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Abstract 

The pigment Roseophilin is a novel antibiotic with a topologically unique skeleton 

incorporating an ansa-bridged l-azafulvene core and an extended conjugated heterocyclic 

chromophore comprising furan and pyrrole moieties. Chapter one discusses the nature of 

this and related products and summarises the major contributions made towards their 

synthesis. Chapter two discusses the possible approaches to this complex natural product 

and outlines the proposed research. The proposed macrocyclisation step, the Nicholas 

reaction, is reviewed in the following chapter. 

The approach to the macrotricyclic core of Roseophilin is discussed in the ensuing 

chapters. Chapter four presents the initial strategy in which the [b ]-fused pyrrole ring is 

constructed, by means of an aldol reaction onto a cyclopentanone frame. 

A second strategy in which the [b ]-fused pyrrole ring is approached via a l,4-dicarbonyl 

compound, involving the synthesis and use of molybdenum electrophiles is discussed in 

chapter five. 

A third and highly convergent strategy is presented in chapter six. This approach starts 

from pyrrole and makes use of the nucleophilicity of the heteroaromatic ring. The progress 

made in the approach to the macrotricyclic core is discussed. The building blocks for the 

isopropyl substituted cyclopentanone ring are introduced via a Knoevenagel 

condensationon 3-formylpyrrole and subsequent copper(I)-catalysed l,4-addition. The 

reactive handle for the intramolecular macrocyclisation is introduced by a Sonogashira 

reaction at the 5-position of pyrrole. Finally the macrocyclisation studies, conclusions and 

perspectives are presented. 
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1.0 Roseophilin 

The pigment Roseophilin 1 was isolated from Streptomyces griseoviridis by Seto et al. in 

1992.' It is a novel antibiotic with a topologique unique skeleton incorporating an ansa­

bridged l-azafulvene core and an extended conjugated heterocyclic chromophore 

comprising furan and pyrrole moieties. 

Roseophilin 

Roseophilin exhibits very promising cytotoxicity in vitro towards K562 human erythroid 

leukaemia (ICso 0.15 ,uglmL) and KB human epidermoid carcinoma (lCso 0.40 ,uglmL) cell 

lines.' The cytotoxicity is believed to originate from the conjugated heterocyclic ring 

system which may intercalate with DNA. These preliminary reports render Roseophilin a 

new lead structure in the search for anti-cancer agents while the intricate macrotricyclic 

core offers an attractive target for total synthesis. 

1.1 The "Prodiginine" antibiotics 

Roseophilin is a close structural relative to the "prodiginine" antibiotics of which the 

parent compound Prodigiosin 2 was first reported in 1934 (Figure 1). The "prodiginine" 
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antibiotics, produced by a retricted group of eubacteria and actinomyces, possess a deeply 

red-coloured characteristic pyrrolylpyrromethene chromophore. The red apparence of 

Serratia marescens and related bacteria, due to the production of prodigiosin-type 

metabolites, forms the basis of the 'bleeding host' which occurred rater frequently during 

the middle ages.2 Although numerous reports on the antimicrobial, cytotoxic and 

antimalarial activity of these compounds can be found in the literature, clinical applications 

have been prevented by their fairly high toxicity.3. 4 However, a recent report showed that 

some members of this series, in particular Undecylprodigiosin 5 and Streptorubin B 11 

inhibit T-cell proliferation at doses which are not cytotoxic.5
.
7 Undecylprodigiosin 5 

appears to exert its immunomodulating properties with a mechanism of action which is 

distinctly different from that of Cyclosporin A, FK506 and Rapamycin.g Since the 

availability of agents acting at different stages along the T-cell activation pathway may 

improve therapeutic results, the prodigines constitute important lead compounds in the 

search for supplemetary drugs to prevent allograft rejection. 

Synthetic approaches to Prodigiosin9 and related antibiotics 1o
•

14 have been dominated by 

the work of Wasserman et al. More recently the synthesis of the biologically promising 

Undecylprodigiosin15 and Streptorubin B16 have been achieved. 
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Me Rt R1 R2 R3 

3 H H H 
4 OH CSH11 Me 
5 OMe H C11 H23 

NH 6 OMe H C9H19 

2 Prodiogiosin 3 Prodiogiosene 
4 Norprodigiosin 
5 Undecylprodigiosin 
6 Nonylprodigiosin 

Me 
Me Me 

7 Cyclic nonylprodigiosin 8 Cycloprodigiosin 9 Metacycloprodigiosin 

Me 

10 11 Streptorubin B 

Figure 1 - The "prodigine" antibiotics 

The structural similarities in the meta-bridged heterocyclic entities of azafulvenes 5 and 11 

and Roseophilin are apparent, which reinforces the theory that Roseophilin is a new lead 

structure in the search for anti-cancer agents. 

1.2 Synthetic approaches to Roseophilin 
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Considerable efforts have been directed towards the synthesis of Roseophilin 1 since its 

structure was first disclosed in 1992. As Roseophilin 1 incorporates an azafulvene 

chromophore it may be formed by the condensation of a ketopyrrole fragment 13 with the 

appropriately substituted heterocyclic side chain 12 (Scheme 1). Model reactions carried 

out by Terashima et al. corroborate the viability of this approach.17 Acid-catalysed 

reactions of 12 (R I = Ts) with simple 2-acyclpyrroles lead to the desired chromophore, 

albeit in rather low yields. 

===> 

13 

Scheme 1 

Terashima's elegant approach to the conjugated heterobiaryl moiety 12, the first published 

approach to 1, is outlined below (Scheme 2).17 

CI rl-· (a) MeMgBr, THF, 84% 
~ '?'-CHO 

I 
R 14 

(b) Dess-Martin periodlnane 
CH2CI 2 ,95% 

TsCI, Et3N [a R = H 
MeCN, 98% b R = Ts 

Ifi.CI 

~~OTHP 
Ts 0 0 16 

CSA, MaOH, 76% 
~ 

CI 

~M. 
Ts 0 15 

[~l Ts 17 

Scheme 2 

(c) LDA, THPOCH2CHO 
THF, -78°C, 54% 

(d) Dess-Martin period inane 
CH2CI2,60% 

~ 

flf..
C1 

flf..
oMe 

~~; - I 
R 18 
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Terashima's subsequent approach to the racemic macrotricyclic core 13 of Roseophilin 

(Scheme 3) published in 1998 constituted a formal total synthesis of 1.18 The synthesis 

starts from pyrrole and relies on the nucleophilicity of the "n-excessive" heterocycle to 

introduce functionality to the ring via Vilsmeier formylation at the 3- and 2-position 

respectively. 

OH~ 

i{) 
Py, 70 ·C, 70% 

H 19 

(a) POCI 3, DMF, O·C -+ rt 
~ 

(b) AeONa, H 20, 60 ·C, 96% 

23 Boc 

cis:trans = ca. 3:1 

CS2C03 DMF, 80 ·C, 38% .. 

26 

PriMgBr, THF ::~ 
-78 ·C, 81% 

21 H 

(c) Boc 20, DMAP, MeCN, rt, 80% 

(d) TrO(CH 2hP·Ph3Br", NaHMDS 
THF, -78·C -+ rt,88% 

(e) p-TsOH, CHCIa-MeOH (2:1), rt Me02 

(I) MsCl, DMAP, Py, rt 
(g) Nal, acetone, A,81% 

25 

(m) BuLi, THF-HMPA, (10:1) 
-78 ·C, 39% 

(n) NaCN,DMSO-H 20, (10:1) 
140 ·C, 81% 

Scheme 3 

24 Boe 

(i) H2 (1 atm), 10% Pd-C, PhMe, rt, 90% 
(j) TFA, CH 2CI2' rt 

(k) PyHBroBr 2' THF, -78 ·C 
(I) Boc 20, DMAP, MeCN, rt, 63% 
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A notable aspect of this synthesis is the introduction of a cis double bond a to the pyrrole 

in order to bring the reactive sites into closer proximity for the macrocyclisation. The 

linear side chain was incorporated via Wittig olefination which yielded a 3 : 1 preference of 

the desired cis isomer. Terashima found this mixture of Wittig products to be "hardly 

separable" and they were carried through without separation. The macrocyclisation was 

achieved in moderate yield under diluted conditions (5 mM) to give the cis-olefinic 

macrocycle as the sole product. When the dihydroderivative of 24 was used in the 

macrocyclisation only 21 % yield of the cyc1ised product was obtained. This observation 

supports the theory that the cis olefin plays an important role in the macrocyclisation. 

Lithiation of 26 achieved the second cyc1isation step to give the cyclopentanone ring in 

mediocre yield with concomitant cleavage of the Boc protecting group. Subsequent 

decarboxylation under Krapcho conditions conclude the synthesis to give the 

macrotricyclic core of Roseophilin 13 (R2 = H). 

Fuchs et al. disclosed their novel annulation method for the construction of bicyclic 

ketopyrroles as the first approach to the ketopyrrole moiety of Roseophilin 1 in 1996 

(Scheme 4).19 They hoped to extend this strategy to the racemic synthesis of the 

macrotricyclic core of Roseophilin 12, introducing the isopropyl substitutent before 

isomerisation to the allylic isomer with Schwesinger's base and effecting the 

macrocyc1isation by Grubb's ring closing metathesis (ReM). 
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YS02

Ph 

-----­Schwesinger P2-Et .. 
phosphazene base 

yrS02Ph __ _ 
Base ... 0, ~

S02Ph 

._J 
(a)TS~ ... 

MaO 27 

~ 
o 

30 

(a) MsCI, ElaN 

MaO 28 

O'C, 6 h, 74% (dr = c. 1 :1) 

~ 
o Ts 35 

MaO 29 

~ 
o 

31 

NIS, CCI4, 83'C ... 
2.5 h, 93% 

Scheme 4 

MgS04 , EIC02H 
-40'C -4rt 

~ X Ts 

Si02, H20 [ a X = NNMe2 
THF, 55 DC (dr = c. 1 :1) 
2.5 d, 78% b X = 0 

(dr=c.1:1) 

~ 
o Ts 36 

However in a subsequent publication, they failed to construct the desired allylic isomer of 

the isopropyl substituted vinyl sulfone and could only generate a 3 : 1 equilibrium mixture 

in which the desired (labile and inseperable) allyl sulfone constitued the minor 

component.20 

An alternative route to the correctly substituted ketopyrrole was promptly effected in order 

to test the feasibility of the RCM (Scheme 5).20 Aldol condensation of 5-hexenal with the 

ketopyrrole moiety 39 yielded a 2-3 : 1 mixture of unassigned diastereomers. Fuchs had 

planned to remove the undesired hydroxyl substituent before the ReM step. However this 

resulted in unwanted side reactions yielding dimeric products, a result of intermolecular 

RCM, and none of the desired ansa-bridged compound. 
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Studies of the molecular mechanics of the substrates revealed that the bulkier 

triisopropylsilyl derivative has a global minimum with the hexenyl side chain in much 

closer proximity to the requisite butenyl moiety making it a far better substrate for ReM. 

In the event, treatment of a 0.5 mM solution of the (2-3 : 1) mixture of unassigned 

diastereoisomers of 41 with Grubb's catalyst afforded the ansa-bridged silylether as a 

single diastereoisomer in 60% yield. Radical based removal of the xanthate furnished 

racemic 13 (R 2 = H) as a single diastereomer. 

~ 
T6S0TI. (P~hNEt 

• 0' /'-.4-
T-'~ 'V' ~ 

6u'Li, THF, -7SoC 
• 

o Ts 
36 

~ 
T8S0 U+ Ts 38 

P,"I, HMPA, aq.NH.CI 
• 

-7SoC ~ rt, 74% 

T8S0 Ts 
37 

0.0005 M soln. in CH2CI2 
40°C, 25 h 

TlPSCI, AgN03 [ a R = H 
DMF, rt, 15 h 

97%, dr = 2-3:1 b R = TIPS 

EtOH, 10 h, rt 
R~ -····Vr42 

o Ts 

E 
a R=TIPS 

48% HFoCH3CN, rt, 3 h 

b R=H NaH, THF-CS2 (1:1), rt 

5 h, then Mel c R = CS
2
Me 

Ph3SnH (3eq), AIBN 
• 

PhH, 6,2 h 

Scheme 5 

(a) UHMDS, THF, ...oo°C 

(b)~H 
-eO°C ~ -45°C, 95% 

TIPSo-?<-~ -····vr 
o 41 Ts 

(L~ ····Vr13 
o H 
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The first and only enantioselective approach to the macrotricyclic core of Roseophilin 13 

has been disclosed by Hiemstra et al. (Scheme 6).21 Enantiopure 47 is proposed as an 

intermediate for a projected synthesis of 13. The approach relies on the steric hindrance of 

the cis-fused rings to effect a diastereoselective Michael addition to the cyclopentane 47. 

~
2Me 

Ph02 I;i 0 

: N 
H H 

II 43 

(e) 0:3. -78°C, 45 min 
then ME!;!S, -4 rt 

(a) LiOH, THF-H
2
0 Ph02~, 0 

.. : N 
(b) Py, 90°C, 80% H H 

(e) BuLi, -78°C, 2 h 

(d) TsCI, -78°C -4 rt 
65% II 44 

»r.=1;i 0 

, N 
H Ts o 
46 

(g) PriMgCI, Cui. BF300Et2 
THF, -78°C, 2 h 

(h) NH4CI (aq), 72% 

Scheme 6 

.. 
Ph02~ 0 

»r. 
II 45 

-/ 

W\~ 0 

, N 
H Ts o 
47 

dr= 100:1 

In a recent communication Hiemstra et al. have reported the completion of the macrocyclic 

core of Roseophilin, which constitutes a formal total synthesis of the natural product 

(Scheme 7)?2 The macrocyc1isation was achieved by ReM in excellent yield. The phenyl 

sulfone of 52 which is incorporated as a reactive handle for alkylation also populates 

reactive conformers in the macrocyclisation (Thorpe-Ingold effect). The synthesis is 

versatile allowing for either enantiomer of the natural product to be formed. The route may 

also be adapted to produce analogues, particularly in modifying the length of the ansa 

bridge by alkylation of the sulfone of 53 with various alkyl halides. 
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w.~ 0 

: N 
H Ts o 
46 

KHMDS, THF, HMPA 

M(5-<:hloro-2-pyridyt)­

triflimide, -78 "C 

.. 

Cui, SF 3.0Et" Pr'MgCI .. 
THF, -78 "C, 83% 

-{H 
ffi--OTf 

MeO>(t~s 
MeO 

49 

47 

Pd,(dbal,. AsPh, 

CO (20 atm), Et3N, MeCN 

50 "C, 71 % over 2 steps 

TsOH,9B% 

-(H 

MoOffi= 
MeO 

HC(OMeh, MeOH 
.. 

48 

.. 
-J' 

\ ~ (a)DIBAlH, THF, -78 "C 

rn-
~ C02Me .. 

i N (b)PPh3 , imidazole, I" 

Me~eO H Ts Et,O, MeCN, 96% 

50 

HMPA, 95% 

-{H (-tyl 
Meo.>([~S 

.. -J'~\ ~ o Ph - ~ 2 

MeO ~ ~S 

PhSO,Na, DMF (a) BuU, HMPA, THF, -78'C 

(b) l-bromo-hex'5-ene, 65% 

-J' 

~
\~~ 

- "=: 
- N : 

MeO 8 Ts S02P1l 

MeO MeO 

51 

HCI (2N), acetone 

.. 
6O"C,99% 

54 

PhMe, 100 "C, 52% 

(a) NaHMDS, THF, -78 ·C, 71% 

(b) 6% Na(Ho), Na,HPO. 

THF,MeOH,O·C,90o/ • .. 
(c) PtO,. H,. EtOAc. 99% 

MeO 

52 53 

CuB", EtOAc .. 
50·C, 92% 

55 

.. 
CH,CI" 40 ·C, 16 h, 91% 

56 57 

w o H 

13 

Scheme 7 

Of all the approaches to Roseophilin FUrstner et al. have enjoyed the greatest success. 

They were the first in 1997 to disclose a complete synthesis of the N-benzyl protected 
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macrotricyclic core 13a (R2 = Bn) (Scheme 8).23 13a was obtained by means of a novel 

palladium-catalysed manifold for the formation of ansa-pyrroles which proceeds via the 

key intermediates, vinyl oxirane 60 and allyl lactone 64. 

FUrstner's plan was to introduce the macro cyclisation step early in the synthesis, setting a 

framework upon which to construct the ketopyrrole moiety. Their synthesis relies on the 

subtle differences in reactivity between the two allylic precursors 60 and 64 in the 

palladium-catalysed substitution reactions. The first, driven by the release of ring strain in 

the regioselective opening of the vinyl oxirane 60, and the second, with nucleophilic 

benzyl amine delivering the desired pyrrole encoded in the l,4-dioxygen functionality of 

the substrate. The subsequent Michael addition of the isopropyl unit occurred 

diastereoselectively yielding the racemic N-benzyl protected macrotricyclic core. 
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ROnCI 

59 

(a) Nal, acetone, 500 e .. 
(b) tetrahydrothiophene, 

AgBF., acetone, rt,73% 

TBSOnQ BF.-

59 

TBsel, DBU [ 8 R = H 
CH2Q, rt 

90% b R=TBS 

[ 
Br'M:\) 1 
TBSO~O 

TBSO 

.. 

TBSO 
Pd(PPh3). (10 mol%) Pho,m .. 

61 dppe (20 mol%), THF 
tJ.,65% Me02C OTBS 

62 

Dess-Martin periodinane ... 

(c) Bu'Li, THF, -76°C .. 
(d) 9-bromononanal, THF 

-78°e -4 rt, 84% 

KH, DMF, rt, 68% 

TBAF, NH.F .. 
THF, rt, 63% 

Pd(PPh3). (15 mol%) .. PhO'~ CH2CI2, rt, 83% Pho,?fY BnNH2> THF, 35°C, 70% 

o 0 

63 

Pho,919 
S~'?-OH \ 
o Bn 

65 

~ "),JLr 
o Bn 138 

64 

C¥> 
Ph02¥{ SnCI., DCE, 1'1, 76% 

o 6& Bn 

Scheme 8 

prMe2ZnMgCI, Bu'OK .. 
(excess). THF, rt, 51% 

In their ensuing paper FUrstner et al. disclosed their approach to the N-protected 

heterocyclic moieties 18a and 18b (Scheme 9) and completion of the synthesis, the first 

and only total synthesis of Roseophilin 1 (Scheme 10),24 
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r=<oMe 

~cl 67 

CI rl-' 
Me02c-Zt-?-X 

H 69 

Br HOAC[ a X=H 2' 

90% b X= Br 

CI 

(a) NaOH, MeOH,~, 16 h 
(b) TBSCI, imidazole, DMF 

rt,3d .. 
(c) K2C03, MeOH-THF-Hp 

rt, 30 min, 52% 

(d) NaOH, H20 
Cu-chromite, quinoline ... 

(e) TsCl, DMAP, Et3N 
MeCN,62% 

f? MEl<\pMe 
~OTBS 

68 

)=\Me2[ a X=OH 

CI b x = CI 

(f
CI 

'/ \ 
Br 

I 
Ts 70 

(t) BuLi, -78 'C 
(g) ZnCI2 , -78 'C ~ 0 'C 

(h) Pd(PPh3)4 (cat.), 68 
43-61% 

.. 

~OT8S PPTS, MeOH, 55 'C, 76% QJ:j
CI OMe 

'/ \ I ~ .. 
H 0 MeO OMe 

71 

Scheme 9 

I 0 
R 18 

(i) K2C03, MeOH [ a R = Ts 
(j) KH, TIPSCI 

THF, 62% b R = Si(Pr'h 

FOrstner had expected an acid-catalysed condensation of 18a with the ketopyrrole 

derivative to form the desired azafulvene chromophore as suggested by Fuchs' model 

studies. However, these conditions failed in the total synthesis of Roseophilin itself since 

no reaction with the sterically encumbered ketone was observed, while the heterocyclic 

side chain decomposed over long reaction times or more forcing conditions. FOrstner's 

alternative was to generate the highly nucleophilic organocerium derivative 72 (Scheme 

10) despite Terashima's failure to couple lithiated 18a. Lithiation and transmetallation of 

N-TIPS protected ISb gave exclusively the organocerium derivative 72 which coupled 

readily with the N-SEM protected macrotricyclic core 13b to give 73. No coupling 

between 72 and the potassium salt of 13 (R2 = H) could be achieved. The enantiomeric 
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mixture of Roseophilin hydrochloride was seperated by chiral HPLC to provide samples of 

(+)- and (-)-1 for further biological evaluation. 

(}p "vr o 13 R 

(e) Ca, liq. NH3, THF 8 R = Bn 
-30 °C~ rt, 2 h, 50% [ 

(I) KH, SEMCI, DMF, rt b R = SEM 
45 min, 81% 

(g) TBAF, THF, 60 ·C, 40 min .. 
(h) aq. HCI, 76% 

THF, -78 ·C ~ rt, a/n, 62% 

Scheme 10 

CI 

FUrstner has recently published a second generation approach to Roseophilin, based on key 

macrocyclic intermediate 13, which is concise and high-yielding but, most importantly, is 

flexible allowing access to a number of chromophore analogues?5 The second approach 

retains the palladium-catalysed strategy but incorporates ReM to introduce the macrocycle 

(Scheme 11). 
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• 

5·hexenal 
~ 

Bu'Li, 80·C 

RhCI(PPh3h (cat.) .. 
H2, EtCH, 90 % 

13 

(as Scheme 8) 

Scheme 11 

TBSO~ 
74 

[Ru] (cat.) .. 
85% 

Ph~KR 
Me02C OTBS 

78 

Various analogues of 1 were synthesised by this method including 

deschlorodesmethoxyroseophilin 79 and the simplified targets 80-82 (Figure 2). 

CI 

79 80 81 82 

Figure 2 

The most recently reported approach is that of Robertson et al. (Scheme 12).26 Their 

strategy starts from the cyclopentenone derivative 83 and involves a radical 

macrocyclisation to adduct 88. Selective monosilylation in the 5-membered ring with LDA 
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and chlorotrimethylsilane proved to be a challenging task. Only under equlibrating 

conditions was monosilylation achieved with a mixture (3-4 : 1) of the kinetic enol ether 

and the undesired thermodynamic enol ether to give 89. The pyrrole ring of 90 was formed 

via a Paal-Knorr synthesis in the final step with the presumed advantage that the energetic 

drive towards aromaticity would override the ring strain inherent in the formation of the 

tricyclic product. Pyrrole formation was accompanied by unexpected oxidation to afford 

90, the spectroscopic of which exactly matched that reported by Flirstner for his 

ketopyrrole. 

83 

(a) PriMgCI, Cui, LiCI, TMSCI, THF, 96% .. 
(b) MeLi then DMPU, propargyl iodide, THF, 62% 
(c) H2SiF6 , aq.MeCN, 96% 

(r~leCI 

+ 
»:p~ 

o '. 
~OH 

+ 

86 

I (a) Nal, butanone, 88% 
(b) Bu3SnH, AIBN, PhH, 35-50% 

88 

(a) LDA, THF, -50 DC -+ 0 DC 

then TMSCI, 55% .. 
(b) dimethyldioxirane, CH2CI2 

then aq H2SiFe, MeCN, 80"10 

89 

Scheme 12 

.. 
then 5%aq. HCI, 59% 

84 

(a) BnNH2, AcOH, EtOH, 55 DC 

... 
(b) 2M aq.HCI. MeOH,25% 

~\ 
Bn~ 

90 
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The syntheses of Roseophilin 1 described above are varied in their approach. Interestingly 

none of the routes are without problem, the unique structure of the macrotricyclic core has 

been proved to be a formidable challenge. Our approach to this intriguing natural product 

is discussed in the following chapters. 
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2.0 Proposed research 

2.1 Approaches to Roseophilin 

In our approach to the synthesis of Roseophilin we have considered three strategies to the 

macrocyclic core: 

(a) From the macrocyc1e, a strategy in which the pyrrole and its [b ]-fused cyc1opentanone 

moiety is constructed onto the ready formed macrocycle, an approach already exploited 

by Ftirstner et al.24, 25 The advantage of this method is that the macrocycle may be 

formed without the strain inherent in the planar bicyclic system. The disadvantage is 

that there is little scope for stereoselectivity in the synthesis and characterisation of 

intermediates is complicated. 

(b) From a cyc1opentanone derivative. A strategy, which was used by Fuchs et aI., has the 

advantage that cyc1opentenones are cheap and readily available. The functionality 

inherent in the starting material provides a handle for derivitisation allowing swift 

access to fairly complex intermediates. This approach provides scope for the 

introduction of stereoselectivity, as demonstrated by Hiemstra et al. in their recent 

synthesis.22 Another possibility is an asymmetric l,4-conjugate addition to a 

cyc1opentenone derivative. 

(c) From a pyrrole derivative. The strategy reported by Terashima et a1. 1S utilises the 

nucleophilic nature of the electron-rich pyrrole ring in order to construct the remaining 

rings. Pyrrole itself is a cheap and readily available starting material; however, a 

disadvantage here is that pyrrole and its derivatives are readily oxidised in air 
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(characterised by the darkening of the compound) and undergo polymerisation in acidic 

conditions (characterised by the red colour). 

Our proposed synthesis focuses on the macrocyclic core of Roseophilin 13b, which may be 

disconnected as shown (Scheme 13) to give the structure 91: the enolate of the bicyc1ic 

ketopyrrole; and an eight carbon side chain incorporating a cobalt-stabilised propargyl 

cation at the site of disconnection. The transformation from 91 to 13b is possible by means 

of an intramolecular Nicholas reaction27 (the coupling of a cobalt stabilised prop argyl 

cation and a suitable nuc1eophile, see Chapter 3). 

The Nicholas reaction is a high yielding process and is particularly useful in the synthesis 

of macrocycles, as demonstrated by Schreiber et al. in their preparations of highly strained 

substituted cylooctynes.28 The dicobalt complexed alkyne is sterically demanding and there 

is ample precedent to suggest that the ring closure will be diastereoselective, anti to the 

isopropyl moiety.29 The Nicholas reaction and the subsequent decomplexation proceed 

under mild conditions which renders the reaction suitable for inclusion in the final stages 

of a natural product synthesis. Removal of the resulting alkyne functionality by 

hydrogenation would then yield the nitrogen protected macrocyclic core 13b. 
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13b 91 

> ~R 
o \ 

Boc 

92 

Scheme 13 

We chose to approach the pyrrole bicycloalkanone 92 from cyclopentenone and to 

construct the heterocycle onto this framework. 

2.2 Pyrrole synthesis 

There are many methods available for the synthesis of substituted pyrroles 94 and there are 

several reviews on the subject.30-35 The most famous pyrrole synthesis is perhaps the Knorr-

Paal synthesis from a l,4-dicarbonyl presursor 93 (Scheme 14).36-39 

~ R1 0 R4 
+ R5NH2 • )( 

R1 '/ ~ R4 

~ 
R5 

93 94 
Scheme 14 
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Sterically crowded N,2,5-trisubstituted pyrroles may be synthesised in good yields by an 

appropriate modification of the Knorr-Paal condensation.40 For moderately sterically 

crowded compounds a water scavenging technique is used (azeotropic distillation of water 

with benzene) and for severely sterically crowded compounds a titanium(lV) chloride 

catalyst has been used. 

Pyrroles may also be generated from amino carbonyl compounds 95, the Knorr method 

(Scheme 15).41-43 These condensations may involve enamine intermediates 97 and in some 

cases such species have been isolated.44 

R2 
R):O }f R'~O + 

.. ~ \ 
RSH R4 R' R4 

I 
RS 

95 96 

I 1 

( ] ( 1:t 
J 

R2X3XO 
OH .. 

R' ~+ R4 
R' ~ R4 ~ 

RS RS 

97 98 

Scheme 15 

The pyrrole synthesis we have in mind for the construction of the heterocyclic moiety of 

bicycloalkanone 92 is a novel method recently published by Cushman et al. (Scheme 16).45 
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BOCHVR2 fR4 
LDA, THF, -7aoc W + .. BocH R4 

R' R3 R' R3 

99 100 101 

HCI, CI1P2> rt )f ... R4 
I 
Boc 

102 

Scheme 16 

Boc-a-amino aldehydes (99, R2 = H) or ketones (99, R2 = CH3) are reacted with the lithium 

enolates derived from ketones 100 to afford, after protonation, aldol intermediates 101 

which then cyclise to the desired pyrroles 102 under mild acidic conditions. Although this 

method is not ideal (reported yields are poor, 5% to 42% for the systems applied), the 

overall route is relatively short and has the advantage that the substituted pyrroles and 

fused pyrroles have been obtained from inexpensive and readily available starting 

materials. 

2.3 Retrosynthetic analysis 

Our approach to the pyrrole bicycloalkanone 92 is outlined below (Scheme 17). The aldol 

reaction, discussed previously, between the cyclopentanone derivative lOS (where X is a 

masked ketone moiety and the isopropyl unit is to be introduced via a 1,4-conjugate 

addition) and the appropriately substituted a-aminoaldehyde 106 allows access to adduct 

104 which should undergo cyclisation and aromatisation to give the pyrrole 103 under 

acidic conditions. 
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OMe > OMe 

o x 

103 104 

~o H~OMe > ~O > + > 
NHBoc 

X 

105 106 

Scheme 17 

The strategy will initially be investigated with a model system. We have not, at this stage, 

considered how the masked ketone moiety X will be introduced, but its inclusion will be 

discussed in the ensuing chapters. 
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3.0 The Nicholas Reaction 

The dramatically enhanced stability of carbocations flanked by n-coordinated organic 

moieties is a phenomenon that sparked much interest and some controversy in the fledgling 

field of organotransition-metal chemistry.46,47 This effect is manifested in many ways: 

(1) (Benzyl chloride)-Cr(CO)3 undergoes hydrolysis 105 times faster that benzyl chloride 

itself.48 

(2) The PKR+ values (reflecting thermodynamic stabilities of carbocations) of a-ferrocenyl 

carbocations rival those of the remarkably stable aromatic cyclopropenium ions.49 

(3) Several metal-stabilised carbocations are isolable as highly crystalline shelf-stable salts 

suitable for X-ray structure determination. 50, 51 

Propargylic cations were first shown to be stabilised by coordination to the dicobalt 

hexacarbonyl group 107 by Nicholas et al. who were investigating the use of the dicobalt 

hexacarbonyl unit as a protecting group for the C-C triple bond (Scheme 18).52 

Subsequently Nicholas et al. found that these complexes can serve as electrophilic 

prop argyl synthons because of their reactivity to a wide variety of hetero- and carbon­

centred nucleophiles.27 Attack occurs exclusively at the propargylic carbon thus avoiding 

the allenic by-products which plague the reactions of classical propargyl electrophiles.53 

Although other attempts had been made to overcome the propargyl/allenyl problem e.g. 

using carbanions derived from 1-trialkylsilylpropyne,54,55 until the advent of the Nicholas 

reaction no successful method of broad generality was available. 
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(OChCa---YCo(COb 
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109 

/ 

Scheme 18 

(el Nu' .. 
(dl Fe3+, Ce4+ 

or Me3NO 

110 

Although other mono- and polynuclear metal complexes of propargyl cations are known, 

-(RCC)MiCO)iC2Hs)2 (M == Mo, W)S8 groups, it is the dinuclear complexes which have 

generated the most interest. While most of the interest in the above mentioned systems 

centres on the mode of stabilisation provided by the metal, the more reactive Co2(CO)s 

complexes have provided a richer and more useful reaction chemistry. 

3.1 Dinuclear (p-propargylium) complexes 

3.1.1 Preparation 

The cationic cobalt complexes are obtained as dark red solids on protonation of the 

corresponding [(propargyl aicohol)CoiCO)61 complexess9 which, in tum, are derived from 

alkyne complexation with dicobalt octacarbonyl.60 In the solid state the salts are stable in 

dry air for long periods and can be stored indefinitely at 0 °C under nitrogen; in humid air 

or wet solvents the salts hydrolyse rapidly back to the propargyl alcohol precursors.61 The 

more hydrolytically stable CO2(CO)s(PPh3) derivatives have been prepared analagously. 
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Besides protonation of the precursor alcohols, treatment of the alcohols or corresponding 

ethers, acetates, acetals or aldehydes with Lewis acids has been increasingly used for in 

situ generation of the cations.62 

3.1.2 Structure 

Experimental evidence has been presented that the Nicholas carbocation has fluxional 

properties that result in an interaction of the electron-deficient propargylic carbon with 

both cobalt tricarbonyl units resulting in effective charge delocalisation between the two 

metals atoms. IR data for the cation shows an increase in v(CO) (40-60 cm-1) relative to 

the neutral complexes61 and significantly deshielded \3C NMR resonances.63 In a detailed 

variable-temperature NMR study Schreiber et al. identified two distinct fluxional process 

for the cobalt complexed cations,64 a lower energy antarafacial migration of the alkylidene 

ligand from one metal to the other resulting in enantiomerisation and a higher energy syn­

anti interconversion via either 1800 rotation of the alkylidene ligand or a suprafacial 

migration (1200 rotation with migration) (Scheme 19). 
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Scheme 19 

suprafacial 
migration 
(syn-anti 

isomerisation) 

The transition state of the enantiomerisation may resemble the upright structure 111 

(Figure 3) which is capable of maintaining partial delocalisation of the carbon p-orbital 

into hybrid d-orbitals on the neighbouring cobalt atoms_65
•

66 The increased energetic 

requirements for achieving diastereoisomerisation (syn-anti-interconversion) may be 

associated with the requirement for achieving the rotated upright structure 112 which 

localises the charge on carbon. 

111 Stabilised TS 
(enanliomeric interconversion) 

Figure 3 

112 w.o. stabilisation 
(syn-anti interconversion) 
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3.2 Stereochemistry 

The dynamic behaviour of cobalt cations, especially secondary systems, has relevance to 

the stereochemistry of the propargylic substitution reaction. If the Lewis acid mediated 

alkylation reaction passes through a static cobalt cation then retention of stereochemistry 

would result and this is the normal outcome of alkylation reactions which proceed through 

the mononuclear metal-stabilised carbocation intermediates such as the benzylic 

substitution reaction of chromium arene tricarbonyl compexes.67 

Nicholas et al. found that dicobalt complexes of chiral propargyl alcohols react with 

triphenylphosphine with a high degree of stereoselectivity to give diastereoisomers which 

exhibit considerable configurational stability (Scheme 20).29 The chiral cluster cations (e.g. 

115, L = PR3) are more conformationally rigid than the parent hexacarbonyl complexes; 

however, they exhibit a greatly diminished electrophilicity which is reflected in their 

failure to react with mild, synthetically relevant carbon nucleophiles (e.g. silyl enol ethers 

and allyl silanes).68 

•• H 
(b) L 

Ff.~,,~2 
'.. ~ 

"",~ 
L(OCkCo--Co(COh 

113 

Nu 2 

__ N_U_-_... ~'.",,~f~ 
_lI(L ,. 

L(OC)2Co-- Co(COh 

116 

114 

Scheme 20 

HX 

115 

117 
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In the search for more highly electrophilic complexes which maintain stereocontrol, 

incorporation of the relatively bulky, weakly a-donating, strongly n-accepting 

P(OCH(CF3»3 ligand has been described by Nicholas et al.69 These complexes coupled 

readily and diastereoselectively with mild carbon nucleophiles. Importantly when derived 

from enantioenriched propargyl alcohols, such chirality transfer reactions occur with 

significant diastereoselectivity and virtually complete enantioselectivity. 

