recovered leads to an estimate of the amplitudes and phases of the first two angular
harmonics of the spectrum, which in turn can be interpreted to give measures of mean
direction and angular spread.

The same type of directional information can be obtained by other combinations of
sensors. Allender et al [41] used a surface wave staff with current meters at its base. These
measured the two horizontal components of water particle velocity as part of the WADIC
project. The surface staff gives S(f), and the attenuation of the short waves with depth
does not affect the directional information that can be recovered from the current meters
since noise will mask these. Another possible combination, that could be used for a coastal

application, is to replace the wave staff with a pressure gauge and retain the two-component

horizontal current meter.

Spatial arrays

These devices are commonly used in shallow water or where a suitable structure is available.
They can provide good approximations of directional spreading functions. The basic princi-
ple is to place the sensors in a line parallel to the shore with the maximum distance between

the sensor equivalent to half the minimum wavelength of interest. By delaying and sum-
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ming the records from the sensors the effective direction from which the waves (of a specific
frequency) are arriving can be derived. The process is similar to that used in beam-forming
radio astromony and a small section of Chapter 6 details some experiments,

Another method, more in common with the methods to be discussed later, is to place
three or more sensors comparatively close together in a triangular pattern. For long waves,
these can be thought of as giving the wave elevation and two components of wave slope.
Hence, the outputs are similar in nature to those of the pitch-roll-heave buoys, and they are
analysed in terms of the angular harmonics of a directional spectrum.

In principle, offshore multi-element arrays could be used in a manner similar to that
described above for shoreline applications. A significant drawback to this method would be
in mooring all the sensors required since sea bed mounted sensors would not be sufficiently

accurate and the building of many structures for mounting wave staffs would be prohibitively

expensive.

4.2.2 Surface following buoys

In general there are two principal approaches in common use for surface following buoys,
Le., buoys that follow the surface slope (pitch-roll-heave, or PRH buoys), and buoys that
follow the orbit of the water particles in the sea surface. The later category divides into two
classes: buoys that contain a triaxial accelerometer, and buoys that use signals from GPS
satellites to measure velocity or displacement in three dimensions.

In the report on the WADIC project, Allender et al [41] found that particle-following
buoys performed more satisfactorily in practice than PR,H.buoys. There are a number of
reasons for this: they are cheaper, the mooring problems are more straightforward, and the
buoys are more robust, smaller and easier to handle. Because they are smaller, they have a
better high-frequency response; and because of their spherical shape, they are not so easily
overturned by steep waves.

As discussed in Section 4.1.3, the main technical difficulty with all buoy measurement
lies in providing a reference to the true vertical in a self-contained buoy with limited power
availability (ruling out conventional gyroscopes). Until recently the metal-platform-in-fluid
arrangement has been the only satisfactory device available. However, recently, angular-rate
measuring devices have become cheap, accurate, robust and more compact with low power
requirements, to the point where they have become a practical alternative. Also the advent

of GPS technology has led to further developments in reducing the size and complexity of
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on-board equipment.

Pitch-Roll-Heave buoys

This class of buoy follows the surface slope, with their pitch, roll angles and the heave
acceleration being measured. These were the first directional buoys to he developed [44]. In
early deployments the buoys were attached to a ship by a cable and used a gyroscope for
the vertical reference. It was a long time before a satisfactory sensor, which could be used
in a self-contained buoy, was developed. This was the Wavec sensor which was described
in an earlier section as a pendulum suspended in a sphere of fluid. The problems with the
sensor are found in it’s transportation, and if subjected to sudden shocks by large waves the
pendulum will become resonant which will take some time to settle down again (Allender et
al [41]).

PRH buoys must follow the water surface in heave as accurately as possible in order to
give an accurate measure of S(f). The heave response is affected by the shape of the buoy
and the force of the mooring. Corrections of the response of the buoy are possible and can
increase the accuracy of heave records for wavelengths which are similar to the diameter of
the buoy (Steele et al [45]).

The tilt response of the buoy is not as critical as the heave response. As long as this is
the same in all directions, the data processing system can be arranged so that the directional
spectral parameters are independent of it (Section 4.3.2). However, if a buoy has an asym-
metrical response it will degrade the directional spectrum. This can also occur due to the

presence of drift forces caused by wind or currents. Various manufacturers have developed

their own mooring designs to compensate for this.

Triaxial accelerometer buoys

This buoy takes the form a sphere 900 mm in diameter moored in the same way as an ordi-
nary omnidirectional device, and no attempt is made to keep its mean water level parallel to
the water surface. At frequency wavelengths lower than its diameter it follows the motion of
the water it displaces. but the mooring stops it following slow drift. A Hippy sensor, a com-
mon name for the floating pendulum arrangement, contains an inertial-stabilised platform
carrying a vertical accelerometer. This accelerometer acts in the same way as an ordinary
buoy and measures the true vertical acceleration. The pitch and roll of the buoy along two

axes Is also measured relative to the stable platform. A compass is fixed to the buoy hull and
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is used to mathematically rotatc the pitch and roll angles to give the magnetic components
in the true horizontal, and hence the correct direction of magnetic north.

A two-axis “horizontal” accelerometer is fixed to the buoy and again, using the pitch and
roll angles and the measured vertical acceleration, the accelerations in the true horizontal
are calculated. These are then rotated about a vertical axis to give the N-S and E-W

components of acceleration. These three acceleration signals can then be treated in the

same way as described for the PRH buoys in Section 4.3.2.

The Hippy sensor, as mentioned earlier, is sensitive to sudden shocks and is expensive.
Steele et al [46] experimented with replacing the hippy senor with angular velocity sensors
arranged in three orthogonal axes. The signals from these three sensors can be integrated
to give angular displacements which are used to rotate the 2-axis accelerometer axes into
fixed axes. As before, the same process is followed with the compass outputs to calculate the
north-south and east-west accelerations. This system has been developed by the Norwegian

firm Seatex as their “Motion Reference Unit” (MRU-6), and more details of it are given by

Krogstad et al [47].

GPS buoys

A relatively recent improvement has been the development of the satellite-based Global
Positioning System (GPS) to a sufficient accuracy such that, when used differentially to
measure a 3-dimensional position, an accuracy of 10 cm or less can be achieved (Krogstad
et al [47]). Very compact and low power consumption GPS location sets are now available.
In practice, instead of trying to fix the absolute position, the Doppler shifts of the carrier
signals are used to compute the buoy velocities and hence acceleration along threc axes. The
standard breakdown analysis for the directional spectrum can then be modified to use these

signals. This new technology has reduced the size of the buoy to 800 mm and weight to 80

kg allowing for deployment from small research vessels.

Clover-leaf buoys

The “clover-leaf buoy” is a long-established and successful system for rescarch into recording
and deriving directional information. It was developed by Cartwright and Smith [44]. In
this device, three buoyant discs 1 m in diameter are mounted to a triangular framework
with their centres forming an equilateral triangle of side 2 m. The joints to the frame are

fitted with sensors measuring the two components of tilt relative to the frame, so that the
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differences in these give the three components of curvature. If ¢,(A) and ¢, (A) are the tilts
of buoy A relative to the frame (and so on with the other buoys), then the three curvatures

are estimated (in radians/meter) using

G = [2G:(4) = G(B) = G(CO)]/2V/3

Coy = [G(C) = C(B)]/2 (4.13)

where (., = d*¢/da* and ¢, = d*¢/dady ete.

At the centre of the buoy is a gyro-stabilised vertical accelerometer and a pair of tilt
sensors giving the roll and pitch angles of the buoy as a whole. A compass gives the buoy’s
heading and this is suspended in a frame above it using gimbals. The slopes and curvatures
are converted to north-south and east-west components using this compass as the first stage

of processing. Due to the small size of the device the differences in slope are quite small and

data can be ecasily lost.

4.3 Directional information extraction

The first attempts to derive directional information and spectra from data buoys were con-

ducted by Cartwright et al. [39]. This classic method is described in this section along with

the problems that can occur during its implementation.

4.3.1 Angular harmonics
The directional spreading function, introduced in Chapter 3. can be described by the angular

harmonics of a Fourier series

G, f) = ;lr— {% + g [A,(f)cosnd + B,(f)sin ’nb’]} (4.14)
which has a period of 27 and the angular harmonics are given by
A(f) = /7r G(0, [)cosnfdb (4.15)
B,(f) = /7r G(6, f)sinnbdb (4.16)
- (4.17)

Cartwright et al. [39] showed that by using the pitch, roll and heave parameters of a

directional wave buoy the first five harmonics could be recovered.
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4.3.2 Method

Suppose the recordings of heave, ¢, and the two slopes of a wave buoy,

available as time series so that

(¢ = / / A(w, 0) exp [jh(zcos b + ysinb) — jwt] dwdd

ox

8y

% = / / JhcosOA(w, @) exp [jh(wcosf + ysinf) — jwt] dwdb

o _ / / JhsinfA(w.0) exp [jh(acosb + ysinf) — jwt] dwdb

. 5
% and & are
! oy

(4.18)
(4.19)

(4.20)

where A(w. ) is an amplitude spectrum. Now denoting these in sequence from 1 — 3 the

cross spectra of each combination can be made by following the procedure in Chapter 5.

Six of these spectra are of interest and their formulations are

Q12
Qs

of the directional spectrum and gave the equations of the first five harmonics as:

Qg
)
)
by

b

/- S(f.,6)d6

/
/
/

k% cos® 0S(f,0)dd

s

k2sin® 8S(f,6)do

m
T

™

/,
/.

Cartwright et al. [39] then related these co-spectra equations to the Fourier representation

k2 cos Bsin 0S( [, 6)d6

kcos@S(f.0)do

ksindS(f,6)dd

1
—011
m

1
— @

(4.21)
(4.22)
(4.23)
(4.24)
(4.25)

(4.26)

(4.29)
(4.30)

(4.31)

They then went on to show that an approximation to the original directional spectrum

can be given in terms of these harmonics so that

1

1 .
S(f,0) = =ap + § (a; cos B + by sind) + 5 (a3 cos 26 + by sin 26)

2
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where the harmonic reconstruction has been weighted to remove the possibility of S(f.6)
becoming negative. Tucker [12] also presents formulae for the extraction of the mean wave
direction 6y, and the spreading parameter s as functions of the harmonics.

The DIWASP [48] toolkit, as developed for the MATLAB environment (discussed in
the next section) was used to check the formulations and for ease of implementation of the
method presented above. The results were less than satisfactory and, in addition, direct

implementation of these equations has proved virtually intractable.

4.3.3 DIWASP toolkit

The DIWASP [48] toolkit is a set of MATLAB functions developed by the Coastal Oceanog-
raphy Group at the University of Western Australia for use by oceanographers. The toolkit
calculates directional spectra from time serics using one of five implemented routines. The
input data can be from any derived wave parameter: surface elevation, slope, particle veloc-

ity, pressure, etc. The raw data, sample rate, sensor position and depth are passed in as a

structure and the spectra are calculated.

The estimation methods were tested with the same spectra as used in the previous section.
The results were as follows:
Direct Fourier Transform Method This is the method described in the previous section.

It is implemented very quickly but returns poor results.

Extended Maximum Likelihood Method This has a much better directional resolution

than the DFTM, and is accurate to within £10°.

Iterated Maximum Likelihood Method This is much slower than the previous methods

and it returns negative power at some frequencies which are much removed from those
simulated.

Extended Maximum Entropy Method This works to the same accuracy as the EMLM
but it is a little slower.

