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ABSTRACT 

One significant problem in the design of ship steering control systems is that 

the dynamics of the vessel change with operating conditions such as the 

forward speed of the vessel, the depth of water and loading conditions etc. 
Approaches considered in the past to overcome these difficulties include the 

use of self adaptive control systems which adjust the control characteristics 

on continuous basis to suit the current operating conditions. 

Artificial neural networks have been receiving considerable attention in 

recent years and have been considered. for a variety of applications where 

the characteristics of the controlled system change significantly with 

operating conditions or with time. Such networks have a configuration which 

remains fixed once the training phase is complete. The resulting controlled 

systems thus have more predictable characteristics than those which are 
found in many forms of traditional self-adaptive control systems. In 

particular, stability bounds can he investigated through simulation studies as 

with any other form of controller having. fixed characteristics 

heedforward neural networks have enjoyed many successful applications 

in the field of systems and control. These networks include two major 

categories: multilayer perceptrons and radial basis function networks. In this 

thesis, we explore the applicability of both of these artificial neural network 

architectures for automatic steering of ships in a course changing mode of 

operation. 

The approach that has been adopted involves the training of a single 

artificial neural network to represent a series of conventional controllers. for 

different operating conditions. The resulting network thus captures, in a 
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nonlinear , 
fashion, the essential characteristics of all of the conventional 

controllers. Most of the artificial neural network controllers developed in 

this thesis are trained with the data generated through simulation studies. 

However, experience is also gained of developing a neuro controller on the 

basis of real data gathered from an actual scale model of a supply ship. 

Another important aspect of this work is the applicability of local model 

networks, for modelling the dynamics of a ship. Local model networks can be 

regarded as a generalized form of radial basis. function networks and have 

already proved their worth in a number of applications involving the 

modelling of systems in which the dynamic characteristics can vary 

significantly with the system operating conditions. The work presented in this 

thesis indicates that these networks are highly suitable for modelling the 

dynamics of a ship. 
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Chapter 1 

INTRODUCTION 

1.1 Background: 

Although the history of ships and sailing is spread over centuries, the 

history of ship autopilots is not more than 77 years old. Minorsky's work 
[Minorsky, 1922] on automatic ship steering was one of the principal 

contributions to the early literature in the general field of automatic control. 

In the same year, Sperry [Sperry, 1922] introduced the first automatic 

steering control system for ships. These early autopilots were purely 

mechanical in construction and they provided a very simple steering action, 

the rudder demand being proportional to the heading error. To prevent 

oscillatory behaviour, a low gain was selected which rendered the device 

useful only in the course keeping mode, where there was no significant desire 

for a high degree of accuracy in the response. When proportional-integral- 
derivative (PID) controllers became commercially available, they greatly 
improved the performance and until the 1980s almost all makes of autopilots 

were based on these controllers. The main disadvantage of PID controllers is 

that they require manual adjustments to compensate for changes of operating 

conditions as well as environmental conditions, but these controller settings 

are in any case usually not optimal for the ship. The adjustments are time 

consuming and tedious. Furthermore, the PID autopilots can cause difficulties 

when the ship makes large manoeuvres involving nonlinear dynamic 

behaviour. 

To avoid these problems of fixed structure PID controllers, adaptive 

autopilots were introduced in the 1970s and have remained a major area of 
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research until recently [Honderd and Winkelman, 1972; Oldenburgh, 1975; 

Ohtsu and Kitagawa, 1978; Sugimoto and Kojima, 1978; Källström, 1979; 

Aström, 1980; Van Amerongen, 1982; Arie et al. 1986; Katebi and Byrne, 

1988; Fossen and Paulsen, 1993; Garcia and Castelo, 1995]. It is because of 

their significant benefits such as improved fuel economy, increased speed of 

the vessel, and reduced manual settings to compensate for changes in 

operating and environmental conditions that they are attractive for such 

applications. However, there is some concern about potential instabilities and 

other problems associated with adaptive system behaviour. 

Artificial neural networks (ANNs) appear to offer some advantages over 

other forms of control for ship steering. This is because of the ability of neural 

networks to handle variations of plant dynamics without the element of 

unpredictability that may cause concern when adaptive control is considered 
for safety critical applications. An ANN controller can be trained so that it has 

the best properties of both of a constant parameter controller as well as of an 

adaptive controller. The reason is that once a neural network is trained the 

parameters are fixed. On the other hand, the network can be trained for a 

range of operating conditions so that the network's behaviour changes just 

like an adaptive controller. Witt et al. [1994,19951 report that a neuro 

controller can improve the profit margin of the vessel and contribute to the 

safety of the vessel by: (i) reducing manual levels required on the bridge (ii) 

achieving a fuel saving by allowing the vessel to stay on course with little 

deviation and (iii) providing accurate steering in an environment of increased 

traffic density and close proximity of obstacles. 

1.2 Thesis Contributions: 

When this Ph. D. project started in October 1995, the investigations on the 

applicability of artificial neural networks to a ship steering control system 

were in an embryonic state, and only some initial investigations had been 
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carried-out by a few researches [e. g. Endo et al., 1989; Richter and Burns, 

1993; Witt et al., 1994; Simensen and Murray-Smith, 1995]. The situation 

remains almost the same even today, though some more papers have been 

published during the past three years. All of these papers have made use of a 

multilayer perceptron (MLP) architecture of feedforward neural networks and 

have trained the networks by using the well known back-propagation learning 

algorithm. To the best of our knowledge, no author has investigated any other 

architecture of artificial neural networks for this specific application. 

Moreover, every author has investigated the potential of ANNs for only one 

particular ship. Are neuro controllers suitable for all small and large ships? 

The literature fails to provide a confident answer to this question. In this 

thesis, we have investigated the potential of artificial neural networks for a 

number of ships, ranging from a small ferry of length 45 m to large tankers of 
length more than 300 m. We have not only developed ANNs on the basis of 

data generated by means of simulation studies, but also on the basis of real 
data gathered from a physical scale model of a ship. This is probably the first 

work which shows that ANNs can provide satisfactory performance for 

different types of ships, whether they are small or large, or whether they are 

rudder driven ships or thruster driven ships. 

As mentioned above, the previous authors have trained their MLP 

networks by using the conventional back-propagation learning algorithm. The 

work presented in this thesis is different from the earlier research in a number 

of ways. 

1. We have not only trained MLP networks by using the back-propagation 

learning algorithm with adaptive learning rate and momentum, but also 

with what is widely regarded as the fastest approach - the back- 

propagation incorporating the Levenberg-Marquardt algorithm. No one 
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had previously used this version of the back-propagation algorithm for this 

type of application. 

2. This is the first thesis, which has investigated the potential of radial basis 

function (RBF) networks for this application. Because of their distinctive 

properties of best approximation, simple network structure and efficient 
learning procedure, these networks are more powerful than the MLP 

networks. 

3. A significant aspect of this work is the applicability of ANNs for modelling 

the ship dynamics. For this purpose, we have investigated the potential of 
local model networks for the application. Local model networks or 

operating regime models, have an architecture which relates closely to 

ANNs. Such networks have already proved to be of value in other 

applications involving the modelling of systems in which the dynamic 

characteristics can vary significantly with the system operating condition. 
To the best of our knowledge, no one has investigated the potential of any 

architecture of ANNs for modelling ship dynamics. From this point of 

view, our work is significantly original and pioneering. 

1.3 Thesis Structure: 

Chapter 2 describes ship dynamics in some detail. A number of linear and 

non-linear ship models are reviewed with emphasis on those models which are 

particularly suitable for control purposes. The Chapter also describes the 

variations of ship parameters with operating conditions. The operating 

conditions include the forward speed of the ship, the depth of water and 
loading conditions. The issues relating to the normalization of ship parameters 

are also discussed. 
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Chapter 3 gives an overview of a ship steering control system with 

emphasis on controller (i. e. autopilot) design. Developments in the design of 

ship autopilots are discussed. These developments include the design of very 

early autopilots (i. e. proportional controllers), PD/PID autopilots, Non-linear 

autopilots, and adaptive autopilots. The limitations/disadvantages of these 

autopilots are pointed out. Finally, advantages of intelligent autopilots are 

listed which make them superior to self adaptive control systems. 

Chapter 4 serves as an introduction to artificial neural networks. Basic 

concepts of the theory are introduced and a brief history of ANNs is 

presented. The Chapter is mainly concerned with feedforward neural 

networks. Both MLP as well as RBF networks are described in detail. The 

training issues, function approximation capabilities and other features of these 

networks are discussed. The back-propagation algorithm is derived for the 

training of MLP networks. It is also explained how the training speed of the 

algorithm can be improved by introducing adaptive learning rate and 

momentum. The incorporation of the Levenberg-Marquardt algorithm into 

the conventional back-propagation algorithm is also covered. The orthogonal 
least squares algorithm is derived for the training of RBF networks. This 

Chapter is especially suitable for those who have little or no knowledge of 

ANNs. 

Chapter 5 discusses the procedure involved in the development of MLP 

networks for ship steering control systems. The networks are developed for 

three different ships of length 45 m, 161 m and 310 m, The networks have 

been developed in such a way that they provide satisfactory performance even 

when the ship dynamics change with the forward speed of the ship. The 

networks are developed by using the back-propagation algorithm with 

adaptive learning rate and momentum. They are also developed by using the 

back-propagation algorithm with the incorporation of Levenberg-Marquardt 
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theorem. It is demonstrated that MLP networks with only one hidden layer 

are sufficient to allow satisfactory performance to be achieved 

The applicability of RBF networks is investigated in Chapter 6. The RBF 

controllers are developed and their performance is compared with that 

achieved with MLP networks. It is demonstrated that RBF networks can 

provide satisfactory performance when the depth of water or loading 

conditions change along with the forward speed of the ship. 

In Chapter 7, an RBF controller is developed by using the real data which 

were gathered while testing a sliding mode controller on an actual scale model 

of a supply ship in the Guidance, Navigation and Control Laboratory at the 

Norwegian University of Science and Technology, Trondheim. The dynamics 

of supply ships, which are different from those of rudder steered ships, are 

described and it is explained how a sliding mode controller can be designed 

for such a ship. Then, a radial basis function network is developed which 

mimics the dynamics of the sliding mode controller. The performance of the 

network is illustrated by means of simulation studies. 

Chapter 8 is devoted to local model networks (LMNs). The main objective 

of the Chapter is to explore the worth of LMNs for modelling the ship 

dynamics. A brief overview of LMNs is presented and major advantages of 

LMNs over other architectures of ANNs are discussed. The Chapter contains 

two simulation studies which show that these networks are an effective way 

to model the ship dynamics which vary with the forward speed of the ship. 

Finally the thesis ends with Chapter 9 which presents the conclusions 
drawn from this work and suggests additional work which could be used to 

further develop key aspects of this research. 



Chapter 2 

SHIP DYNAMICS 

A central element in engineering analysis and design is the determination of an 

appropriate mathematical model of the physical system under consideration. 

A model, in the context of a study of the dynamics and control of plant, may 

be defined as, "the characterization of the plant behaviour in terms of 

mathematical equations". A model may be a very detailed representation or it 

may be only a very simple form indicating approximate behaviour or 

behaviour within a limited operating condition. The level of complexity 

appropriate for a particular case depends on the application. 

As far as ship steering control systems are concerned, one possible 

approach involves equations of motion containing hydrodynamic derivatives 

which are themselves derived from a Taylor's series expansion of the 

force/moment balance equations [Davidson, and Schiff, 1946; Abkowitz, 

1964; Chislett and Strom-Tejsen, 1965a, 1965b] . These complex models 

which are popular among naval architects can accurately predict the motion 

of a ship in a sea way. However, the determination of the large number of 

parameters in these models must be repeated for different ships and the 

techniques rely heavily on scale model testing which undoubtedly creates 

further problems with regard to scaling. An alternative approach is to refine 

the model into a form recognisable by control engineers [Nomoto et al, 1957; 

Norrbin, 1963; Bech and Smith, 1969; Van Leeuwen, 1972; Bech, 1972]. 

These models are usually of reduced complexity, however, they must be able 

to describe rather precisely the structure of the system to be controlled, e. g. 

the dynamic responses of the ship's motions caused by rudder deflections. 
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The main purpose of this work is to develop intelligent controllers for the 

heading control of a ship. It is therefore appropriate to use the simple models 

preferred by control engineers, rather than the complex models, wherever 

possible. This Chapter reviews such models and explains the influence of 

various operating conditions on the parameters of these models. Both linear 

and non-linear models are reviewed. The layout of the Chapter is as follows: 

Section 2.1 provides a basic formulation of the ship steering equations. In 

Section 2.2 some well known linear models are reviewed. Section 2.3 

discusses and presents methods for parameter normalization. The importance 

of normalization of ship parameters is also discussed in this Section. Two 

non-linear ship models are reviewed in Section 2.4. Full scale trials are briefly 

described in Section 2.5 and the influence of the forward speed of the ship, 

the depth of water and the loading on the ship parameters is discussed in 
Section 2.6. 

2.1 Basic Equations of Motion 

The equations describing motion of a ship are derived using Newton's laws 

of motion by taking two co-ordinate systems into account: an inertial system 

X0O0YOZo (Earth fixed) and a ship fixed system XOYZ as is indicated in 

Figure 2.1. 

F. atth food 
eýaeo 

YO 
ZO 

roll 

surge 

Pitch 
9. Yaw Ship fixed 

r" N axes 

Yýray I heave 

z 

X 

Figure 2.1: Ship fixed and Earth fixed axes 
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The equations of motion can be described completely by the general six 
degrees of freedom of rigid body motion, namely three translations (surge, 

sway and heave) and three rotations (roll, pitch and yaw). The physical 

definitions and the nomenclature associated with states and motions are 

shown in Figure 2.1 and summarized in Table 2.1 

For surface ships, only horizontal motion is usually considered and the 

heave, roll and pitch modes are neglected. This reduces the number of 
degrees of freedom to three viz. surge translation in the x-direction, sway 

translation in the y-direction and the yaw rotation about the z-axis. 

Throughout this thesis, only the horizontal motions surge, sway and yaw 

are considered. The remaining motions such as roll, pitch and heave are 

assumed to be negligible. 

Table 2.1: Motions Nomenclature 

axis x Y Z 

Translation 

r- 
surge sway heave 

position 
' 

x y z 
r 

velocity 
- 

u v w 

force x Y N 

+ direction forward star board downward 

Rotation roll pitch heave 

angle (D 0 1 

rate p q r 

torque K M N 

+ direction star board aft down right turn 
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The variables used to describe the horizontal motion of a ship are sketched 
in Figure 2.2. The components of the total ship's velocity U on the X and Y 

axes are the surge velocity u and sway velocity v respectively. 

Position of CG of ship at time t=0 

Arbitrary axis fixed in the earth 

slip's trajectory 

YOG 

x0G 

position of CG of ' +X 
ship at timet 

u 
r 

Sü 
V velocity vector 

tangent to ship's 
trajectory 

+ 

YO 

Figure 2.2: Orientation of Earth's fixed axis and ship's fixed axes. 
Variables used to describe the motion in the horizontal plane. 

By using the simplifications described above, the equations of motion can 
be derived as follows [Abkowitz, 1964; Crane et al., 1989; Fossen, 1994]: 

m(ü-vr-xGr2)= x 

m(v+ur+xGr) =Y 
I, r+mxG(v+ur)=N 

(2. t) 

where m is the mass of the ship, IZ is the moment of inertia about the z-axis 

and xG is the x co-ordinate of the centre of gravity. X and Y are the 

hydrodynamic forces and N is the hydrodynamic moment. The main difficulty 

in modelling ship dynamics is to find suitable expressions for X, Y and N. 

These are complicated functions of the ship motion relative to the sea. 

.. s 0 
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Various functional forms of these have been suggested in the literature. For 

example, Abkowitz [ 1964] suggested the following functional form for X, Y 

and N: 

X= f(u, v, r, 6, 

Y= f(u, v, r, 8, 

N= f(u, v, r, b, ü, v, t) 

(2.2) 

and approximated the functions with Taylor series expansions about the 

steady-state condition u= uo ,v=r=8=ü=v=r=0, where 8 is the 

rudder angle and uo is the mean forward speed. 

Other functional forms can be found in [Norrbin, 1970; Blanke, 1981 etc. ]. 

The derivatives of X, Y and N are called hydrodynamic derivatives. These 

derivatives depend on many factors, among others on loading, trim and the 

depth of water. The hydrodynamic derivatives can be determined 

approximately from hydrodynamic theory [Comstock 1967; Norrbin 1970] or 
from experiments using scale models [Ström-Tejsen and Chislett 1966; 

Comstock 1967; Motora, 1972]. However, a more appropriate approach is to 

determine these derivatives from experiments on ships using system 
identification methods [Abkowitz, 1975,1980; Aström and Källström 1976; 

Tiano, 1976; Källström, 1979; Äström 1980, Källström and Aström, 1981; 

Van Amerongen, 1982; Flobakk, 1983; Kaasen, 1986; Holzhüter, 1989]. 

2.2 Linear Models 

In this Section, we review some well known linear ship models that have 

been proposed in the literature. 
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2.2.1 The Model of Davidson and Schiff 

The first linear model of a ship steering system was put forward by 

Davidson and Schiff [1946]. This model can be derived by linearizing (2.1) 

around the stationary conditions u= uo ,v=r=0 and is given by 

mw+uor+x, r)= Y 
(2.3) 

I, r+mxcýv+uor)= N 

where uo is assumed to be a constant. 

Davidson and Schiff modelled the hydrodynamic force and moment as 
follows: 

Y=Y, v+Yii-+Yv+Y1r+YYB 
N=N,, v+NTi+N, v+Nrr+N, S 

where YY =, N. _- and so on for the other coefficients. 

Combining (2.3) and (2.4) we can write 

Mx = Nx + bu 

where 

M= m-Y. 

mxG - Ni, 

x= andu=S. 
r 

[i'] 

In state space form, 

mxG - Yt 
N 

Y' 

IZ - Nt ' N, 

(2.4) 

(2.5) 

Yr - mu o Ys 
=[1N, 

- mxGuo 'b NS ' 

5c= Ax + BU (2.6) 
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where 

a� a� b� 
A= B= 

a2, a22 b2, 

The coefficients are defined as 

(i 
- N; )Y% 

- 
(mxG 

- YY)N, 

a� Imi 
(i 

-N1)(Yr - muo) - 
(mxG 

- Yc)(N1 -mxGuo) 
a12 =: +MI 

(m-Y. )Ný, 
-(mxG -Ný, 

)Y� 

aZ, IMl 
(m-Yv)(Nr 

-mxGuo) -(mxG -Ný)(YY -mu. 
) 

a22 IMI 
(I, 

- Nj)Ys -(mxG- YT)Nb 
b11 = i. ffi 

_ 
(m-Y, )N8 

-(mxG -Ný)Y6 b21 
IMI 

where IMF is the determinant of M. 

(2.7) 

Since the ultimate aim of modelling is to identify the relationship between 

rudder angle S and the yaw angle 'I', it is convenient to introduce k as an 

additional variable in (2.6). The state-space representation now becomes 

X, = A1x1 + B, u 

where 

a� a12 
A, = a21 a22 

0 1 

0 
0, B1= 

B, 
andx, =iv 

0 

T r IF] 

(2.8) 
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2.2.2 Nomoto's Models 

Nomoto et al. [1957] have proposed two simple linear transfer functions 

based on the model of Davidson and Schiff, Nomoto's models have been used 

extensively by control engineers for analysis and design of ship autopilots. 

The major contributions include [Koyama, 1972; Nomoto, 1972; Källström, 

1979; Ohtsu et at. 1979; Astrom, 1980; Arie et at., 1986; Lu and Zhang, 

1987; Katebi and Byrnes, 1988; Endo et al., 1989; Richter and Burns, 1993, 

Balasuriya and Hoole, 1995; Lauvdal and Fossen, 1995; Holzhüter and 

Schultze, 1996]. These models give a reasonably accurate description of the 

steering behaviour for a large class of ships [Van Amerongen, 1982]. 

The Nomoto's second order model can be derived from (2.8) as follows: 

9V(S) 
= c(sl - A, )-'B,, c= [o o 1] s(s) 

or 

'P(s) b, s+b2 (2.9) 
b(s) (s2 +a, s+a2) 

where 

a, = -a� - a22 
a2 = a�a22 - a, 2az, (2.10) 
b, =b 

21 

bz = az, b� - a�b21 

The above transfer function is commonly represented as 



is 

`Y(s) K(T3s+1) 
6(s) (T, s+ 1)(T, s+ I) 

(2.11) 

This is known as the Nomoto's second order model. In the time domain, the 

model can be expressed as 

T, T, T+(T, +TZ)`Y+`Y=K(S+T38) (2.12) 

The parameters T, 
, 
T2 

, 
T3 and K depend on the operating conditions and are 

usually referred to as steering quality indices [Nomoto et al. 1957; Clarke, 

1987; Crane et al. 1989]. T, and T2 are generally positive, however, K and T, 

can have positive or negative values. T1 is positive for course stable ships and 

it is negative for course unstable ships [Koyama, 1972; Crane et al. 1989; 

Fossen, 1994]. 

An approximation of (2.11) can be obtained by setting T=T, + T2 - T3 : 

'P(S) 
=K (2.13) 

S(S) (TS + 1) 

This is known as the Nomoto's first order model. In the time domain: 

T'Y +T = KS (2.14) 

The parameters K, T,, T2 
, 
T3 and hence K and T can be computed using 

(2.6) through (2.11) if the exact values of the hydrodynamic derivatives are 

known. This means that the determination of K, T,, T2 and T3 is equivalent to 

the determination of the model of Davidson and Schiff. Both of them define 

the governing equation of motion and consequently provide a complete 
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expression of steering quality of a ship. The former procedure has, however, 

the advantage that it does not require experimental procedures as lengthy as 

the latter [Nomoto, et al., 1957]. As the values of these parameters for the 

ships considered in this thesis are already available in the literature, the issues 

related to the computation/identification of these parameters will not be 

discussed. The values of these parameters for some of the ships are given in 

Table 2.2. The Table shows that the parameters Ti, T2 
, 

T3 and K of the 

Nomoto's Second order model and the parameters T and K of the Nomoto's 

first order model are significantly different for different ships. Äström [1980] 

suggests that it is advantageous to re-write Nomoto's first-order model of 

(2.13) as follows: 

P(s) 
-b (2.15) 

8(s) s+a 

where b=K and a= 
I 

TT 

The reason is that the parameter b varies less than K. For most of the 

ships, this parameter changes only by a factor of 3 over the operating 

conditions [Aström, 1980]. The parameters a and b are also given in Table 

2.2. The gain b can be expressed approximately as follows: 

AL 
D 

(2.16) 

where A is the rudder area in square meters, D is the displacement in cubic 

meters and c is a parameter whose value is approximately 0.5. [Aström and 

Wittenmark, 1995]. The parameter a depends on trim, forward speed and 

loading. Its sign may change with the operating conditions. 
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Table 2.2: Model parameters for different ships 
Ship Mine 

Sweeper 

Merchant 

ship 

Series 60 

Merchant 

ship 

MARINER 

Tanker 

190000dwt 

Tanker 

210000dwt 

Length 

(m) 

55 160 161 305 310 

Speed U 

(m/sec) 

4.0 7.8 7.7 8.2 4.1 

Speed 

(knots) 

7.8 15.2 15.0 15.9 8.0 

K 0.365 -0.0536 -0.187 0.0914 -0.0105 
T, -112.3 56.61 119.4 -382.0 1058 

T2 3.988 6.358 7.737 14.13 37.8 

T3 8.938 14.56 18.61 34.96 84.68 

T -117.25 48.408 108.527 -402.83 1011.12 

b -0.003113 -0.0011 -. 001723 -0.000227 -1.038e-5 
a -0.008528 0.02066 0.00922 -0.00248 9.891 e-4 

Reference Goclowski & 

Gelb [ 1966] 

Zuidweg 

[1970] 

Chislett & 
Strom-Tejsan 

11965b] 

Van Berlekom 

& Goddard 

[19721 

Ekdahl & 

Henriksson 

119701 

2.3 Normalization 

It is customary to normalize models of ships by introducing dimension- 

free quantities. One commonly used system for normalization of ship models 
is the prime system of SNAME [1950]. In this system, the length unit is taken 
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as the length of the ship, L, the unit of time is LIU, and the unit of mass is 

2 pO where p is the mass density of water. 

