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ABSTRACT

The use of genetic methods for the optimisation of propulsion and heading controllers for
marine vessels is presented in this thesis. The first part of this work is a study of the
optimisation, using Genetic Algorithms, of controller designs based on a number of
different time-domain control methodologies such as PID, Sliding Mode, Hs, and Pole
Placement. These control methodologies are used to provide the structure for propulsion
and navigation controllers for a ship. Given the variety in the number of parameters to
optimise and the controller structures, the Genetic Algorithm is tested in different control
optimisation problems with different search spaces. This study presents how the Genetic
Algorithm solves this minimisation problem by evolving controller parameters solutions
that satisfactorily perform control duties while keeping actuator usage to a minimum. A
variety of genetic operators are introduced and a comparison study is conducted to find
the Genetic Algorithm scheme best suited to the parameter controller optimisation
problem. The performance of the four control methodologies is also compared. A
variation of Genetic Algorithms, the Structured Genetic Algorithm, is also used for the
optimisation of the Roo controller. The Roo controller optimisation presents the difficulty
that the optimisation focus is not on parameters but on transfer functions. Structured
Genetic Algorithm incorporates hierarchy in the representation of solutions making it
very suitable for structural optimisation. The Roo optimisation problem has been found to
be very appropriate for comparing the performance of Genetic Algorithms versus
Structured Genetic Algorithm. During the second part of this work, the use of Genetic
Programming to optimise the controller structure is assessed. Genetic Programming is
used to evolve control strategies that, given as inputs the current and desired state of the
propulsion and heading dynamics, generate the commanded forces required to manoeuvre
the ship. Two Genetic Programming algorithms are implemented. The only difference
between them is how they generate the numerical constants needed for the solution of the
problem. The first approach uses a random generation of constants while the second
approach uses a combination of Genetic Programming with Genetic Algorithms. Finally,
the controllers optimised using genetic methods are evaluated through computer
simulations and real manoeuvrability tests in a laboratory water basin facility. The
robustness of each controller is analysed through the simulation of environmental
disturbances. Also, optimisations in presence of disturbances are carried out so that the
different controllers obtained can be compared. The particular vessels used in this study
are two scale models of a supply ship called CyberShip I and CyberShip II. The results
obtained illustrate the benefits of using Genetic Algorithms and Genetic Programming to
optimise propulsion and navigation controllers for surface ships.
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CHAPTERl

INTRODUCTION

1.1. PRELUDE

Traditionally the manoeuvnng of a ship has entailed the ability of a highly
experienced helmsman and the guidance measurement provided by a magnetic
compass. The ship reacts to commands from the helmsman and, in tum, the
helmsman relies on the readings from the magnetic compass to ensure that he is
heading in the right direction. This is an example of human in the loop control. All
that was to change at the beginning of the 20th century thanks to the invention the
century before of the gyroscope in 1810 by C. A. Bohnenberger and the electrically
driven gyroscope in 1890 by G. M. Hopkins [Fossen (2000), Skjetne (2003)]. The
unreliability of magnet compasses in steel ships and the interest of the military in
underwater vessels resulted in the practical application of the gyroscope as a
gyrocompass by Dr. H. Anschutz and Elmer Sperry (patents from 1908 and 1911
respectively). Soon after this milestone, Sperry invented "Metal Mike", the first
gyroscope-guided automatic steering mechanism [Fossen (2000), Skjetne (2003)].
As opposed to the open loop control that characterises the performance of a human
operator, "Metal Mike" performance was based on feedback (closed-loop control),
i.e. it regulates the rudder action by means of the difference between the desired and
the current heading (measured by the gyrocompass). The operation of Sperry's
steering mechanism was improved in 1922 by the work of Minorsky on position
feedback control of automatic steered bodies [Minorsky (1922)]. In this work the
author introduced three-term control or what it is now called PID control.

Both Sperry's and Minorsky's steering systems are single-input single-output
(SIS0) systems for controlling heading using the measurements from a
gyrocompass. However, the manoeuvring capability of a ship consists of two main
coupled tasks: getting the ship to sail along the desired direction (heading control) at
the desired speed (propulsion control). Although traditionally it has received less
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attention than the heading control, the accurate control of the speed is an important
issue and it affects significantly the heading performance due to the relative flow of

the water over the rudder [Fossen (1994)].

Current economic and business demands require reliable manoeuvring of vessels.
The issue of automation in ships had already been addressed in the 1970s [Norrbin
(1970), Zuidweg (1970)]. The possibilities of reducing the number of crew as well
as operating the vessels in an optimal way (minimising travel time or fuel
consumption) have been and continue to be attractive features from an economic
point of view. Naturally there are safety concerns: analytical studies have indicated
that manual control of ships would be impossible beyond a certain size [Norrbin
(1970)] and the increasing traffic densities in some areas have made some situations
difficult to handle by the human operator. Besides, the offshore operations of the oil
industry vessels require accurate control to be accomplished despite adverse weather

conditions [Skjetne (2003)].

All this has led to further research in automatic steering systems. One way of
improving the performance of traditional autopilots is the use of developments in
automatic control theory [Dorf and Bishop (2001), Dutton et al. (1997)]. Automatic
feedback systems have been known and used for a long time, however keystones in
the development of feedback control were the invention of the steam engine
governor by Watt in the is" century and the derivation of the stability conditions of
a system in the 19th century by Maxwell and Routh [Bennet (1996)]. During the first
half of the zo" century the growth in knowledge and applications of electricity and
the war effort resulted in the establishment of the classical control techniques

[Bennet (1996)].

In general, control theory provides design strategies that allow a better
understanding of the system being controlled (e.g. a vessel in marine applications)
and a mechanism to regulate the way in which the system operates. In the context of
ship manoeuvrability automatic control can improve the regulation of the rudder and
propellers (or equivalent actuators) to achieve a better track of the desired

manoeuvre at the desired speed.

As has already mentioned, traditional autopilots have been designed using PID
controllers [Fossen (1994), Saelid and Jenssen (1983)]. Today, more advanced
control methodologies have demonstrated their efficiency, especially when dealing
with non-linear systems and noisy environments. One of the paradigms of modem
control was the introduction of the time domain approaches (as opposed to the
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frequency domain methods used in classical control) based on the state-space
equation in the 1950s [Bennet (1996)]. Their application resulted in the extensive
use of state feedback compensators. The need for techniques for the computation of
the feedback gain matrix resulted in the development of Pole Placement methods
[Andry et al. (1983), Kautsky et al. (1985)]. Two major currents in modem control
theory are optimal control [Zhou et al. (1996)] and non-linear control [Slotine and
Li (1991)]. Optimal control aims to achieve not only a stable controller but also the
"best" controller according to some performance index. In this context the H <X) norm
was proposed for robustness analysis of multi-input multi-output (MIMO) systems,
leading to the development of H <X) controllers [Glover and Doyle (1988), Zhou et al.
(1996)]. On the other hand, non-linear control intends to provide a robust tool for
improving the control of non-linear systems. One of the most successful control
mechanisms developed in non-linear control has been the Sliding Mode control
theory [Slotine and Li (1991), Utkin (1972)]. New research has been conducted in
the application of these improved techniques in the field of marine control [Fossen
(1994), McGookin (1997), Kallstrom et al. (1979), Saelid and Jenssen (1983)].

An important issue to consider while designing a control strategy is that the
performance of the controllers depends on the values of the controllers' parameters.
Moreover, the parameter values are connected to the system being controlled, i.e.
changing the plant implies readjusting the controller's parameters. Conventionally,
the designer, who attempts to find an acceptable controller solution, manually tunes
these parameters by trial and error. However, this relies on the experience of the
designer. If the designer is not experienced this process can become tedious and time
consuming. In addition, there is no guarantee that the designed solution will perform
satisfactorily as the tuning process depends on the qualitative judgement of the

designer.

A solution to this problem is to use optimisation techniques that tune such
parameters automatically. One of the most popular of these techniques is based on
Genetic Algorithms [Goldberg (1989), Holland (1975)]. Genetic Algorithms (GAs)
are search methods that mimic natural biological evolution. They operate on a
population of potential solutions applying the Darwinian principal of survival of the
fittest to produce better and better possible solutions to a given problem. At each
generation, a new set of candidate solutions is created by the process of selecting
individuals according to their level of fitness (the better the performance of the
solution, the larger the fitness value is for the solution) and breeding them together
using operators borrowed from natural genetics. This process results in the evolution
of populations of better possible solutions to a given problem.
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The advantages of GAs over traditionally parameter optimisation techniques are:
• GAs do not need gradient information of the search space (which usually is

not available for the designer anyway) as opposed to classical gradient search
methods

• GAs do not require any a priori information about the search space, i.e. there
is no need for choosing an appropriate starting point since the starting points
are chosen at random

• GAs are able to avoid local minima because they operate over a population of
points, as opposed to conventional optimisation techniques that tackle one
point at a time

• GAs perform a guided search, as opposed to enumerative schemes that set a
grid over the search space and search all the points in the grid

One of the drawbacks of the method is that GAs require the encoding of solutions as
a fixed-length string of genes emulating the chromosome structure. This
chromosome-like shape makes the application of genetic operators very neat and
simplifies the mathematical analysis of the method. However, it imposes a rigid way
of representing the candidate solutions. Different genetic models (such as Structured
Genetic Algorithm [Dasgupta and McGregor (1993a)] and Genetic Programming
[Koza (1992)]) that relax the rigidity of the solutions representation have been
introduced lately.

Structured Genetic Algorithm (sGA) includes a second layer in the chromosome
structure that is used to activate and deactivate bits of the chromosome, defining a
hierarchy. Thus, although the chromosome length is fixed as in the GA case, the
activation and deactivation of parts of it modifies its effective length. The hierarchic
structure makes sGA well suited to applications that require structural optimisation.
It can be described as a half way approach to Genetic Programming.

Genetic Programming (GP) is based on the idea that in nature structure undergoes
adaptation. Thus, the structure created over a period of time is the outcome of
natural selection and sexual reproduction. GP is a structural optimisation technique
(as opposed to parametric optimisation technique). The individuals in GP are
represented as hierarchical structures (typically tree structures) and the size and
shape of the solutions are not defined a priori as in GAs, but they evolve along the

generations.
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1.2. WORK DEVELOPED IN rms THESIS

The first part of this work is a study of the optimisation, using GA, of controller
designs based on a number of different time-domain control methodologies, i.e. PID
[Astrom and Hagglund (1995), Dutton et al. (1997)], Sliding Mode [Slotine and Li
(1991), Utkin (1972)], s; [Glover and Doyle (1988), Zhou et al. (1996)] and Pole
Placement [Andry etal. (1983), Kautsky etal. (1985)]. These control methodologies
are used to provide the structure for propulsion controllers (for governing surge
velocity) and navigation controllers (for governing heading) for a marine surface
vessel. The goal of this study is to obtain controller solutions that satisfactorily
perform these duties while keeping actuator usage to a minimum. The GA solves
this minimisation problem by evolving controller parameters solutions that satisfy
these objectives for the plant considered.

The H; controller optimisation presents an added difficulty since the optimisation
focus is on the weighting functions, which are not parameters but structures (transfer
functions) [Glover and Doyle (1988), Zhou et al. (1996)]. sGA has been used for the
optimisation of the ILo. The Roo optimisation problem is very appropriate for
comparing the performance of GA versus sGA.

Once the controller's parameters have been optimised, the controller performance is
evaluated through simulations in Matlab and the robustness of each controller is
analysed through the simulation of environmental disturbances (wind-generated
waves) [Fossen (1994)]. Also, GA optimisations in presence of disturbances are
carried out so that the different controllers obtained can be compared. The inclusion
of environmental disturbances in the optimisation provides a more realistic
environment for the testing of the controllers. The aim of the inclusion of waves in
the optimisation is to obtain controllers that are robust against disturbances.

The particular vessels used in this study are two scale models of a supply ship called
CyberShip I (CS1) [McGookin (1997), Strand (1999)] and CyberShip II (CS2)
[Lindegaard and Fossen (2002)], which are the test vehicles for the Marine
Cybernetics lab at the Norwegian University of Science and Technology (NTNU) in
Trondheim. Supply ships are service vessels in charge of supplying the offshore oil
platforms with food and equipment. They are essential for the smooth operation of
the platforms. In Europe they usually work in the North Atlantic, where the
probability of the sea being rough (i.e. waves higher than 2.5 m) is of the order of
20% [Fossen (1994)]. Thus, they have to be able to cope with adverse weather
conditions.
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Computer-generated simulations based on a non-linear hydrodynamic model of
CyberShip I and CyberShip II are used in the design of the controllers and in the
optimisation studies. The results obtained from this study illustrate the benefits of
using GAs to optimise propulsion and navigation controllers for surface ships.

In addition, the resulting controllers have been tested in the real plant in the Marie
Curie Training Site in the NTNU. The facilities in the lab include a water tank
equipped with a positioning system and a wave synthesiser for the generation of
environmental disturbances. The results obtained in the real implementation allow
meaningful evaluation of the optimised controllers and a comparison benchmark for
performance and robustness against disturbances. Also, the advantages of including
disturbances in the simulation during the controller optimisation have been analysed
and discussed. The real testing was conducted over two visits to the facilities in the
NTNU and slight modifications were made to the system between the visits.

The second stage of this study involves the implementation of GP to the combined
optimisation of parameters and structures for the controllers. In the context of this
thesis GP is used to evolve control strategies that, given as inputs the current and
desired state of the propulsion and heading dynamics, provide through the actuators
the commanded forces that are required to manoeuvre the ship.

One of the difficulties when implementing a GP is how to generate the numerical
constants that might be needed for the solution of the problem undertaken. In this
research, using the findings of the GA study as a basis, two GP algorithms have been
implemented to solve the supply ship control problem. The only difference in these
implementations is the way of generating numerical constants. The first approach
uses Koza's recommendation where the constants are randomly generated without
further modification (unless they undergo mutation) [Koza (1992)]. The second
approach uses a combination ofGP plus GA [Howard and D'Angelo (1995)]. Before
being evaluated, each individual in the population experiences a GA parametric
optimisation of its numerical constants.

As in the GA case, the GP optimisation has been performed with and without
disturbances. The aim of the GP optimisation is to find a controller that structurally
is best suited to the surface vessel control problem. Again the addition of
disturbances during the optimisation is meant to improve the robustness of the
controller structure. The best GP results were tested in the real plant too.
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1.3.MAIN CONTRIBUTIONS OF TIDS THESIS

The main contributions of this thesis are listed below:
• Design, optimisation and comparison of the real and simulated responses of
four control methodologies for the control of the propulsion and heading of a
supply ship using genetic optimisation methods
• Comprehensive comparison of various Genetic Algorithms schemes for the
optimisation of the controller's parameters in the ship dynamics problem
• Use of the Structured Genetic Algorithm for the structural optimisation of the
weighting functions for a Boo controller and comparison with the results obtained
with the standard Genetic Algorithm
• Assessment of the effect on the robustness against external disturbances of
the controllers by the inclusion of realistic environmental noise in the

optimisation process
• Implementation in Matlab and use of Genetic Programming for the structural
optimisation of two controllers for the heading and propulsion dynamics of a

supply ship
• Comparison of two methods for the generation of constants in the Genetic
Programming optimisation, namely Random Generation and Genetic Algorithms

Part of this work has already been published in the publications listed below:
• Alfaro-Cid, E. and McGookin, E.W. (2001), "Genetic Algorithm Optimisation
of Oil Tanker Control Systems", Proceedings of the IFAC Conference on
Control Applications in Marine Systems (CAMS'Ol), Glasgow (UK), pp 227-

32
• Alfaro-Cid, E., McGookin, E.W. and Murray-Smith, OJ. (2001), "Genetic
Algorithm Optimisation of a Supply Ship Propulsion and Navigation
Systems", Proceedings of the MI'SIIEEE Oceans Conference, Honolulu

(USA), pp 2645-2652
• Alfaro-Cid, E., McGookin, E.W. and Murray-Smith, OJ. (2001), "Genetic
Algorithm Optimisation of a Ship Navigation System", Acta Potytechnica,
Vol. 41, No. 4-5, pp 13-19

• Alfaro-Cid, E. (2002), "Genetic Algorithm Optimisation of an IL Controller
for an Oil Platform Supply Ship", UKACC Postgraduate Symposium on
Control (UKACC '02), Sheffield (UK), pp 137-142

• Alfaro-Cid, E., Loo, M., Mitchell, A. and McGookin, E.W. (2003), "AUV
Route Planning Using Genetic Algorithms", l" IFAC Workshop on Guidance
and Control of Underwater Vehicles (GCUV2003),Newport (UK), pp 95-100
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1.4. OUTLINE OF THESIS

The outline of this thesis is as follows:

Chapter 2 discusses the existing literature in the areas covered in this thesis. Firstly it
provides a summary of the state of art in the four controller structures that have been
optimised using GAs: linear PID control, non-linear Sliding Mode, optimal Ito and
state feedback Pole Placement. There is a particular emphasis in those authors who
have used evolutionary techniques for the tuning of these controllers. The second
part portrays the research done in genetic optimisation methods such as GAs and
GP, their main features and applications. Again the emphasis is mainly on control
applications.

In Chapter 3 the mathematical model used in simulations throughout the research is
presented. The model describes the ship and actuator dynamics of CyberShip I and
CyberShip IT, a supply ship scale model developed in the Norwegian University of
Science and Technology (NTNU), Trondheim. This chapter also describes the
facilities of the Marine Cybernetics research lab in the Marie Curie Training Site in
NTNU, where the real implementation of the controllers was conducted. This
laboratory consists of a water tank equipped with a wave generator that provides a
very realistic environment for controller testing. In addition the mathematical wave
model used in simulations for checking the controllers' robustness to environmental
disturbances is presented.

Chapter 4 describes the theory behind the four control methodologies used in the
research and how the designs of the controllers for CyberShip I and CyberShip n
have been carried out. Individual Channel Analysis and Design (lCAD) [O'Reilly
and Leithead (1991)] is used for analysing the extent of decoupling within the model
dynamics of the ship. lCAD performs a diagnosis of the level of coupling between
the dynamics of the plant, in this case, heading and propulsion dynamics. Linear PID
and non-linear Sliding Mode control have been used to control the decoupled
dynamic model. The design of the Sliding Mode controller is based on McGookin
(1997). On the other hand, optimal Rn and state feedback Pole Placement are used
for the control of the MIMO plant. The Roo design is based on the state-space
approach presented by Zhou et al. (1996); while for Pole Placement the robust
method proposed in Kautsky et al. (1985) is applied.

The structure, operators and main features of Genetic Algorithms (GAs) are
presented in Chapter 5. The popularity of GAs as an optimisation technique has led
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to thousands of publications in the field. In order to find the GA scheme better suited
to the control problem exposed, a comparison study is discussed and the findings
obtained are presented in the chapter. The study focuses on the performance of the
genetic operators. The resulting enhanced GA scheme has been used to generate the
results from Chapters 6 and 8. Finally a genetic method called Structured Genetic
Algorithm (sGA) is introduced. It provides the GA with a hierarchical structure that
is well suited for structural optimisation.

Chapter 6 explains how the GA optimisation and real testing of the four controller
structures described in Chapter 4 have been carried out through simulations in
Matlab. Each controller is optimised in two different ways: normal conditions and in
the presence of environmental disturbances (wind-generated waves). All the results
are tested on the actual CyberShip II in the NTNU facilities. The chapter shows the
results obtained from the GA optimisation and the real testing. The performance of
the controllers is discussed and comparisons are drawn from the simulated and real
results obtained. The advantages and disadvantages of the inclusion of disturbances
during the optimisation process are argued. In addition, the lLo optimisation has been
also attempted using sGA. lLo is an excellent example for the application of sGA
since the tuning of the controller implies the adjustment of some transfer functions
(weighting functions). Therefore, it is not only a parameter but also structural
optimisation. The results obtained from the sGA optimisation of lLo are included in
the chapter.

Chapter 7 presents the final optimisation technique used in this thesis: Genetic
Programming (GP). Firstly it describes the structure, operators and tree
representation typical of GP. Secondly, using as a starting point the results obtained
from the GA optimisation, a GP algorithm implemented in Matlab for the CyberShip
II control problem is presented. The aim of using GP as an optimisation technique is
to optimise the structure of the controller. Two separate approaches are considered to
solve the problem of generating numerical constants in GP. The first approach uses
just a random generator as proposed by Koza (1992). The second approach intends
to improve the accuracy of the results obtained by including a GA that will optimise
the numerical constants while the GP optimises the structure.

The results obtained from both these GP methodologies are shown in Chapter 8. As
in the GA case all the optimisations have been performed with and without waves
for comparison purposes. The best controllers obtained have been tested in the
facilities in the NTNU. An examination of all the results provides insight into the
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role of various functions in the control strategy as well as a good comparison ground

for the two separate GP proposals.

Finally the thesis ends with Chapter 9. This chapter is divided in two parts, in the
first part the conclusions drawn in each of the previous chapters are summarised and
the second part includes suggestions for further work.
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CHAPTER2

BACKGROUND LITERATURE SURVEY

2.1. INTRODUCTION

The research work developed in this thesis involves two main research fields:
control methodologies and genetic optimisation techniques. This chapter presents a
review of the most relevant literature available concerning these two areas of

knowledge.

The chapter is divided into two sections. Section 2.2 deals with the ongm,
developments and state-of-art of the four different control methodologies studied
(i.e. PID, Pole Placement, Sliding Mode and Hs), Section 2.3 presents a survey of
significant developments in the field of Genetic Algorithms, Structured Genetic
Algorithms and Genetic Programming and their current applications.

2.2. CONTROL MEmODOLOGIES LITERATURE REVIEW

2.2.1. PID LITERATURE REVIEW
The PID controller [Astrom and Hagglund (1995), Dutton et al. (1997)] was first
described by Minorsky (1922). During the Second World War a tremendous interest
was developed in the classical control theory and particularly the PID control of

processes [Bennet (1996)].

Its simplicity and general good performance made its utilisation very widespread in
industry. It has been stated that in process control applications more than 95% of the
controllers are PID type [O'Dwyer (2000)]. The literature reflects the popularity of
PID control with hundreds of papers tackling different aspects of it (a review by
Lelic and Gajic (2000) identifies at least 333 papers on PID only in the 90s). A basic

text in the field is Astrom and Hagglund (1995).
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The choice of appropriate PID parameters can be achieved manually by trial and
error, using as guidelines the transient and steady response characteristic of each of
the three terms. However, this procedure is very time consuming and requires certain

skill.

Numerous methods have been developed to try to simplify the tuning of PIDs.
Currently, according to Lelic and Gajic (2000), the most popular tuning methods are:
the relay based tuning [Astrom and Hagglund (1984)], various ways ofJrequency
domain tuning [Hagglund and Astrom (1991)] and optimal tuning by means of
minimising an integral performance index [Ho et al. (1999)]. The traditional Ziegler-
Nichols method [Ziegler-Nichols (1942)] is still widely used in industry (see Section
4.3.1). Also, a new approach based on parameter sensitivity functions in an iterative
tuning process has been developed recently at the University of Glasgow [Murray-

Smith et al. (2003)].

The relay based tuning [Astrom and Hagglund (1984)] provides a method that
estimates the critical gain and the critical frequency of a system by introducing a
feedback loop with a relay. Hagglund and Astrom (1991) summarises several
adaptive techniques for tuning of PIDs using frequency response as opposed to a
rational transfer function of the model. This avoids model uncertainties. The
techniques are based on the previous relay feedback method. Ho et al. (1999)

describes the relationship between the integral square error performance index, the
gain margin and the phase margin and gives recommendations for gain and margin
specification to get more performance out ofPID controllers.

2.2.2. POLE PLACEMENT LITERATURE REVIEW
Since Wonham (1967) proved that the state feedback pole placement problem has a
solution if, and only if, the system (A, B) is controllable, there have been numerous
publications concerning Pole Placement and its applications [Andry et al. (1983)].

However, it was not until the early 1980s that a series of papers appeared that
tackled the multi input case of the pole assignment problem (called eigenstructure
assignment) [Fahmy and O'Reilly (1982), Fletcher (1981), Porter and D'Azzo
(1977)]. These approaches exploited in various ways the flexibility offered by the
choice of eigenvectors. A very good review of the various methods proposed can be
found in White (1995).

Among them there is the algorithm proposed by Kautsky et al. (1985). The
algorithm takes advantage of the extra degree of freedom in the assignment problem

12



for choosing eigenvectors that are robust in the sense of minimising the
perturbations in the eigenvalues produced by variations in the system or feedback

gain matrices.

Pole Placement has been used as a control method in many fields, but it is
remarkable the number of applications in the aerospace field that can be found in the
literature [Manness and Murray-Smith (1992), Andry et al. (1983)].

2.2.3. SLIDING MODE LITERATURE REVIEW
What it is now known as Sliding Mode control [Slotine and Li (1991), Utkin (1972)]
started to develop in the early 1950s in the Soviet Union. The earliest formulations
of the Sliding Mode theory were based in single input systems and it was further
extended to multi input systems in the early 1970s [Utkin (1972), Utkin and Yang

(1978)].

The excellent survey in variable structure control with Sliding Mode written by
Hung et al. (1993) identifies 1980 as the year when research in Sliding Mode control
accelerated, as a result of the recognition of its robustness properties by the scientific

community.

Since then, most of the papers about Sliding Mode belong to four categories [Hung

et al. (1993)]:
• Development of Sliding Mode controllers for different system models, such
as nonlinear systems [Slotine (1984)] or discrete time systems [WU (1997)].
• Extensions of the objectives of control from the original stabilization
problem to tracking [Slotine (1984)], model following [Fossard (1993)] or

state observation [Han et al. (2000)].
• Exploration of properties such as robustness [Mudge and Patton (1988)]
and elimination of chattering [Bartolini et al. (1998)].
• Applications in various engineering problems. Sliding Mode controllers
have been successfully used in the aerospace field [Fossard (1993), Mudge
and Patton (1988), Salamci et al. (2000)] and in the marine field in plants
such as underwater vehicles [Healey and Marco (1992), Healey and Lienard
(1993), Lea et al. (1999), McGookin (1997)] and surface vessels [Fossen

(1994), McGookin (1997)].
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2.2.4. a,LITERATURE REVIEW
Based on the small gain theorem [Zames (1966)], a new optimal control method was
introduced by Zames (1981). He proposed the utility of minimizing an Rx, norm

rather than the usual L2 quadratic norm. The Rx, norm had been found to be
appropriate for specifying both the level of plant uncertainty and the signal gain
from disturbance inputs to error outputs in the controlled system. In addition, the Hoo
norm gives the maximum energy gain of the system. This is in contrast to the H2
norm, which gives the variance of the output given white noise disturbances [Zhou
et al. (1996)].

The robust stability consequence, derived from the small gain theorem, is the main
cause of the interest in the development of H,methods in the 80' s. The synthesis of
controllers that achieve an Rx, norm specification became a major research focus
[Grimble (1986), (1987a), (1987b)]. But the standard frequency-domain approaches
to Roo became computationally problematic when dealing with MIMO systems.

In order to solve the MIMO H, control problem [Zhou et al. (1996)], state-space
formulations of the Rx, optimal control problem arose. Although the first state-space
approaches were published in the mid 80's, it wasn't until 1988 that a simpler and
less computationally demanding model was presented [Glover and Doyle (1988)].
Thus, at this stage Roo control theory had reached a fairly mature state, complete with
state-space formulations [Glover and Doyle (1988)] and comprehensive comparisons
with the widely known H2 (or LQG) control problem [Doyle et al. (1989), Grimble
(1986)].

Given the difficulty of the design process of the Roo controller, various techniques
have been developed to simplify it. One of the most popular is a design technique
that incorporates loop shaping methods to obtain performance/robust stability trade-
off's. Loop shaping controller design involves finding a controller that shapes the

loop transfer function L so that the loop gains, CT(L) and O'(L), are kept away from

the boundaries specified by the performance requirements at low frequencies and by
the robustness requirements at high frequencies [Postlethwaite et al. (1991), Zhou et
al. (1996)]. A particular formulation of the Roo loop-shaping problem using
normalised coprime factorisation was developed by McFarlane and Glover (1992).
The idea behind this approach is to guarantee overall robust stability by maximising
stability robustness with respect to a particular type of unstructured stable
perturbations, i.e. left/right coprime factor perturbation [Zhou et al. (1996), Walker
and Postlethwaite (1996), Postlethwaite and Bates (1999)].
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The state-space Rx, control problem has been extensively used to solve problems in
the aerospace field in aircraft flight control [postlethwaite and Bates (1999),
Voulgaris and Valavani (1991), Sweriduk et al. (1998)] and also in helicopter flight
control [Walker and Postlethwaite (1996)].

In the marine field state-space Ha, controllers have been successfully designed for
many applications, from submarine and AUV control [Marshfield (1991), Liceaga-
Castro and van der Molen (1995), Silvestre and Pascoal (1997)] to dynamic position
of production platforms [Dohna and Tannuri (2001)] or surface vessels course
control [Desanj et al. (1997), Katebi et al. (2001)].

A very complete literature review can be found in Doyle (1996).

2.3. GENETIC OPTIMISATION METHODS LITERATURE REVIEW

The problem of finding the optimum value (i.e. either the maximum or the
minimum) ofan objective function in a given search space has been of prime interest
for the scientific community since the pioneering work on differential calculus by
Newton and Leibniz in the 17th century [Edwards (1979)].

Ever since, much effort has been put into the development of techniques that provide
a solution for the optimisation problem. The current literature identifies 3 main
classes of search techniques: calculus-based, enumerative and guided random
search techniques [Goldberg (1989), Ribeiro Filho et al. (1994)].

Calculus-based techniques rely on the use of the gradient of the objective function.
They have been extensively studied and have a strong theoretical background.
However, from a practical point of view these techniques present two main
drawbacks: first, they can only be used in a restricted set of functions with well-
defined slope values (i.e. they depend on the existence of derivatives) and second,
they are very successful in finding a local optimum of the objective function, but
they struggle to find the global optimum [Goldberg (1989)].

The concept behind enumerative techniques is very straightforward. An enumerative
scheme searches every point of the objective function's search space, assuming it is
finite. Otherwise, the search space needs to be discretised a priori. In spite of the
simplicity of the technique, it is not very efficient. Many search spaces are just too
large to search one point at a time [Goldberg (1989)].
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Guided random search techniques are based on enumerative techniques but use
additional information to guide the search. Two good examples of guided random
search techniques are Simulated Annealing [Metropolis et al. (1953)] and
Evolutionary Algorithms [Back (1996)]. While Simulated Annealing uses
thermodynamic concepts to guide the search, Evolutionary Algorithms rely on
concepts drawn from natural genetics.

The main advantage of guided random search techniques is how they balance two
conflicting objectives in the optimisation process: the exploration of the search
space and the exploitation of the best solution (i.e. volume-oriented or path-oriented
optimisation) [Back (1996), Michalewicz (1992)]. While volume-oriented
techniques explore the search space ignoring the most promising areas, and path-
oriented methods exploit the best solution for improvement neglecting the
exploration of the remaining search space, guided random search techniques achieve
a remarkable trade-off between exploration and exploitation. This balance is
extremely important to find global optima.

InEvolutionary Algorithms this balance is achieved by exploiting the closed relation
between the concepts of adaptation and optimisation.

Back (1996) defines Evolutionary Algorithms (EAs) as algorithms "based on models
of organic evolution, i.e. nature is the source of inspiration. They model the
collective learning process of a population of individuals, each of which represents
not only a search point in the space of potential solutions to a given problem, but
also may be a temporal container of current knowledge about the laws of the
environment. The starting population is initialized by an algorithm-dependant
method, and evolves towards successively better regions of the search space by
means of (more or less) randomized processes of recombination, mutation and
selection. The environment delivers quality information (fitness value) for new
search points, and the selection process favours those individuals of higher quality to
reproduce more often than worse individuals. The recombination mechanism allows
for mixing of parental information while passing it to their descendants, and
mutation introduces innovation into the population."

The beginnings of EAs can be traced back to the early 1950s, when several
biologists used computers for simulation of biological systems [Michalewicz
(1992)]. In the late 1950s some attempts were made towards evolving computer
programs and optimisation based on natural evolution, but they failed, due in part to
the restrictions imposed by the computers available at that time. It was not until
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1964 that the first successful results from an approach to EAs were presented by
Fogel (1964). His approach was called Evolutionary Programming (EP).

Despite Fogel's successful results, his idea of Evolutionary Programming received
little attention from the rest of the scientific community. The interest generated by
other approaches to EAs and the success of these techniques in many applications
led to a review of Fogel's work in the late 1980's and early 1990's.

At the beginning of the seventies, the work developed independently in the 1960's
on Evolution Strategies (ESs) in Germany by Bienert, Rechenberg and Schwefel
[Rechenberg (1973), Schwefel (1975)] and on Genetic Algorithms (GAs) in the
United States by Holland (1975), had reached a fairly mature state.

In Evolutionary Programming and Evolution Strategies the main genetic operator is
mutation. Originally, the populations were formed by a single individual, which is
mutated to create a single offspring individual. After testing the performance of the
offspring, the better individual of both, parent and offspring, becomes the parent of
the next generation. However, mutation is not a uniform random operator as in
classical EP but a normally distributed mutation with expectation zero and given
variance. This way, an individual is represented by two vectors. The first vector
represents a point in the search space and the second is a vector of standard
deviations.

Hence, until the early 1990's, the best-known algorithm types in EAs were:
Evolutionary Programming, Evolution Strategies and Genetic Algorithms. More
recently, a new class of EA was developed by Koza and it was called Genetic
Programming (GP). In Genetic Programming [Koza (1992)], Koza proposes that,
instead of building an evolution program to solve a given problem, we should rather
search the space of possible computer programs for the best one. Optimising
structures instead of parameters.

The growing interest generated by these approaches during the last 30 years, has led
to several international conferences on the topic, lots of publications and a wide
range of applications. Many researchers have adapted the algorithms to their own
problem, modifying the genetic operators to make them more efficient in their
particular search space. These modifications have produced algorithms very
different from the classical formulation, so that the boundaries among EAs become
blurred [Back (1996), Michalewicz (1992)].
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The most widely known type of EAs is the Genetic Algorithm [Back (1996),
Goldberg (1989), Holland (1975), Michalewicz (1992)].

2.3 .1. GENETIC ALGORITHMS LITERATURE REVIEW
The basic principles of Genetic Algorithms were first proposed by Holland (1975)
based on the work developed by him and his colleagues in the University of
Michigan during the 1960's and early 1970's. The goal of their project was defined
by DeJong (1975) in his doctoral dissertation as "to understand and abstract from
natural systems the mechanisms of adaptation in order to design artificial systems of
comparable sophistication." The algorithm they implemented (called the Simple
Genetic Algorithm (SGA)) is very neat and allows a fairly simple mathematical
analysis, however later authors have improved the operators used in the SGA (see
Chapter 5) [Back (1996), Michalewicz (1992)].

Thereafter, hundreds of papers have been published on the topic of GAs and its
applications. There is much literature [Back (1996), DeJong (1975), Goldberg
(1989), Michalewicz (1992)] on this subject and various international conferences
on GAs have been held periodically.

GAs have been successfully implemented in a number of different fields. Goldberg
(1989) presented quite an exhaustive list of applications in disciplines as diverse as
social sciences, medicine or physical sciences.

In the engineering field the number of applications is also very large, from structure
optimisation [Day (2001)] to job scheduling [Shaw and Fleming (2000)], system
identification [Kristinsson and Dumont (1992), Tan and Li (1996), (1997)],
measurement [Brooks et al. (1996)] or robotics [Yang and Billings (2000), Wang
and Zalzala (1996b)].

For its use in systems and control engineering, GAs have been applied to a number
of control problems. A very good classification of GA applications in control
engineering can be found in Chipperfield and Fleming (1995).

These include: controller parameter optimisation for different control
methodologies such as Predictive Control [Smierzchalski et al. (2001 )], Gain
Scheduling [Gray et al. (1997)] and PID, Sliding Mode, Ha, and Pole Placement, as
it is shown below; controller structural optimisation [Chowdhury and Li (1996),
French et al. (1997), Tang et al. (1996)] and multiobjective controller design
[Chipperfield and Fleming (1996), Chipperfield et al. (1999)].

18



In the field of marine applications of control, GA optimisation has been applied
mainly to controller parameter optimisation of various marine vehicles such as
surface vessels [Alfaro-Cid et al. (2001a), (2001b), Alfaro-Cid and McGookin
(2001), McGookin (1997)], submarines [McGookin (1997)] or AUVs
[Smierzchalski et al. (2001)] and for route planning [Alfaro-Cid et al. (2003),
Alvarez and Caiti (2001), Smierzchalski (2001), Stawicki and Smierzchalski
(2001)].

GA tuning of PID controllers
The advantages of GAs as optimisation techniques have also attracted many
researchers in the field of PlO control as proved by the numerous references in the
literature. This genetic approach tries to save the designer having to manually retune
the results, as usually is the case when using the above-mentioned tuning methods
(especially with non-linear plants). Also, the idea of the simplicity and wide
applicability of GAs (since they do not depend of the plant characteristics) was
appealing to the researchers [Wangand Kwok (1994)].

The earliest papers on GA-based PlO controllers were published in the early
nineties. Most of this pioneering work was undertaken by Wang and Kwok (1994).
Various conferences, such as the 1995 and 1997 International Conferences on
Genetic Algorithms in Engineering Systems: Innovations and Applications
(GALESIA) held in Sheffield and Glasgow, respectively, were very prolific in GA
applications to PID tuning [Ahmad et al. (1997), DeMoura Oliveira and Jones
(1997), Jones and DeMoura Oliveira (1995), Jones et al. (1997), Krohling (1997),
Salami and Cain (1995), Vlachos et al. (1997)].

Recent publications in PID tuning using GAs can be divided between those
concerned with improvements in the controller tuning and those focused on the
application. The former would include latest research in fuzzy PlO control [Cho et
al. (1997)], adaptive PlO control [Porter and Jones (1992)], self-tuning PlO
[Mitsukura et al. (2000)], combinations of neural networks and GAs for PlO tuning
[Omatu and Deris (1996)] or PID genetic tuning for disturbance rejection [Krohling
and Rey (2001)].

The latter group of papers show that the application fields of genetic tuned PlO
controllers are numerous, ranging from power electronics [Wang et al. (2002)] to
robotics [Homaifaret al. (1997)].
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In the field of marine control, however, the references to PID tuning using GAs are
scarce [Alfaro-Cid and McGookin (2001), Alfaro-Cid etal. (2001a), (200lb)].

GA tuning of Pole Placement controllers
The earliest papers on genetic optimised Pole Placement controllers were not
published until the mid 1990s and still they are sparse. In the Pole Placement
problem the choice of what is going to be optimised with the GA is not as
straightforward as in the PID gains.

GAs have been used mainly for obtaining the gains of the feedback matrix that
provides the appropriate closed-loop eigenstructure [Abdel-Magid et al. (1997), Lam
and Tam (2000), Patton and Liu (1994)], given a set of fixed or constrained

eigenvalues.

Another quite common approach consists of using GAs to optimise the Q and R
weighting matrices so that the closed-loop eigenvalues are located as close as
possible to the desired eigenvalues of a linear quadratic (LQ) optimal system [Clarke
and Davies (1997), Davies and Clarke (1995)].

Finally, only two references were found in the literature that used the approach
adopted in this thesis (i.e. to optimise the pole locations instead of the feedback
gains): Wang and Zalzala (1996a) used a GA to find the pole locations for a pole
assignment self-tuning adaptive controller and McGookin (1997) used a GA to find
the pole locations for the equivalent controller in a Sliding Mode control structure.

Again, a significant number of the papers concerning genetic tuning of Pole
Placement controllers are related to aerospace applications [Clarke and Davies
(1997), Davies and Clarke (1995), Patton and Liu (1994), Mengali (2003)].

GA tuning of Sliding Mode controllers
The first papers in GA-tuned Sliding Mode controllers were published in the mid
1990s [Moin et al. (1995), Ng et al. (1995)]. Sliding Mode applications of GA have
not been as popular as PID ones, but still there are some publications in the area.

A large majority of the publications deal with GA optimisation of fuzzy-Sliding
Mode controllers. GAs are used to optimise the membership functions in the fuzzy
rule bases [Chen and Chang (1998)].
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It is worth mentioning as well the contribution from researchers of the University of
Glasgow, especially in marine applications [Alfaro-Cid et al. (200la), Li et al.
(1996), McGookin (2001), McGookin et al. (1996), (1997a), (1997b), (2000a),
(2000b), (2000c)].

Other non-marine applications of genetically optimised Sliding Mode controllers
would be in power systems control [Matas et al. (2000)] or robotics [Zhu et al.
(2001)].

Latest research in the area includes on-line GA optimisation for adaptive Sliding
Mode controllers [Lin and Chou (2003)].

GA tuning of IL controllers
References to H,weighting functions tuning using GAs are not as frequent as with
previous controller techniques. The fact that the choice of weighting functions
involves, not only the adjustment of the parameters, but also determining the
weighting structure, makes it a complicated optimisation problem. However, since
the late 1990s, some genetic approaches to the ILo controller design problem can be
found in the literature.

Most authors use a loop-shaping method combined with a GA search. Given a
predetermined structure for the pre and post compensators required in the loop-
shaping technique, the GA is used to optimise the parameters that define that
structure [Christiansson and Lennartson (1999), Dohna et al. (I997)]. On the other
hand, Dakev et al. (1997) allows the GA to select the optimal structure from a set,
giving a structural dimension to the search process.

Despite of the small number of papers in the area of GA-based fLo controllers, the
range of applications is quite varied: from motor control [Chouiter et al. (1999)] to a
magnetic levitation train [Dakev et al. (1997)]

In the field of ship control some research has been done [Alfaro-Cid (2002),
(2003d), Donha et al. (1997)].

2.3.2. STRUCTURED GENETIC ALGORITHM
The Structured Genetic Algorithm (sGA) was first proposed by Dasgupta and
McGregor (1991) (an updated version of the report can be found in Dasgupta and
McGregor (1993a». This genetic model proposes a new chromosome structure in
the sense that chromosomes become a multi-layered structure instead of a linear one.
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Thus, the central feature of sGAs is the use of hierarchies and gene redundancy.
Genes in the higher level of the structure act as "control genes" that activate or
deactivate sets of lower level genes, but the deactivation of a set of genes does not
mean its deletion. They are kept in the chromosome and can be reactivated later on
by mutation or crossover of the control genes.

Dasgupta and McGregor (1993a) argue that the main reason for the unsatisfactory
performance of GAs while tackling some problems is their simplistic chromosome
representation. Once an optimisation converges to a local optimum to "jump" out of
it requires a multi-gene change. Unless there is a great diversity in the population
traditional crossover and gene mutation cannot cause that desired effect.

With the new chromosome structure presented in sGA, the mutation of one of the
high level genes produces the activation or deactivation of lower set of genes, i.e. it
promotes multiple changes to occur simultaneously.

Thus, the motivations for this new genetic model are [Dasgupta and McGregor
(1993a)]:

1. The hierarchic multi-level structure allow multi-gene changes that avoid
premature convergence

2. Sets of deactivated genes perform as a memory
3. The model is especially well suited to a changing fitness scenario since

the redundant genes may carry information that will help in the
adaptation process [Dasgupta and McGregor (1992a)]

As well as creating the model, the authors developed a wide variety of applications
in various fields ranging from neural networks [Dasgupta and McGregor (1992b),
(1993b)] to mechanical problems [Dasgupta and McGregor (1992c)] or artificial
GA-deceptive problems [Dasgupta (1994)].

However, although the intention of the authors was to provide the sGA with a
mechanism for adaptation to changing environments, the multi-layered chromosome
configuration in sGA makes it very suitable for optimisation of structures and in that
area is where most of the later applications of sGA take place.

Mainly, sGA have been used for structural optimisation (topology and weightings)
of neural networks [Chalkiadakis et al. (2001), Tang et al. (1995)]. Other relevant
applications are in data classification [Hsu and Hsu (2002), Imai et al. (1999)] and as
an engineering design aid [Parmee (1998), Rafiq and Williams (1998)].
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The control applications references using sGA are scarce. Dasgupta and McGregor
(1993b) have presented a control application of sGA: the design of a neurocontroller
for the pole-cart system. Once more the sGA has been used for the optimisation of
the neural network that controls the system, obtaining good results. And Tang et al.
(1996) used sGA for the design of the pre compensator and post compensator in a
Rx, controller design with loop-shaping.

In the field of marine technology sGA has been used as a route planner by Ono et al.
(1996).

2.3.3. GENETIC PROGRAMMING
The foundations of Genetic Programming (GP) were laid by Koza (1992) in his
book entitled Genetic programming: On the Programming of Computers by Means
of Natural Selection. The main point in Koza's work is to prove that: "genetic
programming provides a way to search the space of possible computer programs for
an individual computer program that is highly fit to solve a wide variety of problems
from many different fields." He presents a GP algorithm coded in LISP and applied
it to various problems related to very different research fields, from symbolic
regression and optimal control to discovering of game-playing strategies, robotic
planning or pattern recognition. He aims to prove empirically the efficiency ofGP as
a problem-solving technique.

In Koza (1994), further developments in the technique were introduced, mainly the
development of Automatic Defined Functions (ADFs). ADFs are trees that are
evolved in parallel with the main tree and can be called by it as a terminal node.
Koza's aim is to develop a tool that is able to decompose a problem into
subproblems, solve the subproblems and assemble the solutions to the subproblems
into a solution of the overall problem, exploiting any symmetry or pattern of the
problem.

Following the work by Koza, several PhD theses were published, such as Tackett
(1994) and O'Reilly (1995). Both works focus on explaining why GP works and
how GP could be improved, since such an extensive empirical work had already
been presented by Koza.

Tackett's (1994) thesis aims to clarify the mechanisms that govern GP by presenting
an analogy between GP and Beam Search [Rosenbloom (1987)], a well-known
heuristic search method used in Artificial Intelligence. He also analyses various
selection operators in the context of noisy and under sampled data and introduced
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what he called the Greedy Recombination Operator. In order to further understand
the underlying mechanisms of GP two problems are constructed: a Royal Road and a
Deceptive problem and an approach called Gene Banking is taken so that relevant
statistics such as frequency of occurrence of subexpressions, time of first creation,
and time of extinction are recorded.

O'Reilly's (1995) thesis aims to be a systematic analysis of GP. She studies the
influence of the designer in the performance of GP while choosing the function and
terminal sets and the role of hierarchy in GP. She also states a Building Block
Hypothesis for GP and derives a Schema Theorem. In the second part of her thesis,
O'Reilly compares the performance of GP with that of Simulated Annealing and
Stochastic Iterated Hill Climbing by modifying them introducing a new mutation
operator called Hierarchical Variable Length Mutate operator (HVL-Mutate). She
repeats the comparison substituting the mutation operator by a crossover operator.
Finally, a new hybrid algorithm based on the previous results is introduced

In the current literature the amount of GP papers is remarkably large and diverse,
specially considering that Koza's first book was published only 10 years ago. These
papers can be grouped in three categories: papers about GP mechanisms, papers
about GP operators and GP applications. By far, the last group is the biggest.

In order to prove empirically the effectiveness of GP, Koza (1992) and Koza (1994)
present a broad range of GP applications to a variety of fields, from optimal control
to evolution of Boolean expressions including robot path planning, symbolic
regression, emergent behaviour, strategy, molecular biology ...

One of the areas where GP has been applied quite extensively has been the evolution
of electrical hardware [Koza et al. (1997), Fernandez et al. (2002)]. GP has been
used for the placement and routing of circuits.

Applications to research in molecular biology and medical screening are reported in
Dracopoulos and Kent (1997). The structures being researched in molecular biology
are very large and GP provides a mechanism to accelerate the analysis. It can also be
used for the identification of patterns in the patients that suffer a grave condition that
would help in the prevention of other cases.

The robotic community has used GP for planning and controlling robot movements
[Ebner (1998), Busch et al (2002)], and cooperative robot team strategies [Luke
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(2000a), Yanai and Iba (2002)]. Koza (1992) itself presented some examples of this
application. For a review of the topic, see Mataric and Cliff (1996).

GP has also been used for prediction [Dorado et al. (2002), Howard and Roberts
(2002)] and modelling problems [Gray et al. (1998), Bastian (2000), Grosman and

Lewin (2002)].

Other applications include computer animation [Gilfind et al. (2000)], digital signal
processing [Esparcia-Alcazar (1998)] and music generation [Putnam (1996)].

So far, GP has been applied to a small number of control problems. Koza (1992)
included some of what he called cost-driven evolution problems (i.e., optimal
control problems), such as the cart entering, broom balancing and truck backer
problems. Also, Koza et al. (2000) optimise the structure of a controller for a three-

lag plant with a five-second delay.

Dracopulos and Kent (1997) show the use of GP to discovery the control laws that
allow performing attitude manoeuvres for a satellite or spacecraft. A stability proof
for the GP derived controller was included in the study.

Shimooka and Fujimoto (1998) solved the inverted pendulum problem but instead of
evolving equations to determine the direction of the bang-bang force as Koza (1992)
had done, they look also for the magnitude of the force that applied to the cart can
move it to a target position while keeping the pendulum standing.

In his master's thesis, Ng (2000) includes an implementation in Matlab of GP. It is
not easy to implement a tree structure since Matlab does not provide pointers. The
author has created 3 different data structures. All of them flatten the tree into a linear
string of functions. The main disadvantage is that the number of shapes that can be
represented this way is very restricted. Due to the linear evaluation every internal
node takes the previous node as an argument and a terminal node as the second
argument (see Chapter 7 for a more detailed description and comparison with the
Matlab implementation of GP used in this study).

The applications that Ng (2000) solves are all control applications: a simple
Lyapunov solver, a discrete Lyapunov solver, a simple optimal control problem and
a model reference adaptive system. He does not optimise structures but parameters
(matrices in the Lyapunov case, an input vector for the optimal problem and

parameters for the adaptive system).
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2.4. SUMMARY

The chapter has presented a review of some of the literature available regarding the
control methodologies that have been considered in this thesis (i.e. PID, Pole
Placement, Sliding Mode and Roo) together with the optimisation techniques
analysed (i.e. Genetic Algorithms, Structured Genetic Algorithm and Genetic

Programming).