Bayesian Direct Method This returns very accurate results but it is very slow when

attempting to run real time simulations

The manual for the software [48] and Massel [22] give further references to these method-

ologies. In later sections of this thesis, information about the directional spectra may be



required but only to the extent of obtaining a mean propagation direction for one to pos-
sibly three mixed wave fields. This information can be obtained quickly and to reasonable

accuracy using the Extended Maximum Likelihood Method.

4.4 Measurement for prediction

The problem of choosing which type of device to use for the short term prediction of wave
behaviour is governed by cost and accuracy. For a measurement to record an entirely accurate
representation of the sea surface it should ideally be taken at a fixed location. A wave staff
mounted on a fixed structure would give this record but the additional cost would likely
out-weight the benefit of any prediction made. Similarly a LIDAR device mounted on a
fixed structure or an airborne altimiter would give accurate readings from a fixed point but
are also prohibitively expensive.

A bottom-mounted sensor would also provide a good fixed reference point recording,
but at the depths where wave farms are likely to be situated, the resolution of these device
outputs would deteriorate and correcting the measurements in the post processing of the
data will induce amplification of instrumentation noise.

A practical solution is to use wave buoys which are relatively inexpensive to moor and

have a reasonably high data return. However, they also have drawbacks as described in the

next section.

4.4.1 Wave buoy vs wave staff

From the earlier discussion it should be obvious that measurements made by a fixed position
wave staff and those made by a floating wave buoy will be different. In terms of prediction,
the information returned by a wave staff, plus a current meter, would be ideal but since
fixed structures are likely to be expensive a floating wave buoy is the most economical

option available.
A concise discussion of the two different techniques is given in James [49] and this section

summarises that paper.

So far the concept of a mixed sea state has been represented by a superposition of many
simple first-order sinusoids. This representation is adequate when the waves are not steep.
For a more complete description, a higher-order wave-behaviour equation must he used in

constructing models. In higher-order models the stokes drift term is introduced which is a
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Figure 4.1: Pendulum approximation to the path of a surface particle

measure of the mean movement of water particles. In a linear model it is assumed that water
particles remain about a fixed position and a buoy following the motion of these particles
will also remain fixed. If a Stokes drift is introduced then the buoy will tend to follow this.
In omni-directional waves the buoy will reach the end of its mooring tether and tend to be
pulled through waves.

In a real mixed-state sea with waves arriving from many directions the buoy will tend to
be pulled back to its mean position and not reach its extended point.

James explains this principle by introducing the clock model for the orbital motion of

surface particles shown in Figure 4.1. Consider a wave buoy following the surface particles:

r=ct— Asinf (4.33)
and
y = A1 —cos8) (4.34)
where ¢ is the phase speed.
Now consider the wave staff fixed at r = 0 and
ot (1.35)

sinf = X + constant

7



where for maximum amplitude waves

9

1/2

g
> = 1.0923 | — 36
¢ (271') (4.36)

For the wave staff, choosing t = 0 for y = 0 then

1 — 22
y=A <1 - T) (4.37)

whereas for a free floating wave buoy
y = \k? (1 — c0s 2 g//\t) (4.3%)

The free floating buoy will also be drifting with a velocity of 0.28¢ according to the clock
model. In the real case of a tethered wave buoy, as mentioned previously, it will reach the
end of its tether and move only in the vertical plane in a similar manner to the wave staff.
James showed that if the FFT of the records from each instance are taken and compared
then amplitude of the second harmonic is under recorded for the tethered wave buoy. The
spectrum for the free floating buoy is shifted to the lower frequencies as it will tend to be
measuring the Lagrangian rather than Eulerian values.

James goes on to state that in complex sea states the buoy will not remain at the end of

its tether for long but will drift with the differing wave vectors, i.e., drifting freely for many

periods while for other periods remaining taught.

4.4.2 A possible solution

This chapter has reviewed many of the advantages and disadvantages of wave measurement.
It is still proposed that wave buoys are the most sensible solution. The recent introduction
of GPS buoys gives the possibility of tracking the motion of the buoy very accurately. If the
acceleration and position information are available there may exist techniques to resolve the

surface elevation to a fixed Eulerian point rather than at the Lagrangian point (which the

buoy is measuring).
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Chapter 5

Spectral Analysis

The information that can be obtained about a wave spectrum via the output of a wave
measurement device is dependant on the spectral analysis techniques used. In particular,
the Fourier transform is exploited in the transformation of time domain wave histories to
wave spectra in the frequency domain. This chapter aims to set out the background of the

spectral analysis tools that are used in this thesis. The analysis will start from first principles

for completeness.

5.1 Fourier series

5.1.1 The trigonometric Fourier series

Fourier series analysis theory states that a continuous periodic function f(#) or, in this
particular case, surface elevation ((t), can be represented over a finite interval of time (f to
t +T), as an infinite sum of harmonically related sinusoids, where ¢ is arbitrary and f(t) is

assumed to be periodic over the time period 7. The basic Fourier series is written as

[>9]
f(t)= Z (@, cos nwpt + by, sin nwyt) (5.1)
n=0
where wy = 27 /T, n is the harmonic number, by = 0, and ag is the mean of f(t).
The time series of surface elevation ((t), in common with many instances where the
Fourier series is used, is not strictly periodic. The series is generally used to extract in-
formation about the density of energy in certain parts of the spectrum. When taken over

several records, this energy will tend to remain the same. This energy, as illustrated later in

Chapter 6, can be used as the basis for modelling wave behaviour.
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Figure 5.1: Fourier series representation of a square wave

The cocfficients of the series a, and b, are given by

1 T
ag = T/ f(t) dt (5.2)
t
2 t+7T
a, = —7;/ f(t) cos nwpt dt (5.3)
2 t£+T
b, = _f/ f(t) sinnwyt dt (5.4)
t

A square wave example

As an example of this process, Fig. 5.1 illustrates how a square wave can be built up from
many individual sinusoids. It should be possible to see the converse of this theory, i.e., a
complex function such as a square wave can be broken down into many individual sinusoids.

The representation of a function f(¢) by many individual sinusoids relates back to Chap-
ter 2, where the principle of superposition was introduced. Hence the surface elevation ¢{(¢)
can be thought of as the summation of many individual harmonic wave vectors. However, as
discussed in other parts of this thesis, a harmonic representation of ((¢) is very much a pseudo

representation since a real sea state is not periodic, but can exhibit periodic characteristics.
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Parseval’s theorem

In representing a complex function by a number of individual sinusoids the question arises as
to how many sinusoids (V) are needed to accurately recreate the complex function. N can

be found by taking the mean square value of the time and frequency domain representations

of the function where

/ T2t dz‘—a0+ Z(z + b%) (5.5)

nl

This is Parseval’s theorem. The theorem states that the energy present in the time domain

representation of a signal must equal the energy present in the frequency domain represen-

tation.
In making calculations of this value it is usual to subtract the mean of f(¢), i.e., ap from

both sides of the equation as it will possibly dominate the result. Calculating Eq. 5.5 with

increasing values of N leads to a reduction in error between the time and frequency domain.

Theoretical extraction of wave spectra

As discussed in Chapter 2, one use for the Fourier theorem is in constructing an estimate of
the wave spectrum S(f) from a time history ((t). The estimate S(f) of the power spectral

density (Section 5.2) can be obtained by summing the energies of all the Fourier components

within a chosen spectral resolution A f so that

S(f Af_l/QZa +b2) (5.6)

It will be explained later that the summation of several frequencies is necessary to remove

randomness in the estimated spectrum.

The concept of a wave spectrum is more fully expanded upon in later sections after
the power spectral density function has been introduced. At present the above equation is

included to illustrate the relevance of Fourier series to the wave prediction problem.

5.1.2 The complex Fourier series
The exponential form of the Fourier series, which is widely used, is obtained from the Eule
identities

et = cosnwgl + J sin nwgt

(5.7)

e—]nwot = cosnwgl — ] sin nwpt
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Figure 5.2: Argand diagram for a Fourier cocfficient

where j is a vector rotation through 90 degrees and, in the usual complex notation j% = —1.

By combining these identities with Eq. 5.1 the exponential form is reached so that

f(t) = Z Felmeet (5.8)

n=—o

where "
Gn = Jon forn >0
2
F, = (5.9)
n /'b
fnt 10 for n <0
2
The Fourier coefficient terms F, may also be obtained from the time series f(¢) using
1 t+T )
F, = —/ f(t)e™motdt (5.10)
T J,

Egs. 5.8 and 5.10 form a Fourier Transform pair.

Representation of complex Fourier coeflicient

Figure 5.2 shows a representation of the complex Fourier coefficient F;,. The real number is

the abscissa and the imaginary number is the ordinate.

F, = |F,|e7 (5.

where

IF,| = -21-\/(42,, e (5.12)
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Figure 5.3: Complex frequency spectra

and

bﬂ,
£n = tan™' — (5.13)

an

The set of numbers F), for all n uniquely describes the function f(¢). In many instances
the magnitudes of each Fourier coefficient |F,,| will be sufficient to describe the spectral
characteristics of f(t) and in the case of signal processing this is generally the information
that is preserved. However, in trying to accurately recreate a dispersive water wave, the
phase information must also be preserved. Neglecting the phase information can lead to
large errors. For example, if the phase of each Fourier coeflicient were assumed to be 0,
then all of the component waves would reinforce one another to create a physica‘lly unstable
waveform. This situation can occur (the 100 year wave) but since there are infinitely many

wave vectors to be considered the possibility of this occurring naturally is extremely low.

Amplitude and power spectra
The Fourier series is used to express a periodic function f(t) by its sum of harmonic com-

ponents spaced at multiples of wy, where

n2mw
_ = nw 5.14
Wy = T nwWo ( )
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Figure 5.4: Real frequency spectra

A Fourier series may then be represented by a frequency spectrum of the periodic function
f(t). The complex form in Eq. 5.8 is obtained by plotting the complex coefficients |F,|

against frequency and also the phase ¢, against frequency. Fig. 5.3 shows an example of this

for the square wave in Section 5.1.1.

The coefficients returned by the complex form contain negative frequencies, which al-
though useful in mathematical manipulation have no physical meaning. In order for the

spectrum to become real, i.e., one that can be simulated in the real world, the energy as-

sociated with each negative-harmonic frequency must be redistributed to the corresponding

positive-harmonic frequency so that

IFnlejnwot + ’El.le_hw()t = ¢y (3()3(71,w(){) (515)
This is a rearrangement of Euler’s identity in Eq. 5.7. Complex exponential signals cannot be
readily simulated in the real world but a cosine signal can. The real amplitude components
are therefore ¢, = 2|F,| for n > 0 The phase component ¢, of each negative harmonic must
also be translated into the positive domain. The resultant real spectrum is shown in Fig. 5.4.

This representation of the complex coefficients as a summation of real signals leads to the
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Figure 5.5: Power spectrum for a square wave

compact form of the trigonometric and exponential Fourier series

f(t) = ch cos (nwol + &) (5.16)

=0

3

where
Fo (5.17)

c, = ai+bi=2

Im{F, ,
Gn = tan"l(—b”/an)ztan_lé%{{—ﬁ% (5.18)

It should be readily verifiable that Eq. 5 16 bears a resemblance to Eq. 2.30 which is the

basic directional wave modelling definition. The equation for the estimated wave spectrum

can be restated in this form as
N 1
$(NAf=35 d (5.19)

Af

Power spectra

An additional spectrum that is of use is the power spectrum, which is formed from the

complex coefficients where
P, = |Ff* (5.20)
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which again has negative elements. Using the real coefficients it becomes

(5.21)

The real power spectrum for the square wave used in the previous example is shown in

Fig. 5.5. Section 5.2 looks more closely at power spectral density functions.

