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I. Abstract 

Polymer foams have unique properties covering a wide range of mechanical and physical 

behaviours. This makes them important engineering materials that can be used in 

numerous applications including packaging, impact energy absorption, cushioning and 

spacers in sandwich construction. In general, the mechanical response of foam materials is 

not isotropic, though for most design purposes they are treated as such. The validity of this 

assumption depends on the degree of anisotropy of the foam and in some cases may be 

questionable. Most polymeric foams tend to display at least some degree of anisotropy that 

can usually be related back to their manufacture process. The aim of this investigation is to 

look at the extent of mechanical anisotropy in commonly used polymer foams and explore 

options currently available in modelling such materials, using established analytical 

theories and constitutive models implemented in a commercially available finite element 

code as a starting point. Attempts are made to relate the transversely anisotropic macro-

scale response to the microstructure within the material.   

A melt-extruded closed-cell Low-Density Polyethylene (LDPE) foam has been chosen as a 

representative foam material with which to explore the topic.  Uniaxial compression, 

simple shear and relaxation tests have been used to characterise the material’s response. 

Two techniques have been used to determine the Poisson’s ratio of foam under uniaxial 

compression. As expected, results reveal the LDPE foam to be a strongly transversely 

isotropic material that is both viscoelastic and highly compressible. The stiffness and 

strength of the foam are almost three times higher in the extrusion (or principle) direction 

used to manufacture the foam, when compared with the properties in the transverse 

directions. It is also noted that the foam’s mechanical behaviour depends on the specimen 

size.  For larger specimens measuring 80x80x80mm
3
, the modulus at small strain and the 

yield stress, are approximately twice that of smaller specimens measuring 10x10x10mm
3
. 

The compressive behaviour of the LDPE foam is also rate dependent. The yield stress of 

foam increases approximately linearly with the natural logarithm of the compression strain 

rate. The Poisson’s ratio values decreases with increasing compression strain rates. While 

the energy absorption efficiency of foam increases with strain rate. Micro-CT and optical 

microscopy has been performed to determine the average microstructural cell shape and 

dimensions within the LDPE foam. Results indicate an average cell geometry that is 



                                                                                                                                        II 

 

 

elongated in the foaming direction by about 20% compared to the transverse direction. A 

combined analytical and numerical modelling strategy has been employed to provide a 

better understanding of the relationship between microstructure and macroscopic 

behaviour. Combined use of analytical and numerical modelling shows that it is possible to 

give a good prediction of the foam’s macroscopic response based on an understanding of 

the inherent anisotropy within the foam’s microstructure. 
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Chapter 1. Introduction 

 

Most cellular materials show some level of anisotropy in their microstructure. This 

anisotropic nature can have a significant impact on the material’s mechanical behaviour. 

This research focuses on determining the effects of anisotropy in the material’s 

microstructure on the mechanical response of foams. 

In this work, a review of existing anisotropic micro and macro-scale analytical and 

numerical models is conducted. The work in this thesis aims to use and, in some instances, 

enhance these models in order to characterise, fit and predict the mechanical response of 

anisotropic foams. Cellular materials can be broadly defined as a porous material 

comprised of an interconnected network of solid edges and faces which form individual 

cells [1].  

They can be found in nature, for example, wood, cancellous bone and coral, or they can be 

man-made, for example, honeycomb, lattice structures and random foams. Man-made 

foams can be manufactured from a variety of materials such as metals, ceramics and 

polymers. 

Cellular materials generally can be found in many forms. The simplest form of a cellular 

structure is honeycomb which essentially possesses a two-dimensional shape. In regular 

cases, the cells appear as groups of squares, triangles or hexagons [1]. 

Foams are an important subcategory of cellular materials and can be defined as materials 

consisting of random microstructures with either a liquid or a solid phase, constituting the 

structure of the foam and either a gas or a liquid phase permeating the structure. Foams 

consist of a large number of cells. Each cell has struts at its edges. Depending on the type 

of foam, these struts may act as the frames for cell faces, the occurrence of faces creates a 

closed cellular structure, and the absence of faces creates an open cellular structure. An 

extensive body of literature has been published on the mechanical properties of foams and 

several excellent texts reviewing the topic are available [1-3] . In this chapter a brief 

overview of themes relevant to the detailed investigations performed in subsequent 

chapters is provided.     
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1.1. Properties of Foams and their Applications 

In general, foams possess unique mechanical properties, making them attractive for many 

engineering applications [1, 4]. Some of these properties, and how they facilitate 

applications, are: 

 High compressibility at constant stress: Many types of foam can be compressed to high 

strain under an approximately constant stress (typical forms of stress-strain curves for 

random foams are discussed in Section‎1.4). Consequently, a large amount of energy can 

be absorbed without generating a large amount of stress. Hence they are used in 

packaging of electronic and fragile products etc., see Figure  1-1a. 

 Relatively low strength and high specific properties: Low-strength foams made from 

elastomeric polymer are important in cushioning applications, for example in helmets as 

presented in Figure ‎1-1b, also in seating, automotive interiors, furniture, training shoes, 

etc. their flexibility and elastomeric nature is useful in distributing loads across wider 

areas.  

 Thermal insulation: Low thermal conductivity of non-metallic forms is beneficial for 

thermal insulation applications, for example in insulating frozen food, modern buildings 

and pipes as shown in Figure ‎1-1c. 

 Buoyancy: One of the important physical behaviours of closed-cell foams is their high 

resistance to water absorption. Combined with their low density this behaviour makes 

closed-cell foams attractive for floating applications such as life jackets, boats, toys, 

etc., see Figure ‎1-1d. 

 High porosity of open-cell foams: The microstructure of open-cell foams offers many 

applications such as filters for air, gas, water as presented in Figure ‎1-1e. 

 Rough surface: This property gives foams a high-coefficient of friction; thus, they can 

be applied in non-slip surfaces for floors, furniture, etc. see Figure ‎1-1f. 

 Modifiable mechanical properties and density: The mechanical properties of foams 

depend on their density and microstructure both of which are determined by the 

manufacturing process, which can vary. So, the strength of foams can be controlled, 

making them ideal in many applications, such as composite structures used in aircraft 

structures. Hence, the mechanical response of foams under different rates of loading, as 
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well as their bulk properties and type of manufacturing process, must be considered in 

designing products based on foams. 

 
 

(a) packaging [5] (b) cushioning (helmet cross section)[6] 

  
(c) thermal insulation [7] (d) buoyancy [8] 

 
 

 
 

(e) water filter [9] (f) non-slip surface [10] 

Figure  1-1. Applications of foam. 

1.2. Manufacture of Foams 

Synthetic foam can be made out of plastics, metals, glasses, ceramics, composites, etc. The 

different constituent material is one of the determining factors in choosing which 

manufacturing methods can be used to produce the foam. Some gas-expanded foams are 

made by mixing in a chemical foaming agent which reacts to form a gas. Here the mixture 

Flexible foam 

Rigid foam 

(b) 
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is injected into a cavity during the foaming process, allowing the mixture to inflate in-situ 

as bubbles expand internally. Others are made by injecting gas into hot molten fluids,  

bubbles expand and are trapped when the material cools and solidifies [1]. Consequently, 

foams can be made by direct injection of gas into hot polymer or liquid metal, which are 

then solidified by cooling. Also, various  indirect methods involve  casting or the use of 

powder compacts which contain blowing agents [11]. In practice, it is found that the 

mechanical properties of foams are sensitive to their processing method. Hence, the choice 

of method also depends on the target properties of the foam.  

Various methods are used for foaming polymers. These may be classified by several, such 

as direct and indirect foaming methods [12, 13]. The most general classification is based 

on the method by which cells are produced. There are two types of foaming agents [1]: 

1- Physical blowing agents include those agents that produce cells as a result of a physical 

technique. 

2- Chemical blowing agents include a mixture or individual compounds that liberate gas as 

a result of a chemical reaction. 

There are many processes to produce polymer and metal foams, most of these methods 

result in some degree of anisotropy in the final material. Most of the time the 

manufacturing processes causes anisotropy in the cellular microstructure. The cells are 

often elongated in the direction of greatest expansion of the foam, referred to here as the 

principal direction. The stiffness in the principal and transverse directions are defined here 

as pE  and tE  respectively. p  and t are the uniaxial yield stress in the principal and 

transverse directions. Examples of some the manufacture processes, and where possible, 

examples of the anisotropy ratio induced in the microstructure, the ratio between the 

tp EE /  and tp  /  are shown in Table ‎1.1 
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Table  1.1. The manufacture process of foam, r cells shape anisotropy, pE , tE elastic 

parameters in the principal and transverse directions respectively . The subscript p and t 

refer to principal and transverse directions respectively. 

 

Process type Material r  
tp EE /  tp  /  

Extrusion [14-16] 
Low-density polyethylene 

foam 
1.2 2.7 2.41 

Slabstock [4, 17] polyurethane foam 1.29 - - 

Pouring the polymer plus 

hardener and foaming agent into 

a mould [1, 3] 

Flexible polyurethane foam 1.3 1.8 1.09 

Melt foaming [18-20] Al-Si alloy foams 1.4 1.75 1.55 

 

where r  is the cells anisotropy ratio, measured as the ratio between the largest and 

smallest cell dimension. Though the cells may even be temporarily significantly elongated 

during the manufacture process, i.e. during high, fast expansion in one direction, the cells 

speedily return to a more equalized shape to reduce some of their the anisotropy though 

some of the elongation in the microstructure remains [4, 21]. 

An important manufacturing route for closed-cell foams is direct gas-injection melt 

extrusion. This process is suitable for the manufacture of low-density foams e.g. 20 to 60 

kg/m
3
. The extrusion and foaming process can have a significant effect on the 

microstructure and consequently on the mechanical response of the foam. This is because 

the flow field through the extruder, the gas expansion during the foaming process and the 

subsequent post-extrusion drawing of the foam can produce elongated cells along the 

direction of extrusion, and potentially, molecular orientation within the skeletal polymeric 

foam structure itself. The degree of anisotropy can be manipulated by controlling the 

process conditions. The large degree of anisotropy inherent in this particular manufacture 

process makes extruded foams an interesting candidate for the study of the relationship 

between micro-structural and macro-scale anisotropy. 
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1.2.1. Extrusion Process 

In the extrusion method, foams are made by combining physical or chemical blowing 

agents, liquids or gases into a polymer melt. As shown in Figure ‎1-2 , the gas is injected in 

the polymer melt in a screw extruder section, here the pressure from the extrusion process 

keeps the gas compressed in the melt. The die is designed to have a high pressure gradient 

to keep the gas compressed inside the die, preventing foaming. As the molten polymer 

exits the die, the decreasing melt pressure permits the gas to expand, creating a porous 

foam structure in the desired extruded shape. The density of extruded foam depends on the 

type and amount of blowing agent used and the melt temperature. Gas and liquid blowing 

agents added downstream within an extruder can reduce the final part density by about 

90% or more. In LDPE the part density can be reduced from 926 kg/m
3
 to 40 kg/m

3
 [15, 

16]. In practice, any thermoplastic polymer can be used to produce extruded foam. Harold 

et al. [22] showed the most common thermoplastic materials used include:  

 Polystyrene 

 Polyethylene 

 Polypropylene 

 Polyvinyl chloride 

 

Figure  1-2. Simple schematic of the extrusion process [2]. 

     Hopper 

Screw and 

gas injection  

 
     Die 

   Extruded                       

     Foam           

 Extruder  
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1.2.2. Effects of Manufacture Method on Microstructure of 

Foams 

Many previous investigations have considered the link between manufacturing process and 

final microstructure of open- and closed-cell foams [1, 3, 4, 14, 18, 19, 23-25]. 

The microstructure is a key factor in determining the mechanical and physical properties of 

foams. Their bulk properties are dependent on both the shape and the dimensions of the 

cells within the foam microstructure. Numerous investigations [1, 3, 4, 14, 18, 19, 23-25] 

have noted the correlation between macro-scale structural anisotropy and the average cell 

shape inside the foams. In the next section an overview of the relationship between 

manufacturing process, the microstructure and the bulk properties of solid foams is given. 

1.3. Influence of Foam Microstructure on Mechanical 

Properties 

In order to identify the relationship between the microstructural morphology and 

mechanical properties of foams, it is first necessary to characterise the internal 

microstructure. In reviewing the extensive body of literature on this topic, the books of 

both Gibson and Ashby [1] and Mills [4] discuss how various micro-structural parameters 

influence the relationship between microstructure and macro-scale mechanical behaviour. 

In the following section, these parameters are listed and their influence is briefly outlined. 

 Open or closed-cell structure 

 Relative density 

 Cell size 

1.3.1. Cell Structure: Open- or Closed-cell 

According to the foam's internal microstructural morphology, foams be classified as open- 

or closed-cell foams.  The important difference between these two types of foam is the lack 

of membranes in open-cell foam [4] (see Figure ‎1-3). Open- and closed-cell foams have 

very different mechanical behaviours. Open-cell foams do not trap gas within the cells, so 

the gas pressure does not significantly affect their mechanical response. The importance of 
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this effect depends on the composition of the foam. The influence of internal gas pressure 

on strong, rigid materials is relatively much less important than on more compliant flexible 

foams. 

  
(a) open-cell foam with a density of 

28kg/m
3
.
 
 

(b) Closed-cell LDPE foam with a density 

of 24kg/m
3
. 

Figure  1-3. SEM photographs of polyurethane foam from [4]. 

 

1.3.2. Relative Density 

One of the most important properties for a given type of foam is its relative density, R, 

defined as the foam density,  , divided by the density of the solid constituent material, s . 

Based on the volumetric fraction of the solid phase, foams are usually classed as either 

high or low-density foams. Mills [4] considered foams with a relative density of less than 

0.1 to be low-density foams. Increasing relative density increases both cell wall and edge 

thickness and consequently leads to an increase in the foam’s stiffness and a reduction in 

the porosity of the foam. 

1.3.3.  Cell Size and Distribution 

The average cell size and the distribution of cell sizes are other significant factors affecting 

the mechanical response of foams. Many investigations draw different conclusions about 

this issue. For instance, Morgan et al. [26] and Cao et al. [27] observed that smaller cell 

sizes produced stronger foams, with strength changing as a function of the inverse square 

root of the cell diameter in a closed-cell glass foam. However, Hagi et al.[28] found that 

increasing the cell size makes open-cell alumina foams stiffer. Recently, Mills [4] and 
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Mills and Gilchrist [29] concluded that cell size affects the gas diffusion coefficient in 

closed-cell foams and increasing cell size increases gas diffusion, thus affecting the shape 

of the creep-time curve during high strain creep. Consequently, cell size affects the air flow 

resistance of open-cell foams; this affects the form of the stress-strain curve. 

1.4. Mechanical Response of Foams under Compressive 

Loading 

As touched upon previously, foams have a wide range of mechanical applications, and are 

often used under conditions involving compressive loading. For this reason, the response 

of foams under compression is often used to classify the generic response of the foam. The 

mechanical response of most foam can be described as compressible and one of: 

 Linear elastic and isotropic  

 Non-linear elastic and isotropic 

 Linear elastic and transversely isotropic 

 Non-linear elastic and transversely isotropic 

 Elastic-plastic  

 Elastic-brittle  

 Visco-elastic 

Typical loading curves corresponding to these generic behaviours are shown in Figure ‎1-4 

  

(a) Linearly elastic and isotropic response. (b) Elastic and non-linearly isotropic 

response. 
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(c) Linearly elastic and transversely 

isotropic response. 

(d) Non-linear elastic and transversely 

isotropic response. 

         

(e) Isotropic and elastic-plastic response. (f) Elastic-brittle response. 

 

 (g) Visco-elastic response. 

Figure  1-4. Compressive stress-strain curves. 
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1.4.1. Linear Elastic and Isotropic Foam 

The linear elastic response shown in Figure ‎1-4a can be characterised using two elastic 

parameters: the modulus of elasticity and Poisson’s ratio [30, 31]. At low strains foams 

typically follow a linear elastic behaviour. At high compressive strains, a different 

deformation response can occur in different types of foam materials, leading to different 

stress-strain curves. For isotropic foams the mechanical response is the same in all 

directions though as discussed, the mechanical properties of most foam materials do have 

at least some degree of directional dependence. 

1.4.2. Non-linear Elastic and Isotropic Foam 

The non-linear elastic behaviour of most foam materials is partially due to deformation of 

the microstructural geometry at high compressive strains. These foams are classified into 

non-linear elastic materials with flexible and recoverable behaviour, as shown in 

Figure ‎1-4b. They can be modelled using hyperelasticity theory, which means the stress-

strain response can be predicted from a strain energy function [32-35]. 

1.4.3. Linear Elastic and Transversely Isotropic Foam 

As discussed previously, most foaming processes cause some elongation of cells. Hence, 

the stress-strain behaviour is a function of the direction of the applied stress (e.g. parallel, 

normal or oblique to the direction of extrusion) (see Figure ‎1-4c). Such materials require 

more elastic parameters to describe their mechanical response than do isotropic materials. 

Materials with a transversely isotropic response have five independent engineering elastic 

constants: two Poisson’s ratios, two modulus of elasticity and a shear modulus. For 

example, the linear transversely isotropic model has been used by Isaac and Ori [36]  and 

Tagarielli et al. [37] to model the behaviour of composite materials and balsa wood 

respectively. 

1.4.4. Non-linear Elastic and Transversely Isotropic Foam 

In recent years, there has been increasing interest in the study of non-linear elastic 

transversely isotropic materials. This class of material can be analysed by considering 
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more advanced non-linear theory. The investigation of non-linear elastic transversely 

isotropic foams is rather new. Weiss et al. [38] presented a model for incompressible 

transversely isotropic material and Tagarielli et al. [37] proposed a model for plastic 

transversely isotropic material. Jebur et al. [15, 16] proposed a simple method of 

calculating the uniaxial compressive stress in foams subjected to a compression load at an 

specified angle to the material’s principal direction, see for example, Figure ‎1-4d. [16]. 

1.4.5. Elastic-Plastic Foam 

If plastic foams are subjected to stresses higher than the yield stress, further deformation is 

permanent and does not recover when the compressive stress is removed because of plastic 

deformation or fracture of the constituent material. Plastic foams are often made out of 

rigid polymers or metals such as closed-cell aluminium foams [1, 39, 40]. Figure ‎1-4e 

shows the stress-strain curve for plastic foam under uniaxial compression. 

1.4.6. Elastic-Brittle Foam 

The typical stress-strain curve for elastic-brittle foam is shown in Figure ‎1-4f. At low 

strain, brittle foam shows a steep increase in compressive stress due to the high strength of 

the material in the elastic region. The material then yields at the end of the elastic region 

and then the stress-strain curve dramatically decreases with a non-linear behaviour. This 

class of foam includes glass foams, ceramic foams and foams made out of brittle polymer 

or other brittle materials. Experimental data for the crushing of these kinds of foams have 

been measured and analysed by, for example, Rusch [41] and Gibson and Ashby [1]. 

1.4.7. Visco-Elastic Foam 

Most polymer foams show some degree of viscoelastic behaviour [4, 34, 42]. For example, 

flexible foams exhibit a hysteresis response upon unloading, as shown in Figure ‎1-4g. The 

stress-strain data of unloading is lower than during loading, indicating absorbed energy in 

the loading-unloading cycle. The term viscoelastic means a combination of both viscous 

and elastic response under loading. The viscoelastic response can be classified into linear 

and non-linear behaviour. Linear viscoelastic response can be modelled using linear 
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equations, with mechanical analysis based on linear springs and Newtonian viscous 

dampers. Non-linear viscoelastic behaviour can be modelled using constitutive equations 

containing a higher order power of the engineering variables.  

As mentioned above, several factors affect the mechanical properties of foam including the 

type of solid material in the foam and microstructure of the foam (see Section  2.2). Strain 

rate can have an important effect on stress-strain response for various reasons, though for 

polymer foam this is mostly attributable to the viscoelastic nature of the constituent 

material. Song et al. [43] noted that as the strain rate is increased the yield stress increases 

linearly with the natural logarithm of strain rate in uniaxial compression tests. Figure  1-5 

illustrates the effects of strain rates on the stress-strain curve. Figure ‎1-4 (b, d, e, f and g) 

and Figure  1-5 show the schematic compressive stress-strain curves for foams. They share 

some similar mechanical characteristics, i.e. linear elasticity in the small strain region 

(<5% strain), followed by a long plateau region ending in a densification region, where the 

stress rises dramatically. These mechanical characteristics are different from those of 

common solid materials such as metals, which normally do not have a long relatively low 

stress plateau region under compression. The plateau region allows foams to exert a nearly 

constant reaction stress under compression, up to very high strains. This characteristic is 

important for the design of both protective and cushioning applications. In crash events, 

the plateau region provides protection by absorbing kinetic energy without transmitting 

high stresses and accelerations. For cushioning applications for example a car seat, foams 

provide good vibration damping and this contributes to ride comfort. 
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Figure  1-5. Compressive stress-strain curves at varies strain rates. 

 

1.5. Objectives 

The main goal of this work is to examine the current state of the art in terms of 

characterising and modelling the mechanical behaviour of polymeric foams. Particular 

attention is paid to transversely isotropic foams subject to large compressive strains. 

Possible approaches to enhance existing models are explored. Sub tasks of this work are to: 

 Characterise the mechanical properties of transversely isotropic foam. This detailed 

experimental dataset will provide a benchmark with which to explore the utility of the 

various different modelling approaches. 

 Examine the current state of the art in terms of macro-scale modelling of foams. This 

work does not aim to develop a new constitutive model but rather the goal is to 

examine the accuracy of existing macro-scale constitutive relations in modelling these 

materials. 

 Analyse the microstructure of the chosen benchmark foam and relate this 

microstructure to macroscopic mechanical behaviour, using existing analytical and 

numerical microstructural elastic models. This work evaluates the utility of these 

models and routes for further enhancement are suggested the microstructural work will 
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demonstrate the degree of anisotropy that can be expected from a typical extrusion-

based foaming process. 

 Examine the use of a simple viscoelastic gas-based constitutive model to introduce the 

effects of strain rate on the mechanical behaviour of the benchmark foam. Here it will 

be shown how the relationship between specimen size and mechanical response can be 

predicted by determining the gas diffusion coefficient of closed-cell foams subject to 

compressive loading. 

1.6. Outline  

The remainder of this thesis is structured as follows: 

Chapter 2: Literature Review. This chapter is a detailed survey of relevant literature, 

covering background theories and examining the context of the research in relation to the 

mechanical response of foams and the various methods of mechanical characterisation. 

Chapter 3: Experimental Characterisation of a Transversely Isotropic Polymer 

Foam. This chapter presents experimental testing and macro-scale modelling of a 

representative benchmark foam; a melt-extruded Low Density Polyethylene (LDPE) foam. 

The experimental setup is presented in Section ‎3.1. Material characterization and macro-

scale modelling and the effects of strain rate on the elastic yield stress are proposed in 

Section 3.3 and are presented in Section ‎3.2. The methods available for geometric 

characterisation of the microstructure are described in Section ‎3.3. 

Chapter 4: Macro-Mechanical Modelling of Foam. This chapter shows methods of 

interpolating between measured data from a smaller dataset and of calculating the data 

using simple analytical models are explored. A modified method for modelling 

transversely isotropic material is presented in Section 4.2. The effects of strain rate on the 

elastic yield stress are proposed in Section 4.3. The specimen size effect on mechanical 

properties of closed-cell foams is presented in Section 4.4. The aim of this research is to 

predict the stress-strain curves as a function of specimen size and thereby account for the 

influence of test specimen dimensions when estimating the true bulk response of the foam. 

The constitutive models currently implemented in a Commercial FEA Software are 

presented in Section 4.5.  
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Chapter 5: Modelling of Transversely Isotropic Closed-cell Foam using a Micro to 

Macromechanics Approach. This chapter explains the relationship between the foam’s 

microstructure and its mechanical response. A closed-cell foam model is created in Section 

5.2. Analytical and numerical analyses are performed to calculate the linear elastic and 

elastic yield stress for isotropic and transversely isotropic foam. In Section 5.3 analytical 

analysis is used to calculate the non-linear elastic response during compression. Stress-

strain curves for isotropic and transversely isotropic foams are predicted from the 

microstructure and Section 5.4 compares experimental and predicted data. 

Chapter 6: Conclusions and Recommendations for Future Work of this thesis are 

summarised. 
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Chapter 2. Literature review 

 

Polymeric foams are widely used in various areas due to their unique mechanical 

behaviour, such as for packaging, impact energy absorption and cushioning [1, 4].  

Mechanical modelling and experimental testing approaches have been developed to model 

both isotropic and transversely isotropic foams.  In this chapter, the relevant literature is 

reviewed. The main goal of this Chapter is to describe current experimental testing 

techniques and give an overview of both macro and micro-scale modelling approaches for 

foam materials. In particular, a goal is to highlight how previous studies have aimed to use 

the foam’s properties such as relative density, microstructure and the nature of the foam’s 

solid constituent material in order to predict the mechanical response of the foam 

The content of this chapter is structured into the following sections in this order: modelling 

of foam behaviour and experimental investigations, macro-scale and then micro-scale 

modelling.  

2.1  Modelling of Foam Behaviour 

The content of this section is organised into linear (small strain) and non-linear (large 

strain) models. Both of these strain regimes are important when considering the 

mechanical behaviour of foams. Work relating to elastic, viscous and plastic behaviours 

are considered, together with various combinations of these behaviours (e.g. visco-elastic 

or elastic-plastic), in the small and large strain sections. In order to limit the scope of this 

review, attention is focused primarily on research relevant to the understanding of polymer 

foams.  

2.1.1 Linear or Small Strain Models 

The linear elastic model is the simplest model of elasticity. It can be used to describe the 

isotropic, transversely isotropic and orthotropic response of materials and it is valid for 

small elastic strains only. 
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 Linear Elastic Isotropic Compressible Model 2.1.1.1

A material is isotropic when its mechanical properties are the same in all directions [44]. 

The simplest case of linear elasticity is the isotropic case. The mechanical response is fully 

characterised by the Young's modulus, E, the Poisson's ratio, v  and the shear modulus, G. 

The constitutive relation for a linear elastic material can be described as: 
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(‎2-1) 

 

here G  can be determined from these two independent constants using   

)1(2 v

E
G




 

(‎2-2) 

 Linear Elastic, Transversely Isotropic Compressible 2.1.1.2

Model 

An orthotropic material is transversely isotropic when one of the principal planes is 

isotropic, i.e. at every point there is a plane in which the mechanical parameters are the 

same in any direction in that plane [36, 45]. Many unidirectional materials, such as 

unidirectional composites materials with aligned fibres can be assumed to be transversely 

isotropic, with the 2-3 plane (normal to the fibres direction) as the plane of uniformity as 

shown in Figure ‎2-1. The constitutive relationship of linear elastic transversely isotropic 

materials can be written as:  
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(‎2-3) 

 

Here, five elastic constants are required for transversely isotropic materials, two moduli of 

elasticity corresponding to the stiffness in the principal and transverse directions, 
1E , 

32 EE  , two Poisson’s ratios defined as 
11

22
12




v  and  

22

11
21




v  for uniaxial 

compression in the principal and transverse directions and the  shear modulus, 12G , in the 

principal direction, is as given in Equation (2-3), 1312    are the Poisson’s ratios when 

loaded in the principal direction, 3121   , and 23  are the Poisson’s ratios when loaded in 

the transverse direction and 231312 GGG   are the shear moduli. 

