
On The Analysis of Musical Performance by Computer

Douglas McGilvray

October 23, 2008

This thesis is submitted in fulfilment of the requirements of the

degree of Doctor of Philosophy

Department of Electronics

& Electrical Engineering

University of Glasgow

c©Douglas McGilvray, 2007

Abstract

Existing automatic methods of analysing musical performance can generally

be described as music-oriented DSP analysis. However, this merely identifies

attributes, or artefacts which can be found within the performance. This infor-

mation, though invaluable, is not an analysis of the performance process. The

process of performance first involves an analysis of the score (whether from a

printed sheet or from memory), and through this analysis, the performer decides

how to perform the piece.

Thus, an analysis of the performance process requires an analysis of the

performance attributes and artefacts in the context of the musical score. With

this type analysis it is possible to ask profound questions such as “why or when

does a performer use this technique”. The work presented in this thesis provides

the tools which are required to investigate these performance issues.

A new computer representation, Performance Markup Language (PML) is

presented which combines the domains of the musical score, performance infor-

mation and analytical structures. This representation provides the framework

with which information within these domains can be cross-referenced internally,

and the markup of information in external files. Most importantly, the rep-

resentation defines the relationship between performance events and the cor-

responding objects within the score, thus facilitating analysis of performance

information in the context of the score and analyses of the score.

To evaluate the correspondences between performance notes and notes within

the score, the performance must be analysed using a score-performance match-

ing algorithm. A new score-performance matching algorithm is presented in

this document which is based on Dynamic Programming. In score-performance

matching there are situations where dynamic programming alone is not suf-

ficient to accurately identify correspondences. The algorithm presented here

makes use of analyses of both the score and the performance to overcome the

inherent shortcomings of the DP method and to improve the accuracy and ro-

bustness of DP matching in the presence of performance errors and expressive

timing.

Together with the musical score and performance markup, the correspon-

dences identified by the matching algorithm provide the minimum information

required to investigate musical performance, and forms the foundation of a PML

representation. The Microtonalism project investigated the issues surrounding

the performance of microtonal music on conventional (i.e. non microtonal spe-

cific) instruments, namely voice. This included the automatic analysis of vocal

i

performances to extract information regarding pitch accuracy. This was possible

using tools developed using the performance representation and the matching

algorithm.

ii

Contents

1 Introduction 1

1.1 The Musical ‘Object’ . 1

1.2 Analysing musical performance 3

2 Representation of Musical Performance 6

2.1 Issues in representing music . 7

2.1.1 Absolute/Relative . 7

2.1.2 Declarative/Procedural Information 8

2.1.3 Annotation vs. Persistence of Knowledge 9

2.1.4 Structure . 11

2.1.5 Mixed & Multiple Representations 13

2.2 Elements of representation . 14

2.2.1 Time . 14

2.2.2 Pitch . 16

2.2.3 Dynamics . 17

2.2.4 Musical Structure . 18

2.2.5 Conclusion . 19

2.3 Existing representations . 20

2.3.1 Notation . 20

2.3.2 Performance . 24

2.3.3 Analysis . 26

2.3.4 Interchange . 29

2.3.5 Conclusion . 31

2.4 XML for the representation of music 32

2.4.1 XSLT . 32

2.4.2 Structure . 33

2.5 A Specification for the representation of musical performance . . 39

2.5.1 Score . 40

2.5.2 Performance . 41

iii

2.5.3 Relational links . 42

2.5.4 Analysis . 42

2.5.5 Deployment and Development 43

2.5.6 Summary . 43

2.6 PML . 45

2.6.1 PML Document . 45

2.6.2 Performance . 47

2.6.3 Performance Part . 47

2.6.4 Event . 47

2.6.5 Gesture . 48

2.6.6 Cross referencing . 50

2.6.7 Analytical Structures . 51

2.6.8 Tuning . 54

2.6.9 Separation of logical and analytical information 55

2.6.10 PML: Current implementation and Software 63

2.7 Conclusion . 65

3 Score-Performance Matching 67

3.1 What is score matching? . 67

3.1.1 Types of matchers . 69

3.1.2 Underlying Technologies 71

3.2 Using Dynamic Programming to Match Scores and Performances 74

3.2.1 The DP Method . 74

3.2.2 Explanation of graphs and notations used in the descrip-

tion of correspondences 77

3.2.3 Ambiguities in the output of DTW 80

3.2.4 Cost vs Similarity . 82

3.2.5 Direction of path evaluation 83

3.2.6 Efficiency . 85

3.2.7 Summary . 85

3.3 Polyphonic Matching using DP 86

3.3.1 Clustering . 86

3.3.2 Partial Matching . 87

3.3.3 Polyphonic Path Evaluation 89

3.4 Improving the DP method . 92

3.4.1 The Dynamic Matcher . 92

3.4.2 Interpolation . 96

3.4.3 Interpolation Alignment 99

3.5 How to evaluate matching algorithms 99

iv

3.5.1 Evaluation procedure . 100

3.6 Benchmark Results . 103

3.6.1 Static vs. Dynamic Matcher 103

3.6.2 Removing false positives 106

3.6.3 Score Realignment vs Static Realignment 106

3.7 Analysing real performance data 109

3.7.1 Static vs. Dynamic Matcher 110

3.7.2 Interpolating matchers . 113

3.8 Conclusions and further work . 118

4 Analysis of microtonal performance 123

4.1 The Rosegarden Codicil . 124

4.2 Microtonal Performance Analysis 127

4.2.1 Characteristics of performance in microtonal rehearsal . . 128

4.2.2 Vocal Segmentation algorithm 128

4.2.3 Method . 130

4.2.4 Results . 134

4.2.5 Conclusions . 137

4.2.6 Further work . 138

5 Conclusion 139

A Performance Markup Language Annotated DTD 141

B Vocal Segmentation Examples 149

v

List of Figures

2.1 Example of bottom-up hierarchy within a top-down hierarchy . . 12

2.2 Small example of Base40 pitch notation. 17

2.3 Notation fragment generated by Lilypond. 22

2.4 Simulataneous representation of sequential and concurrent events

in kern. 28

2.5 Musical example demonstrating overlapping structures 34

2.6 Example code describing musical example Fig.2.5 using overlap-

ping tags. 35

2.7 Example code demonstrating ‘milestone’ elements. 36

2.8 Example code demonstrating attribute-based bottom-up hierarchy. 37

2.9 Legal method of representing multiple overlapping hierarchies

within XML. 37

2.10 Example using relational links within PML to represent multiple

hierarchies. 40

2.11 Block diagram describing structure of PML specification 46

2.12 Basic structure of a PML document, expressed using XML tags . 46

2.13 PML performance structure in XML 49

2.14 Scope referencing notes by IDREF list. 51

2.15 Scope referencing a range of notes using IDREFs. 51

2.16 Scope referencing a region in performance using seconds. 52

2.17 Scope referencing a region in an external resource. 52

2.18 Possible analytical hierarchy describing structure of a rondo. . . 53

2.19 Example tuning definition in PML describing 19-tone equal tem-

pered tuning (continued in figure 2.20) 56

2.20 Example tuning definition in PML describing 19-tone equal tem-

pered tuning continued from figure 2.19 57

2.21 Demonstrating XML namespace prefixes. 60

vi

2.22 A musical score annotated with analytical information derived

using PML. The bars display gestural information: the duration

of key presses in a performance of Bach’s Invention No. 1. 65

3.1 Methods of populating a grid of correspondence pairs 76

3.2 Explanation of the locations of cells as described in the rules for

grid population in figure 3.3 . 77

3.3 Rules for traversing the optimal path through the grid. The

location of cells (a,b&c) is described in figure 3.2 78

3.4 Legend describing symbol used in sequences which represent score-

performance correspondences . 79

3.5 Sequence describing correspondences in 3.6 & 3.7 79

3.6 DTW grid populated and evaluated using the similarity algorithms. 79

3.7 DTW grid populated and evaluated using the cost algorithms. . 80

3.8 Repeated notes causing unreliable correspondences in DP matching 80

3.9 Technical error resulting in incorrect evaluation 81

3.10 Example of ambiguous situations which cannot be resolved using

DP-based matching. 82

3.11 Effect of forward and reverse path evaluation using the same rules 83

3.12 Algorithms for comparing the similarity of two note clusters . . . 88

3.13 Polyphonic DTW grid using similarity based algorithms. The

grid shows that the path does not always follow the highest score. 89

3.14 Polyphonic DTW grid using cost based algorithms. The grid

shows that the path does not always follow the lowest cost. . . . 90

3.15 New rules for traversing the grid using the similarity (a) and cost

based (b) methods for polyphonic sequences. 90

3.16 Grid populated with Hoshishiba’s cost algorithm. The optimal

path does not follow the lowest cost. Correctly matching the C

major triad requires the rule of first match. 91

3.17 Evaluating performance using a sliding analysis window. 94

3.18 Calculation of dynamic thresholds 98

3.19 Equation used to alter the tempo of a performance. 101

3.20 Shostakovitch Prelude No. 5, Bar 6. 104

3.21 Shostakovitch Prelude No. 5, Bar 56. 104

3.22 Comparison of the static and dynamic matchers using artificial

performances. 105

3.23 Average performance of interpolation alignment with and with-

out unalignment stage. 107

vii

3.24 Performance of score-based alignment with and without unalign-

ment stage at optimal alignment threshold. 108

3.25 Score-based alignment vs Static alignment 108

3.26 Score-based alignment vs Static alignment 109

3.27 Performance of static matcher on Prelude 5 110

3.28 Performance of dynamic matcher on Prelude 5 111

3.29 Performance of static matcher on Chopin excerpt. 112

3.30 Performance of dynamic matcher on Chopin excerpt. 113

3.31 Results of the static alignment matcher evaluating Shostakovitch

Prelude 5 . 114

3.32 Results of the static alignment matcher evaluating Chopin excerpt115

3.33 Results of the realignment matcher on Shostakovitch Prelude 5 . 116

3.34 Results of the realignment matcher on Chopin excerpt 116

3.35 Initial results of the voice independent matcher on Chopin excerpt117

3.36 Further results of the voice independent matcher on Chopin excerpt118

3.37 Optimal error rates for all matchers tested on Shostakovich Pre-

lude 5 . 121

3.38 Optimal error rates for all matchers tested on Chopin excerpt . . 121

4.1 Real-time feedback of pitch accuracy in the Rosegarden Codicil . 125

4.2 Offline review of pitch accuracy in the Rosegarden Codicil 126

4.3 A chromatic scale in 19-tone equal tempered scale shown both in

actual notation (a) and scordatura notation (b). 127

4.4 Bars 4 & 5 of Ash composed by Graham Hair. The second phrase

of the piece is indicated. 133

4.5 Bar 6 of Ash composed by Graham Hair. The bracket indicates

the consecutive rising chromatic steps. 134

4.6 An example of the note splitting process. The blue line represents

the original note candidate. The two green lines represent the two

new candidates following the splitting process. 134

4.7 Annotated score displaying the deviation from exact frequency

in a performance of the soprano part of Ash (composer Prof.

Graham Hair). 137

B.1 Rough (blue) & final (green) estimate of the 1st note using the

pitch trajectory. 150

B.2 Rough (blue) & final (green) estimate of the 2nd note using the

pitch trajectory. 150

viii

B.3 Rough (blue) & final (green) estimate of the 3rd note using the

pitch trajectory. 151

B.4 Rough (blue) & final (green) estimate of the 4th note using the

pitch trajectory. 151

B.5 Rough (blue) & final (green) estimate of the 5th note using the

pitch trajectory. 152

B.6 Rough (blue) & final (green) estimate of the 6th note using the

pitch trajectory. 152

B.7 Rough (blue) & final (green) estimate of the 7th note using the

pitch trajectory. 153

B.8 Rough (blue) & final (green) estimate of the 8th note using the

pitch trajectory. 153

B.9 Rough (blue) & final (green) estimate of the 9th note using the

pitch trajectory. 154

B.10 Rough (blue) & final (green) estimate of the 10th note using the

pitch trajectory. 154

B.11 Rough (blue) & final (green) estimate of the 11th note using the

pitch trajectory. 155

B.12 Rough (blue) & final (green) estimate of the 12th note using the

pitch trajectory. 155

ix

Chapter 1

Introduction

1.1 The Musical ‘Object’

Music is manifest in many forms, such as graphical symbols on a sheet of paper,

as a recording on vinyl, CD or computer, as sound waves, and as physical per-

formance. What then is the musical ‘object’? It is a misconception that music

in its most tangible form exists in the vibrations that we perceive as sounds

produced by the act of performance, or a recording of such a performance. A

performance can never be repeated exactly and even though a performance can

be recorded, listening to a recording for a second time will bea different expe-

rience The listener’s memory of previous performances changes the experience

of future performances. Every performance is individual to the time and en-

vironment in which it is performed. Even members within the same audience

experience a performance differently due to room acoustics and personal expe-

rience. Several performances of the same piece of music may differ significantly

due to the performer’s interpretation of the music and yet are still recognised

and considered to be the same piece of music. To take this idea further, an in-

ternet database lists over one hundred recordings of The Beatles’ Eleanor Rigby

[91]. In these recordings the music itself is wildly different, not just the per-

formance, and yet these pieces are still recognised to be representative of the

original.

Is the musical score any more tangible? Usually, when we think of a musical

score we think of musical notation. Many musical notations exist, and all act

as a means of preservation and aides memoir. Body & Soul, originally written

in 1930 by Edward Heyman, Robert Sour, Frank Eyton and Johnny Green has

been recorded numerous times. The most famous performance of this piece is

1

the performance by Coleman Hawkins 1939 in which Hawkins never directly

asserts the melody of the original piece. So, in this case, which score is ‘most’

representative of the work, the score from which the original recording was per-

formed, or an aggregate score derived from all interpretations of the original

piece? Goodman believed that all interpretations of an individual piece of mu-

sic comprise one complete ‘work’. Therefore, every performance of a piece is

representative (to varying degrees) of an overall score:

“A score, whether or not ever used as a guide for a performance,

has as a primary function the authoritative identification of a work

from performance to performance.”

“A score must define a work, marking off performances that be-

long to the work from those that do not.” p128 [29]

This aggregate score is not necessarily physical, but is influenced by all in-

stances and versions of a work. In the case of classical music, the printed score

will remain relatively consistent despite different editions, and performances are

faithfull to the score (that is typically the intention, at least). However, in

the case of Body & Soul, perhaps the only relatively consistent aspect of the

piece is the chord progression, though that itself has been arranged in countless

ways throughout the various ‘cover’ versions. In fact, most musical notations

are ‘incomplete’ notations. They do not explicitly represent every note which

should be played. For example, some lute tablature requires that the performer

already has a knowledge of the piece, and can perform some analysis in real-time

to determine notes which are not represented in the tablature.

Nonetheless, even an original score is only one representation of a piece of

music. If the score was rendered straight to audio exactly as notated, the result

though most probably recognisable, is very unlikely to be considered ‘musical’.

A score (in Common Western Notation) does not explicitly indicate how each

note should be played, and in some cases does not even represent each note

which should be played (e.g. ornamentation). Computer music has both blessed

the world with limitless freedom to create and manipulate sound in new ways

and cursed the world with the sound of scores transcribed into MIDI and played

without expression, using cheap, unrealistic synthesised sounds.

A ‘musical’ performance is an interpretation of the score. The process of

performance involves an analysis of the ideas and structures within the score,

whether on paper, or in the mind. Based upon these analyses, various expressive

techniques are used to convey emotion and highlight structures within the score

to the listener.

2

Schoenberg is recalled as saying “Music need not be performed any more than

books need be read aloud, for its logic is perfectly represented in the printed

page.” [58]. However, this still does not necessarily mean that the score is the

musical object. As Schoenberg’s idol Brahms stated, the best performance he

heard was in his mind as he read the score. Therefore the act of reading a score

is, in itself a performance [24]. Music is manifold, and a piece of music can be

represented in many mediums. We can say that each representation is a view

of the same ‘object’ representing different aspects of that object. However, we

do not yet know what that object is. Music can be described as a process: from

composition through performance and listening/analysis. Different representa-

tions can describe different stages in this process. The process itself changes

with each repetition of the process as understanding of the music improves and

performance techniques or traditions change.

How then do we represent something which we cannot describe, which is

manifest in several different forms, not necessarily at the same time? Selfridge-

Field[95] described different aspects of music as contexts of musical information.

The phonological context represents the sound of a piece of music e.g. a record-

ing of a performance. The graphical context describes how music should be

represented visually e.g. as a printed score. The rational context which con-

tains analytical parameters, more often termed logical information, contains a

description of the content such as a list of notes and their properties such as

pitch, duration and onset time. The gestural context describes physical move-

ments present in the performance of a piece of music. The semantic context

contains music perception and understanding. Only by representing music in

multiple domains (simultaneously and synchronously) can we attempt to under-

stand music at a deeper level.

1.2 Analysing musical performance

“The performance of a piece of music is, therefore, the actuali-

sation of an analytic act - even though such analysis may have been

intuitive and unsystematic. For what the performer does is to make

the relationships and patterns potential in the composer’s score clear

to the mind and ear of the experienced listener” Meyer [54](p29).

The analysis of musical performance can draw upon all of the domains men-

tioned above, however, the most essential information lies in the score and the

performance domain. In terms of the contexts of Selfridge-Field (Section 1.1),

this is the logical context of score and performance events. Performance events

3

may be derived from the phonological context, the gestural context, or even

qualitative descriptions. However, the logical representation of this information

permits analysis with respect to the score.

Whether an analysis seeks to illuminate the motives and motions of musical

expression, or to explain or identify technical aspects of musical performance,

the score is vital. Dixon and Widmer used a technique by Langner et al [49]

developed to visualise expressive changes in tempo and dynamics called the

‘Tempo Worm’. By analysing the performance in the context of the score, the

use of tempo and dynamics of different performers can be analysed [84]. It was

used in the analysis of particular aspects of the individual performance style of

Vladimir Horowitz [112].

Palmer analysed performance errors in piano performances [103] to create

a taxonomy of errors. Through an identification and characterisation of these

errors, Sandler investigated aspects of musical cognition. The discovery of er-

rors, not to mention the classification of those errors into contextual and non-

contextual categories, would be impossible without a detailed description of the

correspondences between the performance and the score at the note level.

A musical performance is merely one instance of a piece of music, it is sub-

ject to the time and place in which it was performed, and most of all, it is

subject to the interpretation, skill and accuracy of the performer. As explained

earlier, a mechanical rendition of a musical score does not yield a ‘musical’ per-

formance. The reverse is also true: an automatic transcription of a performance

is unlikely to yield the original score. Not only will it contain deviations from

the score, intentional and otherwise, it will lack the precise notational marks

which influenced the performer, thus it is impossible to tell the difference be-

tween the performer’s interpretation and the composer’s intention. Therefore,

a transcription of the performance will not suffice as the score for performance

analysis.

This document describes a new system which will permit the investigation

of performance issues. The first step in the process is the representation of per-

formance in such a way as to permit analysis. Chapter 2 describes Performance

Markup Language (PML), which was developed in the absence of any other

active representation which adequately represents multiple domains of musi-

cal information so as to permit performance analysis. The representation can

contain score infomation and performance markup with reference to multiple

sources such as audio files or gestural motion files. Extendibility is compli-

mented by the ability to create relational links between multiple hierarchies,

thus ensuring that each domain of information can be represented individually

4

without compromising structure by forcing information into the organisational

structure of another domain of information. PML is a specification for a repre-

sentation rather than a representation itself. It can be used to extend existing

XML-based score representations, and the current implementation in use, which

extends MusicXML, is described in 2.6.10.

A representation is pointless without tools to assist in the population and ma-

nipulation of data within the representation. Several tools have been developed

to this end. Most notably, an improved score-performance matcher has been de-

veloped. Described in chapter 3, this polyphonic matcher uses score information

to dynamically adjust thresholds during the matching process. Along with tools

to populate PML with score and performance information, the matcher provides

the basic level of information required for analysis of performance in the con-

text of the score: performance markup, a score and event-level correspondences

between score and performance.

The final chapter describes one of several ongoing projects which investi-

gates performance issues using the PML system. This project investigates the

rehearsal of microtonal music. Both real-time and post-performance feedback

is used to assist the process of learning to perform microtonal music using con-

ventional instruments (i.e. instruments not specifically designed for microtonal

music such as special instruments using frets, valves or keyboards). In this

particular project, the pieces are composed by Professor Graham Hair using a

19-tone, equally tempered scale. These compositions are for soprano and clar-

inet, thus the process of adjusting to entirely new pitches and intervals requires

some accurate analytical tools.

5

Chapter 2

Representation of Musical

Performance

Although there are several representations which describe isolated elements of

performance, there is no single representation or specification which addresses

performance adequately for analysis or interchange. Proposals exist for the

representation of performance information such as GDIF [1] and the represen-

tation described by Hirata[35]: however the former remains unimplemented,

it is focussed on the representation of physical gestures in performance, the

latter represents performance information as an annotation of score informa-

tion contained within MusicXML[28] which prevents adequate representation of

nearly all performance issues such as structure, performance errors & multiple

performances. Furthermore, it violates some of the fundamental principles of

MusicXML’s structure using attributes to contain data rather than metadata.

Representing musical performance exemplifies most of the difficulties which

occur in the description of musical information. It requires the representation

and coordination of multiple domains of musical information. The information

in these domains consists a mix of both absolute & relative data and qualitative

& quantitative data. Satisfying the requirements of an analytical representation

which encompasses all these domains is a complex task.

The two fundamental questions which must be asked in the process of de-

signing a representation are: “What do we need to represent?” and “How are

we going to represent them?”. The first sections of this chapter discusses the

methodologies and design decisions which are relevant to the representation

of musical information. These provide background and describe possible solu-

tions to the two questions above. Existing representations will be discussed and

6

compared by their intended application. An entire section is devoted to the

discussion of XML in the context of representing music.

A specification for the representation of musical information is described in

section 2.5, and in section 2.6 an implementation of this specification is described

which has been used in several projects some of which will be discussed in later

chapters.

2.1 Issues in representing music

This section will provide a discussion on the most important issues in this area.

First it will explore issues and methodologies in representation, and how they

apply to the representation of musical knowledge. Secondly it will discuss the

most fundamental musical elements on which a musical representation should

be based. This section will discuss methodologies and representational issues

which must be understood when attempting to design a musical representation.

The various types of information and relations which exist in music require an

understanding of these issues and methodologies and how they can assist or

hinder the adequate representation of music in any domain of application.

2.1.1 Absolute/Relative

The difference between absolute and relative data is a simple analogy of the

difference between the score and the performance.

A musical score is an arrangement of musical ideas, and typically the re-

lationships between the primitive elements are all of a relative nature. The

pitches, onset times and durations of notes are all expressed as relations to the

properties of other items rather than static, absolute values. Only in contem-

porary music has there been significant use of absolute properties such as exact

time or frequency in scores. Even when an exact tempo is specified at the be-

ginning of the score, it is merely an indication of the desired tempo with more

resolution than traditional textual directives.

In contrast, performance information consists entirely of absolute data. Al-

tering the precise onset times, durations or frequencies of a performance changes

the performance into something different, however, it can still be representative

of the original score.

Relative information exhibits hierarchy, and thus is suited to representation

within hierarchical systems. Absolute musical data has no explicit hierarchy,

though it may be derived from the data through analysis. Applying musical

7

hierarchy to absolute performance information requires the transcription of the

absolute into relative equivalences e.g. frequency into pitch.

Although humans can easily recognise the correspondence between relative

and absolute quantities, algorithmically this process is non-trivial. The conver-

sion between pitch and frequency depends on the temperament in which the

performers are playing (it is widely known that, left to their own devices, mu-

sicians such as string players do not play in 12-tone equal temperament) and

expressive micro-adjustments in frequency such as sharpening the leading note

of a phrase. Similarly, time depends on many factors (which will be discussed

in section 2.2.1)

2.1.2 Declarative/Procedural Information

Declarative information describes information about objects or events. This

data must be decomposable i.e. the information in the representation must be

completely independent, it should be possible to modify data without affecting

the rest of the information. Procedural representations describe how to achieve

a particular result. It generally consists of a list of instructions rather than a

list of static information, and these systems often display substantial interac-

tions between elements which limit data accessibility. Whereas, the information

in declarative representations is far more accessible, easier to manipulate and

analyse compared to procedural data.

Procedural representations are better suited to representing something which

is procedural in nature. Musical performance is a perfect example of this. For

example, the process required to recreate a piece for solo violin could be de-

scribed as a series of instructions which indicate finger position, bow speed,

direction, force & position and duration. This information is suitable for ex-

actly reproducing a performance (though perhaps not for a human performer),

or for analysing the process itself, but information such as the pitch, frequency,

amplitude are at best implicit, and at worst impossible to extract without ex-

act information regarding the properties of the violin and bow. Examples of

procedural music representations include the MIDI file format [2]. MIDI time is

represented as delay times between events. Therefore, the onset time of a MIDI

event is not contained within the event object itself, but must be calculated

from all preceding time objects.

It is common to see a mixture of procedural and declarative information

within a representation. CSound [105] splits the representation of a piece of

music into two parts: the orchestra file contains a procedural representation

which describes how to synthesise the sound for each instrument in the piece;

8

the score file contains declarative data which contains the parameters for each

note, and declarations of other information required by the instruments.

2.1.3 Annotation vs. Persistence of Knowledge

Where a representation is to be extensible, it becomes necessary to manage

the extensions to the original system. In the case of a representation intended

for analysis, there will be numerous extensions which may exist in layers of

dependency. Each extension takes the representation further away from the

original representation, and these extensions must be managed to ensure that

the information remains accessible and compatible with existing applications.

Extensions which make modifications to the original specification (as opposed

to codicils) should be avoided at all costs to ensure compatibility with existing

tools.

It is also possible that new information is better suited to representation in

its own, native format. There is little benefit to mixing a hierarchical repre-

sentation of a musical score with raw audio data in one file. The convenience

of maintaining a single file is outweighed by the necessity to write new tools to

manipulate the information within a new format. In this instance a multi-file

representation allows information to be stored in an organised fashion, in na-

tive, cross application formats as long as the information is appropriately cross

referenced. Multiple-file representations are already in use in applications such

as MusicXML [28] and the Capella notation editor [77].

If new structures and information are the product of an automated process

which can be reproduced, the information can be treated as non-persistent data.

This data is temporary, and may be discarded once used because the results can

be generated again upon demand. Information as annotation is commonplace

in the internal representations of applications such as those which support mu-

sical notation. Many parameters such as precise placement of graphical objects

are calculated only for display on screen. This information is represented as

properties of objects within the internal representation, but the information is

discarded when the music is saved in the original file format.

Alternatively, it is possible to record the algorithm used, with the appropri-

ate parameters. The Discrete Fourier Transform (DFT) is sufficiently ubiqui-

tous that its internal process need not be represented, and given data such as

frame size, hop size and the number of analysis bins, the information can be

recreated exactly. In this case the representation becomes part of a tool-based

system in which the tools can be viewed as a procedural extension to the core

representation.

9

Independent extensions which address common domains of information should,

where possible be amalgamated into a single, standard extension. This permits

the extensions to be included as part of the standard representation, increasing

the possibilities for the exchange of tools and information.

Methods should be employed to ensure that extensions are optional and

do not break the original core specification. The ideal modular system should

consist of isolated components which may be included or ignored without further

consequence. The GUIDO file format [38, 39] consists of three different layers of

representation. The first layer includes the most basic musical concepts and the

fundamental syntax of the GUIDO language. The second layer adds support

for exact score formatting and more complex musical concepts, while the third

level includes features which are not part of conventional music notation such as

absolute timing. MEI [79] separates extended information into the analytical,

gestural and visual domains. It also includes support for further independent

modification of the representation through XML external entities (these will be

discussed in section 2.4).

Data Abstraction

Data can often be represented in different ways, this is evident in the representa-

tion of pitch (Section 2.2.2) or time (Section 2.2.1). Data abstraction provides a

transparent means of converting between different encodings. Data abstraction

is performed in the application (software) domain rather than the representa-

tion itself, although it is a factor in the design of the data representation for

that system.

Data abstraction is a main feature of the CHARM representation [114, 116].

The discussion of CHARM [114] refers to three analyses of Syrinx by Debussy.

In each analysis, the encoding of pitch and time was changed. The use of

libraries in the application domain allowed the same analysis program to be

used in all three analyses without change to the analysis routine.

Where information can be translated without loss between different encod-

ings, data abstraction is unnecessary. Most of the pitch encodings discussed

in Section 2.2.2 are interchangeable without loss. Therefore, allowing pitch to

be represented in many different ways causes more complexity in the specifica-

tion of the representation, and in the application domain which must support

every different encoding supported in the representation. A single encoding of

pitch means only those applications which use Base-40 notation must support

translation.

10

However, where information is lost, it is imperative that different encodings

be allowed to preserve knowledge. For example, a music representation may

include audio data which could be encoded in many different formats. The

representation of time is different in each format, and the format it uses contains

information regarding the content e.g. bandwidth can be derived from the frame

rate. If pitch information is represented in MIDI integer representation it is

wrong to translate this automatically and irreversibly into a more complete

representation of pitch because the ambiguity of pitch spelling is lost, arbitrary

data is added, and false information may be taken as truth.

2.1.4 Structure

There are many different structural forms for representing data. Generally, on

the macro scale, a representation will mostly conform to one structural form (e.g.

top-down hierarchical representation) however, for complex representations it is

possible to find a mixture of structural relations.

In an explicit structure the structural relations of the objects determines

the organisation of entities within a representation. In fact, some structural

items can be considered entities themselves. This is particularly the case in

XML-based music representations in which notes are often contained within a

hierarchy of Score → Staff → Bar. Implicit structure is derivable from explicit

data within the representation, for example, MIDI notes within a standard MIDI

file are unstructured, however, structure can be extracted using the channel

information associated with each note.

A tacit structure is one where structural information is absent. The knowl-

edge is within the data, but it is inaccessible (perhaps limited by current tech-

nology). For example, most audio files exist as streams of values with no repre-

sentation of structure. It is possible to extract structure from the information,

but it is not accessible

Hierarchical relations are those which define an element as part-of another

element, or declare that an element contains another element or elements. Top-

down hierarchies, which use the contains relation are common in representa-

tion because they organise information in an accessible and intuitive manner.

Bottom-up hierarchies are also common, and can be used to represent hierarchy

implicitly within the data of some other structural scheme (which may exist

within another hierarchy). The example in figure 2.1 demonstrates the use of a

bottom-up relationship to implicitly represent a micro hierarchy within a top-

down macro hierarchy using element attributes. This mixed hierarchy can be

seen in MXML and MEI to indicate structures such as beams. The methods of

11

representing his sort of relationship in XML representations such as these will

be discussed in section 2.4.

Figure 2.1: Example of bottom-up hierarchy within a top-down hierarchy

Relational representation identifies referential links from one object to an-

other. These links may be one-way or bidirectional. These links are part of

the objects, and do not explicitly define structure, though they can be used

as in figure 2.1 to indicate implicit structure within a mixed hierarchy. Rela-

tional links usually refer to other objects using unique identifiers. SGML and

XML provide support for this type of link through their use of ID and IDREF

attributes. An ID attribute must contain a value which is unique among all

other ID attributes in the document, while an IDREF must contain the ID

of a existing element within the representation. This is used most recently in

SMDL[96], MusicXML[28] and MEI[79], but also exists in older representations

such as Charm[114]. It is also the basis for relational databases in which objects

are given unique keys. Structural relations are defined by use of these unique

keys. In a relational model, the order of data objects has no bearing on the

content (though the data may be ordered for the purposes of optimising perfor-

mance). These references can be used to create bi-directional, or many-to-many

relationships.

12

2.1.5 Mixed & Multiple Representations

Mixed representations use a variety of representational schemes to encode dif-

ferent parts of a document. In multi-domain representations it is common to

represent data in different domains in the scheme which is most suitable. This

depends on the type of data, and the type of access required. Multiple rep-

resentations contain multiple views, or contexts of the same object. Multiple

representational schemes require careful management to ensure consistency be-

tween different contexts

The different musical contexts as described by Selfridge-Field [95] can be

thought of as different perspectives of the same object. Each perspective con-

tains different types of raw data and different analytical structures. Therefore

an adequate codification of music in more than one context must be a manifold

representation. Each context will contain different information with different

structural demands. Therefore it will also have to use mixed representational

schemes to ensure that each domain of information is structured in a way which

makes the data within as accessible as possible. All of these domains must be

interlinked and the consistency of information between contexts must be main-

tained. This is by no means a trivial task. The resulting system is likely to

consist of many different sub-representations (e.g. support for the many differ-

ent representations for audio data alone) and many different tools for retrieval

and analysis. SMDL and MEI have both been designed to accommodate mul-

tiple contexts of information. MEI includes support for the analytical, gestural

and visual domains within its representation. Unfortunately, these domains are

implemented as optional attributes of elements in the standard hierarchy, there-

fore the ability to represent each domain is limited. As an example, the gestural

domain contains additional note attributes such as MIDI pitch and onset time

which combines the logical/graphical score domains with the gestural domain.