5.1.3 The Fourier transform

The Fourier transform is essentially a mathematical device to allow for the representation
of an aperiodic function, such as surface elevation ((t), as a periodic one. To achieve this the
aperiodic function f(t) is forced to repeat itself every 7" seconds giving the periodic function
fr(t). As T — oc the aperiodic function is isolated and it’s spectrum can be recovered. The
definition given here is primarily for use with continuous time functions, but following this
definition leads to a discrete time form that is widely used for signal processing.

Recalling Egs. 5.8 and 5.10 the exponential Fourier series for a continuous periodic time

function fr(t) was defined as

fr(t) =3 Fem (5.22)
where
1 T/2 )
Fo== | frt)ei™d (5.23)
T J 1/
and
Wy = 27(/,]‘. (524)

Before taking T — oo a few changes must be made so that the F;, do not tend to zero as

the period is increased, therefore, assume:

Wp = NWo, (5.25)
Flw,) = TF, (5.26)
Using these definitions Eqs. 5.22 and 5.23 become
) = —F Junt 5.27
fr(t) ";% 7 (wo)e (5.27)
T/2 ,
Flw,) = frt)e 7 dt (5.28)
-T2
The spacing between adjacent lines for the spectrum of fr(f) is
(5.29)

Aw =27 /T
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Figure 5.6: Waveform sampled at t, = 0.1s

Substituting this into Eq. 5.27 gives
ad L Aw
— Wnt___ s
fr(ty =Y Flun)e’ 5 (5.30)

n=—00
When T tends to infinity the spacing between frequency components, Aw becomes very small
and the discrete spectrum will tend towards a continuous onec. In addition, the summation
of Eq. 5.30 will become an integral, resulting in the Fourier transform pair where

1 0

f(t)y = — Fw)edw

2r J_
Flw) = [m f(t)e 7*dt. (5.31)

5.1.4 Sampling
Up to this point it has been assumed that the variable of interest f(t) is a continuous one.
In the ideal case, working with a continuous time variable does match with the theorems

already presented. Unfortunately, the data available will usually be sampled in a discrete

time form where
f(kt‘r) = f(O)v f(tﬂ)v f(Qfe)a T ’j([N - 1]“) (5‘32)

Sampling involves taking regular measurements of f(f) and storing these in the order in

which they were taken. The theory of sampling a continuous waveform can take many pages

87




of convoluted explanation so it will be dealt with here in a simple manner using a few rules
that must be followed.

Fig. 5.6 shows the basic process involved. A measurement of f(¢) is taken at intervals of
ts seconds (the sampling interval). The reciprocal of this is the sampling rate or frequency
fs = 1/t,. In order for all the frequency information of the continuous signal to exist in
discrete time it must not contain any frequencies above half the sampling rate f,.

This is achieved in practise by low pass filtering f(#) and sampling with f, much greater
than the above limit. For example we are rarely interested in frequencies greater than 0.5
Hz so a theoretical sampling frequency may be 1 Hz but, to avoid aliasing problems the

sampling rate would generally be twice this and 2 Hz should be used.

Aliasing error

If the rules in the previous section are not followed and frequencies greater than half the
sampling frequency are present in f(t) then aliasing of the spectrum will occur. Generally
speaking, if this occurs, then the energy contained in the frequencies above the half sampling
rate frequency will be folded over into the lower half of the spectrum. Correcting for these
errors Is complicated and far ffom ideal, so the best method is to prevent the errors from

occurring in the first place by using the correct sampling frequency for f(¢).

5.1.5 Discrete Fourier transform
The implementation of the Fourier transform that is most widely used is the discrete Fourier
transform (DFT). Much of the data available to enginecers is in the form of sampled time
series, for example surface elevation, pressure or acceleration. The Fourier transform pair
introduced in Section 5.1.3 still needs a little adjustment to make it suitable for use on
sampled data and for implementation on a personal computer.

Consider a time series, f(kt), of length Nt, sampled at N equally spaced samples with
a sampling interval of t; so that

SUkts) = F0), F(£), J2te).- SN = 1)t). (5.33)

The DFT is defined as the sequence of N complex-valued samples in the frequency domain

given by
N-—1
Fp(nQ) =Y f(kt)e ™™ n=0,1,-- N -1, (5.34)
k=0
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where Q = 21 /(Nt,) and Qt, = 2r/N. Note that Q and t, do not explicitly enter into the
DFT and are used as scaling factors for the interpretation of results.

In using a numerical approximation to the Fourier transform, it is necessary to restrict
the observation interval to a finite length. Therefore the truncated function [ (t) in terms of
f(t) is

) = f(t) 0<t< N, (

0 elsewhere

The Fourier transform F(w) of this truncated function is

~ Nits .
F(w) = f(He ™ dt. (5.36)
0

Making the variable changes w — n{QQ, t — ki, and dt — T, Eq. 5.36 can be approximated

to

2

~1
FnQ) =Y flkt)e 7%ty (5.37)
0

=
it

Comparing the two previous forms shows that
F(w)]u=ng = tFp(nf2). (5.38)
Additionally the DFT is analogous to the Fourier transform if;
1. the signal f(t) is restricted to the interval (0, N¢,)
2. within this interval the signal f(¢) is available as a sequence of N equally spaced values

3. the interval is extended periodically yielding the discrete harmonic frequencies nf) =
2mn/(Nts)

In an analogy to the continuous case, the inverse discrete Fourier transform (IDFT) is
L Nl
J(KT) = Y Fp(nQ)ei®skn (5.39)
=0
and forms an exact transform pair with the DFT.

DFT to complex Fourier series

The coefficients of the complex Fourier series may be computed using the DFT and then
multiplying by 1/N. The highest frequency component that can be determined corresponds

ton = N/2or (N/2)Q0 = 1/(2t,) Hz. This agrees with the sampling theorem.
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Standard form of complex variable transform

The DFT is often given in more general terms as the transform of one set of complex numbers

to another. The common form of this is
N-1

C(k) =R D(i)exp £2mjik/N (5.40)

1=0

where

the — sign in the exponent is used for the forward transform
the + sign in the exponent is used for the backward transform

C(k) and D(i) are both complex numbers

R is a scale factor The representations used in [12] takes the form of a forward and

backward transform. The forward transform is

=< Zc —]QM (5.41)

where 0 < & < N — 1 is a frequency index, 7 is a temporal index and N is the number of

samples in the record. The frequency of the &' harmonic is k/D, where D is the length of

the record in seconds.

The reverse transform is given by

N-1
2 &
pL=l (5.42)

F(i

1=0

where 0 < kK < N — 1 is a temporal index, k is a frequency index and N is the number of

samples in the record.

MATLAB FFT

When the DFT is implemented, the solving of the the equations, if followed as written, is
too slow for real time applications. Therefore a computer algorithm called the Fast Fourier
Transform (FFT) was developed during the 1960s. This considerably speeded up the process.

The software environment used in this thesis is MATLAB, which contains its own imple-

mentation of the FFT. Unfortunately it is slightly different to the formula used in Tucker [12]

and this led to a great deal of confusion in the earlier stages of this research. The MATLAB

implementation of the forward transform in terms of Equation 5.40 is

Z( 1)exp —J (D )(k—l) (5.43)

where | <k < N
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It can be seen the scaling factor R = 1 /N is missing and the indexing values i and & are
from I — N. This issue can be dealt with simply, by scaling the output A(k) and by the

careful use of MATLAB’s indexing system.

5.2 Spectral density function

As already indicated in earlier sections of this chapter, the representation of a time series in
various forms of spectra is instructive in visualising what is happening in a given waveform.
The spectrum gives a measure of how energy and power are distributed with frequency. This

section sets out in more detail the theory behind the spectra and their calculation.

5.2.1 Energy spectral density

The conservation of energy between the time domain, f(¢), and the frequency domain, F(w),

was stated earlier as Parseval’s theorem (Eq. 5.5) where

[ sera=o [

The integral on the left hand side is the energy in f(t) so that the quantity

F(w)]? dw (5.44)

F(w)]? is the

energy per unit frequency. For this reason |F(w)|” is called the energy spectral density of the

signal f(t).
F (u))l2 describes only the relative amount of energy at various frequencies. For contin-
F(w)|? that

F (w)|2, the energy at any given frequency is zero. It is the arca under

uous
contributes the energy. To find the energy present, a range of frequencies must be given over

which to integrate. It should be readily verifiable that, in the cases studied here, when deal-
ing with real-valued time series, the energy spectral density function will also be real-valued,
and the symmetry of the spectrum should hold true.

By examining Eq. 5.44, it should be noted that the spectral density function neglects
the phase information and this is lost. In signal processing the spectral density functions
are used in determining the transfer functions of linear systems, where the absence of phase
information does not critically affect the solution. In the situation here, phase information
is vitally important and spectral density functions are of more use in a checks and balances
situation for confirming stochastic information.

In summary, the energy spectral density function of a signal represents its energy per

unit of frequency and displays the relative energy contributions of the various frequency
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components. The area under the energy spectral density gives the cnergy within a given

band of frequencies.

5.2.2 Power spectral density
The time averaged power of a signal is given by

1 T/Q 9
P = lim -,/ (2. (5.45)

T—oo I J 7y

For a periodic signal, each period contains a replica of the function, and the limiting operation
can be omitted as long as T is taken as the period.

Following similar reasoning to the energy spectral density function, it would be useful if
a function could be defined that would represent the relative power contributions at various
frequencies. This function is the power spectral density function S(w), which has the units
of watts per radian and its integral yields the power in f({). Writing this mathematically
1 [~
=5 S{w)dw. (5.46)
Suppose we examine a section of a wave record of length 7" and then take the Fourier

transform of it to give Fr(w). Parseval’s theorem would then state that

/;21 O dt = — / | () do. (5.47)

Hence, the average power is

1 [ 11 [~ 2 ,
P= 151916—]—1/ If(OF dt = hm ) Fo | ]FI( )7 dw. (5.48)

Combining equations 5.46 and 5.47 gives
% [ Stys = Jim 7o [ 1RGP de (5.49)

In addition, the cumulative power spectrum G(w) can be defined as

v 11 /¢ >
Gw) = 517; /O0 S(u)du = 121)1O T3 | '(u)l‘ du. (5.50)

This represents the cumulative amount of power in all frequency components below a given

frequency w.

Interchanging the limiting and integrating operations in Eq. 5.50 gives
F
21G(w / S(u) du—/ rlim | 15”)' du (5.51)
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m_so m_; mo mg my ms my

1188.7 | 81.864 | 6.0799 | 0.5005 | 0.0478 | 0.0057 | 0.0009
]

Hp, T, T Tg Ty T, v
9.86 | 0.0078 | 12.147 | 13.464 | 195.51 | 51.447 | n/a

Table 5.1: Statistical spectral characteristics of the original spectra

The average power contained in any frequency interval (w;,wy) is [G(w2) — G(wy)] and

in most cases G(w) is differentiable, leading to the definition for the power spectral density

function of f(t¢) where

Forl) 2
S(w) = lm ‘——M’— (5.52)

T—o0

As with the energy spectral density, only the magnitude information is retained and the

phase is discarded. This leads to the possibility of S(w) representing many different time
series and will not uniquely describe the time series f(t).

Eq. 5.52 presents the possibility of obtaining a power spectral density of a wave record
/T is formed.

Iy,

taken over a period T. The Fourier Transform of the record is taken and
The limit 7 — oo in reality cannot be taken since the wave records are of finite length.
This is because errors of the order of 1/T" will appear in the resulting spectral resolution.

This can be corrected by taking several time series of length T" and averaging the spectral

densities, if the spectrum is known to be stable.