  

Figure ‎2-1. Orthotropic material with plane of transverse isotropy [36]. 
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 Linear Viscoelastic Model 2.1.1.3

Viscoelastic materials display both viscous and elastic behaviours. Most viscoelastic 

materials show linear or nearly linear response under small strains. Linear visco-elastic 

models composed of linear elements (springs and dashpots), are linearly elastic at small 

strains, but can also be used to model large strain behaviour, making them very useful. 

Sabah [46] developed a linear model of viscoelastic behaviour capable of providing a 

representation of the stress-strain response as a function of time this model has  been 

applied in many subsequent viscoelastic analyses. One of the characteristic features of 

viscoelastic materials is the stress relaxation response, in which the material shows a time-

dependent stress in response to an imposed constant strain.  

The simplest viscoelastic models are the Maxwell and Voigt models, shown in Figure ‎2-2a 

and Figure ‎2-2b. Johnson et al. [47] used the Maxwell model to characterise the stress 

relaxation of rubber and Kim [48] used the Voigt model to describe the creep strain for 

polymer pipeline flows. However, the behaviour of most elastomeric and polymeric 

materials is too complicated to be accurately modelled with either of these simple models. 

Other combinations of linear viscoelastic models can also be used to approximate the 

response of polymer foams, such as the so-called Prony model (a number of Maxwell 

models in parallel to a single spring, see Figure ‎2-3. Mills [49] used a Prony series to 

model more complex behaviours of elastomeric foams. The Prony model is appropriate for 

modelling the macroscopic response of viscoelastic materials to a reasonable degree of 

accuracy, provided that enough Maxwell elements are used. Also, one feature of this model 

is that it is suitable for inter-conversion of the modulus and creep compliance function 

from the time-domain to the frequency-domain using Laplace transformation [46].  
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Figure  2-3. Prony model (a spring and dashpot in series)  [49]. 

 

2.1.2 Large Strain Models  

 Isotropic Hyperelastic Behaviour  2.1.2.1

Hyperelastic models can be used to calculate the mechanical response for rubber-like 

elastomeric substances subjected to large deformations. Ogden [32] and Holzapfel [51] 

discuss how the most important assumption of a hyperelastic model is the existence of a 

strain energy density function, which is dependent only on the current state of strain. In 

hyperelasticity the energy density function is normally expressed in terms of the invariants 

of the finite strain tensor. The hyperelastic model is path independent, since the stored 

elastic energy at any point in the material is determined only by its current state of strain. A 

hyperelastic material is isotropic if the strain energy function can be represented as: 

),,( 321 IIIUU ss   (‎2-4) 

 

 

(a)  (b)                                                                  

Figure  2-2. Two basic phenomenological models (a) Maxwell Model and (b)                                     

Voigt Model [50]. 
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where 
21, II and 

3I are the principal strain invariants [51]. In terms of the principal 

extensions of the deformation 
21,  and

3 , the principal strain invariants can be written 

as: 
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Many isotropic materials (such as rubber) can be deformed without a change in volume. 

Such materials are said to be incompressible. The incompressibility of this class of 

materials is characterized by 1J , where  

321 J  is the volume change ratio i  (i = 1, 2, 3) (‎2-8) 

Foam materials that can be subjected to compressive strains are called compressible 

materials. For this class of material, the volume ratio is 1J . Several hyperelastic material 

models have been published [4, 32, 51]. Below is a brief review of some hyperelastic 

models used to describe isotropic compressible materials. 

 Neo-Hookean 

The Neo-Hookean model is the simplest hyperelastic model, the model was first suggested 

by  Rivlin [52]. In this model the strain energy density is calculated from the integration of 

stress and strain in cases where the tangent moduli remain constant and isotropic. The 

equation below is a first order general equation which has been implemented in several 

commercial FEM software programs. 

2

1

1 )1(
1

)3(  J
D

ICU sms  
(‎2-9) 

This model is ideal for isotropic compressible material under low strains. The constant 
1mC  

characterises the initial shear modulus of the material and the constant, 1D , characterises 

the inverse of the initial bulk modulus. 

 

 Moony-Rivlin  

In order to improve the fitting to data, Rivlin [53] suggested a dependence of the strain 

energy function on both the first and second invariants. This model is more general than 

the neo-Hookean model. In this model the strain energy can be calculated using  

http://en.wikipedia.org/wiki/Ronald_Rivlin
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Clearly the Neo-Hookean model is a reduced form of the first-order Mooney Rivlin 

equation with 02 mC . 

 Ogden Model 

The Ogden model, as presented here, is suitable for highly compressible materials and 

defines the deformation of the hyperelastic material in terms of the principal stretches 

rather than the invariants of the deformation tensor. Therefore, implementation of the 

Ogden model requires the use of the eigenvectors in addition to the eigenvalues. 

Anisotropic response can develop along the principle directions; however, the model is still 

“isotropic” in the sense that the elastic response can be derived from the deformation 

tensor without regard to the reference state [32, 51]. Also, the non-integer exponential 

coefficients provide greater flexibility than polynomial forms in describing the nonlinear 

deviatoric response when N (the number of terms) is low. The implementation of higher 

order expansions permits comprehensive descriptions of polymeric response at high 

strains. A hyperfoam Ogden model can be expressed as: 















 )1(
1

)3(
2

321

1
2

iiiii a

i

aaa
N

i i

i
s J

a
U







 

(‎2-11) 

 

where the coefficients ii a,  and
i   are material constants. The coefficients, i , are 

related to the initial shear modulus,  , in the reference configuration as 
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The initial bulk modulus can also be computed as: 
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In this algorithm, the coefficient, i , is related to a nominal Poisson’s ratio, v , by  

1 2
i
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(‎2-14) 

Numerous investigations have shown that isotropic elastic compressible foams can be 

modelled using a range of models of gradually increasing complexity, such as the Neo-
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Hookean model used by Bardenhagen [54] and the Mooney-Rivlin model or Ogden’s 

model for isotropic compressible rubber used by Ogden et al. [33, 55] and Widdle et al. 

[34, 56]. 

 Hypoelasticity 2.1.2.2

Hypoelasticity generally refers to constitutive equations in rate form e.g. Zhou et al. [57] 

and Xiao et al. [58]. This differs from the hyperelastic method in that a unique governing 

strain energy potential is not recognised, and often, does not exist. Hence, unlike the 

hyperelastic model, the hypoelastic model can be path dependent and can violate the laws 

of thermodynamics. Consequently, the hypoelastic form, as shown below, is a more 

general description of a constitutive response 

,:** DHO   
(‎2-15) 

where 
c  and D  are the Cauchy stress tensor and the stretching tensor respectively, 

*O  

is an objective stress rate, and )(** HH  , is the hypo-elastic tensor, a fourth order 

tensor depending on the stress,  . 

 Transversely Isotropic Hyperelastic Incompressible 2.1.2.3

Behaviour  

Transversely isotropic incompressible hyperelastic models have been proposed for aligned 

fibre reinforced elastomers and biological materials[38, 59-61]; the high water content of 

which means the incompressibility condition advocated by Jemiolo et al. [62] is 

appropriate. Zhurov et al. [63, 64]  developed a transversely isotropic compressible visco-

hyperelastic model in order to predict the behaviour of the periodontal ligament under 

large deformations. However, Guo et al. [61] showed that the predictions of this model are 

valid only for weakly compressible or weakly anisotropic behaviour. The model is not 

appropriate when considering a highly compressible and anisotropic material such as 

certain polymer foams. This is because of the decomposition of the strain energy into 

decoupled volumetric and isochoric contributions see Equation (‎2-16). In this case, the 

volumetric contribution depends solely on the determinant of the deformation gradient 

tensor with no dependence on the anisotropy of the material, which means that a 
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hydrostatic stress state is predicted during the application of a hydrostatic strain [63],  see 

below Equation (‎2-16) 

V

Iso

e

IsoVolh WWWW   (‎2-16) 

The subscripts ‘Vol’, ‘Iso’, ‘e’ and ‘V’ denote the volumetric, isotropic, elastic and 

viscoelastic terms, respectively. 

 Elastic-Plastic Transversely Isotropic Model 2.1.2.4

Most authors use elastic properties and the initial yield surface to calculate transversely 

isotropic behaviour for plastic materials. Thus to create a model for transversely isotropic 

compressible materials under large strain, a linear elastic/plastic approach has been 

developed by Tagarielli et al. [37]  for balsa wood. Beyond small strains, the deformation 

was modelled as irreversible which is appropriate for balsa wood. Also, the aluminium 

alloy foams used by Deshpande and Fleck [65] and the square-honeycomb [66] show 

transversely isotropic responses.  

Moreu et al. [2],  Mills et al.  [67] and Gilchrist et al. [68] have used the crushable foam 

model, see Equation (‎2-17), and have compared its mechanical behaviour with that of low 

density polystyrene (PS) foam. However, elastic-plastic models are not suitable for 

describing the recovery of predominantly viscoelastic materials and are therefore not 

suitable for many types of polymeric foam. The von Mises stress depends on the 

hydrostatic loading as  

  2

2

2)(5.0 a
b

a
ppp e
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(‎2-17) 

The terms e , p , cp , tp  are the von Mises stress, hydrostatic loading, initial yield stress 

in hydrostatic compression and yield stress in hydrostatic tension respectively. Also, a and 

b are material parameters.  

 Hyper-Viscoelasticity  2.1.2.5

In recent years, there has been a considerable amount of development in hyper-viscoelastic 

models. Lubliner [69] presented the general approach of incorporating viscoelasticity 

within a hyperelastic framework. Here the free energy function is additively separated into 
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equilibrium and non-equilibrium parts. Both a Voigt model and a Maxwell model (see 

Section ‎2.1.1.3 ) were used to model relaxation and the author’s concluded that the 

Maxwell model is better since it is readily expanded for multiple relaxations. After 

Lubliner [69], Holzapfel [51] and other researchers developed specific viscoelastic models 

using this approach. Such a model is available in Abaqus
TM

, a commercial finite elements 

software package. The technique of the FEM has been used by Li et al. [70] to describe the 

nonlinear behaviour of foam used in indentation tests. Similarly, Mills et al. [49, 71] used 

this method to analyse the mechanical response of foam used as protective cushioning. 

2.2 Micro-scale Modelling 

In previous investigations [1, 4, 72-78], both analytical and numerical micro-scale models 

for polymer foams have been devised in order to develop constitutive models to describe 

the relationship between the mechanical properties of  flexible and rigid foams and their 

micro-structure, including information such as cell size and shape, relative density and the 

mechanical response of the constituent polymer. This method is useful in relating the 

compression experienced by cell walls and edges to the general bulk deformation of 

polymer foams. In so doing, such micro-models can predict stiffness and can also describe 

how failure occurs within the microstructure by buckling, elastic deformation and yielding.  

When regular models, such as the Kelvin foam model, see Section ‎2.2.1.1, are used to 

analyse a specific type of loading, a representative unit cell (RUC) is required. The 

deformation mechanisms of these models are repeated periodically at the boundaries. Also, 

the RUC technique is very useful for predicting small and large deformation mechanisms 

and can be applied in both analytical and numerical analyses. In contrast, when irregular 

stochastic models such as the Voronoi model (see Section ‎2.2.2.5) are used in calculating 

the mechanical properties of foam, it is necessary to use the concept of a representative 

volume element (RVE) and again a periodic boundary condition has to be applied. 

The simple cubic and cuboid open-cell models shown in Figure ‎2-4a and Figure ‎2-4b were 

suggested by Gibson and Ashby [1]. The elastic behaviour of the unit cell during uniaxial 

compression is governed by bending of the edges and the yielding behaviour is governed 

by buckling of the edges. The cross-section of the edges is usually considered as a square 

to simplify the subsequent analysis. The advantage of the Gibson and Ashby model is that 
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it is reliable and simple. While this model geometry is quite different from the actual 

random cellular geometry of random foams, which is irregular, it can nevertheless produce 

useful predictions in the small strain regime. The limitation of the cubic and cuboid models 

is that they cannot produce accurate predictions beyond the yield stress of the foam. 

 

Prior to the development of the cubic repeat unit cell model, Thomas [4] (Lord Kelvin, 

1887) suggested the ‘Kelvin’ model consisting of a lattice of tetrakaidecahedra used to 

represent the foam (see Figure ‎2-5). It consists of 8 non-planar hexagonal surfaces and 6 

planar quadrilateral surfaces, all with bowed edges, while the interface angles between 

edges at the vertices is 109.5
o
. Mills [4] presented the use of a modified form of Lord 

Kelvin’s tetrakaidecahedra cells. The modified model as shown in Figure ‎2-5a has uniform 

inter-edges and the interface angles are either 90
o 

or 120
o
. The edges lengths, l , are jointed 

with two hexagonal faces to a square face. Further, an elongated modified Kelvin model as 

shown in Figure ‎2-5b was proposed by Dement’ev and Tarakanov [79] to predict the 

mechanical response of anisotropic foams. The relative density of the closed-cell Kelvin 

 

 (a)  (b) 

Figure  2-4.  (a) A cubic cell model for isotropic open-cell foam showing the edge length l , 

the edge thickness, et , (b) cuboid model for anisotropic  open-cell foam showing the edge 

lengths l  and h [1]. 
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model can be calculated from the edges and face dimensions. The shape of this model 

conforms more closely to the shape of actual foam cells than does the Gibson and Ashby 

model.   

                                                  

(a)  (b) 

Figure  2-5.Body centred cubic (BCC) packing of 14-sided cells in the Kelvin foam  (a) 

regular Kelvin model, and (b) elongated Kelvin model. 

 

Stochastic microstructural RVE models can be generated using a variety of techniques, 

such as Voronoi tessellation which can be useful for understanding and characterising the 

mechanical properties of cellular structures. The Voronoi technique provides a better 

representation of the microstructure of real foams than either the Kelvin or cubic models. 

However, the analysis of these models can be computationally expensive and complicated. 

Figure ‎2-6a, and Figure ‎2-6b show examples of 2-D and 3-D Voronoi cell models. 

Model microstructures describing various types of microstructural models that have been 

used, include: cubic, cuboid, Kelvin, modified Kelvin, Voronoi and annealed Voronoi, etc. 

C 
C 
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 (a)                                         (b) 

Figure  2-6.  Irregular microstructure models (a)  2-D Voronoi construction for cells inside 

a square box and (b) 3-D Voronoi model of  a closed-cell dry foam with 512 cells [4]. 

2.2.1 Small Strain Modelling 

2.2.1.1. Analytical Models for Small Strains 

Over the last 40 years many researchers have attempted to develop analytical models. 

Examples include those developed by Dement’ev and Tarakanov [79], Kraynik and 

Warren [72] and Zhu et al. [73, 80]. Gibson and Ashby [1] employed analytical models 

such as the cube, cuboid and Kelvin model. In general, the analysis of micro-scale models 

is performed by considering the unit-cell response. The mechanics of deformation of the 

regular unit cell leads to a set of equations for calculating the modulus of elasticity, yield 

stress and shear modulus of the foam and for determining the non-linearity of the stress-

strain relationship. The variation of these properties can be related to microstructural 

geometry, the relative density, and the stiffness of the solid material.  

Simplified unit cell models (see Figure ‎2-4) based on open cubic cells have been 

investigated by Gibson et al. [74], Triantafillou [81] and Maiti et al. [82] in order to 

characterise the mechanical response of open-cell foams. Using such models Gibson and 

Ashby [1] concluded that the bending of cell edges provides the main resistance to 

deformation at small compressive strains. Also, Gibson and Ashby’s analytical model can 

be used to accurately estimate the elastic moduli and yield stress for isotropic foams (see 

Figure ‎2-4). Further, the cubic model was enhanced [1] into a cuboid model (stretched 

along one of the principle axis) in order to characterise the relationship between the 

anisotropy of the foam’s microstructure and the macro-mechanical response such as its 

Lv 
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Young’s modulus. The cubic model can be analysed for both elastic and plastic behaviours 

[1] Gibson and Ashby  found this model was more sensitive to the anisotropy ratio (the 

ratio between the major and minor axis of the unit cell) for plastic foams than for elastic 

foams. Mu and Yao [18] used the Gibson and Ashby model to investigate the effects of 

various cell anisotropy ratios on the compressive response of closed-cell Al-Si alloy foams 

and found that the modulus of elasticity is more sensitive to cell shape than is the yield 

stress. The cuboid model has also been used to predict Young’s modulus, fracture 

toughness, yield stress and plastic collapse of anisotropic flexible and rigid polyurethane 

foams by Huber and Gibson [3] who compared experimental against predicted results and 

observed that the cuboid model describes anisotropy well. 

Mu et al. [18] used the Gibson and Ashby model to calculate the energy absorption and 

plastic collapse stress for anisotropic closed-cell Al-Si foam. Results showed that the 

energy absorption and plastic collapse stress in the principal direction were higher than in 

the transverse direction over a range of foam densities. Mu et al. [18] also developed a 

mathematical power law equation relating the plastic collapse stress and energy absorption 

property with the foam’s relative density. Most of the cubic models suggested for open- or 

closed-cell foams are capable of relating the small strain mechanical properties to relative 

density and the properties of the solid constituent material. 
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(a) (b) 

 

(c) 

Figure  2-7.  (a) Data for relative Young’s modulus of foams plotted against relative 

density. The solid line represents the theory for open-cell foams. The two dashed lines 

represent the theory for close-cell foams, (b) data for the elastic collapse stress for foams, 

normalized by the solid modulus, the solid line represent the theory for open-cell foams, 

the dashed line that for closed-cells, (c) data for the relative shear modulus foams, plotted 

against relative density, the solid data represent the theory for open-cell foams [1]. 
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Analytical solutions of the Kelvin foam model with 14 faces, as presented in Figure ‎2-5a 

and Figure ‎2-5b, have been used by many investigators such as Dement’ev and Tarakanov 

[79], Zhu and Mills [80] and Kraynik and Warren [72] who developed analytical equations 

to define the elastic mechanical behaviour of isotropic, anisotropic, open- and closed-cell 

foams.  Dement’ev and Tarakanov [79] were the first to predict the 
100E  modulus of 

elasticity of a Kelvin foam model for the (001) compression direction, where a square 

cross-section of the edges was assumed, using the below equation 

kek

kek

s lt

lt

E

E

/2

)/(
2

4

100


  

(‎2-18) 

where 
sE is the Young’s modulus of the solid material, 

kl  is the edge length, and 
et is the 

edge thickness. The relative density, R , of a Kelvin foam is related to the edge cross-

section area and length by the expression,  

2
22

3

kl

A
R   

(‎2-19) 

where A  is the edge cross-section area. Zhu et al. [73, 80] analysed the elastic deformation 

of open-cell foams using a body centred cubic (BCC) lattice of cells, each of which is a 

Kelvin foam model. Edge deformation (torsion) was illustrated when the lattice was 

compressed in the (111) direction. Consequently, Zhu et al. [80] predicted the modulus of 

elasticity, using a Kelvin open-cell model with struts having a uniform triangular cross-

section, to be 

R
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E

E

s 61227

68100
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(‎2-20) 

This is more practical than the corresponding equation by Dement’ev and Tarakanov [79], 

see Equation (‎2-18), because the analysis does not depend on the geometrical dimensions 

of the foams, making the analysis easier and more accurate. In addition, Zhu et al. [73] 

presented a model with so-called Plateau border cross-section struts (see Figure ‎2-8).  
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Figure  2-8. Schematic representation of (a) Kelvin cell foam model (b) a Plateau border/cell 

face section [83]. 

The modulus of elasticity is calculated as: 

R
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(‎2-21) 

and Poisson’s ratio, 
12v , is calculated by: 
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(‎2-22) 

Subsequently, Zhu et al. [73] showed that the modulus of elasticity is about 38% higher for 

the same relative density for the case where the edge cross sections are Plateau borders 

rather than equilateral triangles, and the Poisson’s ratio of the Plateau border cross-section 

is higher than the ratio of the triangular cross-section. Moreover, the shear modulus for 

isotropic and anisotropic foam was predicted based on the mechanical properties of the 

edge material, see Equations (‎2-23) and (‎2-24).  
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(‎2-24) 

where 12G  is the shear modulus of the foam in the lattice axes, sG is shear modulus of the 

edge material, I is the second moment of area of the edge and 
pJ is the polar second 

moment of area of the edge. 

Mills et al. [84] investigated the compression loading of anisotropic closed-cell foam, 

using a Kelvin model to predict the mechanical response. The influences of edge bending 
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and cell face tensions were studied, assuming that the cell faces act as membranes for both 

small and large strain. They assumed that the resistance of the face to wrinkling should be 

ignored during foam compression, and that if the edges in the foam’s microstructure 

consisted of a volume fraction,  , greater than 0.6 then the edges act as the main structural 

members in the microstructure with negligible contribution provided by the tension in the 

cell faces. This assumption was found to improve the predictions of the mechanical 

parameters of the foam. The predicted yield stress values for polyethylene foams were 

close to experimental values. The modulus of elasticity predicted for a polystyrene foam 

using a volume fraction,  , of 0.6 is given as a function of the foam’s relative density, R, 

and the polystyrene’s modulus of elasticity, 
sE , was found to be  

066.10598.0 REE s  (‎2-25) 

 

A micro-scale model for anisotropic foam was developed by elongating the 

tetrakaidecahedron (Kevin cell foam model) in the single principal direction, as shown in 

Figure ‎2-5b.  Assuming that the cell edges and faces of the elongated model undergo axial 

and rotational deformations, a set of equations for calculating the linear and non-linear 

mechanical behaviour can be obtained. These equations were developed and written in 

terms of the anisotropic ratio, cell edge length, cell edge thickness and cell face thickness 

for closed-cell foam and the buckling torsional stiffness of the edges and the stiffness of 

the constituent material by [85-87]. The influence of this elongated shape on the non-

isotropic stiffness and strength behaviour was demonstrated and the advantages of this 

more general micro-mechanical model were applied by Dement’ev and Tarakanov [85] to 

predict the elastic mechanical properties of open-cell plastic foams in the direction of 

foaming 1E  and in the perpendicular direction 2E  (see Equations  

(‎2-26), (‎2-27) and Figure ‎2-9). 
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(a)  (b) 

Figure  2-9. (a) Anisotropic and (b) Isotropic open-cell Kelvin foam models.  

 

ak

aE
E

m

m

sin)/2(

sin
2

4

1





  

 

(‎2-26) 

)cos)2/1((cos)4/cos()/2(

sin
23

4

2
akak

aE
E

m

m








 

where ltem / , and blk /  

(‎2-27) 

Similarly, this model was implemented by Vladimir [86] to predict 1E  and 2E  the Young’s 

moduli of anisotropic and isotropic closed-cell foams, respectively, see Equations (‎2-28) 

and (‎2-29). 
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(‎2-29) 

where the coefficients m  and m   are taken to be 9 and 3, r is the anisotropy ratio equal to

Dhk /  and  is the volume fraction of the solid material. More recently, the elongated 

Kelvin model was used by Sullivan et al. [87] to calculate the shear modulus of anisotropic 

open-cell foams, they derived equations for the shear properties as a function of the three 
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unit cell dimensions. In general, the predictions for anisotropic closed-cell foams are less 

accurate than those for anisotropic open-cell foams due to the more complex micro-

structure of closed-cell foams. 

2.2.1.2. Numerical Model for Small Strains 

Numerical computation, such as use of FEM, allows an alternative more detailed strategy 

for investigating the relationship between microstructure and macro-scale response. 

Clearly the effort in generating and running a numerical simulation is greater than use of 

simple equations resulting from analytical models, though potentially results are more 

accurate and a greater range of parameters can be explored. One of the simplest but most 

useful numerical approaches has been to use the Kelvin cell as a representative unit cell 

(RUC) in order to explore the mechanical properties of the foam.  When the foam is 

subjected to compressive strain of 1% or less, there is insufficient deformation in the foam 

microstructure to generate a non-linear mechanical response in the constituent material. 

Thus, the linear moduli of elasticity are enough to describe the foam’s compressive 

behaviour. Warren and Kraynik [75] computed the elastic compressive modulus using 

periodic boundary conditions. They analysed the effects of edge cross-sectional shape on 

the predicted Young’s modulus of a Kelvin model by changing the edge cross-section from 

circular, square, or equal triangular to a Plateau border configuration (see Table 2.1) 

 

Table ‎2.1. Young’s modulus for the Kelvin foams with difrent strut cross-section, A is area 

of sreut, I is second moment of area of the strut, Jp is polar second moment of area of the 

strut, Es is elastic modulus of solid constituent material, E is elastic modulus of foam and R 

is relative density of foam[4, 75]. Where rc is radias of cucle, sb is side of the square, 

Equilateral triangle and Plateau border  

Strut cross section Area A I/A
2 

Jp/A
2 

Es/ER
2 

Circle 2

cr  0.0796 0.1592 0.593 

Square 2

sb
 0.0833 0.1406 0.619 

Equilateral triangle 4/3
2

sb  0.0923 0.1155 0.710 

Plateau border  2/3
2

sb  0.1338 0.0808 0.979 
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For anisotropic open-cell foams, Gong et al. [88] investigated compression under large 

strain using the Kelvin cell as the RUC, with an anisotropy ratio of 1.3 and cell edges with 

variable cross-sections. Compression stress-strain curves were predicted in the principal 

and transverse directions. The predicted modulus of elasticity in the principal direction for 

a relative density of 0.025 was twice that in the transverse direction. Thiyagasundaram et 

al. [89] recently applied an elongated Kelvin model to predict the modulus of elasticity and 

shear modulus of anisotropic open-cell foams. The predicted elastic data from the FEM 

models agree with those predicted from analytical methods. The edges were modelled 

using both Timoshenko and Euler-Bernoulli beam elements. Also, they analysed the 

effects of a variable edge cross-section on the elastic terms. For the same relative density, 

they observed that foams with varying cross-section edges had a lower stiffness than foams 

with constant cross-section edges. 

In practice, all foam microstructures are random. In order to calculate E for irregular 

foams, Roberts and Garboczi [90] used FEM to calculate the Young’s modulus and 

Poisson’s ratio of various isotropic irregular closed-cell foams based on simple Voronoi 

tessellation models. The predicted results showed reasonable agreement with the 

experimental data. Similarly, Zhu et al. [78] used FEM and random periodic Voronoi based 

RVE models to study the influence of cell regularity on the elastic properties of open-cell 

foams. The predicted results showed that low-density foams with high irregularity have 

higher modulus of elasticity, shear modulus and lower values of bulk modulus than perfect 

foams. The results also indicate that Poisson’s ratio values are insensitive to cell regularity 

(see Figure ‎2-10). 
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(a) (b) 

 
 

(c) (d) 

Figure  2-10. Effects of cell regularity on the (a) reduced Young's modulus of random 

Voronoi foams having a constant relative density, (b) reduced shear modulus of random 

Voronoi foams having a constant relative density R=0.01, (c) reduced bulk modulus of 

random Voronoi foams having a constant relative density R =0.01 and (d) Poisson’s ratio 

of random Voronoi foams having a constant relative density R =0.01[78]. 