This allows the performed attributes to disagree with the notated attributes

(indicating a departure from the written score), but does not offer an adequate

solution to the representation of performed notes which are not notated, or

notated notes which are not performed. The lack of structural independence

means that this representation is neither truly mixed nor multiple. The SMDL

specification splits the same domains as defined in MEI into isolated represen-

tational schemes which can be interlinked using various methods which were

developed in the HyTime specification[26]. While this representation could be

used to represent multiple mixed representations of a musical object, the logical

score was the only domain described in the specification, and SMDL was never

adopted as a standard representation.

13

2.2 Elements of representation

This section will discuss the basic elements of music and how to represent this

information within a computer representation. The three qualities of time, pitch

and dynamics are considered the most fundamental properties of a note. The

musical structure in which notes occur binds these primitives together within a

piece. All of these elements have been represented in many different ways and

a discussion of these methods is necessary to comprehend how to represent this

information optimally for any given application.

2.2.1 Time

The issue of representing time can be split into three discussions: the represen-

tation of relative time, absolute time, and, if necessary the coordination of these

two domains.

Relative musical time is most easily represented by an arbitrary number of

divisions. Generally the number of divisions is the highest common divisor of ev-

ery onset and duration which must be represented. In a polyrhythmic piece such

as Chopin’s Fantasie Impromptu opus 66, the highest common divisor splits the

bar into 672 divisions. This is certainly not convenient for human analysis, and

in many MIDI related sequencer applications, the concept of divisions is used

in a more user-friendly way denoting a relative time as a combination of bars,

beats and subdivisions. This has similarities with SMPTE time [64], except

the content determines the resolution rather than the hard/software. Relative

time is also often described using bar, beat & subdivisions. This notation can

be derived from the total number of divisions by analysing all the time signa-

tures prior to that time. However, in polymetric pieces, a particular number of

divisions may relate to different measures depending on the staff.

Alternatively, time could be expressed as integer ratios of the measure or

beat. As an example, Lilypond represents the timing of triplets as follows:

\times 2/3 \{c4, e4, g4\}}

This indicates that the duration of two notes is occupied by three notes,

therefore the notes have a duration of two thirds the notated value (a crotchet).

This is easily legible from a human perspective, which is essential for a human-

entry representation such as Lilypond’s [59]. It is also independent of any other

properties such as a global resolution, but can increase complexity in applica-

tions.

14

Many notation representations only represent temporal position implicitly

(MusicXML[28], MEI[79], Wedelmusic[109] to name just a few). Musical no-

tation does not necessarily require a value for the position of each note within

time, the order of notes and information regarding the voice or layer is enough to

typeset music graphically. The process of deriving an explicit start time, given

sufficient information is not difficult, however in the case of a representation

which is intended to be used for analysis, it is important that the properties

of an object can be retrieved easily, which requires that information be explicit

and declarative.

Several systems exist for the representation of absolute time. SMPTE [64]

was developed by the Society of Motion Picture and Television Engineers to rep-

resent the time of individual frames for film, video or audio material. Time is en-

coded as a binary representation of ‘hour:minute:second:frame’ and is recorded

straight onto the film or video on which the material is recorded allowing ma-

terial to be synchronised during editing or playback. SMPTE timecode is also

used to synchronise equipment in a studio setting, and MIDI Time Code uses a

version of SMPTE time code which is transmitted across MIDI cable to synchro-

nise MIDI devices. Many file formats which contain streams of data, represent

time as an external entity (i.e where the time is not an internal property of

the event itself). Formats based on IFF or RIFF (discussed further in 2.3.2)

stipulate a standard frame rate and define the amount of data contained within

each frame, the time and track is thus calculated from the position within the

file.

One might be tempted to consolidate the representation of different streams

of information with different frame rates into one timeline. Although represent-

ing time as seconds would seem convenient, the digital representation of floating

point numbers will introduce rounding errors which can cause inconsistencies

in the conversion between floating point times and frame numbers. Indeed, the

frame rate contains information about the signal itself. The framerate of audio

signals indicates the bandwidth of the signal, and the framerate of SMPTE is

an indication of the video encoding used such as PAL or NTSC.

Representing the mapping between absolute and relative is a complex task.

It has been shown that a simple tempo curve is a naive model of musical time

[19]. Objects which occur simultaneously in the score, such as chords will ap-

pear sequentially, and in any order within the performance. Different parts,

even within the same instrument (for example separate hands in a piano perfor-

mance) may perform at different tempos within a phrase such that notes in a

performance occur in a separate order than they appear in the score. Marsden

15

extensively explores the representation of musical time and described a formal

logical approach to its representation [52]. Honing has also developed a calcu-

lus for representing musical expression which attempts to describe and permit

transformations of expressive timing [20].

2.2.2 Pitch

The most ubiquitous representation of pitch does not actually represent pitch at

all. Rather, MIDI [2] assigns 128 discrete frequencies, and these frequencies are

selected by a number in the range 0-127. The frequencies are, by default, tuned

to a 12-tone equal tempered (12ET) scale at concert pitch. MIDI was originally

designed as a protocol for real-time communication between musical devices,

and for this purpose the numbering system is adequate. Music which uses

tunings other than 12ET are now supported using the MIDI Tuning Standard

(which is now part of the standard MIDI specification) although the number

of discrete frequencies is limiting for scales which divide the octave into more

than twelve intervals. Unfortunately, the vast majority of musical applications

which use MIDI have adopted this numbering system as a ‘representation’ of

pitch. This is partly because applications do not support notation, or because

the vast majority of users no longer use notation as a means of composing or

because applications wish to represent information in a format which is as close

as possible to the format it will use in real-time. Although an integer system of

pitch representation such as MIDI cannot distinguish between different spellings,

this representation is useful in the context of comparing notes for enharmonic

equivalence.

MIDI aside, the most common way to represent pitch is as a combination of

note class, octave number and accidental. This is also often used as a human

accessible way to represent MIDI pitch. While this representation adequately

represents enharmonic spelling, there is considerable difference in the number-

ing system for octaves (middle-C is variously denoted by numbers in the range

3-5). This is termed the note-octave or pitch class-octave system of pitch rep-

resentation.

Graphical applications such as those which transcribe images of sheet music

often represent pitch using a combination of clef, key signature, accidental and

height on staff. This methodology represents position of graphical objects rather

than pitch per se, although the pitch is implicit in the combined attributes of

the graphical objects.

These representations offer a simple and accessible method of representing

musical pitch. However, many processes such as diatonic transposition or in-

16

terval analysis are extremely difficult, if not impossible under these schemes.

The interval between C#4 and B♭4 is a diminished seventh, and the interval

between D♭4 and B♭4 is a major sixth. Although in 12ET music the interval

size is the same, the two intervals have distinct functions in the context of har-

monic analysis. Other pitch representations use a form of integer representation

which allows these complex musical transformations to be calculated by simple

arithmetic. The Base40 representation [33] represents individual pitch spellings

as integers C♭♭1 = 1, B##1 = 40 (not all integers correspond to an actual

pitch). Similarly, intervals are assigned a delta value which corresponds to the

numerical distance between two notes which are separated by the given interval.

Pitch Base40 Integer

C# 4

D♭ 8

B♭ 37

Interval Base40 Interval

Dim. 2nd 4

Maj. 6th 29

Dim. 7th 33

Figure 2.2: Small example of Base40 pitch notation.

Binomial representations [9] use integer pairs to represent ‘pitch class’ (pc)

and ’pitch name’ (pn). Pitches which share a staff position, or ‘letter name’

belong to the same name class e.g. C♭, C, C#. A pitch class defines all of

the enharmonically equivalent pitch spellings e.g. B##, C#, D♭. Operations

on these numbers allow transposition between pitches and a comparison for

enharmonic equivalence.

These representations are less accessible for applications whose focus is the

performance of music, or the graphical display of notation. However, with the

exception of MIDI pitch, a pitch within any of these systems can be translated

into any other system with a simple lookup table. Some, MIDI-based sequencer

applications e.g. Rosegarden [81] which support western musical notation aug-

ment MIDI pitch with an (optional) accidental. The inclusion of an accidental,

if mandatory for all pitches, provides enough information to translate between

the other pitch representations.

2.2.3 Dynamics

Dynamics in the context of a score may relate to a single event, a group of events

or a range in relative time. Graphical representations may or may not make

an association between a dynamic score marking and the events to which it

relates. The performance of these directives is very much dictated by individual

17

interpretation.

The absolute measurement of dynamics is typically measured in either dB.

MIDI has only has the ability to represent volume on a per-channel basis. In

many cases the gestural quantity key velocity, which is associated with each

MIDI event is used as an indication of dynamics. Again, this is limited to the

range 0-127, and there is no standard relationship between velocity and dy-

namics. In fact some MIDI instrument have various mappings between physical

velocity and MIDI velocity. Therefore it is impossible accurately to capture

dynamic information or to produce precise dynamic output without a detailed

specification of the recording or synthesis device.

2.2.4 Musical Structure

The western musical score can be (partially) described as organising musical el-

ements in two dimensions. The vertical axis organises the information by pitch

and, in the case of multiple staves by instrument also (though the score is by

no means a pitch/time graph). The horizontal axis organises information by

time. Further structural organisation can be seen as superimposed upon this

basic organisation. This allows for immediate grouping of information with re-

spect to either time (events in a vertical region) or staff (all events on the same

horizontal region or staff). Few representations are capable of imitating this

duality, perhaps partly because of the nature of digital files, in which informa-

tion natively stored in streams, and partly because representational structures

are imposed upon them by the choice of representational language. Represen-

tational languages such as XML and SGML impose a hierarchical structure to

data-based information. In these cases, it becomes necessary to address the is-

sue of two dimensions by using parallel and sequential entities. This problem is

most clearly demonstrated in MEI [79] and MusicXML [28]. Each of these rep-

resentations exist in two versions which contain exactly the same information.

The difference between the two variations is that one groups notes according to

staff, while the other groups information according to time. In a bar → staff

representation, the higher structure is the bar element which groups all events

which occur within that bar. Objects within a bar are further grouped according

to the staff to which they belong. Information in a staff → bar representation

is first arranged by staff, and each part contains a sequence of bar elements in

which notes and other information are stored. Because the information in each

variation differs only in organisation and not in content, it is possible to convert

between the two schemes. This conversion is further simplified by the use of

XSLT 2.4.1.

18

A bar → staff representation or time-wise structure is slightly more suited

to analysing harmony because information regarding all score objects within a

time region are accessible together. It is also more convenient for coordinating

orchestral scores. In a bar → staff representation or part-wise structure the

analysis of melody and individual parts more accessible. Although each method

is equivalent and interchangeable, retrieving information is quicker and easier

using the appropriate structural scheme.

However, at the note level, the bar → staff representation still represents mu-

sic as individual sequences running in parallel, therefore harmonic information

is only slightly more accessible than in the staff → bar organisation. For exam-

ple, multiple voices in MusicXML may be represented within a single staff-bar.

The convention within MusicXML is to represent multiple voices sequentially,

using a backup instruction to indicate that the temporal position of the follow-

ing notes does not continue from the preceding element. Although simultaneous

notes which appear in different voices can be stored contiguously, it results in

an extremely complex, and confusing non-linear representation of time. Fur-

thermore, in polymetric pieces, it is impossible to arrange music into a coherent

bar → staff representation because the bars are not equal across all staffs.

Kern [44] represents elements within a two dimensional space similar to com-

mon western notation. The 2D space is contained within an ASCII file. Simulta-

neous events are arranged in rows and sequential events are arranged in columns.

Therefore all the events within a particular part occupy a single column of data,

and all events which occur at the same time appear on the same horizontal line.

Whereas the bar → staff hierarchy only partially supports harmonic analysis,

the kern system allows simultaneous analysis of musical information as parallel

or sequential data within one organisation.

2.2.5 Conclusion

Representing musical performance for analysis must cater for many different

tasks. The information must be displayed graphically, it must be accessible

for analysis, and it must also synchronise relative and absolute information.

Therefore in most situations it is advantageous to use the most versatile system

in representing different elements of music.

In light of this, the most suitable representation of pitch is the note-octave

class. This is the easiest system for human comprehension and graphical repre-

sentation, and is also the system most commonly used in opther representations.

In any case, analytical applications which would require calculations which can

be evaluated trivially in numerical systems such as Base-40 can convert ’on-the-

19

fly’ from the note-octave representation into whichever system best suits the

analysis.

Relative time based on divisions is far more suitable for analytical applica-

tions. Divisions allows the position of notes in time to be represented declara-

tively. It allows simple synchronisation within polymetric music. Furthermore,

using bar-beat-divisions aids graphical and analytical applications while main-

taining a system based on divisions.

A performance analysis representation may have to reference various sources

of performance information with different representations of real time. Therefore

it should either be capable of representing time in multiple formats, or should

represent time in a neutral format such as seconds, ensuring that it may be

recorded with adequate precision to represent individual frames within external

sources.

Common Western Notation is a difficult representation to aspire to

2.3 Existing representations

There are countless different computer representations of music. A comprehen-

sive representation of music, in any domain other than the phonological domain,

has yet to emerge. The variety of information forces the design of musical rep-

resentations to be an exercise in feature selection. Representations either cater

for one specific application or musical style with precision, or offer offer a broad

range of features which will suffice for mainstream popular or classical music, “a

Jack-of-all-trades, master of none”. This section will examine some of the most

current and relevant representations in the context of the application domain

for which they were designed, allowing a discourse for comparison between those

which broadly aim towards the same goal. The representation presented here is

not intended to be

2.3.1 Notation

The most obvious application for a musical code is in the creation and archiving

of musical scores. Musical codes which deal exclusively with notation can be

divided into three groups: codes which are designed for user entry, archival and

interchange of logical score and archival and interchange of absolute graphical

information.

20

Typesetting

Since graphical user interfaces have become more advanced, text entry has be-

come a generally unpopular method of generating musical input for computers.

However, text entry codes continue to be used and developed, and, after a

steep learning curve, users report considerably faster data entry than using the

now conventional ‘point & click’ method. Examples of text entry codes in-

clude abc[107], Plaine and Easie[41], Common Music Notation (CMN)[89] and

Lilypond[59]. The main objective of such a representation is to represent mu-

sical notation in a plain text format which is easy to read and easy to edit by

hand. Usually the code is processed through a typesetting algorithm to produce

graphical output, although it is also possible to generate MIDI files from some

formats.

Lilypond is the most advanced and widespread user entry code for musical

typesetting. The Lilypond syntax has been constantly updated to improve

the input system, something which is achieved at the expense of backwards

compatibility. Pitch in Lilypond is represented using a form of note-octave

notation where the octave is expressed as an offset relative from a reference

octave. Beams and slurs/ties are expressed by enclosing the affected notes in

braces or parentheses. The typesetting algorithm, and graphical font have been

based on hand-engraved scores which produces very attractive output. However,

Lilypond allows very exact layout constraints to be specified should the score

require extraordinary notation.

abc is a far simpler language than Lilypond. It is particularly popular

amongst folk music communities, and a huge corpus of work is available freely

on the internet. abc was originally developed to simplify the creation of input

files for another language: MusicTex. MusicTex is a musical typesetting tool

based on the TeX processing utilities. It suffered from an extremely verbose

dialect, and the abc2mtex software provided the ability to create score typeset

by MusicTex using a far simpler input language.

The syntax used by Lilypond and many other text entry systems use a free

markup representation where different structures may overlap for example, the

musical fragment in Figure 2.3 contains two overlapping structures: a beaming

structure and a slur. This is represented in Lilypond syntax as:

c[c(] d)

This form of representation is easily parsed, and easy read and edit, however

information such as time is usually implicit, and without a strict hierarchical

nature, membership of hierarchies also becomes implicit, therefore information

21

� � � � �

Figure 2.3: Notation fragment generated by Lilypond.

thus less accessible for processes which require random access such as analytical

algorithms.

Logical

Storage, interchange and analytical applications typically represent a musical

score in the logical domain. The accessibility of information in the logical do-

main make this domain essential when information must be encoded in an ap-

plication neutral (in terms of software application) form.

MuseData is an ASCII format which aims to represent a musical score in

a software neutral fashion. It consists of two ‘layers’, the first comprising a

very limited representation which consists of pitch and duration information

only. The second layer may comprise other information such as information

for printing scores or MIDI data. The MuseData archive contains many scores

which can be converted into different formats such as MIDI, DARMS[93] or

kern[44]. The ‘MuseData Universe’[94] is a system which includes the MuseData

archive, the HumDrum syntax and the HumDrum toolkit. The archive acts as a

source of musical scores which can be converted into representations based upon

the HumDrum syntax e.g. kern (see below) and analysed using a set of tools

contained in or based on the HumDrum Toolkit. MuseData has the capability

to be extended by extending the number of attributes of a note. However, the

basic level is a very sparse representation of a score, and MuseData is not a

convenient representation for describing analytical structures.

DARMS (Digital Alternate Representation of Musical Scores)[93] was de-

veloped to provide a means for writing music with an ordinary keyboard. It

later grew to become a widely used representation for analysis and production

of commercial scholarly editions of music. Several different dialects exist and,

although all can be reduced to the basic form Canonical DARMS, there is little

compatibility between different systems. DARMS is a concise format, but it is

not easily human-readable: durations are represented by a shorthand alphabet,

and pitch is specified using staff position, where the first line of a staff is 1 plus

some multiple of 50.

22

Absolute

The final class of notation representations encode a score as musical symbols

which contain positional and dimensional information. Graphical files are un-

suitable for any application other than the production of scores, or the analysis

of issues relating to typesetting. Fundamental musical attributes such as pitch

and duration are not explicitly expressed, and thus conversion to more generally

useful codes is necessary to use data in other application domains.

NIFF (Notation Interchange File Format)[15] is a binary format based on

the RIFF specification. Notes are defined by note head, duration (expressed

as a rational number) and position relative to a staff. NIFF[15] has also been

implemented in XML (NIFFML) [13]. NIFFML does not alter the structure

or content of NIFF: it is a strict implementation of NIFF in XML. NIFF is a

common interchange format for optical recognition software which scan musical

notation.

Strangely, there is only one utility which converts from a user entry format

to a format which represents absolute graphical information. The Score [98]

programs use two separate codes: a logical input code which is an human read-

able ASCII encoding of logical score information and a parametric file which

includes graphical objects and exact positioning. The Score program uses the

input file to create the graphical file, which is still able to be imported using

commercial notation packages.

Composition

Representations which are intended to be used as a compositional tool (ex-

cluding those which represent the Common Western Notation) are typically

used within the electro-acoustic genre. These representations often have a pro-

cedural, even object-oriented[70] aspect to their representation, which allows

processes to be applied to defined and applied to multiple groups of objects.

The CSound representation consists of two files, a score file and an orchestra

file. The orchestra file defines the synthetic instruments in a language somewhat

similar to the C programming language. The score file contains a declarative

list of note start times, durations and other parameters which are used to create

scheduled input for the instruments.

Canon [18] was designed to provide a means of generating note level con-

trol information for synthesisers. It was built upon the declarative program-

ming language LISP, and the Canon score, like other representations such as

FORMES[82], or Smoke[70], can be viewed as ‘programs’ [18] which contain,

in one form or another, a set of procedures and a set of parameters which are

23

used when those procedures are activated. Although it is possible to envision

the score as a list of parameters and processes to apply, the underlying param-

eters (notes and their properties) are far more accessible. In object-oriented or

procedural languages, these properties are either implicit, or absent unless the

‘program’ is evaluated.

2.3.2 Performance

Audio

A performance is one instance of a piece of music, and performance data is

unique to that performance. The most ubiquitous, and in many ways the most

comprehensive representation of a musical performance is an audio recording of

the performance itself. Various formats exist for the encoding of audio data.

Most of them are proprietary formats which exhibit no significant difference in

the encoding of audio information whatsoever. For example the Interchange

File Format [92](IFF) specification (on which Apple’s AIFF format is based),

and RIFF used by Microsoft’s WAV format differ only in their use of big-endian

or little-endian numbers. These formats typically represent audio information

as a stream of amplitude values coded as up to 64-bit integers or floats at a

fixed framerate with interleaved channels.

Audio information arguably contains the most significant information com-

pared to other domains of performance information. However, information in

the audio domain is also among the most difficult to extract. Despite decades of

effort, automatic transcription, score-following and even beat-tracking are still

very active fields of research, and the problems within are far from solved.

MIDI

The availability and convenience of various MIDI devices has led to common

use of MIDI as a representation for performance information. However, there

are several fatal flaws in the use of MIDI as a representation of a performance.

These flaws are partly to do with the limitations of the protocol and file format

themselves, but also to do with the way the data is treated. MIDI represents

notes as an event pair which denote start & end time, key number (pitch) and

beginning and end ‘velocities’. A MIDI device is limited to 128 frequencies on

a single channel. Although the MIDI Tuning standard was introduced to allow

the frequencies of notes to be changed, few synthesisers or sequencers support

this feature. It is also unclear whether synthesisers should change the frequency

of a note which is playing when a new frequency is transmitted, or apply changes

24

only to new notes. Otherwise, the only way to alter the frequencies of notes is

to use pitch bend which alters the frequencies of all active notes on the channel

(the range of pitch alteration may be changed, the default is ± one tone).

Not only is the control resolution insufficient for detailed analysis, but value

ranges have no set reference point. Many MIDI controllers offer several different

velocity curves which map the velocity of the physical gesture to the standard

MIDI range. Thus, it is impossible using only the MIDI information to obtain

reliable, consistent data. Beyond the limitations of the representation itself, the

information recorded from MIDI instruments is often treated as the wrong type

of information.

MIDI information is gestural information. The NoteOn and NoteOff signals

do not signify the beginning and end of a note. They represent the beginning and

end of a gesture. It is impossible to determine the duration of notes recorded

from a piano performance using MIDI for two distinct reasons. High notes

have a very short audible duration, thus, there is no guarantee that a note

is still audible, purely because the key is still depressed. Secondly, When the

key is released, the note will continue for an indeterminate amount of time if

the sustain pedal is depressed. For further discussion on the inadequacies of

MIDI, see Moore [55]. Efforts have been made to compensate for some of these

inadequacies by synthetically modelling decay rates [21], however, accurate data

cannot be derived without an analysis of other data mediums.

Unfortunately, because MIDI is adequate for the majority of commercial

music and most home users, MIDI devices remain the industry standard, and

therefore, in some circumstances, the only source of viable gestural information.

Other formats

Most formats for the description of gestural information are proprietary formats

used by the manufacturers of gesture tracking systems. These representations

typically consist of two parts: a skeletal description and raw gestural data. The

skeletal description describes the physical relationship between objects which

are to be tracked. The raw data contains sampled data which describes the

movement of each of these objects either in real-time. The BVH [5] (BioVision

Hierarchical data format) is the most common proprietary gesture format. This

plain ASCII format contains a hierarchical description of the skeleton of the

object. This skeleton is described as a hierarchy of joints, with terminating

‘end points’. Each node is accompanied by a description of each channel of

data which describes the movement of the joint: position or rotation in each of

the three dimensions, and also the initial state of the joint (as an offset from its

25

parent joint) before tracking commences. This also defines the order of elements

within a frame of motion data.

The C3D format[100] is intended to be an interchange format for gestural

data. Developed in the context of biophysical science, C3D contains extra meta-

data describing the human subject e.g. age, height, weight, date of examination

etc. Data encoded in proprietary formats is intended to be translated into C3D

format to allow a single set of tools to be used for all data.

GMS (Gesture and Motion Signal) [25] is a low-level, generic format for the

description of gestural data. It is a binary file based on the IFF file specifi-

cation. The lowest level of information is contained within tracks. This may

be positional or acceleration information in one dimension. Several tracks can

be grouped into one channel, this information would combine to describe the

complete motion data of one point. Units provide structural dimensionality of

gestures. A unit should contain channels which are not dynamically indepen-

dent, thus a unit may contain all the channels of a hand, or all the channels

of a human body. Finally, units are contained within scenes. The framerate is

defined in the scene header section and is thus constant and consistent within

each scene. GMS offers no representation of analytical structure, and does not

even describe the content of information within a track/channel. Each hierar-

chical component within GMS can be named, which could be used to determine

data content as long as naming conventions are created and maintained. For

example, the track name may be used to define the type of data such as position

in X plane, acceleration in Y plane.

GDIF (Gestural Description Interchange Format)[1] is a new proposal for

the representation of gestural information. It is not, as its name might suggest,

derived from the IFF specification, though it is inspired by the GDIFF format,

which is an IFF format. GDIF aims to combine the representation of all elements

of gestural description such as raw data, segmentation, semantic descriptions.

It is also hoped that the representation of gestural primitives such as trajectory,

force and pattern can be formalised. Qualitative descriptions of movement will

be supported by the use of Laban Movement Analysis (LMA). Unfortunately,

this representation remains a proposal, the only implementation which exists is

a map of OSC address spaces which are used to capture data in real time.

2.3.3 Analysis

Although a number of analytical music representations have been proposed, only

one representation (Humdrum) has succeeded in becoming the core representa-

tion of a substantial number of musicological investigations. Harris et al [115]

26

proposed that analytical representations should be judged on two criteria: ex-

pressive completeness and structural generality. Expressive completeness refers

to the range of raw musical data which can be represented. Structural generality

refers to the range of high-level structures which can be represented. In their

evaluation of current representation of the time, the waveform of a recording of

the music determines the upper-bound for expressive completeness while offer-

ing no structural generality. Structural generality is achieved through extensi-

bility and adequate support for the description of relations between elements.

However, analytical representation must also make data accessible, which gener-

ally requires explicit declarative information. The information contained within

Smoke, which scores highly in terms of structural generality, is less accessible

than that of other representations which have less structural generality.

Humdrum has been used in analyses as diverse as examining scale systems

in Korean court music [56] to investigating symmetries in notated musical dy-

namics [43]. The actual representation of the Humdrum toolkit is not fixed,

and is intended to be tailored for the particular task in hand. Data can be im-

ported from other sources including a database of musical scores encoded in kern

(the ‘vanilla’ Humdrum encoding). Kern represents only the most fundamental

information contained in western musical scores. It is an ASCII based syntax

which defines a specification for the representation of musical information which

represents both sequential and concurrent relations simultaneously. Concurrent

events are represented on the same line, while sequential events are represented

in columns. Figure 2.4 contains a simplified representation of the first two bars

of Shostakovich’s Prelude 5. This method was used previously by Brinkman

[10] in an internal computer representation of music. Brinkman represented

musical elements as nodes within a two dimensional, doubly-linked list. Each

element within this matrix contained links to the next and previous element

both in sequential terms and harmonic terms. In the same paper, Brinkman

used the representation to perform a simple harmonic analysis of polyphonic

music. Brinkman, however, was unable to find an acceptable way of translating

this internal representation into one which was suitable for external storage.

Interestingly, Brinkman’s external representation uses an ASCII line/column

representation which contains different attributes in separate columns, but fails

to extend the lines to include concurrent information across all parts. Instead,

the music is organised in a time-wise fashion with elements in temporal or-

der grouped by part within each bar. In a similar example, Prather [71]uses

the same two dimensional doubly-linked lists to represent music internally, but

relies on SML [72] to represent the data externally.

27

∗∗kern ∗∗kern ∗∗kern
∗sys1 ∗sys1 ∗sys1
∗staff2 ∗staff1 ∗staff1
∗clefF4 ∗clefG2 ∗clefG2
∗M3/4 ∗M3/4 ∗M3/4
∗D: ∗D: ∗D:
=- =- =-
(2D 4a 4d 4f♯
. 4a 4d 4f♯
4E 4a 4d 4f♯
= = =
2F♯ 4a 4d (8f♯
. . 8e
. 4a 4d 8f♯
. . 8g
4G 4a 4d 4e)
= = =

Concurrent events & attributes

Sequential events

Figure 2.4: Simulataneous representation of sequential and concurrent events in

kern.

Although Humdrum is a successful implementation of the bi-dimensionality

of basic musical structure, and has proven to be a popular choice among mu-

sicologists, it remains, like its two predecessors, a temporary format. In the

‘MuseData Universe’ [34, 94] musical scores are stored in either MuseData or

kern format (which is an inadequate representation of the musical score). There

is no persistence of analytical data, therefore if further analyses rely on the data

of previous analyses, the data must be generated again, every time. However,

Humdrum does specify a number of standard extensions called ‘schemes’, which

allow the representation of particular information (e.g. Schenkerian graphs).

This allows multiple implementations of a particular analysis to be used inter-

changeably.

CHARM is another specification for the representation of musical data,

rather than a representation itself. It is designed to be application indepen-

dent, though the only evidence of its use is in the context of analysis, thus it

will be discussed here. CHARM [116, 114] is a ‘general musical representation

system which is not based on any particular music style, tonal system, tradition

or application’. CHARM uses abstract data types, which means that it should

be possible to represent information such as pitch in any encoding. An access

library provides a layer of abstraction which will convert between the stored

encoding and the encoding desired by the application [117].

28

CHARM achieves structural generality through the use of relational links

and structural constituent elements. Constituent elements can contain note

elements, or other constituent elements. All elements have a unique identifier

which is used to reference that element. Thus CHARM is capable of denoting

multiple hierarchies using ID-based relations.

The Sound Description Interchange Format SDIF [118] is a format which al-

lows the representation of analytical representations of audio. It is based on the

IFF standard, and specifies a standard representation for time domain represen-

tations, short term Fourier transforms and fundamental frequency estimates.

Sonic Visualiser[11] is an audio analysis application. It allows the extrac-

tion and description of information from audio files. It uses the VAMP plugin

architecture which defines a standard API for plugins which process audio and

return symbolic information. Sonic Visualiser saves sessions in a compressed

XML file which contains the markup information, and the audio file with which

it is associated. The audio file itself is only referenced in the session file, the

actual audio data remains encoded in the original file format.

2.3.4 Interchange

In the absence of any standard representation of music, interchange codes form

a stepping stone in the conversion from different formats. The advantage of

interchange formats is that developers need only create the tools to translate

between their format one other format: the interchange format to support the

exchange of data between many different formats. The disadvantage of inter-

change formats is that there is no guarantee that certain information will be

present when importing information from an interchange format, or that in-

formation will be preserved when exporting to other file formats. Interchange

formats require a large set of features which must be developed carefully to

ensure interoperability between the many different formats they support.

Until recently, MIDI was the dominant interchange format between applica-

tions such as sequencers and notation packages. Musical scores were encoded as

MIDI note events using relative time onsets and durations, this, to some degree,

preserved temporal information, though pitch information and score markings

were lost. Recently, MusicXML [28] has achieved widespread support both in

the commercial and open-source community. It is an XML-based representation

which permits the exchange of musical scores.

MEI [79] is another XML based representation of the musical score. It bears

many resemblances to MusicXML in general structure. MEI however, has never

achieved any use as an interchange format since there are no utilities to convert

29

to or from MEI to any other format [78].

The NIFF (Notation Interchange File Format) was designed to facilitate

conversion of graphical encodings. It is now supported by several optical score

recognition applications, and an XML implementation has been developed.

Multiple Application

There are representations which are intended to be application neutral. The

Standard Music Description Language (SMDL) [96] was based on SGML and

was developed in parallel with the HyTime specification [26]. SMDL was de-

veloped to represent musical information in 4 domains: Logical, Graphical,

Analytical and Gestural. HyTime [26], in the context of SMDL, provided the

means to coordinate and correlate the various domains. It allowed mappings

between different representations of time, and allowed relations to be described

both within the document and using external sources. The SMDL specification

states the main purpose as the interchange of musical information. However, it

has also been suggested that SMDL was an ‘enabling standard’ [97] from which

only the necessary modules need be used. However, the SMDL specification

only detailed the logical representation of musical data (and through HyTime,

object relations and temporal information). It seems that SMDL was lacking

in the description of many areas, but the areas which it did describe were con-

sidered too complex [14]. To extract a small portion of the SMDL architecture

which was relevant would require an in-depth understanding of both SMDL and

HyTime. However, SMDL never gained the support of the community and the

working group was officially closed on 23rd May 2006 [36]. The only known

application of SMDL was an attempt to use SMDL as the basis for a database

of musical information.

The MuTaTeD project combined SMDL with the graphical representation

NIFF. A graphical compiler was used to generate NIFF from logical SMDL files.