Prime non-dimensional forces, moments, velocities and accelerations (see 

Table 2.3) are defined accordingly in the following way: 

" Non-dimensional force 

" Non-dimensional moment 

_ 
Force 

2 pL2U2 

_ 
Moment 

OU2 

" Non-dimensional angular velocity 
Angular velocity L 

U 

Acceleration 
" Non-dimensional acceleration = U2 

L 

" Non-dimensional angular acceleration = 
Angular acceleration L2 

u2 

Table 2.3: Prime non-dimensionalized coefficients 

M, mJ PL3 1itIL XG= x(3 /L u'- u/U 

V, = V/U 
_` 

Uz I' i/I 
L) r-T 

Uz 

Y"= 1'v i PL3 Y'ý =Y2 PC Y" = Yt PL3U Y'f = Yi Z PL3U 

Nv= Nv Z pL3U N'ý = N, ý 2 pL4 N'f = N, 
? pL4U N'i = Nr 2 pL3 

Y, 
vv = Y"" z pL2 Y 

yr = Y" Z pL3 N'vv = Nvv 
2 pL3 N yr = N,, /(: 

-2 PO 

Ys-YSýýipLýUýý N's=Ns/(2PL3U2) ýý"-1xLSýpLý Iý-1ý zPLý 

Another normalization system, the bis system, was proposed by Norrbin 

(1970]. In this system the length unit is L, the time unit is L/g , where g is 

the acceleration of gravity, and the mass unit is m. 
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The non-dimensionalized variables used in the bis system are given in 
Table 2.4 where V is the hull contour displacement and µ= m/pV is the body 
mass density ratio. The non-dimensionalized variables in the bis system are 
usually denoted by a double prime ()". For example a non-dimensionalized 
variable in in this system will be represented as m". 

Table 2.4: Normalization variables used for the 
Bis system 

Maýs v 
Inertia moment ppVL2 

Time L/g 

Reference area 2V 

-Position 
L 

An I 
Linear velocity Lg 

Angular velocity 
uL 

Linear acceleration g 

Angular acceleration g 

Force ýLpgv 

Moment ppgOL 

The model of Davidson and Schiff in its normalization form (prime 

system) can be expressed as 

M'k'= N' x'+b' 8' (2. l 7) 

where 
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m'-Y' . V 
M'= 

m' x' G -N' . V 

m' x' -Y' . Gr [Y"' 
N'= 

F -N'. 
N', 

zr 

Y' -m' u' ro 

N', -m' x' G u'0 ' 

Y' v' 8 b' = N, bx'=r, 

It is also possible to obtain a model structure in terms of the actual state 

variables and the non-dimensionalized model parameters. For example, the 
Davidson and Schifis model can also be expressed as: 

M'x=N'x+b'u 

or 

Uz ým'-Y'. ý Üz 
z 

(m'x'G-Y'ý) 

L! L (m'x'G-N'ýý ÜZ 
U2 

U 
Y'v Ü (Y'r -m' u'o) 11+ S 

IV] [Y's 

1U 
N' 

VUL 
(N' 

_m' Xcu o) 
r Ni 

s 

(2.1 s) 

similarly Nomoto's second-order and first-order models can be re-written as: 

Nomoto's second order model: 
(-! lrl 

T'iT'2+U)(T', +T'2)'Y+P=I 
LJK'S+K'T'3 

(2.19) 

where T'ý = TAI LJ 
,j=1,2,3 and K'= ILK 
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Nomoto's first order model: 

L)T+)K' 
(2.20) 

where 

Ký IU IK' T' 
(! 

IT (2.21) 

The main advantage of this type of representation is that the non- 
dimensional gain and time constant will typically be in the range: 0.5<K' <2 

and 0.5<T'<2 for most ships [Van Amerongen, 1984, Fossen, 1994]. Crane 

et al. [ 1989] demonstrate that a ship with high responsiveness to rudder and 

yaw turning ability will have a small value of Tand a large value of K'. In 

other words, a large ratio 
K is indicative of good manoeuvrability. T' 

Norrbin [ 1965] and Nomoto [ 1966] propose that the turning ability of a 
stable or marginally stable ship can be measured on the basis of the following 

turning index: 

I K' 
p--- 

2 T` (2.22) 

Norrbin concludes that P>0.3 guarantees a reasonable standard of course 
change quality for most ships while P>0.2 is sufficient for large oil tankers. 
The above index is based on analysis of the zig-zag test (see Section 2.5.2). 

2.4 Nonlinear Models 

The Nomoto's models (also the model of Davidson and Schiff) are based 

on the assumption of mean constant forward speed and work well, in calm 
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seas, if the yaw rate and the sway velocity are small. If this is not the case, 

nonlinear models must be used. A number of nonlinear models have been 

proposed. Two of these nonlinear models are reviewed below: 

2.4.1 The Model of Bech and Smith 

This model is an extended version of the Nomoto's second-order model 

and is described as follows: 

Bech and Smith [1969] noticed that the parameters 
K'T, +TZ 

and T, TZ T, T2 

T; of (2.12) are approximately constant for a given ship at constant speed, 

whereas 
1 

changes considerably. They argued that any non-linear effects T, TZ 

could be included in this term. Hence they amended (2.12) as follows: 

`' +1+1 `I' +KHB ('Y) =K 
(T+) (2.23) 

T, T2 T, T2 T, TZ 

where HB ('Y) is a non-linear function of `J 
, while the other coefficients are 

constant. HA (`I') is determined from the relationship between S and `Y in the 

steady-state (= `P =S= 0). This relation is determined from the results of 

the reverse spiral test for course unstable ships or the spiral test in the case of 

course stable ships (See Section 2.5.3). 

Mathematically, HA (P) can be expressed as follows: 

HB(4') = 0373 +132'x'2 +(3, 'Y+ßo (2.24) 

where ß;, (i = 0,1,2,3) are called Bech's coefficients. 
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For the ships with a symmetrical hull, ß2 ßo 0 

.,. 
HB (kp) (2.25) 

where the parameter 03 is always positive in value, and (31 can have positive 

and negative values. When ß, is negative the ship is course unstable. 

2.4.2 Norrbin's Model 

This model is similar to the model of Bech and Smith and can be obtained 

by substituting 'Y = Hr, (`Y) in (2.14): 

T`1 +HN (`Y) = K6 (2.26) 

where the non-linearity HN(Y) is defined as [Norrbin, 1963]: 

HN(`Y)=al'f +a2`Y2 +al IV +ao (2.27) 

where a; (i = 0, 
, 
2,3) are Norrbin's coefficients. These coefficients can be 

related to Bech's coefficients as follows: [Fossen and Paulsen, 1993; Fossen, 

1994] 

a. = 
R; 

,i=0,1,2,3. 
(2.28) 

l 

For most ships, a2 = ao = 0. Therefore, (2.27) reduces to 
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HN(4)=a3`I'3+al ' (2.29) 

Now (2.26) becomes 

6= m`Y + d, 4I' +d 34'" (2.30) 

GC 3 
where mT K, 

d, =K and d3 =K 

The model of Bech and Smith and the Norrbin's model have been used 

extensively by many authors for the design of ship autopilots. These include 

[Bech, 1972; Honderd and Winkelman, 1972; Van Leeuwen, 1972; Van 

Amerongen, 1982; 1984; Fossen and Paulsen, 1993; Layne and Passino, 

1993; Desanj et al., 1997]. 

2.5 Full Scale Trials: 

To determine a ship's manoeuvring characteristics it is common practice 

to carry out a series of standard trials. The manoeuvring characteristics 

include the turning and course keeping ability, stability and performance of 

the ship. The ship parameters may also be estimated from these trials. The 

International Towing Tank Conference (ITTC) has proposed a number of 

standard ship manoeuvres, some of these are briefly described below. 

2.5.1 Turning Circle Manoeuvre: 

This is the most commonly used and probably the oldest test for models 

and ships. In this type of manoeuvre the ship makes a straight course 
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approach at a fixed speed. The rudder is then put over to a specific angle and 

held there whilst the ship completes a circle. It is proposed that the ship 

should be turned at a maximum speed with a rudder angle of minimum 150 to 

obtain the turning circle. A typical turning circle is shown in Figure 2.3. The 

following measurements are usually taken: 

TRANSFER 

---------- ------------ 

TACTICAL DIAMETER -a DRIFT ANGLE 

Figure 2.3: Turning circle manoeuvre 

1. Advance: The distance the ship travels forward in the direction of the 

approach course from the instant the rudder is put over until the vessel has 

made a 900 change of heading. 

2. Transfer: The distance normal to the original course in which the ship 

achieves a 900 change of course. 

3. Tactical Diameter: It is the distance normal to the original course in 

which the ship achieves 180° change of course. 

4. Drift Angle: It is the angle between the ship's head and the tangent to the 

path on the circle. 
5. Steady Turning Diameter: The diameter of the steady circle path the ship 

takes up. 
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The steady turning radius R can be computed as follows: 

1 
R=K80=K'So(UL) 

where 8o is the constant rudder angle. 

(2.31) 

The steady diameter D of the turning circle can be defined as [Crane et al., 
1989]: 

D=R (2.32) 

substituting the value of R from (2.31) yields 

D= KOS0 (2.33) 

This equation shows that with a larger value of K' a smaller rudder angle 

may be used in achieving a given turning diameter. 

2.5.2 Zig-Zag Manoeuvre: 

The zig-zag manoeuvre, also called a Kempf manoeuvre after G. Kempf 

[1932], essentially determines the response of the ship to reversal of rudder. 

This test can be used to compare the manoeuvring properties and control 

characteristics of a ship with those of other ships. A typical zig-zag 

manoeuvre would be as follows (Figure 2.4): 

1. Set a certain rudder angle (e. g. 200) to starboard. 
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2. When ship's course deviation has reached this angle to starboard, reverse 

the rudder to the same angle to port. 

3. When the course deviation has reached the same angle to port, reverse the 

rudder again to the same angle to starboard and so on. 

Important parameters of this manoeuvre are: 

(i) the time between successive rudder movements. 
(ii) the overshoot angle which is the amount by which the ship's heading 

exceeds the 200 (say) deviation before reducing. 

Time [see. ] 

Nomoto et al. [1957] determined the parameters K and T of equation 

(2.13) by using this manoeuvre. Their method is reviewed by many authors 

including [Clarke, 1987]. 

2.5.3 Spiral Manoeuvre: 

This manoeuvre was first proposed by J. Dieudonne [1953]. This test 

produces a characteristic which indicates whether the ship is directionally 

stable or unstable. This manoeuvre consists of starting the vessel in a 10° - 

Figure 2.4: Zig-Zag Manoeuvre 
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15" (say) rudder angle turn and then altering the rudder in steps back through 

amidships to the same angle on the opposite helm. This procedure is then 

repeated in the opposite direction back to the original helm. As each rudder 

step is made the angle is held while the rate of turn steadies, and this rate of 

turn is measured and plotted against the corresponding rudder angle. For a 

stable ship, the r-8 characteristic is a single valued function passing though 

or near the origin (Figure 2.5(a)). For a directionally unstable ship, the spiral 

manoeuvre yields a hysteresis type curve, as shown in Figure 2.5(b). To 

eliminate this discontinuity, Bech [1966,1968] suggested a modified 

manoeuvring trial whereby the rudder position is adjusted in order to maintain 

a constant rate of turn and hence produce a reverse spiral curve (Figure 

2.5(c)). This characteristic is now a continuous function which equates the 

non-linearity HB ('Y) in (2.24). 

r 

Figure 2.5 (a): Course stable Figure 2.5 (b): course 
ship unstable ship. 

6 6 6 

Figure 2.5 (c): Bech's reverse 
spiral curve 

2.5.4 The Pull - Out Manoeuvre: 

This manoeuvre is also used to determine the directional stability of a 

ship [Burcher, 1972]. A rudder angle (;: t; 200) is put over and returned to 

amidships after steady turning has been attained. Both a port and starboard 

turn are performed and the ship's turn is measured/noted in each case. For a 

directionally stable ship, the rate of turn will be reduced to zero (Figure 2.6 
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(a)) and the ship will attain a new straight path. On the other hand, a residual 

rate of turn will persist if the ship is unstable, as shown in Figure 2.6 (b). 

r 

-r 

Figure 2.6 (a): Pull out manoeuvre for a 
stable ship 

f 

4 

Figure 2.6 (b): Pull-out manoeuvre for an 
unstable ship. 

The important feature of this test is that it is amenable to analysis to 

determine a measure of stability. Thus stable ships can be compared as to the 

degree of stability they possess. If the time history of rate of turn is plotted as 

the log of rate against time, it is found that after the initial transient the plot of 

a stable ship becomes a straight line, as shown in Figure 2.7. The slope of this 

plot can be used as a measure of stability, the steepest the slope the greater 

the degree of stability. 

In r 

Time 

Figure 2.7: Logarithmic presentation of the pull-out 
manoeuvre 
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2.6 Parameter variations: 

As we have already mentioned, the parameters of the ship models change 

with various operating conditions such as the forward speed of the ship, the 

depth of water and loading conditions etc. In this Section we shall discuss in 

some detail the influence of these operating conditions on parameters of the 

ship models. 

2.6.1 Forward Speed Effects: 

The ship parameters change significantly with the forward speed of the 

ship. One possible way to remove the influence of the forward speed on the 

model parameters is to use non-dimensional (normalized) quantities as 

discussed in Section 2.3. Particularly the relationship (2.21) is very important 

that clearly explains how the parameters K and T can be made dimensionless. 

An alternative way to remove the influence of the forward speed U is 

described below [Fossen, 1994]: 

Let Ko be the gain constant and To be the time constant of the Nomoto's 

first order model (equation (2.13)) at a nominal speed U� m/sec. Using (2.21), 

we can obtain 

K1- -u 
Lo 

Tý 
C 

Lo)To 
(2.31) 

0 

Eliminating K' and T' from these expressions yields 
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KU I---')K0 
UoJTo 0 

(2.32) 

The parameters To and KO can be computed from a standard manoeuvring 

test, e. g. from the results of the turning circle or zig-zag manoeuvres. 

Similarly, the influence of the forward speed can be removed from the 

parameters of the model (2.11) and (2.15) as follows: 

T, = T10 
U° 
U 

U T2 = T20 

T3=T301U°I (2.33) 

a=a° UU 
0) 

z 
b=b° U 

U° 

where T; o (i=1,2,3), ao and bo are the values of the corresponding parameters 

at speed Uo. 

2.6.2 Effects of the depth of water: 

The ship parameters also change significantly with the depth of water. 

Fujino [1968] has studied the effect of the water depth on scale models of 
both a MARINER class ship and the tanker TOKYO MARU at various 
depth to draft (H/DT) ratios. The parameters of these ships at a speed of 7 



32 

knots (1 knot = 1852 m/hour 0.5144 m/s) under various conditions of 

water depth are given in Tables 2.5 and 2.6 respectively. The open loop 

eigenvalues X,, X2 are also given in the Tables. The third eigenvalue is always 

at the origin of the s-plane. 

Table 2.5 shows that the MARINER vessel is stable under all conditions 

of H/DT. There is an initial decrease in stability at H/DT = 2.5 and then an 
increased stability in very shallow water (WDT = 1.5). The two eigen values 

converge at approximately H/DT = 1.4 and then become a complex conjugate 

pair for lowest values of H/DT. 

The tanker TOKYO MARU is less course stable overall than the 

MARINER. This can be verified from Table 2.6. The tanker becomes 

unstable for the intermediate range of water depth to draft ratios around 
H/DT = 2.50 and H/DT = 1.89. 

Table 2.5: Parameters and eigenvalues of the MARINER ship at 7 knots at 

various depth to draft (H/DT) ratios 
H/DT 

Parameters 

1.21 1.50 1.93 2.50 00 

Tl' 0.231+jO. 153 1.072 2.678 3.244 2.749 

T2' 0.231 jO. 153 0.362 0.356 0.382 0.367 

T3' 0.227 0.497 0.585 0.778 0.729 

T' 0.234 0.957 2.449 2.848 2.386 

K' -0.326 -1.086 -2.377 -2.549 -2.026 

X, -3.009+j1.993 -0.9328 -0.3734 -0.3083 -0.3638 

ý12 -3.009 j 1.993 
-2.7624 -2.8090 -2.6178 -2.7248 
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Table 2.6: The parameters of the tanker TOKYO MARU at 7 knots at 
different H/DT ratios 

H/DT 

Parameters 

1.23 1.50 1.89 2.50 00 

T1' 1.279 15.630 0.405 0.415 12.680 

T, ' 0.403 0.376 -9.986 -18.880 0.420 

T, ' 0.373 0.576 0.664 0.804 0.893 

T' 1.299 15.43 -10.25 -19.23 12.21 

K' -0.773 -8.511 5.141 9.140 -5.815 

ý. j -0.787 -0.064 +0.1 +0.053 -0.079 
X2 -2.481 -2.660 -2.469 -2.140 -2.381 

These results show that the various depths of water can change the 

parameters of ships and a course stable ship can become unstable at certain 
depths of water. 

2.7.3 Effects of different loading conditions: 

Apart from variations with speed and the depth of water, the parameters 

of ship models also change considerably with trim and loading. Aström [1980] 

has computed the parameters of the Nomoto's second order model of (2.11) 

for a large tanker at a constant speed of 8 m/sec under four different loading 

conditions. These parameters are given in Table 2.7. It can be seen that there 

is a significant variation in parameters at different loading conditions. It can 

also be noted that the ship is stable in operating conditions OCI, OC2 and 
OC3 but it is unstable in condition OC4. The condition OC 1 corresponds to 
ballast and OC3 and OC4 to full load. In OC4 the tanker has a forward trim. 
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Table 2.7: P arameters of a tanker at di fferent loading conditions. 

Operatingl T, T2 T3 K T 

condition 
OCI 80 15 40 -0.013 50 

OC2 160 20 30 -0.040 150 

OC3 1000 25 60 -0.130 1000 

OC4 -300 30 65 0.040 -400 



Chapter 3 

AUTOMATIC STEERING OF SHIPS 

Automatic steering of ships has its origin near the beginning of this century, 
following the invention of gyrocompass. Sperry discussed the problem of 

automatic steering in 1922 [Sperry, 1922] and in the same year Minorsky 

presented the basic theory for directional stability of automatically steered 

ships. Minorsky [Minorsky, 1922] begins his historical and pioneering paper 

of 1922 with the following words: 

The problem of directional stability of automatically steered ships is gradually 

becoming of increasingly greater importance for various reasons. The possibility of 

obtaining more accurate steering by automatic means than can be accomplished by 

manual control with its inherent limitations due to the low sensitiveness of the human eye 

in detecting slow angular motions, fatigue etc., becomes of great importance with the 

increase in size of ships and cost of fuel. For merchant ships, an accurate and reliable 

automatic steering device becomes a real money saving proposition, largely justifying its 

use. 

Amazingly and interestingly, these 76 years old words are still true and the 
design of a good and reliable ship autopilot is still a hot topic of research. 

This Chapter throws some light on the development of ship autopilots during 

these 76 years. Various methods of designing ship autopilots are reviewed 

with illustrative examples. The Chapter is organized as follows. A brief 

introduction of a ship steering control system is presented in Section 3.1. 

Reference models are discussed in Section 3.2. A simplified model of steering 

machine is presented in Section 3.3. A ship autopilot is defined in Section 3.4. 

Section 3.5 reviews the early proportional autopilots. In Section 3.6 a number 

of methods of designing PD/PID controllers for the application are described. 
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Section 3.7 covers two non-linear autopilot design methods - the feedback 

linearization and the sliding mode control. Section 3.8 provides an overview 

of adaptive autopilots. In Section 3.9, intelligent autopilots have been 

reviewed briefly. 

3.1 Ship Steering Control 

Generally speaking, a ship steering control system is a single input single 

output (SISO) control system, as shown in Figure 3.1, where 'Yr is the 

reference heading, 'Pd is the desired heading, lY is the actual heading and 8, is 

the commanded rudder angle (all in degrees). 

T, Reference TA + Ship b, Steering s Ship IF 
Mndd autopilot machine Model 

Figure 3.1: Ship Steering Control System 

We have already reviewed a number of ship models in the previous 

Chapter, in this Chapter we shall describe the remaining blocks of the control 

system (Figure 3.1) with particular emphasis on the controller design. 

3.2 Reference Model: 

A reference model may be regarded as a prefilter which ensures that the 

numerical difficulties associated with large step input are avoided [Fossen, 

1994]. The dynamics of the reference model should be matched to the 

dynamics of the ship regardless of the magnitude of the demanded change of 
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reference yaw angle. A reference model which is too sluggish can not produce 

an optimal performance since the ship can not reach the required heading in 

the minimum time. On the other hand we should not use a reference model 

which is too fast compared with the ship response characteristics because this 

may cause rudder actuator saturation and performance degradation. 

Generally a second order reference model is used. Such a model can be 

described mathematically as follows: 

T4 K. 
T, T. S2 +s+Km 

(3.1) 

where T. and K. are the design parameters that describe the closed loop 

behaviour of the system. For most practical implementations, these 

parameters are chosen as [Van Amerongen, 1982; Fossen, 1994]: 

I LT' T, 
ý<2 U and Km=<T,,, (3.2) 

where ý is the damping ratio of the closed loop system which is typically 

chosen in the interval 0.8<_ ý <_ 1. 

Comparing (3.1) with the general second order system: 

2 Td 
__ 

Wo 
T, S2 +2W. S+Wn 

(3.3) 

we can express T. and K. in terms of the damping ratio ý and the undamped 

natural frequency w� of the closed loop system as follows: 

Tom, =1 and K. = wn2Tm (3.4) 
2ýw 
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A second order model may not be sufficient to generate smooth 

accelerations. In such situations, a third order model of the following form 

can be used: 

Td Cm 
I, s3 +ams2 +Um$+C. 

(3.5) 

where am , 
b, � and c, are constants. The method of computing these 

parameters can be found elsewhere [Simensen and Murray-Smith, 1995]. 

Some other higher order reference models are also available in the 

literature [Fossen, 1994]. 

3.3 Steering Machine: 

The function of a steering machine is to move the rudder angle to a desired 

heading when demanded by the control system or by the helmsmen. A 

simplified model of the steering machine is shown in Figure 3.2 
. 
This model 

of the steering machine was proposed by Van Amerongen [1982]. 

Generally, the rudder limiter and rudder rate limiters in Figure 3.2 are 

typically in the ranges: 

8. = ±35°, and 8 
m�, = ±2 to ±7°/s. (3.6) 

--- 

- 1, 

-ý 
S 

Rudder rate 
Rudder limiter 
limiter 

Figure 3.2 Simplified diagram of the steering machine 
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3.4 Ship Autopilot: 

An autopilot is a ship's steering controller, which automatically 

manipulates the rudder to decrease the error between the reference heading 

angle and the actual heading angle. Ship autopilots can be designed to 

perform two entirely different functions: course keeping and course 

changing. In course keeping the ship should stay on a set course, whereas in 

course changing, the control system should provide good manoeuvrability. 