2.2.2 Large Strain Modelling  

 Analytical Models 2.2.2.1

Simple analytical models have been proposed to predict the large strain response of 

flexible closed-cell foams. For this class of material, the gas pressure inside the foam can 

provide the most significant contribution to the foam’s compressive resistance and can be 

easily calculated by considering the change in the gas volume inside the foam as a function 

of compressive strain. By combining results from small-strain analytical models with 
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large-strain gas models, it is possible to make first-order micro to macro predictions over a 

large range of strains and consequently estimate model parameters of large-strain non-

linear constitutive models suitable for implementation in finite element software. 

The influence of gas compressed inside closed-cell foams on the mechanical behaviour has 

considered in many investigations, such as, Rusch  [41], Mills [4], Gibson and Ashby [1], 

Clutton et al. [91] and Ostrogorsky et al. [92]. Rusch [41] assumed isothermal compression 

of the gas inside closed-cell foams, with no lateral deformation, i.e. Poisson’s ratio of the 

foams is zero, and that the variation of the bulk stress in the foam,  , with atmospheric 

pressure can be expressed as:  

R

pa


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




1
 

(‎2-30) 

where 
ap  is the atmospheric pressure,   is the applied compressive strain, and   is volume 

fraction of solid material in the closed-cell foam. 

In order to understand the effects of gas and polymer on the response of materials, Mills 

[4] characterised the phase volumes for closed-cell foams. A foam cube of 1m
3
 contains 

both gas and polymer. It was assumed that the pressure inside the cell before loading is Po, 

a zero Poisson’s ratio after loading, the compression strain   is the same as the volumetric 

strain, and the polymer is incompressible. Therefore, the expression ( R1 ) represents 

the changes in the volume of the gas under the compression stages, as illustrated in 

Figure ‎2-11.  

 

Figure  2-11. Phase volume in foam of zero Poisson’s ratio and relative density R, before 

and after uniaxial compression [4]. 
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The absolute pressure of an isothermal gas in compressed foam can consequently be 

expressed as: 

)1()1( RpRp ao  
 

(‎2-31) 

and the compressive stress can be expressed as:  
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Gibson and Ashby [1] simplified Equation  

(‎2-29) by assuming 1  and added the influence of the polymer on the response of the 

foam. Clutton and Rice [91] modified Gibson and Ashby’s assumption by fitting the 

compressive stress-strain curves of a compressible polyolefin foam. Furthermore, by 

considering the effects of Poisson’s ratio, they found that the pressure inside cells is not 

equal to atmospheric pressure, so do the predictions compare well to experiments.  
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 Gas Diffusion Model 2.2.2.2

Most polymer foams are two-phase materials consisting of gas and solid polymer. In order 

to describe the mechanical properties of these materials, the important parameters 

considered for flexible foams are usually the relative density, the properties of the gas 

inside the cells, the geometric description of the cellular microstructure such as anisotropy 

of the cells, the average cell size, the cell wall thickness and cell shape and the properties 

of the constituent material. Ostrogorsky et al. [92] showed the relationship  between the 

cell shape, the Df gas diffusion coefficient of foam. It was used a unit cell model (see 

Figure ‎2-12) to determine the gas diffusion as show in Equation (‎2-34) 

gp
m

f SD
L

D


2  
(‎2-34) 

where, 
pD is gas diffusion coefficient of polymer, 

gS solubility of the gas, 
ft  is the face 

thickness, mL is the average distance between membranes, and 
gS  is the solubility of the 

gas in the foam. Normally, when closed-cell foam is subjected to small compressive strains 
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(in the elastic region) its creep behaviour can be calculated from the constituent polymer’s 

viscoelastic properties alone. Beyond this region, gas compression results in an 

increasingly higher amount of stress and outward diffusion of the gas contained in the cells 

takes place. Pilon et al. [93] modified the diffusion equations in closed-cell polymeric 

foams to produce a good result. 

        

 

 

 

 

                          

     Gas diffusion 

     
ft  

         

Figure  2-12. Cubic cell foam with a pressure gradient in x-direction. 

 

 Analytical Modelling (Kelvin Model) 2.2.2.3

The Kelvin cell is a useful model when investigating the linear small strain behaviour of 

foam (see Section ‎2.2.1.1) but can also be used to study nonlinear behaviour at larger 

strains. The large strain hydrostatic compression of a Kelvin foam with uniform edges was 

investigated by Dement’ev and Tarakanov [79]. The predicted stress-strain curves were 

shown to be reasonably close to experimental data on plastic polyurethane foam. Zhu and 

Mills [80] described an approach for the high strain compression of open-cell foams using 

a lattice with tetrakaidecahedral cells. The stress-strain curves and Poisson’s ratio were 

calculated for large deformations. The study by Kraynik and Warren [72] suggested that it 

is more difficult to analyse the deformation of closed-cell foams than open-cell foams 

using this approach. If the walls of closed-cell foams do not tear during compression, then 

the pressure of gas trapped inside the cells increases, inducing tension in the cell walls. For 

this reason, predicting the modulus of elasticity and the yield stress is difficult. Mills and 

Zhu [84] proposed that the contribution of cell faces and gas to the modulus of elasticity 

for low density foams is important. A maximum of 40% strain in the cell faces was 

predicted. Also, the compressive foam yield stress was predicted based on tensile yielding 

of the cell faces. The predicted data were close to experimental results for polyethylene 

foam. 

Lm 
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 Numerical Modelling (Kelvin model)  2.2.2.4

It is generally accepted that representative unit cell models based on the Kelvin cell are 

useful in investigating foam’s nonlinear behaviour under large strains. McKown [94] used 

FEM for a Kelvin closed-cell foam model simulating faces using shell elements for 

uniaxial compression at a strain rate of 10s
-1

. In this model, the air pressure inside the cells 

was ignored. Similarly, Mills et al. [95] attempted to predict the compressive impact 

behaviour of low density closed-cell polyethylene and polystyrene foams using a FE 

analysis of a Kelvin RUC model. In this case, cell air compression was considered. The 

predicted stress-strain behaviours were close to the experimental data for a wide range of 

foam densities.   

 Numerical Modelling (Voronoi Model)  2.2.2.5

Models incorporating a random foam microstructure as their Representative Volume 

Element (RVE) have also been used extensively to investigate the large strain response of 

foams. Various methods have been used to generate such microstructures, including use of 

Voronoi mesh generation algorithms such as those used by, Zhu and Windle [96] who 

predicted the large compressive stress-strain curves of low-density open-cell polymer 

foams using FEM (see Figure ‎2-13). Also, they used a Voronoi model under periodic 

boundary conditions and cell shapes and sizes of various degrees of regularity. It was 

found that even if the reduced compressive stress–strain relationship and the Poisson's ratio 

changed in different directions for the same samples, the models were, on average, 

isotropic. Furthermore, they showed that highly irregular foam has greater tangent modulus 

at small strains and less of an influence on stress at large compressive strain rates when 

compared with regular foam. This stochastic RVE approach is very promising for 

structural foams and various researchers have used the method to predict the stress-strain 

relationship of foams under large deformations with various degree of regularity of cell 

shapes and sizes. Similarly, Zhang and Lu [97] calculated the large compressive 

mechanism of low-density polymer foam, which was analysed using a random foam 

model. The influence of relative density, edge cross-section, and cell shape irregularity on 

the compressive mechanical response of the foam was studied. The results showed that the 
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relative density has significant influence on the compressive stress strain-curves and the 

values of the Poisson’s ratio, see Figure ‎2-14a and Figure ‎2-14b. Also, the edge cross 

section shape have significant effect on compressive stress-strain curves but not on the 

value of the Poisson’s ratio - see Figure ‎2-14c and Figure ‎2-14d. Recently, 3D FE models 

based on Voronoi tessellation were developed by Song et al. [98] to analyse the dynamic 

crushing response of closed-cell foams. The effects of the cell shape irregularity, relative 

density, impact loading and strain hardening on the energy absorption capacity of foams 

were investigated. The numerical results showed that an increase in the cell shape 

irregularity increased the plateau stress and the densification strain energy for all cellular 

foams considered. 

 

 

 

 

 

 

 

 

 

 

(a)  (b) 

Figure  2-13. (a) An undeformed random Voronoi cell and (b) The reduced stresses against 

the compressive strains of foams having a regularity parameter α=0.7, compared with the 

predicted results [96]. 
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 (a)          (b) 

  

 (c)                                            (d)  

Figure  2-14. (a) The dimensionless stress-strain curves of models  with different relative 

density, (b) the Poisson’s ratio-strain curves of models with different relative density, (c) 

the dimensionless stress-strain curves of models with different strut cross-section shapes, 

and (d) the Poisson’s ratio-strain curves of models with different strut cross-section shapes 

[97]. 

 

Nevertheless, the method is computationally expensive and requires considerable user 

expertise. Currently, no convenient commercial software package is available to perform 

the required mesh generation, making it relatively difficult for engineers looking for a fast, 

efficient and accurate approach to perform multi-scale modelling of foams. Also, under 

large strains, gas pressure is often the main contributor to the compressive resistance of 

flexible closed-cell foam. Consequently, the choice of using a random RVE computational 

approach to modelling such materials is not always the most appropriate. Also, use of 

structural elements based on this technique leads to tractable computation times but 

restricts the analysis to very low foam densities. The analysis of large strain compression 

of foams is complex due to self-contact within the foam microstructure. This introduces a 

great deal of computational resource requirement for the numerical simulations. 
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2.3 Experimental Investigations 

2.3.1 Macro-scale Experimental Investigations 

A range of experimental test methods have been used to characterise the mechanical 

properties of foams. The response is generally highly non-linear under large strains (see 

Section ‎1.4), and foams are often used under complex loading conditions and under 

different ranges of strain. Thus, mechanical testing of foams and the determination of their 

linear and non-linear properties and their degree of anisotropy is necessary for complete 

characterisation of their mechanical behaviour.  Test data can be used to determine the 

parameters of suitable constitutive models implemented in computer-aided engineering 

numerical simulations for the purposes of product design and virtual testing. The 

characterisation techniques used for foams are the same as those used for other materials. 

Most experimental studies on the mechanical testing of foams include the use of uniaxial 

compression, tensile, shear, hydrostatic or biaxial tests [1, 4, 56, 99-104]. These tests 

require the definition of strain rates, specimen size, specimen shape and all boundary 

conditions of the test. Some of these tests are discussed below.  

  Digital Image Correlation Technique for Strain 2.3.1.1

Measurements in Foams 

Strain measurement is important for all accurate mechanical characterisation. Strain 

measurement in the loading direction is required to produce the stress versus strain 

response of the material.  The foam’s Poisson’s ratio can be characterised by 

simultaneously measuring the strain in the transverse direction using image analysis 

techniques such as Digital Image Correlation (DIC). DIC is able to accurately capture the 

full-field large deformation of strains in any direction across the surface of a sample. For 

this reason, the DIC technique is very useful for strain measurement of foams. DIC is a 

contactless measurement method, based on mathematical comparison of a subset of digital 

images captured from a deformed surface. Researchers at the University of South Carolina 

including Sutton et al. [105] and Bruck et al. [106] were amongst the first to established 

this technique. Examples of the use of DIC in characterising the deformation of foams 

include Wang et al. [107] who determined the deformation distribution for an ultra-light 
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open-cell foam during compression and Jin et al. [108] who used DIC to calculate the 

heterogeneous deformation of closed-cell polyurethane foam under uniaxial compression. 

Similarly, Widdle et al. [56] used digital images taken at different compression levels, and 

the deformation of the material was computed using digital image processing tools in 

MATLAB
TM

.  

 Uniaxial compression test 2.3.1.2

The uniaxial compression test is a popular experimental method for testing mechanical 

properties of foam (see Figure ‎2-15). This is because, as presented in Section ‎1.1, most 

mechanical applications of foams tend to involve compressive loading. A typical test 

involves strain rates effects, influences of specimen size, influences relative density on 

mechanical response and determination the strain regions.  Specific issues in testing foams 

involve influences of the friction at the metal/foam specimen contact, their effects on 

mechanical response. This class of problem can be arising for metals and rubbers it 

possible to lubricate the surface, it cannot do this for foams, though because they have a 

low Poisson’s ratio, is not such a big problem. Also, other issues testing foams such 

specimen size effects and strain rates influences, will be studied in this work.    

The uniaxial compressive response of most types of foam can be classified according to the 

categories listed in Section 1.4. Polymer foams cover a broad range of behaviours in 

compression. They can be either rigid polyurethane (PU) or flexible (low density 

polyethylene foam (LDPE), they can be plastic polystyrene (PS). In general most polymer 

foams show strong strain-rate dependence under compression polystyrene foam (PS).  

Previous investigations have shown that the compressive deformation stress-strain 

response is dependent on the anisotropy ratio (see Section ‎1.2), specimen test size and 

relative density [1, 3, 4, 26, 109-111].  
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                               Figure  2-15. Uniaxial compression test. 

 

 Multi-Axial Tests 2.3.1.3

In many applications foam is subjected to multi-axial compressive loads, here the 

experimentalist needs to determine a set criterion to measure the combination of these 

multiaxial loads which can cause failure (see Figure ‎2-16).  

Polymer foams cover a broad range of behaviours when tested under multi-axial loads 

though the volume of literature in this area is more limited, for example, Deshpande and 

Fleck [66] performed multiaxial mechanical tests on two densities of PVC foam under  

tensile and compressive axisymmetric loadings (see Figure ‎2-16). The shapes of the yield 

surfaces were examined. These experimental results showed that the yield surfaces are 

adequately defined by the Deshpande–Fleck yield surface, capped by a maximum 

compressive principal stress criterion. The uniaxial tensile strength of these foams was 

found to be similar to their hydrostatic tensile strength. The compressive deformation of 

these foams is described by the elastic buckling of the cell walls. Similarly, Andrews et al. 

[112] studied the uniaxial compressive and tensile elastic modulus of open and closed cell  

aluminium foams. The open cell foam can be adequately defined by the models for cellular 

solids. The closed cell foams have moduli and strengths that were found to be lower than 

the predicted values. This is mainly due to the defects in the cellular microstructure which 

causes bending rather than stretching of the cell walls. 

Force 

Displacement 
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Upper plate 

 

Lower plate 

 



 

48 

CHAPTER 2 LITERATURE REVIEW                                                                              

 

 

 

 

Figure ‎2-16 Sketch of the loading rig for the biaxial and hydrostatic tension tests[66]. 

 

 Shear Test  2.3.1.4

Another common mechanical test is the shear test (see Figure ‎2-17). Shear testing is 

necessary for all three dimensional constitutive model parameter fitting and evaluation. 

The significance of shear testing for foam depends on the type of foam and its application. 

For example, Mills [4]  showed that the shear modulus of foam used in a motorbike helmet 

can be related to the resulting rotational acceleration of the head during impact. This 

rotational acceleration can cause serious brain injuries and should be reduced as much as 

possible. 

As discussed, the response of anisotropic foams depends on the relative properties in the 

principal (foaming) and transverse directions (see Section ‎1.2.1). Similarly, shear 

properties in the foaming direction can be quite different to those in the transverse 

direction. Therefore it is important to study the shear modulus of transversely isotropic 

materials.  

Several researchers have determined experimentally the shear properties of compressible 

transversely isotropic cellular materials For instance, Tagarielli et al. [37] determined the 

shear modulus of balsa wood in its principal and transverse directions. Similar studies have 

been carried out by Jebur et al. [15] for extruded LDPE foams (see Section ‎4.5.1). Both 

http://www.sciencedirect.com/science/article/pii/S1359645401000581
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groups of researchers found that the shear modulus in the principal direction is higher than 

that in the transverse direction by a factor of two times. 

 

 

Figure ‎2-17. Shear test procedure. 

                                                                                          

     Uniaxial Tensile Test  2.3.1.5

The tensile test is an important experimental test as foam structures may be subjected to 

bending loading, resulting in ductile or brittle tensile behaviour (see Figure ‎2-18).   

An improved technique for tensile testing Figure ‎2-18 of ceramic foams was suggested by 

Rehorek et al. [113]. This technique involved embedding the specimen test in alumina pots 

with a carefully chosen gripping adhesive, the tensile load was then transferred from the 

test machine fixtures to the specimen.  

Aly [114] investigated the effects of pore size on the tensile behaviour of open-cell Ti 

foams, having an average pore size of 50 and 150 µm.  The mechanical properties of foams 

Force 
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were measured by a camera which recorded the resulting deformation during the tensile 

loading. The experimental data showed that the Ti foam samples of smaller pores were 

found to show higher tensile strength and elongation than those with larger ones.  

Kabir [115] performed tension tests for polymer foams under quasi-static and dynamic 

fractures, with various densities. The experimental results showed that the tensile and 

quasi-static fracture behaviours are linear up to the failure load, both the tensile strength 

and the modulus are found to be significantly dependent on the foam density. Also, 

mathematical relationships of the tensile strength, modulus and fracture toughness with the 

foam density are measured from the best fitting of the experimental data. The mathematical 

relationships are found to provide a good prediction of the of the foam elastic and fracture 

properties.  

 

 

Figure ‎2-18. Tensile test setup [116]. 

 Hydrostatic Compression Test 2.3.1.6

The hydrostatic compression test is a significant test as the yielding point of foams. The 

hydrostatic compression test requires relatively complex samples for preparation, 

especially for foam; this is due to the difficulty involved in covering the foam material 

with an impermeable but flexible membrane preventing liquid ingress and instrumentation 

inside a fluid-filled pressure chamber. Many of physical phenomena make the 

experimental data less than ideal for use in modelling foam. One important phenomenon is 

the influence of air diffusion in foam at low and high strain rates, this influence 

significantly on mechanical behaviour of material. Viot [117] tested polypropylene (PP) 
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foams under hydrostatic compression, both quasi statically and high strain rates. The 

stress–volumetric strain behaviours of the foam were determined for specimens of foam of 

density from 35 to120 kg/m
3
. A Photron APX RS3000 high speed camera was used to 

determine the volumetric strain of the sample as a function of testing time, using image 

processing techniques. Hydrostatic test performed by using water or alcohol after coating 

the specimens with thin layers of silicone gel.  

PP foam behaviour under hydrostatic compression was found to show a non-linear elastic 

response, followed by a plastic plateau and densification. The plastic plateau was non-

linear, with a slope increasing with strain, probably due to the increasing gas pressure 

inside the foam cells and the progression of the damage to the more rigid cells (at the 

beginning of the plastic plateau, the weaker cell walls buckle before the stronger). The 

polypropylene (PP) foam response under hydrostatic compression indicates a transversely 

isotropic response under hydrostatic compression.  

Kim and Kang [118] described the pressure dependent yield point for polymeric foams 

using a test rig consisting of a hydraulic pressure chamber for applying hydrostatic oil 

pressure on polyurethane (PU) foam samples. The pressure and volumetric strain were 

indirectly measured from the piston of the hydraulic press by using a load cell and a wire 

potentiometer connected to the piston.   

Moreu and Mills and Mills [2] improved a test rig to determine the rapid hydrostatic 

compression of low density  foams without using a piston to apply the hydrostatic pressure, 

see Figure ‎2-19.  

The foam volume vs pressure behaviour was modelled with an equation reflecting the 

influence of air-compression and experimental data used for implementing crushable foam 

model in FEM. The stress-volumetric strain curve (under hydrostatic compression) of 

Polypropylene foam of density 43kg/m
3
 was fitted according to the Equations (‎2-35) and 

(‎2-36) 

Re

eP
pp

v

vcell
coc




1
 

(‎2-35) 

where cp  is the yield stress in hydrostatic compression, cop  the initial value, cellp  the 

effective absolute gas pressure in the foam cells, R  the relative density of PP foam, ve  the 
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engineering volume strain described from the initial foam volume 
oV  and the current 

volume, V using 

o

o
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(‎2-36) 

 

 

Figure ‎2-19. Schematic of the hydrostatic compression test rig [2]. 

 Creep and Relaxation Test 2.3.1.7

As discussed in Section ‎1.4.7, most polymer foams display viscoelastic behaviour. This 

behaviour can be measured by two common tests namely: the stress relaxation test and the 

creep test. When a foam specimen is subjected to constant strain, the force required to keep 

that strain is not constant but decreases with time, this behaviour is called stress relaxation 

(see Figure ‎2-20a) [42]. Also, when a constant stress is applied to a foam specimen, there 

is an increase in the strain with time, this behaviour is called creep (see Figure ‎2-20b). In 

practice, relaxation and creep are terms normally associated with time related to stress-

strain variables.  

Investigations involving the stress relaxation and compressive creep response of foams 

should be conducted over a long time, but this can be costly. In order to reduce the time of 

viscoelastic tests, Briody et al. [104] used the time-stress superposition technique in creep 

tests over a wide range of temperatures on flexible polyurethane foam . They found that 

viscoelastic behaviour is highly temperature dependent. The time-stress superposition 

technique has been used to investigate viscoelastic stress relaxation and viscoelastic creep 

in rigid polymers [119-121]. In these studies, the creep was determined using various 
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methods. For example, Bozorg et al. [119] used an accelerated test technique for predicting 

the compressive creep of recycled High Density Polyethylene (HDPE). This technique is 

based on the equivalence of strain energy density between conventional constant-stress 

creep tests and stress–strain tests conducted at various strain rates. Good agreement was 

observed between the creep rates obtained from a conventional test and strain energy 

density (SED) calculations when two stress–strain experiments with strain rates varying by 

two or more orders of magnitude were used. Yeo and Hsuan [121] determined the tensile 

creep response of neat polyethylene-terephthalate (PET) and high density neat 

polyethylene (HDPE) using several test techniques; for  instance, the short- and long-term 

stepped isothermal method, the short- and long-term time-temperature superposition 

method 

The next section of this review of experimental methods is addresses: (i) the parameters 

influencing the mechanical response of foams and (ii) the methods of determining the 

strain regime i.e. methods of determining the start and end of the linear small strain regime, 

the plateau stress regime and the densification regime (as discussed in Section 1.4). 

 

 

 

 

 

 

 

 

  

(a) (b)  

Figure  2-20.  (a) Stress relaxation tests (constant strain) and (b)  Creep test (constant stress)  

[46]. 
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2.3.2 Factors Affecting Mechanical Response 

 Influence of Strain Rate   2.3.2.1

Various investigators [43, 109, 110, 122-126] have showed that the behaviours of both 

polymeric and metallic foams are sensitive to strain rate. For example, Bo Song et al. [43] 

found the yield stress and Young’s modulus of polystyrene foam to be nearly linear with 

the natural logarithm of the strain rate. Similarly, Luong et al. [127] showed that the 

compressive strength of closed-cell polyvinyl chloride foam (PVC) increased with strain 

rate by as much as 200%. Cao et al. [27]  studied the strength of open-cell aluminium 

foams over a range of strain rates from 0.001s
-l
 to  10

3
s

-1
, and found this class of foams to 

be very sensitive to strain rates; the strength at high strain rates can more than twice as 

high than that at low strain rates. 

Yu et al. [128] studied the compressive response of both open and closed-cell aluminium 

foams under various strain rates, with uniaxial compression and two types of lateral 

constrained tests. The experimental data showed that in both quasi-static and dynamic tests 

the yield stress of the open-cell aluminum foam under lateral constraints tests is 

significantly higher than that under uniaxial compression tests.  Also, the experimental 

results showed a significant increase in the yield stress of the closed-cell aluminum foam in 

quasi-static test when lateral constraints were applied. At the same time, it is not expected 

that dynamic yield stress tests under lateral constraints be less than those in the quasi-static 

tests. 

The Poisson’s ratio of auxetic open-cell foam at low and high compressive strain rates 

have been studied using image data processing by Pastorino et al. [129], who observed that 

Poisson’s ratio values increased by as much as 50% with increasing compressive strain 

rate. Recently, Wang et al. [130] stated that the Poisson’s ratio decreases during high-rate 

dynamic compression of closed-cell aluminium foam. They explained the decrease of 

Poisson’s ratio as follows: under low strain rates and uniaxial compression, lateral 

deformation takes place because of the influence of Poisson’s ratio. If impact velocity is 

low, the foam has enough time to deform in the lateral directions. However, at high impact 

velocity, the lateral deformation is low due to the inertia effect. Consequently, the value of 

the Poisson’s ratio decreases with increasing impact velocity. 
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When polymeric foams are used for energy absorption, it is important to understand their 

mechanical properties under high strain rates. For example, Paul and Ramamurty [124] 

found that the energy absorbed during plastic deformation of a closed-cell aluminum foam 

increased with increasing strain rates. This is important for impact energy absorption 

applications. Also, it demonstrates that metallic foam can absorb more energy at higher 

strain rates. Similarly, Yi et al. [131] found that the energy absorption of aluminium alloy 

foams increased by 14-40% when the strain rate increased from10
-3

 to 2600s
-1

. Wang et al. 

[132] also found that strain rate has a significant effect on the energy absorption efficiency 

and energy absorption curves of foams, noting that absorption efficiency at strain rates of 

450s
-1 

can be up to 20% higher than at strain rates of 10
-3

s
-1

. They also found that the onset 

strain of densification (see Section ‎1.4) is not dependent on the strain rate.  

2.3.3 Influence of Specimen Size 

Many publications show that the mechanical properties of foams depend significantly on 

the ratio of the specimen size to the cell size. Mills [4] found that size effects arise 

whenever the specimen dimensions are not more than 20 times the cell size. Andrews et al. 

[133] reported that the modulus of elasticity and plastic yield strength of both closed-cell 

and open-cell aluminium foams increased to a plateau level as the ratio of specimen size to 

cell size increased. Also, they noted that the strength and the Young’s modulus of open-

cell foams are reduced more significantly with decreasing specimen size than for closed-

cell foams. Size affects are also apparent in the physical properties of foams. Ruiz et al. 

[134] reported that the diffusion coefficient [92] of an LDPE foam was found to increase 

when the specimen size decreases. The occurrence of size effects in foams has therefore to 

be considered when conducting any characterisation of their mechanical properties. 

2.3.4 Influence of Relative Density 

The mechanical properties of all foams are strongly dependent on their relative densities, 

which is defined as the foam density, divided by the density of the solid constituent 

material. Previous researchers [1, 25, 135, 136] have modelled the mechanical behaviour 

of foams in terms of their relative density. Gibson and Ashby [1] showed that the results of 

their model (see Equations (‎2-37) - (‎2-40)) compared well with experimental 
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measurements for rigid and flexible foams over a range of foam densities. The data for 

open-cell foams of different densities was well-fitted by the expressions: 
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where R is relative density, 
sE is the Young’s modulus of the polymer , E  is the Young’s 

modulus of the foam,  G  is the shear modulus of the foam, pl  is plastic collapse strength 

of rigid foam and 
ys is the yield strength of the solid constituent material. 

It is clear from above equations that an increase in the relative density generally leads to an 

increase in the foam’s mechanical properties, including Young’s modulus, shear modulus, 

and plastic yield stress, though the Poisson’s ratio is generally much less sensitive to a 

foam’s relative density. The influences of relative density on the onset strain of 

densification and energy absorption have been comprehensively investigated in the 

literature [1, 25, 137]. The onset strain of densification decreases with increasing relative 

density, while energy absorption increases. Malekjafarian and Sadrnezhaad [136] 

experimentally studied closed-cell aluminium alloy foams with densities ranging from 0.4 

to 0.7 gcm
-3

 manufactured by a melt-foaming process. They noted that bending stress and 

compressive strength increase linearly with increasing foam densities in agreement with 

the Gibson and Ashby model. Moreover, they observed that the energy absorption 

increases linearly with increasing foam densities. 
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2.3.5 Determination of Strain Regime  

In order to describe the mechanical behaviour of foam under large uniaxial compression, it 

is very useful to determine the onset strain of densification and the efficiency of energy 

absorption. The values of these terms are useful for effective design of packaging and 

crush-padding using foam materials and can be measured directly from compression stress-

strain curves.    