5.3 Example of spectral techniques

A wave record for a unidirectional sea state is generated, using the methods given in Chap-
ter 3 and subjected to the various spectral manipulations detailed so far in this chapter.

These illustrate each section and show how the methods are applied to a real world problem.

5.3.1 The original wave record

Using a linear model (Chapter 3) a unidirectional spectrum was generated for a Pierson-
Moskowitz formulation using a wind speed of 20 m/s. The highest frequency in the spectrum
was chosen to be 0.5 Hz and there were 100 wave vectors generated at a frequency spacing

Af of 0.005 Hz. The statistical spectral characteristics are given in Table 5.1.

This spectrum is shown in Fig. 5.7 with the amplitudes of the simulated wave vectors
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Figure 5.8: Amplitude line spectra of simulated wave vectors
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Extract of time series, ((t)
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Figure 5.9: Extract of the time series, f(¢)

given in Fig. 5.8 and an extract of the time series is shown in Fig. 5.9.

The length of the time series to be used is given by Tucker [12] where T" = 1200 sec. This
length of time series is chosen to avoid the need to use windowing functions. With shorter
time series of length 100-400 sec the FFT process will induce frequency leakage between
harmonics which will distort the results. 'To cure this, the data should ideally be windowed
using any of the available types: Hanning, Bartlett, raised cosine, etc. The windowing of a
time series involves multiplying the time series by a function that is commonly tapered to
zero at either end rising to a value of one in the centre.

The problem with windowing the time series is the shifting of the phase values re-
turned. As mentioned previously, the prediction methods are dependent on phase infor-
Tucker shows that, by using a longer record, the leakage between harmonics is

mation.
reduced or the effects are passed up to higher frequencies which are not of interest. This

eliminates the need for phase-shifting windowing to be used.
In order to determine the correct number of samples N to be generated for this time series,
the minimum and maximum frequency resolutions were calculated. This data is shown in

Table 5.2. The length of the time series T effectively decides the lowest frequency/longest



N Jiower Jupper deepwater A range ]
128 | 8.333 x 107 Hz | 0.0533 Hz | 2.25 x 10° 549.58 m]
256 | 8.333 x 107! Hz | 0.1066 Hz | 2.25 x 10°-137.39 m
512 | 8.333 x 107* Hz | 0.2133 Hz | 2.25 x 10° 34.316 m
1024 | 8.333 x 107! Hz | 0.4266 Hz | 2.25 x 10° 8.5792 1n
2048 | 8.333 x 107 Hz | 0.8533 Hz | 2.25 x 10%-2.1443 m
4096 | 8.333 x 107* Hz | 1.7066 Hz | 2.25 x 10%-0.536 m

8192 | 8.333 x 107* Hz | 3.4133 Hz | 2.25 x 10°-0.134 m
L163844l 8.333 x 107 Hz L6.8266 Hz | 2.25 x 10°-0.0355 m |

Table 5.2: Realisable bandwidth of experimental time series

wavelength that can be determined. The number of samples N taken during this time
determines the upper frequency/shortest wavelength resolution. Since we know that the
highest frequency being simulated is 0.5 Hz, taking N to be 4096 is the most economical
choice in terms of processing power whilst having an upper frequency limit of 1.7066 Hz

(which is more than twice the highest frequency being simulated).

5.3.2 Fourier representations

The results of the first process implemented are shown in Fig. 5.10 where the FFT of the
time series has been taken. The series of complex Fourier coefficients F;, have been shifted
so that Fy is at the centre of the record. The magnitude |F},| and the phase are plotted.

It can be seen there are no components present above 0.5 Hz. It can be observed that the

symmetry of the spectrum is close in shape to that of the original wave spectrum.

5.3.3 Tucker’s method

This method exploits the symmetry to create the real discrete amplitude spectrum shown in
Fig. 5.11. The equations given in Appendix 1 of Tucker [12] are mistaken in their formulation

of the b,, components which leads to some serious errors in prediction. The corrected formulae
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Figure 5.11: Plot of the real amplitude spectra of f(t)
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wave spectra averaged over 1 frequency bin
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Figure 5.12: Estimated S(f) taken over one frequency

a(0) = Re{F(0)}
a(l = (N/2=1)) = 2Re{F(1— (N/2-1))}
a(N/2) = Re{F(N/2)}
b0) = 0

—2Im{F(1 —» (N/2-1))}

B(N/2) = 0

c(n) = a2+0b2
é(n) = atan2(—b,/a,)

The MATLAB atan2 function is given explicitly here since the software used has two imple-

mentations of the tan~!(f) function and the version given above must be used. Verification

of the above formulations can be obtained by reconstructing the original record from either

the full (Eq. 5.1) or compact (Eq. 5.16) form of the Fourier series using the coefficients as

defined above.

Eq. 5.19 can now be used to recover the original spectrum. Fig. 5.12 shows the spectrum
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wave spectra averaged over 6 frequency bins
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Figure 5.13: Estimated S(f) taken over 6 frequenciecs

returned when A f is taken to be the width of one Fourier component A f = 8.333 x 1074,
It can be seen the spectrum is very spiky but its shape is comparable to the original.

To obtain a smoother spectrum it must averaged over several frequency bins. The esti-
mates returned for the harmonic amplitudes are very erratic and will change rapidly from
one record to another. For the example above, if the record had been taken a few scconds
earlier or later the amplitudes of the Fourier coefficients would have changed. The energy
is likely to remain around the frequency of interest but not with the precise harmonic of
interest. Averaging the energy over several harmonics gives a more stable result as some of
the random nature will be spread over a range of frequencies.

It is useful to average over six frequency bins in this case since it will lead to Af = 0.005
Hz, which is the exact width of the original record. The new frequency axis can be centred

on frequencies 0.0025, 0.0075, 0.0125,..., 0.0475 Hz. The scheme used is

1 ‘ n=p+2 ‘
S(f) = 2—57 0.5(012,,3+C;+3+ Z (Ji) (555)
n=p-2

where p is the index of the centre of the original spectrum and Af is taken to be the new

spectral width. Fig. 5.13 shows that this smoothed spectrum is a closer match to the original

spectrum than in Fig. 5.12.
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Fn complex power discrete spectrum of f(t)
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Figure 5.14: Complex magnitude |F,| squared

5.3.4 Power spectral density representations

A second method for calculating the power spectral density of a time series was given earlier
in Section 5.2.2 and here the experiments above were repeated in order to compare the
spectra returned by this method (found in Stremler [50]) to that found in Tucker [12].

The first stage (as above) is to calculate the complex FFT. Following this the magnitude of
each component is squared as shown in Fig. 5.14. To create the real spectrum the magnitudes
of the positive frequency values are doubled then squared (Fig. 5.15). If the process of
squaring is carried out before the magnitudes are doubled a discrepancy of 0.5 occurs between
this method and that of Tucker.

To complete the process the real discrete spectrum is divided throughout by Af. The
continuous spectrum is shown in Fig. 5.16 with the original spectrum. The equation for this
process is ‘

s - AR’
Af

where n > 0. Again, the spectrum taken over one frequency bin is very spiked, and the

(5.56)

averaging process must be performed.
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Fn real power discrete spectrum of {(t)
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Figure 5.16: Comparison of calculated to original spectra
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9.4 Correlation function

The correlation function is an important tool in recognising the similarities between two or
more time series. It is useful when determining the parameters for estimating directional

spectra from wave buoy records (see Chapter 4) and as an alternative method for extracting

wave spectra from time series.

5.4.1 Definition

The correlation function of two timme-varying quantities f;(f) and f;(¢) can be defined as

1 t+7T
u(r) = = FOf(0+ 7). (5.57)

t

where 7 is a time delay. If i = j, then (; is the autocorrelation function, while if + # j then
this quantity is the cross-correlation or cross-covariance function.

If we now substitute the Fourier series representation of f;(¢ + 7) into the equation for

the correlation, we obtain

1 t+T N/2 ,
Cy(r) = = fit) > Fy(n)e™ (5.58)
t n=-N/2
1 t+T ‘ .
= 7 [ty ot dtFy(n)e™ o (5.59)
t
N/2
= Y FmF (n)em™ (5.60)
n=-N/2
N/2
= Y Fm)|F(n)|e/mme (5.61)
n=—N/2

where F*(n) is the complex conjugate of the Fourier coefficients of fi(t).

For the autocorrelation:

N/2

Cu(r) = Y |Rm)Pem™ (5.62)
n=—N/2
N/2

= Z |Fy (n)]? cos nwoT (5.63)
n=-N/2

since Cy,(7) is symmetric. For the case where the time lag 7 is zero:

N/2 1 T .
Cu= Y IR@E=7 [ R0 (5.64
n=-N/2 t

which recovers Parseval’s theorem and shows that Cy;(0) represents the energy contained
within f(¢).

102



9.4.2 Power spectrum

The Fourier transform of the correlation function is defined as the power spectrum (for ¢ = j)
or the cross spectrum (for ¢ # j). The Fourier transform of the autocorrelation function can

be shown to recover the power spectral density function defined in Section 5.2.2. Taking the
Fourier transform of Cy,(7):

(1)11 71 / C]I )P JndordT = ’F](H l (505)
for —=N/2 < n < N/2, which is the two-sided power spectral density. As with previous cases,
this spectrum is real and even and the energy associated with the negative frequencies can

be reassigned to the positive frequencies where

d,(n) = 2% n>0 (5.66)
®,(0) = [F(0)]% n=0 (5.67)

for 0 < n < N/2 only.
A similar process is followed to obtain the cross spectrum &;;(n) (for ¢ # j) by taking

the Fourier transform of the cross correlation so that

/ Cij(r)e ™07 dr = F}(n)Fy(n) (5.68)

This is the product of the Fourier coefficients of the time series j and the complex conjugate of
the coefficients for series i. The method of using direct Fourier transforms will be discussed
in the next section. The cross spectrum ®,;, as opposed to the auto spectrum ®;;, is in

general complex. The real part denotes the co-spectrum (Co), and the imaginary denotes

the quadrature (Quad) spectrum, i.e., ®;;(n) = Coy(n) + jQuad,;(n).
9.4.3 Direct Fourier approach

Instead of using the correlation Fourier transform of two time series to obtain the cross
spectrum, a direct method (based on the Fourier transform of the time series) can be used.