An autopilot that can be used to make course changes is especially needed 
for large tankers, as they are difficult to handle because of their large size. 

Particular consideration is therefore given to the course changing problem in 

this thesis. 

The development of ship autopilots has undergone the following stages 

during the past 76 years: 

" Very early autopilots (proportional controllers) 

" PD/PID (linear) autopilots 

9 Nonlinear autopilots 

" Adaptive autopilots 

" Intelligent autopilots 

These developments are reviewed in the following sections: 

3.5 Very Early Autopilots: 

Very early autopilots were mechanical in construction and were based on 

simple proportional control. The control law for proportional control can be 

represented by the following equation: 
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6= Kp (Vd 
- 

41) 

where Kp is a proportional constant. 

(3.7) 

In practical terms the measured heading signal from the gyrocompass is 

compared to the desired heading and the heading error is input to the 

controller. The controller output then drives the rudder servo. Such 

controllers were popular until the 1950s. 

Proportional control could only be satisfactory for the control of small 

ships but could not be adequate for the steering of large tankers. This type of 

control would cause the vessel to continue to oscillate either side of the 

required course; the steering gear would be constantly hunting to keep the 

ship on the correct mean course. The vessel would eventually reach its 

destination but expensive wear in the rudder gears and abnormal high fuel 

consumption restricted their use as automatic control devices. Early 

autopilots had other problems as well. The hydraulic telemotor unit, a device 

used to control the movement of the rudder, was reported to malfunction 

because of leakage [Tetley and Calcutt, 1991]. An electrical system now 

replaces this inefficient device. 

3.6 PD/PID Autopilots: 

The unsatisfactory performance of the proportional control led to the use 

of proportional- derivative (PD) and proportional-integral-derivative (PID) 

autopilots. In fact, Minorsky proposed the use of PID autopilot in 1922. Tests 

on the practical implementation of the controller were carried out by 

Minorsky for the Bureau of Construction of the US Navy in 1923, although 

they were not reported until the 1930 [Minorsky, 19301. Despite considerable 
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success of the control system, the operating personnel at sea were very 

definitely and strenuously opposed to automatic steering, the US Navy 

withdrew its support and Minorsky was forced to sell his patents rights to the 

Bendix Corporation [Bennet, 1993]. In the meantime, Sperry's proportional 

controller got considerable popularity and in the 1930s, over four hundred of 

Sperry's autopilots had been installed on merchant ships throughout the world 
[Burns, 1990]. After the introduction of the Ziegler-Nichols rules [Ziegler and 

Nichols, 1942,1943] in the early 40s, the popularity of PID controllers grew 

exponentially and found enormous applications including ship steering 

control. Probably the first commercial use of PD control was mentioned in 

1951 by Luke and West [Luke and West, 1960]. They showed that the 

correct combination of both proportional and derivative terms could produce 

reasonable control of the vessel. From the 1950s to the 1980s, almost all ship 

autopilots were based on PD/PID controller. Even today, most commercial 

ships use this type of autopilot. 

A PID controller can be represented by the following equation: 

u(t) = Kpe(t)+Kde(t)+K; $ e(i)d-c (3.8) 

where Kp 
, 

Kd and K; are the proportional, derivative and integral gains 

respectively. u(t) is the controller output and e(t) is the error signal. Another 

equivalent form of the controller is given by 

u(t) =Kp e(t) +1f e(z)dz +T 
de(t) 

Ti 
0d 

dt 
(3.9) 

where T; =' and Td =Kd are known as the integral and derivative time 
K. Kp 

constants respectively. Many methods have been developed to compute the 

parameters K. Kd and K; (or Kp, T; and Td) of the controller. A quick review 
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of these methods can be found in [Aström et el., 1993; Aström and 

Hägglund, 1995; Unar, 1995; Unar et al., 1996 etc. ]. 

In the particular case of ship steering control system, the PID controller is 

usually implemented in the following form [Crane et al. 1989; Fossen, 1994]: 

cS=Kp(`Yd-`I')-Ka`V+K; 
J'(vd-`Y)dh (3.10) 
0 

In the following Sections, we shall review some methods of designing 

PD/PID controllers for a ship steering control system. 

3.6.1 PID parameters in terms of the damping ratio and the undamped 
natural frequency: 

Fossen [1994] has derived simple relations for computing the PD/PID 

controller parameters in terms of the damping ratio ý and the natural 
frequency w� of a closed loop ship control system. His method is described 

below: 

For the sake of simplicity, we shall first design a PD controller and then we 

shall include the integral gain. 

A PD controller can be expressed as follows: 

5= Kl, (Td 
- T)- Kd'' (3.11) 

If we represent the ship dynamics by Nomoto's first order model of (2.14) 

then the corresponding characteristic function of the closed loop system can 
be obtained as 

T`P+(1+KKd)v+ KKp'Y=KKp`P d (3.12) 
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The damping ratio and the natural frequency of the system can therefore be 

obtained as 

1+ KK KK 
2 TKK 

and w. = 
T 

P 

which suggest that the parameters Kp and Ka can be computed as: 

K _Tw2 K -2Tcwn-1 Kp 
K d- K 

(3.13) 

Fossen [ 1994] suggests the following rule of thumb for the integral action: 

KP 
(3.14) 

K' 
� 10 

° 

Therefore, 

K (3.15) .= 
W°Kp 

=W°T 1 
10 lOK 

Example 3.1 

Consider a fully loaded unstable oil tanker of length 350m. The parameters of 

the tanker at a speed of 8.1 m/sec are [Dyne and Trägärdh, 1975] :K=- 

0.019 per second and T= -153.7 seconds. The rudder limiter and rudder rate 

limiter are chosen as ±300 and ±2.33°/s respectively. A second order reference 

model of equation (3.3) is used to generate the desired states. If the desired 

damping ratio is I and the natural frequency is 0.03 radians per second, then 

the PID controller parameters (KQ Kd and K; ) can be computed from (3.13) 

and (3.15) as: 
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Kp = 7.2805, Kd = 538, K; = 0.0218. 

The performance of the controlled system for a reference heading change 

of 20° is shown in Figure 3.3. 
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Figure 3.3: Heading and rudder response of an oil tanker at a speed of 
8.1 m/sec for a reference heading of 20°. 

The Figure shows that the ship does not follow the desired response during 

turning. The performance of the controller for a reference heading change of 

50° at the same speed is illustrated in Figure 3.4. An overshoot of about 18° 

can clearly be observed. This can be dangerous, if other ships are in the 

surroundings or if the ship is sailing in a narrow channel. Moreover, the 

rudder reaches its saturation limits whilst the ship is turning. The performance 

of the controller is therefore not robust, even at a fixed forward speed of the 

ship 
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Figure 3.4: Heading and rudder response of oil tanker at a speed of 
8.1 m/sec for a reference heading of 500. 

3.6.2 Internal Model Control Laws: 

Internal model control (IMC) is one of the powerful methods that has 

received considerable attention during the past 15 years. A brief introduction 

to this approach is given in appendix A. This approach has found many 

successful applications particularly in the field of chemical process control. 

However, this technique has been considered for a ship steering control 

system only by this author [Unar and Murray-Smith, 1997a]. This approach 

can be used to derive PD/PID controller settings for a wide variety of process 

models [Rivera et al., 1986; Moran and Zafiriou, 1989]. For example, for the 
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Nomoto's first order model of equation (2.13), the PD parameters can be 

calculated as 

K1 
, KQ 

Kd=T 
(3.16) 

The integral action may be included by using the rule of thumb of equation 

(3.15). 

From the above equation, we see that the controller parameter Kp is 

inversely proportional to the gain constant and the parameter Kd is equal to 

the time constant of the ship. When the speed of the ship changes, both T and 

K change and hence the controller parameters change. The main advantage of 

the method is that there is only one parameter 12 to be specified. This 

parameter is known as the IMC tuning constant. 

Example 3.2 

In this example, we consider the model of ROV Zeefakkel. It is a ferry of 

length 45 m. The parameters of the ferry at a speed of 5 m/sec. are K=0.5 

per second and T= 31 sec [Van Amerongen, 1982]. Using equation (3.16) the 

PD parameters can be computed as: Kp = 57.1429 and Kd = 31 for 0=0.03 5. 

The desired heading response is represented by the third order model of 

equation (3.5) with am = 0.9341, bm = 0.2040, and cm = 0.0182 [Unar and 

Murray-Smith, 1997a]. The maximum rudder limit is chosen as ±350 and the 

maximum rudder rate is ±7°/sec [Fossen and Paulsen, 1992,1993]. The 

performance of the controller at a speed of 7m/sec for a reference heading 

change of 10° and 50° is illustrated in Figure 3.5. As can be seen, the 

performance is quite satisfactory. The controller will also perform well at 

other speeds, as the controller parameters are directly related to the ship 

parameters T and K which vary with the forward speed of the ship. However, 
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it should be noted that the internal model controllers usually perform well 

only for open loop stable systems. The performance can not be guaranteed for 

open loop unstable ships. 
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Figure 3.5: Performance of the PD controller tuned using the IMC laws 
(a) Heading at a reference input of 10° (c) the corresponding control signal 
(b) Heading at a reference input of 50° (d) the corresponding control signal 

3.6.3 Controller Design using Optimal Control Theory 

The optimising of steering requires first the consideration of a suitable 

criterion for good steering. The definition of a suitable criterion is not 

straightforward as there are many requirements on an autopilot for ship 

steering. It should guarantee stability and manoeuvrability over a wide 

operating range and it should attempt to minimize the propulsion loss induced 

by steering. A simple loss function can be formulated from the following 

argument. When a ship is underway, the action of the external influences - 
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such as wind and waves - gives rise to a continuous yawing motion to either 

side of the desired course. This motion increases the drag of the ship, which 
in turn reduces its speed and also causes the ship to follow a longer sinusoidal 

path, which further reduces its down track speed. The action of the autopilot 

in trying to correct the heading deviations gives rise to rudder movements, 

which also cause an increase in drag. 

Nomoto and Motoyama [1966] were the first to point out that the 

magnitude of these drag forces may be sufficient to cause significant speed 

reductions in certain cases. Koyama [1967] later showed that, although these 

effects could not be totally eliminated, they could be minimized by the correct 

selection of the proportional and derivative gain controls on the autopilot in a 

particular sea way. Motora [1967] and Motora and Koyama [1968] 

considered the use of a performance index for the measurement of propulsion 

losses. This expression consisted of two terms. One term was attributed to the 

excess distance covered by the yawing of the vessel; the second term was 

linked to the rudder resistance. The performance index is normally expressed 

as 

T 

JTf(j'2+xS2)dt (3.17) 
0 

where 'Y is the heading error and x is a weighting factor. 

If we describe the ship steering dynamics by (2.13), then it is a simple 

exercise in optimal control theory to find the feedback which mimimizes 
(3.17). See for example [Aström, 1970; Anderson and Moore, 1971; 

Kwakernaak and Sivan, 1972]. The solution is given by 

8- -Kp'YY - Kd'P (3.18) 
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where 

1 b>0 

K= yý' 
P1 

- b< 0 
x 

Cb. 
) 2+b 

b>0 
bý 

Kd =Za 

CbJ b2 
+b b<_0 

where a=1 and b=K 
TT 

(3.19) 

Note that the gain Kp depends only on x, while Kd depends also on the 

dynamics of the ship. 

Example 3.3 

Consider a tanker with a=0.01, b= -0.0005 and x=0.08. The 

controller parameters Kp and Kd can be found from (3.19) as follows: Kp =- 

3.54 and Kd = -100.59. The performance of the autopilot is shown in Figure 

3.6. The desired response of the Figure is a critically damped second order 

system with a natural frequency of 0.01 radians per second. 
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Figure 3.6: Performance of the optimal controller of equation (3.19) 
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3.6.4 Pseudo Derivative Feedback Algorithm: 

A pseudo derivative feedback (PDF) controller is essentially a PID 

controller in which the proportional and derivative terms of the controller are 

in a feedback loop with the integral term in the forward part of the loop. 

Vahedipour et al. [ 1990] have demonstrated that this arrangement leads to 

smoother rudder activity and gives greater ability to the overall controller to 

resist load disturbances and responds faster to heading demands compared 

with standard PID controllers. 

The PDF control algorithm was first used for autopilot design by Flower 

and Sparrius [1986]. Block diagram for an autopilot using a PDF controller is 

shown in Figure 3.7. 

K; Steering Ship `p 
ý_ý 

s machine dynamics 
9 

IKr+Kis 1 

Figure 3.7: Basic block diagram showing structure of PDF controller 

3.7 Non-Linear Autopilots 

In the previous Section, we reviewed some linear autopilots. A number of 

non-linear autopilots are also available in the literature. In this Section we 

shall review two of these. 
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3.7.1 Autopilot based on feedback linearization Control laws 

The idea of feedback linearization (FB) is to cancel the non-linearities in a 

system so that the closed loop dynamics will be linear. Fossen and Paulsen 

[1993] have applied this method to a ship steering control system. The 

method is reviewed as follows: 

Using the Norrbin's nonlinear model given in (2.30), the control law can 
be expressed as 

8= ma,. +ä, +ä3'p 3 (3.20) 

where `^' indicates the estimate of the real parameters and aqi the commanded 

acceleration. Putting (3.20) into (2.30) results in 

m('P -a,,, 
) = ma,,, +d, ''+d3'i'3 (3.21) 

In this equation, the symbol ̀-' indicates the parameter error, i. e. m=m-m, 

d, =d, -d, and d3=d3-d3. 

If there are no parametric uncertainties, equation (3.21) reduces to 

Y=aT 

which suggests that the commanded acceleration should be chosen as: 

aý = lid - Kd`Y - Kp'P 

where 'Y is the heading error. This in turn yields the error dynamics: 

T+KdT+KPT=0 

(3.22) 

(3.23) 

(3.24) 
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With this commanded acceleration the closed loop system has been 

transformed to a linear second order system. By changing the values of the 

constants Kd and Kp , we change the position of the poles. 

Using a pole placement algorithm like 

Kp =X2; Kd =2X; X>0 (3.25) 

yields the critically damped error dynamics 

'Y + 22`P + A2'ß' =0 (3.26) 

To ensure convergence of the tracking error in the presence of constant 

disturbances, it is desirable to include integral action in the control law. In 

order to achieve this, Fossen and Paulsen [1993] suggest that the commanded 

acceleration should be modified to 

a, =4d-3XT-3X2`Y-x3 f `Y(i)di (3.27) 
0 

which changes the error dynamics to 

T+ 3k'P + 3Ä, 2 F- + ß. 3'F =0 (3.28) 

This suggests that 

Kp = 3X2, Kd = 3X, and K; = ý3 (3.29) 

Example 3.4 

Consider a ship with the following set of parameters [Van Amerongen, 1982]: 

U= 5m/sec., K=0.5 per sec., T= 31 sec., a1= 1.0, and a3 = 0.4 s2. (equation 

(2.30)). The controller parameters can be computed by using equation (3.29). 
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The performance of the control system at a speed of 5 m/sec. is shown in 

Figure 3.8 when k=0.2. 
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Figure 3.8: Performance of feedback linearization controller at 5 m/s. 

3.7.2 Sliding Mode Control 

Sliding mode control (SMC) is a well established non-linear control 

technique. This technique is based on the assumption that the system states 

are directly measurable. The state space is divided into regions by switching 

surfaces and these regions determine the value of the system control signal. 

The basic theory of this technique can be found in [Utkin, 1992; Edwards and 
Spurgeon, 1998]. The theory has been applied successfully in the control of 

under water vehicles by many researchers [e. g. Yoerger and Slotine, 1984, 

1985,1991,1995; Cristi et al., 1990; Dougherty and Woolweaver, 1990; 
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Healey and Lienard 1993]. Recently McGookin [1997] has applied decoupled 

SMC theory to the control of a submarine and a super tanker. 

A decoupled SM controller can be derived from the linear state space 

representation of the decoupled dynamics that are being controlled. A 

decoupled system is a subsystem whose states are selected in such a way that 

the dominant dynamics of the manoeuvre (that is being controlled) are 
decoupled from the dynamics that have very little influence on the manoeuvre. 
The resulting controller has the following form [McGookin, 1997]: 

us =-ksXs+(hsxy)' hsXsa -restank 
6s(3.30) 

c 

The derivation of the controller is given in appendix B. In the above equation, 

ks is the feedback gain vector for the subsystem, xs is subsystem state vector, 
xs is subsystem state error, h., is the right eigen vector of the desired closed 

loop system, b, is subsystem input vector and x. is the desired state vector. 
The tanh term provides the switching action which characterises SM 

controllers. The magnitude of this switching action is determined by rl, the 

switching gain and its activity governed by the sliding surface 6.4. is called 

the boundary layer thickness which smoothes the switching action in order to 

eradicate high frequency chattering [Healey and Marco, 1992; McGookin, 

1993, Fossen, 1994]. 

3.8 Adaptive autopilots: 

A fixed structure controller can provide optimal performance only at the 

operating point it is designed for. As mentioned in the previous Chapter, the 

ship dynamics vary with different operating conditions which include speed, 
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trim, loading and water depth. The dynamics also vary with external 
disturbances such as wind, waves and ocean currents. When the internal and 

external disturbances become significant, it is tedious and difficult to properly 
determine the fixed parameters of the controller that result in good 

performance. Fixed controller settings often result in energy losses due to 

excessive rudder motion or inadequate manoeuvring performance. An 

adaptive controller can avoid these problems of a fixed structure autopilot. 

Development towards adaptive autopilots began in the 1970s and has 

remained a major area of research until recently. Adaptive control of ships 

provides several benefits, for example, improved fuel economy, increase 

speed of vessel, and reduced steering. Adaptive control also makes the ship 

operation more convenient in all weather conditions. 

There has been much research effort into the design of adaptive autopilots. 

Oldenburg [1975], Sugimoto and Kojima [1978], and Kanamaru and Sato 

[ 1979] suggest monitoring the environment prior to adjusting the autopilot. 

Self tuning regulators have been proposed by numerous authors [e. g. Brink et 

al., 1978; Jia and Song, 1987, Källström et al., 1979; Lim and Forsythe, 

1983; Mort and Linkins, 1981; Tiano et al., 1980], and model reference 

adaptive control (MRAC) has been used by Honderd and Winkelman, 1972; 

Van Amerongen and Udink Ten Cate, 1975; Van Amerongen, 1982,1984; 

and Arie et al., 1986. Van Amerongen has worked extensively on this 

problem and his PhD thesis [Van Amerongen, 1982] contains many practical 

insights. Hill climbing methods for optimizing a performance index have been 

reported in [Oldenburg, 1975; Schilling, 1976, Broome and Lambert, 1978; 

Reid and Williams, 1978; Arie et al. 19861 and stochastic methods for 

identification and control have been attempted in [Millers, 1973; Merlo and 

Tiano, 1975; Ohtsu et al., 1979; Herther et al., 1980]. Other important 
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contributions in adaptive autopilots include [Katebi and Byrne, 1988; Fossen 

and Paulsen, 1993; Rubio and Lopez, 1993; Desanj et al. 1997 etc. ]. 

Here we review only the MRAC approach of Van Amerongen [ 1982]. 

3.8.1 Model Reference Adaptive Control 

In a model reference adaptive control (MRAC) system the desired 

behaviour is specified by a reference model, and the parameters are adjusted 

based on the error, which is the difference between the output of the closed 

loop system and the reference model. The parameters can be adjusted by 

using a gradient method or by applying Lyapunov stability theory. The 

following review is based on the later approach. 

Assume that the ship dynamics are represented by the Nomoto's first order 

model 

T'Y+`I'=KS+Kq, (3.31) 

where K, is a slowly varying term due to external disturbances. Suppose that 

the control law is: 

8=Kp (1Jr -'I') -Kd `Y - 
K; (3.32) 

where k 
P, 

Kd and k are the adaptive estimates of the PID controller 

parameters respectively, to be determined later. The closed loop dynamics 

resulting from (3.31) and (3.32) can be obtained as 

TT +(I+KKd)`P+KKp`Y = KKp`Yf +(K,,, -KK) (3.33) 

Equating this dynamics with the dynamics (3.1) of the reference model, we 

get 
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KP=K"' 
T (3.34) 

T. K 

-I(T Kd 
KT 

(3.35) 
m 

K; =K (3.36) 
K 

These values of KP, Kd and K; are called the perfect matching conditions. 

The estimates KP 
, 

Kd and K; can be computed as follows: 

The reference model given in (3.1) can be rewritten as 

`Y+ 1 T+K`"'p, = 
K°' 

T-'Y- 1 `Y- 
Km 

`Y (3.37) 
T. T. T. T. T. 

multiplying both sides of the above equation by K 
and applying (3.34), (3.35) 

and (3.36) yields the following error system: 

X=Ax+B4T (3.38) 

01 
where x= 

`I'd 'Y], 
A-K. 1L B=[O]Td 

-'Y T. j; 

K 
P 

d O=K 
K. 

Here b=T, Kp = Kp 
-Kp, Kd = Kd - Kd and K; =I-K. Clearly the 

control objective is that both the heading angle error and heading rate error 
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should converge to zero. This can be guaranteed by applying the following 

theorem [Aström and Wittenmark, 19951: 

0=-I'1 ýBTPx; I'=FT>0 (339) 

where P= Pr >0 satisfies the Lyapunov equation: 

ATP + PA = -Q ;Q= QT >0 (3.40) 

The adaptation law (3.39) can be implemented to rewrite the term: 

IT 
bl =0 Ib = [0 sgn(b)] (3.41) 

The main advantage of (3.41) is that the magnitude of the ratio b=T is not 

used, only the sign of the ratio is sufficient. 

Now ((3.39) can be written as 

Kp = -Y, sgn(b)(Y' - Pr) (3.42) 

Kd = -y2 sgn(b)`' (3.43) 

Ki_ -y 3 sgn(b)e (3.44) 

where e= PZ, (`Yd 
- 'p) + P22 (I'd 

- 
q'dý P21 = P, 2, p= 

P" P' z and 
[P2I 

P22 

r= diag(Y,, Y2) y3) 

Further details can be found in [Äström and Wittenmark, 1995]. 
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3.9 Intelligent Autopilots 

Despite their potential benefits, adaptive control systems have some 
disadvantages. These include the following: 

9 The design and analysis of nonlinear adaptive systems is difficult and in 

comparison with neural networks leading to relatively expensive 

solutions in computational terms [Pao, 1989]. 

" Some forms of adaptive control systems do not have long term memory 

and therefore do not retain the optimal controller parameters 

corresponding to different configurations of the plant [Narendra and 

Mukhopadhyay, 1992]. 

" They need enough a priori information for successful applications 
[Tulunay, 1991 ] 

9 There is some concern about potential instabilities associated with 

adaptive system behaviour [Simensen and Murray-Smith, 1995]. 

These and other disadvantages of adaptive control systems provide 

motivation for intelligent control. The development of intelligent autopilots 

for ships is in an early stage, and only a few papers have appeared in the 

literature on the applicability of fuzzy logic [Garcia and Castelo, 1993; Layne 

and Passino, 1993; Parsons, et al., 1995; Tomera and Morawski, 1996; Arbil, 

et al., 1997] and neural networks [Endo et al. 1989; Burns, 1995; Zhang et 

al., 1995; Unar and Murray-Smith, 1997a, 1997b] for ship steering control 

system. We have already discussed the feasibility of ANNs for ship steering 

control systems in Chapter 1. The development of fuzzy logic autopilots is 
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beyond the scope of this thesis. However, the development of ANN 

autopilots will be carried out in detail in later Chapters. 