 Onset Strain of Densification  2.3.5.1

In general the compressive stress versus strain curves of polymeric foam can be divided 

into three regions namely: the linear elastic region, the plateau region and the densification 

region (see Section ‎1.4). The plateau region starts from the yield stress. The end of the 

plateau region represents the onset strain of densification. Several publications [1, 124, 

138-141] have attempted to determine the onset strain of densification in an objective 

manner. The works published in [124, 138, 139] all advocate the measurement of the onset 

strain of densification using the intersection of tangent lines fitted to both the stress plateau 

region and the densification region. Vural and Ravichandran [140] characterised the onset 

strain of densification as the last point on the plateau region before the stress rapidly 

increases. Chan and Xie [138] suggested another means of determining the onset strain of 

densification and suggested it be can identified as the point where the slope is 

approximately equal to the slope in the elastic region. Li et al. [141]  proposed yet another 

method for estimating the onset strain of densification by determining the maximum value 

of the energy absorption efficiency versus strain curve and. This method is objective and 

simple. The energy absorption efficiency will be discussed in next section. 

Tuncer and Arslan [142]  used the concept of the onset strain of densification for designing 

and optimising titanium foams. 

Gibson and Ashby [1] showed that experimental data for densification strain of cellular 

solids can be modelled accurately over a range of densities using 

Rde 4.11  (‎2-41) 
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 Energy Absorption Efficiency 2.3.5.2

For a given application, foam with optimum density can be selected using these 

techniques. For example, if the foam density is too low, the densification region is reached 

and a very high loading is achieved before the absorption of the all dynamic energy, 

whereas if the foam density is too high, the plateau loading can exceed the critical stress 

magnitude before the dissipation of sufficient energy (see Figure ‎2-21a). In order to 

explain this idea, it is important to define energy-absorption.  

Energy-absorption represents the area under the compressive stress-strain diagram, see 

Figure ‎2-21b. Miltz and Ramon [143] described the energy-absorption efficiency as the 

ratio between the energy absorbed by the foam compressed to a maximum strain. As 

previously discussed (see Section ‎1.1), one goal of using foams is to absorb dynamic 

energy and keep the maximum load experienced behind the protective foam below some 

limit. Several publications have attempted to characterise the impact response of polymeric 

foam, for example, experimental data have been reported for foams made from PE by 

Miltz and Ramon [143] and PU by Brezny and Green [144].  Avalle et al. [137] developed 

the characterisation and determination of the energy absorption by the efficiency diagram 

method and this approach was further enhanced by Li et al. [141].  
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(a) 

 

(b) 

Figure  2-21. (a) The peak stress generated in foams of three densities in absorbing the 

same energy W are given by 21, , and 3 . The lowest-density foam ‘bottoms out’ before 

absorbing the energy W, generating a high peak stress. The highest-density foam also 

generates a high peak stress before absorbing the energy W. (b) stress-strain curves for 

elastic foam, showing the energy absorbed per unit volume 

 

2.3.6 Micro-scale Experimental Investigations 

The macro-mechanical behaviour of foams results from their microstructure and the nature 

of the constituent material. Hence, characterisation of microstructure is important for 
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understanding and predicting the mechanical behaviours of foam. As discussed in Chapter 

1, microstructure investigations have shown that details of the foam morphology, like 

variations in the cell wall thickness, cell shape irregularity and anisotropy, can strongly 

affect the mechanical response of these structures. Consequently, it can be concluded that 

modelling from a microstructural perspective can only be achieved accurately by using 

realistic micro-structural information. Over the last 40 years, several methods have been 

used to characterise the microstructure of foams, such as optical microscopy, scanning 

electronic microscopy (SEM), X-ray and a microtomography scanner (commonly known 

as industrial micro-CT scanner). Several researchers have used these techniques to 

characterise foam microstructure; for example, Rhodes [145] used optical microscopy 

techniques to measure many details of foam microstructure, including cell walls thickness, 

cell diameters, cell edges thickness and cell edge lengths. However, due to the complicated 

random microstructure of foams, characterising the latter manually using optical 

microscopy techniques is time-consuming, and often damages the specimen, in contrast 

micro-CT is a non-destructive technique. In addition, some distinguishing features of 

foams, such as cell volume, are extremely difficult to measure using optical microscopy. 

Digital image processing can help resolve these issues. Previous studies using 2-D and 3-D 

image processing have been used to automate foam measurement data in a fraction of the 

time required for manual inspection. In most of these investigations [17, 40, 146] 

automated image analysis is used to extract micro-structural information. Eric et al. [147] 

used X-ray CT in their studies. This technique can directly provide a 3-D description of the 

foam’s microstructure. An advantage of this technique is that it can be used in different 

directions and consists of voxel data, including grayscale values, corresponding to the solid 

material of the microstructure. This technique can be used to determine the final 3-D 

geometry. The latter can be used as a starting point for FEM analysis. For example, 

Knackstedt et al. [148] used this method to analyse rigid PU foams with relative densities 

ranging from 0.28 to 0.52. Using the subsequent computational models the transport 

properties (fluid permeability, diffusivity and thermal conductivity), Young’s modulus, 

Poisson’s ratio and bulk modulus were calculated as a function of the foam’s relative 

density. Their calculation of Young’s modulus was close to the relationship given by 

Equation (‎2-37). Also, the best correlation for Poisson’s ratio was obtained by assuming 
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that the Poisson’s ratio is a linear function of the porosity. Consequently, Jeon et al. [40] 

used a similar approach to calculate the plastic collapse stress and the magnitude of the 

plateau stress of closed-cell aluminum foams subjected to uniaxial compressive loading. 

Their study was carried out using FEM combined with experimental measurements (see 

Figure ‎2-22). It was founded that an increase in the 0.2% offset yield stress of the 

aluminium constituent material significantly raises the magnitude of the plateau stress; 

while a reduction in the power-law hardening exponent not only increases the magnitude 

of the plateau stress, but also modifies the shape of the plateau stage.  Subsequently, 

Youssef et al. [149] applied X-ray micro-tomography in a 3D FEA model for a rigid PU 

foam of relative density 0.33. The predicted compressive stress-strain curve, Young’s 

modulus, Poisson’s ratio, yield stress and hardening coefficient were close to the 

experimental data. Eventually, Maire et al. [147] compared some of the methods using 

very simple meshes in two and three dimensions.  

 

Figure ‎2-22. ( a) The closed-cell aluminum foams specimen between two loading platens and (b) 

its finite element model [40]. 
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Chapter 3. Experimental Characterisation of a 

Transversely Isotropic Polymer Foam 

Introduction 

There is increasing interest in characterising viscoelastic compressible anisotropic foams 

such as PUR, PP, PVC and extruded LDPE foams, constitutive models for such foams are 

not widely available and modelling of anisotropic foams is often only approximate (see 

Chapter 2). Several published studies have been performed to characterise the mechanical 

properties for such materials [4, 86, 150]. Experimental data are required in order to 

evaluate and develop more accurate constitutive models for transversely isotropic foam. 

Such models can eventually be implemented in finite element software and used in the 

Computer Aided Engineering (CAE) design process. Factors to consider in model 

development include the influence of viscoelastic effects such as the dependence of stress 

on, strain, strain rate and time; other factors include plasticity due to plastic flow of the 

constituent material and also due to damage of the microstructure.  

This chapter focuses on the mechanical and microstructural experimental characterisation 

of extruded LDPE made by SABIC company (manufacturer’s code 2601TX17) closed-cell 

foam, relative density is 0.0432. This particular material is considered to be a good 

example of a transversely isotropic viscoelastic compressible material and is consequently 

chosen for the study. A thorough knowledge of the behaviour of the extruded LDPE foam 

is vital in understanding the mechanical behaviour of anisotropic flexible polymer foams. 

Usually, characterisation tests involve well-defined stress or strain fields that allow fitting 

of the model parameters. When characterising the mechanical behaviour of a given 

material, the choice of characterisation test can be determined either by the model to which 

the material response is to be fitted, or by the particular deformation that the material is 

likely to experience. Material parameters in many constitutive models for compressible 

foams can be determined using just uniaxial compression without lubrication specimens 

test and simple shear tests. Other test methods (such as tensile and multi-axial tests are also 

of interest and can improve the accuracy of fitted material parameters, see Section 2.3), 

though due to time constraints, attention is limited here to these two primary test methods.  
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The structure of this chapter is split into two broad sections on experimental 

characterisation. The first, longer section deals with the macro-scale mechanical 

characterisation of the foam while a second, shorter section focuses on characterising the 

foam’s microstructure using image analysis techniques. Experimental test setup and 

procedures for the macro-scale mechanical characterisation tests are first defined. Results 

from compression and simple shear tests are then presented and discussed. The influence 

of specimen size, material orientation and rate dependence on mechanical properties 

including, compressive modulus, yield stress, energy absorption efficiency and onset strain 

of densification and stress relaxation are evaluated using uniaxial compression tests along 

the principal material directions. Simple shear tests are used to investigate the shear 

modulus as a function of the shear strain. Following these tests, compression tests are 

performed off the material’s principal axis, these tests are intended for model evaluation 

purposes. In the second broad section on experimental characterisation, the cell 

morphology of the LDPE transversely isotropic closed-cell foam has been examined using 

optical microscopy and micro-CT. Information on microstructural parameters are 

quantified and fitted with statistical distributions. This information is used later in Chapter 

5 in which both analytical and numerical microstructural models are employed to analyse 

the foam’s macro-mechanical response using computational homogenisation methods. 

3.1. Macromechanical Characterisation 

Melt-extruded closed-cell LDPE foam specimens were tested under uniaxial compression 

and simple shear loading. Force versus displacement was measured in each test and in 

some cases full-field strain measurements were recorded. Ideally further tests on the 

foam’s tensile, hydrostatic and biaxial response would have been performed over a range 

of temperatures, though the time consuming nature of the tests meant the investigation had 

to be restricted to practical test matrix. Despite this constraint, the uniaxial and shear tests 

serve to provide a good understanding of the foam’s generic response and provide enough 

information for basic fitting of constitutive parameters in models already implemented in a 

commercial FEA code (see Section 4.5).  
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3.1.1. Uniaxial Compression Tests 

This test provides important data about the behaviour of foam under compression loads. 

The uniaxial compression test is often chosen to characterise foams because of the 

simplicity of the testing configuration and the specimen test shape. Compression data is 

obtained and from the load-displacement curve it is possible to determine the compressive 

stress versus strain curves and from there obtain mechanical properties such as the 

Young’s modulus, the yield stress and the Poisson’s ratio. Energy absorption efficiency 

and the onset strain of densification are other well defined properties for foams and 

because of their importance in the design of foam products have also been used in 

evaluating the foam mechanical response in this investigation. The uniaxial compression 

test has been used in this work to investigate various factors including: (i) influence of 

specimen size on the quasi-static and rate dependent response, (ii) recovery following 

compression (hysteresis) and (iii) rate dependence and (iv) the foam’s off-axis response.   

3.1.1.1. Procedure to Determine Stress and Strain (under 

Uniaxial Compression) 

During a uniaxial test, the applied force required to compress the specimen and the 

displacement of the crosshead are recorded. The nominal stress,  , is calculated by using 

Equation ( 3-1). Here 0A  is the original cross-section area of the specimen and F is the 

compression force. 

oAF /  ( 3-1) 

Elastic mechanical properties, such as Young’s modulus, E, and elastic yield stress el , are 

shown in Figure  3-1, which represents the elastic response of the material. Young’s 

modulus, E, is defined as the gradient of the linear elastic region of the nominal stress-

strain curve. 
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Figure  3-1. Stress-strain diagram showing typical mechanical properties of interest. 

 

The nominal strain,  , is calculated by dividing the specimen compression deformation by 

the initial height of the specimen (see Figure  3-3), i.e. 

ohh /  ( 3-2) 

 

where h  represents the change in height and 
0h  represents the original height of specimen 

before loading.  

All experimental tests were performed using two calibrated compression machines: the 

first one is a Zwick/Roell Z250 machine with a maximum load of 250 kN, a load cell with 

0.01% full-scale accuracy and a maximum compression speed of 600mm/min. The second 

compression machine is a Zwick/Roell Z2 machine with a maximum load of 2 kN, a load 

cell with 0.01% full-scale accuracy and a maximum compression speed of 15000mm/min. 

Photographs of both Zwick/Roell machines are shown in Figure ‎3-2a and Figure  3-2b. The 

compression machine consists of a stationary bed and movable crosshead with a driver 

system for controlling velocity and displacement. These two flat plates are larger than the 

test specimen and guarantee that compression loading is uniformly distributed over the test 

specimen.  
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(a) 

 

 

(b) 

Figure  3-2. Compression testing configuration (a) Zwick/Roell Z250 and, (b) Zwick/Roell 

Z2. 
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The set-up of the uniaxial compression test is illustrated in Figure  3-3. Following the 

relevant test standard, ASTM D1621 [151], all uniaxial compression experiments designed 

to measure the quasi-static response were carried out at a strain rate of 0.0016s
-1

. The 

specimen dimensions used in this preliminary investigation are cubes measuring: 

10x10x10 mm
3
, 20x20x20 mm

3
, 50x50x50 mm

3
 and 80x80x80 mm

3
. These were cut using 

a band saw from an original rectangular extruded section, supplied directly from the 

manufacturer, which measured approximately 2000x100x100 mm. 50 mm and 80 mm 

side-length cube specimens were compressed using the Zwick/Roell Z250 and Zwick/Roell 

Z2 machines. The foam specimens were compressed by the upper metal plate. The 

specimen was placed between the compression plates, ensuring that the specimen centre 

line passed though the centre line of the two compression plates and the compression 

loading was distributed as homogeneously as possible on the specimen surface. The 

parameter d represents the displacement of the upper plate and ho is the original height of 

specimen. Before compression the specimen is set upon the bottom plate, visual checking 

of the specimen during the test is required to ensure there is no slippage between the 

specimen and both metal plates before beginning the test. During the test, the cross-head 

moves down. The maximum displacement of the top plate was set as 
ohd 9.0  after 

which the material was completely unloaded at the same rate of strain. 

 

Figure  3-3.  Schematic of the uniaxial compression test setup. 
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3.1.1.2. Procedure to Determine the Modulus (under Uniaxial 

Compression) 

The Young’s modulus is an important mechanical property. Several techniques have been 

proposed to determine the Young’s modulus from a uniaxial compression test [151]. Here, 

a modified offset technique is used to compute Young’s modulus. This method is used as 

the initial slope of the compressive stress-strain curves was found to be non-linear, 

gradually changing with strain (see Figure ‎3-4). The non-linearity at the start of the curve 

is thought to be partly due to slight imperfections in the shape of the initial specimen. An 

objective procedure to determine the Young’s modulus was followed: (1) the tangent 

modulus was determined as a function of strain up to 5%; (2) the maximum modulus in 

this region was found; (3) data for the tangent modulus lying above 0.7 of this maximum 

value were used to determine the Young’s modulus of the initial ‘linear’ region; and (4) the 

average value from the 5% tests was determined, as shown in Figure ‎3-4 and Figure ‎3-5.  

 

 

 

 

 

 

 

 

 

Figure  3-4. Example of the slope versus strain curve; points above the red line are selected 

for determining Young’s modulus. 
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Figure  3-5. Uniaxial compression tests for determining stress-strain curves in the linear 

elastic region and yield point 

 

3.1.1.3.  Procedure to Determine the Yield Stress (under 

Uniaxial Compression) 

The yield stress is the location where, as strain increases, there is no increase in the 

material’s stress. However, in a number of soft materials, including many types of foam, 

the yield point in compression stress-strain curves is difficult to locate accurately. In this 

investigation the yield stress was taken at the point that the fitted linear line (red line in 

Figure ‎3-5) and the actual experimental stress-strain curve diverged by 3%. 

3.1.1.4. Procedure to Determine Energy Absorption Efficiency   

and Onset Strain of Densification (under Uniaxial Compression) 

The energy absorption efficiency and onset strain of densification are important properties 

in the design of foam products in protective applications; the maximum force transmitted 

by the foam must remain below the limit which will cause damage due to excessive 

accelerations [1]. These well-defined properties are convenient for evaluation of factors 

such as the influence of size, specimen orientation and strain rate on the mechanical 

response of foam. 

To help explain these properties in more detail, Figure  3-6 shows the three regions 

typically identified for flexible foams undergoing large compressive deformation, namely 

the linear elastic, plateau and densification regions. From a microstructural perspective, as 

the compression stress increases, the foam’s cell edges start to collapse through elastic 
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buckling, elastic yielding or plastic flow and crushing. Yielding of cells tends to progress at 

a nearly constant load, causing a stress plateau. When foam is subjected to large 

compressive strain, this eventually results in significant self-contact within the 

microstructure as the cells collapse. This is the start of the densification region or the 

‘onset strain of densification’ and is the cause of the dramatic rise in the stress-strain curve. 

The stiffness in this region tends towards that of the solid constituent material, Es. In the 

unloading stage, the stress-strain curve also shows a non-linear behaviour.  

 

Figure  3-6.  Stress-strain curves resulting from a uniaxial compression test. 

 

Understanding energy absorption during impact is one of the most important motivations 

for characterising the mechanical behaviour of foam, including transversely isotropic foam. 

The energy input per unit volume in compressing a foam to a specified strain, , is simply 

the area under the stress-strain curve, up to the strain . Relatively little energy is absorbed 

in the elastic region; in contrast a high plateau stress permits large energy absorption at a 

near constant stress. The range of the plateau region depends on the mechanical properties, 

the density of foam and the strain rate.  

The most practical method for calculating energy absorption efficiency is by recording the 

absorbed energy, W, as a function of stress. The total energy absorption (the area under 

compression stress-strain curve) is 

 

 

( 3-3) 

the energy absorption efficiency, is then defined as the ratio of the work done (energy 
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absorption), W, to the value of nominal stress  

 ( 3-4) 

 

The energy absorption efficiency gives a good indication of the efficient application of the 

foam until a maximum applied stress . According, to Li [141], the energy absorption 

efficiency )(  can be used to objectively identify the onset strain of densification by 

locating the maximum in the energy efficiency, i.e.  

0
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 cd
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The ‘onset strain of densification’ and the ‘maximum energy absorption efficiency’ have 

been used in this investigation to evaluate the influence of specimen size, specimen 

orientation and strain rate (see Section  3.2.1 ).  

3.1.1.5. Procedure to Determine Poisson’s ratio (under Uniaxial 

Compression)  

The Poisson’s ratio is another important mechanical property. Determining the Poisson’s 

ratio versus the compressive strain is necessary because a changing Poisson’s ratio can 

make an important difference to stress prediction and incorrect values of Poisson’s ratio 

can reduce accuracy. There are several methods to measure the transverse strain in stiff 

materials, including, for example, use of an extensometer or an electric gauge. However, 

for flexible materials such as foam, it is difficult to obtain results using these techniques 

because they are unsuitable for large strain measurements. Characterisation using image 

analysis is a more accurate technique. In this work, two optical methods have been used. 

The first method involves manual analysis of digital images taken at regular intervals 

during the course of tests and the second method is digital image correlation (DIC).  For 

both methods, specimen dimensions of 50x50x50 mm
3
 were used and compression tests 

were conducted both along the transverse and principal directions, and at off-axis angles, 

under different strain rates, in order to characterise the strain and strain rate dependence of 

the Poisson’s ratios.  
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3.1.1.6. Procedure to determine Poisson’s ratio by Manual 

Image Analysis 

The experimental setup consists of a digital camera, camera tripod, and a laptop to record 

the experimental data, image analysis software and the compression machine. This method 

is contact-less, and involves only one high-resolution digital camera. The analysis 

procedure is based on a specimen subject to the uniaxial compression setup described in 

Section  3.1.1.1.The change in width of the compressed cube is determined by the 

difference in the number of pixels in the digital images taken at regular intervals using a 

digital camera and measured using simple image analysis software. The vertical and 

horizontal dimensions of the specimen were measured according to the change in pixel 

numbers for each image. According to the description of Poisson’s ratio, it is calculated for 

cube specimens using the following equation  

h

w
v




  

( 3-6) 

where w  represents the change in width and h  represents the change in height. The 

Poisson’s ratios of the foam were characterised, as shown in Figure ‎3-7. Images were taken 

at regular intervals using a Canon EOS 1000D digital camera and measured using simple 

image analysis software ImageJ [152]. Vertical and horizontal dimensions of the specimen 

were measured from each image. Specimen dimensions were 50 x 50 x 50 mm
3
, for high 

strain rates a digital video camera was used. The video was recorded and then converted to 

images using simple software to determine the Poisson’s ratios.  

 

Figure  3-7. Compression tests for determining Poisson’s ratio: (a) before compression and 

(b) after compression. 
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3.1.1.7. Procedure to determine Poisson’s ratio by Digital Image 

Correlation 

The VIC-3D 2010 system has borrowed from EPSRC equipment pool. The VIC-3D 

system is based on another non-contact optical technique of deformation measurement. 

This system consists of two video cameras fixed on a tripod by means of a connecting rod 

(see Figure. ‎3-8). All analyses were carried out following the relevant Vic-3D testing guide 

[153]. The specimen was first dotted with spots using a black marker. The spots show high 

contrast, necessary for accurate deformation measurements. The VIC-3D system was 

calibrated using a special calibration plate. After the calibration process, the cameras carry 

out the image acquisition. Images taken using two cameras are analysed sequentially. 

Eventually, after finishing the image analysis, the software determines the strain data. 

These data will include a required number of points along which the software calculates 

the deformation and strain in 3D [153].  

In this work the experimental set up for DIC consists of two digital cameras, two light 

sources, a computer used to record the experimental data and a compression machine. 

AVT Pike high-resolution 2048x2048 pixel advanced digital cameras were used to obtain 

the 3D images of the specimen test. These two cameras are capable of shooting 15 frames 

per second. Gray scale images were used in tests. The size of the tested specimen was 

(50x50x50mm
3
). The image of the specimen was taken both before and during 

deformation to facilitate the image analysis. Experimental tests were run for low and high 

strain rates, so the images were taken at different times and different loading values; these 

deformed images show the loading distribution in the specimen test. The Poisson’s ratio for 

high strain rates were measured using two methods. The first was based on videos taken 

using a Sony Cyber - shot DSC-W230 digital camera; the videos were converted to images 

using a ‘video to image converter’ software [154]. The second method for measuring 

Poisson’s ratio is performed using the VIC-3D system. 
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Figure.  3-8. The digital image correlation setup. 

3.1.2. Stress Relaxation (under Uniaxial Compression) 

Viscoelasticity of material can be characterised using a stress-relaxation test. The setup for 

this test used a Zwick/Roell Z2 machine. A constant strain was applied and the force was 

measured as a function of time. Cylindrical specimens of dimensions 72 mm diameter and 

36mm height were tested as shown in Figure ‎3-9. The specimens dimensions and 

experimental setup follow that of BS ISO 3384-2005 [155] . 

3.1.2.1. Procedure to Measure Stress Relaxation (under Uniaxial 

Compression) 

Viscoelastic materials show a time-dependent stress in response to the application of 

constant strain 0 . During the test, the stress relaxation )(t is calculated using Equation 

( 3-7) 

oAtFt /)()(   ( 3-7) 

where t is time, 0A  is the original cross-section area of the specimen and F(t) is the 

compression force as a function of time.  
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http://www.britannica.com/EBchecked/topic/568960/stress-relaxation-test
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According to time-dependent stress data, the relaxation modulus can be determined from 

the Equation (‎3-8) 

ottE  /)()( 
 

(‎3-8) 

where )(tE  is the relaxation modulus, )(t is the stress both of which are functions of time 

and o is a constant strain. 

          

Figure  3-9. Compression test to determine stress relaxation. 

3.1.3. Simple Shear Test  

The experiment set-up for the simple shear test is performed according to BS ISO 1922-

2001 [156]. A Zwick/Roell Z250 machine was used for the shear test, with constant speed 

of movement of the crosshead of 3 mm/min, in a direction parallel to the longitudinal axis 

of the shear. The test machine exerts a shear force, eF , on the specimen (the subscript is 

refer to elastic region) and creates shear displacement during the test, e . The set-up 

creates a longitudinal shear loading through two parallel flat rigid plates supports, with 

plate dimensions 50 mm width, 25 mm thickness and 330 mm length. The plates are fixed 

to the grips of the test machine as shown in Figure  3-10. In this test epoxy was used to glue 

the samples to the plates of the test specimen. The adhesive was required to be both stiffer 

and stronger than that of foam specimen in order to minimise its influence on the test 
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results. The specimen size (25x50x250 mm) was mounted in the shear test fixture to ensure 

that the specimen was uncompressed before and during the simple shear test. It was 

necessary to ensure that the specimen centre line passed though the centre line of the 

machine to prevent any specimen bending during the shear test, the distance between the 

metal support plates remains constant and simple shear deformation is applied to the foam 

sample. Each shear test was repeated five times. 

 

 

                               

Figure  3-10.  Schematic of shear test set-up. 
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3.1.3.1. Procedure to Determine the Shear Modulus 

The target of this test is to calculate shear modulus, G . It is calculated using Equation 

( 3-9) 

o

els

A

at
G

tan
  

( 3-9) 

where   

se

el
el

d

F
a tan  

( 3-10) 

 

and Ao is the original cross-section area of the specimen, ts is the thickness of the specimen 

and ael is the slope of the force-displacement curve, elF  is shear force and sed  is shear 

displacement (Figure ‎3-11). Here the nominal shear strain (i.e., the engineering shear 

strain, or the tangent of the shear angle) are used.  

 

 

 

 

 

 

 

 

            

 

   

Figure  3-11. Typical force versus shear strain curve. 
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3.2. Results: 

3.2.1. Influence of Specimen Size and Material Orientation 

under Uniaxial Quasi-Static Compression on Mechanical 

Response: 

Exploring the specimen size effect on mechanical properties is of interest for both 

fundamental and practical reasons. One reason is to ensure that the specimen size used in 

the experimental investigation is a good representation of the foam’s actual bulk 

behaviour. Another reason is to explore the influence of gas diffusion through the 

specimen. Over time gas diffusion can lead to significant creep in a foam product under 

load and it is useful to understand the significance of this effect when designing a foam-

based product [134] An initial investigation to explore the effect of specimen size was 

performed and is described in this section. According to Mills [4] the specimen size should 

be at least 20 times the cell size to obtain reasonable results. The average cell size was 

measured to be about 3.062.0   mm in the LDPE foam chosen for this investigation (see 

Section  3.3.2) for a detailed analysis of the foam microstructure), suggesting a minimum 

sample size of 10x10x10 mm
3
 side length. The specimen dimensions used in this 

preliminary investigation are cubes measuring: 10x10x10 mm
3
, 20x20x20 mm

3
, 50x50x50 

mm
3
 and 80x80x80 mm

3
 (see Figure ‎3-12). Specimens were compressed using a 

Zwick/Roell Z250 machine. All uniaxial compression tests followed the test standard 

ASTM D1621 [151]. For each specimen size, the tests were repeated at least five times. 