This chapter only intends to be a brief review of the available literature. In the thesis
there are further references to the literature when required and a more detailed

discussion.

The existent applications of these optimisation techniques in the field of automatic
control have been emphasised, especially the control of marine vessels.
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CHAPTER3

SUPPL Y SHIP APPLICATION

3.1. INTRODUCTION

Traditionally, the steering of a vessel has required the ability of a highly skilled
helmsman to sail the boat along the desired path. As well as keeping the right
heading the pilot has been in charge of sailing at the desired speed. Therefore, while
sailing a boat there are two coupled tasks to perform: getting the ship to navigate in
the desired direction (heading control) at the desired speed (propulsion control).

The invention of the gyrocompass and the gyropilot, at the beginning of the zo"
century marked the start of the automatic steering of ships [Skjetne (2003)]. Many
factors have led to the increase of the shipping automation. From an economic point
of view automatic control allows reduced crews (i.e. reduced costs) and it also
permits near optimal operation of boats (reducing actuators usage and fuel
consumption) [Zuidweg (1970)]. Furthermore, the increasing traffic densities and
the increasing size of some vessels (e.g. oil tankers) makes them difficult to handle
manually [Norrbin (1970)]. In addition to these economic and safety issues, military
operations require high standards of effectiveness.

In the last decades, in order to keep up with the demand for oil, companies have
started to drill for oil offshore. Oil platform supply ships are offshore service vessels
employed in carrying supplies to drilling units of sub sea oil and gas. Their cargo
consists of the equipment, food and water that an offshore platform needs to keep its
production going and, therefore, these vessels are essential to the operations of the
offshore oil and gas industry. Such supply boats need to be robust against
environmental disturbances and manoeuvrable. They have to be able to handle
adverse weather conditions (especially the ships for Northern latitudes, e.g. Atlantic
Canada and the North Sea) and keep a position as steady as possible while unloading
operations are carried out. Their importance for the smooth operation of oil
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platforms imposes the need for their navigation system to be accurate and robust
against environmental disturbances. This only can be achieved through automatic
controllers.

The particular applications used in this research are two scale models of an oil
platform supply ship called CyberShip I (CS1) [McGookin (1997), Strand (1999)]
and CyberShip II (CS2) [Lindegaard and Fossen (2002)]. Both are test vehicles
developed in the Department of Engineering Cybemetics at the Norwegian
University of Science and Technology (NTNU) in Trondheim. CS2 is an upgraded
version of CS 1 and the main difference between them lies in the actuators they are
equipped with and their size. CS1 is slightly smaller and lighter and is actuated by
four pod thrusters two at the stem and two at the bow. On the other hand CS2 is
equipped with two propellers with rudders placed at the stem and a small tunnel
thruster capable to provide a sway force in the bow.

Mathematical models of CS 1 [Strand (1999)] and CS2 [Lindegaard (2003)] have
been used for the design of automatic controllers of the boats and their a posteriori
optimisation using GAs. This work has been carried out through computer
simulations in Matlab. CS1 was used for a preliminary comparison study to find the
GA scheme best suited to the problem of the optimisation of the controllers'
parameters. Then, the resulting GA was applied to the optimisation of the parameters
of the controllers designed for CS2. The similarity between both models provides
confidence in the suitability of the resulting GA for the optimisation of the
controllers ofCS2. In addition, GP structural optimisation of the control strategy for
the navigation and propulsion dynamics of CS2 has been conducted. All the
optimised controllers have been implemented on the actual physical model of CS2 in
the Marie Curie Training Site facilities at NTNU.

The development of the mathematical models and analysis of the ship dynamics are
performed in this chapter. Section 3.2 deals with the description of the physical scale
model and the facilities at the Marie Curie Training Site where the trials have been
performed. Section 3.3 describes the mathematical models of CS} and CS2,
outlining the differences in the ship and actuator dynamics of both vessels. Section
3.4 is dedicated to the description of the environmental disturbance model that has
been applied to the plant simulation to check its robustness to external disturbances.
Section 3.5 presents the manoeuvres used for the testing and optimisation of the
control designs throughout this work. Finally, Section 3.6 summarises the chapter.
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3.2. SCALE MODEL AND MARIE CURIE TRAINING SITE FACILITIES

The physical model used in the experimental part of this work was CS2. As has
already been mentioned, CS2 is a scale model (scale 1170thaprox.) ofan oil platform
supply ship and it was developed at the Department of Engineering Cybernetics at
the Norwegian University of Science and Technology in Trondheim (Norway). The
testing of the optimised controllers in the real model has been performed in the
Marine Cybernetics Lab (MCLab) at the NTNU. The MCLab is an experimental
laboratory for testing of ships and underwater vehicles and has been appointed as a
Marie Curie Training Site since 2002.

The length ofCS2 is of 1.255m and its mass is 23.8kg. It is actuated by means ofa
tunnel-thruster placed at the bow and two main propellers with rudders situated at
the stem (see Figure A.2 in the Section A.3 of Appendix A). The following Figure
3.1 shows different aspects of CS2 such as the stem actuators in the right bottom
comer and the general aspect of the model.

Figure 3.1: Various Aspects ofCS2
Reproduced with permission of Prof T.I. Fossen from

http://www.itk.ntnu.no/ansatteIFossen Thor
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For position measurement purposes, CS2 is fitted with three 3-dimensional emitters
that do not appear in the previous figure but that there are marked in Figure 3.2 with
a yellow line. The infrared signals emitted are detected by 4 motion capture
PC/cameras that provide the measurements of the (x, y) coordinates plus the heading
angle to the user. They can be seen in both right and left upper corners in Figure 3.2.

Figure 3.2: Positioning System in the MCLab

CS2 is equipped with an onboard PC (as shown in Figure 3.3) running QNX real
time operating system. The control is done in real-time by an onshore PC. The
connection between both PCs is made through a wireless Ethernet link and an
automatic C-code generator. Matlab Simulink and Real Time Workshop are coupled
with a graphical user interface in LabView for real-time presentation of the results.

The software in the onshore PC allows three types of control: manual (where the
user types in the settings of the propellers and rudders via the LabView screen),
using a joystick and, finally, using an automatic controller. This last option was the
one used to test the performance of the optimised controllers in this study.

For more accurate information about the Marine Cybernetics Lab and CS2 refer to
Lindegaard and Fossen (2002), Corneliussen (2003) and Sveen (2003).
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Figure 3.3: On-Board PC in CS2

Below, Figure 3.4 shows the SimuLink block diagram for the control ofCS2.

Commanded Actuators
forces settings

Reference .. Thruster...
Controller _.. _. CyberShip IITrajectory

~
.. Allocation ~

Observer ~ Positioning ...._.. system ....
....

Figure 3.4: Simulink Block Diagram ofCS2 Software Control

In order to create the trajectory reference, the user introduces a set ofwaypoints. The
reference trajectory block designed by Corneliussen (2003) provides a smooth path
along them using a 7th order polynomial interpolation. The reference speed is set by
means of a dial in the Labview screen.

Once the controller produces the commanded forces vector, based on the state errors,
these forces and moment have to be allocated to the actuators. This is done in the
Thruster Allocation block. This block calculates the values for propeller speed and
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rudder deflection in an optimal way [Lindegaard and Fossen (2002)]. The algorithm
optimises the fuel efficiency of the actuators while eliminating discontinuities in the
signals that would produce excessive wearing in the thrusters.

The movement of CS2 is measured by the positioning system. The observer block
estimates the state vector (consisting of the x and y coordinates, heading angle, surge
and sway speed and yaw rate) using the measurements from the positioning system
and the commanded forces produced by the controller [Sveen (2003)]. The observer
block also includes a wave filter. In the time between the two visits to the MCLab
facilities improvements were made in the observer and wave filter blocks. These
improvements are reflected in the results obtained because of the reduced effect of

the wave noise.

The picture below (Figure 3.5) shows the water tank in the MCLab seen from the
control room. The dimensions of the basin are 40x6.45x1.5m.

Figure 3.5: Water Basin in the MCLab
Reproduced with permission of Prof. T.I. Fossen from

http://www.itk.ntnu.no/ansatteIF ossen _Thor

The facility is also equipped with a wave generator, shown in Figure 3.6. Such a
generator consists of a single flap controlled by a wave synthesiser and can produce
regular and irregular waves with various spectra and wave height. The wave
generator was used in the experimental trials in this study.
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Figure 3.6: Wave Generator in the MCLab
Reproduced with permission of Prof T.I. Fossen from

http://www.itk.nmu.no/ansatte!Fossen Thor

3.3. MATHEMATICAL MODEL

3.3.1. SIUPDYNAMICS
When analysing the motion of a vessel it is convenient to define two coordinate
frames [Fossen (1994)]. The moving coordinate frame XB YB ZB is fixed to the
vehicle and is called the body-fixed reference frame. The origin of the body-fixed
frame is usually chosen to coincide with the centre of gravity. For marine vehicles it
is usually assumed that the accelerations of a point on the surface of the Earth can be
neglected. As a result of it, an earth-fixed reference frame XE YE ZE can be

considered to be inertiaL

Position and orientation of the vehicle should be described relative to the inertial
reference frame while the linear and angular velocities of the vehicle should be
expressed in the body-fixed coordinate system [Fossen (1994)]. Based on this, the
general motion of the vessel can be described by the following vectors:

11= [x,y, IJI]T

v=[u,v,r]T

't = [or), 1"2, 1"3]T

(3.1)
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Here 11denotes the position and orientation vector with coordinates in the earth-
fixed frame, v denotes the linear and angular velocity vector with coordinates in the
body-fixed frame and 't is used to describe the input force vector in the body-fixed

frame.

A non-linear hydrodynamic model based on the kinetic and kinematic equations
represents the dynamics of the vessel.

The kinetic equations are represented by the following matrix equation [Fossen
(1994)]:

M·v+C(v)·v+D.v =T (3.2)

Here M is the masslinertia matrix, C is the Corio lis matrix and D is the damping

matrix. Also, v = [u, v, r]T is the body-fixed linear and angular velocity vector and 1:

= [T), T2. T3]T is the input force vector, given that T), T2 and T3 are the forces and
torque along the X, Y and Z-axis, respectively.

The kinematic equation relates the body-fixed reference frame to the earth-fixed
reference frame. The vessel's path relative to the earth-fixed coordinate system is
given by a velocity transformation [Fossen (1994)]:

(3.3)

where J is the Euler matrix and 11= [x, y, 'I/]T denotes the position and orientation

vector with coordinates in the earth-fixed frame.

When kinetic and kinematic equations are combined together the following matrix
form is produced (assuming M to be invertible):

(3.4)

This expression corresponds to a non-linear state space equation:

i = A(x)·x+B· T (3.5)
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Thus, the corresponding states and inputs for this model are shown in Table 3.1

[McGookin (1997)].

Table 3.1: Supply Ship Model States and Inputs

STATES INPUTS

u surge velocity f'} surge thrust force

v sway velocity f'2 sway thrust force

r yaw rate f'3 yaw thrust torque

If! yaw (heading) angle

xp x-position on earth

yp y-position on earth

All the numerical data for the CS1 and CS2 model matrices can be found in
Appendix A Differences in the mathematical models of the ship dynamics are
small. CS2 is slightly longer and heavier.

3.3.2. ACTUATORS DYNAMICS
As mentioned previously, the ~ain differences between CS 1 and CS2 lie in the
actuators they are equipped with. In this section the actuators dynamics of each of

them are described.

CyberShipI
In the case of CS 1, four pod thrusters provide the forces and torque relative to the
body-fixed axis that constitute the inputs to the vessel model. Two of them are
placed at the stem, symmetric about the body-fixed X-axis, while the other two are
placed at the bow, along the body-fixed X-axis [McGookin (1997)]. A diagram of
the actuators layout can be found in Appendix A (Figure Al in Section A.2).

Each thruster is represented by the force (f;J it produces and the angle (ai) defining
its direction. Thrusters at the stem operate always in the same direction, so a} and a2

are always equal and with the same power. The amplitude operating limit values for
the thrusters forces are shown in Table 3.2 [McGookin (1997)].

Table 3.2: CSI Thrusters Operating Limits

I ~: I al~:d) I
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The three input force components (r) to the individual forces produce by the
thrusters (fi) using trigonometric relationships [Fossen (1994), Strand (1999)]. From
these relationships the maximum possible values of the surge thrust force (1'1), sway

thrust force (1'2) and yaw thrust torque (1'3) can be obtained.

CyberShip II
On the other hand, CS2 is equipped with 3 actuators: two propellers with rudders
placed at the stem, symmetric about the body-fixed X-axis, and a small tunnel
thruster capable to provide a sway force in the bow. The three propellers are
controlled by fixing the number of revolutions per minute [Lindegaard and Fossen

(2002)].

The amplitude operating limit values for the actuators in CS2 are shown in the
following Table 3.3.

Table 3.3: CS2 Actuators Operating Limits

Stem rudders deflection ( 0 ) ±35

Bow thrusters speed (rps) ±80

Stem propellers speed (rps) ± 35

In both CS1and CS2 the forces and torque produced by the actuators are states of the
system and are included in the plant state space equation as follows:

[
-liT,. 0 0 l [liT,. 0 0 l

i= 0 -1fT2 0 T+ 0 11T2 0 Tcom

o 0 -ip; 0 0 1fT)

(3.6)

where 1'com is the vector of the commanded inputs. The values Ti, T2 and T3 are time
constants (see Appendix A for values) that allow us to restrict the rate of change of
the actual forces provided for the thrusters.

Hence, both ship models have 9 states (i.e. u, surge velocity; v, sway velocity; r, yaw
rate; 'If, yaw angle; xp, x-position on earth, yP' y-position on earth, 1'1, 1'2 and 1'3, forces
and torque along the body fixed X, Y and Z-axis respectively) and 3 inputs (i.e.
1'leam, 1'2eam and 1'3eam, commanded forces and torque along the body fixed X, Y and
Z-axis respectively) [McGookin (1997)].
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3.4. DISTURBANCES MODEL

In order to evaluate the robustness against environmental disturbances of the
controllers obtained through the GA optimisation, simulations of manoeuvres in the
presence of environmental disturbances have been carried out [Fossen (1994)].

There are three main types of environmental disturbances: wind-generated waves,
ocean currents and wind. However, in this research the analysis has been restricted
to the disturbance considered to be the most relevant for surface vessels, i.e. wind-
generated waves. In addition they can be reproduced in the MCLab for testing.

The model that has been used to simulate the wave's action on the vessel derives the
forces and moments induced by a regular sea on a block-shaped ship and it is
described in Zuidweg (1970). It forms a vector called 'twavea that is directly added to
the input vector, T, in Equation (3.4) using the principle of superposition. 'twaves has 3

components:

N

X __ (t) = 1:pgBLT cos(fi - 'I')s 1 (t)
1:1

N

Y,..,.,.(t) = L - pgBLT sin(fJ - 'I')SI (t)
;:1

(3.7)

N 1N,_, (t) = L- pgBL(L2 - B2) sin 2(fi - 'I')s; (t)
;:124

Here L, B and T are the length, breadth and draft of the wetted part of a ship,
considering it as a parallelepiped. p is the density of the water, s,(t), the wave slope

and (f3 -"'), the angle between the heading of the ship and the direction of the wave

(in radians).

The derivation of the Equations (3.7) is based on the assumption of forces and
moments being the result ofthe water pressure acting on the wet surface of a block-
shaped ship with dimensions L, B and T. This assumption holds better for big vessel
wit flat hulls such oil tankers. In our case, a block coefficient factor has been applied
to the forces and torque amplitude to take into account the fact that the ship's hull is

not flat.

In order to implement the above formulas, the wave slope, Si, has to be computed.
The wave slope, Si of a long crested irregular sea propagating along the positive x-
axis can be written as a sum of wave components. So, assuming that x=O and that
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higher order terms can be neglected, the wave slope, Si can be related to the wave
frequency spectrum in the following way [Fossen (1994)]:

(3.8)

where Ai is the wave amplitude of a wave component i, k, is the wave number of a
wave component i (i.e. k. = 2n1.i=(j)//g) and (j)eiis the frequency of encounter.

The wave amplitude Ai of wave component i is related to the wave spectral density

function S( (j);)as:

(3.9)

Here o, is the wave frequency of wave component i and L1(j)is a constant difference

between successive frequencies.

To compute S((j)i) and thus Ai, different wave spectra can be considered. For
prediction of responses of marine vehicles and offshore structures in open sea, the
International Ship and Offshore Structures Congress, 2nd ISSC (1964), and the
International Towing Tank Conference, 12thITTC (1969) and 15thITTC (1975) have
recommended the use of a modified version of the Pierson-Moskowitz spectrum,
that is [Fossen (1994)]:

(3.10)

Thus, if the modal period, To, is chosen as a function of H" the significant wave
height, the spectrum only depends on one parameter, H,. H, needs to be suitably
scaled so that the resulting waves are according to the dimensions of the supply ship

scale model.

The following Figure 3.7 shows the modified version of the Pierson-Moskowitz
spectrum for wave heights of 2 (solid line), 3 (dotted line) and 4 (dashed line)

meters.
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Figure 3.7: PM-Spectrum for Different Values of'H,
(solid line: 2m, dotted line: 3m, dashed line: 4m)

Therefore, the algorithm used to compute the forces and moments induced on the
ship is as follows [Fossen (1994)]:

(1) The spectral density function S( a» for the chosen wave height is divided

into N intervals with length Aa>
(2) A random frequency o, is chosen in each of the frequency intervals and

S( a>i) is computed.
(3) The wave amplitude (Ai) is computed for i=I ..Nusing Equation (3.9)
(4) Wave slope (Si) is calculated by applying Equation (3.8)
(5) The forces and moments induced are calculated applying Equations (3.7).

A block coefficient factor is applied to take into account the fact that the
ship's hull is not flat.

The following Figure 3.8 shows the profiles of the forces and torque created over the
vessel by 3m high wave disturbances (suitably scaled down in a 1170thfactor) with a
constant angle of attack of 1350 while the vessel keeps a straight trajectory and
speeds up from 0 to 0.7 mls.

39



10-z........
Q)

0>
III
~
x

-10
0 10 20 30 40 50 60

10

Z.._.
Q) 0~
!.

'f
6
Q) -0.5

~ -1~----~------~------~----~~----_'------~o 10 20 30 40
time (s)

Figure 3.8: Waves Forces and Torque Generated by 3m High Waves
with an Angle of Encounter of 1350

50 60

3.5. MANOEUVRES

The desired responses for propulsion and heading used throughout this study are two
critically damped steps up and down as shown in the following Figure 3.9. The
heading reference is a 450 double step manoeuvre. The reference for the surge speed
makes the vessel accelerate up to 0.7 rn/s and then decelerate back to rest. Since the
model scale is 1/70th, 0.7 rn/s would be equivalent to 6 rn/s approximately in the full-
scale vessel. These reference signals have been used for the GA and GP optimisation
as well as for the manual tuning of the controllers.

The controller results have been tested in the water basin executing the zig-zag
manoeuvre shown in Figure 3.10. This path is based on 5 waypoints, the starting
point (7,1) and then (5,1), (3,-1), (1,1) and (-1,0). Those waypoints have been chosen
to reproduce the 450 turning manoeuvres used in the simulation work. An algorithm
generated the path and desired heading and surge signals based on these waypoints.
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The computation method used to create the path is a 7th order polynomial
interpolation [Comeliussen (2003)]. The zig-zag is tracked at a constant surge speed
of 0.2m1s approximately. Given that the way of adjusting the set point for the speed
is a manual dial, a great deal of accuracy is not possible.
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Figure 3.9: Desired Responses to Track

Also, the manoeuvre is executed while generating waves in order to study their
effect. The waves synthesizer is set to generate irregular waves with a Pierson-
Moscowicz spectrum [Fossen (1994)], like the one used in simulations. The
significant wave height is 5 mm (scale 1nOth) and the peak period of 0.80 s. The
wave height could not be set higher because the vessel model is not well isolated to
handle them and there was a risk of the boat sinking. The angle of attack of the
waves is 0°. This was defined by the fixed position of the flap that generated the
waves in the tank.
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3.6. SUMMARY

This chapter has presented mathematical models used in the simulation part of this
work. The ship and actuators dynamics of CSI and CS2 have been described. The
full model including the numerical values of both CSl and CS2 can be found in the

Appendix A.

This chapter also has included a description of the full scale vessel CS2 and the
laboratory where the real trials to test the performance of the optimised controllers

were conducted.

During the optimisation work disturbances have been added to the simulation to
create a more realistic environment. The mathematical model of the waves used in
the simulation and how they were implemented have also been described.

Finally, the last section of the chapter was dedicated to the description of the
manoeuvres used in simulations as well as in the real trials throughout this work for
the optimisation and testing of the performance of the control designs.
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CHAPTER4

CONTROL METHODOLOGIES FOR THE
CONTROL OF A SUPPLY VESSEL

4.1. INTRODUCTION

In order to ensure the safe navigation of surface vessels their motion has to be
controlled accurately. This manoeuvring control can be provided through the
application of automatic control theory [Dorf and Bishop (2001), Dutton et al.
(1997)]. In general, control theory provides design strategies that allow a better
understanding of the system being controlled (e.g. a vessel) and a mechanism to
regulate the way in which the system operates. There are various control
methodologies that have their own unique structure. Despite being fundamentally
different in style they perform the same task i.e. to make the system behave in a

desired manner.

Since the early 1970s important research has been conducted on the subject of
automatic control of marine surface vessels. Authors like Norrbin (1970), Astrom
and Kallstrom (1976) or Kallstrom and Astrom (1981) have worked extensively in
the identification of ship dynamics. Other literature includes papers about steering
control [Kallstrom et al. (1979), Saelid and Jenssen (1983), Zuidweg (1970)] or
dynamic positioning control [Fossen et al. (1996), Sorensen et al. (1996)]. A major

text in this field is Fossen (1994).

Although the particular vessels used in this study, Cybership I and II (see Chapter 3),
have also been used in other studies to investigate dynamic positioning systems
[Strand (1999), Lindegaard and Fossen (2002)], in which the sway thrust force (1'2)
becomes more relevant; this research has focused in the heading and propulsion
dynamics, i.e. the control system of interest reacts to heading (course changing) and

surge velocity commands from a pilot.
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In the context of this thesis, the navigation and propulsion capabilities of the test
vessels are regulated using control design methodologies. Since controlling the
motion of a vessel implies performing two coupled tasks, these methodologies rely
on either two single input single output (SISO) control strategies (i.e. one controller
for the propulsion subsystem, which has '1 as an input and the surge speed as the
output, and a second controller for the heading subsystem, which has '3 as an input
and the heading as the output), or a multi input multi output (MIMO) approach (i.e.
the MIMO system has got three inputs, '1, '2 and '3, and two outputs, surge speed
and heading). Prior to the design of the controllers to regulate the motion of the
vessel, a study into the level of coupling between the propulsion and heading
dynamics was performed through a diagnosis method called Individual Channel
Analysis and Design (leAD) [O'Reilly and Leithead (1991)]. ICAD is a framework
for the analysis of MIMO plants. It is based on the decomposition of the system in
individual channels without losing any information about the cross coupling between
the channels. Hence, leAD allows the assessment of the suitability of decoupled or
MlMO controllers for a given plant.

After the reAD analysis, this chapter presents a theoretical description of the four
control methodologies that have been optimised using GAs: PID [Astrom and
Hagglund (1995), Dutton et al. (1997)], Pole Placement [Andry et al. (1983),
Kautsky et al. (1985)], Sliding Mode [Slotine and Li (1991), Utkin (1972)] and Hs,
[Glover and Doyle (1988), Zhou et al. (1996)]; and describes how they have been
implemented for the control of the particular plant (i.e. CSI and eS2). Each of these
types of controller is very representative of a certain field of automatic control (i.e.
linear control, state feedback, nonlinear control and optimal control). So they offer a
good variety of control structures. Thus, given the variety in the number of
parameters to optimise and the controller structures, the GA is tested in different
control optimisation problems with different search spaces. Moreover, the
comparison of the performance of these controllers provides us a good
understanding of the advantages and drawbacks of each controller structure and a
good starting point for the Genetic Programming, since the GP uses these structural
bits to build (and optimise) the controller structure.

As well as describing the theoretical background of each control strategy, a
description of their practical implementation for CS 1 and eS2 together with the
results obtained in the manual tuning of each controller for both vessels are included
in this chapter. The manually tuned controllers for CS2 have also been implemented
in the real plant and the results are shown.
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Chapter 4 describes the control methods as follows: Section 4.2 is a study of the
level of coupling of the model using ICAD as a diagnosis aid, Section 4.3 describes
linear PID control, Section 4.4, Pole Placement control and, Section 4.5 and Section
4.6 describe Sliding Mode and R., control respectively. Finally, Section 4.7
summarises the chapter findings.

4.2. DECOUPLED SYSTEM

In this work various controllers have been design to control the heading (IJI) and
surge speed (u) of the plant. Some of them are based on a multi input multi output
(MIMO) design, 3-inputs ( f'1com, f'2com and f'3com) 2-outputs (surge and heading), while
others perform on two decoupled single input single output (SISO) systems. The
decoupling of the system consists of the decomposition of the system into SISO
subsystems where a single input governs each motion (i.e. surge speed or heading).
It is a "divide and conquer" design approach. The decoupling of the system
simplifies considerably the controller design and it is a widely used method for
MIMO systems [Franklin et al. (1994), McGookin (1997)]. However, if the
interactions between states of the system are too strong, SISO control can become
unacceptable.

In order to analyse the level of coupling between the surge speed, sway speed and
heading states, an analysis tool in the form of Individual Channel Analysis and
Design (lCAD) [Leithead and O'Reilly (1992), O'Reilly and Leithead (1991)] has

been used.

ICAD is a framework for the analysis and design of feedback controllers for MIMO
plants. ICAD is based on the decomposition ofMIMO systems into SISO individual
channels with no loss of information (i.e. coupling within the system is preserved in
the design of the individual channels). In the case of two input two output (TITO)
systems, they can be decomposed into two SISO channels.

The method defines the multivariable structure function ](s). The structure function
describes the interaction between channels, i.e., the cross coupling within the plant.
When the magnitude of }'\s) is much smaller than 1, channel interaction is low;
otherwise channel interaction is high [Leithead and O'Reilly (1992)].
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Figure 4.1 : Transfer Function Expression of a TITO Plant

Figure 4.1 describes the transfer function diagram of a linear TITO system. Thus, a
linear TITO plant can be represented as a 2x2 transfer function matrix as follows:

(4.1)

Then ;(s) is defined:

y(s) = g12(S)g21(S)
gll (S)g22 (s)

(4.2)

In the particular case of CS 1 and CS2, three clear channels can be defined. The first
one has got the force in the X-direction (1'1) as the input and the surge speed (u) as
the output (i.e. channel (u, 1'1». The second channel has got the force in the Y-
direction (1'2) as an input and the sway speed (v) as the output (i.e. channel (v, 1'2».
Finally the third channel has got the torque (1'3) as the input and the heading angle
(vJJ as the output (i.e. (I//, 1'3». The coupling between the channels (u, 1'1) - (I//, 1'3)
and (v, 1'2) - (IjI, 1'3) has been analysed using ;(s). For that purpose, the state-space
equations of CS1 and CS2 (of the form shown in Equation (3.4» have been
linearised using a Taylor series expansion [Dutton et al. (1997)] around an operating
point and truncating the Taylor series after the first partial derivatives. The transfer
function matrix can be calculated just by applying [Dutton et al. (1997)]:

G(s) =C·(sI-At1.B+D (4.3)
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Here A is the system matrix, B is the input matrix, C is the output matrix and D is
the feed forward matrix of the state-space model of the system as defined in
Equation (3.5) and I is the identity matrix. The numerical values of gJJ(s), g12(S),
g21(S) and g22(S) of the transfer function matrix as defined in Equation (4.1) together
with the value of the r(s) as defined in Equation (4.2) obtained while analysing the
coupling between the channels (u, "f)) - ('1/, T3) and (v, T2) - ('1/, T3) for CS 1 and CS2
can be found in the Appendix A.

CyberShipJ
The results of f{s) show that the interaction between the channels (u, Tl) - ('II, T3) is
basically null, since in the linearised model g12 = g21 =0. The entire cross coupling
effect is lost during the linearisation of the matrices.

Figure 4.2 shows the Bode magnitude response of the multivariable structure
function r(s) of the TITO system consisting of 2-inputs (T2 and T3) and 2-outputs (v

and '1/).
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Figure 4.2: Bode Magnitude Response of J{s) for CSl
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The magnitude response of KS) for the channels (v, 1"2) - (IJI, 1"3) is well over 1. This
indicates a big interaction between both channels, which has to be taken into account
when decoupling the system.

CyberShip II
Expectedly, the results of the ICAD analysis for CS2 are very similar. The value of
Ks) obtained in the study of the interaction between the (u, 1"1) and (VI, 1"3) channels
is zero due to g12 and g21 being zero in the linearised model. Once more the cross
coupling effect between surge speed and heading is lost during the linearisation of
the matrices.

The value of Ks) when analysing the interaction between the (u, 1"1) and (IJI, 1"3)

channels, it has been plotted in Figure 4.3.
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Figure 4.3: Bode Magnitude Response of Ks) for CS2
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The result is equivalent to that of CS 1 and points out the big coupling between the
heading and sway speed channels.

Summarising, the leAD analysis has highlighted the importance of the coupling
between the heading and sway speed states. Regarding the interaction between surge
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speed and heading, the ICAD analysis shows it to be null in the linearised model, but
it does not take into account the possible coupling due to the nonlinearities. Thus
this result must be taken into perspective. Both models CS 1 and CS2 have provided
very similar results in the ICAD analysis, as it was expected.

In the next sections some controllers have been design on the decoupled system
while others perform on the MIMO model. For those using the decoupled system the
two SISO systems to control are as follows: since the study about the decoupling of
the system shows the strong cross coupling between v (sway speed) and 'If (heading),
the heading subsystem consists of 3 states (XH = [v, f//, r]) and one input (UH = 1"3).

Meanwhile the propulsion subsystem consists ofa single state (xp = u) and one input
(up = 1"1). Hence, the state space equations that represent the decoupled system to be
controlled are [Alfaro-Cid et al. (200 Ia), McGookin (1997)]:

u=A ·u+B ·Tlp P
(4.4)

(4.5)

Here u and 1"1 are the state and input of the propulsion subsystem while v, r and 'If
are the states of the heading subsystem and 1"3 the input. Ap, Ah, Bp and Bh are the
partitions of the state-space matrices of the model (see Equation (3.5»
corresponding to the propulsion and heading subsystems respectively.

4.3. PID LINEAR CONTROL

4.3 .1. THEORETICAL BACKGROUND
PID control [Astrom and Hagglund (1995), Dutton et al. (1997)] is a linear control
methodology. The structure of PID controllers is very simple. They operate on the
error signal, which is the difference between the desired output and the actual
output, and generate the actuation signal that drives the plant. They have three basic
terms: proportional action, in which the actuation signal is proportional to the error
signal, integral action, where the actuation signal is proportional to the time integral
of the error signal, and derivative action, where the actuation signal is proportional
to the time derivative of the error signal. The basic structure of a SISO PID
controller is shown in the following Figure 4.4
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Figure 4.4: Structure of a S1S0 PID Controller

Here Xd is the reference signal to track, x is the state of the system to control and u is
the control action generated by the PID controller. K», KJ and KD are the gains of the
proportional, integral and derivative terms.

The proportional term allows slight improvement in the steady-state error and in the
rise time, but it can lead to oscillations. The inclusion of the integral term improves
the permanent action since it usually eliminates the steady-state error, but in
detriment of the speed of the response. Finally, the derivative term can be used to
increase damping and reduce the oscillations, though it must be used with caution
because it amplifies any existent noise in the signal [Dutton et al. (1997)].

These three-term controllers have been found to be reasonably effective and easy to
implement. Consequently, the PID controller is the standard controller design in the
process industries. The PID standard form is given by [Dutton et al. (1997)]:

J de
u =Kp ·e+KJ e·dt+KD·- dt

(4.6)

where e is the error signal, u is the control action and K», KJ and KD are the
proportional, integral and derivative gain, respectively.

To design a particular control loop, the three constants (Kp, KJ and KD) have to be
adjusted to arrive at acceptable performance. In order to get a first approach to an
acceptable solution there are several controller design methods that can be applied.
For example, classical control methods in the frequency domain [Hagglund and
Astrom (1991)] or automatic methods like Ziegler-Nichols [Ziegler and Nichols
(1942)], the most well-known of all tuning PID methodologies. Ziegler and Nichols
(1942) recognised that the step response of most process control systems has a S-
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shaped curve called the process reaction curve [Franklin et al. (1994)] and can be
generated experimentally or from dynamic simulation of the plant. The shape of the
curve is characteristic of high-order systems, and the plant behaviour may be
approximated by the following transfer function [Franklin et al. (1994)]:

Y(s) = K ·e-td•S

U(s) T's+1
(4.7)

which is simply a first-order system plus a transportation lag. The constants in the
above equation can be determined from the unit step response of the process. Based
on the time delay td and the slope of the reaction curve R = K / T, Ziegler and

Nichols (1942) suggest the following PID controller parameters: K» = 1.2 / R-L, KI =
K» /2L and KD = 0.5 L {(P. Although the method provides a first approximation the
response produced is underdamped and needs further manual retuning [Dutton et al.
(1997)].

4.3 .2. CONTROLLER IMPLEMENTATION
It is standard practice in most existing marine systems to use a series of SISO PID
controllers, one for each variable to control [Fossen (1994)]. Therefore, in this work,
two classical PID controllers have been used to provide the structure for the
propulsion controller (for governing surge or forward velocity) and the navigation
controller (for governing heading, i.e. direction) [Alfaro-Cid et al. (200la), (200lb)].

Using the PID structure defined in Equation (4.6), the resulting control actions are:

J
d(U-ud)

T 1 = K Pp (u - Ud) +KIp (u - Ud )dt+ K Dp --d-t ~

T3 = K Ph ( IJI- 'I'd) + K Ih J< IJI - 'I'd )dt + K Dh d (IJI- IJId)
dt

(4.8)

(4.9)

where T1 is the force in the X-direction, T3 is the torque, U is the surge speed, Ud is the
desired surge speed, IJI is the heading, IJId is the desired heading and Kpp. KIp, KDp,

Kph, KIh and KDh the propulsion and heading PID gains.

To design each particular control loop the values of the three parameters (Kp,
proportional gain, K[, integral gain, and KD, derivative gain) have to be adjusted to
achieve acceptable control performance.
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In this particular design anti-windup features have not been considered because
wind-up has not been an issue in the implementation of the controller.

4.3.3. MANUAL TUNING RESULTS
CyberShipI
The results obtained for the manual tuning of the PlO decoupled controllers for CS1
are shown in Table 4.1:

Table 4.1: Manually Tuned PID Results for CS1
Kp KJ KD

Propulsion 200 0.1 50

Heading 20 1.5 30

Figure 4.5 plots the simulated response obtained when tracking the manoeuvre from
Figure 3.9 using the manually tuned control gains from Table 4.1.

0.8 , g; 40
,

~0.6
, ,, ---,------------i--------- -a

,
E , , ...... ,

I ,
~O.4 - -------~------

__ J _________
Cl, , c: 20Cl

, :.s
L- 0.2 I

::3 CD

'"
ms:

0 0
a 20 40 60 0 20 40 60

0.02 ........ 2........ m
en ,-.....__ m
E -a

I .......-- 0.01 , ----~---------. L- 0.... ---------,---- 0
0

L-
L-.... m

L-
QJ 0 , g> -2m ---------t'--_.-
C) -a
L-

::I ca
(11 -0.01 m -4

0 20 40 80 s: 0 20 40 60

4 ,
"""....... 2 Ez ......., Z 0..... -

::J 0 (T)
ca ::3
+-' ca-

-2 -1
0 20 40 80 0 20 40 60

time(s) time(s)

Figure 4.5: Simulated Results of the Manually Tuned PlO Controller for CS 1
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This plot is the standard format that has been used for the presentation of the results
in the thesis. It is divided into 6 subplots. In the left hand side, the results obtained
for the propulsion subsystem are plotted, while the results obtained for heading are
plotted in the right hand side. The subplots at the top of the figure represent the
desired and measured outputs, u and 'II respectively. The desired outputs are plotted
in a dashed line and the actual outputs are represented in a solid line. The subplots in
the middle of the figure represent the output errors, i.e. the surge error, Ud - u, and
the heading error, 'lid - If/. Finally, the subplots at the bottom of the figure depict the
control signals corresponding with the propulsion and heading subsystems, i.e. 1'}

and 1'3.

As it can be seen from previous Figure 4.5 the tracking that this control strategy
provides is quite good, although there is a slight steady-state error in the speed and
some overshooting in the heading signal. Trying to reduce the overshooting leads to
a very oscillatory heading control action, thus this choice of gains was a good

compromise.

CyberShip II
Table 4.2 presents the gains obtained in the manual-tuning of the PID gains for CS2.
The gains values for CS1 from Table 4.1 were used as a starting point of the tuning

process.

Table 4.2: Manually Tuned PID Results for CS2
Kp K/ KD

Propulsion 200 60 5

Heading 50 O.l 10

The next Figure 4.6 plots the simulated response obtained when implementing the
gains from Table 4.2 in the model of CS2.
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Figure 4.6: Simulated Results of the Manually Tuned PID Controller for CS2

The previous Figure 4.6 shows very good tracking of the desired responses as well
as control signals free of unwanted oscillations. The control signals are smoother

than in the CS 1 case (see Figure 4.5).

Figure 4.7 and Figure 4.8 show the results obtained once this controller is
implemented in the real plant. Figure 4.7 shows the performance of the controller
when manoeuvring in calm waters. The manoeuvre to execute is a zig-zag

manoeuvre as described in Figure 3.10.
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Figure 4.7: Real Results of the Manually Tuned PID Controller
When Manoeuvring in Calm Waters

The performance shown in the figure is very poor. At the start of the manoeuvre the
plant shows signs of instability and the performance is very oscillatory throughout
the whole manoeuvre. This effect has not been observed in the simulated responses
from Figure 4.6 and it raises doubts about the accuracy of the model. In order to
dismiss the possibility of the poor performance being due to the change in the
manoeuvre (from the double step used in the optimisation to the zig-zag used in the
real testing), the performance of the controller has been simulated while tracking the
zig-zag manoeuvre used in the real testing (see Figure F.l). The simulated results do
not show the oscillatory response observed in Figure 4.7, therefore we can conclude
that the model is not providing very precise results.

Figure 4.8 shows the performance of the controller once waves are generated in the
water tank. The waves generated are as described in Section 3.5.
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Figure 4.8: Real Results of the Manually Tuned PID Controller
When Manoeuvring in the Presence of Waves

The performance is again very poor. Especially the heading tracking IS very
oscillatory. The effect of the waves is not very significant except for some induced
rippling in the propulsion error.

4.4. POLE PLACEMENT

4.4.1. THEORETICAL BACKGROUND
Pole Placement [Andry et al. (1983), Kautsky et al. (1985)] is a control technique
based on the use of a feedback gain. The following Figure 4.9 shows the control
structure in state feedback control [Dutton et al. (1997)].
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Plantu x

Figure 4.9: State Feedback Gain Control Structure

The desired closed-loop performance of a system is characterised by the position of
the closed loop poles of the system (i.e. the eigenvalues of the closed-loop system
matrix). One way of getting the system to have certain properties is by modifying
the position of such closed loop poles. Thus, given the state-space equation of a
MIMO system, i = Ax +Bu (where x is the state vector, u is the input vector and A
and B are real, constant matrices), this control over the poles can be accomplished
by introducing a state-feedback control u = -k-x + kr·XcI, as shown in Figure 4.9
(where k is the feedback gain, k, is the conditioning matrix for the reference and Xci

the reference signal to track). Then, substituting in the space-state equation of the
MIMO system gives:

i = (A-B·k)·x+B·kr 'Xd (4.10)

Hence, the state feedback control problem consists of choosing k so that the
modified closed loop system (Ae =A - Bk) has the desired poles (i.e. the closed loop
matrix A: has the desired eigenvalues). It is basically an inverse eigenvalue problem.
Instead of calculating the eigenvalues of a matrix, k has to be computed so that At:
contains a set of given eigenvalues [Kautsky et al. (1985)]. The problem has a
solution if, and only if, the system (A, B) is controllable [Wonham (1967)]. In a
SISO case the solution, if exists, is unique. However, for MIMO systems, the
solution is underdetermined [Andry et al. (1983)]. Many authors have proposed
solutions to the MIMO Pole Placement problem, exploiting in various ways the
flexibility that provides the non-uniqueness of the solution [Fahmy and O'Reilly
(1982), Fletcher (1981), Kautsky et al. (1985), Porter and D' Azzo (1977)].

In this research the robust Pole Placement method for linear state feedback proposed
by Kautsky et al. (1985) has been used for the design of a MIMO controller for CS 1
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and CS2. A criterion must be chosen to restrict the degrees of freedom of the
solution. Kautsky et al. (1985) present a numerical method to determine the solution
to the problem that meets a robustness criterion, i.e. the method favours those
solutions whose poles are more insensitive to perturbations in the coefficients of the
matrices of the system.

Once the controllability of the matrices has been checked to determine the existence-
of solution, the robust pole placement method can be stated as follows [Kautsky et
al. (1985)]:

If the eigenvectors of ~ are linearly independent it can be shown that the sensitivity
of an eigenvalue A; to perturbations in A, B or k depends upon the magnitude of the

condition number c/

(4.11)

Xj and Yj being the right and left eigenvectors of ~ corresponding to the eigenvalue
Ai- A bound on the sensitivities, Cb of the eigenvalues is given by the condition
number of the matrix of right eigenvectors, X.

(4.12)

Therefore, the better conditioned the matrix of eigenvectors is, the less sensitive the
eigenvalues are and the more robust the closed loop system becomes.

Formulation of the robust state-feedback problem: Given (A, B) as previously, find a
real matrix k and a non-singular matrix X satisfying:

(A-B·k)X=X·A (4.13)

where A = diag{A, ,Az, ~ ...An} is a diagonal matrix with the desired poles as

elements of the diagonal, such that some measure of the conditioning of the
eigenproblem is optimised [Kautsky et al. (1985)].
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Theorem 4.1 by Kautsky et al. (1985) states that, given A and X non-singular, then
there is a solution k if and only if

ui .(A.X-X.A)=O (4.14)

and (4.15)

with U = [u, UI] orthogonal and Z non-singular. Then k is given by:

(4.16)

Therefore the problem now is reduced to choosing a non-singular matrix X so that
the conditioning of the eigenproblem is minimised. To do that the following
property is applied: the conditioning of an eigenproblem such as the one shown in
Equation (4.13) is optimal if an only if the matrix X is unitary [Kautsky et al.

(1985)]. Consequently, the eigenvectors Xj have to be chosen so that Ilx j 112 = 1 and

the vectors Xj are as orthogonal as possible to the space formed by the other
eigenvectors (xl As shown in the following Figure 4.10, the objective is to choose
vectors Xj so that the angles <x'j are maximised.

Figure 4.10: Choice of Vectors to Get Optimal Conditioning

A numerical solution to the computation of the unitary matrix of eigenvectors X is
presented in Kautsky et al. (1985).

Thus, the algorithm for the calculation of the gain feedback matrix according to
Kaustky et al. (1985) method consists mainly of3 steps:

(1) Compute the decomposition ofB as given by Equation (4.15)
(2) Select the vectors Xj that form the eigenvector matrix X
(3) Calculate k as given by Equation (4.16)
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4.4.2. CONTROLLER IMPLEMENTATION
The Matlab command called place solves the robust Pole Placement in state
feedback control problem according to the method described by Kautsky et al.
(1985). It has been used for the implementation of the MIMO Pole Placement
controller in this work. Matlab also provides another command for solving the state
feedback Pole Placement problem called acker. It is based on the formula by
Ackermann (1972). Its use is not recommended since the algorithm is not
numerically reliable. Moreover it can only be used for single input systems.

The state-space MIMO system that represents the system to control is:

r.i
v =A(u, v, r, "').
r

(4.17)

In order to use the command the system matrices had to be linearised around a
nominal point. As before, this was done using a Taylor method [Dutton et al.
(1997)]. Therefore, Equation (4.17) becomes i = Ax +BT, where A and B are real
and constant matrices.

In the Pole Placement implementation for reference tracking a matrix has to be used
as a conditioning matrix for the reference signal. This matrix does not affect the
position of the poles (see Equation 4.10). In this work it was chosen to be k, = k
[White (1995)]. In this case the parameters to optimise are the 4 poles of the system.
While choosing the set of poles it is necessary to restrict their multiplicity to 1 to
meet the condition of the eigenvectors of Ac being linearly independent.

4.4.3. MANUAL TUNING RESULTS
CyberShipI
The following Table 4.3 presents the pole positions considered to be most suitable
after the hand tuning of the Pole Placement controller for CS 1

Table 4.3: Manually Tuned Pole Placement Results for CS 1

pole1 pole2 pole3 pole4

-0.8 -4.5 -12 -15
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Figure 4.11 shows the simulated results obtained when tracking the simultaneous
double step manoeuvre once the Pole Placement controller presented in Table 4.3 is

implemented in the model of CS 1.
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Figure 4.11: Simulated Results of the Manually Tuned
Pole Placement Controller for CS 1

As it can be seen from the plot, the tracking of the reference signals is good, with a
slight steady-state error in the surge speed, although PID provided a closer tracking.
As in Figure 4.5 the signals are a bit oscillatory, especially in the heading subsystem.

CyberShip II
When tuning the Pole Placement controller for CS2 it was found that the pole
positions found in the tuning of CS 1 (used as a starting point) provided a very good
response, even better than for CSl. Therefore, the hand tuned results for the Pole
Placement control of CS2 are the same than those of CS 1 and they are shown in

Table 4.4.
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Table 4.4: Manually Tuned Pole Placement Results for CS2

pole] pole2 pole3 pole4

-0.8 -4.5 -12 -15

The simulated performance of the Pole Placement controller shown in Table 4.4
once implemented in the model ofCS2 is portrayed in Figure 4.12.
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Figure 4.12: Simulated Results of the Manually Tuned
Pole Placement Controller for CS2

The manoeuvring performance shown in Figure 4.12 is very good. The tracking is
very good and the control signals very smooth. Once more the CS2 model has
provided better simulated results. If compared with Figure 4.6 (manually tuned PID
for CS2) the errors are slightly bigger, but the control effort required is smaller.

The following Figure 4.13 and 4.14 show the results obtained when the manually
tuned Pole Placement controller from Table 4.4 is implemented in the real plant.
Figure 4.13 shows the results obtained in calm waters.
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Figure 4.13: Real Results of the Manually Tuned Pole Placement Controller

40 120 160

When Manoeuvring in Calm Waters

The results shown are much better than those obtained with the manually tuned PID
controller. The responses do not present such an oscillatory behaviour and follow the
desired response quite well, although the response of the system is quite slow.

As in the PID case, the figure showing the simulated performance of the Pole
Placement controller tracking the zig-zag manoeuvre used in the real testing can be
found in Appendix F (Figure F.2). Once more the simulated results do not reflect
very accurately the actual response of the system once tested in the water basin.
Although the difference is not as considerable as in the PID case.

Figure 4.14 illustrates the effect of including waves in the water tank while
performing the manoeuvring tests using the manually tuned Pole Placement
controller from Table 4.4.
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Figure 4.14: Real Results of the Manually Tuned Pole Placement Controller
When Manoeuvring in the Presence of Waves

The inclusion of waves does not alter the responses significantly. These results, as
all the real results of manually tuned controllers, were obtained in a second visit to
the facilities and the improvements in the wave filtering block reduce the effect of
the waves, especially since the wave height can not be chosen to be very high due to
water getting into the hull of the boat.

4.5. NONLINEAR SLIDING MODE

4.5.1. THEORETICAL BACKGROUND
Sliding Mode control [Edwards and Spurgeon (1998), Slotine and Li (1991), Utkin
(1972), Utkin and Yang (1978)], although more difficult to design than PID, is
considered to be more robust and therefore more able to handle changes in the plant
and external disturbances without as much performance degradation. The structure
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of a Sliding Mode controller is composed of a nominal part plus an additional term
aimed at providing additional control effort for dealing with disturbances.

As in the previous control implementations, the control problem to be solved with a
Sliding Mode controller is to get the plant response to track a specified desired
response. This is achieved by comparing the actual states to be controlled (x) with
the desired states (Xd). Sliding Mode control constructs a surface that is a function of
the tracking error, i = x - Xd, called the sliding surface (O"( i» [Edwards and

Sprugeon (1998), Healey and Lienard (1993), Healey and Marco (1992), Slotine and
Li (1991), Utkin (1972), Utkin and Yang (1978)]. Then, the n-dimensional problem
of solving i = 0, is reduced to driving the sliding surface to zero. The Sliding Mode
controller provides a control input that drives the system to the sliding surface. Once
the system is on the sliding surface is said to be in the sliding mode. Therefore, the
problem of tracking Xd is equivalent to that of remaining on the zero sliding surface
for all t>O [McGookin (1997), Slotine and Li (1991)].

For Sliding Mode control the plant input has two distinct components [Edwards and
Sprugeon (1998), McGookin et al. (2000b), Slotine and Li (1991)]: the equivalent
control (ueq) and the switching term (usw). The equivalent control provides the main
control action, while the switching signal ensures the discontinuity of the control law
across 0"( i), supplying additional control to account for the presence of matched
disturbances and unmodelled dynamics.

The equivalent component of the control action is usually chosen as a linear
controller. In this case a feedback gain controller of the following form [Fossen
(1994), McGookin (1997), Mudge and Patton (1988)] is used:

u =-k·xeq (4.18)

where k is a feedback gain obtained from robust Pole Placement theory according to
the method proposed by Kautsky et al. (1985) (see previous Section 4.4). This
method was chosen since it minimises the sensitivity of the poles to perturbations in
the coefficients of the matrices of the system.