Chapter 4 

ARTIFICIAL NEURAL NETWORKS 

The field of artificial neural networks (ANNs) has become enormously 
fashionable area of research in recent years and ANNs have found numerous 
successful applications in almost every field of science and engineering. ANNs 
can easily handle complicated problems and can identify and learn correlated 
patterns between sets of input data and corresponding target values. After 
training, these networks can be used to predict the outcome from new input 
data. Neural networks mimic the human learning process and can handle 
problems involving highly non-linear and complex data even if the data are 
imprecise and noisy. They are ideally suited for pattern recognition and do not 
require a prior fundamental understanding of the process and phenomenon 
being modelled. They are also highly suitable for applications involving 
parameter varying and/or time varying systems. 

A universal definition of artificial neural networks is not available, however, 

the following definition summarizes the basic features of an ANN: 

Artificial Neural Networks, also called Neurocomputing, or parallel 

distributing processes (PDP) or connectionist networks or simply neural 

networks are interconnected assemblies of simple processing elements, 

called neurons, units or nodes, whose functionality is loosely based on the 

biological neuron. The processing ability of the network is stored in the 

inter-unit connection strength, or weights, obtained by a process of 

adaptation to, or learning from, a set of training patterns [Hecht-Nielsen, 

1990]. 

4.1 Historical Motivation: 

The history of ANNs begins with the pioneering work of McCulloch and 

Pitts who designed a very simple artificial neuron in 1943. The neurons were 

binary, summing their unweighted inputs and performing a threshold 
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operation. ANNs sprang into existence around the same time as the first 

computers, and it is widely known that John Von Neumann, instrumental in 

the construction of the modern serial computer was heavily influenced by the 

work of McCulloch and Pitts. 

In 1949 Donald Hebb's famous book The Organization of Behaviour was 

published. In this book, Hebb postulated a plausible qualitative mechanism for 

learning at cellular level in brains. An extension of his proposals is widely 

known today as the Hebbian Learning Rule. In a biological context this rule 

states that if two neurons are fired simultaneously, the connection strength 

between them is increased, otherwise it is weakened. 

In 1951, Minsky constructed the first neurocomputer, the Snark [Minsky, 

1954]. The neurocomputer did operate successfully from a technical 

standpoint (it adjusted its weights automatically), but never actually carried 

out any particular interesting information processing function. Nonetheless, it 

provided design ideas that were used later by other investigators. 

In 1958 Rosenblatt developed his neurocomputer, the Perceptron. He 

proposed a learning rule, the perceptron convergence theorem, and proved 

that, given linearly separable classes, a perceptron would, in a finite number of 

trials, develop a weight vector that would separate the classes [Rosenblatt, 

1960a, 1960b]. Rosenblatt also wrote a book on neurocomputing, Principles 

of Neurodynamics [Rosenblatt, 19621, that is still worth reading. 

In 1960, Widrow and Hoff [Widrow and Hoff, 1960; Widrow and Lehr, 

1990] introduced the least mean squares (LMS) algorithm and used it to 

formulate the ADALINE (adaptive linear element). The difference between 

the perceptron and the ADALINE lies in the training procedure. The LMS 

algorithm is still in widespread use, particularly in the field of adaptive signal 

processing. 
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Although people like Widrow approached this field from an analytic point 

of view, most of the research on this field was done from an experimental 

point of view. In the 1960s many sensational promises were made which were 

not fulfilled. This discredited much early research on ANNs. About the same 

time Minsky and Papert began promoting the field of artificial intelligence 

(AI) at the expenses of ANN research. Their book Perceptrons [Minsky and 

Papert, 1969] almost served as death sentence for ANN research. In this book 

they mathematically proved that perceptrons were not able to compute certain 

essential computer predictions like the EXCLUSIVE OR Boolean function. 

From the late 1960s to the early 1980s, research on ANN was almost non- 

existent. Notable exceptions from this period are the works of Amari [1967, 

1972,1977], Anderson [1968,1972,1983,1985], Fukushima [1975,1980] 

and Grossberg [1972,1976,1980,1982]. In 1982, Hopfield led the 

resurgence of interest in ANNs. His work on the Hopfield net, a type of 

associative memory bought the field increased respect and exposure. His 

network could recall previously stored patterns when similar noisy patterns 

are presented. 

The introduction of self organizing maps by Kohonen in 1982, simulated 

annealing by Kirkpatrick et al. in 1983, and Boltzmann learning by Ackley et 

at. in 1985 further popularized the field of ANNs. 

The real breakthrough in ANN research came with the discovery of the 

back-propagation algorithm. Although it was discovered in 1974 [Werbos, 

1974], it was not until the mid 1980s that the back propagation technique 

became widely publicized [Rumelhart and McClelland, 1986a, 1986b]. This 

algorithm still dominates the neural network literature and thousands of 

academic, industrial and government researchers report the results of back 

propagation simulations and applications at technical conferences and in 

journals every year. 
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In 1987, the first conference on neural networks, The IEEE International 

Conference on Neural Networks (1700 participants) was held in San Diego 

USA and the International Neural Network Society (INNS) was formed. In 

1988 the INNS journal Neural Networks was formed, followed by Neural 

Computation in 1989, the IEEE Transactions on Neural Networks in 1990 

and subsequently many others. 

In 1988 Broomhead and Lowe introduced radial basis function (RBF) 

networks to the neural network community. The theory of these networks 

was further enriched by Poggio and Girosi in 1990. A generalization of RBF 

networks, known as the Local Model Networks (LMNs) was introduced by 

Johansen and Foss in 1992-93 [Johansen and Foss, 1992a, 1992b, 1992c, 

1993] and was further popularized by Murray-Smith [1994]. 

Indeed the above developments have made a very important contribution 

to the success of ANNs. However, there are also other reasons for the recent 

interest in ANNs. 

One is the desire to build a new breed of powerful computers, that can 

solve problems that are proving to be extremely difficult for current digital 

computers and yet are easily done by humans in everyday life. Cognitive tasks 

like understanding spoken and written language, image processing, retrieving 

contextually appropriate information from memory are examples of such 

tasks. 

Another is the benefit that neuroscience can obtain from ANN research. 

New network architectures are constantly being developed, and new concepts 

and theories being proposed to explain the operation of these architectures. 

Many of these developments can be used by neuroscientists as new paradigms 

for building functional concepts and models of elements of the brain. 
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Many ANN architectures have been proposed. These can be roughly 
divided into three large categories: feedforward (multilayer) neural networks, 
feedback neural networks and cellular neural networks. This thesis is solely 

concerned with the feedforward neural networks. Therefore, other types of 

ANNs will not be described in this Chapter. The Chapter is organized as 
follows. In Section 4.2 a simplified model of biological neuron is described 

and in Section 4.3 a mathematical model of a single neuron inspired from the 

biological neuron, is developed. Section 4.4 describes very briefly ANN 

architectures in general. An overview of feedforward neural networks is 

presented in Section 4.5. Multilayer perceptron networks are described in 

Section 4.6. The Back-propagation algorithm is derived for the training of 

MLPs and their function approximation capabilities are discussed. Section 4.7 

covers basic features of radial basis function networks. The orthogonal least 

squares algorithm for the training of these networks is derived and function 

approximation capabilities are discussed. 

4.2 Biological Neuron: 

nucleus 
axon 

synapses 

dendrites 
dendrite toi 
next neuron 

axon from / 
previous neuron synaptic postsynaptic cell 

cleft (leading to dendrite) 

Figure 4.1: A simplified view of a biological neuron 
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A neuron or nerve cell is the basic building block of all biological brains. 

Each neuron acts as a simplified numerical processing unit. Figure 4.1 shows 

a very simplified view of a biological (real) neuron. In this schematic we can 

recognize the following fundamental parts: 

(i) Soma or Cell body: The central part of a neuron is called the soma or cell 

body which contains the nucleus and the protein synthesis machinery. The 

size of soma of a typical neuron is about 10 - 80 µm [Müller, et al., 1995]. 

Almost all the logical functions are realized in this part of a neuron. 

(ii) The Axon: It is a long thin tubular fibre which divides itself into a number 

of branches towards its end. Its length can be from 100 µm to 1m 

[Anderson, 1995]. The function of an axon is to transmit the generated 

neural activity to other neurons or to muscle fibres. In other words, it is 

the output channel of the neuron. The point where the axon is connected 

to its cell body is called the Hillock zone. 

(iii) The dendrites: The dendrites represent a highly branching tree of fibres 

and are attached to the soma. The word dendrite has been taken from the 

Greek word dendro which means tree. Dendrites connect the neuron to a 

set of other neurons. Dendrites either receive inputs from other neurons or 

connect other dendrites to the synaptic outputs. 

(iv) Synapses: The junction at which a signal is passed from one neuron to 

the next is called a synapse (from the Greek verb to join). It has a button 

like shape with diameter around I µm. Usually a synapse is not a physical 

connection (the axon and the dendrite do not touch) but there is a gap 

called the synaptic gap or synaptic cleft that is normally between 200 A to 

500 A. (1 A= 10"'° m). The strength of synaptic connection between 

neurons can be chemically altered by the brain in response to favourable 
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and unfavourable stimuli in such a way as to adapt the organism to 

function optimally within its environment. 

In a biological neuron, signals enter the neuron from other neurons 

via the dendrites. Since a neuron has many dendrites, therefore it is capable of 

receiving signals from many other neurons at a time. The neuron combines 

these inputs and pass them onto other neurons via the axon. The output signal 

from a neuron is stimulated by the inputs to it. Research has shown (see for 

example, Thompson [1993] and references therein) that an output will only 

occur provided there are enough inputs of sufficient strength to overcome 

some threshold value, and the output is some non-linear function of the sum 

of the input stimuli. 

The human brain is a bundle of many billions of neurons all heavily 

interconnected and operating in parallel. It is estimated that the human 

cerebral cortex contains 100 billion neurons. Each neuron may have as many 

as 1000 dendrites and, hence within the cerebral cortex there are 

approximately 100,000 billion synapses [Kartalopoulos, 1996]. Moreover, the 

behaviour of the real nervous system is very complex and is not yet fully 

known. It is therefore almost impossible and also inefficient to simulate a full 

behaviour of human brain. Luckily, a large body of research indicates that 

simple models, which account for only the most basic neuron processes can 

provide excellent solutions to practical problems. Therefore, the artificial 

neuron models are not exactly constrained by real neurons and are based only 

loosely on biology. 

4.3 Model of a single artificial neuron: 

In its most simplest form, an artificial neuron can be modelled as a device 

(usually non-linear) having one or more inputs, as shown in Figure 4.2. An 

input to an artificial neuron is either an input of the network of which the 
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neuron is a part, the output of another neuron, or its own output. As can be 

seen from the Figure, an artificial neuron first multiplies each input by a 

factor called weight. 

XI 

xi 

Vp 

Figure 4.2: Model of a single neuron 

Each input x; (i = 1,2,..., p) has its own weight w; which can be varied in 

strength, in analogy with neurobiological synapses. The neuron then 

calculates the sum of all the weighted inputs. In other words, the neuron 

calculates the linear combination of the values presented to its inputs. In most 

cases a bias b is also added to the weighted sum. Finally, the neuron applies 

an activation. function f to the weighted sum. An activation function is also 

known as a transfer function or a squashing function which can be a linear or 

non-linear function. Some choices of activation functions are depicted in 

Figure 4.3. 
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Figure 4.3: Some choices of activation functions 

The artificial neuron of Figure 4.2 can be expressed mathematically as 
follows: 

y=f 
P 

w; x; - b(4.1) 

where p is the total number of inputs. 

In most cases, the threshold contribution b is treated as an extra input xo to 

the neuron, as shown in Figure 4.4. By choosing xo = -1 and wo = b, equation 
(4.1) simplifies to: 
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4.4 ANN Architectures: 

(4.2) 

Connecting several artificial neurons in some specific manner yields an 

artificial neural network. The architecture of an ANN defines the network 

structure, that is the number of artificial neurons in the network and their inter 

connectivity. In a typical ANN architecture, the artificial neurons are 

connected in layers and they operate in parallel. The weights or the strength 

of connection between the neurons are adapted during use to yield good 

performance. Each ANN architecture has its own learning rule. Several 

architectures have been proposed. Here we shall only describe the multilayer 
feedforward architecture. Multilayer feedforward neural networks have 

proved their worth particularly in engineering applications. They are easy to 

implement, have no stability problems [Cichocki, and Unbehauen, 1993] and 

Figure 4.4: An alternative model of a single (artificial) neuron 
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possess universal approximation property as described in the following 

sections. 

4.5 Multilayer Feedforward Neural Networks: 

The feedforward type of neural network is probably the most popular 

ANN architecture and has found numerous successful applications, 

particularly in the field of systems and control. The reason why this 

architecture is so popular is partly because it is very easy to implement and 

partly because it allows supervised learning. In supervised learning the 

network is required to give some desired output for a certain class of input 

patterns. 

The feedforward architecture is simple in the sense that it is layered. A 

layer consists of an arbitrary number of (artificial) neurons or nodes. In most 

cases, all the neurons in a particular layer contain the same activation 

function. However, the neurons in different layers of a network may have 

different activation functions. When a signal passes through the network, it 

always propagates in the forward direction from one layer to the next, not to 

the other neurons in the same or the previous layer. This is illustrated in 

Figure 4.5. 

In a feedforward neural network, the first layer is called the input layer, 

and is the layer where the input patterns based on the data sample are fed in. 

This layer does not perform any processing and consists of fan out units only. 

Then follows one or more hidden layers, and as the name indicates these 

layers can not be accessed from outside the network. The hidden layers enable 

the network to learn complex tasks by extracting progressively more 

meaningful features from the input patterns [Haykin, 1994]. The final layer is 
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the output layer, which may contain one or more output neurons. This is 

where the network decision, for a given input pattern, can be read out. 

Input laNer Hidden lacer Output laNer 

Figure 4.5: A simple three layer feedforward neural network 

Because the input to the network is known, and the activation functions 

are chosen by the user, the total output can be calculated as a function of the 

weights. Thus by changing the internal weights of the network one can adjust 

the total output to any desired value. This is the basic concept behind the 

supervised learning. 

Since the pioneering work of Rumelhart and co-workers [Rumelhart and 
McClleland, 1986a, 1986b], a large number of papers on the application of 

feedforward neural networks have been published. These applications can be 

divided into two major groups: function approximation and classification. 

This division is based on the type of the desired output(s) required to 

accomplish the task. If the output values are continuous, the feedforward 

network is performing function approximation, whereas if the outputs are 

restricted to a finite set of values, it is doing classification. 
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A multilayer feedforward neural network can be divided into two major 

categories: the multilayer perceptron (MLP) networks and radial basis 

function (RBF) networks. These networks are described in the following 

sections. 

4.6 Multilayer Perceptron Networks: 

The multilayer perceptron network is perhaps the best known type of 

feedforward neural network. It has found successful applications in almost 

every field of science and engineering. These applications include the 

following: 

" Speech recognition [Cohen et at. 1993; Tadeusiewicz et at. 1998]. 

Character recognition (Guyon, 1991; Mozayyani and Vaucher, 19971. 

" System identification [Narendra and Parthasarathy, 1990; Chen et al., 
1990; Bulsari and Saxon, 1991; Chen and Billings, 1994]; 

" Modelling and Control [Billings et al. 1992; Kruger and Naunin, 1996; 
Lightbody et at. 1997; Tulunay et al. 1998]. 

" Robotics [Kim and Lee, 1996]. 

" Biomedicine [Baxt, 1992; Robinson, 1992; Hazarika et at. 1998; Oguri 
and Iwata, 1998]. 

The structure of an MLP network is similar to that shown in Figure 4.5. It 

consists of an input layer, one or more hidden layers and an output layer. The 

number of hidden layers and the number of neurons in each layer is not fixed. 

Each layer may have a different number of neurons, depending on the 

application. The developer will have to determine how many layers and how 

many neurons per layer should be selected for a particular application. 
Generally, an MLP network has a different number of neurons and different 
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synaptic weights for different layers. All neurons in hidden layer have a 

sigmoidal nonlinearity such as a logistic function: 

I (4.3) Y; l+ exp(-u; ) 

or a hyperbolic tangent function: 

y; =a tanh b(u; ) (4.4) 

where u; is the net internal activity level of neuron i, y; is the output of the 

same neuron, and a, b are constants. Generally, an MLP network learns faster 

with hyperbolic tangent function than the logistic function [Haykin, 1994]. 

The important point to emphasize here is that the nonlinearity is smooth (i. e. 

differentiable everywhere). The output layer neurons may have the same 

activation function as the hidden neurons. However, many applications use a 

linear function as the activation function of the output layer neurons. In other 

words, the output of each of these neurons is equal to its net input. An MLP 

network is usually trained by the back-propagation rule which is derived in 

the next Section. 

4.6.1 Error Back-Propagation Algorithm: 

The development of the error back-propagation (or simply back- 

propagation) algorithm represents a landmark in ANNs in that it provides a 

computationally efficient method for the training of MLP networks. 

The back-propagation algorithm was originally introduced by Paul Werbos 

in 1974 [Werbos, 1974]. This algorithm was rediscovered independently by 

David Parker in 1985 [Parker, 1985] and Romelhart et at. in 1986 [Rumelhart 
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and McClelland, 1986a, 1986b]. A mathematically similar recursive control 

algorithm was presented by Arthur Bryson and Yu Chi Ho in 1969 [Bryson 

and Ho, 1975]. Rosenblatt also came very close to discovering the key to 

training perceptrons when he proposed a heuristic algorithm to adapt weights 

of his perceptron network. On page 292 of his book Principles of 

Neurodynamics [Rosenblatt, 1962], Rosenblatt states, 

"The procedure to be described here is called the 'back propagating 

error correcting procedure' since it takes its cue from the error of the R- 

units (the output units), propagating corrections back towards the sensory 

end of the network (the input units) if it fails to make a satisfactory 

correction quickly at the response end (output units). The actual correction 

procedure for the connections to a given unit, whether it is an A-unit (hidden 

unit) or an R-unit (output unit), is perfectly identical to the correction 

procedure employed. for an elementary perceptron, based on the error 

indication assigned to the terminal unit ". 

Notwithstanding its chequered history, there is no question that credit for 

developing back-propagation into a usable technique, as well as promulgation 

of the MLP architecture to a large audience, rests entirely with Rumelhart and 

other members of the PDP group [Rumelhart et al. 1986a, 1986b]. Before 

their work, back-propagation was unappreciated and obscure. Today, it 

dominates the ANN literature. 

The back-propagation algorithm adjusts the weights and biases of an MLP 

network so as to minimize the sum of squared errors of the network. This is 

done by continually adjusting the values of the network weights and biases in 

the direction of steepest descent with respect to error. This procedure is 

called a steepest descent Procedure. 

4.6.1.1 Derivation: 
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Figure 4.6 shows a neuron j located in the output layer of an MLP 

network. 

The input to the neuron at iteration n is 

P 

ui (n) w j; 
(n)y 

i 
(n) 

=o 

Yo 

Y 

yp- 

Figure 4.6: Dynamics of output neuron j of an MLP network 

where p is the total number of inputs and po is the threshold. 

The output of the neuron j will be 

yi (n) = f(u j 
(n)) 

(4.5) 

ei(n) 

(4.6) 

where f(. ) is the activation function of the neuron. Assume that di(n) be the 

desired output at iteration n. The error signal will therefore be given by 



77 

ei(n) = da(n) -y j(n) 
(4.7) 

The instantaneous value of the squared error corresponding to neuron j will 

be 

EE(n) =2 e2 (n) (4.8) 

and hence the instantaneous sum of squared errors will be 

E(n) _J e' (n) (4.9) 
2 cc 

where C is a set containing all neurons of the output layer. 

If the total number of patterns contained in the training set is N, then the 

average squared error of the network will be 

N 

E 
eV =1 E(n) (4.10) 

o=, 

This is the cost. function of the network which is to be minimized. 

Differentiating E(n) with respect to ww; (n) and making use of the chain rule, 

we get 

OE(n) 
_ 

aE(n) öe j 
(n) öy 3 

(n) öu 3 
(n) 

(4.11) 
c3w1(n) ae j 

(n) ay(n) öu., (n) öß', 1(n) 

The first term 
aE(n) 

on the right hand side (RHS) of the above equation can aej(n) 

be found by differentiating both sides of (4.9) with respect to e; (n): 
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cý(") 
= e, (n) (4.12) 

. 
(n) 

The next term, i. e. 
äe 

on the RHS of (4.11) can be obtained by 
(n) 

differentiating (4.7) with respect to yj(n): 

öe, (n) 
_ -1 Oy1(n) 

(4.13) 

To find the term 
O'y`n) 

, we have to differentiate (4.6) with respect to u; (n). 

3 (n) 
That is, 

'(n) = fj'(u, (n)) 

Ou ; (n) 
(4 14) 

au (n) Finally the last term (i. e. ) on the RHS of (4.11) can be computed by 
a;, (n) 

differentiating (4.5) with respect to w;; (n) and is given by 

o "u 
'(n) = Yin) (4.15) 

o;; (n) 

Now (4.11) becomes 

äE(n) 
_e' 

(n) ff (u 
j 
(n))Y 

i 
(n) (4.16) 

w; 1(n) 
The correction Ow;; (n) applied to w;; (n) can now be defined as 
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dw; i 
(n) -il 

, 

ÖEý; (ýn) 

n) 
(4.17) 

where il is the learning rate which is a factor deciding how fast the weights are 

allowed to change for each time step. The minus sign indicates that the 

weights are to be changed in such a way that the error decreases. 

Substituting (4.16) into (4.17) yields 

(4.18) Awjj(n) = r16 
. i(n)y1(n) 

where the local gradient Si(n) is defined by 

aE(n) c3ej (n) ýy j 
(n) 

6j(n) 
ae3(n) c'yj(n) a; (n) 

= ej(n)f. (u, (n)) (4.19) 

which shows that the local gradient 8j(n) is the product of the corresponding 

error signal ei(n) and the derivative fj(ui(n)) of the associated activation 

function. 

The above derivation is based on the assumption that the neuron j is 

located in the output layer of the network. Of course, this is the simplest case. 

Since neuron j is in the output layer where desired signal is always available 

so it is quite straightforward to compute the error signal e; (n) and the local 

gradient Sj(n) by using (4.7) and (4.19) respectively. 

Now we shall consider the case in which the neuron j is not in the output 

layer of the network but is located in the hidden layer immediately left to the 

output layer, as shown in Figure 4.7. 
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Note that now the index j will refer to hidden layer and the index k will refer 

to the output layer. Also note that the desired response dk(n) is not directly 

available to hidden layer neurons. 

In this new situation, the local gradient will take the following form: 

8 (n) -_ 
OE(n) öy' (n) aE(n) 

f, (u (n)) (4.20) 
o'y, (n) au (n) a'; (n) 

As neuron k is located in the output layer 

E(n) =2Y, ek (n) (4.21) 
kýC 
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which is simply (4.9) in which the index j has been replaced by the index k. 