 
Figure  3-12. Photograph of test specimens, cubes with side lengths of:10, 20, 50 and 80mm. 

 

All four different sizes were tested under the same strain rate (0.0016s
-1

). The specimens 

were cut such that the cubes had one face orthogonal to the direction of extrusion (the 

principal and transverse directions). Nominal strains and nominal stress definitions are 

used though large deformation is considered (see Section  3.1.1.1). The mechanical 
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responses of the principal and the transverse directions for the cube are shown in 

Figure  3-18. Each test was repeated five times, error bars in Figure  3-18 correspond to the 

standard deviation (SD). The average compressive stress-strain curves of principal and 

transverse directions are shown in Figure  3-13 and Figure  3-14. Compressive curves of 

Figure  3-13 show a significant increase in both the compressive stiffness and strength with 

specimen size, in both the principal and transverse directions.  

 

 

Figure  3-13.  Stress-strain curves in the principal direction for four different cube sizes. 

 

Figure  3-14.  Stress-strain curves in the transverse direction for four different cube sizes. 

 

Table  3.1and Figure ‎3-15 summarises the measured pE  (elastic modulus in the principal 

direction) and tE  (elastic modulus in the transverse direction) against the specimen sizes. 
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Table  3.1 Elastic modulus in principal and transverse directions with versus specimen sizes 

Specimen size(mm
3
) 10x10x10 20x20x20 50x50x50 80x80x80 

pE  (MPa) 562.00.933  124.01.720  0.3632.039  0.1242.420  

tE  (MPa) 0.1690.338  100.00.750  0.1570.741  0.2211.089  

 

 Table  3.1 and Figure  3-15 summarises the measured pE  (elastic modulus in the principal 

direction) and tE  (elastic modulus in the transverse direction) plotted against the specimen 

size 

 

Figure  3-15.  Effect of specimen size on elastic modulus. 

 

Similarly, Table  3.2 and Figure  3-16 and summarises the measured p  (elastic yield stress 

in the principal direction) and t  (elastic yield stress in the transverse direction) against 

specimen sizes.  

Table  3.2.  Yield stress in principal and transverse directions with versus specimen sizes 

Specimen size(mm
3
) 10x10x10 20x20x20 50x50x50 80x80x80 

p  (MPa) 0.0280.0410    0.0040.059      014.00.061  0.0030.073  

t  (MPa) 0.0010.030    0.0010.027    016.00.026  0.0020.025  
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Figure  3-16.  Effect of specimen size on yield stress. 

 

The maximum efficiency versus specimen sizes is presented in Table  3.3. The onset strain 

of densification is approximately constant for different specimen sizes for both directions; 

it occurs at 0.010.61  strain. Efficiency-strain curves are plotted in Figure  3-17. 

Experimental data show that energy absorption efficiency is much more influenced by the 

direction of loading than by the size effect. 

 

Table  3.3. Energy absorption efficiency in principal and transverse directions, with versus 

specimen sizes. 

Specimen sizes (mm
3
) 10x10x10 20x20x20 50x50x50 80x80x80 

Efficiency in principal direction% 34.06 35.28 32.45 32.93 

Efficiency in transverse direction% 27.96 28.55 27.01 27.56 
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Figure  3-17.  Efficiency-strain curves with various specimen sizes 

 

The method to calculate onset strain of densification based on an energy absorption 

efficiency diagram appears to provide reliable and accurate results. The experimental data 

showed that energy absorption efficiency is higher in specimens of 10x10x10 mm
3
 and 

20x20x20 mm
3
, and lower in specimens of 50x50x50 mm

3
 and 80x80x80 mm

3
 size. The 

onset strain of densification is approximately constant with different specimen sizes. 

Following these tests on specimen size, it was concluded that the 50mm cubes were 

sufficiently accurate for use in further experimental testing and due to their 

recommendation in the test standard [151] were chosen over the 80mm cubes for the 

remainder of the tests. In Section 4.4 an explanation for this strong size dependency in 

terms of gas diffusion is proposed.  
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Figure  3-18. Compression loading and unloading stress–strain curves for 50x50x50 mm 

cube 90% strain loading/unloading in the principal and the transverse directions. The error 

bars indicate the standard deviation (SD) from five repeats. 

 

Because the compressive responses along the transverse directions are very close to each 

other (especially when the strain is less than 0.6, as indicated by the small standard 

deviation in Figure  3-18, the LDPE foam can be considered to be well described as a 

transversely isotropic material. The modulus along the principal direction, pE  = 

2.039±0.363 MPa (error is given by the standard deviation), where the subscript p indicates 

the principal direction (and axis x1 is always used for the principal direction), and the 

transverse directions are indicated by subscript t (or axes x2 and x3). This is much larger 

than the average modulus along the transverse direction, Et = 0.741±0.157 MPa. Thus, in 

the small-strain regime, the foam is almost three times as stiff in the principal direction 

than in the transverse directions and therefore shows significant transverse isotropy [45]. 

Also, using the procedure described in Section  3.1.1.3, the average yield stress in the 

principal direction, p , is found to be 014.00.061 MPa, this is more than twice as high 

as the average yield stress in the transverse direction, t , which is 016.00.026 MPa. 

3.2.2. Influence of Compressive Strain and Time on Recovery 

Looking now at the time dependent loading/unloading response of the foam Figure ‎3-19a -

b, and Figure ‎3-20a-b and show hysteresis in the curves suggesting viscoelasticity and at 

least some degree of semi-permanent deformation. However, given enough time the 
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specimen almost completely recovers its Figure ‎3-20 original shape. Still, repeat tests after 

several days indicate permanent changes in the loading curve, suggesting damage to the 

foam’s internal structure. As the maximum applied strain is increased the degree of 

permanent change to the loading curve (damage) also increases. Thus, the general 

behaviour of this material is complex and results from a combination of viscoelastic and 

plastic deformation in the skeletal framework of the polymer foam coupled with 

compression and diffusion of the gas within and between the closed cell microstructure. 

 

  

Figure  3-19.  Compression loading and unloading stress–strain curves in the principal 

direction conducted several days apart for 50x50x50 mm
3
 (a) 25% compression and (b) 

50% compression. 

 

  

Figure  3-20.  Compression loading and unloading stress–strain curves in the transverse 

direction conducted several days apart for 50x50x50 mm
3
 (a) 25% compression and (b) 

50% compression. 
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3.2.3. Influence of Compressive Strain on Poisson’s ratio  

Compression tests were conducted both along and orthogonal to the principal direction in 

order to calculate the Poisson’s ratios in these different directions (see sections  3.1.1.5 

and  3.1.1.6 for set-up and procedure). Initially the manual method was employed before 

using the DIC method to complement and compare the data. When compression is along 

the principal direction, the nominal strains can be determined as shown in Figure  3-21a and 

Figure ‎3-21b 

11 22,p t

kr KR mn MN

KR MN
   

 
     

( 3-11) 

where KR  represents the distance between points K and R. The lateral strain 22  is plotted 

against the compression strain 11  in Figure  3-21c. The Poisson’s ratio ptv  is defined as  

12
t

pt

p

v v



    

( 3-12) 

 

Here the first subscript p indicates the compressive loading direction ( 1x ), while the 

second subscript t indicates that the lateral direction of the measured strain is a transverse 

direction ( 2x ). Similarly, when the compressive loading is applied along a transverse 

direction, 2x , the lateral strains 11  and 33  are measured (see Figure  3-21d) and the related 

Poisson’s ratios are defined as   

11 33
21 23

22 22

,tp ttv v v v
 

 
       

( 3-13) 

 

Because of the nonlinear nature of the material’s response, the three Poisson’s ratios are 

not constants and are plotted against the compressive strain in the loading direction 

(Figure  3-21e).  
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Figure  3-21. Compression tests for determination of the Poisson’s ratio: (a) before 

compression; (b) after compression; (c), (d) measured lateral strains versus compressive 

strain; and (e) measured Poisson’s ratios versus compressive strain, error bars indicate the 

standard deviation of 3 repeat tests. 

 

The strain-dependence shown in Figure ‎3-21e can be be fitted by the following sixth order 

polynomials: 

65432 562.13413.39890.45931.26493.8503.1265.0 pppppppt    ( 3-14) 

65432 975.2215.9425.11167.7482.2501.0110.0 tttttttp    ( 3-15) 

65432 264.91490.2449.249470.120535.26750.1215.0 tttttttt    ( 3-16) 
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The Poisson’s ratio was also measured using a DIC system (see sections  3.1.1.5,  3.1.1.6 

and  3.1.1.7 for set-up and procedure). Figure  3-22 shows the images of the undeformed 

and deformed specimens; both images are correlated using DIC software. The Poisson’s 

ratio of the test specimen was defined for specific positions, as shown in Figure  3-22. This 

position is correlated using DIC software to calculate average strains in the horizontal and 

normal directions for these selected positions. Poisson’s ratio is determined as 

y

xv



  

( 3-17) 

Figure  3-23a shows the comparative data of Poisson’s ratio measured using DIC with data 

measured using the manual image analysis method. The same position has been selected on 

the specimen for comparison though because of the DIC software limitations, it is not 

possible to cover all the edges of the specimen during the test see Figure  3-22a and 

Figure ‎3-22b. Figure  3-23a shows the data obtained using the two techniques. The 

Poisson’s ratio values v12 using the manual method gives results that are 100% higher than 

DIC method. This is thought to be due to the limitation of the DIC to cover the high strain 

changes at the edges of the specimen during the test. Figure  3-23b shows the results for the 

Poisson’s ratio v21 are in better agreement with an average discrepancy of about 25% 

between the two methods.  

 

 

 

 

 

 

  

Figure  3-22. Compression tests for determining Poisson’s ratio: (a) before compression; (b) 

after compression and the colours are indicate the displacement in x-direction of specimen 

test. . 
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Figure  3-23.  Comparison between Poisson’s ratio calculated by manual image-J method 

and DIC: (a) comparison of Poisson’s ratio v12 and (b) comparison of Poisson’s ratio v21 

 

3.2.4. Influence of Compressive Strain Rate on Stress versus 

Strain Response 

Polymeric foam is extensively used for impact energy absorption applications under 

various strain rates; thus it is important that the mechanical response is known at different 

strain rates. In order to examine the rate dependent behaviour of the foam, uniaxial tests 

were conducted over a range of strain rates. The same set-up as that described in 

section  3.1.1.1 was used though here the test procedure involved the compressive response 

from the lowest strain rate of 0.0016s
-1

 to highest strain rate of 5s
-1

. Two compression 

machines were used for uniaxial compression tests. The first machine was a Zwick/Roell 

Z250, used for compression speeds of 5mm/min, 50mm/min and 500 mm/min and the 
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second machine was a Zwick/Roell Z2, used for compression speeds of 5000 mm/min and 

15000 mm/min. The mechanical behaviour of the principal and transverse directions for a 

50x50x50 mm
3
 cube under different strain rates were investigated (this specimen size was 

chosen following the size effect investigation). An average of three repeats was used to 

determine the stress-strain curves at a specified strain. The error bars in Figure  3-24 and 

Figure  3-25  correspond to the standard deviation of the three tests.   

 

 

Figure  3-24. Experimental uniaxial compression curves according to data at different strain 

rates in the principal direction         

 

 

Figure  3-25. Experimental uniaxial compression curves according to data at different strain 

rates in the transverse direction 
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The results of various strain rate tests are shown in Figure  3-24 for compression in the 

principal direction and in Figure  3-25 for the transverse direction. As expected, the 

stiffness of the material in the principal direction is larger than in the transverse direction. 

It is clear from Figure  3-24 and Figure  3-25 that the yield stress is sensitive to strain rate. 

3.2.5. Influence of Rate of Compressive Strain on Energy 

Efficiency 

Figure  3-26 shows the energy absorption efficiency versus strain curves under three 

different strain rates. It is clear from Figure  3-26 that energy absorption efficiency in the 

transverse direction is less than in the principal direction. The results show a maximum 

efficiency of about 36% in the principal direction at a strain rate of 0.16s
-1

 and a minimum 

efficiency of about 27% in the transverse direction at strain rate 0.0016s
-1

. Under larger 

strain rates, the maximum efficiency increases slightly. It can also be observed that 

maximum efficiency for both directions increases nearly linearly with the natural logarithm 

of compression strain rate (see Figure  3-27), while the onset strains of densification is 

approximately constant for various strain rates for both directions and it occurs at 

0.0129680.59  strain. 

 

 

Figure  3-26. Efficiency-strain curves with various strain rates, specimen size 50x50x50 mm
3
. 
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Figure  3-27. Effects of strain rate on the energy absorption efficiency in the principal and 

transverse directions. 

 

Experimental results showed that the energy absorption efficiency of foam increases nearly 

linearly with the natural logarithm of strain rate in the transverse direction whereas the 

behaviour in the principal direction is slightly non-linear. Also, the experimental data show 

that the energy absorption efficiency in the principal direction is larger than in the 

transverse direction, while the onset strain of densification is approximately constant with 

different strain rates.  

3.2.6. Influence of Strain Rate on Poisson’s ratio  

The non-linear nature of Poisson’s ratio of LDPE foam is highlighted by characterising its 

dependence on strain rates in the principal and transverse directions (see Section 3.2.3). 

The aim of this section is to characterise strain rate effects on Poisson’s ratio for 

transversely isotropic foam.  

Again, specimens dimensions were (50x50x50 mm
3
), and compression tests were 

conducted both along and orthogonal to the principal direction in order to calculate 

different Poisson’s ratios. Figure ‎3-28 (a, b c, e and f) show the Poisson’s ratio versus 

compressive strain diagrams of the LDPE foams at three strain rates in the principal and 

transverse directions. Also, Figure ‎3-28a-f show the determined Poisson’s ratio using the 

manual image-J method compared with the DIC under the same conditions.  

Figure ‎3-28a-f shows the Poisson’s ratios, 12v  and v21 versus strain, under various strain 
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rates. Figure ‎3-28a shows 
12v versus strain when compressed at a rate of 0.016s

-1
, here the 

results show poor agreement between the two measurement methods though there is better 

agreement in Figure ‎3-28b-f. In order to more easily compare the Poisson’s ratio data 

against strain at different strain rates, Figure  3-29a and Figure  3-29b are plotted using the 

same data. The Poisson’s ratio shows a non-linear response and tends to decrease with 

strain. In most tests the magnitude of the Poisson’s ratio at low strain rates is higher than 

those at equivalent strains, but at higher strain rates.  

The average discrepancies of two measurement methods are shown in Table  3.4. 
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Figure  3-28. Compression tests for determining Poisson’s ratio: (a), (b), (c), (d), (e) and (f), 

measuring lateral strains versus compressive strain rates; error bars indicate the standard 

deviation of three repeated tests. 
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Figure  3-29. Compression tests for determining Poisson’s ratio, measuring lateral strains 

versus compressive strain rates. 

 

Table  3.4. The average difference between the two methods of measuring the Poisson’s 

ratio.  

Strain rate 0.016s
-1

 0.16s
-1

 1.6s
-1

 

Discrepancy ( 12v ) 100% 24.03% 19.26% 

 Discrepancy ( 12v ) 27.37% 50% 25% 

 

Figure  3-29a shows that the Poisson’s ratio v12 is very sensitive to strain rates 0.16s
-1

, 1.6s
-1 

and 5s
-1

, the Poisson’s ratio v12 values are 0.094 at strain rate 0.16s
-1

, 0.096 at strain rate 

1.6s
-1

 and 0.082 at strain rate 5s
-1

. Figure  3-29b shows that Poisson’s ratio v21 is sensitive 

to the highest strain rate, 5s
-1

; the average v21 is 0.048. 
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3.2.7. Influence of Stress Relaxation on Relaxation Modulus  

Figure ‎3-30a-b show the stress relaxation values as function of time )(t , at two stains in 

the principal and transverse directions. The material tested under 0.05 compressive strain 

for a period of 4 hours and tested under 0.2 compressive strain for a period of 0.5 hours. 

The mechanical behaviour of LDPE show higher stress relaxation in the principal direction 

than transverse direction by a factor about two times. 

Figure ‎3-31a-b compares the secant moduli of LDPE foam under 0.05, 0.2 strain 

respectively, in principal and transverse directions. It can be observed that secant modulus 

in the principal direction is higher than the transverse direction. It can be also noted that 

the value of )(tE at 0.05 strain is higher than 0.2 strain by a factor of more than two times. 

  

(a)                                                                      (b)                                                                      

Figure  3-30.  Comparison of the compression relaxation stress of LDPE (a) in the principal 

and (b) transverse directions. 

 

  

(a) (b) 

Figure ‎3-31.  Comparison of the compression secant modulus of LDPE (a) in the principal 

and (b) transverse directions. 
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3.2.8. Influence of Shear Strain on Shear Modulus  

The shear moduli of the foam in three different orientations was determined, results in 

Figure  3-32a show the nominal shear stress versus nominal shear strain, , in the principal 

direction. The curve can be well fitted by the following polynomial function (up to a shear 

strain of 0.3): 

7362

524324

10391.210925.30

10462.16481.510- 88.490249.11115.110707.7)(







 

 
( 3-18) 

 

 

The tangent shear modulus in this region of strain can then be derived as 

6353

43332

1016.7381018.555 

108.231101.926 265.470 22.498115.1)(












d

d
Gpt

 

( 3-19) 

 

The tangent shear modulus, ptG  (or 
12G ), in the principal direction is plotted against the 

shear strain in Figure  3-32a. Clearly ptG  decreases dramatically with increasing shear 

strain. Similarly, the shear modulus, tpG  (or 21G  ), in the principal direction versus shear 

strain is shown in Figure  3-32b. The results in Figure  3-32a and Figure ‎3-32b show there is 

reasonable agreement between the two shear modulus, ptG  and  tpG , in the elastic region 

with a maximum difference of about 20%. Figure  3-32c shows the tangent shear modulus 

in the transverse direction, 
ttG , against shear strain.  The results in Figure  3-32b shows that 

ttG  is the lowest value among three directions. Also, it can be observed, that the shear 

modulus, 
ttG  ,decreases with shear strain, but at a lower rate of decrease compared to ptG  

and tpG . Note that ideally, both specimen size and rate effects would also have been 

investigated using the shear test set-up. However due to time constraints only the specimen 

size and strain rate recommended in BS ISO 1922-2001 [156] were used in the simple 

shear test investigation. 
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Figure  3-32. Shear test results: (a), (b) and (c) measured nominal shear stress- nominal 

shear strain curve and the computed tangent shear modulus, the error bars indicate the 

standard deviation of 3 repeat tests 
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3.2.9. Influence of Material Direction on the Off Principal Axis 

Compressive Stress-Strain Response 

The experimental data measured in off-axis tests are useful in evaluating the predictions of 

models and numerical simulations (see Section 4.5.1). In order to investigate the ‘off axis’ 

response of the transversely isotropic LDPE foam, samples were cut off-axis to measure 

the mechanical response of the foam at specified angles (see Figure  3-33). The principal 

direction was assumed to be 0
o 

and the transverse direction was assumed to be 90
o
. The 

procedure used the 50 mm side-length cubic specimen size, rotating the specimen at 22.5
o
, 

45
o
 and 67.5

o
 degrees relative to the principal direction prior to cutting. 

 

 

Figure  3-33.  Specimen cutting with rotation at angles. 

 

Again, test specimens were cut as cubes of size 50x50x50 mm
3
 and following the test 

standard ASTM D1621, all uniaxial compression experiments were carried out at a strain 

rate of 1.6 x 10
-3

s
-1

. Foam specimens were compressed using the uniaxial compression 

experimental setup. Stress-strain results from the off-axis uniaxial compression tests are 

shown in Figure  3-34a. Each test was repeated five times. As expected, the stress-strain 

curves of the specimen, orientated at 45
o
, lie approximately mid-way between the 0

o
 and 

90
o
 curves. However, the equivalent curves for the specimens orientated at 22.5

o
 and 67.5

o
 

are clearly shifted in a non-linear manner. In order examine effects of the off axis of LDPE 

foam at transverse direction.   Rotated specimens at 0
o
,  45

o
 and 90

o
 were compressed at 

transverse direction. Figure ‎3-34b shows that the compressive behaviours of rotated cubes 

of 0
o
, 45

o
 and 90

o
 are similar. Results indicate that the mechanical response of extruded 
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LDPE foam is not sensitive to the specimen’s rotation when specimen compressed at 

transverse direction.  

 

 

                           (a) 

 

                          (b) 

Figure  3-34. Uniaxial compression for a cube sized 50x50x50mm
3
with different degrees of 

rotation of the foam’s (a) principal axis; and (b) transverse axis, error bars indicate the 

standard deviation of 5 repeat tests. 
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3.2.10. Influence of Material Direction on the Off Principal Axis 

Compressive Modulus and Yield stress at Small Strains 

The compressive stress-strain curves can be used to determine the elastic stiffness data. 

Elastic mechanical properties in the small strain region were determined using the 

procedure described in Section  3.2.9. Figure ‎3-35 shows the Young’s modulus as a function 

of the rotation angle. Figure ‎3-36 shows the Yield stress as a function of the rotation angle. 

  

Figure ‎3-35. Stiffness varies with angle of 

rotation. 

Figure ‎3-36. Yield stress varies with angle of 

rotation. 

3.2.11. Influence of Material Direction on the Off Principal Axis 

Energy Absorption Efficiency at Large Strains 

The compressive stress-strain curves can be used to determine the energy absorption 

efficiency data. Non-linear mechanical properties in large deformation were performed 

using the method described in section  3.2.9.Figure ‎3-37 shows the energy absorption 

efficiency as a function of the rotation angle. 
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Figure ‎3-37.  Efficiency-strain curves with various angle of rotation. 

 

3.2.12. Influence of Material Direction on the Off Principal Axis 

Poisson’s ratio 

Poisson’s ratio-strain results from the off-axis compression tests are shown in Figure ‎3-38. 

Two methods were used to determine Poisson’s ratio at specified off-axis angles. The 

results show that the highest average Poisson’s ratio is in the cube rotated at 22.5
o
; this 

value reduces with the angle in the principal direction. The lowest average Poisson’s ratio 

is in the cube rotated at 67.5
o
. In all cases there is good agreement between values 

measured using manual image-J analysis and DIC. In Figure‎3-39 the Poisson’s ratio in the 

small strain elastic region is plotted using test data from both on-axis (see Section  3.2.3) 

and off-axis tests from this section. 
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Figure  3-38.  Comparison of Poisson’s ratio determined for large strain using two methods 

with different degrees of rotation: (a) cube rotation at 22.5
o
, (b) cube rotation at 45

o
 and (c) 

cube rotation at 67.5
o
. 

 

 

Figure 3-39.  Poisson’s ratio in the elastic region versus rotation angle (value taken at a 

strain less 0.05). 
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3.3. Micromechanical Characterisation 

In this section the cell morphology of the LDPE transversely isotropic closed-cell foam has 

been examined using both micro-CT and optical microscopy. Geometric properties such as 

the length of cell edges, thickness of cell walls and cell diameter have been determined.  

Comprehensive characterisation of the geometric properties of foam assists in formulating 

2D or 3D computer models of the foam microstructure. Many microstructural 

measurements, including cell diameter, face thickness, cell edge length as well as the 

general cell geometry can be incorporated into such models, as will be shown in Chapter 5.  

 

3.3.1. Experimental Setup and Procedure for Micro CT Imaging 

Micro-CT scanning using a SkyScan
TM

-1172 machine with a resolution of 9 microns pixel 

size was used to investigate the foam microstructure, cell edges thickness and average cell 

geometry of the flexible LDPE foam specimen, mechanically characterised in Chapter 3.  

This resulted in 2D images of the specimen cross-section (see Figure  3-40), which could be 

converted to 3D images using the commercial image analysis software, Simpleware
TM

. 

Figure  3-41a shows the images of cells obtained from the micro-CT scan into 

Simpleware
TM

. Figure  3-41a shows cells elongated in the direction of extrusion. 

Figure  3-41b shows the final 3D reconstruction.  

 

 

 

 

 

 

 

Figure  3-40. Micro-CT scan image 

6 mm 
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(a) 

 

(b) 

Figure  3-41. (a) multiple slices are recorded in three mutually orthogonal planes and (b) 

reconstruction of 3D image. 

 

Data from the microCT scans were used primarily in measuring the thickness of the cell 

edges, see Section  3.3.3.  

3.3.2. Experimental Setup and Procedure for Optical 

Microscopy 

A BRESSER Biolux optical microscope [157] (see Figure  3-42), with magnifications of 

4X, 20X and 40X was used to examine foam microstructure (see Section 1.3). Quantities to 
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be characterised included the cell size, cell edge length and wall thickness. Specimens 

were carefully cut in thin slices using a sharp razor blade.  A typical sliced cross-section is 

shown in the micrograph of Figure ‎3-43. Optical micrographs of LDPE foam the white 

rectangle was used to obtain the basic dimensions of the cells diameter Figure ‎3-43.  The 

specimens were mounted on the microscope to facilitate easy handling with a minimum 

amount of damage. As there is no set scale in the microscope viewer, a ruler is used to 

determine the scale for each lens magnification. Finally, the dimensions of microscope 

image are converted from pixel to mm using the expression below: 

pixelsmmmm NId /  
( 3-20) 

where  
mmd , 

mmI
 
and pixelsN  represent the measured cell dimensions in mm, the image 

dimensions in mm and the number of pixels in the image respectively. In order to explain 

statistical measurements made from the images, Figure  3-43 shows some of the 

measurements marked. The cells shapes are clearly irregular and the wall edges vary 

considerably in length, even within a single cell. 

 

 

 

Figure  3-42. A BRESSER Biolux optical microscope. 
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Figure  3-43. Optical micrographs of LDPE foam the white rectangle was used to obtain the 

basic dimensions of the cells diameter. 

 

3.3.3. Quantitative Analysis of 2D Images 

For extruded LDPE foam, statistical measurement is the basic and dominate factor 

influencing the foam mechanical properties. Consequently, in order to complete the 

characterization of cell geometry and provide statistical morphological data, a microscopic 

classification of cells is presented in this work. In the following sections the statistical 

measurements are presented.  

3.3.3.1. Cell shape Characterisation 

Figure ‎3-44a shows an example of the cell geometry. Anisotropy in the microstructure is 

not obvious from a single image, though by collecting enough data from numerous images 

the anisotropy in the microstructure becomes evident and its statistical significance can be 

examined. 

It can be observed that the cell diameter varies widely throughout the foam. Optical 

measurements are taken on cut surfaces, the longest dimension of cells is primarily in the 

extrusion direction (or x-direction in these images). 300 measurements were taken in both 

the principal and transverse directions. The cell shape anisotropy ratio, r , is defined by the 

cell dimensions in the extrusion or x direction divided by that in the normal or y direction, 

see Figure ‎3-44a and Figure ‎3-44b. The data for r is plotted in Figure  3-45a-b. 

 

    3mm 
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(a)                                                                (b) 

Figure  3-44. Optical micrographs of LDPE foam (a) the extrusion is in x-direction and (b) 

the extrusion is in z-direction. 

 

The histograms represent individual measurements of the cell anisotropy ratio, r , and the 

red lines represent the fitted distribution. Fitting of the data was performed using MatLab 

software. If the maximum in the fitted distribution is equal to the mean value, then the 

distribution is said to be well represented by a normal distribution.   