The switching term is a non-linear term that provides the additional control action to
counteract disturbances in the plant. This switching control action is designed round
the sliding surface o{ i). The sliding surface has to be chosen so that as the surface
value tends to zero the state error tends to zero as well, as shown in Figure 4.15.
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Figure 4.15: Sliding Surface in State-Space

The sliding surface used in this work is as follows [Healey and Lienard (1993),
Healey and Marco (1992), McGookin (1997)]

(4.19)

where h is the right eigenvector of the desired closed loop system matrix ~ as
defined in Equation (4.10). The following derivation to calculate the switching term
from Equation (4.19) can be found in McGookin (1997).

Differentiating Equation (4.19) with respect to time gives:

(4.20)

A non-linear SISO system can be expressed in state-space form as:

i=A·x+B·u+ f(x) (4.21)

where x is the state vector, A is the system matrix, B is the input matrix, u is the
vector of the inputs of the system and f(x) represents the nonlinearities, unmodelled
dynamics and external disturbances.

Substituting Equation (4.21) into Equation (4.20) gives:

(4.22)
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and replacing U = Ueq + Usw the following equation is obtained:

(4.23)

IfEquation (4.18) is used to substitute Ueq and Ac =A - B·k is applied, then Equation
(4.23) becomes:

o-{i)=hT ·(A·x-B·k.x+B·usw + f{X)-Xd)
=hT .(Ac ·x+B·usw + f{X)-Xd)

(4.24)

Rearranging Equation (4.24) and assuming that hTB is not zero:

If hT is chosen as the right eigenvector of ~ corresponding to a zero eigenvalue, the
following holds:

(4.26)

Therefore the Equation (4.25) can be simplified:

(4.27)

The quantity er (i) is defined as [Healey and Lienard (1993), Healey and Marco

(1992), McGookin (1997)]:

o-(i) = hT4f(x)-17' sgn(u(i)) (4.28)

Here M(x) is the difference between the actual system deviations and the estimate
made of this function, 17is the switching gain and the sign function provides the
switching action.

{

I ifx>O
sgn(x) = 0 if x = 0

-1 if x < 0
(4.29)
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Substituting Equation (4.28) into Equation (4.27) the following is obtained:

Usw =(hTBfl(hT id _hT f(x)+hT 4f(X)-l1·sgn(u(i)))

=(hTBfl(hT id _hT }(x)-l1·sgn(u(i)))
(4.30)

where }(x) is the estimate of the system deviations. The term containing }(x) is
either negligible or constant. In the latter case it can be compensated by making the
switching gain sufficiently high [McGookin (1997)]. Therefore the switching term
used in this research work has been [Fossen (1994), Healey and Lienard (1993),
Healey and Marco (1992), McGookin (1997)]:

(4.31)

and the resulting controller:

(4.32)

The additional control effort provided by the switching term, while beneficial to
improve robustness, can also lead to a phenomenon called chattering [Edwards and
Spurgeon (1998), McGookin (1997), Slotine (1984)]. The chattering is due to the
inclusion of the sign function in the switching term and it can cause the control input
to start oscillating around the zero sliding surface, resulting in unwanted wear and
tear of the actuators.

One way to solve the problem is to smooth the switching term as the sliding surface
gets closer to zero (soft switching). In this study this has been done by using the
continuous hyperbolic tangent function instead of the discontinuous sign function.
The hyperbolic tangent function has the same asymptotes as the sign function, but
around the zero a value there is a gradual transition area (called the boundary layer).
The width of this boundary layer is defined by the boundary layer thickness (4))
[McGookin (1997)]. Equation (4.28) becomes:

(4.33)
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The boundary layer thickness has to be large enough to counteract the large
switching action. However if it is too large the switching action will be replaced by a
proportional action (see Figure 4.16).
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Figure 4.16: Comparison between Switching Functions with
Sign Function (solid line) or Hyperbolic Tangent Function

with tP= 2 (dashed line)

Hence, the final controller equation becomes:

(4.34)

4.5.2. CONTROLLER IMPLEMENTATION
As in the PID case, the system has been decoupled for the Sliding Mode control.
This is a standard practice for controlling MIMO systems [Dutton et al. (1997),
McGookin (1997)]. As shown in Equation (4.5), the heading subsystem consists of3
states (XH=[V, IJI, rD and one input (UH = 1"3).Meanwhile the propulsion subsystem
consists of a single state (xp = u) and one input (up = 1"1). Since the method
described for the design of the Sliding Mode controllers is based on SISO multi-state
systems, a solution to the problem would be to include the force in the X-direction
(1"1) as a state and the commanded force (1"1com) as the input of the subsystem, i.e.
xp=[u, 1"1]and Up = 1"1com. The relationship between both is given by Equation (3.6).
The vectors of the desired states to track would then be, Xhd = [Vd, rd, "'d] and
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Xhp=[Ud, TJd]. However, this approach raises implementation issues such as the
choice of the reference signal for TJ. In this study the Sliding Mode controller for
propulsion has been designed for the SISO single state system from Equation (4.4).
If the pole for the propulsion subsystem is chosen to be small, the simplification
from Equation (4.26) still holds.

For the calculation of the matrices k (Equation (4.18» and h (Equation (4.19», the
system matrices have been linearised using a Taylor series expansion [Dutton et al.
(1997)] around an operating point and truncating the Taylor series after the first
partial derivatives. The Matlab command place has been used for the computation of
the feedback matrix k like in the Pole Placement implementation.

Then, the control actions become [Alfaro-Cid et al. (2001a), McGookin (1997)]:

(4.35)

(4.36)

Consequently, there are 4 parameters to optimise for the heading Sliding Mode
controller: 2 poles in the equivalent term (the pole that is associated with the heading
angle feedback is set to zero to meet Equation (4.26» and 17h and tPh in the switching
term. In the same way, there are 3 parameters to optimise for the propulsion control:

1 pole, l1p and tPp.

4.5.3. MANUAL TUNING RESULTS
CyberShipI
The following Table 4.5 presents the results obtained in the manual tuning of the
gains of the propulsion and heading Sliding Mode controllers.

Table 4.5: Manually Tuned Sliding Mode Results for CSI

pole, pole, '1 t:P

Propulsion 0 10 1

Heading -0.3 -0.5 5 0.8

70



Once the manually tuned parameters have been implemented in the controller the
performance of the vessel tracking the simultaneous double step manoeuvre is
shown in Figure 4.17.
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Figure 4.17: Simulated Results of the Manually Tuned
Sliding Mode Controller for CS 1

The heading tracking provided by the Sliding Mode controller is definitely worse
than that obtained with PID (Figure 4.5) or Pole Placement (Figure 4.11), i.e. the
heading error is nearly 5°, while in PID and Pole Placement it was kept below 3°.

CyberShip 11
The numerical valued obtained after the manual tuning of the Sliding Mode
controllers for CS2 are presented in the following Table 4.6.

Table 4.6: Manually Tuned Sliding Mode Results for CS2
pole, pole, 11 if>

Propulsion 0 10 1

Heading -0.3 -0.35 5 0.8
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The next Figure 4.18 shows the performance of the Sliding Mode controller when
tracking the simultaneous double step manoeuvre used for the tuning.
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Figure 4.18: Simulated Results of the Manually Tuned
Sliding Mode Controller for CS2

The tracking of the reference obtained with Sliding Mode is slightly worse than with
PID (Figure 4.6) or Pole Placement (Figure 4.12). The heading error is at some
points larger than 1°, while with previous controllers is kept around 0.5°. There is a
slight overshooting in the heading response. The controller has proven to be quite
difficult to tune. As usual the result obtained for CS2 is free of the oscillations that

characterise CS1.

Figure 4.19 and 4.20 show the real results obtained when the manually tuned
controller from Table 4.6 is implemented in the real plant. Figure 4.19 shows the
results obtained in still waters.
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Figure 4.19: Real Results of the Manually Tuned Sliding Mode Controller
When Manoeuvring in Calm Waters

The responses shown in the previous figure are free of the oscillations that
characterised the PID responses. The slight overshooting that can be appreciated in
the simulated responses from Figure 4.18 is reflected in the heading real responses
from Figure 4.19. This overshooting induces a delay in the heading response. The
system has to overcompensate for the overshooting when the following turning

starts.

Figure F.3 (Appendix F) shows the simulated results obtained when tracking the zig-
zag manoeuvre used in the real testing. Although there are some discrepancies with
the results shown in Figure 4.19, the simulated and real results obtained with the
Sliding Mode controller are closer than those obtained with PID control.

Figure 4.20 shows the manoeuvring performance of the manually tuned Sliding
Mode controller when waves are generated in the water tank.
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Figure 4.20: Real Results of the Manually Tuned Sliding Mode Controller
When Manoeuvring in the Presence of Waves

Once more the inclusion of waves does not change the responses significantly.

4.6.1L, OPfIMAL CONTROL

4.6.1. THEORETICAL BACKGROUND
As with the rest of the controllers already presented, Rc control has been used to
provide the structure for propulsion controllers (for governing surge velocity) and
navigation controllers (for governing heading) for CS 1 and CS2. Like Pole
Placement and as opposed to PID and SM, the Rc controller designed is a MIMO
controller (i.e. the system has not been decoupled). The Ha, controller design used in
this work is based on the state-space Rc structure presented by Zhou et al. (1996).
The following section is an account of the theory behind this state-space Rc

formulation.
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Roo control is based on a standard feedback structure. It consists of a plant, a
controller, reference r, commanded input u, sensor noise D and plant disturbance d
as shown in Figure 4.21 below.

Controller

~---------------------------+~ !---~
Figure 4.21: Standard Feedback Configuration with Weightings

In order to include some performance objectives in the system model, the standard
feedback structure is modified by adding some weighting functions. The aim is not
only to put the emphasis on some of the components but also to make components
measured in different metrics comparable. Once the weighting matrices are included
the feedback configuration is as shown in Figure 4.21.

Any feedback control configuration can be expressed as a linear fractional
transformation (LFI') [Zhou et al. (1996)]. The following block diagram (Figure
4.22) represents a lower linear fractional transformation, Fz(G,K), of the previous

Figure 4.21.

w
... ...
r"

G
---+ I--

Y

K ...~

z

u

Figure 4.22: Linear Fractional Transformation Configuration
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Here w represents the exogenous input, consistmg of commands, extemal
disturbances and sensor noise (r, n and d in previous Figure 4.21), y is the
measurement available to the controller, u is the output from the controller, and z is
the error signal that is desired to keep small. The transfer function matrix G
represents not only the conventional plant to be modelled but also any weighting
functions included to specify the desired performance and K represents the

controller.

The Roo optimal control problem is then to design a stabilizing controller, K, so as to
minimise the closed-loop transfer function from w to z, Tzw, in the Rx, norm,

(4.37)

a(T zw (jOJ» being the largest singular value of Tzw (jOJ). Thus, the Rx, norm is the

supreme of the largest singular values of Tzw (j OJ) over all the values of OJ.

Finding an optimal Roo controller is often both numerically and theoretically
complicated. However, in practice it is often not necessary to design an optimal
controller. It is usually enough to obtain controllers that are very close, in the norm
sense, to the optimal designs. These will be called suboptimal controllers.

Suboptimall:Locontrol problem: given /,>0, find all admissible controllers K, if there

are any, such that liTzwlt., < r·

Designing a controller that reduces liTzw It., results in a minimisation of the signal gain

from disturbance inputs to error outputs in the controlled system. In addition, the R.,

norm gives the maximum energy gain of the system, which is minimised as well.

In order to solve the suboptimal R., state-space problem it is necessary to find a
stabilizing solution for two algebraic Riccati equations (ARE) [Glover and Doyle
(1988), Zhou et al. (1996)]. An ARE is a matrix equation in the following form:

(4.38)

where A, Q and R are real nxn matrices with Q and R symmetric. A· represents the
complex conjugate transpose of A. Associated with this ARE there is a 2nx2n matrix
called Hamiltonian matrix [Glover and Doyle (1988), Zhou et al. (1996)]:
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[A R]H=
-Q -A*

(4.39)

The solution of the suboptimal H; state-space problem requires finding a stabilizing
solution for that equation. Assume H has no eigenvalues on the imaginary axis, i.e.
the system is not marginally stable. Then it must have n eigenvalues in Re(s)<O (left
hand plane) and n in Re(s»O (right hand plane). Consider X(H), the n-dimensional
invariant subspace corresponding to eigenvalues Re(s)<O. By finding a basis for X
(H), forming a matrix with the basis vectors, and partitioning the matrix gives:

X_(B)=~~:] (4.40)

where Xl, Xl E91nxn. If Xl is non-singular, X can be defined as x-x.x,:'. Then
X=Ric(H) is uniquely determined by H, (i.e. Ric is a function Ric:H-+X) and it is
called the stabilizing solution. Therefore, the domain of Ric, called dom(Ric),
consists of Hamiltonian matrices H with no eigenvalues on the imaginary axis and
that determine a non-singular Xl matrix.

The following results solve the general case of the suboptimal lLo control problem.
Consider the system described by the block diagram of Figure 4.22. The partition of
the transfer matrix G is taken to be:

i(t) = Ax(t) +Blw(t) +Blu(t)
z(t) =Cl x(t) +DUw (t)+DIl u(t)
y(t) = Clx(t)+ Dllw(t)+ DllU(t)

(4.41)

which is compatible with the dimensions z(t) EiJfJ, y(t) EiJf2, w(t) Ef){"J, u(t) Ef){"2,

and the state x(t) E 9ln .

The following assumptions are made [Glover and Doyle (1988), Zhou et al. (1996)]:
Assumption 1:

(A, Bl) is stabilizable and (Cz. A) is detectable

Assumption 2:

D" =[~] and D" = [0 I]
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Assumption 3:

[
A- jmI Bl] has full column rank for all co

Cl Du

Assumption 4:

[
A- jmI Bl] has full row rank for all co

Cl Du

Assumption (1) is necessary for the existence of stabilising controllers. The
assumptions in (2) mean that the penalty on z includes a non-singular, normalised
penalty on the control u, and that the exogenous signal weighting is normalised and
non-singular. Assumptions (3) and (4) together with (1) guarantee that the two
Hamiltonian matrices in the corresponding H2 problem belong to dom{Ric) [Glover

and Doyle (1988), Zhou et al. (1996)]..

Let Rand R be defined as:

(4.42)

[DU]where D.l =
Du

(4.43)

Then the Riccati equations will be given by the following Hamiltonian matrices:

Thus, Xec =Ric(lL,) and Yec = Ric(Jec).

The controller K will be stated in terms of the solutions Xx, and Y<Xl of the Riccati
equations together with the matrices F and L defined as shown in Equations (4.46)

and (4.47):
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(4.46)

(4.47)

Partitions D, F and L are as follows:

Fuoo * Flloo * Floo*

Luoo * Duu DUll 0

Llloo * DUll DUll I

Lloo* 0 I 0

Theorem 4.2 (Existence of a solution): Suppose G satisfies the Assumptions (1)-(4).

There exists an admissible controller K such that IITzm II", < r if and only if [Glover

and Doyle (1988), Zhou et al. (1996)]:

(a) r > max{ulnl111 ,Dm1 ,D;11l ,D;m D
(b) Roo E dom(Ric) with Xoo=Ric(ILJ z 0

(c) Jooe domtltic) with Yoo= Ric(J,J 20

(d) p (XOO 'Yoo) < .;, being p (XOO ·Y,J the spectral radius of X; 'Yoo, (i.e. let

{A.I, A.2,.. A.n} be the eigenvalues of'X; ·Yoo,then p(Xeo' Yeo)= maxlAyI)
ISiSn

Given that the previous conditions are satisfied, then all rational internally stabilising

controllers K(s) satisfying liT:wIL < r are given by K=Fl(Mco, Q) for an arbitrary Q

such that IIQIIoo< r .
y

.. ..... Moo
...

.... ~

Q ........-

u

Figure 4.23: LFT Configuration of the Set of
Admissible Roo Controllers that Solve the Suboptimal

Problem Parameterised Using the Matrix Q
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Thus, K are observer-based controllers and Moo has the following state-space

representation:

i(t) = Ax(t) + HIw(t) + H2u(t)

i(t) =Cl i(t) +DUw(t) +Duu(t)

y(t) =C2i(t) +Duw(t) +Dnu(t)

(4.48)

where:

,.. " A_I"
Bl = -ZooL200 + B2DuDu

H2 = Zoo(B2 + Luoo)Du
A A " -1 A

Cl = Fl<Xl+DuDllC2

Cl = -D21(Cl +Fuoo)

(4.49)

A * {2 * \-1
D11 = -D1121D1111\/' 1-Dl1uDuuJ DU12 - DUll

A A * (2 * \-1 *
D12D12= 1-DU21\/' 1-DuuDuu J DU21
A * A * (2 * \-1
D21D21 =1-DU12\/' 1-DuuDuuJ DU12

From Figure 4.23, it can be seen that the solution for the suboptimal control problem
is not unique. The admissible controllers that solve the suboptimal problem have
been parameterised using the matrix Q. If Q is chosen to be 0, then the resultant
controller is called the central controller or minimum entropy controller [Zhou et al.

(1996)].

4.6.2. CONTROLLER IMPLEMENTATION
The implementation process coded in Matlab consisted of the steps represented in
the following flow diagram from Figure 4.24 [Alfaro-Cid (2002)]:
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Increase Yi
i =i +1

Express plant as a
LFT (see Figure 4.22)

Linearise the model
matrices

Choose the weighting
functions

Check Assumptions
(1)-(4) are met

Choose the initial
value for yo

Build the controller
according to Equations

(4.48) and (4.49)

Figure 4.24: Flow Diagram of the Ha, Implementation

Decrease n
i =i +1
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So that the state-space model matrices of the plant meet the Assumptions (1)-(4) for
the existence of an admissible controller it has been necessary to suppress some
states in the mathematical model. All the states that denote the position and
orientation in the earth-fixed frame (i.e. kinematic states Tl=[xp. Yp. 'II]T) have not
been used because they introduce a column of zeros in the system matrices and then,

the Assumptions (3) and (4) are not met.

Therefore, the choice of the state-space vectors has been as follows:

x = [u, v, r, Tl, T2. T3]T

U = [Tlcom, T2com. T3com]T

y = [uc-u, rc-r]T

w = [Xw, r,s; uc, re]
z = [uc-u, re-r. Tlcom, T2com. T3com]T

(4.50)

Here u; and re are the reference signals, x is the state vector without the kinematic
states, u is the input vector, y is the measurement available to the controller, W

represents the exogenous input (i.e. forces created by wave disturbances and
references) and z consists of the signals that are desired to keep small (i.e. surge
speed error and yaw rate error as well as the commanded forces).

The state-space matrices follow the structure given by Equation (4.41).

[M-10] [0]
Bl = ° ° Bl = I

:] c, =[CII 0] (4.51)
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Again, matrix A is partly nonlinear, due to the Coriolis effects. It needs to be

linearised. The nonlinear part corresponds to:

(4.52)

It has been linearised using a Taylor series expansion [Dutton et al. (1997)] around
an operating point and truncating the higher order partial derivatives in the Taylor

series after the first partial derivatives.

In the particular case of Ito controllers, the parameters to tune are the weighting
functions. This is an extra complication, since the weightings are not just constant
values to tune but transfer functions whose structure needs to be optimised as well.
Since poorly chosen weighting functions will provide a poor Ito controller, the
choice of weighting functions must be the prime concern of the designer during the

designing process.

While designing the weighting functions it is necessary to keep in mind that the total
order of the controller is increased by the order of the weighting functions. High
order weights will result in a high order controller. In order to keep the order of the
controller as low as possible, only the elements of the z vector (i.e. the signal to
minimised) are shaped by the weighting functions. Therefore, after including the
weighting functions the resulting z vector becomes: z = [Wu(s)(uc"'u), W,(S) (rc-r),
Wtl(S)'Z'lcom, Wt2(S)'Z'2com, Wtls)'Z'3comt For the same reason, simple weighting
function structures are considered in this study, i.e. gains, first and second order

transfer functions.

The number of poles and zeros of the weighting functions determine the size of the
extended state-space model. Obviously, this will lead to a substantial change in the
state-space matrices of Equation (4.51). For example, a first order weighting
function implies the addition of a new state to the state vector x, if it is a second
order function two new states are needed in x. The addition of zeros in the weighting
function does not increase the order of the controller but involves changes in the

coefficients of the A and B matrices.

Given the choice of state-space vectors from Equation (4.50), the LFT structure for
the plant plus the weighting functions (i.e. Wu, Wr, Wtl, Wa, Wt3) plus the Hoo
controller (K) is as shown in the following Figure 4.25:
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Figure 4.25: LFT Configuration of Plant +Weighting Functions + Roo Controller

After the required assumptions have been satisfied, it is a matter of finding, ropt, the

infimum over all r such that IITzwlloo < r . given that the resulting K(s) is an

admissible controller. This search has been implemented by means of an iterative
loop (see Figure 4.24). Starting with an arbitrary value for r the Hamiltonian
matrices, IL, and Joo, derived in Equations (4.44) and (4.45) are calculated. Then,
solving the associated ARE we get the values Xoo = Ric(HoX» and Y oo = Ric(Joo).
Finally, the requirements from Theorem 4.2 must be checked. If they are satisfied,
the value for r is decreased otherwise it is increased. The process is repeated until a
value of rthat meets the requirements is found and the difference between this rand
the previous ythat met the requirements is smaller than a tolerance given a priori.

Once Yopt has been found the state-space equations of the set of resulting Roo
controllers can be calculated as it is shown in Equations (4.48) and (4.49). All the

resulting controllers will satisfy liTzw 1100 < r . In this study the analysis has been kept

as simple as possible by choosing Q to be 0, i.e. the central controller. Therefore, the

state-space matrices of the resulting controller will be given by A, H=HI' C = Cl
and I>= 1>11 (A, HI' Cl and 1>11 as defined in Equation (4.49».

4.6.3. MANUAL TUNING RESULTS
CyberShipJ
Using two second-order transfer functions with zero for Wu and Wr and simple gains
for Wf), Wt2 and Wt3, the results obtained in the manual tuning of the Roo controller
are shown in Equations (4.53) and Table 4.7.
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W(S)=K~.(s+aJ
u s.(s+pJ

Wr(s)= K>(S2+ar)
S

Wtl = Ktl; Wt2 = Kt2; Wt2 = Kt2

(4.53)

Table 4.7: Manually Tuned Rx,Results for CS 1

s; au f3u Kr' ar Ktl Kt2 Kt3

0.017 O.l 50 200 0.7 0.001 0.1 0.03

The following Figure 4.26 shows the performance of the lL, controller while
tracking the simultaneous double step manoeuvre.

O.B.------r----r---....,

~0.6
';' 0.4
m
~ 0.2

OL---~--~----~
o

,---i---------,

20 40
CD 0.05r-----r-----r----,
g
....
g 0 - '=:-~-_- -~---. ...-=----..-.1
Q)

CD
~
::JUJ -0.05L..-__ .....___ -,-__ ---I

o 20 40 60
4.--------r-----r-----....,
r-: :
I : \ :;z: 2 -----·---T---------,---------- , ,, ,~ , ,

~ 0 ~-----~~-:.:o-'_---4- ',
-2L..---....._---'------Io 20 40 60

time(s)

g> 40
"C._..
Cl
.5 20
"C
ro
III..c

60
OL---~--~----~o

'@1r-----r-----.--------,
CD
"C........
loo

o

~ 0
D:Ic::
"C
C\'I~ -1~----~------~----~o 20 40 60
0.5 .----------,r--___,,~-----,

E 0
~
cg -0.5
tu-

20 40 60

,, ,--,---------,---------,,

-1L..---~--~~--~o 20 40 60
time(s)

Figure 4.26: Simulated Results of the Manually Tuned Rx, Controller for CS 1

Although the tuning process was very difficult and time consuming the final
response shown in Figure 4.26 is quite good. The tracking of the signals is quite
accurate (especially in the heading subsystem) and the control actions very smooth
as opposed to previous controllers.
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CyberShip II
Once more two second-order transfer functions with zero for Wu and Wr and three
gains for Wo, W,2 and Wt3were used as a starting point for the manual tuning. The
resulting weighting functions are shown in Equations (4.54) and Table 4.8.

(4.54)

Table 4.8: Manually Tuned Ito Results for CS2
s; flu Kr' ar Pr Ktl Kt2 Kt3
15 0.001 0.1 1.5 0.01 0.001 0.001 0.001

Figure 4.27 plots the simulated performance of the Ito controller.
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Figure 4.27: Simulated Results of the Manually Tuned I-L, Controller for CS2
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Again, Roo was extremely difficult to tune, mainly because it is very sensitive to
small changes in the weighting functions. Also the number of parameters to consider
is very large, despite the efforts trying to keep a simple structure. The final results
are quite good. Still, PID and Pole Placement controllers, being based on a far
simpler structure, have outperformed them by producing smaller errors.

Figure 4.28 and 4.29 show the results obtained when the manually tuned Roo
controller is implemented in the real plant. Figure 4.28 shows the responses obtained
in still waters.
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Figure 4.28: Real Results of the Manually Tuned Roo Controller
When Manoeuvring in Calm Waters

As it can be seen in the figure the controller goes totally unstable. The commanded
forces go to infinity and therefore they are not plotted in the figure. The manoeuvre
had to be stopped after 80s to avoid any damage to the ship.
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As in the previous controllers the performance of the Roo controller while tracking
the zig-zag manoeuvre used in the real testing has been plotted in Figure F.4
(Appendix F). Since the simulated responses do not show any stability problem, the
results raise doubts once more about the accuracy of the model.

Figure 4.29 shows the controller performance when waves are generated.
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Figure 4.29: Real Results of the Manually Tuned Roo Controller
When Manoeuvring in the Presence of Waves

As expected the test in the present of waves confirms the stability problems reflected
in Figure 4.28.

4.6. SUMMARY

As a precursor to the controller designs presented in this chapter, an analysis using
ICAD of the level of coupling between the propulsion and heading dynamics is
provided. The analysis has recognised the high level of coupling between sway
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speed and heading. Regarding the interaction between surge speed and heading,
ICAD has proven it to be null in the linearised model. However the coupling due to
non-linearities is not considered by ICAD, which is a drawback of the method.

Also, in this chapter the different controller structures used in this study have been
presented. The theoretical background of each control methodology as well as the
way it has been implemented in the vessel have been introduced.

These four control structures form a very representative group of the main current
trends in automatic control (i.e. classical linear control, state feedback, non-linear
control and optimal control). In addition, they provide a diversity of problems to test
the GA and the future building blocks for the GP structural optimisation.

The four controller designs have been implemented and manually tuned in both CS}
and CS2. CS} has proven to be more difficult to tune, often resulting In very
oscillatory behaviour ..

The degree of difficulty of the tuning process varies a lot from one control structure
to another. PlO and Pole Placement control have been the easiest to tune, while
Sliding Mode and Boo have been far more difficult. Both are very sensitive to small
changes in the parameters, which suggests a peaky search space. In the particular
case of Boo controllers, the parameters to tune are the weighting functions. This is an
added difficulty, since the structure of the weighting functions has to be decided
prior to tuning. Although in this study the Boo controller structure was kept as simple
as possible, the number of parameters to tune was still very large. Moreover the
tuning is not very intuitive; there are not well-established performance rules to refer
to, as in the PlO case. Just to find a set of weighting functions that result in an
admissible controller is quite complex.

Some of the real results obtained for the manually tuned controllers raise doubts
about the accuracy of the model, since they do not reflect the responses obtained in
the simulation studies.
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CHAPTERS

GENETIC ALGORITHMS:
A COMPARATIVE STUDY OF GENETIC MODELS

5.1. INTRODUCTION

The performance of automatic controllers depends on the values of the controller
parameters. Conventionally, the designer, who attempts to find an acceptable
controller solution, manually tunes these parameters. However, this relies on an ad
hoc approach to tuning, which depends on the experience of the designer. If the
designer is not experienced this process can become tedious and time consuming. In
either case there is no guarantee that the designed solution will perform satisfactorily
as the tuning process depends on the qualitative judgment of the designer. A solution
to this problem is to use optimisation techniques that tune such parameters
automatically.

Genetic Algorithms (GAs) [Back (l996), Goldberg (1989), Holland (1975),
Michalewicz (1992)] are optimisation techniques that mimic the way species evolve
in nature. In natural evolution many organisms evolve by means of two mechanisms:
natural selection and sexual reproduction. The Darwinian theory of survival of the
fittest describes the concept of natural selection [Darwin (1859)]. Sexual
reproduction allows the offspring to inherit the features from both its parents.

GAs emulate this process by encoding the points of the search space (called
individuals) in a chromosome-like shape and evolving a population of them through
a number of generations using mechanisms drawn from natural evolution (i.e.
selection, crossover and mutation). The better suited to the optimisation problem an
individual is, the more chances it has to survive into the next generation. As the
generations progress, this results in the prevalence in the population of stronger
solution over weaker ones. Thus, the evolution process tends to near optimal
solutions [Goldberg (1989), Holland (1975)].
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The way the solutions evolve in a GA is determined by several factors. Among them
the implementation and the probability of occurrence of the genetic operators:
selection, crossover and mutation. In the literature there are numerous comparison
studies that aim to identify the advantages of a certain GA model over others [Back
(1996), Brooks et al. (1996), Dasgupta (1994)], especially in the beginnings ofGA
[Brindle (1981), DeJong (1975)]. However, there is not a general agreement on what
. defines the "best" GA It is a search space dependent issue.

Since there is not an agreement in the literature about which would be the "ideal"
GA, two comparison studies have been carried out in order to assess the dependence
of the GA on these factors and to find a GA scheme well suited to the controller
parameter optimisation problem. The benchmark problem used in the comparison
studies has been a set of 4 controller parameter optimisation problems (i.e. PID,
Sliding Mode, Pole Placement and Rx,) being the plant to control a marine vessel
(CyberShip 1). The main disadvantage of this approach is the long simulation time
required. It means that only a restricted number of evaluations are feasible.

Although the optimisation of the controller parameters will be compared and
analysed in detail in Chapter 6, this chapter will present an investigation into the
"ideal" GA for this study. As an initial starting point Chapter 5 explains the structure
and basic operators of the GAs, as well as the conclusions drawn from evaluating
different methods of implementing these operators. Overall this will form the basis
for constructing the "ideal" GA through the best genetic operator methods for the
problem in hand (as defined in Chapter 4).

Also in Chapter 5 a new genetic model called Structured Genetic Algorithm (sGA)
[Dasgupta and McGregor (1993a)] and its application to structural optimisation is
described as a half way approach to the Genetic Programming technique that will be

presented in Chapter 7.

Thus, Chapter 5 is divided into five main blocks. Section 5.2 illustrates the structure
and basic operators of a Genetic Algorithm. Section 5.3 introduces the main assets
of Structured GA (sGA). Section 5.4 presents the optimisation problems to be solved
by the GA schemes and the criteria for the analysis of results. Section 5.5 presents
the actual GA schemes used in the comparison study and the corresponding results
obtained. Finally, Section 5.6 summarises the main points.
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5.2. STRUCTURE AND OPERATORS OF A GA

A GA initiates the process of searching by randomly generating an initial population
of possible solutions (suitably encoded). The performance of each solution is
evaluated using a cost function, which is a measure of how well the performance of
the solution compares with the desired response. Then, a new generation is produced
according to the three main operators of the GA: selection, crossover and mutation.
Selection determines which solutions are chosen for mating according to the
principal of survival of the fittest (i.e. the better the performance of the solution, the
more likely it is to be chosen for mating and therefore the more offspring it
produces). Crossover allows an improvement in the species in terms of the evolution
of new solutions that are fitter than any seen before, and mutation reintroduces
values that might have been lost through selection or crossover, or creates totally
new features. The cycle is performed until a termination criterion is met (for instance
a predetermined number of generations). The following Figure 5.1 describes the
basic structure of a GA.

Encoding
No

Figure 5.1 : Flow Chart of a GA
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Over the last three decades, considerable research has focused on improving GA
performance (for a review see Srinivas and Patnaik (1994». Although many of the
approaches attempted lack a strong theoretical background, the results have proved
successful and, in many cases, performed better than Holland's (1975) pioneer GA
(usually called the Simple Genetic Algorithm (SGA».

Below, a description of the genetic operators used in GAs is drafted. It includes a
very brief report of the way each operator has been initially depicted by Holland
(1975) and later developments. This is not intended to be an exhaustive study of GA
operators, just a brief introduction to the mechanisms used in the comparison studies
of the next section.

5.2.1. ENCODING
In order to search the space of possible solutions the GA uses a string of digits called
a chromosome as a representation of the elements of the space of possible solutions
(i.e. the possible solutions are suitably encoded}. Traditionally, GAs have used a
binary encoding [Holland (1975), Dejong (1975)]. This binary representation offers
the maximum number of schema per bit of information of any coding. A schema is a
template describing a group of chromosomes that have the same digits at certain
string positions [Goldberg (1989), Holland (1975)]. It also facilitates the theoretical
analysis and the operation of the genetic mechanisms. However, it has some
drawbacks when applied to more complex problems. For example, in the case of
problems that require a high precision solution, the length of the encoded binary
string is often very big, leading to a very large search space, computer memory
problems and poor performance of the GA [Michalewicz (1992), Srinivas and
Patnaik (1994)].

Using the binary encoding as a starting point and aiming to reduce the length of the
strings, the logical next step is to encode the solutions as an ordered string of octal,
decimal or hexadecimal digits [Brindle (1981), Li et al. (1996), McGookin (1997)].

In this thesis, each controller parameter value is encoded as a string of five genes
[McGookin (1997)]. These genes, instead of being binary bits are decimal integers
included within the interval [0, 9]. This allows a wider range of possible solutions
(from 0.00Ixl0-2 to 9.999xl03) in smaller chromosomes. The encoding mechanism
is shown in Figure 5.2
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Parameter Encoding = ( a j( b ~( c ~ ( d j (e ~

.-r------:::~/ -,
Parameter Value = (a + b x O.l + c x 0.01 + d x 0.001) X 1O(cl2 - 2)

Figure 5.2: Parameter Encoding Mechanism

5.2.2. COST FUNCTION
Once an initial population of chromosomes is generated at random, the
chromosomes are decoded to obtain the corresponding parameters values and these
are implemented in the controller. A simulation is run and the controller's
performance is evaluated. This is achieved by applying an optimisation design
criterion to the simulated responses obtained. For minimisation problems the
optimisation design criterion is called cost function, whereas for maximisation
problems it is calledfitness. In this study the term used is costfunction.

The optimisation design criterion used in this study is defined by the cost function
(5.1). Since the objective of the controllers is to make the vessel track desired
heading and propulsion responses with the minimum actuator effort, the cost
function will have three terms for each controller [Alfaro-Cid et al. (2001a),
(2001b)].

(5.1)

Here, L1V't is the ith heading angle error between the desired and obtained heading,
1"3; is the ith yaw thrust force, Llui is the ith surge velocity error between the desired
and obtained surge velocity and 1"Ji is the ith surge thrust force. Therefore, the
quantities L1",and L1u give an indication of how well the controllers are operating by
showing the tracking between the actual and the desired heading and surge velocity
and the input components 1"3 and 1"1 are used to keep the actuators movement to a
minimum so that they can operate well within their operating limits.

The third and sixth terms of Equation (5.l) introduce a measurement of the inputs
increasing or decreasing rates [Alfaro-Cid et al. (2001a), (2001b)]. It reduces the
oscillations in the inputs, avoiding unnecessary wear and tear of the actuators that
shortens their operational lifespan. In the minimisation process these two terms will
be also minimised, leading to a smoother input response.
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Also, in Equation (5.1), tot is the total number of iterations (simulation time steps)
and A.l, A.2, lil and li2 are scaling factors. As the input force and torque are always
larger than the output errors near the optimum, they dominate the cost values in this
area. It leads to solutions that provide very small thruster effort, but very poor
tracking of the desired responses. In order to avoid this, these four coefficients are
introduced, so that an equally balanced trade-off between the six terms of the cost
function is obtained. The numerical values for these coefficients can be found in the
Table B.1 of the Appendix B.

It is a single objective, multi-aspect criterion. Each term from Equation (5.1)
represents a different aspect of the optimisation problem. The weighted sum of the 6
terms results in a single objective cost function.

5.2.3. SELECTION
Once the initial population is generated at random, the chromosomes are decoded to
get the corresponding parameters and these are introduced in the controllers. A
simulation is run and the time responses obtained for each set of controller
parameters is evaluated, using the cost function. Based on this cost function the
selection procedure takes place [Goldberg (1989), Holland (1975)].

The selection scheme is used to draw chromosomes from the evaluated population
into the next generation. In the early SGA the selection procedure used was based on
roulette wheel selection [Goldberg (1989)]. This is a probabilistic method that
consists of creating a biased roulette wheel where each chromosome has a roulette
wheel slot sized in proportion to its cost. To reproduce, the roulette wheel is spun as
many times as there are chromosomes in the population.

The first extensive study and comparison of several variations of the roulette wheel
selection was due to Dejong (1975). In addition, in his doctoral dissertation, Brindle
(1981) considered some further modifications aiming to achieve a more accurate
sampling. The methods they considered relied on assigning a probability of selection
to each individual of the population according to its cost function, i.e. all of them
were improved versions of the roulette wheel selection basic scheme. In early
documents on GA [Brindle (1981)], selection schemes based on relative fitness
defined in terms of rank in the population were discarded due to the loss of variance
in the population that they imply. However, in recent years has been a growing
interest in selection schemes that rely on rank-dependant selection probabilities
versus fitness-dependant selection probabilities. Moreover, this interest has been
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backed up by the good experimental results obtained with these methods [Back
(1996), Brooks etal. (1996), McGookin (1997), Tan and Li (1996)]

Back's (1996) work identifies four types of selection procedures in Evolutionary
Algorithms for single objective optimisation as the most relevant, namely
proportional selection (or roulette wheel selection), ranking, tournament selection
and (p,A}-selection, and compares their performance while optimising five different
objective functions. Since the proportional selection scheme has already been
described, the remaining mechanisms are discussed below.

The term ranking denotes a selection method that assigns selection probabilities
solely on the basis of the rank of individuals cost values (relative costs), therefore
ignoring absolute cost values. The main advantages of ranking over roulette wheel
selection are that the selective pressure can be easily controlled in the ranking
method and that ranking can speed up the search. Linear ranking assigns the
selection probability of an individual in the following way:

1( ( )i-l)Pi = - ,,- 2 ,,- 1 --
n n-l

(5.2)

Here n is the size of the population, i the position of the individual in the ranking and
" a parameter that controls the selective pressure of the selective scheme
(1 ~ " ~ 2). Selective pressure is the probability of the best individual being selected
compared to the average probability of selection of all individuals. Thus, by
increasing "the probability of the best individuals being selected is increased too.

The tournament selection method selects a single individual by choosing a group of
q individuals randomly from the population and selecting the best individual in

terms of cost from this group to survive.

The (p,A}-selection method comes from the field of Evolution Strategies and
Evolutionary Programming. Given a parent population size of /J, an offspring of size
A is created via crossover and mutation (being A > /J), then the selection procedure
selects the /J best individuals out of the offspring. A variation of this method is the
(f.l+A}-selection [Back (1996)], where the best /J individuals are selected from the
union of parents and offspring (i.e. this is a form of elitism [Dejong (1975), Back

(1996)]).
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In an elitist selection technique the best individuals of the population are
automatically selected to go to the next generation without undergoing crossover or

mutation.

In his experimental investigations, Back (1996) concludes that a general ordering of
selections mechanisms according to increasing selective pressure would be:
proportional selection, linear ranking, tournament selection and (,u,A)-selection. His
results prove that a strong selective pressure is a desirable feature in a selection
mechanism and that rank-based methods, in contrast to fitness-based methods, allow
an effective control of selective pressure by just one control parameter: 77,as defined
in Equation (5.2), q, the tournament group size and the ratio Ii / A, the ratio between
the offspring population size and the parents population size.

5.2.4. CROSSOVER
The crossover operator combines the features of two parents to create new solutions.
One or several crossover points are selected at random on each parent and then,
complementary fractions from the two parents are spliced together to form a new
chromosome [Back (1996), Dejong (1975), McGookin (1997), Michalewicz
(1992)]. InFigure 5.3 two points crossover is shown.

PARENTS CHILDREN

Figure 5.3: Two Points Crossover Mechanism

Variations in the crossover operator in the literature include not only modifications
to the operator itself but also to its probability of occurrence.

In his thesis, Dejong (1975) studied the effect of increasing the number of crossover
points in the crossover operator concluding that overall performance of the GA
degrades as the number of crossover points increases. However, the selection
procedures used by Dejong are considered to be very conservative (i.e. the selective
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pressure was small), so a very disruptive crossover mechanism does not perform
satisfactorily in combination with them. Disruptive mechanisms such as multi-point
crossover and high mutation rates are used in combination with high selective
pressure to avoid premature convergence [McGookin (1997)].

In more recent studies, when stronger selection schemes have been used, the utility
of two-point crossover or multiple-point crossover has been recognised and in fact,
two-point crossover is currently a standard implementation [Alfaro-Cid and
McGookin (2001), Back (1996), McGookin (1997), Michalewicz (1992)].

5.2.5. MUTATION
The mutation operator alters a copy of a chromosome. One or more locations are
selected on the chromosome and replaced with new randomly generated values, as
shown in Figure 5.4.

PARENT

D
CHll.D

Figure 5.4: Mutation Mechanism

In Holland's work [Holland (1975)] the crucial genetic operator is crossover, while
mutation only plays a secondary role. DeJong (1975) wrote that: "In nature the
probability of a gene undergoing mutation is generally less that 0.001 indicating that
mutation (a form of random search) is not the primary genetic operator. Rather, it
should be viewed as a background operator guaranteeing no allele will permanently
disappear." Therefore, traditionally mutation was used at a low rate to help ensure
that all areas of the search space remain reachable providing higher variation in the
chromosomes of each population. It also allows the reintroduction of features that
might have been lost during the selection procedure or that have never been in the
population.

Holland (1975) theorised that the mutation rate necessary to maintain variance in the
population is inversely proportional to the population size. DeJong (1975) settled on
a mutation rate of 1120 the size of the population as a good compromise. Brindle
(1981) stated that a high mutation rate improves performance on "difficult"
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functions while degrading performance on the "easy" ones. He concluded that a
probability of mutation ofO.02 or higher is generally undesirable.

Other authors have proved the usefulness of time-varying mutation rates for some
GA optimisation problems and hint that, given the helpful effect of high selective
pressure in selection mechanisms, a combined increase of selective pressure and
mutation rate can improve the search process [Back (1996), McGookin et al.
(1997c)]. Also, reducing crossover in the latter stages (due to saturation) allows
mutation to become more effective [McGookin et al. (1997c)].

5.3. STRUCTURED GENETIC ALGORITHMS

Structured Genetic Algorithm (sGA) [Dasgupta and McGregor (1993a)] was first
proposed by Dasgupta and McGregor (1991). The sGA differs from the normal GA
in the chromosome structure. In sGA the chromosome consists of 2 types of genes:
control genes and coefficient genes [Dasgupta and McGregor (1993a)]. The control
genes define which coefficient genes will be used in the decoding of the individual,
therefore promoting a hierarchy in the chromosome structure. This hierarchy allows
the sGA to be suited not only for parametric optimisation but also for structural
optimisation.

In this work sGA has been used to optimise the weighting function in the lb control
problem. Tang et al. (1996) have published a similar application. The main
difference between the two approaches is that Tang et al. (1996) used a loop-shaping
technique where the sGA optimised the precompensator and postcompensator of the
weighted plant. In addition, in their work each control gene decides the inclusion or
not of a single pole or zero, while in our approach 2 control genes define the whole
transfer function structure for optimising the weighting function in the lb control
implementation.

The way that sGA has been implemented is by adding 4 extra genes (the "control
genes") to the GA chromosome representation for lb.Two of these genes specify
the structure of the weighting function acting on the yaw rate error while the other
two define the structure of the function weighting the surge error signal.

This representation allows 4 options: a constant gain (when the control genes are
encoded as 00), a gain plus a pole (01), a gain plus a pole plus a zero (10) and a gain
plus 2 poles plus a zero (11), all of them variations of the previous 2nd order transfer
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function plus zero. Depending on the structure chosen the number of parameters
needed to define the transfer function varies. Then the control genes activate or
deactivate the parameter genes according with the weighting structure reflected in
them.

5.4. OPTIMISATION PROBLEMS AND RESULTS ANALYSIS CRITERIA

5.4.1. OPTIMISATION PROBLEMS
In this work, two comparison studies of GA schemes have been undertaken. In the
first comparison study, the relevance of changes in the mutation and crossover
probabilities and in the choice of the selection operator is assessed. The best result is
then used as a benchmark for the second comparison study where the genetic
operators are modified in an attempt at improving the performance of the GA.

Each GA scheme has been applied to the 4 different controller parameter
optimisation problems presented in Chapter 4. The plant to control in this study is
CyberShip I and the controller structures are: two decoupled PID controllers, a
decoupled Sliding Mode controller for heading plus a PI controller for propulsion, a
MIMO Roo controller and, finally, a MIMO Pole Placement controller. The difficulty
of the optimisation problem varies from the quite simple problem of tuning two
decoupled PID controllers to the very complicated optimisation of the weighting
functions for the MIMO Roo. As explained in Chapter 4 this selection of controllers
covers the most representative areas in current control research. Thus, it allows a
good comparison among the GA schemes proposed. In the following Table 5.1 the
parameters to optimise for each control structure are presented.

Table 5.1: Parameters to Optimise for each Controller Configuration

PID Kph KIh KDh Kpp KIp KDp

PP pole} pole, pole, pole,

SM+PI pole} pole, 17 (J Kpp KIp

IL, Ku' au /Ju ]'u Kr' a; pr Yr Ktl Kt2 Kt3

Each parameter has been encoded using the method proposed in Figure 5.2. Thus,
each possible solution is represented by a chromosome with a number of genes equal
to 5 genes/parameter x No of Parameters. For instance, each solution for the PID
problem is encoded as a 30 genes chromosome.
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Regarding the evaluation of solutions, Equation (5.1) is the cost function used. In
addition to this there is a desired response that the controller must track. The desired
heading and propulsion manoeuvres used in the GA optimisation of the controllers
are the same for all of them: two under damped steps of 45° and 0.2 mls for heading
and propulsion control, so that the basis for comparison is consistent for this study.

The population size used is 80 and the number of generations 50 [Grefenstette
(1986)]. Every GA optimisation has been run 6 times and the results have been
averaged.

5.4.2. RESULTS ANALYSIS CRITERIA
The aim of a GA is to converge to a near optimal solution in the smallest possible
number of generations. This fast convergence feature is only desirable in
combination with a robust performance (i.e. premature convergence to a local
optimum must be avoided).

Therefore, the attributes that are required for an effective GA are: quality of result
(i.e. near optimal performance) and speed of convergence. In addition it is
interesting to check the amount of diversity in the final population to see if there is
room for improvement.

The criteria used to compare the GAs performance are:
1. Best cost overall (in any generation)
2. First generation whose best cost is only 10010 bigger that the best cost of

the final generation (generation of convergence)
3. Number of individuals in the final population whose cost is only 10%

bigger that the best individual (amount of convergence)
4. Average Maximum Frequency (AMF)

AMP is a measure of the fixation of loci in the last generation (i.e. how similar the
individuals of the last generation are, not regarding their cost functions or
phenotypes but their genotype). AMP is a parameter proposed by Brindle (1981) for
convergence comparison purposes. This is defined using the following Equation
(5.3):

(5.3)
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Let L be the length of a chromosome, B the number of possible alleles and hij the
proportion of the chromosomes in the final population which contain the allele j in
the position of the chromosome i.

Thus, criterion 1 relates to the quality of the solution, criterion 2 has to do with
convergence speed and criteria 3-4, with convergence among the final population.

5.5. COMPARISON STUDY OF VARIOUS GA SCHEMES PERFORMANCE

5.5.1. FIRST COMPARISON STUDY
GA Schemes Under Study
It seems to be clear in the literature that rank-based selection methods (as opposed to
fitness based selection methods such as roulette-wheel) are desirable because they
provide a faster and better performance. The selection methods chosen to be
compared in this study all come from the field of GAs, and are ranking selection,
tournament selection and elitism combined with roulette-wheel (see Section 5.2).
Although Back (1996) studies in depth the performance of the (p, A)-selection, in
this work elitism is considered as this has been used more in the GA community
[Brooks et al. (1996), McGookin (1997)].

All three selection procedures contain a control parameter that permits an effective
management of their selective pressure. The following Table 5.2 shows the control
parameters chosen for each selection method.

Table 5.2: Selection Methods Control Parameters

Ranking selection 11= 1.8

Tournament selection q=8

Elitism p=10%

In linear ranking the control parameter is 11,the maximum expected value, being 1 ~
1] s 2. In tournament selection, q represents the size of the group of individuals
chosen to fight for survival, while p is the percentage of the population chosen to
survive straight into the next generation in the elitism strategy. In all three cases the
bigger the control parameter the higher the selective pressure associated to the
selection mechanism.
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The values presented in Table 5.2 for ranking and tournament selection have been
chosen following the results obtained by Back (1996). Although the results vary
from one function to another, 11= 1.8 and q = 8 have a good overall performance, In
the literature the number of individuals to survive to the next generation using the
elitist strategy varies from a single individual [Eiben and Schoenauer (2002)] to 20%
of the population [Brooks et al. (1996), McGookin (1997)], therefore in this study a
percentage of elitism of p =10% has been chosen.

Regarding crossover, 3 different probabilities of crossover have been considered.
Commonly proposed settings for the crossover probability are po = 0.6 [Dejong
(1975)] and po E [0.75, 0.95] [Back (1996)]. So, in this study, two-point crossover
with po = 0.6 and pc = 0.8 has been used and compared. In addition, since other
approaches to Evolutionary Algorithms, namely Evolution Strategies and
Evolutionary Programming, rely on mutation as the prime operator (as opposed to
crossover), the possibility of a Genetic Algorithm with a zero crossover probability
(i.e. pc = 0) has been contemplated. The aim is to check how the performance of the
GA varies when crossover is withdrawn.

Mutation has to be kept high to prevent premature convergence since the selection
schemes have a very high selective pressure. The mutation probabilities chosen for
comparison are pm= 0.05 and Pm= 0.1.

