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Abstract 

The aim of this work is to explore the potential and to enhance the capability of evolutionary 

computation in the development of novel and advanced methodologies that enable control 

system structural optimisation and design automation for practical applications. 

Current design and optimisation methods adopted in control systems engineering are in 

essence based upon conventional numerical techniques that require derivative information of 

performance indices. These techniques lack robustness in solving practical engineering 

problems, which are often of a multi-dimensional, multi-modal nature. Using those 

techniques can often achieve neither global nor structural optimisation. In contrast, 

evolutionary mechanism learning tools have the ability to search in a multi-dimensional, 

multi-modal space, but they can not approach a local optimum as a conventional calculus- 

based method. The first objective of this research is to develop a reliable and effective 

evolutionary algorithm for engineering applications. 

In this thesis, a globally optimal evolutionary methodology and environment for control 

system structuring and design automation is developed, which requires no design indices to 

be differentiable. This is based on the development of a hybridised GA search engine, whose 

local tuning is tremendously enhanced by the incorporation of Hill-Climbing (HC), 

Simulated Annealing (SA) and Simplex techniques to improve the performance in search 

and design. A Lamarckian inheritance technique is also developed to improve crossover and 

mutation operations in GAs. Benchmark tests have shown that the enhanced hybrid GA is 

accurate, and reliable. 

Based on this search engine and optimisation core, a linear and nonlinear control system 

design automation suite is developed in a Java based platform-independent format, which 
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can be readily available for design and design collaboration over corporate Intranets and the 

Internet. Since it has also made cost function unnecessary to be differentiable, hybridised 

indices combining time and frequency domain measurement and accommodating practical 

constraints can now be incorporated in the design. Such type of novel indices are proposed in 

the thesis and incorporated in the design suite. 

The Proportional plus Integral plus Derivative (PID) controller is very popular in real world 

control applications. The development of new PID tuning rules remains an area of active 

research. Many researchers, such as Aström and Hägglund, Ho, Zhuang and Atherton, have 

suggested many methods. However, their methods still suffer from poor load disturbance 

rejection, poor stability or shutting of the derivative control etc. In this thesis, Systematic and 

batch optimisation of PID controllers to meet practical requirements is achieved using the 

developed design automation suite. A novel cost function is designed to take disturbance 

rejection, stability in terms of gain and phase margins and other specifications into account in 

the same time. Comparisons made with Ho's method confirm that the derivative action can 

play an important role to improve load disturbance rejection yet maintaining the same 

stability margins. Comparisons made with tkstr6m's method confirm that the results from 

this thesis are superior not only in load disturbance rejection but also in terms of stability 

margins. 

Further robustness issues are addressed by extending the PID structure to a free form transfer 

function. This is realised by achieving design automation. Quantitative Feedback Theory 

(QFT) method offers a direct frequency-domain design technique for uncertain plants, which 

can deal non-conservatively with different types of uncertainty models and specifications. 

QFT design problems are often multi-modal and multi-dimensional, where loop shaping is 

the most challenging part. Global solutions can hardly be obtained using analytical and 

convex or linear programming techniques. In addition, these types of conventional methods 
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often impose unrealistic or unpractical assumptions and often lead to very conservative 

designs. In this thesis, GA-based automatic loop shaping for QFT controllers suggested by 

the Research Group is being furthered. A new index is developed for the design which can 

describe stability, load rejection and reduction of high frequency gains, which has not been 

achieved with existing methods. The corresponding prefilter can also be systematically 

designed if tracking is one of the specifications. The results from the evolutionary computing 

based design automation suite show that the evolutionary technique is much better than 

numerical methods and manual designs, i. e., `high frequency gain' and controller order have 

been significantly reduced. Time domain simulations show that the designed QFT controller 

combined with the corresponding prefilter performs more satisfactorily. 

For nonlinear plants, the PID structuring and design strategy is extended to a nonlinear 

format. This is structured as a building block based on artificial neural networks. The 

automation design environment is employed to optimise the neurocontroller. Here, special 

learning is employed in the design of a feedforward path neurocontroller, in which the 

network can be trained from a plant model directly. The automated design suite also 

facilitates the new controller design directly from plant step response data without a model, 

where convolution is used. In order to arrive at the simplest structure of a network, growth 

training method is developed for the design suite. Through three applications, it is found that 

if there is a rate limiter in a practical control loop, the automatically designed neurocontroller 

outperforms an optimised linear controller; under amplitude limit, the linear controllers 

achieved from LQR are outperformed by the neurocontroller; and the neurocontroller can be 

trained to cancel steady state errors for different operating points of a nonlinear double tank 

system. They show the power of such feedforward path nonlinear controllers, whose designs 

are only enabled by the evolutionary computing base design suite. 
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Chapter 1 Introduction 

1.1 PID, QFT and Neural Control Systems 

The Proportional plus Integral plus Derivative (PID) controller is regarded as the "bread and 

butter" of control engineering (Levine, 1996). Such a 'three term' controller offers the ability 

to eliminate steady-state offsets of type 0 systems through its integral action and the ability to 

anticipate changes and to improve transient and stability through its derivative action. PID 

control is thus found sufficient for many control applications, such as process control, 

particularly when process dynamics are benign and performance requirements are modest 

(Levine, 1996; Astrom and Hägglund, 1995). Nowadays, PID modules are manufactured by 

the hundred of thousands yearly for stand-alone applications (Levine, 1996; Astrom and 

Hägglund, 1995; Seborg et al., 1989). PID control also forms an important ingredient of 

distributed control systems. For example, in process control, more than 95% control loops 

are of the PID or PI type. Combined with logic, sequential machines, selectors, and simple 

function blocks, PID controllers are used to build complicated automation systems for use in 

energy production, transportation and manufacturing (Levine, 1996). 

Although a PID controller shapes the overall frequency response, the proportional, integral 

and derivative actions offer limited capability in robust loop shaping for uncertain plants. 

Using an unrestricted transfer function, Quantitative Feedback Theory (QFT) provides a 

more sophisticated tool for robust loop shaping uncertain plants (Horowitz, 1972; Chait, 

1997), where plant dynamics may be described conveniently by its frequency response either 

as a fixed model, or as a model with parametric, non-parametric or mixed uncertainties. 

Similar to PID, QFT provides a familiar Bode-Nyquist margin based classical approach. An 

advantage of QFT over other design methods, such as H. and Linear Quadratic Gaussian 



(LQG) or Linear Quadratic Regulation (LQR) optimal control, is its ability to deal non- 

conservatively with different types of uncertainty models and specifications (Horowitz, 

1972; Chait, 1997). This is achieved by translating closed-loop performance specifications 

into QFT bounds at a set of frequency points. These bounds, typically displayed on a Nichols 

chart, serve as a guide to shaping the nominal loop, so that in a QFT design, one only needs 

to shape the nominal loop to satisfy those bounds. This method has already found 

applications in robust flight control systems design (Keating et. al., 1997; and Wu et al., 

1998) and active noise control in duct (Chai et al., 1997). It now attracts practising engineers 

in robust control system design and receives more attention in research (Levine, 1996). 

Another application-driven and rapidly expanding area of research is neurocontrol (Rogers 

and Li, 1993; Mei et al., 1998; Hrycej, 1994). Neural networks provide an innovative method 

to expand the MID idea to nonlinear control, although this has not been achieved widely 

elsewhere. Nevertheless, neurocontrol has shown incontestable success in solving practical 

control problems and forms one of the most significant applications of neural networks, 

because (Hrycej, 1997) 

(i) Applications such as filtering coincide well with linear solutions and 

approximations and are useful to controller synthesis; 

(ii) Applications such as pattern recognition and classification relate to both 

nonlinear problems and provide well-established special nonlinear algorithms 

that are useful to system identification; 

(iii) Almost all the difficult control problems are nonlinear, but few other 

nonlinear control design approaches are universally applicable in practice. 

Hence, neurocontrol also forms a major part of this thesis. 
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1.2 Problems in Designing PID, QFT and Neural Control Systems 

Despite its popularity, PID control is not always designed or used in the best way. In 

practice, the controllers are often poorly tuned (Levine, 1996). It thus becomes quite 

common that the derivative action is not used. Reasons are that it is difficult to tune the three 

coefficients simultaneously, and that the derivative action does not always stabilise the 

system (in contrast to the common conception) (Li et al., 1997). Therefore, in the past half- 

century, significant effort has been made in tuning of PID controllers. Among those, the 

Ziegler and Nichols (1942) methods are the most popular and benchmarked. Because they 

give too poor damping to the closed-loop system (/ström, 1991), many methods have been 

developed to improve them. The CHR method described by Chien et al. (1952) is a 

modification of the Ziegler-Nichols method. An analytical tuning method was first proposed 

by Newton, Jr. et al. (1957), followed by the X tuning method by Dahlin (1968) and Higham 

(1968). Tuning techniques developed by Smith and Murill (1966), Pemberton (1972), 

Hwang and Chang (1987) are also based on the analytical approach. Then optimisation 

methods to design PID controllers have been developed (Rovira et al., 1969; Lopez et al., 

1969; and Zhuang and Atherton, 1993). Zhuang and Atherton's tuning rules are also used in 

more recent papers (Majhi and Atherton, 1999; Atherton 2000). However, there are still 

defects in these methods, as Astrom et al. (1993) pointed out. There is too much transient in 

the designs given by CHR method and the load disturbance methods by Zhuang and 

Atherton (1995). Further, analytical methods and the set-point following methods by Zhuang 

and Atherton (1995) may lead to pole-zero cancellation. 

Since set-point weighting can improve set-point following (Hang et al., 1991), the problem is 

simplified as that of achieving the best load disturbance rejection under given stability 

margins. To tackle the problem, Ho et al., (1995) used the gain and phase margins as 
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specification to design PI controller for the widely used first order plus dead time system 

(FOPDT). Aström and Hägglund (1995) presented their designs using maximum sensitivity 

as specification. These designs have improved the performances largely, but there is still 

room to make the tuning better, because Ho's method does not include the derivative action 

and Aström and Hägglund's method does not work when the normalised delay is more than 

0.7 (, ström and Hägglund, 1995). There are two problems with these PID solutions: 

(i) These methods cannot take time domain and frequency domain requirements 

into account at the same time; 

(ii) There exists no global optimality in these methods. 

Optimisation on load disturbance rejection of PID controllers can be regarded as a loop 

shaping method. This means that under the frequency domain limits (maximum sensitivity, 

gain and phase margins), Integral of Time weighted by Absolute Error (ITAE) for load 

disturbance rejection is minimised. PID designs have now addressed gain and phase margins 

and maximum sensitivity for robust control, but their capability is limited by the PID 

structure. It is because that the PID control just has ̀ three term' to adjust and may too simple 

to control a complicated and uncertain process. 

Robust loop shaping can be achieved explicitly by QFT. In QF1' design, however, the loop 

shaping part can be challenging. Many methods have been proposed to solve this problem. 

Those include, for example, Bode integrals in an iterative approach to loop shaping by 

Horowitz and Gera (1980), and Ballance and Gawthrop (1991); Thompson and Nwokah's 

analytical approach (1994); an automatic technique by Chait (1997), which overcomes the 

non-convexity of the bounds on the open-loop transmission; and linear programming based 

optimisation approach to automatic loop shaping by Bryant and Halikias (1995) and Chait 

(1999). The existing approaches have their merits and deficiencies. Since the QFT design 

problem is often multi-dimensional and multi-modal, global solutions can hardly be obtained 
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using analytical and convex or linear programming techniques. Further, existing methods are 

often mathematically oriented and can impose unpractical or unrealistic assumptions. These 

often lead to very conservative designs, and appear engineer-unfriendly, losing its original 

attractiveness. 

Not that, although for both PID and QFT design, the ideas originated from loop shaping, 

there exist the following differences: 

(i) A PID controller is a fixed structure controller. A QFT controller can be of a 

high order, although a lower order is preferred; 

(ii) In the loop shaping process, the PID controller often pursues the best load 

disturbance rejection in time domain under stability margins in frequency 

domain, but the QFT controller pursue the lowest high frequency gain under 

stability, disturbance and tracking requirements, which are generalised in 

frequency domain. 

These differences call for different treatment in the methodologies developed in this thesis. 

Similarly, for neurocontrol system design, different treatment is also required. Since the 

traditional frequency methods do not apply to the nonlinear system, time domain 

optimisation is adopted. There exist some problems to be solved for neurocontrol. One of 

these is the optimisation of the controller to be extended in the feedforward path as in the 

same way as a conventional controller. Optimisation with back-propagation suffers from 

problems of local optimality, requirement of differentiable performance index and difficulty 

in structure optimisation. Another problem is how to achieve a simple network structure. 

These problems are to be addressed in this thesis. 

In general, if a plant is linear or has a good linearised model, a linear controller such as PID 

or QFT controller, can be used to achieve good results (Schultz et al., 1997), if the controller 
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can be designed optimally. When the plant involves with significant nonlinearities, the 

nonlinear building block based neurocontroller may be used in place of a PID or QFT 

controller. This thesis will address present problems and difficulties associated with 

designing these controllers for practical applications, where hard nonlinearities are common. 

1.3 Evolutionary Methodology for Control System Structuring and Global 

Optimisation 

Based on Charles Darwin's biological observations, the means of natural selection and the 

principle of survival-of the fittest have led to today's success in evolutionary computation. 

Evolutionary Algorithms (EAs) such as Genetic Algorithms (GAs), Genetic Programming 

(GP), Evolutionary Strategy (ES) and related life strategies have been developed upon the 

synthesis of natural evolution. They form the paradigm of evolutionary computation and 

have been found particularly effective in searching poorly understood, irregular and complex 

spaces for optimisation and machine learning (Fogel, 1995; Goldberg 1989; Holland, 1975; 

Michalewicz, 1994). Unlike conventional gradient-guided search techniques, which are a- 

priori, EAs are a-posteriori and require no derivative information at the search points. These 

algorithms are probabilistic in nature and, based on a-posteriori information obtained by 

computerised trial-and-error, require no direct guidance and thus no stringent conditions on 

the cost functions (Fogel, 1995; Michalewicz, 1994). Therefore, the index function can be 

constructed in a way that satisfies the need of engineering systems most and not the need of 

analytical or numerical tools to be employed. 

EAs exhibit global search capability by simultaneously evaluating performances at multiple 

points in the solution space. Supported by the Schema Theory (Goldberg, 1989a; Holland, 

1975), it has been shown that evolutionary algorithms offer an exponentially reduced search 
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time of the order of O(n' ), m< oo, compared with exhaustive search, which requires a total 

evaluation time of O(p"), where n is the number of parameters to be optimised in the search 

and p is the number of possible choices of each parameters. EAs can handle multiple 

objectives (MO) without the need to define a composite scalar objective function (Goldberg, 

1989a). The multiple search nature of reproductive and evolving population indicates that 

EAs are a natural parallel paradigm (Goldberg, 1989a; Li et al., 1997). Other features of EAs 

include robustness of search, capability to incorporate a-priori knowledge and adaptability 

(Goldberg, 1989; Li, 1999; Michalewicz, 1994). These non-deterministic algorithms could 

become even more reliable and accurate if interactive fine-tuning, such as simplex tuning, is 

incorporated (Feng et al., 1998). The evolution process can also be speeded up several times 

when existing design experience is included in the initial design 'database' for intelligent 

design-reuse (Ng, 1995). 

To summarise, EAs differ from conventional optimisation and search algorithms in several 

ways (Goldberg, 1989a): 

(i) EAs use probabilistic rules to make decisions. This has introduced 

intellectual capability in EAs and transformed a deterministic problem into a 

non-deterministic. 

(ii) EAs evaluate multiple points in the solution space simultaneously, instead 

of a single point. Therefore, it is capable of avoiding many local optima. 

(iii) EAs use pay-off (objective function) information to guide the search and 

thus they are more robust in achieving optimal solution compared with a- 

priori optimisation techniques. 

(iv) EAs have more computation burden and are non-deterministic methods. 
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In summary, EAs have been found to be very effective and powerful in searching poorly 

understood, irregular, complex or non-differentiable spaces for optimisation and machine 

learning (Goldberg, 1989a; Holland, 1975). They can thus provide feasible solutions to 

automated control system design. Control engineers' existing knowledge and experience can 

be included in the EAs to assist in fast design. This technique has been successfully applied 

to controller order reduction (Caponetto et al., 1994; Tan and Li, 1996); optimal control 

(Fleming and Fonseca, 1993; Hunt, 1992), linear control system unification and design 

automation (Li et al., 1995,1996b; Tan and Li, 1997), robust control and stability analysis 

(Dakev et al., 1995; Goh et al., 1996; Hunt, 1992; Murdock et al., 1991; Patton and Liu, 

1994), fault detection (Patton et al., 1995), fuzzy logic control (Karr, 1992; Linkens and 

Abbod, 1992; Ng, 1995), and sliding mode control (Li et al., 1996a; Ng, 1995). 

Although there exist many publications on PID control using EA-based design methods, 

most of them are for ad hoc tuning (Rennburg et at., 1998; Vlachos et al., 1998; Wang and 

Kwok 1992). In this thesis, a hybridised GA has been developed for systematically batch- 

optimising practical PID controllers for the popular FOPDT systems with a wide range of 

normalised delay. The index function can take the frequency and time domain information 

into account in the same time. 

With a view to tackling QFT control problems and orienting the design towards industrial 

applications, a computerised trial-and-error approach based on GAs has been proposed 

(Chen, Ballance, and Li, 1996). To further this research, the hybridised GA developed in this 

thesis is used to automate loop shaping for QFT controllers and prefilter design. 

Built from existing work on EA-based optimisation of neurocontrollers (Brune et al., 1998; 

Li and Häußler, 1996; Ng, 1995), a novel neurocontroller method is developed using the 

hybridised GA developed in this thesis. A novel nonlinear PID type neurocontroller is 
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designed to solve linear and nonlinear models based design problems. In particular, 

saturation and rate limits can be included in the designs. Comparison between the PID- 

neurocontroller and linear controllers is made in the thesis. 

It is known that what highlights implementation difficulties and design inconvenience is the 

mapping from mathematics of designed controllers to into machine-dependent code. Java 

(Symantec Corporation, December 1996 and Eckel, 1997), a new computer language 

developed for platform-independent object-oriented programming (OOP) overcomes this 

problem largely. It has been most successfully applied in Internet and multimedia, but its 

original aim was to provide platform-independent modular code for embedded micro- 

controller applications in domestic appliances/consumer electronics, such as cameras, 

videocassette recorders and washing machines. Development of a Java based hybridised 

program can lead to the development of a platform-independent optimal design and 

implementation design suite for optimal control system in one go. Hence, the Java 

technologies are adopted in the development of EA-based optimal control system design 

automation suite in this thesis. 

1.4 Contributions of This Thesis 

(i) A globally optimal evolutionary methodology and environment for control 

system structure selection and design automation is developed, which requires 

no design indices to be differentiable. 

(ii) This evolutionary environment is based on a hybridised GA search engine, 

whose local tuning is tremendously enhanced by the incorporation of Hill- 

Climbing (HC), Simulated Annealing (SA) and Simplex techniques. A 

Lamarkian inheritance technique is also developed to improve crossover and 

mutation operations in GAs. Benchmark tests show that this novel hybrid GA 
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is accurate, effective and reliable. 

(iii) Based on this search engine and optimisation core, the linear and nonlinear 

control system design automation suite is developed in a Java based platform- 

independent format, which is readily available for design and design 

collaboration over corporate Intranets and the Internet. 

(iv) Since EAs liberate the cost function or performance index used in the optimal 

control beyond the usual differentiable indices, specification based indices are 

investigated for practical control system designs. A thorough study on the 

merits and deficiencies of existing optimal control indices are carried out and, 

based on the findings, new indices are proposed, which can approach different 

damping ratios. Hybridised indices combining time and frequency domain 

measurement and accommodating practical constraints are proposed and 

incorporated into the design suite. 

(v) Systematic and batch optimisation of PID controllers to meet practical 

requirements is achieved using the developed design automation suite. New 

cost function is designed to take disturbance rejection, stability in terms of 

gain and phase margins and other specifications into account in the same 

time. The results have shown that 

0 The derivative action can play a role in improving load 

disturbance rejection while maintaining or improve stability 

margins; 

" Compared with Aström's (Levine, 1996) and Ho's (1995) 

method, the performances achieved by this method are much 

better not only in load disturbance rejection but in stability 

margins. 
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(vi) Further robustness issues are addressed by extending the Pm structure to a 

free form transfer function. This is realised by achieving QFT design 

automation. The index used in design can now describe stability, load 

rejection and reduction of high frequency gains, which has not been achieved 

with existing methods. The corresponding prefilter can also be systematically 

designed if tracking is one of the specifications. The design results have 

shown that 

9 Controllers achieved by the design automation suite can offer a 

lower order and a lower `high frequency gain' than the results 

published elsewhere so far (Chait et al., 1999; Borghesani et al., 

1995); 

0 The designed controller combined with the corresponding 

prefilter performs more satisfactorily in time domain. 

(vii) For nonlinear plants, the PID structuring and design strategy has been 

extended to a nonlinear format. This is structured as a building block based on 

neural networks. The automation design environment is employed to design 

and optimise the neurocontrollers. The design results have shown that 

0 The design suite make direct training of feedforward 

neurocontroller be possible; 

0 The neurocontroller can be designed directly from plant step 

response data without a model, where convolution is used; 

0 Growing method can optimise the structure and lead to the 

simplest; 



" If a rate limiter is required in a practical control loop, the 

designed neurocontroller outperforms an optimised linear 

controller; 

" The neurocontrollers can cope with amplitude limit better than 

the linear controllers achieved from LQR; 

0 Steady-state errors at different operating points of a nonlinear 

double tank system can be cancelled by a single trained 

neurocontroller. 

1.5 Contents of the Thesis 

In Chapter 2, GA is reviewed. The basic idea is illustrated by flowcharts and figures. 

Operators such as selection, crossover and mutation are explained. The theories behind GAs, 

such as the Schema Theory, niches and species are given. In addition to GAs, tuning 

methods, such as Simplex, SA and HC are illustrated for the development of the hybridised 

GA developed in the next chapter. 

In Chapter 3, the development of the hybridised GA will be given. A Lamarckian inheritance 

technique is developed to replace crossover and mutation. Details on coding system are 

given. Then benchmarks are proposed and many algorithms are compared by benchmark 

tests. Following the establishment of the hybridised GA, what is necessary to employ this 

method in the control system optimisation, is a proper index, which can describe 

specifications for practical applications. Usual specifications widely accepted by control 

practitioners are given first, followed by an investigation into relationship between basic 

indices and the specifications. This chapter also develops some new indices. Hybridised non- 

differential indices are also developed, which may be used in the GA-based automation suite. 
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Chapter 4 is concentrated with PID controller design and optimisation. Since there exist 

many tuning rules obtained by numerous researchers, the defects with the existing rules are 

investigated in this chapter. Then based on gain and phase margins methods (Ho et al., 

1995), batch optimisation of PID controllers by the design automation suite is carried. The 

results are compared with the method by Astrom (Levine, 1996). 

In Chapter 5, loop shaping for QFT controller design is developed. The process of designing 

evaluation function is given. Examples of optimisation are presented, together with 

comparisons. 

In Chapter 6, PID structure based nonlinear controllers are developed. The method of 

achieving the simplest neurocontroller is investigated. Examples of designing PID type 

neurocontrollers are given, especially with nonlinear limits, such as saturation and rate limits. 

A comparison with linear controllers is given to illustrate the usefulness of neurocontrollers. 

Conclusions are drawn and future work is suggested in Chapter 7. 