 Figure  3-45a shows the distributions are skewed. The location of the maximum of the fit 

in the principal direction (direction of extrusion) is 1.201  0.386, indicating the average 

cell geometry is elongated in the extrusion direction. In Figure  3-45b location of the 

maximum of the fit in the transverse direction is 1.018  0.298, indicating the average cell 

geometry has no preferred direction of elongation in the plane normal to the extrusion 

direction. 

  

(a) (b) 

Figure  3-45. Histogram showing the cell shape anisotropy ratio distribution for (a) 

principal directions and (b) transverse direction. 
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3.3.3.2. Measurement of Cell Dimensions 

In this section, other aspects of the cell microstructure are characterised. At least 100 

measurements were taken for cell wall thickness, cell edge length and thickness from 

randomly selected areas microCT and optical measurements. Figure  3-46a shows that the 

average edges length of cells is 0.430 0.150 mm, Figure ‎3-46b reveals that the average 

cell edge thickness is 0.056 0.011 mm.  

Moreover, Figure ‎3-46c and Figure  3-46d show that the average cell widths in the 

transverse and principal directions are 0.615 0.319 mm and 0.622 0.317 mm 

respectively. The average cell diameter represents the cell size while the variation of 

histograms describes the degree of difference in cell sizes. It is clear that the cells in 

Figure  3-46d are more regular than those in Figure  3-46c, and this variation in the cell size 

and cell size distribution comes from the manufacturing process. Subsequently, in the same 

process the cell wall thickness are measured and shown in Figure  3-46e, which reveals that 

the average cell wall thickness is 0.003  0.001 mm. From the results in Figure  3-46a-e, it 

can be observed that the histograms of cell dimensions are significantly skewed. This 

indicates that geometry of this class of foam is highly irregular and complex. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

 

 

(e) 

Figure  3-46.  Histogram distributions and average values showing (a) cell edge length, (b) 

cell edge thickness, (c) width of cells in transverse direction, (d) cell width in principal 

direction and (e) cell wall thickness. 
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3.4. Summary 

The mechanical response of LDPE foam at stain rates from 0.0016 to 5s
-1

 were 

experimentally investigated, using Zwick/Roell Z250 and Zwick/Roell Z2 testing machines 

and a uniaxial compression setup. The results show that specimen size has a large influence 

on the test results and so a minimum specimen size of 50x50x50 mm
3
 was used for the 

remainder of the investigation. Section  3.2 describes the mechanical characterisation of the 

LDPE melt-extruded foam and reveal a strongly non-linear transversely isotropic and 

highly compressible behaviour, with strain rate dependence. Recovery after unloading is 

time dependent and given sufficient time is almost 100%, though a permanent change in 

the form of the foam’s subsequent stress-strain curve suggests permanent damage occurs 

despite the recovery in strain. Clearly this behaviour is very complex and collecting such 

data is a relatively slow and costly process. It is therefore of value if methods of 

interpolating measured data from a smaller dataset or better still, of predicting the data 

using analytical models can be devised; this possibility is explored in Chapters 4 and 5. 

Microstructural characterisation using image analysis method reveals statistically 

significant anisotropy in the cell morphology. In Chapter 5, this information, along with the 

detailed characterisation of information on cell structure is incorporated in microstructural 

models and used to examine whether this microstructural anisotropy can explain the 

transversely isotropic mechanical response measured in this chapter. 
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Chapter 4. : Macro-Mechanical Modelling of Foam    

4.1. Introduction 

 

Chapter 3 demonstrated a strongly transversely isotropic mechanical response in the 

extruded LDPE polymer foam chosen for this investigation and also revealed significant 

anisotropy in the foam’s microstructure. In this chapter methods of interpolating between 

measured data from a smaller dataset and of predicting the data using simple analytical 

models are explored. The idea here is that if stress-strain data can be interpolated and 

predicted using simple transformations and shifting, involving the use of empirical models 

based on simple underlying assumptions, then this: (i) would go some way to explaining 

the real physical mechanisms behind the foam’s otherwise complex orientation- and rate-

dependent response and (ii) could be used as a means to predict rather than to measure data 

using time consuming and expensive experiments. The predicted dataset could then be 

used to determine the parameters of constitutive models implemented in FEA software.  

To this end, first a simple method of predicting the off-axis compression data from the on-

axis compression response, using a matrix rotation method is proposed. Next, a combined 

model involving a fitted rate-dependent empirical law and a simple gas compression model 

is used to interpolate the full set of compression data using just a limited number of 

experimental input curves. These predicted results are compared with the experimental 

data from Chapter 3. Finally, experimental results from Chapter 3 are used to fit the 

parameters of two different constitutive models currently implemented in a commercial 

finite element code, Abaqus
TM

. These models include (i) a compressible transversely 

isotropic linear elastic model and (ii) a compressible isotropic hyper-elastic model. The 

success of these models in capturing the complex behaviour of the LDPE benchmark foam 

selected for this investigation is assessed. 
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4.2. Interpolating the Off-axis Stress-strain Curves 

In this section a method of interpolating the approximate uniaxial compression stress 

versus strain curves for defined off-axis specimen orientations is explored. The method 

uses just the principal and transverse uniaxial compression data, together with the simple 

shear test measurement of ptG  and involves the use of a matrix rotation operating on 

‘apparent’ elastic properties. The purpose of this work is to: (i) determine if the off-axis 

stress-strain curves can be predicted from the principal and transverse uniaxial 

compression data at small strain using a simple rotation matrix; if so this suggests that the 

response at small strain can be modelled using a simple linear transversely isotropic model 

and (ii) to enable faster preliminary evaluation of non-linear constitutive models; if the 

rotation method works also at large strains then this could reduce the amount of 

experimental characterisation tests required to produce off-axis data for model evaluation. 

To do this, the same rotational transformation used to determine the stiffness of a linear 

compressible transversely isotropic material, when loaded off-axis has been used in the 

analysis [36], i.e. 
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( 4-1) 

 

 
 

Figure  4-1. Principal and transverse uniaxial compression curves with secant modulus 

shown at 0.2 strain. 
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The equation is adapted for large strains using an ‘apparent’ stiffness for pE  and 
tE , the 

modulus in the principal and transverse directions, as indicated for a strain of 0.2 in 

Figure  4-1. These apparent moduli are therefore functions of the strain, i.e. )(pE  and 

)(tE . Also  ptG  is taken to mean the small strain shear modulus measured as a 

function of the finite uniaxial compressive strain,  . To actually measure this function 

would require many simple shear tests at incrementally increasing levels of compression 

using specialised apparatus; a difficult and time consuming task that would defeat the 

purpose of this investigation. Instead, a suitable empirical function for  ptG  has been 

found that meets the three criteria: (i)     ptpt GG   as  and  approach 0 strain; (ii) the 

function is based on data measurable from the three characterisation tests performed in this 

investigation (compression in principal & transverse directions plus simple shear); and (iii) 

the resulting function provides good shifting results when used in Equation ( 4-1). Thus, at 

small strain the approximation     ptpt GG   is made, and Equation ( 3-19) becomes 

6353

43332

1016.7381018.555 

108.231101.9260 265.47 22.498115.1)(







ptG

 

( 4-2) 

For larger strains, after a process of trial and error, an equation of similar form to the 

theoretical shear modulus prediction for an isotropic compressible elastic material under 

small strains has been found to provide good results  

 )(12

)(
)(






pt

p

pt
v

E
G


  

( 4-3) 

 

(see Equation ( 4-3) where the Poisson’s ratio,   pt , is given by Equation ( 3-14). It is 

noted that Equation ( 4-3) is a purely an empirical function. Thus, the final function used to 

estimate  ptG  is a combination of Equations ( 4-2) and ( 4-3) as shown in Figure ‎4-2  

Equation ( 4-3) is used in place of Equation ( 4-2) for strains where the prediction Equation 

( 4-3) is greater than that of Equation ( 4-2). 
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Figure  4-2. Curves for polynomial fit equation of experimental measurement and predicted 

shear modulus for LDPE.   

 

The empirical method described above predicts the compressive stress behaviour of the 

foam when rotated at difined angles to the direction of compression very well (see 

Figure  4-3). This is a pragmatic approach that can dramatically reduce the amount of 

experimentation involved in determining the off-axis response of the foam. Its applicability 

to other transversely isotropic foams is not certain and remains something to be tested in 

the future. The off-axis predictions could then be used to evaluate numerical simulations. 

 

 
Figure  4-3. Experimental uniaxial compression curves (continuous lines) with different 

degrees of rotation of principal axis together with predicted uniaxial compression curves 

(dashed lines) using Equation ( 4-1), for  = 22.5
o
, 45

o
and 67.5

o
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4.3. Combined Empirical Rate Law and Gas Model 

The rotation method described in the previous section, Section  4.2, can be used to 

interpolate between the principal and transverse stress curves determined at a given strain 

rate. In this section, a gas model is used to predict the large strain response of the foam 

from just four stress-strain curves, namely using the data obtained at the lowest and highest 

rates in the principal and transverse directions. The interest here is in generating large-

strain datasets across a range of strain rates from a more limited dataset. 

To do this, a gas model proposed previously for closed-cell flexible foam Clutton and Rice 

[91], given here in Equations ( 4-4)  and ( 4-5), has been used to fit the compression data in 

the principal and transverse directions when compressed at the minimum and maximum 

strain rates.   
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( 4-5) 

where 
tr  and 

tr  represent the stress in the principal and transverse directions p  ,
t  

represent the values of yield stress in the principal and transverse directions respectively. 

The latter are found simply by extrapolating the fitted equations back to zero strain. 

Similarly, fitv  represents the value of the fitted Poisson’s ratio. Figure  4-4 and Figure  4-5 

show the curves fitted in the principal and transverse directions and at the lowest and 

highest rates. The experimental data is also shown in the figures. 
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Figure  4-4.Experimental uniaxial compression curves in the principal direction (continuous 

lines) with fitted uniaxial compression and curves using Equation ( 4-4) (dotted line). 

 
Figure  4-5. Experimental uniaxial compression curves in the transverse direction 

(continuous lines) with fitted uniaxial compression and curves using Equation ( 4-5) (dotted 

line). 

 

Figure ‎4-4 and Figure ‎4-5 show that the yield stress depends on the strain rate. An equation 

relating the yield stress to the natural logarithm of the strain rate   was proposed 

previously by Song et al. [43] and is fitted to the yields stress values found by 

extrapolating the fitted stress-strain curves back to zero strain. The relation can then be 

used to predict the yield stress for the intermediate strain rates of 0.016s
-1

, 0.16s
-1

 and 1.6 

s
-1

. 
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( 4-7) 

where 
O  = 0.0016s

-1
 is the reference strain rate and   is a strain rate. The fitted yield 

stress in the principal direction is op = 0.078 MPa and fitting parameter Cp= 0.0065 MPa 

are fitted from experimental results, the fitted yield stress in the transverse direction is 
ot

= 0.028 MPa and fitting parameter Ct = 0.0035 MPa are fitted from the experimental data. 

Equations ( 4-6) and ( 4-7) characterise the phenomenological equations that define the 

strain rate effects on the elastic yield stress of the foam in the principal and transverse 

directions. The fitted and predicted data are shown in Figure  4-6 shows that the yield stress 

response of the LDPE foam, over a range of compression strain rate, is found to follow a 

natural log-linear relationship with the compression strain rate for both the principal and 

transverse directions. This relation is useful for calculating the stress-strain curves at any 

arbitrary compression speed (or strain rate).    

 

 

  
Figure  4-6. Effects of strain rate on yield stress in the principal and transverse directions. 
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stress-strain behaviours of the foam in the principal and transverse directions when 

subjected to arbitrary strain rates. Figure  4-7a-c shows the experimental and predicted 

stress-strain behaviour under compression loading in the principal direction, at strain rates 

of 0.016s
-1

, 0.16s
-1

 and 1.6s
-1

. The results show good agreement between the predicted 

response and experimental data. Figure  4-8a-c shows the predicted and experimental stress 

versus strain behaviour under compression loading in the transverse direction, at strain 

rates of 0.016s
-1

, 0.16s
-1

 and 1.6s
-1

 respectively, the results again show good agreement 

between predictions and experimental data.  

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Strain

S
tr

e
s
s
 (

M
P

a
)

 

 

Exp 0.016s
-1

 

Predicted 0.016s
-1

 

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Strain

S
tr

e
s
s
 (

M
P

a
)

 

 

Exp 0.16s
-1

Predicted 0.16s
-1

(b)



CHAPTER 4 MACRO-MECHANICAL MODELLING OF FOAM                                120 

 

 

 
Figure  4-7. (a), (b) and (c) Experimental uniaxial compression curves (continuous lines) 

with different strain rates in the principal direction, together with predicted uniaxial 

compression curves (dotted lines) using Equations  ( 4-4) and ( 4-6). 
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Figure  4-8. (a), (b) and (c) Experimental uniaxial compression curves (continuous lines) 

with different strain rates in the transverse direction, together with predicted uniaxial 

compression curves (dotted lines) using Equations ( 4-5) and ( 4-7). 

 

Taking this approach a step further, it is interesting to see if a simple method of predicting 

the stress-strain response in the principal direction from that in the transverse direction, or 

versa, can be achieved by using the microstructural anisotropy ratio, r. In this case r = 1.2, 

multiplying the yield stress in the principal direction by a factor of 1/cr
2 

where c = 2 is a 

constant, this factor is fitted with Gibson and Ashby model see Equation ( 5-1). The 

predicted curves using Equation ( 4-8) compared against the experimentally determined 

stress-strain response in the transverse direction (at the various rates (see Figure ‎4-9  and 

also for the various different specimen sizes at a constant rate see Figure  4-10.  
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Figure  4-9 show a comparison between uniaxial compressions for various strain rates in 

transverse direction and those predicted a factor of 1/cr
2 

in the principal direction and gas 

model (see Equations ( 4-8) ) and a good agreement in the results is can be observed. The 

method is reasonably successful, in Chapter 5 micromechanical models are used to explore 

this relationship in greater detail. At this point, given the stress-strain response of the foam 

in once direction at two different rates (i.e. the principal or transverse directions) and also 

the microstructural anisotropy ratio, r, a reasonable approximation of a full rate dependent 

data set can be made. 
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Figure  4-9.  (a), (b), (c), (d), and (e) Experimental uniaxial compression curves (continuous 

lines) with different strain rates in the transverse direction, together with predicted uniaxial 

compression curves (dotted lines) using Equation ( 4-8). 
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direction, gas model, see Equation ( 4-8) a reasonable agreement in the results is can be 

observed. 

  

 
 

 Figure  4-10.  Experimental uniaxial compression curves in the transverse (continuous 

lines) with predicted (dotted lines) uniaxial compression curves using Equation ( 4-8) for 

specimen sizes (a) 80x80x80 mm
3
, (b) 50x50x50 mm

3
, (c) 20x20x20 mm

3
 and (d) 

10x10x10 mm
3
. 

4.4. Prediction of Size Effect on Mechanical Properties 

One aspect of the experimental characterisation of the LDPE foam focused on the effect of 

specimen size on the mechanical response.  This section examines the compression loading 

under large strain and assumes the specimen size dependence is related to gas diffusion out 

of the foam. The stress-strain response is analysed by assuming isothermal compression of 

the gas. A method is suggested to predict the uniaxial compression response of the foam at 

various specimen sizes using factors related to the rate of change of pressure with respect 

to volumetric strain, inside the foam specimens.  
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When closed-cell foams are compressed under large strain i.e. beyond the elastic region, 

assuming isothermal compression of the gas (see Section  2.2.2.1) and zero Poisson’s ratio, 

the uniaxial compression stress,  , can be calculated from Equation ( 4-9) 

 
( 4-9) 

 

where the value  represents the gas volumetric strain. The values of the gas 

volumetric strain curves were determined from the experimental data for the four specimen 

sizes. The stress versus volumetric strain data are shown in Figure.  4-11 and Figure.  4-12 

and the gradient of these curves represents the rate of change of the internal gas pressure 

with respect to the volumetric strain within the cells during loading.  

 

 

 

 

Figure.  4-11. Typical stress and gas volumetric strain curves for four cubes in the principal 

direction. 
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Figure.  4-12. Typical stress and gas volumetric strain curves for four cubes in the 

transverse direction. 

 

As show in Figure  4-13 and Figure  4-14, the slope of the stress and the volumetric strain 

curves decrease with volumetric strain. This means that the rate in increase of the gas 

pressure inside the closed cells decreases as a function of the volumetric strain.  

 

 

Figure  4-13.  Curves for pressure decreases inside cells in the principal direction.  
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Figure  4-14. Curves for pressure decreases inside cells in the transverse direction. 

 

In order to present the relationship between specimen sizes and, the data for ddp / as a 

function of sample size in the principal and transverse directions are fitted to polynomial 

Equations ( 4-10) 

5.0)/()/( rddpddp trpr    ( 4-10) 

 

Equations ( 4-5) and ( 4-10) can be used to accurately predict the compressive stress-strain 

behaviours of the foam in the transverse directions when compressive loading subjected to 

versus specimen sizes. Figure ‎4-15a-c shows the experimental and predicted stress-strain 

behaviour under compression loading in the transverse direction, on specimen sizes 

80x80x80 mm
3
, 50x50x50 mm

3
, 20x20x20 mm

3
 and 10x10x10 mm

3
. The results show 

good agreement between the predicted response and experimental data.  

 

 

0 2 4 6 8 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

  /(1-R-)   

d
p

/d
 

(M
P

a
)

 80mm

 50mm

 20mm

 10mm



CHAPTER 4 MACRO-MECHANICAL MODELLING OF FOAM                                127 

 

 

  

  

 

Figure ‎4-15. Experimental uniaxial compression curves in the transverse (continuous lines) 

with predicted (dotted lines) uniaxial compression curves for specimen sizes (a) 80x80x80 

mm
3
, (b) 50x50x50 mm

3
, (c) 20x20x20 mm

3
 and (d) 10x10x10 mm

3
. 

 

4.5. Evaluation of Constitutive Models Currently Implemented 

in a Commercial FEA Software  

In this final section, the utility of constitutive models, already implemented in a 

commercial FEA code (Abaqus
TM

), in modelling the behaviour of a non-linear transversely 

isotropic compressible material under large strains is examined. There are currently no 

models available in the commercial FEA code that can capture the full complexity of the 

foam’s response, as measured in Chapter 3. As such, the investigation progresses by 

considering the use of the most suitable models currently available in the FEA code. 

Candidate models include: 

(i) a simple linear transversely isotropic compressible model  
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(ii) a non-linear isotropic compressible hyper-elastic model 

(iii) a transversely isotropic compressible elastic plastic crushable foam model 

Note that in Abaqus, each of these models can be used in conjunction with visco-elastic 

elements to create viscoelastic versions of these models.  

When choosing a constitutive model, the first consideration is the appropriateness of the 

model. For example, is the desired material response linear or non-linear, elastic, plastic or 

rate dependent, isotropic or anisotropic, compressible or incompressible? Next, the effort 

and equipment required to perform the necessary characterisation tests in order to 

determine the constitutive parameters must be considered. Finally, once these parameters 

are obtained, the success of the constitutive model in producing the desired behaviour must 

be assessed. In order to evaluate predictions, both stress and the deformation kinematics 

can be used.  

In this investigation the transversely isotropic compressible elastic-plastic crushable foam 

model was discounted due to the difficulty in performing the necessary characterisation 

tests. Specialised hydrostatic tests are required; due to the relatively low modulus and high 

compressibility of the polymer foam considered in this investigation attempts to perform 

these tests using equipment available in the civil engineering department, typically used in 

soil mechanics proved fruitless. Given this model is designed for elastic-plastic rather than 

elastomeric behaviour, the effort in obtaining all the necessary test data was eventually 

considered too great to justify the time required to perform these tests. 

This left just the simple linear transversely isotropic compressible model and the non-linear 

isotropic compressible hyper-elastic models (or variations of these two with viscous 

elements added). Clearly the linear model would be limited to just small strain stress 

predictions while the hyperelastic model would be incapable of capturing the transverse 

isotropy. Still, given these were the most suitable models available, a short investigation 

into their ability to describe at least some of the mechanical behaviours of the bench-mark 

foam material was conducted and is described in Sections  3.2 and  3.3.  
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(a) (b) 

4.5.1. Influence of Material Direction on the Off Principal Axis 

Large Strain Kinematics 

It is interesting to observe the effect of the foam’s transverse isotropy on its deformation 

kinematics. As expected, Figure ‎4-16a and Figure ‎4-17a show that when compressed 

uniaxially with the direction of compression misaligned with the foam’s principal 

directions, the foam’s kinematics is not symmetric. As there are currently no suitable large-

strain transversely isotropic compressible models implemented in Abaqus
TM

 or elsewhere 

in the literature, accurately predicting both the stress and the kinematics for this material is 

not yet possible. However, Figure ‎4-16b and Figure ‎4-17b show how a linear-elastic 

compressible transversely isotropic model [30] can successfully approximate the observed 

kinematics (though not stress) under large strain uniaxial deformation. The five 

independent material parameters in the elastic stress-strain relation for a linear-elastic 

compressible transversely isotropic model [30] are listed as follows: the principal Young’s 

modulus  1EE p 2.1MPa, the transverse Young’s modulus  32 EEEt  0.74 MPa, 

the Poisson’s ratios 1.03121  vvvtp , 2.01223  vvvtt , and the principal shear 

modulus  1312 GG 0.7 MPa, which is an average value of the tangent principal shear 

modulus across the low shear strain region; 0 to 5% shear strain. 

The boundary conditions for uniaxial compression in the y-direction are defined in 

Equations from ( 4-11) to ( 4-13) 

031  ii

TF

i
UUU  ( 4-11) 

26.02  i

TF

i
UU  ( 4-12) 

0321  iii

BF

i
UUUU  ( 4-13) 

 

where U
F
 is the face displacement in the ith direction, the superscripts T and B represent 

the top and bottom faces. The subscript i represents the degree of freedom with i = 1, 2,3 

indicating displacements in x, y, z directions respectively.  
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Figure  4-16. Off-axis uniaxial compression of foam to 26% engineering strain. (a): 

experimental observation showing principal direction. (b): Displacement predictions of 

linear compressible transversely isotropic model. 
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Figure  4-17. Off-axis uniaxial compression of foam to 26% engineering strain. (a): DIC 

observation showing principal direction. (b): Displacement predictions of linear 

compressible transversely isotropic model. 

 

Thus, the linear-elastic compressible transversely isotropic model is shown to be 

reasonably successful in modelling the LDPE foam behaviour at low strains but, as 

expected is not able to model the foams behaviour at large strain. 
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4.5.1.1. Hyperfoam Evaluation 

In this section a hyperelastic constitutive model currently implemented in Abaqus
TM

 [35] 

based on Ogden’s isotropic compressible hyperelastic model  [33, 55] is used see Equation 

(‎2-11). The isotropic hyperfoam model implemented in Abaqus
TM

 was used to fit the 

stress-strain data up to  = 0.9. The strain energy function for the isotropic hyperfoam 

model was presented in Equation (‎2-11). The automated fitting algorithm implemented in 

Abaqus for the hyperfoam model has been used to determine the model parameters [35]. In 

this algorithm, the coefficient, i , is related to a nominal Poisson’s ratio, v , (see Equation 

(‎2-14)), which implies that ABAQUS needs a single value of the Poisson’s ratio to fit the 

stress-strain curves. However, the data in Figure ‎4-18a and Figure ‎4-18b demonstrate that 

for this foam the Poisson’s ratios all depend on the compressive strain. Two sets of 

parameters are used to fit the stress-strain curves in this work. In the first attempt, the 

number of parameters is minimised. Only 2 terms are used (i.e., N = 2) and the Poisson’s 

ratio is assumed to be zero [4]. The parameters are listed in Table  4.1 and the fitting results 

are shown in Figure ‎4-18a. The relative root mean square error, *R, in Table  4.1 indicates 

the fitting is not very close, due to the limited number of terms. To achieve a better fit, 

more terms are used (i.e., N = 5 or 6). For the cases of 0° and 90°, the average values of 

ptv   = 0.14 and ptv  = 0.068 (across strain ranging from 0 to 0.9) are used as the values of 

the Poisson’s ratio, respectively. For off-axial compression cases, the Poisson’s ratio is 

determined by a “trial and error” method. The obtained parameters as well as the relative 

root mean square error are listed in Table  4.2. Although including more terms leads to a 

better fit, the improved fit comes at the cost of predicting a negative value of the small 

strain shear modulus, Equation (‎2-12), which is clearly not realistic and means that the 

condition 0i  given in Equation (‎2-12) is not strictly enforced by the fitting algorithm. 

This is an issue has been highlighted previously by Mills [4] who noted that that while 

many published papers use Ogden’s model with N = 2 for fitting uniaxial compression 

data, together with a positive shear modulus to fit the stress-strain data, curve fitting can 

nevertheless be improved by using N > 2. However, in this case the predicted stress-strain 

curve usually lies far from the actual response when extrapolating beyond the experimental 

data range used for the fit, especially if a negative shear modulus is used. It is noted that 



CHAPTER 4 MACRO-MECHANICAL MODELLING OF FOAM                                134 

 

 

the isotropic hyperfoam model used here is an elastic model and therefore it cannot predict 

the foam’s unloading response, which is different from the loading path. Some researchers 

in the literature employed the crushable foam model in ABAQUS to simulate the 

loading/unloading cycle (e.g. [158]).  

While the isotropic hyperfoam model can be used to fit individual stress-strain curves, it is 

clear that a single parameter set is unable fit all the experimental dataset produced at 

different compression rotation angles and different rates. To do this would require a visco-

hyperelastic transversely isotropic constitutive model, such a model is not yet available in 

the commercial FEA code used in this investigation. 

 

Table  4.1. Parameters for the hyperfoam model, N=2 and zero Poisson’s ratio: Uniaxial 

compression test. 

Cube Angle 0
o
 22.5

o
 45

o
 67.5

o
 90

o
 

Parameters      

1 (Pa) 711022 811243 754632 552101 470382 

1  18.6934 22.0534        25 25 25 

2 (Pa) 3302.89 4046.29      8546.15 12858.7 14107.5 

2
 -0.840163 -0.711396 -0.329322 -0.127271 -0.149412 

*R 10.49% 12.83% 4.52% 5.05% 4.95% 

 

*
R: Relative root mean square error 
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Table  4.2. Parameters for the hyperfoam model, N= 5 or 6: Uniaxial compression test. 