An alternative definition of the co-spectrum is to consider it in terms of the time average of

the multiple of two time series where

Cy(N)ASf = 2(t)y(t) (5.69)
Expressing «(t) and y(t) as their complex fourier series so that
= 3 X (5.70)

n=—0oo
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and

()= > Vel (5.71)

m=—oc

then the product term can be expressed as

z(t)y(t) = (Z X,,ej‘“'"t) ( Z )/,ntij“’"‘t) (5.72)

1=—00 n=-oc

= Y D X Yyedlntent (5.74)

The time varying termn has a zero mean when time averaged except when w,, +w,, = 0. This

occurs when m = —n where it is equal to 1. Since Y_, = Y.® the time average can be shown
to be
w(By(t) = > X, Yy (5.75)
n
And since X,, = %(an — jby) and Y, = %(cn — jdy), where the a,, by, c,, d, are the real

Fourier coefficients derived from the Fourier transform by Eqs. 5.53. The cross spectrum can

be given by

N/J2
_ 1
2()y(D) = 5D _(anca + budy) (5.76)
n=1

As with all the spectra in this chapter, the results will be approximate due to the random

nature of the process and the resulting spectrum should be averaged over several harmonics

where
1
Coy = —Q_A_f ;(Gncn + bndn) (577)

The previous section indicated that the power spectrum consists of the Co and the Quad

spectra. By advancing the y(t) series by 90° and using the same theory as shown for the

co-spectra, the resulting equation is

1
Qey = é—A—f ;(andn - bncn) (578)

Recombining Egs. 5.77 and 5.78 will give the full power spectra of the two time series as

Cay + jQIy-

5.4.4 Correlation examples

The two methods of constructing the power spectrum from cross-correlated time series will

now bhe implemented to check their usability. The same time series that was created for the
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correlation, R(t)

Autocorrelation of time series, f(t)
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Figure 5.17: The autocorrelation of f(t)
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Figure 5.18: Power spectral density from autocorrelated f(t)
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Co-spectra
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Figure 5.19: Co and Quad spectra calculated from direct fourier transforms

previous Fourier tests is used again here. This is a Pierson Moskowitz spectrum using linear

frequency spacing and simulated for 1200 sec, sampled at 3.14 Hz to create an N = 4096

record.
Starting with the autocorrelation method the time series is processed as follows using

MATLAB command xcorr:

—l—xcorr(tSeries(lzN) ,tSeries(1:N)); (5.79)

4

The autocorrelation is shown in Fig. 5.17. This shows a strong correlation of the time series
intervals to a period of approximately 220 sec. The equation above shows the scaling of the

autocorrelation required to obtain the correct results.

The next step is to take the Fourier Transform of the autocorrelation which is now of
length N = 8192. The positive valucs of the spectrum are then doubled reducing the length

to N = 4096 and the spectrum averaged over 12 harmonics to give the resultant spectruin

shown in Fig 5.18.
The results of the second method, using the direct Fourier transform of the two time

series, is presented in Fig 5.19. Using Eqs. 5.77 and 5.78 the Co and Quad spectra are

calculated from the real Fourier coefficients given by Eq. 5.53. The results are then averaged
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over six harmonics at a resolution of 0.005 Hz using Eq. 5.55. As expected, the co-spectrum
1s a good match to the Pierson-Moskowitz spectrum used in the generation of the time series

and since this was the autocorrelation, the quadrature spectrum remains flat indicating exact

agreement between the input signals.

Discussion

The two methods of obtaining the complex power spectra presented above have returned
good approximations. The second method of direct Fourier calculation will be used in the

remainder of this thesis because it is quicker and it does not result in the doubling of the

number of data points to be stored and manipulated.
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Chapter 6

Experiments

The experiments in this chapter are laid out in approximately chronological order of imple-
mentation. This is done to show how the concept of wave prediction has developed through
the course of this project. The first few sets of simulation experiments are simple in their
implementation and in the thought behind them; the concepts described in the previous
chapters were still in an early stage of development when these simulations were carried out.

However, they give an insight into how the analysis techniques were implemented in the

software environment.
The general flow of the chapter steps through the introductory modelling attempts: an

implementation of spatial FFTs on a circular grid; correlation of time series and a brief
discussion on beam steering. The chapter is concluded with an in-depth analysis of a simple
one dimensional prediction over time and distance. Experimental verification, which was

conducted in a small-scale wave tank, is also put forward at the end of the chapter.

6.1 Basic models and the spatial FFT

Mathworks” MATLAB is the main software environment used in the development of the
experimental models. The first few groups of MATLADB files written dealt primarily with
the setting up and use of simple models of surface elevation (Eq. 2.7). The first model

siinulated a two-dimensional (distance and time) travelling wave where:
C(z,t) = asin (ko — wt) (6.1)

Fig. 6.1 shows results from this siimulation at a fixed point in time. This is the basic travelling

wave equation in one spatial direction.
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Plot of a travelling deep water wave
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Figure 6.1: Simple test of a 2D travelling wave

Extending this test, the 2D output was extruded across the y dimension to give a 3D
display as shown in Fig. 6.2. The method by which this was achieved is very crude but gave

an indication that MATLAB is capable of a 3D representation of surface elevation.

An extension to the code was added at this time to allow waves to travel in four directions:
North, South, East and West. This was achieved by calculating a separate grid of values for

each of the four directions (using the circshift() function to propagate the values) and
summing the four grids to create the final output as shown in Fig. 6.3. This was a direct

implementation of the superposition principle introduced in Chapter 2.

While this is not an ideal model, and it lacks in the ability to adequately define the input

wave train directions of travel, it was sufficient to begin implementing the FF'T over several

spatial samples.

6.1.1 The Spatial FFT

Taking Eq. 2.7 at z = 0 and keeping ¢ constant (i.e., at a point in time), it becomes dependent

only on distance z with the wt — ¢ element becoming a static phase shift. Neglecting the

direction of travel @ the resulting equation is
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Figure 6.2: Simple test of a 3D travelling wave

Plot of a travelling deep water wave
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Figure 6.3: Simple test of a 3D set of travelling waves
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Figure 6.4: Showing the similarities between temporal and spatial sine functions

(@) = 3 an cos(hnt — ¢0) (6.2)

n=1

When using the FFT it is desirable to produce a function Y(Sy), which is a transform
of {(x), from a record taken over a distance D. In order to adapt the FF'T for use with this

equation the similarity relationships between variables in time and space must be stated.

Time period ' = wavelength A
1 1
Frequency f = T spatial frequency Sy = 3

il

wave number k = 275

I

Radian frequency w =2nf =

Fig. 6.4 shows a general comparison between sinwt and sin kz. The proof that the £ number

is equivalent to w allows the FFT to be used with an adjustment in the scaling of the output

so that k can be plotted against power. From Eq. 5.41 the forward spatial FF'T' then becomes
1 = 2mi

T(k) = N Z C(i)exp (—jTV—kt) (6.3)

1=

where N is the length of the FFT and 0 < k < N — 1.
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Raw ampiitude data of 3 wave trains
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Figure 6.5: An example of a spatial FFT of 3 wave trains with A = 100 m, 45 m and 23 m

The spatial frequency of the k* harmonic is k/D. Fig. 6.5 shows a test output for the
superposition of three wave trains with A = 100 m, 45 m and 23 m. The FFT of this was

taken and the lower plot shows three peaks situated at the relevant & numbers, thus proving

that the FFT can be used with spatial data.

6.1.2 Experiments

The initial experiments extracted samples along the z and y axis of the generated grid then
took the spatial FFT of these series. These simple results showed the same number of distinct
spectral peaks as the number of wave trains used in generating the grid. It was felt that this
method could be advanced upon.

Further development of the sea elevation modelling code took place in order to allow the
user to specify a wave-field as a list of wave vectors allowing for easier manipulation of the
test patterns (this is detailed in Chapter 3). Further development also took place in the
modularisation of the code using the code profiler, taking advantage of MATLAB’s matrix
handling ability to allow for the simulation of increasingly complex wave-fields. In particular,

the use of meshgrid() considerably reduced the processor load, releasing capacity for more
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Figure 6.6: Showing extraction angle a with regards to the x and y axes

accurate FFT use.

In early instances, extraction took place perpendicular to the z and y axes along extrac-
tion angles a of 0° and 90°. This has an orthogonal relationship if the wave train is moving
at an angle of 0°, then there will be a strong spectral peak at o = 0° but no power present at
a = 90° (a similar argument was used in Chapter 4 when describing the correlation between
pitch and roll with a buoy). This result showed promise in the detection of the direction of
wave travel.

The next step was to allow the user to extract spatial information along any angle they
may wish to choose as illustrated in Fig. 6.6. This gives the user the ability to compare the
spectral frequency power density at many frequencies and angles. A suitable method for
displaying this information was required.

Manufacturers of microphones display their sensitivity characteristics as plots of response
against direction of the source of sound. An adaption of this approach is given in Fig. 6.7.

This shows that at 90° intervals the spectral frequency alternately peaks or drops to zero.
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Figure 6.7: Raw circle FFT file with blurring

The angle of extraction, where the spatial frequency peaks, indicates that a wave vector may
be present heading in that particular direction.

The image produced by plotting the output of the spatial FFT contains both the main
peak and several spectral lobes. When many wave vectors are present this leads to a blurring
of the image. In addition, while it is relatively easy for the human eye to pick out the
parabolic arcs in Fig. 6.7, a computer cannot do this. By thresholding the image and using
monochromatic colouring Fig. 6.8 is produced. From this image, a routine can be written to

detect the parabolic curves by comparing them to stored images created for individual wave

vectors.

Discussion

Overall this method works reasonably well in detecting the direction of propagation of wave
trains and in determining their wavelength. But, it comes at a cost. In order to produce a
sharp image many data points are required. For a realistic application the number of data
points available will be limited. The cost of deploying a 50 by 50 grid of data buoys or

pressure sensors would be prohibitively uneconomic. In utilising the spatial FFT in software
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Figure 6.8: Processed circle FFT results

a grid of 1024 by 1024 was required before acceptable results could be obtained. A possible
way of using this method in the field would be through satellite altimeter scans of the wave

farm. For real-time results this would require a stationary satellite over the farm returning

data in real time. But, again, the cost of this is prohibitive.

6.2 Correlation and linear arrays

Spatial FFT tests are reliant on too many data points thercfore it was decided to focus on a
method that uses as few data points (i.e., wave buoys) as possible. Early discussions with Dr
Wood in Christchurch led to the suggestion that the correlation between two buoy records
may prove fruitful in determining the mean direction of propagation for a wave-field. The

correlation between two data point records is commonly used in astronomy for fixing the

position of stars and galaxies.

6.2.1 Correlation experiments

The basic correlation equation [51] is:
N-—r

~ 1 .
[{‘ryr = N———I'— Z Tiligr (04)

i=1
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Figure 6.9: MATLAB extract for correlation process

where r = —m, ..., -1, 0, 1, ..., m, x is the surface elevation time series taken from one

buoy and y is the series taken from the other. In addition, N is the number of samples in
each data set and r is the number of samples by which y is delayed; m is generally taken to
be 20 % of N. The basic concept in this method is to delay y by 7 samples, multiply this
with = for each sample and then sum the resultant series to give ﬁwyr. If the two signals
are identical then, at r = 0, [:?Iy,. will have a peak value. For r # 0 the resultant value will
be less than at the peak indicating that the two series are not fully correlated for the delay
value 7.

Fig 6.9 shows a MATLAB dialog used in testing the correlation principle. In this example
a wave train of A = 100 m, amplitude of 1 m and direction of travel # = 90° was used. In
the upper right corner the simulation of the wave-field is shown with two wave buoys. The
position of the wave buoys can be given in a text file, as can the wave-field information.
The wave records that are traced by the two wave buoys are shown in the top two windows
on the upper left. Below these two windows the temporal FFT data is displayed showing
that a frequency of 0.125 Hz is present in both of the wave records, which corresponds to
A = 100 m in deep water (see Table 2.1). The lower right window shows the result of the

correlation of the two wave records and is sinusoidal in nature, repeating with a period of

116



Figure 6.10: MATLAB extract for correlation process

6.402 sec. This is twice the time it takes for a wave front to travel from buoy 1 to buoy

2. The value of 7, the delay between the two signals, is taken at the value of r where ﬁxy,

peaks, in this case -3.201 sec.

Interpreting 7, the delay between signals

Fig. 6.10 illustrates how the delay between the two wave records can be used to determine
the direction of wave propagation (the location of the wave source). The values of 7, the
delay between the two wave records, and Abuoys, the distance between the two wave buoys,
are known. From the FFT performed prior to this operation, we know the frequency of the
wave w, the wavelength A\ and hence the celerity (speed) of the wave cjg9. The celerity of

the wave and the distance between the two buoys can be used to calculate the length of the

hypotenuse of the triangle shown in Fig. 6.10. From this:

- C100T
~ Abuoys (6.5)

cos ()
The result from this equation allows the direction of wave propagation ¢ to be determined.
A series of model runs were performed with the direction of ¢ varied from 0 to 360°. The

results are shown in Fig. 6.11 with ¢ plotted against 7.