13 



Chapter 2 Background on Genetic and Evolutionary Algorithms 

2.1 Genetic Algorithms 

The most widely applied EA is the GA, a coding version of EAs (Goldberg, 1989a). For a 

control system design problem, the "genetic codes" enable possible representation and 

adjustment of the system structure in addition to parameters of structure in the same 

evolution process (Li et al., 1997). The algorithm uses three operators, namely, reproduction, 

crossover and mutation. Although another operator inversion may be used, it can be included 

by crossover and mutation (Michalewiz, 1994), and is thus not commonly used in a GA. This 

algorithm is based on an analogy to the genetic code in our own DNA structure, where the 

coded chromosome is composed of many genes, having 64 values (64=43 being the total 

number of different words permuted from 3 different alphabets out of A, C, G and T 

representing the 4 nitrogen-containing bases). 

The initial population of parameters sets can be generated by random candidate solutions 

including, although unnecessary, a-priori parameters, which may lead to a faster 

convergence (Ng, 1995). In a population of individuals, a GA conducts multiple searches in 

parallel by effective exchange of co-ordinate information (parameters) through crossover. At 

each stage of evolution, the parameter values are altered randomly by crossover and 

mutation. Then the performance of all candidate parameter sets are evaluated and the whole 

generation is guided a posteriori to evolve in a "survival-of-the fittest" manner. Hence 

superior parameter sets would receive more attention for replication refinement from 

generation to generation according to the Schema Theorem (Goldberg, 1989a). The basic 

operation of a simple GA is shown in Figure 2.1. To illustrate this, a GA example is shown 

in Figure 2.2 (Li, 1999b). The operation details of Figure 2.2 are explained in the Table 2.1. 
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Make initial population; 

Evaluate the fitness of all initial chromosomes 

Repeat 

Reproduce children from parents; 

Apply crossover and mutation with the children 

Extend the population with the children; 

Select fittest chromosomes of the extended population for next circle; 

Continue until satisfactory result found or maximum generation number 

reached; 

Decode the best chromosome found 

Figure 2.1 Basic operations in a simple GA 

Corn pu ter-Au tamated Deign by Artificial Ev du ti on 
! niliid/randum Final optimised Selections 

df-. ýigns designs 

: 12090217)x% 
/(P,: 4 01) 30 16 I p-60% 

t(P. I: 0 16 4I80 1)=35 - ). j'3) 

l: rulrraýir, ýiý 

Variation 

P,: 40030 161 
P2': 4u4) 30 061 f,: 41)03Oil 61 
PZ": 4013 0 801 

, 
ra 

Ps': 0164 1/ 61 1's: 016411801 

Figure 2.2 Genetic evolution of a parameter set 
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Table 2.1 Evolutionary process of a GA program. 

Operations Chromosomes Fitness 

Initial population: Example of coded Pi: 120902 17 
pi)=5% .f 

parameter sets forming an initial P2: 400301 61 f(p, ) 
= 60% 

population with size 3. The performance P3: 01641801 f (p, ) 
= 35% 

of each parameter set is simulated and 

then assigned fitness. 

Reproduction: A simple scheme is to P, ): 40030161 Evolution in progress 

allow the chromosomes to reproduce P2: 4003 01 61 

offspring according to their respective 
X 

fitness. Thus, here P, doesn't have P3: 0 16 4 18 01 

children. P2 has two, and P3 has one. 

Crossover: Some portion of a pair of P2: 40030161 No fitness calculation 

chromosomes is exchanged at the dotted P-, ': 4003 018 01 needed here. 

position randomly specified. P3': 01641: 16 1 

Mutation: The values of some genes of P,: 40030161 A new generation is 

some chromosomes changed. The value P, ": 40 13 080 1 now formed and the 

which has been changed as an example P3': 01641161 fitness needs to be 

is highlighted by an underline. evaluated for next cycle. 

The GA works with a systematic historical information exchange that utilises probabilistic 

decisions to locate new points in the search space with improved performance. In 

comparison with conventional search algorithms, GAs differ in several ways: 

I. GAs consider a population of points in the search space simultaneously, 

instead of a single point. Therefore, it is possible to avoid many local hills. 
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2. GAs work directly with a coding of the parameter set, instead of the 

parameters themselves. The method permits the optimisation of the whole 

parameter set simultaneously as concatenated coding is used. 

3. GAs use payoff (objective function) information to guide the search, not 

derivative or other auxiliary knowledge. Therefore, GAs are much more 

robust in achieving optimal solution. 

4. GAs use probabilistic rules to make decisions, not deterministic rules. This 

has introduced intellectual capability in GAs and transforms a deterministic 

non-polynomial problem to a non-deterministic polynomial problem. 

Under the general framework of GAs described by Holland, the performance of a GA in 

optimisation tasks is characterised by the following parameters: namely, the size of the 

population; the crossover rate; the mutation rate. These parameters are called the control 

parameters of a GA. However, they have pros and cons effects in the GAs given by: 

(a) Increasing the population size can increase its diversity and reduce the 

probability that the GAs converge prematurely to a local optimum, but it also 

increases the computional time required for the genetic algorithm to converge 

to optimal regions in the search space; 

(b) Increasing the crossover rate can introduce new and more search spaces 

through recombination but it also increases the disruption of good strings; 

(c) Increasing the mutation rate tends to transform the genetic search into a 

random search, but it helps to restore lost genetic material. 

The setting of these control parameters may depend on user's experience and prior 

knowledge about the problem on hand. This is a drawback of evolutionary algorithms. 

However, a common choice of the population size may be set to about 10 times the 
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complexity of the solution space and the crossover and mutation rates are usually set at 50- 

80% and 0.5%-2% of the population size, respectively. 

Various further enhancements of the simple GAs originally developed by Holland (1975) 

and later Goldberg (1989a) have been widely reported. Tournament, rank based and 

Boltzmann selection schemes (Baker, 1985; Sirag and Weisser, 1987; Srinivas and Patnaik, 

1994) have been proposed to replace standard roulette-wheel selection for better diversity 

and efficiency. Extensions of a single point crossover to two point, multiple point or uniform 

crossover have also been reported by Spears and DeJong (1991). Adaptive mutation and 

multiple range decoding schemes have been proposed (Ng, 1995), which need less prior 

experience in fixing the mutation rate and parameter range. Generation gap hypothesis 

(Grefenstette, 1986) was proposed to let the parents and children coexist in the same 

population and allow good genetic materials to be kept. Some of these techniques are 

detailed in the following sections. 

2.2 Genetic Operators 

2.2.1 Selection and Reproduction Schemes 

Reproduction is used once the initial population involving a fixed number of chromosomes 

representing candidate designs is formed. In the reproduction process, a new generation of 

population is formed by randomly selecting individuals from an existing generation, 

according to their fitness, to breed. This fitness test is accomplished by adopting a selection 

scheme in which higher fitness individuals are selected to contribute off-springs in the next 

generation. 
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Roulette Wheel Selection 

One of the standard selection methods is the roulette wheel selection scheme in the simple 

genetic algorithm (SGA) proposed by Goldberg (1989a). This is done by generating a 

probability that the individual in question can be selected to reproduce itself within the fixed 

size of population in each generation. Each chromosome is allocated a sector (slot) of 

roulette wheel with the angle equal to 2, r f; 
/f,, 

where f, is the fitness value a 

chromosome in population i and f, is the total fitness value of the population. A 

chromosome is selected for reproduction if a randomly generated number in the range of 0 to 

2n falls in the sector corresponding to the chromosome. The algorithm selects chromosomes 

in this fashion until it has generated the entire population of the next generation. Although 

this selection scheme is easy to implement, several relatively high fitness individuals are 

always being selected in each roulette spin and dominating the whole reproduction process, 

which could lead to a premature convergence in the evolution. A different problem also 

arises in the later stages of the evolution when the population has converged and the variance 

in fitness becomes small. In this case, the selection can fail to identify two chromosomes 

with small variance in fitness as they occupy almost the similar sector size. These problems 

can be overcome by using scaling mechanisms or other selection schemes such as rank-based 

(Baker, 1985) or tournament selection schemes (Srinivas and Patnaik, 1994). 

Rank-Based Selection 

In ranking selection (Baker, 1985; Goldberg, 1989a), the population is sorted according to 

objective function value. Individuals are then assigned an offspring count using a predefined 

function. This approach provides a consistent means for offspring allocation and avoids the 

scaling problems encountered in the roulette wheel selection. Two types of ranking, in the 
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form of arithmetic and geometric series ranking schemes respectively are illustrated in 

Figure 2.3. 

max 

Count 

min 

max 

Count 

min 

I Rank n1 Rank n 

(a) (b) 

Figure 2.3 Rank-based selection scheme: (a) Arithmetic series ranking; (b) Geometric 
series ranking 

Tournament Selection 

In tournament selection as shown in Figure 2.4, the individuals are divided into subgroups 

and individuals with the best fitness among the subgroups are selected for reproduction. The 

subgroups can be of any size within population. However, a usual choice is two or three for 

good diversity and preventing premature convergence of the GA. A tournament selection 

scheme has the following advantages over standard roulette wheel selection criteria (Srinivas 

and Patnaik, 1994): 

1. The scheme is deterministic; 

2. No scaling of fitness is required; 

3. Tournament size can vary; 

4. Good diversity and efficiency. 
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2.2.2 Crossover 

Randomly select 
pi, P4 

Select 

New P; 

individuals 

Select 
P4 

ment selection scheme with subgroups of size two 

Reproduction is in fact a selection process, in which two parents are chosen for mating and 

does not generate novel individuals in the population. Therefore, as in natural sexual 

reproduction, the crossover operator is used to produce offsprings that are different from 

their parents but inherit their parents' genetic material. Under this operator, a selected 

chromosome is split at the same crossover point. An example of this crossover operation is 

illustrated in Figure 2.2. In addition, this operation can also be applied to multiple random 

points. 

Based on the "Choice Theorem", Zhang (1995) has reported that the best crossover point 

within a chromosome of N genes is N/2, provided the co-variance of parent chromosomes 

is uniformly distributed. Obviously, it is not appropriate to fix the crossover point on the 

centre of a chromosome, since this can lead to chromosome stagnation as the population 

evolves. It is because that some genes are always involved in crossover operation, but others 

are not. Due to this, Zhang (1995) proposed a ring type "Sufficient Exchange" optimal 
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uniform crossover, in which crossover is performed by first joining together the first gene of 

the parent chromosomes with its last gene to form a ring structure of the chromosome. Then, 

the chromosomes are cut into two portions upon a randomly generated diameter and 

crossover is realised by exchanging the first or second portion of one parent chromosome 

with the first or second portion of another parent chromosome. An operation of the ring type 

crossover is shown in Figure 2.5. 

1011....... 01 ID 0011....... 0011 

11ý 0 I. Bb0 

01.. 10,, 0 
10 01 10 

Ab0A0 
01 01 00 01 

Figure 2.5 Ring type crossover 

2.2.3 Mutation 

Mutation in a chromosome is used to provide new genetic materials. This serves to keep the 

diversity in the population and searches the neighbouring solution space, leading to an 

optimal answer. In a binary GA, the mutated genes are randomly selected and subjected to 

inversion of its value. Decimal coding GAs can perform the mutation operation by changing 

the value of a gene randomly or to its adjacent value (Ng, 1995), which is shown in Figure 

2.2. An adaptive mutation scheme, which varies the mutation rate upon chromosome co- 

variance in an evolution strategy, has also been reported by Ng (1995). The mutation 

operator is implemented by the Boltzmann learning technique (Tan et al., 1995). 
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2.3 The Schema Theory 

The Schema Theorem was developed by Holland (1975), and offers a better understanding of 

the convergence process of a GA (Goldberg, 1989a; Holland, 1975). A schema is defined as 

a template describing a subset of chromosomes with similarities at certain chromosome 

positions. For example, in binary bit chromosome representation, a schema matches a 

chromosome if at every location in the schema a '1' matches a '1', a '0' matches '0', or a '*' 

("do not care") matches either. Using this notation the schema **I II describes a subset with 

four individuals {00111,01111,10111,11111). Using this notation, the schema's order is 

defined as the number of fixed positions within that schema, and a schema's defining length 

is the distance between the outer-most fixed positions (Sriniva and Patnaik 1994). In the 

earlier example **111, the schema has a building block of schema's length of 5, order of 3, 

and defining length 2, while the defining length of *I* 11 is 3. Within this schema space, one 

of these strings can be the optimal solution. According to schema theory (Goldberg 1989a), 

GAs find the solution by finding as many building blocks as possible, then recombining 

them together to give the highest fitness. The theory has also shown that a GA requires an 

exponentially reduced search time, compared with the exhaustive search that requires a total 

evaluation time of O(p"), with n being the number of parameters to be optimised in the 

search and p the number of possible choices of each parameters (Goldberg 1989a; Li et al., 

1997). 

2.4 Niches and Species 

For many optimisation problems there may be multiple, equal or unequal, optimal solutions. 

A simple GA cannot maintain stable populations at different optima of such functions. In 

case of optimal solutions with equal fitness, sampling errors in evaluation cause the 
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population to converge to a single solution. However, in the case of unequal optimal 

solutions, the population converges to the better. 

The availability of alternate solutions is of practical value, particularly in arriving at 'robust' 

or multiple solutions. To achieve this objective, it is essential to introduce a controlled 

competition among different solutions near every locally optimal region. This would 

maintain stable sub-population at such optimal regions. This could be achieved by 

incorporating concepts of 'niche' and 'species' in the GA search process. 

A niche is viewed as an organism's (individual member of the population) environment 

(fitness function) and a species is a collection of organisms with similar features. A simple 

GA with no niching converges to a single optimum although multiple peaks of equal quality 

may exist. Nature addresses such a problem through the formation of stable sub-population 

near global and local optima by introducing competition among different solutions near 

every local optimal region. 

Niching in general is implemented by using a sharing function. The sharing function creats 

subdivisions of the environment by degrading an organism's fitness proportional to the 

number of other members in its neighbourhood. In an n-dimension space, the amount of 

sharing contributed by each organism x; into its neighbour xj is determined by their 

proximity in the decoded parameter space based on a relative distance measure d; 3. Given n 

parameters of unequal boundaries over a parameter range [xtmn, Xmax], 

Xi -Xj Xk, 
i -Xk. j 

dij ==1 (2.1) 
Xk, 

max - 
Xk, 

min k=I Xk, 
max 

Xk, 
min 

where, without loss of generality, the distance is measured on the Euclidean metric and 

Xk,; = k-th parameter of individual i; 
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xk I= k-th parameter of individual j; 

Xk. n�x = Maximum allowable value for k-th parameter; and 

xk ,,,; n = Minimum allowable value for k-th parameter. 

For each d; j, the sharing function s(d; j) is given by the equation: (Goldberg and Richardson, 

1987) 

4dij)= i=(d, /'nuc)o) if d, <Q (2.2) 
0 otherwise 

Cshare is the limiting distance between the individuals to be shared and is usually fixed by the 

user at some estimate of the minimal separation desired or expected between each niche in 

the solution space. It can be calculated using (Krishnakumar and Satyadas, 1996) 

asnam = 05n (2.3) 

where n is the number of assumed peaks in the solution space, p is the number of parameters. 

co =1 in Equation (2.2) is suggested, since it allows equal degree of sharing between the 

neighbouring individuals. The shared fitness of the i-th individual is given as 

f. 
f we (2.4) share 

2.5 Encoding of System Parameters and Structures 

Encoding is the methods used to describe the system to be optimised by the chromosomes, 

which could be evolved by the evolutionary computations. Since in the optimisation process, 

it is desirable that both the parameters and structure of the system should be optimised. 
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Genetic Programming (GP) was invented under such a background, and it has been used for 

design of structures and parameters. It has been used to optimise structures and parameters of 

systems successfully in many cases. For example, filter designs are reported by Koza at al. 

(1997), and Uesaka and Kawamata (1999). However, it suffers from slowness of the 

evolutionary process. However, for many cases in engineering, GA could be used to deal 

with structure optimisation if a proper encoding method is employed. Kishida et al. (1996) 

have reported a GA optimisation of an HR filter. 

Another example is that of a feedforward neurocontroller which is optimised in Li and 

HäuBler (1997). In this case, all the weights of neurons are coded by two digits, and the 

coding of the hidden neurons is augmented by one additional digit (gene). For the odd values 

of this gene, the neuron and all of its local connections are interpreted as 'exist', and for the 

even values, they are not. When decoding, the existence of a hidden neuron is signalled by a 

flag that represents either "true" or "false" for its existence. Figure 2.6 shows the structure of 

such a chromosome, where wy is the jth digit of weight i. 

.... 
Will IWYn Ifas: ' lwn Iwvn 1Wioi `wioul Will IWiinlwal IWi+ul 

.................................................................................................................................................................. ................................. ........... 

............... r True/ Wl3i Wilu Wi4i 
1w141u1 : EH 

false """" 

Figure 2.6 Structure of a chromosome for encoding a hidden neuron 

2.6 Fitness Evaluation 

Fitness function in a GA is similar to the inverse of a cost-function in any optimisation 

technique. The choice of fitness function in a GA is very crucial. It reflects the objectives or 
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specifications of the application, which directs the searching process and thus the rate of 

convergence. Its applications in control system are discussed in Chapter 3. 

2.7 Paradigms Employed in Tuning 

Despite recent techniques developed to improve the performance of a GA as discussed in the 

previous sections, it is well known that existing GAs are weak in local exploration and thus 

poor in finding the exact optima at each generation (Kwong et al., 1995; Li et a!., 1996b; 

Michalewicz, 1994; and Tan, 1997). The underlying reason of this is that, in a GA, there is a 

lack of "biological diversity" resulting from interaction with the evolution environment. In 

addition, as mutation is usually set very low to avoid the GAs becoming random search, 

individual may become increasingly homogeneous as the GAs converge. Hybrid GA is 

suggested to incorporate traditional methods in local fine tuning (Tan et al., 1995 and Li, 

1999b). Here are these paradigms for tuning, among which simplex method is suggested in 

this thesis for tuning first. 

2.7.1 Local Simplex Method 

The downhill simplex method is due to Neider and Mead (1965). This method requires only 

function evaluations, not derivatives. It is not very efficient in terms of the number of 

function evaluations that it requires. Gradient guidance based methods are faster than this 

method in most applications. However, the downhill simplex method may frequently be 

simpler to apply to a problem whose computational burden is small. 

A simplex is the geometrical figure consisting, in N dimensions, of N+l points (vertices) and 

all their interconnecting line segments, polygonal faces, etc. In two dimensions, a simplex is 

a triangle. In three dimensions, it is a tetrahedron, not necessarily the regular tetrahedron. 
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More than three dimensions, It is super space. In general, we are only interested in simplexes 

that are nondegenerate, If any point of a nondegenerate simplex is taken as the origin, then 

the N other points define vector directions that span the N-dimensional vector space. 

For one-dimensional minimisation, it is possible to bracket a minimum, so that the success of 

a subsequent isolation is guaranteed. There is no analogous procedure in multidimensional 

space. For multidimensional minimisation, the best we can do is to give the algorithm a 

starting guess. That is, an n-vector of independent variables as the first point to try. The 

algorithm is then supposed to make its own way downhill through the unimaginable 

complexity of an n-dimensional topography, until it encounters a local minimum at least. 

The downhill simplex method must be started not just with a single point, but with N+I 

points, defining an initial simplex. If one of these points is thought as being the initial 

starting point Po, the other N points could be taken as 

P, =Po+Ae (2.5) 

where the eis are N unit vectors, and where X is a constant which should keep P; in a single 

modal area. Alternatively, having different .4 for each vector direction is allowed. 

The downhill simplex method now takes a series of steps. Most steps are just moving the 

point of the simplex where the function is largest ("highest point") though the opposite of the 

simplex to a lower point. These steps are called reflections, and they are constructed to 

conserve the volume of the simplex (hence to maintain its nondegeneracy). When it can do 

so, the method expands the simplex in one or another direction to take larger steps. When it 

reaches a "valley floor", the method contracts itself in the transverse direction and tries to 

ooze down the valley. If there is a situation where the simplex is trying to "pass through the 
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eye of a needle, " it contracts itself in all directions, pulling itself in around its lowest point. 

The basic moves are shown in the Figure 2.7. The flowchart is shown in Figure 2.8. 

Termination criteria can be delicate in any multidimensional minimisation routine. Without 

bracketing, and with more than one independent variable, There is no longer the option of 

choosing a certain tolerance for a single independent variable. One "cycle" or "step" of the 

multidimensional algorithm can be identified. It is then possible to terminate when the vector 

distance moves in a step that is fractionally smaller in magnitude than a small constant which 

could be chosen according to required accuracy or limitation of the computer. Alternately, 

when the decrease in the function value is fractionally smaller than machine constant, the 

search could be stopped as well. 

high 

low 
reflection 

ý`ý 

''.. '., 

reflection 
and extension 

multiple contraction 

Figure 2.7 Search operations in Simplex 

contraction 
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Figure 2.8 Flowchart of Simplex 

2.7.2 Non-Deterministic Hill-Climbing 

Hill-Climbing (HC) works by randomly choosing a few points to evaluate and from there 

adjusting some parameters in the combinational solution and re-evaluating. This is repeated 

until the best combination is found. This, however, may not necessarily be a very good 

combination and may lead to local optimum solution. This may be overcome by increasing 

the number of initial random points. Obviously, the greater the number of initial points the 

better the chances of obtaining a global optimum. Nonetheless, this increase in accuracy 

would be at the expense of evaluation time. This would make HC a poor method as it would 

not be any much better off than Exhaustive Search, since the time required to produce a 

global optimum solution would be long. 
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2.7.3 Simulated Annealing 

At the heart of the method, Simulated Annealing (SA) is an analogy to thermodynamics. 

specifically to the way that liquids freeze and crystallise, or metals cool and anneal. At high 

temperatures, the molecules of a liquid move freely with respect to each other. If the liquid is 

cooled slowly, thermal mobility is lost. The atoms are often able to line themselves up and 

form a pure crystal that is completely ordered. This crystal is the state of minimum energy 

for this system. The fact is that nature is able to find this minimum energy state for slowly 

cooled systems. However, if a liquid metal is cooled quickly, it does not reach this state but 

rather ends up in a polycrystalline or amorphous state having higher energy. So the essence 

of the process is slow cooling. The Boltzmann's energy distribution 

Pr ob(E) a exp(- E/kT) , (2.6) 

expresses the idea that a system in thermal equilibrium at temperature T has its energy 

probabilistically distributed among all different energy states E. Even at low temperature, 

there is a chance for the system to get out of a local minimum in favour of find a better one. 

The constant k is Boltzmann constant. 

It was Metropolis et al. (1953) who incorporated this theory into numerical optimisation. 

When offered some options, a simulated thermodynamic system is assumed to change its 

configuration from E, to E2 with probability 

p=exp{-(EZ-E, 
)/kT]. (2.7) 

Notice that if E, > E, , this probability is greater than unity, in such cases the change 

probability is arbitrarily assigned as p=1, i. e. the system always takes such an option. This 

general scheme is of always taking a downhill step while sometimes taking an uphill step. 
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Making use of the Metropolis algorithm for other than thermodynamic systems, the 

following elements are needed (Kirkpatrick et al., 1984): 

I. A description of possible system configuration; 

2. A generator of random changes in the configuration; 

3. An objective function E whose minimisation is the goal of the procedure; 

4. An artificial temperature parameter T and an annealing schedule which 

control how to lowering T. 

In general, this technique allows some inferior-neighbouring position to replace the current 

one for possible correct direction leading to the global optimum. But, as the artificial 

temperature decreases, the Boltzmann distribution concentrates on the states of lowest 

energy, which make SA almost the same as HC. This method, however, suffers the same 

disadvantages as in HC in its dependency on a set of good initial random points to obtain 

global optimum. However, this method is relatively better in its capability in getting a global 

optimum solution, as compared to HC (Kirkpatrick et al., 1984). 