Differentiating this equation with respect to yi(n) and using the chain rule, we 

obtain 

OE(n) 
= ýekrn) 

3ek(n) aU k(n) 
O'., (n) 

kl k(n) 
ý'j(n) 

(4.22) 

since el(n)=dk(n)-y`(n)=dk(n)-fk(uk(n)) (4.23) 

Therefore, 

0ek (n) 
_ 

C% k(n) 
-fk 

(Uk (°)) (4.24) 

The net input of neuron k is given by 

q 

Uk (n) _L wkJ(n)y. (n) (4.25) 

ro 

where q is the total number of inputs applied to neuron k. Differentiating both 

sides of the above equation yields 

3uk(n) 
- wkJ(n) (4.26) 

c'Y, (n) 

substituting (4.24) and (4.26) in (4.22) yields 

fi(rn)l 
_ -ýek(n)fk(uk(n))wk; (n)= -ýek8k(n)w; (n) (4.27) 

aY\nl 
kk 

The local gradient 6j(n) for the hidden neuron j can now be obtained by using 

(4.27) in (4.20): 
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bi (n) =f 
(uj(n))j: sk(n)wk; (n) 

k 

(4.28) 

This shows that the computation of the local gradient Si(n) associated with 
hidden neuron j requires knowledge of the error signal from the output layer. 

This means that the error signal propagates back from the output layer 

towards the input layer via the hidden layer(s). Thus the name error hack- 

propagation. 

4.6.2 Improved back-propagation: 

The back-propagation algorithm derived above has some drawbacks. First 

of all, the learning parameter il should be chosen to be small to provide 

minimization of the total error signal. However, for a small rl the learning 

process becomes very slow. On the other hand, large values of rl correspond 

to rapid learning, but lead to parasitic oscillations which prevent the algorithm 

from converging to the desired solution. Moreover, if the error function 

contains many local minima, the network might get trapped in some local 

minimum, or get stuck on a very flat plateau. One simple way to improve the 

standard back-propagation algorithm is to use adaptive learning rate and 

momentum as described below: 

Momentum: 

Here the idea is to give weights and biases some momentum so that they 

will not get stuck in local minima, but have enough energy to pass these. 

Mathematically, adding momentum is expressed as [Rumelhart and 

McClelland, 1986a, 1986b]: 

Aw j; 
(n) = ýAw j; 

(n -1) + , 95 j(n)y; 
(n) (4.29) 
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where E, is momentum constant and must have a value between 0 and I [Hertz 

et al., 1991; Haykin, 1994]. If ý is 0, the algorithm is same as the basic back- 

propagation learning rule, that means no momentum (compare (4.18) with 

(4.29)). ý equal to 1 means that the weights change exactly as they did in the 

preceding time step. A typical value of E, is 0.9 - 0.95. 

Adaptive learning rate: 

As discussed above, it is difficult to choose an appropriate value of the 

learning rate il for a particular application. The optimal value can change 

during training. Thus, this parameter should be updated as the training phase 

progresses. That is, the learning rate should be adaptive. One way of doing 

this is to change the learning rate according to the way in which the error 

function responded to the last change in weights. If a weight update 

decreased the error function, the weights probably were changed in the right 

direction, and i is increased. On the other hand, if the error function was 

increased, we reduce the value of q 

4.6.3 Back-propagation with Levenberg-Marquardt Algorithm: 

It has been found that the back-propagation algorithm is very slow in many 

applications even with adaptive learning rate and momentum. Several 

attempts have therefore been made to improve the training speed of the 

standard back-propagation algorithm in addition to adaptive learning rate and 

momentum [Kollias and Anastassiou, 1989; Singhal and Wu, 1989; 

Tollenaere, 1990; Barnard, 1992; Battitti, 1992; charalambous, 1992]. 

Recently Hagan and Minhaj [1994] have showed that the training time can 

significantly be improved if we incorporate the Levenberg-Marquardt (L-M) 
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algorithm [Levenberg, 1944; Marquardt, 1963] into the back-propagation 

algorithm. According to Zhou and Si [1998] the L-M incorporation into the 

back-propagation algorithm not only improves the training time but also 

provides superior performance in terms of training accuracy and convergence 

properties. However, a disadvantage of the algorithm is that it is 

computationally expensive and hence can be unsuitable for large networks. 
This disadvantage can be overcome by using a reasonably small data set for 

training. 

This algorithm updates the network parameters as follows [see appendix 

C] 

Ow=(JTJ+p) IJTe (4.30) 

where J is the Jacobian matrix of derivatives to each weight, µ is a scalar and 

e is an error vector. 

The variable µ determines whether learning progresses according to the 

Gauss-Newton method or gradient descent. If p is large, the jTj term 

becomes negligible and the learning progresses according to p-'JTe which 

approximates to gradient descent (similar to equation (4.17)). While if µ is 

small, (4.30) becomes the Gauss-Newton method. When a step is taken and 

the error increases, p is increased until a step can be taken without increasing 

error. However, if µ becomes too large no learning takes place (i. e. µ 

'JTe-*O). This occurs when an error minimum has been found, and is why 

learning stops when p reaches its maximum value. Further details regarding 

the incorporation of the L-M algorithm into the back-propagation algorithm 

can be found in [Hagan and Minhaj, 1994]. 
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4.6.4 Approximation Capabilities of MLP Networks: 

A number of researchers [Cybenko 1989; Hornik et al., 1989; Funahashi, 

1989] have proved mathematically that a single hidden layer feedforward 

neural network is capable to approximate any continuous multivariable 
function to any desired degree of accuracy, provided that sufficiently many 

hidden layer neurons are available. Cybenko's proof is particularly interesting 

as it is mathematically concise and elegant. This theorem can be stated as, 

"Let, f(. ) be a nonconstant, bounded, and monotone-increasing continuous 

function. Let Hp denote the p-dimensional unit hypercube [0, If. The space 

of continuous. functions on Hp is denoted by S(Hp). Then, given any function 

gES(Hp) and e>0, there exists an integer I and set of real constants a;, 0,, 

and w, j, where i-1, ... ,1 and j=1, ... ,p such that we may define 

J 
i=1 j=1 

as an approximation realization of the function go ; that is, 

Ixýý... 
ýxp)I <E 

. 
for all {x,, 

""", x1} EHP " 

(4.31) 

The MLP networks use sigmoidal non-linearity as their activation function 

which has same properties as has the function f(. ) described in the theorem. 

This means the theorem is directly applicable to MLP networks. The 

theorems of Hornik et al. [1989] and Funahashi [1989] are also applicable to 

the MLP networks. 
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Hornik et al. [1990] also proved another important result relating to the 

approximation capability of MLP networks employing sigmoidal hidden unit 

activations. They showed that these networks can not only approximate an 

unknown function but also its derivative. In fact, Hornik et al. [1990] also 

showed that these networks can approximate functions that are not 

differentiable in the classic sense but possess a generalized derivative, as in 

the case of piecewise differentiable functions. 

Light [1992] extended Cybenko's results to continuous function on R° and 

showed that integer weights and biases are sufficient for accurate 

approximation. In other version of the theorem Light shows that the sigmoid 

can be replaced by any continuous function. The universality of single hidden 

layer feedforward networks having nonsigmoidal activation functions was 

formally proved by Stinchcombe and White [1989]. 

The above results are very promising and provide great comfort to 

researchers in reinforcing their beliefs about the capabilities of MLP 

networks. These, however, guarantee only the existence of an approximating 

network and do not give any clues about how to construct one. The issue of 

choosing an appropriate number of neurons in a hidden layer of an MLP 

network is almost unresolved. With few hidden neurons, the network may not 

produce outputs reasonably close to the targets. This effect is called 

underfitting. On the other hand, an excessive number of hidden layer neurons 

will increase the training time and may cause problem called overfitting. The 

network will have so much information processing capability that it will learn 

insignificant aspects of the training set, aspects that are irrelevant to the 

general population. If the performance of the network is evaluated with the 

training set, it will be excellent. However, when the network is called upon to 

work with the general population, it will do poorly. This is because it will 

consider trivial features unique to training set members, as well as important 
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general features, and become confused. Thus it is very important to choose an 

appropriate number of hidden layer neurons for satisfactory performance of 

the network. 

A number of rough guidelines have been proposed to choose a suitable 

number of hidden layer neurons in a three layer MLP network. For example 

Lippmann [1987] has provided geometrical arguments and reasoning to 

justify why the number of neurons in the hidden layer of a three layer MLP 

network should be Q(P+1), where Q is the number of output units and P is 

the number of input units. Another rough guideline for choosing the number 

of hidden neurons is the geometric pyramid rule. This rule states that, for 

many practical networks, the number of neurons follows a pyramid shape (see 

Figure 4.5), with the number decreasing from the input towards the output. 

The number of neurons in each layer follows a geometric progression. Thus, 

in a three layer network with P inputs and Q outputs, the number of neurons 

in the hidden layer should be PQ . 

The above formulas are only rough approximations to the ideal hidden 

layer size and may be far from optimal in certain applications. For example, if 

the problem is complex but there are only few inputs and outputs, we may 

need many more hidden neurons than suggested by the above formulae. On 

the other hand, if problem is simple with many inputs and outputs, fewer 

neurons will often suffice. 

A common approach is to start with a small number of hidden neurons 

(e. g. with just two hidden neurons). Then slightly increase the number of 

hidden neurons, again train and test the network. Continue this procedure 

until satisfactory performance is achieved. This procedure is time consuming, 

but usually results in success. 
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4.7 Radial Basis Function Networks: 

The Radial basis function network (RBF) is a powerful alternative to the 

MLP network. The basic idea of RBFs was originally proposed by Bashkirov 

et al. [1964] and the theoretical properties were developed by Aizerman et al. 

[1964a, 1964b]. The RBF networks were originally applied to the 

multivariable interpolation problem [Powell, 1985] and were first formulated 

as neural networks by Broomhead and Lowe [1988]. Experiments of Moody 

and Darkin [1989] who applied RBF networks to predict chaotic time series, 

further popularized these networks. Poggio and Girosi [1990] have shown 

how regularization theory can be applied to this class of networks for 

improving generalization. 

During the past eight years these networks have proved to be an area of 

active research within the neural network community and thus have found 

many applications in areas as different as image processing [Saha et el. 1991 ], 

Speech recognition [Ng and Lippmann, 19911, Bioengineering [Donaldson et 

al., 1995] and modelling and control of dynamical systems [Barnes et al., 

1991; Hartman and Keeler, 1991; Chen and Billings, 1992; Hotland et at., 

1992; Hunt et al. 1992; Röscheisen et al., 1992; Sbarbaro, 1992; Pantale6n- 

Prieto et al., 1993; Pottman and Jorgl, 1993; Elanayar and Shin, 1994; Erives 

et al. 1996; Gorinevsky et al., 1996; Fathala and Farsi, 1997]. The increasing 

popularity of RBF networks is because of their distinctive properties of best 

approximation, simple network structure and efficient learning procedure. 

The only disadvantage is that they require more neurons than MLP networks 

for comparable performance levels. 

The topology of an RBF network is similar to that of an MLP network. An 

RBF network is essentially a three layer feedforward neural network. The first 

layer, consists of a number of units clamped to the input vector. The hidden 
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layer is composed of units, each having an overall response function 

(activation function), usually a Gaussian as defined below: 

z Ix 
6 

1ý 
gk(x)=exp -2 

A 
(4.32) 

where x is the input vector, ck is the centre of the kth RBF and ak is its 

variance. The centres can be either fixed before training of the network or 

learned through the training of the network. The third layer computes the 

output function for each class as follows: 

M 

f(X) = Wk . gk(X) 

k=1 
(4.33) 

where M is the number of RBFs and wk is the weight associated with kth 

RBF 

Despite topological similarity with MLP networks, the RBF networks, 

differ from MLP networks in several important respects. These differences 

are outlined below [Haykin, 1994]: 

" An RBF network (in most applications) is a single hidden layer neural 

network, whereas, an MLP network may consist of one or more hidden 

layers. 

" All individual neurons in a hidden layer and in an output layer of an MLP 

network share a common neuron model. On the other hand, the neurons in 

the hidden layer of an RBF network are quite different and serve a 

different purpose from those in the output layer of the network. 

" The activation function of each neuron in a hidden layer of an MLP 

network computes the inner product of the input vector and the synaptic 
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weight vector of that unit. On the other hand, the argument of the 

activation function of each hidden unit in an RBF network computes the 

Euclidean norm (distance) between the input vector and the centre of that 

unit. 

" The hidden unit of an RBF network is nonlinear and the output unit is 

always linear. The hidden unit of an MLP network is also nonlinear, 
however, the output layer can be linear or nonlinear. 

MLPs construct global approximations to nonlinear input-output mapping 

and are therefore capable of generalization in regions of the input space 

where little or no training data are available. On the other hand, RBF 

networks construct local approximations to nonlinear input-output 

mappings and are therefore capable of fast learning and reduced sensitivity 

to the order of presentation of training data. 

4.7.1 Training: 

A number of approaches to training RBF networks are available in the 

literature. Most of these can be divided into two stages. The first stage 

involves the determination of an appropriate set of RBF centres and widths 

and the second stage deals with the determination of the connection weights 

from the hidden layer to the output layer. Indeed, the selection of the RBF 

centres is the most crucial problem in designing the RBF network. These 

should be located according to the demands of the system to be modelled. A 

number of different methods have been proposed for the selection of 

appropriate RBF centres. Here, we shall describe the orthogonal least squares 

(OLS) method developed by Chen et al. [ 1991 ]. 
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4.7.1.1 Orthogonal Least Squares Method: 

An RBF network can be considered as a special case of the linear 

regression model: 

d(t) _ p; (t)6; + e(t) (4.34) 

where d(t) is the desired output, pi(t) are the regressors, O are the parameters 

to be estimated and e(t) is the error. In matrix notation, the above equation 

can be written as 

D=PO+E 

where 

D= [d(1) d(2) ... d(N)]T 

0=[01 02 
... 

0 
M]I\ 

1<_i<_ P=[P] Pz .. pm]' p, _[p (1) p; (2) 
... pi(N)IT, M 

E_ [e(l) e42) ... e(N)]T 

(4.35) 

The regressor vector pi forms a set of basis vectors, and the least squares 

(LM) solution of (4.35) satisfies the condition that the matrix product PO be 

the projection of D on to the space spanned by the basis vectors. This means 

that the square of the projection PO is part of the desired output energy that 

can be counted by the regressors. However, it is not clear how an individual 

regressor contributes to this output energy, as different regressors are 

generally correlated. 
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The OLS method involves the transformation of the set of pi into a set of 

orthogonal basis vectors, and thus makes it possible to calculate the individual 

contribution to the desired output energy from each basis vector. The 

regression matrix P can be decomposed into 

P= WB (3.36) 

where B is an MxM upper triangular matrix: 

1 bl2 b13 
""" 

biM 

01 b23 
""" 

b2M 

B= 00 (3.37) 
1 bMlM 

0 ... 001 

and W is an NxM matrix with orthogonal columns w; such that 

WTW =H (3.38) 

Here H is a diagonal matrix 

h, 0 
H= (3.39) 

0 hm 

with h; = w; w; = 1< i< M. (4.40) 
tw(t)w(t), 

T 

Equation (4.35) can be rewritten as 

D= (PB-')(BO) +E= Wv +E (4.41) 

where 
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BO =V (4.42) 

Because e(t) is uncorrelated with the pi(t), it is straightforward to show that 

v=H'WTD (4.43) 

or 

W' D (4.44) 
w; w; 

The classical Gram-Schmidt method [Björck, 1967] can be employed to 

derive B and v and thus to solve for O from (4.42). This method computes 

one column of B at a time and orthogonalizes P as follows: at the kth step, 

make the kth column orthogonal to each of the k-1 previously orthogonalized 

columns and repeat the operation for k=2,3,..., M. The computational 

procedure can be represented as 

WlPl 

bik = 
w[ Pk 1_ i_ k (4.45) 
wi w 

k-1 

Wk = Pk -Jbikwi 

i-1 

In most applications, the number of data points is very large in RBF 

networks, hence the centres must be chosen as a subset of the data set. In 

general, the number of all the candidate regressors M, can also be very large 

but an adequate model may only require MS (« M) significant regressors. 

These significant regressors can be selected as follows: 

From equation (4.41), the sum of squares of D is 
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M 

D''D= v; w'w; +ETE (4.46) 

It is seen that each w; explains a proportion of the dependent variable 

variance. Therefore the error reduction ratio due to w; is defined as, 

2T 

[err 
'. _ 

v' W' W' 
,I ! d<_ M (4.47) 

DTD 

This ratio offers a simple and effective means of selecting a subset of 

significant regressors from a large number of candidates in a forward 

regression manner. At the jth step, a regressor is selected if it produces the 

largest value of [err]; from among the rest of the candidates. The selection 

procedure is terminated when 

Ms 

1-ý[en] <p 
j=l 

(4.48) 

where 0<p<I is a chosen tolerance. The parameter estimate Os from the 

resulting subset model is then computed from 

ASM5 = vS (4.49) 

where As is the MSxkt unit upper triangular matrix. The detailed selection 

procedure can be found in [Chen et al., 1989; Billings and Chen, 1989]. The 

desired tolerance p can actually be learned during the forward regressor 

procedure so that the regressor procedure becomes an automatic procedure. 

This aspect is discussed by Billings and Chen [1989]. 
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4.7.2 Approximation Capabilities of RBF Networks: 

In theory, the RBF network, like the MLP network, is capable of 

approximating any continuous non-linear mapping [Girossi and Poggio 1989, 

1990, Hartman et al., 1990; Poggio and Girosi, 1990; Lee and Kil, 1991; Park 

and Sandberg, 1991,1993]. 

Poggio and Girossi [1990] emphasize that the property of approximating 
functions arbitrarily well is not sufficient for characterizing good 

approximation schemes, as many schemes have this property. These authors 

propose that the key property is not that of arbitrary approximation, but the 

property of best approximation. An approximation scheme is said to have this 

property if in the set of approximating functions there is one which has the 

minimum distance from the given function. The first main result of their paper 

[Poggio and Grossi, 1990] is that MLP networks do not have the best 

approximation property. Secondly, they prove that RBF networks do have the 

best approximation property. This result is very significant and provides 

theoretical support for favouring RBF networks. The result was published 

some eight years ago but (to the best of our knowledge) has not found any 

serious challenge from the advocates of MLP networks. This further 

enhances confidence in RBF networks over MLP networks. 

4.8 Discussion: 

The field of ANNs is a hot topic of research at present and has spread to 

almost every field of science and engineering. The reasons for the popularity 

of ANNs are many and include the following: 

" ANNs learn by experience rather than by modelling or programming. 



96 

" ANN architectures are distributed, inherently parallel and potentially real 
time. 

" They have the ability to generalize. 

" They do not require a prior understanding of the process or phenomenon 
being studied. 

" They can form arbitrary continuous nonlinear mappings. 

" They are robust to noisy data 

Despite these promising features of ANNs, most naval architects and other 

people related to marine engineering and ship control are still dubious about 

the application of ANNs, largely because of a lack of understanding of how 

they work. This Chapter is therefore, especially written for those who have 

little or no knowledge of ANNs and do not know the functionality and 

capabilities of neural networks. 

The Chapter begins with a brief history of ANNs to provide a source of 

motivation and inspiration to the reader. A simplified model of a biological 

(real) neuron is described and it is explained how an artificial neuron model 

can be derived inspired from its biological counterpart. A single neuron is not 

very capable of performing complex tasks, however, when several neurons 

are connected in some specific manner, they can solve complex problems 

which would be impossible for a single neuron. Several ANN architectures 

have been proposed. This Chapter describes only the feedforward architecture 

which has already proved its worth in numerous engineering applications, 

particularly in the field of systems and control. 

Feedforward neural networks can be divided into two major classes: the 

MLPs and RBF networks. Both of these classes are described in considerable 

detail and their learning algorithms, namely the back-propagation learning 

algorithm and the orthogonal least squares algorithm, are derived. Many 
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researchers have mathematically proved that a single hidden layer MLP 

network is capable of universal approximation. However, the question of how 

many neurons should be used in hidden layer for a given problem, is still 

almost unresolved. The radial basis function networks not only possess a 

universal approximation property but also the best approximation property. 
There is no problem of choosing a suitable number of hidden layer neurons 
for a particular application. The learning process of RBF networks is faster 

than that of MLP networks, however, they usually require more hidden layer 

neurons for a given problem. We shall investigate the potential of both of 

these classes of feedforward neural networks for ship steering control systems 

in the later Chapters. 



Chapter 5 

DEVELOPMENT OF MULTILAYER PERCEPTRON NETWORKS 

In this Chapter we investigate the potential of multilayer perceptron (MLP) 

networks for ship steering control systems. The procedure involved in the 

development of these networks is described and simulation studies are 

undertaken to test the performance of the networks over a range of forward 

speeds. The Chapter also explains how the training time of these networks 

may be improved. 

5.1 Methodology: 

Multilayer perceptron networks are trained using the back-propagation 

learning algorithm of Section 4.6.1. This algorithm is based on the supervised 

learning of artificial neural networks (ANNs). In such an approach an ANN is 

trained to behave like a specific form of a conventional controller. Input and 

target data are generated from the input and output of that controller in a 

normal closed loop fashion in conjuction with the plant. 

In the particular case of a ship steering control system, a PD/PID 

controller tuned at a fixed operating condition could be used as one trainer for 

the network in the training phase, as shown in Figure 5.1. The resulting 

network will learn to behave in the same manner as its trainer, i. e. it will 

perform well at that particular condition. If we use several conventional 

controllers (e. g. PD/PID controllers) tuned at different operating conditions 

as supervisors, the resulting neural network will be able to perform well for 

the range of operating conditions over which it is trained [Burns, 1995], and 
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probably slightly outside that range due to the generalization property of 

ANNs. All ANNs developed in this thesis are based on the above idea. 

Clearly, this procedure of training ANNs is concerned with simulation only. In 

principle, the same procedure for training of the ANNs could be applied to 

data generated from ship trials in which conventional controllers were used 

with parameters chosen to suit each operating condition and a series of 

different tests were used to generate the training set. 

Figure 5.1: Supervised learning of an MLP network for ship steering control 
system. The ANN output is subtracted from the desired output. In 
the training phase the network minimizes the squared sum of 
the resulting error. 

An ANN controller developed in this way will have a configuration which 

will remain fixed once the training phase is complete. The resulting control 

system will have more predictable characteristics than those which are found 

in many forms of self adaptive control systems. In particular, stability bounds 

can be investigated through simulation studies as with any other form of 

controller having fixed characteristics. 

The selection of an appropriate network structure is crucial for a 

successful application. As discussed in the previous Chapter, a single hidden 

layer MLP network is capable of universal approximation and the network 
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learns faster if we use the hyperbolic tangent function of equation (4.4) as the 

nonlinear activation function of hidden layer neurons. Hence all networks 

developed in this Chapter involve only one hidden layer with a hyperbolic 

tangent function as the activation function of each hidden layer neuron. All 

networks contain only one neuron in their output layer, as the purpose of a 

ship autopilot is to generate an appropriate rudder signal which is the only 

output of the network. A linear activation function has been used as the 

activation function of the output neuron. The number of inputs, however, 

depends upon the nature and number of supervisors (conventional controllers) 

of the network. The number of hidden layer neurons is to be found by some 

trial and error procedure (see section 4.6.4 for details). The procedure for 

developing MLP networks is summarized below: 

1. Decide the inputs to the MLP network and the number of hidden layer 

neurons. 

2. Generate and record training data. 

3. Use the back-propagation learning algorithm to train the network with the 

generated training data. 

4. Check the success of the training. If the performance is poor, increase the 

size of the network and go back to step3. 

5.2 Assumptions: 

The MLP autopilots developed in this Chapter are based on the following 

assumptions. The end user may regard these as limitations. 