Cube Angle 0
o 

22.5
o 

45
o 

67.5
o 

90
o 

Parameters      

1 (Pa) 2.089659E6 876434 908555 3.055548E6 3.753758E6 

1  3.91570 4.46131 5.77016 6.34324 6.19758 

2 (Pa) -5.623113E6 -2.657494E6 -2.752651E6 -1.473845E6 -5.29943E6 

2
 5.64197 7.54975 9.34026 4.04149 9.55526 

3 (Pa) 4.271477E6 2.694941E6 2.696404E6 -4.1506680E6 -1.614123E6 

3  
7.79685 12.1958 14.6259 10.6011 4.04002 

4 (Pa) -128902 -131243 -204771 290180 308900 

4
 -1.45923 -1.85798 -2.09766 1.44267 1.89405 

5 (Pa) 4.16944 4063.21 111328 -82200.5 -50027.5 

5  
-4.68042 -2.76254 -2.25273 -1.52676 -1.20555 

6 (Pa)    2.986498E6 3.414045E6 

6  
   15.9782 13.5413 

Poisson’s ratio 0.14 0.12 0.1 0.08 0.068 

*R 9.28% 9% 2.03% 1.64% 2.36% 
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Figure  4-18. (a) Experimental uniaxial compression curves (continuous lines) predicted by 

compressible isotropic hyperfoam model fitted to the predicted curves with positive shear 

moduli (N = 2); and (b) Experimental uniaxial compression curves (continuous lines) 

predicted by compressible isotropic hyperfoam model fitted to the predicted curves with 

negative shear moduli (N = 5 or 6). 
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4.6. Summary 

In this chapter attempts have been made to predict the foams response using simple 

interpolation methods including the use of: (i) a rotation matrix to predict the stress-strain 

response at defined off-axis material orientations by interpolating between the stress-strain 

curves measured for the principal and transverse directions, (ii) a combined 

phenomenological/gas model to predict the uniaxial compression stress-strain curves for 

strain rates 0.016s
-1

, 0.16s
-1

 and 1.6s
-1

 by interpolating between curves fitted to data at 

0.0016s
-1

 and 5s
-1

, (iii) a microstructural anisotropy factor to predict the transverse 

response from the principal response, or visa versa and (iv) the rate of change of internal 

pressure to predict the response of different specimen sizes. The techniques provide 

reasonable predictions for the LDPE foam described in this research. The aim of this 

exercise was to help understand the mechanisms behind the transversely isotropic rate and 

size dependent response of the foam and also to find a convenient way to predict the 

behaviour of the foam under different loading conditions rather than having to measure the 

behaviour for each condition.  

Attempts to include the non-linear transversely isotropic loading response of the foam in 

FEA have been made though it is clear that current models implemented in the FEA code 

are not yet capable of modelling this non-linear, transversely isotropic rate and size 

dependent response. The development of such a continuum based model is beyond the 

scope of this thesis, instead subsequent work will focus on relating this behaviour to the 

detailed foam microstructure. Eventually, once a suitable continuum-based constitutive 

model is developed and implemented in a FEA code, the predictions of such a micro-scale 

model can be fed into the continuum-based constitutive model to create a fully predictive 

multi-scale model for non-linear TI rate dependent flexible foams. 
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Chapter 5. Modelling of Transversely Isotropic Closed-

cell Foam Using a Micro to Macromechanics Approach 

 

5.1. Introduction 

 

An important goal of the current work is to make macroscale large-strain viscoelastic 

predictions for flexible closed-cell transversely isotropic polymeric foam using micro-scale 

information without recourse to macro-scale testing. Ultimately, the aim is to eliminate or 

at least reduce the amount of mechanical testing required to characterise a given material. 

For the sake of simplicity, the process involves the use of pre-existing analytical models 

wherever possible, resorting to numerical simulations only when analytical predictions are 

not adequate. The process can be summarised as follows: small strain behaviour is 

considered first, to do this the parameters of a linear elastic transversely isotropic 

constitutive model are determined using a combination of existing microstructural 

analytical models devised by Gibson and Ashby [1] and numerical (finite element) 

microstructural simulations based on Kelvin-cell geometries with periodic boundary 

conditions. Predictions of the latter are first fitted to isotropic analytical predictions by 

appropriate modification of microstructural parameters (such as edge and face thickness), 

and then the Kelvin model is ‘stretched’ in order to predict properties in the principal and 

transverse directions. 

Yield stresses in the principal and transverse directions are subsequently found using 

numerical and analytical techniques [1]. Next, the large strain response of the foam in the 

principal and transverse directions is determined by combining yield stress predictions 

with predictions of a simple gas pressure model [1, 4, 135, 159]. Finally, in order to 

evaluate the approach, predictions are compared against experimental results. This chapter 

consists of two main parts: the first focusing on small strain analysis, the second extends 

the predictions to large strain analysis. 
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5.1.1. Gibson and Ashby Analytical Model 

The most convenient approach to investigate the mechanical properties of foams using a 

multi-scale modelling strategy is through analytical modelling (see Figure  5-1) [1]. Here, 

simple closed form equations can be quickly employed to give first order estimates of the 

foam’s mechanical properties based on, for example, the properties of the constituent 

material, the gas pressure and the foam’s relative density. Such models exist for both 

isotropic and anisotropic microstructures. Here the models developed by Gibson and 

Ashby [1] are employed. In general such analytical theories are restricted to predictions of 

the linear elastic response and yield stress at the end of the small-strain linear regime [1].  

For example, using their small-strain analytical model Gibson and Ashby were able to 

predict the linear stiffness properties of orthotropic foams and their yield stress ratio, i.e. 

the yield stress in the principal direction divided by that in the transverse direction. In 

reality it is not possible to produce a regular Representative Unit Cell (RUC) for irregular 

foam structures as the latter includes a variety of cell shapes and sizes and a range of edge 

and face thicknesses and cross sections. However, this idealisation makes the modelling 

much more tractable for numerical and analytical analyses but also means that in order to 

provide reasonable results simple calibrate ( 5-1) on constants have to be included in the 

theory. These constants have already been determined by comparing the model prediction 

against experimental results for a variety of different types of foam (e.g. high or low 

density [1]) making the calibrated models both accurate and convenient to use. 

The simplest method of representing closed-cell foam is by using cubic cell models. 

Typical examples of isotropic and anisotropic foam cells are given in Figure  5-1a and 

Figure  5-1b showing cubic and cuboid cell models for closed-cell foams [1]. The isotropic 

foam cell model is assumed to represent the mechanical response of the foam in the 

transverse direction. The cell models can be elongated in the foam-extrusion direction (see 

Figure  5-1b) in order to represent the mechanical behaviour in the extruded or principal 

direction (here corresponding to the y-direction). Using these models, Gibson and Ashby 

proposed a general method for understanding the foam compression mechanism [1]. 

Effectively, the mechanical properties of cellular solids are based on two separate factors: 

the first is the structure of the foam, i.e. cell shape and size, the relative density and the 
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solid material distributed between the cell faces and edges. The second is the property of 

the material in the cell edges and walls. 

 

 

                                        (a)                                                        (b) 

 

Figure  5-1.  (a) A cubic representative unit-cell model for closed cell foam, showing face 

thickness 
ft  , and the cell edge thickness 

et ; (b) An elongated cuboid representative unit 

cell with, shape anisotropy ratio r = 1.5 where lhr / [1] 

 

5.1.1.1. Determination of Small-strain Elastic Moduli for the 

Isotropic Case 

Linear elasticity is limited to small strains, normally 5% or less, and, according to Gibson 

and Ashby [1], in this region the bulk engineering stress in flexible closed-cell foams is 

dominated by contributions from three different stress generation mechanisms, namely: the 

gas pressure inside the closed cells, tension of the cell walls and bending of the cell edges. 

This is written mathematically in Equation ( 5-1) 
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( 5-1) 

where E and sE represent the modulus of elasticity of the foam and the solid material 

respectively.
gE represents the influence of the compression of gas inside the closed cells,

fE represents the effect of tension of the cell faces and eE represents the contribution from 
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bending of the cell edges. Also, 1C  is a constant of proportionality (or calibration factor) 

of the material and equals 0.69 for relative densities less than 0.2. The constant of 

proportionality was determined by fitting to experimental data. R is the relative density of 

the foam,   is the volume fraction of the solid contained in the cell edges and therefore

1 for open-cell foams whereas 1  for closed-cell foams. For closed-cell foams, 

)1(   is the fraction of the solid contained in the cell faces. The instantaneous volume of 

the foam during compression can be predicted using Equation ( 5-2) 

)21(1 v
V

V

o

   
( 5-2)

 

The initial contribution due to the compression of gas, gE  in Equation ( 5-1) is calculated 

simply by assuming that the gas inside the cells is excluded from the volume occupied by 

the bulk of the solid cell edges and walls and so its volume decreases from 
g

oV to gV  which 

can be calculated using Equation (‎5-3) 

R
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V
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1

)21(1 
 

( 5-3) 

 

where 33.0v , according to experimental data presented by Gibson and Ashby [1]. The 

influence on the modulus of elasticity is computed from Boyle’s law using Equation ( 5-4). 

Here 
op  is the pressure of the gas inside the closed cell and assumed to be equal to the 

atmospheric pressure. Also, the pressure after strain   is given by 

o

gog VppV   ( 5-4) 

The equation is valid only for isothermal conditions. The applied compression pressure is 

ato ppp   
( 5-5) 

The influence of the gas pressure on the modulus is found by 

ddpEg /  
( 5-6) 

which is typically negligible compared to the other influences for small compressions. The 

main influence on E results from the membrane stress in the cell faces, Ef and bending of 

cell edges Ee [1]. When closed-cell foams are subjected to uniaxial compression the 

bending deformation of the cell edges leads the cell faces to stretch normal to the 

compression loading. The applied force, F, causes the cell edges to bend (see Figure  5-2). 
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The stretching is nearly linear elastic with the applied force, therefore the work done F
2

1  

is equivalent to the force causing the cell edges to bend and cell faces to stretch. The 

bending force, Fb, is given by 

2

2

1
SFb   

( 5-7) 

where the stiffness of the cell edges, S, is given by  

3/ lIES s  ( 5-8) 

here, l is the cell edge length, I is the second moment of area of the edges and  

4

etI   ( 5-9) 

Also, the force due to stretching of the faces is 

fss VEF 2

2

1
  

( 5-10) 

here  is the strain resulting from stretching of cell faces and the volume of solid in a cell 

face is Vf 

ff tV 12 [1] ( 5-11) 

Where  

/l    ( 5-12) 

and tf is the face thickness. Thus, the modulus of elasticity of the cell faces is given by 

)(
l

t
EE

f

sf   
( 5-13) 

 and the modulus of elasticity of cell edges is given by  

)(
4

4

l

t
aEE e

se   
( 5-14) 

where a and   are simply more empirically determined constants of proportionality 

proposed by Gibson and Ashby [1]. The latter are estimated by one experimental 

measurement, thereby ‘calibrating’ the result for all other relative densities of the same 

kind of foam. A similar method, again from [1], leads to an expression for the shear 

modulus Gtt. Mechanical deformation under an imposed shear load is again described by 

the cell wall bending. The shear modulus for open-cell foam is given as: 
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( 5-15) 

The experimental data suggests 
3C  is approximately equal to 3/8 and the shear modulus 

for closed-cell foams can be written as 
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( 5-16) 

The influence of gas pressure disappears under pure shear as the latter does not produce 

any change in volume. Also, the wall tension effects depend on the value of , i.e. the 

maximum influence of wall tension occurs when 0  closed-cell (in this case all material 

will be on cell walls). On the other hand the tension of cell walls can be ignored for open-

cell foams when 1 , see Equation ( 5-49). 

 

 

 

 

 

 

 

Figure  5-2.  Stretching of the face of closed-cell foam during compression. 
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5.1.1.2. Determination of Yield Stress and Strain for Isotropic 

Case 

The Gibson and Ashby model has also been used to calculate the large-deformation 

response for closed-cell foams. When the compression strain of foam becomes large 

(larger than a value of about 0.05), the cell faces and edges buckle in the loading direction, 

see Figure  5-3. Consequently edge buckling can be described by Euler’s equation 

 

2

22

l

IEn
F s

crit


  

( 5-17) 

where the parameter n  characterises the degree of freedom at the end of the column. 

Increasing compressive deformation of the foam causes edges buckling and starts the 

elastic collapse of the foam.  The elastic-yield stress 
el  of the foam is 

2/ lFel   ( 5-18) 

 

also, from the Equations ( 5-17) and ( 5-18) the elastic-yield stress is given as 

42 l

IE

l

F scrit
el   

( 5-19) 

 

also from the Equation ( 5-9)  

22 / ltR  ( 5-20) 

 

The elastic-yield stress for open cell foam can be written as: 

2

2RCEsel   ( 5-21) 

The constant, 2C  is estimated from experimental data to be approximately 0.05. 

Gibson and Ashby considered the gas in the closed-cells foams subject to compressive 

loading. The gas in the closed-cells will be compressed and the internal pressure can affect 

the elastic yield stress. The initial gas pressure is po and the atmospheric pressure is pat. In 

the case of po> pat, the pressure difference po-pat causes tension between cell faces and cells 

edges. They cannot buckle until the applied loading has exceeded both the buckling load 
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and the tension load of the cell edges is described by Equation ( 5-22)  (here face effects are 

ignored). So the elastic-yield stress for closed-cell foams can be calculated using 






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pp
RE 205.0  

( 5-22) 

In man-made foams, po is normally approximately equal to pat and the gas has an 

insignificant effect on the yield stress [1]. Thus, at this point all the parameters for 

isotropic foam can be related back to the properties of the constituent material and the 

foam microstructure. 

 

 

 

 

 

 

 

 

 

      

Figure  5-3.  Elastic buckling in the cell walls of a closed cell. 
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5.1.1.3. Determination of Small-strain Elastic Moduli for the 

Transversely Isotropic case 

In order to calculate the modulus of elasticity in the principal direction, statistical 

measurements should be used to determine the anisotropy ratio r, where r = lh /  and h and 

l  are the average values of the principal cell dimensions, see Figure  5-1b, which illustrates 

an idealised unit closed-cell. The principal direction is parallel to the y direction. Let the 

modulus of elasticity of foam in the principal direction be pE , and that in the transverse 

direction is 
tE . To compute the ratio tp EE / , the anisotropy ratio, r , can be employed. 

Figure  5-1b illustrates how the unit cell is stretched. The technique of calculating the 

modulus, described in the previous section can be slightly changed to analyse the 

transversely isotropic case [1]. Compression loading in the y direction is supported by four 

beams of length, h . The compression force, F  on a single beam is proportional to 2hp , 

where p  is the stress in the principal direction. The deflection, p , for a single beam is  

IEFh sp /3  ( 5-23) 

The compression strain p  is calculated from the deformation p using 

hpp /   ( 5-24) 

so from these the 
pE  can be found from 
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( 5-25) 

Compressive loading in the transverse direction is supported by two beams of length h and 

two beams of length l , see Figure  5-1b. The displacement, 
t , of both groups must be the 

same; consequently, the compression loading supported by the longer beams is less than 

that supported by the shorter beams. The force in the longer beam is proportional to 

3/ hIEF sp   ( 5-26) 

 

and that in the shorter beam is proportional to 
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3/ lIEF st   ( 5-27) 

 

The whole applied force in the transverse direction Ft can be obtain from  

hlF tt   ( 5-28) 

and the strain
t by 

ltt /   ( 5-29) 

Rewriting the equations ( 5-14), ( 5-25) to ( 5-27) the elastic modulus in transverse direction 

tE can be calculated from the expression 
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( 5-30) 

where 
elt    

Results of the analysis for the transverse direction, the isotropic analysis of the previous  

)/( ttpptpt EvEv   ( 5-31) 

 

section, are reused in this case. Rewriting both equations ( 5-25) and ( 5-30) with lhr / , 

the Young’s modulus is now calculated as a function of the anisotropy ratio: 
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( 5-32) 

Clearly the Young’s modulus ratio is significantly influenced by the shape anisotropy ratio, 

r. In the case of closed-cell foam, the face tension stresses are important, and contribute an 

additional contribution given as; 
)/1(1

2
)1(

r

r


 . The modulus of elasticity in the 

principal direction can be calculated from the modified expression 
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( 5-33) 

 

The Poisson’s ratio of the foam is calculated as follows 
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( 5-34) 



CHAPTER 5 MODELLING OF TRANSVERSELY ISOTROPIC CLOSED-CELL FOAM 

USING A MICRO TO MACROMECHANICS APPROACH                                         148 

 

 

A similar analysis for calculating the shear modulus, ptG results in the expression 

rG

G

tt

pt


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1
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( 5-35) 

 

The analytical model of Gibson and Ashby [1] is used to predict 
tE and 

ttG  in Equations 

( 5-1) and ( 5-16), i.e. the properties in the plane of isotropy, using a first estimate of
tt . 

The predicted values of 
tE and 

ttG are then used to obtain a revised estimate of
pt . 

Here the influence of the initial relative density of the foam, R  on the mechanical 

properties of the regular foam model was studied. In Figure  5-4 the predicted modulus of 

elasticity for the transverse and principal directions are displayed as function of the relative 

densities. Both curves show a similar general path, with increasing relative density. This is 

due to the fact that by increasing relative density, the edge diameters and cell face 

thickness increases. As expected, the curve for modulus of elasticity in the principal 

direction lies higher than the curve for the transverse direction. Also, it is clear that as the 

relative density increases, the difference between 
tE and pE  also increases. 

The second set of calculations carried out from the Gibson and Ashby models are the shear 

moduli in the principal and transverse directions. Figure  5-5 shows the influence of relative 

density ranging from 0.01 to 0.4 for both directions. The variation of the shear modulus 

with relative density shows a similar general path with increasing relative density as the 

compressive modulus. It is interesting to note that the curve for shear modulus in the 

principal direction lies lower than the corresponding curve for the transverse direction.  

Comparison between the experimental uniaxial compressions tests (see Table  5.1), shear 

tests and results predicted by the Gibson and Ashby analytical model gives poor 

agreement. The result suggests that, despite providing reasonable success in predicting the 

transverse properties of the foam, the analytical model cannot accurately predict either pE  

or ptG , see Equations ( 5-25) and ( 5-35). In order to obtain these elastic parameters 

alternative methods must be used. In this investigation, finite element modelling is 

employed. 
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Figure  5-4.  Variation of modulus of elasticity with relative density for a cubic and an 

elongated cuboid unit cell (curves predicted with r=1.2). 

 

 

 

Figure  5-5. Variation of shear modulus with relative density for a cubic and an elongated 

cuboid unit cell (curves predicted with r=1.2). 
 

 

Table  5.1. Experimental and predicted results obtained using G&A model for the 

properties of LDPE foam 
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Parameters 
pE  tE  

ptG  ttG  

Experimental (MPa) 2.039   0.363 0.741   0.157 0.7 0.34 

Prediction G&A 

model (MPa) 

1.38  

 see Eq ( 5-33)  

0.749  

see Eq ( 5-1) 

0.301 

see Eq ( 5-35) 

0.33  

see Eq ( 5-16) 

 

 

5.1.1.4. Determination of Yield Stress for Transversely Isotropic 

Case 

The ratio of the elastic-buckling stress, tp  / , can be calculated by extending the 

techniques of Section   5.1.1.2. For loading in the principal direction, see Figure  5-3, cell 

edges buckle when the compression loading on the walls grows larger than the value of 

Euler buckling load, given by: 

2

22
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IEn
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sp

crp


  

( 5-36) 

Also, Gibson and Ashby showed that the compression load can be written as 

2lF pp   ( 5-37) 

and the elastic-yield stress in the principal direction can be given as 

22
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IEnC sp

p


   

( 5-38) 

Gibson and Ashby proposed the rotation stiffness n for elastomeric honeycombs. They 

explained that n is related to the degree of freedom and cell shape anisotropy, the value of 

n = 0.5 indicates rotation is freely allowed and n = 2 indicate no rotation. Here, a rotational 

stiffness tn = 0.686 was assumed for regular cells and pn = 0.718 for elongated cells, as 

suggested by Gibson and Ashby [1]  where pn  characterises the rotational stiffness for the 

principal direction of compression loading, and 1C  is again a constant of proportionality of 

the material, which is estimated by fitting Equation ( 5-38) to the experimental data. For 

compression loading in the transverse direction, the buckling load is given by 
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( 5-39) 

and  

lhF tt   ( 5-40) 

Consequently, from above Equations ( 5-36) to ( 5-40) the ratio of yield stress can be 

defined as a function of the anisotropy ratio by 
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( 5-41) 

Again, the influence of R on the elastic yield stress in transverse and principal directions is 

investigated. Figure ‎5-6 shows how the elastic yield stress of the foam model under 

compression loading varies with the relative density. The relative foam densities used 

ranges between 0.01 and 0.4. A first indication from this figure is that increasing the 

relative densities causes an increase in the elastic yield stress in both directions. Moreover, 

this causes the difference between 
t  and

p  to increase. The curve for the principal 

direction lies lower than the curve for the transverse direction.  

 
Figure  5-6. Variation of yield stress with relative density for a cubic and an elongated 

cuboid unit cell (curves predicted with r=1.2). 
 

Figure  5-7 shows the stress-strain curves for the load in the principal and transverse 

directions. The diagram shows both curves in the principal and transverse direction are 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

2

2.5

3

R

E
la

s
ti

c
 y

ie
ld

 s
tr

e
s
s
 (

M
P

a
)

 

 


t


p



CHAPTER 5 MODELLING OF TRANSVERSELY ISOTROPIC CLOSED-CELL FOAM 

USING A MICRO TO MACROMECHANICS APPROACH                                         152 

 

 

predicted using Gibson and Ashby’s model (see Equations ( 5-22) and ( 5-41)). The results 

show that the predicted curve in the transverse direction is very close to the experimental 

data, while it is not in principal direction. Also, the yield point is fitted to occur at a strain 

0.042.  

 

Figure  5-7.  Stress-strain curves show the predicted yield strain in the principal and 

transverse directions using Gibson and Ashby model. 
 

Table  5.2. Experimental and predicted yield stress and elastic yield strain obtained using 

G&A model for LDPE foam 

Parameters 
t  (MPa) p (MPa) 

t  p  

Experimental  016.00.026  014.00.061  007.00.032  012.00.031  

Prediction 

G&A model  

0.032 

see Eq ( 5-22) 
0.029 

see Eq ( 5-41) 
0.042 

see Figure  5-7 

0.042 

see Figure  5-7 

 

5.1.2. Kevin Numerical Model 

As discussed in Section  5.1.1 the Gibson and Ashby’s calibrated analytical model can 

predict the elastic and shear moduli, Poisson’s ratio and yield stress in the transverse 

direction for transversely isotropic foams with reasonable accurately. Also, this model can 

give good estimates for the Poisson’s ratio, ptv , in the principal direction. Furthermore, the 

previous investigations [1, 4, 76, 135] have shown that the model is reasonably accurate 

for predicting elastic mechanical properties (see Figure ‎2-7). However, in this work it has 
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been found to be much less accurate when predicting the elastic modulus pE , the shear 

modulus 
ptG  and the yield stress in the principal direction

p . For this reason, in this 

investigation Gibson and Ashby’s model has been augmented using a Finite Element (FE) 

model [160]. Numerical computation, using the FE method allows an alternative, more 

detailed strategy to investigate the relationship between microstructure and macro-scale 

response. Clearly the effort in generating and running a numerical simulation is greater 

than the use of the simple equations resulting from analytical models, though potentially 

results are more accurate and a greater range of parameters can be explored. One of the 

simplest but most useful numerical approaches to analyse the small strain response of 

foams has been to use the so-called, ‘Kelvin cell’ with Periodic Boundary Conditions 

(PBC) as a Representative unit cell (RUC) [4, 75, 89]. The three-dimensional Kelvin RUC 

has been used by several researchers to simulate the microstructure of foams [1, 4, 75, 76, 

86]. The structure for an isotropic Kelvin model consists of fourteen faces, where each unit 

cell has six square and eight hexagonal flat faces of equivalent edge lengths and cross 

sections, see Figure  5-8a. The advantage of this approach is that relatively few elements 

are required to make a RUC model using three-dimensional structural elements compared 

to a Representative Volume Element (RVE) approach, e.g. [86, 96-98, 135, 161]. Its 

disadvantage is that, like the analytical model, it is a major simplification of an actual 

random foam microstructure and has been found to over-predict the moduli of real foams 

[4, 72, 75, 84, 95].  

In this investigation, the aim is to calibrate the Kelvin-cell numerical simulation 

predictions to the predictions of the Gibson and Ashby analytical model. The latter 

produces reasonably accurate predictions in the transverse direction but not the principal 

direction. Once calibrated the Kelvin-cell model is extended by the microstructural 

anisotropy ratio, r. The elongated Kelvin model is then use to predict the foam response in 

the principal direction.  
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 (a)                                          (b) 

Figure  5-8. (a) Isotropic closed-cell Kelvin model (b) Anisotropic closed-cell Kelvin 

model. 

5.1.2.1. Analysis Procedure 

In order to determine the elastic modulus, in the principal direction,
pE , for the 

transversely isotropic case a simple procedure is proposed. This involves first generating a 

FE model (see Section  5.1.2.2) of a closed-cell isotropic and elongated Kelvin RUC, see  

Figure  5-9a and Figure  5-9b with a PBC imposed (see Section  5.1.2.3). The RUC 

dimensions are initially determined from the foam’s relative density (see Section  5.1.2.4 

and  5.1.2.5). Mesh refinement is conducted in Section  5.1.2.6 to ensure convergence of the 

results. As already mentioned, if the relative density is used to determine theoretical values 

for the dimensions of the Kelvin model, then the simulations tend to over-predict the 

moduli of random foams [1]. The size of this over-prediction depends on the detailed 

microstructure of the Kelvin cell (e.g. edge cross-section shape – see Section  5.1.2.7). 

Therefore, some means of calibration have to be used to ‘soften’ the Kelvin RUC if it to be 

used to predict the behaviour of real random foams. In order to maintain a fully predictive 

micro to macro modelling strategy, the calibrated analytical model (see Sections  5.1 

and  5.1.1.1) is used to calibrate the Kelvin RUC predictions. This leads to questions 

regarding the best method to artificially soften the Kelvin RUC, an issue addressed in 

Section  5.1.2.8. The details of fitting the Kelvin cell model geometry (e.g. edge cross-

section area and cells face thickness) are shown in Section  5.1.2.9. The calibrated Kelvin 

k 

k 

k 

k 

k 
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RUC is then elongated by extending the geometry in the principal direction, as shown in 

Figure  5-8b, to give the same anisotropy ratio, r, as measured from the image analysis of 

actual polymer foam (see Sections  5.1.2.10 and 5.1.2.11). The elongated (anisotropic 

closed-cell) Kelvin model is then used to calculate the elastic modulus, pE  and to calculate 

the shear modulus,
ptG  in the principal direction. 

5.1.2.2. Finite Element Model 

The commercial FE software Abaqus Standard
TM

 was used. Figure  5-9a and Figure  5-9b 

show FE models for the closed cell isotropic and elongated Kelvin RUC models using the 

same mesh density. Type S3R elements which model homogeneous thin shell structures 

were used for the faces of the RUC in which one dimension (the thickness) is significantly 

less than the other dimensions, and the stresses in the thickness direction are negligible. 

Also, type B31 Timoshenko beam elements of circular and rectangular cross sections were 

used to model the edges. This type of beam element is axial and shear deformable; thus, 

B31 element is suitable for modelling relatively strut members, in which both axial and 

shear deformations are important. In order to fix the two sets of elements together, tie 

constraints were applied to distinct nodes occupying the same co-ordinates, and the tie 

joint was implemented as a linear tie joint, which is a multipoint constraint accessed using 

the option ‘constraint-tie’ in Abaqus
TM

. When a contact pair uses the constraint-tie 

formulation, Abaqus
TM

 uses the undeformed shape of the model to determine which slave 

nodes are within the adjustment zone.   Abaqus
TM

 then adjusts these slave nodes' positions 

into a zero-penetration state and forms constraints between these slave nodes and the 

surrounding nodes on the master surface. The tie constraints are formed with a surface-to-

surface.  One important advantage of a constraint-tie formulation is the easy for changing 

in mesh density within the model, see [162].   
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                   (a)  

                  (b) 

Figure  5-9. FEM models of (a) Isotropic and (b) Anisotropic Kelvin closed-cell foam. 
 