2.8 Summary 

In this chapter, the basic process of evolutionary computing have been presented with a 

simple example. Advantages of non-binary coding strategy are also given. Then the 

operators including selection, crossover and mutation employed are given with some 

analysis. Selection techniques including roulette wheel selection, rank-based selection and 

tournament selection are illustrated. The theories behind crossover and mutation are also 

highlighted. An insight of convergence process is given through the schema theorem. These 

are followed by the niching method to improve GA in retaining local optimal. Defects in the 

GA are also pointed out. Mechanisms of some traditional paradigms, which could be 
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employed to tune GA, are discussed. Among of these, simplex tuning is suggested in this 

thesis, owing to its speed and accuracy for local refinements. 
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Chapter 3 Structuring and Global Optimisation Evolutionary 

Environment for Control Systems 

It is recognised that a classical GA can perform much better if some forms of local fine- 

tuning process can be incorporated (Renders and Bersini, 1994; Li et al., 1995 and Tan, 

1997). In this thesis, an EA strategy, which includes three tuning paradigms (HC, SA and 

Simplex), is developed. It can be considered as an improved or hybridised GA. However, it 

should be stressed that the new strategy is still based on search techniques inspired by natural 

science and most concepts, such as population, genes, etc, are retained in the hybridised GA 

for global and structural search. Here, the encoding and decoding facilities are improved 

from conventional GAs, and objective functions are designed to indicate control system 

performance. In this chapter, Section 3.1 presents a Lamarckian inheritance strategy and 

tuning methods to be used. Some details of the hybridised GA including coding strategy are 

given in Section 3.2. In Section 3.3, benchmarks are investigated, after which many EA 

methods are tested including the hybridised GA developed here. To use the hybridised GA 

environment to evolve control systems for best specifications, performance indices are 

analysed and new ones are developed in Section 3.4. Section 3.5 presents a summary. 

3.1 Improving Both Global Search and Local Tuning 

3.1.1 Improving Convergence by Lamarckian Inheritance 

In this work a Lamarckian inheritance technique is used to enhance evolutionary process 

achieved by crossover and selection used by general GAs, which have been discussed in 

Chapter 2. Figure 3.1 shows the mechanics of the process. In this scheme, 2 individuals 

(parents) are randomly selected from the population. Thereafter, an Inheritance Ratio (Li, 

1995; Tan, 1997) is computed, which is defined as: 
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Fitter Parent's Fitness 
Inheri tan ce Ratio = (3.1) Total Fitness of Parents 

This determines how much of the genetic materials from the fitter parent is imparted to the 

weaker in a random fashion at the same gene location. The fitter parent undergoes the tuning 

process, which will be presented shortly. The whole process continues until all the 

chromosomes within the population are evaluated. 

Inheritance Ratio=70% 

fitness = 0.7 fitness = 0.3 

I. Gene I No, 1. Gene I 

I. Gene 2 2. Gene 2 

L Gene 3 1. Gene 3 

. 
Gene 4 1, Gene 4 

1. Gene 5 2. Gene 5 

. Gene 6 I. Gene 6 

1. Gene 7 I. Gene 7 

1. Gene 8 2. Gene 8 

I. Gene9 1. Gene 9 

1. Gene 10 I Gene 10 

Parentl Parent2 

The inheritance site will be selected randomly 

Figure 3.1 Schematic of the Lamarckian inheritance scheme 

3.1.2 Mutation with HC or SA 

The inheritance operator itself is not sufficient for the hybridised GA to be complete. Yet 

other operators are needed with the GA to guide the search towards a global optimum. Thus, 

HC or SA are introduced. 

The scheme in this thesis allows the HC or SA to mutate at any random values negatively or 

positively at generations before half of specified total generation. After this cutoff, the 

perturbation is limited to only a 10% range, but still in both directions. This allows the fine- 
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tuning process to be achieved at later part of the evolution (assuming that convergence 

occurs in the midway of evolution). Unlike traditional GAs the mutation operator is omitted. 

However, HC or SA here act as a mutation operator, which similarly introduce new materials 

into the chromosome. Figure 3.2 shows a simple flow chart of Lamarckian Inheritance 

scheme. 

3.1.3 Fine Tuning with Simplex 

There is another tuning method, which is Simplex. Just like what is investigated in Chapter 

2, it is a reliable vehicle to approach a local optimal, if the initial points are put on a single 

modal. However, if the initial points in different modals, it could jump between the modals 

and spend much time in settling down. So in the hybridised GA, it is not used in every 

generation. Just when there appears a new better chromosome Simplex is applied to tuning it 

to a better optimal. The flow chart for one generation of the hybridised GA is given as 

initialization population 

random select two 
chromosomes 

carry out lamarkian 
inheritance 

mutation and tuning by HC 
(or SA) and Simplex 

no all chromosomes 
accessed 

yes 

produce next generation 

Figure 3.2 Flowchart of a hybridised GA 
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In summary, the evolutionary environment developed in this thesis is different from existing 

evolutionary methods in following points: 

I. Lamarkian inheritance is used to enhance evolutionary process achieved by 

crossover and selection in general GAs. 

2. HC or SA is used for mutation (For the application in Chapters 4 to 6, HC is 

used) and the Simplex is used for fine-tuning. 

Existing designs or designs from classical methods 

System Controller structure and parameters 
Control Optimising 

Simulation Vehicle 
(Eg. Codas, (Eg. GA) 

Matlab) 

Evaluated performance (eg. IAE) 

Figure 3.3 Basic structure of optimisation environment 

3.2 GA Environment in Java 

Java was developed based on C++ language. Unlike other language, output of a Java 

compiler is not executable code, but bytecode. It is a highly optimised set of instructions 

designed to be executed by the Java run-time system, which is called the Java Virtual 

Machine (JVM). Translating a Java program into bytecode helps make it much easier to run 

a program in a variety of environments, because only the JVM needs to be implemented for 

each platform (Symantec Corporation, December 1996 and Eckel, 1997). Thus, Java is 

employed to program here, because of consideration of future 'portability. Here are the 

classes in the hybridised GA Java Environment. 
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3.2.1 Class of Individuals 

The Individual Class consists of three main private members. The first is Gene, which is an 

array representing a gene, and is allocated with corresponding memory. The following is 

Fitness Value, which specifies the degree of fitness of this specific of chromosome strand. 

And the last is IndNum, which is the number of this individual in the population. To evaluate 

this chromosome, the Objective member function is used. The function, which needs to be 

coded by a user, is called once the content of a chromosome is changed (see later in GA 

class). The member function of StreamResults is used to show fitness of a chromosome. 

3.2.2 Class of Populations 

The Population class holds the collection of all the individuals. It monitors the average 

fitness among the individuals and also keeps track of the best of them. The population is 

stored in 2D array where items in the array are gene arrays. At the very beginning of 

evolution, the initial population is randomly set up by its member function of evolution 

InitPop. 

3.2.3 Class of GAs 

This is the base class of our hybridised GA. It contains four important operator member 

functions: 

9 Inherits (Individual, Individual) 

" HC (Individual) 

" SA (Individual) 

" Simplex (Individual) 
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The Inherits member function takes in two individual objects and does the necessary 

imparting of genes. HC and SA use the member function Perturb to carry out perturbation 

process of a single individual. Simplex is used only when a new best point is found. The 

constructor of this class assigns member variables to their default values. However, these 

values can be changed or accessed by their associating member functions. 

3.2.4 Coding for Control System Parameters and Structures 

A Traditional GA uses a binary coding scheme. This method utilises only a binary bit (i. e. 

'a' 'o' or' 1') for each gene. Since an engineering problems today require high precision and 

may involve a very large memory size for the coding of a chromosome. What binary coding 

can do in the past is impractical for present. 

One-integer-parameter coding, a technique invented in Glasgow (Li, 1995 and Tan, 1997), 

utilises only one gene per parameter. This enables us to save up to 32 times amount of 

memory space and processing time. A short integer data type within the Java language uses 

15+1 bits (15 for data and 1 for the sign). That allows us to have a range [-32k-32k] for the 

value of each gene. The random initialisation of the population sets the genes to within such 

a range. While finding a particular chromosome's fitness requires the real value of the 

parameters, each gene goes through a decoding process. This is merely a mapping process. 

which uses a precise constant. 

The advantage of coding is that logic values and operators can also be coded in a 

chromosome, which makes the search more versatile and complete. It makes the coding 

structure possible. For example, a link in neural network architecture can be encoded within 

a single gene. When the gene is even number, the link exists, or it does not. However, the 

disadvantage of coding is that decoding to a phenotype is needed before fitness can be 
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evaluated, which takes unnecessary time. In order to achieve a simple optimised structure, 

growth method is used in this thesis. To be simple, it means that growing the length of 

chromosomes systematically to achieve the simplest structure. This idea is detailed in 

Chapter 6. 

3.3 Benchmarks and Tests of Search Engines 

During the past four decades, many evolutionary and other global optimisation and search 

algorithms have been developed. Those algorithms have been shown to be very useful in 

enabling control systems design automation, highly accurate and high-performance 

measurements. There exists, however, a lack of systematic benchmark measures that may be 

used to assess the merit and performance of these algorithms. Such benchmarks should be 

simple to use and should result in little program overhead. This thesis attempts to formalise, 

and to promote discussions on this issue. Here, definitions about benchmarks in the terms of 

(i) optimality; (ii) accuracy; (iii) convergence; and (iv) total number of evaluations and (v) 

program overhead are formalised. 

3.3.1 Test Function and its Objectives 

Consider a benchmark problem for testing an optimisation, learning or search algorithm. 

Suppose that its objective function (cost function, performance index or fitness function) is 

f(x): X -+ F, which may be evaluated via analytical calculations or numerical simulations. 

Here Xc R" represents the entire search or possible solution space in n dimensions, xEX 

represents the n collective variables or parameters to be optimised, Fc R' represents the m 

dimensional space of all possible objective values, and fEF represents the collection of in 

objective elements. 
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Denote the theoretical objective vector that may be ultimately reached as 

fo = objective {f(x) }EF (3.2) 

Note that elements info can have separate objectives, i. e., some for maximisation and some 

for minimisation. Note also that a non-numerical objective element, such as a "logic" 

objective, may only take the value of 0 or 1. An xo EX that satisfies 

flxo) =A (3.3) 

is said to be a corresponding theoretical solution to the optimisation problem. Note that, for a 

non-dominant or non-commensurate multi-objective optimisation problem, fo represents a 

collection of individual theoretical objectives that may only be reached separately by 

different solutions. In this case, there does not exist a single, or dominant, solution and hence 

a quasi-theoretical solution needs to be defined (See (3.3.2.2)). 

Denote an objective reached by the optimisation algorithm as jo. An lo EX satisfying 

f(xo)=fo (3.4) 

represents a corresponding solution found. 

3.3.2 Benchmarks 

Based on the above notation, benchmarks conforming to simplicity, wide applicability and 

reliability are to be formalised. The benchmarks should also be designed such that little 

testing overhead may be added to the algorithms being probed. Note that mean values of test 

results over multiple runs must be used, since most global optimisation algorithms are often 

non-deterministic. 
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3.3.2.1 Optimality 

Optimality of an objective reached represents its relative closeness to the theoretical 

objective. It can be defined as: 

1110 
- . 

foil 
Optimality j(, )I =1-1, _ 

- 
, l. " E [0,1 ] (3.5) 

where f is the lower bound off and 7 is the upper bound. 

Remarks 

1. Any popular norm, such as the 1-norm (sum of absolute), the 2-norm ( ni times root 

mean squares, where m is number of objectives) and the oo-norm (maximum of 

absolute), defined in a Banach (i. e., normed and complete) space may apply to (3.5). 

The optimality thus defined is termed `Bauach optimality', which represents a Banach 

distance to the goal (i. e., the theoretical objective), regardless of whether the 

optimisation problem is for maximisation or is for minimisation, and thus unifies this 

benchmark. 

2. In engineering applications, the 2-norm (Euclidean metric) is most commonly adopted 

for such a metric on R' and the optimality thus defined is termed `Euclidean 

optimality'. 

Single Objective 

For a single-objective problem (i. e., m= 1), all a-norms are identical. Consider a 

maximisation problem with an objective bounded by (fmin, fmaxl as an example. Then, by 

(3.5) the optimality measure can be simplified to: 
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Optimality) =I-I 

fmax - fo l 

0- 
=I 

f 
min 3 6 

max f 
max - fmin fmax 

( 
. 

) 
- fmin 

Similarly, for a single-objective minimisation problem, the optimality measure can be 

simplified to: 

Optimality I=1- 
fmin 

i 

- f0 

= 
f.. - fo 

(3.7) m n fmax - fmin fmax - fmin 

Multiple Objectives 

For a dominant multi-objective problem, definition (3.5) suffices. For a non-dominant or 

non-commensurate multi-objective solution, if each objective of a multi-objective problem 

or algorithm needs to be assessed separately, then (3.6) may be applied m times individually 

to replace (3.5). However, it is difficult to assess an overall optimality by a single quantity 

without combining all objectives to form a composite optimality. One method adopted to 

achieve this is to measure the `distance to demands' (Battiti, 1993). 

This method can be implemented easily in (3.5) by setting the ultimate goals, fo, as the 

`demand levels', as illustrated in Figure 3.4 for a 2-objective solution using the Euclidean 

distance. Therefore, the smaller the distance is the higher the overall optimality. Whether the 

solution is dominant or non-dominant, this definition of optimality preserves and extends the 

concept of `Pareto optimality' (Michalewicz, 1992 and Goldberg, 1989a). As shown in 

Figure 3.4, a higher optimality guarantees that the corresponding solution is closer to at least 

one goal. 
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1 

I 

Figure 3.4 Non-dominant solution jo having an f2 closer to the goal than ,% 
but an f, that 

is farther; Overall jo has a shorter `distance to demand'. 

Note that, if it is required to weight each single distance or objective distinctively, this should 

be done before calculating the norms. For this, the objective vector, f, should be replaced by: 

wf = [w, f, w2f2... wm. /m]T (3.8) 

where 

w= diag [w1, w2, ... w,,, ] 

represents the weighting vector. 

Remarks 

(3.9) 

1. The value of a `logic' objective, say fool, can only be either I or 0. If this individual 

objective is deemed as uncompromising, it may be separated from the others such that 

(3.5) may be replaced by: 

Optimality = Optimality (fo, )" Optimality (j02, """J»,, ) (3.10) 

where Optimality( fo, ) plays a casting role in assessing the overall optimality. 

2. To extend from (3.10), the definition of (3.5) may be replaced by the product of all 

individual optimalities, i. e., 
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Optimality = Optimality (fo, )... Optimality (fon, ) (3.11) 

3. This means that every individual objective plays a casting role and if any one falls to 

the minimum value, zero, the overall optimality is zero. The definition given by (3.11) 

is thus termed ̀ pessimistic optimality'. 

3.3.2.2 Accuracy 

Accuracy represents the relative closeness of a solution found to the theoretical solution. It 

can be defined as: 

Accuracy (ý 1- 
Ilxo - xo II 

xoý EC0,11 (3.12) II Hx 
-x 

where x and x are the lower and upper bounds of x, representing the search range. This 

benchmark is particularly useful if the solution space is noisy, there exist multiple optima or 

"niching" is used. 

Remarks 

1. A more sophisticated measure is to replace the denominator in (3.12) with the maximal 

distance to the theoretical solution in X. 

2. There may be distinctive solutions corresponding to the same objective value, with or 

without niching. In this case, the highest accuracy calculated should be used. 

3. For a non-dominant multi-objective problem, the concept of `accuracy' is no longer 

valid, as there does not exist a (dominant) theoretical solution. Assessing a solution 

found would be subjective and may only be carried out separately on each element of 

the solution, if the user or designer takes a ̀ minimum commitment principle' (Guan et 

al., 1996) in the optimisation. However, a solution that results in the maximal overall 
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optimality given by (3.5) or (3.11) may be defined as a quasi-theoretical solution 

benchmark, xo . This allows measuring the accuracy by a single quantity. 

By (3.12), the accuracy for a single-parameter optimisation problem within [x11; n, x,,, a] is 

measured by: 

Accuracy =1- 
Ixo 

- xo 
Xmax - Xmin 

3.3.2.3 Sensitivity 

(3.13) 

When the values of optimal parameters found are perturbed or manufacturing tolerance in 

accuracy is taken into account, the actual optimality may change. This affects the design 

robustness of an engineering system. To measure how much a "small" relative change in the 

designed parameters (solution found) lead to a relative change in the quality (objective value 

reached), the usual definition of `sensitivity' may apply. For example, the sensitivity of a 

single-objective problem may be defined as: 

I/u 

Sensitivity = lim 
ýý ýýýIlfOI) 

_ 
ýýxo jý 

iOx. 
Af __ 

< 
ýýioll 

Iim ý "f 
I/u 

, iu 
ioI ox I- fO 

FAX, Jeri-'o IIAxIIIIIx°II hex, -+o I Ifý 
la 

i1 

IIxOII 
tim 

ja 
I/G 

= 
IIxOI) 

2: G I/G x2IýIIofVol 
JAI ax; f 

which has a value of zero at the theoretical solution if the objective function is differentiable. 

In a test, a simple approximation of (3.14) can be obtained by perturbing the solution found 

by, for example, 0.1 %, i. e.: 
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Sensitivity = (3.15) 

0.001 11 jo1I 
Note that sensitivity is related to "relative gradient". It is thus dependent upon the test 

objective function and not directly upon the algorithm. It indicates the nature of the problem 

and its `fitness landscape' (Goldberg, 1989a). Sensitivity would be a more useful indicator in 

a practical design than in a benchmark test. If design robustness needs to be optimised during 

an evolution process, sensitivity could be used as an additional objective of the design. 

Nevertheless, this benchmark provides another indicator on how close the solution found is 

to the theoretical solution that might be obtained by gradient-guidance. 

3.3.2.4 Convergence 

Generational Convergence 

In a GA, the average fitness of the entire population is used to assess the convergence trend 

qualitatively, for the mutation rate in a GA is relatively very low. This fitness is, however, 

often oscillatory when the evolution reaches a `steady-state' or a relatively high mutation rate 

is used as in the case of EP or ES. Therefore, it differs from the concept of `convergence' 

adopted in conventional optimisation paradigms and can hardly fulfil the role as a 

quantitative indicator or benchmark of convergence. Hence, the traces of the following are 

used to indicate the generational convergence: 

i. The highest ̀ optimality' or fitness in every generation; 

2. The highest `accuracy' or the parameter values of the individual solution that 

have the highest fitness in every generation. 

Reach-Time 
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To quantify the convergence benchmark with respect to a GA, define 

(3.16) Reach-timelh = Cb 

to represent the total number of `function evaluations' conducted after which the optimality 

of the best individual first reaches bE [0,1]. This also means that the relative distance to the 

theoretical objective first drops to I-b by the `reach-time'. For example, the following two 

reach-times may be useful indicators: 

C 0.999 

C. 0.632 

The former would be perhaps the more significant indicator. The latter means a convergence 

`time-constant', by which an optimality of 63.2% is first reached in a similar manner to a 

first-order dynamical system. 

NP-Convergence 

The power of an EA is that it reduces exponential computational time needed by an 

exhaustive search algorithm to a non-deterministic polynomial (NP) computational time. To 

estimate the order of the polynomial, cl-999 may be plotted against the number of parameters 

being optimised, n, as revised in: 

NP-time (n) = Co' (n) 

Total Number of Evaluations 

(3.17) 

During the entire optimisation process, the optimality of 99.9% may not be reached by 

certain algorithms under test. The total number of evaluations is the number of function 

evaluations, search trials or simulations performed in the entire optimisation process until 
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termination. This should be kept the same for all the algorithms compared in a benchmark 

test, such as 400mn2. It may be more informatively defined as 

N= min{Coý'999 400mn2 y (3.18) 

which implies that a benchmark test should terminate either when the goal has been reached 

or 20n generations of a size of 20 nxm have been evolved. This also means that there is faith 

that GAs should not perform worse than an O(n2) algorithm in terms of computational time. 

Remarks 

I. A polynomial quantitatively representing the NP-convergence may be obtained by 

curve-fitting the convergence trace. 

2. The higher the threshold b is, the more meaningful the convergence indicator could be, 

but it is more difficult to reach. 

3. Note that these definitions concerning "convergence" are not proposed to replace 

theoretical proofs of convergence of an optimisation algorithm, but are only proposed 

for use as a benchmark for assessing the performance of the algorithm statistically. 

4. Alternative to highest optimality, highest accuracy may be used as the individual 

threshold b in Cb. 

3.3.2.5 Optimiser Overhead 

Alternative to or in addition to the `total number of evaluations', the `total CPU time' may be 

used in a benchmark test. This would be useful in indicating how long an optimisation or 

simulated evolution process would take in real world and to indicate the amount of program 

overhead as a result of the optimisation manipulations such as those by EA operators. More 

quantitatively, the optimiser overhead may be calculated by: 
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Totaltime taken - TRs 
Optimiser overhead = (3.19) 

TRS 

where TRS is the mean time taken in a random search by evaluating the test function N times 

and retaining the best solution found while search progresses. 

Before carrying out benchmark tests against evolutionary methods in Section 3.3.3, Not that 

the five benchmarks formalised here are used for the widely studied benchmark problems, to 

which the theoretical solution are known. So for control application problems in Chapters 4 

to 6, the optimisation results are not tested against the benchmarks formalised here, since no 

theoretical optima can be obtained. That is because real applications are involved with 

nonlinearities and uncertainty. The benchmarks are used to test optimising ability of different 

algorithms in theory. Then the better ones can be chosen for real applications. 

3.3.3 An n-D Benchmark Problem and its Test 

The objective function of an n-dimensional maximisation problem that was introduced in 

(Michalewicz, 1992) and further studied in (Renders and Bersini, 1994 and Feng et al., 1998) 

is given by: 

nn ßx2 
f(x)_ fi(x; )=ýsin(xi)sin2k dx E [0, �]n (3.20) 

It is composed of a family of amplitude-modulated sine-waves whose frequencies are 

linearly modulated. 
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Table 3.1 Theoretical solutions and objectives of a benchmark problem 
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i X11 
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Figure 3.5 The n independent uni-dimensional functions that form the 20-D objective 
function 

This objective function is, in effect, de-coupled in every dimension by f; (x; ). Every such 

member function is independent and is shown in Figure 3.5 for k=I and n= 20. This 

characteristic yields the following properties: 

I. The theoretical benchmark solution to this n-dimensional optimisation 

problem may be obtained by maximising n independent uni-dimensional 

functions, f, the fact of which is however unknown to an optimisation 

algorithm being tested. The results for k=I and n= 10 are shown in 

51 



2. The larger the product kn is, the sharper the landscape becomes. 

3. There are n! = 2.4329x 1018 local maxima within the search space [0, , In. 

4. The ease of obtaining theoretical benchmarks regardless of n makes it ideal 

for studying NP characteristics of the algorithms being tested. 

Using the above benchmarks and benchmark problem, the performances of some EAs are 

tested. Note that the lower bound of the objective is f,,;,, =0 within the given search space. 

By (3.5) and (3.12), the optimality and accuracy are: 

Optimality = 
fo - Imin 

= 
f0 

(3.21) fmax -. fmin 9.6547 

1° 

xoi - X°' 
2 

AccuraCA2 =1- 
X 

12 =1- i-1 (3.22) 

it-Ji loý 
Tests are carried out for nine types of GA, e. g., 

(i) Simplex; 

(ii) Random search for best; 

(iii) 150-bit Simple GA (Goldberg, 1989a; and Li, 1999); 

(iv) Floating-point GA (FPGA) (Tan, 1997); 

(v) FlexTool (GA) Toolbox (Flexible Intelligence group, 1995), 0.0001 resolution; 

(vi) Messy GA (Goldberg, 1989b; and Chowdhury, 1998) with single-integer coding, 

(vii) Simulated annealing hybrid FPGA (Tan, 1997); 

(viii) A-posteriori hill-climbing hybrid FPGA (Feng, 1998) and 

(ix) A-posteriori hill-climbing plus simplex tuning FPGA. 
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Among these methods, (viii) and (ix) are designed and programmed in this project. (ix) is 

used in the practical control design in Chapters 4 to 6. (i), (ii) and (iii) are implemented by 

Java in this project. (iv) to (vii) are existing software, which are tested in this project. Note 

that (iii) to (vii) are evolutionary algorithms which adopt strategies presented in Section 2.1. 