1. The system will have control over the rudder(s) only. 

2. If the ship has more than one rudder, they will be coupled and move as 

one. 

3. The system will be required to function properly only for forward 

motion. No reverse operation will be required. 
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4. The system will only be required to achieve a commanded heading, it 

will not be optimized for path following. 

5. The networks are trained off-line by using the supervised learning 

methods. 

6. The forward speed of the ship is the only operating condition that 

varies. 

Most autopilots reported previously are based on the first four 

assumptions. See for example [. ström, 1980; Källsröm and Astrom, 1981; 

Flower and Sparrius, 1986 etc. ]. 

Based on the above assumptions, we have developed MLP networks for a 

number of ships. Some of our investigations are presented in the following 

Sections. 

5.3 ROV ZEEFAKKEL: 

ROV Zeefakkel is a small ship of length 45 m. In his PhD thesis, Van 

Amerongen [1982] demonstrates that the motion of this ship can be described 

adequately by the Norrbin's nonlinear model of equation (2.30) with the 

following parameter values: 

U=5m/s, T=31 s, K=0.51/s, a, =land au=OA s2. 

The maximum rudder angle for this ship is ±35° and the maximum rudder rate 

is ±7°/s. 

The purpose of this investigation is to develop an MLP network that yields 

satisfactory performance from 5 m/s to at least 10 m/s for any reference 

heading from ±50 and ±50°. The control signal should not reach the maximum 
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value of the rudder angle (±35°) and the maximum rudder rate (i. e. ±7"/s). 

The overall simulation set up is based on Figure 3.1. 

The procedure of the development of the network is described as follows: 

Generation of data for training: As our approach is based on the 

supervised learning of neural networks, hence the data for training (inputs and 

target of the network) must be available. For this purpose, we designed two 

PD controllers at a forward speed of 5m/s and 10m/s by using the IMC laws 

of Section 3.6.2. The PD controllers had the same structure as given in 

equation (3.11). Data were generated at reference headings of ±50 and ±50" at 

each speed. 

Inputs and output of the network: Equation (3.11) suggests that the inputs 

to an ANN network for training should be (i) Pd - `P (ii) 'P 
. 

As our aim is to 

develop an MLP network that yields satisfactory performance from 5m/s to 

IOm/s, hence a speed vector U should also be used as an additional input to 

the network. This vector may be regarded as a scheduling variable. The only 

output is the commanded rudder signal. Hence, the MLP network of this 

investigation consists of three inputs and one output, as shown in Figure 

5.2. 

Figure 5.2: MLP network for ROV Zeefakkel 
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To generate the desired heading response Pd, a third order reference 

model of equation (3.5) was used with a,,, = 0.9341, b,,, = 0.2040 and cm = 

0.0182 [Unar and Murray-Smith, 1997a]. 

Size of data sets: 400 time samples were generated at each reference heading 

at each speed. This means that the total size of data set for each input for 

training was 3.2 kilo bytes (kb) 

Network Architecture: As mentioned above, the network used for this 

investigation ( and all other investigations reported in this Chapter) is a single 

hidden layer MLP network with hyperbolic tangent nonlinearity in the hidden 

layer and a linear transfer function in the output layer. The network was 

trained by using the back-propagation learning algorithm with adaptive 

learning rate and momentum. After many simulation trials we found that 7 

neurons in the hidden layer can provide satisfactory performance (see Figure 

5.2). 

Training Time: The network took 30 minutes 13 seconds in training on a 

166MHz Pentium PC and the software used was MATLAB (Version 4.2c) 

with Neural networks and Control Systems Toolboxes 

The matching of the data with the trained MLP network is shown in Figure 

5.3. This Figure clearly indicates that the network has successfully captured 

the dynamics of its supervisors (i. e. PD controllers) at both speeds (i. e. 5 m/s 

and 10 m/s). 

Performance: The performance of the controller for a heading change of 200 

at a speed of 5 m/s and 10 m/s is shown in Figure 5.4 and 5.5 respectively. 
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Figure 5.3: Matching with training data, i. e. comparison of the actual 
and desired output of the MLP network. 
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Figure 5.4: Performance of MLP network for ROV Zeefakkel at 5 m/s. 
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Figure 5.5: Performance of MLP network for ROV Zeefakkel at 10 m/s. 

The above Figures show that the MLP network's performance is highly 

satisfactory. As the network was trained at 5 m/s and 10 m/s, its superior 

performance at these speeds is not surprising. However, it will be interesting 

to check the performance of the network at other speeds within this range. 

Figure 5.6 shows the performance of the network at 8 m/s which is again very 

satisfactory. We also checked the performance at all other speeds between 5 

m/s and 10 m/s and found results which showed that the actual heading 

corresponded to the desired heading with an accuracy which was as good as 

that shown in Figure 5.4,5.5 and 5.6 at the speed of 5 m/s, 10 m/s and 8 m/s 

respectively. This type of robust performance is achieved because of the 

generalization property of ANNs which can make neural network controllers 

superior to other forms of control systems [Bavarian, 1988; Moody, 1991; 

Hush and Home, 1993]. 
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Figure 5.6: Performance of MLP network for ROV Zeefakkel at 8 m/s. 

Now let us consider the performance of the network outside the above 

range of forward speeds. It is a well established fact that, in general, ships are 

difficult to control at low speeds than at high speeds because rudder forces 

are not much effective at low speeds [Rawson and Tupper, 1983; McCallum, 

1991]. This is also evident from Figure 5.3 which shows that more rudder 

activity is needed to turn the ship at 5 m/s than at 10 m/s. Moreover, it is 

observed that the ship parameters vary significantly at low speeds. This is 

obvious from Table 5.1 which contains the parameters of the ship from 1 m/s 

to 20 m/s. The parameter "m" changes from 62 to 550, "dl" varies from 2 to 

10 and "d3" from 0.8 to 100 when speed decreases from 5 m/s to I m/s. This 

is a significant parameter variation and it is unlikely that the generalization 

property of ANNs could cope with these severe variations. Figure 5.7 depicts 

the performance of the network at a speed of 3 m/s. Although the ship is 

stable at this speed, the rudder response is not satisfactory. The ship goes 

unstable below this speed. 
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When the speed changes from 10 m/s to 20 m/s, "m" varies from 15.5 to 

3.8750, "d, " from 1 to 0.5 and "d3" from 0.1 to 0.0125. These changes are 

not significant as compared to the variations at speeds below 5 m/s. A 

properly trained ANN should generalize well for this range of parameter 

variation. 

Table 5. l: Parameter variations with respect to the forward speed of the ship. 

U 
m/s 

T K m=T/K d1 = a1/K d3 = a3/K 

1 155.0000 0.1 1550.000 10.0000 100.0000 

2 077.5000 0.2 387.5000 05.0000 012.5000 

3 051.6667 0.3 172.2222 03.3330 003.7037 

4 038.7500 0.4 096.8750 02.5000 001.5625 

5 031.0000 0.5 062.0000 02,0000 000.8000 

6 025.8333 0.6 043.0556 01.6667 000.4630 

7 022.1429 0.7 031.6327 01.4286 000.2915 

8 019.3750 0.8 024.2188 01.2500 000.1953 

9 017.2222 0.9 019.1358 01.1111 000.1372 

10 015.5000 1.0 015.5000 01.0000 000.1000 

11 014.0909 1.1 012.8099 00.9091 000.0751 

12 012.9167 1.2 010.7639 00.8333 000.0579 

13 011.9231 1.3 009.1716 00.7692 000.0455 

14 011.0714 1.4 007.9082 00.7143 000.0364 

15 010.3333 1.5 006.8889 00.6667 000.0296 

16 009.6875 1.6 006.0547 00.6250 000.0244 

17 009.1176 1.7 005.3633 00.5882 000.0204 

18 008.6111 1.8 004.7840 00.5556 000.0171 

19 008.1579 1.9 004.2936 00.5263 000.0146 

20 007.7500 2.0 003.8750 00.5000 000.0125 

Figure 5.8 illustrates the performance at a speed of 15 m/sec which is quite 

satisfactory. In fact, we checked the performance of the network at all speeds 
from 2 m/s to 20 m/s at every reference heading from ±50 to ±60°. We found 
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that the performance of the network was robust for a range of speeds from 5 

rn/s to 20 m/s. However, it was not very satisfactory below 5 m/s as discussed 

above. 
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Figure 5.7: Performance of the MLP network at 3 m/s for ROV 
Zeefakkel. 
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5.4 Mariner Class Merchant ship: 

In the previous Section we developed MLP network for a small ship (ROV 

Zeefakkel) of length 45m only and found promising results. In this Section, 

we present results of our investigations on a mariner class merchant ship 

which is much larger than ROV Zeefakkel. The main parameters of the ship at 

a speed of 5 m/s are [Layne, 1992; Layne and Passino, 1993]: K= -3.19, T, = 

5.71, T2 = 0.37, T3 = 0.89, a1 = a3 =I (equation (2.30)). The length of the 

ship is 161m. 

In this case, we designed two PID controllers by using the MRAC 

approach of Section 3.8.1 at 5 m/s and 10 m/s. (See Layne and Passino, 1993, 

for details). The inputs to the network were the following: (`I'd -'P) 

(iii) (Td - `I' T and (iv) U (see Figure 5.9 
0 

Figure 5.9: MLP network for mariner class merchant ship 
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The only output was the commanded rudder angle. Data were generated at 

reference headings of ±5° and ±50°. Five hundred time samples were 

generated at each speed (5m/s and lOm/s) for each reference heading. The 

total data size for each input therefore was 4kb. It was found that 10 neurons 

in the hidden layer are sufficient for satisfactory performance. The training 

time was 34 minutes 49 seconds. 

On the basis of extensive simulation studies we found that the performance 

of the network is satisfactory for the range of forward speeds from 5 m/s to 

10 m/s and even at speeds above 10 m/s. However, the performance was 

relatively poor at speeds below 5 m/s (i. e. outside the speed range used for 

training of the network). This is because the ship parameters change 

significantly at low speeds than at high speeds as is described in the previous 

Section. Some results are illustrated in Figure 5.10 and 5.11. 
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Figure 5.11: Performance of MLP controller for mariner class merchant 
ship at a speed of 12 m/s. 

5.5 210,000 DWT Tanker: 

This is a large tanker of length 31Om. Ekdahl and Henrikson [1970] have 

investigated the steering characteristics of this tanker in detail and have 

demonstrated that the motion of the ship can be described by the following set 

of parameters: 

Tt = 1058 s, T2 = 37.8 s, T3 = 84.68s and K= -0.0105 s'' at U=4.1 m/s. 

The motion of this ship is also investigated by Koyama [1972]. 

We developed an MLP controller for this tanker by using the similar 

procedure, as was used for the ROV Zeefakkel and the mariner class 
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merchant ship of the previous Sections. To generate the desired states, a 

second order reference model of equation (3.3) with ý=I and w� =0.01 rad/s 

was used. The performance of the MLP controller is shown in Figure 5.12 

and 5.13 at a speed of 6 m/s and 10 m/s respectively. This performance was 

achieved when 12 neurons were used in the hidden layer of the network. The 

training time was 18 minutes 4 seconds. 
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The above investigations suggest that MLP networks have a good 

potential for ship steering control systems. The networks are computationally 

cheap and provide robust performance within the range of operating 

conditions at which they are trained. However, the training process is slow. 

This disadvantage can be overcome in two possible ways: 

(a) by reducing the size of data sets for training 

(b) by using some faster version of the back-propagation algorithm. 

These issues are discussed in the following Sections. 

5.6 Reducing the size of the training data set 

The choice of training data influences very strongly the success of the 

network since the network is taught to have the same input/output 

relationship as the training data. The resulting network can not be more 

accurate than its training data. Saying this does not mean that the training 

data must represent every possible future input/output relationship. The 

importance is that the training data must range over most of the values 

expected in operation. ANNs possess a generalization property which makes 
it possible to get good results even for inputs for which a network has not 
been trained. Hence, a wide range in training data is usually of bigger 

importance than a high density. 

Many ships, particularly large tankers can take more than 300 seconds to 

reach their new steady state path after a turn. For example, the settling time 

of 210,000 dwt tanker of the previous Section is roughly 500 seconds. To 

show a complete manoeuvre of this ship to ANN network (in training phase), 

we have to generate at least 500 time samples (from 0s to 499 s) at a given 



114 

reference heading. If we generate data at four reference headings (e. g. at ±50 

and ±50"), the size of training data set will be 500x4 = 2000 time samples at a 

particular forward speed of the ship. If we generate data at two different 

speeds (e. g. at 5 m/s and 10 m/s), then the total size of data for each input 

will become 2000x2 = 4000 time samples. This is of course a large data set 

and an ANN network trained with this data set will take much time in 

learning. Hence, to improve the speed of training, the size of data should be 

reduced. 

There is also another reason for reducing the size of data sets for training. 

Due to memory problems (i. e. high computational cost), a number of 

sophisticated learning algorithms do not work when data sets are very large. 

For example, the back-propagation rule with L-M algorithm (Section 4.6.3) 

and the orthogonal least squares algorithm of Section 4.7.1.1. may not work 

if the data size is 4000 time samples. 

Unfortunately, there is no standard method available in the literature to 

reduce the size of data sets for training. We reduced the data set size by using 

the following approach [Unar and Murray-Smith, 1997b]: 

Suppose that we initially generate 500 time samples at a given reference 

input. As pointed out earlier, the density of data is not important, hence we 

may pick, for example, every fifth time sample from the above data set. This 

reduces the size of data from 500 to 100 time samples. Now if we generate 

data at four reference headings at two speeds, then the net data size for each 

input will be 1000 which is just 1/4 of the actual data size. The training time of 

network will be much faster with this reduced size of data than with the 

original size of data. On the basis of extensive simulation studies, we found 

that the reduction of data size by this approach has no serious effect on the 

overall performance of the network. 
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By using the above procedure of data reduction, we re-trained the 

networks for all the above ship models and found no serious effect on the 

performance of the networks when they were trained with a reduced size of 

data. 

As mentioned in Section 5.3, the total size of data for each input of ROV 

Zeefakkel for training was 3200 time samples. There were three inputs and 

one output of the network and the training time of the network was 30 

minutes 13 seconds. We picked every 4" time sample from the data set. That 

is, 800 time samples of each input were used for training. When we trained 

the network with this reduced data set, the training time was just 610.3 

seconds. This is a significant improvement, as far as training time is 

concerned. The performance of this network is illustrated in Figure 5.14. If 

we compare this Figure, with Figure 5.4, we can reveal that the performance 

is exactly the same. 
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Similar procedure of data reduction for training an MLP network for the 

other two ships (i. e. Mariner Class Merchant Ship and 120,000 dwt Tanker) 

was undertaken and in each case it was found that the performance of the 

MLP network with full data size and with the reduced data size was almost 

the same. 

5.7 Back-Propagation with Levenberg-Marquardt Algorithm: 

In this Section, we demonstrate that the training time of MLP networks 

can be significantly improved if we incorporate the L-M algorithm into the 

standard back-propagation rule (See Section 4.6.3). At present, this is the 

fastest version of the back-propagation algorithm. However, it is 

computationally expensive and is not suitable if the data size for training is 

very large [Hagan and Minhaj, 1994]. 

In the previous Section, we demonstrated that the performance of an MLP 

network is not affected if we carefully reduce the data size. The L-M 

modification to the back-propagation algorithm can be useful for training 

MLP networks for ship steering control applications, if we reduce the data 

sets by the method outlined in the previous Section. 

To check the performance of this version of back-propagation, we again 

trained an MLP network for ROV Zeefakkel. The training time in this case 

was only 291 seconds. Figure 5.15 compares the performance of this 

fastest version of the back-propagation with that achieved by back- 

propagation algorithm with adaptive learning rate and momentum. Similarly, 

Figure 5.16 compares the performance of the two versions of the back- 

propagation algorithm for 210,000 dwt tanker. The training time of the MLP 
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network trained with adaptive learning rate and momentum was 689 seconds. 
On the other hand, when the network was trained with back-propagation rule 
incorporating the L-M algorithm, the training time was reduced to 276 

seconds. 
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Figure 5.15: Comparison of back-propagation (BP) with adaptive learning rate 
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5.8 Conclusions: 

This Chapter presents results concerning the use of multilayer perceptron 
(MLP) networks to obtain a controller which incorporates the properties of a 

series of conventional controllers. Three simulation studies have been 

undertaken which demonstrate the suitability of these networks for ship 

steering control system. The most encouraging and interesting result is that 

MLP networks with only one hidden layer are sufficient for satisfactory 

performance. There is no need to use more than one hidden layer in MLP 

networks for this application. 

Another interesting result is that only a very small number of neurons is 

required in the hidden layer for all three ships considered in this Chapter 

It is demonstrated that MLP networks can yield robust performance within 

the range of operating conditions they are trained for and even at values of 

forward speed above this range. However, the performance may not be robust 

at forward speed values below the given range of operating conditions. For 

example, if we develop an MLP network for a range of forward speeds from 

5 m/s to 10 m/s, it could yield robust performance within this range (i. e. from 

5 m/s to 10 m/s) and at speeds higher than this range. However, its 

performance may not be robust at speeds less than 5 m/s. 

It is also demonstrated that a large data set is not essential for satisfactory 

performance. A large data set may cause the learning process to be very slow. 

A suitable subset of data for training can improve the speed of learning 

without having a serious effect on the performance. 

The Chapter also demonstrates with the simulation studies that the training 

time of MLP networks can be improved significantly if we incorporate the 
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Levenberg-Marquardt theorem into the standard back-propagation learning 

rule. 

A disadvantage of the MLP networks is that there is no straight forward 

rule to choose an optimal number of hidden layer neurons. This number has to 

be chosen on some trial and error basis which is time consuming and tedious. 

This disadvantage can be overcome by using radial basis function networks. 

The applicability of these networks for ship steering control systems is 

investigated in the next Chapter. 



Chapter 6 

SHIP STEERING CONTROL USING RBF NETWORKS 

In this Chapter we investigate the applicability of radial basis function (RBF) 

networks for ship steering control systems. The networks are based on the 

same assumptions/limitations as discussed in the previous Chapter. However, 

we also check the performance of the trained networks when the depth of 

water or loading conditions change along with the forward speed of the 

vessel. RBF networks offer several advantages over multilayer perceptron 

(MLP) networks. These include the following: 

" As mentioned in Chapter 4 and 5, there is no straight forward rule to find 

an optimal number of hidden layer neurons of an MLP network for a 

particular application. There is no such problem in RBF networks. For 

example, the orthogonal least squares (OLS) algorithm of Section 4.7.1.1 

automatically chooses a suitable number of hidden layer neurons from 

input data sets. 

" Although MLP networks possess the universal approximation property 

they do not have the best approximation property. RBF networks, on the 

other hand, are not only universal approximators but they also possess the 

best approximation property (See Section 4.7.2). 

" RBF networks are generally faster than MLP networks for a given 

application. 

RBF networks have found many successful applications in different areas 

of Science and Engineering. However, these networks are investigated for a 

ship steering control application only by this author [Unar and Murray-Smith, 
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1997b, 1999; Unar et al. 1998]. Our main investigations are presented in the 

following Sections: 

6.1 ROV Zeefakkel 

We have already developed MLP network for this ship in Section 5.3 of 

the previous Chapter. To compare the performance of MLP and RBF 

network for this ship, we used the same data which were generated for the 

MLP networks in the previous Chapter. The total size of data for each input 

was 1000 time samples. We trained an RBF network by using the OLS 

algorithm. The radial basis function used in the hidden layer was a Gaussian 

function of width 2. Extensive simulation studies revealed that the 

performance of RBF network is as good as of MLP network for this ship. 

Figure 6.1 compares the performance of MLP and RBF network at a speed of 

7m/sec for a reference heading of 200 and Figure 6.2 compares the 

performance at a speed of 12 m/sec for a reference input of 15°. As can be 

seen from these Figures, both networks yield exactly same performance. The 

MLP network was trained with two versions of back-propagation algorithm: 

(i) Back-propagation with adaptive learning rate and momentum (MLPI) and 

(ii) Back-propagation with Levenberg-Marquardt algorithm (MLP2). The 

training times of both MLP1 and MLP2 networks are compared with that of 

the RBF network in Table 6.1. The number of hidden layer neurons for these 

networks are also given in the Table. It is obvious from the Table that RBF 

network is faster than both versions of MLP networks. However, the RBF 

network requires more neurons in the hidden layer. 
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Figure 6.1: Comparison of MLP and RBF network at a speed of 7m/sec. for 
ROV Zeefakkel. 
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Note: In the above Figures, we have compared the performance of MLPI 

(not of MLP2) with RBF networks. The performance of MLP I and MLP2 is 

almost the same, as was demonstrated in the previous Chapter. 

Table 6.1: Comparison of MLP1 & MLP2 with RBF network for ROV 

6.2 Mariner Class Merchant Ship: 

We also developed an RBF network for the Marine Class Merchant ship of 
Section 5.4. The network was trained with the OLS algorithm and the 

activation function in the hidden layer was the Gausian function of width 3. 

Figure 6.3 compares the performance of RBF network with MLP I network 

developed for the ship. Again, the performance of RBF and MLP 1 network is 

comparable. The number of hidden layer neurons and the training times of the 

three networks are given in Table 6.2. 

Table 6.2: Comparison of RBF networks with MLP 1& MLP2 networks 

Network Number of hidden 

layer neurons 

Training Time 

(seconds) 

RBF 30 114.6 

MLP1 10 749 

MLP2 10 210.8 
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Figure 6.3: Comparison of RBF and MLP1 at 5 m/sec. for Mariner class 

merchant ship. 

6.3 210,000 dwt Tanker 

We have already developed an MLP 1 network for this ship by using the 
back-propagation rule with adaptive learning rate and momentum in Section 

5.5 and the MLP2 network by using back-propagation with L-M algorithm in 

Section 5.7 of the previous Chapter and showed that the performance of both 

of the networks is same. Here we develop an RBF network for the ship when 

each Gaussian function (i. e. activation function of the hidden layer) has a 

width of 5. Again, OLS algorithm is used for the training. Figure 6.4 shows 

that the performance of RBF network is slightly better than that achieved with 
MLP I (and hence with MLP2) network. The RBF network is again superior 

as far as training time is concerned (See Table 6.3). 

Table 6.3: Comparison of RBF network with MLP 1& MLP2 networks 

Network Number of hidden 

layer Neurons 

Training Time 

(seconds) 

RBF 30 122.3 

MLPI 12 689 

MLP2 12 276 
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Figure 6.4: Comparison of RBF and MLP 1 network for 210,000 dwt 

tanker at a speed of 5 m/sec. 

6.4 Performance of RBF controllers at different loading conditions: 

In this Section, we develop an RBF network of a tanker at different 

forward speeds, and then check the performance of the network when its 

parameters change with different loading conditions. The parameters of the 

tanker are given in Table 2.7 of Chapter 2 and are reproduced here in Table 

6.4 for the convenience. 

Table 6.4: Parameters of a tanker at different loading conditions at 8 m/s 

Operating 

condition 

T, T2 T3 K T a bx 106 

OC 1 80 15 40 -0.013 50 0.020 -260 
OC2 160 20 30 -0.040 150 0.007 -270 

OC3 1000 25 60 -0.130 1000 0.001 -130 

OC4 -300 30 65 0.040 -400 -0.003 -100 
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As can be seen from the Table, the parameters a and b vary less than the 

parameters T and K, hence it is advantageous to represent the ship dynamics 

by equation (2.15), rather than by equation (2.13). See Chapter 2 for details. 