Therefore, in the following Table 5.3, a record of the GAs schemes used is shown:

Table 5.3: GA Schemes Chosen for Comparison

Selection Pc: Pm
Selection Pc: Pm

procedure procedure

GAl ranking 0 0.05 GAIO ranking 0.6 0.1

GAl tournament 0 0.05 GAll tournament 0.6 0.1

GA3 elitism 0 0.05 GAl2 elitism 0.6 0.1

GA4 ranking 0 0.1 GAl3 ranking 0.8 0.05

GA5 tournament 0 0.1 GAl4 tournament 0.8 0.05

GA6 elitism 0 0.1 GAl5 elitism 0.8 0.05

GA7 ranking 0.6 0.05 GA16 ranking 0.8 0.1

GAS tournament 0.6 0.05 GAl7 tournament 0.8 0.1

GA9 elitism 0.6 0.05 GAlS elitism 0.8 0.1
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First Comparison Study Results
Criterion 1: Best Cost Analysis
Figure 5.5 shows the best cost results obtained for each GA scheme of the first
study. Note that the scales in the Y-axis vary greatly from one controller to another.
The dotted line represents tournament selection; the solid line represents ranking
selection and the dashed line, elitism. The average cost values over 6 runs have been
plotted against the different combinations of mutation and crossover probabilities
shown in the X-axis. See Table B.2 in Appendix B for the numerical data.
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Figure 5.5: Best Cost Results for all GA Scheme for each Controller (dotted line:
tournament selection, solid line: ranking selection, dashed line: elitism)

It is very notable how GA schemes using tournament selection consistently obtained
better results than ranking or elitism in 19 of the 24 possible combinations of
optimisation problem, crossover rate and mutation rate. Moreover, in the case of the
lLo optimisation problem (the most difficult one), the results obtained by tournament
selection are remarkably better than those obtained using elitism or ranking
selection.
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The best result overall has been obtained by GAl 7, tournament selection with pc =
0.8 and pm= 0.1 (i.e. high crossover and mutation rates). This GA scheme obtained
the best result for PID and Pole Placement and second best for Sliding Mode and
Hs. The standard deviations values for GA17 are very small for PID and Pole
Placement (0' = 0.0082 and 0' = 0.0013 aprox.), indicating consistency in the runs.
They are slightly higher for Sliding Mode and Ha, (0'= 0.4655 and 0'= 1.5612). This
is due to the increasing difficulty of the optimisation problem to solve.

In general, it is very difficult to draw conclusions from these data about which
selection method performs better: elitism or ranking selection. For the easier
optimisation problems (i.e. PID and Pole Placement), the differences between the
results obtained by any of them for given crossover and mutation rates are slight.
While considering Sliding Mode and Hoc optimisation problems the differences
increase. Elitism seems to tend to perform better than ranking selection, especially
when the mutation rate is low, although that is not true for all cases.

Focusing on the mutation probability, given an arbitrary crossover probability,
tournament selection works better with higher mutation rates (i.e. pm = 0.1).
However, given a crossover probability, ranking selection and elitism perform
usually better with a lower mutation rate (i.e. pm= 0.05). This was quite unexpected;
given the higher selective pressure of the elitism selection a higher mutation rate was
expected to work better in order to avoid premature convergence. Anyway, as
mentioned previously, the differences between the cost results obtained when
varying the crossover and mutation rates for ranking selection are slight.

Regarding the importance of the crossover operator the unexpectedly good
performance of pc = 0 is significant. However, tournament selection performs
generally better with a higher crossover probability. It is not possible to draw clear
conclusions for the other two selection schemes since their performance varies from
one optimisation problem to another. This might suggest that the crossover
probability, although it plays a role, is not as important as it is believed to be in the
SGA. This result is consistent with the work developed by Grensfetette (1986). He
found out that for populations of 30 to 90 individuals the optimal crossover
probability decreases as the population size increases.

Criterion 2: Generation ofConyergence Analysis
In Figure 5.6 the generations needed for convergence (as defined in Section 5.4.2
and averaged over 6 runs) obtained for each GA scheme are shown. Again the dotted
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line represents tournament selection; the solid line represents ranking selection and
the dashed line, elitism. See Table H.3 in Appendix H for the numerical data.
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Figure 5.6: Generation of Convergence for all GA Scheme for each Controller
(dotted line: tournament selection, solid line: ranking selection, dashed line: elitism)

The first aspect that stands out when checking the Y-axis scales from the previous
figure is how the number of generations needed for convergence increases with the
difficulty of the optimisation task.

The analysis of the generations of convergence data shows very different results for
the different optimisation problems. For the PlO and Pole Placement optimisation
problems, those GA schemes with tournament selection have an earlier generation of
convergence. In the Roo case the situation is totally different. The earlier generations
of convergence are achieved by the GA schemes with ranking selection and elitism,
while the slowest ones are the six GA schemes with tournament selection.
Paradoxically, these slow GA schemes provided the best results for the complicated
Roo optimisation, while the fast schemes obtained particularly bad results. Clearly,
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the later cases are incidents of premature convergence to a local minimum. So far in
the analysis, tournament selection has proved to be fast in easy optimisation
problems (such as PID and Pole Placement) while avoiding premature convergence
in more difficult ones and therefore maintaining a robust performance.

Regarding the relationship between mutation and crossover rates and the generation
of convergence, it can be seen that, in the GAs with tournament selection, increasing
crossover and mutation rates results in an increase in the speed of convergence.

Criterion 3: Amount of Convergence in the Final Population Analysis
In the following Figure 5.7 the amount of convergence of the final population (as
defined in Section 5.4.2 and averaged over 6 runs) obtained for each GA scheme are
shown. See Table B.4 in Appendix B for the numerical data.
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The amount of convergence illustrates the saturation on higher echelons of the
population with solutions with very similar cost values. Smaller convergence rates
are observed for more difficult problems. This is due to the fact that the sensitivity of
Sliding Mode and JL, controllers to small changes in the parameters causes big
differences in the cost values even for similar individuals. The GA schemes with
tournament selection have the highest amount of convergence. This indicates that the
population is saturated with individuals alike and there is not enough diversity for
much improvement.

Comparing ranking selection and elitism, it can be seen that the latter obtains smaller
convergence rates throughout different combinations of crossover and mutation rates
and different optimisation problems. This indicates that, although the results
obtained with elitism schemes are not very good, there is room for improvement.
Since it has enough diversity in the population, given more time the final solution
could improve.

Focusing now on the effect of mutation and crossover probabilities, it is very
apparent from the figure that, given an arbitrary crossover probability, increasing the
mutation rate leads to a lower convergence rate (i.e. a greater diversity). This is to be
expected since the prime role of mutation is introducing new features in the
population, which obviously increases variety.

Given an arbitrary mutation rate, increasing the crossover probability also seems to
reduce the convergence rate (i.e. enhances diversity), although the data are not as
conclusive as in the mutation case.

Criterion 4: AMP
In Figure 5.8, the Average Maximum Frequency of loci fixation in the final
population (as defined in Section 5.4.2 and averaged over 6 runs) obtained for each
GA scheme are shown. See Table B.5 in Appendix B for the numerical data.

Figure 5.8 shows that the AMP values in the final populations are very similar for all
the controllers. This proves that the smaller amounts of convergence in the final
population for Sliding Mode and JL, pictured in Figure 5.7 are not due to a bigger
diversity but to the fact that even individuals with a similar genotype result in quite
different cost values once evaluated.

The analysis of the AMP of the final population further confirms the conclusions
obtained in the previous analysis. Again the highest AMP values correspond to the
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GA schemes that use tournament selection. This indicates a high proportion of loci
fixation in the final population and therefore less diversity. For a second time, the
results prove that ranking selection has less variety (i.e. higher AMP values) than
elitism.

Once more the data corroborate that, given a certain crossover probability, the
schemes with higher mutation rate show a smaller AMP (i.e. bigger diversity). In the
case of varying the crossover probability while keeping a fixed mutation probability,
the AMP reduces when pc increases as seen in the previous case, although the
reduction is not as significant as in the mutation case. Again, it makes sense that a
higher crossover rate creates a higher diversity.
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Summary of Results from First Study
The selection method found to be the best according to the chosen set of criteria has
been tournament selection. Tournament selection has provided consistently the best
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overall results to the control optimisation problems and has proved to be the fastest
selection procedure in easy optimisation problems while avoiding premature
convergence in more difficult ones and therefore maintaining a robust performance,

Regarding ranking selection and elitism the results obtained are quite good for the
easier optimisation problems but not acceptable for the more complicated ones.
However, elitism rates of convergence are quite small so that could indicate that,
given more time, there is still enough diversity in the population for improvement.

Although the best results are obtained with higher probabilities of mutation and
crossover, GA schemes with pc = 0 performed reasonably well. This might suggest
that crossover, although it plays a role increasing the speed of convergence, is not as
important as believed to be in the SGA.

5.5.2. SECOND COMPARISON STUDY
GA Schemes Under Study
One of the main drawbacks when working with GAs is the difficulty they display in
performing local search, i.e. fine local tuning. To improve the capabilities of GAs in
this area researchers have considered different approaches.

One way to tackle the problem has been to consider variable mutation and crossover
rates along the generations [Srinivas and Patnaik (1994)]. In this research line there
is a very interesting method of non-uniform mutation proposed by Michalewicz
(1992).

A totally different strategy is presented by McGookin et al. (1997c). It is a
minimisation strategy that removes the redundancy associated with the saturation
effect found in later generations. As the population size reduces, the number of
crossover operations decreases and the apparent mutation rate increases, improving
the search process in the latter stages of the GA optimisation.

From the different approaches considered by researchers to improve the capabilities
of GAs in this area, the non-uniform mutation proposed by Michalewicz (1992) and
the minimisation strategy proposed by McGookin et al. (1997c) have been
implemented among others to assess their capabilities for improving local tuning.

Using the GA scheme that proved to work best in the previous comparison study as
a benchmark, several modifications (to be exact 7) have been tested and their
capabilities to enhance the performance of the GA compared.

110



Minimisation Technique
This minimisation technique is proposed by McGookin etal. (1997c). It relies on the
reduction of the population size. Once a certain percentage of the individuals of the
population, k, are very similar (i.e. their cost functions differ in less that a certain
tolerance), a number of individuals, r, are eliminated from the population.

These r individuals are chosen so that half of them are the best rl2 individuals in the.
population and the other half are the worst rl2 individuals in the population. This
way the cost balance of the population is maintained. In addition a minimum value
for the population size is set so that once it is reached there is no further
minimisation.

During this process the number of genes to be mutated is calculated from the initial
population size and kept constant over the generations. Thus, the mutation rate
increases with the population reduction, which compensates for the loss of features
produced by the population size reduction. On the other hand, since the crossover
rate is kept constant the reduction in the population size results in a reduction in the
number of crossover operation taking place.

This algorithm has been implemented with two different sets of values. First, the
values chosen were k = 0.1 and r = 0.1. In a second group of simulations k was kept
at a value of 0.1 but r was set to 0.05 to avoid the performance degradation
associated to a very small population.

Non-Uniform Mutation Technique
This technique is based on a non-uniform operator proposed by Michalewicz (1992).
The idea is that when a gene is selected for mutation, the mutation jump it suffers
depends on the time of the optimisation when this mutation happens. The sooner in
the optimisation (i.e. the early the generation), the bigger the mutation jump. This
way in the first generations exploration is encouraged while in the final generations,
when convergence has occurred, small mutation jumps improve the fine local

tuning.

If a gene is chosen for mutation, it will be assign one of the values shown in
Equation (5.4) with a 50% probability:

{
gene+ ~(t,9- gene)

newgene=
gene - ~(t,gene)

(5.4)
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The function ~(t,y) returns a value in the range [0, y] such that the probability of

~(t,y) being close to 0 increases as t increases:

(5.5)

Here r is a random number from [0, 1], T is the maximal generation number and b is
a system parameter determining the degree of non-uniformity.

The only difference between the non-uniform mutation technique implemented in
this research and the non-uniform operator proposed by Michalewicz (1992) is the

non-randomness of the parameter r.

There are genes in the coding that have a higher weight than others, i.e. a small
variation in one of these genes is reflected in a big variation in the parameter to
optimise once the individual is decoded. In the coding used in this research, the
genes carrying a higher weight are genes number 1 and 5, while changes in genes 3

and 4 are less relevant (see Figure 5.2).

The non-uniformity of the mutation in this case consists of two effects. On one hand
the mutation jump varies depending on the generation number. On the other hand it
also varies depending on the position in the chromosome of the gene to be mutated.

In the implementation, the number r is not chosen at random but the choice of r is
made as shown in Figure 5.9. In the initial populations higher mutation jumps are
associated with the gene positions 1 and 5, resulting in big variations in the
phenotype that help in the exploration of the search space. As the generations
progress the effect is inverted and the biggest amounts of mutation are associated
with the genes 3 and 4, resulting in closer phenotypes that improve the fine tuning.

r=0.3 r=0.7 r= 0.1 r=0.7 r= 0.3 r=0.9

• • • • • •
I 1 2 1 3 4 1 5 I 1 2 1 31 4 I 5

t t t t
r=O.S r=0.9 r= 0.5 r= 0.1

Initial generations Final generations

Figure 5.9: Assignation of Values ofr Depending on the Gene Position
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Combination Scheme
This technique is just a combination of the two previous methods: minimisation
technique with k = 0.1 and r = 0.05 and non-uniform mutation. This has been done
to assess the benefits of the non-uniform mutation operator in a scheme that has a
very high effective mutation rate in the final generations.

Exponential Mutation
This scheme combines non-uniform mutation with an exponential probability of
mutation.

It has been argued the increasing relevance of crossover in the initial generations and
of mutation in the final ones. Using an exponential probability of mutation as shown
in Figure 5.10 will allow testing that assertion.
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Figure 5.10: Probability of Mutation along the Generations

The reason why pm= 0.25 has been chosen as the maximum value for Pmis that in
the results obtained with the minimization techniques it can be observed that there is
a degradation of the GA performance once the population size is smaller than 30
individuals, with high peaks produce by mutation (see Figure B.l in Appendix B).
The effective probability of mutation for that population size is Pm= 0.2667. Thus
Pmhas been kept smaller than that value.
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Exponential Crossover and Mutation
This scheme combines non-uniform mutation and exponential probability of
mutation with exponential probability of crossover.

Although in the comparison study the best results are obtained with high probability
of crossover, the performance of the GA did not seem to be so affected by the
crossover probability as it was by the mutation rate or selection scheme. The
possibility of crossover playing a role speeding the convergence more than
improving the optimisation results was pointed out. If so, the relevance of the
crossover operator would be in the initial generations.

An exponentially decreasing probability of crossover as shown in Figure 5.11 has
been used in this scheme.
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Figure 5.11 : Probability of Crossover along the Generations

One Single Point Crossover
Keeping the characteristics of the previous scheme (i.e. non-uniform mutation and
exponential mutation and crossover rates), the crossover operator is changed so that
instead of selecting 2 points of crossover a single point of crossover is chosen.

Second Comparison Study Results
The results obtained applying these variations to the 4 optimisation problems used
for the previous study are presented in this section. The results obtained with
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tournament selection, pc = 0.8 and pm= 0.1 are used as a benchmark for comparison
purposes.

Criterion 1: Best Cost Analysis
In Figure 5.12 the best results (averaged over 6 runs) obtained for each GA scheme
are shown. Ha, is represented by a dash-dot line, Pole Placement is represented by a
dashed line, PID is represented by a solid line and, finally, Sliding Mode plus PI is
represented by a dotted line. See Table B.6 in Appendix B for numerical values.
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Figure 5.12: Best Costs Results for all GA Schemes for each Controller (dash-dot
line: Roo, dashed line: Pole Placement, solid line: PID, dotted line: Sliding Mode+Pl)

It can be seen from Figure 5.12 that varying the GA scheme used in the optimisation
of the controllers' parameters does not affect the results much, except for Hs,

The Rx, controller results are considerably influenced. All the GA schemes that
include non-uniform mutation (i.e. non-uniform mutation, combination scheme,
exponential mutation, exponential mutation and crossover, and I-point crossover)
outperform the benchmark result, while those schemes using exclusively
minimisation techniques give worse results. This is to be expected since
minimisation is a terminating scheme and thus reduces saturation.
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In the PID and Pole Placement cases the results obtained with all the GAs are very
similar. There are not significant differences with the benchmark.

The best cost values obtained for the SM+PI problem belong to a wider range (from
4.6 to 5.8) than those ofPID or Pole Placement. The GAs with exponential mutation
and I-point crossover obtain the best results, although only this latter outperformed
the benchmark. This time exponential mutation and crossover performed quite

poorly.

Criterion 2: Generation of Convergence Analysis
In Figure 5.13 the results of generation of convergence (averaged over 6 runs) for
each GA scheme are shown. Again, Roo is represented by a dash-dot line, Pole
Placement is represented by a dashed line, PID is represented by a solid line and,
finally, Sliding Mode plus PI is represented by a dotted line.
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Figure 5.13: Generation of Convergence Results for all GA Schemes (dash-dot line:
Boo, dashed line: Pole Placement, solid line: PID, dotted line: Sliding Mode+PI)

It can be observed that the earliest generations of convergence are produce by the
GA schemes with minimization (i.e. minimization with r=0.1, minimization with
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FO.05 and combination scheme). However, this algorithm produces worse cost
results so represents a case of premature convergence.

It is difficult to draw conclusions from the results obtained with the other GA
schemes since they are not very consistent and the variations are not very significant.

Criteria 3 and 4: Amount of Convergence in the Final Population and AMF Analysis
In Figure 5.14 and Figure 5.15, the results of the amount of convergence and AMF
(averaged over 6 runs) in the final population obtained for each GA scheme are
shown. Again, Ha, is represented by a dash-dot line, Pole Placement is represented
by a dashed line, PID is represented by a solid line and, finally, SM + PI is
represented by a dotted line. See Table B.8 in Appendix B for numerical values.
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Figure 5.14: Amount of Convergence in the Final Population (dash-dot line: Roo,
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The schemes that get smaller convergences are those that utilise the minimisation
technique. This is to be expected since the technique eliminates similar individuals
to increase diversity.
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The inclusion of non-uniform mutation leads to higher amounts of convergence in
the final population. This can be assessed comparing the results of non-uniform
mutation, exponential mutation, exponential mutation and crossover and I-point
crossover with the benchmark results. This is to be expected since non-uniform
mutation favours smaller mutation jumps in the final generations.

The results of AMF in the final population shown in Figure 5.15 corroborate
previous conclusions.
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Figure 5.15: AMF in the Final Population (dash-dot line: Roo, dashed line: Pole
Placement, solid line: PID, dotted line: Sliding Mode+PI)

Summary of Results from Second Study
Minimisation techniques have proved not to be very efficient with this kind of
optimisation problem. They have the worse average results in nearly every
controller. In combination with non-uniform mutation they work better, but still not
very well. On the other hand they evaluate fewer solutions, which reduces greatly
the optimisation times.
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Inclusion of non-uniform mutation improves the results obtained for Rx, remarkably.
However, the results obtained for the other controllers with just non-uniform

mutation are worse than those used as a benchmark.

Once an exponential probability of mutation is combined with the non-uniform
mutation operator the results improve. This scheme provides the best results for the
He optimisation and for the rest of the problems the results are comparable with the

benchmark (a bit worse for Pole Placement).

Modifications in the crossover operator such as the inclusion of exponential
crossover probability and I-point crossover do not improve the general performance

of the GA.

This non-uniform-exponential mutation scheme would be used from now onwards as
the standard GA. The reasons for choosing this particular scheme are the good
results provided consistently throughout the four optimisation problems and the
particularly good result for Roo, the most difficult optimisation problem of them all.
Also, the convergence rate data show good final convergence and fast speed of

convergence to the near-optimal solution.

5.6. SUMMARY

Since the performance of GAs is quite problem domain dependant, two comparison
studies have been carried out to find the genetic model better suited to problems of

controller parameter optimisation.

From the results presented we can conclude that in this study tournament selection
performs better than ranking or elitism. Also, high rates of mutation and crossover

improve the results.

Regarding the new techniques introduced in the second comparison study, the only
controller that clearly benefited from them is Hs. The performance of the optimised
solutions for the other controllers is not very much affected by variations in the
genetic operators. However, the inclusion of non-uniform mutation together with an
exponential mutation probability meant an overall improvement, especially for He.
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Thus, from the remainder of this study, unless otherwise stated, the GA operators
used are tournament selection, 2-point crossover with a probability of 0.8 and non-
uniform mutation (Section 5.5.2) with an exponential probability (Figure 5.10).

The chapter has also introduced the sGA technique as a half way technique between
GAs and GP. The sGA includes 2 types of genes in the chromosome structure: the
coefficient genes normally used in GAs plus some control genes. The control genes
define a hierarchic structure well suited not only for parametric optimisation but also
for structural optimisation. In the next chapter the results of the application of SGA
for the optimisation of the weighting function in the Ha, control problem are
presented.
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CHAPTER6

GENETIC ALGORITHMS:
A CONTROL APPLICATION FOR A MARINE VESSEL

6.1. INTRODUCTION

The GA scheme found to be best in Chapter 5 has been used to optimise the
parameters that define' the structure of the controllers presented in Chapter 4: PID
[Astrom and Hagglund (1995), Dutton et al. (1997)], Pole Placement [Andry et al.
(1983), Kautsky et al. (1985)], Sliding Mode [Slotine and Li (1991), Utkin (1972)]
and Roo [Glover and Doyle (1988), Zhou et al. (1996)].

These control methodologies are used to provide the structure for propulsion
controllers (for governing surge velocity) and navigation controllers (for governing
heading) for CyberShip II. The goal of this study is to obtain controller solutions that
satisfactorily perform these duties while keeping actuator usage to a minimum. The
GA solves this minimisation problem by evolving controller parameter solutions that
satisfy these objectives.

Also, GA optimisations in the presence of simulated environmental disturbances
(wind-generated waves) [Fossen (1994)] are carried out The objective is to see ifby
including a realistic noisy environment in the simulation the GA can improve the
robustness of the controller.

Subsequently, all the optimised controllers have been implemented in the real plant
and tested in the water basin of the Marine Cybernetics Lab (MCLab) of the
Norwegian University of Science and Technology (NTNU) in Trondheim. Similar
trials manoeuvres to those in the simulations were used in that part of the study.

The results obtained from this study illustrate the benefits of using GAs to optimise
propulsion and navigation controllers for surface ships.
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In addition, the Roo controller has been optimised using not only a GA but also the
sGA genetic model [Dasgupta and McGregor (1993a)] presented in Section 5.3. The
fact that the weighting functions to tune in the Roo problem are not only parameters
but transfer functions (i.e. structures) make this optimisation problem very suitable
for comparing the performance of GA versus sGA.

Chapter 6 is structured in the following way: Section 6.2 describes the method used
in the study and the testing conditions in the real plant. Section 6.3 presents the
simulated and real results obtained using PID control. Section 6.4 presents the
simulated and real results obtained using Pole Placement methodologies. Section 6.5
and 6.6 present the results obtained using Sliding Mode and Roo respectively. Finally,
in Section 6.7 conclusions are drawn.

6.2.DESCRlPfION OF TIlE METHOD

Genetic Algorithms have been used to optimise the parameters of the controller
structures presented in Chapter 4. The plant to control is the heading and propulsion
dynamics of CS2.

The GA model used has been the one found to be best suited to controller parameter
optimisation in Section 5.5. The characteristics of the model are: tournament
selection (with tournament size equal to 8); exponential and non-uniform mutation
(as defined in Section 5.5) and double point crossover with a probability of 0.8. The
population size was 80 and the number of generations 50. Every GA has been run 15
times.

The inclusion of waves in the simulations creates a more realistic environment and
allows the potential of the GA to produce more robust controllers to be analysed.
Therefore, every controller structure has been optimised in two different ways: with
and without the inclusion of waves in the simulation.

The model used for the addition of simulated waves has been presented in Section
3.4. The simulated waves had a significant height of 3 meters (0.0429 m after
scaling), which corresponds to a sea state code ofS (rough sea). Waves of this height
happen the North Atlantic with a probability of 15.44% [Fossen (1994)]. The initial
angle of encounter between the waves and the vessel has been chosen to be 135° for
this study.
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The evaluation of the individuals of the population is done through the simulation of
a simultaneous double step manoeuvre while varying the surge speed (see Figure
3.9). After the simulation, the performance of the controller is assessed using the cost
function of Equation (5.1).

In addition, Boo is also optimised using the sGA model presented in Section 5.3. The
genetic operators used are the same as for the GA optimisation (i.e. tournament
selection, two-point crossover and non-uniform mutation), but four control genes are
added to the chromosome representation for structural optimisation purposes. They
define the structure of the weighting functions (i.e. a gain, a first order transfer
function plus gain, a first order transfer function plus gain and one zero or a second
order transfer function plus gain and one zero).

Finally all the optimised results were tested in the water basin of the MCLab in
NTNU. The path tracking manoeuvre used for the trials is plotted in Figure 3.10. The
testing in the real plant was also performed while generating waves as described in
Section 3.5.

The structure of the next sections is as follows: the results of the optimisation of each
controller are divided into two categories, those obtained without including waves in
the optimisation and those obtained including waves in the optimisation. Then, for
each category the best result and the averaged results obtained in the various GA
runs are discussed. Finally, graphs showing the best controller responses simulated
and real performance are included.

6.3. PID

6.3.1. OPTIMISATION PROCEDURE
The first optimisation task is that of optimising two decoupled PID controllers, one
for heading control and the second for propulsion control.

The mission of the GA algorithm is to optimise the PID gains summarized in Table
6.1 according to the cost function from (5.1). All of them are real, positive values.

Table 6.1: Parameters to Optimise for PID Control

Propulsion Kpp KIp KDp

Heading Kph KIh KDh
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6.3.2. OPTIMISATION WITHOUT WAVES: SIMULATED AND REAL RESULTS
Once the GA optimisation of the gains presented in Table 6.1 was run 15 times, the
best result obtained converged to the PID gains shown in Table 6.2 in 7 generations
(see Figure C.l from Appendix C) and provided a cost value of 1.2 according to the
cost function from Equation (5.1). This is the resulting controller used in the real

trials.

Table 6.2: Best PID Results - Optimisation Without Waves

Kp KJ KD

Propulsion 508.8 0.0579 9

Heading 16.8 9.09 9.4

If averaging the gains results obtained in each of the IS runs, the average and
standard deviation results are as shown in Table 6.3:

Kp KJ KD

Avg StDev Avg StDev Avg StDev

Propulsion 484.2 48.7483 3.2768 5.7124 9.1715 0.4429

Heading 17.0371 5.8375 7.5789 3.8062 9.628 0.3546

Table 6.3: Average and Standard Deviation PID Results
Optimisation Without Waves

The standard deviation values show a consistent convergence to gain values of the
same order of magnitude. The convergence of the GA to solutions that included
derivative terms with a value of around 9 was especially regular (standard deviations
smaller than 0.5). A large standard deviation in the gain values obtained in the GA
runs would indicate that variations in those parameters do not degrade the cost value
associated with that solution significantly.

The next Figure 6.1 plots the simulated performance of the controller in Table 6.2
when tracking a simultaneous double step manoeuvre (reference responses by dashed

line).
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Figure 6.1: Simulated Results of the PID Controller Optimised Without Waves

As can be seen in Figure 6.1, the tracking of the desired responses is very good both
in propulsion and heading (the error signals not exceeding 7 mmls and 1.5°
respectively) and the actuators usage is free from rippling. There is a slightly steady-
state error in the surge response (around 3mmls) due to the small integral term in the
PID controller for propulsion. The heading control shows two spikes that correspond
with the beginning of the turn. They are due to the high gain of the system that reacts
very quickly to the change and then it needs to overcompensate.

The following Figures 6.2 and 6.3 show the results obtained when the optimised PID
controller was implemented in the real plant. Figure 6.2 shows the manoeuvring
performance in calm waters. Again, the reference signals are marked by the dashed
line.
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Figure 6.2: Real Results of the PID Controller Optimised Without Waves When
Manoeuvring in Calm Waters

In Figure 6.2 it can be seen that the tracking of the desired responses is fairly good,
especially for the surge speed (error smaller than 2 mmls). However, the actuator
signals contain lots of high frequency components that can be observed as well in the
error plots. This indicates high gain control where the controller tracks the noise in
the signals. Also, the heading tracking deteriorates in the second half of the zig-zag.
This is probably due to the increased difficulty of a second turning just when the boat
was recovering from the first. When comparing this figure with that of the manually
tuned PID (see Figure 4.7) it can be observed that the signals have more high
frequency components. This is due to the fact that the results shown in this chapter
were obtained in a first visit to the facilities while the manually tuned results belong
to a second sets of results obtained with an improved system. Even though the
responses are noisier, the GA-optimised PlO controller shows a far better
performance, with a more accurate tracking and no signs of instability.
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The following Figure 6.3 shows the manoeuvring performance when waves are
generated in the water basin. The desired responses for heading and propulsion are
represented in dashed lines.
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Figure 6.3: Real Results of the PlO Controller Optimised Without Waves When
Manoeuvring in the Presence of Waves

As can be seen, the inclusion of waves during the execution of the manoeuvre does
not degrade the tracking performance much but induces more noise in the signals.
The surge error is still smaller than 2 mmls and the heading error is kept under 10°
until the final stage of the manoeuvre. The higher peaks in the heading error and 1"3

that can be observed at the very end of the manoeuvre are due to the vessel moving
out of the area covered by the positioning system and the consequent loss of control.

6.3.3. OPTIMISATION WITH WAVES: SIMULATED AND REAL RESULTS
When the GA optimisation was run including waves in the evaluation manoeuvre,
the optimisation converged in 12 generations (as shown in Figure C.2 from Appendix
C) and the best result of all provided a cost value of 4.3 with the PID gains shown in
Table 6.4, which have been used afterwards for the real implementation in CS2.
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Table 6.4: Best PID Results - Optimisation With Waves

x; KJ KD

Propulsion 6.829 42.73 0.00399

Heading 21.45 0.7996 3.571

If averaging the gains results obtained in each run, the average values and standard
deviation are:

Table 6.5: Average and Standard Deviation PID Results
Optimisation With Waves

Kp KJ KD

Avg StDev Avg StDev Avg StDev

Propulsion 9.4775 3.3563 27.6211 17.2137 0.0046 0.0043

Heading 16.0988 4.5726 1.2689 0.8157 3.7489 0.3898

These PID gains are fundamentally different from those showed in Tables 6.2 and
6.3, especially those of the propulsion PID. In the heading PID controller the integral
and derivative terms are slightly reduced, while the proportional term remains
similar. On the other hand, the proportional and derivative terms in the propulsion
control are significantly reduced (2 and 3 orders of magnitude respectively) and the
integral term is very much increased.

The reduction of the derivative term in both PIDs is understandable since the
derivative term will amplify any noise in the signals and we have included noise in
the simulations. Moreover, the reduction of the derivative term in the propulsion
controller has conditioned the gain reduction in the proportional term. A high gain
will lead to instability. Oscillations can be compensated using a derivative term, but
in this case the noisy environment imposes a small derivative term and therefore a
smaller gain. In tum, the integral term has been increased to reduce the error, given
the need of a small proportional gain.

Figure 6.4 plots the simulated controllers' performance when tracking a simultaneous
double step manoeuvre (reference in dashed line).
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This shows that the PlO controllers optimised with waves deal quite well with the
high frequency chattering. Tracking performance is slightly degraded but still
reasonable (surge and heading errors smaller than 0.05 mls and 2°, respectively). The
tracking degradation at the end of the surge signal is due to the slowing down of the
speed that reduces the capability of the vessel in compensating for the effect of the
waves.

When implementing the PlO controllers with the parameters shown in Table 6.4 in
the real plant there is a significant stability problem caused by the large integral gain
and small derivative gain in the propulsion PlO. Figure F.5 in Appendix F shows that
the simulated response of the PlO controllers from Table 6.4 when tracking the zig-
zag manoeuvre is good. Therefore the model is not representing accurately the
performance of the controllers.

Since it is not possible to stabilise the plant with the values obtained by the GA the
propulsion controller needed to be retuned. The new PlO controllers only differ from
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those of Table 6.4 in the integral and derivative terms of the propulsion PID. They
are presented in Table 6.6 and they are used in the real testing performance shown in
Figures 6.5 and 6.6.

Table 6.6: Retuned PID Gains

Kp K/ KD

Propulsion 6.829 0.01 0.01

Heading 2l.4S 0.7996 3.571

The results obtained in the MCLab while testing these controllers are shown in the
next Figures. Figure 6.5 plots the results where waves have not been generated in the
water tank.
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The tracking performance of these controllers is quite degraded in comparison with
previous PID tuning (Figure 6.2), especially in the surge speed signal, which is very
oscillatory. However, these controller solutions reduce chattering in the actuators
more than those controllers optimised without noise.

Figure 6.6 shows the effect of waves on the controllers' performance.
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Figure 6.6: Real Results of the PID Controller Optimised With Waves When
Manoeuvring in the Presence of Waves

The inclusion of waves degrades the tracking performance slightly. When comparing
the performance in the real trials of the PID optimised without waves from Table 6.2
(shown in Figures 6.2 and 6.3) with the performance of the PID controller from
Table 6.6, the conclusion that can be drawn is that the PID controller optimised with
waves included in the simulation exhibits worse tracking performance, especially for
propulsion, but less noisy signals. Thus, the inclusion of waves in the optimisation
results in a reduction of the chattering in the actuators, not in a more robust
performance against disturbances.
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6.3.4. SUMMARY OF PID RESULTS
A decoupled PID controller has been optimised using GA in two different ways, i.e.
with and without waves in the simulation. The GA converged to significantly
different controller gains in each case. Both work well in simulation.

The controller optimised without waves did not need any retuning when
implemented in the real plant and it demonstrated very good tracking characteristics,
even in the presence of waves. However, the actuator signals were very noisy,

especially 'tl.

The GA results when including waves in the evaluation process show evidence of
instability so the integral and derivative terms of the propulsion PID needed to be
retuned. This raises doubts about the accuracy of the mathematical model, since the
simulated results of Figure 6.4 and F.S were good and did not exhibit any sign of
instability.

Once the retuned controller was implemented in the real plant, the tracking
performance was poorer than the previous one but the chattering in the actuators
signals was significantly reduced.

6.4. POLE PLACEMENT

6.4.1. OPTIMISATION PROCEDURE
In the Pole Placement (PP) optimisation problem the parameters to be optimised are
the four poles of the 1MIMOsystem.

Table 6.7: Parameters to Optimise for PP Control

I PP I pole] I pole2 I pole3 I po/e4 I
The poles can be: 4 real poles or 2 real poles plus a complex conjugate pair. The real
part of the poles of a system needs to be negative for the system to be stable.
Therefore, only the magnitude of the poles has been encoded in the GA and the
polarity has been added in the decoding process.

6.4.2. OPTIMISATION WITHOUT WAYES: SIMULATED AND REAL RESULTS
The GA converged in 4 generations (see Figure C.3 from Appendix C) to a cost
value ofO.96, with the poles from Table 6.8.
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Table 6.8: Best pp Results - Optimisation Without Waves

pole] pole2 pole3 pole4

-15.09 -2.168 -0.9043+ 1.82j -0.9043-1.82j

Averaging the results obtained through different runs is more complicated in the pp
problem since some of the runs converged to real poles and others to 2 real poles
plus a complex conjugate pair. Separating real and complex poles in two
convergence subgroups the average and standard deviation values are as shown in
Table6.9:

Table 6.9: Average and Standard Deviation pp Results
Optimisation Without Waves

Real solutions (4 real poles)

pole] pole2 pole3 pole4

Avg StDev Avg StDev Avg StDev Avg StDev

-9.9985 0.0005 -4.67 0.33 -2.1895 0.2905 -1.2499 0.25

Complex solutions (2 real poles + 1 complex conjugate pair)

rea/part imaginary part pole3 pole4

Avg StDev Avg StDev Avg StDev Avg StDev

-1.1216 0.283 1.4984 0.6063 -11.564 2.351 -2.99 2.063

From the 15 total runs, 2 converged to 4 real poles while 13 converged to a pair of
complex conjugate poles plus 2 real poles. The complex conjugate pairs from Tables
6.8 and 6.9 are slower poles than the real ones (i.e. closer to the imaginary axis).
Therefore they are dominating the system response. This means that the GA has
favoured pole positions that provide responses of second order type. Since the
desired response in the evaluation manoeuvre of the optimisation process is a second
order response, this was to be expected. Even in the case of 4 real poles, the two
slower ones are quite close, showing as well a tendency to 2nd order type of
responses.

The next Figure 6.7 shows the simulated performance of the pp controller when
tracking the simultaneous double step manoeuvre used in the optimisation runs (the
desired response is represented in a dashed line).
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Figure 6.7: Simulated Results of the pp Controller Optimised Without Waves

The tracking of the desired response is once more very good, although the surge and
heading errors are slightly worse than those obtained with the PID controller
optimised without waves (see Figure 6.1). On the other hand the actuator usage is
reduced with respect to PID, especially in 1'3. The reaction of the controller is
significantly slower than in PID, which means that the gain is lower. The heading
control signal does not show peaks as in PID control, but as a consequence the
heading error is larger. It is the usual trade-off between tracking performance and
control effort.

The following Figures 6.8 and 6.9 present the findings of the implementation of the
PP controller in the real plant. Figure 6.8 shows the results obtained while tracking
the desired propulsion and heading signals in calm waters.
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Figure 6.8: Real Results of the pp Controller Optimised Without Waves When
Manoeuvring in Calm Waters

From the above graph it can be seen that the PP controller tracks both reference
signals well. Yet again, the commanded surge force 'rJ is quite noisy. In this case the
chattering in the heading control signal is better than for PID. The oscillations are
due to the controller trying to compensate for the slower reaction to the noise due to

the low gain of the controller. The controller produces too much momentum that
results in oscillations. When comparing this figure when the manually tuned PP
controller responses (see Figure 4.13) it can be observed that the tracking is more
accurate and the actuator usage smaller despite of the manually tuned response
having been obtained with an improved system.

Figure 6.9 shows the effect produced in the vessel dynamics by the generation of
waves in the water tank while executing the zig-zag manoeuvre.
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Figure 6.9: Real Results of the PP Controller Optimised Without Waves When
Manoeuvring in the Presence of Waves

The inclusion of waves, as it can be observed from the figure, does not degrade
tracking but induces high frequency components.

6.4.3. OPTIMISATION WITH WAVES: SIMULATED AND REAL RESULTS
The GA converges to a cost value of 10.6 in 16 generations (see Figure C.4 from
Appendix C), with the following poles:

Table 6.10: Best PP Results - Optimisation With Waves

pole} pole2 pole3 pole4

-6.224 -0.997 -0.451 +2.308j -0.451-2.308j

Again, averaging the results obtained through 15 runs is more complicated in the PP
problem since some of the runs converged to real poles and others to complex ones.
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Separating real and complex poles into two convergence subgroups provides the
following average and standard deviation values:

Table 6.11: Average and StandardDeviation pp Results
OptimisationWith Waves

Real solutions (4 real poles)

polel polez pole3 pole4

Avg StDev Avg StDev Avg StDev Avg StDev

-9.2805 0.249 -2.712 0.4764. -1.1876 0.3097 -0.9805 0.0523

Complex solutions (2 real poles + 1 complex conjugate pair)

real part imaginary part pole3 pole4

Avg StDev Avg StDev Avg StDev Avg StDev

-0.7542 0.378 1.963 0.4209 -6.7174 1.0718 -1.0403 0.0856

From the 15 total runs, 8 converged to 4 real poles while 7 converged to a complex
pair conjugate plus 2 real poles. Thus, the inclusion of waves has increased the
number of times the GA has converged to real poles. Two dominant real poles
produce an increase damping in the response if compared with two dominant
complex poles. This results in a smaller gain in the system. It can also be observed
that the poles have been chosen closer to the imaginary axis than when the
optimisation was run without waves. This means that the control effort will be
reduced, since the fast poles require more control input than the slower ones. As in
the PID case, the inclusion of waves in the optimisation has led to controller
solutions that reduce the control effort in the actuators.

The next Figure 6.10 shows the simulated performance of the pp controller from
Table 6.10 when tracking the simultaneous double step manoeuvre for propulsion
and heading used in the GA optimisation process. The reference signals are
represented in a dashed line.
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Figure 6.10: Simulated Results of the pp Controller Optimised With Waves

As for the PID the pp optimised with waves reduces control effort in detriment of
surge speed tracking. In this case the propulsion tracking is really poor with a steady-
state error of more than O.05m1s.

The following Figures 6.11 and 6.12 will present the results obtained while
implementing the optimised pp controller into the real plant. Figure 6.11 shows the
vessel performing the zig-zag manoeuvre without waves being generated in the water
tank. The reference signals are once more represented in a dashed line.
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Figure 6.11: Real Results of the pp Controller Optimised With Waves When
Manoeuvring in Calm Waters

The usual trade-off between fewer oscillations in TJ or better surge speed tracking is
reflected again in Figure 6.11. As in previous cases the controller optimised with
disturbances exhibits fewer oscillations, but surge and heading error are worse than
in Figure 6.8 (pP optimised without waves manoeuvring in calm waters). However,
given the bad propulsion tracking obtained in the optimisation studies (Figure 6.10),
the real propulsion response is better than expected.

In Figure 6.12 the same manoeuvre is shown but this time it is performed by CS2 in
the presence of waves in the water tank.
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Figure 6.12: Real Results of the pp Controller Optimised With Waves When
Manoeuvring in the Presence of Waves

Figure 6.12 shows how the inclusion of waves increases the chattering in the control
signals but it does not degrade the tracking performance significantly with respect to
the performance without waves. When comparing to the results obtained in the real
testing with waves with the pp controller optimised without waves (Figure 6.9), the
same conclusion can be drawn once more, the chattering in the actuator signals has
been reduced at the expense of tracking performance.

6.4.4. SUMMARY OF POLE PLACEMENT RESULTS
PP controller results are consistent with the conclusions drawn from the PID
controller results: the inclusion of waves in the GA evaluation leads to lower control
gains while it degrades tracking. The results are comparable with those obtained with
PID.

It is worth mentioning that both PP optimised controllers (with and without waves)
were implemented in the real plant without any need for further tuning.
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6.5. SLIDING MODE

6.5.1. OPTIMISATION PROCEDURE
Two different configurations based on the Sliding Mode controller presented in
Section 4.5 have been optimised using GA: a Sliding Mode controller for heading
and PI controller for propulsion (SM+PI) (Section 6.5.2) and two decoupled Sliding
Mode (SM) controllers (Section 6.5.3).

The parameters to optimise for minimising the cost function from Equation (5.1) are
two poles (polei; and po/eh), the switching gain (I'/h) and the boundary layer
thickness (<Ph) for heading. For propulsion, either a proportional (Kpp) and integral
gain (KIp) for the SM+PI configuration or one pole (po/epl), the switching gain (1'fp)
and the boundary layer thickness (€Pp) for the SM configuration.

Table 6.12: Parameters to Optimise for Sliding Mode Control

SM+PI po/eh] po/eh2 I'/h <Ph Kpp KIp

SM poleu poleh2 I'/h <Ph poles, I'/p €Pp

The pair of poles of the equivalent term for the heading subsystem can be either real
poles or a complex conjugate pair. As before, only the magnitude of the poles has
been optimised, the sign was added in the decoding operator to ensure that they were
in the left hand side of the s-plane. The switching gain has to be .positive to ensure
stability robustness [McGookin (1997)].

6.5.2. SLIDING MODE + PI CONTROLLERS
6.5.2.1. Optimisation Without Waves: Simulated and Real Results
The GA optimisation of the SM+PI parameters shown in Table 6.12 has converged
in 4 generations (see Figure C.5 in Appendix C). The best result obtained provides a
cost value of 4.5 with the following gains:

Table 6.13: Best SM+PI Results - Optimisation Without Waves

x, KIp

Propulsion 354.4 23.9

po/eh] poleh2 1'/ <P

Heading -1.293 -0.2594 0.9076 0.465
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After averaging the parameters obtained through the 15 runs, the resulting average
and standard deviation values are shown in Table 6.14. Since the switching gain (11)
and boundary layer thickness (et» have converged to very different values in the
separate runs, the ratio values (11/ et» have also been included in Table 6.14.

Table 6.14: Average and Standard Deviation SM+PI Results
Optimisation Without Waves

Kpp KIp

Avg StDev Avg StDev

Propulsion 237.0373 130.41 33.4018 35.293

poles, poieh)

Avg StDev Avg StDev

Heading -1.034 0.5847 -0.2514 0.0884

11 et> 11/ et>

Avg StDev Avg StDev Avg StDev

Heading 1360.5471 3363.0 675.3331 1675.3254 2.4679 1.4399

Although the poles converge to very similar values, that is not the case of the
switching gain 11and boundary layer width et>. However, if instead of comparing the
values of 11and et>, we take into account the ratio between them, there is a clear
convergence. This can be due to the SM controller operating not in the switching
range of the hyperbolic tangent function but in the boundary layer [McGookin
(1997)]. If so, Equation (4.33) becomes:

. (A) O"(i)
U x ~-T/'--

cP
(6.1)

and therefore, the ratio I1/CP drives the performance of the controller, not the
individual values for Y/ and CP.

The PI propulsion control optimised gains are quite different from those of the PID
decoupled controller. When comparing Tables 6.3 and 6.14 it can be observed that
the average proportional gain for SM+PI is smaller (though of the same order of
magnitude and with a large standard deviation) and the average integral gain is
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significantly bigger. The lack of derivative term restricts the size of the proportional
term since it cannot be used to compensate for the oscillations induced by a large
proportional gain. The GA has probably tried to compensate for the damping
produced by a smaller proportional gain by increasing the integral term and,
consequently, improving the steady-state error.

Next Figure 6.13 shows the simulated performance of the decoupled SM+PI
controllers when tracking a simultaneous double step manoeuvre.
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Figure 6.13: Simulated Results of the SM+PI Controller Optimised Without Waves

The tracking of the responses is very good. The surge error shows higher peaks while
increasing or decreasing the speed (i.e. the response from the system is quite slow).
This slowness is due to the large integral action that degrades the transient response
of the system. On the other hand, the steady-state error of the response is zero, an
improvement with respect to the PID and PP controllers (see Figures 6.1 and 6.7).
The heading signal presents a slight overshoot and the actuators signals show two
large spikes (similar to those obtained with the PID optimised without waves). This
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is caused by a high gain controller. The fact that the switching term is operating in
the boundary layer is also increasing the proportional gain of the SM controller.

As usual the best result obtained in the optimisation runs has been tested in the real
plant and the results obtained are presented in Figures 6.14 and 6.15. Figure 6.14
shows the tracking performance of the SM+PI controller once implemented in the
real plant in calm waters.
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Figure 6.15: Real Results of the SM+PI Controller Optimised Without Waves When
Manoeuvring in Calm Waters

SM+PI presents, like PID, a very noisy surge commanded force T'J and it has some
problems coping with the 2nd half of the heading zig-zag when increasing the speed.
Also, as predicted from the simulation results, the surge speed response is very slow
due to the high integral gain of the PI. The results plotted in Figure 6.15 must be
regarded with care because the dynamic positioning manoeuvre to drive CS2 to the
starting point of the path was not finished by the time the reference signals were
applied. This has caused an initial error ofO.05m1s in the surge.
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Next, Figure 6.15 demonstrates the effect of inducing waves while the execution of
the manoeuvre.
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Figure 6.16: Real Results of the SM+PI Controller Optimised Without Waves When
Manoeuvring in the Presence of Waves

When including waves the heading is not affected significantly and surge speed
tracking improves. As expected the waves induce high frequency components in the
propulsion signals, but not so much in the heading. This results from high gain
control where the controller tracks the noise.

6.5.2.2. Optimisation With Waves: Simulated and Real Results
In the case of the SM+PI configuration, the GA optimisation with waves has
converged in 15 generations (see Figure C.6 from Appendix C) and the best result
obtained provides a cost value of 10.5 with the parameters shown in Table 6.15.
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Table 6.15: Best SM+PI Results - Optimisation With Waves

Kpp KIp

Propulsion 9.3 27

poieh] poieh2 " f/>

Heading -0.9929 -0.4079 99.9 50.46

After averaging the parameters obtained through the various runs we get:

Table 6.16: Average and Standard Deviation SM+PI Results
Optimisation With Waves

Kpp KIp

Avg StDev Avg StDev

Propulsion 9.8985 1.0486 30.l907 2.684

polei, poieh2

Avg StDev Avg StDev

Heading -0.7473 0.165 -0.3117 0.2094

" f/> ,,/ f/>

Avg StDev Avg Avg StDev Avg

Heading 1795.2278 3301.7165 878.3902 1617.6097 2.0095 0.1834

The heading controller resulting from the optimisation with waves only varies
slightly. The poles get closer and the ratio '1/f/> reduces a little. By reducing the ratio
'1/f/> the gain of the controller is effectively reduced. Increasing the closeness of the
poles results in a fall in the damping (i.e. it yields to a response more similar to a 2nd

order response, while separating the poles results in a lit order type of response).

On the other hand the propulsion PI controller is affected by the inclusion of waves
in the optimisation process. The propulsion gain is reduced by two orders of
magnitude and the averaged results shown in Table 6.16 are very similar to those
presented in Table 6.5 of the PID controller for propulsion optimised with waves. As
for PID and PP the GA optimisation with waves results in controllers with smaller

gam.
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Next, Figure 6.16 shows the simulated performance of the decoupled SM+PI
controllers when tracking a simultaneous double step manoeuvre.
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Figure 6.16: Simulated Results of the SM+PI Controller Optimised With Waves

The propulsion signals are a bit worse than those of the PID (Figure 6.4). The
heading tracking error is bigger than for PID or PP. There is quite a large overshoot
in the heading response due to the effect of moving the poles together, creating a
more underdamped response.

The main problem that presented with this controller structure is that the PI
propulsion controller had to be retuned since it was impossible to stabilise the plant
using the values obtained in the GA optimisation. The initial peak in the commanded
propulsion force is so high that the boat would traverse the water tank before
stabilising. This is hardly surprising since the PI gains are very similar to those of the
PID for propulsion, which have already given stability problems. As before the
simulated responses of the model while tracking the zig-zag manoeuvre used in the
real testing (see Figure F.6) do not reflect any stability problem. The GA has resorted
to a high integral gain to improve the tracking in presence of noise and, although in
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simulation the outcome is satisfactory, the unmodelled dynamics of the system tum
the system unstable when the controller is implemented in the real plant.