For each method, 10 repeated experiments are carried out with randomly generated initial 

populations. The results of objective reached, optimality, accuracy, total number of function 

evaluations or reach-time, and optimiser overhead are shown in Table 3.2. 

Table 3.2 Benchmark test results on the 10-D problem 

Algorithm Mean Mean Mean N or Optimiser Search 

Tested Supremum Optimality Accuracy Reach- Overhead Time(Sec. ) 

Time 

(i) 1.5588 16.15% 71.49% 40,000 112.30% 2.37776 

(ii) 3.2514 33.68% 72.38% 40,000 8.40%(2) 1.21408(l) 

(iii) 6.3932 66.22% 77.45% 40,000 828.40% 10.39808 

(iv) 8.7684 90.82% 89.24% 40,000 246.40% 3.87968 

(v) 9.2081 95.37% 89.05% 40,000 1170.36% 14.22803 

(vi) 9.3743 97.10% 96.44% 40,000 1058.66% 12.97699 

(vii) 9.6302 99.75% 98.50% 39,100 74.33% 1.908565 

(viii) 9.6344 99.79% 98.79% 40,000 121.00% 2.4752 

(ix) 9.6451 99.99% 98.73% 38,200 123.00% 2.385208 

Best (x) (x) (viii) (x) (ii) (ii) 

Theoretical 9.6547 100.00% 100.00% 40,000 

values Max 

NB: 
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(1) This is the CPU time taken for 40,000 function evaluations in random search using 

Java with Symantec JIT 2.1 compiler in Window 95 on a 266 MHz Pentium processor 

with 64 MB RAM and 128K cache. 

(2) This represents the testing overhead incurred by recording necessary figures on-line, 

which are required by calculating the benchmarks off-line. It should be zero in theory, 

i. e., if there exits no testing overhead. 

From Table 3.2, it can be seen that (ix) is the best one for objective reached, optimality and 

total number of evaluations. For accuracy, (ix) is just below (viii), but better than others. 

Though for optimiser overhead and search time (ix) is not the best, far better than (v), (vi), 

(iii) and (iv), but worse than (ii), (i), (vii) and (viii), the cost is acceptable. 

3.4 Control System Design Objectives and Indices 

In the last sections, the evolutionary optimisation environment is established. But the 

application of the environment to the optimisation of control systems needs to be achieved 

by a good performance index, which can distinguish the best control system from others. 

Employing the index as objective function, optimisation of control system could be carried 

out. However, the first thing in our discussion is design specifications in control systems. 

3.4.1 Specifications 

Consider a generic unity negative feedback control system of a given plant G(s). Refer to 

Figure 3.6 for the notation. Then, for the case where F(s) =1 without loss of generality, 

E(s) = R(s) -Y(s) =1+H(s)G(s) 
[R(s) 

-G(s)D(s)]. (3.23) 
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The ultimate (but theoretically unachievable) objective of a control system design is to find 

an H(s) such 

E(s) = 0, Vs, VD(s) 

or 

(3.24) 

. e(t) = r' {E(s)} = 0, Vt, Vd(t) (3.25) 

This means (3.24) or (3.25) needs to be satisfied regardless of plant uncertainties, which can 

be modelled in D(s). Note that, in practical control system designs, strictly satisfying (3.24) 

or (3.25) is impossible. 

D(s) 
Plant 

R(s) C(s) E(s) U(s) * Y(s) 
F(s) H(s) G(s) 

Figure 3.6 A feedback control system with model following 

Hence, a performance index J: R-+R+, is often used to measure how close the above 

ultimate objective is met, where n is the number of parameters that need to be determined in 

the design. For this, performance indices and specifications need to reflect the following 

qualitative requirements (Aström, 1991; Li and Häußler, 1996; Li et al., 1996; Levine 1996): 

1. Stability; 

2. Excellent steady state accuracy in terms of small steady state errors; 

3. Excellent transient response in terms of rise time, overshoots and settling- 

time; 
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4. Attenuation of load disturbance; 

5. Sensitivity to measurement and robustness to model uncertainty. 

Some of the specifications such as attenuation and sensitivity to measurement errors are 

conflicting, and others such as set-point following and load disturbance rejection are non- 

conflicting. For process control applications set-point following is often less important than 

load disturbance attenuation. Set-point changes are often made when production rate is 

altered. Furthermore, the response to set-point changes can be improved by introducing a set- 

point weighting. 

3.4.2 Basic Performance Indices and Stability 

Performance indices should reflect all specifications that need to be considered in practice. It 

should also address the issue of interpreting human engineers' perception of merit into a 

form that may be utilised for any controller design automation. Indices can be in the form of 

an overall composite objective or cost function with practical constraints, as commonly 

adopted by control engineers. They can also be in the form of multiple independent 

objectives, if a `least commitment' principle is to be adopted at an early stage of design 

(Guan and MacCallum, 1996). These objectives should be easy to understand and utilise in 

computerised trial-and-error based search or optimisation. Thus, for a given application, a 

control system can be automatically designed or invented if the search and optimisation 

engine can accommodate these objectives. 

3.4.2.1 Basic Performance Index in Time and Frequency Domains 

In a design exercise, the closed-loop performance can be inverse-indexed conveniently by a 

basic ̀cost function' in the form of an Euclidean norm: 
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J1 (H) =IIE(j ))IIr (3.26) 

or 

�r(H) =IIe(t)Ii X. (3.27) 

As these performance indices are mainly for use with numerical simulations in the 

optimisation of controller, discrete summation over a bounded number of points is often used 

in place of integration. Note that all the linear metrics are equivalent, i. e., Euclidean norms 

are bounded linearly by one another. Hence, any one of the common norms may be used 

here. However, their selectivity in indexing can be different and an index based on L, for 

example, loses selectivity completely for systems whose maximum error falls below e(0). 

Two commonly used basic indices are (Aström, 1995): 

1. Integral of Absolute Error (IAE) 

JIAE =1: le(t) = Ile(t)Il (3.28) 

2. Integral of Square Error (ISE) 

JISE = je2(t)= IIe(t)Iiz =I IIE(1w)I12 (3.29) r 

where N denotes the number of samples in both the time and the frequency domains. Note 

that the last equation is obtained from Parseval's energy equivalence theorem in both 

domains. 

This implies that time and frequency domain indices can be equivalent and also that the 

design of a linear time-invariant (LTI) control system under this index can be unified in one 
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domain. Note also that minimising an index of an L2 norm as in (3.29) is equivalent to 

minimising the root mean square (rms) error. 

In the context of evolutionary computation, a performance index is often termed a `fitness 

function' and `maximising a fitness function' is more commonly encountered than 

`minimising a cost function', although an evolutionary algorithm can do both maximisation 

and minimisation in one process. For convenience, however, a cost function can be 

converted easily into a fitness function by, for example, f: R+-*R+ 

f (H) =E (0,11. (3.30) 1+ J(I) 

3.4.2.2 Implicit Index to Robust Stability 

For a linear control system, if the open-loop system is stable, then the Nyquist plot of the 

denominator in (3.23) does not encircle its origin in any way. This means that for relatively 

large stability margins, the denominator plot should be relatively far away from its origin and 

its magnitude should have a relatively large value. Hence, minimising the basic index 

indirectly leads to robust stability, owing to the norm equivalence. Note that L, o stable also 

means that the system is bounded-input and bounded-output stable. 

However, for cases where specific gain and phase margins are necessarily required, 

minimising a basic index may not lead to satisfied results. Hence stability margins should be 

added to a composite index or form a second, independent index in non-committal multi- 

objective optimisation. An example of this is illustrated in Chapter 4. 
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3.4.3 Time Domain Specifications 

3.4.3.1 Set-Point Following 

Specifications on set-point following may include requirements on rise time, settling time, 

decay ratio, overshoot, and steady-state offset for step changes in set-point. The definitions 

for them are generally as 

1. The rising time tr is either defined as the inverse of the largest slope of the 

step response or the time it takes the step to pass from 10% to 90% of its 

steady state value (Dorf, 1992). 

2. The settling time is is time it takes before the step response remains with p% 

of it steady state value. The value 2% is commonly used. 

3. The decay ratio d is the ratio between two consecutive maxima of the error 

for a step change in set-point or load. 

4 The overshoot o is the ratio between the difference between the first peak and 

the steady state value of the step response. In industry control applications it 

is common to specify an overshoot of 8% to 10%. But, in many situations, it 

is desirable to have an overdamped response. 

5. The steady-state error e5 is value of control error e in steady state. With the 

integral action in the controller, the steady-state error is always zero. 

59 



11 
ysp 

""o 

o. 9yn 

0.1 vn 

Figure 3.7 Practitioner's graphical specifications 

3.4.3.2 Weighting Steady-State Errors by Time 

If the command signal r(t) is a step of size A, then 

e(co) I=A 
ll+H(O)G(O) 

(3.31) 

Hence, in either the time or the frequency domain, simple weighting against the steady-state 

error can be applied by adding an index building block (3.31) to a basic index in either the 

time or the frequency domain. Another simple `weighting' against steady-state errors is to 

use the L. norm for a basic index in the frequency domain or to use L, in the time domain. 

Since evolution does not require direct gradient-guidance, the weighting function design 

becomes much more relaxed and flexible. 

Note that if the L,,, norm is used to replace L2, an emphasis is placed on the maximum 

magnitude of the spectrum that occurs near the dc frequency, where static steady-state errors 

contribute most. Similarly, the time domain cost can be in LI, which tends to accumulate the 

absolute values of errors that are significantly contributed ̀ d t -> oo. 
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The time itself forms a simple gradual, ramp weighting function. Inversely, dividing a 

frequency-domain index by frequency itself should also achieve a similar effect of 

emphasising the steady-state response. Time weighting is used in two commonly adopted 

indices (Aström, 1996): 

3. Integral of Time Weighted Absolute Error (TTAE) 

"iTAE _, tle(t)I ; (3.32) 

4. Integral of Time Weighted Square Error (ITSE) 

JtTSE - 
ý1 

e2 (t) (3.33) 

and in (Zhuang and Atherton, 1993): 

5. Integral of Square Time Weighted Square Error (ISTSE) 

J 
ISTSE = t2e2(t) . (3.34) 

3.4.3.3 Weighting Transients by Frequency 

If suppressing overshoots and undershoots are required, weighting against the transient may 

be realised in either the time or the frequency domain by adding to a basic index: 

le(0)1= 
1+H(oo)G(ao) -IAI (3.35) 

Similarly, another simple `weighting' against overshoots and undershoots is to use the Li 

norm for a basic index in the frequency domain or to use L. in the time domain. When L, 

norm is used, it tends significantly to accumulate frequency response values ̀ d w -* oo, 
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which are contributed most at transients. The L,,, norm in the time domain places an emphasis 

on the maximum amplitude of errors, which usually occurs at t -* 0 for a `hard-start' 

command such as a step. 

Note that, for a `hard' command, transients already contribute a relatively large amount of 

error and are, hence, seldom weighted in practice. However, the change of error instead of 

the error itself may be used to highlight the transient performance and/or to penalise 

chattering. This is equivalent to multiplying by frequency, as transients constitute high 

frequencies. Such indices are studied here: 

6. Integral of Absolute Error Derivative (IAED) 

JIAED 
- 

EI 
e(t)I= Ile(t)II1 

; (3.36) 
t 

7. Integral of Square Error Derivative (ISED) 

Jtsa = 
Eel (t) = IIe(t)I12 =N ll (Jw)112 ; (3.37) 

r 

8. Integral of Time Weighted Absolute Error Derivative (ITAED) 

JITAED =I tji(t)I ; (3.38) 

9. Integral of Time Weighted Square Error Derivative (ITSED) 

ITSED =t e2 (t) ; (3.39) 

10. Integral of Square Time Weighted Square Error Derivative (ISTSED) 
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JisTsED _ 
ý, tz e2(t) (3.40) 

The index values of ten indices are plotted to the selectivity in terms of damping ratio in 

Section 3.4.6 for both hard-start and soft-start command. 

3.4.4 Load disturbance 

3.4.4.1 Direct Index 

Load disturbances are disturbances that drive the process variables away from their desired 

values. Attenuation of load disturbances is of primary concern for process control. This is 

particularly the case for regulation problems where the processes are running in steady state 

with constant set-point for a long time. Load disturbances are often of low frequencies. Step 

signals are often used as prototype disturbances. The disturbances may enter the system in 

many different ways. If nothing else is known, it is often assumed that the disturbances enter 

at the process input. In Figure 3.6, D is the step input. Let e to be the error caused by a unit 

step disturbance at process. The integrated absolute error, which is defined by 

J ME = 
Jle(t)I 

dt 
0 

(3.41) 

The criterion IAE is in many cases a natural choice, at least for control quality variables. 

Though, it was thought time consuming, with much fast computer now, the numerical 

calculation of it seems possible. 

3.4.4.2 Implicit Index to Disturbance Rejection 

Refer to Figure 3.6 again. The magnitude of the disturbance transfer to the closed-loop 

output is give by 

63 



Y( Jo) 1 IIGtIý)II (3.42) I (jw) 1+H(, jw)G(j0) 

Comparing this with (3.23), it can be inferred that the load disturbance rejection is satisfied, 

if the basic index (3.24) or (3.25) is satisfied. Similarly, therefore, the rejection is maximised 

if a basic index is minimised, largely meeting Requirement 4. Note that, however, best set- 

point following does not necessarily mean best load disturbance rejection (, ström and 

Hagglund, 1995), which is highlighted in Chapter 4, when PID controllers are designed by 

different specifications. 

3.4.5 Sensitivity 

3.4.5.1 Sensitivity to Measurement Noise 

Measurement noise is typically of high frequency. Care should always be taken to reduce 

noise by appropriate filtering. In QFI' controller design, reduction of high frequency gain is 

the optimisation objective. So if in PID control, the derivative part of a PID controller is 

generally modified as 

D(s) = KP 
Tds 

T e(s) (3.43) 
+ as 

N 

The high-frequency gain of such a PID controller is 

Khf = Kp(1 + N) (3.44) 

N is typically chosen to be about 10. 
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3.4.5.2 Sensitivity to Process Characteristics 

The controller parameters are typically matched to the process characteristics. Since the 

process may change, it is important that the controller parameters are chosen in such a way 

that the closed-loop system is not too sensitive to variations in process dynamics. There are 

many ways to specify the sensitivity. Many different criteria are conveniently expressed in 

terms of the Nyquist curve of the loop transfer function G, (s) = H(s)G(s). Maximum 

sensitivity can be described as 

Ms = max 
1 

(3.45) 
osvs- 1+ H(jw)G(jw) 

The quantity MS is simply the inverse of the shortest distance from the Nyquist curve to the 

critical point -1. Reasonable values of MS are in the range from 1.3 to 2. 

From the Figure 3.8, it is clear that Mt guarantees that the distance from the critical point to 

the Nyquist curve is always greater than YMS 
. Gain margin and phase margin are defined 

as 

A,. =1 (3.46) 

IG, (jwu 
em = xt+arg G, (jwg) (3.47) 

where the ultimate frequency tv� is the frequency where argG, (jw) = -; r and the gain cross- 

over frequency Wg is the frequency where 
IG, (jrv)l 

=1. Typical values of (ph, range 30° to 

60°, and gain margin can vary from 2 to 5. 
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Figure 3.8 Definition of maximum sensitivity MS, gain margin A,,,, and phase margin q 

3.4.5.3 Implicit Index to Robustness Against Plant Uncertainty 

In Figure 3.8, the magnitude of the sensitivity of the closed-loop transfer function to the plant 

transfer function is given by 

IIýII 
= lim ýý(Jw)lGr(Jw) 

_1 AG-)O OG(jo)/G(jw) 1+H(jcw)G(jw) . (3.48) 

Hence, the closed-loop sensitivity to the plant uncertainty is minimised if the basic index is 

minimised. Often, the L norm is used here to represent maximum sensitivity. In Chapter 4, 

an example considering sensitivity in PID control systems design is presented. 

3.4.6 Merit and Selectivity of Indices 

As an LTI system can generally be decomposed of first and second order subsystems, its 

dominant dynamics are hence often represented in practice by a second order system. 

Suppose that a design results in an overall closed-loop system that behaves close to a unity- 

gain second-order system. Then the performance of the closed-loop system is regarded as too 
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sluggish if it behaves `over-damped'. If it is too much `under-damped', however, the 

transient is unsatisfactory. Often, the damping factor, ý, is regarded as `good' if it is of a 

value between that resulting in a critically-damped system (ý', = 1.0) and that resulting in a 

resonance (; "= 0.707). 

3.4.6.1 Hard-Start Command 

Controllers obtained by minimising different indices could result in different damping ratios. 

Hence, the ability of an index in selecting an optimal controller that minimises the index 

should be assessed. Refer to (Graham and Lathrop, 1953; Zhuang and Atherton, 1993) for 

IAE, ISE and ITAE. The selectivity of ITSE and ISTSE and the derivative versions of the all 

five indices are compared here. 

In this regard, index values resulting from step following are studied here and are plotted to 

the selectivity in terms of damping ratio in Figure 3.9. It can be seen that, if the resultant 

closed-loop system is of a second-order dominant, as found in most practical control 

systems, the use of different indices results in a damping ratio ranging from 0.50 (ISE) to 

1.00 (ISTED), extending to the infinity. In optimisation, clearly, the use of the ISTSE and 

ITAE indices would offer the sharpest selectivity, at C, " = 0.67 and 0.75, respectively. An 

ITAE selected controller should offer a high and near-resonant damping. Nevertheless, 

different performance indices should be used for different purposes. For example, combining 

different indices together should provide a composite index that meets different needs of a 

design. But the index just with derivative error can't work independently, since it can make 

the designed system to be fixed to zero. 
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Figure 3.9 Selectivity of indices in terms of damping ratios 

3.4.6.2 Soft-Start Command 

Refer to F(s) and C(s) in Figure 3.6. In practice, a step response C(s) of a critically damped 

second-order system F(s), as opposed to the step R(s) itself, is often used as a 'soft-start' 

command to follow, i. e., the dynamics of the closed-loop system is desired to follow a 
0 

critically damped system F(s). This `model-following' control strategy (Aström 1996) is to 

avoid sharp acceleration in course-keep or aircraft control, for example. This is also to avoid 

actuator saturation and infinite current is not practically available to support a hard- 

command. 

To study index selectivity for such applications without loss of generality, suppose that the 

natural frequency of the model to follow is ten times higher than that of the plant to be 

controlled. The results are shown in Figure 3.10. As can be seen, the selectivity of the indices 

almost remains the same. 

isrsl) a I. ao 
fTAED 0084, 

68 



-+- IS1 @Q67.. 
+1 ftE @Q76' 

100m0000 ITg OQ% 
10000000 J1 LAE @Q67 

-*-ig ®Q50 
1000000" 
1000J0 +ýssý rfsasý 

J 10000 
100 
100 
10} 

av un n OR cý v (o n rn 000000-----r 

I ST14-1 )u1 lb 
10000 ' -ý ITAM 00.85 

(TS® ý 
1000 

; +st*ýýiýýäitaaskr*ýrýf+ýýý+ 
100 

J 10, 

1 

Q01+ ý. . Tý_.... 
Na U) n ao Ma co n O) 

000000 .- -- .- 

Figure 3.10 Selectivity of indices in soft-command following 

3.4.7 Reconciling Accuracy and Chattering with Hybrids 

It has been discussed that the steady-state response can be emphasised by time weighting and 

transients by frequency. These two weightings can thus be combined together to tackle both 

the steady-state and transient problems. An example of hybridised index for this is: 

JTF =1 te2(t)+2: wE2(oi) 

1w 
(3.49) 

Here the frequency weighting may be replaced by derivatives. A simple such hybrid that 

places an emphasis on both tracking accuracy and actuator chattering is: 

J1= JI I SI + JFI-S D (3.50) 

which is shown to be very effective in evolving control systems (Li et al., 1995 and 1996a). 

In this thesis, this index is employed in Chapter 6 to evolve a neurocontroller. Another 

hybrid example may be constructed in the same domain by multiplying the basic index with 

a `notch filter': 

J Notch = 
2: 

ý [W+E(JW)E(JW). 
(3.51) 

(0 
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A hybrid index may also be formed to offer a selecting point on cnew from the existing ones 

if need. However, the seven indices shown in Figure 3.8 have already covered a large range. 

3.5 Summary 

In this chapter, a GA-based control system design environment is developed. The hybridised 

GA uses HC, SA and simplex to carry out mutation and tuning, while Lamarckian 

inheritance is introduced to replace the selection and crossover. Java technologies are 

adopted in the development of EA based optimal control system design automation 

environment. Therefore, the environment can be portable in the Internet. 

Benchmark test principles of a GA algorithm are presented in detail. The concepts such as 

optimality, accuracy, sensitivity, convergence and optimiser overhead are proposed. For a 

benchmark test problem, various algorithms are tested. It confirms that the hybridised 

algorithm developed in this thesis is better. 

Specifications such stability, transient response, steady state error, robustness and sensitivity 

in control systems are detailed. Based on specification for a control system, performances of 

all types of indices including those from the error and the derivative of error are investigated. 

In addition, soft model following cases are investigated as well. In the following chapters, 

the environment developed here is employed as automation design suite to achieve or 

improve different controllers with practical constraints, i. e., PID, QFT, neural controllers. 
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Chapter 4 Application to PID Control System Design Automation and 
Batch Optimisation 

Following the analysis of indices in last chapter, some results are applied to batch optimise 

PID controllers by the hybridised GA design environment. Here, PID control and their 

tuning methods are reviewed. Automated design techniques for PID control with 

specifications in gain and phase margins are developed. Differences between PID and PI 

control are highlighted. Comparison with results of Astrom and Hägglund 's (1995) method 

is also given. 

4.1 Introduction 

As highlighted in Chapter 1, PID is still very popular in industrial control. In a PID 

controller, the control action is generated as the sum of three terms, namely, 

u(t) = uP(t)+u; (t)+ud(t) (4.1) 

where u is the control variable, and u, is the proportional part, u; the integral part and Ud the 

derivative part. Not that, a generic practical PID controller is different from this simple 

version. 

4.1.1 Proportional Control 

The proportional control part is a simple feedback 

up(t) = Kpe(t) (4.2) 

where e is the control error, and Kp is the controller gain. The error is defined as the 

difference between the set-point ysp and the process output y, i. e., 

e(t) =y (t) - y(t) (4.3) 
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In many cases, up is modified as 

e(t) = Kp(by, 
p(t) - y(t)) (4.4) 

where b is called set-point weight, it can influence the set-point following without impact on 

load disturbance rejection. (Aström and Hägglund, 1995 and Seborg et al., 1989). 

4.1.2 Integral Control 

Since the proportional control always gives a type 0 system steady-state error (Dorf, 1992), 

the integral action is introduced to remove this. The integral action has the form: 

ui (t) = 
KP 1 

e(s)ds Ti 
t 

(4.5) 

This idea is simply that the control action should be taken even if there is a very small error, 

provided the error is the same sign over a long period. It can eliminate the steady-state error. 

However, there is a 'wind-up' problem caused by the integral action. If a practical actuator 

that realises the control action has a range limit (Figure 4.1), then the integrator may well 

saturate. The future correction is ignored until the saturation is offset. This causes low- 

frequency oscillations and my may lead to instability (, ström, 1991 and Li et al., 1998). 