For a representation to succeed, it must be supported by applications. Unless

people are willing to create the tools required to create, manipulate and use the

data contained within, it will be impossible to use the representation. This

was perhaps the ultimate reason for SMDL’s demise [97] despite the backing

of international committees, and is a clear warning to the developers of new

representations and standards.

Even now, with the benefit of hindsight, there is a lack of available tools for

the display and manipulation of scores. Commercial notation applications allow

the creation and manipulation of scores, but their proprietary nature prevents

their use in novel applications such as clients for database query applications or

30

the analysis of musical information. Until an open standard API for the graph-

ical representation of musical scores exists, the development of software and

thus the development of representations and research projects will be severely

limited.

2.3.5 Conclusion

Current representations of performance are adequate for the retrieval of per-

formance information only, not for the analysis of performance issues, which

requires the coordination of several different domains of information. Although

no adequate representation exists, lessons can be learned from existing repre-

sentations which successfully represent information for different applications in

order to derive a specification for such a system.

Although existing representations of performance, by themselves, are in-

adequate for analysis of performance issues, it is necessary to use these rep-

resentations in such a system. Audio representations are essential to retrieve

information about the performance. Even MIDI, despite its various shortcom-

ings, provides a convenient method to record performance events, as long as

this information is encoded in a more suitable representation scheme. A suit-

able representation should include files in these formats in the representation

system creating a multiple-file representation. MusicXML [28] and Capella [77]

multiple-file systems for representing musical notation. However, these systems

comprised files of equal format. A performance analysis representation must be

able to synchronise logical descriptions of performance events with the manifes-

tation of those events within files representing the performance.

The analysis of performance requires the logical representation of the score

and performance information. Information regarding how to typeset the mu-

sical score is useful, but not essential to performance analysis, and increases

complexity without significant increase in the usability in this application.

Analytical representations have valuable lessons regarding the structure of

information. The kern representation represented the musical score in a truly

bi-dimensional method. This is incredibly useful in the analysis of musical

scores. This organisation is not possible in modern markup languages, therefore

XML based representations such as MusicXML[28] and MEI[79] have adopted

dual-representation systems which can prioritise the organisation of information

according to time or score part. This functionality could also be provided in

software within an API designed to provide easy access to the information within

a representation.

The only representation which combined multiple domains of information,

31

SMDL [96] has been ignored by the community due to over-complexity and a lack

of suitable tools for development. Therefore it is essential to create a representa-

tion in which it is easy to manipulate musical information and therefore easier

to develop applications. MusicXML has very quickly become a popular rep-

resentation for exchanging information between different formats. MusicXML

has a very clear, user-readable format. Because it is a XML-based language it

benefits from tools and APIs which have been developed for the retrieval and

manipulation of information in XML documents. Many new musical formats use

XML, and XSLT allows information within XML formats to be exchanged with

ease. Therefore it makes sense that a format for performance analysis should

be based on XML, allowing information to be imported from other formats and

easing the process of developing applications. Therefore, the following chapter

discusses the application of XML to the representation of musical information

before a new specification for a representation is presented.

2.4 XML for the representation of music

XML is the basis for the representation presented in this thesis and for many

other current representations. A thorough discussion of XML in the context of

representing music is essential to enable the comparison of different representa-

tions using this standard.

XML is a meta language designed to facilitate the sharing of information

between different information systems. XML is quickly becoming ubiquitous,

and is a common foundation for new data representations including several

which represent music [28, 79, 13, 109]. It benefits from a number of tools

and libraries for verifying, accessing and manipulating information within XML

documents. These tools are available on multiple platforms and programming

languages. Therefore by choosing to develop a representation in XML, a host of

utilities are already available. This section will discuss the merits and limitations

of XML as a basis for representing musical information.

2.4.1 XSLT

The eXtensible Stylesheet Language (XSL) provides a means of describing how

information in one XML language can be translated into another. The Data For-

mat Description Language DFDL will eventually provide a means of describing

the structure of binary files in XML which can be used to extract information

from binary files to produce an XML document. These tools make the conver-

sion between different formats far simpler. This makes the implementation of

32

translation tools for interchange formats easier, but does not help the design of

an interchange format which is the limiting factor in its useful application. The

ease of translation makes the use of application specific representations more

feasible, rather than tailoring an application to use the structure of a particular

standard, the application can use the structure most suited to the task at hand,

and use XSLT to translate the content between interchange formats, or specific

formats. MusicXML and MEI use this technology to provide two distinct va-

rieties of their representation. Each version contains exactly the same content,

however, one version organises information primarily by musical part, whereas

the other organises information primarily by bar number. Each structure has

advantages in different applications, however, using XSLT, the structure can be

easily converted between the two formats.

2.4.2 Structure

XML was designed to represent structured documents and has an inherent,

hierarchical organisation. The structure of a particular representation can be

strictly controlled by the use of Document Type Definitions (DTD) or schemas.

These provide not only a basis for implementing structure within a document,

through DTDs and schemas it is possible to define the structure of documents.

This allows documents to be verified to ensure that the structure and, to some

degree, the content conforms to the specification. This allows a document to

be verified to ensure that it conforms to the specification. These definitions

support modularity within a representation, and it is possible to select/deselect

parts of a specification. Elements and their contents are defined in isolation

of their structural position within the overall document, therefore modularity

and inheritance are supported within a document. Because document defini-

tions may include other documents, it is possible for multiple specifications to

share microstructures. This further adds to the modularity an extendibility of

XML because it is possible to create a new specification which extends an ex-

isting specification without changing the original specification. The feasibility

of this depends on the design of the original document, and the dependence on

document validation. If the original document is not designed so as to allow

modularity, inheritance and alteration may still be achieved at the expense of

validation.

XML maintains a hierarchical structure: elements may not overlap i.e. el-

ement tags must be contained within the same parent element. In structural

terms this means that an element can have one and only one parent. For this

reason, there is some resistance towards the use of XML for representing music

33

as it is impossible to represent multiple overlapping hierarchies using the con-

ventional hierarchical relationship which is dictated by the XML syntax. Figure

2.3 in Section 2.3.1 showed a very simple musical example which is reproduced

in Figure 2.5 for convenience which demonstrates this problem.

� � ��� �
Figure 2.5: Musical example demonstrating overlapping structures

The example encoding in Figure 2.6 uses start and end tags to represent

elements within a representation. The encoding could be said to be the most

‘intuitive’ encoding of the information in the musical example using tags, and

this is the way in which text entry systems such as lilypond would represent

such an example. The example is illegal within the XML syntax for two reasons:

1. The opening tag of the slur element occurs within the first bar element

and closing tag occurs in the second bar element.

2. The beam and slur elements overlap.

Both reasons come from the requirement that elements must not overlap i.e.

an element must have one and only one parent (excluding the root element,

of course). In Figure 2.6 the tags and the indentation imply that the second

note is a child element of three elements: a bar, a beam and a slur. In the

lilypond example below, the containers for beaming and slurs can overlap. The

left parentheses, indicating a bar occur after the first note which they contain.

The closing parenthesis also overlaps another structure which represents a slur,

indicated by the right parentheses.

c[c(] d)

This is possible because the relationship between these containers and the

objects they contain is known. XML is designed to be as flexible as possible.

Documents need not be described in a DTD or a Schema to be valid or useful. If

overlapping elements are permitted, there is no longer any explicit definition of

hierarchy within the document without a formal specification of each object and

container. This also implies that it is impossible to query a particular location

within such a hierarchy without parsing the entire document first.

Roland suggested that XML can describe a musical representation which is

structurally isomorphic with the structural hierarchies which exist within music

34

<bar>
...

<beam>

<note>
...

</note>

<slur>

<note>
...

</note>

</beam>

</bar>

<bar>

<note>
...

</note>

</slur>
...

</bar>

Beam tags

Slur tags

Figure 2.6: Example code describing musical example Fig.2.5 using overlapping

tags.

[80]. This is certainly not the case, since multiple overlapping hierarchies exist

within music, and are represented explicitly and simultaneously within western

notation. The overlapping example described in Figure 2.6 is not sufficient

either, because the hierarchical relationships themselves are not explicit because

an element is not necessarily a child of another element because it is completely

enclosed within the other element’s tags.

There are some strategies commonly used to overcome XML’s strict hier-

archical organisation which are used in many representations, not just musical

codes. One strategy uses ‘milestone’ elements to indicate the beginning and end

of overlapping structures. This implementation, demonstrated in Figure 2.7, is

used to represent overlapping structures in the same method as shown in Fig-

ure 2.6. The difference which makes this approach legal and the previous illegal,

is that the start and end tags in this instance are separate elements which are re-

lated by a common id attribute. Although this is well-formed XML (i.e. it does

not break XML syntax), it is not a good representation for a number of reasons.

35

Firstly, like the first example, it does not actually imply any hierarchy. There is

no explicit relationship between the secondary parent (the beam) and its child

objects (the notes). This means that an application cannot perform random

access information retrieval on the document, because to discover whether an

element is a child of a milestone object the parser must search through poten-

tially the entire document to find start and/or end tags. Additionally, it is

impossible to perform any validation to ensure that the milestone elements are

used in a syntactically correct way (i.e. that both a start and an end tag exist,

and that they appear in the correct order).

<bar>

<beam type="begin"/>

<note/>

<note/>

<beam type="end"/>

</bar>

Figure 2.7: Example code demonstrating ‘milestone’ elements.

Another strategy is demonstrated in (Figure 2.8) where children are grouped

using common attributes. Unlike the previous example, this structure explicitly

states the relationship between each note object and the beam group. Therefore

it is possible to immediately determine whether a note is part of a group. How-

ever, determining the complete list of group members is less efficient than the

previous example. The entire document must now be searched because there

is no indication of the beginning or end of the group. The lack of any specific

element means there is no logical place to define group attributes. This is con-

trary to the requirements of an analytical representation because it is impossible

to expand the properties of groups if there is no element in which to store the

information. MusicXML uses an even less useful implementation of method to

indicate slurs. However, only the notes which constitute the beginning and end

of a slur contain a declaration that the note is part of a slur. Therefore notes

which are in the middle of a slur have no explicit relation to the group. This

combines the worst features of both the solutions above.

This thesis proposes that a more suitable solution is to use relational links

to define the hierarchy between objects and groups which do not fit into the

primary organisational hierarchy. The example in Figure 2.9 shows the use of

two way relational-links which represent the relationship between a group and

its members using both the is a member of and contains relations. Thus it is

possible to immediately determine whether an object belongs to another group,

36

<bar>

<note beam="beam1" />

<note beam="beam1"/>

</bar>

Figure 2.8: Example code demonstrating attribute-based bottom-up hierarchy.

and by retrieving the group element the properties and scope of the group are

accessible. The existence of a group element means that the properties of the

group can be extended.

The position of the group element has no effect on its properties, therefore its

representation is completely explicit. This also allows the element to contribute

to a completely separate hierarchy which can be defined using traditional XML

parent-child/container relationship. Multiple hierarchies can be defined in this

way with total independence from other hierarchies, using relational links to

define relationships between notes, or other objects contained in separate hier-

archies. Notes can still be contained within a traditional staff → bar or bar →

staff hierarchy which allows convenient access for most purposes.

<bar>

<note id="note1" beam="beam1" />

<note id="note2" beam="beam1"/>

<beaming>

<beam="beam1">

<scope notes="note1 note2"/>

</beam>

</beaming>

</bar>

Figure 2.9: Legal method of representing multiple overlapping hierarchies within

XML.

MusicXML uses a compromise of the first two examples to represent some

hierarchies within the standard hierarchy. Beaming is declared by the pres-

ence of milestone elements contained within the note element. Beams have a

non-unique ID element which differentiates them from concurrent beams, but

not from all other beams within the document. Beam elements also contain

‘start’, ‘continue’ or ‘end’ declaration which identifies the beginning and end

of a beam. Therefore, it is immediately possible to determine that a note is

part of a beam, and beam properties may be contained within one of the beam

37

elements. However, the complete scope of the beam element is not immediately

accessible.

Relational linking is adequate when an object relates to a small number of

objects. However, when an object relates to a large number of items, it may

be easier to define the relation as a scope within some dimension. For example,

defining the exposition can be more efficiently described by its scope within

relative time rather than listing each member explicitly. A violin crescendo

may be defined to have a scope within time (relative time, absolute time or

both) which applies only to the violin part. It should be possible to define these

references in addition to relational references for all analytical elements.

IDREF vs XPath

There are two features of XML which are suited to representing relational links.

ID and IDREFs are attribute types defined in the XML standard. An ID at-

tribute must contain an identifier which is unique in the context of all ID at-

tributes within the document. An IDREF must contain an identifier which

corresponds to an ID attribute within the document.

XPath is a language which addresses portions of an XML document. It can

be used to identify elements, or ranges of elements within a document by describ-

ing position within the hierarchical structure of the document. Both alternatives

have advantages and disadvantages in the context of defining relational links.

ID/IDREF attributes are part of the XML specification and compliant parsers

will validate ID/IDREF references. Searching by ID attribute is part of the

DOM (Document Object Model) XML API specification. XPath is not part of

the XML specification, and therefore cannot be validated by XML parsers.

Validation

An XML parser will identify any errors in ID/IDREF attribute definition,

(whether an ID attribute is duplicated, or an IDREF does not contain a valid

reference). XPath declarations are not validated by parsers. Validation is useful

in self-contained documents, however, in the context of a larger system where

the document is spread across several files, validation can become problematic.

Where two separate performances are being analysed, the IDs of elements may

need to be altered (and all corresponding IDREF attributes) to ensure individ-

uality. Validation, however, is an optional parsing feature.

38

Document changes

ID/IDREF attributes are relatively robust in the face of document changes. A

change in the structure, or position of elements within a document will not affect

the validity of ID/IDREF links. However, if the change includes the deletion of

an element which is referenced the document will become invalid.

XPath declarations are very sensitive to changes in the document structure.

In some cases, the structure of the document may change without any change

in content, for example a conversion from measure → staff to staff → measure

organisation in MusicXML or MEI documents. In fact, the XML 1.0 specifica-

tion does not guarantee that a parser will report elements in document order (it

would be compliant within the specification for a parser to return the elements

in alphabetical order). [65]

Finding XPath declarations which have become invalid requires an evalua-

tion of the declaration and the changes made. In contrast, discovering ID/IDREF

attributes which require alteration can be performed by validation, or simply

inspecting the attribute.

A simple example of the usage of this sort of relation already in use in PML

is in the description of note ‘clusters’. The score-performance matcher currently

used in PML projects which is discussed in chapter 3 groups performance events

into clusters which are judged to have a musically simultaneous onset (chords).

Each cluster contains an aggregate onset time which is derived from the onset

time of all the events contained in the cluster. Therefore a cluster is a structure

which contains a group of notes, and one property. The clusters are represented

as a list of elements each defining one cluster. A cluster contains a list of notes

which belong to the cluster identified by their ID attribute. The subelement

‘onset’ contains the aggregate onset for the cluster as a whole. This only use

a one-way relational link from the clusters to the notes i.e. there is no explicit

link within a performance note element which describes the link to a cluster

element.

2.5 A Specification for the representation of mu-

sical performance

In the absence of an adequate representation for the analysis of musical perfor-

mance, this section presents a specification of the requirements of a representa-

tion which aims to facilitate the analysis of musical performance issues.

39

<clusters>

<cluster>

<onset ="0.23"/>

<scope ids="pnote1 pnote2">

</cluster>

<cluster>

<onset ="0.78"/>

<scope ids="pnote3 pnote4">

</cluster>

...

</clusters>

Figure 2.10: Example using relational links within PML to represent multiple

hierarchies.

Information should be structured so that data is immediately accessible, and

can be retrieved without the need to analyse its context. Therefore, the repre-

sentation should be both declarative and explicit. The only instance where pro-

cedural information is useful is in instances where performance data is recorded

as procedural information e.g. certain types of gestural information. However,

the markup of this procedural information should be represented declaratively.

As explained in Section 1.2, an informed analysis of musical performance

requires more than the raw performance data. In the analysis of musical per-

formance, the score (in whatever form it may take) is necessary to evaluate the

performer’s expression and accuracy. Thus, a performance representation must

include at least three domains of musical information: the score, the perfor-

mance and the analytical domain. Each domain may contain information in a

number of contexts as described in Section 1.1.

2.5.1 Score

The score may contain both graphical and logical description of score informa-

tion. Of these, the logical score information is essential due to the declarative

and explicit nature of the information it represents. A distinction must be made

here between the logical representation of a graphical score, and the logical score.

A logical representation of the graphical score is a declarative and explicit rep-

resentation of the objects which appear on a visual score, whereas a logical score

is a declarative and explicit representation of the content communicated by a

graphical score. The difference can be demonstrated clearly in the representa-

40

tion of a tied notes. A logical representation of the graphical score will represent

tied notes as two separate notes which share a common tie attribute or belong

to a common group which signifies that there is a tie between the two notes.

A logical score need only represent the tied notes as one distinct object. In

a musical score, note start times are implicit within the context in which the

note occurs. Therefore, in a logical representation of the graphical score, the

temporal position of a note is not explicitly stated, but can be derived from its

position relative to other objects in the score. A logical score would explicitly

specify note onset time in some representation of relative, musical time.

This is not to say that the the logical representation of a visual score is of no

use. The incorporation of a visual score helps visualisation at the application

user interface, and is also essential for certain analyses. An adequate visual score

could be derived from the logical score. However, in some cases, the logical score

is not easily derived from the graphical score such as music which uses notes

inégales.

2.5.2 Performance

Performance data covers a broad range of data types and contexts. Raw perfor-

mance data exists in the phonological context as representations of the recorded

sound (whether as raw audio information, or as some analytical representation

such as a spectral frames), and in the gestural context as streams of motion

data.

It must be possible to markup the content within these data streams to

facilitate analysis. This markup constitutes a logical description of the content

which can be derived from the performance data whether through automated

analysis such as automatic transcription and gestural identification or through

manual markup. At what point logical analyses become part of the logical

domain rather than the performance domain is contentious. In this situation

it becomes difficult to draw the line between what is considered analysis of

performance data, and what is a logical description of raw content.

It is necessary to make such a distinction between the fundamental logical

objects and their properties and information which is the results of analyses

to define what information is the ‘ground truth’ (the term is used here ‘for all

practical purposes’ in reality no such analyses guarantee ground truth) on which

other analyses can be based. This will, in turn influence whether information is

persistent or temporary within a knowledge representation. Other information

41

may be in the form of action lists (a MIDI file, for example), or subjective

descriptions of emotive content (‘vivace’) or gestural content such as Laban

Movement Analysis (LMA).

2.5.3 Relational links

The importance of including score information in addition to performance in-

formation has already been expressed. However, to facilitate the contextual

analysis of musical performance, the mere presence of the musical score is not

sufficient. The relationship between the performance and the score must be

expressed in the representation. It should be possible, given a particular perfor-

mance event to immediately find the musical context which may have influenced

the event by analysing the relevant part of the score. Similarly, it should be

possible to select a note, or a region in the score and immediately access the

corresponding information in the performance. To achieve this, the score per-

formance relationship must be described at the logical note level. A mapping

between relative and absolute time, although useful for auditioning purposes

and library related retrieval applications, is not an adequate representation of

this relationship for analysis. A time mapping is incapable of indicating whether

notated notes have been missed, un-notated notes have been added, or whether

several performance notes relate to one notated note e.g. ornamentation. It

also does not make the information relating to one object accessible without

prior analysis to precisely locate the corresponding window in the performance.

There should also be a method for creating links between performance events

and the external sources such as audio files, and gestural motion streams.

2.5.4 Analysis

To facilitate analysis the representation must have a flexible, extendible and

robust structure. Musical information can be described in multiple overlapping

hierarchies, and the representation must support multiple, possibly overlapping

organisational structures across all domains of the representation. It is conve-

nient, for most applications, to structure musical data according to time and

part. In different situations, it is convenient for either one of these to take

priority. However, other situations may require organisation according to har-

monic structure. Thus, multiple, simultaneous hierarchical structures must be

supported.

The representation should support a modular structure which extends be-

yond the separation of information domains. New analyses will generate new

42

organisational structures, therefore it must be possible to include or reference

any structural item within multiple hierarchies. The vast collection of differ-

ent analytical representations necessitates modularity within the representation.

Thus for any application, is should be possible to select from a set of standard

modules, what information should be supplied/supported. Standardised mod-

ules also promote the shared development and use of analysis tools.

2.5.5 Deployment and Development

For any representation to survive, there must be tools which help in the creation

and manipulation of data, and tools to aid the development of applications which

use the representation. This fact is evident in the proliferation of representations

such as Humdrum[34] & MusicXML[28] and the failure of SMDL and MEI.

There is a substantial toolkit for the development of analytical systems which

are based on the Humdrum representation and several repertoires of scores

accessible in the Humdrum format. MusicXML quickly gained the support of the

major open source and commercial notation applications and has an open API

to help developers. In comparison to MusicXML, MEI, which was developed

roughly parallel to MusicXML, has a more flexible structure and more thorough

representation of music remains almost entirely unused because there are no

available tools to import, create, or manipulate data within MEI. No software

was developed even for part of the extremely complex SMDL specification. This

is cited as one of the major reasons SMDL never gained sufficient user base [97].

It is important that the representation and its tools be freely distributable

and that the licenses permit modification (for example GNU General Public

License [27]). Thus the representation can improve and evolve to meet the

requirements of the users. This includes the applications and APIs which are

based on the representation. Without open source tools, developing a system

or application to perform analysis may require the development of enabling

technologies such as score-performance matchers, notation rendering and audio

analysis tools.

2.5.6 Summary

1. Information should be explicit and declarative.

2. The following three contexts should each be adequately represented:

(a) Score

(b) Performance (including gesture)

43

(c) Analysis

3. The correlation between score and performance representations must be

represented at the event level.

4. The representation must support multiple hierarchical structures simulta-

neously.

5. It must support cross-domain structural relations.

6. The representation must be extendable and modular.

7. The representation must be freely distributable and modifiable.

8. There must be available tools to assist in the gathering, manipulation and

analysis of data.

Existing systems can be analysed in the context of this specification. SMDL

passes the 2nd and 3rd criteria. It supports multiple domains (though in prac-

tice, only the logical score domain was specified) and cross-domain relations but

SMDL lacks the support of any software and is based on SGML, a technology

which has been more or less superceded by XML. Furthermore, SMDL is now

considered a dead language [36].

MusicXML satisfies many of the criteria. It represents information explicitly

and declaratively with the exception of relative onset times of notes. It is freely

distributable, and being based on XML can be extended in a modular fashion.

Many tools exist for the creation and manipulation of information within Mu-

sicXML, including several tools to exchange information between various other

formats. However, it has no support for domains of information other than the

musical score. The use of ID attributes (discussed in Section 2.4) within note

elements would permit the representation of relational links including score-

performance correlations if the representation was extended or included within

a mixed-representational system. The representation described by Hirata et al.

[35] which extends MusicXML only permits the inclusion of MIDI data within

the structure of MusicXML. It therefore fails to support multiple simultane-

ous hierarchies, and MIDI data is an inadequate description of performance

information for analysis.

MEI also conforms to many of the criteria. It represents multiple domains,

but only within the hierarchy designed to represent the musical score, and not

in separate, multiple hierarchies. MEI, like MusicXML, could be extended to

include adequate support for other hierarchies, however it fails on the last point

44

in that despite its maturity as a language, there are no applications which

support it.

There are no representations which completely conform to this specification.

For this reason, Performance Markup Language (PML) was developed. The

following section presents PML and will discuss the design methodology and

structure of PML.

2.6 PML

PML has been designed by the author of this thesis to form the basis for a

complete representation of musical performance for the analysis of performance

issues. It is a specification for such a representation, rather than a complete

representation in itself, which relies on the integration with a separate notation

representation for score description. This section will describe the structure and

features of the specification. A Appendix A contains and annotated version of

the DTD which defines the specification.

2.6.1 PML Document

The basic structure of a PML document consists of three parts: score, perfor-

mance and analysis. The document must contain one score. The definition of

the score hierarchy is not part of the PML specification, and it is theoretically

possible for PML to be used in conjunction with any XML-based score repre-

sentation. The reasons for this are twofold. The complete absence of a useful

open API for the display of musical notation means that the incorporation of

an existing representation which has the support of existing applications makes

PML instantly accessible. Secondly, the ability to use any XML-based score

representation means that it can be used to extend existing corpora of musical

scores. Figure 2.11 demonstrates the basic hierarchy of PML as a block diagram

and figure 2.12 describes the same structure in basic XML markup.

A PML document may contain one or more performance elements thus fa-

cilitating the comparison of different performances of the same score. A perfor-

mance element contains markup of the fundamental logical performance events.

The final section of a PML document contains analytical structures.

Using XML entity references, document fragments may be included in sep-

arate files allowing the same score file or performance markup to be used in

multiple PML documents. Therefore there is no need for the duplication of

data when analysing a performance in isolation and in the context of other

performances and increases maintainability an consistency of results.

45

Figure 2.11: Block diagram describing structure of PML specification

<pml>

<score>
...

</score>

<performance/>

<perfpart>

<event>

</event>
...

</perfpart>
...

</performance>

<analysis>
...

</analysis>

</pml>

Figure 2.12: Basic structure of a PML document, expressed using XML tags

46

2.6.2 Performance

The Performance element contains all the information which is pertinent to a

single performance. It must include one or more Performance Parts and may

include analytical hierarchies which relate solely to the performance and data

contained herein. In addition, the performance element should contain meta-

data regarding the overall performance such as the time, date, location of the

performance, the recording engineer. This is also where a reference frequency

and corresponding pitch should be recorded should the performance be per-

formed in anything other than concert pitch (A above middle C = 440Hz). This

is required to ensure accurate conversion between frequency and pitch.

2.6.3 Performance Part

A performance part contains information regarding the performance of one per-

former. It should contain a markup of the logical properties of performance

events. These events are subdivided into sound events and gestural events. The

elements which contain the events should also contain metadata concerning the

method which was used to determine the events and their properties. There-

fore it is possible that there may be more than one gestural events element as

different gestures may be detected using a variety of techniques and sources. It

is therefore also possible, though less likely that there may need to be multiple

sound events elements.

The performance part should also contain metadata relating to the individual

performer and their performance. Therefore, performer metadata and important

information regarding the instrument and the capture of information relating

solely to this instrument such as the microphone used for recording should be

noted here. In addition, if the events within a container all use a common time

base (see below), this can be declared within the container element. However,

if events within a single container are extracted using a common algorithm, it

is likely that a common timebase will be used.

2.6.4 Event

Sound events and gestural events describe events within a performance part.

Every event must contain a start time and, optionally an end time. Time can

be specified in seconds, or in the time base of the source medium from which the

properties of the event were derived. Therefore the onset of a gestural event can

be defined as occurring simultaneously with an exact frame of a video stream,

whereas an audio event can be related to a sample frame within the time base

47

of an audio file which has a completely different frame rate. Relating an event

to the timebase of an external entity is achieved using an external reference

element (see section 2.6.6).

Events should contain other observable properties which are unique to the

event such as dynamics or fundamental frequency. A sound event may contain

both the performed frequency and the performed pitch or neither. Pitch can

be denoted as either a pitch number (which specifies the sounding note, but

not the enharmonic equivalent) or a complete pitch description. Where pitch

information is ambiguous, the ambiguity must be preserved e.g. when performed

pitch is derived from MIDI data.

Events are aligned to notes within the score using the align tag. The tag

will specify a link to one note by reference to a note’s ID, or in later versions, an

XPath expression. This tag can also specify a repeat number which distinguishes

between instances of the same notated note at different iterations of repeated

sections of the piece.

Figure 2.13 contains some example XML markup in PML which expands

upon the example in figure 2.12. The score element now contains a scorepart

element which in turn contains a note element. The scorepart element is iden-

tified by the id attribute (of type ID) which has a value of ”p1”. The perfpart

element in the performance references the relevant part in the score using the

part attribute (of type IDREF). The event in the performance corresponds to the

note in the score. This is indicated by the align element which references the

note in the score by IDREF. The onset and end times for the event are specified

in seconds, and the frequency in hertz.

2.6.5 Gesture

The gestural events currently have no content specification. Research into phys-

ical gestures in musical performance covers a wide range of divergent topics, and

this is reflected on the wide variety of gestural data, capture methods and the

fundamental logical events which are the focus of the research. Examples in-

clude identifying circular motions in the movement of the bell of a clarinet[108],

or identifying fingering in piano performances. A unified method of describing

these gestures has yet to be agreed, though with a common representation such

as PML, captured data, tools and analytical methods and results can be shared

easily between research groups, encouraging the formation of a unified ontology

for the field including the representation of data streams and common gestural

‘scenes’. A discussion has already taken place to begin the process of unifying

the community and creating a common representation and common tools [46].

48

<score>

<scorepart id="p1">

<note id="note1">
...

</note>
...

</scorepart>

</score>

<performance>

<perfpart part="p1">

<event id="pnote1">

<onset>0.145</onset>

<end>0.564</end>

<freq>440</freq>

<align note="note1"/>

</event>
...

</perfpart>

</performance>

Figure 2.13: PML performance structure in XML

49

2.6.6 Cross referencing

Cross referencing within and outwith the XML document is currently facilitated

using three methods:

Align The align element defines the link between a performance element and

its corresponding score element.

Extref The extref & extres element ‘groups’ describe a reference to a position

within an external resource (i.e. any non-XML file format).

Scope The scope element allows a group of objects to be defined.

The align element, described above defines the links between the score and

the performance. This is currently a mono-directional relation. There are two

reasons for choosing this in the current implementation. Firstly, to create bi-

directional links would require a change in the MusicXML DTD. The MusicXML

DTD is designed in such a way that prohibits making changes without creating

a separate DTD. If the original DTD is included as an entity, a redefinition of

the element content descriptions causes a parsing error. Secondly, by leaving the

structure of the original score intact, all PML files analysing the same piece can

use the same score file as an external entity, ensuring consistency and maximising

storage efficiency.

References to external sources are described using two elements. The exter-

nal resource elements describe a file itself, and the external reference elements

point to a particular position within an external resource. These two element

types must be described for each external file format which is supported by the

DTD. An external resource element contains a reference to an external entity

which declares the actual file and its location. It may also contain default at-

tributes which indicate default attributes for accessing locations within a file,

for example it may specify a particular channel in a multitrack audio file which

will be used in the absence of an overriding attribute in an external reference. It

should also contain sufficient information to convert the information contained

within the external reference element into other related time formats without

requiring an examination of the file itself. Therefore, the definition of a WAV

file contains the frame rate, which will allow any reference to a particular frame

within the file to be converted into seconds, or related to the closest frame in

another resource with a different frame rate.

External references must reference an external resource element (using an

ID/IDREF relation), and contain information to reference a particular point

within that resource. Where the external resource element has specified a default

50

property, this will be overridden by any similar property defined in this element.

Therefore, many external references will relate to a single external resource.

Also, it is possible to create more than one resource which relates to a single

file, for example a large GMS file may be divided into separate gestural scenes,

or a multitrack audio file might be declared as separate resources which relate

to recordings of separate instruments.

The scope element allows groups of elements and ranges of data to be defined.

Groups can be defined by either listing all the elements of a group (2.14) or

defining a range in which those elements occur. Lists of objects are referenced

by their ID attributes in the refs attribute (which is of type IDREFS). An

example of this was shown in Figure 2.10. A range is specified by the elements

from and to. These elements may contain any number of external references or

references by ID. Therefore, a phrase within a piece of music may be described

as a group of notes in the score, identified by their ID, as a group of events within

performance markup, as a range in time in seconds (figure 2.16), or as a range

within an external source such as an audio file as shown in 2.17. Alternatively,

a range may also be specified by using the ID attributes of the first and last

objects as in figure 2.15.

<scope refs="note1 note2 note3 note4"/>

Figure 2.14: Scope referencing notes by IDREF list.

<scope>

<from refs="note1"/>

<to refs="note4"/>

</scope>

Figure 2.15: Scope referencing a range of notes using IDREFs.

2.6.7 Analytical Structures

Specific analytical elements have not been defined, although the scope element

can be used to describe complex relations between the score, performance events,

external sources or other structures within the analytical domain. Naturally,

hierarchy within an an analytical organisation can be expressed using the tra-

ditional XML parent & child object association. However, the scope element

described above allows relations which can’t be described using standard XML

51

<scope>

<from>

<atime>0.564</atime>

</from>

<to>

<atime>0.9</atime>

</to>

</scope>

Figure 2.16: Scope referencing a region in performance

using seconds.

<wavres

id="wav01"

file="performance.wav"

fps="44100"

channels="1" />
...<scope>

<from>

<wavref wavres="wav01"

channel="1"

frame="24872" />

</from>

<to>

<wavref wavres="wav01"

channel="1"

frame="39690" />

</to>

</scope>

Figure 2.17: Scope referencing a region in an external resource.