3.3 Nucleophiles 

The reactions of the parent cationic cobalt complexes (isolated or generated in situ) have 

been explored with a wide variety of carbon-centred nucleophiles (Scheme 21).53,70 

V.;2 
(OCh~CO~Oh 

118 

(R4)3A1 128 
(0) 

H+ or 

Lewis acid 
• 

H-Ar 
(0) 

Scheme 21 

~5 COR4 

R' -- 2 
3R 

124 R 

(0) 
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3.3.1 Aromatics 

Electron-rich aromatic systems including anisole, phenol, N,N-dimethylaniline and 1,2,4-

trimethoxybenzene react at room temperature or below with complexes to produce, after 

demetallation, good to excellent yields of C-propargylated aromatic derivatives 120 

(Scheme 21).71 Pauson et al. have demonstrated that heteroaromatic substrates including 

substituted furans and thiophenes may also be alkylated efficiently at the 2-position.72 Such 

reactions have been successfully used in the synthesis of prostaglandin derivatives. 

3.3.2 fJ-Dicarbonyls 

{3-Diketones and {3-ketoesters 121 will react freely (-78 °C ~ 0 DC) via attack on the 

electron-rich double bond of the enol tautomer affording mono-C-propargylated products 

122 in good yields.73 This selectivity reflects the ready reversibility of the coupling 

reaction, C-alkylation being thermodynamically favoured. The steric bulk of the complex 

is noteworthy, more conventional alkylation reactions of {3-dicarbonyls suffer from 

dialkylation, O-alkylation and allenic by-product formation. 74• 7S 

3.3.3 Ketones and enol derivatives 

Nicholas et al. made the surprising discovery during an NMR experiment in d
6
-acetone that 

acetone itself and other ketones with a-hydrogens 123 readily reacts with the cationic salts 

at temperatures <0 °C to give excellent yields of a-(propargyl)C0
2
(CO)6 derivatives 124.76 
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The regioselectivity of these reactions with unsymmetrical ketones is striking: attack by 

the cationic complexes occurs exclusively (>95%) at the more substituted a-carbon. This 

observation coupled with the ready alkylation of ~dicarbonyls (above) is consistent with a 

mechanism involving attack by the electrophilic complexes on the more substituted (and 

more prevalent77
) enol tautomer. In order to obtain useful rates and high yields without a 

large excess of ketone it is advantageous to use stoichiometric quantities of the 

corresponding enol acetates or trimethylsilyl enol ethers 125. In this way it is possible to 

control the regioselectivity via the kinetic or thermodynamic enol derivative. 

3.3.4 Allyl silanes 

A final class of n-nucleophiles that couple efficiently with the propargyl complexes are 

allylsilanes 126.78 A reaction which provides a novel and regiocontrolled route to 1,5-

enynes 127 (useful intermediates in terpenoid synthesis). As is characteristic of allyl 

silane/electrophile reactions, the new carbon-carbon bond is formed specifically y to the 

silicon; even quaternary centres can be generated in this way with little or no competing 

elimination. Schreiber et al have successfully developed an intramolecular variant of the 

reaction (Scheme 22).28 

"'~ :. 
OMe 

~ 
(OCb o-Co(COh 

130 131 

Scheme 22 
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The endocyclic version produces the novel cycloalkyne complexes 131 (n = 2-4). The 

existence of such strained cycloalkyne derivatives is made possible by the severely bent 

geometry of the coordinated alkynes 130/9
•

80 which suggests a similar bending in the 

intermediate cationic complexes. An example of the exocyclic version proceeds with 

complete anti stereocontrol attesting once again to the powerful stereodirecting effect of 

the complex (Scheme 23). 

TMS .. 
OMe 

132 133 

Scheme 23 

3.3.5 Organometallic nucleophiles 

Nicholas et al. have screened several organometallic nucleophiles in order to develop a 

reliable propargyl-hydrocarbon coupling. Reaction of organoaluminium reagents, R3AI 

128, with the complexes of propargyl acetates are the most effective system to date.81 The 

reactions with trialkylaluminiums proceed rapidly even at -78 °e, giving moderate to 

excellent yields depending on the nature of the R group (Me>Et>Pr»Bui ). The 

methodology permits reasonably efficient generation of tertiary and quaternary propargyl 

centres 129 and hence is superior to classical acetylide/alkyl halide routes in such cases. 

The facility of such reactions is ascribable to the special ability of the aluminium reagents 

to function as Lewis acids82 coupled with the ability of the organocobalt unit to release 

electron density to the developing carbcationic centre. 
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3.3.6 Miscellaneous nucleophiles 

Several non-carbon nucleophiles have been combined with the cationic cobalt complexes 

and perhaps the most important among such nucleophiles is the hydride ion.83 Nicholas et 

al found that tertiary propargyl alcohols could be converted to the corresponding secondary 

alkyl acetylenes via treatment of their dicobalt complexes with NaBH4-TFA followed by 

demetallation in a one-pot sequence. A method which offers an attractive alternative to the 

direct acetylide-sec-alkyl halide coupling which is particularly inefficient. 84 

Oxygen-centered nucleophiles (OH-, RO- from H20 and ROH) have been used 

extensively by Smit et al. to 'trap' the cations generated by addition of electrophiles to 1,3-

enyne cobalt derivatives.85
, 86 

An interesting albeit isolated and unoptimised example of N-propargylation by the dicobalt 

stabilised cations comes from their inclusion in the Ritter reaction with acetonitrile 

(Scheme 24).87 This reaction could, in general, afford a practical route to propargyl amines 

and amides which have important use as monoamine oxidase inhibitors and sedatives.88 

ty"OH 
.V~_ .~ 

(OChCo-- Co(COb 

134 

CH3 CN 

Scheme 24 

3.4 The intramolecular Nicholas reaction 

~NHCOCH3 
.V~~_ ._ 

(OChCo- Co(COh 

135 
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The intramolecular Nicholas reaction is a powerful tool in natural product synthesis. 

Diastereoselectivity is a key issue in the intramolecular alkylations as the steric bulk of the 

dicobalt complex forces its approach anti- to any other substituents on the forming ring. 

An aspect exploited by Tyrell et al. in their one-pot diastereoselective synthesis of 

benzopyrans 137 (Scheme 25),89 is the first reported Nicholas reaction with a trisubstituted 

alkene 136. The reaction proceeds via two successive cations, intramolecular cyclisation 

on the propargyl cation takes place to afford a second cation which is quenched by a 

fluoride ion to give 137. 

136 

(a) Co2(CO)e (1.1 eq). CH2CI2• rt. 15 min .. 
(b) HBF 4oQEI2 (1.1 eq). -10 ·C. 5 min 
(c) CAN-MeOH (4.5 eq). 15 min. 59% 

Scheme 25 

CI 

CI 
137 

anti only 

Another important issue in the intramolecular alkylations is the exceptional reactivity of 

the dicobalt stabilised cations towards nucleophiles, facilitating the formation of 

macrocycles and highly strained rings. The 'superelectrophilicity' is exemplified in the 

preparation of cyclooctynes.28 The formation of 8-membered rings by direct cyclisation of 

acyclic precursors is often a low-yielding process, primarily as a result of unfavourable 

torsional strain and trans annular interactions engendered in the cyclisation process. 

However, low-temperature treatment of acyclic cationic cobalt acetylene complexes with 

Lewis acid has yielded, by intramolecular cyclisation, substituted cobalt-complexed 

cycloctynes in >90% yields.90 
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Intramolecular Nicholas reactions have found wide application in approaches to the 

synthesis of the conformationally strained enediyne anticancer antibiotics. Magnus et al. 

have explored the synthesis of the neocarzinostatin chromophore (Scheme 30).91 

69% 
OBBlI:! OH 

139 
Scheme 26 

Magnus et al. also reported the synthesis of the core tetrahydroquinoline enediyne structure 

of dynemicin using intramolecular silyl enol ether alkylation (Scheme 27).92 
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dbmp = 2.6-di-tert-butyl-4-methylpyridine 

Scheme 27 
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Isobe et al. utilised a modification of the intramolecular Nicholas reaction in their approach 

to the recently isolated bicyclic taxoid diterpoids which have been proposed as the 

biosynthetic precursors of the taxanes (Scheme 28).93 In their approach the acetylene cobalt 

complex serves two purposes: firstly the stabilisation of the conjugated allyl cation 

(generated in situ from 147); and secondly its significant steric bulk is exploited in 

macrocyclisation via the Thorpe-Ingold effect, bringing the reactive sites closer together. 

The highly strained 12-membered ring of 148 was thus constructed in reasonable yield. 

Conventional oxidative decomplexation of 148 could not be achieved, presumably due to 
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the increased ring size generated by the free acetylene. Reductive decomplexation using 

NBS as a radical initiator achieved the cis double bond and the desired diterpene taxoid 

skeleton 149. 

Q 
o 

142 

BF3·0E~, CH 2CI 2 ... 
o ·C, 40 min 

.r 143 

#''\ 
OTBS 

Pd(OAc)2' Cui, Ph3P, BuNH2 
PhH. rt. 17.5 h. quant. 

TMS 

144 

(a) TBSOT!. 2,6·lutidine, CH2CI 2 
99% (based on recovered SM) 

(b) Amberlyst 15E, MeOH, 83% 
(c) Ac20, Py, CH2C~, 96% 

or Bu'OK, Mel, THF, 89% 
(d) CO2 (CO)8' CH2CI 2 , 90% 

OTBS 

Bu3SnH, NBS, cyclohexadiene .. 

R=Ac43% 
R = Me 41% 148 

39·C, 2 h, 41% 

Scheme 28 

3.4.1 Tandem cobalt-promoted alkylation/cyclisation 

TM~ 145 

EtMgBr, THF, 94% 

147 

149 

The abililty of the dicobalt acetylenic complex to stabilise adjacent cationic centres and to 

promote (2+2+2) cyc1isations with olefins (Pauson-Khand reaction) have been cleverly 

combined to provide a powerful annulation methodology for constructing complex 
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cyclopentenoid derivatives. Schreiber et al exploited the methodology in their approach to 

(+ )-Epoxydictymene (Scheme 29) achieving high yields in both the key cyclisations.
90 

M~ OH 

H 150 
TMS 

153 

(11:1)aIC12 

3.5 Summary 

Tf20, dbmp 
CH 2CI 2 , -10·C 

-35 ·C ___ 0 ·C 
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(a) Bu 3P,o-N02PhSeCN 
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~ ~o.!e V Me 
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--

(a) CO2(CO)B EI 20 

• 
(b) Et2AICI, CHzCl2 

-78 ·C, 83% 

154 

155 156 (+)-Epoxydiclymene 

Scheme 29 

The Nicholas reaction involving stabilisation of an adjacent cationic centre by a dicobalt 

complexed acetylene, and its ready coupling with a wide variety of nucleophiles, is a 

powerful tool in natural product synthesis. The potent reactivity of the propargyl cation 

towards nucleophiles makes the methodology of prime importance in the synthesis of 

macrocycles and highly strained structures. The cobalt complexes are easy to prepare and 
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although moisture sensitive, may be isolated and stored in dry air for long periods. The 

more reactive cationic complexes may be generated in situ with protic or Lewis acids. The 

reaction is technically simple, requiring only mild nucleophiles, and tends to be high 

yielding with a high degree of diastereospecificity derived from the steric bulk of the 

complexed acetylene. 
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4.0 First approach to the bicycloalkanone 103 

4.1 The Cushman aldol approach 

There are many methods for the synthesis of substituted pyrroles and fused pyrroles such 

as 103. However, a new pyrrole synthesis recently published by Cushman et a1. 45 (Scheme 

30), is an encouraging starting point for the synthesis of the fused pyrrole ring system of 

103. 

BocHYR2 f R4 

LOA, THF, -78GC ~ BocH 
+ .- R4 

Rl R3 Rl R3 

99 100 101 

X HCI, CI1CI2, rt 
'/ ~ 

OMe 
.-

R N R4 
I 

0 Boc 
103 

102 

Scheme 30 

Studies towards the construction of the bicycloalkanone 103 began on a model system 157, 

devoid of the bulky isopropyl group and the ketone functionality. Incorporating the a-

benzyl substituent on the pyrrole moiety imparted UV absorbtiuits making it easier to 

follow the reaction by TLC (Scheme 31). 
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4.1.1 Synthesis of BOC-DL-phenylalanaI159 

The first step in the synthesis of 157 was the formation of BoC-DL-phenylalanal 159 from 

the a-amino acid, DL-phenylalanine 160 (Scheme 32). 

Boc.O, NaOH, 110, i -BuOCOCI, MeN HOMe 

• • 
t -BuOH, r.t., 12 h, 90"10 NMM,THF, -1 SoC, 79"10 

160 161 

LiAIH., E~O, O·C .. 
92"10 

162 159 

Scheme 32 

As the chirality of the a-amino aldehyde is of no consequence, it is lost in the formation of 

the fused pyrrole, a racemic mixture of the amino acid was used as the starting material 

and 159 was prepared in three steps, in a 65% yield. Boe-amino protection of the 

crystalline a-amino acid 160 was achieved under Schotlen-Baumann conditions, according 
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to a literature procedure, in 90% yield.94 The formation of the Weinreb amide intermediate 

161 from Boc-a-amino acids used by Cushman, and indeed used widely in the literature, is 

carried out in the presence of (benzotriazol-l-yloxy)tris(dimethylamino)phosphonium 

hexafluorophosphate (BOP reagent) and N,O-dimethylhydroxylamine hydrochloride. This 

method has the disadvantage that hexamethylphosphoric triamide (HMPA), a cancer 

suspect agent, is produced as a by product and so an alternative method utilising isobutyl 

chloroformate, according to a literature communication,95 was employed to give 162 as a 

crystalline solid in 79% yield. Subsequent reduction of 162 to the crystalline a-amino 

aldehyde 159 was acheived with lithium aluminium hydride in 92% yield. 

4.1.2 Aldol reaction 

Initial attempts to form the fused pyrrole system 157 (Scheme 33) yielded the desired 

compound in two steps from cyclopentanone and Boc-DL-phenylalanal 159, in 18% yield 

as a colourless oil, which decomposed slowly in air to a give brown residue. Efforts to 

optimise the reaction acheived a maximum 42% yield over the two steps. The problem lies 

in the first step, which affords low yields of the diastereomeric aldol product 163 with 

several products apparent by TLC. The aldol product was isolated as a mixture of both 

diastereoisomers and rotamers and due to the inherent difficulties in characterisation was 

used immediately in the next step. Separation of the by products by flash column 

chromatography yielded several cylopentanone derivatives originating from self 

condensation with the lithium enolate. The aldehyde 159 was also recovered in part. 

Cyclisation of the aldol product 163 to the fused pyrrole 157 was achieved in quantitative 

yield. Despite several attempts to prevent homocondensation by slow addition of 

cyclopentenone to the organolithium the yield could not be improved beyond 42%. 
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HCI, Ct)CI2 
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Boc 

163 157 

Scheme 33 

4.2 Mukaiyama aldol approach 

The problems encountered in the formation of the lithium enolate from cyclopentanone 

prompted an alternative approach to the aldol product: a Mukaiyama aldol reaction% 

between the enol silane 165 (Scheme 34) and 159. 

beY 
~ 

~orns + 

Boc 

164 165 159 

~O + [ >-MgCI. 5 mol% 'C"'] 

Scheme 34 
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It was anticipated that the enol ether 165 could be formed regiospecifically from a copper-

mediated, chlorotrimethylsilane-accelerated, l,4-addition of isopropylmagnesium chloride, 

which would trap the enol silane in one synthetic step.97 Cyclisation of the aldol product, 

which may occur under the acidic conditions of the Mukaiyama reaction, would then 

afford 164 in a one pot reaction. Formation of 165, however, was not straightforward. 

Attempts at synthesis on a small scale (1.0 mmol) proved problematic due to the lability of 

the product; desilylation to the corresponding ketone occurs rapidly in the presence of 

moisture. Although anhydrous reaction conditions and base washed glassware was used, 

synthesis of 165 on a small scale resulted in a 1: 1 mixture of the ketone to the silyl enol 

ether, as shown by NMR. A larger scale reaction (10.0 mmol) yielded the desired product 

165 as a yellow oil, which was pure by NMR standard. However attempts at further 

purification of 165 by distillation, including flash distillation techniques, resulted in partial 

desilylation to a 3: 1 mixture of the ketone to the enol silane. 165, which is stable for 

several days when stored under nitrogen at -30°C, was attained in 96% yield (Scheme 35), 

and was used without purification in the next step. 

LiBr. TMSCI. Et/'I. b-OTMS ~o 
i -PrMgCI. CuBroSM, .. 

EI20. -4Q°C 

165 

(a) TiCI4 or BF3·EIzO. CI1CI 2• -7aoC. 1 h 

)( ~ to: Ph 

o NHBoc (b) Boc-a.amino aldehyde 

166 

Scheme 35 
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The Mukaiyama aldol reaction, carried out in the prescence of two equivalents of the 

aldehyde 159 and three equivalents of Lewis acid, proved unsuccessful and neither the 

desired aldol product 166 nor the fused pyrrole 164 were isolated. Several products were 

apparent by TLC, however flash column chromatography did not yield the desired product. 

Although the aldehyde 159 was stable to the Lewis acid, it was not recovered from the 

reaction mixture. Thinking that it may be possible that the desired compound was present 

but hidden in an inseparable mixture of cycloalkanones, the reaction was carried out firstly 

on a larger scale, in an effort to ameliorate the isolation of the desired product; secondly, 

with just one equivalent of the enol silane 165, an attempt to reduce homocondensation of 

excess starting material and simplify the TLC; and thirdly, with variation in the number of 

equivalents of Lewis acid, bearing in mind that unlike common aldehyde substrates, the N­

Boc-a-amino aldehyde contains four heteroatoms all of which may coordinate to the Lewis 

acid. However, the desired product was not apparent by TLC and flash column 

chromatography again afforded only products of homocondensation. Variation in Lewis 

acid did not yield the desired product. Finally the reaction was carried out in the presence 

of molecular sieves according to a recent literature precendent in which a-amino aldehydes 

undergo aldol reaction in high yield in the presence of simple silyl ketene acetals and 

molecular sieves.98 Again no positive result was gained and the reaction was abandoned. 

4.3 Progression of the Cushman pyrrole synthesis 

It has been established that the crossed aldol reaction of the lithium enolate of 

cyc1opentanone and amino aldehyde 159 is successful, albeit impeded by unwanted 

homocondensation reactions. It is therefore reasonable to assume that the lithium enol ate 

167, which may be formed regioselectively and without unwanted homocondensation 
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according to a procedure by House et al.,99 (Scheme 36) would undergo aldol reaction with 

159 to yield, after aromatisation, the desired isopropyl substituted bicyclic pyrrole 164. 

~OTMS 
165 

Ph <fc HBoc 
o 

166 

MeLi,E~O 

• 
rt, 30 min 

cone. HCI 

-b-ou Et20, (Bn)CH(NHBoc)CHO 

• 
-la"C,1 h 

167 

• ~Ph 
~ 
Boc 

164 

Scheme 36 

Initial attempts at the aldol reaction following the original publication by Cushman, in 

which the reaction was allowed to proceed overnight as the temperature rose from -78°C 

to room temperature, were disappointing. Several products were isolated by 

chromatography, all the result of unwanted side reactions. The desired compound 166 was 

not present. However on successive attempts, when the experiment was followed 

rigorously by TLC, it became apparent that the aldol reaction goes to completion after just 

one hour. The desired pyrrole 164 was formed in 44% yield over three steps from 165. 

With an adequate model system for the synthesis of the isopropyl substituted [b]-fused 

bicycloalkanone in hand we turned our attention to the introduction of the ketone 

functionality. 

4.3.1 Introduction of the carbonyl moiety 
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4.3.1.1 Directed metallation approach 

We considered two approaches to the introduction of the ketone functionality at this stage: 

firstly, introduction of the carbonyl substituent after formation of the pyrrole, making use 

of the functionality within the fused pyrrole system itself; and secondly, to construct the 

pyrrole from the correctly substituted cyclopentanone derivative. We believed that a 

pseudo benzylic oxidation would not be possible in this case, assuming the pyrrole moiety 

is capable of behaving as a pseudo benzylic compound, there are three sites on which 

oxidation may occur. In our opinion the site favoured would be the undesired tertiary 

centre, a to the isopropyl unit. 

The pyrrole ring is aromatic and electron rich and protons a to this ring can therefore be 

considered to be pseudo benzylic by nature. If a regioselective metallation of the pyrrole 

system could be effected then the ketone functionality could be introduced directly by use 

of an electrophilic oxygen species, such as a Franklin-Davis oxaziridine. However 164 is 

not a suitable substrate for metallation due to the benzyl substituent at the 2 position, 

which creates a labile proton at the diaryl substituted centre, so an alternative 172 was 

constructed from DL-Norvalinal167 in 70% yield (Scheme 37). 
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t-BuOH, r.t., 12 h, 84% NMM,THF, -15°e, 63% 

Boc 
167 168 

~H 
82% ~H EtP, -78°e, 1 h 

Boc 

169 170 

~ o 

cone. Hel 1xv 
~ 
Boc 

171 172 

Scheme 37 

There are three pseudo benzylic positions on 172 (Figure 4) which may be labile to 

metallation. It was expected that protons HI and H2 may be more labile than H3 due to ring 

strain, and that abstraction of H2 may be favoured over HI with use of a Boc-directed 

metallation, known formally as the Complex Induced Proximity Effect (CIPE). 
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172 

Figure 4 

Such metallations have been carried out on a variety of substrates, where regioselectivity is 

controlled by a cyclic intermediate generated by coordination of an amide oxygen to the 

metal centre. Scheme 38 gives two examples, the first by Beak at al. is a 5-membered 

coordination compound 174100 and the second, a 7-membered coordination compound 

177101 ring transition states have been reported (Scheme 38). 

9 ~~; (a) n-BuLi. E~O, -7a"C, a h .. -0 

174~ 
(b) E+ 

Boc 

173 

:5 membered coordination 

ArYl (a) s-BuLi, PhMe, -7S"C, 1 h 

• 
H ~Ar (b) E+ 

Boc 

176 7 memberedcoordinatiOD 

Scheme 38 

• 

• 

9-E 

Boc 

175 

A~ 
E AItjl 

Boc 

178 
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In our case metallation would lead to a 6 membered coordination compound 179, which 

although suffering from ring strain imparted from the [b ]-fused 5 membered rings, was not 

predicted to be unfavourable (Scheme 39). Metallation was attempted with LDA, n-BuLi, 

s-BuLi and t-BuLi, both with and without the presence of TMEDA, but in all cases no 

deuteration was observed after a D20 quench. Likewise derivitisation with simple 

electrophiles e.g. iodomethane, benzaldehyde was not possible. In the presence of TMEDA 

the Boc protecting group was partially cleaved. 

~ 
~ 
Boc 

172 

Base, Etp, -78°C, 16 h 

• 

Scheme 39 

4.3.1.2 Incorporation of a dithioacetal as a masked ketone functionality 

E Boc 

180 

Construction of the pyrrole with the ketone functionality in place was next attempted by 

the incorporation of a dithioacetal alpha to the existing ketone, a strategy which not only 

introduced a protected carbonyl substituent but also ensured formation of the desired 

thennodynamic enolate (Scheme 40). 
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182 183 184 

Scheme 40 

Initial work in this area was carried out by R.B.Woodward et a1. \02 and application of this 

method to 187 is outlined below (Scheme 41). 

~ 
(a) CS-SO,A1 

~~ 4 
S-SO,A1 

PYlTdidine, PhH, !:t. EtJ'!, MeCN,!:t. 

• .. 
(b) Hel, HP, 50°C 

185 186 187 

Scheme 41 

The requisite dithiotosylate 184 has been little used in the 26 years since the initial 

publication103 due to the difficulties involved in its preparation. The method published in 

Organic Syntheses104 (Scheme 42) reported low yields and warned of the problem of 

potassium p-toluene sulfinate formation, the presence of which cleaves the acid (and base) 

labile sulfur-sulfur bond. The synthesis of potassium thiotosylate 188, was attempted 

several times: the first few attempts yielding potassium p-toluenesulfinate (identifiable by 

melting point)~ later attempts gave the correct melting point but did not give the 
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dithiotosylate 184 when refluxed with dibromopropane. Similar failure attended the use of 

commercially available potassium thiotosylate. The problem at this stage is again the 

lability of the sulfur-sulfur bond which is readily cleaved on formation of the dithiotosylate 

to give a polymeric mixture of alkyl thiotosylates. An alternative route route to 184 was 

required. 

DOC 

Ar-S02C1 + 2KSH 
55-60°C 

188 

C
sr 

2Ar-S~SK + 
Sr 

EtCH, KI, A 

x· 
184 

Scheme 42 

An approach to 184 from propanedithiol according to a literature publication (Scheme 

43),105 afforded a very low yield of the desired product «5% by NMR) in an inseparable 

mixture of polymers. 

TsCI, pyridin~ rt, 12 h 

x 
184 

Scheme 43 

Another route via the bistrimethylsilylthiol ether 189 purported to make use of the weak 

sulfur-silicon bond. It was expected that the trimethylsilyl group would cleave in the 

presence of chloride ions, facilitating an SN2 reaction with tosyl chloride, to yield 184 
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(Scheme 44). The bis-trimethylsilylthiol ether 189 was prepared according to a literature 

procedure106 and the reaction was initially carried out in toluene at reflux yielding only 

products of polymerisation. In an effort to avoid over reaction the experiment was repeated 

at rt with a catalytic amount of lithium chloride, only to give the same disappointing results 

as before. 

.. C
SH 

SH 

n-BuLi. TMSCI 

Etp. O·C, 32% 
CS-™S 

5-TMS 

189 

Scheme 44 

(a) TsCI, PhH,~, 12 h 

(b) TsCI, E~O, LiCI, rt. 12 h 

(e) TsCI, EtP, LiCI, rt, 1 h 

)( 

184 

Takano \07 reported a method based on Woodward's synthesis using Amberlyst resin as a 

solid support on which to construct the thiotosylates in order to prevent polymerisation. 

Trimethylene dithiotosylate was assembled accordingly, in 70% yield, from 1,3-

dibromopropane (Scheme 45). 

ArO~SK 

Amberlyst A26 (CI form) 

H20, rt, 18 h, 70% 

Scheme 45 

184 

The subsequent formation of the dithioacetal to give a monoprotected a-diketone 182, was 

achieved in 69% yield according to an Organic Syntheses procedure,I02 from the 

corresponding en amine 183 (Scheme 46). 
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~ 
2N Hel, MeOH S- Pyrrolidine, PhMe 

- -rt, 30 min, 96% t., 5 h, 66% 

165 190 

-
PhMe, BO·C, 12 h, 69% 

183 182 

Scheme 46 

4.3.2 Aldol reaction 

Attempts to perform the Cushman pyrrole synthesis using the masked a-diketone 182 

failed to return any of the desired pyrrole 192. The problem lay in the failure of the first 

step, the aldol condensation. 

182 

(a) LOA, THF, -78 ·C 

x-
(b) N-Boc-norvalinal, THF 

-78°C~rt, 12 h 

...........• 

191 192 

Scheme 47 

Several different bases were investigated (Table 1) both with and without the presence of 

TMEDA as an additive. In each case the enol ate was quenched with the a-aminoaldehyde 

170 and a simple aliphatic aldehyde, n-hexanal. 
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N-Boc-norvalinal 

~~ Base, THF .. 
-78°C- Ht, 12 h 

182 191 

Table 1 : Cushman aldol reaction 

Base Aldeh de Additive Result 

LDA 170 182 recovered 
" TMEDA 

n-hexanal 

LIHMDS 170 182 recovered 
" " TMEDA " 

n-hexanal 

KHMDS 170 182 recovered 
TMEDA 

" n-hexanal 

NaHMDS 170 182 recovered 
" " TMEDA 

n-hexanal " 

n-BuLi 170 182 recovered 
TMEDA 

" n-hexanal 

No aldol reaction occurred with 170 under any of the condtions investigated. The ketone 

182 was recovered quantitavely in all cases. In order to establish that the problem was not 

arising from the a-aminoaldehyde 170 the aldol reaction was attempted under the same 

conditions with n-hexanal, with the same result. An alternative strategy via an enol silane 

intermediate 193 was investigated (Table 2). Isolation and desilylation of 193 would 

establish whether or not the issue is the deprotonation of the sterically hindered ketone 182 

or reaction between the enolate formed and the aldehyde. 

Base, TMSX 

~
MS 

9 ~ 

193 
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Table 2 : Formation of silyl enol ether 193 

Base 

LDAa 

KHMDSa 

Et3Nb 

" 

" 

" 

" 

a THF, -78 °C~ rt, 12 h 

b Et20, rt, 4 h 

SHylating agent 

TMSCI 

TMSCI 

TMSCI 

TMSCI 

TMSOTf (1.1 eq) 

TMSOTf (2.0 eq) 

TMSOTf (3.0 eq) 

TMSOTf (4.0 eq) 

TMSOTf (5.0 eq) 

Result 

182 recovered 

182 recovered 

182 recovered 

182 recovered 

33% 

50% 

66% 

80% 

100% 

Formation of the silyl enol ether 193 was not straightforward. Treatment of 182 with LDA 

in the presence of TMSCI yielded no reaction, the same result was apparent with LiHMDS 

and KHMDS. A more reactive system was clearly required and so 182 was treated with 

TMSOTf in the presence of triethylamine. In this case the desired enol silane 193 was 

observed by IH NMR in a ratio of c. 2: 1 ketone:enol silane. Unfortunately 193 was 

inseparable from the ketone 182 by reduced pressure distillation, the solid starting material 
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co-distilling with the product. An increase in the number of equivalents of the silylating 

agent drastically improves the ratio of enol silane:ketone. Thus 193 was prepared in 

quantitative yield, in the presence of 5 equivalents of TMSOTf. 

The enol silane 193 was purified by reduced pressure distillation; however, it was 

extremely labile and underwent partial hydrolysis to the ketone in c. 48 hours, despite 

being stored in base-washed glassware, under nitrogen at -30°C. Contrary to expectations 

193 was stable to rapid flash column chromatography on base-washed silica with a basic 

eluent. 

Treatment of the silyl enol ether 193 with methyllithium according to a procedure by 

House et a1.99 yielded the desired lithium enolate 194 but it failed to react with the a­

aminoaldehyde 170 and did not furnish the sought after aldol adduct. This reaction was 

attempted under a range of reaction conditions (Table 3) without success. Again there was 

no reaction between the substrate and n-hexanal, indicating that the problem was indeed 

arising from the sterically hindered enolate 194. 
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~
MS 

Q ';:: 

193 

rt, 3 h 

Table 3 : Cushman aldol reaction 

Aldeh de Reaction Conditions 

170 Et
2
0 , - 78 °C, 1 h 

170 Et20 , -78 °C ~ rt, 12 h 

170 THF, -78 °C ~ rt, 12 h 

n-hexanal Et20 , - 78 °C ~ ft, 12 h 

n-hexanal THF, - 78 °C ~ rt, 12 h 

RCHO, THF 

X~ ~ ~ R 

-78 ' C -> rt, 12 h 

Result 

182 recovered 

182 recovered 

182 recovered 

182 recovered 

182 recovered 

NHBoc 

191 

The Mukaiyama directed aldol reaction between enol silane 193 and the aldehyde 170 was 

next attempted using TiCI4 and BF3·0E~ as Lewis acids but once again, the ketone 182 

was recovered, always in ~90% yield; and again there was no reaction between the 

substrate and n-hexanal. 

~ 
RCHO 

~ ~ ~ 

Lewis acid 

193 

Table 4 : Mukaiyama aldol reaction 

Lewis Acid No of e uivalents Aldeh de Result 

TiCI4 3 170 182 recovered 
4 " " 
5 " " 

" 10 " " 
" 3 n-hexanal " 

BF·E~O 3 170 " 
4 " 

" 5 " " 
" 10 
" 3 n-hexanal " 
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These reactions are not clean by TLC, and isolation of the products by flash column 

chromatography returned the ketone 182 (~90% yield) and several minor products in very 

small amounts (~ 1 %) which are unidentifiable by 1 H NMR. The aldehyde 170 is not 

recovered even on greatly increasing the polarity of the eluent. A possible explanation for 

the lack of reactivity is that the enol ate 194 and enol silane 193 are simply too hindered to 

act as a nucleophile; alternatively, the aldol reaction may be reversible with the 

equilibrium lying on the side of the starting materials. In order to stabilise the aldol 

adducts, a number of metal enolates were investigated using oxyphilic metals such as 

magnesium, \08 boron!09 aluminium,I1O tin, 111 titanium,1I2 zirconiumll3 and zinc ll4
) (Table 5). 

• 9~'" HR 
NHBoc 

191 

RCHO 

Table 5 : Variation in enolate 
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- -
Result 1 I X Reaction Conditions Aldehyde 

Li (a) 193, MeLi , Et20 , rt, 4 h 170 182 recovered 
(b) RCHO, E~O, - 78 °C 

-7 rt, 12 h n-hexanal " 

Mg (a) 194, MgBr2, Et20 , -78 170 182 recovered 
°C, 3 h 

(b) RCHO, Et20 , -78°C n-hexanal " 
-7 rt, 12 h 

B (a) 182, BU2BOTf, EtNPri
2, 170 182 recovered 

C~C12' - 90 °C, 1 h 
(b) RCHO, CH2C12, - 90 °C n-hexanal 

-7 rt, 12 h 

AI (a) 182, AIMe3, PhMe, ~, 4 170 182 recovered 

h 
(b) RCHO, PhMe, - 78 °C n-hexanal 

-7 rt, 12 h 

Sn (a) 182, SnOTf, 1-Et- 170 182 recovered 
piperidine, CH2CI2, - 78 
°C, 3 h n-hexanal 

(b) RCHO, CH2CI2, -78 °C 
-7 rt, 12 h 

Ti (a) 193, TiCI4, CH2CI 2, - 78 170 182 recovered 
°C, 1 h 

(b) RCHO, CH2C1 2, - 78 °C n-hexanal " 
-7 rt, 12 h 

Zr (a) 194, Cp2ZrC12, Et2O, 170 182 recovered 
- 90 °C,3 h 

(b) RCHO, Et20 , - 90 °C-7 n-hexanal " 

rt, 12 h 

Zn (a) 194, ZnCI2, E~O, - 78 170 182 recovered 
°C-7 0 °C, 30 min 

(b) RCHO, E~O, -78 °C n-hexanal " 

-7 rt, 12 h 
-- - -- -

In none of the cases examined was any evidence for the formation of the desired aldol 

adduct obtained with either a -aminoaldehyde 170 or n-hexanal. Once again the only 

product obtained from the reaction was the cyclopentanone 182. At this point, work on the 

aldol approach was abandoned. 
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5.0 New approaches to 103 

5.1 Wittig approach 

The exhaustion of approaches to the aldol reaction of a-ketothioacetal 182 and the 

appropriate a-amino aldehyde in studies towards the ketopyrrole fragment 103 (as 

discussed in the previous chapter), required a new approach to 103. The first to be 

considered was a Wittig reaction of the phosphorus ylide generated from ketone 182 and 

an a-amino aldehyde. Such a reaction would set up a very similar structure to the Cushman 

aldol adduct 191 and allow acid catalysed ring closure, as before, to give the desired 

pyrrole 197 (Scheme 48). 