A usual measure taken to counteract this effect is 'anti-windup'. This is realised by negative- 

feeding the excess amount of the integral action back to the integrator so that saturation is 

taken out. A simple anti-windup is realised by modifying the integral action to: 

U; = Kp 
1 

E(s) -1 
[U(s) 

- Ü(s)] 

(4. G) 

Ts 
KpE(s)-U(s)-Ü(s) 

Y 

where Ü(s) represents the saturated control action and y is a correcting factor. 
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4.1.3 Derivative Control 

The derivative action control is used to provide predictive action (Aström, 1991 and Li et al., 

1998). A simple form is 

Ud = KpTd 
de(r) 
dt 

(4.7) 

The combination of proportional and derivative action is then 

uP(t)+ud(t) = KP e(t)+Td 
de t) 

(4.8) 
dt 

] 

This means that the control action is based on linear extrapolation of the error Td time units 

ahead. Parameter Td is called derivative time. The main difference between a PD controller 

and a more complex controller is that a dynamic model can have better prediction than linear 

extrapolation. 

In many practical applications, the set-point is a constant. This means that the derivative of 

the set-point is zero except for those time instances when the set-point is changed. At that 

moment, the derivative action becomes infinitely large. In addition, for the requirement of 

reduction of high frequency gain, which has been discussed in Chapter 3, a better realisation 

of the derivative action is, 

Kp Td sj 
Ud (S) 

sT lcYsp(s)-Y(s), (4.9) 
1+ a 

N 

Supposing e(s) = cYP(s) - Y(s) , (4.9) is the same as (4.7) plus a low pass filter. The low pass 

filter can reduce the high frequency gain. Parameter c is a set-point weighting, which is often 

set to zero. It does not have impact on load distance rejection as well. Except the typical low 

pass filter to reduce the high frequency gain, a nonlinear median filtering technique was 
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reported by Li et al. (1998). This method can filter out the unusual spike type of noise more 

easily. 

E 

Figure 4.1 A generic practical PID controller 

4.2 PID Controller Design Methods 

During the past 50 years, many methods for determining PID controller coefficients have 

been developed. Some methods employ information from the open-loop step response, other 

methods use some knowledge of the Nyquist curve of the plant, for example, the Ziegler- 

Nichols frequency response method. These methods use simple tuning laws to determine the 

PID controller coefficients, and some commercial autotuners based on these methods have 

been available since 1981. However, these tuning methods use only a small amount of 

information about the dynamic behaviour of the system, and often do not provide good 

tuning. For instance, the Ziegler-Nichols tuning laws usually result in rather oscillatory set- 

point responses, although they have been widely used as heuristic methods to determine PID 

controller coefficients in the process control industry. It is the reason why there is an 

investigation of PID control. 
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4.2.1 Ziegler-Nichols and Related Methods 

Ziegler and Nichols (1942) developed their rules from experiments and by analysing various 

industrial processes. Using the integral of absolute error criterion with a unit step response, 

they found that controllers adjusted according to the rules usually have a step response that 

was oscillatory but with enough damping so that the second overshoot is less than 25% of the 

first (peak) overshoot. This is the quarter-decay criterion, and is sometimes used as a 

specification. 

4.2.1.1 Step Response Method 

This method used relies on the fact that many processes have an open-loop step response of 

the form shown in Figure 4.2. This process signal is characterised by 3 parameters namely L, 

r and A, where L is the delay; r is the time constant, which is the inverse of the maximum 

gradient; and A is the steady-state gain of the plant. The Ziegler-Nichols recommendations 

are given in the Table 4.1 in terms of these parameters. 

A 

Plant 
output 

Figure 4.2 Open-loop response of a plant 

Table 4.1 PID controller coefficients obtained from Ziegler-Nichols step response method 

Controller Type Kp Ti Td 

p r 
AL 
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PI 
0.9 r 3L - 

AL 

PID 
12 2L 0.5L 

AL 

4.2.1.2 Frequency Response Method 

This method is also based on a simple characterisation of the process dynamics. The design 

is based on knowledge of the point on the Nyquist curve of the process transfer function 

G(s), where the Nyquist curve intersects the negative real axis. For historical reasons this 

point is characterised by the parameter K� and T,,, which are called the ultimate gain and 

ultimate period. These parameters can be determined in the following way. Connect a 

controller to the process, set the parameters so that control action is proportional, i. e., Td = 0, 

T; = oo. After approaching the state status, increase the gain slowly until the process starts to 

oscillate. & is the gain when this occurs, and T� is the period of the oscillation. The 

controller coefficients are given in Table 4.2. 

Table 4.2 PID controller coefficients obtained from Ziegler-Nichols frequency response 
method 

Control Type Kp T, Td 

P 0.5K� ---- ----- 

PI 0.4& 0.8T� ----- 

PID 0.6K� 0.5T� 0.125T� 

4.2.1.3 Modified Ziegler-Nichols Methods 

There have been many suggestions of modifications of the Ziegler-Nichols methods. Chien, 

Hrones and Reswick (CHR) (Chien et al., 1952) changed the step response method to give 
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better damped closed-loop systems. They proposed to use "quickest response without 

overshoot" or "quickest response with 20% over shoot" as design criteria. They also found 

that tuning for set-point tracking is different from load disturbance response rejection. Two 

sets of coefficients for different overshoot specifications are given in Table 4.3. 

Table 4.3 CHR method load for disturbance rejection response 

Overshoot 0% 20% 

Controller Kp T, Td Kp T, Td 

0.3 0.7 AL AL 

PI z 4L --------- r 2.3L ---------- 0.6 0.7 
AL AL 

PID r 2.4L 0.42L z 2L 0.42L 
0.95 12 

AL AL 

4.2.2 Analytical Tuning Methods 

There are several analytical tuning methods where the controller transfer function is obtained 

from the specifications by direct calculation. Let Gp be the transfer functions of the process, 

H for the controller and G. for the closed-loop. The closed-loop transfer function obtained 

with error feedback is then 

GPH 

l+ GP H 

Solving this equation, 

(4.10) 
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_IG, H 
Gp I- Ge (4.1 1) 

If the closed-loop transfer function Gc is specified and Gp is known, it is thus easy to 

compute H. The essential problem is to find reasonable ways to determine H based on 

engineering specifications of the system. 

It follows from (4.10) that all process poles and zeros are cancelled by the controller. Aström 

and Hägglund (1995) argued that the method should not be applied when the process has 

poorly damped poles and zeros. The method also gives a poor load disturbance response 

when slow process poles are cancelled. Tuning methods developed from this scheme 

including X-Tuning, Haalman and Internal Model Controller (IMC) (Aström, 1993). 

4.2.3 Optimisation Based Methods 

Since Zielger-Nichols and modified methods are not satisfactory in many cases (too much 

transients) (Zhuang and Atherton, 1993; Voda and Landau, 1995), and analytical methods do 

not work with load disturbances, people have searched novel ways to tune PID controllers. 

Zhuang and Atherton's solution (1993) is to design tuning methods using integral 

performance criteria, e. g. IST2E. These tuning rules are also used in more recent papers 

(Majhi and Atherton, 1999; Atherton 2000). In the thesis, it is found that the optimisation 

method works very well for the performance of set-point following, and it has acceptable 

robustness in terms of the gain margin and phase margin, and sensitivity as well. But, for the 

design of the rejection of load disturbance, the results of this method can lead to too small 

stability margins, which was pointed out by Astrom and Hägglund (1995). Tuning rules 

achieved from optimisation method given by Zhuang and Atherton (1993) are in Table 4.4. 

Corresponding sensitivity and stability margins are given in Figures 4.3 to 4.5. 
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Table 4.4 Tuning formulae for PID control obtained by the step response method. The table 

gives coefficients of functions of the form AKP =a ,, T, /r= (set C LJ nI 1 
r a2 +b, 

(L/r) 

1L h' L h' 
point following), T, /t =- a, 

(T 
(load disturbance rejection) and T. r=a, 

( 

for the model given in Figure 4.2. 

a1 B, a2 b2 a3 c3 

Set point following 0.968 -0.904 0.977 -0.263 0.316 0.892 

Load disturbance 1.531 -0.960 0.971 -0.746 0.413 0.933 

3 

2.5 
Gm 

2 

1.5 

1 

0.5 

0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

L/r 
-*-Set point following -a- Load disturbance rejection 

Figure 4.3 Gain margin resulting from Zhuang and Atherton's design formulae 
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Figure 4.4. Phase margin resulting from Zhuang and Atherton's design formulae 
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Figure 4.5 Maximum sensitivity resulting from Äström 's design formulae 

From Figures 4.3 to 4.5, it can be found that results for set point following have acceptable 

stability, but results from load disturbance rejection have too much sensitivity (e. g. Ms > 4). 

Having considering this problem, , ström began with maximum sensitivity as a design 

specification, then under this limit, the largest K; was searched to minimise the load 

disturbance. This method is called Kappa-Tau method. Gorez (1997) and Becerra (2000) 

regarded this method highly. Empirical formulae given by Astrom and Hägglund (1995) and 

Levine (1996) are in Table 4.5. Results of the sensitivity and margins are given in Figures 

4.6 to 4.8. 

80 
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Table 4.5 Tuning formulae for PID control obtained by the step response method. The table 

gives coefficients of functions of the form f (A, r, L) = ao exp a, 
(L) 

+ a, 
(_ý) Z 

for the 
rr 

model given in Figure 4.2. Here b is the feedforward parameter in Figure 4.1. 

MS= 1.4 MS=2.0 

ao a, a2 ao a, a2 

A Kp 3.8 -8.4 7.3 8.4 -9.6 9.8 

T, / L 5.2 -2.5 -1.4 3.2 -1.5 -0.93 

T/ z 0.46 -2.8 -2.1 0.28 3.8 -1.6 

7d IL 0.89 -0.37 -4.1 0.86 -1.9 -. 044 

7d ýr 0.077 5.0 -4.8 0.076 3.4 -1.1 

B 0.41 0.18 2.8 0.22 0.65 0.051 

8 

6 
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2 

0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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Max Sensitivity = 1.4 -f- Max Sensitivity = 2.0 

ým 

Figure 4.6 Gain margin resulting from Äström's design formulae 
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Figure 4.7. Phase margin resulting from Aström 's design formulae 
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Figure 4.8 Maximum sensitivity resulting from Astrom 's design formulae 

From the Figure 4.6 to 4.8, it is easy to find that there are three defects in the empirical 

formulae in stability performance. 

1. When L 
approaches to 1, the formulae do not work, and the resultant 

systems have too much sensitivity. 

2. The change of gain margin corresponding to different is too much. 

3. The working area 
VT 

< 0.7 , the designs for MS = 2.0 seem too much 

conservative, far from the specification. 

4.3 Gain and Phase Margins Based Full PID Design Automation 

Because the results from specifications on the maximum sensitivity have their unsatisfactory 

parts, and the gain and phase margins are widely used for description of stability, in this 

thesis, the gain and phase margins is used as design specifications for PID control. 

4.3.1 Relationship of PI Parameters with Gain and Phase Margins 

For FOPDT plant model, if a PI controller is designed to satisfy the specific gain margin and 

phase margin, through solving a set of equations, Kp and Ti, could be achieved. Denote the 

specified gain and phase margins by A,,, and ý,,, and the process and controller transfer 
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function by GP(s) and H(s). From the basic definitions of the gain margin and phase gain, the 

following set of equations are obtained: 

arg[G, (Jw,, )G(Jw,, )] = -, T (4.12) 

I 

G, (Jw,, )G(Jw,, )I (4.13) 

IGA. (Jwg)G(JWR )I = 1, 
(4.14) 

=arg[G, (Jw, )Gp(Jwg), +ft (4.15) 

Then include PI controller and the process, 

1 
Gý (s) = k, (1 + ST ), (4.16) 

Gn (s) _ 
kr 

e-r. (4.17) 
1+sT 

Substituting (4.16) and (4.17) into (4.12) - (4.15) gives 

1 1 
7r+arctanwpT -arctanwPr-wpL=0, (4.18) 

w2r2+l 
Am > kc. k> 

ý=w, 
Ti ;'2 (4.19) 

cop +1 

1r, 
Ü2z2 +l 

k, kp= tvg 1; Z2 (4.20) 
T. +l 

ý, 
ý, =1 it + arctan tog T- arctan wr- wR L. (4.21) 
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Finally, through the approximation of function arctan, a solution of KP, and T; was given by 

Ho et al. (1995), 

CJpT 

A�, kp 
(4.22) 

4[vL ] 
(2wp -+T (4.23) 

7I 

where 

I 
Amon, +-74m(A, � -1) 

w° (Am -I) L 
(4.24) 

4.3.2 Improvement with Derivative Action 

Although Ho's method is very easy for us to get a PI controller to satisfy the specific gain 

margin and phase margin, derivative control is not considered in this solution. Predictive 

action played by the derivative control has been explained in Section 4.1.2. It is expected that 

the derivative action could play a part for the system to have the best performance under the 

limitation of the gain margin and phase margin. Li et al. (1998) has investigated this 

problem. In general, adding a derivative term to the proportional term means increasing the 

gain by: 

I1+jcoTdl= 1+r, 02Tý; >1, Vco (4.25) 

times, which alone tends to decrease the gain margin. But the phase is improved by: 

L(1 + jcoT, ) = arctan 
(oT dE [0,. 

r/2], V co (4.26) 
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From (4.25) and (4.26), there is possible improvement of stability margins to be achieved by 

involving the derivative term, especially, when there is apparent time delay in the plant to be 

controlled, because the time delay will lead to the reduction of phase margin. 

4.3.3 Design Results and Comparison 

Since it has been discussed that load disturbance rejection is more important than set-point 

following (Aström and Hägglund), and Zhuang and Atherton's method has a good result for 

set point following, here, just load disturbance rejection is considered as the objective to be 

achieved. And ITAE is used as the index, instead of IAE, because IAE could lead to 

underdamped design results, which has been detailed in Chapter 3. But what should be noted 

is that the optimisation is under constraints of gain and phase margins. The hybridised GA 

based environment developed in Chapter 3 is used to deal with the problem. The cost 

function designed here is, 

{JrFAE 
+ K((Am 

- 
Am) + 

(0m 
-Yam 

)) 
Am > Am v 0, > 0. 

(4.27) 
, 
I/rAE otherwise 

where Am and 4ý are the desired gain margin and phase margin, A,,, and 4, are candidates' 

corresponding margins. K is a big constant compared with JrrAE in order to make sure the 

stability requirement to be satisfied. Because there are just three coefficients in the system, 

the hybridised GA finishes the optimisation in 5 generations with the population size 50. 

Optimisation results are given in Tables 4.6 to 4.11. Time domain simulation are given in 

Figures 4.9 to 4.20 (the darker line for PID): 

Case 1: G,, (s)=e s) 
y+ 

Table 4.6 PH) controller coefficients from the hybridised GA with = 0.1 
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Specified Resultant 

K Ti Td A,,, * 41* IATE IAE 

3 45 5.43 0.35 0.016 2.99 44.78 0.029 0.065 

5 45 3.29 0.32 0.011 4.91 44.71 0.079 0.121 

3 60 4.65 0.43 0.045 3.02 59.25 0.056 0.096 

5 60 3.24 0.52 0.015 5.00 59.45 0.117 0.162 

Table 4.7 PI controller coefficients from the Ho's formulae with = 0.1 

Specified Resultant 

Am A. K T, Am` 0" IATE IAE 

3 45 4.91 0.35 2.91 41.6 0.033 0.073 

5 45 0.295 0.35 4.83 46.6 0.097 0.142 

3 60 5.24 1.00 3.00 60.0 0.231 0.191 

5 60 3.05 0.54 4.94 58.5 0.132 0.178 

86 



15 

c. 1 
0 

05 

0 
05 10 15 20 25 

15 

C10 
0 

ö 
ö0 
U 

5 
05 10 15 20 25 

Time(Sec ) 

Figure 4.9 Comparison between PID and PI with An = 3, � = 45 and = 0.1 
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Figure 4.10 Comparison between PID and PI with A, = 5,0,,, = 45 and = 0.1 
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., Case 2: Ge(s)=e -04 
o+s) 

Table 4.8 PID controller coefficients from the hybridised GA with = 0.4 

Specified Resultant 

Am ýrn K Ti Td Ami On" ITAE IAE 

3 45 1.53 0.69 0.066 2.94 45.2 0.749 0.520 

5 45 0.92 0.60 0.084 5.00 44.9 1.561 0.821 

3 60 1.50 0.93 0.100 3.02 59.3 0.974 0.620 

5 60 0.92 0.75 0.080 5.00 59.5 1.635 0.881 

Table 4.9 PI controller coefficients from the Ho's formulae with = 0.4 

Specified Resultant 

K Ti Ami TTAE IAE 

3 45 1.23 0.68 2.86 46.2 0.993 0.640 

5 45 0.73 0.68 4.81 58.2 1.992 1.019 

3 60 1.31 1.00 3.00 60.1 1.360 0.764 

5 60 0.76 0.83 4.96 65.0 1.097 2.191 
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Figure 4.13 Comparison between PID and PI with A, = 3,4� = 45 and = 0.4 
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Figure 4.14 Comparison between PID and PI with AR, = 5, O= 45 and ý/. = 0.4 
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Figure 4.15 Comparison between PID and PI with A, = 3, o,,, = 60 and = 0.4 
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Table 4.10 PID controller coefficients from the hybridised GA with V. 
=I 

Specified Resultant 

Am om K Ti Td Am* 0m* ITAE IAE 

3 45 0.75 1.11 0.22 3.01 57.6 4.441 1.561 

5 45 0.45 0.81 0.29 4.98 57.6 7.491 2.139 

3 60 0.70 1.11 0.20 3.10 60.3 4.781 1.650 

5 60 0.44 0.84 0.30 5.00 60.0 7.633 2.182 

Table 4.11 PI controller coefficients from the Ho's formulas with 
%=1 

Specified Resultant 

A. 0. K Ti Am* ITAE IAE 

3 45 0.49 0.84 2.87 53.9 6.685 2.034 

5 45 0.29 0.84 4.85 67.5 10.97 2.894 

3 60 0.52 1.00 3.02 60.2 6.042 1.970 

5 60 0.30 0.92 4.97 70.0 11.95 3.019 
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Figure 4.18 Comparison between PID and PI with A,,, = 5, O,,, = 45 and =I 

93 



2 

1.5 

O1 
M 

CL 0.5 

05 10 15 20 25 

6 

0. 
0 
5 2- 
0 

0 
0 
U 

2 
05 10 15 20 25 

Time(Sec. ) 

Figure 4.19 Comparison between PID and PI with Am = 3, O,,, = 60 and =1 
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Figure 4.20 Comparison between PID and PI with A,,, = 5, A,,, = 60 and =1 

From the these simulation results, it can be observed: 
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1. The derivative part can reduce the load disturbance under the limits of 

stability margins. 

2. With the longer delay time, the effect of the derivative part is more apparent. 

When the delay time is short, PI control is enough. 

3. In the case of relatively much requirement of the phase margin, the derivative 

part may improve the rejection of load disturbance greatly, see Figure 4.11. 

4.4 Batch Optimisation for PID Control Systems 

4.4.1 Optimisation Results 

Since in Section 4.3, PID controllers have better rejection of load disturbance than PI 

controllers do when the gain and phase margins are employed as design specifications. In 

this section, batch optimisation of PID controllers is carried out. Just as other optimisation 

methods, relations such as 

AKn 9 
T1 

and 
T1, 

oc 
y 

are investigated. Here A, L, rare defined in Figure 4.2. Because generally too much time 

delay (/ ? 1) is thought as unsuitable for PID control (Smith, 1957; Seborg, 1989) and if 

there is very short time delay PI control is enough, the plants with E[0.1,11 are designed. 

Different design results for set-point following and load disturbance are given. To highlight 

the importance of the gain and phase margin limits, the rejection of load disturbances with 

and without limits are designed to make a comparison. The design requirement for gain 

margin is 3, and phase margin is 45 degree. The design results are given in Figure 4.21 to 
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4.23. Tuning rules given by approximation of points in Figures 4.21 to 4.23 are given in 

Table 4.12. 

Table 4.12 Tuning formulae for PID control obtained by the step response method. The table 

gives coefficients of functions of the form AKP =a, T /r =aL , 
(- 

-b, 
) 

+c, (set 
rr 

Lhn. 
point following), T, /r = a2 

() 
(load disturbance rejection) and Td r= a3(L -) for the 

r 

model given in Figure 4.2. 

a, b2 A, B, cl a-, bz 

Set point following 0.9619 -0.8528 0.3463 0.4176 1.155 0.2888 0.8745 

Load disturbance 

with stability margin 

0.7189 -0.8536 1.164 0.4842 - 0.1979 1.252 

Load disturbance 1.355 -0.9503 1.229 0.7383 - 0.3710 0.9478 
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Figure 4.21 Normalised Proportional control coefficients related to normalised delay 
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Figure 4.23 Derivative control coefficients related to normalised delay 

From Figure 4.21 to 4.23, the three control coefficients in PID control for different 

specifications are presented. It could be found that for the specification "load disturbance" 

the control system has the largest KPIT, 
, 

"load disturbance with stability limitation" the 

second and "set-point" the last. It can be also found that with the increase of the normalised 
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delay, the values of KPIT, are close to one another. These differences hint that different load 

disturbance rejection abilities. The largest KPIT, has the strongest load disturbance rejection 

ability. The theory is given by Astrom and Hägglund (1995). However, if stability 

requirement is considered, the pure "load disturbance" specification is not a good choice. In 

the following section, the gain and phase margins of control systems designed from different 

specifications are given. 

4.4.2 Sensitivitc and Stability Analyses 

As investigated in Chapter 3, stability specifications can be indicated by maximum 

sensitivity, or gain and phase margins. Therefore, design results from these indices against 

E [0.1,1] are given in Figure 4.24 to 4.26. 
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Figure 4.24 Gain margins related to normalised delay 
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Figure 4.26 Maximum sensitivity related to normalised delay 

From the Figure 4.24 to 4.26, it can be observed that for set-point following case, the gain 

margin is 2.4 to 2.6, the phase margin from 62 to 66 degree and maximum sensitivity from 

1.66 to 1.78. This is similar to that of Zhuang and Atherton's methods, which are given in 

Figure 4.3 to 4.5: the gain margin is 2.3 to 2.5, the phase margin from 60 to 64 degree and 

maximum sensitivity from 1.8 to 1.9. Basically both of them meet general rules: the gain 

margin 2.5 to 4; the phase margin 40 to 65 degree, and the maximum sensitivity 1.2 to 2 
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(Levine 1996), but designs given in thesis have more stability margins. The response in the 

time domain should be slower. 

For "disturbance without stability limits", the phase margin is about from 35 to 55 degree, 

gain margin 1.5 to 1.7 and maximum sensitivity from 2.2 to 3. Apparently, there are too 

much small margins and too big maximum sensitivity arisen from simple TTAE optimisation 

of load disturbance rejection. So ITAE combined with limitation of gain and phase margins 

is employed here to achieve MID controllers with best load disturbance rejection and 

acceptable phase and gain margins. 

It is clear under our design strategy that the gain and phase margins basically satisfy the 

initial design requirements (Gain margin 3, phase margin 45 degree). For this type of design, 

phase margins become large after normalised delay above 0.6. It means that with the increase 

of normalised delay the phase margin requirement may not compromise the load disturbance 

rejection. On the contrary, Zhuang and Atherton's methods (Figures 4.3 to 4.5) have 

maximum sensitivity up to 8, which is far from specification given in Page 99 (1.2 to 2). But 

maximum sensitivity from "disturbance without stability limits" (1.66 to 1.78) meets it. 