Therefore, the results shown in Figures 6.17 and 6.18 are obtained after retuning the
PI propulsion controller to the following values:

Table 6.17: Retuned SM+PI Gains

Propulsion 120

pole, pole] n (/>

Heading -0.9929 -0.4079 99.9 50.46

Figure 6.17 shows the performance of the retuned controller implemented in the real
plant when there are no waves generated.
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Figure 6.17: Real Results of the SM+PI Controller Optimised With Waves When
Manoeuvring in Calm Waters
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Although the new PI gains provide a stable result, the surge speed is still quite
oscillatory.

The heading tracking is poorer than in the previous PP and PID results. The
overshooting observed in the simulation results can be clearly appreciated in the real
trials as well.

Figure 6.18 shows the performance of the retuned controller when implemented in
the real plant with waves.
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Figure 6.18: Real Results of the SM+PI Controller Optimised With Waves When
Manoeuvring in the Presence of Waves

Results very similar to those plotted in Figure 6.17: degraded heading tracking and
oscillatory surge speed response. Some wave-induced rippling, especially in 'fl.
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6.5.3. DECOUPLED SLIDING MODE CONTROLLERS
6.5.3.1. Optimisation Without Waves: Simulated and Real Results
For the two decoupled Sliding Mode configuration, the best result converges to a
cost value of 4.5, with the parameters from Table 6.18. The GA has converged to the
near-optimal solution in 14 generations as shown in Figure C.7 from Appendix C.

Table 6.18: Best SM Results - Optimisation Without Waves

pole} pole, '1 rp

Propulsion -0.01029 0.7912 0.1701

Heading -1.4 -0.256 3.8 1.991

When averaging the gain results obtained through different runs, the average and
standard deviation values are:

Table 6.19: Average and Standard Deviation SMResults
Optimisation Without Waves

pole} pole,

Avg StDev Avg StDev
Propulsion -0.0127 0.0055

Heading -1.0779 0.3518 -0.2862 0.0359

'1 rp '1/ rp

Avg StDev Avg StDev Avg StDev

Propulsion 1507.8665 2676.1996 310.5498 565.7521 5.1758 0.7075

Heading 415.4362 574.0593 201.0921 277.1211 2.0742 0.2335

The GA optimisation for the heading controller has converged to similar values that
for the SM+PI case. The propulsion controller converges to a pole close to zero, and
the same observation made for the SM+PI controller can be made here: there is not
convergence to similar values of the switching gain ('1) or boundary layer thickness
(if» but to the ratio of both values, indicating that the 8M controllers are operating in
the boundary layer.

Figure 6.19 shows the simulated performance of the SM controllers when tracking
the simultaneous double step manoeuvre used in the GA optimisation.
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Figure 6.19: Simulated Results of the SM Controller Optimised Without Waves

The heading results are equivalent to those shown in Figure 6.15 (SM+PI optimised
without waves). Both controllers present a slight overshooting in the heading
responses, due to SM being a high gain controller. The propulsion tracking is the best
obtained so far in simulation, keeping the surge error always under 4 mm/s, although
it shows a small steady state error that the PI controller from the SM+PI

configuration has been able to eliminate.

The results obtained while implementing the optimised SM controller in the real
plant are plotted in the next graphs. In Figure 6.20 the testing manoeuvre is
performed without waves and in Figure 6.21 the effect of generated waves in the
water tank is analysed. The reference signals are represented as a dashed line in both

figures.
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Figure 6.20: Real Results of the SM Controller Optimised Without Waves When
Manoeuvring in Calm Waters

Again the tracking is good, although the heading tracking degrades in the second half
of the zig-zag as in previous results. When comparing SM versus PID and pp it can
be seen that the control signals obtained with SM are less noisy than in the PID case.
As it was to be expected, SM provides a heading tracking very similar to the one
obtained with the SM+PI controller. Also, the heading control provided by the SM
controller is better than that provided by PP or PID. The heading error is smaller and,
although the peaks in the control signal are slightly larger in magnitude for SM, the
noise is so much reduced that the control effort for SM is smaller. Regarding the
propulsion subsystem, the SM surge error is slightly larger that the error in PID or PP
control, but again much less noisy. When compared with the manually tuned SM (see
Figure 4.19) it can be observed how much better the responses are even though they
were obtained with the suboptimal system.

Figure 6.21 shows the results obtained by CS2 when performing the same manoeuvre
but in the presence of waves in the water tank.
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Figure 6.21: Real Results of the SM Controller Optimised Without Waves When
Manoeuvring in the Presence of Waves

It can be observed from the figure that the inclusion of waves does not degrade the
tracking significantly though, it induces high frequency components in the signals,
especially in the propulsion subsystem.

6.5.3.2. Optimisation With Waves: Simulated and Real Results
For the two decoupled Sliding Mode configuration, The GA has converged in 9
generations (see Figure C.S from Appendix C). The best result has got a cost value
assigned of 11.5, with the following parameters values:

Table 6.20: Best SM Results - Optimisation With Waves

pole, pole] " c:p

Propulsion -0.00124 762.5 864

Heading -0.945 -0.4324 9.05 4.305

153



When averaging the gain results obtained through 15 runs, the average and standard
deviation values are:

Table 6.21: Average and Standard Deviation SM Results
Optimisation With Waves

pole, pole,

Avg StDev Avg StDev

Propulsion -0.0028 0.0028

Heading -0.9739 0.2939 -0.4663 0.0620

" if> " I if>
Avg StDev Avg StDev Avg StDev

Propulsion 1822.2413 2386.4264 2384.4492 3271.2975 0.7912 0.0948

Heading 1483.8938 3114.3927 879.2401 1944.4034 1.8496 0.2873

When comparing these optimised results with those of Tables 6.18 and 6.19 we can
see that including waves in the simulation makes the GA converge to a similar
heading controller with somewhat closer poles and analogous "Iif> ratio. As in the
SM+PI case, closer poles lead to a more underdamped response.

On the other hand, the GA search converges to a quite different propulsion controller
where the pole is closer to zero and the I'I1if> ratio has been reduced by one order of
magnitude. By placing the propulsion pole closer to zero the GA is trying to achieve
an integral action that will improve the tracking. Moreover, reducing the ratio '11if>
will reduce the gain of the controller, given that SM is operating in the boundary
layer.

Below, Figure 6.22 shows the simulated performance of the decoupled SM
controllers when tracking the simultaneous double step manoeuvre for surge and
heading used in the GA optimisation with waves. The desired responses have been
represented in a dashed line.
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Figure 6.22: Simulated Results of the SM Controller Optimised With Waves

As expected the performance of the SM controller for heading is equivalent to that of
the SM+PI configuration (Figure 6.12). The SM propulsion control is better than that
of SM+PI but at the expense of a larger control effort in 1").

The above figure shows very good surge tracking during the first half of the
simultaneous double step (when the encounter angle between the heading and the
direction of the waves is 90°) though the tracking is worse at the very beginning and
in the second half of the manoeuvre (when the encounter angle between the heading
and the direction of the waves is 135°). It seems that the SM propulsion controller
handles better lateral waves than approaching ones. The degradation of the
performance at the end of the surge response is due to the slow surge speed that
diminishes the effectiveness of the actuators for compensating the waves effect.

Next Figures 6.23 and 6.24 illustrate the results obtained in the real tests in the
MCLab when the SM controllers had been implemented in the real plant. Figure 6.23
shows the execution of the manoeuvre in calm waters.

155



0.3 50,....
..-. Cl
(n 0.2 Cl)- ---r.~- - "DS I I I -I I I

I-----:-------f - - - - - - -:- - - - - -- Cl 0~0.1 c:
._ I I I "D
:::I I I I m
(n 0 , I I m I I------~-------T-------r------ ..c: -50 I I, I I ------,-------T------

0 50 100 150 200 0 50 100 150 200
0 .-.. 5...... D)

'" Cl)....... "DE ........
........ -0.02 ....,_ c
c ,_, ........ m.... I I

CD -0.04 I I I tJ)- ---,-------T-------r------
CD t::
D) :.s,_
::J C13I
(I) -0.06 Cl) -5

0 50 100 150 200 .s: 0 50 100 150 200
0.5

- 0.5 E 0z •-- z, I
I..... I

:::I 0 (T1 -0.5 I

m ::J ------,-------T---- C13I I I--0.5 -10 50 100 150 200 0 50 100 150 200
time(s) time(s)

Figure 6.23: Real Results of the SM Controller Optimised With Waves When
Manoeuvring in Calm Waters

The set of plots shows that this tuning solution for the SM controller provides very
good heading tracking (much better than PID, PP or SM+PI and even better than the
previous SM optimised without waves), but quite poor propulsion control. There is a
big steady-state error in surge speed and the signal is quite oscillatory. This figure
further confirms the reduction in noise in the signals when using SM as opposed to
PID orPP.

The following Figure 6.24 illustrates the results obtained when the zig-zag
manoeuvre was performed in the presence of waves.
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Figure 6.24: Real Results of the SM Controller Optimised With Waves When
Manoeuvring in the Presence of Waves

When including waves, they do not affect the heading and propulsion tracking and
the commanded forces signals are definitely less influenced than those of the SM
controller optimised without disturbances.

Once more, the controller optimised with waves provides smoother commanded
signals that the one optimised without waves, while the propulsion tracking degrades.

6.5.4. SUMMARY OF SLIDING MODE RESULTS
The previous section has analysed the results obtained in the implementation of two
controller structures based on non-linear Sliding Mode techniques.

One of the structures consisted of two decoupled SM controllers for heading and
propulsion. As usual, it has been optimised with and without waves.
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The results obtained in the GA optimisation without waves are very good. Tracking
is fine (heading tracking is improved compared to PID and PP) and the controller
signals are smoother than for PID and PP (especially 1").

When optimised in the presence of waves the resulting heading SM parameters do
not vary a lot but the propulsion SM parameters do. As in the PID and PP case the
SM control obtained focuses on reducing the switching in the actuator by reducing
the control effort and that leads to a poorer surge speed tracking. Hence, there is a
trade off between the actuator effort and the tracking error.

As in the PP case no retuning whatsoever was needed for the real implementation of
the SM controller.

The other structure analysed consisted of a SM controller for heading and a PI for
propulsion. This configuration exhibits some of the characteristics of SM and PID
previously mentioned. These are discussed below.

When optimised without waves the heading performance is good, equivalent to that
of the decoupled SM control. However, 1") shows a very noisy operation like in the
PID case.

The most relevant aspect of this SM+PI tuning when compared with previous SM
and PID control structures is the slow propulsion response. This is due to a large
integral gain and small proportional term. The latter is caused by the omission of a
derivative term, which would compensate for overshoots and oscillations in the
response. By including a derivative the proportional gain could be increased and the
resulting transient response quickened. Since there is no derivative term the size of
the proportional gain has to be limited to ensure a sufficiently damped response.

The SM+PI controller optimised with waves has the same stability problem that the
PID controller has (therefore the PI controller for propulsion needed to be retuned).
This is hardly surprising since the optimisation of both propulsion PID and PI
controllers converged to similar results. Both converged to high integral actions that
worked well in simulation but produced instability in presence of the real plant
unmodelled dynamics. This raises doubts about the accuracy of the model used since
that effect was not appreciated in the simulation results.
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The retuned controller performance is consistent with previous observations of
operation of controllers optimised with waves: reduced ripples in 1'Jto the detriment
of accurate speed tracking.

The overall performance of the decouple SM controller IS better than the
performance ofSM+PI.

6.6.Ro OPTIMAL CONTROL

6.6.1. OPTIMISATION PROCEDURE
Hoo is the most complicated optimisation problem of those tackled, for the large
number of parameters to optimise and the difficulty of finding an admissible
controller. The optimisation has been performed using two GA models: the GA used
for the rest of the controllers plus the Structured Genetic Algorithm (sGA) proposed
in Section 5.4.

The generic GA assumes a predefined 2nd order transfer function with a single zero
structure for the weighting functions of the error signals. This way the GA can
choose the structure of the transfer function, e.g. if a first order weighting function is
more appropriate the GA can choose a to be equal to f3 and thus the zero cancels one
of the poles. Thus, the weighting functions of the error signals are as follows:

w (s) = K~(s + a,,)
II (s + f3,Js + y,,)

W(s)= K~(s+a,)
r (s+f3,Xs+y,)

(6.2)

(6.3)

To avoid a very high order controller, the weightings for 1'Jcom,1'2comand 1'3com(i.e.
Wt), Wt2 and Wt3) have been kept constant. Thus, the vector to be minimised will be
z = [Wu(s)-(uc-u), Wr(sJ(rc-r}, KtJ"1'Jcom,Kt2·1'2com,Kt3·1'3comr The GA optimises the
eleven parameters shown in Table 6.22 that define this predetermined structure.

Table 6.22: Parameters to Optimise for Hoo Control Using GA

Ku' I au I Pu I Yu I K,' I a, I p, I y, I KtJ I Kt2 I Kt3
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All the values are encoded to be positive to ensure stability and minimum-phase
characteristics.

On the other hand, the sGA optimises not only the parameters of the weighting
functions but also the structure. This is done by means of the multilayered
chromosome structure characteristic of sGA, where some control genes can activate
and deactivate sets of parameter genes. Thus, the sGA optimises the parameters
shown in the previous Table 6.22, and also the control genes (wu and wr) that define
the structure of the weighting functions of the error signals (see Table 6.23). The
weighting functions for the actuator signals have been preset to be just gains as in the
normal GA optimisation. Hence, the 13 parameters to optimise by the sGA are as
follows:

Table 6.23: Parameters to Optimise for Roo Control Using sGA

As for the GA optimisation all the parameters are encoded to be positive values to
ensure stability and minimum-phase characteristics.

The control genes Wu and Wr define the structure to be used for Wu(s) and W,(s) as
shown in Table 6.24, being t equal to u or r:

Table 6.24: Structures Represented by the Control Genes

W; W,(s)

0 Kt'

K:
1 --'-

s+P;

2
K;.(s+a;)

s+P;

3
K;.(s+a;)

(s+pJ(s + y; )
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6.6.2. GA PARAMETRIC OPTTh1ISATION
6.6.2.1. Optimisation Without Waves: Simulated and Real Results

The best result of the 15 runs of the GA provided a cost value of 1.6 with the ~
gains shown in Table 6.25. The GA has converged in 32 generations (see Figure C.9
in Appendix C). It is remarkable how the generation of convergence is far later than
in any of the previous GA optimisations, showing the difficulty of the problem.

Table 6.25: Best lim Results - GA Optimisation Without Waves

tc; au Pu Yu Kr' ar pr Yr
0.9276 98.92 0.2171 0.01999 0.2901 5.63 0.05868 0.06149

KtJ Kt2 Kt3

0.03675 560.7 0.0532

After averaging the parameters obtained through the 15 runs yields:

Table 6.26: Average and Standard Deviation Ha, Results
GA Optimisation Without Waves

Ku' au flu Yu
Avg StDev Avg StDev Avg StDev Avg StDev

134.773 349.178 1095.75 2441.71 25.5077 34.5249 9.3520 26.1045

Kr' ar pr Yr
Avg StDev Avg StDev Avg StDev Avg StDev

202.316 738.750 64.6526 223.283 7.5127 23.5635 6.1168 15.6352

KtJ Kt2 Kt3

Avg StDev Avg StDev Avg StDev

3.4517 12.8174 1019.2729 1627.9833 0.0478 0.0208

Looking at the standard deviation values from Table 6.26 it can be seen that the
results obtained in the various GA runs are very different. This can be caused by a
very flat search space where large variations in the genotype do not alter the cost
function much (i.e. a plateau). Also the difficulty in the optimisation problem might
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be causing the GA to converge to non-optimal solutions. If an individual results in a
non-admissible controller it is assigned a very large cost value (i.e. a penalty).
Therefore if that occurs often it can be misleading for the GA, which cannot
discriminate between all these individuals with the same cost.

The next Figure 6.25 shows the performance of the ILo controller when using the
weighting functions from Table 6.25.
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Figure 6.25: Simulated Results of the ILo Controller GA Optimised Without Waves

The simulated results from the previous graph are good. The heading tracking is
slightly worse than in previous controllers but the overall performance is very

satisfactory.

The responses obtained once this controller was implemented in the real plant and
tested in calm waters are shown in Figure 6.26.
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Figure 6.26: Real Results of the Ro Controller GA Optimised Without Waves When
Manoeuvring in Calm Waters

The responses shown in the figure are very unsatisfactory. After an initial stage of
instability the ship manages to follow the desired responses, although the tracking is
very poor (especially in the heading response) and the actuator usage is excessive.
tThe results obtained are still better that those of the manually tuned lL" which are
totally unstable (see Figure 4.28). Figure F.7 in Appendix F shows the simulated
responses obtained when the reference signals used in the real testing are used in
simulation. As in previous cases the differences are extremely significant. The real
results for Ha:, were obtained using the improved facilities; therefore they are free of
the noise that characterised the responses of previous controllers.

Figure 6.27 shows the responses obtained using the optimised Ha:, controller from
Table 6.25) when the manoeuvre was conducted in the presence of waves in the
water tank. It can be observed that the inclusion of waves does not affect
significantly a very poor performance.
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Figure 6.27: Real Results of the Roo Controller GA Optimised Without Waves When
Manoeuvring in the Presence of Waves

6.6.2.2. Optimisation With Waves: Simulated and Real Results
The GA with waves has converged in the last generation (see Figure C.10 from

Appendix C) to a cost value of33.4 with the following Roo gains:

Table 6.27: Best Roo Results - GA Optimisation With Waves

Ku' au Pu Yu Kr' ar Pr Yr

3.465 8.215 0.06798 16.97 0.058 0.6639 0.0587 0.01419

Ko Kt2 Kt3

0.00698 0.4741 0.0133

Averaging the parameters obtained through the 15 runs gives the values from Table
6.28. As in the optimisation without waves the tables show disparity among the
results from various GA runs.
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Table 6.28: Average and Standard Deviation Roo Results
GA Optimisation With Waves

x;' au Pu ru
Avg StDev Avg StDev Avg StDev Avg StDev

61.3889 185.364 1010.02 2667.48 16.2042 30.7471 18.5001 29.97

K/ a; Pr rr
Avg StDev Avg StDev Avg StDev Avg StDev

0.3167 0.4563 14.2571 40.9211 12.l895 30.8155 0.0433 0.0576

KtJ K'2 Kt3
Avg StDev Avg StDev Avg StDev

0.0286 0.0324 1928.6634 3039.3280 0.0321 0.0333

Figure 6.28 illustrates the simulation results of the Roo controller from Table 6.27.
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Figure 6.28: Simulated Results of the Roo Controller GA Optimised With Waves
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The plots illustrate the degradation in surge speed tracking previously observed in
the optimisations with waves. As in Figure 6.25 the heading tracking is worse than
for other controllers.

Figures 6.29 and 6.30 show the responses obtained when the Roo controller has been
implemented in the real plant. Figure 6.29 presents the responses obtained with the
Roo controller from Table 6.27 when manoeuvring in calm waters.

0.3 200................. Cl

~ 0.2 Ql
I

I ~ 100 I •I ----T-------;-------.-
I I Cl I~0.1 - -- -~-------f-------~------ .=._ I I I -c

:::li • I I ca 0en 0 I I I Ql---,-------T-------~------ ...c• I I -50
0 40 80 120 160 0 40 80 120 160

0.1 - 100- 0)en m...... -cE .._........ ._ 0._ c
0 ._._.... m._
Ql

~ -100Q)
Cl -a....
:::li ca
en -0.1 ~-2DO0 50 100 150 0 40 80 120 160

5 40-- E 206- ~~ 0 ........
:::li

~ aca... ca...
-5 -200 40 BD 120 160 0 40 BD 120 160

time(s) time(s)

Figure 6.29: Real Results of the Roo Controller GA Optimised With Waves When
Manoeuvring in Calm Waters

Once more the responses obtained with the Roo controller are very poor. In this case
the heading performance is especially bad with an initial overshooting that makes the
boat spin before starting to follow the desired response. Figure F.S in Appendix F
shows the simulated responses to be expected when tracking the zig-zag manoeuvre.
The discrepancies are very significant.
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Figure 6.30 illustrates the effect that has on the system the inclusion of waves while
performing the manoeuvre. The response is so poor that adding waves does not
degrade it significantly.
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Figure 6.30: Real Results of the Rx, Controller GA Optimised With Waves When
Manoeuvring in the Presence of Waves

6.6.3. sGA STRUCTURAL OPTIMISATION
6.6.3.1. Optimisation Without Waves: Simulated and Real Results
Once run 15 times, the GA that provided the best result has converged in 24
generations (see Figure C.11 in Appendix C) to a cost value of 1.6:

Table 6.29: Best Rx,Results - sGA Optimisation Without Waves

x; au Pu Yu Kr' ar Pr Yr
450 0.09 0.02749 0.09789 0.969 0.9972 0.00002 0.07061

Ktl Kt2 Kt3 Wu Wr

0.01701 0.557 0.03378 1 3
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The values obtained for the control genes mean that for the surge speed error the
weighting function is a first-order transfer function with a gain equal to K;' and a
pole at -Pu (the values au and Yuare deactivated). while the weighting function for
the yaw rate error is a second-order transfer function (with a gain of K;' and poles at
-Pr and -Yr) with a zero at -a;

After averaging the parameters obtained through the 15 runs the following values are
obtained:

Table 6.30: Average and Standard Deviation Hoo Results
sGA Optimisation Without Waves

x;: au flu ru
Avg StDev Avg StDev Avg StDev Avg StDev

55.8139 1174.19 1174.19 2513.53 0.03875 0.05767 1472 3295.18

s; ar Pr rr
Avg StDev Avg StDev Avg StDev Avg StDev

1.25536 2.0921 632.75 2251.98 46.7332 174.753 726.782 1769.78

Kt] Kt2 Kt3
Avg StDev Avg StDev Avg StDev

0.01715 0.02737 846.856 2296.759 0.029275 0.0434

The averaged results shown in Table 6.29 are not very significant since the control
genes converged to different values, resulting in different weighting structures. Some
of these parameters are deactivated in the controller and therefore might have a
totally irrelevant value. The general tendency was to have a first order transfer
function as the weighting for the surge speed error (Wu(s», i.e. Wu = 1, and a second
order with one zero weighting function for the yaw rate error (Wr(s», i.e. Wr = 3.

Next Figure 6.31 shows the simulated results obtained with the controller from Table
6.29 while tracking a simultaneous double step.
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Figure 6.31: Simulated Results of the Roo Controller sGA Optimised Without Waves

If comparing the results obtained with GA and sGA when optimising the Ho
controller just by visual inspection of Figures 6.25 and 6.31, they are practically the
same. Taking into account the cost function of the solutions, sGA provided a
equivalent cost value (1.5653 versus 1.5807) using a more simple weighting
structure.

Figures 6.32 and 6.33 show the responses obtained when the Roo controller sGA
optimised without waves is implemented in the real plant. Figure 6.32 illustrates the
performance of the controller when manoeuvring in calm waters.
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Figure 6.32: Real Results of the He Controller sGA Optimised Without Waves When
Manoeuvring in Calm Waters

As it can be seen in the picture the system goes unstable when the He controller
optimised using sGA is implemented. The commanded forces go to infinity and
therefore they are not plotted in the figure. This has been also the case when the
manually tuned He controller was implemented. The manoeuvre has been stopped
after 80s to avoid damages to the ship. The mathematical model did not provide
satisfactory results in this case since the simulations of the double step manoeuvre
(Figure 6.31) and the zig-zag manoeuvre (Figure F.9 in Appendix F) did not reflect
the stability problem experienced when using this methodology.

Figure 6.33 present the results obtained when the He controller was tested in the
presence of waves. As expected the results shown in Figure 6.33 further confirm the
instability of the controller.
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Figure 6.33: Real Results of the lLo Controller sGA Optimised Without Waves When
Manoeuvring in the Presence of Waves

One of the reasons for this poor stability performance of the lLo controller could be
related to numerical factors of the stability conditions. One of the conditions that has
to be met so that the lLo controller is internally stabilising is that the matrices X2 and
Y1 (solutions to the AREs defined by the Hamiltonian matrices IL and JCXl) are
invertible (see Equations (4.40), (4.44) and (4.45)). By defmition a matrix is non-
invertible if its determinant is zero. This creates a computational problem: how small
a number has to be to be considered zero? It has been found out that the value of that
tolerance is key to the lLo design, in the sense that variations in those numerical
values lead to completely different results. Simulations have been run varying such
tolerance in the range from 10-3 to 10-20. The results show that making the tolerance
bigger (i.e. imposing a more strict stability condition) degrades controller
performance (i.e. the resulting cost values are higher). On the other hand, making the
tolerance smaller improves the resulting cost values but it gives stability problems
once the controllers are implemented in the real plant.
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6.6.3.2. Optimisation With Waves: Simulated and Real Results
The best result of all runs of the GA with waves provides a cost value of 11.7 with
the ~ gains shown in Table 6.31. The GA has converged in 41 generations as it can
be observed in Figure C.12 in Appendix C.

Table 6.31: Best ~ Results - sGA Optimisation With Waves

s; au Pu Yu Kr' ar pr Yr
0.09952 3009 0.007 26.6 0.09431 3.67 0.0308 6560

KtJ Kt} KtJ Wu Wr

0.00398 5509 0.0402 1 2

Since the control genes are set to 1 for propulsion and 2 for heading, the weighting
function for the surge error is a first-order transfer function (gain equal to K;' and
pole at -{3u). The weighting function for the heading is a first-order transfer function
(gain equal to K,' and pole at -Pr) with one zero at -ar. The values Yu, au and Yr are
deactivated.

The sGA has converged to solution that provides a smaller cost value that the one
obtained with GA (11.7 versus 33.4) with a lower order controller. The inclusion of
waves imposes bigger changes in the propulsion subsystem than in the navigation.

After averaging the parameters obtained the values in Table 6.32 are obtained:

Table 6.32: Average and Standard Deviation Rx,Results
sGA Optimisation With Waves

x; au {3u Yu
Avg StDev Avg StDev Avg StDev Avg StDev

89.3352 183.918 1198.12 2403.58 0.05219 0.08321 3024.50 3730.71

Kr' ar Pr Yr
Avg StDev Avg StDev Avg StDev Avg StDev

0.2166 0.2631 225.347 285.412 173.15 345.552 470.289 1631.24

Ktl Kt} KtJ
Avg StDev Avg StDev Avg StDev

0.018665 0.01995 1705.825 2731.34 0.04386 0.05934
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The following Figure 6.34 presents the results obtained when simulating the solution
from Table 6.31.
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Figure 6.34: Simulated Results of the Rc Controller sGA Optimised With Waves

Comparing Figures 6.28 and 6.34 it can be concluded that the performance of the Ho
solution obtained using sGA when disturbances are included in the optimisation is
better than solution obtained with the standard GA in the optimisation with waves.
The propulsion tracking is more accurate and the heading tracking less oscillatory.

Figure 6.35 and 6.36 show the responses obtained when the optimised Rc controller
from Table 6.31 is implemented and the zig-zag manoeuvre performed in the real
plant. Figure 6.35 shows the results obtained when the controller is tested in calm
waters.
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Figure 6.35: Real Results of the Ho Controller sGA Optimised With Waves When
Manoeuvring in Calm Waters

The figure reflects the same stability problem that has already been encountered in
the manually tuned H, controller and in the !Lx, controller optimised without waves
using sGA. The commanded forces go to infinity and the boat starts spinning. The
manoeuvre had to be stopped after 80s in order not to damage the boat. As in
previous cases the simulated results obtained when using the same references than in
the real testing (see Figure F.10 in Appendix F) have not reflected the stability
problem at all.

The responses shown in Figure 6.36 correspond to the testing of the sGA-optimised
fLo Controller real implementation once waves are generated in the water tank. As
expected the figure further confirms the instability problem already encountered in
Figure 6.35.
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Figure 6.36: Real Results of the ~ Controller sGA Optimised With Waves When
Manoeuvring in the Presence of Waves

6.6.4. SUMMARY OF a,RESULTS
The main problem encountered in the optimisation of lL.o has been the disappointing
performance of the controllers once they have been implemented in the real plant.
The reason could lie in numerical factors related to the stability conditions imposed
while designing the controller. The simulation results are, though, quite good.

When comparing the simulated performance of the controller solutions obtained with
GA versus those obtained with sGA, it seems quite clear the advantage of using sGA
for this kind of optimisation problem since it provides better tracking with more
simple weighting functions (i.e., lower order in the controller). However, once
implemented in the real plant the controllers optimised using sGA perform worse
than those optimised using GA, i.e. they become totally unstable.

Once more the results obtained in the optimisation with waves show a degradation of

surge speed tracking.
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6.7. SUMMARY

Table 6.33 summarises the cost values obtained in the optimisation with and without
waves of the control procedures used in the chapter.

Table 6.33: Summary of Cost Values
PID PP SM+PI SM Rx, (GA) n, (sGA)

w/o waves 1.2 0.96 4.5 4.5 1.6 1.6
with waves 4.3 10.6 10.5 11.5 33.4 11.77

As it can be seen from the table the best results obtained in the simulation correspond
to PID and Pole Placement controllers. However, once implemented in the real plant,
the performance of the controllers varies significantly. The accuracy of the
mathematical model raises doubts since the stability problems encountered in the Rx,
controllers and the PID and SM+PI optimised with waves controllers are not
reflected at all in the simulations and, therefore, the optimisation process could not
do anything to correct for these effects. This emphasises the importance of an
accurate model. With the exception of these stability problems, all the controllers
have performed well when implemented in the real plant without any need for further
retuning. Tracking of heading was generally good and propulsion results were
reasonably good. Overall, SM optimised without waves provided a very consistent
good performance, despite of being outperformed by other controllers in the
simulations as it can be seen from Table 6.33.

When the controllers obtained in the GA optimisation without waves are tested in the
presence of waves the tracking performance does not degrade significantly, the main
effect of the waves is the noise induced in the commanded forces (especially 'r}).

Regarding the optimisation carried out with waves, the objective was to ensure that
the GA gives a more robust controller (i.e. an improved performance in presence of
environmental disturbances). However, if comparing the performance of the
controllers optimised with and without waves, it can be observed that those
controllers optimised with waves do not provide a better performance but a reduction
in control effort. They are also characterised by a very poor propulsion control (even
leading to instability in two cases, SM+PI and PID). The GA concentrates on
reducing the ripple in 'r} (the main effect of the waves) to improve the cost function
value and that degrades the performance of the propulsion controllers. On the other
hand, the navigation subsystem is less sensitive to the effect of waves. Consequently,
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the resulting heading controller parameters are less modified by the GA when
introducing waves in the optimisation. This can be due to the sluggish propulsion
dynamics. The controller tries to react to the noise but due to the slow dynamics,
overcompensates and ends up producing all these oscillations.

As a result, the advantage of including noise in the simulation lies in obtaining
controller solutions with smoother control signals that are able to reduce wearing and
tear of actuators more than robust performance against external disturbances.

The proposed sGA model has performed well as a structure optimisation technique in
simulation. It has provided better results than those obtained with GA while reducing
the order of the weighting functions and, as a result, the order of the controller. The
sGA results prove that the method can be of assistance when identifying appropriate
weighting functions orders. However, the real performance of the sGA-optimised
controllers has been very poor.
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CHAPTER7

GENETIC PROGRAMMING:
AN IMPLEMENTATION IN MATLAB

7.1. INTRODUCTION

The standard GA conditions the search space before the optimisation starts and it is
an artificial representation of the solutions because it involves a fixed-length string
representation. The operators of GAs defined by Holland (1975) and Dejong (1975)
have the advantage of neatness and easy implementation, but parsimony and tidiness
are human concepts, nature's approaches to evolution are untidy and disorganised.
In the GA community there have been various attempts of providing more flexibility
to the GA by changing the representation of solutions and allowing a dynamical
evolution of the size and shape of solutions. Researchers have looked for more
flexible encodings for the representation of solutions such as Messy Genetic
Algorithms (mGA) [Goldberg et al. (1989)]. The individuals in mGA are encoded as
variable length strings and the genetic operators are altered according to this
representation. The Structured Genetic Algorithm (sGA) from Section 5.3 is another
example of variation in the representation of the solutions. Although the length of
the chromosome is fixed, the control genes can activate and deactivate sets of genes
so that the effective length of the chromosome varies among the individuals and
along the generations. However, the most recognised of all these attempts to give
more flexibility to the representation of solutions in genetic optimisation is Koza's
(1992) creation, Genetic Programming.

When introducing Genetic Programming (GP) in 1992, Koza recalled that the main
point in his work was to prove that: "genetic programming provides a way to search
the space of possible computer programs for an individual computer program that is
highly fit to solve a wide variety of problems from many different fields."
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Computer programs are complex and hierarchical structures created by man that
have proven to be able to solve a large number of problems in many different fields.
Koza (1992) uses the term to describe any hierarchical solution from a mathematical
identity to a game strategy. In this context a tool is sought that allows the solution of
problems without specifying a priori the size, shape and structure of such a solution,
i.e. the issue is to find an instrument for searching the space of possible computer
programs to find a near optimal one.

Hence, GP is an evolutionary search technique based in the idea that, in nature,
structures suffer adaptation to the environment. The structure created over a period
of time is the outcome of natural selection and sexual reproduction.

In the control problem being tackled here the optimised computer program will
provide a control strategy. Using the states of the system to control as an input, the
outcome of the program will be the actuator's commanded signal. Therefore, the
optimisation problem of finding a near-optimal controller is taken a step forward. By
using GP the structure of the whole controller will be optimised.

Two of the main flaws encountered by GP researchers have been the code bloat (or
tendency ofGP solutions to grow quickly in size) [Koza (1992), Luke (2000c)] and
how to generate the numerical constants necessary for the solution of most GP
problems [Koza (1992), Esparcia-Alcazar (1998), Fernandez and Evett (1998)].

The code bloat problem has received lots of attention from the GP community
[Angeline (1994), Koza (1992), Langdon and Poli (1998), Luke (2000a), (2000c),
Nordin et al. (1996), Soule and Foster (1998), Tackett (1994)]. It is a serious
problem that causes waste of computer resources and slows down the optimisation.
This chapter includes a review of the most common theories about code growth and
the techniques to control it.

In order to deal with the issue of the generation of numerical constants, two kinds of
GP algorithms have been implemented. The first one chooses the constants
necessary to create the controller structure by random generation (GP+RG) [Koza
(1992)]. The second GP algorithm includes a GAs technique for the optimisation of
such constants (GP+GA) [Howard and D'Angelo (1995)].

Chapter 7 includes a description of GP from a theoretical point of view together with
a description of how the two GP algorithms (i.e. GP+RG and GP+GA) have been
implemented in Matlab for the solution of the control problem of the heading and
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propulsion dynamics of CyberShip n. The results obtained with the GP optimisation
are shown in Chapter 8.

The outline of Chapter 7 is as follows. Section 7.2 describes GP general structure,
the representation of individuals and GP main operators. Section 7.3 presents the
implementation in Matlab of the GP for the CS2 control problem. It illustrates both
approaches for the creation of numerical constants: random generation and GAs
optimisation. Finally, Section 7.4 summarises the chapter.

7.2. GENETIC PROGRAMMING OPTIMISATION

7.2.1. GP TREE REPRESENTATION
The main difference between GAs and GP rests in the individuals being evolved.
With classic GAs the individuals that are evolved are represented by one-
dimensional strings. Since the aim of GP is to search the space of computer
programs, the individuals being evolved are hierarchical structures with no
predefined size or shape [Koza (1992)].

Prior to the optimisation process the user has to define which functions and
terminals are relevant for the problem to solve. This choice defines the search space
for the problem in question. In order to obtain a solution for the problem the GP
requires that all the functions and terminals needed to express the solution are
included in the set of terminals and the set of functions. This is called the sufficiency
property [Koza (1992)]: the set of terminals and the set of functions have to
comprehend the terminals and functions necessary to express a solution to the
problem. However, the search space size grows exponentially with the number of
terminals and functions. Therefore the addition of numerous extraneous functions
and terminals, in general, degrades the performance. Thus, the user must be very
careful in the selection of the elements in the terminal and function sets to balance
the trade-off between sufficiency and performance degradation.

Traditionally, the structure being evolved in GP has a tree shape [Koza (1992)]. This
tree is formed by internal and external nodes. Once a set of functions and a set of
terminals are defined, the internal nodes of the tree are occupied by functions while
the terminals take the external nodes. This tree structure is a hierarchic structure that
replaces the role of the parenthesis in normal algebraic notation.
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For instance, the expression y (x+2), would be represented as shown in Figure 7.1,
where the set of functions would be F={ +, *} and the set of terminals T={x, y, 2}.

Figure 7.1 :Example of Tree Representation

Another important issue to take into account when choosing the functions and
terminals is the closure property [Koza (1992)]. The closure property says that each
function has to be able to take as an argument any value and data type returned from
the evaluation of any function or from the terminal set. For example, the division
function has to be implemented in a way that can take a zero as a denominator
without returning an error. Usually this is done by setting the division operator to
return a fixed 0 or 1 value when the denominator is zero.

7.2.2. GP STRUCTURE
The flow chart of GP is identical to that of GAs. Initially, a population of trees is
created at random. Each individual in the population is evaluated using a cost
function. The individuals that performed better in the evaluation process have more
possibilities of being selected for the new population than the rest. The individuals
of this new population typically show better performance than those of the previous
one, since the best individuals have a better chance of being selected for
reproduction. Once the new population is created, the individuals are subject to the
genetic operators of crossover and mutation with a certain probability. The loop is
run until a certain termination criterion is met [Holland (1975), Koza(1992)].

The following Figure 7.2 shows the typical flow chart of a GP:
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Figure 7.2: Flow Chart ofa GP

7.2.3. GP INITIALISATION
The initialisation process is more complex than for GAs due to the increased
complexity of the individuals' representation.

In his pioneering work Koza (1992) presented three methods of initialising the
population:jUll method, grow method and ramped half-half.

The full method involves creating trees with a fixed length between the root and
every terminal node.

The grow method involves creating trees with a specified maximum length between
the root and every terminal node. Thus, the shapes of the trees in the population
show a bigger diversity.
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The ramped half-half method creates an equal number of trees for every length value
from 2 until the maximum. For each length value half of them are created using the
full method and the other half using the grow method. Koza (1992) used the ramped
half-half in his experiments because of the wide variety of shapes it creates.

Luke (2000b) argues that the classical initialisation algorithm (used as well for the
randomly created subtrees in the mutation operator) leads to very large tree sizes.
Unless very careful choice is made of the probability of selection ofan internal node
over a terminal node and the number of arguments the functions require, the
expected size of a tree tends to infinity. Luke (2000b) presented two new creation
algorithms for GP that allow a better control of the tree size. The advantages of these
algorithms over the generally used grow method are: user control over the tree size;
user-defined probabilities of occurrence of functions and terminals in the trees; and
very low computational complexity. From my point of view the main criticism of
this method is that when the user is given so much choice the search is biased
towards the direction the user is pointing, which might not be the right direction.
Again there is a trade-off between flexibility and domain knowledge.

7.2.4. GP SELECTION
As with any evolutionary technique, the selection operator is used to determine
which individuals are going to pass to the next generation. GP algorithm evaluates
every solution tree and assigns a cost according to its performance. The selection
procedure favours the selection of those individuals that obtained a better cost.

Selection methods used in the GP literature are equivalent to those of GAs. The most
popular methods are roulette-wheel selection (used by Koza (1992) in his examples)
and tournament selection [Chellapilla (1997), Luke (2000a)].

Tackett (1994) makes a comparison study of selection methods in Chapter 4 of his
thesis. He studies the effect of the selection operator in the context of noisy and
under-sampled data. Using tournament selection as a basis, he examines the
differences in performance due to distributed selection and steady-state selection.
The final conclusion of this study is that the differences in performance between the
selection mechanisms studied are minor.

7.2.5. GP CROSSOVER
The most popular form of crossover is what has been called subtree crossover [Koza
(1992)]. Two individuals are selected from the population. A crossover node is
chosen at random in each parent and the whole subtrees rooted at those nodes are
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swapped, as shown in Figure 7.3. Typically, the offspring generated will have
different shapes and sizes than their parents. As opposed to GAs, the two offspring
created by crossing two identical parents usually are different, unless both crossover
points are the same. This feature of GP provides a bigger diversity in the population.

Crossover

/.\ ;oints\ /.\•/.\ •
•

PARENTS

OFFSPRING

Figure 7.3: Subtree Crossover

Other variants of the subtree crossover include a non-leaf selection bias [Koza
(1992)] or the greedy recombination operator [Tackett (1994)]. The non-leaf
selection bias ensures that once a tree has been selected for crossover, the probability
of a terminal node being chosen as a crossover point is 10010, as opposed to a 90%
probability of choosing an internal node as the crossover point.

The novelty of the greedy recombination operator is that every couple of parents
produces n pairs of offspring, instead of a single pair. Then all the individuals in the
offspring are evaluated and only the pair that obtained the best cost of all is chosen
as offspring while the rest are rejected. To reduce computational cost the evaluation
process used to evaluate the offspring is normally shorter than the one applied to the
population. However, for many control problems evaluation just takes too long to
implement this kind of operator.

Typically, the probability of crossover is between 80-95% [Koza (1992)].
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7.2.6. GP MUTATION
The tree structure of GP solutions allows a variety of mutation operators.

The standard mutation operator is subtree mutation [Koza (1992)]. It selects a
mutation point at random, removes the subtree at that point and inserts a randomly
generated subtree (see Figure 7.4). As in the crossover case a maximum permissible
depth is chosen that determines the maximum size of the mutation subtree .

•I-
• I \•Randomly

Generated
Branch

Figure 7.4: Subtree Mutation

The point mutation operator (or substitution) [O'Reilly (1995)] replaces the chosen
node with another function of the function set with the same number of arguments if
the chosen node is an internal node or with a terminal of the terminal set otherwise
(see Figure 7.5).

•I.
~ / \
~Randomly •

Generated
Node / \•

Figure 7.5: Point Mutation
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Other mutation operators are those presented by Chellapilla (1997) and Angeline
(1997). They consist of several suboperations applied sequentially. These
suboperations are variations of the subtree mutation and the point mutation. Some of
these variations (under different names) include: replace the tree whose root is the
chosen node by its largest subtree; or replace the chosen node with another function
or terminal of the function and terminal sets using the tree whose root is the chosen
node to act as the first argument; or swap the order of two arguments of a node
randomly chosen; or perturb those terminal that are a numerical constant.

7.2.7. GP TERMINATION CRITERION
Mainly there are two ways of terminating the optimisation. If the optimal cost value
is known, the simulation is run until an individual succeeds in reaching that value,
but that requires a priori knowledge. Otherwise the simulation is run for a
predetermined number of runs.

Once the simulation is over the result obtained is either the best so far if a record has
been kept of previous generations or the best of the final generation.

7.2.8. GP GENERATION OF NUMERICAL CONSTANTS
The choice of the numerical constants necessary in the solution of the problem
tackled with GP has generated much discussion [Koza (1992), Esparcia-Alcazar
(1998), Fernandez and Evett (1998), Howard and D' Angelo (1995)].

Koza (1992) proposed the inclusion in the terminal set of what he called an
ephemeral random constant: "whenever the ephemeral random constant R is chosen
for any endpoint of the tree during the creation of the initial random population in
generation 0, a random number of a specified data type in a specified range is
generated and attached to the tree at that point." Along the GP search these constants
can be combined using the functions in the internal nodes to create new ones (for
example, the addition of two ephemeral random constants creates a new numerical
constant). Constants can also be created by arithmetical combination of non-numeric
terminals (for example, a variable divided by itself creates the constant 1).

Obviously this is not a very efficient way of creating new constants as various
authors have pointed out [Esparcia-Alcazar (1998), Fernandez and Evett (1998),
Howard and D'Angelo (1995)]. The main drawback of this approach is that the
number of constants depends totally on the initialisation of the trees. Since Koza
(1992) considered a zero probability of mutation, numerical constants can be
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eliminated but not created. Also, the initial value these constants take cannot be
altered along the optimisation by any operator.

Various other approaches can be found in the literature that address the problem.
Fernandez and Evett (1998) use a variation ofKoza's random generation. In order to
avoid the problem of not being able to vary the numerical constants, the method they
propose is a numeric mutation that is applied to part of the population. All the
numeric terminals are altered by a value depending of the cost of the best individual
in the population. The fitter the individual, the smaller the range of change.

In her thesis dissertation Esparcia-Alcazar (1998) presents the concept of node
gains. A node gain is a numerical parameter that multiplies the output value of a
node. Every tree is associated with a vector of parameters with as many elements as
nodes are in the tree. This approach simplifies the problem of the placement of the
numerical constants and their possible elimination from the tree. However, the
computational cost and complexity of the representation is substantially increased.
Also, it does not avoid the need for numerical constants in the terminal set for
functions such as addition or subtraction (for example, for the identification of the
functionj(x) = x + 4, it is necessary to include a terminal with the value 4, there is
no gain value multiplied by x that would provide a satisfactory result}.

Other authors have included a secondary optimisation method for the tuning of the
numeric parameters in the GP tree. For instance, Gray et al. (1998) included a
combined Nelder-Simplex and Simulated Annealing method, and Bastian (2000)
used a downhill simplex. Howard and D'Angelo (1995) combined a GP with a GA.
The authors associate a GA-like fixed-length chromosome that represents the
numerical values of the solution, although they mayor may not be present in the
tree. The fixed-length chromosome is evolved together with the tree and it is
submitted to crossover with other chromosomes and mutation. The main problem
that this approach has is that the fixed-length of the chromosome determines the
maximum number of numerical constants that can be found in the tree. This requires
a priori knowledge of the solution. Also, if the chromosome is made to be very long
just to account for any additional constant that can be necessary, the length of the
chromosome will hamper the correct evolution of solutions and it will also increase
the computational cost.

7.2.9. SIZE PROBLEM IN GP
One of the main problems encountered by GP researchers is that of code bloat [Koza
(1992), Luke (2000c)]. Luke (2000a) defines it as: "the tendency of candidate
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program solutions to grow in size independent of any corresponding increase in
quality" (i.e. the size of trees grows out of control but many of the subtrees do not
actually contribute to the final solution). This flaw causes waste of computer
resources evaluating huge trees, difficulties in the understanding of the final
solutions and spoils the convergence by hampering the modification of trees in a
meaningful way.

A variety of approaches to tackle this problem appear in the literature, see
Bhattacharya and Nath (200l) and Luke (2000c) for a review of the topic.

The most popular method to date for controlling bloat is the imposition of size limits
proposed by Koza (1992): depth limitation for the generation of individuals in the
initial population, depth limitation in the generation of subtrees for subtree mutation
and restriction of the crossover and mutation operators so that children larger than
the permissible size are not included in the population.

The second most common method consists of the inclusion of structural complexity
in the cost function [Koza (1992), Shimooka and Fujimoto (1998)]. The problem is
that when parsimony is included in the cost function, considerably more individuals
must be process in order to find a good solution [Koza (1992)].

Finally, other authors either modify existing genetic operators or create new ones.
Koza (1992) introduces an editing operator that periodically would simplify the
trees, eliminating the subtrees that do not add anything to the final solution (for
examples, subtrees that are multiplied by zero). He did not use it in his algorithm
because the test did not show conclusively any benefit for its inclusion (drawbacks
were not proved either). Luke (2000b) presents two methods for the initialisation of
trees that allow control over the expected tree size (see Section 7.2.3). Ekart (2000)
introduces a mutation operator that modifies the structure but does not alter the cost
of a tree (i.e. it performs the algebraic simplification of the tree expression), in a
similar way to Koza's editing operator. Van Belle and Ackley (2002) create a special
operator called uniform subtree mutation to prevent bloating. It consists of the
application of standard subtree mutation a binomially distributed number of times.
This binomial distribution is based on the size of the tree. This mutation operator
increases the probabilities of undergoing mutation of the nodes in larger trees.

Many of the theories explaining this bloat phenomenon are based on the concept of
introns, areas of code that can be removed without altering the evaluation of the
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solution, i.e. they are redundant [Angeline (1994)]. The main theories linking code
bloat with introns are: hitchhiking, defence against crossover and removal bias.

The hitchhiking theory is the brainchild of Tackett (1994). In this work the author
proved that random selection in conjunction with random crossover does not cause
code growth and therefore it is concluded that fitness is the cause of the increasing
of the size. The preservation of important bits of code by the crossover operator
leads to introns or hitchhikers attached to these important bits being propagated
along the generations with them.

Defence against crossover theories [Nordin et al. (1996)] go a step further. They
argue that the role played by the introns is that of increasing the number of nodes of
the tree, making it more difficult to destroy with crossover.

Removal bias is similar to defence against crossover but it adds a bias towards
removing small subtrees (smaller than the introns) for preservation purposes. Thus
there is a tendency of removing small subtrees but there is not such a bias in the size
of the replacing subtrees leading consequently to bigger trees [Soule and Foster
(1998)].

The main code growth theory not based on introns is the diffusion theory [Langdon
and Poli (1998)]. This theory relies on the idea that in the search space there are
more big tree structures than small ones. Thus during the search process the GP will
tend to find bigger trees.

Lately, Luke (2000c) has studied bloat quite extensively. In his paper he presents
experimental evidence against the claim that it is the crossover between introns that
causes the bloat problem, concluding that: "tree growth is the cause of inviable code
growth", not the consequence. The mechanism he proposes to explain code growth
is a generalisation of the removal bias theory. Usually there is an inverse relationship
between the depth of a node and its influence on the cost value generated in the tree
evaluation. Therefore, in very fit individuals there is a bias towards choosing deeper
crossover points that will not damage the evaluation of the tree. Such a bias has two
consequences, on one hand it can promote larger parents and, on the other hand,
removed subtrees rooted in a deep node are more likely to be small, but the inserted
subtrees have no such size bias.
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7.3. GP IMPLEMENTATION IN MATLAB FOR A CONTROL PROBLEM

7.3.1. GP TREE REPRESENTATION IN MATLAB
GP algorithms were originally coded in LISP. Koza (1992) explains some of the
advantages of using LISP language for GP (such as the common form for programs
in LISP S-expressions, being equivalent to a tree structure), although he points out
that GP is not inherent to LISP, it can be coded in any other language chosen. One of.
the most popular options has been C++ [Fraser (1994), Singleton (1994)]. C++
provides the programmer with pointers that facilitate the encoding of trees and, also,
C++ is fast.