The direction of propagation of a wave can be inferred from the value of 7. As 7 ap-

proaches the time taken for the wave to propagate over the distance Abuoys the angle ¢

tends to 90° and therefore the waves are arriving at 90° to the wave buoys. This is shown
in Fig. 6.12 with the angle ¢ approaching 80°.
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Figure 6.11: expected value of 7 for various ¢

Figure 6.12: Wavefront approaching at ¢ = 80°
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Figure 6.13: Error in expected value of 7 for various temporal sampling rates

At present, with two wave buoys, the field of view is from 0 to 180°, i.e., the buoys cannot
tell if a wave is coming from in front or from behind.

The effect of the spatial sampling rate (distance between the wave buoys) and the tem-
poral sampling rate were also tested using an input wave train with a wavelength of 100 m
and a direction of propagation of 90°. Figs. 6.13 and 6.14 show these results.

Initial observations suggested that the distance between the buoys does not affect the
result until it becomes greater than one half wavelength and then aliasing will occur. The
large percentage error observed for small spatial sampling distances was due to the temporal

sampling rate being relatively high at 0.2 sec.

Ideally the temporal sampling rate would be kept as small as possible in order to in-
crease the accuracy of the correlation algorithm and therefore the resultant 7 and ¢ values.
However, the minimum FFT sampling rate dictates the maximum frequency of the wave-
train that can be detected, and as the FFT sampling rate approaches the wave frequency,
the FFT becomes less accurate. The best solution may be to sample every 0.01 sec, but

only use every tenth sample in calculating the FFT, giving about 100 samples for a 10 scc

fundamental wave period.
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Figure 6.14: Error in expected value of 7 for various spatial sampling rates

6.2.2 Linear array experiments

The correlation routines proved to be reasonably useful in determining the direction of the
wave travel. A logical extension to this is to look at the correlation between more than
two buoys. This approach leads to the more sophisticated uniform linear array method of

processing which is commonly used in communications theory.

Uniform linear array theory

The experimental and theoretical work on this principle is not extensive, therefore the fol-
lowing section closely follows that presented in Naidu [52] in order to give an introduction
to the methodology.

Consider a plane wavefront, having a temporal waveform f(¢) incident to a uniform linear
array (ULA) of sensors (see Fig. 6.15) at an angle 6. In signal processing literature, the angle
of incidence is also known as the direction of arrival (DOA). Note that the DOA is always
measured with respect to the normal of the array aperture. It is assumed that a source, in
our case the origin of a storm, emits a stationary stochastic signal f(¢). Let f,(t), where m
,M-1, be the outputs of the sensors. The signal arrives at successive sensors

=0,1,2 ..
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Figure 6.15: A Uniformi Linear Array

with an incremental delay (similar to the correlation principle above). The output of the

first sensor is fo(t) = f(t), the output of the second sensor is fi(t) = f(¢ — At) and so on.

Thus, the output of the m* sensor is f,,(t) = f(t — mAt¢).

h sensor can equally be represented by its Fourier transform where

Im(t) = 51;/_00 Fw)er (=20 gy, (6.6)

X

The output of the m!

The simplest form of array signal processing is to sum all of the sensor outputs without

any delay so that
M-1

g(t) = me
] M-1 ot
— /]wt Wi Z d 0

27T m=0

= % OOF( VH (wT)e? dw (6.7)

where H(wr) is the array response function and 7 = i—{sin() with wave velocity ¢ and sensor
spacing d. The array response function for a ULA is given by

gt md SiIl(Aqu)T) le'z-;l‘”T (6 8)

w——:m@
Y Z Msin ()

A few samples of the frequency response function (magnitude only) are shown in Figs. 6.16,

6.17 and 6.18 for different values of array size M. The response function is periodic with a
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Figure 6.16: ULA response with 8 sensors

period of 27. The maximum occurs at w7 = 2n7. The peak at n = 0 is known as the main

lobe and other peaks at n = +1 £ 2,... are known as grating lobes. If the range of 4 is

reduced it is possible to increase the sensor spacing, for example, for —3 < 6 + I the sensor
spacing needs to satisfy the constraint ‘Xi < —j; The phase of the frequency response is a lin-
ear function of wr. This useful property of a ULA is lost when the sensors are non-uniformly
spaced.

The array response is a function of the product of frequency w and delay 7 or, more ex-
plicitly, w‘xi sinf. The implication of this dependence is that two wavefronts whose waveform
is a simple sinusoid but with different frequencies (wy,wy) arriving at different angles (6, 6,)
will produce an identical array response if wy siné; = wy sinfy. The response function has a
main-lobe which is surrounded by many side-lobes of decreasing magnitude just as we find
in spectral windows. The first zero is at

r A (6.9)

0.ero = SINT" ——

Md
which, for large M, becomes inversely proportional to the array length expressed in terms

of wavelength.
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Figure 6.17: ULA response with 64 sensors
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Figure 6.18: ULA response with 128 sensors
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Figure 6.19: ULA response for a DOA of 30°

Array Steering

In the previous section it was seen that the array response is a maximum when the direction

of arrival (DOA) is perpendicular on (§ = 0). The maximum, however, can be changed to
any direction by introducing a time delay to each sensor output before summation. This is

known as array steering. Let an incremental delay of 7 per channel be introduced. The sum

output of the array is now given by

L M
g(t) = ﬁmz:%fm“erT)
1 > 1 M- (r-4 )
_ jwt _~ J(T—¢sindy Jum g
Y Mr;e dw
1 [> d . ot
= — FwH ([ {17—-sinfy |w | e dw
2r J_ s c

(6.10)

where it is assumed that the DOA is 6,. Let 7 = f—fsin §. The array response is maximumn
whenever @ = 6,. The array is steered in the direction g, i.e., in the direction of arrival of the
incident wavefront. The array response is now a function of the DOA. This is demonstrated

in Figs. 6.19, 6.20 and 6.21. It is interesting to note that the width of the main-lobe increases
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with increasing DOA.

Discussion

On initial investigation it would appear the ULA technique would prove to be very useful
in determining wave direction information; but, it suffers from several drawbacks. The
most important is that it will (like the spatial FFT) depend on a large number of data
points in order to give accurate results. A large number of data points means using many
data buoys. A second problem is that the response of the array is dependent on the distance
between each sensor. The array is most accurate at wavelengths which are twice the distance
between the sensors and it loses accuracy outside this range. A fix is provided by using a
sparse array arrangement and selectively choosing which sensors to accept information from.
Unfortunately this would again require many sensors close together. If data sensors, such
as the Waverider, are mounted too close together then there is a real risk of their moorings
becoming entangled in storm sea conditions (see Chapter 4). There is also the problem that
the Waverider buoys will tend to wander from their mean position distorting the final results.

However putting these issues aside, there is scope to use selective spatial filtering to
narrow down the range of # over which the array is applied. There is much literature on the
subject of ULAs and how to improve their output, Barber [53] and Borgman [54] documented

these improvements. The subject of ULAs will be discussed further in Chapter 7 since

they can provide a means of analysis when used in conjunction with device displacement

compensation in a full scale farm situation.

6.3 Fourier extension of time series

Previous simulations in this chapter have usually assumed multiple measurement devices.
Taking into consideration the results of Chapter 4, a time-series recorded from a single device
is what will be realistically available. This device will most likely be a Waverider buoy as it
is the most widely available and cost effective. Although it will not accurately make a fixed
point recording of the surface elevation, signal processing methods combined with positional

information could foreseeably be used to recreate a fixed point measurement. In order to

progress this assumption is made.
The question now arises as to how far ahead can a prediction be made, from a single

directional wave buoy, in time and over distance.
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Figure 6.22: Layout of theoretical surface displacement measurements

6.3.1 Basic setup

In order to ascertain if a prediction is correct, and the extent to which it will hold true, a
reference point must be selected. This is were the initial data gathering occurs. Then a
series of comparison points are chosen to assess the validity of the prediction. To supply this
data the wave model in Chapter 3 was implemented to create seven surface elevation time
series. Fig. 6.22 shows the orientation of these records. These records assume deep water
and a distance sufficiently removed from land as to preclude reflection of wave energy.

To begin simply, an omnidirectional non-harmonic input file was generated for a wind-
driven fully-developed sea state, typical of that off of the west coast of Scotland. This
corresponds to gale force 5 —6 or in the region of 12 ms™!. To improve the calculation speed,
256 wave vectors were generated at randomly spaced frequencies with an upper limit of 1
Hz; a higher frequency limit is used here because at lower wind speeds a significant portion
of energy is still contained within the upper frequency range. The simulated records had a
sampling period of 3600 sec sampled at a rate of 3.4133 Hz, this gave 12288 samples per
record. For the purposes of spectral analysis the recommendation of Chapter 5 was to use
records of 1200 sec and 4096 samples. Hence the records generated were three times this
length to allow the spectral evolution of the simulations to be studied.

Figs. 6.23 and 6.24 show the spectral density of the omnidirectional wavefield and the
simulated amplitude spectrum. Fig. 6.25 shows an extract from the beginning of the reference
time series. Fig. 6.26 shows the output of the first three sensors (i.e., the reference, 50 m
and 100 m sensors). It should be noted that the 50 m and 100 m records are not simply

copies of the reference time series delayed by the distance to the next sensor but evolutions

of the series over distance and time.
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Figure 6.27: Predicted time series at reference sensor

6.3.2 Initial time analysis

The first step in analysing a time series is to take the FF'T. Therefore it would seem reasonable
to resolve a section of wave record into its real fourier components. If a time series of length
T is taken and decomposed into its real Fourier components of a, and b, it should be possible
to recreate the time series by using a superposition of sinusoids. Extending this series in time
would seem to be as elementary as using the same Fourier coeflicients but calculating the
reconstructed time series for f(At — T+ At). To illustrate this Fig. 6.27 presents the results
of the following test. Take the time series for the onmidirectional case from ¢ = 0 — 1200
sec and N = 4096, where N is the number of samples. Take the Fourier transform of this
using the method given in Chapter 5. From these Fourier coefficients use the equation

2048
((a,t) = Z an cos (kpx — wnt) — by sin (kpz — Wpt)

n=1

(6.11)

with ¢ = 1200 — 2400 scc to create a time-series prediction. Alternate configurations of
Eq. 6.11 can be used but this is the most suitable since k,x is positive. Considering this
equation at the reference sensor reduces the wave number term k,x to zero for all sinusoids.

It can be seen in the upper figure that there is a poor match between the predicted and
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actual (expected) time series. Instead the predicted time series exactly matches the original

time series for ¢ = 0 — 1200 sec (i.e., the lower figure).

Discussion
The errors that appear in the time prediction are not due to the FFT, but rather they are
due to the application method. The FFT assumes that whatever time series is used, it will

be periodic. For example
J(=T = 0) = f(0—-T)= /(T —2T) (6.12)

So in recreating the spectra at t = 1200 — 2400 sec the original time series for ¢t = 0 — 1200
sec is being recreated. This inherent periodicity of the FFT does not fit well with the
aperiodic nature of real sea waves. This was a test with a stable, unchanging, spectrum. In
a real sea there will be a continuous blurring of frequencies that will be affected by energy
transfer from one frequency to another as well as attenuation by wind, current, pressure
and shallow water effects. To this end the Fourier methods are a good means of creating

spectra and deriving statistical properties but can be limited when predicting, in time, a

continuously varying aperiodic quantity such as a sea wave surface elevation.