~M 
~ 

(a) MeLi. E~O, rt, 3 h 

~OElk x .. 
195 198 

Scheme 48 

(a) (EtC) 2PC1, Et 20, rt, 2 h .. 
(b) O 2, rt, 12 h. 48% 

---------

197 

Although the phosphorus ylide was generated, according to a literature procedure,115 Wittig 

reaction between the ylide and an aldehyde did not occur. It appears that again the reaction 

centre is too hindered, a conclusion also reached by Snider et al. in their attempted 

intramolecular Wittig reaction of a similar, though less hindered substrate (Scheme 49). \IS 
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x ~ 

198 199 

X=H 
X = S02Toi 
X = PO(OEth 

Scheme 49 

There are many published methods for the synthesis of pyrroles, the most general being the 

Paal-Knorr synthesis: reaction of a l,4-dicarbonyl compound with ammonia or a primary 

amine.36-39 This is a very straightforward synthesis and is limited only by the accessibility 

of the l,4-dicarbonyl precursors. Hence the following approaches centre on the synthesis 

of the appropriate l,4-dicarbonyl compound from the ketone 182. 

S.2 Via 1,4-dicarbonyl precursors 

S.2.1 Carbene approach 

The carbene mediated cyclopropanation of olefins and enol ethers is well established. The 

reaction is classically copper-catalysed1l6 although more recently rhodium catalysis has 

been used allowing much milder reaction conditions and giving improved yields. 1I7 

Reaction of silyl enol ether 193 with ethyl diazoacetate in the presence of the rhodium 

acetate dimer should yield the l,4-dicarbonyl compound 200 after desilylation of the 

intermediate cyclopropane 201 (Scheme 50). 
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~
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~S •. 

200 

> ~~.. ~TMS + ,OEI 

N2 

1113 201 

Scheme 50 

However in the case of enol silane 193 the reaction is complicated by the presence of the 

thioacetal. Sulfur is an electron donor and so may itself react with the carbene to produce a 

sulfur ylide. This is not necessarily a disaster as there is ample literature precedent (see 

Example 1) to suggest that, by a series of rearrangements of the sulfur ylide, the 1,4-

dicarbonyl compound 200 may still be accessible (Scheme 51).118 

Rh2(OAc). 
E~ • 

EI~ 

~H 
OEI 

RX S~ C02 EI • .. • 
Lewis acid 

203 

Scheme 51 

Ando and co-workers have thoroughly investigated the formation and rearrangements of 

ylides derived from reactions of diazo compounds with organic sulfides in thermal, 

photochemical and catalytic processes.118 Three major pathways for sulfur ylide 

rearrangement have been identified: intramolecular elimination, [1 ,2]-rearrangement and 

[2,3]-sigmatropic rearrangement. With allyl sulfides the [2,3]-sigmatropic rearrangement is 
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the major reaction pathway to give a 9-membered ring containing a trans double bond 204. 

Desilylation and incorporation of a leaving group alpha to the carbonyl would allow the 6-

membered thioacetal to reform giving an unstable 5-membered ring which could easily be 

cleaved to yield the desired 1,4-dicarbonyl compound 200. 

Generation of the sulfur ylide from reaction of diazo compounds with allyl sulfides 

requires much harsher conditions than cyclopropanation of olefins or enol silanes. It was 

therefore possible to attempt the reaction on substrate 193 in two ways: firstly by treating it 

as an enol silane with a view to cyclopropanation, Method A;1l7 and secondly as an allyl 

sulfide with a view to the [2,3]-sigmatropic shift (Scheme 52), Method B.119 

~
MS 

9 S .. ~ 

193 

+ 

[Rh 2(OAc) 41 

CH 2C12' rI, 24 h 

Method A 

[Rh 2(OAc) 41 

PhMe, 60 ·C, 24 h 

Method B 

Scheme 52 

OEt 

Unfortunately after extensive attempts at both methods the desired reaction did not occur 

because the sHy) enol ether 193 was not stable enough to withstand the reaction conditions. 

5.2.2 Allylation 
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The subsequent approach to the desired l,4-dicarbonyl compound was attempted allylation 

alpha to the carbonyl group of ketone 182. Allylic electrophiles allow for more forcing 

reaction conditions and once incorporated it was predicted that the olefin may be cleaved 

either under oxidative conditions of with palladium catalysis (Wacker-Tsuji reaction) to 

yield the desired l,4-dicarbonyl compound. It was appreciated that this approach is not 

ideal and that the presence of the dithioacetal is likely to cause problems in the oxidative 

cleavage required to unleash the second carbonyl group. Accordingly the lithium enolate 

194 was treated with methallyl chloride in the presence of HMPA (Scheme 53) only to 

yield the starting material. 

~
. 

~s" ,-,::1 + 

194 

1 
(a) TMSOTf, EI:JN 

Et20, rt, 4 h 

(b) MeLi, E~O, rt, 3 h 

~~ 
'-j-

HMPA, Et 20 

-78 ·C-+rt, 12 h 

X· 

Scheme 53 

t 

In an attempt to increase the nucleophilicity of the enolate the {3-ketoester 207 was 

prepared (Scheme 54). 
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209 

• 
NaH, MeOH (trace) 

PhMe, reflux, 48 h, 56% 

---- - ---- -- --_. ----

Scheme 54 

t HMPA 

Et20 

-78 ·C-lft 

12 h 

The attempted allylation of 207, after extensive efforts, failed. Finally a last ditch attempt 

at allylation was made with a cationic (n-allyl)molybdenum complex. 120 Such complexes 

are of current interest within the Kocienski group121 and we believed that by virtue of its 

cationic nature, the complex would be highly electrophilic, Addition of the cationic 

complex to the anion generated by deprotonation of 207 with sodium hydride yielded the 

desired a-allyl compound 210 in 90% yield (Scheme 55), proving that the cationic 

complex is indeed a 'super-electrophile'. 

[ 
Q j+ 
O~NO BF4-

NaH, THF, rt, 30 min 

Scheme 55 

~~,~ 
~o 

This result, we felt, could not be ignored and so the best method of exploiting this success 

was carefully considered. 
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5.3 Molybdenum electrophile approach 

To utilise the (n-allyl)molybdenum electrophiles in the approach to the ketopyrrole 

fragment 103 would involve subsequent oxidative cleavage, as discussed earlier, in order 

to achieve the l,4-dicarbonyl compound. These derivatisation steps in the presence of the 

thioacetal may prove problematic. An alternative approach is to derivatise the electrophile 

in order to create the pyrrole precursor in the addition step. There are several ways in 

which this may be achieved. The molybdenum chemistry may be used to introduce 

functionality e.g. a (n-allyl)molybdenum complex of an enol ether 211 (Scheme 56) would 

introduce an oxygen substituent as an enol ether which may then be hydrolysed under mild 

conditions to give the desired 1,4-dicarbonyl compound. 

[~e 1+ I x-
MoLn 

> ~e 
OAe 

211 212 

Scheme 56 

> ~ 
o 

+ 

pMe 
L~ 

Very little is known about oxygen-functionalised molybdenum complexes but 211 is likely 

to be extremely air-sensitive and as a result difficult to handle. Another option is to create a 

(n-allyl)molybdenum complex 213 from a vinyl silane 214 (Scheme 57) which should 

render the complexes easier to handle. 

> 

213 

Scheme 57 

~9aPh 

OAe 

214 
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A Fleming-Tamao oxidation after addition would furnish the desired 1,4-dicarbonyl. 

Furthermore if a a {1l'-allyl)molybdenum complex could be generated from an imine to give 

an 1J3-bonded azaallyl complex 215 then the nitrogen functionality could be introduced in 

the addition step and subsequent ring closure would form the desired pyrrole. An expedient 

literature search revealed that such (1l'-azaallyl)molybdenum complexes are, albeit recent, 

features in the literature. Although the complexes have not been employed for organic 

synthesis the structure have been assigned conclusively by x-ray crystallography. There are 

3 literature preparations of (n-azaallyl)molybdenum complexes, the earliest dating from 

1985 and involving the ring-opening of 2-substituted aziridines (Scheme 58).122 

~ 

oc,-Mo-...... OC,,1 H~ 
R 

R = Phenyl, p-Methylcyclohexyl. 215 

Scheme 58 

However Green and co-workers did not provide full characterisation details for their 

complexes and have failed to publish since. The second method and the one of choice 

involves the condensation of an amine with 1J1-molybdenum bound ketone complexes 217 

to give the desired 1J3-bonded azaallyl complex 218 (Scheme 59).123 
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[~ r CIS oc .• 1 NalHg 
oc-To-cO OC.. 0 .. Oc-~o-CO Na .. 
OG-c:boO;' CO 
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~ 29% 

~ t-NH2 ~ Me3NO 

gg;~~ gg;y .. .. 
BF 3e()Et2, THF 'pr CH 2CI2 , rt, 6 h 
-78°C, 6 h, 70% 52% 

217 

~ ~ 0 

g~+o-co 
HBF 4oEt20 

g&:ro-co .. 
BF8 

i

N/pr Et20, rt, 100% iNH/pr 4 

218 219 

Scheme 59 

The third and most recent method involves the rearrangement of a methyl molybdenum 

complex. containing isocyanide ligands to give the complex. 220 (Scheme 60),124 

* OC,···~, 
I \ . .,..;D-Me 

OC N" 
\ 

Bul 

(a) NatHg, THF, It, 2 h 

(b) Mel,60% 

80 ·C, 3 h 
49% 

... 

.. 

Scheme 60 

>9<-
oc"'l\o.......CNleu 

OC Me 

220 

acetone 

70°C, 2 h 

55% 

.. 
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Correspondingly the synthesis of the complex 218 was attempted according to the 

literature method. The molybdenum dimer 221 was obtained by reaction of sodium 

cyclopentadienide with molydenum hexacarbonyl (Scheme 61). A literature search 

revealed that Heathcock et al. Have achieved similar success in the synthesis of the 1']1-

molybdenum bound ketone via a one-pot reaction125 in which chloroacetone is simply 

added to the sodium salt generated from reaction of sodium cyclopentadienide with 

molybdenum hexacarbonyl. This method is not recommended in the original publication 

due to the presence of excess cyclopentadiene in the reaction mixture making product 

isolation difficult. However the one-pot procedure appreciably decreases reaction time and 

the outcome is not significantly compromised. 

Mo(CO)6 

Cp-Na+ 

• 
THF, reflux, 16 h 

THF, rt, 6 h 

50% 

• 

~ 
OC .. J. CO 
OC"'IO-

O~CO CO 

221 

Scheme 61 

• 
THF,rt 

Handling of such air-sensitive compounds is not trivial and progress was initially slow 

with extensive, if not complete, decomposition suffered in the early stages. Improvement 

in experimental technique allowed some advancement but after much time and effort 

decomposition of the molybdenum complexes was still a major problem. The synthesis of 

the desired complex was achieved, albeit in low yield, with the product and intermediates 
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decomposing rapidly after isolation. Reactions were followed by IH NMR spectroscopy, 

the cyc10pentadienyl moiety giving a characteristic signal for each product, but isolation 

and characterisation of each of the complexes was impossible. Decomposition occurred in 

the NMR tube before the spectra could be recorded. Several attempts at reaction between 

the /3-ketothioacetal and the azaallyl complex 219 failed, quite possibly as a result of 

decomposition of the complex. Eventually after much consideration the molybdenum 

electrophile approach was abandoned. From our experience the simple complexes are 

difficult to prepare and handle, synthesis of a functionalised complex as required for our 

purposes may prove impractical and much time had already been lost. 
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6.0 Approach from a pyrrolyl precursor 

6.1 Retrosynthetic analysis 

As discussed in Chapter 2 several approaches may be applied to Roseophilin and finally 

we decided to tackle the synthesis from a pyrrolyl precursor. Our proposed synthesis 

(Scheme 62) starts from N-Boc-pyrrole and makes use of the high nuc1eophilicity of the 

heteroaromatic ring. Molecular modelling studies predicted that formation of the 

macrocyc1ic ring before the construction of the cyclopentanone ring should allow more 

scope for the approach of the electrophile due to the system being less rigid. 

~ 
Meo2¥i 

o H 
222 

I 
TIPS 

224 

OMe 

OH~ ~/'. 
~~ OMe 

I 5 

TIPS 

226 

===> 

~ Me02~~~ 
MeO 0 H 

223 

I 
TIPS 

225 

OMe 

~OMe 
Soc 

227 

Scheme 62 

===> .-----_. 
Nicholas 
reaction 

===> .-----_. 
Knoevenagel 
condensation 

With the intramolecular Nicholas reaction still in mind for the closure of the macrocyc1e, 

we envisaged a malonate derivative 224 as an expedient nuc1eophile. The vinylic malonic 

ester of 225 may be introduced via a Knoevenagel condensation126 on the 3-formylpyrrole 
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226. Introduction of the isopropyl substituent could then be effected by a copper-catalysed 

conjugate addition of isopropyl magnesium halide and perhaps eventually an 

enantioselective conjugate addition. Ring closure and subsequent reduction of the alkyne 

then yields fragment 222. Structure 224 has the advantage that the malonate may be 

generated under mild conditions, necessary in the presence of the propargylic cation. 

6.2 Approaches to the precursor to macrocyclisation 

6.2.11,2·Metallate rearrangement 

The starting point of the synthesis is the N-protected-2-substituted pyrrole 227. A novel 

synthesis of 2-substituted pyrroles presented itself to us in the form of a 1,2-metallate 

rearrangement, a reaction well documented by Kocienski et al. (Scheme 63).127 Reaction of 

the 6-lithio-2,3-dihydropyran 228 with lithium di-N-protected-pyrrolylcuprate (generated 

in situ) would yield a higher order cuprate 229 which, according to precedent, should 

undergo a 1,2-alkyl migration to give a 2-substituted pyrrole 231 provided the that the 

pyrrolyl moiety behaves as a transferrable ligand. The terminal hydroxyl unit thus 

generated would allow for futher functionality to be introduced. 
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o t-BuLi 

1,2-metallate 

rearrangement 

... 

.. 

6.2.1.1 N-Boc-2-lithiopyrrole 

228 

230 

RLi (2.2 eq) 

... 
CuBreSMe 2 (1.1 eq) 

229 

... 

Scheme 63 

In order to effect the aforementioned 1,2-metallate rearrangement, a reliable and clean 

preparation of N-Boc-2-lithiopyrrole was required. The direct metal-hydrogen exchange of 

the a-hydrogens of the pyrrole itself is not possible due to the presence of the acidic proton 

on the pyrrole nitrogen. N-Boc-pyrrole is an ideal substrate as the protecting group both 

directs a-lithiation and prevents the formation of the dianion. However the relatively 

expensive hindered base, lithium tetramethylpiperidide (LTMP) is required rather than 

butyllithium to prevent cleaving of the carbamate protecting group. There are few 

established and reliable alternatives: direct lithium-halogen exchange between N-Boc-2-

bromopyrrole (derived from pyrrole and 1,3-dibromo-5,5-dimethylhydantoinY28 is the 

first; a more recent method reported by Snieckus et al. 129 is the direct and regiospecific a-

lithiation of N-(tert-butylcarbamoyl)pyrrole 232 with t-BuLi. The latter requires 2 

equivalents of the organometallic and creates the dianion with the carbamoyl nitrogen 

being lithiated first (Scheme 64). 
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2 (a) 'BuU (2.2 eq), THF, -78 ·C, 1 h 9: .. 
° NHD 

(b) 020 (1.1 eq), -78 ·C ~ rt, 6 h 0+ + 
232 233 

Scheme 64 

A straightforward approch in our case seemed to be the synthesis of the 2-stannylpyrrole 

234 with subsequent transmetallation with n-BuLi (Scheme 65). The stannane was formed 

with ease but transmetallation could not be achieved. Treatment of 234 with iodine 

however yielded the 2-iodopyrrole 235 which was amenable to lithium-halogen exchange 

with n-BuLi as demonstrated by a D20 quench. 

(a) LTMP, THF 

Q 
-so ·c. 45 min ()- Iz• CHzCI2 .. SnBU3 .. 

Boc (b) Bu 3SnCI. THF Boc rt, 30 min 

-80 ·C, 30 min 98% 

78% 234 

(a) BuLi, THF 

0-1 -78 ·C, 30 min 

()-o .. 
Boc (b) 020 Boc 

100% 

235 238 

Scheme 64 

A more expedient route to the desired 2-iodopyrrole 235 was achieved in one step from N-

Boc-pyrrole, according to a recently published procedure for the iodination of electron 

deficient aromatic systems with bis(trifluoroacetoxy)iodobenzene (Scheme 65),130 
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Scheme 64 

Pyrrole, which is not an electron deficient system, was not included in this report but we 

felt that the Boc protecting group, which is electron withdrawing and has a stabilising 

effect on pyrrole, may render it a suitable substrate. There are few established routes to the 

formation of 2-halo-pyrroles, regioselective mono-halogenation cannot be achieved by 

treatment of pyrrole with most halogenating agents. Instead, a non-regioselective mixture 

of mono-, di, tri- and even tetrahalopyrroles are formed. N-Boc-pyrrole was a suitable 

substrate for the reaction and so a novel, direct access, to the desired N-Boc-2-iodopyrrole 

was generated (Scheme 65). 

Q 
12, Phl(OCOCF3h 

Q-I • 
pyridine. CH2CI2 • rt. 87% 

Boc Boc 

235 

Scheme 65 

Unfortunately the 1,2-metallate rearragement with N-Boc-2-lithiopyrrole was not achieved 

(Scheme 66). The reaction was quenched after 24 h with D20 which proved the presence 

of the pyrrolyl anion. As the pyrrolyl cuprate 229 has not previously been described it is 

possible that it may be a non-transferrable ligand, in which case the reaction has no further 

pertinence to our approach. 
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6.2.2 Anionic SN2 reaction 

fi 
'~Li 

I 

Boc 

Scheme 66 

6.2.2.1 Synthesis of the side chain 242 

~OH 
I 
Boc 

231 

The next advance in our approach was the synthesis of the side chain (Scheme 67) with the 

aim of introducing it to the N-Boc-2-1ithiopyrrole via the iodide 235. 

Q 
AcBr, ZnCI 2 

o ·C-Ht, 6.5 h 

55% 

236 

B~OH 

238 

MeO~ 

BuLi. HMPA. THF 

-78 ·C-+rt. o/n 

70% 

MeO~OH 

241 

.. Br~OAc 

237 

DHP.PTSA 

MeO~ 
~OTHP 

240 

12, imidazole, Ph aP 

O·C, 30 min 

70% 

Scheme 67 

PTSA .. 
MeOH, A, 1 d 

85% 

B~OTHP 

239 

PPTS,MeOH 

rt. 18 h 

66% 

MeO~1 

242 
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The iodide 242 was assembled in 6 steps from tetrahydropyran 236.131 Opening of the 6-

membered ring and subsequent protecting group manipulation yielded the THP protected 

5-bromopentanol 239 which was easily coupled with methyl propargyl ether according to a 

standard protocol. 131 Deprotection and iodination of the liberated alcohol furnished 242. 

Unfortunately 242 afforded no reaction with the pyrrolyl anion, although encorporating a 

good leaving group it isn't a reactive enough electrophile for the coupling required 

(Scheme 67). 

~OMe 0-1 (a) BuU, THF, -78 ·C, 30 min 

X .. 
Boc (b) 242, THF,-78 ·C-Ht, 20 h Boc 

235 227 

Scheme 67 

A Suzuki coupling between the pyrrole and 242 was considered at this stage however, 

although such cross-couplings may be achieved between 9-aryl-9-BBN derivatives and 

iodoalkanes bearing f3-hydrogens, the yields are reported to be poor. 132 The aldehyde 244, 

available by a sodium acetate buffered oxidation of 241 is a better choice of electrophile 

(Scheme 68). 

MeO~OH 

241 

NaOAc,4AMS 

65% 

Scheme 68 

Meo~o 

244 

Coupling was successful and the adduct 245 was isolated in moderate yield (Scheme 69). 

Although the yield based on recovered starting material was near enough quantitative, the 

reaction could not be optimised further. Surprisingly the a-py~olyl hydroxyl moiety of the 
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N-Boc-protected 245 is not prone to elimination as may be expected and so we were faced 

with the choice of an elimination, which may be possible by treatment with TFA and 

triethylsilane provided the pyrrole is stable under those conditions, or derivitisation to a 

thioether which could be removed simultaneously with the reduction of the alkyne after 

macrocyclisation. The thioether has the added advantage that by virtue of its steric bulk it 

may promote the macrocyclisation by forcing the reactive sites together. The thioether 246 

was therefore contrived, according to a literature procedure (Scheme 69). \33 

0-1 
Boc 

235 

PhSH, PTSA 

THF, rt, 3 h 

62% 

.. 

(a) BuLi, THF, -78 ·C, 30 min 

(b) 244, THF, -78 ·C, 1 h 
57% 

~OMe 
Boc OH 

245 

~OM9 
Boc SPh 

246 

Scheme 69 

It is interesting to note that coupling of the aldehyde 244 with N-Boc-2-lithiopyrrole, 

fonned directly with LTMP, gave a different result. The reaction which was much slower, 

requiring 12 h at rt, caused Boc cleavage and elimination of the hydroxyl moiety to afford 

the undesired a-vinylpyrrole 247 (Scheme 70). 

Q 
Boc 

(a) LTMP, THF, -80 ·C, 45 min 

(b) 18, THF, -78 ·C-+rt, o/n 
41% 

Scheme 70 

~OMe 
H 

247 
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6.2.3 f3 -pyrrole formylation 

Formylation of pyrrole at the {j position, as proposed in our retrosynthetic analysis, 

requires some consideration. It has long been known that pyrrole undergoes predominant 

or exclusive kinetic electrophilic substitution at the a (2 or 5) position. A very effective 

strategy has been developed for the synthesis of 3-substituted pyrroles based on the use of 

the triisopropylsilyl (TIPS) moiety as a sterically demanding nitrogen substituent to 

obstruct the attack of electrophilic reagents at the a positions. 134 The N-TIPS-2-substituted 

pyrrole 248 was duly prepared (Scheme 71), but formylation of this intermediate under 

Vilsmeier-Haack conditions to give 249 did not occur. 

~OMe 
Soc SPh (b) NaH, TIPSCI, DMF, 0 ·C, 1 h,62% 

~OMe 
TIPS SPh 

(a) NaOMa, MaOH, 0 ·C, 4 h, 91% 

247 248 

OMe 
(a) [Me2N+=CHCI]CI", CH2CI2, 0 ·C -+ li, 30 min 

X .. 
(b) NaOH, H:zO, rt, 4 h 

249 

Scheme 71 

The substrate was not stable to the reaction conditions, forming an intractable black tar. 

6.2.4 Sonogashira approach 

We were reluctant to change our approach greatly at this stage, and since 3-formylation of 

unsubstituted N-TIPS-pyrrole is an established reaction, only a minor reorganisation of our 

79 



current strategy would offer an expedient solution to the problem in hand. However, 

regioselective introduction of the propargylic side chain opposite to the f:J-substituent 

already present now poses a problem. With the functionality introduced at the 3-position it 

would be impossible to regioselectively lithiate and couple the requisite anion with the 

aldehyde 244. A solution to this previously unconsidered complication would be to use N-

Boc-2-iodopyrrole 235, already a feature of our strategy, and perform a Sonogashira 

reaction. 

6.2.4.1 The Sonogashira Reaction 

The Sonogashira reaction is a copper-palladium co-catalysed coupling of terminal alkynes 

with aromatic and vinyl halides (Scheme 72).135 It is typically a technically simple, 

efficient and high yielding reaction which tolerates a wide variety of functional groups. 

Ar-X + A - H 
Cu(I), Pd(l) .. Al - A 

base 

.. ~ - H 
Cu(I), Pd(l) 

base 

Scheme 72 

The reaction was developed in 1975 by Sonogashira136 at the same time as both Heck and 

Cassar reported a similar process which did not involve copper catalysis but required more 

forcing conditions.
137 

The reaction can in fact be envisaged as an extension of the well­

used Heck palladium catalysed arylation of alkenes. Prior to 1975 the only method 
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available for coupling alkynes and iodoarenes was the Stephens-Castro reaction, involving 

a preformed copper acetylide reacting in pyridine at high temperatures. The Sonogashira 

process is a major advance as it allows a wide range of substrates to couple under very 

mild conditions. 

Mechanism 

The Sonogashira reaction almost certainly follows the normal oxidative addition-reductive 

elimination process common to palladium-catalysed carbon-carbon bond forming reactions 

(Scheme 73). The exact mechanism of the reaction however is not known and in particular 

the role of the copper catalyst remains unclear. The oxidative addition of the aryl halide to 

the palladium(O) species is the rate determining step of the reaction. Substrates bearing 

electron-withdrawing groups artha or para to the halide will therefore react more readily 

as the more electron deficient aryl halides will undergo oxidative addition more rapidly. 

The reaction does proceed without the copper(I) co-catalyst but only under more forcing 

conditions and not for less active substrates. 

AI - R ArX 

R = H 

Scheme 73 
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The most commonly used form of the Sonogashira reaction couples an aromatic iodide 

with a terminal alkyne. However, other substrates such as aromatic bromides, chlorides 

and vinyl halides have been reported. Both Pd(II) and Pd(O) have been used but Pd(II) 

catalysts benefit from greater long-term stability than the palladium(O) species. Samples of 

PdClzCPPh3)2 which have been stored under normal laboratory conditions for several years 

still prove effective in the reaction whereas Pd(PPh3)4. although it may be freshly prepared, 

rapidly deteriorates unless stored under carefully controlled conditions. The amount of 

copper and palladium catalysts used is generally of the order of 2 mol% of each with 

respect to the halide and alkyne. This ratio is likely to lead to product formation within an 

acceptable time period but is not necessarily optimum. In large scale preparations (> 100 g) 

catalyst ratios as low as 0.5 mol% have proved effective. Sonogashira's initial procedure 

used diethylamine as both base and solvent and this medium continues to be used. There 

appears to be no particular advantage of diethylamine over many of the commonly used 

organic bases, several of which have been successfully used in the reaction. The 

Sonogashira reaction is one of the most functionally tolerant reactions available for 

carbon-carbon bond formation. Although it may be possible to find unique combinations of 

functionality which inhibit the activity of the palladium catalyst the reaction is generally 

compatible with all the commonly encountered functional groups. Reactions with both 

heteroaromatic halides and heterocyclic alkynyl substituents are known although their 

coupling with a pyrrolyl halide remains unreported (Scheme 74).138 
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R' ---= + 

x= I, Br 

Pd(PPh 3 )4' Cui, PhH, BzEt3N+CI­
~ 

aq. 2.5 N NaOH, 80-100% 

R2 = 2-thienyl, HO(CH2)" HOCH,. 2-furyl, 2-pyridyl, Ph, (EtO)2CH 

Scheme 74 

Some limitations in the nature of the alkyne exist, in particular those alkynes which are 

conjugated to electron withdrawing groups and short-chain alkynyl amines in which the 

amino groups can undergo palladium-catalysed addition to the triple bond to give cyclic 

imines. 139 As may be expected from such an efficient and functionally tolerant process, 

there are many applications of the Sonogashira reaction in the approach to natural 

products_ 140
-
146 The reaction is particularly useful in the synthesis of the enediyne 

antibiotics. 147 

6.4.2.2 Model studies 

Model studies on N-Boc-2-iodopyrrole 235 with 5-chloropentyne yielded the adduct 250 in 

89% yield (Scheme 75). 

([)-, 
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~CI 

(PPh3)4Pd, Cui 
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2NH, rt, o/n, 89% 

Scheme 75 
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As suspected 3-formylation of the N-TIPS-pyrrole 251 (Scheme 76) at this stage was not 

possible, the reaction yielding a black tar as before. 

n 
"~CI 

Boc 

250 

(a) NaOH(aq)' MeOH, rt, o/n, 93% 

(b) NaH, TIPSCI, DMF, 0 DC, 1 h, 97% 

(a) [Me2N+=CHCI]CI-, CHP2' 0 'C ~ t., 30 min 'I '\ 

n 
"~CI 

TIPS 

251 

X • 
OH~ 

~ CI 
(b) NaOH, HP, rt, 4 h TIPS 

252 

Scheme 76 

Reduction of the internal alkyne of 250 was achieved readily (Scheme 77) ; however 

treatment of 253 with the lithium anion of methyl propargyl ether, according to a 

procedure published by Nicolaou et al.,148 did not lead to displacement of the chloride or 

the corresponding iodide 254 (Scheme 78). 

n 
"~CI 

R 

250 

R = Boc, TIPS 

H2, PdlC, MeOH 

rt, 1 h,92% 
~CI 

R 
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Scheme 77 
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BuLi, HMPA, THF 

-78 ·C ~ rt, o/n 

Scheme 78 

~OMe 
TIPS 
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Perplexed by these results we attempted the reaction between 5-chloropentyne and the 

alkynyl anion, which furnished the desired diyne 257 in a 79% yield (Scheme 79). 

~OMe 

256 

~CI 

BuLi, HMPA, THF 

-78·C ~ rt. o/n. 79% 

Scheme 79 

~OMe 

257 

Evidently the method is not at fault and the pyrrole moiety is the root of the problem. The 

reaction was attempted several times with an increased number of equivalents of the anion 

with no improvement in result. In all cases the pyrrole 254 was recovered quantitatively. 

Although 3-formylation of 245 may well be achieved, it is futile if we cannot introduce the 

propargyl unit, essential for the proposed macrocyclic ring closure. The only option left is 

to effect the formylation at the outset and to introduce the dialkyne 257 without reduction 

of the extraneous triple bond (a regioselective reduction of the electron rich internal alkyne 

of this system was attempted without success). 

6.2.4.3 Retrosynthetic analysis 
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The Nicholas reaction, proposed for macrocyc1isation would form a highly strained 13-

membered ring, however the presence of the second alkyne may be favourable in this case 

(Scheme 80). The dicobalt complex of both alkynes imparts an Sp2 character to the sp 

centres and distorts the triple bond,79, 80,149 bringing the reactive sites together (Scheme 80). 

The Nicholas reaction (as discussed in chapter 3) is particularly effective in the formation 

of macrocyc1es and strained rings due to the propargyl cation stablised by the dicobalt 

complex. Thanks to the steric bulk of the dicobalt complexes the reaction benefits from a 

high degree of diastereoselectivity, favouring the desired anti conformation. 

Decomplexation of 258 , usually carried out under oxidative conditions, and subsequent 

reduction of the alkynyl moieties should provide 13 after decarboxylation. 
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The Sonogashira reaction, as discussed previously, is a highly specific, mild process and is 

expected to be high yielding. The second ring closure, to form the cyclopentenone ring of 

13 is predicted to be facile. Gentle warming of intermediate 258 in the presence of a mild 

base may effect cyclisation. If more forcing conditions are required, lithiation of the 2-

position of the pyrrole and subsequent transmetallation to a nucleophilic organocerium 

derivative should prove effective. 
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The advantage in this synthesis is the brevity and flexibility of the approach. The 

cyclisations may be carried out in the order shown above or reversed in order to minimise 

ring strain and thus optimise the macrocyc1isation step. A possible disadvantage is in the 

choice of a pyrrolyl starting material. Pyrrole is highly nucleophilic and prone both to 

oxidation on exposure to air and polymerisation in the presence of electrophilic 

substitutents. However with the appropriate use of protecting groups (the bulky TIPS 

group to shield the reactive 2-position and electron-withdrawing Boc groups to reduce the 

nuc1eophilicity of the ring) these disadvantages should be alleviated. 

6.2.4.4 Synthesis of the Nicholas precursor 

Synthesis of the Nicholas precursor was achieved in 6 steps from N-TIPS-pyrrole in a 45% 

overall yield (Scheme 81). 
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Q 
TIPS 

265 

263 

267 

H 

269 

(a) (COClh, DMF, CH2Clz 
o ·C, 20 min 

(b) CHzClz'~' 30 min 
(e) 5% aq NaOH, rt, o/n, 74% 

TMSCI, Et3N, THF, EtzO 

-40 ·C, 3 h, 96% 

NIS, DMF, rt, o/n, 88% 

OMe 

OH~ 

z) 
H 

264 

266 

268 

Scheme 81 

CH:!(Et~Ch, piperidine 

CI-I:!CI2, 4A MS, rt, om, 85% 

rt, 10 min, 98% 

~OMe 

(PPh 3).Pd. Cui, P~2NH 

-15 ·C, o/n, 91% 

Introduction of the isopropyl moiety via a copper (I) catalysed l,4-conjugate addition, 

accelerated by chlorotrimethylsilane, resulted in the N-silyl derivative 266. Despite the 

lability of the nitrogen-silicon bond 266 was resistant to treatment with aqueous 

hydrochloric acid. The unwanted trimethylsilyl moiety was readily removed with TBAF. 

a-Iodination of the pyrrole ring of 267 was achieved efficiently and regioselectively with 

N-iodosuccinamide. Treatment of 267 with bis(trifluoroacetoxy)iodobenzene, a method we 

had effectively used in the synthesis of N-Boc-2-iodopyrrole, was unsuccessful in this case 

due to the increased electron density of the unprotected pyrrole ring. N-Boc protection of 
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intermediate 269 allowed for some iodination with bis(trifluoroacetoxy)iodobenzene but 

the reaction was not clean amd required lengthy purification. Attempted iodination of the 

N-Boc protected intermediate 270 with N-iodosuccinamide was unsuccessful, in this case 

the electron withdrawing effect of the protecting group rendered the pyrrole ring inactive 

to substitution (Scheme 82). 

NIS. DMF, rt, o/n .. X" 
DMF, rt, 1 h, 92% 

267 270 271 

Scheme 82 

6.3 The Nicholas reaction 

6.3.1 Macrocyclisation 

Dicomplexation of 269 with dicobaltoctacarbonyl was achieved cleanly, by TLC. The 

complex itself was a rich brown colour. Removal of the malonate proton was effected in 

situ with sodium hydride. However addition of the Lewis acid even at low temperature 

(-90°C) initiated degradation of the intermediate to produce a highly polar intractable 

black tar (Scheme 83). 
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OMe 

H 

269 

BF3"Et20, CH2CI2 

X~ 
-90 ·C --> 0 ·C, 24 h 

258 

Scheme 83 

The pyrrole ring is electron rich and we believed its presence a to the internal dicobalt-

alkyne complex must have a destabilising effect. In order to alleviate the problem we 

introduced electron withdrawing Boc protection as a means of stabilising the complex 

(Scheme 84), 

OMe 
<a) NaH, OMF, 0 ·C, 30 min 

OMe 

• 
(b) Boc20, OMF, 0 ·C, 1 h 

2811 272 

Scheme 84 

The N -Boc protected intermediate 272 underwent dicomplexation with 

dicobaltoctacarbonyl, again quantitatively by TLC, the complex 273 this time being a deep 

red colour (Scheme 85). 
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OMe 

(b) NaH, CH,CI" 0 °C, 1 h 
Boc 

272 273 

BF3·Et,O, CH,CI, x-
-90 °C ~ 0 'C, 2.25 d 

274 

Scheme 85 

On introduction of the Lewis acid at -90°C 273 remained, at least partially, visible by 

TLC. After 6 h at -90°C with no reaction the reaction mixture was gradually warmed to rt, 

however even after 2 days at rt there had been no cyclisation, Refluxing the reaction 

mixture caused decomposition of the complex. The dicomplexed N-Boc substrate 273 was 

recovered in 68% yield, decomplexation with ceric ammonium nitrate yielded 272 

(Scheme 86). All subsequent attempts produced the same result. 