4.4.3 Simulation Results 

Table 4.13 Comparisons of different specification with L=0.1, t=1 

Methods kp T; Td J1** J2** AR, 4� Mc 

Set-point 7.42 1.07 0.036 0.194 0.009 2.57 66.2 1.67 

Disturbance 1* 12.41 0.21 0.041 0.005 0.038 1.50 34.4 3.07 

Disturbance2* 5.46 0.36 0.016 0.029 0.072 2.99 44.78 1.65 

Table 4.14 Comparisons of different specification with L=0.4,, r =I 
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Methods kp 7i Td Jl** J2 Am P. Ms 

Set-point 2.07 1.15 0.13 1.052 0.495 2.37 62.5 1.78 

Disturbancel* 3.18 0.65 0.16 0.412 0.216 1.53 35.8 2.94 

Disturbance2* 1.53 0.77 0.064 0.749 0.053 2.94 45.2 1.70 

Table 4.15 Comparisons of different specification with L=1,, r =1 

Methods kp TI Td J1 ** J2** Am P. MS 

Set-point 1.00 1.37 0.29 3.779 0.340 2.47 63.3 1.71 

Disturbancel* 1.39 1.16 0.37 2.028 1.487 1.71 51.4 2.44 

Disturbance2* 0.75 1.11 0.20 4.441 1.145 3.01 57.6 1.56 

*Distwbancel : load disturbance dsiViwirb phase and gain margins limitation Disturbance 2 limited by A,,, >3 and P, ,= 45. 

$$ J, is ITAE for load disturbance and J1 is ITAE for set-point following. 

In the Figures 4.27-4.29, the red is for "load disturbance", the green for "load disturbance 

with stability limitation and the black for "set-point following". 
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Figure 4.27 Simulation results for different specifications with L=0.1, i=1 
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Figure 4.29 Simulation results for different specifications with L=1, i=1 

From the simulation results, it can be observed that with the increase of the delay, Designs 

from "set-point " have the close or better load disturbance rejection than those from "load 

disturbance with stability margin". However, it should be noticed that this is at the cost of 

phase margin (Table 4.13 to 4.15). 
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4.4.4 Comparison 

In Figure 4.26, if the maximum sensitivity offered under "load disturbance with stability 

limitation" with A,,, = 3,0,,, = 45 is checked, it meets the specification MS = 2.0 given by 

Aström (Figure 4.8). It makes sense for us to compare the two designs in the time domain as 

0 well. In Figure 4.30 to 4.32, the lighter line for results from Aström's formulae, and the 

darker line for hybridised GA based batch design results. Apparently, improvement for load 

disturbance rejection can be found. However, if considering the largest MS = 1.7 for systems 

evolved by hybridised GA based environment, there is still some room to improve the load 

disturbance rejection under the specification MS = 2.0. 
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Figure 4.31 Results of designs with EA and Aström 's formulae with Td = 0.4 and r= I 
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Figure 4.32 Results of designs with EA and Aström's formulae with Td = 0.7 and r= I 

4.4.5 Simple relay PID auto-tuning 

The tuning rules given in Table 4.12 are well suited for PID auto-tuning and adaptive 

control. There are many identification techniques that can be used to obtain the FOPDT 
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model for PID control (Deshpande and Ash, 1988; Astrom et al. 1993). A simple method is 

through the analysis of the open-loop step response. Alternatively, the FOPDT model of 

Figure 4.2 can be derived from relay feedback (Aström and Hägglund, 1984,1988): 

21r ku kp (4.28) 

t 
2zý 
u it - ar tan 

2, rr 
t 

(4.29) L=t 
u 

where k,, and t,, are the ultimate gain and ultimate period, which can be obtained from the 

relay experiment. kp is the corresponding static gain. Since there are advantages of relay 

feedback identification (Majhi and Atherton, 1999; Atherton 2000), (4.28) and (4.29) are 

very useful relations between frequency model and step response model. 

4.5 Summary 

In this chapter, PID control and the tuning methods (Äström and Hägglund, 1995; Zhuang 

and Atherton 1993; and Ho et al. 1995) are analysed. Based on these contributions, detailed 

comparisons of load disturbance rejection by PID and PI control designs under specific 

stability margins are given. Then the hybridised GA based design environment developed in 

the thesis is employed to automate PID controller designs in batch mode. The optimisations 

are carried out for different specifications, e. g., set-point following, load disturbance 

rejection and load disturbance with stability limitation. Finally, comparisons with designs 

from Aström's formulae are given. It is found that PID controllers achieved have better load 

disturbance rejection than counterpart from Aström's formulae, while the stability margins 

can still be maintained or improved. 
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Chapter 5 Automating Robust Loop Shaping and QFT Design 

Although a PID controller shapes the overall frequency response, this simple control strategy 

offers limited capability in robust loop shaping for uncertain plants due to the limitations of 

its `three term' structure. However, QFT provides a more sophisticated tool for robust loop 

shaping. 

In this chapter, therefore, further robust issues are addressed by extending the PID structure 

to a free form transfer function, which is achieved by employing the hybridised GA based 

design environment to carry out automatic loop shaping for more complicated linear 

controllers in QFT. Since EA is considered as one of powerful techniques to deal with 

complicated search space, to solve the complicated loop shaping problem, the search power 

of hybridised GA can be highlighted. In this chapter, the QFT problem is first presented in 

Section 5.1. General QFT design procedures are outlined in Section 5.2. The hybridised GA 

based automated design technique is detailed in Section 5.3. This is illustrated by benchmark 

examples in Section 5.4, in which manual loop shaping and linear programming based loop 

shaping methods are compared with automated loop shaping developed in this thesis. 

Finally, a summary is given in Section 5.5. 

5.1 Introduction 

Since QFT was developed by Horowitz (1973,1992), it has found many successful 

applications in control engineering practice, such as control of wastewater treatment plant 

(Ostolaza and GarciaSanz, 1998), robust flight control systems design (Keating et. al., 1997; 

and Wu et al., 1998) and active noise control in duct (Chai et al., 1997). The underlying 

principle of QFT is to transform plant uncertainties and closed-loop design specifications 
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into robust stability and performance bounds, so as to design a robust controller using simple 

gain-phase loop shaping techniques with the nominal system. 

From all sorts of applications, the most important feature of QFT is its ability to tackle 

design problems concerning complicated uncertain plants. At present, loop shaping is 

performed manually in a computer-aided control system design (CACSD) environment. The 

main advantages of this method are that the design procedure is transparent and the designer 

can consider factors that might be difficult to represent by analytical expressions or 

quantitatively. Since most CACSD packages (such as MATLAB toolboxes) are simulation 

packages, however, the QFT design procedure often falls in a trial-and-error process (Chait, 

1997). Whether the design is successful or not is thus dependent upon the experience and/or 

intelligence of the human designer. Moreover, for uncertain, unstable or non-minimum phase 

plants, it is difficult to design a controller that may satisfy all specifications manually, 

sometimes even in the case where the plant is merely a stable one. This is also true for 

systems with a large number of resonance, pure delays, etc., where a high-order and/or 

complex controller is necessary. These contribute to the complexity and difficulties in 

manual loop shaping, where mutually interactive factors need to be taken into account. 

To solve this design problem and unleash the power of QFT, optimisation and 'automatic 

design' techniques have recently been investigated and developed. These techniques include: 

1. The use of Bode integrals in an iterative approach to loop shaping by 

Horowitz and Gera (1980) and Ballance and Gawthrop (1991). 

2. Thompson and Nwokah's analytical approach (1994) to loop shaping, if the 

templates may be approximated by boxes or an initial QFT controller already 

exists. 

3. A linear programming approach to automatic loop shaping by Bryant and 
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Halikias (1995). 

4. An automatic technique by Chait (1997), which over-comes the non- 

convexity of the bounds on the open-loop transmission, whilst the design is 

based on the closed-loop bounds. 

The major disadvantage of these approaches is, however, the inability in solving a 

complicated nonlinear optimisation problem. The QFT design problem is multi-modal and 

multi-dimensional. Global solutions can hardly be obtained using analytical and/or convex or 

linear programming techniques. Further, this type of conventional methods often imposes 

unrealistic or unpractical assumptions and often leads to very conservative designs. For 

example, the denominator of the closed-loop transfer function of a QFT control system must 

be specified in advance if the approach of Chait (1994) is to be used. 

In view of the multi-dimensional non-convexity of the loop shaping problem in QFT 

designs, a globally optimal QFT design automation technique using the evolutionary 

computation paradigm was first proposed in (Chen, et al., 1998). The evolutionary algorithm 

computerises the trial-and-error process 'intelligently'. It can globally optimise for multiple 

objectives efficiently in a multivariate multi-modal space. In our research, this method is 

furthered by using the hybridised GA-based design suite in presented in Chapter 3. Thus, 

QFT controllers are easily designed from scratch for uncertain industrial plants such that the 

cost of feedback is minimised and all robust stability and performance specifications are 

satisfied. Improvement of existing designs is tried as well. In particular, the automated QFT 

design technique presented here consists of two steps. The first is closed-loop shaping, where 

a robust controller tackling uncertain plants is evolved such that the cost of feedback is 

minimised and all robust stability and performance bounds are satisfied. Then a prefilter is 

automatically designed to meet open-loop performance specifications if there is the 

requirement for tracking. 
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Figure 5.1 Control system configuration in QFT 

5.2 Robust Loop Shaping by QFT 

5.2.1 QFT Review 

The two-degree-freedom feedback system configuration of QFT is given in Figure 5.1 where 

G(s) and F(s) are referred to as the controller and the prefilter respectively. P(s) denotes the 

uncertain plant, which belongs to a given plant family P. It can contain structured, 

unstructured or mixed uncertainties. 

One view of the QFT approach is that if there are no uncertainties and noise, the feedback is 

unnecessary and we can achieve the prescribed performance specification by the prefilter 

F(s), which can be designed via open-loop shaping. The main role of the controller, G(s), is 

therefore to reduce uncertainties and disturbances by using feedback. The QFT design is 

thereby divided into two steps. The first step is to design the controller, G(s), such that 

uncertainties and noise on the closed-loop system are reduced to an acceptable level which is 

determined by the closed-loop robust stability and performance specifications. The prefilter 

is then designed to achieve the desired frequency responses. 

In general three kinds of specification are considered in QFT: 

1. Robust Stability Margin 
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ü(w) =0 
6854 jw + 30) 

(5.7) 
jco) + 4(jw) + 19.752 

b(w) = 2120 (5.8) (jw) +(jc)) +828(jt))+ 120 

and 

w, = 15rad/s (5.9) 

Based on such a problem, a common QFT Design procedure is outlined below: 

1. Generating templates. A given uncertain plant P(s) EP select a series of 

frequency points according to the plant characteristics and specifications. 

Calculate P(jt)) 
, the plant templates, at all required frequency points. The 

14 points in Figure 5.2 can be thought as characteristic points, because the 

corresponding points in the complex plane just enclose an area. So the 14 

plants represented by the points could be thought as suitable templates. In 

Figure 5.3, frequency characteristics of plants at specific frequency are 

shown, including amplitude and phase. In order to check characteristics on 

different frequencies, more templates are calculated in Figure 5.4, 
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2. Computing QFT bounds. An arbitrary member in the plant set is chosen as the 

nominal case. At each selected frequency point, combining the stability and 

performance specifications with plant templates yields stability margins and 

performance bounds in term of nominal case. Intersection of all such bounds, 

i. e., the worst case bound, at the same frequency point yields a single QFF 

bound. Compute such QFT bounds for all frequency points. Some graphs for 

different bounds are given in Figure 5.5, Figure 5.6 and Figure 5.7. 

3. Loop shaping QFT controllers. The design of the QFI' controller, G(s), is 

accomplished on the Nichols Chart. The phase gain loop shaping technique is 

employed to design controllers, until the QFT bounds at all frequencies are 

satisfied, while the closed-loop nominal system is kept stable. 

4. Designing prefilters. The final step in QFT is to design the prefilter, F(s), such 

that the performance specifications are satisfied. 
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In general the first two steps can be carried out by numerical evaluations on computer. For a 

large class of systems with nonlinear uncertainties, a systematic method for generating the 

plant templates and its symbolic computation procedure has been developed by Chen and 

Ballance (1999). The main difficulty in QFT design procedure lies in Step 3. It is normally 

performed manually with the help of a CACSD environment, e. g., the QFT Toolbox for 

MATLAB (Borghesani, Chait and Yaniv, 1995). As pointed out in Section 5.1, there often 

exist too many interactions to handle in a design process. Further, when the plant has 

unstable zero/poles or complicated characteristics, it may be difficult to design a stabilising 

controller manually. In addition, whether or not the design is successful mainly depends on 

designer's experience applied to the trials. Thus, the QFT controller is first considered in this 

chapter. After the controllers, which ensure all QFT bounds are satisfied, have been worked 

out in step 3, a systematic way to achieve the optimal filter is presented in this chapter as 

well 
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5.3 Automated QFT Controller Design by GA 

5.3.1 Problem Formulation 

The design automation problem considered in this chapter can be stated as, given the QFT 

bounds and the nominal plant, to develop a controller automatically such that all QFT 

bounds and the stability of the closed-loop nominal system are satisfied and the given 

performance index is minimised. And after that, how an optimal filter under this controller 

could be achieved. 

A good automatic design procedure, we believe, should be flexible and transparent to the 

designer. The designer should know how to control the optimisation process to achieve the 

specific requirements for a problem in hand by adjusting the parameters provided by the 

optimisation procedure, for example, the order the controller, whether or not an integral is 

included, etc. 

5.3.2 QFT Variables to Optimise 

The work of Horowitz has shown that the optimal QFT design is achieved when the open- 

loop transmission lies on the corresponding QFT bound at each frequency point (Horowitz, 

1992). This is incorporated in the hybridised GA automated procedure. Any irrational 

controllers or those with unstable pole and non-minimum phase zero cancellation may not be 

allowed to survive in the evolution. Since QFT bounds are given in terms of the open-loop 

transmission, it is thus convenient to limit the minimum of that of the controller order to that 

of the plant plus that of the resultant open-loop transmission. The controller can be evolved 

by polynomials, as in: 
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b, s' +... +b, s+ bo 
G(s) 

anus'+.. a, s+Qo 
(5.10) 

This may be useful if the design starts from scratch, where the order of the controller can be 

specified if necessary 

If tuning existing designs is only required, controllers could be evolved by refining positions 

of poles and zeros directly. In order to reduce the order of the controller, candidate 

controllers can be assessed with poles and zeros far from the imaginary axis being omitted. 

Note that other structures, such as the realisable (non-ideal) PID structures, can be also 

imposed in the search. 

5.3.3 Stability of the Nominal Case 

It is well known that a sufficient and necessary condition for the robust stability of closed- 

loop systems is that the nominal system is stable and the open-loop transmission under the 

prescribed plant set does not intersect the -1 + jO point in the complex plane. The latter is 

guaranteed in QFT by the robust stability margin condition. 

In manual designs, stability is checked in the Nichols Chart graphically. For an automated 

design, the roots of the characteristic equation can be checked. A simple cost function to 

penalise unstable designs is: 

10 if stable J,. 
ds, 

a if unstable 

where d.,, 
ü 

is the distance to the imaginary axis in the complex plane. 

(5.11) 
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5.3.4 Right Half Plane Pole/Zero Cancellation 

In order to ensure internal stability, it is desired that a minimum phase and stable controller 

be designed. This can guarantee the internal stability and no unstable pole and non-minimum 

phase zero cancellations. For an automated design, the necessary condition is utilised first to 

limit all coefficients of the transfer function G(s) to be positive. If necessary, the poles and 

the zeros of the controllers can be calculated explicitly to avoid right half pole/zero 

cancellation by comparing them with all right-half plane poles/zeros (if any) of the nominal 

case. Alternatively, the Horowitz method for QFT design of unstable and non-minimum 

phase plants can be used, i. e., to translate QFT bounds for an unstable/non-minimum phase 

nominal plant to that for a stable and minimum phase plant (Horowitz, 1992). This avoids 

right half plane pole/zero cancellations since the new nominal plant is stable and is of 

minimum phase. 

5.3.5 QFT Bounds 

It is difficult to give analytical expressions of the QFT bounds (Thompson and Nwokah, 

1994) since in general the QFT bounds are very complicated and are non-convex (Horowitz, 

1992). In our research, the QFT bounds are generated first using the QFT Toolbox. Then, 

with the capability of an evolutionary algorithm, these numerical bounds can be used directly 

in an automated design. At each frequency point, the gain and phase of the open-loop 

transmission L(jw; ) is calculated and then checked to see whether the QFT bound at this 

frequency is satisfied by interpolation. A simple bound index is given by 

0 if QFT bound at w, satisfied fib' 
db; otherwise 

(5.12) 
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where d,,, is the distance to the QFT bound at jth frequency point. A Universal High- 

frequency Bound (UHB) is widely used in QFT. To ensure the open-loop transmission does 

not intersect the UHB, a number of frequency points near or greater than the largest 

frequency are added. The gain and phase of the open-loop transmission is computed and the 

UHB is tested at those frequency points. This does not add much to the computational 

burden since no new QFT bounds need to be calculated. 

5.3.6 Performance Index of QFT Controller Design 

The optimum in QFT is taken to be any L(jw) whose magnitude as a function of 

frequency decreases as fast as possible (Horowitz, 1992). The justification for this is to 

consider the effects of high-frequency sensor noise and the unmodelled high-frequency 

dynamics/harmonics, which may result, with unnecessarily large bandwidth, in actuator 

saturation and instability. It follows that the cost-function to be minimised is the high- 

frequency gain of the open-loop transmission L(s), which is termed the cost of feedback in 

QFT. Since the nominal is fixed, this is equivalent to the high frequency gain of the 

controller, given by 

Jhg br lam (5.13) 

This performance index is widely adopted in QFT optimisation (Horowitz, 1992; Thompson 

and Nwokah, 1994; Chait, 1997; and Bryant and Halikias, 1995) and is used as another cost 

in guiding the EA search. Since the stability and bounds are hard conditions to satisfy in the 

design, it is difficult to optimise the QFT controller for all three objectives. This also means 

that it is counter-productive if a multi-objective EA is applied, as no compromise may be 

made to the stability and bounds goals. Thus a single composite cost is formed for the EA 

search for the QFT design, as given by 
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h 

J =1og Jhg +I Y1 Jhi + Yo J,, 
u 

(5.14) 

5.3.7 Prefilter Design 

While robust controllers have emerged, prefilters can be evolved to satisfy the tracking 

requirements. In QFT, the tracking performance is represented as desired frequency response 

bounds. The objective of the design of the prefilter is to fit the frequency response of closed- 

loop systems within these desired frequency bounds. Starting the prefilter design, frequency 

response bounds of the closed-loop systems consisting of the designed QFT controller and 

the uncertain plant are calculated. According to our QFT bounds calculation for robust 

tracking, in required frequency band, the close-loop could be fitted in the bounds. Just like in 

the Figure 5.8, the two solid lines represent the extremes of close-loop responses without any 

filtering, the two dash lines represent the limitation given by specifications. Through a filter, 

the solid lines could be shifted in the limits of dash lines. In our design for fitness function, 

the middle line of the bounds is calculated, and the middle line of the closed-loop responses 

is calculated. The performance of the ideal filter we are to design is the difference between 

the two middle lines. Then hybridised GA environment is employed to design a filter to 

approximate the performance of the ideal filter under the specific frequency range. It is 

apparent that in the lower frequency range, the filter performance should be 0 dB, so the 

filter can be supposed be as 

F(S 
b"s"+... +b1s+1 

(5.15) ý= 

amsm +... +a, s+ 1 

Where n<m, since it is a lower pass filter. EA is used to find proper parameters of the filer. 

Cost function employed is 
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J= ýI201ogIF(f; )I - 201oglFd (f, )II (5.16) 

Where Fd is the desired filter from calculation, f; is logarithmically spaced frequency array. It 

means that lower frequencies area should be emphasised. 
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Figure 5.8 QFT filter design bounds and the extremes of response without a prefilter 

5.4 Design Examples 

5.4.1 Benchmark Example 

For the benchmark problem introduced in Section 5.2.2, with the controller order prefixed to 

three, and the first benchmark design was reported by (Borghesani, et al., 1995) using the 

QF F Toolbox for MATLAB, given by 

G(s) = 
3.0787 x 106s2 +3.537 x 108s+3.853 x 108 

s3+1.529x103s2+1.064x106s+4.281x107 
(5.17) 
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The parameters of the controller given in the QFT Toolbox vary in a very large range (from 

1.0 to 108) and hence represent a challenging problem to automation design (Chait, 1997). 

Optimising QET designs for this plant was first investigated by Chait (1997), Chait's 

methods, however, imposes the requirement that the poles of the nominal closed-loop 

transfer function must be pre-determined, and hence leads to conservative and sub-optimal 

design. In addition, there exist, in general, no firm guidelines on selecting the poles of the 

closed-loop nominal system. The controller order resulting from this method is the sum of 

the closed-loop transfer function and the order of the nominal open-loop plant, and is thus 

high. 

A more recent solution to this benchmark problem was reported in (Chait et al., 1999), where 

linear programming technique was employed. The optimised controller reported is given by 

1.6823 x 10' s2 + 5.9444 x 10' s+6.9046 x 10' 
G(s = 

s3 + 5.. 4770 x 103 s2 + 6.6782 x 106S+ 9.3003 x 106 
(5.18) 

whose loop shaping results are shown in Figure 5.9. 
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Figure 5.9 Third order controller loop shaping by linear programming 

To validate the EA based QFT design-automation technique here, the existing frequency 

points co (=- {0.1,0.5,1,2,15,100) in (Borghesani et al., 1995) and (Chait et al., 1999) are 

retained. Two more (50,801 are considered. To check the UHB, 100 more frequency points 

beyond 100 rad. /sec. are added using logarithmic spacing. 

To permit optimisation over the order, it is also encoded in the EA. This and all coefficients 

are allowed to change. Starting from scratch, large ranges of the parameter values are coded 

in logarithmic scale. The improvements for the controller and filter over 300 generations are 

shown in Figure 5.14. This also confirms that designing the prefilter less challenging than 

designing the controller, which appears more open to traps of local optimality. A typical 

coefficient search history of the controller representing the best in 50 candidates is shown in 

Figure 5.15. It can be see that the hybridised GA has managed to find and stay with locally 
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optimal niches. Nevertheless, it has also managed to jump out of them and move towards the 

global optimum. 

After 300 of evolution generations, which cost 4 hours 20 minutes, the one of best 

controllers evolved is given by: 

4.4852 x 105 s+ 15508 x 106 
G(5.19 s) = 

s2 +4.4852 x 102 s+2.0655 x 105 
) 

Whose loop shaping result is verified in Figure 5.10. It can be seen that all robust stability 

margins and the performance specifications are satisfied. The nominal system existing is also 

stable. According to the optimal design concept by the QFT pioneer Horowitz (1973), an 

optimal result is evident here. The open-loop transmission at almost all frequency points lie 

on the corresponding QFT bounds. Comparing with Figure 5.9, it is clear that this 

automatically evolved second order controller performs better than the best third-order one 

manually designed us numbering the QFT Toolbox. Also, the high frequency gain of 4.4852 

x 105 is smaller than that of the benchmark one of 3.0787 x 106. This means that the 

evolved controller needs less control effort and is less sensitive to high frequency noise. 

While the robust controller is evolved, a prefilter is designed by EA method described in 

Section 5.3.7: 

0.29s+1 
F(s = 0.095s2 +0.040s+1 

(5.20) 

The ideal and achieved prefilters are shown in Figure 5.11. The closed-loop system gain and 

the desired frequency response bounds are shown in Figure 5.12, which are indeed very 

close. Step responses of the overall closed-loop systems with the uncertain plant are verified 

in the Figure 5.13, which validate the optimal design in the time domain, although the plant 
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parameters vary in a large range, again robust performance is achieved with the hybridised 

GA automated QET design procedure. 
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Figure 5.15 Typical convergence of parameters in the optimisation process 

5.4.2 Non-Parametric Uncertainty Model 

This problem is also from MATLAB toolbox. This problem illustrates control design for a 

plant with a non-parametric uncertainty model. Consider a control system with a non- 

parametric uncertain plant model described by (Borghesani, 1995), 

P(s) 
s(O. 1s0+1)(l+Am(s)). 