Ng (2000) includes an implementation in Matlab of GP. The author describes three
different data structures, which, due to Matlab not accommodating pointers,
represent the candidate trees as linear strings of functions. In Data Structure I, every
function is represented by 4 string cells: two arguments, the function and the result
of the evaluation. Data Structure II shortens the tree to 3 string cells (two arguments
and the function) by using a temporary variable for storing the result during the
evaluation process. Data Structure III lifts the structure one level. A matrix structure
is used where every row is a branch of a tree.

The main disadvantage of all three structures is that the number of shapes that can be
represented is very restricted. Due to the linear evaluation every internal node takes
the previous node as an argument and a terminal node as the second argument. Thus,
the resulting tree structure is as shown in Figure 7.6.

Figure 7.6: Ng (2000) Resulting Tree Structure
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The structure used in this thesis differs from Ng's approach and allows non-linear
tree structures like those proposed by Koza (1992).

The whole population is stored in a cell array, every cell storing one individual. The
tree structure is represented by a matrix whose size is: number of internal nodes x 5.
the classical GA vector structure is given a second dimension and becomes a matrix.
In the GA case the length of the vector is fixed, while in GP the number of rows in
the matrix represents the number of internal nodes and it is evolved along the GP
generations. Every internal node is thus encoded as a 1x5 vector:

Node number Node type 1st argument Function 2nd argument

Figure 7.7: Internal Node Matlab Representation

As seen in Figure 7.7, the first element in the node vector is the node number. The
tree structure needs to be flattened so every internal node is assigned a number. The
nodes of the tree are counted from left to right, upwards. A node is not counted until
all the nodes of the subtrees rooted in it are counted (see Figure 7.8). The second
element in the Matlab vector representation defines the kind of node it is. Since
Matlab does not provide pointers this element distinguishes if the arguments of the
function are terminal nodes or internal nodes (for example, a value of 0 indicates
that both arguments are terminal nodes and a value of 112 indicates that the lit/2nd
argument is an internal node). The three last elements provide the arguments of the
functions (functions chosen have either 1 or 2 arguments) in columns 3 and 5 and
the function itself in column 4. If an argument is a terminal, it is included in the
correspondent position; otherwise the numeric value refers to the number of the
internal node that is rooted there.

The main disadvantage of this representation is that subtree crossover and mutation
in terminal nodes are quite complicated to implement.
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1 0 5 + 6

2 1 1 + 2

3 2 x * 2

Figure 7.8: Matrix Representation ofa Tree

7.3.2. GP OPERATORS USED IN THE IMPLEMENTATION
This section summarises the initialisation, selection, crossover and mutation
operators used in this GP implementation. See Appendix E for the code listings.

The initialisation method used here is the grow method [Koza (1992)]. It creates
trees with a minimum of 5 nodes and a maximum of 15. The maximum depth of a
tree (meaning by depth the number of levels of hierarchy) created in the initialisation
process is 4. This insures a good diversity in the initial population. All the functions
have the same probability of being chosen when creating a tree.

In order to choose the selection method as well as the crossover and mutation
probabilities, a comparison study equivalent to that of GAs has been conducted. The
same genetic schemes from Table 5.3 have been used, i.e. all the possible
combinations of 3 selection methods: elitism, ranking and tournament selection, 3
crossover probabilities: 0, 0.6 and 0.8 and 2 mutation probabilities: 0.05 and 0.1.
Each GP optimisation has been run 6 runs and the results have been averaged.

Best Cost Analysis
The following Figure 7.9 shows the averaged best results obtained. Only the results
from ranking (solid line) and tournament selection (dotted line) are shown because
the results obtained with elitism are well out of the Y-axis scale.
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Figure 7.9: Best Cost Results for all GP Scheme
(dotted line: tournament selection, solid line: ranking selection)

It can be observed from the figure that tournament selection provided the best results
for each combination of crossover and mutation probability. Also, the best overall
result was obtained with tournament selection, a crossover probability of 0.8 and a
mutation probability of 0.1. This result is consistent with the results obtained in the
comparison studies ofGA schemes presented in Chapter 5.

Speed of Convergence Analysis
In the following Figure 7.10 the generations needed for convergence (as defined in
Section 5.4.2 and averaged over 6 runs) obtained for each GP scheme are plotted. As
previously, the dotted line represents tournament selection; the solid line represents
ranking selection and the dashed line, elitism.
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Figure 7.10: Generation of Convergence for all GP Scheme
(dotted line: tournament selection, solid line: ranking selection, dashed line: elitism)

The fastest convergence has been achieved by elitism, but it also converged to the
worst results. For tournament and ranking selection increasing mutation generally
slows down convergence and increasing crossover generally speeds up convergence,
although the variations are not very significant.

Amount of Convergence in the Final Population Analysis
Finally, Figure 7.11 shows the amount of convergence of the final population (as
defined in Section 5.4.2 and averaged over 6 runs) obtained for each scheme. Again
the dotted line represents tournament selection; the solid line represents ranking
selection and the dashed line, elitism.
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Figure 7.11: Amount of Convergence in the Final Population (dotted line:
tournament selection, solid line: ranking selection, dashed line: elitism)

The selection method with a larger amount of convergence in the final population is
tournament selection. This proves the saturation on higher echelons of the
population with solutions with very similar cost values. Therefore there is not
enough diversity for further improvement. On the other hand, elitism shows very
small amount of convergence in the final population. This indicates that, although
the results obtained with elitism schemes are quite poor, there is room for
improvement.

Thus, given the results obtained in the comparison study, the operators used for this
study have been tournament selection, crossover probability of pc = 0.8 and
probability of mutation of pm= 0.1.

Two different mutation operators are included and they happen with a probability of
0.5 each. The first type of mutation operator implemented is subtree mutation [Koza
(1992)]. In subtree mutation a node is chosen at random and whole subtree rooted in
the node is replaced by a randomly created one (see Figure 7.4). The second
mutation operator is point mutation [O'Reilly (1995)]. A node is chosen at random
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and replaced randomly, always respecting the kind of node it is, i.e., terminal node,
2-arguments function or I-argument function (see Figure 7.5).

In order to avoid the problem of over-sized trees that are very difficult to analyse
and waste computer resources, the subtree crossover and mutation operators include
a limitation in size. Therefore, if the crossover or mutation operation implies that the
size of the resulting tree is over the maximum size allowed (30 internal nodes), the
operation does not take place. Also, they only take place in internal nodes due to the
difficulties in the implementation in terminal nodes mentioned in Section 7.3.1.
Point mutation has been included to counteract the effect of subtree crossover and
mutation only affecting internal nodes.

It is important to consider that, given that evaluation of the individuals is the most
time demanding part of a GP run, a considerable amount of computer time can be
saved by not computing the cost for an individual that appears in the present
generation as a result of selection (without crossover or mutation) from the previous
generation (i.e. unchanged individuals).

7.3.3. GP APPLICATION TO THE CONTROL PROBLEM
GP has been applied to the search of a controller structure for the control of the
heading and propulsion dynamics ofCyberShip n. The objective of the control is the
same as in the GA optimisation (i.e. to obtain a good tracking of the desired
response and minimise the use of the actuators). GP does it by evolving tree
structures along the generations. Therefore there is no need for choosing a priori the
size or the shape of the solutions. They are dynamically evolved.

Every solution to the control problem stated will consist of two independent trees:
one for heading control and other for propulsion control (i.e. a decoupled controller).
Given the good results obtained with decoupled controllers in the GA problem
(Sections 6.3 and 6.5) and the fact that it simplifies the GP structure, this two-tree
structure is chosen as the most appropriate.

For comparison purposes, the cost function and manoeuvres are the same as those
used for the GA optimisation of controllers (see Equation (5.1) from Section 5.2.2
and Figure 3.9 from Section 3.5). The best resulting controllers have been also tested
in the water basin facilities in NTNU.
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7.3.4. TERMINAL AND FUNCTION SET
The terminal and function sets have been chosen taking into account the results
obtained in previous chapters with the GA optimisation. The terminal set consists of
4 terms: error, state, reference and one numerical constant. Thus, the propulsion
terminal set consists of the surge error (ep= Ud- u), surge (u) and desired surge (Ud)
plus one numerical constant. The heading terminal set consists of the heading error
(eh = 'I'd - If/J, heading ('I') and desired heading ('I'd) plus one numerical constant.
The terminal sets are shown in Table 7.1.

Table 7.1: Terminal Sets for Propulsion and Heading
Propulsion Heading

surge error (ep) heading error (e,J
U 'I'
Ud 'I'd
R R i

The probability of generating a numerical constant is three times bigger than the
probability of choosing any of the other terminals (i.e. probability of O.5).

The function set is formed by eleven functions that are related to the controllers
described previously,S two-arguments functions,S one-argument functions and one
function that has two arguments when use for heading and only one when used for
propulsion. They can be seen in the next Table 7.2.

Table 7.2: Function Set

Two-argument One-argument One/Two-argument
functions functions functions

arg l- arg2 Jargdt place (-arg)
place (0, -argI, -arg2)

argl + arg2
d(arg)
dt

argI - arg2 argosign(h'(x- xd»

argI / arg2 sin(arg)

arg l- tanh( h'(X-Xd lJ exp{arg)
arg2
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The four basic arithmetic operations {+, -, *, I} are routinely included in most GP
algorithms. The integral and derivative functions were included to account for a PID
type of structure (see Section 4.3). The hyperbolic tangent and sign functions will
allow the construction of switching terms equivalents, similar to Sliding Mode
control (see Section 4.5). The place command was included because of the good
results obtained in the GA optimisation of Pole Placement (see Section 4.4). In
addition, the sine and exponential functions will give more versatility to the
algorithm. Although many more functions could have been added, it was not
advisable, since the performance of the GP algorithm degrades with the addition of
numerous functions [Koza (1992)].

In the hyperbolic tangent and sign formulas from Table 7.2, x = [u] and Xd = [Ud] for
the propulsion control tree, while x = [v, r, 'I'1T and Xd = [Vd. rt/, "'d]T for heading.
The h matrix is the right eigenvector associated to a zero pole for the desired closed-
loop system matrix as defined in Equation (4.19) and calculated based on the best
solution found in the GA optimization of the decoupled Sliding Mode controller (see
Table 6.18). Both functions use one of the arguments as a gain and in that sense they
are similar to the node gain method presented in Esparcia-Alcazar (1998).

The place command returns the value -k ·X, where x is as defined before and k is the
feedback matrix obtained by executing place (0, -argJ, -arg2) in the heading control
tree or place (-arg) in the propulsion control. Since the other functions in the
function set only produce real values, the poles to be assigned are always real

numbers.

Besides, in order to ensure that the closure property is met, some of the functions
have some "protection mechanism", to avoid situations where the solution is not
defined (for example, division by zero). Thus, the division function is encoded so
that if the denominator is 0, the result of the division is set to 1. Also, the hyperbolic
tangent function returns argJ when arg2 is O. The most likely function to give
problems is the place command. It has been set to return 0 if there is any error
message activated (for example if the poles are too close).

7.3.5. TWO WAYS OF GENERATING NUMERICAL CaNST ANTS FOR GP
The generation of numerical constants has been approached in two different ways:

Random Generation of the Numerical Constants
The first GP (GP+RG) algorithm uses Koza's (1992) suggestion of simply
introducing a random constant R in the set of terminals so that every single time this
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terminal is chosen a random number is generated and associated with that terminal
node. The GP should be able to generate other constants needed by using arithmetic
operations to create them. This is a very simple approach but it may raise questions

about the accuracy of the result.

As opposed to Koza's GP that does not use mutation, in this work point mutation has
been included as an operator. This enables the GP to modify the terminal values.
Thus, a numerical constant can change its value and a terminal occupied by a
variable can be mutated into a numerical constant.

The random constants have been generated using the rand command and
multiplying by 100, so that the range covered is [0, 99.99]. This range has been
chosen by inspection of the results typically obtained in the GA parameter

optimisation.

Each GP scheme was run 20 times. The population size used was 120 and the
number of generations was 30. Therefore the population size is larger than for GA
and the number of generations smaller. The recommendation in the GP literature is
to use more and shorter runs with larger populations mainly to avoid the bloat
problem [Van Belle and Ackley (2001), Dracopoulos and Kent (1997)].

GAs Optimisation of the Numerical Constants
The second GP algorithm tested uses a GA as a parametric optimisation technique
combined with the GP. The aim is that the GP+GA algorithm provides a better
parameter adjustment and therefore, hopefully, better results.

The GP+GA hybrid method used in this study is fundamentally different from the
GA-P mechanism presented by Howard and D' Angelo (1995). Instead of associating
a GA chromosome with a GP tree and evolving them together, GP+GA combines a
GP evolution process with a GA learning process, i.e. every time a tree is evaluated
a mini-GA is run prior to the evaluation to optimise the values of the numerical
constants present in that tree. Thus, the individual is able to acquire a better cost
value and, consequently, has better chances of being selected for reproduction. The
big advantage over the Howard and D' Angelo (1995) technique is that the maximum
number of numerical constants in the tree does not need to be fixed and only those
constants that are actually in the tree are encoded, reducing substantially the size of
the chromosomes to evolve.
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The GP+GA algorithm has been coded so that the total number of tree evaluations is
the same as in the GP+RG case, providing a good basis for comparison. The number
of trees in the population for the single GP is 120 and the number of generations is
31, so the total number of evaluations is 3720. In order to get the same number of
evaluations for the GP+GA optimisation, the GP will have a population of 31
individuals and it will be run for 7 generations. Each GA will have a population of 5
individuals and it is run for 3 generations.

Moreover, this choice seems very appropriate because the ratio between the number
of individuals in the population and the number of generations is 3.8710 for the
GP+RG case and practically the same for the GP in the GP+GA algorithm, i.e.
3.8750. The GA ratios are also similar: 1.5686 for the GA used in previous chapters
and 1.6667 for the GA in the GP+GA optimisation.

The GA used has been the one found to be best in Chapter 5, i.e., tournament
selection, non-uniform exponential mutation and probability of crossover of 0.8.
Each parameter is encoded using 3 genes: tens, units and decimals. This way the
range covered is equivalent to that of the random numbers, from 0 to 99.9.

7.4. SUMMARY

This chapter has illustrated the general structure, tree representation and operators of
GP, together with a practical implementation of how to use GP to solve a control
problem. It has emphasised the different representation of the candidate solutions
between GAs and GP. The tree structures typically used in GP provides an extra
degree of freedom to the evolution process, allowing the evolution of the size and
shape of the solutions, as opposed to the fixed-length of the GA chromosomes that
needs to be determined prior to the optimisation process.

Regarding the genetic operators, it has been shown that the selection procedure is
equivalent to that of GAs, although the mutation and crossover operators have been
modified in order to be adapted to the new structure. The tree shape allows for more
variety of the genetic operators, especially mutation.

It has been shown that the generation of numerical constants is an important issue in
GP optimisation. Two alternative methods for this problem have been presented: one
is based in random generation while the second method is more complex, being a
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combination of GP and GA. Both methods have been used to obtain the results
presented in the next chapter.

The problem of uncontrolled code growth, its causes and consequences as well as
techniques to avoid it have also been discussed. Since the size of the solutions is an
important issue in GP in the next chapter the average tree sizes found in the final
population of the GP optimisation runs are illustrated and discussed.
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CHAPTERS

GENETIC PROGRAMMING:
A CONTROL APPLICATION FOR A MARINE VESSEL

8.1. INTRODUCTION

This chapter presents the results obtained when using a GP implementation to
optimise the structure of controllers for the problem of the control of the heading and
propulsion dynamics of CyberShip ll.

The two Matlab implementations introduced in Chapter 7 (i.e. GP+RG and GP+GA)
have been used to search for two structures that solve the control problem near-
optimally (i.e. one for propulsion, one for heading). Each implementation has been
optimised with and without waves in the simulation and the best resulting controllers
have been tested in the real plant. This study allows the comparison of the
performance of both GP schemes and further assesses the relevance of including
waves in the evaluation process, already discussed in the results obtained with the
GA optimisation in Chapter 6.

The examination of the results has focused in four different aspects of the
optimisation. First of all, the best cost values obtained in each run are analysed. In
addition, the results are tested using a validation function. A validation function is
basically a cost function used after the optimisation in off-line tests to validate the
result obtained with the GP. Off-line tests are used extensively throughout the GP
literature [O'Reilly (1995), Tackett (1994)]. There are problems that traditionally
have received much attention from GP researchers such as the 6 and 11 bit Boolean
multiplexer [Koza (1992), O'Reilly (1995)] that allow the inclusion of all possible
test cases in the evaluation of the candidate solutions. However that is not the case
for most problems. Regarding the evaluation of solutions Koza (1992) stated that:
"Typically, each computer program in the population is run over a number of
different fitness cases so that its fitness is measured as a sum or an average over a
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variety of representative different situations". In some cases time limitations do not
permit the evaluation of various fitness cases so an off-line validation function can
be used for evaluating the generality of a solution that performs well during the GP
optimisation.

Secondly, the analysis has focused on the structure of the best solutions of each run.
All the equations that represent the best tree structure obtained in each run can be
found in Appendix D together with figures illustrating their manoeuvring
performance. It has been found in this study that the structures can be placed in
groups that exhibit similar forms. The most common groups are presented and
discussed in this chapter. The real and simulated responses of the overall best
structure when tracking the optimisation and validation manoeuvres are plotted.

The third aspect taken into consideration is the size of the resulting trees from each
run and those of the final population. In Chapter 7 the consequence of the
uncontrolled growth of code [Koza (1992), Luke (2000c)] has been explained, as
well as the techniques used to avoid the problem and the most relevant theories
about its cause. In this chapter the effect that this phenomenon has in our
implementation is discussed.

Finally, the investigation focuses on the percentage of occurrence of the functions
from the function set in the best solutions. This study will hopefully allow
conclusions to be drawn about why the GP favours some functions over others.

This chapter is structured as follows: Section 8.2 deals with the evaluation
manoeuvre and cost function used in the GP optimisation together with the method
used for the validation of the GP results. Section 8.3 shows the results obtained
using GP+RG to optimise the control strategy, with and without the inclusion of
waves in the optimisation, Section 8.4 presents the results obtained with the
combined algorithm GP+GA, again with and without the inclusion of waves in the
optimisation, and in Section 8.5 conclusions are drawn from these results.

8.2. GP RESULTS VALIDATION

For comparison purposes, the manoeuvre used for the GP optimisation has been the
same simultaneous double step manoeuvre used for GAs (see Figure 3.9). Each GP
scheme (i.e. GP+RG and GP+GA) has been run 20 times, with and without
disturbances.
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The best results found have been validated after the GP optimisation. The reason for
this validation test is to verify that the resulting tree is actually performing a control
task, not merely generating a signal shaped in the right way for this manoeuvre but
totally wrong for any other. This has not been necessary in the GA optimisation
because it is based on a control structure already established.

The manoeuvre used for the validation test is shown in Figure 8.1. It consists of two
turning circle manoeuvres linked together, first to port and then to starboard. The
resulting trajectory is an 00 shape. The reason for choosing this specific manoeuvre is
that the Maritime Safety Committee, in its Resolution MSC.137(76) [Anonymous
(2002)] on standards for ship manoeuvrability, recommends the turning point
manoeuvre together with the zig-zag manoeuvre as the most appropriate for ship
performance testing.
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Figure 8.1: Desired Responses for the Validation Test
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8.3. GP WITH RANDOM GENERATION RESULTS

8.3.l. OPTIMISATION WITHOUT WAVES: SIMULATED AND REAL RESULTS

Analysis of the Best Costs
The following Table 8.1 presents the cost values obtained after the GP+RG
optimisation using the simultaneous double step manoeuvre without waves and the
posterior validation test with the double turning point manoeuvre. The figures with
the performance of each controller can be found in Appendix D (Section D.1) .

Table 8.1: Best GP+RG Results
Optimisation Without Waves

Run No. Double Step
Turning
Point

1 2.44 91.80

2 4.14 243.60

3 28.63 314.54

4 200.73 552.00

5 3.04 13981.99

6 13.20 3824.18

7 1.92 3431.07

8 152.54 3544.74

9 4.75 325.34

10 237.84 865.02

11 162.56 1230.30

12 167.86 867.61

13 42125 5104.16

14 540.99 53151.16

15 540.99 53124.88

16 541.07 116868.37

17 15.86 196863.84

18 2.13 4339635.54

19 2.53 2.74.109

20 1.99 5.67.1012

The best overall result is obtained in run 1. It is not the best result achieved in the
optimisation but the result in the validation test is extremely good. The amount of
convergence in the final population of this run has been 32 individuals and the
generation of convergence has been the 10th generation. Results from runs 2 and 9
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have been also consistently good for both manoeuvres. On the other hand, the results
from runs IS, 19 and 20 are extremely bad. This corroborates the importance of the
validation test since those three controllers converged to a very good cost value

during the optimisation.

Analysis of the Structure of the Results
Looking at the best controller structures, the results show similar patterns and these
can be categorised into six similar groupings.

1stGroup
The first group structure usually consists of a hyperbolic tangent function providing
heading control and a proportional term for propulsion control. To this group belong
the best results obtained, such as those of runs 1, 2 and 3. Results from runs 4 and 5
have a similar structure and they have also been included in this group, although the
cost values they have obtained are worse. Analysing the range of values that perform
as argument of the hyperbolic tangent it is easy to see that the function is not
reaching the saturation limits, therefore it is acting as a proportional term
[McGookin (1997)]. For example, the result obtained in run 1 is as follows:

T1cam = S8.4·ep (8.1)

T = -6S.2. tanh(h~ .(Xh- xhd )) +
3earn 7.6

(8.2)

+ 0.1332.(-68.2' tanh(h~ ,(xh - Xhd))_sin('I')]+ 11.7.tanh(h~ ,.(xh - xhd ))
-68.2 sm(91.5)

Equation (S.l) is just a proportional action, while the heading control expression
seems to be very complicated. However, once it is analysed it can be simplified just

by applying:

(8.3)

(8.4)

(8.5)
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This results in a proportional controller plus a sine term, as shown in Equation (8.6).
If the heading of the ship is smaller than 0.5 rad (300 approx.) the sine can be

approximated by the heading signal.

1'3com = -38.868· h~ . (Xh - Xhd)- 0.1332· sin(lJI) (8.6)

2ndGroup
The second group of results is characterised by the use of the P and PD type of
controllers. To this group belong structures such as those of runs 6, 7, 8 or 9. The
resulting controller from run number 9 is as follows:

1'lcom = 29· ep + sin(ud )

deh
1'3com = 12 ·eh +-dt

(8.7)

(8.8)

The propulsion controller consists of a proportional term plus a sine term. For small
angles the sine is approximately equal to the angle. Therefore, at low speed (under
O.Sm/s), sin(ud) ~ Ud. Since the gain of the proportional term is quite small,
especially if compared with the proportional propulsion controller obtained in run 16
with a gain of88.4 (as shown in Equation (8.1», the way the GP found of increasing
the control effort is by adding a type of open-loop step, instead of augmenting the
gain. Obviously, this is not a very good control practice.

3rdGroup
Some other results, such as runs number 10, 11 and 12, have converged to results
where the main control action is provided by a trigonometric function. For example,
the structure of the resulting controller from run number 10 is as follows:

1'lcom = sin(e p - 5.6432)

1'3com = sin(eh)

(8.9)

(8.10)

Once more, for small angles sin(a) ~ a and consequently the heading control
strategy is basically proportional control.

4th Group
The fourth group is formed by all those controllers that set one of the commanded
signals to zero. This is a kind of "damage limitation" technique: a zero control action
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provides a better cost than an unstable one. Results from runs 13 and 14 belong to
this group. Run number 14 has converged to a zero action in the heading control and
a proportional action for propulsion; on the other hand number 13 has a proportional
controller for heading and basically zero control for propulsion.

5th Group
The fifth group comprises the results from runs number 15 and 16. Both use a pole
placement technique in the heading control and a PI for propulsion. As an example
the structure of the controller obtained in run 15 is shown:

1'lcom =302.5·ep +49.2· Iep .dt+2.e/
l'3com = -k .Xh = 0

k =. p/ace(O, - 'I' -70.8)

(8.11)

(8.12)

For small errors the term of the square error in Equation (8.11) is very small so the
control action is effectively a PI controller. The pole placement technique gives very
bad results, which is understandable as there is no reference signal included in the
heading controller structure and therefore the commanded heading signal remains at
zero. Initially the heading dynamics are set to zero and consequently the outcome of
the product -k·Xh is zero. Since there is no control action the heading is never
modified and, consequently, the heading control action remains null. Also, to place
one of the poles depending of the value of one of the states causes instability once
the state changes its polarity.

6th Group
In addition, some other results, although they do not share a common structure,
belong to the group of results that after performing very successfully in the
simultaneous double step manoeuvre have obtained really poor results in the
validation test. Clear examples are the results from runs 17, 18, 19 and 20. For
instance, after getting the second best result in the optimisation process, the
controller from run number 20 obtains the worst result by far in the validation
process. The controller structure is very complicated, as can be seen from the

following equations:

de (h' ,{u -Ud)J
1'1 =344·e +3·_P-+34.5·u·tanh _P.__ __ -

~ P ~ ~
(8.13)
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T,_ =( - k, .Ih •mm( b~.~"~8~2"hd)) - 3l.2)- tanh(b~·~";5~~hd))
kl == plac~O, 94.6· sign(b~ . (Xh -Xhd}) k2· xh)

k2 == plac~O, 94.6· sign(b~ . (Xh - xhd )) k3· xh + "'d) (8.14)
k3 == p/ace(O, -0.9511, k4 .xh)
k, == p/ace(O, -0.9511, -d", /dt}

Just by inspection it can be seen that the control structure for heading does not make
sense. It includes four pole placement commands and the way that the poles are
defined does not ensure their position in the left side of the s-plane.

Next Figures 8.2 and 8.3 show the performance of the controller considered to be
best obtained from run number 1 (see Equations (8.1) and (8.6)) when tracking the
evaluation and the validation manoeuvres.
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Figure 8.2: Simulated Results of the GP+RG Optimisation Without Waves
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The performance of the controller for the simultaneous double step manoeuvre is
quite good. There is a slight steady-state error in the surge response caused by the
lack of an integral term in the propulsion control (see Equation (8.1». The heading
control is also good apart from a slight overshooting caused by the high gain.

The performance shown in the previous figure is very similar to that of the
decoupled PID optimised without waves but with a larger steady-state error in the
propulsion subsystem caused by the lack of integral term and the small proportional
gain imposed by the lack of derivative term.
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Figure 8.3: Validation Test for the Result of the
GP+RG Optimisation Without Waves

Given that the double turning point manoeuvre is very demanding, both controllers
perform quite well. It can be seen that the tracking of the desired responses is quite
good. The surge speed signal has some oscillations due to the coupling of the
system, which are induced by the constant turning motion caused by the heading
control system. Also, the heading manoeuvre is tracked well, although the same
slight overshooting noticed in the simultaneous double step manoeuvre can be
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perceived. It can be seen in the 1"3 force that the actuator's amplitude limits has

restricted the commanded signal to 2 Nrn.

Figure 8.4 and 8.5 show the responses obtained when the controllers from Equations
(8.l) and (8.6) have been implemented in the real plant. Figure 8.4 illustrates the
results obtained when manoeuvring in calm waters.
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Figure 8.4: Real Results of the GP+RG Optimisation Without Waves When
Manoeuvring in Calm Waters

The responses obtained are quite good. The tracking is quite accurate, although the
same overshooting that has been observed in the simulated responses for heading
can be also appreciated in the real responses. A delay introduced by the system can
be observed in the responses. This induces very high initial control signals until the
ship starts the manoeuvre.

Figure 8.5 shows the effect of waves in the performance of the controllers obtained
in the GP+RG optimisation without waves. As previously the waves generated are

those presented in Section 3.5.
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Figure 8.5: Real Results of the GP+RG Optimisation Without Waves When
Manoeuvring in the Presence of Waves

Since all the real results in this chapter have been obtained with an improved system,
the effect of the waves is not very significant, although some wave-induced high
frequency components can be observed in the heading control action. As in Figure
8.4, a delay can be observed in the responses of the boat.

Analysis of the Sizes of the Trees
Next, in Table 8.2 the average size of the trees in the final population together with
the size of the best tree and their optimisation cost values are presented. Tree size is
defined as the number of internal nodes in a tree. In order to clarify the posterior
discussion the results are listed in ascending order starting with the best cost.

From Table 8.2 it seems that those results based on a big heading tree are associated
with better cost values, while bigger propulsion trees produce worse costs. The best
result is obtained with a small propulsion tree and a large heading tree. Nevertheless,
there are some exceptions so it cannot be considered a conclusive rule.
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It is interesting to notice that the best tree size and the average size of the final
population for each run are always very close. This would indicate a convergence
towards trees of the same size during the optimisation.

Table 8.2: Size of Trees in the GP+RG Final Populations
Optimisation Without Waves

Cost Run Propulsion Heading
value No. Best Tree Avg. Pop. Best Tree Avg. Pop.

1.92 18 1 1.03 28 21.88

1.99 20 16 16.17 25 20.99

2.13 18 17 8.52 29 20.78

2.44 1 3 3.05 28 17.75

2.53 19 11 7.44 7 5.01

3.04 5 6 4.37 5 5.87

4.14 . 2 11 15.83 2 2.05

4.75 9 30 25.25 13 12.46

13.20 6 1 1.04 29 24.75

15.86 17 9 12.91 2 2.05

28.63 3 29 26.42 6 5.99

152.54 8 11 9.17 2 2.00

162.56 11 28 23.86 2 2.04

167.86 12 1 1.08 1 1.06

200.73 4 1 1.04 3 3.05

237.84 10 2 2.05 1 1.05

421.25 13 30 25.87 2 2.06

540.99 16 29 26.72 1 1.74

540.99 14 29 26.53 2 1.08

541.07 15 30 28.17 1 2.92

The bloat problem has not been a real issue while running these optimisations. Only
5 heading trees (i.e. 25%) and 7 propulsion trees (35%) have reached the maximum
size allowed and in the analysis of the structure the emergence of introns has been
rare. According to the most recent theory about code bloat by Luke (2000c), the bias
towards deeper crossover points (less likely to destroy the individual) is causing this
bloat effect. If this is the case, the matrix representation chosen in Matlab could be
the reason for the lack of bloat in this case. Since every row in a tree represents an
internal node, subtree crossover and mutation only act over internal nodes, never
terminals. This implies that the minimum size for a removed subtree is already 2 or 3
nodes (1 internal node plus 1 or 2 terminal node depending on the number of
arguments the function has). All the functions have the same probability of being
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chosen to randomly generate the new subtree in subtree mutation. Approximately
half of the functions in the set terminal require one argument and the other half need
two. Since the randomly generated mutation subtrees have a depth of 3,
approximately half of the new subtrees to be inserted in subtree mutation have 3 or 4
nodes, and the other half between 5 and 7. Therefore, even if the deepest mutation
point available is chosen for mutation (worst-case scenario), 50% of the times the
subtree mutation operator only implies an increase in size of maximum 1 node or no
increase at all. Moreover 50% of the mutations are just point mutation which does
not increase the size of the tree. Thus, it is very unlikely that the subtree mutation
will lead to a very quick increase in tree size. Regarding the subtree crossover the
results are more uncertain, but the fact that the deepest node available for crossover
is an internal node reduces the chances of a large increment in size.

This absence of bloat has caused that the execution times are not as long as expected
for a GP optimisation. The execution time in the absence of bloat is proportional to
the evaluation time for the desired manoeuvre. In the optimisation problem
considered in this work the execution time for the GP has been of around 6 hours.

Analysis of the Percentage of Occurrence of Functions
In Figure 8.6 the percentage of final solutions that use a certain function from the
function set is shown.

80 .---------------------------------------~
_ 70 +---__.j

~
GI 60 -h....---
Cl ::"
~ 50 +1:;::;,:1---
::J

'0 40 +1::;:::1---
GI

E 30
c
~ 20 -H;:;'::""'__'

GI
Q. 10

o +-",,:.oIIIIL.~

___________ -18 Propulsion Tree

III Heading Tree

Functions in the Function Set

Figure 8.6: Percentage of Usage of Functions in the GP+RG Best Results
Optimisation Without Waves

214



By looking at the data from the propulsion trees in Figure 8.6 it can be seen that by
far the most used functions are the arithmetic functions addition and multiplication.
This is consistent with the predominant usage of proportional terms reflected in the
previous structural analysis of the solutions.

In contrast, the most predominant function in the heading control trees is the
hyperbolic tangent. Associated with a high percentage of hyperbolic tangents there
must always be a high proportion of minus functions since the sign of the hyperbolic
tangent needs to be reversed to provide the appropriate control signal (or the
function operated on by the hyperbolic tangent is negated).

Around a third of both heading and propulsion resulting trees employ the sine
function. Sometimes it is applied to generate new constants but very often can be

neglected since for small angles sin( a) ~ a.

It is important to remark that, although the study of the frequency of occurrence of
functions in the final results can lead to interesting conclusions, the figures can be
quite misleading. For example, the high percentage of derivative and integral terms
for the heading trees shown in the previous Figure 8.6 is not a true reflection of the
actual results. Very often both terms cancel each other out, thus, although there are
various resulting heading controllers that do include a derivative action, all the

integral terms but one are effectively cancelled.

8.3.2. OPTIMISATION WITH WAVES: SIMULATED AND REAL RESULTS

Analysis of Cost Values
The following Table 8.3 presents the cost functions obtained after the GP+RG
optimisation using the simultaneous double step manoeuvre in the presence of waves
and the posterior validation using a double turning point manoeuvre. Since the
validation test has been run without disturbances the costs are comparable to those
of Table 8.1. All the equations that describe the best control structures found in each
run of the GP and the figures illustrating their performance when tracking the
evaluation manoeuvre can be found in Section D.2 in Appendix D.

The best overall result is obtained from run 1. Again it is not the best result from the
GP optimisation. The amount of convergence in the final population of this run has
been 43 individuals and the generation of convergence has been the 15th generation.
Run number 5 provided the best result from the GP runs and the validation result is
reasonably good. Other controllers that have performed well in both optimisation
and validation test are those of runs 2 and 4. As with the optimisation without
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disturbances, some of the good results from the GP optimisation failed the validation
test (e.g. results from runs 8, 19 and 20).

Table 8.3: Best GP+RG Results
Optimisation With Waves

Run No. Double Step
Turning
Point

1 12.90 79.78

2 79.15 213.40

3 123.78 360.49

4 18.09 194.95

5 7.63 289.88

6 51.55 646.29

7 120.11 423.66

8 12.34 593943.52

9 370.40 949.33

10 328.79 843.70

11 285.32 841.22

12 53.37 534.41

13 13225 445.48

14 114.01 705.51

15 275.93 954.56

16 95.92 150968.05

17 327.72 53316.41

18 351.56 53180.82

19 30.52 735485.71

20 47.73 1501055.75

Analysis of the Structure of the Results
The most representative structures of the best trees obtained through the various runs
of the GP+RG optimisation are discussed below. They can be approximately
grouped into five categories.

1st Group
The first group comprises those structures whose heading and propulsion controller
are based on a hyperbolic tangent. Results from runs 1, 2 and 3 belong to this group
and all of them provided reasonably good results. As an example the structure of the
controller obtained in run 1 is shown:
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1'lcom = -203.5368· tanh(h~ . (u -ud )] + 2· sin(ud)
11.8223

t. =14.752.tanh(h~ '(Xh -Xhd)J
3eom _ 0.7931

(8.15)

(8.16)

Again the hyperbolic tangents are used as proportional controllers. Both equations
could be expressed as:

1'leom ~ -17.5.h~ .(u -ud)+2·sin(ud)

1'3com ~ -19· h~ . (Xh - Xhd)

(8.17)

(8.18)

The propulsion controller is similar to that obtained in the GP+RG optimisation
without waves and shown in Equation (8.7). The sine function of the desired surge
speed increases the control effort by acting as a form of feedforward control (i.e.
provides the same control effort regardless of the current state of the boat).

2ndGroup
The second group also uses hyperbolic tangents for the heading control but the
propulsion control varies, using mainly some kind of PIPI type of controller. Results
from runs 4, 5, 6, 7 and 8 belong to this group. The controllers obtained in run
number 5 are shown as the most representative of the group:

1'lcom =ll.l·ep +33.3· Jep -dt

t = -1208.4· tanh(h~ . (Xh - xhd)J
3eom 82.6268

(8.19)

(8.20)

Again the hyperbolic tangent is performing as a proportional controller. The
equivalent control action is similar to that of Equation (8.18):

(8.21)

3rd Group
A mixture of PID type configuration together with sine and exponential functions
forms the third group of results. Examples of these structures are the results from
runs 9 to 16. A good example is the control strategy obtained in run 9:
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T1eom = sin{exp{ud))

T 3eom = sin{sin{1JId -11'))

(8.22)

(8.23)

The propulsion control is again based on an open loop control, no feedback is
present. For small angles sin( a) ~ a and also, for very small values, exp( a) ~ a+ 1.
Therefore at low desired speeds and for small heading errors, the above equations
are equivalent to:

(8.24)

(8.25)

4th Group
The fourth group consists of two results (runs number 17 and 18) that use a Pole
Placement technique for the heading control and some function of the error and Ud

for the propulsion control. Both structures performed quite badly in the optimisation
and validation test. The structure of the result from run number 3 is as follows:

T1eom =ep +ud

T3eom = -k·Xh
k == p/ace(O -30.4· eh -6·11' -sin{- 30.4· eh -6.11'))

(8.26)

(8.27)

Once more the result is a Pole Placement technique that lacks of reference signal and
uses variables for setting the pole positions, which can lead to stability problems.

5th Group
The final group contains a set of two results (runs 19 and 20) with heading control
that is based on several nested sine functions of a hyperbolic tangent and the
propulsion controller is a proportional term. Both structures work well in the
optimisation but they give very poor performance in the validation test. The result
from run 20 is shown as an example:

(8.28)
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Next Figures 8.7 and 8.8 illustrate the performance of the controllers from run
number 1 (see Equations (8.17) and (8.18)) when tracking the simultaneous double
step manoeuvre used for the GP optimisation and the double turning point
manoeuvre used for the validation test. These controllers have provided the best
overall performance.

D.B -
~0.6 g'40

.E.
"C-

CD 0.4 Cl

Cl
.s 20

~ 0.2
"C
tu
IIIs:

0
0 20 40 60 20 40 60

0.2 '0>6,-...
In Cl)....... "D 4E ............ 0.1 ...... c 2c ...... ....... ~ 0CD 0III c::
Cl :.s -2.....
:::J ca
en -0.1 ~ -4

0 20 40 60 (] 20 40 60
4 1

I
I .......I

22 • I E 0.5----T---------,--------- •...... z
..- '-"
:::J 0 (T) 0ca ::J- ca-

-2 -0.50 20 40 60 0 20 40 60
time(s) time(s)

Figure 8.7: Simulated Results of the GP+RG Optimisation With Waves

As in the GA examples, it can be seen that the inclusion of waves affects the
propulsion control more than the heading control, although both cope quite well. The
surge speed signal is slightly slow in the response. Comparing the results obtained
using the GP with and without waves (see Equations (8.l7) and (8.l)) it can be
observed that although the propulsion control in both controllers is proportional, the
proportional gain for the controller optimised with waves is much smaller (17.5
versus 88.4), which explains the slow transient response. The heading control is not
significantly affected by the disturbances, apart from the ripple in the actuators force
caused by the disturbances. Again, if compared with the heading controller obtained
in the GP optimisation without waves (Equations (8.l8) and (8.3)), both are
proportional controllers but the inclusion of waves has led to a smaller gain (38.9
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versus 19). This is linked to the previous conclusion in Chapter 6 of the inclusion of
disturbances in the optimisation effectively reducing the actuators usage by reducing

the controller gain.
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Figure 8.8: Validation Test for the Result of the
GP+RG Optimisation With Waves

Figure 8.8 shows a similar result to that of the optimisation without waves (see
Figure 8.3). Again the most remarkable feature is all the oscillation that the
continuous change in the heading desired signal induces. The surge error is larger
than in the result from the optimisation without waves and the speed transient
response slower. However the control effort is also smaller and consequently the
final cost value obtained by this controller is marginally better than the value
obtained by the result from the optimisation without waves (79.78 versus 91.80).

Figures 8.9 and 8.l 0 show the results obtained when the controllers represented by
Equations (8.17) and (8.18) are implemented in the real plant. Figure 8.9 shows the
responses obtained when the manoeuvring has been performed in calm waters.
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Figure S.9: Real Results of the GP+RG Optimisation With Waves When
Manoeuvring in Calm Waters

The real responses obtained are quite satisfactory. The tracking is quite good,
especially for the heading response, although with a slight overshooting. When
comparing with the real responses obtained for the GP+RG optimisation without
waves (see Figure 8.4) it can be observed that, although the surge response is worse
the surge control action has been reduced, as is usually the case when including
disturbances in the optimisation.

Figure S.l 0 shows the responses obtained with the controllers from Equations (8.17)
and (8.lS) when the same zig-zag manoeuvre has been performed in the presence of
waves in the water tank.

As it can be seen from the figure, the main effect of including waves can be
observed in the disturbance-induced ripples in the heading control action.
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Manoeuvring in the Presence of Waves

Analysis of the Sizes of the Trees
In Table 8.4 the sizes of the best trees (defined as the number of internal nodes of the
tree) obtained in each run for heading and propulsion control are presented. The
average size of the final population and the cost value obtained during the GP+RG
optimisations are shown as well:

Once more there seems to be a tendency for larger heading trees that achieve better
results. However the figures from Table 8.4 are less conclusive than those obtained
with the GP+RG optimisation without waves shown inTable 8.2.

-Again size bloat is not an issue with these optimisation runs. Only 4 propulsion trees
(20%) and 4 heading trees (20%) have grown to a number of internal nodes close to
the limit (30 internal nodes).
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Table 8.4: Size of Trees in the GP+RG Final Populations
Optimisation With Waves

Cost Run Propulsion Heading

value No. Best Tree Avg. Pop. Best Tree Avg. Pop.

7.63 5 8 7.88 3 3.06
12.34 8 2 2.07 26 23.46
12.90 1 30 27.63 14 17.23
18.09 4 28 25.58 30 21.65
30.52 19 1 5.57 30 23.78
47.73 20 3 2.65 10 9.42
51.55 6 2 3.83 23 19.69
53.37 12 29 26.42 15 13.06
79.15 2 7 6.84 5 5.00
95.92 16 14 18.80 2 2.03
114.01 14 26 15.68 28 25.62
120.11 7 5 4.97 16 19.34
123.78 3 12 9.89 3 3.18
132.25 13 4 5.66 5 5.13

275.93 15 17 14.32 3 3.04
285.32 11 2 2.06 3 3.02
327.72 17 3 1.19 16 15.60
328.79 10 14 13.81 1 1.02
351.56 18 2 3.15 6 5.97
370.40 9 17 17.10 3 2.97

Analysis of the Percentage of Occurrence of Functions
In Figure 8.11 the percentage of best solutions that use a certain function from the
function set is reported. Looking at the percentage of function usage for the
propulsion trees and comparing them with the figures obtained in the GP+RG
optimisation without waves (see Figure 8.6), it can be observed that although the
arithmetic functions still maintain very high percentage of usage, there is an increase
in the application of the hyperbolic tangent and especially the exponential function.
The reason for the use of the hyperbolic tangent could be to take advantage of its
properties as a switching term to counteract the disturbances. Yet, the choice of
arguments for the hyperbolic tangent function points to the hyperbolic tangent
operating around its proportional area, not the switching one. Therefore, it appears
that the GP+RG has favoured the hyperbolic tangent as an easier way of creating a
proportional control, as opposed to the complication of having to use various
arithmetic operators.
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Figure 8.11: Percentage of Usage of Functions in the GP+RG Best Results
Optimisation With Waves

The frequency of use of the exponential function is quite unexpected. If applied to
the wrong argument it can lead to very large figures that would create problems for
the controller. However, when applied to very small numbers (smaller than 0.4)
exp(a)~a+ 1. Thus, the exponential function is basically adding an offset to the
signal. This offset, although it would be very damaging for heading control, it is not
so detrimental for the propulsion control, given the shape of the Tlcom signal. It can
be seen from Figure 8.11 that the usage of the exponential function for the heading
trees is reduced to a third of the percentage for propulsion trees, which is consistent
with the previous argument.

Regarding the resulting heading trees once more, the most frequently used functions
are the hyperbolic tangent and sine functions. It is also noticeable that there is a
reduction in utilisation of integral and derivative terms when compared with the
figures obtained for the GP+RG optimisation without waves (see Figure 8.6). As has
already been mentioned, it is only the derivative function that has a significant effect
on the control action since the integral terms are effectively cancelled in the
evaluation of the tree. Hence the value of zero for integral terms in Figure 8.11 is
more realistic than the previous results shown in Figure 8.6. On the other hand the
reduction of derivative terms can be due to their detrimental noise amplification

effects.
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8.4. GP WITH GA RESULTS

8.4.l. OPTIMISATION WITHOUT WAVES: SIMULATED AND REAL RESULTS
Analysis of Cost Values
The cost of the best results obtained in the GP+GA optimisation runs and in the
validation test are shown in Table 8.5. All the equations that describe the structure of
these controllers with the figures that illustrate their manoeuvring performance can
be found in Section D.3 in Appendix D.

Table 8.5: Best GP+GA Results
Optimisation Without Waves

Run No. Double Step
Turning
Point

1 126.55 447.20

2 282.61 921.02

3 195.99 1327.95

4 242.60 1026.84

5 304.71 888.67

6 293.68 1222.99

7 234.37 539.93

8 251.33 374.52

9 288.72 1226.77

10 75428 53310.61

11 164.31 3943.42

12 372.85 1913.37

13 384.95 13818.24

14 428.94 1303.87

15 669.74 53316.41

16 541.04 53103.63

17 165.67 39279.66

18 56023 10570.73

19 541.01 53246.64

20 541.04 57029.55

As can be seen from the results from Table 8.5 the responses are quite poor. The best
cost value obtained after the GP+GA optimisation is 126.55 (run 1), nearly a
hundred times bigger than the best result from the GP+RG optimisation without
waves, where the run number 3 provided a cost of 1.92. However, when comparing
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the worst results obtained from both methods the cost values are not so different
(540.99 obtained with the GP+RG scheme versus 754.28 obtained with the
GP+GA). The controllers' performance in the validation test is also quite mediocre
in the sense of the cost values obtained. In run number 1 the amount of convergence
in the final population has been 21 individuals and the generation of convergence
has been the 5th generation.

Analysis of the Structure of the Results
The general structures that have been obtained using the GP+GA approach are quite
similar to those using GP+RG. In this case they can be separated into 7 groups.

1at Group
Results from runs 1, 2, 3 and 4 constitute the first group. They are characterised by
using a hyperbolic tangent for the heading control and some arithmetic combination
of the propulsion error, surge speed or desired surge speed for the propulsion. The
controller found in run number 1 is shown as an example:

(8.30)

(8.31)

As in previous cases the hyperbolic tangent is not acting as a switching term but as a
proportional term. Therefore the action is equivalent to:

(8.32)

2ndGroup
The second group is formed by controllers that use trigonometric functions for the
heading control. The propulsion control uses a time function. The results from runs
number 5 and 6 belong to this group. The resulting control strategy from run number
6 can be expressed as follows:

96.3
1" -
lcom - f 20.4 .dt

1"3com =sin(sin(26.7)'Bh)

(8.33)

(8.34)
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The propulsion control action is inversely proportional to the time so it decreases
along the manoeuvre. Obviously this is not a very good control policy. Since
sin (26. 7)=1, the heading control is proportional to the error if the error is kept small.

3rdGroup
The results from runs number 7 to 10 have in common a constant or practically
constant control action for propulsion. The heading action varies among them: the
results from run number 7 and 9 have two nested sine functions providing the
heading control, while the result from run number 8 has a proportional term and the
result from run number 9 a zero heading control action. The control structures
obtained in run number 7 are as follows:

"leom = sin(sin(I)) ~ 0.7456

_ . ( . (d(35.7.Sh)))
"3eom - sm sm dt

(8.35)

(8.36)

4th Grom>
The fourth group consists of results that rely on a hyperbolic tangent for propulsion
control and some kind of proportional or derivative control for heading. Results
from runs 11 to 13 belong to this group. The result from run 11 is the one that
achieves better results so it is given below to demonstrate this type of structure:

(8.37)

(8.38)

For the first time the hyperbolic tangent is used as a switching term, due to the small
value of the derivative term in the denominator. The hyperbolic tangent term is
multiplied by the sign function so effectively the sign of the derivative term
determines the sign of the control action (since the exponential is always positive).

5th Group
All the structures that have a zero control action in either heading or propulsion,
such as the results from runs 14, 15 or 16, belong to the fifth group. As mentioned
previously this is a kind of "damage limitation" technique: a zero control action
results in a better cost value than an unstable action.
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6th Group
The results from runs 17 and 18 use the hyperbolic tangent function for both heading
and propulsion and they form the sixth group. Their performance is poor because of
the very low gain propulsion control action.