Me 

OMe 

MeOH, rt, 1 d, 68% 

Boc 

273 272 

Scheme 86 

6.3.2 Nicholas Coupling 
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Although the substrate is, at least partially, stable to the reaction conditions it is evidently 

not amenable to cyclisation. It is possible that the ring would be too highly strained and 

that the reaction is therefore not thermodynamically possible, alternatively the tertiary 

nucleophilic centre may be too hindered to allow the approach of the sterically demanding 

dicobalt complex. The latter theory may be explored by attempted coupling of the free 

diyne 257 with the pyrrole intennediate 270 (Scheme 87). Treatment of the diyne 257 with 

dicobalt octacarbonyl yielded the dicomplexed intennediate 275, which was bright red in 

colour. The Lewis acid was added at -90°C and the mixture was stirred at this temperature 

for 10 min before addition of the prefonned anion 276. The reaction mixture was held at 

-90°C for 6 h at which point no reaction had occured by TLC and the mixture was 

gradually warmed to rt and held there for 2 days. Still no reaction had occurred, the 

dicobalt complex 275 was recovered along with the unreacted pyrrole 270. 
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~OMe 

257 

275 

Nao-(): 
EtOi Q 

Soc 
278 

BF3oEI20, CH2CI2 
-90 ·C ~ 0 ·C, 225 d 

m 

Scheme 87 

It is unfortunate that the key step of our strategy was incorporated at the end of our 

synthesis. The trials faced along the route to the key step allowed us precious little time for 

modification and the strategy was eventually unsuccessful. 
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7.0 Conclusions and perspectives 

Our approach to Roseophilin has been unsuccessful thus far. None of our attempts to use 

the Nicholas reaction for the macrocyclisation worked. It is unclear as to whether the 

problem arises from the ring strain created in the cyclisation or the steric hindrance of the 

malonate nucleophile. Literature precedent strongly suggests that the coupling between a 

propargyl cation and malonate or enolate derivative is favourable (as discussed in Chapter 

3) and I still feel that this choice for macrocyclisation was not misguided. Despite the lack 

of precedent for the dicobalt complex a to the N-Boc-protected pyrrole, it has been 

demonstrated that this complex is stable to the reaction conditions. Furthermore the use of 

a sterically demanding moiety at this position, which has long been a feature of our 

strategy, has recently been shown to enhance macrocyclisation by Hiemstra et al. 22 

One possible modification of our synthesis uses a Wittig reaction rather than a 

Knoevenagel condensation to give the vinyl pyrrole 278 (Scheme 88). The Nicholas 

precursor 280 now incorporates a secondary nucleophilic centre, which may allow 

approach of the sterically demanding dicobalt stabilised propargyl cation. 
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OH~ 

~) 
H 

PriMgCI, CuSroMs2S, TMSCI 

---------------------------.. 
EI,N, THF, EI20, -40 'C 

264 278 

(a) NIS, DMF, rt, o/n 

--------------------------.. OMe 

-15 'C, o/n 
279 280 

Scheme 88 

One of the main advantages of our approach, and indeed something we tried to maintain in 

all our approaches, is the brevity and flexibility of the strategy. The synthesis of our 

Nicholas precursor 269 is rapid and high yielding, an advantage which allows for 

modification even in the final stages of the approach. If the Nicholas reaction proves 

unsuccessful an alternative method of macrocyclisation may be considered. As the 

Sonogashira reaction has been so successful in this approach, it may be possible to effect 

the macrocyclisation via this method (Scheme 89). Coupling of I-halooct-7-yne, 

synthesised in two steps by a potassium zipper reaction and halogenation from the 

commercially available 2-octyn-I-ol, with the enol ate moiety of 281 would allow the 

expedient construction of the macrocyclisation precursor 283. a Pyrrole iodination with N-

iodosuccinamide followed by an intramolecular Sonogashira reaction would then yield the 

macrocycle 284. 
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Me02~ -Q 
I 
TMS 

281 

283 

H 

NaH, DMF, 0 'C 

-------------_._._-----------,. 

x = CI, I or OMs 

-----_ ...... ------ .... 

Scheme 89 

(a) TBAF, CH2CI2 , It, 10 min 
--------_ .... ----_ ... ---_ ... 
(b) NIS, DMF, It, oIn 

TMS 

282 

284 

Completion of the synthesis according to the strategy discussed in the previous chapter 

would give the macrotricyclic core. A third and perhaps more ambitious modification to 

our route, deviating only slightly from the previous suggestion, would be to effect the 

Sonogashira reaction of 285 with propyne and perform a potassium zipper reaction to give 

the terminal alkyne 287 (Scheme 90). Coupling of commercially available 5-chloropentyne 

(or its corresponding iodide) to the enolate of 287 would give intermediate 288, which is 

suitable for an alkynyl metathesis reaction, as recently described by FUrstner et al., to give 

the macrocyclic intermediate 289. 
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--------------------------------~ 

(PPh3)4Pd, Cui, Pr;2NH, -15°C, o/n 

285 

~CI 
---------------------------,.. 
BULi, HMPA, THF, -78 °C---?rt 

Soc 

287 

~ 
Me02C ~oc 

289 

Scheme 90 

H 

286 

Soc 

288 

(a) NaH, DMF, Boc20 

--------------------. 

(b) 'KAPA' 
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Experimental 

General procedures 

Reactions requiring anhydrous conditions were conducted in flame-dried apparatus under a 

static atmosphere of dry argon or nitrogen. Organic extracts were dried over MgS04 unless 

otherwise specified and evaporated at electric pump (5-10 mmHg) or water pump (20 

mmHg) pressure using a Blichi rotary evaporator. Distillations in which the bath 

temperature is record were perfromed with a Kugelrohr apparutus. 

Where appropriate, solvents and reagents were purified and dried by standard methods, i.e. 

by distillation from the usual dring agent prior to use: diethyl ether (ether) and THF were 

distilled from sodium/benzophenone and used fresh. Pentane, cyclohexane, 

dichloromethane, DMF and toluene were distilled from calcium hydride and either used 

fresh or stored over 4 A molecular sieves under nitrogen. Methanol was distilled from the 

corresponding magnesium alkoxide. Piperidine, pyridine, pyrrole and triethylamine were 

distilled from calcium hydride and stored over KOH under nitrogen. Commercial 

organometallics were used as supplied, alkyllithium lithium reagents were titrated against 

1,3-diphenylacetone p-tosylhydrozone and Grignard reagents were titrated against 2-

propanol in the presence of 1, lO-phenanthroline indicator. All other reagents were purified 

according to literature procedures. 150 

All reactions were magnetically stirred and were monitored by TLC using Machery-Nagel 

DUren Alugram Sil GIUV 254 precoated aluminium foil sheets, layer thickness 0.25 mm. 

Compounds were visualised by UV (254 nm) then with ethanolic phosphomolybdic acid or 
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anisaldehyde with heating. Flash chromatography was performed on Merck silica gel 60 

(0.04-0.063 mm, 230-400 mesh), unless otherwise stated, and run under low pressure. 

Melting points were measured on a Griffin electrochemical apparatus and are uncorrected. 

IR spectra were recorded on a Perkin Elmer 1600 series FTIR spectrometer as thin films 

supported on sodium chloride plates. Absorptions are reported as values in cm-1 and are 

defined as strong (s), medium (m) or weak (w). Broad absorptions are designated (br). 

Proton NMR spectra were recorded in Fourier Transform mode on a Jeol JNX-Ox-270 

(270 MHz), Bruker AC 300 (300 MHz), Bruker AM 360 (360 MHz) or Bruker AM 400 

(400 MHz) spectrometer in either chlorofrom-d or benzene-d6 • Chemical shifts are reported 

in ppm relative to the residual CHCl3 (8 = 7.27 ppm) or benzene «8 = 7.20 ppm). 

Multiplicities are described using the following abbreviations: (s) singlet, (d) doublet, (t) 

triplet, (q) quartet, (quin) quintuplet, (m) multiplet. 

Carbon-13 NMR spectra were recorded on a Jeol JNX-GX-270 (68 MHz), Bruker AC 300 

(75 MHz), Bruker AM 360 (90 MHz) or Bruker AM 400 (100 MHz) spectrometer in either 

chlorofrom-d (8 = 77.2 ppm)or benzene-d6 (8 = 128.7 ppm). Chemical shifts are reported 

in ppm relative to the solvent. Multiplicites were determined using the Distortionless 

Enhancement by Phase Transfer (DEPT) spectral editing technique with secondary pulses 

at 90° and 135°. C-H coupling is indicated by an integer 0-3 in parenthesis following the 

\3C chemical shift value denoting the number of coupled protons. 

Mass spectre were run on a VO 70-250.SE or JEOL MStation JMS-700 spectrometer. Ion 

mass/charge (m/z) ratios are reported as values in atomic mass units followed, in 
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parentheses, by the peak intensity relative to the base peak (100%). All compounds 

submitted for mass spectral analysis were purified by either distillation or column 

chormatograpy and estimated to be at least 95% pure by NMR and TLC. 
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N-(tert-Butoxycarbonyl)-DL-phenylalanine (161) 

CeH"N02 
Mol. WI.: 165,19 

Boc20, NaOH 
• 

t·BuOH, rt, 12 h 
Ph~OH 

~H 
Boc 

C14H19N04 
Mol. Wt.: 265,31 

H20 (lOrnL) was added to a solution of DL-phenylalanine (LOO g, 6.05 mmol) and sodium 

hydroxide (0.27 g, 6.66 mmol) in tert-butanol (8 mL) and the mixture was stirred at rt for 

10 min. Di-tert-butyl-dicarbonate (1.32 g, 6,66 mmol) was added dropwise and the cloudy 

solution was stirred at rt for 12 h. The reaction mixture was then acidified to pH 1 with 

aqueous HCI (lN, 10 rnL), the aqueous phase was separated and extracted with Et20 (3 x 

10 mL), The organic phases were combined, washed with brine (10 mL), dried over 

MgS04 and filtered, The filtrate was concentrated in vacuo and purified by recrystallisation 

from ethyl acetate to obtain the pure N-(tert-butoxycarbonyl)-DL-phenylalanine (1.44 g, 

5.45 mmol, 90%) as a white crystalline solid, mp 85-88°C (Lit. mp 87-88°C).94 

Spectroscopic data is in accordance with literature values.94 

N-(tert-Butoxycarbonyl)-DL-phenylalanine, N-methoxy-N-methylamide (162) 

P~OH 
~H 
Boc 

C14H19NO. 
Mol. WI.: 265,31 

i·BuOCOCI, 
N,O-dimethylhydroxylamine 

hydrochloride, NMM 
THF, -1SoC 

N-Methyl morpholine (2.60 mL, 23.50 mmol) was added to a solution of N-(tert-

butoxycarbonyl)-DL-phenylalanine (1.39 g, 5.24 mmol) in THF (20 mL) at -15°C, 
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followed by isobutyl chloroformate (1.0 mL, 7.86 mmol), to give a precipitate. After 15 

min N,O-dimethylhydroxylamine hydrochloride (0.77 g, 7.86 mmol) was added and 

stirring was continued at -lSoC for 1 min before the cloudy solution was warmed to rt and 

stirred for a further 20 min. The reaction mixture was then quenched with saturated 

NaHC0
3 

(10 mL) and the aqueous phase was separated and extracted with Et20 (3 x 10 

mL). The organic phases were combined, washed with brine (10 mL), dried over MgS04 

and filtered. The filtrate was concentrated in vacuo and purified by recrystallisation from 

ethyl acetate to give N-(tert-butoxycarbonyl)-DL-phenylalanine, N-methoxy-N-

methylamide (1.28 g, 4.14 mmol, 79%) as a white crystalline solid, mp 133-136°C (Lit. 

mp : none given). Spectroscopic data is in accordance with literature values.9s 

N-(tert -Butoxycarbonyl)-DL-phenylalanal (159) 

PhYN"OM8 

~H ~e 
Boc 

C,sH2.N20. 
Mol. WI.: 308,37 

O·C, 20 min 
Ph~H 

~H 
Boc 

C,.H,&N03 
Mol. WI.: 249,31 

Lithium aluminium hydride (138 mg, 3.65 mmol) was added to a stirred solution of N-

(tert-butoxycarbonyl)-DL-phenylalanine N-methoxy-N-methylamide (900 mg, 2.90 mmol) 

in Et20 (20 mL) at O°C. Reduction was complete in 20 min. The reaction mixture was 

hydrolysed with a solution of KHS04 (690 mg. 5.00 mmol) in H20 (20 mL) and the 

aqueous phase was separated and extracted with Et20 (3 x 10 mL). The organic phases 

were combined, washed with brine (10 mL), dried over MgS04 and filtered. The filtrate 

was concentrated in vacuo and purified by chromatography (Si0
2

; hexanes-EtOAc (1: 1» 

to give N-(tert -butoxycarbonyl)-DL-phenylalanal (665 mg, 2.67 mmol, 92%) as a white 
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waxy solid, mp 84-87°C (Lit. mp 86°C).95 Spectroscopic data is in accordance with 

1· 1 95 Iterature va ues. 

N_(terl_Butoxycarbonyl)-2-benzyl-l,4,5,6-tetrahydrocyclopenta[b ]pyrrole (157) 

Ph~H 
~H 
Soc 

C'4H,gN03 
Mol. WI.: 249,31 

(a) cyclopentanone, LDA 
THF, -7a"C -+ 15 DC, o/n 

• 
(b) HCI, CH2Q, rt, 1 h 

~Ph 

~ 
Soc 

C'9H23N02 
Mol. WI.: 297,39 

Cyclopentanone (0.07 mL, 0.80 mmol) was added to a freshly prepared solution of LDA in 

THF (5 mL) at -78°C and the mixture was stirred at -78°C for 1.5 h. N-(tert-

butoxycarbonyl)-DL-phenylalanal (100 mg, 0.40 mmol) in THF (2 mL and 2 x 1 mL 

rinses), at -78°C was transferred via cannula to the reaction vessel. Stirring was continued 

at -7SoC and the reaction mixture was allowed to warm to +15°C overnight. H20 (10 mL) 

was then added, followed by Et20 (10 mL) and the aqueous phase was separated and 

extracted with Et20 (3 x 10 mL). The organic phases were combined, washed with brine 

(10 mL), dried over MgS04 and filtered. The filtrate was concentrated in vacuo to yield a 

diastereomeric mixture of aldol products (152 mg). The aldol products were dissolved in 

CH2Cl2 (5 mL) and one drop of cone. HCI was added. The yellow solution became orange 

and was stirred for 1 h at rt before being diluted with CH2Cl2 (10 mL), washed with 

saturated NaHC03 solution (10 mL) and brine (10 mL), dried over MgS04 and filtered, 

The filtrate was concentrated in vacuo and purified by chromatography (Si0
2

; hexanes-

EtOAc (95:5» to give the N-(tert-butoxycarbonyl)-2-benzyl-l,4,5,6-

tetrahydrocyclopenta[b]pyrrole (50 mg, 0.52 mmol, 42%) as a brown oil. 
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IR (thin film): v = 2931 (w), 2857 (w), 1738 (s), 1603 (s), 1494 (m), 1454 (m), 1368 (m), 

-I 
1335 (w), 1168 (m), 1117 (w), em . 

IH NMR (300MHz, CDC}3): 8 = 7.15-7.35 (5H, m, Ar), 5.62 (1H, s, CH=C(Bn)NBoe), 

4.24 (2H, s, CH2Ph), 2.95 (2H, br t, J = 7.0 Hz, CH2C(R)NBoe), 2.55 (2H, br t, J = 7.0 

Hz, CH2C=C(R)NBoe), 2.35 (2H, quin, J = 7.0 Hz, CH2CH2C(R)NBoe), 1.53 (9H, s, 

Boe). 

\3C NMR (75MHz, CDCI3): 8 = 149.85 (0), 140.23 (0), 139.97 (0), 138.50 (0), 137.77 (1), 

134.42 (0), 128.37 (1), 126.12 (1), 121.53 (1), 113.32 (1), 109.05 (1), 83.02 (0), 36.02 (2), 

29.30 (2), 28.07 (3 (3C)), 27.86 (2), 25.42 (2). 

LRMS (CI mode, isobutane): mlz = 297 [(M + Hr 87%], 207 (43), 197 (100),91 (21), 57 

(100). 

HRMS (CI mode, isobutane): found (M + Hr 298.1805. C1JI24N02 requires 2981.1808. 

3-Isopropyl-cyclopenten-l-yloxy-trimethylsilane (165) 

~o 
CsHeO 

Mol. WI.: 82,10 

PrMgCI, CuBroSMe2 

LiBr, TMSCI, E~N 
EI20, -40·C, 30 min 

b-OTMS 
ClIH220Si 

Mol. WI.: 198,38 

Anhydrous LiBr (2.08 g, 23.95 mmol) and CuBreSMe2 (123 mg, 0.60 mmol, 5 mol%) were 

added to the reaction vessel while still hot and the flask was refilled with nitrogen through 
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several vacuum cycles. Et20 (30 mL) was added and the reaction mixture was cooled to 

-40°C. Isopropylmagnesiumchloride (0.76 M solution in THF, 18.80 mL, 14.28 mmol) 

was added, followed by a mixture of chlorotrimethylsilane (3.03 mL, 23.87 mmol), 

distilled from a small amount of N,N-dimethylaniline, and 2-cyclopenten-l-one (1.00 mL, 

11.94 mmol) in Et20 (5 mL and 2 x 2 mL rinses) at -40°C, which was added dropwise 

over 15 min. The brown solution was stirred for a further 15 min at -40°C, then warmed to 

O°C and triethylamine (3.50 mL, 25.11 mmol) was added to give a precipitate. The mixture 

was poured onto a an ice cold saturated solution of NH4CI (3.00 g) in H20 (20 mL), the 

aqueous phase was separated and extracted with Et20 (3 x 10mL). The organic phases 

were combined, washed with aqueous NH4CI until the aqueous phase reached a pH of 7. 

The extract was dried over MgS04 and carefully concentrated in vacuo. The 3-isopropyl­

cyclopenten-l-yloxy-trimethylsilane (2.27 g, 11.46 mmol, 96%) was used in the next step, 

without purification. 

IH NMR (200MHz, CDCI3): 8 = 4.62 (lH, dd, J1 = 3.7, J2 = 3.3 Hz, CH=COTMS); 2.42-

2.38 (IH, m, CHPri
);. 2.28-2.18 (2H, m, CH2COTMS); 2.01-1.67 (lH, m, CH(CH3)2); 

1.57-1.40 (2H, m, CH2CHPr); 0.85 (3H, d, J = 3.3 Hz, CH(CH3)CH
3
); 0.82 (3H, d, J = 3.3 

Hz, CH(CH3)CH3); 0.20 (9H, s, OTMS). 

13 
C NMR (50MHz, CDCI3): 8 = 154.88 (0), 105.47 (1), 48.89 (2), 33.58 (2), 33.46 (2), 

25.53 (2), 20.06 (3), 19.93 (3),0.00 (3 (3C». 

N-(tert-Butoxycarbonyl)-2-benzyl-4-isopropyl-l,4,S,6-tetrabydrocyclopenta[b]pyrrole 

(164) 
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Ph~H 
~H 
Boc 

C,4H,9N03 
Mol. WI.: 249,31 

(a) MeLi, EI20, rt, 30 min 

(b) -Z 
O-OTMS 

(e) HCI, CH2C~, rt, 1 h 

Methyllithium (1.62 M solution in Et20, 0,5 mL, 0.81 mmol) was added to a solution of 3-

isopropyl-cyclopenten-l-yloxy-trimethylsilane (154 mg, 0.80 mmol) in Et20 (5 mL) at 

-78 DC. The reaction mixture was allowed to warm to rt and was kept stirring at rt for 1 h, 

before being cooled to -78 DC again. N-(tert-Butoxycarbonyl)-DL-phenylalanal (100 mg, 

0.40 mmol) in Et20 (2 mL and 2 x 1 mL rinses) at -78 DC was transferred via cannula to 

the reaction vessel and the reaction was followed by TLC as the mixture was allowed to 

warm to rt. The reaction was quenched at -40DC after 1 h by transferral via cannula to a 

flask of rapidly stirred ice cold H20 (10 mL). Et20 (10 mL) was added and the aqueous 

phase was separated and extracted with Et20 (3 x 10 mL). The organic phases were 

combined, washed with brine (10 mL), dried over MgS04 and filtered. The filtrate was 

concentrated in vacuo and purified by chromatography (Si02; hexanes-EtOAc (95:5» to 

yield a diastereomeric mixture of aldol products (82 mg). The aldol products were 

dissolved in CH2C12 (5 mL) and one drop of cone. HCI was added. The yellow solution 

became orange and was stirred for 1 h at rt before being diluted with CH2Cl2 (10 mL), 

washed with saturated NaHC03 (10 mL) and brine (10 mL), dried over MgS04 and 

filtered. The filtrate was concentrated in vacuo and purified by chromatography (Si02; 

hexanes-EtOAc (95:5» to give N-(tert-butoxycarbonyl)-2-benzyl-4-isopropyl-l,4,5,6-

tetrahydrocyclopenta[b] pyrrole (60 mg, 0.18 mmol, 44%) as a pale yellow oil. 

IR (thin film): v = 3028 (w), 2956 (s), 2870 (s), 1738 (s), 1370 (m), 1334 (w), 1322 (w), 

-\ 
1174 (m), 1118 (m) cm . 

107 



IH NMR (360MHz, CDCI3): 8 = 7.31-7.12 (5H, m, Ar); 5.64 (IH, t, J = 1.0 Hz, 

CH=C(Bn)NBoc); 4.24 (1H, d, J = 15.8 Hz, PhCHaHb); 4.19 (1H, d, J = 15.8 Hz, 

PhCHaHb); 2.97-2.76 (2H, m, CH2CHPt); 2.73-2.65 (1H, m, CHaHbCNBoc); 2.48-2.34 

(IH, m, CHaHbCNBoc); 2.08-1.93 (lH, m, CHPri
); 1.64 (1H, dq, J} = 2.5 Hz J2 = 1.24 Hz, 

CH(CH3)2); 1.49 (9H, S, Boc); 0.90 (3H, d, J = 6.8Hz, CH(CH3)CH3); 0.88 (3H, d, J = 

13C NMR (91MHz, CDCI3): 8 = 149.90 (0), 140.33 (0), 138.45 (0), 137.04 (0), 130.56 (0), 

129.01 (l (2C)), 128.35 (l (2C)), 126.06 0), 109.77 0), 83.01 (0), 45.97 (1), 35.95 (2), 

33.41 (1),32.34 (2), 28.88 (2), 28.16 (3 (3C)), 20.64 (3).20.38 (3). 

LRMS (CI mode, isobutane): mlz = 340 [(M + H)\ 72%], 339 (9), 297 (12), 251 (42),240 

(100),91 (27),57 (100),43 (8). 

HRMS (CI mode, isobutane): found (M + Ht 340.2779. C22H30N02 requires 340.2277. 

N-[(1,1-Dimethylethoxy)carhonyl]-2-aminopentanoic acid (168) 

'·BuOH, rt, 12 h 
~OH 

~H 
Boc 

C,oH,gN04 
Mol. Wt.: 217,26 

H20 (25 mL) was added to a solution of DL-norvaline (3.00 g, 25.61 mmol) and sodium 

hydroxide (1.13 g, 28.25 mmol) in tert-butanol (25 mL) and the mixture was stirred at rt 

for 10 min. Di-tert -butyldicarbonate (6.71 g, 30.74 mmol) was added dropwise and the 
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cloudy solution was stirred at rt for 12 h. The reaction mixture was then acidified to pH 1 

with aqueous Hel ON), the aqueous phase was separated and extracted with Et20 (3 x 30 

mL). The organic phases were combined, washed with brine (30 mL), dried over MgS04 

and filtered. The filtrate was concentrated in vacuo and purified by recrystallisation from 

EtOAc to obtain the pure N-[(1,l-dimethylethoxy)carbonyl]-2-aminopentanoic acid (4.64 

g, 21.36 mmol, 84%) as a white crystalline solid, mp 81 - 83°C (Lit. mp: none given). 

Spectroscopic data is in accordance with literature values. 151 

Carbamic acid-[l [(methoxymethylamino )carbonyl]-2-propyl]-1,1-dimethylethyl ester 

(169) 

~OH 
~H 
Boc 

C10H1SN04 
Mol. Wt.: 217,26 

i-BuOCOCI, 
N,O-dimethylhydroxylamine 

hydrochloride, NMM 
THF, -15°C 

.. 
Boc 

N-Methyl morpholine (10.0 mL, 90.95 mmol) was added to a solution of N-(tert-

butoxycarbonyl)-DL-norvaline (4.39 g, 20.21 mmol) in THF (40 mL) at -15°C, followed 

by isobutyl chloroformate (3.93 mL, 30.3 mmol), to give a precipitate. After 15 min N,O-

dimethylhydroxylamine hydrochloride (2.96 g, 30.34 mmol) was added and stirring was 

continued at -ISoC for 1 min before the cloudy solution was warmed to rt and stirred for a 

further 20 min. The reaction mixture was then quenched with saturated NaHC0
3 

(20 mL) 

and the aqueous phase was separated and extracted with Et20 (3 x 20 mL). The organic 

phases were combined, washed with brine (20 mL), dried over MgS04 and filtered. The 

filtrate was concentrated in vacuo and purified by recrystallisation from Et
2
0 to give 

carbamic acid-[ 1 [(methoxymethylamino )carbonyl]-2-propyl]-I, I-dimethylethyl ester (3.32 
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g, 12.75 mmol, 63%) as a white crystalline solid, mp 107 - 108 DC (Lit. mp none given). 

Spectroscopic data is in accordance with literature values. 152 

2-(1,1-Dimethylethoxycarbonylamino )pentanal (170) 

~rOM' 
~H Me 
Boc 

C'2H24 N204 
Mol. WI.: 260,33 

o·c. 20 min 

Boc 

Lithium aluminium hydride (584 mg, 15.39 mmol) was added to a stirred solution of N-

(tert-butoxycarbonyl)-DL-norvaline, N-methoxy-N-methylamide (3.19 g, 12.25 mmol) in 

Et20 (50 mL) at 0 DC. Reduction was complete in 20 min. The reaction mixture was 

hydrolysed with a solution of KHS04 (2.92 g, 21.44 mmol) in H20 (20 rnL) and the 

aqueous phase was separated and extracted with Et20 (3 x 20 mL). The organic phases 

were combined, washed with brine (20 rnL), dried over MgS04 and filtered. The filtrate 

was concentrated in vacuo and purified by chromatography (Si02; hexanes-EtOAc (1: 1) to 

give the 2-(1,1-dimethylethoxycarbonylamino)pentanal (2.02 g, 10.04 mmol, 82%) as a 

colourless oil. Spectroscopic data is in accordance with literature values. 152 

N-[(1,1-Dimethylethoxy)carbonyl]-2-propyl-4-isopropyl-t,4,5,6-

tetrahydrocyclopenta[b ]pyrrole (172) 
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~H 
~H 
Boc 

C10H19N03 
Mol. WI.: 201,26 

(a) MeLi, Et20, rt, 30 min 

(b) -{ 

C)..OTMS 

(c) Hel, CH2CI2' rt, 1 h 

Boc 

Methyllithium (1.48 M solution in Et20, 1.09 mL, 1.62 mmol) was added to a solution of 

3-isopropyl-cyclopenten-1-yloxy-trimethylsilane (317 mg, 1.60 mmol) in Et20 (5 mL) at 

-78°C. The reaction mixture was allowed to warm to rt and was kept stirring at rt for 3 h, 

before being cooled to -78°C again. N-(tert-Butoxycarbonyl)-DL-norvalinal (161 mg, 0.80 

mmol) in EtzO (2 mL and 2 x 1 mL rinses), at -78°C was transferred via cannula to the 

reaction vessel and reaction was followed by TLC as the mixture was allowed to warm 

towards rt. The reaction was quenched at -40°C after 1 h by transferral via cannula to a 

flask of rapidly stirred ice cold H20 (10 mL). EtzO (10 mL) was added and the aqueous 

phase was separated and extracted with Et20 (3 x 10 mL). The organic phases were 

combined, washed with brine (10 mL), dried over MgS04 and filtered. The filtrate was 

concentrated in vacuo and purified by chromatography (Si02; hexanes-Et20 (95:5» to 

yield a diastereomeric mixture of aldol products (224 mg). The aldol products were 

dissolved in CH2Cl2 (5 mL) and one drop of cone. HCI was added. The yellow solution 

became orange and was stirred for 1 h at rt before being diluted with CH
2
Cl

2 
(10 mL), 

washed with saturated NaHC03 solution (10 mL) and brine (10 mL), dried over MgS04 

and filtered. The filtrate was concentrated in vacuo and purified by Si0
2

; hexanes-Et20 

(95:5)) to give N-[ (1, 1-dimethylethoxy)carbonyl] -2-propyl-4-isopropyl-1 ,4,5,6-

tetrahydrocyclopenta[b ]pyrrole (170 mg, 0.56 mmol, 70%) as a colourless oil. 

IR (thin film): v:::: 2960 (w), 2870 (w), 2324 (s), 2070(s), 1740 (s), 1652 (s), 1528 (m), 

1458 (m), 1428 (m), 1370 (m), 1336 (w), 1252 (w), 1176 (m), 1122 (w), 1016 (w), 800 

-\ 
(m), 660 (m) cm . 
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IH NMR (360MHz, CDCl3): 8 = 5.84 (1H, t, 1 = 1.0 Hz CH=C(Pr)NBoc), 2.97-2.75 (4H, 

m, 2(CH2CNBoc)), 2.74-2.67 (lH, m, CHPri
), 2.41 (lH, dt, 11 = 8.6 Hz, 12 = 7.2 Hz, 

CHaHbCHP~), 2.06-1.94 (lH, m, CHaHbCHP~), 1.70-1.63 (3H, m, CH(CH3)2)' 1.59 (9H, s, 

Boc), 1.00 (3H, t, ] = 7.4 Hz, CH2CH3), 0.96 (3H, d, 1 = 6.7 Hz, CH(CH3)CH3), 0.93 (3H, 

d, J = 6.7 Hz, CH(CH3)CH3)· 

l3C NMR (91MHz, CDCl3): 8 = 149.90 (0), 138.99 (0), 130.74 (0), 130.33 (0), 107.55 (1), 

82.55 (0),45.85 (1), 33.36 (1), 32.32 (2), 31.75 (2), 28.80 (2), 28.09 (3, (3C)), 22.38 (2), 

20.58 (3), 20.21 (3) 13.97 (3). 

LRMS (CI mode, isobutane): 292 [(M + H)+, 72%], 249 (59), 192 (100), 57 (42),43 (18). 

HRMS (CI mode, isobutane): found 292.2276. C1sH3oN02 requires 292.2277. 

1,3.Propanedithio·bis(trimethylsilylane) (189) 

BunU, TMSCI 

EtzO, d, 1 d 

CS-™S 
~TMS 

To a solution of 1,3-propanedithiol (5.0 rnL, 0.05 mol) in Et20 (100 rnL) at O°C, was 

added n-BuLi (2.31 Min hexanes, 43.3 rnL, 0.05 mol) dropwise over a 0.5 h period. The 

reaction mixture was allowed to warm to rt and chlorotrimethylsilane (13 mL, 0.10 mol) 

was added over a 0.5 h period with efficient stirring. After a 24 h reflux period, filtration 

under N2 and distillation (bp = 75°C (0.02mmHg) afforded 4.01 g (15.88 mmol, 32%) of 
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the desired 1,3-propanedithio-bis-(trimethylsilylane) as a colourless oil.Spectroscopic data 

is in accordance with literature values. 106 

p-Toluenesulfonothioic acid, 4-methyl-S, S'-1,3-propanediyl ester (184) 

.. 
Amberlyst A26 (el- form) 

HP, r.t., 18 h 

CS-S02TOI 

S-S02Tol 

Amberlyst resin A26 (CI- form) (14.34 g) was added to a solution of p-toluene thiosulfonic 

acid potassium salt (5.00 g, 22.09 mmol) in water (20 mL) at rt, and the mixture was 

stirred at rt for 18 h. The loaded resin was subsequently removed from the solvent by 

filtration and was washed thoroughly with H20, then acetone and allowed to dry in air. The 

dry resin was mixed with anhydrous toluene (20 mL) and 1,3-dibromopropane (11.04 

mmol) was added. The reaction mixture was stirred at 80°C, under a N2 atmosphere for 20 

h. The resin was removed by filtration and the filtrate was concentrated in vacuo to yield 

the desired p-toluenesulfonothioic acid, 4-methyl-S, S'-1,3-propanediyl ester practically 

pure. The product was purified further by recrystallisation from EtOH, to yield a white 

crystalline solid (3.24 g, 7.78 mmol, 68%), mp 66-67°C (Lit. mp 63.5-65 °C).104 

Spectroscopic data is in accordance with literature values.104 

3-Isopropylcyclopentanone (190) 
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C"H220Si 
Mol. WI.: 198,38 

2 N HCI, MeOH .. 
rt,30min 

Aqueous HCI (2 N, 2mL) was added to a solution of 3-isopropyl-cyc1openten-1-yloxy­

trimethylsilane (1.58 g, 7.96 mmol) in MeOH (20 mL) and the mixture was stirred at rt for 

30 min. The solution was poured onto a saturated NaHC03 solution (10 mL), extracted 

with Et20 (3 x 20 mL), and the combined organic layers were dried over MgS04 and 

filtered. The solvent was removed in vacuo and the residue was purified by distillation (bp 

= 65°C (9.0 mmHg» to yield the desired 3-isopropylcyc1opentanone as a pale yellow oil 

(0.964 g, 7.64 mmol, 96%). Spectroscopic data is in accordance with literature values. '53 

3-Isopropyl-l-pyrrolidino-cyclopentene (183) 

Pyrrolidine, PhMe 

... 
11, 5h 

A solution of 3-isopropylcyclopentanone (1.27 g, 10.06 mmol) and pyrrolidine (1.10 mL, 

13.18 mmol) in toluene (30 mL) was refluxed in a Dean-Stark apparatus until the 

separation of H20 ceased (5 h). The excess pyrrolidine and toluene were removed from the 

reaction mixture in vacuo. The resulting residue was stored at -30De and distilled 

immediately before use in the next step, yielding the 3-isopropyl-l-pyrrolidino-

cyc10pentene as a colourless oil (1.20 g, 6.69 mmol, 66%), which decomposed rapidly 
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after distillation and was therefore used immediately without characterisation in the next 

step. 

3-Isopropyl-5, 5-( trimethylenedithio )cyclopentanone (182) 

PhMe, Il, 12 h 

C"H'SOS2 
Mol. WI.: 230,39 

A solution of freshly distilled 3-isopropyl-l-pyrrolidino-cyc1opentene (250 mg, 1.39 

mmol), p-toluenesulfonothioic acid, 4-methyl-,S, S'-1,3-propanediyl ester (581 mg, 1.39 

mmol) and triethylamine (0.41 mL, 2.94 mmol) in anhydrous acetonitrile (10 mL) was 

refluxed for 12 h under a nitrogen atmosphere. The solvent was removed in vacuo and the 

residue was treated with aqueous HCI (0.1 N, 7 mL) for 30 min at SO°c. The mixture was 

cooled to rt and extracted with Et20 (3 x 10 mL). The combined organic layers were 

washed with saturated NaHC03 solution (10 mL) until the aqueous layer remained basic, 

dried over MgS04 and filtered. The solvent was removed in vacuo to yield a yellow 

residue from which 3-isopropyl-5, 5-(trimethylenedithio )cyclopentanone was isolated by 

chromatography (Si02; hexanes-Et20 (95:5» as a white solid. The product was further 

purified by recrystallisation from pentane to give white crystals (222 mg, 0.96 mmol, 

69%), mp 56-58°C. 