52

hierarchy such as overlapping hierarchies (by allowing several hierarchies to ref-

erence the same data).

Figure 2.18: Possible analytical hierarchy describing structure of a rondo.

These only provide a method to describe the relation between elements. The

description of the semantics of the relation should be defined in the specification

of the additional analytical structures. These specifications should describe the

entire analytical structure as it relates to the PML structure. For example a

markup of the high level structure of a rondo could be strictly defined as a se-

quence of couplets, each couplet contains a description of two sections by their

range in relative and absolute time and the key within that section. This hier-

archy should be contained within a single element which also contains metadata

to describe the process by which the data and structures were derived. For ex-

ample, should the analysis have been performed by hand, the metadata should

include the name of the editor. If the analyses were automatically generated,

the algorithm and the exact version number of the algorithm should be iden-

tified. Formally describing the hierarchy encourages the formation of standard

descriptions of musical structure and allows common tools to be developed. A

description of the algorithm ensures that the validity of the data can be checked

53

and allows different analysis methods to be compared. An example hierarchy

can be seen in Figure 2.18.

This hierarchy is a possible analytical structure representing the structure of

a rondo in the context of both the score and the performance. The scope of each

section is described in terms of relative time and absolute time. The absolute

time element atime contains both a value, and a reference to an element which

describes an external source. In this case, the source is an audio file, and the

element will describe the properties of the audio file, such as frames per second

and number of channels which not only allows the range to be selected from the

file, but allows the time to be converted to any other timebase. The exact score

and performance to which the analysis refers is indicated by IDREF attributes.

This is vital when the document contains information on multiple performances.

The basic structure here might be extended to include further descriptions such

as codas, codettas, or a distinction between variations of rondo form.

2.6.8 Tuning

PML contains support for the definition of a tuning system within a PML docu-

ment. The tuning description resides within the PML ‘performance’ element as

it provides the means to translate between notated pitch, frequency and MIDI

number. The tuning definition is taken from the development of the microtonal

extensions to the Rosegarden sequencer, part of the Microtonalism project dis-

cussed in Chapter 4.

The very compact description contains a list of intervals, which may be

denoted either in cents or integer ratios, an ordered set of lists of enharmonically

equivalent spellings (i.e. for each interval there exists a list of all corresponding

pitch spellings), and a set of references which allow pitch, frequency and MIDI

to be mapped.

• Root pitch: The root pitch determines the root of a non-equal tempered

scale i.e. the pitch which represents interval 0. This is only required for

non-equally tempered tunings systems.

• Reference Pitch: The reference pitch maps between pitch and frequency.

It contains one pitch and one frequency in Hertz. From this one reference,

the entire map of intervals and frequencies can be generated. The default

if no reference is specified is A4 = 440Hz.

• Midi Reference: The MIDI reference maps pitches to integer notation.

This contains one pitch and one integer value. This can be used to map

54

between MIDI values or any other integer pitch notation and frequency

or pitch. The default behaviour in the absence of any definition is to map

C3 to the number 60.

Figures 2.19 & 2.20 together demonstrate a description of a 19-tone equal

tempered tuning. Figure 2.20 defines the references explained above and the list

of intervals in the tuning system. The reference pitch A4 is set to 440Hz (this

is the default, and therefore need not be included). The midi reference note is

note number 69 and is set to represent A4. The root spelling is defined as C,

however because this is an equal-tempered tuning, this has no effect. In any

case, C is the default and therefore this definition may also be excluded. The

interval list defines from a reference pitch (and in this case the interval between

each is one 19th of an octave).

The tuning definition continues in figure 2.20. The spelling list defines equiv-

alent spellings for the tuning. In this tuning, C# and D♭ represent separate

intervals in the scale, while E# and F♭ represent the same interval between E

and F.

Obviously, in the conversion to pitch from either MIDI or frequency, the

exact enharmonic spelling cannot be obtained unless only one pitch spelling

corresponds to that interval within the system or an algorithm is used to derive

the spelling from intonation or harmonic context. In the absence of any defi-

nition of a tuning system, the default is to assume a 12 tone equal tempered

tuning system where A4 corresponds to 440Hz and C3 relates to integer pitch

60.

2.6.9 Separation of logical and analytical information

It is encouraged that analytical information should be separated from logical

information wherever possible. Although PML can theoretically be expanded

at any level within the document, it is recommended that analytical structures

be contained within the analysis element which is the direct child of the root

PML element.

However, the logical descriptions of performance events can rarely be consid-

ered ‘ground truth’ and are in fact the results of analyses themselves. Nonethe-

less, in the interests of practicality, a distinction must be made otherwise re-

search could never proceed. The fundamental logical objects will be the basis

of all analyses, whereas secondary analyses will be required less frequently and

are also more susceptible to alternative interpretations. An object can be said

to be a fundamental logical event if it conforms to the following two conditions:

55

<tuning name="19ET">

<refpitch>

<pitch note="A" octave"4"/>

<freq>440</freq>

</refpitch>

<midiref>

<pitch note="A" octave="4"/>

<midi>69</midi>

</midiref>

<rootpitch>

<spelling note="C"/>

</rootpitch>

<intervallist>

<interval>63.158</interval>

<interval>126.31</interval>

<interval>189.47</interval>

<interval>252.63</interval>
...

<interval>1200.00</interval>

</intervallist>
...

Figure 2.19: Example tuning definition in PML describing 19-tone equal tem-

pered tuning (continued in figure 2.20)

56

...

<spellinglist>

<enharmequiv>

<spelling note="C"/>

</enharmequiv>

<enharmequiv>

<spelling acc="Sharp" note="C"/>

</enharmequiv>

<enharmequiv>

<spelling acc="Flat" note="D"/>

</enharmequiv>

<enharmequiv>

<spelling note="D"/>

</enharmequiv>
...

<enharmequiv>

<spelling acc="Sharp" note="E"/>

<spelling acc="Flat" note="F"/>

</enharmequiv>
...

</spellinglist> </tuning>

Figure 2.20: Example tuning definition in PML describing 19-tone equal tem-

pered tuning continued from figure 2.19

57

Observability The object described is observable within the raw performance

data and can thus be described as something which exists within the time

space of one of the performance data streams.

Atomicity The object can be described as a single entity which is not the sum

of smaller subelements.

These fundamental descriptions are contained within the performance ele-

ment. The descriptions are further separated into those which describe sound

events, and those which describe gestural events. Sound events naturally de-

scribe audible events such as the sound of a guitar being plucked and contain

properties such as onset, duration & fundamental frequency. Gestural events

describe physical actions which accompany the performance. A gestural descrip-

tion of the previous example may include multiple events such as the depression

of the string which includes the onset, duration, fret position and finger used to

make the gesture. This would be accompanied by an element which describes

the plucking gesture with properties such as onset (but no duration), string

and finger. It should be noted, that although the sound event is the result of

multiple elements within the gestural domain, the audible artefact remains an

isolated entity. Even when the sound event is derived from gestural information

rather than audio data (e.g. the use of MIDI data to derive logical properties of

sound events) the event should be described as a fundamental logical object (the

means by which the sound events were derived should, in any case be described

in the metadata which accompanies the events).

Structure Repetition

Containing analysis structures within the structure of a performance can ex-

press the scope of the analysis for example location analysis information within

a performance part limits the scope of the analysis to a particular part within

a particular performance. It also makes it immediately apparent what data

should be included when compiling a document based on multiple performances

and their associated analyses. If analytical objects arranged according to per-

formance & performance part are represented within the analytical domain it

could lead to the unnecessary replication of a structure already defined as part

of the performance domain.

However, locating analyses within performance structures can also cause

repetition, especially when multiple performances are contained within a doc-

ument. There is no ‘one size fits all’ solution to this problem as long as a

58

strict hierarchical system is being used to represent a multiply hierarchical data

model.

Locating all analysis structures within the global analysis element reinforces

the separation between the score, performance and analytical domains. It eases

the selection of analytical data based on the properties of the analytical process

and the integration of various modules of analytical data. For these reasons it is

encouraged, though not enforced that analytical information be located within

a separate domain.

Extendibility & Compatibility

Several strategies have been employed in the design of the PML DTD to en-

sure that the representation is easily extendible while maintaining compatibility

and validity. Validity is not a requirement for an XML representation. Valida-

tion ensures that the structure and content conforms to some defined standard.

However, a document may be ‘well formed’ i.e. the document is legal and the

syntax fully conforms to the XML standard. There are two main advantages to

validation in the context of PML. Firstly, validation encourages the development

and use of standard representational structures. It is a long term goal of PML

that modular extensions be developed to represent different aspects of musical

performance. Secondly, validation identifies where content does not conform to

the specification. This includes checking the validity of ID/IDREF attributes.

These references are integral to PML’s multiply hierarchical structure. If PML

files are to be constructed using several separate files, it may become difficult

to maintain these relationships without the ability to highlight invalid relations

which can be performed using any validating XML parser.

The amalgamation of different representations can cause several problems if

validation is required. The structure of a document is defined by specifying the

contents of each element based on its tag name. Therefore each tag name can

be associated with only one content description. In the case where two DTD’s

are combined, this can cause naming conflicts. For example, PML contains an

‘offset’ element which describes the time at which a performance event ends.

However, MusicXML uses an element named ‘offset’ to describe the graphical

placement of certain symbols relative to a particular time. In this instance,

the specification of the type of data is the same: both elements contain only

parsed character data (PCDATA) although the actual meaning is completely

different). A validating parser will report an error because the offset element

has been declared twice. In the event that the processing continued, each offset

element would be validated against the declaration which occurred latest in the

59

DTD, therefore if the specification differed, the document would be invalid.

Although the development of XML Namespaces began before the completion

of XML1.0 [106], it is widely considered that namespaces have been implemented

very poorly, and their inclusion is certainly controversial [99]. Namespaces were

introduced to resolve naming conflicts between elements of different represen-

tations. Naming conflicts caused problems not only in validation, but had the

possibility to cause confusion in applications which may not know how to process

information contained within an element if it is not clear to which representa-

tional scheme the element belongs.

However, many representations (including at the time of writing MusicXML

[28], Wedelmusic[109], MEI[79]) have no support for namespaces. This may

be simply because namespaces are considered to be poorly implemented. One

example of this is the difficulty with which namespaces can be used within a

system which validates its documents using DTDs. In fact, because of this, it

is a common view that the benefits of namespaces and document validation are

often mutually exclusive. The two examples in 2.21(a) show how namespaces

are used to distinguish between representations using a simplified view of the

first structural level of PML. The first example contains no use of namespaces.

The second example 2.21(b) shows the use of the namespace prefix ‘pml’ to

distinguish between elements which are a part of PML, and those which belong

to the externally defined score cluster.

<pml>

<score/>

<performance/>

</pml>

(a) Without a namespace prefix.

<pml:pml>

<score/>

<pml:performance/>

</pml:pml>

(b) With namespace prefix ‘pml’. (The names-

pace declaration is omitted for conciseness)

Figure 2.21: Demonstrating XML namespace prefixes.

Within a DTD, there is no link between the namespace prefix and the Uni-

form Resource Identifier (URI). Therefore validating parsers treat a namespace

prefix as a part of the element tag name. Consequently, if the DTD does not

include the exact prefix used in the XML document within the tag name in the

DTD, the document will not be valid1. The majority, if not all XML score rep-

resentations make no use of namespaces within their DTDs. Therefore names-

paces cannot be used to identify elements within the score structure. The only

1This is only true for DTD-based validation, the various schema based language descrip-

tions have a more sophisticated handling of namespaces

60

solution is to adopt the scheme used in 2.21(b) in which the score representa-

tion belongs to no namespace. In this instance the namespace of PML (and

any other representation apart from the score representation) must be specified

explicitly for every element which belongs to the PML DTD.

Namespaces can also cause conflicts where two representations use the same

prefix. Supposing another representation called Percussion Markup Language

was to be integrated with PML. For example, ‘Procedural Markup Language’

[75] describes multimedia content and presentation information and shares the

same abbreviated name as PML. It is possible that both representations may

have defined the same namespace prefix. Therefore, if the two representations

are to be integrated into one valid document, it must be possible to change the

prefix used for PML elements.

This can be achieved by defining the namespace prefix in the DTD within a

parameter entity. Parameter entities are used to define reusable content within

DTDs. They associate text which will be substituted wherever the entity is

used within the DTD. The text can contain lists or fragments of declarations.

They can also contain other parameter entities which will be expanded by the

parser. This provides the ability to create reusable declarations, or construct

a hierarchy of inheritance within the content specification. Parameter entities

can also be redefined allowing modification to the contents of an external DTD

which has been included in another. Below is the declaration of the default

namespace prefix within PML.

<!ENTITY % nsp ’pml’ >

This can be combined with an element tag within another parameter entity

as below to create the tag <pml:analysis>. Combining the prefix and the tag

in this way further litters the DTD, but this is necessary to avoid the addition

white space around the substituted text of the prefix entity. The resulting

parameter entity is then used to reference the element within the specification.

The next line shows the declaration of the pml element and its contents.

<!ENTITY %analysis %nsp;:analysis>

<!ELEMENT %pml;

(%score; , %performance;* , %analysis;?) >

61

The default prefix can then be changed by including the original PML DTD

within another DTD after redeclaring the namespace prefix entity. The simple

example below renames the prefix to ’perfml’.

<!ENTITY % nsp ’perfml’ >

<!ENTITY % pmldtd

SYSTEM ’http://n-ism.org/pml/pml.dtd’ > %pmldtd;

Parameter entities are also used to allow the content of PML elements to be

extended while maintaining a fully valid DTD. The specification for DTD’s per-

mits extension of element content through the use of the ANY content model.

This allows the structure of the element to contain any combination of elements

which have already been declared, in any order at this point. Extra elements

can be declared in an external document which references the DTD in a similar

method used to redeclare the namespace prefix above. Although this provides a

simple and flexible method of extending the DTD, it allows no formal descrip-

tion of the structure of the extensions. An alternative is to include an empty

parameter entity within the content specification of each element. The empty

parameter entity makes no change to the content specification of the element.

Therefore elements cannot be added without modification to the DTD, and the

structure of the extension can be formally specified. This constraint again re-

inforces the use of standard extensions, although the parameter entity could

still be redeclared to contain the ANY content model until such time as the

extensions have been standardised.

MEI uses parameter entities to define the tag names of elements within the

representation. The intended purpose of this is not clear from the documenta-

tion included within the DTD. Although, it does allow the tag name of each

element to be changed individually. Changing the name of an individual element

would solve a naming conflict if MEI were to be used with another representa-

tion, although changing individual elements causes inconsistent changes which

would eventually result in many variations of MEI with modifications which, al-

though minor, would cause invalidity and incompatibility with processors. It is

possible to add a namespace prefix across the entire structure however this would

require a redeclaration of every tag name within the representation. MEIs use of

parameter entities to describe reusable content descriptions permits extension

through redeclaration, however, entities are only used for common content de-

scriptions therefore individual elements cannot be modified. MusicXML makes

very limited use of parameter entities and only as reusable content models.

These restrictions place a slight burden on developers. The cost of ensuring

namespaces are explicitly specified is insignificant compared to the power of

62

identifying invalid ID/IDREFS through validation. The restrictions placed on

extension enforce modification to the DTD to allow a valid document, but this

encourages an examination of the document structure before modifications are

made. It also promotes the use of formalised structures which can be compared,

shared and used to promote the development of community wide standards.

2.6.10 PML: Current implementation and Software

The current implementation of PML which is in used in the Centre for Music

Technology, University of Glasgow uses MusicXML to represent musical score

information. The DTD of the current PML implementation includes the Mu-

sicXML DTD as an external entity. This allows the implementation to be

completely formalised, and permits validation of documents.

There are many aspects of MusicXML which, although adequate for the

interchange of musical scores, are impractical for the representation of a musical

score for analysis. This theses does not claim that MusicXML is an optimal

solution even for the application for which it was designed (the interchange

of graphical musical scores), and certainly does not claim that it is adequate

for the purposes of analysis. It is however, currently the optimal solution in a

practical sense. XML is a human readable format, but this is for the benefit of

the developer, not to the user. Verbosity helps identify the structure of XML

documents but does not necessarily make it easier to edit the data by hand,

especially in data-centric XML documents. Therefore, applications must be

available to facilitate the creation and edition of score files. MusicXML has

considerably larger list of compatible applications than any other XML-based

score format (including some open-source applications [63, 81]). There is also

an open-source library for the manipulation of MusicXML documents, and an

on-line repository for MusicXML scores. The software library can be used in

the development of applications which support MusicXML-based PML.

Several tools have been developed to support the use of PML within projects

based at the Centre for Music Technology (CMT), University of Glasgow and

n-ISM [61]. These include the development of an API for the creation and

manipulation of PML documents which has been developed along with all other

tools.

The most significant tool is the polyphonic score-performance matching al-

gorithm described in Section 3. This matcher achieves very accurate and robust

matching by using score information to dynamically adapt the matching pro-

cess. This matcher can only operate with a representation which is capable of

representing the score and performance simultaneously. Similarly, such a rep-

63

resentation is only of use if it contains the event level correspondence between

score and performance events which this type of matcher provides. Other tools

include:

mxml2pml is a tool for the validation & preparation of MusicXML files. e.g.

ensuring that notes within MusicXML all contain ID attributes.

MIDI2pml creates performance events based on the information MIDI files.

aud2pml, this tool allows the manual markup of performance events. Events

can be labelled using the Audacity audio editor [3] and these labels used

to create events within a performance part in a PML file.

pmlPitchAnal was developed to examine pitch trajectories of performance

events. It uses the pitch tracking algorithms of the Praat speech analysis

program [7] to extract and visualise the trajectories of performance events.

It was developed for the analysis of pitch trajectories in sprechstimme.

Additionally, a system has been developed for presenting analytical informa-

tion as an annotation to a musical score. Information such as deviation from the

notated pitch can be displayed alongside the score, providing user-friendly feed-

back regarding aspects of a performance. In the example in Figure 2.22, the bars

represent a comparison of note duration between two different performances of

the same piece.

The remainder of this document will present research which has been con-

ducted using PML. The following chapter describes the polyphonic matching

algorithm which has been developed to create the relationships between score

and performance necessary of such a representation. Finally a description of

two ongoing projects which use PML for the analysis of pitch accuracy and in-

tonation. The first project, Microtonalism [31], addresses issues in the rehearsal

of microtonal music. In this project, PML has been used to assess the pitch ac-

curacy of a microtonal performance. In the final project which will be presented

here, PML has been used in the investigation of intonation in the performance

of Pierrot Lunaire.

Other projects include the multi-modal performance analysis of the finale in

Chopin’s B♭ minor Sonata opus 35,. which includes the analysis of audio, video

tracking and physical gestures[45]. Also, PML is being used as the external

format for at least one large-scale database of musical performances.

64

Figure 2.22: A musical score annotated with analytical information derived

using PML. The bars display gestural information: the duration of key presses

in a performance of Bach’s Invention No. 1.

2.7 Conclusion

There are many issues associated with the representation of musical perfor-

mance. In light of these issues, the suitability of various methodologies & tech-

nologies have been discussed and their suitability towards the representation of

musical performance have been assessed in chapter 2. This has lead to the for-

mation of a specification for such a representation. This chapter has presented

an implementation of this specification

The current implementation currently fulfils all the criteria set forth in sec-

tion 2.5.6. However, there are areas mentioned in the criteria which have con-

siderable room for improvement.

The representation would benefit from a more suitable score representation.

For example, a truly vertical structure which represents information in concur-

rent slices of time would be beneficial for harmonic analysis. However, the PML

65

specification can be used to extend any XML score representation. MusicXML

is merely the most practical representation to use at the current time. For

example, the onset time of notational objects in MusicXML is implicit in the

order of elements within the score. Including an element to explicitly declare

the relative time means the score will no longer validate against the standard

MusicXML DTD. This can be overcome in the API, however this is not ideal.

When a suitable alternative representation and the tools to manipulate it be-

come available, PML can be used as an extension for performance analysis using

that alternative. The representation of performance and analytical information

should not change, and only the code within analytical algorithms which ac-

cesses the score domain needs to be altered to use another representation. In

this light, application authors should attempt to refrain from using structures or

information which is specific to MusicXML, (or any other score representation)

hence the independent definition of relative time within PML. Thus transferring

applications to other incarnations of PML which utilise a different score repre-

sentation will only require changing the code which accesses score information.

Consequently, the analytical representations and algorithms will remain valid.

The specification of analytical structures and gestural information is cur-

rently lacking within the representation. However, the academic community

has still to decide exactly how this information should be represented [46]. Only

once performance issues have been thoroughly explored can suitable generic rep-

resentations be created for these areas.

Finally, the representation will benefit from the further development of ap-

plications and utilities to populate and manipulate the representation. As stated

earlier, a lack of adequate tools will prevent a representation from gaining sup-

port. The use of MusicXML as the score representation means that a host of

existing applications can be used in the manipulation of scores such as:

• NoteEdit [63], an open source notation editor.

• xml2ly [119], a MusicXML to Lilypond conversion tool which can produce

beautifully typeset scores.

• Rosegarden [81], an open source MIDI sequencer with notational capabil-

ities. This has also been modified as part of a project discussed later in

Chapter 4 to support microtonal capabilities.

66

Chapter 3

Score-Performance

Matching

The first section will explain the difference between different types of matchers

in the musical domain and musical applications in which they are employed.

Following on from this, the technologies which are used to implement the ma-

jority of matching algorithms will be examined discussing existing algorithms

which utilise these technologies.

The second section will examine one of these technologies, Dynamic Pro-

gramming (DP). There are many subtle differences between the ways in which

this technology has been implemented in musical matching algorithms. Each

potential variable will be discussed including the effect these have on the oper-

ation & output of the matcher in the context of musical applications.

The third section discusses the use of DP in the context of polyphonic match-

ing and describes a novel method of applying DP to this task. A brief section

discussing how performance of matchers can be evaluated follows.

The fifth section provides novel solutions to some of the deficiencies of the

DP method. The affect these changes have on the accuracy of the matcher first

presented in the previous chapter are examined incrementally.

Finally, the success of the improvements will be discussed, and suggestions

made for continuing the development of such an algorithm.

3.1 What is score matching?

Score performance matching is part of a family of closely related tasks which

aim to find temporal correlations between two different musical objects. Each

67

task within the field can be described by the type of data on which it operates

and the type of correlations which are identified between the two objects.

The objects of analysis may consist of different domains of musical informa-

tion. The data may be symbolic musical information i.e. a computer represen-

tation of a musical score which represents time and pitch as relative values. The

information relate to the performance such as logical performance information

described in terms of onset, duration and frequency or pitch, for example, infor-

mation derived from MIDI information [21]. Some systems match a performance

in using features extracted from audio such as spectral analyses, fundamental

frequency [42, 66, 12] or even raw audio data itself [76].

The correlation between objects can consist of event-level correspondence,

or temporal correlation. Event-level correspondence requires that each object

to consist of a list of events. Each event within an object can be shown to

correspond to an event or events in the other object. A corresponding event

need not be representative of the event to which it corresponds. A correspon-

dence between two unrepresentative objects may indicate a deviation from the

reference object e.g. a performance error, otherwise known as a substitution or,

a ‘wrong’ note.

Temporal correlation derives a map between the time-lines of two objects.

This may be between objects with absolute or symbolic information. It is possi-

ble to derive a temporal correlation from event-level correspondence. However,

whereas objects may occur simultaneously in relative time, in absolute time,

performed events do not occur at exactly the same time. Resolving the onsets

of a group of notes into a single point in time may be achieved in a number of

ways by using for example:

• The first or last onset in the cluster

• The median of all onsets

• The mean of each of the onset

• The onsets of surrounding notes or note clusters

The chosen method may depend on the style of the performer, the style of the

piece, or the musical context in which the notes appear.

The term ‘alignment’ has been used in different circumstances to refer to

either temporal correlation or event level correspondence. For the purposes

of this thesis, event-level correspondence will be referred to as matching, and

temporal correspondence will be termed alignment.

68

3.1.1 Types of matchers

Score Matching

Score matching aims to analyse two symbolic musical scores identifying corre-

spondences at the event level. The most active application of this technology

is in the field of music information retrieval. Matching entire musical scores

can help identify differences between various editions of the same piece. The

process of matching score excerpts can be used for many tasks relating to music

retrieval. A complete piece of music can be retrieved from large databases based

on a small search query [62]. Thematic, harmonic or rhythmic content can be

found within individual pieces. To find and rate inexact matches, a measure of

distance or similarity is required such as Levenstein Distance [51].

Many of the systems which perform the tasks described below reduce their

task to that of score matching by transcribing performance or audio data to

symbolic musical data.

Score-Performance Matching

Score-performance matching is the process of identifying correspondences be-

tween a musical score and a performed instance of that score at the event level.

This detail of correspondence is essential in the analysis of performance issues

such as the analysis of performance errors [103, 50], elements of musical expres-

sion (e.g. expressive tempo, timing, dynamics etc) [37], performance traditions

[45], and the identification or analysis of a performer’s individual style [112]. In

these applications, it is necessary to analyse artefacts within the performance

in the musical context in which they occur. For reasons to be discussed in Sec-

tion 1.2 the performance information itself is not sufficient for these tasks, and

analysis must be performed against the score. This type of correspondence can

also provide a measure of distance or similarity between performed and symbolic

music which is useful for identifying the score which corresponds to a particular

performance (such as the ‘query by humming’ task which searches a musical

database for a likely match to a user provided audio sample [57]).

In 1993, Large [50] presented an algorithm for matching scores and perfor-

mances using dynamic programming. This was used to investigate cognitive

planning by investigating the musical context of errors in piano performances

[68]. Although Large briefly discusses polyphonic score matching, the matcher

presented deals only with monophonic matching. Hoshishiba’s system [40] in-

cluded post-processing of results to improve reliability in the context of ex-

pressive music including ornamentation (performed notes which do not appear

69

individually in the score, but each correspond to the same notated event) and ex-

treme expressive timing. Bolton’s score-performance matcher [8] also developed

a matching algorithm which was designed for the analysis of musical gesture

and the adequate processing of ornamentation.

Dannenberg presented a matcher based on Dynamic Programming (DP)

capable of matching polyphonic scores and performances (though the system was

applied to score following rather than matching). Several algorithms perform

score performance matching using Hidden Markov Models (HMM) (discussed

in Section 3.1.2). The first systems matched a monophonic score to raw audio

signals [76] and to frames of feature vectors derived from the raw audio signal

[12].

Score Performance Alignment

Score following/Score-Performance alignment aims to map the relative time of

a musical score directly to the absolute time of a performed instance of the

score. In score following applications, this process must be performed in real-

time, whilst a musical score is being performed. This places restrictions on the

operation of such algorithms. In addition to estimating correlations between the

absolute timeline of the performance and the relative time of the score, it must

also decide when to report correspondences. Obviously a real-time algorithm

does not have information on future performance events, so the algorithm should

be able to elegantly adjust its calculated position when performance information

causes a significant change in the current position.

Real-time score following can be used to perform tasks such as page turning,

automatic computer accompaniment systems (of which there are legion) or syn-

chronising time-based media. Off-line score performance alignment can be used

for content-based indexing of audio information and synchronising time-based

media.

Score following was pioneered by Vercoe [104] and Puckette [74]. In 1997,

Grubb [30] presented a stochastic method which modelled the performance posi-

tion as a probability distribution function based on the performer’s source posi-

tion (the last note performed), destination position (expected performed note),

the estimated distance (relative time since source position) and the current ob-

servation (the current performed note). Later stochastic methods used Hidden

Markov Models (HMM) to follow a score using either MIDI performance data

[21] or audio features [66]. Dannenberg applied Dynamic Programming (DP)

to score following in 1984 [17], and developed a polyphonic, DP based score fol-

lower in 1985 [6] (Dynamic Programming will be discussed further in Sections

70

3.1.2 & 3.2.1). Several algorithms use DP techniques to align polyphonic scores

to audio features. Dannenberg developed a system which matched scores to

audio [42] by rendering a score to audio using a synthesiser. Matching was then

performed on the two audio streams. A modified version of this algorithm was

applied to the query-by-humming task [60].

Performance alignment

Performance alignment attempts to align relative times between two different

performances of the same piece. This can be used for content-based index-

ing of audio files [113]. Dannenberg [42] presented a system which is used for

score-performance alignment, but the alignment is achieved by synthesising an

audio representation of the score and performing audio-to-audio alignment with

the performance. Bora [102] developed the only system known to the author

which is designed for performance to performance matching (event-level cor-

respondence between performance data). It analyses a performance through

comparison with an ‘expert’ performance, examining differences in tempo, dy-

namics etc. It is intended for use as a training aid where students can gain

objective feedback on the differences between their performance and the per-

formance of the teacher. However, in theory, Dannenberg’s score-performance

matcher which renders scores to audio may be suited to performance alignment

[42, 60] (though not at the event-level).

3.1.2 Underlying Technologies

Many algorithms have been developed for matching and aligning musical ob-

jects. The methodologies broadly fall into three categories according to the

techniques used to find correspondence: Lookahead, Hidden Markov Models

and Dynamic Programming (sometimes referred to as Dynamic Time Warping).

Each of these techniques will be briefly examined in the context of matching or

aligning scores and performances.

Lookahead

The simplest matchers, conceptually, use a deterministic, ‘lookahead’ approach

[102, 73, 32, 37]

These algorithms iterate through the reference and subject, analysing at

most a small window of each sequence. These matchers have a ‘current position’

which indicates a ‘correct’ correspondence between the reference and subject

sequences. Successive correspondences are chosen by analysing the next item in

71

the subject against unmatched elements in the reference sequence. In real-time

score following applications, the limited region of analysis is itself not an issue as

future events are unknown. However, using a limited region of analysis (rather

than considering all future correspondences or correspondence paths) means

that these methods are unable to change previous correspondences. Because of

this, once a series of incorrect correspondences have been made it is possible for

these algorithms to lose track of the performance irreversibly. This ‘pathological

error’ is caused when errors in the performance result in a performance position

which is beyond the window of analysis. This can happen quite easily in passages

which feature many repeated notes, or groups of notes. For this reason, Puckette

[74] recommends that someone should be ready to intervene in case the real-time

score follower loses synchronisation with the performance.

Hidden Markov Models

A Markov Model is a stochastic, finite state automaton. A Markov model con-

sists of a set of finite states, transition probabilities (which describe the prob-

ability of changing from one state to another), a sequence of finite observable

emissions, and emission probabilities (which describe the probability of observ-

ing an emission given the current state).

A Hidden Markov Model is so called because it has an unknown state se-

quence, but has known state transition probabilities, observable outputs, and

emission probabilities. Thus, the challenge is to derive the most probable state

sequence which could emit the observed output.

In the case of score matching, the performance data provides the observable

output emitted by the unknown state sequence, and this state sequence rep-

resents the sequence of score notes which most likely correspond to each part

of the performance. The probabilities of the model are often derived through

unsupervised training on a set of data with known observable output and state

sequences. Transition probabilities can be derived straight from the score [69],

while emission probabilities are usually derived through an iterative training

process. While this training process can be seen as a disadvantage, it does pro-

vide the opportunity to tune individual models towards particular instruments.

In 1999 two HMM based matchers were presented. Cano et al [12] used a

vector of six features extracted from the acoustic signal as observable emissions

(energy, delta energy, zero crossing, fundamental frequency, delta fundamental

frequency and fundamental frequency error) in a monophonic score-performance

matcher. Raphael [76] also presented a monophonic matcher which used analysis

of acoustic data. This matcher was later used in the development of a polyphonic

72

score follower [66]. This score follower used a two-layer HMM model in which

a higher state sequence modelled score events such as notes, rests, trills etc.

and possible performance errors. This model was adopted in an algorithm by

Schwarz et al [21] in which MIDI data was used as input rather than acoustic

data.

Dynamic Time Warping

Dynamic Time Warping (DTW) is a method which allows the optimal cor-

respondence between two sequences to be calculated. It provides an efficient

method for the identification of temporal correspondence between two sequences

and quantifies the similarity or difference which exists between the two se-

quences. In the context of score matching this term has been used inter-

changeably with Dynamic Programming (DP) [48] which is a method of solving

problems which exhibit optimal substructure; i.e. the solution to the global

problem can be derived from the solutions of the individual sub-problems. DP

provides an efficient algorithm for performing DTW.