P= 0.9(jco +1) (5.21) 
0.91 

0�, (s) stable. Am(s) < 
jw 

+l 1.001 

The specifications are robust stability and robust sensitivity according to 

I 

I+P<O. 
089w2, for all PEý, co <_ 5 (5.22) ý jwýGý jwý 

The associated QFT robust stability constraint is given by 
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P(jw)G(jw) 
<_1.2 for all PEP. w_0 I+ P(jcw)G(jw) 

The solution offered in the MATLAB Toolbox is 

(5.23) 

IS 8 25 6 29 5 5.0322 x 10 s+1.0477 x 102's' + 2.7833 x 10 s+2.0916 x 10 s5 G(s) =968 I`ý 7 17 6 ý2 5 
s+1.1235 x 10 s+2.7342 x 10 s+ 75741 x 10 s+4.9192 x 10` sý (5.24) 

+ 3.1804 x 1032s4 + 8.2656 x 1034 s3 + 2.6275 x 10; 6 s2 + 4.9298 x 10-36S + 2.2607 x 1036 

+ 7.2667 x 1()26S-4 + 2.6692 x 1030 s3 + 1.9102 x 1033 s2 + 1.9327 x 10 5s 

It is easy to find the high frequency gain here is 5.0322 x 1015. Figure 5.16 is the loop shape 

given by the toolbox. 

Open-loop: . 1S6A3dsg, 1107dß 

Closed-loop: -147.35d. g. 8.60d6 
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Figure 5.16 Non-parametric uncertainty design results in MATLAB QFT Toolbox 

The objective is automatically to find a controller such that all the closed-loop specifications 

are satisfied with the cost of feedback as small as possible. From the graph, it seems that 

there is little room to improve the design, because the gain-phase curve is too close to the 

bounds. After checking the zeros and poles of the design, 
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Zeros: -178490, -17855, -9923.3, -1597.3, -280.44, -34.585 -1.2129, -0.75590 

Poles: 411640± j1515800 , -67553, -13884, -4143.4, -779.63, -120.95, -2.13780,0 

A controller with the 8th order is designed by the EA method, and an integrator is kept in this 

design. In the evolution process, zeros and poles are chosen as the parameters to be 

optimised. The ranges of zeros and poles are supposed to be [1/2 *P or Z, 2*P or Z] , 

Apparently, the real pole and zero farthest to the origin should be forgotten. The two 

underdamped poles could be thought as sZ + 2Sw,, s + w, , when S=0.26, w, = 1570700, 

then their ranges could be arranged as [ o5cw,, 2w, ], and [0.4,11 for damp ratio according to 

suggestion given by Horowitz (1992). Another the parameter should be optimised is the high 

frequency gain. The range of high frequency gain is supposed to be 

[ 5.0322 x l0,5.0322 x 1014 ], because this value is supposed to be reduced. From the Figure 

5.16, the point with the arrow represents a high frequency 1447721.87 rad/s, so the 

frequency stability should be checked until the frequency around it. In this case, frequencies 

till 1500000 rad/s are considered. An array of frequencies from 90 rad/s to 1500000 rad/s is 

produced. It includes 100 frequencies, with steps like (log 1500000 - log 90)/100. Stability 

under the frequencies is tested by stability bound of 90 rad/s, since with the increase of 

frequency, there is not much change of the templates. After 200 generations evolution, 13 

hours and 12 minutes, the final result is, 

Zero: -18975.0, -6663.35, -1426.03, - 249.770, - 34.3813, - 1.04383, -1.46220 

Poles: -443030 ± j993470, -56782.5, - 10403.4, - 3691.90 - 590.484 - 102.043,0 

The zeros and poles confirms that no right plane cancellations. The high frequency gain is 

1.00156 x 1O , which is better, and the pair of underdamped poles represent 

w, = 1087780, q=0.407782, the controller could be shown as 
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1.0016x 1015s' +2.7394 x 1019s6 +1.7103x 1023s5 +2.2763x 1026s4 
G(s) = sg + 9.5764 x 105 s7 + 1.2476 x 1()12S6 + 8,5476 x 1()16S5 

(5.25) 
+ 5.3202 x 1028 s3 + 1.6832 x 1030 s2 + 3.9605 x 10`0 s+2.3632 x 1030 

+ 1.0531 x 1021 s4 + 3.2744 x 1021 s3 + 1.8470 x 1027 s2 + 15549 x 1029s 

Open-loop: . 17729deg, 20.51 dB 

Closed-loop: . 177. O0d eg,. 19.6GdB 

Frequency: 1067511.96 red/sec 
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Figure 5.17 Design results from EA method 
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Figure 5. l8 Values of Cost function of the best chromosome over the generations in evolving 

a controller of the plant with non-parametric uncertainty 

5.4.3 Application to Missile Control with Unstructured Uncertainty 
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Figure 5.19 Missile control system 

A missile control application is shown in Figure 5.19. The control is focused on the vertical 

trajectory in the design of autopilot. The missile is roll-stabilised and has a cruciform wing 

configuration. Dynamic modelling of the missile involves aerodynamics, gravitational and 
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propulsive forces (Gille, 1959). A simplified open-loop transfer function relating the control- 

surface deflection to pitch angle relative to the vertical is given by 

a, s+a2 Pýsý 
b, s3 + b2s2 + b1s + b4 

(5.26) 

where the parameters vary significantly in the flight envelope. The following three cases 

reflect typical and important operating points: 

Casel: a, = 335, a2 = 237, b, = 20.7, b, = 39, b3 = 257, b4 = -9.5 
Case2: a, = 315, a, = 227, b, = 19.7, b2 = 37, b3 = 247, b4 = -9.0 
Case3: a, = 345, a2 = 247, b, = 23.7, b2 = 36, b3 = 267, b4 = -10.5 

Additional modelling error is covered by the multiplicative form 

P={P, (s)(1 + 0; (s)): Ai(s) stable, IA; (s)l < R; , R; = {0.1,0.05,0.075} } (5.27) 

The plant model has both parametric and unstructured uncertainties. Note also that each case 

has a different multiplicative error model. 

The servo-motor is a 27 volts dc armature-controlled electric motor and is used to reduce the 

effect of disturbances. Its transfer function is given by 

1/107 
M(s = 0.001s2+0.13s+1 

(5.28) 

This is proceeded by a power amplifier, whose transfer function is 

A(s) =1 (5.29) 
O. Ols+ l 

The rate gyro vertical sensor measures pitch angles according to 

40s 
D(s) _ 27 

s2 + 1.2 x 40s + 402 
(5.30) 
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The specifications are robust margins 

P(iw)G(iw)M(iw)A(jw)D(iw) I<_ Wl, VPE ; V, CO >_ 0 (5.31) 
1+ P(jw)G(jw)M(jw)A(jw)D(jw) 

where 

W1,1.3 
W1 = W1Z = 1.2 (5.32) 

_W1.1 
1.25 

corresponds to each plant case. The robust input disturbance rejection is 

P`icoJ 
< W2, for all PEP, co c= [1,81 (5.33) 

1+ P(jw)G(jto)M(jw)A(jto)D(jw) 

where 

W21 0.040 
W2 = W22 = 0.036 (5.34) 

W23 0.038 

corresponds to each plant case. 

In this application, the objective is to find a single controller that meets all specifications at 

all of the three operation points. Extensive manual loop shaping using the MATLAB QFT 

Toolbox has resulted in a 'good' controller given by (Borghesani, 1995), 

/ 
1.7204 x 1014 s8 + 1.1498 x 1017S7 + 2.4023 x 1019 s6 +2.2031 x 1021 s5 G(s) 

-94887 il 6 14 5 
s+1.5552 x 10 s+1.2195 x 10 s+4.4676 x 10 s+9.6083 x 10 s L5.35 

+ 1.0840 x 1023 s4 +3.1731 x 1024 s3 + 4.8509 x 1025 s2 + 4.2337 x 1026S+ 1.3693 x 1027 

+1.1752x 10 s' +7.2671x 1020 s`+1.7063x10Z'sz -3.0167x 1024s-1.1801x1024 

The loop shaping results in the Nichols Chart is 
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Figure 5.20 Loop shaping for missile controller in MATLAB QFT Toolbox 

This design presents a `high frequency gain' being 1.7204 x 10" , and the poles and zeros of 

the design are found as 

Zeros:, -377.3, -144.42, - 8.9383 ±j1.0620, -7.017, -6.1421, - 2.6176 ± j3.2764 

Poles: -5129.3±j5232.9, -1270.2 ±j 1693.6 -1133.0, -818.36±j35.211, -3.8289, 

16.848 

Since there exist no zeros of the plant in the RHP, the right plane pole of the controller has 

been allowed. It means that there is not RHP pole-zero cancellation. There however exist 

three under-damped complex pole pairs. 

In this application the hybridised GA automated QFI' design refinement is employed 

1. to reduce the numbers of poles and zeros by one each; 

2. to reduce the high-frequency gain ; and 

3. to improve damping transmitted to the actuator. 
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Here, optimisation is carried out directly on pole and zero positions. There is a direct 

constraint imposed in the search for LHP zeros only and RHP poles are penalised. Except the 

RHP, the ranges of the real zeros and poles are supposed to be [05P or Z, 2P or ZI, the 

underdamped pairs of zero and poles, ranges are supposed to (w,,, 2w�] for natural 

frequencies, and the damp ratio is from [04,11 . Gain range is supposed to be 

[ 1.7204 x 1014,1.7204 x 1010 1. In order to penalise the right hand pole, its range is set to 

[ 16.848, - 51, and the cost function is added a term - Zk if Z>0, where Z is the value of the 

right hand pole and k=0.01. And in our evolution process, stability bounds in 

[ 13,15,18,23] are considered to guarantee the stability of the system. A typical progress 

chart in terms of minimising the penalties and costs in the evolutionary design automation 

process is shown in Figure 5.22, where the bold line represent an average controller and the 

thin the best one in each generation. After 200 generations of artificial evolution, which cost 

11 hours 10 minutes, the following poles and zeros have emerged: 

Zeros: -71.375±j74.9428, -18.0921 ± j33.4431, -9.3194, -2.7310±j5.3806 

Poles: -1833.1, -1453.3, - 526.80± j571.97 - 159.65 ± j243.72, -0.24929,0.2490 

The controller obtained here is 

1.1997 x 10" s7 + 3.8685 x 10" s6 + 4.0048 x 1015 ss + 1.7293 x 10" s4 G(s) = s8 + 1.7739 x 10° s' + 5.0135 x 107 s6 + 5.3648 x 1010 ss + 3.2Ö07 x 1()13S4 (5.3G) 
+5.1598x101853+5.7240x1019s2+3.1025x1020s+1.0493x102' 

+8.3662x1015s3+1.3674x10 s2-1.1181x1014s-8.4878x1016 

Automatic loop shaping result is verified in Figure 5.21. 
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Figure 5.21 EA-based loop shaping for missile controller 

0 

It can be seen that the evolutionary computation based optimal and automated design 

approach offers an improved controller with: 

I. A lower order. 

2. Better-behaved open-loop frequency response and loop shaping for enhanced 

robustness. 

3. High frequency gain reduced by 63 dB. 

4. The under-damped poles reduced by one pair. 

5. The relatively more stable RHP controller pole closer to the imaginary axis. 
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Figure 5.22 Cost over generations in evolving the missile controller 

5.4.4 Defects of the designed QFT controllers 

In the non-parametric problem and missile problem there is significant improvement of 

controllers in terms of `high frequency gain' with reducing controller order when compared 

with designs from MATLAB QFT Toolbox designs (Borghesani, Chait and Yaniv, 1995). 

However, controllers achieved here still have too much high frequency gain: 1.1997 x 10" 

(missile) and 1.7204 x 1014 (parametric) and too high order: 8`h (missile and parametric). 

These controllers can not be manufactured physically. One of choices suggested is the 

reduction of design requirement. Another choice suggested is alternative method: H. control 

design strategy. The strategy is to optimise system performance in the worst case. Instead of 

translating time domain requirement into frequency domain requirement in QFT control, H. 

control optimises the time domain response directly (Doyle et al., 1989; Zhou et al., 1996). 

So it is possible to achieve better results. 

Another problem in the design is too long time (11 hours 10 minutes for missile and 13 hours 

and 12 minutes for parametric). The reason for this is that the evaluation process is finished 

by calling a native code subroutine, which is produced by compilation of MATLAB code 

into executable file (The MathWorks, Inc., 1997). So exchange of data between the 
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subroutine and evolutionary engine is achieved by writing and reading the hard disk. A 

suggestion for reduction of the optimisation time is to program the subroutine directly in 

Java. 

5.5 Summary 

This chapter has aimed to overcome deficiencies in manual and existing optimisation based 

design techniques for QFT control systems. In particular, it has developed an evolutionary 

design automation approach to QFT, oriented towards practical applications. Using the 

hybridised GA design suite, the design of QFT controllers for uncertain plant is automated 

and optimised for a minimal 'cost of feedback' while meeting all robust stability and 

performance specifications. This is particularly helpful with unstable or non-minimum phase 

plants or plants for which it is difficult to find a stabilising controller. This chapter has also 

shown that such an automated design procedure can be used to further tune existing 

controllers with both reduced order and improved performance. This is particularly useful 

when any manual loop shaping improvements can only be made by adding more pole-zero 

sections to the controller. With or without an a-priori design, this objective multi- 

dimensional multi-optimal design technique may be employed to maximise the closed-loop 

performance under practical constraints. This technique is illustrated and verified through a 

well-known QFT benchmark design problem, a non-parametric problem and a missile 

control application example. 
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Chapter 6 Enabling Neural Control in Forward Path 

In the previous two chapters, design automation of linear PID and QFT controllers are 

extensively studied. However, linear controllers are often inadequate to deal with saturation, 

if there is a rate limit or other hard nonlinearities, which are encountered in many practical 

applications. 

In this chapter, therefore, the popular PID structure is to be extended to the nonlinear 

building block based on neural networks to deal with hard nonlinearities and other practical 

constraints. Novel neural PD and PID type nonlinear controllers are proposed for use in the 

feedforward path in the same way as conventional linear controllers. They are to be tested 

with IFAC benchmark problems. In order to tackle local optimum problems, the hybridised 

GA based design environment developed in this thesis is used to achieve the optimal weights 

and structures globally. Section 6.1 highlights existing structures and training methods of 

artificial neural networks used in control. Forward path direct neural control architectures are 

developed in Section 6.2 and training mechanisms for them are developed in Section 6.3. 

Section 6.4 validates the methodology proposed for three different plants: a ship regulation 

problem, an inverted pendulum problem and an asymmetrically nonlinear coupled water 

tank. Summary is given in Section 6.5. 

6.1 Introduction 

Artificial neural networks (ANNs) mimic the function of human brain, which are universal 

and arbitrary function approximators. Similar to their biological equivalent they have 

capability of learning, storing and judging data. Thus, they have far ranging applications. 

Most of them are in image processing and pattern recognition. However, they have also been 

successfully applied to modelling of complicated, irregular, nonlinear, time-varying, 
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irrational and stochastic systems, including to learning inverse dynamics for controller 

design (Mei et al., 1998; Li, 1999 and Zurada, 1992). 

It is known that most of systems to be controlled are nonlinear systems, but basically they 

could be described as a linear model plus "hard nonlinearities", such as delay, Coulomb 

friction, saturation, dead-zones, backlash, and hysteresis (Slotine and Li, 1991). Some simple 

models, such as FOPPT, are widely used to describe the process plants as well. Here, our 

discussion focuses on a linear model plus saturation case. The saturation includes amplitude 

and rate saturation. It is shown that neurocontroller developed here has the advantage than 

the conventional ones if there is saturation for rate. However, if there is just amplitude limits, 

a linear controller trained through time domain simulation does perform as well as a 

neurocontroller. 

6.1.1 Existing Neural Control Structures 

There are two different ways of applying a neural network to control engineering. One is to 

use the network to adjust the parameters of a conventional controller (Rogers and Li, 1993), 

which is shown in Figure 6.1. The other is the use of the ANN as a direct controller which is 

termed neurocontroller (Rogers and Li, 1993; Psaltis et al., 1989). The latter form is 

discussed in the thesis. 

The most common structure used in ANNs is that of multi-layer perceptrons. Within this 

structure there are several perceptrons arranged in layers. Each perceptron is only connected 

to one in an adjacent layer. The inputs of the perceptron are weighted. However, in our 

design, there is not a threshold. That is explained later. Afterwards all inputs are summed up 

and go through the perceptron's activation function. 
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It has been shown that a PD-based non-linear neurocontroller can be enabled by evolutionary 

training, which produces good results in terms of stability, transient behaviour and 

robustness. The evolutionary optimisation was structural and parametrical and the controllers 

could even handle constraints easily afterwards (Li et al., 1996a; Brune, 1998). However, in 

our research, results that are more interesting are found. Novel neurons without threshold are 

used. Instead of using threshold to offset the steady-state errors, integral of errors is used as 

the input, which makes the neurocontroller be able to eliminate the steady-state errors with 

different operating points. These results have encouraged us to develop a generic 

neurocontroller that is applicable to any plant. 

In order to simulate and evolve a controller, open-loop plant data-based generic design rules 

for linear controllers have been derived (Li et al., 1996a). It is also proved that convolution 

can serve as a high fidelity means, in order to get an exact representation of the plant direct 

from I/O data (Psaltis et al., 1988; Ichikawa et al., 1992; Cluett et al., 1991). These features 

help to design a generic linear controller for any type of plant, which is supposed to work 

well in some region around the operating point. Therefore, the convolution method is 

included in the design of a generic non-linear controller in this chapter. However, it must be 

pointed out, for an unstable process, the convolution method cannot be used to simulate the 

process. 
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6.1.2 Conventional Means of Training 

There are two different ways of implementing a neurocontroller (Psaltis et al., 1988). The 

first is called general learning and the second specialised learning. In general learning the 

controller is trained off-line. ANN learns the inverse dynamics of the plant. Then the trained 

ANN is put into the control loop, and the control system is supposed to follow any set point 

command. However, this method suffers from apparent disadvantages. When the plant 

inverse is not uniquely defined, a major problem arises. This occurs for a plant, when more 

than one value of u exists that corresponds to one value of y. Figure 6.2 illustrates this 

limitation of the plant inverse identification for the one-dimensional case. In the discussed 

case, the neural network modelling the inverse attempts to map a single input y* to one of the 

two target responses u, or u2. It may be that the eventual mapping learned would somewhat 

tend to average the two desired 

Figure 6.2 Plant inverse identification examples: (a) existing and (b) non-existing 

There is another approach in general learning. ANNs are trained to behave like a specific 

form of a conventional controller. Input and output data of the controller in a normal closed- 

loop fashion in conjunction with the plant are used as a guide for the training. Bums (1995) 

did some interesting research about the method. Unar (1999) used it for ship steering control. 

Their results are very interesting. However, it could be expected that these kinds of 
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controllers' performances are just similar to the conventional controllers, which they are 

supposed to approximate. 

In special learning the controller is trained on-line or from plant model directly. Because of 

the desired control signal, which implies that the desired output of the neural network is 

unknown, the plant is compared with the command signal and the error is backpropagated 

through both the plant and neural network. 

However, both training methods are based on the error-backward propagation method. In 

these methods, the error is backward propagated through the neurons to adjust the 

corresponding weight. This method has several disadvantages: 

I. Gradient guidance always needs a performance index which is differentiable, 

i. e. structural components such as a switch cannot be evaluated; 

2. Constraint handling is difficult because of gradient search; 

3. The error at the input of an ANN is hard to minimise; 

4. It is a local optimisation method, i. e., no global optimum is found. 

6.2 Forward Path Direct Neurocontroller Architectures 

6.2.1 Network Structure 

The architecture is based on that of a conventional PID controller. The reason is that a 

proportional input is not sufficient to deal with transient behaviours. The discrete equation of 

a PID-controller is given by: 

u(k) =K e(k) +T [e(k) 
- e(k - 1)]+ 

T 
e(k) (G. 1) 

T, 1=o 
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where k is the time index, K the proportional (and overall) gain, To the time-constant of the 

differentiator, T, the time-constant of the integrator, To the sampling period, u(k) the output 

of the controller and e(k) the discrete error signal between the desired output and actual 

output of the plant. 

This behaviour is mapped directly into the neurocontroller. The three inputs for the neural 

network just represent ̀ three terms' in PID. According to different requirements of problems, 

it could be chosen as PD and PI controller. From this point, this structure can be understood 

as nonlinear PID controller. In another way, the idea behind is close to fuzzy control. After 

training, for different combinations of error, change of error, summation of error, there 

should be a different control action, just like the fuzzy control table. However, in many 

cases, neural networks can enjoy the benefit of smoothness. As a structure of 

neurocontroller, three layers are chosen. The first layer is to distribute the inputs to the 

middle layer. The number of neurons in the middle layer is to be optimised, but contains only 

one neuron in the simplest case. The whole structure is shown in Figure 6.3. 

e(k) 

r(k) (e(k) - e(k - 1))IT u(k) v(k) Feedforward 

Neurocontroller 
Plant 

e(k)T. 

wy- 

I- 

`ý 

Figure 6.3 Structure of a neurocontroller embedded in feedforward path 
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6.2.2 Design of Neurons 

In the simplest form, an artificial neuron can be modelled as a device (usually nonlinear) 

having one or more inputs. An input to an artificial neuron is either an input of the network 

of which the neuron is a part, the output of another neuron, or its own output. As can be seen 

from the Figure 6.4, an artificial neuron first multiplies each input by a factor called weight. 

The neuron then calculates the sum of all the weighted inputs. Finally, the neuron applies an 

activation function f to the weighted sum. Mathematically the artificial neuron of can be 

expressed as following: 

tw; 
x, _bI y=f C- 

XI 

X2 

Figure 6.4 Single neuron 

(6.2) 

For PD control case, since there is a steady-state error for type 0 system, this method is used 

to control the systems with their own integrator. It means that when the systems approach the 

steady-state, it is not necessary for an input to maintain its output. Therefore, it is ideal that 

the output is an odd function of error and derivative of error. So if the activation function is 

chosen as 
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f (x) =1 + exp(-six) -1 (6.3) 

the control action taken by the PD neurocontroller is an odd function of the inputs. It can 

guarantee when the error is 0 and the derivative of error is 0, no control action is taken. 

To control a type 0 system, although the threshold could probably offset the steady-state 

error, it only works at the specific operating points. Generalisation of the neural control could 

be damaged by such a choice. However, if another term the integration of error is added in 

the input end of the neurocontroller, the problem is solved. Our tests show that it can work at 

different operating points. Then it becomes a PID type neurocontroller. 

6.3 Evolving Direct Neurocontrollers 

6.3.1 Evolutionary Selection and Training 

EAs have led to the breakthrough in enabling an ANN to be deployed in the same way as 

conventional linear or other nonlinear controllers such as sliding mode and fuzzy controllers 

(Li, et al. 1996a). As discussed in the Chapter 3, these algorithms use a selection scheme 

based on Darwin's survival-of-the-fittest law according to a given fitness function. In 

addition, they perform random perturbation and some information exchange between 

solutions. This enables them to reduce search time compared to exhaustive search and to find 

a global optimum (Vesin and Gruter, 1999; Mackay et al., 1996; and Goldberg, 1989). The 

advantage of such EAs is that they overcome the problems with error backward propagation 

mentioned in Section 6.2.1. 

146 



In this work, a hybridised genetic algorithm based design environment, which is 

implemented in Chapter 3, has been applied. A neurocontroller can always be evolved by an 

EA on the following conditions: 

1. The system is analysable, i. e., the performance of candidate designs can be 

evaluated. 

2. A performance index has values with more information than simple true-or- 

false answer. 

6.3.2 Parametric and Structural Design 

Each solution is represented by a vector containing all the weights and threshold weights in 

the way, same as they appear in the network. The range of the weights could be chosen from 

5 to 20, according to different problems. 