IR (nujol mull): v = 2966 (m br), 2890 (m br), 2848 (m), 2670 (m), 1732 (s), 1460 (m br), 

1376(m br), 1306 (m), 1144 (w), 954 (w), 906 (w), 726 (w), 580 (w) em-I. 
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= 2.69 Hz, CHaH bCH2S), 1.65 - 1.58 (IH, m, CHPri
), 1.46 - 1.34 (1H, m, CH(CH3)CH3), 

0.89 (6H, d, J = 6.63 Hz, CH(CH3)CH3). 

l3C NMR (91MHz, CDCI3): 8= 224.40 (0), 50.08 (0),43.36 (2), 41.11 (2),39.14 (1), 33.71 

(1),26.59 (2), 26.07 (2), 24,90 (2), 21.05 (3), 20.19 (3). 

LRMS (EI mode): mlz = 230 (M+, 59%), 159 (32),132 (100) 91(19). 

HRMS (EI mode): found 230.0799. C llH 1SOS2 requires 230.0799. 

Combustion analysis: found C, 57.33; H, 7.89. Analysis calculated for CllH1S0S2: C, 

57.34; H, 7.87. 

3-Isopropyl-5, 5-( trimethylenedithio )cyclopentan-l-yloxy-trimethylsilane (193) 

C"H,aOS2 
Mol. Wt.: 230,39 

TMSOTl, E~O 

r.t.,4h 
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Trimethylsilyltriflate ( 0.79 mL, 4.35 mmol) was added dropwise to a solution of 3-

isopropyl-5, 5-(trimethylenedithio)cyclopentanone (200 mg, 0.87 mmol) and triethylamine 

(0.20 mL, 1.42 mmol) in Et20 (8 mL) at O°e. The reaction mixture was allowed to warm 

to rt and was stirred under N2 for 4 h. Triethylamine (1 mL, 7.10 mmol) was added, the 

mixture was diluted with pentane (10 mL) and poured onto a layer of pentane (20 mL) 

over a saturated solution of NaHC03 (20 mL). The organic layer was separated, washed 

with brine, dried over MgS04 and concentrated in vacuo. The residue was purified by flash 

column chromatography (Si02~ hexanes-Et20-Et3N (94:5: 1») to yield 3-isopropyl-5, 5-

(trimethylenedithio)cyclopentan-1-yloxy-trimethylsilane (249 mg, 0.82 mmol, 94%) as a 

colourless oil. 

IR (thin film): v = 1636 (s), 1422 (m br), 1268 (m), 1254 (m), 1230 (m), 1072 (w), 868 

(w), 634 (w) em-I. 

'H NMR (360MHz, CDCl3): 8 = 4.52 (lH, d, J = 2.06 Hz, CHOTMS), 3.49 (1H, td, J, = 

12.46 Hz, J2= 2.92 Hz, CHaRt,S), 3.37 (lH, td, J, = 12.37 Hz, J2 = 2.82 Hz, CHaHbS), 2.75-

2.64 (2H, m, CH2S2), 2.47 (lH, dt, J, = 13.91 Hz, J2= 2.08 Hz, Cl\HbS), 2.31 (lH, dt, J, = 

13.93 Hz, J 2 = 2.38 Hz, CHaHbS), 2.l3-2.06 (lH, m, CHPr i
), 1.95-1.82 (IH, m, 

CHaHbCH2S), 1.77 (lH, m, CHaHbCH2S), 1.34-1.18 OH, m, CH(CH3)2)' 0.86 (3H, d, J = 

6.72 Hz, CH(CH3)CH3), 0.84 (3H, d, J = 6.68 Hz, CH(CH3)CH3), 0.29 (9H, s, TMS) 

BC NMR (91MHz, CDC}3): 8 = 159.85 (0), 102.59 (1), 54.44 (0), 45.95 (1),44.07 (2), 

33.09 (1), 28.86 (2), 28.60 (2),24.93 (2), 20.48 (3), 20.17 (3),0.20 (3 (3C)). 

2-Carbometboxy-3-isopropyl-S,S-(trimetbylenedithio)_cyclopentanone (207) 
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Jt 
MeO OMe 

NaH, MeOH (trace) 

PhMe, fl, 2 d 

Sodium hydride (50% in mineral oil, 40 mg, 0.79 mmol) was washed several times by 

decantation with pentane. A solution of 3-isopropyl-5, 5-(trimethylenedithio)cyclopentan-

l-yloxy-trimethylsilane (50 mg, 0.22 mmol) in toluene (2 mL) was intoduced, dimethyl 

dicarbonate (0.2 mL, 2.36 mmol) and methanol (10 ,uL) were added. The mixture was 

stirred under reflux for 20 h, cooled to rt and poured into aqueous acetic acid (10 mL). The 

mixture was extracted with ether (3 x 20 mL) and the combined organic extracts were 

washed with saturated NaHC03 solution 00 mL), and dried over Na2S04. The volatiles 

were removed in vacuo and the resulting solid was purified by recrystallisation from 

pentane to yield the desired 2-carbomethoxy-3-isopropyl-5,5-(trimethylenedithio)-

cyclopentanone (35 mg, 0.12 mmol, 56%) as a white, crystalline solid, mp 89-91 °C. 

IR (nujol mull): V= 2943 (m, br), 2919 (m, br), 1747 (s), 1739 (s), 1432 (m, br), 1218 (m), 

1205 (m), 1077 (w) em-I. 

IH NMR (400 MHz, CDCI3): 8 = 3.82 (lH, td, 11 = 13.38,12 = 2.60 Hz, CHaHbS), 3.80 

(3H, s, OCH3), 3.21 (lH, d, 1 = 10.91 Hz, CUC02CR3), 3.11 OR, td, 11 = 13.03,12 = 2.31 

Hz, CHaHbS), 2.68 (lH, dddd, 11 = 14.75, J2 = 7.89, 13 = 3.74, 14 = 1.10 Hz, CHaHbCS2), 

2.56 OH, dt, 1) = 14.77,12 = 3.37 Hz, CHaHbS), 2.50 (IR, dt, 11 = 13.76,12 = 3.36 Hz, 

CHaHbS), 2.23 (lH, dd, 11 = 10.47,12 = 7.15 Hz, CUPri
), 2.22-2.16 (lR, m, CHaHbCS2), 

1.90 (1H, qt, 11 = 13.96,12 = 3.11 Hz, CHaHbCH2S), 1.66 (1R, dd, 11 = 13.50,12 = 12.48 
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Hz, CHaHbCH2S), 1.58 (1H, dqq, 1\ = 7.62, 12 = 6.83, 13 = 6.75 Hz, CH(CH3)2)' 0.92 (3H, 

d, 1 = 6.70 Hz, CH(CH3)CH3), 0.90 (3H, d, 1 = 6.75 Hz, CH(CH3)CH3). 

\3C NMR (100 MHz, CDCI3): 8 = 201.64 (0), 169.65 (0), 58.11 (3),52.82 (1), 50.80 (0), 

42.46 (1), 40.89 (2), 32.95 (1), 26.91 (2),26.52 (2), 24.84 (2), 20.83 (3), 19.80 (3). 

LRMS (El mode): rnJz = 288 (18%), 257 (4), 134 (9), 132 (100), 97 (5). 

HRMS (El mode): found 288.0853. C\3H200 3S2 requires 288.0854. 

Combustion analysis: found C, 54.16; H, 7.01. Analysis calculated for C13H2003S2: C, 

54.13; H, 6.99. 

2-Allyl-2-carbomethoxy-3-isopropyl-S,S-(trimethylenedithio)-cyclopentanone (210) 

NaH, THF, r.t., 30 min 

Sodium hydride (50% in mineral oil, 6 mg, 0.094 mmol) was washed several times by 

decantation with pentane. A solution of desired 2-carbomethoxy-3-isopropyl-5,5-

(trimethylenedithio)-cyclopentanone (25 mg, 0.085 mmol) in THF (5 mL) was added and 

the mixture was stirred at rt for 1 h. The cationic molybdenum complex A (100 mg, 0.38 

mmol) was added in one portion and the mixture was stirred at rt for 20 min. The mixture 
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was then poured into H20 (5 mL) and extracted with Et20 (3 x 10 mL). The combined 

extracts were washed with H20 (5 mL), dried over MgS04 to give a yellow oil (59 mg). 

The crude product was dissolved in acetone (5mL), sodium acetate (96 mg, 1.2 mmol) and 

ceric ammonium nitrate (104 mg, 0.19 mmol) were added and the mixture was stirred at rt 

for 1 h before being poured into H20 and extracted with Et20 (3 x 10 mL). The combined 

extracts were washed with H20 (5 mL), dried over MgS04 to give 2-allyl-2-earbomethoxy-

3-isopropyl-5,5-(trimethylenedithio)-eyelopentanone as a yellow oil (27.4 mg, 0.077 

mmol,90%). 

IR (thin film): v = 3823 (w), 3651 (w), 2945 (m, br), 2923 (m, br), 1745 (s), 1740 (s), 1431 

(m, br), 1221 (m), 1202 (m), 1078 (w) em-I. 

IH NMR (400 MHz, CDC}3): 8 = 5.89 (1H, dddd, 11 = 17.65,12 = 9.48, 13 = 7.60,14 = 5.20 

Hz, CH=CH2), 5.03 (2H, dt, 11 = 13.82 Hz, 12 = 1,26 Hz, C=CHaHb), 3.88 (IH, td 11 = 13 

80 Hz, 12 = 2.67 Hz, CHaHbS), 3.66 (3R, s, C02CH3), 2.98 (1H, td 11 = 13 64 Hz, 12 = 2.68 

Hz, CHaHbS), 2.90 (1H, ddt, 11 = 14.60 Hz, 12 = 5.28, 13 = 1.64 Hz, CHaHbCS2), 2.63 (lH, 

dd, J1 = 14.60 Hz, J2 = 5.12 Hz, CHPri
), 2.71-2.63 (2H, m, CH2-CH=CH2), 2.37-2.20 (4H, 

m, CHaHbCS2, CHaHbS, CH2CH2S), 1.82 (1H, qd 11 = 13 83 Hz, 12 = 2.69 Hz, CHaHbS), 

1.21-1.12 (lH, m, CH(CH3)CH3), 1.00 (6H d 1 = 6.66 Hz, CH(CH3)CH3). 

13C NMR (100 MHz, CDCI3): S = 206.30 (0), 171.30 (0), 133.88 (1), 118.80 (2), 64.28 (0), 

52.43 (3), 50.29 (0), 45.55 (1),41.64 (2), 38.68 (2), 31.00 (1), 27.03 (2), 26.16 (2), 24.92 

(2),22.00 (3), 21.49 (3). 

LRMS (EI mode): 328 (M+, 18%), 132 (100). 
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HRMS (EI mode): found 328.1165. C16H2403S2 requires 328.1167. 

2_Allyl-3-isopropyl-S,S-(trimethylenedithio )-cyclopentanone (210a) 

C,. H2.03S 2 
Mol. WI.: 328,49 

NaCN. DM50 

160 ·C. 2 h 
.. 

C,.H22 052 
Mol. WI.: 270,45 

Finely powdered sodium cyanide (3.7 mg, 0.76 mmol) was added to a solution of 2-allyl-2-

carbomethoxy-3-isopropyl-5,5-(trimethylenedithio)-cyclopentanone (25 mg, 0.76 mmol) in 

anhydrous DMSO and the mixture was heated to 160°C for 2 h with vigorous stirring. The 

cooled reaction mixture was poured onto H20 (2 mL) at 0 °C and extracted with hexanes 

(3 x 5 mL). The extracts were washed thouroughly with H 20 (5 mL) and brine (5 mL), 

dried over Na2S04, filtered and concentrated in vacuo. Kugelrohr distillation of the residue 

yielded 2-allyl-3-isopropyl-5,5-(trimethylenedithio )-cyclopentanone (19.0 mg, 0.70 mmol, 

92%) as a colourless oil. 

IR (thin film): v = 3826 (w), 3653 (w), 2942 (m, br), 2919 (m, br), 1737 (s), 1430 (m, br), 

1215 (m), 1192 (m), 1064 (w) em-I. 

IH NMR (400 MHz, CDCl3): 8 = 5.79 (lH, dddd, 11 = 16.97,12 = 10.05,13 = 7.43, 14 = 

6.86 Hz, CH=CH2), 5,07 (1H, d, 1 = 16.97 Hz, CH=CHaHb), 5.03 (2H, d, J = 9.94 Hz, 

CH=CHaHb), 3.91 (lH, td, 11 = 13,46,12 = 2.56, CHaHbS), 3.20 (lH, td JI = 13 69 Hz, J2 = 

2.31 Hz, CHaHbS), 2.59-2.41 (4H, m, 2(CHaHbS), CH 2CS2), 2.30-2.17 (2H, m, 

CH2CH=CH2), 2.10-1.99 (2H, m, CHC(O), CHPri
), 1.91-1.80 (2H, m, CH

a
HbCH2S, 
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13C NMR (100 MHz, CDC1
3
): 8= 210.22 (0),135.48 (1),116.90 (2), 50.15 (1),49.48 (0), 

42.19 (1), 38.78 (2), 34.50 (2), 29.67 (1), 27.09 (2), 26.24 (2), 25.12 (2), 21.35 (3),17.69 

(3). 

LRMS (EI mode): 270 (M+, 30%), 227 (4), 199 (5), 187 (5), 132 (100),41 (5). 

HRMS (EI mode): found 270.1111. Cl4H220S2 requires 270.1112. 

r!_Cyclopentadienylmolybdenum tricarbonyl dimer [CpMO(CO)3]2 

[ ]

G 
~ 

oc I + 
OC. Mo- co NtD 

THF, rt 

~ 
OC I 

oc·~o-co 
H THF, rt, 6 h 

~ 
oCMo­
oC" I co 
oc·Mo''''co I .... co 
~ 

C,BH,.MO:!Oe 
Mol. WI.: 518.18 

Freshly cracked cyclopentadiene (270 mg, 4.2 mmol) was added to sodium sand (96 mg, 

4.2 mmol) in THF (20 mL) and this mixture was sonicated for ca. 4 h until all the sodium 

had reacted. The resulting solution of cyclopentadienyl sodium was transferred via cannula 

under positive pressure to a solution of molybdenum hexacarbonyl (1 g, 3.8 mmol) in THF 

(15 mL) and the mixture was stirred at the minimum temperature necessary for reflux for 

16 h. The yellow solution of the anion [CpMo(CO)3]-Na+ was cooled to rt and any lost 

solvent was replaced. Glacial acetic acid (0.65 mL) was added and the reaction mixture 
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was vortexed under a rapid stream of air for 5 h. The solvent was removed in vacuo and 

the red-purple dimer [CpMO(CO)3h was extracted from the residue with hot (80°C) 

toluene (5 x 30 mL) until the extracts remained colourless. The extracts were filtered and 

the volatiles were removed in vacuo to yield red-purple crystals (585 mg, 1.2 mmol, 63%) 

which are sufficiently pure for use in the next step. Spectroscopic data is in accordance 

. h }' } 125 WIt Iterature va ues. 

rf_Cyclopentadienyl(2-oxopropyl)tricarbonyl molybdenum [CpMo(CO)3( Tll-

CH1COMe)] (217) (Method A) 

~ 
oCJo.-co 
OC'I 
oo-~co 
~CO 

NaJHg 
• 

THF. rt, 4 h 

CI~ .. 
THF, rt, 20 h 

A solution of the molybdenum dimer [CpMO(CO)3h (500 mg, 1.0 mmol) in THF (35 mL) 

was stirred at rt with a 30% excess of sodium metal as 5% NalHg amalgam (l.3 mmol) for 

12 h until the red-purple colour of the dimer became the yellow colour of the anion 

[CpMO(CO)3]"Na+. The solution was decanted from excess amalgam via cannula under 

positive pressure and freshly distilled chloroacetone (0.16 mL, 2.1 mmol) was added to 

give a red solution. The reaction mixture was stirred at rt for 20 h after which NaCI had 

precipitated. The solvent was removed in vacuo and the resulting red-brown residue was 

dried under high vacuum. The residue was extracted with CH2Ch (30 mL), filtered under 

N2 and the solvent was again removed in vacuo. The residue remaining was extracted with 

pentane (3 x 20 mL) to leave a dry powdery solid, the extracts were filtered under N2 and 
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the volatiles were removed in vacuo to yield the acetone complex [CpMo(CO)lrl'-

CH
2
COMe)] as a red solid (17 mg, 0.056 mmol, 11.2% after substantial decomposition). 

Reaction was followed by IH NMR which clearly showed the cyclopentadiene signal 

characteristic of the required product. However the isolated product could not be 

characterised due to extensive and rapid decomposition. The isolated product was used 

immediately in the subsequent reaction. 

"S.Cyclopentadienyl(2.oxopropyl)tricarbonyl molybdenum [CpMo(CO)i"l. 

CHzCOMe)] (217) (Method B) 

MO(CO)6 [ ~ ]0 
OC I + 
OC'Mo- CO NaG> .. 

THF, t..16 h THF. rt, 20 h 

Freshly cracked cyclopentadiene (932 mg, 14.1 mmol) was added to sodium sand (324 mg, 

14.1 mmol) in THF (70 mL) and this mixture was sonicated for c. 4 h until all the sodium 

had reacted. The resulting solution of cyclopentadienyl sodium was transferred via cannula 

under positive pressure to a solution of molybdenum hexacarbonyl (3.00 g, 11.3 mmol) in 

THF (50 mL) and the mixture was stirred at the minimum temperature necessary for reflux 

for 16 h. The reaction mixture was cooled to rt and freshly distilled chloroacetone (1.2 mL, 

14.5 mmol) was added. The resulting red solution was stirred at rt for 20 h after which 

NaCI had precipitated. The solvent was removed in vacuo and the resulting red-brown 

residue was dried under high vacuum. The residue remaining was extracted with pentane 

(3 x 100 mL) to leave a dry powdery solid, the extracts were filtered under N2 and the 

volatiles were removed in vacuo to yield the ,,'-acetone complex [CpMo(CO)ltl'-
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CH2COMe)] as a red solid (486 mg, 1.54 mmol, 13.6% after substantial decomposition). 

Reaction was followed by IH NMR which clearly showed the cyclopentadiene signal 

characteristic of the required product. However the isolated product could not be 

characterised due to extensive and rapid decomposition. The isolated product was used 

immediately in the subsequent reaction. 

TJS -Cyclopentadienyl-TJ I_(N -isopropyl-2-iminopropyl)-tricarbonyl molybdenum 

~ 
oe, I 

~y~ 

CllHl0Mo04 
Mol. WI.: 302,13 

BF:rOEt2' THF 
-78"C. 6 h 

~ 
oe, I 

y~ 

BF3-OEt2 (0.21 mL, 1.54 mmol) was added to a solution of [CpMO(CO)3(111-CH2COMe)] 

(485 mg, 1.54 mmol) in THF (10 mL) at -78 °C. To this red stirred solution was added 

isopropylamine (0.14 mL, 1.54 mmol) and the solution became yellow. The mixture was 

stirred at -78 °C for 6 h. The solvent was removed in vacuo and the red-brown residue was 

purified by flash column chromatography under N2 (AI203~ hexanes-anhydrous Et20, 

(1:1». After elution of the first red-purple band of [CpMO(CO)3]2 a yellow band was 

collected and evaporated to dryness to yield the 111-imine complex [CpMo(CO)3(111-

CH2CMe=NCHMe2)] as a yellow solid (213 mg, 0.63 mmol, 38% after partial 

decomposition). Reaction was followed by I H NMR which clearly showed the 

cyclopentadiene signal characteristic of the required product. However the isolated product 

could not be characterised due to extensive and rapid decomposition. The isolated product 

was used immediately in the subsequent reaction. 
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rf_Cyciopentadienyl-rr-(N-isopropyl-2-iminopropyl)-tricarbonyl molybdenum 

[CpMo(CO)3(rr-CH2CMe=NCHMe2)] (Method B) 

~ 

[~ r CI~ OC.I 
oc-~o-co NalHg OC I + 

~ oc-Mo-co Na
e 

~ 

oc-~gg THF, rt, 4 h THF, rt, 20 h 

C,sH,oMo2Os 
Mol. WI.: 490,13 

@7 t-NH2 ~ 

~tr~ 
00. I 

~ 

OC-y~ BFtoEt2' THF 
-7aoC,6 h 

C"H,oMoO. C,.H17MoN03 
Mol. WI.: 302,13 Mol. WI.: 343,23 

Freshly cracked cyclopentadiene (621 mg, 9.4 mmol) was added to sodium sand (216 mg, 

9.4 mmol) in THF (50 mL) and this mixture was sonicated for c. 4 h until all the sodium 

had reacted. The resulting solution of cyclopentadienyl sodium was transferred via cannula 

under positive pressure to a solution of molybdenum hexacarbonyl (2.00 g, 7.5 mmol) in 

THF (30 mL) and the mixture was stirred at the minimum temperature necessary for reflux 

for 16 h. The reaction mixture was cooled to rt and freshly distilled chloroacetone (0.77 

mL, 9.7 mmol) was added. The resulting red solution was stirred at rt for 20 h after which 

time NaCI had precipitated. The reaction mixture was cooled to -78 °C and BF3-OEt2 (1.05 

rnL, 8.3 mmol) was added. To this red stirred solution was added isopropylamine (0.70 

mL, 8.3 mmol), the solution became yellow and the mixture was stirred at -78 °C for 6 h. 

The solvent was removed in vacuo and the red-brown residue was purified by flash column 

chromatography under N2 (A120 3 hexanes-Et20 (1: 1». After elution of the first red-purple 

band of [CpMo(CO) 3] 2 and a second red band of an unknown complex, a yellow band was 
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collected and evaporated to dryness to yield the 1J1-imine complex [CpMO(CO)3(1J1-

CH2CMe=NCHMe2)] as a yellow solid (77 mg, 0.23 mmol, 30.7% after substantial 

decomposition). Reaction was followed by I H NMR which clearly showed the 

cyclopentadiene signal characteristic of the required product. However the isolated product 

could not be characterised due to extensive and rapid decomposition. The isolated product 

was used immediately in the subsequent reaction. 

rf-Cyclopentadienyl-7f-(N-isopropyl-2-methylazaallyl) tricarbonyl molybdenum 

(218) [CpMo(CO)z{7f-CH2CMeNCHM~)] 

~ 
OC I yy 

~ 
OC I 
oC"~o-co 

iY 

Trimethylamine-N-oxide (17 mg, 0.23 mmol) was added to a stirred solution of 

mixture was stirred for 6 h. The solvent was removed in vacuo and the resulting residue 

was purified by flash column chromatography under N2 CAl20 3 hexanes-Et20 (1: 1)). A 

brown band was collected and evaporated to dryness to yield a dark brown solid. 

Recrystallisation from CH2Clr hexanes yielded block-shaped brown crystals of 

[CpMO(CO)2(1i-CH2CMeNCHMe2)] (44.2 mg, 0.13 mmol, 56%). Reaction was followed 

by IH NMR which clearly showed the cyc10pentadiene signal characteristic of the required 

product. However the isolated product could not be characterised due to extensive and 

rapid decomposition. The isolated product was used immediately in the subsequent 

reaction. 
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N -(tert-Butoxycarbonyl)-2-( tributylstannyl)pyrrole (234) 

10 
N 
Boc 

CeH13N02 
Mol. WI.: 167.21 

(a) LTMP, THF, -80 ·C, 45 min .. 
(b) BU3SnC1, THF, -80 ·C, 30 min 

10-N SnBu3 
Boc 

C21H39N02Sn 
Mol. WI.: 456.25 

To a solution of 2,2,6,6,-tetramethylpiperidine (4.5 mL, 26.7 mmol) in THF (50 rnL) at 

-80 °C was added n-butyllithium (2.3 M in hexanes, 11.5 mL, 26.7 mmol). The reaction 

mixture was stirred for 10 min at -80 °C, the cooling bath was replaced with an ice bath 

and the mixture was stirred for a further 1 h at 0 °C before being recooled to -80°C. N-

(tert-Butoxycarbonyl)pyrrole (4.2 mL, 25.4 mmol) was added and the mixture was stirred 

at -80°C for 45 min. Tributyltin chloride (7.5 mL, 27.6 mmol) was added dropwise and 

the mixture was stirred at -80°C for 30 min. The mixture was diluted with H20 (5 mL) 

and warmed to rt. The organic phase was diluted with Et20 (100 mL) and washed with sat. 

NH4CI (30 rnL), brine (30 mL) and dried over MgS04• The solvent was removed in vacuo 

and the resulting residue was purified by flash column chromatography (AI20 3; hexanes-

Et20 (9: 1)) to yield N-(tert-butoxycarbonyl)-2-(tributylstannyl)pyrrole (9.49 g, 20.8 mmol, 

78%) as a colourless oil which yellows on exposure to air. 

IR (thin film): v = 2956 (8, br), 2822 (s, br), 2871 (m, br), 2853 (m, br), 1729 (s), 1386 (s), 

1340 (8), 1157 (8), 978 (m), 853 (w), 725 (m) em-I. 

IH NMR (400 MHz, CDCI3): D = 7.59 (lH, dd, 11 = 3.02,12 = 1.34 Hz, CHNBoc), 6.71 

(lH, dd, 11 = 2.96, 12 = 1.28 Hz, CH=C(SnBu3)NBoc), 6.46 (lH, t, J = 3.01 Hz, 

CH=CHNBoc), 1.90-1.74 (6H, m, 3(SnCH2CH2CH2CH3)), 1.52 (6H, sext. J = 7.41 Hz, 
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l3C NMR (100 MHz, CDCI3): 8 = 151.59 (0), 134.66 (0), 124.11 (1), 123.99 (1), 113.90 

(1), 83.28 (0), 30.05 (2 (3C)), 28.14 (3 (3C», 28.04 (2 (3C», 14.33 (3 (3C», 11.85 (2 

(3C). 

LRMS (CI mode, isobutane): m/z = 458.2 [(M + H)+, 43%], 400 (100), 344 (64), 291 (40), 

168 (8). 

HRMS (CI mode, isobutane): found [(M + H)+, 116Sn] 454.2073 (Err -0.8 ppm); [(M + 

H)+, l1SSn] 456.2075 (Err -0.1 ppm); [(M + H)+, 119Sn] 457.2120 (Err 6.0 ppm); [(M + 

H)+, 120Sn] 458.2089 (Err 1.7 ppm). C21H39 N02Sn requires 456.2082. 

N -(tert-Butoxycarbonyl)-2-iodopyrrole (235) 

rt, 30 min 

~ N I 
Boc 

C9H12IN02 
Mol. wt.: 293.10 

Freshly sublimed iodine (556 mg, 2.19 mmol) was added to a solution of N-(tert-

butoxycarbonyl)-2-(tributylstannyl)pyrrole (1.00 g, 2.19 mmol) in CH2C12 (10 mL) at rt 

under N2· The mixture was stirred for 30 min until the iodine colour discharged. The 

reaction mixture was poured onto H20 (20 mL) and extracted with CH2Cl2 (3 x 20 mL), 

the solvent was removed in vacuo and the resulting residue was purified by flash column 
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chromatography (AI20 3; hexanes-Et20 (9:1» to yield N-(tert-butoxycarbonyl)-2-

iodopyrrole (629 mg, 2.15 mmol, 98%) as a colourless oil which darkens on exposure to 

air. 

IR (thin film): v = 2980 (br), 1752 (s), 1458 (w), 1430 (m), 1370 (m), l322 (s), 1285 (m), 

1153 (s), 1051 (m), 976 (m) em-I. 

IH NMR (400 MHz, CDCI3): 8 = 7.47-7.45 (lH, m, CHNBoe), 6.56-6.54 (1H, m, 

CH=C(I)NBoc), 6.02-6.00 (IH, m, CH=CHCNBoc), 1.37 (9H, s, Boc). 

\3C NMR (91MHz, CDCI3): 8 = 148.02 (0), 126.29 (1), 125.51 (1), 114.24 (1), 84.65 (0), 

64.01 (0), 28.06 (3 (3C». 

LRMS (CI mode, isobutane): m/z = 294 [(M + H)+, 100%],293 (38), 238 (65), 237 (15), 

193 (22), 109 (6). 

HRMS (CI mode, isobutane): found (M + Ht, 293.9994. C9H121N02 requires 293.9992 

S·Bromopentyl acetate (237) 

o 
CSH100 

Mol. WI.: 86.13 

AcBr, ZnCI2 

o 'C-Ht, 6.5 h 
Br~OAC 

C7H13Br02 
Mol. WI.: 209.08 

Acetyl bromide (5 mL, 67.6 mmol) was added rapidly to an ice-cold mixture of 

tetrahydropyran (5.42 mL, 55.5 mmol) and anhydrous ZnC12 (59 mg. 0.43 mmol), 
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maintaining the internal temperature of the reaction between 25 and 30°C. The mixture 

was stirred at 0 °C for 30 min and at rt for 6 h. The product was purified by distillation (bp 

110-115 °C (15 mmHg)) to yield 5-bromopentyl acetate (6.4 g, 30.6 mmol, 55%) as a 

colourless oil. Spectroscopic data is in accordance with literature values. 131 

5-Bromopentanol (238) 

Br~OAc 

C7H '3Br02 
Mol. WI.: 209.08 

PTSA 

MaOH, 6., 1 d 
Br~OH 

CsH"BrO 
Mol. WI.: 167.04 

5-Bromopentyl acetate (6.0 g, 28.7 mmol) was refluxed for 1 d with PTSA (150 mg, 0.79 

mmol) in MeOH (50 mL). The reaction mixture was cooled to rt and poured onto saturated 

NaHC03 solution (20 mL) and extracted with Et20 (3 x 30 mL). The organic layers were 

combined, washed with brine (20 mL), dried over MgS04 and concentrated in vacuo. The 

resulting residue was purified by distillation (bp 45-50 °C (0.5 mmHg)) to yield 5-

bromopentanol (4.1 g, 24.4 mmol, 85%) as a colourless oil. Spectroscopic data is in 

accordance with literature values. IS4 

5-Bromo-t-(tetrahydropyran-2-yloxy)pentane (239) 

Br~OH 

CsH"BrO 
Mol. WI.: 167.04 

DHP,PTSA 

Et~, rt, 20 h 

Br~OTHP 

C,oH,g8r02 
Mol. WI.: 251.16 
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To a solution of 5-Bromopentanol (4.0 g, 23.9 mmol) in Et20 (400 mL) was added a 

catalytic amount of PTSA and dihydropyran (2.18 mL, 23.9 mmol). The reaction mixture 

was stirred at rt for 20 h, then poured onto sat. NaHC03 (50 mL) and extracted with Et20 

(3 x 100 mL). The combined organic extracts were washed with brine (50 mL), dried over 

MgS04 and concentrated in vacuo. The resulting residue was purified by distillation (bp 

80-100 °C (0.1 mmHg» to yield 5-bromo-l-(tetrahydropyran-2-yloxy)pentane (5.04 g, 

20.1 mmol, 84%) as a colourless oil. Spectroscopic data is in accordance with literature 

values. 155 

Methyl propargyl ether 

#,OH NaOH, Me2S04 

H~, rt, 30 min 
#,OMe 

Dimethyl sulfate (183 mL, 1.94 mol) was added to a propargyl alcohol (100 mL, 1.72 mol) 

and in H20 (60 mL) at 0 dc. To this solution a 50% aqueous NaOH solution (190 mL) was 

added carefully to maintain the internal temperature between 10 and 15°C. Once the 

addition was complete the mixture was stirred at rt for 30 min. The organic layer was 

separated, dried over NaS04 and distilled (bp 61-63 °C (760 mmHg) to yield methyl 

propargyl ether (119.35 g, 1.70 mmol, 99%). Spectroscopic data is in accordance with 

literature values. ls6 

t-Methoxy-S-[(tetrahydro-2H-pyran-2-yl)oxy]oct-2-yne (240) 
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Meo~ 

C4H•O 
Mol. WI.: 70.09 

Br~OTHP 

BuLi, HMPA, THF 
-78 °e-.rt, o/n 

.. Meo~OTHP 

C14H2403 
Mol. WI.: 240.34 

To a solution of methyl prop argyl ether (1.94 mL, 23.0 mmol) in THF (50 mL) at -78 °C 

was added n-butyllithium (2.2 M in hexanes, 11.0 mL, 24.1 mmol), followed, after 10 min 

by HMPA (5.6 mL, 32.2 mmol) and 5-bromo-1-(tetrahydropyran-2-yloxy)pentane (4.93 g, 

20.5 mmol). The reaction was allowed to warm to rt and stirred at rt overnight. The 

reaction mixture was poured onto sat. NH4Cl (15 mL) and Et20 (30 mL) and was further 

extracted with Et20 (3 x 30 mL). The combined organic phases were washed successively 

with aqueous HCI (lN, 15 mL), sat. NaHC03 (15 mL) and brine (15 mL), dried over 

MgS04 and concentrated in vacuo. The residue was purified by flash column 

chromatography (Si02; hexanes-Et20 (1:1» to yield the pure I-methoxy-8-[(tetrahydro-

2H-pyran-2-yl)oxy]oct-2-yne (3.5 g, 14.5 mmol, 70%) as a colourless oil. 

IR (thin film): v = 2939 (s), 2864 (s), 2820 (s), 2294 (w), 2228 (w), 2217 (w), 1452 (m), 

1355 (m), 1121 (m), 906 (m) em-I. 

IH NMR (400 MHz, CDCl3): 8= 4.57 (1H, dd, 11 = 4.45, 12 = 4.41 Hz, CH02), 4.07 (2H, t, 

1= 2.12 Hz, CH20CH3), 3.85 (lH, dt, 11 = 9.41, 12 = 7.40, Hz, CHaHbOCHOR), 3.74 (lH, 

dt,11 = 9.64,12 = 6.73 Hz, CHaHbOCHOR), 3.52-3.46 (1H, m CHaHbOTHP), 3.41-3.36 

(1H, m, CHaHbOTHP), 3.36 (3H, s, OCH3), 2.24 (2H, tt, 11 = 8.68,12 = 2.03 Hz, CH2C=C), 
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l3C NMR (100 MHz, CDCI3): 8= 98.99 (1), 87.10 (0), 75.97 (0), 67.53 (2),62.46 (2), 

60.34 (2), 57.50 (3),30.90 (2), 29.40 (2), 28.61 (2),28.26 (2), 25.67 (2), 19.80 (2), 18.84 

(2). 

LRMS (Cl mode, isobutane): mlz = 241 [(M + Ht, 100%], 209 (9), 157 (100), 85 (36). 

HRMS (CI mode, isobutane): found (M + H)+, 241.1806. CI4H2503 requires 241.1804. 

8-Methoxyoct-6-yn-l-01 (241) 

MeO~OTHP 

C'4H2403 
Mol. WI.: 240.34 

PPTS,MeOH 

rt, 18 h 

MeO~OH 

C9H'S02 
Mol. WI.: 156.22 

To solution of I-methoxy-8-[(tetrahydro-2H-pyran-2-yl)oxy]oct-2-yne (3.3 g, 13.7 mmol) 

in MeOH (50 mL) was added a solution of PPTS (3.02 mmol) in MeOH (15 mL) formed 

in situ from pyridine (0.25 mL, 3.02 mmol) and PTSA (574 mg, 3.02 mmol) and the 

resulting mixture was stirred at rt for 18 h. The solution was concentrated in vacuo and 

dissolved in ethyl acetate (100 mL). The organic solution was washed with sat. NaHC03 

(20 mL) and brine (20 mL), dried over MgS04 and concentrated in vacuo. The residue was 

purified by flash column chromatography (Si02; hexanes-Et20 (1: 1» to yield the pure 8-

methoxyoct-6-yn-l-01 (1.42 g, 9.09 mmol, 66 %) as a colourless oil. 