DTW can be applied to both symbolic sequences and sequences of audio

features. It was first used in the musical context by Dannenberg [17]. Dannen-

berg’s system performed real-time score-performance following by matching a

monophonic score to symbolic performance data. Dannenberg later discussed

two possible methods of using DTW to match polyphonic scores [6], though

only one of these methods was implemented. It used a grid of values just like

the previous DTW method, but the score was analysed as a sequence of note

clusters (notes which share a common start time) while the performance re-

mained a sequence of individual events. Thus each object in the score sequence

could be matched to several notes in the performance sequence. Each value in

the grid contained not only the optimal correspondence of the subsequence, but

also a list of which score notes in the corresponding cluster have already been

matched to performance notes.

Dannenberg’s second method grouped both score and performance events

into clusters. This allowed traditional DP algorithms to be used to match

individual score and performance clusters to each other. However, this system

was not actually implemented until Hoshishiba presented a polyphonic matching

algorithm in 1996 [101].

DTW has also been used to perform alignment between audio data. Dan-

nenberg [42, 60] performed DTW on a ‘chromagram’ representation of audio

information. A chromagram is a sequence of vectors, each of which represents

the spectral energy corresponding to each of the 12 equally-tempered intervals

73

C C#, D The score is rendered to audio using a MIDI synthesiser which

is also converted into a chromagram. Thus the alignment of score and audio is

transformed into an audio-audio alignment task. Dixon [113] presented a simi-

lar system which matches polyphonic audio using a DTW comparison based on

Fourier analyses.

3.2 Using Dynamic Programming to Match Scores

and Performances

The remainder of this chapter will focus solely on the matching of score and

performance data using dynamic programming (DP) techniques. The differ-

ent approaches and the effect these approaches have in the context of score-

performance matching will be discussed. The main flaws in DP matching will

be examined, and novel solutions to these problems will be presented and tested

on real performance data.

3.2.1 The DP Method

In the symbolic comparison of musical scores or performances using DP, the

score and performance is reduced to a sequence of ordered pitches. Thus all

other information such as onset, duration, dynamics etc are discarded. The

consequences of ignoring temporal information will be discussed in section 3.2.3,

and possible solutions discussed in Section 3.4.

As explained in Section 3.1.2, DP is a method which finds the optimal so-

lution to a problem by breaking it up into a series of subproblems. As opposed

to the ‘brute force’ method which analyses every possible combination of global

correspondence individually, DP methods find the optimal match for a pair of

sequences by analysing the optimal match of subsequences. A correspondence

pair contains an element from each sequence (in this instance, a note from the

score and a note from the performance). All possible correspondence pairs are

represented in a grid where each column represents a note in the sequence of

score notes, and each row represents a note in the performance sequence. The

grid is populated using an iterative algorithm which assigns each cell a ‘score’

or ‘cost’. This value represents the quality of the optimal subsequence from

that correspondence pair to the correspondence pair at the end of the grid. The

global optimal correspondence is found by finding a path through this grid based

on these values. The method is is described step-by-step below.

1. The score is represented as a sequence of pitches: S(x) with length xmax.

74

The performance is represented as a sequence of pitches: P (y) of length

ymax.

2. A grid of size xmax×ymax is created where the position G(x, y) represents

the possible correspondence pair of S(x) and P (y).

3. For every correspondence pair, there is an optimal ‘path’ or sequence of

correspondence pairs from G(x, y) to G(xmax, ymax) which will identify the

optimal match between the two subsequences S(x → xmax) and P (y →

pmax).

4. From the position G(x, y) there are 4 possible operations:

(a) A correct match

(b) A deletion (a note in the score which is missing from the performance)

(c) An insertion (an extra note in the performance which does not cor-

respond to a note in the score

(d) A wrong match (the performance note corresponds to a note which

is of a different pitch)

5. Correct or wrong outcomes result in a movement in the path to the cor-

respondence pair G(x + 1, y + 1).

6. A missing outcome leads to the pair G(x + 1, y).

7. An extra outcome leads to the pair G(x, y + 1).

8. Thus the optimal movement at correspondence pair G(x, y) can be derived

by evaluating the relationship between S(x) and P (y). and the optimal

correspondence of the possible sub-sequences:

• G(x + 1, y) → G(xmax, ymax)

• G(x, y + 1) → G(xmax, ymax)

• G(x + 1, y + 1) → G(xmax, ymax)

9. The quality of the optimal subsequence from G(x, y) to G(xmax, ymax) is

derived from the optimal movement and the quality of the grid position

to which the movement directs.

10. The grid is populated iteratively with these values.

11. The global path is calculated by traversing the grid based on the values

based on the movements described above.

75

There are two methods for measuring the quality of the correspondence

between two sequences: cost and similarity.

1. The cost method attempts to minimise the difference between the two se-

quences and assigns a cost for each of the three error conditions: insertion

(coste), deletion (costm), substitution (costxy). In the monophonic exam-

ples investigated in this theses, the value of costxy is 0 when the pairs

match and 1 when the pairs do not match.

2. The similarity method attempts to maximise the similarity between two

sequences by assigning a value of similarity for each possible match pair

(sim). In the monophonic examples investigated in this thesis, the sim-

ilarity value (sim) is 1 when the two pairs are equal and 0 when they

differ.

The optimal correspondence sequence is therefore one which accumulates the

smallest cost or the maximum score in the shortest path. Using rule number 8

above, the grid can be populated iteratively using the following algorithms for

similarity fig. 3.1(a) and cost fig. 3.1(b).

G(x, y) = max















G(x + 1, y + 1) + sim

G(x, y + 1)

G(x + 1, y)
(a) Similarity-based method.

G(x, y) = min















G(x + 1, y + 1) + costxy

G(x, y + 1) + costm

G(x + 1, y) + coste
(b) Cost-based method.

Figure 3.1: Methods of populating a grid of correspondence pairs

The cost algorithm assigns a cost to each transition which results in an in-

correct correspondence. In this example, each error carries equal cost, however,

in other implementations this may not be the case. Thus each cell represents

the minimum possible error in an analysis of the subsequence from this cell

onwards.

The similarity algorithm assigns a score to each transition resulting in a cor-

rect match. Each correct correspondence increments the value of the previous

cell, thus each cell contains a value of the greatest number of possible corre-

spondences. The rules in Figure 3.3 are then used to choose a path through the

grid which corresponds to the optimum sequence of correspondence pairs. The

76

rules are based on the values of 3 cells surrounding the cell being evaluated.

Figure 3.2 illustrates the location of the cells when populating a grid in reverse.

The cell containing ’X’ represents the cell being evaluated.

(a) Location of cells when

populating a grid forwards.

(b) Location of cells when

populating a grid in reverse.

Figure 3.2: Explanation of the locations of cells as described in the rules for

grid population in figure 3.3

The following section provides a demonstration of the grids used in evaluat-

ing correspondences. It also explains the notations used in grids and sequences

which describe correspondences. Figures 3.6 & 3.7 show grids populated using

the similarity and cost methods respectively.

3.2.2 Explanation of graphs and notations used in the de-

scription of correspondences

The matching process is evaluated by inspecting the grids used in the DP pro-

cess. Figures 3.6 & 3.7 show grids populated using the similarity and cost

methods respectively.

The arrows through the grid indicate the optimum path through each grid

and therefore the final correspondence. The cells which are traversed in the

77

P (x) = S(y) Correct

(b < a) ∧ (b < c) Wrong

(a < b) ∧ (a < c) Missing

(c < a) ∧ (c < b) Extra

else Wrong
(a) Similarity-based rules

P (x) = S(y) Correct

(a = b) ∧ (a = c) Wrong

(a > b) ∧ (a > c) Missing

(c < a) ∧ (c < b) Extra
(b) Cost-based rules

Figure 3.3: Rules for traversing the optimal path through the grid. The location

of cells (a,b&c) is described in figure 3.2

optimal path are coloured according to the movement, and thus the type of

correspondence which is associated with the correspondence pair.

• Where a cell represents a correct correspondence, the cell value

is coloured green. This represents a diagonal movement through

the grid where the correspondence pair are equal.

• A red cell represents an incorrect correspondence. This corre-

sponds to a diagonal grid movement when the correspondence

pair are unequal.

• A blue cell represents either an insertion or a deletion.

– A horizontal movement advances one element in the score

without advancing through the performance. Therefore

this represents a score note which is missing from the per-

formance

– A vertical movement advances one element in the perfor-

mance without advancing through the score. This repre-

sents an extra note in the performance.

A correspondence sequence can be described using a sequence of score and

performance values with symbols to represent incorrect correspondences. Fig-

ure 3.4 describes the notation used in the description of correspondence se-

quences. The sequence in figure 3.5 represents the correspondence in the grids

in figures 3.6 & 3.7. This correspondence contains 3 errors: the B in the score

is missing from the performance, the D is mistaken for another note in the per-

formance, and an extra F has been added to the performance.

78

Symbol Significance

⊕ Extra note in performance

⊖ Note missing from performance

⊗ Substitution, score note is matched to a wrong note in the performance

Figure 3.4: Legend describing symbol used in sequences which represent score-

performance correspondences

Score : A B C D E F ⊕ G

Performance : A ⊖ C ⊗ E F F G

Figure 3.5: Sequence describing correspondences in 3.6 & 3.7

Figure 3.6: DTW grid populated and evaluated using the similarity algorithms.

79

Figure 3.7: DTW grid populated and evaluated using the cost algorithms.

3.2.3 Ambiguities in the output of DTW

There are certain situation in which the DP method is incapable of determining

the exact combination of errors accurately. These ambiguous situations can all

be traced to the reduction of temporal information to a sequence of ordered

events. Without this information, a matcher must make an arbitrary decision

on how to evaluate these situations. The rules and direction of path evaluation

will determine the output of the matcher, and the output of the matcher will at

least, be consistent. However, as will be discussed throughout the chapter, in

certain cases it is desirable for a matcher to evaluate these in a particular way

to suit the particular implementation.

Score : A B B C

Performance : A B ⊖ C

Score : A B ⊕ C

Performance : A B B C

Figure 3.8: Repeated notes causing unreliable correspondences in DP matching

In the first example in figure 3.8, two consecutive score notes have the same

pitch. Only one of these notes appears in the performance. Without temporal

information such as onset time or duration, it is impossible to discern to which

score note (if any) this performance note corresponds. Without this information,

80

the correspondence made by a DP matcher will depend on the priority of rules

within the path evaluation algorithm, and the direction in which the grid is

populated (and therefore the path is evaluated). The reverse applies to the

second example above where one score note may match any of two performance

notes.

Score : A ⊕ B C

Performance A B ⊗ C
(a) Sequence representing correct corre-

spondence

Score : A B ⊕ C

Performance : A B D C
(b) Correspondence as evaluated by DP

matching

Figure 3.9: Technical error resulting in incorrect evaluation

Figure 3.9 describes a technical error followed by a substitution. The per-

former accidentally played a B at the wrong time, and played a D in place of the

B in the score). The DP method will always create a correspondence between

the B in the score and the B in the performance because this match will opti-

mise the number of matches and the edit distance. Causing the correspondence

shown below.

However, by using temporal information, it is possible to determine that the

performed B cannot be matched to the score note because either the duration

is too short, or, more likely, the onset time is incorrect. The onset time of

the performed note D should show that there is a correspondence between this

performed note and the B in the score.

The third example, figure 3.10, demonstrates a pair of sequences which has

three possible interpretations:

1. The performance contains two incorrect notes (The notes have been played

in the wrong order).

2. The performance contains one insertion and one deletion, the B is per-

formed correctly.

3. The performance contains one insertion and one deletion, the C is per-

formed correctly.

Each of these outcomes is possible, and again, temporal information is re-

quired to determine which possible outcome is correct in each particular in-

81

Score : A B C D

Performance : A C B D

1.
A B C D

A ⊗ ⊗ D

2.
A ⊕ B C D

A C B ⊖ D

3.
A B C ⊕ D

A ⊖ C B D

Figure 3.10: Example of ambiguous situations which cannot be resolved using

DP-based matching.

stance. Which option a matcher will choose depends upon the path evaluation

algorithm (the direction of evaluation, and the rules for grid traversal, discussed

in Section 3.2.5), and whether the population and evaluation algorithms are

based on similarity or cost (discussed in Section 3.2.4).

The final interpretation is only applicable in the context of polyphonic

matching. In polyphonic music, it is possible that these notes should both

be matched to the correct notes in the score. For example, in a piano perfor-

mance with complex rhythm it is highly possible that two notes which appear

in different hands may occur out of sequence in the performance due to extreme

expressive timing. DP matching is incapable of creating out-of-sequence corre-

spondences, and will always choose one of the aforementioned interpretations.

3.2.4 Cost vs Similarity

The first solution to the problem presented in Figure 3.10 is a result of giving

greater priority to the optimisation of edit distance than is given to the opti-

misation of the number of matches. When priority is given to maximising the

number of matches, the outcome of the matching process will be either the sec-

ond or third interpretation. Bolton [8] believes that since it is assumed that the

performer attempts to remain faithful to the score, it is correct to identify er-

rors in a fashion which gives ‘benefit of doubt’ to the performer i.e. the method

places a priority on maximising the number of correct matches rather than min-

imising errors. Perhaps this decision should be influenced by the quality of the

performer. Neither method will prove accurate in all cases.

82

3.2.5 Direction of path evaluation

Thus far, all examples of DP have involved evaluating the path from G(0, 0) to

G(xmax, ymax) and populating grid in reverse. It is equally possible to populate

the grid forwards, and evaluate the path in reverse. A forward grid population

routine makes it possible to extend the grid as new elements are added. If a

new note is appended to the performance, only one more row of values needs

to be calculated. Whereas, if the grid is populated in reverse, the whole grid

must be recalculated whenever a new note is appended. Forward population has

obvious benefits in the application of DTW to real-time score-following where

the dimensions of the grid will change with each newly performed note.

(a) Forward path evaluation (b) Reverse path evaluation

Figure 3.11: Effect of forward and reverse path evaluation using the same rules

The direction of path evaluation also has a consequence on the output of the

matcher. Using the same rules for population and grid traversal, forward and

backward path evaluation will provide different correspondences in ambiguous

situations. Figure 3.11 shows the grid and optimum paths for the same se-

quences using forward and reverse path evaluation. Although the path itself

looks identical, the correspondences produced are different (a correct corre-

spondence is accompanied by a diagonal movement from the corresponding grid

position). In ambiguous situations such as these, there will always be a priority

towards either later or sooner matches, and this will depend on the rules of

evaluation, and the direction of evaluation (ambiguous situations are discussed

further in section 3.2.3). It is impossible to derive the correct interpretation

with the information presented to us. However, the default priority must be

taken into consideration in certain applications. When the score and perfor-

mance are analysed incrementally [113, 22], these situations are commonplace

(for example in any repeated sequence of notes).

83

Score : A B C A B C

Performance : ⊖ ⊖ ⊖ A B C

The performance sub-sequence above describes such a situation. The application

may be real-time score following in which the performer has yet to perform the

final three notes within the subsequence. However, if the default behaviour

is to give priority to later matches, the accurate correspondence will only be

indicated once the performer performs the second A. Therefore in applications

such as these, the default behaviour should be to match the earliest possible

correspondences which will guarantee an accurate correspondence as long as the

performance remains accurate. Inaccurate correspondences can only be caused

by an error in the performance.

Score : A B C D B C

Performance ⊖ ⊖ ⊖ D B C

The future match error (above) is a similar situation, however, this is caused

by an error in the performance. In the example below, a substitution in the first

note of the performance has resulted in a subsequence which correctly matches

a future subsequence. The subsequent performance note ’D’ will correct the

correspondence (below).

Score : A B C D B C

Performance : ⊗ B C D ⊖ ⊖

Dannenberg [16] describes this as ‘strange behaviour’ and overcomes this by

analysing only part of the score. Analysis is performed using a window centred

around the last match. However, this only prevents a future match occurring

with a match which is outside the window. The reliability of this method will

depend on the size of the window analysed. Too large a window may result in

future match errors of the kind described above, while a window size which is

too small may lose the performance position, and as long as this method main-

tains a fixed window size, it is possible that a combination of errors may cause

a pathological error. Bolton [8] implemented real-time score following using for-

ward path estimation and the entire score. Bolton’s system introduced an extra

grid which when superimposed upon the original grid, augmented the scores

of particular correspondence pairs which in which the score and performance

notes were equal in pitch. With a few extra rules in the path evaluation, Bolton

was able to reduce the occurrence of future match errors dramatically without

limiting the analysis to part of the score.

84

3.2.6 Efficiency

Despite the significant increase in efficiency the DP method offers over a ’brute

force’ comparison of all possible correspondences between two scores, there is

still a lot of redundancy in the DP method. Most of the calculations in the grid

are unused in the evaluation of the grid path (except in the accumulation of the

scores/costs for other cells). Section 3.4 discusses ways to reduce the time and

space requirements of the algorithm.

One method proposed by Chiba [87] imposes limits on the amount of the

grid which should be populated. Assuming that the ideal path will follow the di-

agonal where x = y, if a limit was set on the maximum deviation from this ideal,

it is possible to compute only a narrow band of cell values along this diagonal.

However, this method relies on the fact that the correct path remains within this

narrow band, otherwise a pathological error may occur. Therefore, the width of

this band must be chosen carefully to compromise between increased time and

space during calculation and accuracy of results. Dixon [113] improved on this

method by using an evaluation of the grid at each iteration of population to

determine the best direction of expansion. Therefore they were able to reduce

the width of the computed band by calculating a band which followed the best

path ‘so far’.

3.2.7 Summary

This section has described how Dynamic Programming can be applied to score-

performance matching. This is the first explanation which fully evaluates the

shortcomings inherent in the DP method, the subtle differences in implemen-

tation (such as the direction of grid population or the use of cost/similarity

based algorithms) & explained how these differences affect the final evaluation.

This information is essential to create a matching algorithm which will evaluate

the sequences musically, rather than assuming that the most accurate match

is one which maximises correct correspondences or minimises errors. It is also

essential to understand how different matchers will evaluate sequences at the

micro-level, allowing a more profound comparison than a comparison of ’correct’

correspondences. The next section will continue this analysis in the context of

polyphonic matching.

85

3.3 Polyphonic Matching using DP

So far, only monophonic DP matching has been described. The difficulty in

transferring DP matching into the polyphonic domain is that notes in the score

which share a common start time can appear in any order in the performance.

The DP method requires monotonicity, and thus is unable to match events which

appear out of correct order.

This problem has been addressed in two ways. Dannenberg [6] proposed

a method which compares clusters in the score against individual note events

using DP. A grid is populated as before, but a far more complex algorithm is re-

quired for grid population. Each grid cell contains a list of ‘used’ pitches which

represent pitches which have already been locally matched to the notes in the

score cluster of the current correspondence. This prevents the same pitch in

the score being matched to two equal pitches in the performance. Dannenberg

reports that this method was successful in all tests, but stated that a formal

proof of its optimality could not be provided. However, even if the algorithm

could be proven to provide the optimum correspondence in all cases, Dannen-

berg’s method still compares the score and performance as an ordered sequence

of pitches. Therefore the method still suffers from the ambiguities which are in-

herent in a comparison which does not use temporal information. For example,

given the following comparison, Dannenberg’s method is unable to determine

whether the ‘correct’ match is the chord CEG, EGC, or any partial combination

of these notes. It can only provide the optimal match given a certain criteria.

Score : C E G

Performance : C E G C

3.3.1 Clustering

The alternative method to Dannenberg’s is to represent both the score and

performance as note clusters. This requires two modifications to the standard

DP method. The first is a pre-processing stage which will group the performance

notes into clusters of ’simultaneous’ notes based on their onset times. A widely

used method for grouping performance notes is to analyse the inter onset interval

(ioi). If the difference between a note onset and the onset of the previous note

is below a threshold ǫ, the notes will be assigned to the same cluster. The next

note will be judged against the current note with the same threshold. It follows

then that the onset times of a cluster may span a greater amount of time than

the threshold, as long as each ioi is within the threshold. Different values for

this threshold have been used ranging from 75ms [88] to 100ms [67, 6].

86

Unfortunately, in an expressive performance it is not so easy to group notes in

such a fashion. The choice of threshold will be affected by many factors, most of

which will vary throughout the course of the piece. The tempo of a performance

will change from piece to piece and performer to performer. Even within the

same performance, the tempo of a piece may change dramatically. Rolled chords

would require a high threshold for notes to be successfully grouped, but a passage

with a high density of notes may require a lower threshold to distinguish each

note as an individual event. Thus, choosing the correct threshold is at best

extremely difficult and at worst impossible. Section 3.4 will describe a novel

method developed by the author which employs a dynamic clustering method

to cluster notes based on a partially matched performance.

3.3.2 Partial Matching

The second requirement for polyphonic matching is an algorithm for evaluating

partial matching. It is no longer sufficient for a comparison of two events to

return a binary choice. In the example below, parentheses are used to denote

chords. Neither C nor CE are absolute matches for CEG. However, CE provides

a closer match, and should be matched to the chord. Therefore a formula

is required to calculate the distance between items so that the matcher can

select correspondences based on a partial match. This section will present new

algorithms for populating a polyphonic DP grid. The rules required to evaluate

these grids will be discussed in the following section.

Score: A (CEG) F

Performance: A (EG) (C) F

Deciding which note clusters are closer in a musical sense is not a trivial

matter. Consider the following clusters as compared to the cluster CEG:

1. (CE)

2. (CEGB)

3. (CEGBD)

4. (C)

Which of these clusters is ‘musically’ closer to CEG? Cluster 1 differs from

the original only by one deletion. Cluster 2 differs by just one insertion. A

comparison of the edit distance would show these clusters to be equidistant

from the original CEG. However, musically the second cluster is closer because

more notes are correctly matched. This correlates with the action of the matcher

87

at the event level where, the number of matches should be maximised, and the

number of errors minimised.

A comparison between clusters 1 and 3 is more difficult. Cluster 1 is a

closer match based on edit distance. However cluster 3 has a match for all

the notes in the chord. In this example it is less clear which of the clusters is

a closer match to the original. A thorough comparison of musical ‘closeness‘

would require analysis of the errors in the context of the score. This may show

that a particular error or combination of errors are more likely, For example

CEF might be judged to be closer than CEB♭ because substituting F for G is

a likely technical error (on a piano, for example), whereas substituting Bb for

G is neither technically likely nor likely as a cognitive error because Bb is very

distant from CEG both harmonically and visually on a score. This discussion

does not even touch on the possible arguments related to the harmonic context.

Without this analysis it is wrong to assume that an insertion and a deletion can

be reduced to a substitution. Therefore in polyphonic matching is concerned,

it is wrong to create correspondences which represent substitutions.

The same is true of certain situations in monophonic matching (where at

least one substitution and at least one insertion or deletion occur consecutively).

In the analysis of monophonic correspondences, the use of substitution corre-

spondences can simplify the visualisation and understanding of the matching

process. However, applications should be aware that substitution correspon-

dences may be arbitrarily assigned.

similarity =
no of missing notes + no extra notes

max

{

Ssize

Psize

}

.

cost = 1 −
no of missing notes + no extra notes

max

{

Ssize

Psize

}

.

Figure 3.12: Algorithms for comparing the similarity of two note clusters

All the systems compared in this thesis use the similarity algorithm in Fig-

ure 3.12. This algorithm returns a continuous value in the range 1 (complete

match) to 0 (complete mis-match). The algorithm does not resolve additions

and deletions into substitutions for the reasons given above. It will favour cluster

2 over cluster 1, and it will favour clusters 1 or 2 over cluster 3. In other words,

88

where the edit distance (insertions and deletions only) is equal, the algorithm

will favour clusters which maximise matches.

In comparison, the algorithm proposed by Hoshishiba [40] compares only the

number of insertions and deletions when comparing two clusters. Therefore, the

system is unable to make the distinctions described above.

3.3.3 Polyphonic Path Evaluation

The introduction of the new comparison algorithms requires new rules for eval-

uating the optimal path through the grid. Figures 3.13 & 3.14 show two grids

which have been populated using the score and cost methods respectively. The

colour orange is now used to signify partial matches.

Score: A (CEG) D

Performance: A (CEGB) (CE) D

In the first grid in Figure 3.13 the second transition should be a diagonal

movement which would represent a partial match between the second chords in

both the score and performance. However, cell G(x, y + 1) has a higher value

(and hence, according to monophonic matching, indicates a transition which

will result in a more accurate match) than G(x + 1, y + 1) which, using the

previous rules would result in an initial transition to cell G(x, y + 1), followed

by a match between (CE) and (CEFG).

Figure 3.13: Polyphonic DTW grid using similarity based algorithms. The grid

shows that the path does not always follow the highest score.

The second grid, shown in Figure 3.14, is populated using the cost algo-

rithms. This shows a similar situation when using the cost-based algorithms.

89

The second transition should be a partial match between the second chords in

the score and performance. However, the path which has the lowest cost would

match CEG in the score to C in the performance.

Figure 3.14: Polyphonic DTW grid using cost based algorithms. The grid shows

that the path does not always follow the lowest cost.

In both the cost and the score methods, this is a situation where the optimal

path is not a transition to the cell with the highest score or lowest cost. To

evaluate the path correctly, the quality of the current match must be considered

in addition to the value in the possible destination cells. In the first grid, a

movement to G(2, 2) reduces the score to 1.00, but a match of value 0.75 has

been made in the process. A movement to G(1, 2) reduces the score to 1.33, but

no match has been made in the transition. Thus, the introduction of partial

matching requires the cost as well as the result of the transition to be assessed.

P (x) = S(y) Correct

a = b = c Wrong/Partial

a < b ∧ a < c Missing

c < a ∧ c < b Extra

h > c > a = b Partial

h > a > c = b Partial

else Wrong

P (x) = S(y) Correct

b < a ∧ b < c Wrong

a < b ∧ a < c Missing

c < a ∧ c < b Extra

h = b + cost Partial

Figure 3.15: New rules for traversing the grid using the similarity (a) and cost

based (b) methods for polyphonic sequences.

90

The new rules shown in Figure 3.15 show modifications to the original rules

for score and cost algorithms which will find the optimal path through a grid

using the comparison function in Figure 3.12. There is however, one major

change to the operation of the cost method. The first new rule added to the list

of cost-based rules is the rule of first match. This means, that when evaluating a

path, if a correspondence pair are equal, then they will be matched (irrespective

of the score/cost values of neighbouring cells). The consequence is that when

using a backwards path evaluation (and thus, forwards grid population) the

algorithm will now give priority to later matches in ambiguous situations.

The same is true in the implementation described by Hoshishiba [101] who

states that finding the optimal path through the grid is a question of ‘simply

finding the path which minimises the cost’. Figure 3.16 shows a grid populated

using Hoshishiba’s cost algorithm. The cost algorithm presented by Hoshishiba

increments the cost based on the number of insertions and deletions. The correct

path through this grid does not always depend solely on the cost values in the

cells. The path which has the lowest cost in this instance would miss the correct

correspondence of the C major triad, and match the triad in the score to CE in

the performance. Therefore, this method must also use the rule of first match,

and will thus give priority to later matches when used with a forward path

evaluation.

Figure 3.16: Grid populated with Hoshishiba’s cost algorithm. The optimal

path does not follow the lowest cost. Correctly matching the C major triad

requires the rule of first match.

91

3.4 Improving the DP method

The operation and inherent deficiencies in DP based matching have been dis-

cussed in Sections 3.2.3 and 3.3.1. This section will present novel methods

to improve the performance of score performance matching in these areas. One

method increases efficiency and accuracy of the DP method by analysing the per-

formance using smaller overlapping windows rather than one large grid. When

populating each new grid the thresholds for clustering performance notes into

chords will be adjusted according to the local properties of the score and the

performance.

Hoshishiba [40] suggested a second stage to the DP matching process which

attempts to correct errors in the DP evaluation by searching for more align-

ments based on temporal information. Improvements to this analysis stage are

presented and tested which rely on analyses of the score and performance.

It will be shown that the method presented by Hoshishiba [40] is only capable

of correcting certain shortcomings in the DP method. It will be demonstrated

in theory and in tests that score-performance matching can be further improved

by first removing false positive matches from the evaluation based on temporal

analysis before searching for further alignments.

3.4.1 The Dynamic Matcher

As explained in Section 3.3.1, the process of grouping performance events into

clusters of simultaneous objects is extremely error prone. The acceptable inter

onset interval of performance notes which appear simultaneously in the score

can vary dramatically not only between pieces and performers, but within an

individual piece. An improved method, such as the one presented here would use

local properties of the score and the performance to alter the clustering threshold

dynamically. Information such as the instantaneous tempo, the relative inter

note onset interval, the number of simultaneous notes in the score and score

markings eg. arpeggio, rubato etc. can all be used to influence the clustering

algorithm. For example, a passage within the score which contains shorter

inter note intervals would require the threshold to be reduced to decrease the

chance of grouping consecutive notes into the same cluster, whereas passages

with larger inter note intervals will allow a wider threshold value. Where a

section of a performance contains liberal use of spread chords, it would be

necessary to increase the threshold to ensure that such chords are correctly

grouped. However, the clues within the score with respect to timing require

translation into absolute time which, in turn requires the instantaneous tempo

92

of the performance.

While it is possible to extract tempo and beat information directly from the

performance data, a far more accurate analysis can be achieved using matched

score and performance data. Tempo and beat analysis based solely on the in-

terpretation of performance onset and durations (and possibly note dynamics

or accent) to derive instantaneous tempo is likely to misinterpret the tempo by

a factor of two (i.e. doubling or halving the predicted tempo). In contrast, a

matched score and performance can relate the relative times of notes within the

score to the actual performed times to ensure (as long as the score-performance

is correct) that an accurate evaluation of the instantaneous tempo can be cal-

culated.

The system presented in this thesis uses an iterative matching process. The

score and performance are analysed using overlapping frames. The results of

each frame are used to analyse the instantaneous tempo of the piece. This

tempo, and an evaluation of the context within the score is used to dynamically

adjust the clustering threshold intelligently. This threshold is then used to re-

evaluate the performance notes into clusters for the following frame.

The iterative method used by Dixon [113] might at first seem suitable for

this process. The forward grid population allows each successive iteration to

be appended to the previous match value. The constraints set on the width of

the path provide further improvements in efficiency. However, as explained in

Section 3.3.3 a forward grid population results in priority being given to later

matches. This type of error is unacceptable in this situation.

Consider the examples below. As the matcher progressively analyses the

score and performance, the arbitrary boundaries have caused an element within

one sequence to be included in the grid while committing its corresponding el-

ement in the opposite sequence. In each example, the matching algorithm has

made false correspondences in situations where the performance is an accurate

rendition of the notated music. While this error would be corrected when the

analysis boundaries are extended, it can cause a significant error in the calcula-

tion of instantaneous tempo which will be reflected in the clustering threshold

used in the next analysis frame.

A B C C

A B ⊖ C

A B ⊕ C

A B C C

In the first example, the inter onset interval between B and the first C in the

93

performance will be evaluated against the relative inter note interval between

B and the second C. This will lead to a tempo estimation which is higher than

the actual amount. Similarly, the situation in the second example will lead to

an artificially low estimation of the instantaneous tempo.

In theory, this could be improved by analysing the score and performance

to ensure that the window boundaries do no not occur in such a situation.

However, calculating where this boundary should be is non-trivial, and in many

cases futile e.g. where there are significant repeated notes or chords.

Therefore, the only way to employ a dynamic threshold is to use reverse grid

population routine. This means a new grid must be calculated for each analysis

frame. If the entire score and performance analysed thus far was to be included

in each frame, the number of computations would rise dramatically. Thus, the

score and performance are compared using overlapping windows as described

below, and in Figure 3.17.

δs

δp

w

w

pn

pn−1

Figure 3.17: Evaluating performance using a sliding analysis window.

1. The first n score and performance clusters are obtained using an initial

clustering threshold. This initial threshold may be based on information

regarding the tempo indication on the score.

2. These clusters are used to populate a grid of size n× n using reverse grid

94

population and similarity-based algorithms.

3. The path through this grid is evaluated.

4. The correspondences obtained from this path are used to evaluate the

tempo at the beginning of the next analysis window.

5. The score is analysed to extract information which may affect the thresh-

old of future performance events eg. the minimum inter-onset interval,

articulation and tempo markings. This information, along with the tempo

analysis is used to determine a new clustering threshold.

6. A new analysis frame is created with these performance clusters and clus-

ters from the score.

7. The δ points in the previous correspondence which relate to clusters not

included in the new analysis frame are added to the list of final correspon-

dences.

Each frame analyses a portion of the ’global grid’ which is enclosed by the

positions G(m,n) and G(m + ω, n + ω). The next frame begins at some offset

from the original frame G(m+x, n+y). The correspondences between the score

and performance between the positions G(m,n) and G(m + x, n + y) are taken

to be ‘true’ and are appended to the list of accurate matches. All other matches

within a frame are discarded when a new frame is analysed.