5.1.2.3. Periodic Boundary Conditions 

The concept of a 3D periodic boundary condition (PBC) suggested by Thiyagasundaram et 

al. [89] is used in this work to simulate both isotropic and transversely isotropic foams. 

Generally speaking, in order to apply a PBC on a three dimensional structure, it is 

necessary that the unit cell structure is totally under a periodic mechanism, which means 

that the node on one boundary must have a counterpart at the same vertical (on top and 

bottom) or horizontal location along the opposite displacement and rotation (see 

Figure  5-10, where the sides: 1-2, 3-4 and 5-6 refer to right-left, top-bottom and front-back 

faces respectively). In this work, the procedure for implementing a 3D periodic boundary 

condition on the RUC model is described in below Section:  

5.1.2.3.1. Boundary Conditions during Compression and Simple 

Shear Simulations 

Periodic boundary conditions, as defined by Thiyagasundaram et al. [89], are applied on 

the six side edges of the Kelvin foam model. The periodic boundary conditions for uniaxial 

compression (in the y-direction) and shear test (in x-y plane) are defined in Equations 

( 5-42) to ( 5-48)  
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UUU               (Uniaxial compression test) 

 

( 5-42) 

2d

i

R

i

L

i UUU                (Shear test)    

 

( 5-43) 

3d

i

O

i

I

i UUU                (Shear test)    

 

( 5-44) 

B

j

T

j UU                           (Uniaxial compression test) 

 

( 5-45) 

R

j

L

j UU                           (Shear test)    

 

( 5-46) 

O

j

I

j UU                           (Shear test)    

 

( 5-47) 

1111 ,, ZYXd   

2222 ,, ZYXd   

3333 ,, ZYXd   

 

 

( 5-48) 

where U is the nodal displacement in the ith direction, the subscript i represents the degree 

of freedom with i = 1, 2,3 indicating displacements in x, y, z respectively and j = 4, 5, 6 

indicating the rotation about x, y, z directions respectively . Also, faces of model are 

described as: T= Top,  B=bottom, L=left, R= right, I=inside and O=outside of Kelvin model (See 

Figure  5-10). In order to implement the PBC, a Matlab code was used to generate the PBC 

equations for all beams elements, and then, the PBC equations were incorporate in an input 

file in the commercial FE software Abaqus Standard
TM

. 

The superscript indicates side number, and the points d1, d2 and d3 represent the three 

dummy nodes as shown in Equation ( 5-48). The displacement of dummy nodes as 

calculated by the FE model was used to compute the boundary conditions as presented in 

Equations ( 5-42) to ( 5-48) 
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                                    (a)                                                                    (b) 

 

Figure  5-10. Side numbering of (a) Isotropic and (b) Anisotropic closed-cell Kelvin model. 

 

5.1.2.4. Dimensions of Isotropic Kelvin Representative Unit Cell 

The mechanical response of foam depends very strongly on its relative density; thus, it is 

useful to define a relationship between the RUC dimensions and relative density, a task 

already accomplished by Gibson and Ashby [1]. The precise equation depends on the 

microstructure and the nature of the foam, including the dimensions of the structure and 

whether it is either closed-or open-cell. The equations used for calculating cell edge length, 

lk, are different for closed- and open-cell foams. The equations below, from [1], are used to 

calculate cell dimensions [1] 

kfkfek
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( 5-51) 

2/12/193.0 R
l

t

k

ke   
( 5-52) 

 

The subscript, k, refers to the Kelvin foam model. The cell face thickness is tfk, the cell-

edge thickness is tek, n is the average number of edges of each face in a unit cell, Zf is the 

number of faces joined per edge and f is the number of faces on a unit cell. These 

parameters are used to design a unit cell Kelvin foam model. For most true foams [1], 

microscopic measurements showed that  Zf = 3, Ze= 4, n   5  and f 14.The values of the 

model parameters calculated from Equations ( 5-49) to ( 5-52) are presented in Table  5.3. 

Note that the predicted dimensions, based on relative density R , are not expected to be the 

same as those measured using an optical microscope because the shape and distribution of 

the cells in the actual foam are very different to those in the Kelvin RUC. Details of the 

experimental method used to measure these quantities are described in Sections  5.1.2.7 

and  5.1.2.8. 

Table  5.3. Dimensions of Kelvin model closed-cell RUC predicted by G&A model [1] and 

measured using microscopy. 

Parameter predicted dimensions in (mm) measured dimensions in (mm) 

tek (edge thickness)  0.18 011.0055.0   

tfk(face thickness) 0.001 001.0003.0   

lk (cell edge length)  0.94 15.043.0   

 

5.1.2.5. Dimensions of Elongated Kelvin Repeat Unit Cell Model 

When the cell is stretched in the Y-direction to represent anisotropy, the angle defined by 

ak in Figure  5-8b is changed. In this case the height of the cell in the stretched direction is 

alh kk tan22  ( 5-53) 

while the width in the principal and transverse directions remains as 
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kk lw 22  ( 5-54) 

Thus, the measured anisotropy ratio, r, can be related to ak by the expression 

k

k

k a
w

h
r tan  

( 5-55) 

According to Lu et al [159] the relative density, R, of the elongated Kelvin model is related 

to the edge length
kl and the edge  thickness

ekt  by 

)4/(
22

1)1(2 2

2

2

ek

k

t
rl

r
R 


  

( 5-56) 

 

The lengths of beam elements in this elongated Kelvin RUC are longer than those placed 

along the edges of the isotropic RUC.  The change the edge length influences the thickness 

of the edges and faces if the relative density is held constant. 

5.1.2.6. Mesh Convergence of RUC 

In order to use the FE simulations to calculate reliable and accurate data the mesh should 

be sufficiently refined. The optimum mesh density is usually a compromise between 

accuracy and computational cost. In order to investigate mesh convergence, uniaxial 

compression simulations have been conducted using progressively finer meshes for an 

isotropic Kelvin RUC. The predicted elastic modulus versus number of elements used to 

model the RUC is shown in Figure  5-11. It can be seen that as the mesh density increases 

from 906, 1326, 1866, 2526, 5226, 6366 to 7626 elements, the shear modulus quickly 

converges to a unique value. In this work the optimum mesh density of 5226 elements is 

used to reduce the computational time while permitting validation of the 3D element RUC 

model with analytical and experimental tests. 
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Figure  5-11.  Number of elements to achieve convergence of response of isotropic unit cell 

model. 

 

5.1.2.7. Influence of Detailed RUC Microstructure and 

Boundary Condition 

It is known that the Kelvin model over-predicts the stiffness of real random foams [160], 

the degree to which the RUC over-predicts the moduli depends in the details of the Kelvin 

foam microstructure. For example, the edge cross section can be changed from circular to 

rectangular; the influence of this change on both compression and shear moduli is shown in 

Figure  5-12 and Figure  5-13. Note these changes maintain the relative density of the foam. 

The Kelvin RUC has also been analysed analytically [86] using a circular cross-section 

assumption and assuming the periodic boundary condition is performed according to 

Equation ( 2-29). Also, the coefficients of Equation ( 2-29), m  and 
m , are both taken to be 

3.  Predictions from this theory are compared against numerical predictions in Figure  5-12. 

The results show that the relative density has significant influence on the elastic modulus 

with different edge cross sectional geometry. Similarly, the shear modulus can be 

calculated using edges of either circular or rectangular cross section. The results shown in 

Figure  5-13 indicate that both the relative density and the edge geometry have a significant 

influence on the shear modulus, which is higher for the circular cross section than for the 
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rectangular cross-section of the same relative density. The circular cross sections have a 

higher second moment of inertia than the rectangular edge cross sections. Also, the effects 

of the moment of inertia appear more clearly in the shear test due to the strong bending 

loading which is more dominant than for the compression test (axial loading).  

 

Figure  5-12.  The Young’s modulus-relative density with different edges cross sections. 

 

 

Figure  5-13.  The shear modulus-relative density with different edge cross sections. 
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5.1.2.8. Methods to Artificially Soften the Kelvin RUC Response 

Due to its regular microstructure, the Kelvin model is known to over-predict the 

mechanical properties of random foams at small strains, see Section  5.1.2.7. Several 

methods to purposely soften the elastic response of the Kelvin RUC can be used. Some 

methods are demonstrated in this section and can be classed into material changes and 

geometric changes. Possible changes to material behaviour include decreasing the elastic 

modulus of the constituent material (see Figure  5-14), or changing the geometry by, for 

example, decreasing the thickness of the edges and/or faces of the RUC (see Figure  5-15 

and Figure  5-16). Ideally, the method of softening the RUC should be simple to implement 

and allow for a continuous decrease in the RUC stiffness, as opposed to a discrete change. 

Computational cost is not a particularly important issue here as the simulations are fast, 

usually completing in a matter of minutes. Nevertheless, improving the computational 

speed is a minor positive point. In this section three methods are used to fit the Kelvin 

RUC stiffness to predictions of the calibrated analytical model, see Section  5.1.1.1. Each 

method is evaluated in turn. The best two of these methods are then employed in predicting 

the elastic modulus, shear modulus and yield stress of a transversely isotropic Kelvin RUC. 

 

 

Figure  5-14. The 
tE elastic modulus of LDPE foam in transverse direction versus 

sE the 

elastic modulus of polyethylene at a constant relative density 0.043 of Polyethylene foam 

(for edges of Circular ross-section). 
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Figure  5-15. The 
tE elastic modulus of foam in transverse direction- 

ekt  edge thickness 

(for edges of circular cross-section). 

 

 

 

 

Figure  5-16. The 
tE elastic modulus of transverse direction versus

fkt face thickness (for 

edges of circular cross-section). 
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5.1.2.9. Fitting the Edge and Face Thicknesses Using Uniaxial 

Compression Tests 

In order to determine the compressive modulus in the principal direction,
pE , of the 

transversely isotropic Kelvin RUC with a shape anisotropy ratio of r, the following 

procedure was adopted and shows the method of calculating the compressive modulus 

values in the transverse and principal directions for a foam. The value of the fitted modulus 

in the Kelvin cell simulation
tE is 0.74MPa, and the value of 

tE can be calculated using 

Equation ( 5-1) is 0.749MPa; the predicted value of 
pE  from the Kelvin cell simulation is 

1.92 MPa, while the experimental value is 2.039 0.363 MPa. Finite element simulations 

are used to calculate the effects of cell wall thickness on 
pE
 
and 

tE . A unit cell with 

beam elements (type B31) representing its edges and elements (type S3R) representing its 

faces was modelled to determine the compressive modulus in the transverse and principal 

directions. The dimensions of the cell in the transverse plane were 2.67 mm x 2.67 mm, 

while the dimensions in the principal plane were 2.67 mm x 3.2 mm. The total number of 

elements was 183 beam elements and 5043 shell elements. 

The cross-section of the beam is modified and used as a uniform circular cross-section with 

a radius of 0.116mm in isotropic model, a radius of 0.1495 mm in the anisotropic model 

and cell face thickness of 1x10
-3

 mm in both planes. A linear elastic-isotropic material 

model was used for the cell edges and faces. Two mechanical properties (compress 

modulus and shear modulus) were used to characterise the solid material in the cell edges 

and faces. Figure  5-17 shows the uniaxial compression test for a typical isotropic and 

anisotropic Kelvin unit cell 
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Figure  5-17. Uniaxial compression tests for (a) isotropic and (b) anisotropic Kelvin model. 

 

5.1.2.10. Simulations of Uniaxial Compression Test 

In this section the effect of relative density on the foam’s modulus of elasticity is studied in 

detail. Figure  5-18 shows the effect of relative density on the modulus of elasticity in the 

principal and transverse directions. The modulus of elasticity in both directions for with 

relative densities ranging from 0.014 to 0.35, follow different general curves. The increase 

of modulus of elasticity in the principal direction is larger than in the transverse direction. 

This indicates that the mechanical response in the principal direction is more sensitive to 

       Direction of displacement 

Direction of displacement 
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relative density than in the transverse direction. Note that the thickness of the cell faces is 

kept constant in all the tests. 

 

 

 

 

Figure  5-18. Young’s modulus concentration versus relative density. 
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5.1.2.11. Shear Test Results 

The second series of numerical simulations is based on the proposed models (Figure  5-19) 

showing the method of calculating the shear modulus in the transverse and principal 

directions for a foam of relative density of 0.0734. Here the edge and face thicknesses, the 

number and type of elements used are the same as in the previous section.  

 

 

                                                                     

(a)                                                                   (b) 

Figure  5-19.  Shear test for (a) isotropic and (b) anisotropic Kelvin model unit cell. 
 

Figure ‎5-20 shows the effect of relative density ranging, from 0.0144 to 0.0785, on the 

shear modulus for both directions. The curves follow a similar general trend, with both 

increasing with increasing relative density. This shows that the relative density has a 

significant effect on the shear modulus. As expected, the curve for the shear modulus in the 

transverse direction lies lower than the one for the principal direction. 

Direction of displacement 



CHAPTER 5 MODELLING OF TRANSVERSELY ISOTROPIC CLOSED-CELL FOAM 

USING A MICRO TO MACROMECHANICS APPROACH                                         169 

 

 

 

Figure  5-20.  Shear modules with verses relative density for principal 12G  transverse 
23G  

Directions. 

 

The experimental and predicted values of the elastic constants are presented in Table ‎5.4. 

 

Table  5.4.  Experimental and predicted results obtained for the properties of extruded 

LDPE foams. 
Parameters Experimental (MPa) G&A model Error Kelvin model Error 

Ep 2.039  0.363 1.38(MPa) 32% 1.92(MPa) 5.84% 

Et 0.741   0.157 0.749(MPa) 1% ------ ------ 

p  014.00.061  0.029(MPa) 45.2830% 0.08(MPa) 31% 

t  016.00.026  0.032(MPa) 23% ------ ------ 

12G  0.7 0.3017(MPa) 56.90% 0.64(MPa) 8.57% 

23G  0.34 0.33(MPa) 2.94% ------ ------ 

2312 vv   
0.227 0.19 16.3% ------ ------ 

21v  
0.124 0.106 14.52% ------ ------ 

*Note error = (Experimental value- calculated value)/ Experimental value*100% 
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5.2. Large strain Modelling 

5.2.1. Predicting the Off-axis Stress-strain Curves 

Finally, the stress-strain curves for specified off-axis sample orientations are calculated. 

The calculated stresses in the principal and transverse directions are used to make the off-

axis predictions. The same procedure as that performed in Section  4.2 is employed. The 

rotational transformation used in Section  4.2 is used to calculate the yield stress of a linear 

compressible transversely isotropic material when loaded off-axis, see Equation ( 4-1) [36] 

where   

,/ pppE  tttE  /  ( 5-57) 

and the yield stress at any difiend angle is given by the expression 

elE   *)()(   ( 5-58) 
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
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)1)(1(

1
2)(

Rv

R
Pa


   for unloading stress 

( 5-59) 

 

Here the gas model was modified for predicting unloading behaviour of material (see 

Equation ( 5-59). The unloading stress-strain was predicted using a yield stress of the 

opposite sign.  The values of the yield stress in the Equation ( 5-58), gas model Equations 

( 2-33), ( 5-59) are then used to predict the stress-strain curves for loading -unloading in the 

principal direction and at any specified angle, as shown in Figure  5-21. 

 

5.2.2. Comparison between Model and Actual Foam 

Figure ‎5-21 shows a comparison between the experimental uniaxial compression test 

results and those predicted by the combined models (analytical, numerical and gas 

models); reasonable agreement in the results is observed. The predicted compression 

stress-strain curves are similar to experimental results until the strain is approximately 

equal to 0.5, (see Figure ‎5-21a-e). The reason for this is that the actual material has a 

variable Poisson’s ratio, while in this prediction the Poisson’s ratio value was constant 

value. Poisson’s ratio has a more significant effect for unloading curves than for loading. 
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High Poisson’s ratio used for unloading caused a significant reduction in the predicted 

strength of the material. No constitutive equation can be used for predicting Poisson’s ratio 

for large strain; currently we only have an equation to calculate Poisson’s ratio for small 

strain, which can be created using the shear modulus and modulus of elasticity. 

  

  

 
 

Figure  5-21. Experimental uniaxial compression curves (continuous lines) with different 

degre of rotation of principal axis together with predicted uniaxial compression curves 

(dashed lines) using equations ( 5-58), ( 2-33) and ( 5-59), (a) for 00 , (b) for 05.22 , (c) 

for 045 , (d) for 05.67 and (e) for 090 . 
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Figure  5-22 shows a comparison between Young’s modulus values at any specified 

orientation from the analytical and numerical models with experimental data for 

transversely isotropic foam. There is good agreement observed between experimental and 

predicted values. 

 

Figure  5-22. Comparison between modulus of elasticity predicted by analytical and 

numerical with experimental data. 
 

Figure ‎5-23 shows a comparison between Poisson’s ratios from experimental results with 

values predicted at any specified orientation using the combined analytical and numerical 

models. There is reasonable agreement noted between the predicted and experimental 

values. 

 

Figure  5-23. Comparison between Poisson’s ratio predicted by analytical model and 

experimental data. 
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5.3. Summary  

A micro to macro mechanics model technique for the stress analysis of transversely 

isotropic foam has been described, and a new method for adapting a micro to macro 

mechanical model has been proposed. Analytical models based on Gibson and Ashby’s 

closed-cell cube model were used to predict the linear-elastic parameters of foams for 

comparison with data from experimental tests. The modelling of closed-cell foam is based 

on a cubic closed-cell model and anisotropic closed-cell RUC, with r=1.2 from 

microscopic measurements, see Section  3.3.3.1. The isotropic model was used to predict 

the elastic parameter in the transverse direction, while the anisotropic numerical model was 

used to predict the elastic parameters in the principal direction. The analytical model does 

not well predict
pE , 

p or 12G thus, a numerical Kelvin cell RUC model was used to 

predict linear-elastic parameters in the principal direction. FE simulations of transversely 

isotropic foam based on the isotropic Kelvin closed-cell model were used in fitting results 

with analytical values in the transverse direction. Predictions were then made in the 

principal direction after stretching the cell using an anisotropy ratio of r=1.2. The isotropic 

Kelvin model was subjected to uniaxial compression and shear loading, as was the 

anisotropic model. Both models were employed using the same periodic boundary 

conditions. 

An examination of the effects of relative density on shear modulus shows there is some 

relation between relative density and the shear modulus in both directions, while the tests 

do not exhibit this for a change in relative density with modulus of elasticity, i.e. the 

anisotropic model is more sensitive to increasing the relative density than the isotropic 

model. Foam elastic constants predicted by the models shows generally reasonable 

agreement with experimental tests. The previous techniques are suitable for predicting 

elastic-linear parameters. To examine stress-strain curves for large strain the gas model 

initially introduced in Section  4.3 was employed. The latter is suitable for isotropic and 

anisotropic closed-cell foam thus, in order to obtain stress-strain curves at any difined 

orientation, the rotation transformation equation was used to calculate linear-elastic 

parameters at off-axis orientations, the gas model was then used to extend the stress-strain 

curves to large strain and predict the stress-strain data at specified angles. The predicted 
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stress-strain curves in the principal and transverse directions and at a difined angles exhibit 

good agreement with experimental data. The micro to macro mechanics model looks to be 

a reasonably accurate and reliable method. Analytical analyses and numerical simulations 

are applicable to predicting the mechanical behaviour of transversely isotropic 

compressible materials undergoing large deformations. 
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Chapter 6. Conclusions and Recommendations for 

Future Work 

 

Chapter 1 provided an introduction to the use of foams in modern day engineering and 

explained why foams have unique properties and how these unique properties are manifest 

in terms of their mechanical response. A brief overview of how foams are manufactured 

was given and the relationship between manufacture process, microstructure and the 

foam’s bulk mechanical properties were highlighted. 

 In Chapter 2, a literature review of relevant test methods used to characterise the 

mechanical behaviour of engineering foams was provided, along with explanations of how 

previous researchers have used the resulting test data to quantify, analyse and interpret 

foam behaviour. The response of real foams subject to various different loading conditions, 

as determined in previous work, was reviewed. Commonly observed behaviours include 

viscoelasticity and anisotropy; the latter is often associated with anisotropy at the 

microstructural level due to the influence of the manufacture process. An overview of the 

body of previously published work on both macro and micro-scale modelling of foams was 

presented. Attention was paid to work focusing on modelling both viscoelasticity and 

material anisotropy. 

In order to examine the ability and accuracy of existing models to capture the behaviour of   

transversely isotropic compressible viscoelastic foams, a melt-extruded LDPE closed cell 

foam was chosen as a representative benchmark material for subsequent characterisation 

and macro-scale modelling. In Chapter 3 the foam’s mechanical response was 

characterised using uniaxial compression and simple shear tests and as expected, was 

found to be highly transversely isotropic, compressible and rate dependent. The foam’s 

compressive modulus and yield strengths were found to be almost three times as high in 

the principal direction when compared to that in the transverse direction. The material 

response also showed a strong dependence on the size of the test specimen, with the largest 

specimens (80x80x80 mm
3
) stiffer and stronger than the smallest (10x10x10 mm

3
) by a 

factor of more than two times, presumably due to weakening of the foam structure near cut
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surfaces but also due to the effect of gas diffusion through the closed-cell foam. 

Measurements of the foam’s Poisson’s ratio using two different methods revealed a non-

linear relationship, with the property initially decreasing sharply with strain before 

steadying to an approximately constant value at large strain. Elastic and yield properties 

showed strong strain-rate dependence, increasing approximately linearly with the natural 

log of the strain-rate. The energy absorption efficiency of the foam also increased with 

strain-rate though the onset strain of densification was found to be relatively insensitive to 

changes in the strain rate. The foam also showed almost full strain recovery after unloading 

indicating an underlying elastomeric response, though the recovery was rate dependent and 

some degree of permanent damage remained even after long recovery times. Shear tests 

revealed strong dependence of the shear modulus with strain, with the latter rapidly 

decreasing with strain. Investigations into the foam microstructure using micro-CT and 

optical microscopy revealed significant anisotropy in the average cell geometry; as might 

be expected the cells were elongated in a preferred direction, corresponding to the flow and 

draw direction used in the foam’s manufacture. The anisotropy ratio of the cells was found 

to be around 1.2.  

In Chapter 4, attempts to predict experimental test data from a reduced data set were made 

using simple interpolation methods and empirical models. The aim here was to examine if 

the information gathered on rate dependence and anisotropy measured in Chapter 3 could 

be condensed into simple relationships. The first interpolation demonstrated how off-axis 

stress-strain data could be predicted from shear properties together with uniaxial data 

collected in the principal and transverse directions, using a simple matrix rotation. The 

method provided reasonably accurate predictions suggesting that a linear elastic 

transversely isotropic compressible model should be capable of providing accurate stress 

and strain predictions under small strains. A combined empirical / gas model was used to 

capture the rate dependence of the foam at high strains and again provided reasonable 

predictions when interpolating between curves produced at the highest and lowest strain 

rates. The success of this method showed that the foam’s strain-rate dependence followed a 

relatively simple semi- natural logarithmic relationship that could be easily fitted using an 

empirical model. The success of the gas model in predicting the stress-strain curve over 

large strains provided strong evidence to suggest that the stress at large strain is 
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predominantly due to the compression of gas trapped inside the foam. Perhaps surprisingly, 

it was found that the stress-strain curves in the transverse and principal directions could be 

predicted from one another by using a simple multiplication factor corresponding to the 

value of r
2
. The importance of the internal gas pressure on the foam’s stress-strain response 

suggested that the rate of change of internal pressure with volumetric strain could be used 

to shift stress-strain data to take specimen size dependency into account. Finally, a short 

investigation into the use of constitutive models available in the commercial FEA code, 

Abaqus
TM

, in representing the foam’s behaviour, was conducted. Comparisons showed that 

a linear elastic transversely isotropic compressible model could predict qualitatively 

similar kinematics when compressed under off-axis uniaxial compression, though as 

expected was unable to reproduce the non-linear stress strain response of the real foam. 

Use of an isotropic compressible hyperelastic model could reproduce the non-linear stress-

strain response of the foam under uniaxial compression for any given strain-rate or 

material orientation, though a new fitting process had to be used for each scenario, severely 

limiting the use of the model for most practical purposes.  

In Chapter 5 an established micromechanical analytical model formulated by Gibson and 

Ashby [1] was used to investigate the foam’s small strain mechanical behaviour by 

incorporating microstructural information gathered in Chapter 3. The isotropic version of 

their model was found to give reasonably good predictions for the response of the LDPE 

foam at small strain in the transverse direction, but the anisotropic version of their model 

was less successful in predicting the response in the principal direction. In order to 

reproduce the transversely isotropic response of the foam the analytical model was 

augmented by a numerical FEA approach based on a Kelvin Repeat Unit Cell (RUC) with 

periodic boundary conditions. Once again, only the small strain response was examined. 

The method involved first calibrating the predictions of the isotropic Kelvin RUC to the 

predictions of the isotropic Gibson and Ashby model using a ‘softened’ Kelvin RUC 

model. In this way, the numerical predictions were still derived from microstructural 

information rather than being fitted to experimental data. The Kelvin RUC was then 

elongated by the anisotropy ratio, r, to produce predictions in the principal direction. The 

resulting combined analytical/numerical predictions, which were effectively based entirely 

on microstructural information, produced good agreement with the experimental data for 

the foam’s small strain response. The same gas model employed in Chapter 4 was then
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used to extend the stress-strain predictions into the large strain region and once again 

produced good agreement across a wide range of strains.  

6.1. Future Work 

The mechanical behaviour of transversely isotropic compressible viscoelastic polymer 

foams is clearly very complex and there are currently no constitutive models available in 

the commercial FEA code used in this study that are capable of accurately describing the 

full complexity of the foam’s response. However, in Chapter 4, it was shown that much of 

the complexity can be captured by combining a few, relatively simple models. One 

exciting avenue for future work could be to use these combined simple models to 

interpolate the measured foam response from just a few measured experimental data to 

create a database of foam behaviour across a wide range of strain and strain-rates. A hypo-

elastic constitutive model, based on the linear elastic transversely isotropic compressible 

foam model could then be implemented in an Abaqus user subroutine (Umat or Vumat) 

and provide a vehicle by which the database of foam behaviours could be implemented in 

the FE code, i.e. the linear elastic parameters produced by the combined model could be 

fed into the code during the numerical simulation, according to state dependent variables 

such as strain and strain rate. In this way the parameters of the hypo-elastic constitutive 

model, which are constant in any given time step, would become both strain and strain rate 

dependent over the course of the simulation and could also be selected according to 

whether the foam was under the conditions of either loading or unloading. A similar 

approach was demonstrated recently by Harrison et al. [163] when modelling the large 

deformation mechanics of advanced composite materials during forming. More 

ambitiously, rather than interpolating the database of material behaviour from a reduced 

number of limited experimental test data, as in Chapter 4, the database could instead be 

predicted from microstructural models, as in Chapter 5. 
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