IR (thin film): v = 3408 (br), 2837 (s), 2861 (s), 2279 (w), 2229 (w), 1655 (w), 1451 (m), 

1095 (s), 904 (w) em-i. 
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IH NMR (400 MHz, CDCI3): 8 = 4.04 (2H, t, J = 2.14 Hz, CH20CH3), 3.60 (2H, t, J = 6.51 

Hz, CH
2
0H), 3.33 (3H, s, OCH3), 2.22 (2H, tt, J 1 = 6.88, J2 = 2.11 Hz, CH2C=C), 1.96 

(lH, s, OH), 1.59-1.49 (4 H, m, 2 x CH2), 1.47-1.39 (2H, m, CH2)· 

13C NMR (100 MHz, CDCI3): 8= 87.01 (0),75.95 (0),62.71 (2),60.29 (2), 57.47 (3), 

32.29 (2), 28.46 (2), 25.10 (2), 18.79 (2). 

LRMS (CI mode, isobutane): mlz = 157 [(M + Ht, 100%], 125 (17), 107 (8), 81 (13),69 

(22). 

HRMS (CI mode, isobutane): found (M + Ht, 157.1228. C9H160 2 requires 157.1229. 

l_Iodo-8-methoxyoct-6-yne (242) 

MeO~OH 

CsH1602 
Mol. WI.: 156.22 

Et~-MeCN (3:1) 
o ·C. 30 min 

Meo~1 

CsH1s10 
Mol. WI.: 266.12 

To a solution of 8-methoxyoct-2-yn-l-01 (390 mg, 2.5 mmol) in Et20-MeCN (3: 1) (20 mL) 

at 0 °C was added freshly sublimed iodine (950 mg, 3.74 mmol), imidazole (570 mg, 7.5 

mmol) and triphenylphosphine (982 mg, 3.74 mmol) and the mixture was stirred at 0 °C 

under N2 for 30 min. The reaction mixture was diluted with H20 (10 mL) and filtered 

through a plug of celite. The remaining aqueous layer was separated and extracted with 

Et20 (3 x 30 mL) and the combined organic phases were washed with aqueous sodium 

thiosulfate (10 mL) and brine (10 mL), dried over MgS04 and concentrated in vacuo. The 

resulting residue was purified by flash column chromatography (Si02; hexanes-Et20 (2:1» 
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to yield the pure l-iodo-8-methoxyoct-6-yne (465 mg, 1.75 mmol, 70%) as a colourless 

oil. 

IR (thin film): v == 2985 (m), 2935 (s), 2858 (m), 2819 (m), 1596 (w), 1449 (m), 1095 (s), 

906 (m) em-I. 

IH NMR (400 MHz, CDCl3): 8= 4.08 (2H, t, J == 2.14 Hz, CH20CH3), 3.37 (3H, s, OCH3), 

3.19 (2H, t, J = 7.01 Hz, CH21), 2.25 (2H, tt, J) == 6.75, J2 == 2.07 Hz, CH2C=C), 1.85 (2H, 

pent., J = 7.10 Hz, CH2), 1.59-1.49 (4 H, m, 2 x CH2). 

BC NMR (l00 MHz, CDCI3): 8 == 86.71 (0), 77.52 (0),60.36 (2), 57.63 (3), 33.17 (2), 

29.85 (2), 27.66 (2), 18.76 (2),6.80 (2). 

LRMS (CI mode, isobutane): mlz == 533 [(2M + Hr, 16%],267 [(M + H)+, 100%],235 

(94), 107 (9). 

HRMS (CI mode, isobutane): found (M + H)+, 267.0245. C9H)6IO requires 267.0247. 

8-Methoxyoct-6-yn-l-al (244) 

MeO~OH 

CgH'802 
Mol. WI.: 156.22 

PCC, CH2CI2 

NaOAc,4AMS 

Meo~o 

CgH,.02 
MOl. WI.: 154.21 

Pyridinium chlorochromate (2.07 g, 9.60 mmol) and sodium acetate (157 mg, 1.92 mmol) 

and 4A molecular sieves were suspended in CH2Cl2 (8.5 mL) and I-methoxyoct-2-yn-l-01 
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(1.00 g, 6.40 mmol) was added in one portion with magnetic stirring. After 2 h the reaction 

was diluted with EtzO (20 mL) and the supematent was decanted from the black gum. The 

insoluble residue was washed with Et20 (3 x 20 mL). The combined organic layers were 

filtered through a plug of silica, eluted with Et20 (250 mL) and the solvent was removed in 

vacuo. The residue was purified by flash column chromatography (Si02; hexanes-Et20 

(2:1» to yield the pure 8-methoxyoct-6-yn-l-al (643 mg, 4.17 mmol, 65%) as a colourless 

oil. 

IR (thin film): v = 2938 (s), 2822 (m), 2723 (w), 2361 (w), 2344 (w), 2277 (w), 2230 (w), 

1724 (s), 1359 (m), 1187 (m), 1096 (s), 905 (m) em-I. 

IH NMR (400 MHz, CDCI3): 8= 9.78 (1H, t, J = 2.00 Hz, CHO), 4.07 (2H, t, J = 2.15 Hz, 

CH
2
0CH3), 3.37 (3H, s, OCH3), 2.47 (2H, dt, 11 = 1.64, J2 = 7.25 Hz, C22CHO), 2.27 (2H, 

tt, J I = 6.98, J2 = 2.15 Hz, CH2C=C), 1.56 (2H, pent., J = 7.45 Hz, CH2). 

\3C NMR (100 MHz, CDCI3): 8= 202.38 (1), 86.36 (0), 76.48 (0),60.31 (2),57.60 (3), 

43.48 (2), 28.09 (2), 21.36 (2), 18.61 (2). 

LRMS (CI mode, isobutane): mlz = 155 [(M + Hr, 100%], 123 (38),95 (24), 75 (57). 

HRMS (CI mode, isobutane): found (M + Hr, 155.1073. C9H IS0 2 requires 155.1074. 

N -(tert-Butoxycarbonyl)-2-(8-methoxy-l-hydroxy-6-octynyl)pyrrole (245) 
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0-N I 
Soc 

C"H'2IN02 
Mol. WI.: 293.10 

(a) BuLi, THF, -78 ·C, 30 min 
• 

(b)MeO~ 
CHO 

THF, -78 ·C, 1 h 

~OMe 
Boc OH 

C'8H27N04 
Mol. WI.: 321.41 

To a solution of N-(tert-butoxycarbonyl)-2-iodopyrrole (189 mg, 0.7l3 mmol) in THF (10 

ml) at -78 °C was added n-BuLi (2.3 M in hexanes, 0.31 mL, 0.713 mmol) and the 

mixture was stirred for 30 min at -78 °C. The preformed lithium reagent was added via a 

cooled (C02) cannula to a solution of 8-methoxyoct-6-yn-l-al (100 mg, 0.649 mmol) in 

THF (10 mL) also at -78°C. The resulting mixture was stirred at low temperature for 1 h 

until all the aldehyde had been consumed (as judged by TLC). H20 (1 mL) was added and 

the mixture was allowed to warm to rt. The organic phase was diluted with Et20 (30 mL), 

washed with sat. NH4CI (10 mL). brine (10 mL) and dried (MgS04). The solvent was 

removed in vacuo and the resulting residue was purified by flash column chromatography 

(alumina, hexanes-Et20 (9: 1) to yield [N-(tert-butoxycarbonyl)pyrrol-2-yl]-I-(8-

methoxy)oct-6-yn-l-01 (119 mg, 0.37 mmol, 57 %) as a colourless oil which darkens on 

exposure to air. 

IR (thin film): v = 3485 (br), 2979 (m), 2935 (s), 2862 (m), 2821 (m), 2274 (w), 2215 (w), 

1736 (s), l336 (m), 1125 (m), 1095 (m) em-I. 

IH NMR (400 MHz, CDCI3): 8= 7.16 (1H, ddJI = 3.32, J2 = 3.33 Hz, CHNBoe), 6.20-

6.19 (1R, m, CH=CHNBoe), 6.11 (1R, t, J = 3.35 Hz, CH=C(R)NBoc), 4.85 (lR, dt, J I = 

5.54, J2 = 8.04, Hz, CHOH), 4.06 (2H, dd, J, = 4.11, J2 = 4.31 Hz, CH20CH
3
), 4.01 (IH, d, 

J = 5.43, OR), 3.35 (3H, s, OCH3), 2.28 (2R, dd, JI = 6.84, J2 = 6.74 Hz, CH
2
C:=C), 1.99 

(2R, m, CH2), 1.74-1.42 (4H, m, 2 xCH2), 1.66 (9H, s, Boe). 
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l3C NMR (100 MHz, CDC13): 8 = 150.51, 138.40, 122.10, 111.61, 110.45,87.19,84.73, 

66.48,60.40,57.57,34.16,33.97,28.72,28.18 (3C), 25.88, 18.91. 

LRMS (EI mode): m/z = 321 (100%), 140 (62), 96 (100), 57 (94). 

HRMS (EI mode): found 321.1938. Cl8H27N04 requires 321.1940. 

N -(tert-Butoxycarbonyl)-2-(8-methoxy-l-phenylthio-6-octynyl)pyrrole (246) 

~OMe 
Boc OH 

C18H27N04 
Mol. WI.: 321.41 

PhSH,PTSA 

THF, rt, 3 h 

~OMe 
Boc SPh 

C24H31 N03S 
Mol. WI.: 413.57 

To a s ti rred sol uti on of N-(tert-butoxycarbonyl)-2-(8-methoxy-1-hydroxy-6-

octynyl)pyrrole (26 mg, 0.081 mmol) and thiophenol (8.3 /-lL, 0.081 mmol) in THF (3 mL) 

was added a catalytic amount of PTSA and the mixture was stirred at rt for 3 h. The 

reaction was poured into H20 (5 mL) and was extracted with CH2Cl2 (3 x 10 mL). The 

combined organics were washed with H20 (10 mL), dried over MgS04 and concentrated 

in vacuo. The resulting residue was purified by flash column chromatography (Si02~ 

hexanes-Et20 (2: 1») to yield the pure [N-(tert-butoxycarbonyl)pyrrol-2-yl]-8-(1-methoxy-

8-phenylsulfyl)oct-2-yne (20.8 mg, 0.05 mmol, 62%) as a colourless oil which darkens on 

exposure to air. 

IR (thin film): v = 3449 (br), 2979 (m), 2934 (s), 2860 (m), 2820 (m), 2280 (w), 2240 (w), 

1740 (s), 1483 (w), 1322 (m) 1121 (m) cm-1• 
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lH NMR (400 MHz, CDC13): S = 7.16-7.12 (6H, m, Ar-H (5H) and CHNBoc), 6.04 OH, t, 

J = 3.35 Hz, CH=CHNBoc), 5.994-5.986 (lH, m, CH=C(R)NBoc), 5.07 (lH, br m, 

CHSPh), 4.09-4.07 (2H, br m, CH20CH3), 3.36 (3H, s, OCH3), 2.22-2.19 (2H, br m, 

CH
2
C=C), 1.87-1.73 (2H, m, CH2CHSPh), 1.67-1.56 (4H, m, 2 xCH2), 1.61 (9H, s, Boc). 

\3C NMR (400 MHz, CDCl3): S = 135.70, 134.30, 128.57 (2C), 127.65, 122.06, 112.61, 

109.88 (2C), 87.05, 83.98, 77.51, 76.11, 60.37, 57.57, 34.12, 28.47, 28.21 (3C), 26.75, 

18.81. 

LRMS (EI mode): m/z = 313 (53%),204 (49),172 (100),130 (13), 57 (55). 

HRMS (EI mode): found (M - Boc + H)+, 313.1497. C l9H23NOS requires 313.1500. 

(E)-2-(S-methoxyoct-6-yn-l-enyl)-lH-pyrrole (247) 

o 
N 
Boc 

C9H13N02 
Mol. WI.: 167,21 

(al L TMP, THF, -80 ·C, 45 min 

• 
(bl OH~oMe 

THF, -78 ·C, oln 

~OMe 
N 
H 

To a solution of 2,2,6,6,-tetramethylpiperidine (104 /-lL, 0.62 mmol) in THF (3 mL) at -80 

°C was added n-butyllithium (2.3 M in hexanes, 270 j.lL, 0.62 mmol). The reaction mixture 

was stirred for 10 min at -80°C the cooling bath was replaced with an ice bath and the 

mixture was stirred for a further 1 h and was recooled to -80°C. N-(tert-

butoxycarbonyl)pyrrole (98 ilL, 0.59 mmol) was added and the mixture was stirred at -80 

°C for 45 min. The preformed lithium reagent was added via a cooled (C0
2

) cannula to a 
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solution of 8-methoxyoct-6-yn-l-al (100 J,lL, 0.64 mmol) in THF (2 mL) also at -78°C 

and the reaction was allowed to warm to rt and stirred overnight.. The mixture was diluted 

with H20 (0.1 mL) and warmed to rt. The organic phase was diluted with Et20 (10 mL) 

and washed with sat. NH4CI (5 mL), brine (5 mL) and dried over MgS04 • The solvent was 

removed in vacuo and the resulting residue was purified by flash column chromatography 

(AI
2
0 3; hexanes-Et20 (2:1» to yield IH-pyrrol-2-yl-l-(8-methoxy)oct-1-ene-6-yne (49 mg, 

0.24 mmol, 41 %) as a colourless oil which darkens on exposure to air. 

IR (thin film): V= 3388 (br), 2934 (s), 2857 (m), 2291 (w), 2210 (w), 1736 (m), 1451 (m), 

1094 (s) cm-I. 

IH NMR (400 MHz, CDCI3): 8 = 8.31 (1 H, br s, NH), 6.73-6.71 (1H, m, CHNH), 6.29 

(IH, d, 1 = 16.1 Hz, pyrrole-CH=CH), 6.18 (1H, m, CH=CHNH), 6.16 (1H, br s, 

CH=C(R)NH), 5.78 (1H, dt, 11 = 15.95,12 = 7.05 Hz, pyrrole-CH=CH), 4.16 (2H, t, 1 = 

2.14, CH20CH3), 3.48 (3H, s, OCH3), 2.33-2.24 (4H, m, CH2C=C and CH2), 1.68 (2H, 

pent., 1 = 7.16 Hz, CH2). 

l3C NMR (100 MHz, CDC13): 8 = l30.84 (0), 124.66 (1), 121.50 (1), 118.080), 109.44 

(1), 107.09 (1), 87.00 (0), 76.30 (0), 60.39 (2), 57.58 (3), 32.06 (2), 28.56 (2), 18.30 (2). 

LRMS (EI mode): mlz = 203 (38%), 170 (78), 158 (100), 143 (88), 106 (94), 80 (56). 

HRMS (EI mode): found 203.l311. C 13H 17NO requires 203.1310. 

N-(tert-ButoxycarbonYI)-2-(S-chloropent-l-ynyl)pyrrole (250) 
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~ N I 
Soc 

CeH121N02 
Mol. WI.: 293.10 

~CI 
(PPh3)4Pd, Cui, (Prll.,NH 

rt, 12 h 

n 
"N~CI 

Soc 

C14H18CIN02 

Mol. WI.: 267.75 

To a solution of N-(tert-butoxycarbonyl)-2-iodopyrrole (1 g, 3.41 mmol) in freshly 

distilled diisopropylamine (5 mL) at rt was added copper(I) iodide (6.5 mg, 3.41,umol, 1 

mol%) and tetrakispalladium(O)triphenylphosphine (40 mg, 3.41,umol, 1 mol%) to give a 

yellow suspension. The reaction mixture was cooled to 0 °C and 5-chloropentyne (0.54 

roL, 4.09 mmo}) was added with rapid stirring whereupon a colour change from yellow to 

dark brown was observed. The mixture was allowed to warm to rt and was stirred under 

nitrogen for 12 h. The resulting black suspension was diluted with diethyl ether (20 mL) 

and filtered through celite. The filtrate was evaporated in vacuo to yield a dark brown oil, 

which was purified by flash column chromatography (Si02; hexanes-Et20 (9: 1» to yield 

the pure N-(tert-butoxycarbonyl)-2-(5-chloropent-l-ynyl)pyrrole (813 mg, 3.03 mmol, 

89%) as a colourless oil which darkens on exposure to air. 

IR (thin film): v = 2926 (br), 1739 (s), 1664 (w), 1458 (w), 1401 (m), 1370 (m), 1317 (s), 

1259 (w), 1139 (s) cm-I. 

IH NMR (400 MHz, CDCI3): 8 = 7.22 OH, dd, 11 = 3.32, 12 = 1.72 Hz, CHNBoc), 6.44 

OH, dd, JI = 3.41, J2 = 1.71 Hz, CH=C(R)NBoc), 6.12 (lH, t, 1 = 3.37 Hz, CH=CHNBoc), 

3.73 (2H, t, 1 = 6.38 Hz, CH2Cl), 2.64 (2H, t, J = 6.81 Hz, C=CCH2), 2.06 (2H, pent., J = 

6.57 Hz, CH2CH2CI), 1.61 (9H, s, Boc). 
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13C NMR (l00 MHz, CDC13): 8 = 148.56 (0), 122.06 (1), 120.18 (1), 115.64 (0), 110.89 

(1),91.80 (0), 84.14 (0), 73.81 (0),43.91 (2),31.58 (2), 28.15 (3 (3C)), 17.42 (2). 

LRMS (CI mode, isobutane): 269 [(M + H)+, 100%],254 (18), 214 (30), 212 (92), 168 

(11). 

HRMS (CI mode, isobutane): found (M + Ht, 268.1103. C14H19CIN02 requires 268.l105. 

N_(terl_Butoxycarbonyl)-2-(5-chloropentyl)pyrrole (253a) 

In 
~N~CI 

Boc 

C14H1sCINOz 

Mol. WI.: 267.75 

MeOH, rt, 1 h 

~CI 
N 
Boc 

C14HzzCIN02 

Mol. WI.: 271.78 

Palladium 10% activated on charcoal (0.23 mmol, 5 mol%) was added in one portion to a 

solution of N-(tert-butoxycarbonyl)-2-(5-chloropent-l-ynyl)pyrrole (1.23 g, 4.59 mmol) in 

methanol (15 mL) at rt. The reaction vessel was evacuated at water pump pressure, via a 

KOH drying tube, and flushed with hydrogen through several vacuum cycles. The 

resulting black suspension was stirred under an atmosphere of hydrogen at rt for 1 hour. 

The reaction mixture was filtered through a plug of ceHte and the filtrate was evaporated in 

vacuo. The residue was purified by flash column chromatography (Si02; hexanes-Et20 

(9: 1)) to yield a colourless oil, N-(tert-butoxycarbonyl)-2-(5-chloropentyl)pyrrole, (1.15 g, 

4.22 mmol, 92%). 
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IR (thin film): v = 2979 (br), 2936 (br), 2863 (br), 1740 (s), 1492 (m), 1408 (m), 1370 (m). 

1332 (s). 1256 (m). 1169 (m). 1121 (s). 772 (s) em-I. 

IH NMR (400 MHz. CDCl3): 8 = 7.20 (1H. dd, J1 = 335, J2 = 1.78 Hz, CHNBoe), 6.08 

(lH, t, J = 3.31 Hz, CH=CHNBoe), 5.97-5_95 (1H, m br, CH=C(R)NBoe), 3.55 (2H, t, J = 

6.77 Hz, CH
2
Cl), 2.87 (2H, t. J = 7.56 Hz, Pyrrole-CH2), 1.83 (2H, pent., J 7.12 Hz, 

CH
2
CH

2
Cl). 1.70-1.49 (4H, m, 2(CH2», 1.60 (9H, s, Boe). 

\3C NMR (100 MHz, CDCl3): 8 = 149.68 (0),136.15 (0),121.03 (1).111.06 (1),110.05 

(1),83.44 (0),45.19 (2), 32.66 (2), 28.83 (2), 28.36 (2), 28.22 (3 (3C», 26.82 (2). 

LRMS (EI mode): 271 (M+21%), 215 (53),171 (23), 136 (20),124 (28),80 (62),57 (100). 

HRMS (EI mode): found 217.1338. CI4H22CIN02 requires 271.1339. 

2_(S_Chloropent-l-ynyl)-lH -pyrrole (2S0a) 

In 
'N~CI 

Boc 

CuH18CINO:! 
Mol. Wt.: 267.75 

NaOH (aq) 

MaOH, rt, o/n 
• n 

'N~CI 
H 

CgH,oCIN 

Mol. WI.: 167.63 

Aqueous sodium hydroxide (l N, 10 mL) was added to a solution of N -(tert-

butoxyearbonyl)-2-(5-chloropent-l-ynyl)pyrrole (1.0 g, 3.68 mmol) in methanol (10 mL). 

The reaction mixture was stirred at rt overnight. The resulting solution was diluted with 

hexanes (20 mL) and the organic layer was separated from the aqueous. The aqueous phase 
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was extracted with 95:5 hexanes-Et20 (3 x 20 mL). The combined organic phases were 

evaporated in vacuo to yield a yellow oil which was purified by flash column 

chromatography (Ah03, hexanes-Et20 (3:1). The desired 2-(5-chloropent-l-ynyl)-IH-

pyrrole was isolated as a colourless oil (574 mg, 3.42 mmol, 93%) which blackened 

rapidly on exposure to air. The product was used immediately in the subsequent step 

without characterisation. 

N _(Triisopropylsilyl)-2-(S-chloropent-l-ynyl)pyrrole (251) 

In. 
....... ~Cl 

H 
C9H10CIN 

Mol. wt.: 167,64 

NaH, TIPSCI, DMF 

• 
o ·C-Ht, 2 h 

In. 
"~CI 

TIPS 

C18H30CINSi 

Mol. Wt.: 323.98 

2_(5_Chloropent-l-ynyl)-IH-pyrrole (3.7 g, 22.1 mmol) in anhydrous DMF (5 mL) was 

added dropwise at 0 °C to an efficiently stirred suspension of sodium hydride (883 mg of a 

60% dispersion in mineral oil, 22.1 mmol) in anhydrous DMF (10 mL). After 1 h, when 

hydrogen evolution had ceased, triisopropylsilylchloride (7.08 mL, 33.2 mmol) was added 

dropwise and stirring was continued at 0 °C for a further 45 min. The reaction mixture was 

quenched by careful addition of H20 (1 mL) and was then partitioned between diethyl 

ether (50 mL) and H20 (10 mL). The organic phase was removed and washed with H20 (3 

x 20 mL), dried over sodium sulfate, filtered and reduced in vacuo. The colourless residue 

was purified by flash column chromatography (Si02~ hexanes-Et20 (95:5») to yield the 

desired N-(triisopropylsilyl)-2-(5-chloropent-l-ynyl)pyrrole (6.93 g, 21.43 mmol, 97%). 

IR (thin film): v = 2947 (br), 2868 (s), 1463 (m), 1446 (m), 1294 (m), 1173 (s), 1147 (s), 

1060 (s), 1020 (m), 883 (m), 725 (m) cm· l . 
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'H NMR (400 MHz, CDC13): 8 = 6.77 (1H, dd, J 1 = 2.72, J2 = 1.40 Hz, CHNTIPS), 6.54 

(1H, dd, J
1 

= 3.25, J 2 = 1.32 Hz, CH=C(R)NTIPS), 6.20 (lH, t, J = 3.05 Hz, 

CH=CHNTIPS), 3.69 (2H, t, J = 6.37 Hz, CH2Cl), 2.61 (2H, t, J = 6.79 Hz, C=CCH2), 

2.02 (2H, pent., ] = 6.59 Hz, CH2CH2Cl), 1.70 (3H, sept., J = 7.58 Hz, 3(CH(CH3)2))' 1.15 

(18H, d, J = 7.55 Hz, 3(CH(CH3)2»' 

\3C NMR (100 MHz, CDCI3): 8 = 126.52 (1), 119.05 (1), 118.64 (0), 110.22 (1), 89.44 (0), 

77.07 (0),43.90 (2), 31.50 (2), 18.29 (3 (6C)), 17.29 (2), 13.18 (1 (3C)). 

LRMS (EI mode): mlz = 323 (M+ 100%),261 (29),252 (50), 246 (18), 219 (16), 177 (12), 

59 (12). 

HRMS (EI mode): found 323.1834. C1sH30CINSi requires 323.1836. 

N_(Triisopropylsilyl)-2-(S-chloropentyl)pyrrole (253b) 

In. 
'N~CI 

TIPS 

C1SH30CINSi 

Mol WI.: 323.98 

• 
MaOH, rt, 1 h 

~CI 
N 
TIPS 

C18H~CINSi 

Mol. WI.: 328.01 

Palladium 10% activated on charcoal (0.54 mmol, 5 mol%) was added in one portion to a 

solution of N-(triisopropylsilyl)-2-(5-chloropent-l-ynyl)pyrrole (3.5 g, 10.8 mmol) in 

methanol (30 mL) at rt. The reaction vessel was evacuated at water pump pressure, via a 

KOH drying tube, and flushed with hydrogen through several vacuum cycles. The 
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resulting black suspension was stirred under an atmosphere of hydrogen at rt for 1 hour. 

The reaction mixture was filtered through a plug of celite and the filtrate was evaporated in 

vacuo. The residue was purified by flash column chromatography (Si02, hexanes-Et20 

(95:5» to yield N-(triisopropylsilyl)-2-(5-chloropentyl)pyrrole (3.33 g, 10.2 mmol, 94%) 

as a colourless oil. 

IR (thin film): v = 2947 (br), 2868 (8), 1736 (w), 1465 (m), 1415 (w), 1320 (w), 1256 (w), 

1158 (m), 1065 (m), 1018 (m), 997 (w), 923 (w), 883 (8), 711 (m) em-I. 

lH NMR (400 MHz, CDC13): 8 = 6.76-6.75 (IH, m br, CHNTIPS), 6.21 (IH, t, J = 3.00 

Hz, CH=CHNTIPS), 6.09 (1H, m br, CH=C(R)NTIPS), 3.58 (2H, t, J = 6.69 Hz, CH2CI), 

2.64 (2H, t, J = 7.68 Hz, pyrrole-CH2), 1.89-1.73 (4H, m, 2(CH2», 1.62-1.45 (5H, m, CH2, 

3(CH(CH3)2»' 1.14 (I8H, d, J = 7.55 Hz, 3(CH(CH3)2»' 

l3C NMR (100 MHz, CDC13): 8 = 138.37 (0), 124.53 (1), 109.38 (1), 108.40 (l), 45.20 (2), 

32.81 (2),29.16 (2), 28.58 (2), 27.27 (2), 18.40 (3 (6C», 13.40 (1 (3C». 

LRMS (EI mode): mlz = 327 (M+ 100%),292 (25), 284 (25), 250 (29), 228 (82), 222 (64), 

194 (20), 93 (18), 59 (29). 

HRMS (EI mode): found 327.2150. C 1sH34CINSi requires 327.2149. 

N-(Triisopropylsilyl)-2-(5-iodopentyl)pyrrole (254) 
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~CI 
TIPS 

C1sH34CINSi 

Mol. WI.: 328.01 

Nal, acetone 

~2d 
~I 

TIPS 

C1sH34INSi 

Mol. WI.: 419.46 

To a solution of sodium iodide (1.03 g, 6.86 mmol) in anhydrous acetone (50 mL) was 

added N-(triisopropylsilyl)-2-(5-chloropentyl)pyrrole (1.5 g, 4.57 mmol) and the resulting 

solution was refluxed for 2 days. The solution was then allowed to cool to rt and 

concentrated in vacuo. The residue was dissolved in CH2Cl2 (60 mL) and was washed with 

aqueous sodium thiosulfate (0.5 M, 20 mL). The aqueous layer was separated and 

extracted further with CH2Cl2 (3 x 30 mL). The combined organic layers were washed with 

brine (30 mL), dried over Na2S04, filtered and reduced in vacuo. The residue was purified 

by flash column chromatography (AI20 3; hexanes-Et20 (97:3)) to yield the pure N-

(triisopropylsilyl)-2-(5-iodopentyl)pyrrole (1.67 g, 3.98 mmol, 87%). 

IR (thin film): v = 2947 (br), 2868 (s), 1466 (s), 1415 (m), 1385 (w), 1260 (m), 1242 (w), 

1202 (w), 1066 (s), 1018 (m), 883 (s), 785 (w), 711 (s) cm- I
. 

lH NMR (400 MHz, CDC13): 8 = 6.88 (lH, m br, CHNTIPS), 6.58 (lH, t, J = 2.99 Hz, 

CH=CHNTIPS), 6.37 (IH, m br, CH=C(R)NTIPS), 2.82 (2H, t, J = 7.02 Hz, CH21), 2.68 

(2H, t, J = 7.71 Hz, pyrrole-CH2), 1.72-1.57 (4H, m, 2(CH2», 1.49-1.29 (5H, m, CH2, 

13C NMR (l00 MHz, CDCl3): 8= 138.08 (0),124.74 (1),110.81 0), 109.87 (1),34.18 (2), 

31.12 (2), 29.70 (2),28.85 (2), 18.30 (3 (6C», 13.85 (1 (3C», 6.93 (2). 
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LRMS (EI mode): 419 (M+, 100%), 376 (18), 320 (36), 292 (45),250 (34), 236 (53), 222 

(41),205 (26), 84 (97), 59 (18). 

HRMS (EI mode): found 419.1504. CIsH34lNSi requires 419.1505. 

8. Methoxyoct·l ,6-diyne (257) 

~OMe 
~CI 

BuLi. HMPA. THF 

-78 ·C to rt. o/n 

~OMe 

C9H120 
Mol. WI.: 136.19 

To a solution of methyl propargyl ether (1.94 mL, 23.0 mmol) in THF (50 mL) at -78 °C 

was added n-BuLi (2.2 M in hexanes, 11.0 mL, 24.1 mmo}), followed, after 10 min by 

HMPA (5.6 mL, 32.2 mmol) and 5-chloropentyne (2.15 mL, 20.5 mmol). The reaction was 

allowed to warm to rt and stirred at rt overnight. The reaction mixture was poured onto sat. 

NH
4
CI (15 mL) and Et20 (30 mL) and was further extracted with E~O (3 x 30 mL). The 

combined organic phases were washed successively with aqueous HCI (IN, 15 mL), 

saturated NaHC03 solution (15 mL) and brine (15 mL), dried over MgS04 and 

concentrated in vacuo. The residue was purified by flash column chromatography (Si02; 

hexanes-Et20 (1:1» to yield the pure 8-methoxyoct-l,6-diyne (2.21 g, 16.2 mmol, 79%) as 

a colourless oil. 

IR (thin film): v = 3295 (br), 2936 (br), 2846 (m), 2821 (m), 1452 (m), 1434 (m), 1378 

(w), 1358 (m), 1187 (m), 1148 (w), 1130 (m), 1095 (8),906 (m) cm>l. 
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IH NMR (400 MHz, CDCl3): 8 = 4.08 (2H, t, J = 2.14 Hz, CH20CH3), 3.37 (3H, s, OCH3), 

2.37 (2H, tt, J
1 
= 7.03, J2 = 2.14 Hz, CH2C(CCH20CH3), 2.33 (2H, td, J1 = 7.06, J2 = 2.64 

Hz, HC=CCH
2
), 1.97 (lH, t, J = 2.63 Hz, HC(CCH2), 1.75 (2H, pent., J = 7.02 Hz, 

J3C NMR (400 MHz, CDCl3): 8 = 85.98 (0), 83.62 (0), 76.68 (1), 69.03 (0), 60.34 (2), 

57.63 (3),27.63 (2),17.96 (2),17.22 (2). 

LRMS (CI mode, isobutane): mlz = 137 [(M + H)+, 100%], 136 (69), 105 (63),91 (13),79 

(17),69 (37), 67 (21). 

HRMS (CI mode, isobutane): found 137.0963. C9H J30 requires 137.0967. 

N_(tert_Butoxycarbonyl)-2-(S-methoxyoct-l,6-diynyl)pyrrole 

Q-I 
Boc 

CgH,zIN02 
Mol. WI.: 293,10 

~OMe 

(PPh..,l.Pd, Cui, (Pr/J}'IH 
rt, 12 h 

C'8HZ3N03 
Mol. WI.: 301.38 

To a solution of N-(tert-butoxycarbonyl)-2-iodopyrrole (2.24 g, 7.65 mmol) in freshly 

distilled diisopropylamine (10 mL) at rt was added copper(l) iodide (14,6 mg, 7.65 ,umol, 1 

mol%) and tetrakispalladium(O)triphenylphosphine (90 mg, 7,65 ,umol, 1 mol%) to give a 

yellow suspension. The reaction mixture was cooled to 0 °C and 8-methoxyoct-l,6-diyne 

(2.69 g, 9.18 mmol) was added with rapid stirring, a colour change from yellow to dark 

brown was observed. The mixture was allowed to warm to rt and was stirred under Nz for 
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12 h. The resulting black suspension was diluted with Et20 (20 rnL) and filtered through 

celite. The filtrate was evaporated in vacuo to yield a dark brown oil, which was purified 

by flash column chromatography (Si02~ hexanes-Et20 (1: 1» to yield the pure N-(tert­

butoxycarbonyl)-2-(8-methoxyoct-1,6-diynyl)pyrrole (2.12 mg, 7.04 mmol, 92%) as a 

colourless oil which darkens on exposure to air. 

IR (thin film): V = 2981 (w), 2935 (m), 2868 (w), 1736 (s), 1467 (w), 1401 (w), 1370 (m), 

1336 (s), 1317 (s), 1258 (w), 1140 (s), 1095 (m), 1071 (w), 906 (w), 847 (w), 732 (m) em-I. 

IH NMR (400 MHz, CDC}3): 8 = 7.22 (1H, dd, JI = 3.29, J2 = 1.72 Hz, CHNBoc), 6.44 

(1H, dd, JI = 3.38, J2 = 1.69 Hz, CH=C(R)NBoc), 6.12 (1H, t, J = 3.37 Hz, CH=CHNBoc), 

4.09 (2H, t, J = 2.13 Hz, CH20CH3), 3.38 (3H, s, OCH3), 2.57 (2H, t, J = 7.06 Hz, pyrrole­

C=CCH2), 2.43 (2H, tt, JI = 7.05, J2 = 2.08 Hz, CH2C=CCH20CH3), 1.83 (2H, pent., J = 

7.01 Hz, CH2CH2C=C), 1.61 (9H, s, Boc). 

J3C NMR (100 MHz, CDCI3): 8 = 148.62 (0), 121.99 (1), 120.15 (1), 115.79 (0), 110.92 

(1), 92.76 (0), 82.30 (0), 84.12 (0), 76.81 (0), 73.48 (0), 60.37 (2), 57.62 (3), 28.19 (3 

(3C», 27.92 (2), 19.20 (2), 18.20 (2). 

LRMS (CI mode, ammonia): mlz = 319 [(M + N14)+, 13%],263 (13),246 (17),214 (7), 

202 (39), 170 (36), 144 (4). 

HRMS (CI mode, isobutane): found (M + H)+, 302.1758. C1sH24N03 requires 302.1757. 