The values of δs and δp which define the offset of the subsequent frame

are derived from the analysis of the current frame. The start position of the

next frame must coincide with a correct or partially correct correspondence.

This ensures that the windows follow the correct path through the global grid.

Otherwise, if the correct path was to lie outside the narrow band of analysis,

the matcher would reach a pathological solution. Making windows begin on a

correct correspondence also ensures that no errors are introduced as a result

of the start boundaries. Such errors could cause incorrect correspondences to

be included in the final list of correspondences, and cause inaccurate tempo

calculations leading to incorrect clustering when initialising the next frame.

Notice that the path of the new grid (blue) does not exactly follow the

remainder of the previous path (red). Errors are likely to occur due to the

closing boundaries of the grid. This is unavoidable unless the grid is analysed in

its entirety. This is why the windows must overlap rather than starting where

the previous window finished. Errors induced by the position of the closing

boundaries are unlikely to have any effect on the final output as long as there

95

is sufficient difference between the overlap amounts δs and δp and the overall

window size ω.

This method is not immune to future match errors (discussed in Section 3.2.5).

However, these will only occur when two criteria are met. Firstly, the future

match error must be caused by a performance error which makes a subsequence

exactly match a later subsequence. Secondly, the future subsequence must oc-

cur within the same analysis frame. The chances of such a situation are low,

especially in a proficient performance. However, the chances are increased in

passages which contain very closely repeated notes, chords or phrases.

The size of the window has an effect on reliability and efficiency. A larger

window size leads to an increase in computation, and an increase in the pos-

sibility of future match errors. A smaller window size increases the chance of

following a pathological path through the grid.

3.4.2 Interpolation

As described in section 3.2.3, the discarding of temporal information introduces

inherent ambiguities which limit the accuracy of DP matching algorithms. How-

ever, once a score and performance have been matched, it is possible to perform

further processing on the correspondence sequence using the previously dis-

carded temporal information to identify and fix these errors when they occur.

Hoshishiba previously used a spline interpolation to improve the output of a

DP-based matching algorithm. This section will discuss the application of in-

terpolation to DP matching and propose further improvements which make use

of temporal information and information within the score.

Hoshishiba [101, 40] used DP matching to match scores to recorded MIDI

data of piano performances. The DP matching was performed using cost-

based algorithms which was augmented by a secondary analysis stage. The

secondary stage attempts to identify correct correspondences which the stan-

dard DP method was unable to detect. Hoshishiba’s algorithm does this by

using spline interpolation to estimate the time at which any unmatched score

notes should have been performed based on the existing correspondences. The

performance is searched for any unmatched performance events which match

the pitch of the score note, and lie within some threshold of the estimated onset

time. A correct correspondence is created between the score note and the closest

performance event, should one be found which matches these criteria.

This method is capable of correcting only two possible errors: out-of-sequence

errors and errors caused by the incorrect clustering of notes. This is because

the secondary analysis assumes that the output of the DP stage is correct. The

96

secondary stage is only capable of creating new correspondences which the DP

stage did not create. The example discussed in Figure 3.3.2 represents a clus-

tering error where the C in the performance has been played early, and the

clustering algorithm has included the note in the chord. This situation can be

resolved by using spline interpolation to create a new correspondence as long

as the unmatched performance note occurs within the specified threshold of the

estimated performance time.

Score: A(CEG)F

Performance: A(C)(EG)F

However, If we revisit the ambiguous situations discussed in Section 3.2.3,

it is apparent that of these situations, only one particular situation can be

corrected by the method described above. In the example below, two notes in

the performance appear swapped in time. The DP matcher will choose one of

the interpretations detailed below. However, in polyphonic music it is possible

that the B and the C in the performance correctly correspond to the respective

notes in the score. Expressive timing between separate voices, such as the two

clefs within a piano performance, can lead to notes which are out of sequence

in a strict sense of order, but are still within acceptable timing thresholds with

respect to the rhythm of the voice in which they occur.

Score: A B C D

Performance: A C B D

A B C D

A ⊗ ⊗ D

A ⊕ B C D

A C B ⊖ D

A B C ⊕ D

A ⊖ C B D

The faults which are inherent in DP matching result in correspondences

which are falsely reported as correct matches. Therefore to have any con-

siderable improvement in the final, overall correspondence, the output of the

DP matcher must first be analysed to identify and remove these false positive

matches.

97

Removing false positive matches

Hoshishiba used spline interpolation can be used to estimate the time at which

notes corresponding to unmatched score notes should occur in the performance.

This can also be used to measure the consistency of existing matches in an

evaluation. An algorithm was created which evaluates the consistency of existing

matches based on the times of neighbouring correspondences.

The algorithm analyses the two correct correspondences immediately pre-

ceding the correspondence in question, and the two correct correspondences

immediately following. Using these four relative/absolute time pairs a cubic

spline is evaluated. From this spline, the proposed onset of the intermediate

correspondence can be estimated. The consistency of the correspondence can

be measured as the difference in time of the onset of the matched note(s) from

the estimated onset time. If the difference between the estimated and performed

time of a note are found to exceed a certain threshold, the match is removed

from the evaluation.

A static threshold cannot take into account changes in the performance

(changes in tempo) or changes in the score (a change in the density of notes).

Therefore the threshold is based on an analysis of the performance and the

score.

ǫ1 = tprev + ξ(test − tprev)

ǫ2 = test + ξ(tnext − test)

Figure 3.18: Calculation of dynamic thresholds

The calculation of dynamic thresholds is shown in Figure 3.18. The thresh-

olds are based on a proportion ξ of the distance between the estimated perfor-

mance time test, as calculated using the cubic spline, and the estimated perfor-

mance time of the notes which immediately precede and follow the subject note

(tprev & tnext). The time of preceding and following notes is estimated based on

the instantaneous tempo derived from the cubic spline, and the relative onset

times extracted from the score.

Thus, a performance note is deemed to be within the thresholds if the fol-

lowing condition is true:

ǫ1 < tperf < ǫ2

98

3.4.3 Interpolation Alignment

Hoshishiba used spline interpolation to improve upon the DP matching method.

This method iterated through an evaluation searching for unmatched score

notes. When an unmatched score note was found, the proposed onset time

of this note in the performance was estimated using a cubic spline based on

the relative and absolute times of correct correspondences surrounding the un-

matched note. The performance was searched to find suitable notes to align to

the unmatched score note. A performance note would be matched if it repre-

sented the same pitch and it’s onset time lay within a certain static threshold

and the onset time estimated using the cubic spline.

However, as discussed in section 3.4.2, this static threshold is incapable of

accounting for changes in pitch or changes of the density of notes within the

score. Therefore a new alignment algorithm was created based on the system

used for removing false positive matches. This system creates thresholds dy-

namically using the same method as used in section 3.4.2. Although both the

identification of false matches, and the creation of new matches use the same

method of calculating thresholds, although the proportion ξ need not be the

same.

It is also proposed that, in the case of polyrhythmic pieces such as Chopin

opus 66, it is possible to perform the interpolation stages of each voice (or

hand) individually. Thus reducing the effect out-of-order notes will have on the

interpolation process.

3.5 How to evaluate matching algorithms

Evaluating the performance of a matching algorithm thoroughly is an extremely

laborious task. Hoshishiba[40] assessed the performance of his algorithms by

comparing the number of correct correspondences created by the matcher (100%

correct matches representing the ‘optimal’ performance). However, this tech-

nique makes two assumptions. Firstly, it relies on the performance being an

accurate representation of the score. In this sense, an accurate representation

of the score means that for each note in the score there is exactly one cor-

responding performance note, and that there are no unnotated performance

notes. Secondly, it assumes that the transcription of the performance has been

performed with absolute accuracy. Neither of these assumptions can be made

lightly. Basing performance purely on the basis of the number of correct cor-

respondences makes no judgement of the quality of the matches. Furthermore,

a perfect performance of a piece does not pose a rigorous test for a matching

99

algorithm, particularly its robustness against pathological errors or the correct

identification of errors. The identification of errors is just as important as iden-

tifying correct correspondences. In the analysis of performance issues inaccurate

matches (false positives) between notes can cause an equal disturbance in the

results of analyses as missing correspondences (false negatives). In this context,

an accurate evaluation of the performance would be the total number of false

correspondences (false positives and false negatives).

3.5.1 Evaluation procedure

The performance of various matchers will be assessed in this chapter. These

evaluations are performed using two types of data: artificially generated perfor-

mance data and data from two real performances.

An ‘authoritative’ evaluation is required to be able to examine the corre-

spondences evaluated by the matcher to ascertain whether they are accurate.

The number of correspondences between notes in the score and the performance

judged by the matcher to be correct is not an adequate assessment of the per-

formance of a matcher. This does not assess whether the correspondences are

‘accurate’. To assess this, the correspondences must be evaluated against an

authoritative version which allows the following information to be calculated:

• TP(%): (True Positives) This is the number of correct correspondences

the matcher accurately identified from the authoritative list.

• FN(%): (False Negatives) This is the number of accurate correspondences

which the matcher failed to identify.

• FP(%): (False Positives) The number of correspondences inaccurately

identified as correct.

When artificially generating performance data it is possible to generate an

authoritative evaluation based on notes removed or added from a performance.

However, it is possible that the random insertion and deletion of notes results

in notes inserted at such a time and pitch that a correspondence between new

notes and notes in the score is valid.

The authoritative versions of the real performances were evaluated by hand,

using both the audio and the MIDI data collected from the performance. The

performance of each matcher was tested against the authoritative list of ac-

curate correspondences, providing an accurate analysis of how a matcher has

performed. This is a very laborious task, therefore in this thesis only two real

performances are evaluated.

100

Artificial Performances

The artificial performances are generated from the fifth prelude from Shostakovitch’s

24 Preludes and Fugues, Opus 87. A performance is rendered straight from the

score with no expression or variation in pitch, time or tempo. From this ‘vanilla’

performance, different performance data was generated using three methods to

transform the performance:

1. Applying a continuous change in tempo across the entire piece.

2. Spreading the onset times of notes within the same chord.

3. Inserting & removing notes from the performance.

To alter the tempo of the performance, the onset time of each note was

adjusted using the equation in figure 3.19 where t is the original onset time and

x is the factor used to apply a continual change in tempo.

tnew = tx

Figure 3.19: Equation used to alter the tempo of a performance.

Chords are spread such that the onset time of notes in a chord are evenly

spread throughout a timespan beginning from the original time of the chord.

The timespan is equal for all chords throughout the piece.

The removal of notes is a random process. The sole condition is that only

notes present in the vanilla performance may be removed from altered perfor-

mances. The process An onset time which lies within the existing length of the

performance is generated randomly. At this position a chord is inserted which

contains the same pitches as the chord immediately following it in the score.

Inserting notes in this fashion creates performances which are far more difficult

to match successfully.

Using a combination of these methods, data can be generated which allows

specific aspects matching algorithms to be examined in isolation and permits a

more scientific approach to evaluation.

Real Performances

The real performances used in the tests in this study were recorded using both

MIDI and audio data. MIDI gesture data was recorded using a ‘Piano Bar’

which is manufactured by Moog. The Piano Bar directs an infrared beam onto

each key of the piano. Key presses and velocities are detected by analysing

the angle of deflection of the beams. This allows gestural data to be recorded

101

without affecting the sound output of the piano, or the technical aspects of the

performance.

The results of many of the matchers (results are compared in Sections

3.7.1 & 3.7.2) show that the number of correct correspondences a matcher has

assigned is not an accurate measure of the overall accuracy of a matcher. In

many cases, a matcher with a higher number of total correspondences has less

accurate correspondences than other matchers with a smaller total number.

Ideally, the authoritative correspondences would be evaluated using an in-

terface which simultaneously represents the score, performance and correspon-

dences in a graphical way. However, the lack of an open API for the graphical

rendering of musical notation makes this infeasible at the current time. The time

required to evaluate each performance against the score and the time required

to evaluate the output of each algorithm against the authoritative version has

limited the number of performances on which the algorithms could be tested. To

counterbalance the lack of material, pieces have been chosen which pose partic-

ular challenges for matching algorithms. Additionally, the performers recorded

had limited exposure to the particular pieces, increasing the likelihood of per-

formance errors.

The first piece is the fifth prelude from Shostakovitch’s 24 Preludes and

Fugues, Opus 87. Although the piece is not particularly complex, it poses par-

ticular problems for matching algorithms. The presence of repeated chords

which are identical or very similar increases the chance that the matcher will

inaccurately evaluate a performance that contains performance errors. The par-

ticular performance chosen was played with a very romantic interpretation which

makes considerable use of tempo variations and spread arpeggiated chords. The

tempo variations and arpeggios mean that a single, static clustering threshold

will not perform accurately across the whole piece.

Two errors are of particular interest in this performance. The first error

occurs in bar 6. This bar is displayed as it appears in the score in Fig. 3.20(a)

and a transcription of the performance in Fig. 3.20(b).

The section of the performance from the second beat to the end of the bar

in the right hand matches exactly what is notated from the first beat until

before the third beat. Although the timing information proves otherwise, a DP

matching algorithm is likely to match all or part of the last two beats in the

performance to the first two beats in the score. This is because an error in

performance is, by coincidence, a suitable match for another part in the score.

A similar error has occurred in bar 56 (see 3.21). The performer has played

something which is similar to the score, but the melody has been slightly trans-

102

formed and played later than notated. This has the potential to confuse the

matching algorithm in the same way as the previous example, though to a

lesser extent.

The second piece is the first section from Chopin’s Fantasie Impromptu,

Opus 66. This is one of Chopin’s better known pieces, and features a cross

rhythm throughout the first section with semiquavers in the right hand against

sextuplets in the left hand. The rhythmic complexity, speed and the constantly

changing figurations make it a challenging piece. It is a common characteris-

tic of Chopin’s works to have a steady left hand accompaniment against a free

right hand melody. Expressive interpretations can lead to a significant num-

ber of situations where notes in the left and right hand appear in the wrong

order with respect to the score, but in the correct order with respect to each

hand individually. The polyphony in the first section rarely exceeds two simul-

taneous notes, though the complex and expressive timing will pose a challenge

for clustering algorithms. However, performance matching will be dominated

by the ability of the algorithm to cope with expressive timing, specifically the

resolution of out-of-sequence notes. A performance was chosen which exhibited

considerable variation in expressive timing between the left and right hands.

The performance includes roughly 200 instances of out-of-sequence notes from

a total of just under 1000 notated notes, and 150 instances of missing or extra

notes. This performance should provide a thorough test of a score performance

matcher’s capabilities.

3.6 Benchmark Results

3.6.1 Static vs. Dynamic Matcher

The dynamic matcher was tested against a static matcher which used identical

DP rules (i.e. the grid population and path evaluation rules were exactly the

same). Unlike the dynamic matcher, the static matcher used a single grid for

evaluating the performance. The sliding window alone offers only an improve-

ment in efficiency. In fact, in some cases the dynamic matcher was unable to

follow the performance accurately enough to ensure that the analysis window

followed the correct analysis path. This resulted in pathological errors from

which the matcher was unable to recover.

In each of the experiments, the dynamic matcher was testing using different

values of ‘strictness’. The strictness determined what fraction of the estimated

minimum inter onset interval was used to as the threshold. It was assumed

(without any psychoacoustical experiments) that 0.5 might prove to be an op-

103

4
3

� ��
4
3

���� �

�

���

�

�������

(a) Notated

4
3���

4
3

��� �
� ���

�

���

�

����

(b) Performed

Figure 3.20: Shostakovitch Prelude No. 5, Bar 6.

� ��
4
3

4
3

���� ��

�

���

�

������

(a) Notated

� ��
4
3

4
3

��� �� ���

�

���

�

����

(b) Performed

Figure 3.21: Shostakovitch Prelude No. 5, Bar 56.

104

timal value for this. The static matcher was tested using a range of thresholds

appropriate to the tempo of the piece.

The matchers were tested against artificial performances which were altered

by spreading chords and altering the tempo of the performance. This tests the

ability of the dynamic matcher to follow tempo changes in the performance and

it’s ability to dynamically adapt clustering thresholds accordingly.

All chords within the performance were spread by an amount of time equal

to half the smallest inter-onset interval thus ensuring that chords do not over-

lap. From this, six version of the performance were created with varying tempo

factors ranging from 1.0 (no change in tempo) to 1.5 (which resulted in a per-

formance which was lengthend by a factor of 20).

In this test, a dynamic matcher with a clustering threshold of 0.5 was tested

against static matchers with a range of clustering thresholds. The results of the

evaluation can be seen in figure 3.25.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 1.1 1.2 1.3 1.4 1.5

N
o.

 e
rr

or
s

No. of errors in performance

0.4
0.6
1.0
1.4
1.6
2.0

Score

Figure 3.22: Comparison of the static and dynamic matchers using artificial

performances.

In the first four performances, at least one static matcher performs reason-

ably well. However it can be seen that as the deceleration of the tempo of

the performance increases, the optimal static threshold increases. The dynamic

105

matcher matches these 4 performances flawlessly. In the final two performances

the deceleration of tempo becomes more severe and a static threshold is inca-

pable of clustering notes into chords accurately throughout a large proportion of

the piece. The dynamic matcher does not accurately identify all correspondences

though still significantly outperforms the static matcher at all thresholds.

3.6.2 Removing false positives

Using artificial data, the effect of removing inconsistent correspondences before

creating new correspondences was tested. The test performances contained in-

troduced errors, but were of constant tempo, with no dispersion of notes within

chords. Eight performances were created which contained between 50 and 400

introduced errors. This data was evaluated with two matchers using score-

based interpolation alignment. One matcher removed inconsistent matches be-

fore aligning new matches, this will be referred to as the ‘realigner’, the matcher

which only searched for new correpondences to align will be referred to as the

‘aligner’. The unalignment stage was performed with a threshold of 0.5 and the

alignment stages were tested at a range of thresholds in the range 0.1 to 1.0.

The realigner outpuerformed the aligner in most of the tests. Both matchers

performed optimally using an alignment threshold of 0.2. Figure 3.24 shows the

performance of these matchers at that threshold.

Figure 3.23 displays the performance of these matchers at varying alignment

thresholds averaged over all performances. The performance of the matcher

which did not remove inconsistent performances displayed little variation in ac-

curacy across different alignment thresholds. This suggests that many of the

errors in the DP matching process resulted in inaccurate correct correspon-

dences rather than unaligned notes. Therefore there were fewer notes available

to be aligned by the matcher. At higher alignment thresholds, the average

performance of the unaligning matcher drops below that of the alignment-only

matcher. In these situations correct correspondences which have been removed

due to inconsistency are being matched to wrong clusters because the alignment

threshold is too high.

3.6.3 Score Realignment vs Static Realignment

These experiments use artificial performances to test score-based interpolation

alignment against alignment using a static threshold. The matcher using a static

threshold is equivalent to the matching algorithm presented by Hoshishiba [40].

The test material consisted of eight performances without chord spreading but

106

 100

 200

 300

 400

 500

 600

 700

50 100 150 200 250 300 350 400

N
o.

 e
rr

or
s

No of errors in performance

Alignment only
Unalign Realign

Figure 3.23: Average performance of interpolation alignment with and without

unalignment stage.

with ramped tempo and errors introduced into the performances. Eight per-

formances were used with error rates ranging from 50 to 400. The continuous

change in tempo should demonstrate the advantage of using dynamic alignment

threshold based on the instantaneous tempo of the performance.

Each performance was first matched using the dynamic matcher, then pro-

cessed using interpolation based unalignment with a threshold of 0.5. The un-

alignment process ensures that more notes are available for realignment and

as demonstrated in section 3.6.2, the unalignment process is likely to provide

a more accurate final analysis. The static matcher was tested at a range of

thresholds from 0.2 to 1.0. The score-based alignment process was tested at a

threshold of 0.5.

Figure 3.25 displays the results for each matcher tested against each per-

formance. Figure 3.26 contains the average performance of each matcher.In all

cases the score-based realignment outperforms the static realignment method.

As the tests on the static matcher (figure 3.25 the static threshold, the

optimal static threshold can be seen to change as the tempo of the piece changes.

However, as the variation in tempo increases, there is less distinction between

various static thresholds.

107

 330

 340

 350

 360

 370

 380

 390

 400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o.

 e
rr

or
s

Alignment threshold

Alignment only
Unalign Realign

Figure 3.24: Performance of score-based alignment with and without unalign-

ment stage at optimal alignment threshold.

 100

 200

 300

 400

 500

 600

 700

 800

50 100 150 200 250 300 350 400 0.9

N
o.

 e
rr

or
s

No. of errors in performance

0.2
0.3
0.4
0.6
0.8
1.0

Score

Figure 3.25: Score-based alignment vs Static alignment

108

 100

 200

 300

 400

 500

 600

 700

 800

50 100 150 200 250 300 350 400 0.9

N
o.

 e
rr

or
s

No. of errors in performance

0.2
0.3
0.4
0.6
0.8
1.0

Score

Figure 3.26: Score-based alignment vs Static alignment

3.7 Analysing real performance data

Results against artificial data have suggested that improvements suggested in

this thesis can result in a considerable improvement in performance over existing

matchers. In this section, different matchers are tested against real performance

data. Section 3.7.1 will test the static and the dynamic matchers against the

two real performance data. Section 3.7.2 will test the various interpolating

matchers.

In the case of interpolating matchers, all performances have previously been

matched using the dynamic matcher with a clustering threshold of 0.5. In

Shostakovitch Prelude 5 two matchers will be tested: the static alignment

matcher which uses the same method used in Hoshishiba [40] & the dynamic re-

alignment matcher which removes false matches and creates new matches based

on spline interpolation and score/performance analysis. These two matchers and

one other will be tested against the excerpt from Chopin opus 66. The extra

matcher which will be tested is the voice-independent realignment matcher. This

matcher has one difference over the score-based realignment matcher. When re-

aligning matches using spline interpolation, the voice independent matcher will

use two spline interpolations, one for each voice/hand.

109

The error rates quoted in the graphs in this section quote an error which is

the sum of two percentages. The false negative error is the number of correct

matches which the matcher failed to identify as a percentage of the total correct

matches in the authoritative version. The false positive error is the number of

correct matches identified by the matcher which are not in the authoritative

version as a percentage of the total number of correct matches identified by the

matcher. The sum of these two percentages provides the overall error rate.

3.7.1 Static vs. Dynamic Matcher

In the analysis of Prelude 5, the static matcher was tested with different thresh-

olds ranging from 0.1 to 0.4 secs (figure 3.27). The dynamic matcher was tested

using thresholds between 0.3 and 0.9 (figure 3.28). The static matcher (Sec-

tion 3.27) peaks at a threshold of 0.125 secs. At this threshold the matcher

correctly identifies 97% of the correct matches with 2.09% of the matches made

proving to be false, giving a combined error of 5.09%. The average tempo of

the performance was 103bpm, which suggests a minimum ioi of just under 0.3

secs. Therefore there is no obvious relation between the tempo of the piece, the

score content and the optimal static threshold.

 0

 10

 20

 30

 40

 50

 60

 70

0.1 0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33 0.35 0.38 0.4

E
rr

or
 (

co
m

bi
ne

d
%

)

Threshold applied to clustering algorithm

Figure 3.27: Performance of static matcher on Prelude 5

110

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

or
 (

co
m

bi
ne

d
%

)

Threshold applied to clustering algorithm

Figure 3.28: Performance of dynamic matcher on Prelude 5

The results of the dynamic matcher can be seen in Figure 3.28. As previously

proposed, the dynamic matcher performs optimally using a strictness of 0.5. At

this point it accurately identifies 97.52% of the known correct matches with

only 2.5% false positive results, a combined error of 4.05%. As the threshold

of the static matcher increases, the error rate increases steadily. Conversely,

the performance of the dynamic matcher sharply declines when the clustering

threshold is set too high. This is a result of the matcher taking a pathological

route part-way through the analysis. It is possible this effect may have been

minimised by increasing the size of the analysis window.

In the analysis of the excerpt from Chopin Opus 66, the dynamic matcher

(Figure3.30) again outperforms the static matcher (Figure3.29). At its opti-

mal settings, the dynamic matcherachieved a combined error of 30.8%. The

average minimum ioi based on the average tempo of the entire performance is

37.5 milliseconds, although this value has less meaning in the context of this

performance where it is known that there is considerable freedom between the

timing of both hands. The static matcher actually performs optimally when the

threshold was set to 0 which resulted in an error rate of 32.4%. At this threshold

the static matcher performs no clustering of performance notes whatsoever. In

111

this situation, the static matcher is operating as a monophonic matcher, and it

is only possible for the matcher to match a chord in the score to a single note

in the performance.

 30

 35

 40

 45

 50

 55

 60

 65

 70

0 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.06 0.07 0.08 0.09

E
rr

or
 (

co
m

bi
ne

d
%

)

Threshold applied to clustering algorithm

Figure 3.29: Performance of static matcher on Chopin excerpt.

In all pieces, the dynamic matcher proved to be more accurate than the static

matcher. This is true with respect to both the number of correctly identified

matches, and the reduction of false positives.

One of the hypotheses made before testing was that 0.5 would prove to

be an optimal value of strictness for the dynamic matcher. While this is true

in the analysis of Shostakovitch, in the analysis of Opus 66 it can be seen

that the optimal value for the threshold of the dynamic matcher is not 0.5.

However, the results gathered across the two real performances implies that

0.5 may provide the most consistent threshold, if not the most accurate in

all cases. Consistency is an important consideration when the results of all

matchers are considered. It is unlikely that the optimal thresholds for a piece

can be identified before a piece has been analysed, and, as has been discussed

already, the number of correct correspondences created does not reflect the

number of accurate correspondences.

112

 30

 35

 40

 45

 50

 55

 60

0.3 0.4 0.5 0.6 0.7 0.8

E
rr

or
 (

co
m

bi
ne

d
%

)

Threshold applied to clustering algorithm

Figure 3.30: Performance of dynamic matcher on Chopin excerpt.

3.7.2 Interpolating matchers

This section tests various interpolating matchers against real performance data.

All performances were first analysed using the dynamic matcher with a threshold

of 0.5.

The static alignment matcher was tested at a range of thresholds between

0.125 and 0.9 (see figures 3.31 & 3.32). The score-based realignment matcher

(figures 3.33 & 3.34) and the voice-independent matcher were tested using un-

alignment thresholds ranging from 0.2 to 0.9 and realignment thresholds from

0.6 to 1.0.

A realignment threshold of 1.0 indicates that the matcher will search for

a matching note between the predicted times of the immediately preceding &

following notes. A suitable match should not occur outside of the notes, how-

ever, at certain thresholds, the static alignment matcher will search for matches

outside of this range. Therefore, as a final test the voice independent matcher

was tested with realignment thresholds between 1.0 and 2.0 at two unalignment

thresholds 0.2 & 0.5 (3.36).

113

Static alignment matcher

The dynamic matcher already achieved a very high match success when used

to evaluate the Shoshtakovitch performance . In the tests performed, the static

alignment matcher performs optimally at thresholds from 0.5 to 0.9 secs. These

are the highest thresholds at which the test was run. Also, there is little vari-

ation in the results of the static matcher across different thresholds. The error

rate ranges from 3.52 to 3.13. This suggests that there were very few matches

available to be matched.

 3.1

 3.15

 3.2

 3.25

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

0.1 0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

or
 (

co
m

bi
ne

d
%

)

Align threshold

Figure 3.31: Results of the static alignment matcher evaluating Shostakovitch

Prelude 5

When run against the Chopin excerpt, the static alignment matcher displays

a far higher variation in results and a much higher improvement over the dy-

namic matcher alone. This is to be expected as the polyrhythmic nature of the

piece will result in many out-of-order notes which DP matching cannot resolve.

The optimal result is an error rate of 11.6 when the threshold is 0.325 secs.

Score-based realignment matcher

Figure 3.33 shows the results of score based interpolation on the performance of

the fifth prelude. The performance of the previous interpolation algorithms were

114

 3.1

 3.15

 3.2

 3.25

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

0.1 0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9

E
rr

or
 (

co
m

bi
ne

d
%

)

Align threshold

Figure 3.32: Results of the static alignment matcher evaluating Chopin excerpt

already very close to perfect and as a result, there is very little to improve upon.

However, the score-based realignment matcher still improves on the already

impressive match results. The optimal error rate is 0.78 which is achieved at

unalignment/realignment thresholds of 0.3/0.9, 0.3/0.6, 0.2/0.8 & 0.3/0.8. As

the unalignment threshold approaches 0.9, the error rate is in the same region

as the rate achieved by the static alignment matcher. At this threshold, less

notes are likely to be unaligned therefore the advantage of unalignment is quite

clear from these results.

The dynamic realignment matcher does not perform so well when analysing

the Chopin piece.The optimal thresholds are with unalignment/alignment set

at 0.3/1.0. This achieves an error rate of 28.5. This is considerably worse than

the static alignment matcher achieved at all thresholds. In fact, the matcher

rarely performs better than even the dynamic matcher. Therefore the alignment

algorithm is incapable of realigning matches which were originally matched by

the dynamic matcher but removed by the unalignment process. For this reason,

further tests were conducted using the voice independent matcher.

115

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33

E
rr

or
 (

co
m

bi
ne

d
%

)

Un-align threshold

Re-align threshold
1.0
0.9
0.8
0.7
0.6

Figure 3.33: Results of the realignment matcher on Shostakovitch Prelude 5

 28

 30

 32

 34

 36

 38

 40

 42

 44

0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33

E
rr

or
 (

co
m

bi
ne

d
%

)

Un-align threshold

Re-align threshold
1.0
0.9
0.8
0.7
0.6

Figure 3.34: Results of the realignment matcher on Chopin excerpt

116

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.33

E
rr

or
 (

co
m

bi
ne

d
%

)

Unalign threshold

Realign threshold
0.6
0.7
0.8
0.9
1.0

Figure 3.35: Initial results of the voice independent matcher on Chopin excerpt

Voice-independent matcher

The voice independent matcher performs unalignment and realignment on each

voice/hand independently The first analysis of opus 66 can be seen in figure

3.35. These results show a considerable improvement over the standard realign-

ment algorithm which did not analyse both hands independently. However, the

performance is still less than that of the first interpolation algorithm. The op-

timum error rate of 12.5 is achieved with unalignment thresholds of 0.6 to 0.9

and with the highest alignment threshold 1.0.

These results suggest that increasing the alignment threshold over 1.0 might

provide better results. This searches for notes outwith the time they should

occur according to tempo estimates. However, the static alignment matcher

will also search outwith these ranges. Therefore, figure 3.36 displays the results

of analysis at a range of alignment thresholds from 1.1 to 2.0 and at unalignment

thresholds 0.2 and 0.5.

When the alignment threshold is raised above 1.0, the voice independent

matcher now performs similarly to the static alignment matcher. The optimum

error rate occurs at unalignment threshold of 0.2 and alignment thresholds of

1.5 & 1.6. Th

117

 10.5

 11

 11.5

 12

 12.5

 13

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 0.9

E
rr

or
 (

co
m

bi
ne

d
%

)

Realign threshold

Unalign threshold
0.2
0.5

Figure 3.36: Further results of the voice independent matcher on Chopin excerpt

3.8 Conclusions and further work

This chapter has presented several new methods to improve the process of

matching musical scores to performances of those scores using Dynamic Pro-

gramming. The explanation of the application of Dynamic Programming to

score-performance matching is more detailed than others in previous literature.

There are many subtle differences between various DP matchers, and only with

such a detailed examination can we be sure which method is most suitable to

score-performance matching. This examination highlighted the inadequacies of

the DP method. In light of these inadequacies, the following improvements to

the process of score performance matching have been made:

1. Improved similarity & cost evaluation formulas for grid population (sec-

tion 3.3.2).

2. An new algorithm for clustering performance notes prior to DP matching

based on score & performance analysis (section 3.3.1).

3. An algorithm for removing false positive matches from a DP evaluation.

4. An improved algorithm for aligning new matches after DP evaluation.

118

5. A voice-independent unalignment/realigning matcher which improves per-

formance on polyrhythmic pieces.

Previous matching systems have all relied on static, time-based thresholds

to cluster notes into chords (Dannenberg [17], Hoshishiba[40]).The dynamic

matcher is the first score-performance matcher known to the author to use score

information to dynamically adjust the parameters of the matching process. This

information is used in the process of clustering performance notes into chords,

which significantly increases performance and resistance to pathological errors.

Without this information, the clustering process is unable to adapt to fluctua-

tions in tempo or changes in the density of notes within the score. The tests

on artificially generated performances (section 3.6.1) and those conducted on

real performances (section 3.7.1) demonstrated that dynamic clustering vastly

improves the performance of the matching process.