6.3.3 Prediction over distance

Fourier components which extended the time series in the time dimension were not found to
be very successful. However, an attempt to use the components to extend a prediction over
distance was investigated to test the validity of the FFT method in the spatial domain.

The same time series data as used in the last section is again used here with records
made at points 50, 100, 200, 300, 500 and 1000 m from the reference sensor. Eq. 6.11 is
used, but in this instance the x parameter is varied to reflect the point at which the record
was projected to. The time period over which the predictions are made, match that of the
reference series. The results of these predictions are shown in Figs. 6.28 - 6.33. For clarity,
only the first 150 sec are shown.

The most obvious result of these simulations is that up to 300 m the predictions over
distance show good correlation. This agrees with other studies ([4], [5], and [6]). The initial
period of these simulations show some transient behaviour, with the predictions taking somne
time to settle down. This transient behaviour deteriorates with distance and it has in the

past been attributed to the time series end points not tending to zero.
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Figure 6.34: Zero crossing method of transient elimination

End fitting the record

The most common method of eliminating transient behaviour at the beginning of a series is
to use a data window. Unfortunately the use of a data window will tend to corrupt the phase
information associated with the time series. Belmont [3] suggests a method of end fitting
the data to eliminate the sharp transients at the ends of records similar to the windowing
method. Essentially, this means searching from the beginning of the time scries to find a
zero crossing point. The gradient of the line at this point is calculated. The time series is
then searched from the end of the record to find a zero crossing point with a similar gradient
match. The data to either side of these points is discarded and the FEF'T zero packed to
make it up to a power of 2 in length, this process is shown in Fig. 6.34 where the shading
indicates the discarded portion of the record. On reconstructing the predicted series it must
be advanced in time by the number of samples cropped from the beginning of the original
series. The results of the process were inconclusive with the new end fitted prediction being
neither better or worse than the original method. The transient behaviour is more likely to

be concerned with the shift from one spatial position to another and will be explored further

in Chapter 7.

Error calculation

A qualitative measure of the accuracy of the prediction is needed to show numerically how
well the FFT reconstruction works. Sinusoidal time series are not immediately amenable
to straight forward comparisons so a method of calculating the percentage errors between
the two series was formulated. The percentage error between the prediction and target is

calculated for each sample and averaged over the length of the series. The results from this
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[ Distance | % error

50m 1.34
100m 2.26
200m 4.49

300m 6.75
500m 11.11
1000m L 16.32

Table 6.1: Percentage errors in predicting over distance

procedure are presented in Table 6.1 for a 12 ms™! wind speed. Using these percentage
values and addressing the results in Figs. 6.28- 6.33 it may be concluded that a percentage
error greater than 10 % would be too great for the prediction to be of use. The manner in
which the results are averaged over the length of a record will tend to mask large individual
errors, such as a peak instead of trough.

The results of taking the percentage error between the prediction and the target series
were also carried out for wind speeds from 10 ms™! to 30 ms™!, covering a wide operating
range, using the standard parameter values of N = 4096 and 7" = 1200 sec. Fig. 6.35 shows
these results plotted with a 9" order polynomial fitted to each data set for ease of reading.
Interestingly the prediction deteriorates with increasing wind speed. It was thought that the
accuracy would increase as the spectrum being simulated became more narrow. This point
will be discussed in Chapter 7.

The reasons for the breakdown of the predictions with increasing distance are discussed
in full in Chapter 7. However, it can be highlighted that it is due to the manner in which
continuous energy is represented as discrete wave vectors and the way in which the dispersion
equations translate energy from one point to another.

Further tests were carried out with the omni-directional prediction to ascertain the effects

of the N and T parameters on the accuracy of the prediction. As in previous tests, a wind

speed of 12 ms™! was chosen and an upper frequency limit for the input wavefield of 0.5 Hz.

The time series for the seven prediction points were generated at a fixed length of 7" = 1200
sec and the value of N increased from 23 = 8 to 2'° = 65536. Fig. 6.36 shows these results
with 9" order polynomials fitted, the z-axis here is on a log scale. As expected, the accuracy
of the prediction increases as more terms are utilized before stabilising at around N = 2048,

no further accuracy is gained by including more terms. Referring back to Table 5.2 in
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Chapter 5, the upper and lower frequency limits are given for a variety of N and a fixed
T = 1200 sec. Up to and including N = 1024, the upper frequency is below that simulated
(0.5 Hz). At N = 2048 the upper frequency is passed, and extending the value of N beyond
this point is only adding to the ability of the algorithm to represent higher frequencies which
are not represented and not required. Therefore extending N past 2048 will not increase the
accuracy of the prediction.

What may increase the accuracy of the predictions is to increase the frequency resolution
by taking a longer time series. Referring back to Chapter 5 the frequency resolution is the

inverse of the length of the time series T. By taking a longer interval for T, the resolution

will become more focused. Again a 12 ms™! wind speed was used for generating an omni-

directional spectrum, the value of N was fixed at 4096 allowing the upper frequency simulated
at 0.5 Hz to be reached at the longest T in use. The value of T" was increased from 30 sec
to 3600 sec covering a record length of half a minute to one hour. These results are again
presented as a scatter plot with a 9" order polynomial fitted for clarity in Fig. 6.37. Again
an increase in accuracy is seen with an increase in frequency resolution. The errors fall much

faster at shorter prediction distances stabilising to the genecral error levels seen in other

experiments using this spectrum.
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Time and distance prediction over 50m using Fourier components

25 T T T T T T
— target
— - prediction

2
1.5 |
!
t
14 | E
|
|
- |
£ 05 ' B
o L |
E
© !
O -
|
|
|
-05F ' N
- )
|
-1F v 'l
|
\
-1.5F !
2 I . 1 L )
1160 1170 1180 1190 1200 1210 1220 1230 1240
time, s

Figure 6.38: Prediction made over 50 m and ahead in time using Fourier coefficients

6.3.4 Time and distance

It was found that prediction over distance is possible for short distances. Therefore it was
decided to combine the prediction over distance with that over time. The same omni-

directional wave-field used in previous sections was utilized to calculate data for a reference
sensor at 50 m. Eq. 6.11 was used but this time setting x = 50 m and extending the time
series by 128 samples. The results are shown in Fig. 6.38 focused at the point where the

prediction begins at 1200 sec. As expected, from the time prediction section, the prediction

matches the target record up to 1200 sec but is incorrect after this point.

6.3.5 Omni-directional prediction for a directional field

Real sea states do not consist of omni-directional wave-ficlds so testing the prediction-over-
distance method with a directional wave-field is the next step to take. The same basic

spectrum as used in the omni-directional cases was used with a Mitsuyasu directional dis-

tribution (see Chapter 3) fitted. The number of frequencies was reduced to 128 to speed up

the simulation of the wave record since 60 degrees of freedom in the directional spectrum

was utilised. The records were again simulated at 3.1433 Hz.
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Figure 6.39: Spectrum calculated by DIWASP

Using the DIWASP toolkit and the Extended Maximum Likelihood Method (Chapter 4)
the wave records were examined in order to determine the mean wave direction. The output
spectrum from the DIWASP is shown in Fig. 6.39.

With the directional information, Eq. 6.11 is used to obtain predictions at the desired
output points. Figs. 6.40 and 6.41 show the results of fitting an omnidirectional prediction
to directional information; as can be expected the results are not particularly accurate but
there is some correlation with the target series. The percentage error at each prediction
point is given in Table 6.2.

At a low wind speed of, say, 12 ms™! the spectrum is still relatively widely spread in
many directions. Increasing the wind speed should improve the spectral spread and hopefully
decrease the prediction error. To test this theory, directional data files were generated for
wind speeds of 10 to 30 ms~! and omni-directional predictions were fitted to these results.
The percentage errors returned in each case for each data point are plotted in Fig. 6.42,
again with 9** order polynomials fitted. The errors in fitting the omni-directional prediction
here are greater than when using simpler wavefields. The theory of an increasing wind speed
leading to reduced errors is again proved incorrect and will be discussed in Chapter 7.

However it can be concluded that the predictions for 50 m and 100 m may be usable but
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Figure 6.40: omni fitted prediction to 50 m
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Figure 6.41: omni fitted prediction to 100 m
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LDistance % error J
50m 13.54

100m 14.08
200m 21.16
300m 23.82

500m 26.34
1000m 28.91

Table 6.2: Percentage errors in predicting omni-fitted spectra over distance

percentage deviation

wind speed ms™'

Figure 6.42: Errors in omni-fitted directional predictions
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at distances greater than this the effect of wave-trains present in other directions overcome

the omni-directional approximation.

6.4 Wave tank experiments

After setting out a methodology for the short term prediction of wave behaviour by Fourier
Incans in the previous sections of this chapter, a real-world experiment was deemed appro-

priated to demonstrate the theorem. A simple experiment was implemented in a modified

wave flume.

6.4.1 Experimental equipment

Wave maker

'The wave tank used in the following experiment was a modified flume. Figure 6.43 shows the
dimensions of the tank. The wave maker used a rectangular paddle hinged at its lower edge.
A crank driven by an overhead motor/gearbox was connected to the paddle via an adjustable
connecting rod which moved the paddle to and fro inducing wave oscillations. Lengthening
or shortening the crank connection rod varied the wave-height of the generated waves while

the motor speed (and hence wave frequency) could be varied via the motor inverter.

Shape

The shape of the flume affects the shape of the waves generated. The slight incline kicks up
the amplitude of the wave as it enters the shallower main channel. Additionally the narrowing
of the tank into the main channel focuses the wave. The wave maker had previously been
sited at this narrow section but, not being the full width of the tank various diffraction and
reflection effects caused a complex wave pattern. By moving the wave maker to the rear of

the tank, the shape focusses a slightly messy wavefront into a clean straight one.

Beach and flow

To avoid reflections from the end of the tank an artificial beach was installed and is made
from shaped polystyrene foam and rough plastic matting which absorbed wave energy to
prevent reflections. The tank is filled by means of the pump below the main structure. As
the tank is situated 1 m above ground level the pump must run continuously to prevent the

water level in the tank from dropping. If the mean water level is kept below the upper lip
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Figure 6.43: Wave tank and sensor placement
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of the beach very little current flows in the tank. As the water level rises and begins to spill
over the lip and into the sink a current will flow. Using a mean water depth of 0.288 m a

current of 0.0166 m/s was found to be flowing. In normal operation the beach is overtopped

by the waves.

Sensors

The wave sensors used in this experiment werce of the capacitance type. Lengths of wire
measure the capacitance in the water and in the air above the mean surface level. From
these measurements a reading of the water depth is created. 8 sensors were made as part of
a MSc project, seven of these were operational on the day of the experiments. The sensors
were mounted on wooden support beams and are placed across the flumne with the sensor
hung midway. The first sensor was placed 2 m from the beginning of the main channel to
allow the generated wave to settle down. Further sensors were placed at 0.5 m intervals.
The sensors were calibrated by setting an extreme minimum level, 130 mm, in the tank and

then an extreme maximum, 330 mm. A final level is then set for the tank, 288 mm, and the

motor for the wave maker was then set in motion.

Software

The software used to collate the wave data was developed in the Labview environment. The
outputs from the sensors were fed through an A/D converter card and displayed on the
PC monitor. The on-screen data was then exported as an Excel spreadsheet. After the
experiments had been concluded it found to be missing a time index to the time serics.

This is corrected in the next section as unfortunately the flume then became unavailable for

further testing.