2-(8-Methoxyoct-l,6-diynyl)-lH -pyrrole 
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n:::-- #' OMe 
"N~ 

Boc 

C1sH23N03 

Mol. WI.: 301.38 

NaOMa 

MeOH, 0 ·C, 4 h 

.. n ~OMe 
'N~ 

H 

C13H1sNO 

Mol. WI.: 201.26 

To a dry 25 mL round bottom flask equipped with a stirrer bar and reflux condenser was 

added anhydrous methanol (10 mL) and sodium pieces (l00 mg, 4,17 mmol. The mixture 

was stirred at reflux for 1 h before being cooled to 0 °C. N-(tert-butoxycarbonyl)-2-(8-

methoxyoct-l,6-diynyl)pyrrole (1.0 g, 3.31 mmol) in anhydrous methanol (2.5 mL) was 

added dropwise under N2. Once addition was complete the reaction mixture was allowed to 

warm to rt and was stirred at this temperature for 4 h. The reaction was quenched by 

careful addition of aqueous sodium hydroxide (lN, 5 mL), hexanes (20 mL) were added 

and the organic layer was separated from the aqueous. The aqueous phase was extracted 

with 95:5 hexanes-Et20 (3 x 20 mL). The combined organic phases were evaporated in 

vacuo to yield a yellow oil which was purified by flash column chromatography (AI20 3; 

hexanes-Et20 (1: 1)). The desired 2-(8-methoxyoct-l,6-diynyl)-lH-pyrrole was isolated as 

a colourless oil (633 mg, 3.14 mmol, 95%) which blackened rapidly on exposure to air. 

IR (thin film): V = 3399 (br), 3310 (br), 2989 (w), 2935 (m), 2904 (m), 2825 (m), 1556 

(w), 1450 (m), 1430 (w), 1378 (w), 1359 (w), 1274 (w), 1187 (m), 1129 (m), 1093 (s), 

1027 (w), 1002 (w), 901 (w), 804 (w), 728 (s) cm- I . 

IH NMR (400 MHz, CDCl3): 8 = 8.36 OR, s br, NH), 6.70 OR, ddd, 11 = 2.72,12 = 2.68, 

J3 = 1.44 Hz, CHNH), 6.37 (lH, ddd, 11 = 3.65, 12 = 2.49, 13 = 1.20 Hz, CH=C(R)NH), 

6.16 (lH, dt, J = 3.40, J2 = 2.72 Hz, CH=CHNR), 4.10 (2H, t, 1 = 2.13 Hz, CH20CH3), 
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3.39 (3H. s. OCD3). 2.54 (2H, t, J = 6.97 Hz. pyrrole-C=CCH2), 2.41 (2H, tt, 11 = 6.98. 12 

\3C NMR (100 MHZ. CDCI3): 8= 138.31 (0). 118.71 (1). 113.80(1). 109.09 (1). 89.95 (0). 

86.25 (0). 76.66 (0), 73.77 (0),60.39 (2). 57.66 (3). 27.85 (2), 18.88 (2), 18.20 (2). 

LRMS (EI mode): mlz = 200 [(M - Hr, 27%], 186 (42). 170 (100). 158 (78). 130 (54). 117 

(35). 104 (51), 77 (20), 51 (12). 

HRMS (EI mode): found (M - Hr, 200.1075. C\3HI4NO requires 200.1075. 

N_(Triisopropylsilyl)-2-(8-methoxyoct-l,6-diynyl)pyrrole 

CI3H'SNO 

Mol. WI.: 201.26 

NaH, TIPSCI, DMF 

O·C ~rt, 2h 
~OMe 

TIPS 

C22H3sNOSI 

Mol. WI.: 357.60 

2_(8_methoxyoct-l.6-diynyl)-IH-pyrrole (250 mg, 1.24 mmol) in anhydrous DMF (1 mL) 

was added dropwise at 0 °C to an efficiently stirred suspension of sodium hydride (50 mg 

of a 60% dispersion in mineral oil, 1.24 mmol) in anhydrous DMF (5 mL). After 1 h, when 

hydrogen evolution had ceased, triisopropylsilylchloride (0.40 mL, 1.86 mmol) was added 

dropwise and stirring was continued at 0 °C for a further 45 min. The reaction mixture was 

quenched by careful addition of H20 (0.25 mL) and was then partitioned between diethyl 

ether (30 mL) and H20 (10 mL). The organic phase was removed and washed with H20 (3 

x 10 mL), dried over sodium sulfate, filtered and reduced in vacuo. The colourless residue 
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was purified by flash column chromatography (Si02; hexanes-Et20 (9: 1)) to yield the 

desired N-(triisopropylsilyl)-2-(8-methoxyoct-1 ,6-diynyl)pyrrole (408 mg, 1.14 mmol, 

92%). 

IR (thin film): v = 2946 (br), 2892 (w), 2867 (s), 1465 (m), 1449 (m), 1173 (m), 1147 (m), 

1096 (s), 1060 (m), 1019 (m), 883 (m), 725 (m), 690 (m), 665 (s) em· l
. 

IH NMR (400 MHz, CDCI3): 8 = 6.87 (1H, dd, J I = 3.24, J2 = 1.30 Hz, CHNTIPS), 6.73 

(1H, dd, J I = 2.75, J 2 = 1.36 Hz, CH=C(R)NTIPS), 6.35 (lH, t, J = 3.10 Hz, 

CH=CHNTIPS), 3.97 (2H, t, J = 2.15 Hz, CH20CH3), 3.24 (3H, s, OCH3), 2.35 (2H, t, J = 

6.97 Hz, pyrrole-C=CCH2), 2.20 (2H, tt, JI = 7.03, J2 = 2.13 Hz, CH2C=CCH20CH3), 1.67 

(3H, sept., J = 7.59 Hz, 3(CH(CH3)2))' 1.59 (2H, pent., J = 7.02 Hz, CH2CH2C=C), 1.16 

(18H, d, 3(CH(CH3)2))' 

\3C NMR (100 MHz, CDCI3): 8 = 129.03 (0), 128.16 (1), 120.17 (1),119.87 (0),111.34 

(1),90.81 (0), 86.11 (0),77.85 (0),60.50 (2), 57.32 (3), 28.41 (2), 19.35 (2), 18.67 (3 

(6C)), 18.31 (2), 13.32 (1 (3C)). 

LRMS (EI mode): mlz = 357 (M+, 8%), 342 (9), 312 (40), 235 (100),224 (34), 207 (25), 

193 (12), 137 (12),115 (17), 84 (16),59 (16). 

HRMS (EI mode): found 357.2489. C22H3sNOSi requires 257.2488. 

N-(Triisopropylsilyl)pyrrole (265) 
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Q 
H 

C.HsN 
Mol. WI.: 67,09 

NaH, TIPSCI, DMF 

o °C~ rt, 2 h 
Q 

TIPS 

C13H2SNSi 

Mol. WI.: 223.43 

Pyrrole (10 mL, 144 mmol) was added dropwise at 0 °C to a mechanically stirred 

suspension of sodium hydride (6.34 g of a 60% dispersion in mineral oil) in anhydrous 

DMF (100 mL). After 2 h, when hydrogen evolution had ceased, triisopropylsilylchloride 

(30.6 mL, 144 mmol) was added dropwise and stirring at O°C was continued for 1 h. The 

reaction mixture was partitioned between H20 (50 mL) and E~O (150 mL). The organic 

phase was separated and washed with H20 (3 x 50 mL), dried over Na2S04, filtered and 

reduced in vacuo. The residue was purified by distillation (b.p. 78°C, (0.4 mmHg» to 

yield N-(triisopropylsilyl)pyrrole (31.21 g, 139.68 mmol, 97%) as a colourless oil. 

Spectroscopic data is in accordance with literature values.157 

3_(Dimethyliminomethylenyl)-lH-pyrrolyl chloride 

Q 
TIPS 

C13H2SNSi 

Mol. WI.: 223.43 

.. 

C7Hll CIN2 

Mol. WI.: 158,63 

A solution of anhydrous DMF (9.95 mL, 129 mmol) in anhydrous CH2Cl2 (20 mL) was 

added to a stirred solution of oxalyl chloride (9.99 mL, 118 mmol) in CH2Cl2 (500 mL) at 

o °C and the reaction mixture was stirred at 0 °C for 20 min. A solution of N-

(triisopropylsilyl)pyrrole (25.0 g, i12 mmol) in anhydrous CH
2
Cl

2 
(20 mL) was added 

rapidly to the stirred suspension of the Vilsmeier-Haack reagent at 0 °C. The mixture was 

immediately placed in an oil bath preheated to 60 °C and the solid went into solution 
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briefly before a precipitate formed again. The mixture was heated at reflux for 30 min 

before being cooled to 0 °C again. The precipitate was collected by filtration and washed 

several times with anhydrous Et20 before exposure to air. The solid was dried in vacuo and 

used immediately in the next step. 

3.Formyl-lH-pyrrole (264) 

C7H"CIN2 

Mol. WI.: 158.63 

NaOH OH~ 

~) 
H 

CsHsNO 

Mol. WI.: 95,10 

The iminium salt (assumed 112 mmol) was added to a 5% aqueous NaOH solution (500 

mL) and was stirred at rt for 4 h. The solution was exhaustively extracted with CH2CI2, 

dried over K 2C03 and reduced in vacuo. The residue was purified by distillation (bp 132-

137°C, 1 mmHg) to yield the desired 3-formyl-1H-pyrrole (7.88 g, 82.9 mmol, 74%) as a 

white solid, mp 67-68 °C (Lit. mp 68 °C).lS8 Spectroscopic data is in accordance with 

I· I 159 Iterature va ues. 

2-(lH-pyrrol-3-ylmethylene)malonic acid, diethyl ester (263) 

OH~ 

~) 
H 

CsHsNO 

Mol. WI.: 95,10 

Py. 4A MS. rt. oln 

C'2H,sNO. 
Mol. WI.: 237,25 
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To a solution of diethyl malonate (3.51 mL, 23.12 mmol) and anhydrous piperidine (4.16 

mL, 42.06 mmol) in anhydrous pyridine (10 mL) at rt was added powdered 4 A molecular 

sieves (500 mg) and 3-forrnyl-1H-pyrrole (2.00g, 21.03 mmol). The reaction mixture was 

stirred at rt overnight. The mixture was filtered through celite and reduced in vacuo, via an 

He} trap. The residue was purified by flash column chromatography (AI20 3; hexanes-Et20-

Et3N (34:65: 1» to yield the pure 2-(1H-Pyrrol-3-ylmethylene)malonic acid, diethyl ester 

(4.24 g, 17.88 mmoI, 85%) as a white solid, mp 62-64 °C (Lit mp 62_63°C).J60 

Spectroscopic data is in accordance with literature values. 126 

2_(N_(Trimethylsilyl)-lH-pyrrol-3-yl-l-isobutyl)malonic acid, diethyl ester (266) 

C'2H'SN04 

Mol. WI.: 237.25 

P~MgCI. CuBroSMe2 

LiBr. TMSCI. E~N 

E~O. -40·C. 3 h 

.. 

C,aH3,N04Si 

Mol. WI.: 353.53 

Anhydrous LiBr (2.50 g, 28.73 mmol) and CuBre SMe2 (146 mg, 0.72 mmoI, 5 moI%) 

were added to a flame dried 200 mL 3-necked round bottomed flask whilst still hot and the 

flask was evacuated and purged with nitrogen through several vacuum cycles. Et20 (40 

mL) was added and the reaction mixture was cooled to -40 °C (internal temperature). 

Isopropylmagnesium chloride (1.67 M solution in THF, 10.28 mL, 17.17 mmol) was added 

dropwise, followed by slow addition of a mixture of chlorotrimethylsilane (3.64 mL, 28.73 

mmol), distilled from a small amount of N,N-diethylaniline to remove traces of HCI, and 2-

(IH-pyrrol-3-ylmethylene)malonic acid, diethyl ester (3.38 g, 14.25 mmol) in Et
2
0 (10 mL 

and 2 x 2.5 mL rinses) to keep the internal temperature at -40 DC. Once addition was 
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complete the brown solution was stirred for a further 15 min at -40 °C before being 

allowed to warm to 0 dc. Triethylamine (4.17 mL, 30.17 mmol) was added and a 

precipitate was formed. The mixture was poured onto an ice cold solution of sat. NH4CI 

(25 mL) and the aqueous phase was separated and extracted with Et20 (3 x 20 mL). The 

organic phases were combined, washed with aqueous HCI (1 N, 25 mL), dried over 

MgS04, filtered and reduced in vacuo. The residue was purified by flash column 

chromatography (Si02; hexanes-Et20 (1: 1» to yield the pure 2-(N-(trimethylsilyl)-IH­

pyrrol-3-yl-l-isobutyl)malonic acid, diethyl ester (4.84 g, 13.68 mmol, 96%) as a 

colourless oil. 

IR (thin film): v = 2961 (br), 2874 (w), 1758 (s), 1732 (s), 1481 (m), 1466 (w), 1368 (w), 

1258 (s), 1176 (m), 1154 (m), 1134 (m), 1103 (s), 1035 (m), 973 (w), 844 (s), 784 (w), 762 

(w), 706 (w) cm-'. 

'H NMR (400 MHz, CDCI3): 8 = 6.49-6.48 (2H, m, 2(CHNTMS», 6.39-6.38 (lH, m br, 

CH=CHNTMS), 4.20 (1H, dd, 11 = 11.20,12 = 3.72 Hz, pyrrole-CH), 4.12-3.99 (2H, m, 

OCH2), 3.97-3.82 (3H, m, OCH2, CH(C02Et)2)' 2.28-2.20 (1H, m, CH(CH3)CH3), 1.02 

(6H, d, 1 = 6.60 Hz, CH(CH3)CH3), 1.00 (3H, t, J = 7.00 Hz, COCH2CH3), 0.83 (3H, t, J = 

7.08 Hz, COCH2CH3), 0.10 (9H, s, TMS). 

\3C NMR (100 MHz, CDCI3): 8 = 169.68 (0), 168.98 (0), 123.93 (0), 123.02 (1 (2C», 

113.65 (1), 61.75 (2),61.36 (2), 57.83 (1),45.19 (1), 30.89 (1), 22.82 (3), 18.45 (3), 14.75 

(3), 14.47 (3),0.00 (3 (3C». 

LRMS (CI mode, isobutane): mJz = 354 [(M + Hr, 100%],353 (18), 310 (5), 194 (17). 
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HRMS (CI mode, isobutane): found (M + Hr, 354.2098. ClsH3zN04Si requires 354.2101. 

2-(1H-pyrrol-3-yl-l-isobutyl)malonic acid, diethyl ester (267) 

C1SH31N04Si 

Mol. WI.: 353.53 

TBAF .. 

C1SH23NO. 

Mol. WI.: 281.35 

TBAF (1.79 g, 5.65 mmol) was added in one portion to a solution of 2-(N-(trimethylsilyl)-

IH-pyrrol-3-yl-l-isobutyl)malonic acid, diethyl ester (2.00g, 5.65 mmol) in CHzClz (10 

mL) and the mixture was stirred at rt for 10 min. At this time the reaction was complete by 

TLC and the reaction mixtire was diluted with EtzO (50 mL) and poured onto HzO (30 

mL). The aqueous phase was separated and extracted further with EtzO (3 x 10 mL). The 

combined organic layers were washed with HzO (30 mL), brine (30 mL), dried over 

MgS04, filtered and reduced in vacuo. The residue was purified by flash column 

chromatography (AI20 3; hexanes-Et20 (l: 1» to yield the pure 2-(lH -pyrrol-3-yl-l-

isobutyl)malonic acid, diethyl ester (1.56 g, 5.54 mmol, 98%) as a colourless oil which 

blackens rapidly on exposure to air. 

IR (thin film): v = 3406 (br), 2963 (br), 1746 (s), 1730 (s), 1466 (w), 1447 (m), 1369 (m), 

1264 (m), 1228 (m), 1178 (m), 1152 (m), 1097 (w), 1073 (w), 1033 (m), 666 (w) cm· l . 

IH NMR (400 MHz, C6D6): 8 = 7.00 (lH, s br, NH), 6.31-6.29 (2H, m br, 2(CHNH», 

6.17-6.16 (1H, m br, CH=CHNH), 4.15 (lH, d, J = 11.32 Hz, CH(C02Et)2)' 4.08-4.05 
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(2H, m, OCH2), 3.96-3.83 (2H, m, OCH2,), 3.81 (1H, dd, II = 11.32,12 = 4.16 Hz, pyrrole­

CH), 2.23-2.15 (1R, m, CH(CH3)CH3), 0.97 (3H, t, 1 = 6.52 Hz, COCH2CH3), 0.96 (6H, 

d, 1 = 6.28 Hz, CH(CH3)CH3), 0.83 (3H, t, 1 = 7.04 Hz, COCH2CH3)· 

DC NMR (100 MHz, C6D6): 8= 169.69 (0),168.99 (0),120.53 (0),117.84 (1),117.59 (1), 

110.42 (1),61.75 (2), 61.40 (2),57.86 (1),45.100),30.83 (1),22.77 (3),18.28 (3),14.73 

(3), 14.46 (3). 

LRMS (CI mode, isobutane): m/z = 282 [(M + H)+, 100%], 281 (39),238 (8),236 (5), 194 

(19), 164 (8), 162 (8), 122 (86), 120 (7). 

HRMS (CI mode, isobutane): found (M + Ht, 282.1704. CIsH24N04 requires 282.1706. 

2-(N-(tert-Butoxycarbonyl)-lH-pyrrol-3-yl-t-isobutyl)malonic acid, diethyl ester (270) 

C1sH23NO• 

Mol. WI.: 281.35 

NaH, Boc~ 

DMF, rt, 1h 

.. 

CzoH31NOa 
Mol. WI.: 381.46 

2-(1H-Pyrrol-3-yl-l-isobutyl)malonic acid, diethyl ester (1 g, 3.55 mmol) in anhydrous 

DMF (2 mL) was added dropwise to an efficiently stirred suspension of sodium hydride 

(142 mg of a 60% dispersion in mineral oil, 3.55 mmol) in anhydrous DMF (5 mL) at 0 

°e. After 1 h, when hydrogen evolution had ceased, di-tert-butyldicarbonate (1.16 g, 5.33 

mmol) was added dropwise and stirring was continued at 0 °C for a further 45 min. The 
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reaction mixture was quenched by careful addition of H20 (l mL) and was partitioned 

between Et20 (30 mL) and H20 (4 mL). The organic phase was removed and washed with 

H20 (3 x 5 mL), dried over Na2S04, filtered and reduced in vacuo. The colourless residue 

was purified by flash column chromatography (Si02; hexanes-Et20 (2: 1» to yield 2-(N­

(tert-butoxycarbonyl)-lH-pyrrol-3-yl-l-isobutyl)malonic acid, diethyl ester (1.25 g, 3.27 

mmol, 92%) as a colourless oil which darkens gradually on exposure to air. 

IR (thin film): v = 2979 (br), 1740 (vs), 1460 (w), 1370 (m), 1345 (m), 1323 (m), 1251 

(m), 1159 (s), 1033 (m), 973 (m) em-I. 

IH NMR (400 MHz, CDCl3): 8 = 7.11 (lH, t br, J = 2.24 Hz, CHNBoc), 6.99 (1R, s br, 

CHNBoe), 6.07 (lH, dd, 11 = 3.24, 12 = 1.72 Hz, CH=CHNBoe), 4.26-4.18 (2H, m, 

OCH2), 4.02 (2H, q, 11 = 7.12 Hz, OCH2), 3.77 (lH, d, 1 = 11.16 Hz, CH(C02Eth), 3.29 

(lH, dd, 11 = 11.16,12 = 4.40 Hz, pyrrole-CH), 1.92-1.87 (1H, m, CH(CH3h), 1.58 (9H, s, 

Boc), 1.30 (3H, t, 1 = 6.88 Hz, COCH2CH3), 1.09 (3H, t, J = 7.08 Hz, COCH2CH3 ), 0.87 

(3H, d, 1 = 6.76 Hz, CH(CH3)CH3), 0.83 (3H, d, 1 = 6.80 Hz, CH(CH3)CH3). 

l3C NMR (100 MHz, CDCI3): 8= 175.48 (0),174.41 (0), 168.93 (0),124.08 (0),119.46 

(1),118.69 (1),113.69 (1), 84.05 (0), 61.62 (2), 60.13 (2), 56.11 (1),44.09 (1), 29.68 (1), 

28.20 (3 (3C», 21.89 (3),17.61 (3), 17.61 (3),14.26 (3). 

LRMS (CI mode, isobutane): mlz = 382 [(M + H)+, 100%], 381 (22), 333 (18), 326 (57), 

284 (7), 282 (5), 222 (24), 208 (4), 166 (5), 122 (8). 

HRMS (CI mode, isobutane): found (M + Ht, 382.2231. C2oH32N06 requires 382.2230. 
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2_(2_Iodo-lH-pyrrol-4-yl-l-isobutyl)malonic acid, diethyl ester (268) 

C1SH23N04 

Mol. WI.: 281.35 

NIS, DMF 

rt,o/n 

C'5H23N04 

Mol. WI.: 281.35 

To a solution of 2-(IH-pyrrol-3-yl-l-isobutyl)malonic acid, diethyl ester (1.91 g, 6,75 

mmol) in THF (10 mL) was added N-iodosuccinimide (1.65 g, 7.12 mmol) and the reaction 

mixture was stirred at rt overnight. Triethylamine (0.05 mL, 0.35 mmol) and Et20 (20 mL) 

were added and the mixture was poured onto H 20 (10 mL). The aqueous phase was 

separated and extracted further with Et20 (3 x 15 mL). The combined organic phases were 

washed with brine 00 mL), dried over Na2S04 , flitered and reduced in vacuo. The residue 

was purified by flash column chromatography (AI20 3; hexanes-Et20-Et3N (65:34: 1» to 

yield the pure 2-(2-iodo-lH-pyrrol-4-yl-l-isobutyl)malonic acid, diethyl ester (1.67 g, 5.96 

mmol, 88%) which blackened rapidly in the presence of air and was used immediately in 

the following step. 

2-(2-(8-Methoxyoct-l,6-diynyl) IH-pyrrol-4-yl-l-isobutyl)malonic acid, diethyl ester 

(269) 
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Et02~ 
EtO C Y \ 

2 I 
N 
H 

C1SH23N04 
Mol. WI.: 281.35 

~OMe 

(PPh3)4Pd, Cui, (Prii.,NH 

-15 ·C, oln 

C24H33NOS 

Mol. Wt.: 415.52 

OMe 

To a solution of 2-(2-iodo-1H-pyrrol-4-yl-1-isobutyl)malonic acid, diethyl ester (1.67 g, 

5.96 mmol) in freshly distilled diisopropylamine (7.5 mL) at 0 °C was added copper (I) 

iodide (57 mg, 0.23 mmol, 5 mol%) and tetrakispalladium(O)triphenylphosphine (345 mg, 

0.23 mmol, 5 mol%) to give a yellow suspension. 8-Methoxyoct-1,6-diyne (894 mg, 6.54 

mmol) was added with rapid stirring and a colour change from yellow to black was 

observed. The reaction mixture was stirred at 0 DC under nitrogen overnight. The resulting 

black suspension was diluted with Et20 (20 mL) and filtered through celite. The filtrate 

was reduced in vacuo to yield a black oil which was purified by flash column 

chromatography (AI20 3; hexanes-Et20-Et3N (50:49: 1» to yield the pure 2-(2-(8-

methoxyoct-1,6-diynyl)lH-pyrrol-4-yl-1-isobutyl)malonic acid, diethyl ester (2.25 g, 5.42 

mmol, 91 %) as a colourless oil which blackens readily on exposure to air. 

IR (thin film): v = 3377 (br), 2977 (br), 1759 (s), 1729 (s), 1466 (w), 1369 (m), 1264 (m), 

1132 (m), 1095 (s), 1030 (m) cm'l. 

IH NMR (400 MHz, CDCI3): 8 = 8.15 (lH, s, br, NH), 6.48 (lH, dd, J
I 
= 2.16, J

2 
= 1.75 

Hz, CHNH), 6.18 (lH, d, J = 1.68 Hz, CHC(R)CNH), 4.26-4.17 (2H, m, OCH
2
CH

3
), 4.09 

(2H, t, J = 2.47 Hz, CH20CH3), 3.99 (2H, q, J = 7.08 Hz, OCH2CH
3
), 3.75 (lH, d, J = 

11.38 Hz, CH(C02Et)2)' 3.38 (3H, s, OCH 3), 3.21 (lH, dd, J
1 

= 11.35, J
2 

= 4.19 Hz, 

pyrrole-CH), 2.51 (2H, t, J = 6.95 Hz, pyrrole-C=CCH2), 2.39 (2H, tt, 'I = 6.95, '2 = 2.08 

Hz, CH2C=CCH20CH3), 1.89-1.77 (lH, m, CH(CH3)2)' 1.79 (2H, pent., J = 6.99 Hz, 
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OCH
2
CH

3
), 0.85 (3H, d, J = 6.78 Hz, CH(CH3)CH3), 0.80 (3H, d, J = 6.75 Hz, 

l3C NMR (100 MHz, CDC13): 8 = 169.06 (0), 168.49 (0), 120.44 (0), 118.09 (1), 114.99 

(1), 112.67 (0),89.74 (0), 86.22 (0), 73.99 (0),66.04 (0), 61.52 (2), 61.19 (2), 60.39 (2), 

57.66 (3), 56.51 (3), 44.l9 0), 29.70 (1),27.86 (2),21.90 (3),18.89 (2),18.21 (2), 17.40 

(3), 14.26 (3), 13.97 (3). 

LRMS (CI mode, isobutane): mlz = 416 [(M + H)+, 100%],415 (3), 384 (11), 312 (5), 

256 (13), 240 (4), 161 (3). 

HRMS (CI mode, isobutane): found (M + Hr, 416.2438. C24H34NOs requires 416.2438. 

2-(2-(8-Methoxyoct-l,6-diynyl)N-terl-butoxycarbonyl-1H -pyrrol-4-yl-l-

isobutyl)malonic acid, diethyl ester (272) 

C24H33NOS 

Mol. wt.: 415.52 

OMe 
NaH, Boc~, DMF 

O·C -+ rt, 2 h 

C2gH4,N07 

Mol. WI.: 515.64 

OMe 

2-(2-(8-Methoxyoct-l ,6-diynyl) IH-pyrrol-4-yl-l-isobutyl)malonic acid, diethyl ester (1.50 

g, 3.61 mmol) in anhydrous DMF (2 rnL) was added dropwise to an efficiently stirred 

suspension of sodium hydride (144 mg of a 60% dispersion in mineral oil, 3.61 mmol) in 

anhydrous DMF (5 mL) at 0 °C. After 1 h, when hydrogen evolution had ceased, di-tert-
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butyldicarbonate (1.18 g, 5.42 mmol) was added dropwise and stirring was continued at 0 

°C for a further 45 min. The reaction mixture was quenched by careful addition of H20 (1 

mL) and was partitioned between Et20 (30 mL) and H20 (4 mL). The organic phase was 

removed and washed with H20 (3 x 5 mL), dried over Na2S04 , filtered and reduced in 

vacuo. The colourless residue was purified by flash column chromatography (Si02; 

hexanes-Et20 (2: 1» to yield 2-(2-(8-methoxyoct-l,6-diynyl)N-tert-butoxycarbonyl-lH­

pyrrol-4-yl-l-isobutyl)malonic acid, diethyl ester (1.64 g, 3.18 mmol, 88%) as a colourless 

oil which yellows in the presence of air. 

IR (thin film): v:;; 3437 (br), 2961 (br), 2934 (m), 1755 (s), 1735 (s), 1638 (w), 1465 (w), 

1398 (w), 1369 (m), 1331 (m), 1258 (m), 1154 (s), 1132 (s), 1096 (m), 1032 (w), 905 (w), 

847 (w), 768 (w) em-I. 

IH NMR (400 MHz, CDCl3): 8:;; 6.99 (1H, d, ):;; 1.84 Hz, CHNH), 6.32 (lH, d, ):;; 1.84 

Hz, CHC(R)CNH), 4.26-4.18 (2H, m, OCH2CH3), 4.09 (2H, t, ) = 2.12 Hz, CH20CH), 

4.03 (2H, q,):;; 7.08 Hz, OCH2CH3), 3.73 (1H, d,):;; 11.12 Hz, CH(C02Et)z), 3.38 (3H, s, 

OCH3), 3.22 (1H, dd')1 :;; 11.16')2:;; 4.48 Hz, pyrrole-CH), 2.55 (2H, t,) = 7.08 Hz, 

pyrrole-C=CCH2), 2.42 (2H, tt, )1 :;; 7.04, )2 :;; 2.08 Hz, CH 2C=CCH20CH3), 1.89-1.80 

(1H, m, CH(CH3)2)' 1.82 (2H, pent., ) :;; 7.04 Hz, CH2CH2C=CCH20CH
3 

), 1.60 (9H, s, 

Boc), 1.28 (3H, t,):;; 7.12 Hz, OCH2CH3), 1.11 (3H, t,):;; 7.12 Hz, OCH
l
CH

3
), 0.86 (3H, 

d,):;; 6.72 Hz, CH(CH3)CH3), 0.81 (3H, d,):;; 6.80 Hz, CH(CH
3
)CH

3
). 

13C NMR (100 MHz, CDCl3): 8 = 168.74 (0), 168.13 (0), 148.37 (0), 122.57 (0), 121.55 

(1), 120.66 (1), 115.43 (0), 93.07 (0), 86.59 (0), 84.03 (0), 77.39 (0), 73.92 (0), 61.65 (2), 

61.37 (2),60.37 (2), 56.60 (3), 55.87 (1),43.88 (1),29.58 (I), 28.19 (3 (3C», 27.91 (2), 

21.84 (3), 19.18 (2), 18.21 (2), 17.59 (3), 14.25 (3), 14.01 (3). 

165 



LRMS (CI mode, isobutane): mlz = 516 [(M + Hr, 91 %],460 (78), 416 (100), 384 (36), 

312 (15), 268 (15),256 (20),224 (18), 161 (7). 

HRMS (CI mode, isobutane): found (M + Hr, 516.2961. C29H42N07 requires 516.2962. 
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SR -1416 58 
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sr~No~~a ~~~~~(r(~5 ra~ CaCCl ~ C A5(~ p~[~r(~ 

aBgR 
JN03LLFP.360 
DATE 3-6-97 
TIME 13: 41 

SF 360 . 134 
SY 120 . 0 
01 6300 .000 
SI 65536 
TO 32768 
SW 6024.096 
HZ/PT .184 

PW 
RD 
AQ 
RG 
NS 
TE 

3 . 0 
0 . 0 
2 . 720 

20 
16 

298 

FW 7600 
02 9280 . 000 
DP 50L PO 

LB .300 
GB 0 . 0 
CX 27.00 
CY 12 . 50 
F 1 13 . 412P 
F2 - .089P 
HZ/eM 180 . 069 
PPM/eM . 500 
SR 3979 . 46 
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PPM 

6 .0 

o 
U1i 
(,), 

5 . 0 4 .0 3 .0 
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PPM 

B88R 

JY28LLP 2 . 001 
AU PROG: 

DEPT A360 
DATE 28-7-97 
TIM E 13: 53 

SF 90 . 556 
SY 67 . 0 
01 15900.000 
SI 65536 
TO 32768 
SW 22727 . 273 
HZ/P T . 694 

PW 0 . 0 
RD 0 . 0 
AQ . 721 
RG 800 
NS 640 
TE 298 

FW 28500 
02 5593 . 000 
DP 18H CPO 

L8 1 . 000 
G8 0 . 0 
CX 23 . 00 
CY 4 . 00 
Fl 235 . 918P 
F2 -4 . 534P 
HZ/CM 946 . 708 
PPM/CM 10 . 454 
SR 5769 . 52 



Currtnl Data Parnettrs 

~ 
POOOro 

50027-99 
60 

F2 • ACQUIS ition Para.ters 
Dat. 990927 
I, .. 22 <2 
I NSI .... "t)l:4oo 
PAOlI!{) 5 lUI Dual 13 
PU..PAOG 19JO 
10 32768 
SG.YfHI CDC I 3 
N5 .' OS 2 
SIfti 8223 685 Hz 
FII)'''S o 250967 HZ 
.0 1 9923 ...... sec 
RG 905 
OW 60 BOO usee 
[)( 6 00 uste 
IE 29B 0 K 
01 o 01000000 sec 
PI 9 20 usee 
51'01 400 1324689 .... z 
IlJCI IH 
Pl.1 -100 d8 

F2 . ProefSslng D.ra.lers 
51 32758 
SF .00 1300297 )ilil 
00.. E-
558 0 
lB o JO HI 
G8 0 
Fe '00 

10 M4R plot p.r •• lers 
ex 39 01 c. 
FIP 9 2'50 DD 
F! 3701 20 Hz 
Fi!9 -0 500 DO 
fZ -zoo 06 Hz 
PPNOf 0 2'992 Dpa/e 
HIDe 99 99999 Hzle. 

L 
~ 

c 

pp 8 5 8 0 

User - L. Lea 
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Current Data Parameters 
NAME 5<D27 -99 
EXI'NO 61 
PRlOoO I 

rZ - ACQUJSJt lon Para=et!rs 

Oatt_ 990927 
1'00 23 19 
IHSIIU< Oox4oo - 5 _ Dual 13 

P\.t.ProG 19D930 
ID 65536 
SQ.VENI COC)) 
N5 2000 
05 • 
5"" 31847 133 t-ll 

rl0AE5 o '859'9 ", 
AD I 0289652 sec 
RG 2O'B 
OW 15 700 usee 
D£ 6 00 usre 

o 

'" o 

'" o 
N 

I 
182 

o 

/ 

... ""D ... NO ....... -

............. ............. 

~! 

I I I I r--T-~------'---I , 
PP" 220 200 180 160 140 120 100 80 60 

I( 2'9801( 
012 o 00002000 sec 
PI. I) 18 00 cB 
01 o 01000000 sec 
CPDPAG2 • • 11116 

PCP02 S) 00 usee 
Sf 02 .00 1316005 1+11 
M£Z IH 

PI. 2 -) 00 oB 
PI. 12 16 00 03 
PI 6 . 90 usee 
Sf 01 100 625'2415 
>IX I IJC 

PI. I -) 00 oS 
011 o 03000000 sec 

fZ - ProcnsJ"g Dv,t.eltn 
51 ~7~ 

Sf 100 612]290 

,.., 
N 

.,... 

.,... 0 en 
01 ,.., .... 
.... If') If') 

,.., - 01 
... " ,.., 

\ II 

o ,.., 

" ,.., 
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en .... ~ CO en 
~ru'q"lD­
OI.ClM<qU) 
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~ ~ 0 
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LB 
liB 
PC 
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200 

------------------------------------------~----------------~----------~-----~~~~~~ L.,. '. .. " ' 

10 ~ clot o,r'8lett"S 
ex )9 50 ,. 
rIP 2'0 000 ::0" 
F'1 24141 05 Io;J 

rzP -10 OOC co' 
~2 -1006 I3 Ml 

~'" 6 lZ'9!: 00--/' • 
.... zc., 636 789.3 "1.'C'" 



Current Oila Par utters 
¥ME rt:ltO-98-15U 
t<PNO 10 

""""'10 

ri! - ACCU1SIl l 0f'l Par.-rter s 

Dla 980210 ,, .. 11 16 

INSt~ 00.400 

PAOIltCl 5 IIT~ DJaJ 13 
PU.PRlG Z9JO 
TO 32168 
SCl.V£Nt COCD 
lIS 16 

OS 2 

SlOi B22l 68',; Hz 

FJORES o 250961 HZ 

AO 1 99l1 ..... SfC 

AG 181 

"" 
60 BOO uSf'C 

~ 6 00 usfC 

TE 29B 0 • 

01 o 01000000 sec ., 9 ZO uS!c 

srOI 400 1324689 "'1 

MJCI IH 

PI. I -J 00 CIS 

F2 - PrOCfSS 1"9 oar •• trr"s 
51 32168 
Sf cOO 1300623 rotto z 

S58 
LB 
G8 
PC 

10 HMR OIOl 0'1'" 

el 
Ft. 
FI 
F2P 
F2 

EM 
o 

o 30HZ 
o 

.00 

lrrs 
J9 01 c,., 
9 2'SO DC 

)101 20 HZ 
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- 200 06 HZ 
PPMCIIt 0 24992 DO"'" 
HlC.N 100 00000 Hl le 
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, 
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E 
0. 
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t.. 