The analyses of real performances (figures 3.28 & 3.30) tested a range of

clustering thresholds. In the case of Shostakovitch, the error rate dropped by

over 50% when using dynamic matching as opposed to static matching. In

the Chopin excerpt, the error only improved by 7%. However, the Chopin

excerpt was chosen because the polyrhythmic nature of the piece posed con-

siderable difficulty to the DP matching process. The performance of the static

matcher improved as the threshold approached 0 seconds, at which point the

static matcher is not actually matching polyphonically at all.

In both cases, the optimal static threshold was not related to the average

tempo of the piece. Therefore choosing an optimal threshold is extremely dif-

ficult. As discussed, the number of matches identified by an evaluation does

reflect the number of accurate matches. However, this is the only method of

choosing a clustering threshold for static matching.

These tests showed that the dynamic matcher is more robust over a range

of thresholds. It was proposed that a threshold of 0.5 would prove to be a

suitable threshold for most performances. In the small test set this has proven

accurate. The spread of chords is controlled in artificial tests, therefore this can

only be tested on real performance data and more tests will confirm whether

this assertion is accurate.

It was shown in theory that there are certain shortcomings inherent in the

DP matching method and it is incapable of resolving certain situations due to

a lack of temporal information. Hoshishiba’s system [40] is the only example

of a previous matcher which attempts to resolve errors created during the DP

matching process. This system used spline interpolation to attempt to align

new matches in situations where performance notes occur out of sequence in

119

relation to the musical score. The static threshold used to select notes to align

was unable to adapt to changes in tempo and note density during the course

of a performance. Therefore a new method was developed which dynamically

adjusted thresholds based on the instantaneous tempo of the piece and the

properties of the music at that moment as extracted from the score. Tests using

artificially generated performances demonstrated a consistant improvement in

performance using thresholds based on tempo and score information.

The investigation into the inherent shortcomings also demonstrated that cre-

ating new correspondences is not capable of resolving all of the shortcomings of

the DP method. To achieve this, false positive matches must be removed from

the evaluation before searching for correspondences based on temporal informa-

tion. An algorithm using the same techniques as the new algorithm for aligning

new matches was developed. The effect of removing false positive matches be-

fore aligning new matches was tested. Tests on artificial performances showed

that the removal of false positive matches improved the final evaluation across

all tests. The consistency of the performance of the alignment only matcher

across various alignment thresholds demonstrates that without removing false

matches, the effectiveness of searching for new matches is limited.

The method used by Hoshishiba [40] is analogous to the static alignment

matcher which creates new alignments using a static threshold. In tests on real

performances this was tested against the dynamic realignment matcher which

removes false matches and realigns new matches based on dynamic thresholds.

In the tests on Shostakovitch Prelude 5, the static alignment matcher achieved

an error rate of 3.13% whereas the dynamic realignment matcher achieved an

error rate of 0.78%. The analysis of the Chopin excerpt proved less conclusive,

and the dynamic alignment matcher proved only slightly more effective than the

dynamic matcher alone, and significantly less effective than the static alignment

matcher. However, the excerpt is a polyrhythmic piece and there is considerable

difference in timing between the parts for both hands. Therefore a a small

adjustment to the dynamic realignment matcher which analyses voices/hands

separately resulted in an optimal error rate of 10.6%, a 10% decrease compared

to Hoshishiba’s method.

A summary of the optimal performance of all matchers for the Shostakovich

and Chopin examples is shown in figures 3.37 & 3.38 respectively. These show

that the improvements developed and presented in this thesis exhibit improve-

ment over previous methods.

120

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

Static Dyn. Hosh Un/Re

E
rr

or
 (

co
m

bi
ne

d
%

)

Matching method

Unalign threshold

Figure 3.37: Optimal error rates for all matchers tested on Shostakovich Prelude

5

 10

 15

 20

 25

 30

 35

Static Dyn. Hosh Un/Re VI

E
rr

or
 (

co
m

bi
ne

d
%

)

Matching method

Unalign threshold

Figure 3.38: Optimal error rates for all matchers tested on Chopin excerpt

121

Further work

These methods would still benefit from yet further testing. Although the author

is confident of the performance and reliability of the algorithms presented here,

further tests may provide a better understanding of the parameters which are

most likely to achieve a near optimal output based on properties of the piece

such as note density, tempo & score directions.

The results have shown that the number of matches is not an accurate in-

dication of the performance of a matcher. In a practical situation, where the

results will be used to analyse performance issues, the presence of an incorrectly

matched pair can cause the same disturbance in the results of further analyses

as that caused by a missing correspondence.

The interpolation method currently calculate splines once. The performance

may be improved by recalculating the spline after the inclusion/exclusion of each

new/removed match. There are situations where expressive timing have caused

a sequence of notes in one voice to be missed by the DP matching algorithm.

The spline is calculated from the two correct correspondences. Therefore, when

a new correspondence has been found, it could be used to create a more accurate

spline for the analysis of surrounding unmatched notes.

To provide reliable data on which to base further musicological analyses, the

correspondence between the score and the performance should be 100% accu-

rate. To achieve this requires an improvement in the ease and speed with which

correspondences can be evaluated and corrected manually. This can only be

achieved with an adequate tool for visualising correspondences in the context

of the score and the performance. Therefore a tool which displayed the musical

score, the performance data (for example a piano-roll style display as found in

many sequencer applications) and played audio or MIDI synchronously would

greatly increase the ease with which correspondences can be manually assessed

and adjusted. A visualisation such this would also benefit the analysis of per-

formance issues in general.

The improvements in clustering presented in this thesis could be applied to

score-performance following using DP. As it has been shown in the discussion on

the direction of path evaluation (section 3.2.5) a forward path evaluation can

reduce ‘future match’ errors. This requires a reverse grid population routine

which, in the case of score-performance following requires the entire grid to be

calculated each time new performance notes are added. The advancing window

method used to dynamically adjust clustering thresholds removes the necessity

to calculate a grid based on the entire score/performance.

122

Chapter 4

Analysis of microtonal

performance

Microtonal music, where the scale is broken into more than twelve divisions,

or those divisions are different from the normally accepted ones, is usually per-

formed on bespoke instruments such as fretted or keyboard instruments, or

synthesised using software or hardware electronic instruments. Other instru-

ments which do not inherently quantise the pitch of the sound produced require

the performer to use auditory feedback to maintain accurate pitch during per-

formance. This necessitates a knowledge of the intervals and frequencies of

the tuning systems which often combines elements of both sensory and muscle

memory. In the performance of microtonal music, the frequencies which relate

to each pitch and the intervals between these pitches is completely different

to those of the 12 tone equal tempered scale. Therefore, performing microtonal

music demands that the performer ‘retunes’ the ear to cope with vastly different

tunings.

The first stage of the Microtonalism project 1 [31] aimed to investigate

the feasibility of performing microtonal music on conventional instruments and

through singing, and to create tools which might assist in the process of retrain-

ing and rehearsal.

The output of the project included, firstly, a small corpus of pieces written

by Professor Graham Hair (Professor of Music, University of Glasgow; Ad-

junct Professor Australian National University, Canberra & Visiting Profes-

sor Radford University, Virginia) in a 19-tone equal-tempered tuning system

(19ET). These were performed by Ingrid Pearson (Clarinetist, Deputy Director

1Microtonalism Home Page http://www.n-ism.org/Projects/microtonalism.php

123

of Research, Royal College of Music) and Amanda Morrison (Soprano, Scottish

Voices, BBC Singers etc.), and Graham Hair himself. Secondly, a set of soft-

ware tools which assisted in the training and rehearsal process. The first of

these tools, the Rosegarden Codicil2, provided real-time and offline pitch feed-

back within a popular MIDI sequencer application. It is described in Section 4.1.

The second tool, which will be discussed in Section 4.2 is an offline performance

analysis application which uses a novel method of vocal segmentation to pro-

duce a representation of a vocal performance using PML. This provides a more

detailed analysis of the performance and visual feedback in the form of an anno-

tated score. This tool can be further developed to provide profound analytical

information about a vocal performance.

4.1 The Rosegarden Codicil

The Rosegarden Codicil3 is a microtonal rehearsal and training aid integrated

into the powerful and popular open-source MIDI sequencer Rosegarden. Al-

though the dysfunctions of MIDI have been stressed many times in this thesis

(and in many other sources) the use of an audio and MIDI sequencing appli-

cation in this instance offered benefits which outweighed the cost of subverting

some of the standard internal workings of the sequencer. Namely, Rosegarden

offered an engine which performed audio and MIDI recording & playback, and a

graphical notation engine which exceeds most, if not all, comparable sequencers.

However, as with all MIDI sequencers, Rosegarden’s representation of pitch

is heavily influenced by MIDI itself. One of the key design principles in Rosegar-

den is to represent information as closely as possible to the format required for

playback. In an application designed for real-time operation, this is a wor-

thy goal. Unfortunately, this leads to considerable problems when adapting

Rosegarden to accommodate microtonal music. Rosegarden represents pitch as

a combination of MIDI note and accidental. Although it is possible to trans-

form between ‘integer + accidental’ and the note-octave system, and thus both

contain the same information, the notation engine and sequencer engine are

designed purely for traditional 12ET mapping of MIDI integers and pitches i.e.

C3=60, A4=69. To add full support for microtonal notation and MIDI playback

would require considerable development.

The modifications made to Rosegarden include support for further acciden-

tals: semi- and sesqui- (one and a half sharps, or between sharp and double

2http://cmt.gla.ac.uk/website/projects/rosegarden codicil.html
3The name is a mildly tongue-in-cheek adoption of the legal term for an addition or sup-

plement to a will (from the Latin codicillus, ‘little book’).

124

sharp) sharps and flats. However, this support within the core of Rosegarden

is limited to simple editing within the graphical notation editor (the effect of

transpositions or attempted playback on notes which use these accidentals is

stable, but incorrect). The notation editor was modified to include a real-time

pitch tracking widget4 which displays a graph of pitch error (Figure 4.1). Visual

feedback has been shown to aid the learning process when people are develop-

ing pitch accuracy [111]. The widget analyses incoming audio independently of

the main sequencer engine to obtain estimates of the fundamental frequency.

The incoming audio is fed through a ringbuffer which discards the oldest audio

information, ensuring that the frequency estimate uses the most recent frame

possible. Unlike other audio applications such as recording, reducing the latency

is far more important than processing every single audio sample.

These estimates are used to plot a graph of deviation from the target pitch

below the score which is updated during the performance. This provides immedi-

ate feedback to the performer during training or rehearsal, allowing adjustments

to be made during the performance. A screenshot of the real-time tracker in

action can be seen in figure 4.2.

Figure 4.1: Real-time feedback of pitch accuracy in the Rosegarden Codicil

In addition to real-time feedback, a new notation editor window was devel-

oped which analysed a pre-recorded audio segment in the context of the score.

Below the score, a series of graphs represented the deviations from the notated

pitch. Rosegarden allows several audio files to be recorded in a session which

4A widget is a reusable component of a graphical user interface.

125

means that several rehearsals of the same piece can be recorded and compared.

An example session for the post review is in Figure 4.2.

Figure 4.2: Offline review of pitch accuracy in the Rosegarden Codicil

The Codicil is capable of notating and tracking a wide variety of octave-based

tunings5. The only known limitation of the system is the available accidentals,

which effectively limits the maximum number of divisions of the octave to 63.

7 pitch classes × 9 accidentals = 63 pitches maximum

Results

The Codicil was used extensively in the rehearsal of several pieces composed

by Professor Graham Hair. These pieces were performed using combinations

of soprano, clarinet and harmonium. The harmonium consisted of a traditional

MIDI keyboard and a software synthesiser in which each MIDI note was re-tuned

to correspond to the 19ET scale. This resulted in an octave which spanned

19 keys on the keyboard. To aid performance on a standard keyboard, the

scores were translated into ‘scordatura’ or tablature versions of the score. The

scordatura version contained the pitches which corresponded to the correct keys

on the keyboard (as if playing in 12ET) which should be played rather than the

sounding pitch. This means that on the keyboard, there is (at most) one note

which represents the same pitch and key in both tuning systems. Usually this

note was A4 440Hz, however due to the limited range of playable notes enforced

5The following release will support non-octave based tunings.

126

by the size of the MIDI keyboard this was not always possible. The A one

octave above that would be 19 keys higher than A4 rather than 12, therefore in

the scordatura version this pitch would be represented by F♯/G♭. The examples

in Figure 4.3 demonstrate a short excerpt from a piece written in concert pitch,

and scordatura.

� �� �� �� � �� �� �� �� �� ��� �� �� � �� ��� �� �� �
(a) Concert pitch

� � � ��� � �� ��� � � �� � ��� � �
� � � � � ��

(b) Scordatura pitch

Figure 4.3: A chromatic scale in 19-tone equal tempered scale shown both in

actual notation (a) and scordatura notation (b).

4.2 Microtonal Performance Analysis

The Rosegarden Codicil provides real-time feedback of pitch accuracy, and the

facility to record multiple performance to analyse the pitch accuracy offline.

Although this tool was useful and accessible, there were several limitations to its

usage. The process relied on synchronicity with the MIDI sequencer, therefore

the performance had to be in strict metronomic time. Although the sequencer

allows tempo to be adjusted, a performance will never exactly match the attack

and release of notes as they occur in MIDI. A vocal performance cannot change

pitch instantly, and a human performer is unlikely to have the accuracy to make

transitions at exactly the time specified by the MIDI sequencer. Therefore,

artefacts are visible at note transitions. These transitions are expected, and

do not interfere with human visual analysis because we can isolate the steady

section of the note. However, they would affect an analytical assessment of

pitch accuracy. Therefore, it was necessary to develop a tool which provided

a more detailed offline analysis of pitch accuracy, which did not rely on strict

metronomic time. This would allow the analysis of a performance under ‘normal’

performance conditions i.e. it would have the ability to cope with expressive

timing.

For this reason, tools were developed to assist in the analysis of microtonal

127

performance using PML. This consisted of a transcription algorithm specifically

designed for microtonal vocal rehearsal and performance, and tools to assist in

the visualisation of pitch accuracy.

4.2.1 Characteristics of performance in microtonal rehearsal

In the rehearsal situation, singers will often sign melodies without voicing the

lyrics. Singing a constant vowel (typically ‘ah’) as opposed to singing lyrics

prolongs the pitched section of the note which increases the amount of auditory

feedback. Maintaining a constant vocal chamber reduces technical difficulty

and a constant vowel produces a clearer tone increasing the quality of auditory

feedback. The characteristics of a vocal performance in a microtonal rehearsal

situation differ greatly even from the characteristics of rehearsal of standard

repertoire. Analysis of vocal rehearsal as part of the Microtonalism project has

shown that the average pitch of notes can be very inaccurate. This is to be

expected, even in highly trained professionals who have perfect pitch. Also it

is common for the frequency trajectory of individual notes to be very unstable.

This is due to adjustments the performer makes to correct the pitch in real-time.

These adjustments are usually as a result of either an analysis of the harmony

between their performance and the accompaniment. The use of visual feedback

regarding pitch accuracy exacerbates this problem.

4.2.2 Vocal Segmentation algorithm

There are a plethora of transcription or algorithms available in academia and

commercially. Typically these transcription algorithms can be described as three

processes: feature analysis, segmentation & quantisation [4, 53]. The algorithm

presented here is a segmentation algorithm rather than a transcription algo-

rithm. In other words, the algorithm is designed to segment a performance

according to certain criteria. This algorithm is intended to be used to iden-

tify the regions of stationary pitch within performed notes, for the purposes

of analysing pitch accuracy. Although this is similar in many respects to the

first two stages of automatic segmentation, there are very important differences.

This application does not require an exact onset which corresponds to the be-

ginning of the note (whether that refers to the perceptual onset or the physical

onset). Notes consist of unpitched sections, often within the attack of the note

which should be considered when identifying the onset of a note. However, these

sections are disregarded when identifying notes solely on the basis of frequency.

Additionally, within the context of microtonal rehearsal, many of the reliable

128

cues used for automatic transcription, or other types of segmentation algorithm

are missing. The two most important cues used in transcription are pitch and

dynamics. In vocal performance, it is very common for this dynamic information

to be absent from note transitions. Performances are often sung legato where

the transition between notes is only indicated by a change in pitch rather than

dynamics. Therefore, an application which aims to transcribe vocal performance

within a rehearsal environment must be capable of detecting transitions between

notes solely on the basis of pitch information.

Unfortunately, in the context of microtonal rehearsal, pitch is also not as

reliable as it is in the transcription of standard repertoire. As explained in

Section 4.2.1, the pitch of a note is likely to be very inaccurate, and possibly

very unstable. There are two common methods of identifying note transitions

using only pitch information. The first, rather simple method, identifies transi-

tions between notes at the boundaries between different pitches. This method

effectively quantises the trajectory of frequency values into a sequence of pitch

values, or scale intervals. This is often used in simple monophonic transcription

routines such as those used to convert audio files into MIDI data.

The algorithm of Weihs and Ligges [110] uses such a method. The frequency

trajectory is initially quantised to obtain a sequence of pitches. This ‘pitch’

trajectory is then smoothed to suppress vibrato. The resulting list of pitch

values is then segmented and quantised in time to produce a transcription.

This method is only of use in the segmentation of accurate performances. For

example, if the frequency trajectory of a note crosses a pitch boundary, the note

will be segmented into two separate notes rather than one (extremely out-of-

tune) note. Furthermore, it discards the actual frequency information which is

necessary in the analysis of pitch accuracy, or intonation.

The second cue for detecting note transitions based on pitch is the pitch

gradient. However, vocal performance often contains vibrato which results in

continuous oscillation in the derivative of the frequency trajectory. This vi-

brato must be suppressed to detect transitions between notes. Rossignol et al

[86] describe several methods for the detection and quantification of vibrato in

musical performance based on spectral modelling, spectral envelope distortion,

auto regressive prediction and a method based on the analysis of maxima and

minima in the vibrato. Those based on the spectrum of the signal, rather than

the frequency trajectory will be affected by the presence of other instruments

in the recording, whereas those based on the frequency trajectory (the latter

three methods) can be applied to the output of any transcription algorithm.

Of all the methods, the most promising method appears to be the maxima-

129

minima based method, though it has yet to be tested in the current application.

This method first detects the maxima and minima of the frequency trajectory.

Interpolation is then used to determine the two trajectories which follow the

maxima and minima points independently. This method allows properties of

the vibrato to be analysed such as frequency and amplitude. The geometric

mean of the two calculated trajectories also predicts a frequency trajectory for

the performance with the vibrato suppressed. This was used in a system for

feature extraction and acoustic segmentation [85]. This system combined a

speech/singing/noise discriminator optionally followed by the aforementioned

vibrato suppression (for musical segmentation) and a multi agent segmentation

algorithm. The segmentation algorithm comprised algorithms analysing 9 fea-

tures including derivatives of frequency trajectory and energy, inharmonicity, a

voicing coefficient, probabilistic pitch transition and AR modelling.

McNab et al [53] presented an automatic transcription system developed

and used in applications requiring vocal transcription. The system describes an

algorithm which segments vocal frequency trajectories. The system advances

a window of analysis through the frequency trajectory. When a segment has

been found of length 100ms in which all frequency estimates are within 50 cents

of the mean frequency of the window, the segment is assumed to correspond

to a note. The boundaries of the segment may then be extended as long as

the previous criteria holds true. In many ways, this algorithm could be easily

adopted to microtonal use. The threshold of ± 50 cents relates to the smallest

interval in 12ET. This could be adjusted for each microtonal tuning. Also, the

threshold is based on the mean frequency of the segment, which means that the

algorithm is to some degree less affected by notes which are performed out of

tune. In fact, the paper mentions the application of the system to transcribing

just and Pythagorean tuning, though there is no mention of any changes to

the thresholds for that purpose. However, the algorithm seems to have little

accuracy in identifying steady portions of a note. Indeed, the algorithm identifies

a glissandi as a series of segments which is contrary to the requirements of both

microtonal rehearsal and automatic transcription.

4.2.3 Method

The piecewise linear segmentation algorithm can be subdivided into three stages:

1. Fundamental Frequency Estimation

2. Preliminary Onset & Endpoint Detection

3. Onset & Offset Localisation

130

Fundamental Frequency Estimation

The pitch detection stage analyses the audio stream producing a list of frequency

estimates. The pitch detection algorithm is a two stage algorithm based on

the autocorrelation method which, during the use of the Rosegarden Codicil,

was found to give more stable results for the analysis of soprano voice over

other simple methods such as the Harmonic Product Spectrum (HPS) [90]. The

autocorrelation is calculated using the Weiner Kinchen theorem (below), which

for real-valued functions allows the auto-correlation to be calculated using the

Fast Fourier Transform (FFT). It states that the autocorrelation of the time

domain signal is equal to the Fourier Transform of the power spectrum S(f) of

the signal. The initial estimate of fundamental frequency is estimated at the

maximum value in the autocorrelation function after the initial peak at τ = 0.

R(τ) =

∫

−∞

∞

S(f)ej2πτ df

The second stage performs a localisation of the fundamental frequency by

analysing the phase difference between successive FFT frames. The phase dif-

ference between successive frames allows the frequency of the partial within

that bin to be localised within the bandwidth of the FFT bin as long as it is

the only partial present in that bin [23]. The calculation of the autocorrelation

in the first stage means that the FFT data is already available from previous

calculations. When there is no distinguishable peak, the frame is labelled as

un-pitched.

Initial onset & endpoint detection

The second stage searches the pitch trajectory to determine initial estimates of

note onsets and offsets. The frequency trajectory is first converted into cents

to remove non-linearity. The algorithm then proceeds to search for onsets &

offsets based on gradient. To avoid the false detection of offset and onsets, any

vibrato must be suppressed. The algorithm iterates through the pitch trajectory

calculating for each analysis window, an average gradient. The average gradient

was calculated using a method of linear regression. This provides a ‘line-of-best-

fit’ (LOBF) which represents an average linear trajectory which minimises the

error using the least squares method between a point and the closest point to

it on the line for all points in the analysis window.

The frequency trajectory was analysed with a window step of 256 samples

and a sampling rate of 44100kHz. The onsets and endpoints were detected

based on a threshold gradient of 77.5 cents per second analysing the frequency

131

trajectory with a line which spanned 100 frequency estimates. These values were

also chosen through qualitative assessment, using performances of the 19ET

pieces composed by Professor Graham Hair. A purely scientific examination

of how pitch gradient relates to how humans segment music would require an

in-depth psychological study. This should also include an investigation of the

effect microtonal tunings have on pitch segmentation. This is beyond the scope

of this project, therefore a qualitative assessment must suffice until such work

has beecarried out.

When the gradient of the LOBF fell below the threshold, an onset was

recorded at the beginning of the analysis frame. Conversely, when the gradient

rose above the threshold, an offset was recorded at the end of that frame. This

ensured that the recorded onset was consistently judged to be before the appar-

ent onset of a note, and the recorded offset was consistently judged to be later

than that of the actual offset.

Localisation of note boundaries

To localise the onset and endpoint points of each note, note candidates are

created based on the initial onset and endpoints discovered in the previous stage.

The localisation process also relies on linear regression and each note candidate

is represented by a LOBF which is calculated based on each point in the pitch

trajectory which lies within the onset and endpoint points. Localisation was an

iterative procedure which followed the steps below.

1. The error for a candidate note is calculated between a frequency estimate

and the closest point on the candidate line to that estimate. The error is

calculated using the least squares method.

2. The LOBF and subsequent error is calculated for the case where the last

point is removed from the original set.

3. The LOBF and subsequent error is calculated for the case where the first

point is removed from the original set.

4. If the removal of neither of these two points result in a decrease in the

error of the line, the process is halted.

5. Otherwise, the point which caused the greatest decrease in error is re-

moved.

6. This process is repeated until the potential decrease in error, as a fraction

of the current error, is less than an arbitrary limit.

132

It is essential in the above procedure that the boundaries of the initial can-

didate are ‘overestimated’. Due to the periodic nature of vibrato, there will

be numerous sets of boundaries at which the error will exhibit a local min-

ima. Therefore, the localisation must be performed using regression rather than

extrapolation.

Appendix B shows the results of localisation. The diagrams show the anal-

ysis of the second phrase of Ash by Graham Hair which extends from bar 4

to the final A in bar 5 (see Figure 4.4). The initial candidate for each note is

represented by a blue line and the final candidate after regression is indicated

by the green line. Each unit on the y axis represents an interval of 63.158 cents

(one chromatic step in 19ET) where 0 represents A=440Hz.

� ��� � ��� �� � � ���� ��
3

� � � �� ��
4
3

4

Figure 4.4: Bars 4 & 5 of Ash composed by Graham Hair. The second phrase

of the piece is indicated.

In some instances, two notes were incorrectly analysed as one continuous

note. This occurred only in instances where the notes are just one hyperchro-

matic step apart, and the transition between the note is unclear. In these

instances, the trajectory of the individual notes tends towards the contour of

the phrase at that point. For example, the example in figure 4.6 shows two

notes which have been incorrectly identified as a single note. The trajectory of

the notes is steadily rising which obscures the transition by reducing the size

of the transition. These two notes occur in bar 6 (Figure 4.5) within a run of

five notes each one hyperchromatic step above the other. Repeated rising or

falling hyperchromatic steps often proved to be the most difficult passages for

the performers. Also, in tunings with more divisions of the octave, the transition

between notes will obviously be less clear than those with fewer divisions of the

octave. Therefore, the threshold could be adjusted according to the tuning to

achieve optimal performance. Tunings with larger intervals could afford a more

liberal threshold, whereas tunings with smaller intervals will require a tighter

threshold.

To reduce the number of incorrectly merged notes, notes whose trajectory

spanned more than a threshold were split into two separate notes. The notes

were split by finding the point within the original note’s duration where the

magnitude of the gradient was highest. At this point the line was split into two

133

�
4
3

6 �� � �� �� � � �� ��� � ��

Figure 4.5: Bar 6 of Ash composed by Graham Hair. The bracket indicates the

consecutive rising chromatic steps.

Figure 4.6: An example of the note splitting process. The blue line represents

the original note candidate. The two green lines represent the two new candi-

dates following the splitting process.

lines, and each line was regressed independently.

The ranges of some individual notes was found to be greater than that of

some of the merged notes. Therefore, choosing the optimal threshold was a

compromise between correcting the most errors and breaking the fewest correct

identifications. In the course of this project, this threshold was found to be 0.8

of a 19ET semitone. However, the optimal threshold will be determined by the

tuning system. In tuning systems with larger intervals, this process may even

be ignored completely, as the note transitions should be clearer.

4.2.4 Results

To assess the performance of the segmentation algorithm, the output was tested

against manual segmentations of the performance. Three listeners were asked to

manually segment a performance using the Audacity audio editor [3]. The indi-

134

viduals were to identify segments which exhibited a steady pitch. The onset and

endpoint of each segment were determined by repeatedly auditioning a segment

and adjusting the start and endpoint. The listeners performed segmentation

without the use of the score. All of the test subjects were competent musicians.

However, a comparison of the results shows that even human listeners have

difficulty in segmenting a performance in a microtonal rehearsal situation.

There were two situations where the human segmentations disagreed. In

the first situation, a fluctuation in pitch during a transition (which did not

correspond to notes in the score) was judged by one listener to contain two very

short notes, whereas the other two listeners judged the fluctuation to be too

unstable to correspond to notes. The algorithm identified one segment within

this fluctuation.

At the second point of dispute, two listeners judged one note to be two

distinct notes. The remaining listener and the algorithm both identified one

segment at this point. Besides these cases, the algorithm identified three extra

segments, and failed to identify one segment. This section corresponded to one

single note within the score. There is a discernable change in pitch, although

whether this this change is sufficient to constitute two separate notes is obvi-

ously contentious. To allow comparison across all subjects, the segments which

corresponded to disputed sections were removed from the calculations in every

segmentation list.

The mean absolute deviation across all common onsets and endpoints iden-

tified by the human listeners was 0.016 seconds and the maximum deviation

found was 0.173 seconds. The mean absolute deviation of the algorithm’s esti-

mated times from the average human estimated time was 0.076 seconds, with

a maximum at 1.2 seconds. Excluding this abnormality, caused by an extra

segment which was removed from calculations, the maximum deviation is 0.720

seconds, and the mean absolute deviation is 0.072 seconds.

This is not considered to be a conclusive evaluation of the performance of

such an algorithm. The listeners reported difficulty in discriminating segments

based solely on pitch. They found difficulty in distinguishing the exact location

of deviations in pitch in the presence of the deviations of other audible qualities

such as timbre and dynamics. The graphical representation of audio information

at the resolutions required for such a task also includes visual cues which may

accompany a change in dynamics, pitch or timbre. The process of isolating

an audio segment may also have psychoacoustic effects caused by removing the

surrounding context.

However, where human segmentations agreed on the macro scale, the devi-

135

ation across listeners was actually quite low. The difference between how the

performance was segmented i.e. which notes occurred rather than their exact

times, demonstrates the difficulty of the task. The definition of a ‘correct’ seg-

mentation in this context is difficult to determine.

A conclusive study would involve a psychoacoustic investigation of exactly

where the perceived onsets and endpoint occur in passages which exhibit both

vibrato and legato, and would certainly contain considerably more performances

and listeners. Such a detailed analysis is outwith the scope of this study.

However, the aim of this project was not to perform accurate transcription.

Rather, the aim of this project was to create a tool which would provide accurate

analysis of performed pitch. An analysis of only the onsets showed that the

algorithm’s estimated onsets exhibited a mean deviation of 0.02 seconds from the

average human predicted onset. The same comparison regarding the endpoints

show a mean deviation of -0.06 seconds. Thus, the algorithm has a tendency

to shorten the boundaries of note candidates at both ends. This conservative

estimation of the boundaries of a note is desirable for segmentation for the

purpose of analysing pitch accuracy because the aim is to find the steady section

of a note rather than the perceptual onset and endpoints.

The results of the performance analysis were recorded in PML, along with

the score. The matching algorithm of Chapter 3 was used to link the notes

in the performance to their corresponding score notes. Using this information,

an annotated score can be generated which provides a simple visualisation of

pitch accuracy. Figure 4.7 shows a score annotated with pitch error. Where a

performance note correctly corresponds to a note in the score, the performance

accuracy is denoted above the score. The bars represent pitch accuracy plotted

in the range +/- 31.579 cents (one 19th of an octave).

Notes which do not have a corresponding note in the performance are dis-

played with red noteheads. As can be seen in the score, there are two sections

where there are a significant number of wrong notes: bars & 9 and the final

three bars in the performance. These sections are caused by pitch drift, where

the performer has gradually lost her tonal reference. This has been identified as

one of the main problems of microtonal rehearsal, as both the intervals them-

selves have changed, but also, in the case of 19ET at least, only A remains at

the same frequency. All other intervals other than the octave are different from

the 12ET system. Therefore the performer has few familiar references.

136

Figure 4.7: Annotated score displaying the deviation from exact frequency in a

performance of the soprano part of Ash (composer Prof. Graham Hair).

4.2.5 Conclusions

Two tools have been successfully developed in the course of this project. The

first is an easy-to-use microtonal rehearsal aid which provides real-time and

post-performance feedback regarding pitch accuracy within an existing software

sequencer application. The second tool provides feedback regarding pitch ac-

curacy without requiring strict metronomical time which uses the technologies

described in Chapters 2 & 3. The second tool has proven to be accurate with

the small test set with which it was tested, however it would benefit from further

testing. The segmentation algorithm has not been directly tested against other

segmentation algorithms. The segmentation algorithm presented by Rossignol

et al [85] has no test data. The paper which succeeds this paper [83] has results,

but the test data is not specified, so a direct comparison is not possible. In any

case, the aims of the two segmentation algorithms are different, Rossignol et al

were attempting to segment features such as phonemes in addition to changes in

pitch, and the pitch trajectories in that paper do not seem representative of the

microtonal rehearsal situation because the transitions are clear and notes seem

to have a very stable pitch trajectory. Similarly, the transcription algorithm

presented by McNab [53] contains no results to which the current algorithm can

be compared. However, the results of the algorithm here are consistent with

human segmentation.

137

4.2.6 Further work

The algorithm presented here successfully segments a vocal performance for

analysis of pitch accuracy in 19 tone equal temperament. The algorithm is

not restricted to this tuning, however further testing may provide a deeper

understanding of the parameters of the algorithms and improve performance

in other tunings. The gradient threshold should be adjusted depending on the

smallest chromatic interval present in the scale. For example, using 12 tone

equal tempered music, the algorithm could be expected to perform even better

because the higher chromatic interval causes a more pronounced pitch transition.

To improve usability, the algorithm would benefit from integration into a

system which would provide the user with complete control over the analysis

including the ability to select portions of the music and audition the performance

at those points. This is possible immediately using the information within

the PML file, and is awaiting the development of an adequate API for the

representation for musical scores.