6.4.2 Data preparation

Error removal

The data presented in the Excel files was 6000 samples in length, these were first of all
truncated to 4096 samples to speed the FFT process. The data discarded should not affect
the final results as they showed signs of corruption when being saved in the Excel file format.
The act of saving the data produced data spikes as the OS subroutines were implemented.
The data from all 8 sensors were saved in each Excel file so the data from sensor 7, which

was not operational, was also removed. The mean was subtracted from each record and
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the data converted from centimetres to metres. The remaining data was then transferred to

plain-text tab-delimited files for ease of use in MATLAB.

Time index

As noted previously. a time index was not stored with the time series and the sampling rate
indicated by the Labview software was deemed too high to correctly relate to the returned
data. However, information on the wave-train of interest was recorded and this can he used
to fit a time index. The motor driving the paddle was known to be running at 25 Hz The
step down ratio was 1/25 giving a nominal wave frequency of 1 Hz. The slip of the paddle
motor when driving large volumes of water is likely to be in the region of 3 %, this is the
maximum error in wave frequency.

With the frequency of the underlying wave-train and thus its time period known, the data
sets were searched to find a record showing a peak as near as possible to the first sampling
instance. From here the number of peaks in the record were calculated and multiplied by
the time period to give an overall length for the series. A small fraction of a wave was
found beyond the last peak which was also included in the estimate. With the length of the
time series now know, 7' = 18.2 sec, and the number of samples N = 4096 the sampling
period and sampling rate could be calculated and a time index fitted. The returned values

were checked by taking the FFT of each time series and observing with which frequency the

majority of energy lay.

Sensor motion

As the wave in the tank propagated, each sensor responded to it by oscillating back and
forth in a pendulum like motion with a period roughly one sixth that of the incident wave.
This motion is caused by the forces exerted by the wave particles on the wire. Fig. 6.44
shows a typical response for the majority of sensors. The period of oscillation in each case is
similar, with the amplitude dependant on the flexibility of the wire used for cach sensor. The
response of sensor 6, Fig. 6.45, was not found to be consistent in the sets of data and so was
discarded. This motion would be something akin to that experienced in measurements taken
in the real ocean, where the response of the wave buoy must be taken into consideration and
suitable processing of the data implemented to restore the original signal.

The motion of the sensor has two effects on the time series. The first is amplitude

modulation. The second is a phase shift in the recording of the data points.
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Figure 6.45: Time series from sensor 6 showing deviation
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Dealing first with the amplitude problem. As the sensor passes through the vertical, hence
being perpendicular to the wave surface, the least length of wire will be exposed to the air
and an accurate reading of the wave height will be recorded. At either end of its motion
more of the wire will be exposed as it is at an angle to the wave surface, Fig. 6.46 shows
this reasoning graphically. The points where the sensor is near vertical can be identified
by the maximum amplitude in each record and the peaks raised to this value. Reviewing
Fig. 6.44, the record is seen to be non-linear in that the peaks are of greater magnitude than
the troughs. Alternate wave propagation models (as referred to in Chapter 1) can take this
into account, but the linear model is being tested herc and any errors will be taken into
account in the final results.

The effect the sensor oscillation has on the location of measurement is more complicated
to address. When the sensor oscillates back and forth about its mean position it will be
-recording the wave height at different spatial positions each time. By considering this effect,
the position of the sensor at the time of recording can be calculated and the offset of the

wave peak can be moved back to where it should have been recorded in time.

Sensor model fitting
In an ideal situation with an inflexible sensor the data recorded at each point would conforin
to the general equation for a propagating wave

((z,t) = acos(kr —wt — @) (6.13)

Notice that there are no subscripts as a monochromatic wave is being generated. Dealing
first with the modification to the z term the equation will become

C(z,t) = acos (k (& + ascos(wit + ¢5)) — Wi + @) (6.14)

where a,, w, and ¢, are properties of the sensor model. The z term is effectively heing
modulated. Estimates for the as and w, terms can be visually judged. The sensors horizontal
movement was not greater than 0.1 m and the frequency of the motion as seen in Fig. 6.44
has already been estimated to be one sixth that of the propagating wave train.

Using this data, a fitting process can be implemented to ascertain the correct values for
the sensor model. The three terms were swept about the estimated values and the resultant
waveform, from Eq. 6.14, was compared to the actual recorded data. The results were
examined and the best fit chosen. This fitted model is shown in Fig. 6.47. The fit to the

periods is reasonably accurate but the peaks are still slightly displaced to the right of the
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Figure 6.49: Time series and FFT using 7' = 18.2s

amplitude trough. This is due to the acceleration effect on the sensor (due to the wave

motion). When swinging back into the wave-train the sensor will be affected differently than

when it is accelerating with the wave-train.

Now, addressing the amplitude modulation, the terms calculated for the horizontal dis-

placement can be reused where

C(z,t) = (a — 225 (1 4 cos(wst + gbs))) cos (k (x + as cos(wst + @) — wt + ) (6.15)

This simulates the amplitude modulation due to the effective sensor length shortening. The
results of this process for sensor 1 are shown in Fig. 6.48. The result shows good agreement

for the peaks of the waveform but are not so well fitted to the troughs. This again may be

a higher order effect of the wave propagation and the sensor motion.

A similar process was implemented for the other 5 operational sensors in order to derive

bespoke sensor models.

6.4.3 Trial prediction

Recognising that the prediction is based on a monochromatic, progressive wave, parameters

can be derived from examining the time series of the first sensor. After having fitted and
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Figure 6.50: Prediction made at & = 2.5 m

checked the time series of the FFT (Fig. 6.49), it was found that a single frequency at 1 Hz

dominated the record. The subsidiary peak below this corresponds to the sensor motion.

The other known data about the wave can be used to calculated the wave-train properties.

2 bin will give a phase for the wave. The amplitude can be obtained

The FFT data for the1l H

by taking averages of the maximum wave height experienced in each record. This is done

because small calibration errors for each probe can indicate slightly higher or lower values

for individual records.

The frequency can he used to derive the angular frequency, but as the depth of water

(h=0.288 m) in the tank is relatively shallow for the wavelength the full dispersion equation

(Eq. 7.1) must be used in deriving wave number, wavelength and phase speed.

ord for the prediction points can be calculated

1 in Figs. 6.50 to 6.54. The

With this information the idealised wave rec
and the sensor model fitted. The resultant predictions are give

results from taking the average percentage deviation showed each prediction to be within a

few percent of the true values.
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Figure 6.51: Prediction made at ¥ = 3.0 m
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Figure 6.52: Prediction made at x = 3.5 m
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6.4.4 Discussion

Making a prediction with a monochromatic wave over distance has been proved in this and
in previous sections to be straightforward. The challenge in making real-world predictions
is dealing with the instrumentation and the non-linearities that cannot he casily controlled.

Eliminating and modelling the response of the sensors to the passing waves is an inter-
esting problem and one that needs to be addressed in measurements made in real conditions.
With wave buoys, the response will be more complex with three degrees of movement, A
more conmplex system of tracking the buoys motion will need to be developed. From cach
buoy position the surface elevation can be calculated and from previous sampling instances
a three dimensional representation of the ocean surface can be created. The position of the
buoy superposed on to this surface may show that it has slid down the side of a peak and is
under-recording the wave height, similar to the manner in which the sensor oscillated away
from its centre point and under recorded.

Non-linearities are present in the tank results. These are primarily caused by compromises
made in setting up the equipment. The most noticeable effect being the non-symmetrical
profile with the peaks exceeding the troughs. In a small-scale facility, such as that used here,
the range of wavelengths available are constrained by the dimensions of the tank. Outside a
specific range the shape of the tank will cause unwanted reflections.

In constraining the available wavelengths the ratio of the amplitude of the wave to the
depth of the water becomes a factor. In order to be working with “deep water” waves either
the wave amplitude must be decreased (reducing accuracy in the sensors) or the water depth
must be raised. Increasing the water depth leads to a greater current flowing, which may
be counteracted with a higher beach but at a cost in the reduction of the amplitude range.
As mentioned above, reducing the wave amplitude affects the accuracy of the sensors so

in the above experiment the values chosen allowed for the best compromise between these

conflicting factors.
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Chapter 7

Discussion

The previous chapter detailing the experiments conducted throughout this study contained
several possible methods for the prediction of wave behaviour. The discussion here will
examine the results of those experiments and try to bring together reasons as to why the
predictions may be suitable in certain instances. The first two sections will examine the
primary experimental results from the latter half of the last chapter, whilst the final section

will discuss the earlier experiments and the other chapters of this thesis in the context of a

wave device farm.

7.1 Transients

The transient at the beginning of each predicted record in Section 6.3 of Chapter 6 proves
rather troublesome as it raises the value of the average percentage deviation, leading to a
somewhat skewed result. Looking beyond this transient behaviour, the prediction shows a
reasonably accurate match to the desired time series. Removing the transient in the record

should lead to a more accurate measure of the error in the prediction.

Transient errors

The errors between the targets and predictions for the case of a wind speed of 12 ms™! are

plotted at each prediction point in Figs. 7.1 to 7.6. Examining the figures the first point
to be noted is that the errors increase with distance, a hypotheses on this will be discussed
later in this chapter. Looking at the beginning of each record the transient can be seen both
in the amplitude and in having a different structure to the rest of the error series. By visual

examination the transient lengths appear to grow from approximately 30 sec in the 50 m
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Distance | time

50 mn 32 s

100 m 64 s
200m [ 128 s
300m | 192
500 m | 320 s
L 1000 m | 641 s

Table 7.1: Time taken for 0.5 Hz energy to propagate

case to approximately 500 sec in the 1000 m case.

This transient may be caused by making predictions at a point removed from the reference
sensor based on waves which have not yet reached that point. Essentially a prediction is
being made for which no information is yet available. As the predictions arc all made with
the same time frame, i.e. 0 to 1200 sec, the wave that is present at the beginning of the
record taken at 0 m, the reference point, will not reach the record predicted to be at 500

m for some time. Therefore the prediction made at the 500 m point can be considered

inaccurate until this wave has propagated to that point.

Transient velocity
Every frequency component in the spectrum will be travelling at a different velocity, with
the lower frequency waves travelling faster than the higher frequency waves. The highest
frequency simulated in these tests is at 0.5 Hz which will have a phase velocity of 3.12 ms™!.
In the context of this problem, where a number of waves are considered to have a group
velocity, i.e., the velocity at which the energy associated with a wave travels, the group
velocity is a more appropriated measure. For a 0.5 Hz wave this will be 1.56 ms™! and the
energy will take 32 s to travel 50 m. Table 7.1 indicates the time taken for the energy to
travel to the six prediction points. Looking back at Figs. 7.1 to 7.6, these times correspond
to the length of the transients. In the case of the predictions at greater distances, other
errors may mask the extent of the transient.

The transient has an exponentially decreasing form. This can be explained by the wave
energy reaching the prediction point progressively. The lower frequency encrgy arriving
before the higher frequency, and as each band of energy catches up to the prediction point

the errors reduce to the point where the missing energy is small enough not to affect the
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prediction.

7.1.1 True errors

In order to compare like for like predictions without the presence of the transient the time
from which a stable prediction can be expected must be found. By examining the FFT of the
original record, the highest frequency at which 1 % of the maximum power of the spectrum
still remains can be found. Using this frequency its group velocity can be calculated, and at
each prediction distance, the length of the transient to be eliminated can be found.

Also, in order to give a more accurate representation of the error at each wind speed,
the average error for the remaining length of record is taken as a percentage of the mean
significant wave height H,,y for the specific wind speed. In this way the error value returned

is scaled to its relevant wind speed. U