The structure is optimised by using a growing mechanism. The initial structure is the 

minimal 4-1-1 network. After the algorithm has found an optimum, another neuron is added 

in the middle layer and the optimisation continues. The best solutions of the previous 

structure are included and new weights in the new structure are set to zero. After the best 

solution for this new structure is found, it is compared with the previous best one. If there is 

any improvement, another neuron is added and the new best optimum takes the place of the 

previous one. Then steps above are repeated. If there is no improvement the previous 

structure is retained and the process stops. 
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Figure 6.5 Growing a neurocontroller with architectural optimisation 

6.3.3 Design Direct from Response Data 

Convolution is a method to obtain the result of two signals, which are multiplied in 

frequency domain. The underlying rule is that any signal consists of a sum of infinite 

impulses and since every system has a characteristic impulse response, the output can be 

obtained from the summation of all these impulse responses at time to. Furthermore, a step is 

an integrated impulse and therefore, the impulse response can be obtained by differentiation. 

For any given input the output can be calculated as: 

N 

Y(k) =1 Ex(k - i)[ys (i) - ys (i -1)] 
(6.4) 

ai=0 

where y(k) is the output at the discrete time index k, x(k) is the input and y, (k) the step 

response to a given step of amplitude a. (6.4) is a discretised version of the continuous 

convolution integral, in which ys(t) is differentiated and in addition, it is limited to N points. 

The larger N and the sampling period the better the approximation. 

In the paper (Li et al., 1996a), it has been shown that convolution provides a high fidelity 

model of the plant around some operating point. Furthermore, it has been successfully 

applied to generic linear controllers. In Li et al. 's work (1996a), a generic nonlinear 
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controller is evolved, which is to be independent from any specific plant model. This strategy 

is used to calculate the plant output in this chapter as well. 

6.4 Applications 

6.4.1 Regulation of Ship Heading 

The problem of manoeuvring a ship is challenging and of considerable interest because of 

the complexity in obtaining an accurate dynamic model. Various external forces such as 

wave motion and wind effects, allied with the coupled behaviour of the navigation, steering 

and auto pilot systems, make the control task very difficult. In this example, the only point of 

interest is the design of a controller for regulating a cargo ship heading toward at a desired 

angle. A fuller description of the problem is given in the paper (Aström and Källström, 

1976). It is also listed as IFAC benchmark problem number 89-08. 

For straight-line motion the model of the ship under constant velocity is described as 

x= Ax+Bu (6.5) 

y cx (6.6) 

where xE R', UE R', yE R' are given as follows: 

u= rudder angle 

y= heading angle of ship 

x, = sway velocity of ship 

X2 = turning yaw rate 

x3 = heading angle of ship 

and the structure of A, B and C is given by 
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- 0.895 - 0.286 0 0.108 
A= -4.367 -0.918 0 B= -0.918 c=(O 0 l) 

0100 

The objective is to find a controller of the system to control and regulate the heading angle of 

the ship to a desired angle, such that the following constraints are satisfied: 

1. No overshoot occurs in the output response of y. 

2. The rudder motion is constrained: 

Jul <_ 40° (6.7) 

3. The rate of rudder motion is constrained: 

I 
UOI _< 10°/s (6.8) 

First, it can be observed that this system is an unstable system. Its transfer function is 

-0.918s-1.2932 (6.9) G(s) = 
s3 + 1.813s2 -4.274s 

From (6.9), the poles are 

p, = 0.211, p2 =0 and p3 = -2.02 (6.10) 

Then it should be pointed out here that there is integration action in its transfer function, so 

no control action is necessary, when the system approaches the steady state. Physically, it is 

very understandable that when the heading direction is correct, the rudder should not be 

moved. So a PD based neurocontroller is designed for this ship heading regulation problem. 

Another characteristic in this problem is that there are strict limits not only for the controller 

action but also for the change of the controller action. Thus, the neurocontroller in the 

problem is like, 
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u(k) 

Figure 6.6 Neurocontroller designed for ship regulation 

Output of the neural network is times by 400, which is maximum output of the controller 

specified in the problem. Considering rates limit 1001s, the rate limiter could 

mathematically described as 

u(k) 
u(k)= u(k-1)+10To 

u(k-1)-10T0 

if l u(k) - u(k -1)I <l OTo 
if u(k)-u(k-1)>10To 

if u(k) - u(k -1) < -10To 

(6.11) 

Since there is the requirement of no overshoot of the output, a special cost function to 

optimise the neurocontroller is designed for the problem, 

J=mf 
(Iel+kIe1tdt 

if e<0, m=2 (6.12) 

Here k=2. The condition present here is a penalty factor for overshoot. The reason behind 

this cost function is that the simple LATE plus the penalty of candidate controllers with 

overshoots fails to produce good results. It can not eliminate overshoots, and the results are 

the same as LATE without such penalty a factor. It seems like all slow processes have been 

cleansed in the early generation of EA optimisation. So the derivative part is attached in the 

cost function to keep the relatively slow processes to survive. 

In order to control turning degree up to 900, the neurocontroller is trained at five different 

operating points. The sample time is 0.05s, and the simulation time is 50s. At 25s, a step 

noise imposed on the output. Figure 6.7 shows performances resulting from the trained 

neurocontroller. Figure 6.8 shows the neurocontroller achieved. 

151 



108 

90 

72 1 
0 

54 + 

oC 36 

18 

/ 

Ioi_ 

m co cy Ui m lo rn ci co rn c. ) co N cmj v° rn v cc m c) Cri co o cri ui N ai C'J 
-18 tN T- 

--ý -N 
N 04 N- P) 0M Cl) ma1.0 

-36 

Time(Sec. ) 

Figure 6.7 Performances of the ship regulating neurocontroller at known operating points 
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Figure 6.8 Neurocontroller achieved for ship regulation problem 

In order to confirm the generality of the neurocontroller, performances of system on another 

five operating points, at which the neurocontroller is not trained, are tested here. 
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Figure 6.9 Performances of the ship regulating neurocontroller at different operating points 

From Figures 6.7 and 6.9, the results of heading regulation are very good, no matter whether 

operating points are trained or not. In order to make comparison with a conventional 

controller, a two-loop linear controller is designed. 

ýs) 
++ u(s) Y(s) 

H2(s) Hi(s) RL G(s) 

Figure 6.10 Design of conventional control for ship regulation 

In Figure 6.10, G(s) is (6.9). RL is a rate limiter, similar to (6.10). Others are given as 

follows 

H, (s)=g s+2 
10 

(6.13) 

-+ 
Kd s 

(6.14) H, (s) = Kp + 
K. 

s +s N 
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Because the system is unstable, positive feedback compensation (6.13) is used to stabilise the 

system, and then a PID controller is applied. Rate limiter is imposed for the requirement of 

the control action rate. Now, under such a structure, best parameters, e. g., KP, K;, Kd, g and N 

are searched by an EA to find the fastest controller, here the same index is employed. The 

results are 

Kp = 0; K, = 0.0838; Kd = 0; g=6.63 and N =10.1 (6.15) 

Since K; is equal zero, the derivative action is zero. Time domain simulations are shown in 

Figure 6.1 1 to 6.13. 
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Figure 6.11 Performance comparison between the neural and optimised PID controllers 
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Figure 6.13 Comparison of rudder rates between the neural and optimised PID controllers 

From the simulations, performance resulting from the neurocontroller is better than that of 

conventional PID controller apparently. Limits of rudder rate make the control more 

difficult, and this is the reason why there is the need to design a neurocontoller. It is expected 

that adding a proper prefilter can lead to a better result than the simple PID control. 

However, if the more improvement is needed, the prefilter could be very complex (Fossen, 

1994 and Simensen, et al., 1995). And the ideal filter just can operate in a specific operating 

point to get the optimum results. 
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6.4.2 Cascade of Inverted Pendula 

This problem describes a linearised model of a cascade invert pendula, and has the feature of 

being `highly' unstable and difficult to control. The difficulties of control become more 

pronounced as the number of links increases. The difficulty of the problem is analysed by 

(Kwakernaak and Westduk, 1985). It is also listed as IFAC benchmark problem 89-01. 

Consider the following system of a cascade of inverted pendula: 

UI 

Figure 6.14 Cascade inverted pendula system 

Where all point masses m; =1 kg, all links have length 1i =1m, g=9.8 m/sec2, and where ui, 

U21 u3,... denote torques about the respective pivots. Let the outputs of the system be 

y, = 9. 
,i =1,2,3... and the inputs to the system be u;, i=1,2,3.... 

It is desired to design a controller to stabilise the system so that the outputs are regulated to 

zero in the presence of unmeasured constant disturbances, which may be applied to the 

system. 

In our research, a two links problem is solved. The linearised model is 

x= Ax + Bu (G. 1 G) 
y=Cx 

where 
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o 1.0 00 00 
9.8 0 -9.8 0 1 -2 r1 000 

A B ) (6.17) C 
0001.0 00 0010 

-9.8 0 29.4 0 -2 5 

Translating it into the transfer function in frequency domain 

v, 
=1 

s2-9.8 -2s2+9.8 u, 
(G. l 8) 

y, s4 -39.2 S2 + 192.08 - 2s2 +9.8 5s2 - 29.4 uZ 

The poles are 

p, = 5.7844 p2 = 2.396 p3 = -2.396 and p4 = -5.7844 (6.19) 

The zeros are 

z1,2 = ±3.1305 z3.4 = ±2.2136 z5.6 = ±2.2136 z,. 8 = 2.4249 (6.20) 

Therefore, the system is a non-minimum phase and unstable system. Since if the initial 

values of x, to x4 are equal to zero, and there are not inputs, the system can maintain its state, 

A PD type neurocontroller is designed to regulate the system. Because the model is 

Iinearised, the maximum x, and x3 to be regulated are supposed as 0.1 rad. Because the x, 

and x3 could be positive and negative, so the neurocontroller is trained to deal with four 

initial states: 

Case 1: 
(x,, 

x,, x2, x2) = (0-10 0.10) 

Case 2: 
(x, 

9 x1 , X2, x2) =(0.10-0.10) 

Case3: 
(XI 

3 x� x2, x2) =(0.1000) 

Case 4: 
(X, 

9 Xi 9 X2 X2) = (0 0 0.1 0) 
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Just because in our design, the neurocontroller is an odd function, the following four cases 

could be dealt with automatically, 

Case 5: 
(xi, 

x,, x2 9 X2 
)= (- 0.1,0, - 0.1,0) 

Case 6: 
(x,, 

x,, xZ, x2) 

Case 6: 
(x,, 

x,, x2, xz) 

Case 8: 
(x,, 

x,, xZ, x2) 

=(-o. 1, o, 0.1, o) 

= (- o. 1, o, o, o) 

= (o, o, - 0.1, o) 

In order to compare the neurocontroller with conventional controllers, linear quadratic 

control law (Anderson and Moore, 1989) is employed as the index for neurocontroller, and 

maximum output of controller is supposed to 10 N. 

Where 

J=j (x'Qx + u'Ru)dt 

10 0 0 0 
0 1 0 0 

Q 
0 0 10 0 
0 0 0 1 

R_(0.01 
01 

0 0.01J 

(6.21) 

(6.22) 

In (6.22), much weight is put on x, and x, because the values of forces are very big. The 

neurocontroller achieved through the evolutionary training method is in Figure 6.15. 
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Figure 6.15 Neurocontroller for the inverted pendula with output limit to 10 N 

Through solving corresponding Riccati equation, the linear controller achieved is given in (6.23). 

A comparison between the neurocontrol and LQR control is given in the Figures 6.16 to 6.23. 

(73.403 28.906 14.714 757k 
14.714 7570 43.975 13.76)61) 

(6.23) 
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From the Figure 6.16 to 6.23, it can be found 

1. Both neurocontrol and LQR control can reach steady state, and settling time 

is close to each other. However, neurocontrol has long settling time in Figure 

6.18 (left). 

2. Neurocontrol has more otransient response than LQR control. In LQR 

control, the response at most has one peak. In neurocontrol, the response may 

have many peaks. 
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3. Neurocontrol is better at minimising the cost function than the LQR control. 

Sums of their cost function results are: 

JNeufocontrol = 0.535 and 
JLQR = 0.621 (6.24) 

Conclusion drawn from this test is that it is possible that the neurocontroller can be better at 

minimising cost functions than an LQR linear controller at the specific operating points. 

However, there is not apparent improvement in terms of performance in this linear model 

control example. Since the ship regulation example has shown that neurocontroller has the 

advantage in dealing with rate limit, there is a discussion about a controller under simple 

maximum amplitude saturation. Suppose the maximum output of the controller to be 5 N. 

The three methods are used: 

1. LQR control, which deals with the requirement of maximum amplitude by 

the increase the penalty on the control action. In this case, 

10 000 

0100 100 0 
Q00 

10 0 
R=( 

0 100) 
(6.25) 

0001 

The achieved controller is: 

(58.803 
24.131 19.598 9.172 

k 
19.698 9.172 19.608 5.787 

(6.26) 

2. Linear controller under the saturation limits optimised by an EA. Under this 

method, the feedback matrix is decided by minimum PTAE. In this case, it 

just is the sum of two outputs' 1TAE, since saturation is considered in 

simulation. Time domain simulation considering the controllers is carried out 

by numerical methods, e. g. Runge-Kutta. The controller achieved as 
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(59.963 20.965 18.236 12.016 
k 

18.824 7.358 16.697 6.384 
) 

(6.27) 

3. The neurocontroller is designed the same as before, except making the 

controller maximum be 5 N. The neurocontroller achieved through 

evolutionary training is given in Figure 6.24. 

The performances and control actions of the controllers are given respectively in the Figure 

6.25 and Figure 6.26. 
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Figure 6.24 Neurocontroller for the inverted pendula with output limit to 5N 
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Figure 6.26 Control action results with amplitude saturation of different methods 

From these simulation results, it could be found that the results from LQR are not as good as 

the results from the linear controller trained under limits and neurocontroller. However, it 

seems that neurocontroller is not better than the linear controller trained under limits. 
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6.4.3 Water Tank Nonlinear System Control 

Input u 

Figure 6.27 Laboratory-scale water tank demonstration system 

The coupled water tank system is an asymmetric nonlinear system. Here, a laboratory-scale, 

second order liquid-level regulation system is used to demonstrate the design. In this 

simplified example, only the input to Tank I is used as the input flow, u (cm3/s), which is 

mapped from an actuator voltage in the implementations that follow. It is used to control the 

liquid-tank of Tank 2, h2 (cm), through the liquid-level of Tank 1, h, (cm). A non-linear 

equation of this system is given by: 

JAh, =u-a, c, 2g(h, -hz) (6.28) 
Ah_ =a, c, 2g(h, -h, ) -a, cZ 2g(h. -ho) 

where A= 100 cm2, the cross-section area of both tanks; aI = 0.396 cm'` and a2 = 0.385cm2 
, 

the orifice areas of Tank I and Tank 2, respectively; c, = C2 = 0.58, the discharge constants; 

h0 =3 cm, the height of the orifice and of the coupling path; and g=9.8lcm/s2, the 

acceleration due to gravity. At rest, there was no input for a long time. The initial conditions 

of h, and h2 are thus the same as h0. 
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Considering that control action is still needed, when the tank level approach the steady state, 

controller structure is just the same as Figure 6.3, is employed to approach the steady state 

without using threshold in neurons. It was reported by Brune (1998) that there is small 

steady-state error when standard neurons are used to control the tank system. From these 

simulation results, this problem has been dealt with. Convolution is used to realise the 

simulation. Since the maximum voltage that could be put to motor to pump water into the 

tank is 5V, output of Sigmoid function is times by 5. The sampling time is 1000 S. The 

sampling rates are 1/S. At 700TH S, suppose that some object is put in the water tank force 

the water increase 0.005M. Through evolutionary training suggested early, the final 

neurocontroller achieved is given in Figure 6.28. 
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Figure 6.28 Neurocontroller for coupled water tank system 
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Figure 6.32 Control action of the neurocontroller at untrained operating points 

6.5 Summary 

In this chapter, the basic PID control structure is extended to nonlinear control architecture in 

form of neural networks. Special type neurons are studied in the neurocontrollers. EA 

training for optimisation of the structure and weights of the neurocontroller is proposed. 

Growth training method is used to optimise the neurocontroller structure and lead to the 

simplest. In the meantime, the neurocontroller is designed directly from plant step response 

data without a model, where convolution is used. Through the ship regulation, inverted 

pendula regulation and twin tank problems, it is found: 
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I. The neurocontroller has advantages in dealing with rate limits, compared with 

linear controllers. 

2. A linearised control problem with amplitude saturation might be dealt by 

linear controllers optimised by EA. Therefore, a neurocontroller might not be 

necessary for such a case. 

3. The neurocontroller with the integration term can cope with steady-state 

errors at different operating points. 
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Chapter 7 Conclusion and Further Work 

7.1 Structuring and Global Optimisation Evolutionary Environment for 

Control Systems 

In this thesis, a globally optimal evolutionary methodology and environment for control 

system structuring and design automation has been developed, which requires no design 

indices to be differentiable. So the indices can be designed to satisfy control requirements 

without being differentiable. This is based on a hybridised GA search engine, whose local 

tuning has been enhanced tremendously by the incorporation of HC, SA and Simplex 

techniques. A Lamarkian inheritance technique has also been developed to improve 

crossover and mutation operations in GAs. Benchmark tests have shown that this novel 

hybrid GA is accurate and reliable. Based on this search engine and optimisation core, the 

linear and nonlinear control system design automation suite has been developed in a Java 

based platform-independent format, which is readily available for design and design 

collaboration over corporate Intranets and the Internet. 

To apply automation suite to control design, the indices to describe performance and robust 

stability have been investigated for practical control system designs. A thorough study on the 

merits and deficiencies of existing optimal control indices has been carried out, and ITAE is 

found to be the most acceptable one. Based on the findings, new indices are proposed, which 

can approach different damping ratios. Hybridised indices combining time and frequency 

domain measurement and accommodating practical constraints have been developed and 

applied to extending optimal control beyond its current capabilities. After finishing the 

development of this optimisation environment and investigation of design indices, the 

environment is used to optimise different type controllers: PID, QFT and neural network. 
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7.2 Application to PID Control System Design Automation and Batch 

Optimisation 

PID controllers are very popular in industrial control. Although many PID tuning rules that 

have been developed during the past half century. PIED controllers are not always tuned 

properly in many applications. Because set point following has been solved by Zhuang and 

Atherton (1993), Majhi and Atherton (1999); Atherton (2000), it has been chosen to 

concentrate on load disturbance rejection. The load disturbance problem has now been 

addressed using the EA based design automation tool. In particular, systematic and batch 

optimisation of PID controllers to meet practical requirements has been achieved. A novel 

cost function has been designed to take disturbance rejection, stability in terms of gain and 

phase margins and other specifications into account in the same time. The results has shown 

that 

1. The derivative action plays an important role in improving load disturbance 

rejection while maintaining or improving stability margins; 

2. Compared with Aström's (Levine, 1996), Ho's (1995) and Zhuang and 

Atherton's methods, the performance achieved in this thesis is much better 

not only in load disturbance rejection but in stability margins (See Section 

4.4.2, Section 4.4.3 and Section 4.4.4). 

7.3 Extension to GA Optimisation to Loop Shaping in QFT Design 

The robustness issues experienced in PID control are addressed by extending the PID 

structure to a free form transfer function. This is realised in the form of QFT control. Loop 

shaping is the most challenging part in designing QFT controllers. For this, optimisation and 

'automatic design' techniques have recently been investigated and developed to unleash the 
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power of QET. The major disadvantage of existing approaches is, however, their inability in 

globally solving the optimisation problem of QFT design, which is often multi-modal and 

multi-dim nsional. These analytical and convex or linear programming based techniques 

often impose unrealistic or unpractical assumptions and have often lead to very conservative 

designs. 

In this thesis, a novel index that takes advantages of the EA based design automation tool has 

been developed to include stability, load disturbance rejection and reduction of `high 

frequency gain'. This has not been achieved using existing methods. A corresponding 

prefilter can also be systematically designed if tracking is one of the specifications. The 

design results have shown that 

(i) Controllers achieved by the design automation suite can offer a lower order 

and a lower `high frequency gain' than results published elsewhere to date 

(Chait et al., 1999; Borghesani et al., 1995). 

(ii) The designed controller combined with the corresponding prefilter performs 

satisfactorily in time domain (Figure 5.13). 

7.4 Extension to Enabling Forward Path Neural Control 

The 'three term' linear PID controller is not the best controller for robust or nonlinear 

applications. For nonlinear plants, the PID structuring and design strategy has been extended 

to a nonlinear format. This is implemented as a building block based on neural network. The 

automation design environment has been employed to design and optimise neurocontrollers. 

The design results have shown that 

(i) The design suite make direct training of feedforward neurocontroller possible; 

(ii) The neurocontroller can be designed directly from plant step response data 

without a model, where convolution is used; 
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(iii) Growth training method can optimise the structure and lead to the simplest 

structure; 

(iv) If a rate limiter is required in a practical control loop, the designed 

neurocontroller outperforms an optimised linear controller; 

(v) The neurocontroller can cope with amplitude limit better than the linear 

controllers achieved from LQR; 

(vi) Steady-state errors at different operating points of a nonlinear double tank 

system can be cancelled by one trained neurocontroller. 

7.5 Future Perspective 

7.5.1 Evolutionary Environment 

A user-friendly interface can been added to the evolutionary environment developed in this 

thesis. So users can flexibly change the parameters in the evolutionary process, e. g., 

perturbation range of mutation, number of generation to stop, etc. To evaluate the efficiency 

of the evolutionary environment further, other benchmark problems should be tried, e. g., 

multi-objective problem to be tested. 

7.5.2 PID Control Design 

In this thesis, design automation has been applied to batch tuning of PID controllers for first 

order plus dead time (FOPDT) plants. Although many systems are modelled this way in 

control engineering practice, more accurate models exist. Ho et al. (1995) used a second 

order plus dead time (SOPDT) to derive tuning rules. But zero-pole cancellation is used to 

transform an SOPDT into an FOPDT. It is demonstrated feasible for the PI tuning rules with 

gain and phase margins specification to be used for an FOPDT. However, the cancellation is 
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not the best choice to achieve load disturbance rejection. So the suggestion for future work is 

to achieve better results for SOPDT by using hybridised GA. 

7.5.3 ß)FT Control 

As pointed out in Chapter 5, in order to improve evolution time, the subroutine can be used 

to evaluate the design can be programmed in Java. Alternative methods, such as H, can be 

tried and compared with designs by QFT, because the results from QFT design are not good 

enough in terms of order of controller and high frequency. 

Three cases of the hybridised GA application to QFT loop shaping are just the solution of 

single-input-single-output (SISO) problems. Multi-input-multi-output (MIND) problems 

could be more challenging than SISO problems (Horowitz 1992), because there are n` scalar 

loop transmissions in L= PG and n2 uncertain (but generally correlated) plant functions. It is 

known that multi-loop is a better choice to achieve better results (Levine 1996). Because 

MIMO and multi-loop need more parameters of a controller to be optimised, the hybrid GA 

may help human designers even more in those applications. So further work suggested here 

is to deal with MIMO QFT loop shaping using hybridised GA. 

7.5.4 Neurocontroller Design 

Applications show that neurocontrollers may outperform optimised linear controllers in the 

case of linear plants with rate limit and for nonlinear plants. Further investigation may be 

carried out on plants with other hard nonlinearities, such as Coulomb friction, dead-zones, 

backlash, and hysteresis (Slotine and Li, 1991). In this thesis, the linear model plus saturation 

is used for the inverted pendulum problem in Section 6.4.2. It is just acceptable when offset 

is under 0.1 rad. In order to describe the situation with bigger offset a nonlinear model plus 
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saturation is more accurate. Since neural networks can approximate nonlinear systems, it can 

he tried to control the big offset in the nonlinear model plus saturation. 
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