A system for the formal analysis of performance would require a rigorous

study of the perceptual aspects, to ascertain exactly where onset and endpoints

are perceived in complex situations involving gradual transitions involving pitch,

vibrato and dynamics. Although this method is resistant to the presence of vi-

brato, the use of the vibrato ‘removal’ algorithm presented by Rossignol et al [86]

may further improve performance and provide further analytical performance

information.

138

Chapter 5

Conclusion

The aim of this work was to provide the framework with which issues relating to

musical performance including the performance process could be investigated.

The minimum amount of information required for this task consists of:

• The musical score

• Performance Markup

• Event-level correspondences between the score and the performance

A computer representation was presented which provided all the prerequi-

sites above. It also provided the framework to allow the representation to be

extended to include new structures within their own, natural hierarchy by pro-

viding relational links between internal structures, and the ability to reference

locations in external files. This allows music to be represented in all it’s man-

ifestations simultaneously and synchronously. The use of existing file formats

such as MusicXML, PCM audio files & GMS gestural files pulls together ex-

isting standards (without excluding new representations) which promotes the

sharing of information and tools within the community. Together with the de-

velopment of an API, this makes the representation immediately usable with

existing tools. The representation is currently under consideration in the effort

to create a standard for the representation of gestural information relating to

musical performance [46, 47] which will include low-level streaming formats in

addition to mid-level representations and high-level descriptions.

A new algorithm has been developed to analyse the event-level correspon-

dences between a performance and a score. This algorithm contains a new

approach to DP-based polyphonic matching and new algorithms for post and

which builds upon the algorithms which preceded it. The new algorithm not

139

only showed an increased accuracy, it also showed an increase in reliability, es-

pecially in the presence of performance error and extreme expressive timing.

This new algorithm complements the representation by allowing the third re-

quirement above to be calculated from the first and second requirement.

The Microtonalism project described in Chapter 4 demonstrates a complete

system in which PML is already being used.1 This project itself presented a

new algorithm for the automatic segmentation of vocal recordings. This al-

gorithm, although aimed specifically for the transcription of vocal recordings

in the context of microtonal rehearsal could prove a useful part in a system

which is aimed towards accurate transcription if combined with analysis of the

psychological aspects of segmentation of continuous pitch trajectories and the

analysis of unpitched sound. The use of the representation and tools in this

project demonstrates that the original aims have been accomplished. However,

to ensure continuing development, it is necessary to foster a community which

will allow the representation to evolve to meet the needs of future projects.

The funded term of the project was successfully completed in February 2007,

however, the project is ongoing in several institutions.

The success of the technologies presented here, and their application in cur-

rent projects has highlighted the necessity for development in the visual presen-

tation of musical information. Although a representation has been developed

which allows various domains of music to be represented and analysed by com-

puter, the application of this technology is still limited by the interface between

the user and the information. The user interface, like the computer representa-

tion, must be capable of representing audio, performance information, analyses

synchronously with the score. This is essential, not only to speed up the process

of creating analyses, or interpreting the results, but also to allow access to mu-

sicians who do not have a background in computing. This requires an open API

which will render a musical score on a computer screen. The example shown in

Figure 2.22 is a small demonstration of how a small amount of information can

be quickly analysed by presenting the information alongside the score. With an

API, the score can be used interactively to feed information into the system.

When such an API exists, complete systems which analyse musical performance

issues can be created.

1Funded by the Arts & Humanities Research Council

140

Appendix A

Performance Markup

Language Annotated DTD

<!-- === -->

<!-- Performance Markup Language DTD -->

<!-- === -->

<!--

Performance Markup Language (PML) DTD

Version 0.1 - 1 Oct 2005

Copyright D McGilvray 2005 - 2006

http://cmt.gla.ac.uk

-->

<!-- Include MusicXML part-wise DTD -->

<!ENTITY % musicxml SYSTEM ’partwise.dtd’ > %musicxml;

<!-- --- -->

<!--

Namespace prefix

The namespace prefix defines the namespace prefix

for all elements defined within the PML DTD. This

can be redeclared to change the prefix of all elements

to ensure compatibility with other namespaces.

141

-->

<!ENTITY % nsp ’pml:’ >

<!--

Name entities

The namespace prefix must be combined with a

tag name within an entity. This also permits the

renaming of elements’ tag names if required.

-->

<!ENTITY % n.pml ’%nsp;pml’ >

<!ENTITY % n.performance ’%nsp;performance’ >

<!ENTITY % n.perfpart ’%nsp;perfpart’ >

<!ENTITY % n.event ’%nsp;event’ >

<!ENTITY % n.onset ’%nsp;onset’ >

<!ENTITY % n.offset ’%nsp;offset’ >

<!ENTITY % n.midi ’%nsp;midi’ >

<!ENTITY % atime ’%nsp;atime’ >

<!ENTITY % n.freq ’%nsp;freq’ >

<!ENTITY % n.align ’%nsp;align’ >

<!ENTITY % n.wavres ’%nsp;wavres’ >

<!ENTITY % n.wavref ’%nsp;wavref’ >

<!ENTITY % n.tuning ’%nsp;tuning’ >

<!ENTITY % n.refpitch ’%nsp;refpitch’ >

<!ENTITY % n.midiref ’%nsp;midiref’ >

<!ENTITY % n.rootpitch ’%nsp;rootpitch’ >

<!ENTITY % n.intervallist ’%nsp;intervallist’ >

<!ENTITY % n.interval ’%nsp;interval’ >

<!ENTITY % n.spellinglist ’%nsp;spellinglist’ >

<!ENTITY % n.enharmequiv ’%nsp;enharmequiv’ >

<!ENTITY % n.pitch ’%nsp;pitch’ >

<!ENTITY % n.pml ’%nsp;pml’ >

<!-- ----------------- Basic Structure ----------------------------- -->

<!ELEMENT %n.pml; (%n.score-partwise;,

%n.performance;) >

142

<!-- Contains Performance parts, external resources

and tuning (if not 12ET) -->

<!ELEMENT %n.performance; (%n.tuning;?,

%n.extres;*,

%n.perfpart;*) >

<!-- Performance part -->

<!-- Contains performance events relating to one score part. -->

<!ELEMENT %n.perfpart; (%n.scorepartref*,

%n.event*) >

<!-- ----------------- Primitives ---------------------------------- -->

<!-- Absolute time (seconds) -->

<!ELEMENT %atime; (#PCDATA) >

<!-- Midi number -->

<!ELEMENT %midi; (#PCDATA) >

<!-- Frequency in Hertz -->

<!ELEMENT %freq; (#PCDATA) >

<!-- 2DO: extend acc list -->

<!ENTITY % accidentals ’(Sharp | Flat | DoubleSharp | DoubleFlat)’>

<!ENTITY % pitchclasses ’(A|B|C|D|E|F|G) ’ >

<!-- pitch -->

<!ELEMENT %n.pitch; EMPTY >

<!ATTLIST %n.pitch;

note %pitchclasses; #REQUIRED

acc %accidentals; #IMPLIED

octave CDATA #REQUIRED >

<!-- --- -->

143

<!-- Event -->

<!-- Describes a performance artifact (Eg. a

note). -->

<!ELEMENT %n.event; (%n.onset;,

%n.offset;,

%n.freq;?,

%n.pitch;?,

%n.midi;?

%n.align;?) >

<!ATTLIST %n.event;

id ID #REQUIRED >

<!-- Links a performance event to a score item. The repeat

attribute is used to distinguish between different

occurrences of the same note in repeated segments -->

<!ELEMENT %n.align; EMPTY >

<!ATTLIST %n.align;

note IDREF #REQUIRED >

repeat CDATA #IMPLIED >

<!-- Onset and offset time in seconds or

using an external reference -->

<!ELEMENT %n.onset (#PCDATA?, %extref;) >

<!ELEMENT %n.offset (#PCDATA?, %extref;) >

<!-- ----------------Scope--- -->

<!-- The scope element provides a single, convenient method

of defining a reference to one or more objects.

-->

<!ELEMENT %n.from; (%atime;?, %extref;*) >

<!ATTLIST %n.from;

refs IDREFS #IMPLIED >

<!ELEMENT %n.to; (%atime;?, %extref;*) >

144

<!ATTLIST %n.to;

refs IDREFS #IMPLIED >

<!ELEMENT %n.scope (from, to)? >

<!ATTLIST %n.scope;

refs IDREFS #IMPLIED >

<!-- ------------------External References------------------ -->

<!-- External references consist of a declaration of the resource

including its location, an ID for referencing and

default properties for referencing locations within the

resource. These should be defined in the performance element.

An external reference is used to reference a location in an

external resource. It references the resource element by ID

and contains an exact position within that resource

Any implied properties defined in a resource element

provide default values for all reference elements

which reference that resource.

-->

<!-- Parameter entity references for each external file type

Each supported file type must have entries here -->

<!ENTITY % extres ’(n.wavres | n.gmsres)’ >

<!ENTITY % extref ’(n.wavref | n.gmsref)’ >

<!-- WAV audio file -->

<!ELEMENT %n.wavres; EMPTY >

<!ATTLIST %n.wavres;

file ENTITY #REQUIRED

fps CDATA #REQUIRED

channel CDATA #IMPLIED

>

<!ELEMENT %n.wavref; EMPTY >

<!ATTLIST %n.wavref;

145

wavres IDREF #REQUIRED

channel CDATA #IMPLIED

frame CDATA #REQUIRED

>

<!-- GMS gesture file -->

<!ENTITY % n.gmsres ’%nsp;gmsres’ >

<!ELEMENT %n.gmsres; EMPTY >

<!ATTLIST %n.gmsres;

file ENTITY #REQUIRED

fps CDATA #REQUIRED

scene CDATA #IMPLIED

unit CDATA #IMPLIED

channel CDATA #IMPLIED

track CDATA #IMPLIED

>

<!ENTITY % n.gmsref ’%nsp;gmsref’ >

<!ELEMENT %n.gmsref; EMPTY >

<!ATTLIST %n.gmsref;

gmsres IDREF #REQUIRED

scene CDATA #IMPLIED

unit CDATA #IMPLIED

channel CDATA #IMPLIED

track CDATA #IMPLIED

frame CDATA #REQUIRED

>

<!-- -------------- TUNING --------------------------------------- -->

<!-- Defined in the performance element. The ansence of any

portion defaults to standard 12ET concert pitch i.e.

A4 = 440Hz

Midi 60 = C3

Root pitch = C

and typical enharmonic equivalencies -->

146

<!ELEMENT %n.tuning (%refpitch;?,

%midiref;?,

%rootpitch?,

%intervallist;?,

%spellinglist;?) >

<!ATTLIST %n.tuning;

name CDATA #IMPLIED >

<!-- midiref maps MIDI numbers to pitches -->

<!ELEMENT %n.midiref; (%n.pitch;, %n.midi;) >

<!-- refpitch maps a particular pitch to a frequency -->

<!ELEMENT %n.refpitch; (%n.pitch;, %n.freq;) >

<!-- Root pitch assigns a pitch to be the first pitch

in an interval list (i.e. the first interval in the

interval list defines the interval between this pitch

and the pitch next chromatic pitch. This has no effect

on equal tempered tunings

-->

<!ELEMENT %n.rootpitch; (%n.spelling;) >

<!-- The intervals within the tuning are defined as a list

of intervals defined in either cents or an integer ratio

The interval list is used to map frequencies on to the

list of pitches and MIDI numbers using the rootpitch

and refpitch definitions-->

<!ELEMENT %n.intervallist; (%n.interval;+) >

<!ELEMENT %n.interval; (#PCDATA) >

<!-- The notation is defined as a list of equivalent spellings.

This is mapped to a list of integer pitches (like MIDI)

using the midiref

-->

<!ELEMENT %n.spellinglist; (%n.enharmequiv;+) >

<!ELEMENT %n.enharmequiv; (%n.spelling;+) >

147

<!-- A pitch spelling defines a pitch without an octave -->

<!ELEMENT %n.spelling; EMPTY >

<!ATTLIST %n.spelling;

note %pitchclass; #REQUIRED

acc %accidental; #IMPLIED >

148

Appendix B

Vocal Segmentation

Examples

This appendix contains graphs which help to visualise the performance of the

pitch algorithm described in chapter 4. Each graph represents a single note

in the performance. The frequency trajectory is plotted as the deviation from

440Hz in cents against time in the x axis which is measured in frames (the fre-

quency trajectory was analysed using a frame skip of 256 samples at 44100kHz

sample rate). The blue line represents the initial, ‘rough estimate’ of the tra-

jectory of the note. The final estimate is denoted by the green line. The 12

notes represent the section of the piece shown in figure 4.4 (excluding the final

C) which occurs in bars 5 & 6.

149

Figure B.1: Rough (blue) & final (green) estimate of the 1st note using the pitch

trajectory.

Figure B.2: Rough (blue) & final (green) estimate of the 2nd note using the

pitch trajectory.

150

Figure B.3: Rough (blue) & final (green) estimate of the 3rd note using the

pitch trajectory.

Figure B.4: Rough (blue) & final (green) estimate of the 4th note using the

pitch trajectory.

151

Figure B.5: Rough (blue) & final (green) estimate of the 5th note using the

pitch trajectory.

Figure B.6: Rough (blue) & final (green) estimate of the 6th note using the

pitch trajectory.

152

Figure B.7: Rough (blue) & final (green) estimate of the 7th note using the

pitch trajectory.

Figure B.8: Rough (blue) & final (green) estimate of the 8th note using the

pitch trajectory.

153

Figure B.9: Rough (blue) & final (green) estimate of the 9th note using the

pitch trajectory.

Figure B.10: Rough (blue) & final (green) estimate of the 10th note using the

pitch trajectory.

154

Figure B.11: Rough (blue) & final (green) estimate of the 11th note using the

pitch trajectory.

Figure B.12: Rough (blue) & final (green) estimate of the 12th note using the

pitch trajectory.

155

Bibliography

[1] Tellef Kvifte Alexander R. Jensenius, Rolf Inge Gody. Towards a gesture

description interchange format. In Proceedings of the International

Conference on New Interfaces for Musical Expression (NIME), 2006.

[2] MIDI Manufacturers’ Association. Complete midi 1.0 detailed

specification v96.1 (second edition), 2001.

[3] Audacity [computer program]. Home Page:

http://audacity.sourceforge.net/ (accessed 28 October 2007), 2007.

[4] J. Bello, G. Monti, and M. Sandler. Techniques for automatic music

transcription. In International Symposium on Music Information

Retrieval, 2000.

[5] Biovision. Bvh [file format].

http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html.

[6] Joshua J. Bloch and Roger B. Dannenberg. Real-time computer

accompaniment of keyboard performances. In ICMC, pages 279–289,

1985.

[7] David Boersma, Paul & Weenink. Praat: doing phonetics by computer

(version 4.6.12) [computer program]. Home Page:

http://www.praat.org/ (accessed 28 October 2007).

[8] Jered Bolton. Gestural Extraction from Musical Audio Signals. PhD

thesis, University of Glasgow, 2005.

[9] A. R. Brinkman. A binomial representation of pitch for computer

processing of musical data. Music Theory Spectrum, 8:44–57, 1986.

[10] A. R. Brinkman. Representing musical scores for computer analysis.

Journal of Music Theory, 1986.

156

[11] Chris Cannam. Sonic Visualiser [computer program]. Home Page:

www.sonicvisualiser.org (accessed 28 October 2007), 2007.

[12] P. Cano, A. Loscos, and J. Bonada. Score-performance matching using

HMMs. In Proceedings of the ICMC, pages 441–444, Beijing, 1999.

[13] Gerd Castan. Niffml: An xml implementation of the notation

interchange file format. In Walter B. Hewlett and Eleanor

Selfridge-Field, editors, The Virtual Score, chapter 7, pages 103–112.

MIT Press, 2001.

[14] Gerd Castan, Michael Good, and Perry Roland. Extensible markup

language (xml) for music applications: An introduction. In Walter B.

Hewlett and Eleanor Selfridge-Field, editors, The Virtual Score,

chapter 6, pages 95–102. MIT Press, Cambridge, MA, 2001.

[15] Cindy Grande (Tech. Coordinator). Niff Notation Interchange Format

v.6a.3. Available at: http://neume.sourceforge.net/niff/ (accessed 28

October 2007), 1995.

[16] R. Dannenberg. Music understanding by computer. In In IAKTA/LIST

International Workshop on Knowledge Technology in the Arts, pages

41–56, 1993.

[17] Roger B. Dannenberg. An on-line algorithm for real-time

accompaniment. In Proceedings of the ICMC, 1984.

[18] Roger B. Dannenberg. The canon score language. Computer Music

Journal, 1989.

[19] P. Desain and H. Honing. Tempo curves considered harmful.

Contemporary Music Review, 7(2):123–138, 1993.

[20] Peter Desain and Henkjan Honing. Towards a calculus for expressive

timing in music. Computers in Music Research, 3:43–120, 1991.

[21] Norbert Schnell Diemo Schwarz, Nicola Orio. Robust polyphonic midi

score following with hidden markov models. In Proceedings of the

International Computer Music Conference (ICMC), Miami, Florida,

2004.

[22] Simon Dixon. An on-line time warping algorithm for tracking musical

performances. In International Joint Conference on Artificial

Intelligence, 2005.

157

[23] Mark Dolson. The phase vocoder: A tutorial. Computer Music Journal,

10(4):14–27, 1986.

[24] Martha Elliott. Singing in Style: A Guide to Vocal Performance

Practices. Yale University Press, 2006.

[25] Matthieu Evrard, Damien Courouss, Nicolas Castagn, Claude Cadoz,

Jean-Loup Florens, and Annie Luciani. A basic gesture and motion

format for virtual reality multisensory applications. In Proceedings of

GRAPP conference, 2006.

[26] International Organisation for Standardization. Information technology

– hypermedia/time-based structuring language. ISO/IEC 10744:1997,

1997.

[27] Free Software Foundation, Inc. Gnu general public license [software

license]. Available from http://www.gnu.org/, 2007.

[28] Michael Good. Musicxml: An internet-friendly format for sheet music.

In XML 2001 Conference Proceedings, Orlando, FL, December 2001.

[29] Nelson Goodman. Languages of Art. Oxford University Press, London,

1969.

[30] Lorin Grubb and Roger B. Dannenberg. A stochastic method of tracking

a vocal performer. In ICMC, 1997.

[31] Graham Hair, Ingrid Pearson, Amanda Morrison, Nicholas Bailey,

Douglas McGilvray, and Richard Parncutt. The rosegarden codicil:

Rehearsing music in nineteen-tone equal temperament. Scottish Music

Review, 1(1), 2007.

[32] H. Heijink, Desain, H. P., Honing, and W. L. Windsor. Make me a

match: An evaluation of different approaches to score-performance

matching. Computer Music Journal, 2000.

[33] B. Hewlett, Walter. A base-40 number-line representation of musical

pitch notation. Musikometrika, 4:1–14, 1992.

[34] Walter B. Hewlett. Musedata: Multipurpose representation. In Beyond

MIDI: The Handbook of Musical Codes, chapter 27, pages 402–445. MIT

Press, 1997.

158

[35] Keiji Hirata, Kenzi Noike, and Haruhiro Katayose. Proposal for a

performance data format. In Working Notes of IJCAI-03 Workshop on

methods for automatic music performance and their applications in a

public rendering contest, 2003.

[36] Mr. G. Ken Holman. Secretariat manager’s interim report, iso/iec jtc

1/sc 34, 23 May 2006.

[37] H. Honing. Poco: an environment for analysing, modifying, and

generating expression in music., 1990.

[38] H. Hoos, K. Hamel, K. Renz, and J. Kilian. The guido notation format:

A novel approach for adequately representing score-level music.

[39] H. Hoos, K. Hamel, K. Renz, and J. Kilian. Representing score-level

music using the guido music-notation format. In Walter B. Hewlett and

Eleanor Selfridge-Field, editors, The Virtual Score, chapter 5, pages

75–94. MIT Press, 2001.

[40] Takayuki Hoshishiba and Susumu Horioguchi. Improved DP matching

between a musical score and its performance using interpolation.

Acoustical Science and Technology, 22(1):13–19, 2001.

[41] J. Howard. Plaine and easie code: A code for music bibliography. In

E. Selfridge-Field, editor, Beyond MIDI: The Handbook of Musical

Codes, chapter 25, pages 362–371. MIT Press, Cambridge Massachusetts,

1992.

[42] R. B. Hu, N. & Dannenberg. Polyphonic audio matching for score

following and intelligent audio editors. In Procceedings of the ICMC,

2003.

[43] David Huron. A score-based study of musical dynamics in 14 piano

composers. Psychology of Music, 19(1):33–45, 1991.

[44] David Huron. Humdrum and kern: Selective feature encoding. In

E. Selfridge-Field, editor, Beyond MIDI: The Handbook of Musical

Codes, chapter 26, pages 375–398. MIT Press, 1997.

[45] Nicholas J. Bailey Jennifer MacRitchie and Graham Hair. Multi-modal

acquisition of performance parameters for analysis of chopin’s b flat

minor piano sonata finale op.35. In DMRN+1 Workshop, Digital Music

Research Network, 2006.

159

[46] A. R. Jensenius, A. Camurri, N. Castagn, E. Maestre, J. Malloch,

D. McGilvray, D. Schwarz, and M. Wright. The need of formats for

streaming and storing music-related movement and gesture data. In

Proceedings of the ICMC, 2007.

[47] A. R. Jensenius, A. Camurri, N. Castagn, E. Maestre, J. Malloch,

D. McGilvray, D. Schwarz, and M. Wright. A summary of formats for

streaming and storing music-related movement and gesture data. In

Proceedings of the 4th International Conference on Enactive Interfaces

(Accepted), 2007.

[48] Joseph B. Kruskal. An overview of sequence comparison: Time warps,

string edits, and macromolecules. SIAM Review, 25(2):201–237, April

1983.

[49] J. Langner and W. Goebl. Representing expressive performance in

tempo-loudness space, 2002.

[50] E. W. Large. Dynamic programming for the analysis of serial behaviors.

Behavior Research Methods, Instruments, & Computers, 25(2):238–241,

1993.

[51] V. I. Levenshtein. Binary codes capable of correcting deletions,

insertions, and reversals. Cybernetics and Control Theory,

10(8):707–710, 1965.

[52] Alan Marsden. Representing Musical Time: A Temporal-Logic Approach.

Swets & Zeitlinger, 2000.

[53] R. McNab, L. Smith, and I. Witten. Signal processing for melody

transcription. In Proc. 19th Australasian Computer Science Conf., pages

301–307, 1996.

[54] Leonard B. Meyer. Explaining Music. University of California Press,

1973.

[55] F. Richard Moore. The dysfunctions of midi. Computer Music Journal,

12(1), 1988.

[56] Unjung Nam. Pitch distribution in korean court music: Evidence

consistent with tonal hierarchies. Music Perception, 16(2):243–247, 1998.

[57] Tetsuo Sakata Masashi Yamamuro Kazuhiko Kushima Naoko Kosugi,

Yuichi Nishihara. A practical query-by-humming system for a large

160

music database. In Proceedings of the eighth ACM international

conference on Multimedia, pages 333 – 342, 2000.

[58] Dika Newlin. Schoenberg Remembered: Diaries and Recollections.

Pendragon Press, New York, 1923.

[59] Han-Wen Nienhuys and Jan Nieuwenhuizen. Lilypond ... music notation

for everyone. Home Page: http://lilypond.org/web/ (Accessed 28

October 2007), 2007.

[60] Roger B. Dannenberg Ning Hu and George Tzanetakis. Polyphonic

audio matching and alignment for music retrieval. In IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics, 2003.

[61] Network for interdisciplinary studies in science, technology, and music

[network]. Home Page: http://www.n-ism.org (accessed 28 October

2007).

[62] Jonah B. Shifrin Gregory H. Wakefield Norman H. Adams, Marj

A Bartsch. Time series alignment for music information retrieval. In

Prceedings of ISMIR, 2004.

[63] Noteedit v. 2.8.1 [computer program]. Home Page:

http://noteedit.berlios.de/ (accessed 28 October 2007), 2007.

[64] Society of Motion Picture and Television Engineers. Smpte 12m-1999

television, audio & film - time and control code. Available at

http://smpte.org (Accessed 28 October 2007), 1999.

[65] Uche Ogbuji. Principles of xml design: When the order of xml elements

matters [web article]. Available at IBM Developer Works:

http://www.ibm.com/developerworks/xml/library/x-eleord.html

(Accessed 28 October 2007), April 2005.

[66] N Orio and F Déchelle. Score following using spectral analysis and

hidden markov models. In ICMC, Havana, Cuba, 2001.

[67] Caroline Palmer. Anatomy of a performance: Sources of musical

expression. Music Perception, 13(3):433–54, 1996.

[68] Caroline Palmer and Peter Q. Pfordresher. Incremental planning in

sequence production. Psychological Review, 110(4):683–712, 2003.

161

[69] Bryan Pardo and William Birmingham. Modeling form for on-line

following of musical performances. In Proceedings of the Twentieth

National Conference on Artificial Intelligence, 2005.

[70] Travis Pope, Stephen. Object-oriented music representation. Organised

Sound, 1:56–58, 1996.

[71] R. E. Prather. Harmonic analysis from the computer representation of a

musical score. In Communications of the ACM, volume 39, 1996.

[72] Ronald E. Prather and R. Stephen Elliott. Sml: A structured musical

language. Computers and the Humanities, 22(2):137–151, 1988.

[73] M. Puckette. Score following using the sung voice. In Proceedings of the

ICMC, 1995.

[74] Miller Puckette and Corte Lippe. Score following in practice. In

Proceedings of the ICMC, pages 182–185, 1992.

[75] Ashwin Ram, Richard Catrambone, Mark J. Guzdial, Colleen M. Kehoe,

D. Scott McCrickard, and John T. Stasko. Pml: Representing procedural

domains for multimedia presentations. Technical report, GVU, Georgia

Institute of Technology, Georgia Tech, Atlanta, Georgia, 1998.

[76] Christopher Raphael. Automatic segmentation of acoustic musical

signals using hidden markov models. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 21(4):360–370, 1999.

[77] Recordare. Capella professional [computer program]. Home Page:

http://www.recordare.com/capella/capella.html Proceedings of the

ICMC, 2007.

[78] Perry Roland. (Personal Communication dated: 30 May 2006).

[79] Perry Roland. The music encoding initiative (MEI) DTD and the

OCVE. Available at: http://www.lib.virginia.edu/digital/resndev/mei/

(Accessed 28 October 2007).

[80] Perry Roland. Xml4mir: Extensible markup language for music

information retrieval. In ISMIR Proceedings, 2000.

[81] Rosegarden sequencer [computer program]. Retrieved 31 September

2007: http://www.rosegardenmusic.com, 2007.

162

[82] Xavier Roset and Pierre Cointe. Formes: Composition and scheduling of

processes. Computer Music Journal, pages 32–50, 1984.

[83] Rossignol S., Rodet X., Soumagne J., Collette J.-L., and Depalle P.

Automatic characterisation of musical signals: Feature extraction and

temporal segmentation. Journal of New Music Research, 28(4):281–295,

1999.

[84] W. Goebl S. Dixon and G. Widmer. The performance worm: Real time

visualisation of expression based on langner’s tempo-loudness animation.

[85] J. Soumagne J.-L. Collette P. Depalle S. Rossignol, X. Rodet. Feature

extraction and temporal segmentation of acoustic signals. In Proceedings

of the ICMC, 1998.

[86] J. Soumagne X. Rodet J.-L. Collette S. Rossignol, P. Depalle. Vibrato:

Detection, estimation, extraction, modification. In Proceedings Digital

Audio Effects Workshop, 1999.

[87] H. Sakoe and S. Chiba. Dynamic programming algorithm optimisation

for spolen word recognition. In IEEE Transactions on Acoustics, Speech

and Signal processing, volume 26, pages 43–49, 1978.

[88] E. Scheirer. Music-Listening Systems. PhD thesis, MIT Media Lab,

2000.

[89] B. Schottstaedt. Common music notation. In Eleanor Selfridge-Field,

editor, Beyond MIDI: The Handbook of Musical Codes, chapter 16, pages

217–221. MIT Press, 1997.

[90] M. R. Schroeder. Period histogram and product spectrum: New

methods for fundamental-frequency measurement. The Journal of the

Acoustical Society of America, 43(4):835–838, 1968.

[91] Second Hand Songs: a cover songs database. Homepage:

http://www.secondhandsongs.com/, (Accessed 08 July 2007).

[92] Peter Seebach. Standards and specs: The interchange file format (iff)

[web article]. Available at: IBM Developer Works

http://www-128.ibm.com/developerworks/power/library/pa-

spec16/?ca=dgr-lnxw07IFF, June

2006.

163

[93] E. Selfridge-Field. Darms, its dialects and its uses. In E. Selfridge-Field,

editor, Beyond MIDI: The Handbook of Musical Codes, chapter 11, pages

163–172. MIT Press, 1997.

[94] Eleanor Selfridge-Field. The musedata universe: A system of musical

information. In Computing in Musicology 9, chapter 4. MIT Press, 1993.

[95] Eleanor Selfridge-Field. Describing musical information. In Eleanor

Selfridge-Field, editor, Beyond MIDI: The Handbook of Musical Codes,

chapter 1, pages 3–37. MIT Press, 1997.

[96] Donald Sloan. Hytime and standard music description language. In

E. Selfridge-Field, editor, Beyond MIDI: The Handbook of Musical

Codes, chapter 30, pages 469–489. MIT Press, 1997.

[97] Donald Sloan. Learning our lessons from smdl. In MAX 2002 : musical

application using XML, 2002.

[98] Leland Smith. Score. In Beyond MIDI: The Handbook of Musical Codes,

chapter 19, pages 252–282. MIT Press, 1997.

[99] Simon St.Laurent. XML: Elements of Style. McGraw-Hill, 2000.

[100] Motion Lab Systems. C3d [file format]. Home Page:

http://www.c3d.org.

[101] Ichiro Fujinaga Takayuki Hoshishiba, Susumu Horiguchi. Study of

expression and individuality in music performance using normative data

derived from midi recordings of piano music. In Proceedings of the 4th

International Conference on Music Perception and Cognition, pages

465–470, 1996.

[102] Semih Bilgen Uzay Bora, Selmin Tufan. A tool for comparison of piano

performances. Journal of New Music Research, 29(1):85–99, March 2000.

[103] Caroline Palmer & Carla van de Sande. Units of knowledge in musical

performance. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 19(2):457–470, 1993.

[104] Barry Vercoe. The synthetic performer in the context of live

performance. In In Proceedings of the ICMC, pages 199–200, 1984.

[105] Barry Vercoe. The CSound Reference Manual. Addison-Wesley

Publishing Company, 1991.

164

[106] W3C. Extensible markup language (xml) 1.0 (fourth edition).

[107] Chris Walshaw. abc music notation representation. Homepage at:

http://www.walshaw.plus.com/abc/ Accessed 31 August 2007.

[108] M. M. Wanderley. Quantitative analysis of non-obvious performer

gestures. In Gesture and Sign Language in Human-Computer

Interaction, pages 241–253, 2002.

[109] Wedelmusic [computer program]. Home Page:

http://www.wedelmusic.org/ (accessed 28 October 2007), 2007.

[110] C. Weihs and U Ligges. Automatic transcription of singing

performances. In Bulletin of the International Statistical Institute, 54th

Session, pages 507–510, 2003.

[111] Graham F. Welch, D. M. Howard, and C. Rush. Real-time visual

feedback in the development of vocal pitch accuracy in singing.

Psychology of Music, 17:146–157, 1989.

[112] G. Widmer. In search of the Horowitz factor: Interim report on a

musical discovery project, 2002.

[113] Simon Dixon & Gerhard Widmer. Match: A music alignment tool chest.

In Proceedings of the 6th International Conference on Music Information

Retrieval, pages 492–497, 2005.

[114] G. Wiggins, E. Miranda, and M. Harris. Hierarchical music

representation for composition and analysis. Computing and the

Humanities Journal, 1993.

[115] G. Wiggins, E. Miranda, and Harris M. A framework for the evaluation

of music representation systems. Computer Music Journal, Vol. 17,

No.3, 1993.

[116] G. Wiggins, E. Miranda, and Harris M. Music representation - between

the musician and the computer. In World Conference on AI and

Education workshop on Music Education, 1993.

[117] Geraint A. Wiggins. Computer-representation of music in the research

environment.

[118] Matthew Wright, Amar Chaudhary, Adrian Freed, and David Wessel.

New applications of the sound description interchange format. In

Proceedings of the ICMC, 1998.

165

[119] xml2ly [computer program]. Home Page:

http://www.nongnu.org/xml2ly/ (accessed 28 October 2007).

166