The equations that represent the control action from the trees obtained in the run
number 18 of the GP optimisation are shown as an example of controller using two
hyperbolic tangent functions:

T1com = (1.4 + u)- tanh(--,h~~'....:...(U_-_U::....:..d))
74.8

(8.39)

(8.40)

Given that the exponential function is always positive, the product of the sign
multiplied by the hyperbolic function is equivalent to the absolute value of the
hyperbolic function. The high peaks in the exponential term imply that in this case
the hyperbolic function acts some times as a proportional term and other times as a
switching term. The hyperbolic tangent in the propulsion control acts as a
proportional term, although the proportional gain is very small. The main problem in
the propulsion case is that the sign has the wrong polarity, i.e. as the desired speed
increases, the commanded control signal decreases. Therefore, the controllers
presented by Equations (8.39) and (8.40) can be expressed equally as:

(8.41)

(
h' .(x -x )JT =e.tanh h h hd

3com h ()exp -k,xh

k == p/ace(O, - 24.8, -'I'd)

(8.42)

7th Group
Finally, the results from runs 19 and 20 are characterised by a Pole Placement
control method for the heading plus a hyperbolic tangent for the propulsion. Both
controllers exhibit extremely poor performance characteristics. As an example the
structure of the controllers obtained in run number 20 are shown.
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T1com = (93.3 + Ud)' tanh(.....:.h~_._(U_-_Ud_)J
17.9+ud

(8.43)

T3com = -k·Xh
k == plac~O, -exp('I'~ -exp('I')'Sign(h~ '(Xh -Xhd)))

(8.44)

Again, the heading action lacks any reference quantity and it also has a sign function
associated with the location of one of the poles. The pole will be successively stable
and unstable depending on the polarity of the error.

The performance of the results from run number 1 (see Equations (S.30) and (S.32))
in the optimisation process (simultaneous double step manoeuvre) is shown in

Figure 8.12.
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Figure S.12: Simulated Results of the GP+GA Optimisation Without Waves

Figure S.12 shows that although the heading control action is very good, the final
cost value is degraded because of the very poor performance of the propulsion
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controller. The heading controller is effectively equivalent to the result obtained by
the GP+RG optimisation with waves (see Equation 8.18). The propulsion control is
equal to the control error plus the desired surge speed. The way the GP found of
increasing the control action is to add the desired surge speed as in an open loop
control. Although the surge response has got the right shape there is not enough

gam.

These controllers result in the poorer tracking performance found so far m
simulation either with GP+RG or GAs optimisation.

Figure 8.13 shows the simulated responses of the vessel when tracking the double
turning point manoeuvre (validation test).
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Figure 8.13: Validation Test for the Result of the
GP+GA Optimisation Without Waves

Again Figure 8.13 illustrates the bad performance of the propulsion controller as
opposed to the satisfactory performance of the heading controller. The propulsion
commanded force is too small to keep the desired speed. It would need a higher
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gain. The heading response is very good and requires very little additional control
. effort, even though the manoeuvre is accomplish for a speed profile that is very
much reduced.

Figures 8.14 and 8.15 show the responses obtained when these controllers have been
implemented in the real plant. Figure 8.14 shows the results obtained when the
manoeuvre was performed in calm waters.
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Figure 8.14: Real Results of the GP+GA Optimisation Without Waves When
Manoeuvring in Calm Waters

As in the simulated results the heading controller performance is quite good while
the propulsion controller performs very poorly. The gain for the propulsion control
is too low at the beginning of the manoeuvre and the addition of the desired surge
speed to the proportional control (see Equation (8.30» does not allow an accurate
steady state response.

Figure 8.15 shows the results obtained when the manoeuvre was performed in the
presence of waves.

231



0.3 50...-..
.-... m

~ 0.2 CD
~...... m 0~0.1 -t-. --:-------t-------:------- c::

L- "D
~ I I I re
til 0 I I I II)-----,-------T-------~------ s: -50I I I

0 40 80 120 160 0 40 80 120 HiD
0.2 - 50- D1

In CD...... "0E ................ L-

L- e
0 0 ~ 0L- II)...
II) ~
CD c::
C) "0.....
;:, (g

In -0.2 ~ -500 50 100 150 D 40 80 120 160
0.5 2

............... Ez I I 2;....... I I I

0
_____ ~ _______ l _______ L ______

0 -..- I I I;:,
~re- as--0.5 -20 40 80 120 160 0 40 80 120 160

time(s) time(s)

Figure 8.15: Real Results of the GP+GA Optimisation Without Waves When
Manoeuvring in the Presence of Waves

Since these results have been obtained using an improved wave filter in the facilities
the effect of the waves does not modify the responses significantly.

Analysis of the Sizes of the Trees
Table 8.6 presents the tree sizes (defined as the number ofintemal nodes) of the best
trees obtained in each run as well as the average size of the trees in the final
population and the cost value assigned to each result during the evaluation
procedure.

In Table 8.6 it can be observed that the size of the trees is generally very small.
None are close to the maximum size stipulated as a limit. This is due to the small
number of generations in the structural optimisation since a considerable part of the
evaluation process is consumed by the GA optimisation.
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Table 8.6: Size of Trees in the GP+GA Final Populations
Optimisation Without Waves

Cost Run Propulsion Heading

value No. Best Tree Avg. Pop. Best Tree Avg. Pop.

126.55 1 1 1.10 3 6.65
164.31 11 5 7.23 1 1.10
165.67 17 13 7.32 5 5.23
195.99 3 2 1.48 5 5.52
234.37 7 4 7.97 4 3.00
242.60 4 5 5.94 8 7.74
251.33 8 1 9.58 1 5.26
282.61 2 2 4.00 5 6.61
288.72 9 3 3.35 6 5.94
293.68 6 2 4.29 3 2.97
304.71 5 3 3.74 1 2.03
372.85 12 9 7.23 3 2.06
384.95 13 5 5.29 2 2.03
428.94 14 2 3.23 3 3.00
541.01 19 7 6.87 5 3.68
541.04 16 6 10.32 14 11.03
541.04 20 4 4.23 4 4.45
560.23 18 2 3.00 4 5.16
669.74 15 1 1.00 4 1.29
754.28 10 1 1.06 1 1.03

Analysis of the Percentage of Occurrence of Functions
The subsequent statistics (Figure 8.16) reflect the percentage of usage of every
function in the function set.

When looking at the percentage of occurrence of functions in Figure 8.16 and
comparing those figures with the results obtained in the GP+RG optimisations (see
Figures 8.6 and 8.11) it can be seen that the average percentage of occurrence of
functions is lower and the percentages are more uniformly distributed. This is due to
the smaller number of generations that the GP in the GP+GA scheme is run. All the
functions are randomly initialised with the same probability and the structural
optimisation has not been run for many generations so the resulting trees are smaller
and the functions are more uniformly distributed. Thus, the percentages of
occurrence of functions in the propulsion trees are quite unremarkable. Each
function appears in between the 15% and the 40% of the trees (i.e. between 3 and 8
of the 20 resulting trees). The percentages of occurrence in the heading trees are also
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quite small. Again the most regularly used functions are the hyperbolic tangent and
sine functions, as in previous heading trees.
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Figure 8.16: Percentage of Usage of Functions in the GP+GA Best Results
Optimisation Without Waves

8.4.2. OPTIMISATION WITH WAVES: SIMULATED AND REAL RESULTS
Analysis of Cost Values -
The best cost values obtained in the runs of the GP+GA optimisation with waves are
shown in Table 8.7. The results from the validation test are also included. All the
equations and figures that illustrate the structure and performance of these
controllers can be found in Section DA in Appendix D.

Again the GP+GA scheme has converged to quite poor results. The convergence
cost values are comparable on average with those obtained in the GP+GA
optimisation without disturbances (Table 8.7). The best overall cost has been
achieved from run number 1 and it is better that the best result from Table 8.5. In
this run the amount of convergence in the final population has been 1 individual and
the generation of convergence has been the 8th generation. Also, results from runs 2,
5 and 8 are reasonably good compared with the rest. This time the cost results
obtained in the validation test and those obtained in the GP optimisation are more
consistent. None of the best results in Table 8.7 fails the validation test.
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Table 8.7: Best GP+GA Results
Optimisation With Waves

Run No. Double Step
Turning
Point

1 50.13 239.91

2 143.78 332.39

3 26723 750.16

4 262.70 38420482.82

5 115.50 323.28

6 353.10 834.67

7 39420 837.06

8 118.84 347.29

9 128.37 687.91

10 127.65 721.92

11 228.93 47737.78

12 95327 53225.26

13 629.91 1411779.62

14 22921 640.17

15 319.63 871.85

16 330.65 66907.90

17 530.52 1487.08

18 561.61 54399.76

19 908.00 54393.05

20 74722 55726.58

Analysis of the Structure of the Results
Regarding their structure, the resulting control strategies could be classified into 5

categories.

1at Groyp
The first group comprises four of the best results obtained: results from run number
1, 2, 3 and 4. They are characterised by the use of a hyperbolic tangent function for
the heading control and some arithmetic combination of the propulsion error, the
desired surge speed and the actual surge speed for the propulsion. Since the best
overall result has been obtained from run number 1, its structure is shown as an
example of its class:

(8.45)
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T = -57.4927· tanh(h~ . (Xh - xhd )J
3eom 4.0842

(8.46)

As usual the hyperbolic tangent for the heading control acts as a proportional
controller and it is equivalent to:

(8.47)

2ndGroup
The results obtained in runs number 5, 6 and 7 form the second group of results.
They basically rely on control actions that are either proportional to the error or to
the desired signal. Since the controllers that performs best are obtained from number

5, these are represented below:

T1eom = 2.1534· Ud (8.48)

T3eom = 2· exp(sin(70.2))' (2. eh + sin(3.1)) ~ 7.1482· eh + 0.1487 (8.49)

The propulsion control acts as an open loop command-following type of controller;
while the heading control consists of a proportional term plus a constant. This
constant sets an offset that degrades the controller's performance.

3rdGroup
The third group is the most numerous. All of them have a constant commanded
propulsion force equal to 1 and some kind of proportional heading control action.
Results from runs 8, 9, 10, 11, 12 and 13 belong to this group. Some of these results,
such as those of run number 8, 9 and 10 perform satisfactorily despite the constant
propulsion force. It is again a "damage limitation" issue. A constant action performs
better than an unstable one. The control strategy obtained in run number 9 IS

presented as an example of the typical structure of this group:

T1com = 1 (8.50)

(8.51)_ sin(21)
T3eom - . ( ).eh ~9.l918·eh

sm 21.9

4thGroup
The fourth set of results consists of the results from runs 14, 15 and 16. In all of
them the control action is proportional to a sine function, either for the propulsion
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control (run number 14), for the heading control (run number 16) or for both (run
number 15). In order to illustrate this kind of structure, the controllers obtained in

run number 14 are shown:

(8.52)

(8.53)

5th Grou.p
The fifth group consists of two controllers that have a hyperbolic tangent function to
provide the propulsion control and either a proportional term (result from run
number 17) or another hyperbolic tangent function (result from run number 18) for
the heading. Both controllers provide similar results in the GP optimisation.
However, the controllers obtained in run number 17 give a reasonable result in the
validation test while the other failed totally due mainly to the wrong polarity in the
propulsion control. The structures of the resulting controllers from run number 17

are as follows:

(8.54)

(8.55)

The propulsion control is constructed from the product of the error signal multiplied
by a sign function and a hyperbolic tangent. Naturally, the effect of the sign function
would be to cancel the polarity of the hyperbolic tangent function. However, the
error term in the denominator of the hyperbolic tangent expression prevents a true
cancellation as the equation stands. By rearranging Equation (8.52) the following

relationship can be obtained:

(8.56)
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Again the hyperbolic tangent IS effectively performing as a proportional gam,

therefore:

(8.57)

Finally, two of the results (runs number 19 and 20) could not be assigned to any of
the previous groups. The result from run number 19 sets to zero both control actions,
and the controllers from run number 20 have a constant commanded surge force,
while the heading control is provided by Pole Placement control.

The performance of the controllers considered to be best from run number 1 (see
Equations (8.45) and (8.47» is shown in Figures 8.11 and 8.12. Both figures
illustrate the performance of the heading and propulsion controller when tracking the
simultaneous double step and double turning point manoeuvres, respectively. The

reference signals are represented in dashed line.
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Figure 8.17: Simulated Results of the GP+GA Optimisation With Waves
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It can be seen from Figure 8.17 that the performance of these controllers is better
than the performance of the controllers obtained in the optimisation without waves
(see Figure 8.14). The desired speed tracking is very good and the heading as well,
although this response does exhibit some overshooting. The propulsion control is
again a proportional controller with a gain very similar to that of the propulsion
control obtained in the GP+RG optimisation without waves (see Equation 8.1). The
heading controller is a proportional control whose gain is slightly smaller than those
of the controllers obtained in the GP+RG optimisation with waves (see Equation
8.18) and GP+GA optimisation without waves (see Equation 8.32). The effect of the
waves is mainly reflected in the rippling of the signals. While comparing this figure
with the performance of the controller obtained in the GP+RG optimisation with
waves (see Figure 8.7) it can be observed that, although this controller achieves a
faster propulsion transient response (due to a higher gain), the control effort and the

rippling in the signals is worse.
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Again the performance of this controller is better that that of the one obtained in the
optimisation without waves. Both the heading and speed tracking are reasonable.
The control effort is quite high so it reaches the actuator limits. The saturation of the
actuators due to the high gain causes two peaks in the error signals.

Figures 8.19 and 8.20 show the results obtained when the controllers from Equations
(S.45) and (8.47) are implemented in the real plant. In Figure S.19 the performance
of the controllers operating in still waters is shown.
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Figure 8.19: Real Results of the GP+GA Optimisation With Waves When
Manoeuvring in Calm Waters

The real performance of the controllers shown in the previous figure presents similar
characteristics to the simulated responses from Figure 8.17, mainly the overshooting
in the heading response and the slight steady-state error in the surge response.

Figure 8.20 shows that the inclusion of waves in the water tank does not affect
significantly the performance of the heading and propulsion controllers obtained in
the GP+GA optimisation with waves.
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Figure 8.20: Real Results of the GP+GA Optimisation With Waves When
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Analysis of the Size of the Trees
In order to analyse the tree size aspect of the optimisation Table 8.8 includes the
sizes of the heading and propulsion trees found to be best in the GP+GA
optimisation. The average size of the final population of each run is also included
together with the cost values assigned to every solution during the evaluation
procedure.

Yet again, the small number of GP generations run in the GP+GA scheme has led to
very small resulting trees. Still, it can be noticed that the best results use bigger trees
for heading than for propulsion.
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Table 8.8: Size of Trees in the GP+GA Final Populations
Optimisation With Waves

Cost Run
Propulsion Heading

value No. Best Tree
Avg.

Best Tree
Avg.

Population Population

50.13 16 1 1.06 5 3.71

115.50 10 2 6.90 9 7.26

118.84 20 3 2.97 5 4.94

127.65 14 5 7.35 7 4.90

128.37 11 1 1.16 4 3.42

143.78 5 2 2.23 12 11.84

228.93 13 5 2.74 6 8.65

229.21 4 2 4.55 5 4.61

262.70 3 1 1.13 9 5.45

267.23 9 2 2.00 2 2.16

319.63 2 2 2.52 1 1.00

330.65 6 1 1.52 3 2.77

353.10 8 1 1.06 1 1.06

394.20 15 4 4.00 2 2.00

530.52 18 7 7.94 1 3.48

561.61 19 1 1.16 4 4.16

629.91 12 3 11.03 3 2.23

747.22 7 5 4.29 1 1.13

908.00 1 5 4.39 6 5.87

953.27 17 5 5.26 9 5.45

Analysis of the Percentage of Occurrence of Functions
Finally, in Figure 8.21 the percentage of usage of each function from the function set
can be seen. It has been calculated considering only the best heading and propulsion
trees obtained in each run.

Once more the GP+GA optimisation produces smaller percentages of occurrence of
functions in the resulting trees as a consequence of the smaller size of the trees and
the lesser degree of structural development.

Among the propulsion trees the most frequent functions are the arithmetic functions
and the place command. As in the case of the integral term for heading control, the
place commands are cancelled during the evaluation of the tree and they do not
influence the final control action.
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As usual, the most regular function occurrence for the heading trees is that of the
sine and hyperbolic tangent functions.
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Figure 8.21: Percentage of Usage of Functions in the GP+GA Best Results
Optimisation With Waves

8.4. SUMMARY

Table 8.9 summarises the cost values obtained in the optimisation with and without
waves of the best structures obtained with GP+RG and GP+GA.

Table 8.9: Summary of Cost Values
GP+RG GP+GA

w/o waves 2.44 126.55

with waves 12.90 50.13

As it can be seen in the table the results obtained in the GP optimisation study are
quite satisfactory. The best cost values reached with the GP+RG scheme outperform
the cost values obtained in the GA optimisation of control strategies such as Sliding
Mode control or Roo in the optimisation without waves and are equivalent to the
costs obtained by Sliding Mode or Pole Placement in the optimisation with waves.
The manoeuvring performance of these controllers illustrated in the figures also
proves their adequacy.
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Conversely, the results obtained with the GP+GA implementation are very poor in
comparison. The use of evaluation in the GA optimisation to improve the parameter
tuning does not payoff.

However, although the GP+RG method has performed better in relation to the costs
obtained, all four optimisations have converged to trees that provide very similar
control strategies. The best results obtained in all four sets of runs are based on a'
hyperbolic tangent function providing the heading control and a proportional term or
another hyperbolic function providing the propulsion control.

The figures chosen by the search method as arguments of the hyperbolic functions
for these best results make this function operate in its proportional range instead of
in the switching area. Thus, in the case of the propulsion control, since the
subsystem is of lIt order, the hyperbolic tangent provides an outcome proportional to
the surge speed error (i.e. a proportional term). In the case of the heading control, the
resulting commanded force is effectively of the form: 1)com ~-K·h'·(x - Id). This is
in fact a full state feedback control with a feedback matrix and a conditioning matrix
for the state reference equal to Kh'.

Regarding the effect of the inclusion of waves in the evaluation of the candidate
solutions, the results from the GP+RG optimisation are consistent with the
conclusion drawn in Chapter 6. The inclusion of waves leads to controllers that
reduce the control gain more than improve the robustness against external
disturbances. The results obtained in the GP+GA optimisation are so poor
(especially those from the optimisation without waves) that they do not allow clear
conclusions.

On the subject of the size of the resulting trees the size figures shown are very
encouraging since growth of trees to an extreme size is not an issue in this study. In
the case of the GP+GA runs this has been expected since many of the evaluations
are dedicated to GA optimisation that does not affect the tree size. However, the
small size of the resulting trees in the GP+RG optimisation was not expected. Only
around 20% of the trees are close to the maximum size limit. One of the theories to
explain bloat states that the reason for the code bloat in GP is a bias towards deeper
subtree crossover and subtree mutation points. Hence, the way the tree structure has
been defined in this study, by not allowing subtree mutation or subtree crossover to
act over terminal nodes can be viewed as hampering the tree growth through
balancing the bias.

244



As a final point, the study of occurrence of functions in the resulting trees indicates a
preference for the use of hyperbolic tangents and sine functions (apart from the four
basic arithmetic operators) over other functions for both propulsion and heading.
This kind of study is not very conclusive since the occurrence of a function in a tree
does not ensure its contribution to the result, but it helps in the analysis, especially if
they are consistent with those of the structural analysis.
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CHAPTER9

CONCLUSIONS AND FURTHER WORK

9.1. SUMMARY OF THE CONCLUSIONS

The overall conclusion to be drawn from this work is that in the best cases genetic
optimisation techniques have performed very satisfactorily when they have been
used to optimise the control strategy for the propulsion and heading dynamics of a
supply vessel model. They have converged to controller solutions that provide a
good tracking of the desired responses while minimising actuator usage.

In this study, GAs optimisation has been based on existing time domain control
structures such as PID, Pole Placement, Sliding Mode and Hoo. GAs provides an
efficient way of tuning the parameters that define these structures. However, the
rigid solution encoding in GAs make them unfriendly to use as optimiser of
hierarchic structures. The tree representation typical of GP provides the flexibility
necessary to conduct the hierarchic search. In GP, the size and shape of the solution
trees (randomly initialised), is allowed to evolve along the generations.

Table 9.1 presents the cost values obtained in the different optimised control
structures:

Table 9.1: Summary of Cost Values

PID PP SM+PI SM
R., Roo GP+RG GP+GA
(GA) (sGA)

wlo
1.2 0.96 4.5 4.5 1.6 1.6 2.44 126.55

waves
with

4.3 10.6 10.5 11.5 33.4 11.77 12.90 50.13
waves
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From the table it can be seen that the best cost values for the simulated results have
been obtained with PID and Pole Placement controllers. However, the real tests
sometimes give a significantly different result compared with that expected by the
simulation results. Thus, overall, SM optimised without waves provided a very
consistent good performance, despite of being outperformed by other controllers in
the simulations. In addition, the results obtained in the GP optimisation study are
quite satisfactory. The best cost values reached with the GP+RG scheme outperform
the cost values obtained in the GA optimisation of control strategies such as Sliding
Mode control or Rx, in the optimisation without waves and are equivalent to the
costs obtained by Sliding Mode or Pole Placement in the optimisation with waves.
The results obtained in the real testing of the GP+RG controller structure optimised
without waves are also consistent with the good performance shown in the
simulations.

The conclusions derived from the analysis of the various genetic models are
presented below

9.1.l. CONTROLLERS
In Chapter 4 the design and implementation of four types of controllers for the
heading and propulsions dynamics of the supply ship has been presented. As an
introduction to the design ICAD was used for the analysis of the level of decoupling
of the system. ICAD illustrated the strong coupling between the sway and heading
dynamics. It also determined that the coupling between the surge and heading
dynamics is null once the system is linearised, but it did not provide a result in terms
of the level of coupling due to the non-linearities in the model. This is an important
limitation of this approach.

Two of the control designs, namely PID and Sliding Mode, were based on two
decoupled subsystems, while Pole Placement and Rx, were based on the MIMO
system. The MIMO controllers did not show a clear improvement of performance
over the decoupled ones. Therefore, it indicates that the level of coupling is not big
enough to degrade the performance of decoupled controllers, i.e. they are well-suited
to the dynamics of the system.

The manual tuning of the controllers in Chapter 4 has shown the inherent difficulties
associated with this process. Sliding Mode and Rx, have proven to be especially
demanding. Even for easier tuning problems, such as PID and Pole Placement, the
process is very tedious. Rx, control has the added difficulty that the elements of the
controller subjected to tuning (i.e. the weighting functions) are not parameters but
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transfer functions. Therefore the structure of the transfer functions has to be chosen
a priori. Also, the tuning is not very intuitive, since the transfer functions are not
related to specific characteristics of the controller, as opposed to PID that has clear
performance rules associated with each gain.

9.1.2. GENETIC ALGORITHMS
The results obtained with GAs (see Chapter 6) have illustrated the advantages of .
using an optimisation technique for the purpose of the adjustment of the controller's
parameters. One of the key aspects of GAs is that they do not require any a priori
knowledge of the search space; therefore they are very easily applied to the tuning of
different controllers. A change in the controller to be optimised only involves minor
modifications to the encoding of the solutions due to the different number of
parameters to optimise in each structure.

Various GA schemes ~ere analysed and their performance compared in Chapter 5 in
order to find a GA scheme that was well suited to the controller optimisation
problem for ship navigation. In the study, tournament selection with high mutation
and crossover rates outperformed other selection techniques such as ranking or
elitism. In addition, the inclusion of the non-uniform mutation operator was found to
be beneficial, especially for the Rx, optimisation problem.

All the resulting controllers from the GA optimisation have been tested in the real
plant and the results have been shown in Chapter 6. The performance of the
controllers once implemented in CS2 has been satisfactory. Overall, the Sliding
Mode optimised without waves provided a consistently good performance.

Some controllers (namely the PID and PI controllers for propulsion in the decoupled
PID control and the Sliding Mode plus PI configuration optimised with waves, and
the manually tuned and optimised using sGA Rx, controller) have shown stability
problems when employed to control the real plant. In the simulation studies there
was no evidence of this problem so the GA was misled by the good cost values
obtained by these controllers in the evaluation process. This emphasises the
importance of accurate models for controller design and optimisation. However, it is
important to remark that other control structures, namely Sliding Mode and Pole
Placement, were also subjected to these inaccuracies in the model and their
performance was not affected (i.e. they show robustness against model
uncertainties). This was to be expected since Sliding Mode is considered to be a
robust controller and Pole Placement was design using a robust eigenstructure
assignment method.

248



When the controllers optimised without waves are tested in the presence of waves,
the responses become noisy, although the tracking performance is not so much
affected. This high frequency action is especially manifest in the propulsion control
signal ("Z). On the other hand, the inclusion of environmental disturbances in the
optimisation process did not result in the desired robustness against disturbances of
the controllers. The results obtained in the real trials conducted in the water tank
allow us to conclude that the effect of including waves in the optimisation is not an
increase of the robustness of the controllers against external disturbances but a
reduction in the control effort. This is especially true for the propulsion signals.
Since the addition of waves causes this very noisy "Z) signal, the GA tries to
compensate for it by reducing the gain of the controller. This leads to a degraded
surge tracking, but it effectively reduces the oscillations. Thus, the inclusion of
disturbances represents good practice when looking for smooth actuator usage or
non-reactive low gain control.

Regarding the consistency of the GA convergence to certain type of solutions, the
various runs of the GA optimisation led to similar controller solutions for all the
controllers except Rx, (as can be seen in the small standard deviation values obtained
when these solutions were averaged in Chapter 6). The diversity of solutions for the
GA optimisation of Rx, provided further proof of the difficulty of this optimisation
problem. This can also be notice in the generation of convergence of the
optimisations. While the other controllers found solutions closer to the best one
within the first ten generations, the GA did not converge to the final solution for Ito
until the very last generations.

The Structured Genetic Algorithm (sGA) performed very well in the optimisation of
the Rx, weighting functions. The resulting cost values were smaller or equivalent to
those obtained with the GA optimisation, but with the added advantage of reducing
the order of the weighting functions and, as a result, the order of the controller. The
sGA results show that the method can be of assistance when identifying appropriate
weighting functions orders. However, once the controllers were implemented in the
real plant they proved to have stability problems.

9.1.3. GENETICPROGRAMMING
As described in Chapter 7, GP provides structural solutions for controllers. In
Chapter 8 the GP provided controller structures for heading and propulsion
dynamics that performed satisfactorily. Some of the cost values obtained
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outperformed or equalled those obtained with well-established control structures
such as SlidingMode or Hoo.

The degree of a priori knowledge needed to use GP has been found to be less than
GAs, since the size and shape of the solutions are not determined by the user but are
dynamically evolved along the generations.

An important issue when working with GP is how to generate the numerical
constants needed to find a solution for most problems. Evidence has been given in
Chapter 8 that the GP scheme with random generation of constants provides better
results than the combination of GP with a parametric optimisation technique such as
GAs when using the same number of evaluations of candidate solutions. The
investment of evaluations in the GA optimisation at the expense of the GP
optimisation in order to improve the parameter tuning does not payoff.

Regarding the inclusion of waves in the optimisation process in GP, the results
corroborate the conclusions from Chapter 6: the inclusion of waves results in
controllers with reduced control effort.

All four GP optimisations (i.e. GP with random generation with and without waves
and GP in combination with GAs with and without waves) have converged to very
similar control structures. The propulsion control is always provided by a
proportional term. This can be built either as a gain multiplying the surge error
signal or as a hyperbolic tangent of the surge error signal acting in its proportional
range. The heading control always relies on a hyperbolic tangent acting in its
proportional range. Therefore, it is equivalent to a state feedback control matrix (k)
acting as well as the conditioning matrix for the reference signal (i.e.
T3com =-k.(xh -Xhd)·

Finally, the GP optimisation has not shown the size problems usually reported as one
of the main flaws of the method. This is thought to be due to the way the tree
structure has been implemented in Matlab in this study. By not allowing subtree
mutation or subtree crossover to act over terminal nodes, the genetic operators are
restricting the tree growth through balancing the bias towards deeper subtree
crossover and subtree mutation points existing in the genetic operators.
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9.2. FURTHER WORK

The work presented in this thesis can be extended in several directions. Some
possible areas of extension are given below.

9.2.1. CONTROL APPLICATIONS
From the point of view of control, a continuation of this work could be the study of
the effect in the optimisation of other disturbances such as wind or ocean currents.
Currently, wind and current generation facilities are under construction in the
MCLab, this would allow real testing of the effect of these disturbances.

Also, current work on CyberShip II is based on dynamic position controllers
[Lindegaard (2003)], and using GA for optimisation of the controllers would be an

interesting option.

9.2.2. GENETIC ALGORITHMS
Regarding the evaluation of the controller solution in the GP and GA optimisations
the use of multi-objective GA (MOGA) [Fonseca and Fleming (1994), (1998a),
(I 998b )] could be contemplated. The cost function considered in this study had 6
terms, reflecting the objectives of the control strategy: good tracking, minimisation
of actuator effort and minimisation of oscillations in the actuators for both
propulsion and heading control. The optimised solution is a trade-off between these
objectives. MOGA provides a solution that consists of a family of solutions (the
Pareto optimal set) [Fonseca and Fleming (1994)]. Any improvement in one
objective is at the expense of the other.

Some work has been done in the use of GAs as an on-line optimisation technique for
route planning of AUVs [Alfaro-Cid et al. (2003)]. Given the long optimisation time
usually required for GA optimisations, the number of evaluations has to be reduced
for on-line applications. For an effective use of a GA with a small number of
solution evaluations the size of the search space has to be restricted. The reduction
of the search space can be done easily in the optimisation of the controller
parameters. Every time, the GA is run in conjunction with the manoeuvre of the
vessel, and only a search space around the current parameter values is considered.
The increasing computer capabilities allow the use of GAs on-line as an adaptive
type of controller. The on-line application of GAs would be especially interesting for
supply ships, as it would allow a smooth transition from course-changing operation
to dynamic positioning.
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9.2.3. GENETIC PROGRAMMING
Regarding the GP performance, although the decoupled controllers have proven to
be very efficient for the control of this particular plant, the GP implementation could
be upgraded to a MIMO controller having a single tree with three roots for 'rlcom,

T2com and T3com. This would provide a higher level of system integration. In the same
way the PID and Sliding Mode controllers optimised with GA could also be
designed as MIMO controllers.

The non-uniform mutation operator, which has worked so well in GA, could be
adapted for the GP algorithm. A bias could be included so that the mutation varies
depending on the depth of the node affected (since the deeper a node is the less
relevant for the final solution) and the evolution stage (i.e. the number of

generation).

The limited amount of bloat encountered in the GP optimisations encourages further
analysis of the tree representation and operators used to get a better understanding of
the bloat dynamics. A deeper analysis of the crossover operator is required together
with a study of the evolution of the size in combination with the evolution of the
fitness and the levels of convergence among the trees of the population.

Regarding the selection of numerical constants it would be interesting to use other
parametric optimisation methods such as Simulated Annealing or hill-climbing to
see if they provide better results than GAs or random generation of constants.
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APPENDIX A

csr AND CS2 MATHEMATICAL MODELS

A.t. MODELS MATRICES FOR EQUATIONS (3.2) AND (3.3)

Mass matrix:

'.M= 0
o

o

Coriolis matrix:

.: -Yf]
I -N·z r

[

0 0 -(m-YJ.v-{m,xa -y,}r]
C{v)= 0 0 {m-XJ.u

{m-Y,;).v+{m,xa -Yf)·r -(m-X.Ju 0

Damping matrix:

Euler matrix:

[

COS{'I') - sin('I' ) O~]
J = Sin~'I') CO~'I' )
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A.2. CYBERSHIP I MATHEMATICAL MODEL

Model parameters:

Table AI: Model Parameters for CS 1

Main data
Hydrodynamic

Damping terms
added mass terms

m = 17.6 (kg) Xu = -1.4 (kg) Xu = -4 (kg/s)

Iz = 1.8 (kg·m2) Yv = -17.6 (kg) Y., = -6 (kgls)

xa = -0.04 (m) Yr =0 Yr =0

Length= 1.19 (m) N; =0 Ny=O

NI' =-0.18 (kg-m') N, = -1 (kg·m2/s)

Thruster configuration with respect to the centre of gravity:

Table A2: Truster Configuration for CSI

x(m) y(m)

Port aft thruster -0.493 -0.065

Starboard aft thruster -0.493 0.065

Bow thruster 0.34 0

Bow thruster 0.36 0

Time constants:

Table A3: Time Constants for CS 1
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• x

Figure A.I: Schematic Diagram of the Actuator's Layout for CSI

Transfer function matrix for the surge speed - heading channels

(s) - 0.0526. (s) _ 0 . (s _ 0 . (s) _ 0.5087· s + 0.2057
gll -s+0.2I04,gI2 - ,g21 )- ,g22 -s3+0.6811.s2-2.2474.s

y(s) = 0

Transfer function matrix for the sway speed - heading channels

0.0286· s + 0.0073 0.0102· s - 0.1921
gll (s) = S2 + 0.6811' s _ 2.1342 ; g12(s) = S2 + 0.6811' s - 2.1342

( ) 0.0102·s+0.1697 ( )
g21 S = S3 +0.6811's2 -2.1342.s; g22 s =-s3-+--0.-6-81-1-.-s2---2-.-13-4-2-.-s

0.5087· s + 0.3129

()
1.04·10-4s2 -2.2848·10-4s-0.0326

y s =
0.0145·s2 +0.0127·s+0.0023
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A.3. CYBERSlIIP ITMATHEMATICAL MODEL

Model parameters:

Table A.4: Model Parameters for CS2

Main data
Hydrodynamic Damping terms

added mass terms

m = 23.8 (kg) Xu =-2 (kg) Xu = -2 (kg/s)

L, =1.74 (kg-m') Yy= -10 (kg) Yv = -7 (kg/s)

Xo = 0.0425 (m) y. =0 Yr = -O.l (kg-m/s)r

Length = 1.255 (m) Ny=O N; = -0.1 (kg-m/s)

N, = -1 (kg-m') N, = -0.5 (kg-mvs)

Thruster configuration with respect to the centre of gravity:

Table A.5: Thruster Configuration for CS2

x(m) y(m)

Port aft rudder -0.54 -0.075

Starboard aft rudder -0.54 0.075

Bow tunnel thruster 0.465 0

Time constants:

Table A.6: Time Constants for CS2
TJ = 0.03 (s) T2 = 0.03 (s) T3 = 0.03 (s)
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.. x

Figure A.2: Schematic Diagram of the Actuator's Layout for CS2

Transfer function matrix for tbe surge speed - beading cbannels

y(s) = 0

Transfer function matrix for tbe sway speed - beading channels

0.0299·s+0.0131 -0.011·s-0.1967
gl1(S) = 82+ 0.3893'8-1.0294 ~g12(S) = 82+0.3893'8-1.0294

-0.011.s-0.0617 0.3663·s+0.0758
g21(S) = S3 + 0.3893.s2 -1.0294. s ~g12(S) = $3+ 0.3893·$2 -1.0294· 8

( )
_ 0.3663'8+0.0758

Y s - 3 28 -0.3893'8 -1.0294·$
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APPENDIXB

GENETIC ALGORITHM COMPARISON STUDIES
COMPLEMENTARY DATA

B.I. COST FUNCTION WEIGHTING PARAMETERS

Table B.1: Cost Function Weighting Parameters
Al PI AJ P2

CS1 10-3 10-~ 10-3 10-2

CS2 10-3 10-' 10-4 10-"

B.2. FIRST COMPARISON STUDY COMPLEMENTARY DATA

Table B.2: Best Costs Results
pm SM+PI IL PP

Mean StnDev Mean StnDev Mean StnDev Mean StnDev
GAi 5.3E1) 0.0893 5.566 0.7192 14.183 7.7925 5.705 0.0372

GA2 5.318 0.1432 20.386 28.6607 7.349 2.2586 6.081 0.4733

GA3 5.337 0.0811 5.67 1.3058 55.989 68.7262 5.699 0.0362

GA4 5.602 0.1109 6.343 2.5953 78.278 53.8847 5.71 0.0343

GAS 5.265 0.0739 4.504 0.1024 12.857 15.7294 5.774 0.2061

GAS 5.580 0.1480 5.823 0.9515 23.24 12.5206 5.709 0.0164

GA7 5.444 0.1507 7.836 4.0628 51.366 50.6942 5.689 0.0211

GAB 5.297 0.1053 7.206 3.2198 8244 6.3528 5.69 0.0256

GAl 5.544 0.20371 5.446 1.3678 28.866 29.4222 5.884 0.0101

GAi0 5.455 0.1727 6.583 2.4846 45.541 19.9756 5.706 0.0175

GA11 5.219 0.0190 5.034 0.8517 5.909 0.8575 5.672 0.0013

GAi2 5.679 0.2417 6.921 2.5473 56.485 28.1896 5.713 0.0337

GA13 5.333 0.0847 5.333 0.968 20.957 17.1209 5.695 0.0228

GAi4 5.246 0.0780 5.775 1.1317 6.678 1.8828 5.681 0.0141

GA15 5.340 0.0836 4.987 0.4134 16.726 5.8706 5.697 0.0137

GAil 5.622 0.1850 6.455 2.2365 43.604 14.7987 5.709 0.0313

GAi7 5.200 0.0082 4.643 0.4655 8.259 1.5612 5.672 0.0013

GAia 5.633 0.2790 7.096 3.282 44.239 19.3803 5.725 0.0365
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Table B.3: Generation of Convergence Results
pm SM+PI R.. PP

Mean StnDev Mean StnDev Mean StnDev Mean StnDev
GA1 17.333 6.774 21 8.505 30.167 13.359 8.667 4.679

GA2 9.167 2.544 24.5 12.285 33.333 11.629 5.333 1.599

GA3 11.333 4.15 34.167 7.84 22.833 12.402 7.167 4.74

GA4 11 9.309 16.5 14.338 11 9.018 11.667 7.157

GAS 8.833 3.532 24.5 11.529 30.833 5.177 5 1.915

GA6 19 11.416 18.833 14.404 20.167 18.225 11.167 5.145

GA7 17 9.764 19 13.976 18.333 9.049 5.5 3.253

GAB 7.833 3.976 19.667 12.12 26.5 9.962 12.167 13.018

GA9 20.667 4.11 25.667 14.091 20.333 16.967 7 3.606

GA10 9.5 5.284 19 9.781 7.667 5.935 8.167 3.236

GA11 7.5 3.731 17.167 8.591 23.833 4.776 3.5 2.217

GA12 21.167 9.923 18.667 12.802 12.5 10.259 5.833 3.184

GA13 19 10.263 13.5 4.992 17.5 7.869 5.5 2.5

GA14 6.5 1.708 17.833 9.634 34 11.832 3.5 0.764

GA1S 14.167 6.962 27.5 8.539 31 12.329 9.5 5.909

GA16 11 4.655 24 12.329 9.5 12.633 6.242 2.911

GA17 6.167 1.344 16.667 10.546 24.5 5.47 2.639 1.384

GA1B 8.833 2.853 16.5 10.626 7.667 6.6 4.333 4.497

Table B.4: Amount of Convergence in the Final Population
pm SM+PI R.. PP

Mean StnDev Mean StnDev Mean StnDev Mean StnDev
GA1 42.167 4.81 7.167 4.598 2.333 1.599 52.833 4.14

GA2 56.333 1.491 44.167 8.194 28.833 12.746 64.667 0.745

GA3 18.333 2.357 5.667 2.867 4.5 4.349 20.5 5.156

GA4 9.167 4.67 1 0 3.833 2.267 25.333 3.197

GA5 48 6.608 32 4.546 13.833 7.581 46.667 3.682

GA6 8.167 4.059 1.167 0.373 4.167 3.578 11.187 1.213

GA7 27.667 10.143 4.5 5.849 11 14.036 51.667 1.972

GAS 59.5 4.924 45.333 3.498 32.667 13.597 84.867 3.543

GAS 15.167 2.034 4 2.828 5.333 5.85 19.167 2.967

GA10 8.167 2.794 2 1 2.833 1.462 15.167 9.634

GA11 45.5 4.958 28.833 7.381 16.5 3.946 50.833 5.08

GA12 4.833 1.951 1.167 0.373 2.5 1.384 9.167 2.794

GA13 34.333 10.562 3.667 4.23 4.833 6.593 46.167 10.383

GA14 59.667 3.35 46 2.769 23.333 12.858 64 3.916

GA15 13.5 1.708 3 1.915 1.167 0.373 15.867 1.795

GA16 4.667 2.867 1 0 1.333 0.471 12.187 5.698

GA17 45.5 5.679 30 5.827 11.833 5.398 46.833 2.409

GA1B 2.833 1.462 1.167 0.373 3 1.732 7.667 3.197
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Table B.5: AMP in the Final Population
PID SM+PI H.. PP

Mean StnDev Mean StnDev Mean StnDev Mean StnDev
GA1 0.56 0.0442 0.567 0.0611 0.541 0.0578 0.583 0.061

GA2 0.91 0.0257 0.889 0.0203 0.822 0.0479 0.922 0.0206

GA3 0.513 0.0562 0.484 0.0513 0.421 0.0334 0.542 0.0413

GA4 0.354 0.0275 0.342 0.0203 0.334 0.0303 0.433 0.0308

GA5 0.738 0.0299 0.722 0.0441 0.619 0.0745 0.786 0.0356

GA6 0.281 0.0163 0.288 0.0281 0.274 0.0133 0.308 0.0278

GA7 0.524 0.047 0.482 0.0298 0.432 0.0306 0.554 0.0388

GAB 0.879 0.0249 0.875 0.0228 0.818 0.0225 0.917 0.0134

GA9 0.417 0.0167 0.38 0.0382 0.35 0.0136 0.441 0.0413

GA10 0.342 0.0113 0.391 0.0427 0.325 0.0253 0.365 0.029

GA11 0.724 0.0369 0.691 0.039 0.607 0.0346 0.787 0.0277

GA12 0.263 0.0182 0.252 0.0194 0.241 0.0412 0.278 0.0195

GA13 0.515 0.0228 0.461 0.0309 0.423 0.0355 0.498 0.0394

GA14 0.892 0.0342 0.878 0.0268 0.821 0.0245 0.94 0.0122

GA15 0.404 0.0251 0.362 0.0403 0.32 0.0258 0.408 0.037

GA16 0.326 0.0262 0.336 0.017 0.297 0.0179 0.349 0.014

GA17 0.731 0.0239 0.721 0.0234 0.585 0.0377 0.783 0.0295

GA18 0.248 0.0215 0.247 0.0161 0.225 0.0074 0.26 0.013

B.3. SECOND COMPARISON STUDY COMPLEMENTARY DATA

Table B.6: Best Costs Results
PID SM+PI PP Hinf

Mean StDev Mean StDev Mean StDev Mean StDev
Benchmark 5.2005 0.0082 4.6433 0.4655 5.6721 0.0013 6.2591 1.5612

Non-unifonn 5.4502 0.4187 4.9621 0.6272 5.6738 0.0298 5.7478 0.8446.
Minimisation 5.4630 0.0879 5.1434 0.6733 5.7445 0.0210 13.275 17.151

(1'=6.1)

Minimisation 5.4838 0.1266 5.1964 1.0138 5.7054 0.0274 13.566 15.386
(....o.o~

Combination 5.4293 0.0648 5.7902 1.4243 5.6988 0.0141 5.7197 0.3363

Exponential 5.2086 0.0123 4.7732 0.6765 5.7659 0.2090 5.2519 0.0760..
Exponential 5.2518 0.0646 5.5803 0.7004 5.6705 0.0014 5.2929 0.0326
mut & (,1nL.

I-point 5.4680 0.4194 4.5764 0.1999 5.7731 0.2063 5.3205 0.0762
eressever
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Table B.7: Generation of Convergence Results
Generation of convergence

pm SM+PI PP Hinf

Benchmark 6.167 5.000 16.667 24.500

Non-uniform mutation 9.667 2.333 26.000 16.167

Minimisation (r=O.l) 1.833 1.333 13.667 18.500

Minimisation (r=O.05) 1.833 6.333 11.167 16.667

Combination 11.500 3.667 14.167 8.500

Exponential mutation 14.833 6.833 22.000 13.333

Exponential mut & cross 9.667 11.333 26.833 19.167

I-point crossover 10.500 5.000 17.000 13.833

Table B.8: Amount of Convergence and AMP in the Final Population
AMF Amount of Convergence

pm SMPI PP Hinf pm SMPI PP Hinf

Benchmark 0.731 0.721 0.783 0.585 45.500 30.000 48.833 11.833

Non-uniform 0.827 0.801 0.863 0.723 80.000 78.833 80.000 79.000
mutation

Minimi1lation 0.401 0.513 0.426 0.546 2.500 3.000 2.667 3.167
(FO.I)

Minimisation 0.381 0.508 0.397 0.502 2.333 3.167 2.000 3.667
(r=O.05)

Combination 0.694 0.670 0.665 0.650 16.333 8.000 14.833 5.500

Exponential 0.656 0.632 0.705 0.606 79.667 63.333 80.000 72.500
mutation

Exponential 0.661 0.631 0.718 0.605 80.000 58.000 80.000 70.667
mut& cross

Ii»0int 0.639 0.667 0.725 0.598 80.000 75.167 80.000 74.000
crossover
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Figure B.1 presents the performance degradation associated with very small
populations and high effective mutation rate. The population sizes and best cost
values have been average over 6 runs.
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Figure B.1: Cost Degradation in Terms of Population Reduction
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APPENDIXC

GENETIC ALGORITHM CONVERGENCE RATES

C.I. GA CONVERGENCE RATES

5.5 .------,---~---_r_--~--___,
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4

2.6

g.n.r.tion.

Figure C.1: GA Convergence for the PlO Optimisation Without Waves
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10 "',

'--'----------------------------------._-------1
gan.r.tiDn.

Figure C.2: GA Convergence for the PlO Optimisation With Waves
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Figure C.3: GA Convergence for the pp Optimisation Without Waves
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Figure C.4: GA Convergence for the pp Optimisation With Waves
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Figure C.S: GA Convergence for the SM+PI Optimisation Without Waves
250

200

1SIJ....
8
1

100

50 "l
00 10

Figure C.6: GA Convergence for the SM+PI Optimisation With Waves
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Figure C.7: GA Convergence for the SM Optimisation Without Waves
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Figure C.8: GA Convergence for the SM Optimisation With Waves
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Figure C.9: GA Convergence for the H..Optimisation Without Waves
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Figure C.lO: GA Convergence for the H""Optimisation With Waves
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Figure C.II: sGA Convergence for the HOI)Optimisation Without Waves
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Figure C.12: sGA Convergence for the HOI)Optimisation With Waves
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APPENDIXD

GENETIC PROGRAMMING BEST RESULTS

D.l. RESULTS OBTAINED IN THE GP+RG OPTIMISATION WITHOUT
WAVES

Run No.2

'Z"lcom = 90.656· ep

(
h' .(x -x )J

t. =e -54.0658.tanh h h hd
3com h 7.0042

""~
c.s --- ----.i----- ---{---------

Io.4 - -------L----- -.L--------
to.2~

o -.. --.-- .• --------- •.
o 20 40 60

Wv' \id_ ~i 1~WH:UU=
"li 20 - -------.------ --.----.----
.l!! ; ~;

o ----- ---- ~-------.- :
o 20 40 60

~:fhJd i ':bb3uun

j- 0 ---------r--------~-- ~ 0 ---.---- j -_-;

-20 2~ 4~ 60 -O.SO ~ 4~ SO
time(s) time(e)

Figure D.I: Simulated Results GP+RG Run No.2 (no waves)
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~ Iii

iOA~~0.2I -.. ,.- ... -.'1:, .......•.
o , ........• , ..
o ao 40 60

OOttE: :
"ii' ~O ··V·····.····· ···i·········

i20~=o ...••... , •.•.••.••.
o 20 "0 60

:~ L. L ~.. 'm! j j~ , ; ~ o.e uutuutuuu
] :~ j 0~~.---1~

-10 - ~ 4~ so -0.50 ~ 4~ BC

tima(s)

Figure D.2: Simulated Results GP+RG Run No. 3 (no waves)

'time(s)

Run No. 4

'Z"lcom = U + ud

'Z" =345_8157.tanh(h~ ,(xh -Xhd)]
3eom _ 55.4707

f=§uuj
"li 20 ••••••••••••• - ••• -- ••• ---.-
.l!! ,11. i

o --····---i····-····~
o 20 40 60

'°VPtJ °l .~~ 1 .••••••• : ••••• ··-1·····-··· ~ ~: ·:::::::t::::: .:1:::::::::]05=== ] o~ I ~:: -0,2 ---------t---- ---i---------

00 ~ 4~ SO -O.AO ~ 4~ BD
1irT'ut(s)

Figure D.3: Simulated Results GP+RG Run No.4 (no waves)

tlmo(s)

RunNo.5
7153

'Z"leom = .ep ~ 99_9022· ep
71.6+ud

~ =E'" n--·l·-···\I·--i···-·····jl 20 - -------I------ --r--------
o ---------+---------:
o 20 40 60

i :~ -..-j-- - i o~ltF·-·······f - ~!: -----.j
- 0 , -..• -.. '" 0 -......... .-.+-, ----1-

:: !:
-20 ~ 4~ sa -0.50 ~ 4~ ea

time(s)

Figure D.4: Simulated Results from GP+RG Run No.5 (no waves)

time(s)
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Run No. 6

"Z"lcom = 85.9718· ep

"Z"3com = 0.1833+ 5· eh

".~o.S -.- ----l.---- ---~---------
"Vi" : :iO.4~
on 0.2 ------·-I------- -1---------

o ---------l---------.,;·
o 20 AO sa

It:~{20 .]. + .
..;t:; : •

o ----- .. --;----------:-
o :20 40 60

~:~E":k~].:~ ~.o:~~l
o 20 ..0 60 0 20 "0 60

tlmliiJ(Q) tlmQ(e)

Figure D.5: Simulated Results from GP+RG Run No.6 (no waves)

Run No. 7

"Z"lcom = 72.2· ep

deh
"Z"3 = 17 . eh + 5 . --

corn dt

".~O.B --- -----i·---- ---~---------
"Uj"' ; :

iD4~
U'l0.2 --------!------- -1---------

o 1. ,.
o 20 AD 60

~:r-'U-\l-Ul~ 20. ·······r·····.-1"._ ..... -
o ---------;---------:

.~ _:;~u--l
~:~i:;~::J

-20 ~ 4~ 60 -o'Se ~ 4~ 60
time(s) time(s}

Figure D .6: Simulated Results from GP+RG Run No.7 (no waves)

Run No. 8

o.a ..• / •.•• ;~.:\ .••L .
if / ! \!i:: r:::::f···:·:·~r::::::::

o l b_
o 20

lr:N jW"'O -- - - J._. - ---j.--------

120=L\r··---;
o ......•. , ~
o 20 .&0 so

f ::EfLij i:;llLJJ\L3···::·:::-:::··:·::F····_·
o~·T· _ .02f--V·:·P·····+··~··~J

-0,50 2~ 40 eo -0'''0 ~ 4~ so
time(s) tlme(lI)

Figure D.7: Simulated Results from GP+RG Run No.8 (no waves)
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RunNo.9
'Tlcom = 29· e p + sin(ud )

'T3com = 12·eh +deh/dt

o,~_06 # ;::-:- ; .

i04~
~ 0.2 ~ ·······1······· , .

o - ~---- --- i.- - Mo .. -

o 20 40 GC

!=tuiuustj
] 20 - -------r----- --r--------

° ·········l·········;·
o :20 .040 SOT~-o:~~<=~~Ii! ° ········-1-···-...•. ~ 0. ••••• -.'. .-

-1 ---------;------ -1--------- ::
2 ! i : i
- 0 20 40 60 -0.50 :lC 40 60

tim. C.) ti"....(.)