Aström [1980] has proposed various PD controllers for heading control of 

this ship. We used these controllers as supervisors for the training of an RBF 

network for the ship. We developed the network under the loading condition 

OCI only. The performance of the controller at various speeds under the 

same loading condition (i. e. OC 1) is shown in Figure 6.5. 
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Figure 6.5: Performance of RBF controller at various speeds under loading 

condition OC I 
(a) Heading response at 8 m/s (d) the corresponding rudder response 
(b) Heading response at 10 m/s (e) the corresponding rudder response 
(c) Heading response at 12 m/s (f) the corresponding rudder response 

The satisfactory performance of RBF network at the given loading condition 

(i. e. OC 1) is not surprising, as the controller was developed by using the 
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parameters at this particular condition. Is the same controller capable to yield 

satisfactory performance at other loading conditions? The answer to this 

question is obvious from Figures 6.6,6.7 and 6.8 which illustrate the 

performance at loading conditions OC2, OC3 and OC4 respectively. The 

performance under condition OC4 is not as good as in the other three 

conditions but it is expected. As can be seen from Table 6.4, the ship is stable 

under the condition OCI, OC2 and OC3 but it is unstable in the condition 

OC4 and thus more difficult to control. 
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Figure 6.6: Performance of RBF controller at loading condition OC2 
(a) Heading response at 8 m/s (d) the corresponding rudder response 
(b) Heading response at10 m/s (e) the corresponding rudder response 
(c) Heading response at 12 m/s (f) the corresponding rudder response 
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(c) Heading response at 12m/s (t) the corresponding rudder response 

10 

10 

5 

0 

c 

is 

10 

5 

0 

500 1000 JO 500 1000 J0 500 1000 
Time [sec. ] Time [sec. ] Time [sec. ] 

A iY t 

i 

0 

-1 



129 

4Cwter 

IJ 

cD 10 
70 
05 C TJ 
m 

r% 

10 

5 

0 

10 

10 

5 

0 

c 
0 500 1000 v0 500 1000 ̀ '0 500 1000 

Time [sec] Time [sec. ] Time [sec. ] 
AA 

al 2 
1, 

mO 

_d 

4 

2 

0 

L 

1 

0 

-1 

0 500 1000 T0 500 1000 ý0 500 1000 
Time [sec. ] Time [sec. ] Time [sec. ] 

Figure 6.8: Performance of RBF network under loading condition OC4 

(a) Heading response at 8m/s (d) the corresponding rudder response 

(b) Heading response at IOm/s (e) the corresponding rudder response 

(c) Heading response at 12m/s (f) the corresponding rudder response 

6.5. Performance of RBF controller at different depths of 

water: 

As discussed in Chapter 2, the ship parameters not only change with 

forward speed of the vessel and the loading conditions but they also change 

with the depth of water. We have already presented parameters of a mariner 

type ship at different depth to draft ratios at a speed of 7 knots in Table 2.5 of 

Chapter 2. Fujino [1968] have also computed experimentally the parameters 
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of the ship at a speed of 12 knots at different depth to draft ratios. These 

parameters are given in Table 6.5. 

Table 6.5: Parameters of mariner type ship at a speed of 12 knots 

H/DT 1.5 1.93 2.5 o0 
T, 27.23 70.47 83.45 102.8 

T2 09.44 09.39 09.57 08.92 

i T3 08.68 13.77 17.71 19.51 

T 26.94 66.07 75.32 92.22 

K -0.106 -0.107 -0.105 -0.112 

a 0.0371 0.0151 0.0133 0.0108 

b -0.0039 -0.0016 -0.0014 -0.0012 

We developed an RBF controller for this ship at the depth to draft ratio 

(H/DT) of 1.93 under varying conditions of forward speed of the ship. PDF 

controllers (see Section 3.6.4) for this ship were designed by Vahedipour et 

al. [1990]. These were used as supervisors of the RBF controller. The 

performance of the controller is illustrated in Figure 6.9. As can be seen, the 

performance of the controller is quite satisfactory at the given depth of water 

(H/DT = 1.93). To check the robustness of the controller, we used this same 

controller when parameters of the ship change at H/DT = 1.5,2.5 and c. The 

performance of the controller under these conditions is shown in Figure 6.10, 

6.11 and 6.12 respectively. These Figures suggest that the RBF controller 

performance is robust at various depths of water. 
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Figure 6.9: Performance of RBF controller at H/DT = 1.93 

(a) Heading response at 6 m/s (d) the corresponding control signal 

(b) Heading response at 9 m/s (e) the corresponding control signal 

(c) Heading response at 12 m/s (f) the corresponding control signal 
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Figure 6.10: Performance of RBF controller at H/DT = 1.5 

(a) Heading response at 6 m/s (d) the corresponding rudder response 

(b) Heading response at 9 m/s (e) the corresponding rudder response 

(c) Heading response at 12m/s (f) the corresponding rudder response 
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Figure 6.11: Performance of RBF controller at H/DT = 2.5 

(a) Heading response at 6 m/s (d) the corresponding control signal 

(b) Heading response at 9 m/s (e) the corresponding control signal 

(c) Heading response at 12 m/s (f) the corresponding control signal 
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Figure 6.12: Performance of RBF controller at H/DT = oc 

(a) Heading response at 6 m/s (d) the corresponding control signal 

(b) Heading response at 9 m/s (e) the corresponding control signal 

(c) Heading response at 12 m/s (f) the corresponding control signal 

6.6 Conclusions: 

This Chapter investigates the potential of radial basis function networks for 

ship steering control systems. The networks are trained by using the 

orthogonal least squares algorithm and their performance is compared with 

that achieved by the multilayer perceptron networks of the previous Chapter. 

Following are the main conclusions of this Chapter: 

" The performance of radial basis function networks is as good as 

achieved by multilayer perceptron networks of Chapter 5. However, 
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radial basis function networks have favourable characteristics in terms 

of the best approximation property and a compact network structure. 

" Radial basis function networks have a faster training time than 

inultilayer perceptron networks. However, like in other applications, 

they require more hidden layer neurons than multilayer perceptron 

networks in this application for comparable performance levels. 



Chapter 7 

AN APPLICATION INVOLVING REAL DATA 

The multilayer perceptron (MLP) and radial basis function (RBF) network 

controllers of the previous Chapters were developed on the basis of 

simulation studies, where the control signal was the rudder angle. The 

investigations of this Chapter are different from those presented in the 

previous Chapters, in two important respects: 

1. The ANN controller is developed from real data. The data were obtained 
from Dr. Euan McGookin, [McGookin, 1997] and were gathered while he 

was testing his sliding mode controller on scale model of a supply ship at 

the Guidance, Navigation and Control (GNC) Laboratory, Department of 

Engineering Cybernetics, Norwegian University of Science and 

Technology, Trondheim. The model is called CyberShipl. Its length is 

1.17m which is one seventieth the size of the actual vessel. The linear as 

well as angular velocities of CyberShip] are approximately eight times 

larger than the actual vessel's [McGookin, 1997]. A picture of the model is 

shown in Figure 7.1. 

2. Supply ships are used for oil platform support. To carryout this role, they 

should be highly manoeuvrable. Moreover, they should also maintain their 

position accurately while loading and unloading. Such a manoeuvre is 

called Dynamic Position Keeping (DPK) and can be difficult for a vessel 

to execute if steering is through the use of a rudder only. To avoid this 

problem, most supply ships use movable thrusters to maintain their 

position and heading. This means that the dynamics of this type of ships 

are different from those considered in the previous Chapters. Hence, this 
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study is significantly different from those presented earlier both in terms of 
the ship dynamics and the fact that experimental data are used. The 

CyberShipl has four thrusters, two at the bow and two at the stern, as 

shown in Figure 7.1. 

I- 

Figure 7.1: CyberShip 1. 

7.1 Ship Model Dynamics: 

As described in Chapter 2, the equations describing the motion of a ship 

are derived using Newton's laws of motion by taking two co-ordinate systems 

into account: an Earth fixed reference frame XoOoYoZo and a vessel fixed 

reference frame XOYZ (see Figure 2.1). These reference frames provide two 

sets of equations, the Kinetic and Kinematics equations. The kinetic equations 

result from the hydrodynamics of the vessel in the body fixed reference frame. 
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For a thrust driven ship, these equations can be represented as [Fossen, 1994; 

Fossen and Grovlen, 1998]: 

My+C(v)v+Dv =i, (7.1) 

where M, C(v) and D are the mass/inertia, Coriolis and damping matrices 

respectively (see Appendix D for values). The vector v represents the body 

fixed velocities (i. e. v= [u v r]") and 'tt is the input force vector provided by 

the thrusters, i. e. T, = [-c, i it2 TOOT, where ti� is the thrust vector along the body 

fixed x-axis, TO is the thrust force along the body fixed y-axis, and i, 3 is the 

thrust about the body fixed z-axis. 

The above equation can be rearranged as follows: 

v= -M '(C(v)+D)v+M-'tt (7.2) 

A second set of equations (kinematics equations) can be derived by defining 

the geometric relationship of the motion of the vessel relative to the Earth- 

fixed frame of reference. This can be written as [Fossen, 19941: 

rý = J(fl)v (7.3) 

where J denotes Euter equations relating the two reference frames and rl= [`I' 

x y1T represents the Earth-fixed states. 

By combining equation (7.2) and (7.3), the following state-space 

representation can be obtained: 

X= Ax + B'C t 
(7.4) 

-M-'(C(v)+D) 0v v 
where A= 

J0 
B=[M_'] x= and x= 

ITI 
. 
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7.2 Thruster Dynamics: 

As mentioned above, the thrusters provide the driving forces that propel 

the vessel. The thruster configuration for CyberShipl is shown in Figure 7.2. 

In the Figure, the position of the thrusters is given relative to the centre of 

gravity which is also the origin of the body fixed reference frame. Each 

thruster is represented by (a) the force it produces (i. e. f;, i=1,2,3,4) and (b) 

the azimuth angle a; defining the direction of the corresponding force, as 

shown in Figure 7.2. 

f, 

fz 

i 

Figure 7.2: Thruster Configuration 

Q'4 

x 

The angles a1 and a2 for the model can be set independently whereas a3 and 

U4 are always equal showing that their corresponding thrusters operate in the 

same direction. 

The thruster forces and angles can be related to the thruster inputs tt of 

equation (7.4) as follows: 

i, = G(a)f (7.5) 
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where f= If, f2 f3 f4 I`, a= [a, a2a3 a4 1T and 

cosa, cosa2 cosa3 cosa3 

G(a) = sing, sina2 sina3 sina3 (7.6) 
0.497sin(a, -0 ,)0.497sin((X 2 -02) 0.407sina3 0.527sina3 

where 0 and 02 are the phase shift angles of the thrusters relative to the 

centre of gravity. 

The maximum force that a thruster of C yberShipl can produce is estimated 

as ±1.2 N. The corresponding maximum azimuth angle limit is estimated at 

±ic radians. There are no rate limits given since the forces occur almost 

instantaneously in relation to the dynamic characteristics of the vessel and the 

direction is chosen to be fixed. McGooken [McGookin, 1997] has suggested 

the following constant values of the thruster angles: a1= a2 = it radians, a3 = 

as = n/2 radians. Substituting these values in (7.6) and neglecting very small 

components, matrix G((x) becomes, 

-1 -1 
G(a) =00 

00 

00 
11 

0.407 0.527 
(7.7) 

This indicates that the surge motion is governed by thrusters I and 2 at the 

stern and the sway and yaw motion is governed by thrusters 3 and 4 

7.3 Sliding Mode Controller Design: 

We have already described in Chapter 3 how a non-linear sliding mode 

controller (SMC) can be designed for a course changing control system. For 

C yherShipI the controller can be designed on the basis of equation (7.4). This 

equation has three inputs t, l, tit2 and To. McGookin [1997] has demonstrated 
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that for a course changing autopilot, only the yaw rate thrust input (its) can 

be used to control the course. The remaining two inputs (z� and i, 2) do not 

affect the heading motion significantly. The resulting controller has the 

following form: 

T� =-k x, +(hs bS) 1(hs icy - TI, tanh(ßs(xsý / ý5ýý (7.8) 

This controller has the same form as equation (3.30). However, there is a 
difference. Here the governing input is a force vector rather than a rudder 

deflection. McGookin [1997] optimized the parameters of the controller by 

means of Genetic Algorithms. These parameters are given in Table 7.1 where 

psi and ps2 are the two heading closed loop poles. 

Table 7.1: Optimized parameter values of SMC 

Psi -2.2092 

ps2 -0.2059 

res 8.1620 

k 1.2851 

The overall simulation set-up adopted by McGookin [1997] is illustrated in 

Figure 7.3. In the closed loop system, the surge motion is induced by a zt, 

step command of +1.2 N and the sway thrust force it2 is set to 0.0 N. The 

reason that sway velocity is made available for this vessel is due to the role it 

fulfils. Since a supply vessel provides support for oil platforms it must be able 

to maintain a constant position while loading and unloading takes place. In 

other words, a full velocity information is required to operate it effectively. 
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McGookin [McGookin, 1997] tested the performance of his course 

changing sliding mode controller on the physical model of CyberShipl at 

GNC, Department of Engineering Cybernetics, The Norwegian University of 

Science and Technology, Trondheim. He was kind enough to provide us with 

the real data which he gathered while testing his sliding mode controller on 

the physical model. The data sets include a 20°/-20° manoeuvre of the 

physical model, its desired response, and the output t of the sliding mode 

controller. 

-------------------------------------------------- 
Ztl 

0.0 N Thruster Thrust Model Aatc, 
Limits Allocation ship 

Dynamics 
Td Sliding Mode 

(wurse Changing) 10 
controller 

Ship Model 
---------------------------------------------------- 

Figure 7.3: Ship Model and Course changing Controller Configuration 

The data were gathered at a fixed speed only. Probably due to the limited size 

of the tank, it was not possible to gather the data at varying speeds. 

7.4 Development of ANN controller: 

Here our main objective is to develop an ANN controller that could mimic 

the dynamics of the course changing sliding mode controller of Figure 7.3. 

We developed an RBF controller by using the desired states and the error 

signal (i. e. difference between the actual and desired states) as inputs and the 

signal TO as the output. The network was trained by using the orthogonal 

least squares algorithm. Gaussian functions were used as the radial basis 
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functions. The matching to the training data is shown in Figure 7.4. This 

matching was achieved when 40 neurons were used in the hidden layer. 
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Figure 7.4: Matching of data 

The above Figure shows that the training data is quite noisy and involves a 

small offset. There could be several reasons of this noise and offset. 

" Very little consideration is given to the drag caused by the position of the 

thrusters. Since the bow thrusters are perpendicular to the flow over the 

hull they cause maximum drag and this affects the motion of the model. 

This could account for the slight offset in the thruster plot. 

The roll motion and water disturbance effects are neglected. They can 

alter the motion in the lab's manual basin. 
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The performance of the trained controller is shown in Figure 7.5 for a 

reference heading of 200/-200. The performance is quite satisfactory and 

encouraging. It indicates that an ANN controller can successfully be 

developed if real data become available. As the training data were only 

available at a fixed speed for a 200/-20° manoeuvre, we can not use the RBF 

controller when the forward speed of the vessel changes. However, we 

checked the performance of the controller at different reference headings. 

Some of the results are shown in Figure 7.6 and 7.7. Again the performance 

is quite satisfactory and enhance our confidence that ANN controllers can 

provide robust performance within a given range of operating conditions if 

appropriate data sets are available for training. 

20 

10 
-C 

0 

M 
-10 z 
on 

Solid = Actual, Dashed = Desired 

-svo 

0.5 

0 
U, 

1° -0.5 c 0 U 
4 

5 10 15 20 25 
Time [sec. ] 

05 10 15 20 25 
Time [sec. ] 

Figure 7.5: Performance of RBF controller for CyberShip1 for a 200/-20°, 
manoeuvre. 
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It is worth mentioning that the performance shown in Figure 7.5,7.6 and 

7.7 can also be achieved by using the sliding mode controller. However, the 

optimization of the sliding mode controller parameters is a difficult problem. 

The optimizing process using Genetic algorithms is very slow. McGookin 

[ 1997] reports that the optimization process takes more than 8 hours on a 

166MHz Pentium PC. On the other hand, the training of ANN controllers is 

much easier and faster. When we trained the RBF network described above 

on the same PC, the learning process took just 313 seconds. 

7.5 Summary: 

In this Chapter we have developed a radial basis function network 

controller for a thruster driven supply ship. The network is trained from the 

real data obtained from Dr. Euan McGookin. He gathered the data while 

testing his sliding mode controller on a physical model of a supply ship at the 

Guidance, Navigation and Control Laboratory, Department of Engineering 

Cybernetics, Norwegian University of Science and Technology, Trondheim. 

The real data were available only at one particular speed for a fixed (i. e. 

20"/-20") manoeuvre. This means that the resulting radial basis function 

network could only be developed at that particular speed and could not be 

tested at other speeds. However, we tested the performance of the network 

on a simulation at different manoeuvres at that fixed speed and found 

satisfactory results. Although the data sets were limited to a fixed speed, this 

Chapter has demonstrated how (noisy) real data could be incorporated in to 

the ANN development process successfully. 



Chapter 8 

LOCAL MODEL NETWORKS 

The investigations presented in this Chapter are different from those 

presented earlier. In the previous Chapters, we investigated the potential of 

ANNs as a controller. In this Chapter, we investigate the potential of ANNs 

for modelling the ship dynamics. For this purpose, we use Local Model 

Networks (LMNs). These networks have already proved of value in other 

applications involving the modelling of systems in which the dynamic 

characteristics can vary significantly with the system operating conditions 

[Johansen and Fosss, 1992a; Murray-Smith, 1992,1994; Murray-Smith et al., 

1992; Hunt et al., 1996b; Gollee and Murray-Smith, 1997, Gotlsche et al. 

1998; Johansen et al. 1998]. The Chapter is organized as follows. Section 8.1 

introduces local model networks in general. In Section 8.2, the literature on 

local models is surveyed briefly. In Section 8.3 major advantages of local 

model networks are listed. Section 8.4 explains how a local model network 

can be developed for a ship steering control system. Section 8.5 presents two 

simulation studies which illustrate the potential of local model networks for 

the application. Section 8.6 summarizes the Chapter. 

8.1 Local Model Networks: 

Local model network can be viewed as a generalized form of RBF 

network. An LMN is a set of models weighted by some activation function 

(see Figure 8.1). The same input signal is fed to each model and outputs are 

weighted according to some variable or variables, 4, 
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v(t) _ v; (Opi W (s. l) 

where y(t) is the model network output, p; (ý) is the validity function (basis 

function) of the ith model, n is the number of models, and y; (t) is the output 

of the ith local model f; (4 ). The weighting or activation of each local 

model is calculated using an activation function which is a function of the 

U 

Figure 8.1: General architecture of LMN 

scheduling variable. The scheduling variable could be a system state variable, 

an input variable or some other system parameter. It is also feasible to 

schedule on more than one variables and to establish a multi-dimensional local 

model network [Murray-Smith, 1994]. Although any function with a locally 

limited activation might be applied as an activation function, Gaussian 

functions are applied most widely. Other popular validity functions include B- 

Splines [Friedmann, 1991; Kavli, 1993] and Kemal functions [Hlaväckovä, 
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1995]. In this work we restrict ourselves to the Gaussian function. For 

modelling tasks the validity functions should form a partition of unity for the 

input space, i. e. at any point in the input space, the sum of all basis function 

activations should be 1. This is a necessary requirement for the network to be 

able to globally approximate systems as complex as the basis function' local 

models. Werntges [1993] discusses the advantages of normalization in RBF 

nets, promoting the advantages of a partition of unity produced by 

normalization. The basis functions can be normalized as follows: 

PO) (8.2) Pi 
n 

1Pi(4) 
J-I 

The individual component (local) models f of an LMN can be of any form; 

they can be non-linear or linear, have a state-space or input-output 

description, or be discrete or continuous time. They can be of different 

character, using physical models of the system for operating conditions where 

they are available, and parametric models for conditions where there is no 

physical description available. These can also be ANN models such as MLP 

or RBF networks. The individual local models are smoothly interpolated by 

the validity functions p; to produce the overall model. 

The learning process in local model networks can be divided into two 

tasks 

1. Find the optimal number, position and shape of the validity functions, i. e. 

define the structure of the network. 

2. Find the optimal set of parameters for the local models, i. e. define the 

parameters of the network. These parameters could be the complete set of 

coefficients for a linear model, numerical parameters of a non-linear model, 

or even switches which altered the local model structure. The parameters 
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are usually optimized by using a least squares output error criterion. The 

details can be found in [Murray-Smith, 1994; Murray-Smith and Johansen, 

1997]. 

8.2 Literature of local model methods in learning and modelling: 

Jones et al. [1989] suggested that the representational abilities of the 

normal basis function (BF) networks can be extended to a generalized form of 

BF network, where the basis functions are used to weight other functions of 

the inputs as opposed to straightforward weights. This suggestion was 

followed up by Stokbro et al. [1990] and Barnes et al. [19911. The work of 

Johansen and Foss [1992a, 1992b, 1992c, 1993] and Murray-Smith [1992, 

1994] is a generalization of these ideas. The adaptive expert networks of 

Jacobs et al. [ 19911 are also local model networks, where the local models are 

called expert systems and the integration of the various experts is made by so 

called gating networks. These were developed into hierarchical models in 

Jordan and Jacobs [1991,1993]. 

The idea of using locally accurate models is also described in the statistical 

literature in Cleveland et al. [1988], where local linear or quadratic models 

are weighted by smoothing functions. Priestley's State Dependent Models 

(SDM) [Priestley, 1988] have many similarities to LMNs. 

The use of local linear models without interpolation, that is, piecewise 

linear models, have been suggested by a number of researchers including 

[Tong and Lim, 1980; Billings and Voon, 1987; Skeppstedt, 1988; Hilhorst 

et al. 1991; Skeppstedt et al. 1992]. 

Local model networks have also links with fuzzy logic systems. The 

methods used in [Takagi and Sugeno, 1985] are effectively overlapping 
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piecewise linear models, with the interpolation between models provided by 

the membership functions. Similar works are reported in [Sugeno and Kang, 

1988; Foss and Johansen, 1993; Harris et at. 1993; and Wang, 1994]. 

Local model networks for modelling and control of dynamic systems have 

been applied by many authors including [Johansen and Foss, 1992a, 1992b, 

1992c, 1993,1997; Murray-Smith, 1992,1994; Murray-Smith and Hunt, 1995; 

Foss et at. 1995; Gollee and Hunt, 1997; Gollee and Murray-Smith, 1997; 

Gawthrop 1996; Hunt et al. 1996a; Hunt et al. 1996b; Hunt and Johansen, 

1997; Sbarbaro and Johansen, 1997]. 

8.3 Advantages of LMNs 

LMNs offer many advantages. These include the following: 

" The LMN has a transparent structure which allows a direct analysis of 

local model properties. 

" The LMN architecture is less sensitive to the curse of dimensionality than 

other local representations, such as RBF networks. 

9 Non-linear models based on LMNs are able to capture the non-linear 

effects and provide accuracy over a wide operational range. 