Figure D.8: Simulated Results from GP+RG Run No.9 (no waves)

RunNo.10
'Tlcom = sin(e p - 5.6432)

'T3com = sin(e h)
O.B ,.------,----,------,

0.6 --.,r.----~:-::-:-.\--.j--------.
11 Ii\. iiD" -r-----.:-----. _.1'--------~0: ~:::.::::l:::::::~h-

o 20 40 Ba

.~C.B • --.----.----. --.,---------

~o.~~ 0.4 ---------!---------1- -
0.:2 ---------i---------1---------
o : :
o 20 40 60

1il'T'le(s)

o 20 40 60

Figure D.9: Simulated Results from GP+RG Run No. 10 (no waves)

RunNo.l1
'T1com = sin(sin(sin(76.3)+ sin(sin(sin(sin(sin(sin(y))))))))+ y

y = sin(sin(sin(96.3. eh .Sign(h~(u -Ud )))))

Figure D.IO: Simulated Results from GP+RG Run No. 11 (no waves)
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RunNo.12
T1com = 6P + Ud

T3com = Sin(6h)

~::~
~ 0.2 "'-"'r""" 1 ...•....
!! o~· -- -- ~-- ------1- -- - -

.0.20 ~ 4~ eo
time(s)

Figure D.ll: Simulated Results from GP+RG Roo No. 12 (no waves)

RunNo.13
Tlcom =-0.13·u+ SO.065.u.cft-6.u.Sign(h~(u-Ud))

o
o 40 60

«olnnnf$j v::~
~ '0.: _·····_·l::::::: ~::....... i:::::....:.:;.::.:.::1-':.:.::.

o 20 40 60 ' 0 20 40 sa
tim.,(s)

Figure D.12: Simulated Results from GP+RG Roo No. 13 (no waves)

RunNo.14
T1com =387.8184·6p +O.0172,ud '(Ud +6p)~387.8184'6p

T3com = 0

Figure D.13: Simulated Results from GP+RG Run No. 14 (no waves)
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RunNo.15

'leorn = 302.5-&P +49.2- J ep -dt+ 2-&/ ~ 302.5-&p +49.2- f ep -dt

'3eorn = -k -Xh
k == p/ace{O, -VI -70.8)

60 ,-----... --..,-. ----,
: :

~ 40 ~-r·-::-:-t::-::_\_---~---------
~ I ! \!'"Ii! 20 •.••••••• , •••••• L., .
.l!! I , \ ,

0J==:;t';;:==' "-~::::::===;;
o 20 40 60't±\1d -"lnnn:nnn)nnnnj~ : :::.:::::\::::.::::r........ i'0: ..( ~ .

-2 : i -1::o = ~ 60 0 = ~ 60
time(s) time(s)

Figure D.14: Simulated Results from GP+RG Run No. 15 (no waves)

Run No.16
'learn = (2 - f 5.536 -dt + 28.06)- e p + f U 5.536 -dt + 16.9881)- e p - dt

'3earn = -k -xh
k==p/ace{O, -Vld -67.5)

'.~0.6 --- -----i ----- ---~---------

~o.~ - -------L----- --1.--------~";;;;o ............•......•..
o 20 40 60

60 "---"'-,--"""", -~

i::/:~:t:~:J::::::::
J!! 1/ ! \~

o :
o 40 60

.~+} _':jnnninnninnnj
;:GJ2Ej t:-!l--]

-20 20 40 so -'0 20 AD 60
tirne(e) time(.)

Figure D.lS: Simulated Results from GP+RG Run No. 16 (no waves)

d&h
'3eom = 39.8207 -- dt
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OOe~_ ..._--'"\: i~.o==J 20 •••••••• \ •••••• ,J .
o ..... · .. ·i·········~-
o 20 40 60

time(s)

Figure D.16: Simulated Results from GP+RG Run No. 17 (no waves)

Run No. IS
'f1eorn = 424.83 -e p

t = (- k -x - 326.4)- tanh(h~ -(Xh - xhd )]
3eorn 1 h 9.6

kl == p/ace(O, -eh, k2 -xh)/\k2 == p/ace(O, k3 -xh +81.6, -9.6)

k3 == p/ace(O, - eh' k, -Xh)

k4 == place(O, (ks -Xh + 244.8)- tanh(h~ -(Xh - Xhd)/9.6)+ 81.6, - 9.6)
ks==p/ace(O, -eh' k6-Xh+81.6)/\k6==p/ace(0, -0.6178, k,-xh)
k, == p/ace(O, -eh, kg -xh)
kg == p/ace(O, - 0.6178, - sign(h~-(Xh - Xhd))- sin(- k9 -xh))

k9 == place(O, 162.58, -9.6)

~:v·--::-::·l··--·Sj··+········j
'; 20 - -------!------ --1---------
~ : !o i- ,r

o :20 "0 60

Figure D.17: Simulated Results from GP+RG Run No18 (no waves)

RunNo.19
'flcom = 425.5 -e p + sin(ud)
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time(s) time(s)

Figure D_18: Simulated Results from GP+RG Run No, 19 (no waves)

RunNo.20

"learn = 344· ep + 3. dep + 34_5-u .tanh(h~' (u-ud )]
dt ud

" =(-k'X .tanh( h~ ,(xh -Xhd)]-31.2J.tanh(h~ ,(xh -Xhd)]
3eam 1 h l -68.2 0.9511

kl == place(O, 94.6'Sign(h~ ,(xh -Xhd)) k2 'Xh)

k2 == place(O, 94.6· Sign(h~ . (Xh- Xhd)) k3· xh + 'I'd)
k
3
==place(0, -0.9511, k4·xh)/\k4==place(0, -0_9511, -d'l'/dt)

".~_o.s --- -----!----- ---~---------

iO.4~
.,. 0.2 --------!------- -1---------

o ---------;---------.;-
o zn 40 GO

~:t-iE120 - -------1------ --r--------
a ---------;---------.
o 20 40 60

i:~ i:~~N::1-_o~bt=j J3 :~.~~ ... -------

20 20 40 SO . 0 20 40 SO
1irne(s) tlmD(s)

Figure D.19: Simulated Results from GP+RG Run No. 20 (no waves)

D.2. RESULTS OBTAINED IN THE GP+RG OPTIMISATION WITH
WAVES

RunNo.2

( ( (h~'(U-Ud)JJJ (h' '(U-Ud)]"learn = exp sin -114.97· tanh ~ -114.97· tanh p + 1
86.2037 86.2037

t: =2340.9.tanh(h~ '(Xh -Xhd)]
3eorn _ 70.3959
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~:r1J~
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time(s)

Figure D.20: Simulated Results from GP+RG Run No.2 (waves)

Run No.3

- . [ [h~'(U-Ud)JJ"leom - sm 94.9· tanh zl

Zi = 94.9· tanh(h~.(u -ud )JVi E [1,9]... ZIO = 94.9· tanh(h~.(u - ud )J
Zi+l exp(u)

" =-846.7032.tanh[h~ '(Xh -Xhd)]
3eom 67.5236

::lB?t.J -008:E~-=~~==j:: ·l.::::::;::::::. "r::::::: f 20 • • ··i··..·· '-i-''''''''
o L ;. 0 ~ :

o 20 40 GO 0 20 40 604K:~~"6~"
l! 1 .i --1---------

~ 2 ----~---------~.--------"E 1 l

~ 0 ........ +.......j. ....... i.:.~.:~::::::;:::~:..::]:::::~:::
-2 :: -1 1 1
o 20 40 so 0 20 40 60

tirne(e) time(s)

Figure D.21: Simulated Results from GP+RG Run No.3 (waves)

RunNo.4

1'lcom = 8· ep + expVe p . dt)
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time(s)

Figure D.22: Simulated Results from GP+RG Run No.4 (waves)

Run No.5

"leom = 1l.1 .e p + 33.3 . J e p . dt

(
h' .(x -x ))

r = -1208.4. tanh h h hd
3eom 82.6268

'~
o.e --------t----- ---1---------

~0.6 ·_·······i·_···· ..~..... .
~04~

0.2 ---------t---------i---------
o i i
o 20 40 eo

tirne(s)

~l' 'j1i' 40 "',r ...•... ""' j .f~)tJ:B+nn
o ........ ' .. h ... ·h-
a 20 ",,0 60

Figure D.23: Simulated Results from GP+RG Run No.5 (waves)

time(s)

RunNo.6

"learn = expU e p .dt)
"3eom = (sin((exp((k. Xh + exp(sin(eh ))- sin(eh)+ 96.7)·z)- 96.7). z )-386.8)- z ~

~ ((((k·Xh + 97.7). z)-95.7} z -386.8)· z ~ -386.8· z

z = tanh(h~ . (Xh - Xhd )/37)/\ k == p/ace(O - 93. 5 - 3.2)

,=v<nin\JnnJ] 20 .•••..• _; •••••..• 1' .
o ---------~---------~- -===
o 20 AD 60

.~~' ! ~ ':~},=+n ~ i ,;F
; -0.6 - - - --- ~- - ---. - ---:- -- -_-- --

.so ~ .~ BD ·'0 ~ 4~ eo
time(s)

Figure D.24: Simulated Results from GP+RG Run No.6 (waves)

tlme(a)
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Run No. 7

"lcom = exp(ep)- 2·u2

" =(673594-If/).tanh( h~ ,(xh -Xhd) )
3earn' sin(-29.46+tanh(h~ '(Xh -Xhd)/(lf/d/86.95-58.93)).z)-29.46

Z = Sin[(67.3594- If/).tanh(h~ . (Xh-Xhd))_ 29.46J- 29.46
37.89-'1/

Figure D.2S: Simulated Results from GP+RG Run No.7 (waves)

RunNo.8

"lcom = 8·ep + expU s p . dt) :::::8· ep + f ep . dt + 1

-1891.6.tanh h~ ,(xh -Xhd) -2163.8

-4144.4.tanh(h~ '(Xh -Xhd))_4144.9
exp(", )

.tanh(h~ ,(xh -Xhd)):::::_2163.6.tanh(h~ ,(xh -Xhd))
182.7348 182.7348

O'8)tj--=" 0.6 .. - .----!----- ---~---------

i04~
on 0.2 --------j------- -1---------

o l ,_

o 20 40 GO o 40 60

time(s)

Figure D.26: Simulated Results from GP+RG Run No.8 (waves)

Run No.9

"lcom = sin(exp(ud ))

"3com =sin(sin("'d -"'))
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Figure D.27: Simulated Results from GP+RG Run NO.9 (waves)

timets)

RunNo.10

1'lcom =2,ud .Sign(h~'(U-Ud)Y -3.sin(U'8p)

l' 3com = VId - VI

time(s)

o 2D 40 BD

Figure D.28: Simulated Results from GP+RG Run No. 10 (waves)

-0,20 :20 40 so
time's)

Run No. II

'.~0.6 --- -----i----- ---~------.--

i"~en 0.2 --------t------- -1---------
o .. _.... _.i. ........ ;.
o 20 40 60

tirnl!ll(:S)

~:tt];-J12D • ··' .. "r"'" "1'''''''''
o ---------~---------_: -
o 20 40 60

Figure D.29: Simulated Results from GP+RG Run No. 11 (waves)

tu,..u.(s)

RunNo.12
dUd

1'1 =1+11·-
com dt
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Figure D.30: Simulated Results from GP+RG Run No. 12 (waves)

RunNo.13

JlftttJ""Ii 2D ---- ----. -- --\- ----------
1!! I i \ i
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o 20 <40 60

6~" 2~" 1~: -:::::_:J:_- __-j::::::::: ~ : :::-::::J__-::::-;::-::::::
~o~5_1~

-20 '20 40 eo -20 20 40 60
time(s) tlme(s)

Figure D.3l: Simulated Results from GP+RG Run No. 13 (waves)

RunNo.14

1'lcom = 1

T,,= = sin( sinlsin (&h))+ Sin( 3.sin (e.)+sin(2. sin( eh))+d;; )+sin( eh))+

+Sin(3 .sin(&h)+ d:'h J
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Figure 0.32: Simulated Results from GP+RG Run No. 14 (waves)

'time(s}

Run No. is

'loom ~ ex{ 6:'72 -s{ 6S
u
72-s-{-u -s·sin(sin(z )))))

z = -l.0146. u- tanh(h~(U -Ud
)]

u/68.72

s = Sign(h~(u -ud))

'" 3eom = sin(sin(1f/ d -If/))
0.8 ., 60 r---~--'---'

0.6 ..• ..c i:-:-::-.:\ L .
~ I ! \!

i =:[:::::I::::::~r=~
o 20 40 60'1iI1fB o.~i :::..:{::::i.·: i:: :.::::.:1::::::: .. (: t::..:;;

o -- - 1 1
-0.50 ~ 40 60 -0.20 ~ 4~ SO

tirne(e) time(a)

Figure 0.33: Simulated Results from GP+RG Run No. 15 (waves)

RunNo.16
_ J exp(u +ud ) .d

"'leom - 26.35.t2.tanh~~(u-ud)/exp(u+ud)) t

"'3eom =7.9025·sin(eh)
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Figure D.34: Simulated Results from GP+RG Run No. 16 (waves)

Run No.17
T1com = 6P + Ud

T3com = -k·Xh
k=p/ace(O -30.4·6h-6·11' -sin(30.4·6h+6.1I'))

v.___ O.B ~- - - - - - ~- - - - - - - - ~- - - - - - - - -

i04~
.n 0.2 ---- --- -t ------- -1---------

D 1 --~-
o 20 40 60

~:E-lanE~ 20 ;- 1' .
o ---------;---------:
o 20 40 60:f~..L L........ '~! !

g ! : ~o.nmT=~:=~.i o~t~······
-20 ~ <4~ 60 -0.50 ~ 4~ SI]

time(e) tim_(e)

Figure D.35: Simulated Results from GP+RG Run No. 17 (waves)

RunNo.18
T1com = exp(ud ·6 p)
T3com = -kl .Xh

kl =Plac{ 0 k, -Xh
-73.5· tanh(h~ (Xh-xhd ))J

25.4
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""m3--=-- 0.6 ~-- - - - --~ - ---- - --1- - ---- 0 __

i"'~.... 0.2 --------~ - M. -1------ ---
o ---------,---------,-
o 20 40 60

-time(s)

2-e
~O
'B
rs -2

Figure D.36: Simulated Results from GP+RG Run No. 18 (waves)
limo(s)

RunNo.19

'f1eorn = 56.7· e p

'f3eorn = sin(sin(sin(sin(sin(sin(sin(sin(zl .Z2 - 2z3)- 3z3 ))- 2Z3 ))) - Z3)- 2z3)

zl =Sign(h~ ,(xh -Xhd))

(h' .(x -x )J (h' .(x -x ))Z = e . tanh h h hd 1\ Z = e . tanh h h hd
2 h 32.1 3 h eh

g:tSluu~]! 2 -- ---+..:..:.:-----;- -
o ---------t------ _M: ---- -
-2 : :
o 20 40 eo

time(s)

SCm; ! jIi" 40 -- ·----1----- ---1---·---·-i20 - ----1=:j---------
o ~- -- - :::::"~.c_=::::::::;!_
o 20 40 60

'~
"E'" 0.5 --------t----- ~---------
~ 0 - ----- :---- -.-,---------1~.;;±

-1 • •
o 20 40 SO

1ime(:s)

Figure D.37: Simulated Results from GP+RG Run No. 19 (waves)

RunNo.20
'f1eorn = 71.13· ep

'3eorn = sin(sin(sin(sin(sin(sin(31 56.55· s- tanh(h~ . (Xh- xhd)/67.5 )))))))

S = Sign~~ . (Xh - Xhd))

O"md-u;- O.S --- ._---j ----- ---i---------

iO'~.... 0.2 --------~ -.----- -1---------
o i .,_
o 20 40 GO

tlme(e)

J=V'U!UUE"! 20 - -------!------ --:---------.... : :
o ---------f--------- :-
o 20 40 60

.~i~;±L
o 20 "0 60

Figure D.38: Simulated Results from GP+RG Run No. 20 (waves)

time(a)
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D.3. RESULTS OBTAINED IN THE GP+GA OPTIMISATION WITHOUT
WAVES

RunNo.2
T1eam = Ud • (u + 0.5)

(
h' .(x -x )]

T = 57.8.tanh h h hd
3earn -7.1

~:tEfjt- :.:::::::L::::.j·········
o 20 Aa 60

::rmtnnj ? :;~nnn!nnEI~;~:::::::j i.o:t~.....i."'E.".i
00 ~ 4~ so -O.AO ~ ..~ so

1:ime(e) tirne(e)

Figure D.39: Simulated Results from GP+GA Run No.2 (no waves)

RunNo.3

'T1eam = J(.~p •Ud ). dt

'T = 1.6988.105 .tanh(h~ '(Xh -Xhd)]~_2382.7.tanh(h~ ,(xh -Xhd)]
3eam IfId -71.3 70.6 70.66Offi~: j: :

~ AD .-- ----t----- ---~---------

{2O .···~i ......···
a ~, -:::!::"~:._::::=:=,;i:
o 20 AD 60

~:Inrkj::ji:I::\:Jt?
, .. ~ ...... - .. = at 1 EE1
00 20 40 so -0.60 20 40 eo

tirne.(s) timeC·)

Figure D.40: Simulated Results from GP+GA Run No.3 (no waves)

RunNo.4
53.9+e:p+U

'T1cam = de:
68.1+-P_

dt

-k .. h(h~'(Xh-Xhd)]_de:h
'T3eam - 1 Xh tan d-k2 'Xh t

kl == p/ace(O, -84.6, -87.4)/\k2 == p/ace(O, -64.9, -26.4)
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O.B r-----,---....,--~O.S--./-'----~=-:\ ---L ----...
~ I i \ iiD"" T··-···;······ ..: -~0: ~::..:::t::::::~t:~-··

o 20 40 GO

g :lnn\nn+nnn1
] 0.4 ---------r--------r--------

0.2 ---------t---------i-------_·
00 2~ 4~ sa

time(s)

J=[iu\lj
] 20 • ······T·····."1" .

o ; .. - -.'
o 20 40 60

~::~~ 0.2 --------:---- - - --------

~ 0 - -- - --; - --i-- -
-0.2 - ------t--oo ---i- .-------
-0.40 ~ 4~ BO

'tima(s)

Figure D.41: Simulated Results from GP+GA Run No.4 (no waves)

RunNo.5

_{0.6965
"lcom - 1

D.B

Io.-4
~ 02

'I ' ,!':::::::::::i:::::: :1::::::::: 1
~ 0,4 ---------~---------1---------

0.:2 ---------i---------1---------
o : i
o 20 40 BD

time(s)

SO[±j' i jg; 40 -- 7-- -t-- - --~---------
:a. : \:

f 20 i ..--ml---5·tJIm
o~L;io-,L. --'--'-~SO

::~~ 02 •..... + j - .
~ 0 -- -- _0 t- _- _- -i- -- -- -.. :

-0.2 _0- -----t----- --i- - ----
-0.40 ~ 4~ 60

'time(s)

Figure D.42: Simulated Results from GP+GA Run No,S (no waves)

Run No. 6
96.3" -__--

1com - S20.4 .dt

"300m = sin(sin(26. 7). 8h)

SOvEa''F.co -_ 0- - 1--- - --~---------

i2Or····-\-·--·\'1'--------
o ___:_:_:_-----:---------..:..____

time(s)

o 20 ~o 60

Figure D.43: Simulated Results from GP+GA Run No.6 (no waves)

tHTlC(S)

Run No.7
"lcom = sin(sin(l)) ~ 0.7456

'l"3com =sin(sin(d(35.7 '8h)/dt))
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OOHE: ;
"'ir ~o --- ----t----- ---i---------
cse, : :

{20~.l!! i i
o ---------:.---------. -
o 20 .to 60

Figure D.44: Simulated Results from GP+GA Run No.7 (no waves)

Run No. 8

1"learn = 6P /6 p = 1
1"3eam = 7· 6h ooftStj~40 --- ----t----- ---i---------

{20~.l!! ! ;
o ---------;-------- .
o 2D 40 60

~~:1:::::::::1::::::::+::::::::1~ o:~~
~ ~.~:::::::::\:::::::::1::::::::: '8 -0: ---------:::----:--1-- - --:

o :: _1::
o 20 40 60 0 20 40 60

1ime(s} 1ime(e)

Figure DA5: Simulated Results from GP+GA Run No.8 (no waves)

Run No.9
1"leam = exp(sin(4.7 -ud))

T3rom = 'I'd . tanh( b~ .~~O~3Xhd) J - sin( sin(18. 8 - eh)) '" - sin(sin(18. 8 - eh))

Figure D.39: Simulated Results from GP+GA Run No.2 (no waves)

RunNo.10
1"leom = 1.1- U
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"3eorn = -k·Xh
k == p/ace(O, -'1/, -'1/)

60.---~;----~:--~
E 40 ··7·~-t::-::'\----4---------
'i / ! v :
'li 20 ---------.------\--,---------
.l!! I ; \ ,

°O~==;~: ===-:;"'::::=:=::;J
20 .0 60

i:}:=::\-1 i:~I:\T-j
o 20 40 SO 0 20 40 60

time(s) tirT'lll!Jl(s)

FigureD.47: Simulated Results from GP+GARun No. 10 (no waves)

Run No. II

- (). {. ( )) (h~(U-Ud) J
"leorn -exp ud ,slgn.\hp U-Ud -tanh ( ( ))/d exp ud dt

"3eorn = 8.4 . eh

lct~J1ifi 40 --- ---- -- - ---~-- .------

i20~·m~
o .--- ..... , .... - .. - AA
o 20 40 60

..~~ 2~::i: :::-...--;--::::~.-:::::::i:-.--.,,--:.-.:::-.; .-
'2~--1~

-~o ~ 4~ so -20 ~ 4~ 60
1irne(s) time(s)

Figure D.48: Simulated Results from GP+GA Run No. 11 (no waves)

RunNo.12
"leorn = 1.12· ((tanh(z/86.1). tanh(z/6S.S))/(tanh(z/24.9). tanh(z/76.4)))

z=h~(U-Ud)
"3eorn =sin(sin(dehldt))

i~:ll-l-d i:"~~r~
00 20 40 so o. 0 20 40 so

1irnc(::s) tlme(s)

Figure D.49: Simulated Results from GP+GA Run No. 12 (no waves)
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RunNo.13

. {, ( )) (h~(U-Ud)]"learn =2.398S·Slgn\hp U-Ud ·tanh ( )exp 1.119

0.8 • •I::ti\t:
o -------:---------.;---
o AD 60O'mljc.~ - 1 _

go.~
~ 0.2 --------i------ --1---------

0.1 ---- ----! ------- -1-- -------
o : .
o 20 40 BD

Figure D.SO: Simulated Results from GP+GA Run No. 13 (no waves)

1ime(s)

Run No.14

( ) (h' .(x -x' )J (h' .(x -x )J" = sin 29.6 . tanh h h hd ~ -0.9701. tanh h h hd3earn sin(69.2) 0.0849

o 40 60

1ime(s)

Figure D.Sl: Simulated Results from GP+GA Run No. 14 (no waves)

RunNo.15

" = sin(IIF' tanh(h~ . (Xb - Xhd )JJ ~ 03eorn Y' 82.1
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:: --f----;~-:\.--L.----.-

i:: /:-::::~..::::\~.::::::::
o . ._-i. ... _~-
o 40

so r-----., --.-, -----,
~ ~o --7-~-~-::~\---1-------·-
f 2:[I/ \ \.t- .

40o GO

'.~ 'I· ·1~ 0: ·:_.::::.l. ::::i::::::::: ~ 0: ..- + + -..~.o:~ ].0:: - + -..+ ..
o 20 40 sa 0 20 40 BC

tirTls(s)

Figure D.52: Simulated Results from GP+GA Run No. 15 (no waves)
time(s)

Run No.16
'r1com = 197.5 . Gp

S [s (S
38,S'I/I'J-I0.69/Gh'dt] J

'r3com = 1/1' 1/1' -dt ·dt:::: 0
eh

o.~0.6 --- -----i----- ---~---------
-u;- : :iO.4~
on 0.2 --------!------- -1---------

o _._ L__._ ;.
o 20 40 60

60 r-----.. --.-. ----,: :

I::/:~:[:~~:t::::::::
J!! I : \-1.

oor====;l:=====,,::;o:::===;!so

Figure D.53: Simulated Results from GP+GA Run No. 16 (no waves)

RunNo.17

(
(r ( , \, {h' (U-Ud)JJ an{h' (U-Ud)J'l"leorn = J90.1·dt - \184.5. dt -u -sign hp(u -ud )))'tan PJ . t P

J- 89.6·dt - 44.1·dt

. ( ) (h~'(Xh-Xhd)]
'r3com = sin 1/1+92.3 . tanh . ( )sm 1/1+57.2

'~~o.~
~ 0 -j- j .

-0.50 ~ 4~ 60
time(s)

o 20 .40 60

i~~~
o 20 40 60

tlme(!!!)

Figure D.54: Simulated Results from GP+GA Run No. 17 (no waves)
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RunNo.1S

T leorn = (1.4 + U) . tanh(___:h~_._(U_-_U_d)J
74.8

O.B .. 60 ,--~-~--,

0.6 .c.,«, ---; :::--:\---L -------
:[ 0.4 -,I_--- ---l-----.\--1---------~ : \:
- 0.2 1--------1-------\:1---------

o : --l-
o 20 40 60

OKLA' . j 0'3~; ; ~

:: 0.2 - l_. ~_--------

.o.oos -=:=:------ [ .' ,
; -0.01 ~-------_ ] _:~ ~:::I::::~E::::::~

-0.0150 2~ 4~ 60 -0.20 ;, 4~ ea
tim.'a) 1im.(.)

Figure D.SS: Simulated Results from GP+GARun No. 18 (no waves)

Run No.19

T
1com

=(100.3 + ud . tanh(h~ (u -Ud )JJ. tanh(h~ (U -ltd )J ~ 100.3· tanh(h~ . (u -Ud )J
52.6 0.9537 0.9537

T3com = -kl .xh
kl ==p/ace(O, k2·Xh, k3,xh '(If/-lf/d))i\k2 ==p/ace(O, -67.3, -1l.7)

k3 == p/ace(O, -69.7, -43.5)

o.~o.e --- -----i----- ---4---------
"'W : :

iO.~~
U1 0.2 --------!------- -1---------

o 1. ;_
o 20 40 60

60 '---'--, ---;-,----,

r;:/:=:r:~~::t::::::::
.l!! 1/ : \-1.

o .
o 20 40 60

"~: 1 _o:\---------;---------;---------j
i ::::-:::::i::::-::::r:------- i-0: ---------1---------1---------

-20 ~ 4~ SO -, 0 ~ ..~ SO
time(;s) time(s)

Figure D.56: Simulated Results from GP+GA Run No. 19 (no waves)

RunNo.20

T1com = (93.3+ ud)· tanh(h~ . (U - ud )/(17.9+ ud))

1'3com = -k .Xh
k == place(O, -exp(IfI), -exp(lf/).sign(h~ ,(xh -Xhd)))
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'F±Jd °tnHiHH1Hnnj~ : :::-:::::j::::-::::F------ i-0: ---------l---------~---------
-20 ~ 4~ so -, 0 ~ 4~ ao

time(s)

Figure D.S7: Simulated Results from GP+GA Run No. 20 (no waves)

D.4. RESULTS OBTAINED IN THE GP+GA OPTIMISATION WITH
WAVES

Run No. 2

1'leom = 2.34· ud
1'3eom = sin(56.2. tanh (z/tanh(z/y ))) ~ 56.2· tanh (z/tanh(z/y ))

y = sin (26.4 . tanh (z/(sign(z ). sin(1fId - ch )))) /\ Z = h~ . (Xh - Xhd)

o.~O.S --- ----i----- ---~---------~ : :

iO.~~
.....0.2 --------!------- -1---------

o -----. l- ,.
o 20 40 60

Figure D.SS: Simulated Results from GP+GA Run No.2 (waves)

RunNo.3

1'leom = Cp /(Ud + 0.3)

"3eom =65.6.tanh(h~ ,(xh -Xhd)/(lfId-2.3))

Figure D.59: Simulated Results from GP+GA Run No.3 (waves)
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Run No. 4
T1com = sin(ud )
T3com =(12.9+2.6'Sign(b~ ,{xh -Xhd))·tanh(h~ ,(xh -Xhd)/eh))·eh/exP(lfId)

60 o 20 .40 SO

lime(s)

Figure D.60: Simulated Results from GP+GA Run No.4 (waves)

RunNo.5
T1com = 2.1534·ud
T3com = 2· exp{sin(70.2))· (2· eh + sin(3.1)) ~ 7.1482· eh + 0.1487

O.B ,---~---,------,

~ 0.6 .. 0/-.... ;:-:- .. j .... o ••••i04 -/-0'" 'j"'O'\ j.ooo .....
~ 0.2 (.oo oj .. o \:j .. 0 ••• ••

o .o o.i. "h-._
o 20 AO

time(e) time(eo)

Figure D.61: Simulated Results from GP+GA Run No.5 (waves)

RunNo.6

T1com = ep + Ud

T 3eom = IfId - IfI

Jll1StmJ]I 20 r ...0.; 0 .. \0 ..... 0 .. 0
o ~~ •. ~.--~ -- ... --: -
o 20 40 60

time(s) time(.)

Figure 0.62: Simulated Results from GP+GA Run No.6 (waves)
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Run No. 7
'T1com = 2-sin(sp)+u

O.B ,-------;----:-----.

O.S

~o."
!!:!>
~ 0.2 ~l~J1iI 20 _•••••••••••••• \ •••••••••••

.2! I : :
o .....••• ~.---.---~
o 20 .40 6(]

15~~1~~g: ,.- -.----j- ----j------.-- -e- 0.6 - ······i·····---; -.------
~ 0.5 --------;.-.--~ ~ • ,-o:~- ,,_0=

. 0 20 40 SO 0.50 20 40 ao
tifTle(a) timeCs)

Figure 0.63: Simulated Results from GP+GA Run No.7 (waves)

RunNo.8
'T1com = 1

'T3com = (lJId -997.92)- tanh(h~-(Xh -Xhd )/74)

tirne(15)

Figure 0.64: Simulated Results from GP+GA Run No.8 (waves)

RunNo.9
'T1com = 1

; ':[nnninnnjnnnnj
0.6 ··--··---I------·--1---------

00 ~ 4~ 60
time(e,

~ed: :
'"ir 40 --- - - - .--- ---~--- ------~ : :

f20~.2! ! :
o --------;---------.
o 20 ~o 60

'.~'==~ 0.5 - - . ------- J-.- . --
r;) 0 t- - -~ ,

-0.6 -- - - --t- -- ---1---------
-1 : :

o 20 AD GO
lima(e)

Figure 0.65: Simulated Results from GP+GA Run No.9 (waves)
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RunNo.10
T1com = 1

time(e)

Figure D.66: Simulated Results from GP+GA Run No. 10 (waves)
1irne('II)

RunNo.ll

0.8 • •

O.S •• -/ .--i:-::- . .\ .. -L. .. -. --.

I:: (~::::I::::::~L=:::
o 20

=~f:ttF
o 20 40 60

time(s'

Figure D.67: Simulated Results from GP+GA Run No. 11 (waves)
time(e)

Run No.12

T3com = sin(sin(sin(sin(sin(sin(sin(sin( - k .xh ))))))))

k == p/ace( 0, -If/, - 20.4)

60.---~:----~:----~
: :

~ 40 ··7·-::-:-:-t:-:--::'\._--~---------
E / ! '!
1il 20 •• -------,--.---\--, •• -.-----
.l!! I i \ i

o ~----;---------~--
o 20 AD 60

'1 i ; j ".~~ ': ---------:---------1"------- r. :: _ : 1. _~0: 1 + · ~-D:~
o 20 40 SO . 0 20 40 so

tima(s)

Figure D.68: Simulated Results from GP+GA Run No. 12 (waves)
time(s)
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RunNo.13

"learn = 1
"3earn = exp(- k- Xh + If/d)

k == p/ace(O, -If/, -16.2)

f'luu!nuu!nnu1
0.6 ---------r---------1---------
o : i
o 20 40 SO

o;~i[ 0.6---------f--------+-- -----
ra 0.4 ---------t-------- -~ :

0.2 - -~ : ------

°0 :za 4~ 60

Figure D.69: Simulated Results from GP+GA Run No. 13 (waves)

RunNo.14

"learn = sin(7.7 -Ud)

"3earn = eh' (67.2-eh)/(1f/ d +29.3)~ 2.2935· eh

SOl i ! jI:)~:j:
o_LDlktr_
o 20 40 BC

'I"'" . /' 1 'rw~'0.8.n"----t-u--r---l--n----- -- 0.5 J_nu L _
~o.s ---------!---------1--------- ~ ! l
j!! 0.4 ---------t---------j--------- 1! 0 - - - -- ; - - - --i - -----

0.2 ---------;---------1--------- ::
o 1: -0.5: i
o 20 40 60 0 20 40 60

time{e) tim.(.)

0.6
~o.4

t 02

FigureD.70: Simulated Results from GP+GA Run No. 14 (waves)

RunNo.15

"learn = sinll. 8+ u)
"3eom = sin(eh)

>~'.~g 1 --!----- ~ -

~ 0.5 t----- - -
o -- --

-0.50 ~ 40 6C

timeCa)

60.--~--~--~

.... 40
:l!-
a'120

Figure D.71: Simulated Results from GP+GA Run No. 15 (waves)
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RunNo.16

1'lcom = 2· eP

1'3com = sin{sin(1fI+ 59.2))

i;~t\\!_
o ----.--,.----.---,-

'.~,. :. 1 _

iO'5~
- 0 ---------1------- ~ -------

450 ~ ~ ~
time-Cs)

~~
_ __~ i

~~~1;1 20 - - ---,------ --. - ------
.2! ! .

o ---------~---------_:--
o 20 .40 60

o.e ~
0.4 l l _

~ 0.2 - -- ----f------- -; -- -----
~ 0 --.--- --f.- __ M --~------.--

"':~:~~o :20 40 SO
1ime(s)

Figure D.72: Simulated Results from GP+GA Run No. 16 (waves)

RunNo.17

1'lcom = 0.0431· e p • Siin(h~ . (u - ud )). tanh(_hp:.,_'_.(U_-_Ud_)]
e p /40.8

WmJz; ..o --- - .. - - ---~---------

120~=~o --------,--------. AA
o 20 40 60

··'f' ~ '~~ ::: :-:~ [ :-::l:::~:::~: :i: --------j------- ~ -. -
• o.o,;_I_u~ ~.:;;;

00 20 40 SO 0 2D 40 BD
tirna(s)

FigureD.73: Simulated Results from GP+GA Run No. 17 (waves)

tim.,(s)

RunNo.18

(
h' . (U -Ud)]

1'lcom = &p.tanh _!....p----
97.1

- _. . h(h~ . (Xh - Xhd )J
1'3com - k Xh tan 141.5

k == p/ace( 0, - 71.7, - 72.9)
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Figure D.74: Simulated Results from GP+GA Run No. 18 (waves)

RunNo.19

"leom = °
"3eom = °

."v-F\J0.6 _-- .. --i----- ---~---------
"Vi" : :

i··~
.... 0.:2 --------!------- -1---------

o .. -- .. ---:-.--------.
o 20 ~o 60

]:L1~i·:~0EJ ..--~ -06~
-20 20 40 so -10 20 40 60

time(s) ti".,e(~)

FigureD.75: Simulated Results from GP+GARun No. 19 (waves)

Run No. 20

"leom = expll]

"3eom = -k .Xh
k=p/ace(O, -4.3, -'I')

60 ~-~: --~:--~

i::t~=:r:~\J::::::::
.l!! / i \.i

o .---~-,.-.- .... -,.,...---I
o 20 .40 60

3

1

. . 1 o.sr+. : ~g:2_
u

•••

u

_L. 1_._______ -e- 0 -- -----f---------j---------
~ : 1 ~ ~6 ------ __ r- __w __ + ..
- :.------ur------Tu------ "_,-:-===-~t~_

o 20 40 GO 0 2C 40 sa
time(s) 1ime(e)

Figure D.76: Simulated Results from GP+GA Run No. 20 (waves)

313



APPENDIXE

GENETIC PROGRAMMING CODING

%gpmain.m
% Main GP code

clear

cont=O;
inicializar _popdec; % Procedure that initialises the tree population randomly

for cont=l :numgen,

select_popdec; % Procedure that creates the new population

end

% inicializar_popdec.m

% Procedure that initialises the tree population randomly

fitness=zeros(totpop,numgen+ 1); % Fitness matrix is initialised to 0

for numarbol=l :totpop, % Loop is run until population is complete

psi_or_u=O; % Heading tree

ramal =inicializar_ramadec(psi_or_u);% Generates a subtree with 3-7 nodes

if rand(1 )<5/11, % Root is a function with I argument

arbol=[rama 1];

nodopral=createmainrootl ; % Creates the main root

else % Root is a function with 2 arguments
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ramaz=inicializar ramadecfpsi oru); % Generates a 2nd subtree

arbol=jramal .ramaz];

arbol=adjustindex(arbol); % Adjusts the indexes in the tree matrix

nodopral=createmainrootz; % Creates the main root

end

arbol=Iarbol.nodopral]; % Adds the main root to the tree matrix

poppsi(numarbol)={arbol} ~ % Stores new heading tree matrix

psi_or_u=1 ~ % Propulsion tree

ramal=inicializar_ramadec(psi_or_u)~% Generates a subtree with 3-7 nodes

if rand(1 )<6/11, % Root is a function with 1 argument

arbol=[ramal];

nodopral=createmainrootl ~ % Creates the main root

else % Root is a function with 2 arguments

ramaz=inicializar jamadectpsi oru); % Generates a 2nd subtree

arbol=[ramal .ramaz];

arbol=adjustindextarbol); % Adjusts the indexes in the tree matrix

nodopral=createmainroot2; % Creates the main root

end

arbol=[arbol;nodopral]; % Adds the main root to the tree matrix

popu(numarbol)={arbol}; % Stores new propulsion tree matrix

fitness(numarbol,1 )=calcular _fitness(poppsi {numarbol} ,popu {numarbol} )~

% Evaluates the performance of both trees through a zig-zag manoeuvre

end

% select_popdec.m

% Procedure that creates the new population

for i=1 :totpop/2,

% Two trees are chosen through tournament selection
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posl =select_arbol(totpop,fitness(:,cont));

pos2=select_arbol(totpop,fitness(:,cont));

if rand(1 )<probcross,

% Trees are crossed with a certain probability

[newpsi I ,cambiopsi I ,newpsi2,cambiopsi2 ]=cross _arbol(poppsi {pos I

}, poppsi {pos2});

[newul,cambioul,newu2,cambiou2]=cross_arbol(popu{posl},

popu {pos2});

cambiol =cambiopsil I cambioul ;

% Determines if the heading tree has been altered

cambioz=cambiopsiz ] cambiou2;

% Determines if the heading tree has been altered

if rand(1 )<probmut, % 1st tree is mutated with a certain probability

newpsi 1=mut_arbolpsi(newpsi 1);

newul =mut_arbolu(newul);

cambiol=I;

end

if rand(l )<probmut, % 2nd tree is mutated with certain probability

newpsi2=mut_arbolpsi(newpsil);

newu2=mut_arbolu(newu I);

cambio2=1;

end

% If changes have taken place trees are revaluated

ifcambiol=l, newfitl=calcular_fitness(newpsil,newul);

else newfitl =fitness(selarbolposl,cont); end

if cambio2=1, newfit2=calcular_fitness (newpsi2,newu2);

else newfit2=fitness(selarbolpos2,cont); end

else % If crossover does not take place

if rand(l )<probmut % 1at trees are mutated with certain probability

newpsi I=mut_ arbolpsi(poppsi {pos I },);

newul =mut_arbolu(popu {posl });
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newfitl =calcular _fitness(newpsi 1,newu 1); % Reevaluation

else

newpsil=poppsi{posl} ;newul=popu{posl};

newfitl =fitness(pos 1,cont);

end

if rand(1 )<probmut % 2nd trees are mutated with certain probability .

newpsi2=mut_arbolpsi(poppsi {pos2} ,);

newu2=mut_arbolu(popu {pos2});

newfit2=calcular _fitness(newpsi2,newu2); % Reevaluation

else

newpsi2=poppsi {posz}; newu2=popu {pos2};

newfit2=fitness(pos2,cont);

end

end

%New trees are stored in new population cell array

newpoppsi {2*i-l }=newarbolpsil; newpopu {2*i-l }=newarbolul;

newpoppsi {2*i}=newarbolpsi2; newpopu{2*i }=newarbolu2;

newfitness(2*i-l )=newfitl; newfitness(2*i)=newfit2;

end

% Updates storage matrices

poppsi=newpoppsi; popu=newpopu; fitness(:,cont+ 1)=newfitness';

% select arbol.m

% Function that selects a tree through tournament selection

function arbolchosen=select_ arbol(totpop,fitness)

tourgroupsize=8 ;

% Eight trees are chosen at random and their positions are stored in the

% vector choice

choice=randperm(totpop); choice=choice(l .tourgroupsize);
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% The cost values of the chosen trees are stored in fitnesschoice

for k = 1:tourgroupsize,

fitnesschoice(k )=fitness( choicefkj);

end
[menor, posmenor ]=min(fitnesschoice); % Selects the minimum cost

arbolchosen=choice(posmenor) ; % Returns the position of the best tree

% cross arbol.m

%Function that crosses two trees

function [children I ,cruce 1,children2,cruce2]=cross_ arbol(parentl ,parent2)

maxnodo 1=size(parentl ,1);

maxnodo2=size(parent2,1 );

% Random choice of two crossover nodes

crossnodo 1=randperm(maxnodo 1); crossnodo 1=crossnodo 1(1);

crossnodoz=randpermt maxnodo2); crossnodoz=crossnodozfl);

nodoI=find_terminal(parentl,crossnodol); % Returns the node number of

nod02=find_terminal(parent2,crossnod02); % the subtree last node

ramacruceI=parentl(nodoi :crossnodoI,:); % Subtrees to cross

ramacruce2=parent2( nodoz .crossnodoz, :);

nodosrama 1=crossnodo I-nodo 1; nodosrama2=crossnod02-nod02;

fincross 1=nodo 1+nodosrama2; fincrossz=nodoz+nodosrama 1;

% If the resulting tree violates the size limit is replaced by its parent,

% otherwise crossover takes place

if (maxnodo2-nodosrama2+nodosrama 1>30),

if (maxnodo l-nodosrama 1+nodosrama2> 30)

childrenl =parentl; children2=parent2;

crucel=O; cruce2=O;

else
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childrenl(l :nodol-l,:)=parentl(l :nodol-1 ,:);

children I (nodol :fincrossl,:)=rarnacruce2;

children I (fincrosst +I .maxnodo l-nodosramal +nodosrama2,:)

=parentl (crossnodo 1+1:end,:);

%Updates the tree matrix indexes

children! =actualizar _arbol (children 1,nodo 1,fincross 1);

children2=parent2; cruce I=1; cruce2=O;

end

else
if (maxnodo l-nodosramal +nodosrama2> 30)

children I=parentl;

children2(1 :nodo2-1,: )=parent2( 1:nodo2-1 ,:);

children2(nodo2:fincross2,: )=ramacrucel;

children2(fincross2+ 1:maxnodo2-nodosrama2+nodosrama 1,:)

=parent2( crossnodo2+ 1:end,:);

% Updates the tree matrix indexes

children2=actualizar _arbol( children2,nodo2,fincross2);

crucel=O; cruce2=1;

else

childrenl (1:nodol-1 ,:)=parentl (1 :nodol-l ,:);

childrenl (nodo 1:fincross 1,:)=rarnacruce2;

childrenl (fincross 1+1:maxnodo I-nodosramal +nodosrama2,:)

=parentl (crossnodo 1+1:end,:);

children2(1 :nodo2-1,: )=parent2(1 :nodo2-1 ,:);

children2(nodo2 :fincross2,: )=rarnacruce 1;

children2(fincross2+ 1:maxnodo2-nodosrama2+nodosramal,:)

=parent2( crossnodo2+ 1:end,:);

%Updates the tree matrix indexes

children 1=actualizar _arbol( childrenl ,nodo 1,fincross 1);

children2=actualizar _arbol( children2,nodo2,fincross2);

crucel=l;
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cruce2=1;

end

end

% mut_arbolpsi.m

% Function that mutates the heading and propulsion tree

% The function mut_arbolu.m is equivalent. The only difference lies in the function

% sets

function [newarbol]=mut_arbolpsi(arbol)

maxnodo=size(arbolpsi,l );

if rand(l )<0.5, % Point mutation

posibles_mut=O;
for nodo=l :maxnodo, % Counts number of nodes in tree

switch arbol (nodo,2)

case 0 posibles_mut=posibles_mut+3;

case 1 posibles_mut=posibles_mut+2;

case 2 posibles_mut=posibles_mut+2;

case 3 posibles_mut=posibles_mut+ 1;

case 4 posibles_mut=posibles_mut+2;

case 5 posibles_mut=posibles_mut+ 1;

end

end
% Randomly selects a mutation point

mut_pos=randperm(posibles _mut); mut_pos=mut_pos(l);

% Finds that position in the tree

nodo=O; pos=O;

while pos<mut_pos,

nodo=nodo+ 1;
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switch arbol(nodo,2)

caseO

case 1

case2

case3

case4

caseS

end

end

dif=pos-mutpos;

pos=pos+J;

pos=pos+Z;

pos=pos+Z;

pos=pos+I;

pos=pos+Z;

pos=pos+I;

% If dif=2 the chosen node is a terminal and it is substituted by a

% randomly chosen terminal from the terminal set

if dif 2, arbol(nodo,3)= terminalset; end

ifdif 1,

if(arbol(nodo,2)==O Iarbol(nodo,2)=I)
% Chosen node is a 2-argument function and it is

% substituted by a 2-argument function from the

% function set

arbol(nodo,4)= funset_2argpsi~

elseif arbol(nodo,2)=2,

% Chosen node is a terminal and it is substituted by a

% terminal from the terminal set

arbol(nodo,3)= terminalset;

elseif arbol(nodo,2) 4

% Chosen node is a I-argument function and it is

% substituted by a I-argument function from the

% function set

arbol(nodo,4)= funset_I argpsi

end

end
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ifdif=O,

if (arbol(nodo,2}==21 arbol(nodo,2)=3)

% Chosen node is a 2-argument function and it is

% substituted by a 2-argument function from the

% function set

arbol(nodo,4)= funset_2argpsi;

else if (arbol(nodo,2)= llarbol(nodo,2)=Olarbol(nodo,2) 4)

% Chosen node is a terminal and it is substituted by a

% terminal from the terminal set

arbol(nodo,5)= terminalset;

elseif arbol(nodo,2)=5

% Chosen node is a I-argument function and it is

% substituted by a l-argument function from the

% function set

arbol(nodo,4)= funset_largpsi;

end

end

newarbol=arbol;

else % Subtree mutation

% Randomly selects a mutation point

mut_pos=randperm(posibles_ mut); mut_pos=mut_pos(l);

% Returns the node number of the subtree last node

nodo_term==find_terminal(arbol,mut_pos);

size_rama=mut_pos-nodo _term;

psi_or_u=O; % Heading tree

% Generates a heading subtree with 3-7 nodes

rama_mut=inicializar _rarnadec(psi _or_u)

size_rama_mut=size(rama_mut,l)-l;

finmut=nodo _term+size _ rama_mut;

% If the mutated tree violates the size limit mutation does not take

% place
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end

end

if maxnodo-size _rama+size _rama _mut>30,

newarbol=arbol;

else

% The randomly generated subtree substitutes the old one

newarbol(l :nodo_term-l ,:)=arbol(l :nodo_term-l ,:);

newarbol(nodo _tenn:finmut,: )=rama _mut;

newarbol(finmut+ 1:maxnodo-size_rama+size_rama_mut,:)

=arbol(mut_pos+ 1:end,:);

% Updates matrix indexes

newarbol=actualizar _arbol(newarbol,nodo _term,finmut);

end
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APPENDIXF

COMPLEMENTARY SIMULATION RESULTS

F.1. SIMULATED RESULTS OF THE HAND TUNED CONfROLLERS
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Figure F.l: Simulated Results of the Manually Tuned PID Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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Figure F.2: Simulated Results of the Manually Tuned Pole Placement Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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Figure F.3: Simulated Results of the Manually Tuned Sliding Mode Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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Figure FA: Simulated Results of the Manually Tuned H", Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests

F.2. SIMULATED RESULTS OF THE OPTIMISED CONTROLLERS
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Figure F.5: Simulated Results of the Optimised With Waves PID Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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Figure F _6:Simulated Results of the Optimised With Waves SM+PI Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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Figure F.7: Simulated Results of the GA-Optimised Without Waves H" Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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Figure F_8: Simulated Results of the GA-Optimised With Waves He" Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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Figure F ,9: Simulated Results of the sGA-Optimised Without Waves H.o Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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Figure F,lO: Simulated Results of the sGA-Optimised With Waves H; Controller
When Tracking the Zig-Zag Manoeuvre Used in the Real Tests
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