9 The LMN framework allows the integration of a priori knowledge to 

define the model structure for a particular problem. This leads to more 

interpretable models which can be more reliably identified from a limited 

amount of observed data. 
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8.4 LMNs for modelling the ship dynamics: 

As discussed in earlier Chapters, the ship steering dynamics change 

significantly with operating conditions, such as with the forward speed of the 

vessel. If we derive various linear (e. g. Nomoto's first-order or second-order 

models) or non-linear models (e. g. Bech's model or Norrbin's model) at 
different forward speeds of the ship, then an LMN can easily be developed 

that could represent the ship model for the range of forward speeds. The 

derivation of linear or non-linear ship models at a particular forward speed is 

well established and such models are already available in the literature for 

most commercial ships. An LMN developed on the basis of these physically 

oriented models has several advantages over other ANN architectures such as 

MLP or RBF networks. First, the conventional ANN architectures are based 

on the non-transparent, black box approach that makes it difficult to 

incorporate a priori system information, and to interpret the final structure in 

terms of the physical characteristics of the process under consideration. 

Secondly, conventional neural network modelling fails to exploit the 

significant theoretical results available in the conventional modelling and 

control domain, making it difficult to analyse their behaviour. 

The training of LMNs for modelling ship dynamics is not difficult. As we 

use physically oriented models as the local models which are already available 

in the literature, the problem of parameter estimation and optimization is 

automatically solved. The individual local models could also be developed 

directly from ship sea trials data. 

In general, there is no straight forward rule to choose optimal number of 

local models for a particular application. This number is usually decided on 

the basis of the range of scheduling variable 4. For example, if we desire to 

develop a ship model for a range of forward speeds from 5 m/sec to 10 

m/sec., then we can choose several local models derived separately at these 
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speeds, and possibly at some other speed(s) within this range. However, our 

experience shows that only two local models will be sufficient for the above 

range of forward speeds. This will be illustrated with the help of simulation 

studies presented in the following Section. 

The selection of centres is a crucial problem in RBF networks when a 

Gaussian function is used as a validity function. This is not a problem in 

LMNs. These can be selected at the operating point, the local model is 

developed about. For example, if a local model network consists of two local 

models derived at 5 m/sec and 10 m/sec respectively, then Gaussian functions 

centred at 5m/sec and lOm/sec respectively can be used as validity functions 

p;. The width 6; of the Gaussian function can be found by means of simulation 

studies looking at the desired and actual responses. It can also be found by 

using the following formula [Murray-Smith and Gollee, 1994; Gollee et al. 

1997]: 

a; =kan1lc; -c;,; 
l 

jýl 
(8.3) 

where c; is the current centre and c;,; is the jth nearest neighbour to c;. The 

scaling factor ka defines the degree of overlap between the validity functions. 

8.5 Simulation Studies: 

In this Section we present two examples which illustrate the worth of 

LMNs for ship steering control. In both examples, the scheduling variable is 

the forward speed of the ship and the activation functions used are the 

normalized Gaussian functions. 
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Example 8.1: 

This example involves the simulation results carried out from the model of 

ROV Zeefakkel. We have already developed MLP and RBF controllers for 

this ship in Chapter 5 and 6 respectively. In these Chapters, the ship was 

represented by the Norrbin's non-linear model of equation (2.30). Here our 

purpose is to develop an LMN which could replace the Norrbin's model and 

yields the same performance that can be achieved by the Norrbin's model for 

a given range of forward speeds. The network is developed as follows: 

The first step in developing an LMN is to derive local models at various 

operating points. In the present study, our aim is to derive Norrbin's models 

at various forward speeds of the ship. These models at a speed of 5 m/sec and 

10 m/sec are given in equation (8.4) and (8.5) respectively [See Table 5.1]: 

Norrbin's model at a speed of 5 m/sec: 6= 62'I + 2`' + 0.8` ' (8.4) 

Norrbin's model at a speed of 10 m/sec: 8= 15.51x' +'N + 0.14'3 (8.5) 

The above (local) models can be interpolated as shown in Figure 8.1. The 

scheduling variable 0 of Figure 8.1 is the forward speed U and the controller 

u=S is the RBF controller of Chapter 6. The activation functions p; (i = 1,2) 

are the two normalized Gaussian functions having centres at 5 m/sec and 10 

m/sec respectively. The overall closed loop system is shown in Figure 8.2. 

In the Figure, LMNI and LMN2 are the local models given in equations 

(8.4) and (8.5) respectively. The same reference model is used here that was 

used in Section 5.3 for the development of MLP network. Similarly, the 

model of steering machine is the same as that of Section 5.3. Figure 8.3 

illustrates the performance of the LMN at two different speeds, i. e. at 10 m/s 

and 7 m/s. As can be seen the performance of the LMN is same as can be 
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achieved by the non-linear Norrbin's model (conventional model) at these 

speeds. 

Figure 8.2: Closed loop system when ship is represented by an LMN 
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Example 8.2: 

In this example we develop LMN for the 210,000 dwt tanker of Section 

5.5. The steering dynamics of this tanker can be represented by Nomoto's 

second order model. We derived two Nomoto's second order models for the 

tanker at a speed of 4.1 m/sec and 8.2 m/sec. The normalized Gaussian 

functions with centres at these speeds were chosen as the validity functions. 

The control signal was the RBF network developed in Chapter 6. The 

performance of the LMN is illustrated in Figure 8.4 and 8.5 where the 

conventional model is the Nomoto's second order model (equation (2.11)). 
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8.6 Conclusions: 

This chapter describes an investigation of local model networks for 

characterization of the dynamical properties of ships for a range of forward 

speeds. Local model networks have a transparent structure and allow the 

integration of a prior knowledge to define the model structure for a particular 

problem. From this point of view, these networks are more beneficial than 

other architectures of artificial neural networks. 

Two simulation studies presented in this Chapter show that these networks 

can effectively represent the ship dynamics within the range of operating 

conditions at which these are trained. 
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In an implementation on a real ship the local model network could be 

trained using experimental data from ship trials with an appropriate ship 

steering controller. 



Chapter 9 

CONCLUSIONS AND FURTHER WORK 

9.1 Conclusions: 

Ship steering control systems and associated autopilots provide a number 

of design challenges. Most systems currently in use involve PD/PID based 

controllers which have well known limitations because of the wide range of 

dynamical behaviour which can be exhibited by the vessel. Other approaches 
based on adaptive control techniques can give important benefits in terms of 

performance, but they can also suffer from disadvantages such as potential 

instabilities. 

This thesis presents results concerning the use of feedforward neural 

networks to obtain a controller which incorporates the properties of a series 

of conventional controllers. Two types of feedforward neural networks, 

namely the multilayer perceptron (MLP) networks and radial basis function 

(RBF) networks have been used. These networks have already found many 

successful applications in the field of systems and control. 

The thesis also describes an investigation of local model networks for 

characterization of the dynamical properties of ships for a range of forward 

speeds. 

The main conclusion which we can draw from this work is that all the 

above architectures of neural networks are suitable for this application and 
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can yield robust performance within the range of operating conditions, for 

which they are trained. 

The particular conclusions concerned with the above architectures are 

outlined below: 

9.1.1 MLP Networks: 

A number of conclusions concerning the applicability of multilayer 

perceptron networks for the application can be extracted from the work 

presented in this thesis: 

" MLP networks having only one hidden layer are sufficient for 

satisfactory performance, provided an appropriate number of neurons is 

used in the hidden layer. In other words, MLP networks containing 

more than one hidden layer are not necessary for this application. 

" The performance of a control system incorporating an MLP network is 

robust within the range of forward speeds for which it is trained. It is 

observed that the performance could be satisfactory beyond the upper 

extreme of this range. However, it may not be satisfactory below the 

range for training. For example, if we train an ANN for a range of 

forward speeds from 5 m/s to 10 m/s, its performance will be 

satisfactory from 5 m/s to 10 m/s and also at speeds above 10 m/s. 

However, it may not yield good performance at speeds below 5 m/s. 

"A large data set is not essential for successful training. A large data set 

may cause the learning process to be very slow. An appropriate subset 

of data for training can improve the speed of training without having a 

serious effect on the performance. 
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" The training time of an MLP network can be improved significantly by 

incorporating the Levenberg-Marquardt algorithm into the standard 
back-propagation learning algorithm. 

" The performance of an MLP network trained with back-propagation 

algorithm with adaptive learning rate and momentum is almost the same 
in this application as that obtained through training by means of back- 

propagation with the Levenberg-Marquardt algorithm. 

"A significant disadvantage of MLP networks is that there is no straight 
forward rule of choosing an appropriate number of hidden layer neurons 
for an optimal performance. This number is chosen by trial and error 

methods, starting with two or three neurons, and then increasing the 

number gradually, until satisfactory performance is achieved. This 

procedure is of course, tedious and time consuming. However, it is 

observed that only a very limited number of hidden layer neurons is 

needed for the MLP networks developed for ship steering control 

systems. This number is less than 15 for the ships considered in this 

thesis. 

9.1.2 Radial Basis Function Networks: 

Because of their distinctive properties of best approximation, simple 

network structure and efficient learning procedure, radial basis function 

networks can have favourable characteristics in control applications when 

compared with MLP networks. All radial basis function networks presented in 

this thesis are trained using the orthogonal least squares algorithm. This 

algorithm selects an appropriate number of the radial basis function centres 

from input data, hence the problem of selecting an optimal number of hidden 

layer neurons is automatically solved. 
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The results presented in Chapter 6 and 7 demonstrate that the performance 

of radial basis function networks is as good as can be achieved by the MLP 

networks. Moreover, they have faster training time than MLP networks 

although they require more hidden layer neurons than MLP networks for the 

solution of the same problem. 

9.1.3 Experience with real data: 

In Chapter 7, we have successfully developed radial basis function 

networks from the real data gathered from a scale model of a supply ship 

called Cybershipl. Supply ships are used for oil platform support and use 

movable thrusters to maintain their position and heading accurately. The input 

and target data sets were only available at a fixed forward speed of the ship 

for a 200/-20" manoeuvre. Hence we could only develop RBF network 

controller at that particular speed and could not test the performance of the 

network at other speeds. However, we tested the performance of the network 

(on a simulation) at different manoeuvres and found good results. 

In principle, if experimental data sets become available at different 

operating conditions, then the development of robust controllers involving 

radial basis function networks should not be difficult. This can be an 

interesting area for future research. 

Controller networks could also be developed from ship trials data which 

mimic the action of an experienced helmsman in course changing manoeuvres. 

Such data might well be more readily available for a range of operating 

conditions than data from optimized ship steering control systems and could 

lead to interesting investigations of controllers which incorporate the essential 

features of the human operator in this specialized control task. It might also 

be possible using such data to generate local model representations of human 
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operator dynamics. Such a "grey box" approach to human operator studies 

could open up new areas of research on manual control problems. 

9.1.4 Local Model Networks: 

Local model networks have been developed successfully in Chapter 8 to 

represent ship dynamics for a range of operating conditions. Local model 

networks have several advantages over other artificial neural network (ANN) 

architectures. The conventional ANN architectures are based on the black box 

approach that makes it difficult to incorporate a prior system information and 

interpret the final structure in terms of the physical characteristics of the 

process under consideration. The simulation studies presented in this thesis 

indicate that these models can effectively represent ship dynamics for a range 

of operating conditions at which they are trained. 

9.2 Suggestions for further work: 

This thesis will in future be regarded as being among the early literature on 

the applicability of feedforward neural networks for ship steering control 

systems. The thesis has reported successful development of artificial neural 

networks for modelling and control of ships. However, there are many 

aspects which need further attention. These are outlined below: 

9.2.1 Development of Neuro autopilots in presence of disturbances: 

This work has clearly shown that neuro autopilots can successfully be 

developed for course changing operation under varying operating conditions 

such as the forward speed of a ship. It would be interesting to check the 

performance of these networks in presence of environmental disturbances 

such as waves, winds, and ocean currents generated by winds. It is well 
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established that, in general, artificial neural networks are robust to noisy data 

and perform well in presence of external disturbances. This suggests that 

neuro autopilots of ships should also perform well in noisy environments but 

experimental assessment of the effect of waves and other disturbances is 

essential. Such investigations could be carried out using model facilities such 

as those described in Chapter T. 

9.2.2 Development of ANNs from real data: 

We have successfully developed RBF network from real data in Chapter 7. 

A limitation of the work is that the training data were only available at a fixed 

speed for a 200/-20" manoeuvre. If data become available at different forward 

speeds of a ship at different depths of water under different loading 

conditions, then a powerful neuro controller could be developed. This may be 

difficult using the experimental facilities at Norwegian University of Science 

and Technology Trondheim because the relatively small size of the ship tank 

makes large manoeuvres at higher speeds impossible. 

9.2.3 On-Line Training: 

The approach considered in this thesis for the development of ship 

autopilots is based on the off line training of neural networks. The on-line 

training of neural network controllers for the application will be another 

interesting and important development. Some researchers [e. g. Zhang et. al., 

1995,1996] are already working in this area but there are many opportunities 

for further research which could have implications for many other control 

applications of artificial neural networks. 

9.2.4 Modelling the Ship Dynamics: 

We have developed local model networks to represent the ship dynamics 

under varying forward speeds. A possible development in this area will be to 
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develop the networks when the forward speed of the ship, the depth of water 

and the loading conditions change simultaneously. Complex changes in ship 

dynamics can also occur when vessels approach each other in restricted water 

ways. Such changes present considerable challenges in terms of conventional 

modelling methods and traditional mathematical description. 

9.2.5 Rudder Roll Stabilization: 

In some cases, an autopilot is not only used to control the heading of a 

ship, but it is used to reduce the roll motion as well. The development of 

neural networks for rudder roll stabilization (RRS) systems is another area of 

future research. 

9.2.6 Track Keeping Autopilots: 

As the name suggests, the track keeping autopilots enable a ship to follow 

a pre-specified route. Such autopilots are specially important in the areas 

where there are many other ships in the surroundings. The applicability of 

ANNs for such autopilots will also be a good topic of future research. 
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Appendix A: Internal Model Control 

Internal model control was introduced by Morari and co-workers in the 

1980s [Morari and Zafiriou, 1989; Rivera et at., 1986]. This control system 

design method is based on an assumed process model and relates the 

controller settings to the model parameters in a straight forward manner. 

The IMC approach is based on the simplified block diagram shown in 

Figure A2. Transfer function G denotes the actual process. A process model 

Figure A2: Internal model control 

M and the controller output u are used to calculate a model response C+. The 

model response is subtracted from the actual response C and the difference C 

- C` is used as the input signal to the controller which has the transfer 

Figure Al: Conventional feedback control 
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function G.. In general, Cý C" due to modelling errors (i. e. M# G) and 

unknown disturbances (d # 0) that are not accounted for in the model. 

Comparing IMC scheme of Figure A2 and the conventional feedback 

control system of Figure Al, we see that the diagrams will be identical if 

controller G. and G satisfy the relation 

G'° 
- G 

1-G: M 
) (Al) 

Thus, an IMC controller G: can be replaced as a standard feedback controller 

G, 
- using (A. 1). 

From block diagram of Figure A2, the following closed loop relation for 

IMC can be derived. 

ºM 

C-I+G, (G(- 
M 

R+- 
1+ G* (GM 

d (A. 2) 

For the special case of perfect control (i. e. G= M), we can have 

C=G*GR+I1-G: M]d (A. 3) 

The IMC controller is designed in two steps: 

Step I: The plant model is factored as 

M= [M IM J (A. 4) 

where [M 
,I contains any delays and right half plane zeros. It is specified so 

that the steady state gain is 1. 
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Step 2: The controller is specified as 

Gý _ -1 (A. 5) 

where f is a low pass filter with a steady state gain of one. The IMC filter 

typically has the form 

f= l 
(S2s + 1) 

(A. 6) 

where Q is the desired closed loop time constant. Parameter r is a positive 

integer that is selected so that Gc* is either a transfer function or if ideal 

derivative action is allowed, r can be chosen so that the order of the 

numerator exceeds the order of the denominator by one. 

Note that the IMC controller in (A. 5) includes the inverse of M_ rather 

than the inverse of the entire process model M. In contrast, if M had been 

used, the controller would contain a prediction term etS, (if M-- contained a 

time delay i) or an unstable pole (if M, contained a right half plane zero). 

Thus, by employing the factorization given in (A. 4) and using a filter of the 

form of (A. 6), the resulting controller G: is guaranteed to be physically 

realizable and stable. 

in general, the IMC approach does not necessarily result in a PID 

controller. However, Rivera et al. [19861 have shown that the IMC approach 

can be used to derive PID parameters for a wide variety of process models. 

Some of their results are shown in Table Al where the PID controller itself is 

represented as 
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Ge Kp 1+I+ Tds (A. 7) T; s 

Table Al: IMC based PID controller parameters 

Model Kp Ti Td 

K 
Ts+ 1 

T 
KS2 

T ----- 

K T, + TZ T, TZ 
(T, s+ 1)(T2 s+ 1) KS2 T, + T2 T, + T2 

K(- ks + 1) 2CT T 
T2 s2 + 2js +1 K(k + 92) 2CT 24 

K 

s(Ts + 1) 
I 

KS2 ------ T 



Appendix B: Derivation of SM controller 

Consider a system 

x= Ax + Bu + f(x) (B. 1) 

where A is the system matrix, B is the input matrix, u represents the input of 

the system and fix) describes any deviations that would cause the system to 

deviate from its equilibrium point e. g. nonlinearities, unmodelled dynamics or 

external disturbances. Suppose a subsystem 

x, = A, x, + B, us + fs(x, ) (B. 2) 

is selected in such a way that the dominant dynamics of the manoeuvre that is 

being controlled are being decoupled from the dynamics that have very little 

influence on the manoeuvre. Here xs represents the subsystem states and us is 

the input to the subsystem. 

The SM controller us has two components : (a) an equivalent control u., 

which provides the main control action and (b) the switching term ums,,, that 

provides additional control action in order to compensate for any change in 

the nominal operating point the equivalent controller is designed around. That 

Is, 

U= Uý4 + Usw (B. 3) 

The equivalent control can be chosen as a state feedback gain controller of 

the following form: 

uq= -k, x (B. 4) 
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where k, is a feedback gain obtained from pole placement theory. Since this 

feedback control law is designed around a nominal linear plant it would not 

necessarily work well for all the operating conditions of the vessel. Therefore 

it requires additional control action in order to compensate for variation in the 

vessel's operating conditions. This additional control is provided by the non- 

linear switching term a, which is given by 

, 
(x) = h. x, = h, x, - x,,, ) (B. 5) 

where h, is the right eigen vector of the desired closed loop matrix, xj is the 

desired state vector and x is the state error. 

Differentiating the above equation with respect to time yields 

ä, (x) = hS x x, - x, d (B. 6) 

substituting equation (B. 2) for xs in the above equation gives 

6, (x) =h 
(A�. x, + bsu, + f, (xs) 

- xsd) (B. 7) 

and substituting for u5 results in the following equation 

a4(X) Ili 
(Asxs 

+bSUeq bSUSN 
1S(XS)-Xsdý 

(B. 8) 

Putting the value of uq from equation (B. 4) yields 

6. (x)- h; (A, 
x, -bsksx, +byu,, +fs(x$)-*%d) 

= hy*(A., x. + b. u.. + fs(xj) - xsd) 

or 
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u, W = 
(i ; b) ihs xsd - hs A. sxs - hs fs(x5) - 65(X)) (B. 9) 

where A, =A, -buk; is the closed loop system matrix created by the 

feedback gain and (h. b, ) is assumed to be non zero. Since hs is chosen as 

the right eigen value of A,, it therefore corresponds to an eigen value of zero 

of this matrix. Hence it provides the following relationship 

r 
h. ' A,, = 

(Ahdý 
_o 

Therefore (B. 9) becomes 

(B. 10) 

i 
U, W = 

(h; b, } hs XSd h; fs(XS)-6s(X)) (B. 11) 

Healey and Marco (1992) and Healey and Lienard (1993) define the 6 as 
follows: 

a(xJ = h, Of, (x, ) il, sgn(ß(i, 
» (B. 12) 

where q, is the switching gain which determines the amount of switching 

control action and 

Afs(X, ) -f (X )-I (XS) (B. 13) 

Here f, (x, )is the estimate of the function fs(x, ). Combining (B. 4), (B. 12) 

and (B. 13) in (B. 3) we get the total controller equation as 

u, = k. 
Ox, +(h b, ) '(h; xsa hsfS(xs) - iiS sgn(o5(xs})) (B. 14) 

The estimate fs (x, } is usually negligible and can be compensated for by 

making the switching gain sufficiently high. Therefore, 
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us _k""xs 
+(hT bs)-'(h Xsd is sgt'( 

s( s))) 
(B. 15) 

To avoid the problem of chattering, the term sgn(as(zs)) may be replaced by 

5(X5) tan' 
6. Here 4s is called the boundary layer thickness and defines the 

range about the zero sliding surface where the switching term transition is 

smoothed. This term acts like a low pass filter and is the reason that this is 

called soft switching. Now the controller equation becomes 

us = -ks Xs +hs bs) A hs ksa - Tls tank 6Sl(X) (B. 16) 
T5 

which is equation (3.30) of Section 3.7.2 



Appendix C: Levenberg- Marquardt A lgorithm 

The Levenberg-Marquardt (L-M) algorithm is very popular in the area of 

numerical optimization and has been used successfully in solving non-linear 
least squares problems. 

The L-M algorithm is an approximation to Newton's method. Suppose 

that we have a function f(x) which is to be minimized with respect to the 

parameter vector x, then the Newton's method would be 

Ax = -[V Zf(x)] ' Vf(x) (C. ) 

where V2f(x) is the Hessian matrix and Vf(x) is the gradient. If we assume 

that f(x) is a sum of squares function 

N 

f(x) = ei (X) (C. 2) 
i=I 

then it can be shown that 

Vf(x) = JT(x)e(x) (C. 3) 

V2f(x) = JT(x)J(x)+S(x) (C. 4) 

where J (x) is the Jacobian matrix 
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J(x) = 

and 

ae, (x) öe, (x) c3e, (x) 
Ni OX 

2 
axn 

Öe2(x) ae2(x) ae2(x) 

3x1 aX2 
n 

CNI aX 
2 

oxn 

i3e 
N 

(x) aeN (x) aeN, (x) 

S(x) _le; (x)V 2 e; (x) 
i-i 

(C. 5) 

(C. 6) 

For the Gauss-Newton method it is assumed that S(x) 0, and the update 

(C. 1) becomes 

Ox = [iT(x)J(x)] -'JT(x)e(x) (C. 7) 

The L-M modification to the Gauss-Newton method is 

Ox = 
[J T (x)J(x) + Vl] 

1JT (x)e(x) (C. 8) 

where I is the identity matrix and it is a scalar. This equation is similar to 

equation (4.30) of Chapter 4 



Appendix D: Supply Ship Model 

The dynamics of CyberShipl of Chapter 7 can be represented by the 

following kinetic equation: 

My+C(v)v+Dv=tt (D, 1) 

where v= 
[u 

v r] 
7 

'It = [It] Zt2 10 
]T, 

m11 00 m-X;, 00 19.0 00 

M= 0 m22 m23 = 0 m-Y, mx0 -Yt = 0 35.2 0 

0 m12 M33- 0 mx G-N;, 1Z-N, 002.0 

0 0 -m22v-m23r 0 0 -35.2v 
Cw) = 0 0 m�u = 0 0 19. Ou 

m22v+m23r -m�u 0 35.2v -19. Ou 0 

-Xu 00 m�/T, 006.3 00 

D= 0 -Y, 0=0 m22/T2 0=07.0 0 
00 

-NT 
00 m33/T3 002.0 

The values of T1, T2 and T3 are 3sec, 5sec and 1 sec respectively. 

The kinematics equation is 

where v= [u v r1' , 'n = [x y Y'1T and 

COST - sin'Y 0 
J(1) = sin'd' cos'P 0 

00r 

(D. 2) 