Current Data Parameters 
N"'E 50020-99 
EX?NO II 
PROCHO I 

r2 - ACQUlsltlon Parameters 
00"_ 990920 
T, .. 19 . 10 
INSTRUH ",U400 
PAOBI(J 5 .. Duol 13 
PU.PAOG Z90930 
TO 65536 
Sll.V"ENT COCIl 
NS 320 
OS • 
SWH 31 8'7 . 133 Hz 
rIORES o . ~959"9 HZ 

40 1. 0289652 5 eo 
RG 2580 . 3 
Ow 15 . 700 usee 
DE 6.00 usee 

ppm 220 

IE 298 . 0 K 

012 0 .00002000 sec 
Pt.13 18 .00 d8 

01 0 . 01000000 sec 
CPOPRG2 __ 1Hz i6 

PCP02 80 . 00 usee 
SF02 '00 . 1316005 MHz 

HUC2 IH 

Pt.2 -3 . 00 d8 

Pt.12 16 . 00 d8 

PI 6 .90 usee 
SFOI 100 625'2'5 MHz 

NtX:I IJC 

Pt.1 -3 . 00 d8 

011 0 . 03000000 sec 

F2 - Processlng parameter, 
51 32768 

SF 100 6127290 

0001 E" 
558 0 

L8 t 00 HZ 

G8 0 

PC 200 

10 NMA o l ot par a!1le t ers 

ex 39 50 Crl 

rIP 240 000 DOC! 

FI 24tH 05 Hz 

F2P -10 000 POIII 

F2 -1006 13 Hz 

PPMC. 6 32911 pp./e 
HIe. 636 78943 Hz lem 
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Current Data Patatnettrs 

~ 
PROCNO 

50023-99 
70 

F2 - AC:QUISlllon Pararae:tets 

Oa.te_ 99092" 

" .. to . 18 
INSHU! dpx"OO 
POOBI() 5 mil f)Jal 13 
PUlPRlG Z930 
TO 32768 
5a..VENT COCl3 

NS 256 
OS 2 

5'" 8223 .685 Hl 
FlORES o 250967 til 
AO t . 992).4 .... src 
Ali 181 
OW 6O.BOO usee 

O£ 6 .00 usee 
TE 298 .0 • 
01 o 01000000 sec 
P1 9 .20 usee 
Sf 0 1 400 1324689 fIIo(z 

M.C1 1" 
PU -3 .00 08 

F2 - ProclI!!Sslng paralltters 
51 ~768 

SF "00 1300329 MHz 

wow rH 
sse 0 
L8 0 . 30 Hz 
G8 0 
PC '00 

10 ,..::t glot oar._let'S 
ex 39 01 CID 

F2P 9 Z50 POll 
F1 3701 20 til 
F2J' -0 .500 PP. 
F2 -200 .06 til 
PPI()O 0 2'992 poNe 
MleN 99 99999 Hz/til 

I gga§~;H~5 :!!I'~ 
.,,;;8 

..................................... 

~~ \~ 

User - L. Lea 
E 

!~ii~~~~~!i~~~!i~~li!iiii~~~!!!~i!i~~~~~~a~;~~~~~g~~~;~~~~5~~~~~i~~~~~~~la~!~~~~~~~~~~1 
~"~""~""~"""M"~~~~~~ ~~~~~~~ ~~~~~N~NN~~~N~N NNNN~~~NNN~~N~NNN __________________ OOOooooooo 
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E 

" CD N '" <.D CD 0 0 '" ~ " C'I1 o fT1(Jt ...... W01J1lDlD 
lO '" " 01 NO 01 0 rrlO .. f"1r--.QCD<qNU'100'lCD 

E " 0 01 ""0 - <.DO .... CD COfT1-,.......C\JM -- tD 

0. W " <D " " " " NO lO ro ............ Or--..\.DlI1N ....... 
0. 0 M " " " <D "'lO .. rrlfT1C"1fT1NNrururu 

N 

\ \ \ \ 
\ 

\ \ \ \ \ \ ~\ \11 ?J 
Current Data Parameters 
HOlE S'D~3-gg 

EXPHD 71 
PAOCND I 

F2 . ACQulSltJon Paralleters 
Oa tt _ 9QlJ92' 
T, .. 105-0 
INSTRUH c:Jpx400 
PIO!If) 5 _ Dual 13 

PU.PROG ' 90930 
TO 65536 

5O..VEHT CDCI3 
NS 2000 

OS , 
S'" ]IS.7 . 1]] H' 
FlORES 0 . ' 859'9 Hz I 
AO t .0289652 sec 
RG 2580 3 
Ow 15 700 usee 
DE 6 .00 usee 

I .J U' J I I .L 

T , , , , , , , , , , , , I , I 
, 

ppll 220 200 180 160 1~0 120 100 60 80 ~o 20 

Tf 298 0 K 
012 0 ,00002000 seC 
Pl1) 18 00 oB 

01 o 01000000 sec 
CP!J'IQ . altzt6 
PCP02 80 00 usee 
Sf 02 .coo 1326005 I41l 

NUC2 IH 
Pl.2 - ) 00 oB 

PI. 12 15 00 oB 

PI 6 90 usee 
Sf 01 100 625'2'5 ... , 

Iil.CI IX 
PI. I -) 00 AS 

011 o OlOOOOOO sec 

;2 - Processln; Dar.eeters 
SI 32758 
Sf 100 6121290 

EM 

SS8 0 
LS t 00 ttl 

G8 0 
PC 200 

10 ",,"1R Dl ol oaraotte"'S 
ex 39 50 ca 
tIP 2.0 000 ad -::;/" 
F! Z41417 IJ5; HZ 

F2P -10 000 00 
.2 -1006 13 HZ 
PI"<O' 5 32911 oo:le 
HIe>' 636 19943 Hzlc 



Current Dati Paraeelf:f'S 
NAME S.029-99 ~ I 
EiU'tIO 20 

PIlOCHO 

F2 - lCQU151l1M Para.t~rs 

Oatt_ 990929 

11 .. 18 51 

INSTRJM 001400 - 5 all DJaJ 13 

PU.mJG 19JO 
10 3276B 
sa..VEHI C606 
NS 256 o 
05 2 

S'" 622) 665 Hz 

Fl~S o 250967 Hz 

AD t 9923."" sec 
RG ,B' 
[)OJ 60 BOO uStC 

DE 6 00 usee 
IE 29B 0 • 

0' o 01000000 sec 
p, 9 ZO usee 

SFO' .. 00 1324689 ~ 

IOJC' '" 210a 
Pll -) 00 dB 

F2 - Processing p.r •• lers 
SI )276B 

SF 400 t 300000 l+il 

I/lllI EH 

sse 0 
LB OJOHl 
G8 0 
PC ' .00 

10 NMR pJot p.r.-t ers 
ex 3901 u 
FT. 9 250 .P 
f1 )701 20 til 
FZP -0 500 pp. 
12 -200 06 Hz 
PPMCM 0 24992 ppa!e 
HIe" 99 99998 tU/ctll 

~L ~ ---
. 
~ 
~ 

-.-----, 
ppm 

~ ,..-,--.--.. 

8 5 8 0 

~M 
o 

'" "I~I 
I -T 

7 5 70 65 60 55 

HH 

\W 

~r-
In 
C7l 

'" 
5 0 ~ 5 

'"" A/V.-..J 

'l~/ "!~ 
,--.--- --r ..,- ...... -,., 

~ 0 3 5 
r-r-r- T 

3 0 
- --, -

2 5 2 0 1 5 1 0 

User - l. lea 
TACET 2 

o 5 
-.,---r---, 

0:0 



1 ACE1 2 

E 
0. 
0. 

Current Data Parameters 
N>J<E 50029-99 
EXPNO 21 
PIlOCNO I 

F2 - ACQuJSlt Jon Para=eltt"s 
Oatt_ 990929 
11 .. 19 25 
INSTIU< dth:400 - 5 _ Dual 13 

P!A.PROG Z90930 
TO 65536 
5D.VENT C606 
NS 2000 
OS • 
SWH 318<7 133 HZ 
FIORI'S o '959'9 Hz 
AD 1 0289652 sec 
~ 2580 ) 
OW 15 700 usee 
DE 6 00 usee 

.. . "- .~ 

pp 220 

29S 0 • 
012 o 00002000 sec 
I'll) 18 00 <8 
01 o 01000000 sec 
CP!l"AG2 ItlHz16 
PCP02 SO 00 IIste 
SF02 '00 1316005 
"'-CZ 1M 
Pl2 -3 00 de 
"1l2 16 00 dB 
PI 6 90 usee 
SFOI 100 625411245 ~ 
IIl.CI IX 
PlI -3 00 dB 
011 o 03000000 sec 

F2 - PrOCUSJrt9 gar'::ettrs 
51 32~ 
Sf 100 6121069 

SSII 
L8 
c;a 
PC 

to~ 

ex 
<lP 
'I 
F2C 
F2 

riZO' 

E" 
o 

I 00 HI 
o 

200 

Dlat g.rueUr5 
39 50 e 

2'0 000 gg 

2"./ 05 Hz 
-10000 gg 

-1006 13 Hz 
6 32911 gg-'/e 

6J6 7BS25 Hz Ie 

~ ..... 

I 

, 
200 

~s, 
'v--'S~' 

o 

21:->-

l'Il' 

180 

, .. 
160 

m ... .11 ... .1, 

o ... 
N 

10 
M 

I 

o C"I 0 0"1 
"Q'C1IlDtn 
lDCTlN-

CD CD CD CD 
ru C'\,I N C\J 

~V 

~ 
"1', • ., . .,. ....... ' " r ''1' ' 

140 120 

'" CD 
o 

I 

, . 1.. . .... , .. " .1 .•. •• , . "~ JI , •. oJ 

'1' ,.~ '!"I' "'l""'ov .. , ., ·" ' ,,,r H ' .. ,.~ 
100 An .-

Ol -ION 
100 

00 
IO IO 

\/ 

, 

OOLnC'\JM,..... ....... lC'lC"lMOM 
o"""""lfTllf1CT'll!10_rnl!1a:) 
lDLl'lCO-0CT10lDlD(T)"""""" . . . . . 
(\JC'l"Q'C'\JO,.....r-..lDU1 ...... 0r--. 
"qMMMCTlNruC'\JNC'\,IC\J_ 

I \ \\\\I~~( 

.I ,I I 
" r}1" "" 

.,. 
40 

.1. 



Curr-enl Data Par-aIliitUr-S 
HlME Seo29-99 
UPNO \0 
1>l>00IO 

F2 - l CQUls 1t l0n P,raaeur-s 
O'l! 990928 ,, .. 22 .36 
I NSTR..IM (1) • .400 
P!106>() 5 I:o:l Cual 13 
PIA."""'; I930 

TO 32166 
SCl.VENT C606 
H5 16 
OS 2 
S~H 8223 .685 HI 
Flc;<ES o 250967 HI 
AO 1 9923.41.4.4 sec 
RG 90 .5 
OW 60 . 800 usee 
O£ 6 . 00 usee 
IE 298 0 • 
01 o 01000000 sec 
PI 9.20 usee 
5(01 .400 132.4689 MHl 

NUCI IH 
PlI - 3 . 00 dB 

F2 - Pr-oeess In9 Dara_tet's 
51 32768 
Sf .400 ! 300000 .eil 

IIlJlI 
ssa 
L6 
G8 
PC 

EM 
o 

o JO HZ 
o 

.4 .00 

10 NMR plot paralleters 
ex 39 .01 ell 
FJP 9 .250 PP. 
FI 3101 . 20 HZ 
F2P -0 . 500 ppli 

F2 -~.~HI 
PPMOI 0 . 2.992 PDlI/c. 
HIC_ !19 99996 HI /co 

o 

c 

i 
oom B 5 B 0 

~m t ~~~~ ~i~ 

\V 

~snBU3 
N 
Boc 

234 

""g0~ ~~1~ 
, I 

75 7 0 65 & 0 5 5 5 0 ~ 5 

User - L. Lea 

a!i~§S~I~¥~ ~ ~~~~~~i!~g~~i~i~~~~~;I~~ 

i' 1IIIj II I 

L il, 
"''''----.}" I.~----

~~~ 
'" 

~ 0 
i 

3 5 3 0 20 1 5 2 5 I 0 o 5 o 0 



m 

If) o WlD\o!.f'lCD .., 
"'fLnlDU"l - -IOC"ll.DlDN_<o:tIt'1 .... CO lONCD""10m 0 CO <q..qoq"Ct""1'q(T')VC\J-M,.....lI"),....OI E \0 1OI.DM--0') '" N ....... OClV-OCD(\JM,......U)C'\Ja)OOl 0. 

v mCDCDv(T') .., oornIDCDtO,....CD.q.MMN~OO'l 0. 

~ C'1 ~~~~~ CO rrlCT'lC\.JNC'\JNC'\,t ........................................... 

V ~\v \\~~ 
Current Data Paraaeters 
NAME 50,,28-99 
EXPNO 1\ 

PROCNO 1 

r2 - ACQUlSltlon Para=ners 
Oatl!_ 990928 
I ... •• 43 
IHsTIUI dpx4l00 
PA09I() S ... Oua113 
Pll.PROG '90930 
TO 65536 
SQ. VENI C6D6 
"S 3.0 
OS , 
51tH 31647 13) HZ 
flORES o .85949 Hz 

U 
&0 1 0289652 sec 
At 2580 3 
Ow 15 700 usec 
Of 6 00 usee 

1 j 

I I I I I I I I I I 
Dpm 220 200 180 160 140 120 100 80 60 40 20 0 

If 298 0 • 
012 o 00002000 sec 
PlI3 18 00 d8 
01 o 01000000 soc 
CP!II'ffi2 waltz16 
PCI'02 80 00 usee 
SF02 '00 1316005 ~l 
M.C2 IH 
Pl. -3 DO d8 

"lI2 16 DO d8 
PI 6 90 usec 
5(01 100 62542'5 ~z 
MJCI IlC 
PlI -) 00 08 

011 o OJOOOOOO sec 

;2 - Processln9 oara_ters 
51 ~7~ 

SF 100 6127069 ...., 

558 
.8 
GB 
OC 

f. 
o 

100HZ 

o 
200 

to I'I'l4'R olOl gara-eurs 
C. 19 SO c 
:,P 2'0 000 Ctl":! 
'I Z.tC7 05 /"\z 

<21' -10 000 DO:') 
'2 -1006 13 Hz 
;>po¢. 6 ~II ""ale 
'<10< 636 78925 HZle 

~snBU3 N 
Boc 

234 

. ..' J "'''"IL 
i 1 1 

k 



Current OIta ParaNters 
NAME 500\1-99 

EXPIiO 
PI'OCHO 

10 

F2 - &'CQ1JIS lt Ion Par.~lers 

Oate_ 9909\1 

T\ .. 12 58 

INS' ..... dg • .coo 
PA08Itl 5 lflii Dull 13 
PU..ProG 19JO 
TO 32768 
SQ..VENT C6D6 

NS 16 

OS 2 

SOH 8223 685 Hz 

Fl0AE5 o 250967 Hz 
AD 1 992).111 .... sec 

RG 181 
Do 60 800 usee 

DE 6 00 usee 
IE 298 .0 K 

01 o 01000000 sec 
PI 9 20 usee 
Sf 01 400 1324689 MHZ 

MJCI IH 

PlI -3 . 00 dB 

F 2 - Process Ing pareMUrS 
51 32768 
Sf .. 00 1300000 MHz - E" 
5S8 0 

L8 o 30 Hz 

G8 0 

PC ' .00 

10 ~ plot p.ra.ters 
ex 19 01 C_ 

FIP 9250 DP. 
f! 3701 20 Hz 
F 2P -0 500 POa 
F2 -200 .06 Hz 
PI'IOO 0 2.992 """,c 
HlCM 99 99998 Hz/C_ 

• I 

ppm 8 5 

m~nH ~~;~!i --r--

I!J>--I 
N 
Boc 

235 

HH ~~~~I~i~~~~~~~I~ 

\\V 

User - L . Lea 
A 

i ~ 

1 1 

~l . -c:-_ r l ;~. ----~~:g~~I\~! 
'\ - 1- 0 ' ~ 
lL-Jl_ 

\~fl~ 

I 

\ 0 
'" r-

~r-
'" o 

'" '" '" -~~~--r~~'~ 0\' 
o 0 

I ' 
3 . 0 2 5 20 1 5 1 0 

I 
80 75 70 65 60 5 5 5 0 ~ 5 4 0 3 5 



~ 

A. 

~ _ 00'11""'1 1C ..... '" '" '" 'CJO\tlO'lO M '" '" '" E N I lC..q--N\t1 N <0 0 0 C1 
(I)CI)CDlDl£'l ..; 

" CD 
0. 

Boc ~~~~~ CD '" N 

~/I 
Current Dau Paralltters 

235 
NAl4£ 50017-99 
EXPNO II 
PAOCHO 

,2 - ACQu1511JOn Parllllelers 

Olll!_ 990917 
I" .. 13 05 
INSIIU4 ClDx ' OO 
PR08HO 5 _ Dual 13 

PlA.PROG 190930 
10 65536 
SOL V£NT C606 
NS 320 
OS • 
S10H 31B47 133 "1 
FlORES o 485949 Hz 
AO I 0289652 soc 
I'G 2580 3 
011 15 700 us!e 
DE 6 00 usee 

.~;L';;'_~~ ~'~~_L~~~~~~" L.~~ . , .,._l _L . 

I I I I I I I I I I I 
pp. 220 200 180 160 140 120 100 80 60 40 20 0 

IE 29B 0 K 
012 o 00002000 soc 
P1I3 IB 00 aB 
01 0 .01000000 soc 
CPOPRG2 _a Hz 16 
PCP02 80 00 usee 
Sf 02 400 1316005 ltil 
NOC2 IH 
PL2 -3 00 as 
PLI2 16 00 as 
PI 6 90 usee 
Sf 01 100 6254245 
IU:I IX 
Pl.l -3 00 dB 
011 o 03000000 sec 

F'2 - ProcessIng para::eters 
51 32768 
Sf 100 6127069 '*" 
oIDW EH 

"",';Wf,t'dilflojjt ~~,~ • ..,,,*,,,~,, ... t ... ~ .... ,,,, ... ,;r"~'f'~~'~~~1i ~W;dl.",MIIi1,.!4t'I~'~"J'IWi'I\1if\l4.f~fW~r""~,,,\W~'M~.~~I_~~~~~ sse 
LB 100HZ 
r;a 0 
PC 200 

to NJ4R olot D.raaeters 
ex 39 50 e 
'IP 240 000 OD 

'I 24147 05 HZ 

'21' - 1000000 

'2 -1006 13 HZ 
PPMC_ 6 129S 1 opalc 
.qt_ 6J6 76925 ",-'e 



Current Dau Paralllelers 
NlM[ o.t 10-96 
[IPNO 30 
~NO 

F2 - ACQUISltlon Pal"a!lll!!U!f"S 

Dne_ 991210 

"" 17 05 

INST~M C10l400 

pRQ9Hl 5 .. Dual 13 
P1A.PROG 1930 
10 JZ168 
Sll..VENT COCD 
NS 16 
OS < 
5 ... 6223 685 HZ 

FIOAES o 250967 HZ 
A. I 99234'" sec 
RG 51 
011 60 800 usee 
DE 6 00 uSte 

IE 298 0 K 
01 o 01000000 sec 
PI 9 20 usee 
SF01 400 1324689 MHZ 

NOCI '" Pt.l - 3 00 09 

F2 - Process In9 paral'lettf"S 
51 32768 
SF 400 1300000 MHl 

"'Ow EN 
sse 0 
L8 030HZ 
G8 0 

PC '00 

10 NMR olot Dilraoeters 
ex J9 01 (III 

FtP 925000 
Ft )701 20 "1 
F2P -0 500 00_ 
F2 -200 06 HI 
PPMCM 0 2'992 OO"'/C. 
HlCH 99 99998 HZ/CI'l 

I 
pp 14 5 

I 
14 0 

-
opm 8 5 

135 

8 

~ 

MeO ~ OTHP 

, • I 

13 0 
I 

12 5 

240 

12 0 
I 

II 5 II 0 10 5 100 

I 

I 

I 
III 

~~ 

_____ -----'JI ,u~JL __ l.J~ ______ ----' 

\ aJ / ""'_/ --------., <>-------- -------0- --
to '" 

CD <> 

It> 

.., '" 
<> 

~ 
<> 
'" 

5 7 0 5 5 6 0 5 5 5 0 /5 4 0 5 3 0 2 5 2 0 1 5 1 0 

User - L. Lea 

o 5 o 0 



m 

e 
g 

Curr!nt Dat a Parameters 
~A"'£ Dec: 10-98 
ExPNt) 
PROCI<O 

31 

C'2 - ACQuISitIon Parameters 

~'''_ 9BI210 
T, ... 
I NSIIlJM 
"ROBt<l 
PlJ.POOG 
TO 
SOLVENT 
H5 
05 
SWl< 
<JOAE5 
.0 
RG 

~. 

~ 

ppm 

IE 
• 12 
'1.13 
01 
CPOPAG2 
"CP02 
SF02 
>0:2 
"L2 
"'-12 
PI 

SFOI 
,'1\,(;1 

"LI 
~II 

17 12 
C10x400 

5 !&II Dual 13 

Z9P9 3O 
65536 
COCI3 

320 , 
318.7 133 Hz 
o 485949 HI 

1 0289652 sec 
9195 2 
15 700 usee 

6 00 usee 

220 

29B 0 • 
o 00002000 s!c 

18 00 oB 
o 01000000 sec 

_.IlI16 
60 00 usee 

' 00 1316005 
IH 

-3 00 08 
16 00 as 
6 90 usee 

100 6?542.5 ~l 
IX 

- 3 00 dB 
o 03000000 sec 

r2 - ProceS5Jng oarameters 
51 32768 
SF 100 6127290 
~ Ew 
sse 0 
LB 1 00 ~l 
G8 0 
or 2 00 

10 I\ ""P ;0 lot oaraUlers 
:x 39 50 c 
= lP 240 000 Dom 
~1 2.t47 05 HZ 
~2P -10 000 ppm 
~2 -1006 13 HZ 
~'" 6 32911 Do:!'\/c~ 

~lC '" 636 789.3 \.jl :C 

'" .., - 00 ....... ,.... ...... 0 '" "'.., .., OtOC"\I- .... I.OC'\JO'lOO CD 
CD '" 

m ....... Mr--..rn CD CD .., '" """Wt.O- -(Tloq-O l,{)1O 
ru '" (]I 

'l;fC""'l-"""rn '" CD '" '" 
C'\J("\JCT'I 0'10 mlD(T")lD 0 .., - ..-......,. ..... C\J- "- '" '" "-
- lDCO'Q"<::;l"COCOOOO 

(]I ,..... r--. ,..... lD lD "- ru 0 "- ....... 01(]J a)aJ L!1\.Il OCTI 0'1 
(]I CD CD ,..... r--.,.....,.....,..... 

'" "''''''' C"1ru ruf\JC\lC\JC\JC\J __ 

V ~If \ I ~ 

I I 
200 180 160 140 120 100 80 60 40 20 

I I 

. , .. 
" " , ' .. ' 

..... " ........ 

I 

I 

MeO ~ OTHP 

240 I I 



Current O.u Paraatters 
N1M( OetlO-98-lSl' 
EXPNI) '0 
PI'OCNO 

F2 - ACQU ISitIon Par-alltlers 
Date 981210 
T, .. 11 23 
1lllS1RlJt'. ODl400 

PIOOBHIl 5 1I"4'j Qual 13 

PU.PROG zg30 

TO 32168 

SD..v£NT CDCI) 

NS 16 

OS 2 

SIIH 6223 685 HZ 

FIOAES o 2'50967 HZ 

AD 1 99234 .... 5re 

RG '0 3 
OW 60 BOO usee 

Of 6 00 usee 

TE 298 0 K 

01 o 01000000 StC 

PI 9 20 uste 

51'01 '00 1324689 MHz 

HUCI IH 

Pl.1 - ) 00 as 

F2 - PrOCl!55 1n9 Darar..rter-S 
SI 32]66 
SF "00 1300000 HHl 

sse 
LB 
G8 
PC 

Ew 
o 

o 30Hz 
o 

• 00 

10 ~ olot Dar5~tfrs 
ex )9 01 C 
flP 925000 
FI 3701 20 Hz 
f2P -0 500 oDa 
F2 -200 06 HZ 
~ 0 2"992 DOli/eli 
HIt'" 99 99998 Hz/ere 

L 
~ 

< 

00 6 5 

~ 

MeO ~ OH 

241 

"'-", 
if; 

6 0 7 5 7 0 5 6 0 5 5 5 0 ~ 5 

H! gm iH ~ 

V \\11 i\~ 

I 

~~!~~~~~~ I!§~~~~!~!!§~~~i~~~> 
... ~~.~\:)~: 

, 

I 
I 

I 
I 

~J ~ L-Ju"-----'--______ ----' 

------. -c "'---------

• 0 

-"" 
'" '" 

3 5 3 0 

~ 

2 5 2 0 

C>~ 

on 
M 

~ 

on 

~ -----------
1 5 1 0 

User - L. Lea 

o 5 o 0 



----------------, 
'5tf'/' -,t , ,tt:'17 

MeO 
~~ 

M ..... COlf1C\J 100- '" ... .., 10 
("'l<qIOQ 

'" M ru 01 "" M " <Xl IDlO'q"C'\,J "-tnM tn 
'" 10 

10 E 

~OH ru ""..., ..... C\J 
'" 10 "- '" " M ° g ~ 

"- "" ""''''''lO "'0"- ru <Xl tn Cl 
<Xl r-. ,....,.... '" 

10 '" '" 
M '" '" -

~I 
241 

Current Data Parameters 
"'''ME Oecl0-9B- lsJ.4 
E<PNO 'I 
?ROCHO I 

~2 - ACQulSllJon Parameters 
Date 9BI210 
TUlle 17 JO 
IHSlRUI< 0010400 

PROBHO 5 _ Dual 13 
PlA.PHQG '909)0 
TO 655)6 
S(l.VENT CDC)) 
HS )1Q 

:lS 
SOH )IB47 ))) HI 
, lOAfS o '859'9 HI 
&0 1 0299652 sec 
RG 2?9B B 

~" 15 700 usee 
Of 6 00 usee 

I 
j I Iii I I i I 
ppm 220 200 180 160 140 120 100 80 60 40 20 

IE 298 0 K 

012 o 00002000 sec 
PI. I) 18 00 oB 
01 o 02000000 sec 
CPOPHG2 waltt16 

PCP02 80 00 usee 
SF02 .00 1316005 
HUt2 IH 

PI. 2 -) 00 08 
pt 12 16 00 oB 
01 6 90 usee 
SFOI 100 625.412'5 MHl 

HUt I DC 
ptl -) 00 08 

011 o 03000000 sec 

'2 ProceSSJng paralltters 
51 )2768 

Sf 100 6127290 MHz 

oro" EM 

sse 0 
L8 100HZ 

G8 0 

?c 2 00 

10 fro."'R c l ot oar al'e ters 
cx )9 50 c 
r IP ZAO 000 00 
:-, 2'147 05 HI 
:2P - 10 000 DO 
-2 - 1006 )) H, 
,:)~CJo! 6 3291 1 pomle 
~lCH 636 789.4) Hz / em 



turrtnt Oat.a Paral'lett'"'S 
Nt.Jot£ Ott \0· 98 
[XPM) 50 

PQOCNO 

F2 • J..CQU ISltlOl\ P~"ameters 

Oau_ 961210 
1",. n .. 0 
INS1RlJW. 001400 

PR06I() 5 me Dua l 13 
P\A.POOG '930 

10 )2768 

5O..y£N T (OC I) 

lIS 16 

OS ? 
510< 8223 695 Hz 

f10AfS o 250967 HI 

AD 1 9923 .... sec 

RG 128 

0. 60 800 usee 

O£ 6 00 usee 

IE 298 0 K 

01 o 01000000 sec 
PI 9 20 usee 
51'0, .00 132411689 1411 

IOJC' 
,H 

Pc' · 300 "B 

F2 - Processing par,"IfterS 
5J 3Z168 
Sf .00 1300000 /lll"fl 

lifO'" EM 
SSB 0 
LB 
G8 
PC 

o )0 Hz 

o 
'00 

10 N'4R p l ot p,u!ltterS 
ex 39 01 c 
F1P 9 250 aD 
fS )701 20 HZ 

FZP 
Fe 

""""" HIe_ 

~ 

~ 

C 

ODl"'I 

-0 500 DP'" 
· 200 06 HI 
o Z.992 pl)lII/c_ 

99 99998 HI l t 

8 5 E 0 

~ 

MeO ~ 

242 

I 
~r-

"- <> 
;; 

7 5 7 0 5 5 E G 5 5 5 0 . ~ 

sl§ 
T 

I 

J 
--...!,~ -

~ .., 
M 

'" --
• 0 

,/ 

2 ~FH' ·~ ~ 0;0. 0,0 . • 

I ~IV\V 

User - L. Lea 

~~ ~ ~~~l~I~[~~ ~ §~i~~~~~~~ ! ~~~~~~il ~§~~ 
·--.. ·~l~~U*:iI.;; r--

r~ 

_J 
~ 

~. ~ I~ III 
,. 

lJ' J_,,'L '- ___ ' i " \t_, __ 
.J '-

"- -'" m 
m 

'" CD 

3 5 3 0 2 5 2 0 , '1 \ 0 o 5 o 0 



E 
0. 
0. 

~//' -! It'll 

rrr 

I I 
ppm 220 200 

IE 298 0 K 
012 o 00002000 sec 
PI. 13 18 00 08 
01 o 01000000 SfC 
CPOPRG2 wa ltzt6 
PCP02 eo 00 usee 
5102 400 >316005 MHz 
vUC2 IH 
PI. 2 -3 00 oB 
PI. 12 16 00 dB 
"I 6 90 usee 
SFOI 100 6254245 MHz 
NJCl 13C 
"LI -3 00 oB 
011 o 03000000 sec 

~2 PrOCessIng paraa.elers 
51 3276B 
Sf 100 6127290 MHz 
"OW EM 
sse 0 
_B I 00 Hz 
GB 0 

'c 2 00 

iO N"'IR P l at Dara~ters 

ex 39 50 em 
=-lP 2110 000 POll 

=1 24147 05 Hz 
=2P - 10 000 PO 
=2 - 1006 13 Hz 
;'Pfii'O( 6 32911 DOIII/em 
wJle ,", 636 78g113 Hz / ern 

MeO 

, 
i 

180 

u-. ruCDID ........ u-. ~ ~ <D 0 .., 
'" '" O1--vo -tIl ex:> '" - lD ~ 

'" 1"'1 C'\J 0 (TI 
<D '" 

ex:> lD ex:> ~ 
m ........ v ...... tn U"1 CD '" 0 ex:> m 0 

lD ,.... ................ \0 o ~ '" 0 ~ ex:> ....... ,......,..... ,..... lD on '" '" '" I ~I! ~ ~I 

242 

I 

I 

""" ... , .. " . ~ 

" 
' L 

v' ' , '" , I ~. I , I , 
160 140 120 100 80 60 40 20 



(urrenl Dall Para-eters 
NAME [)eclt · ge·l s l l 
EXPNO 10 
PRO(NO 

FZ· .CQUISl l IDn Parelleler-s 
Oatr 981211 

"" 16 48 

INS1""" aCII.400 
P~ 5 11'l'l Dull I 13 
PLlPOOCi 1930 
TO 32768 
so..VENT CDCI3 
NS 16 
OS l 
5"" Bn3685 HZ 
rI[)R£S o 250967 HI 
. 0 1 9923.4.44 sec 

RG '06 , 
0_ 60 BOO usec 
0( 6 00 us~c 
TE 298 0 K 
01 o 01000000 StC 

PI 9 ?O usee 
SFOI 4100 132.4689 M'tl 

>«1 IH 
I'll .) 00 aa 

F2 . ProcessIng oaratltltrs 
51 32768 
SF 4100 1300000 /l4Hl 
_0_ 

EN 
5se 0 
LB o JO Hz 
G8 0 
PC '00 

10 NMR o l ot oar-a"'e ters 
ex )9 01 c. 
rIP 9 Z50 PP 
FI 3701 20 Hz 
F' 2P -0 500 PI'. 
F2 -200 06 HZ 
PPMCI4 0 2.4992 PPIII/C. 
IilCM 99 9999B Hz/ell 

L 
o . 
c 

DP 14 5 14 0 

c 

Dom 8 5 

MeO ~ ~O 

244 

13 5 o 12 5 12 0 11 5 

""' .. It"> 
<D 

8 0 7 5 0 6 5 6 0 

11 0 

5 5 5 0 

I 
10 5 

4 5 

I 
100 

m 

r-

o 

'" o 
tTl 

'" 

-- - ''--...-

""'",/ .., 
M 

• 0 

9 5 

"'-", 
'" 0 

~ 

3 5 

~~~~~~~~~~~~il§~~~~¥~~~~§~~;~~~~ 

,~~;~~-----

;-

,--

I 

( 
I 
I 

____ dU ~_==lJ 
3 0 

~"'~----co~ 
co co 
" co 
~ 

o 

o 
tTl 

1 5 1 0 

User - L. Lea 
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1 ~ , ): . 

o o 0 



e 
a 
a 

DOr. 

:urrent Data Paralleter"s 
"'A~E OeCl1-98-1s11 
,XPNO 
>roCNO " I 
r2 - ACOU1SH l on Parauttrs 
Date. galZl1 
I, .. HH 
INSIRt.t4 dClJ;400 - 5 .. OuBI 13 

<>u.PIUi '90930 

TO 65536 

sa. VENI C[)cI3 
_s 1600 

OS 4 

5'" 318<11 133 Hl 

fllJRES o 485949 HZ 

. 0 t 0289652 sec 
"6 2580 3 

O. 15 100 U5!C 

:If 6 00 usee 
IE 2ge 0 • 
~IZ o 00002000 sec 
I'll 3 Ie 00 as 
01 o 01000000 nc 
CPIlPI'G2 "aJtll6 
>cP!l2 90 00 usee 
SF02 '00 1316005 ~l 
"':Z IH 

"I.Z -3 00 oB 

'UZ 16 00 oB 
" I 6 90 usee 
Sf 01 100 6254245 .." 

>ri.C1 13C 

>1.1 -3 00 oB 
;)11 o 03000000 5et 

:'2 - Process In; oara-eters 
51 ~I~ 

SF 100 6127290 

o()Io E-

sse 0 

.B 100HZ 

G8 0 

>c ZOO 

10 .... ~ ,lot oar • .e t!'':'''s 

cx 39 50 c· 
riP 21.0 000 UP 

'I 24147 05 I1.l: 

'2<' - to 000 no" 
'Z -1006 :3 HI 

""..,. ..... 6 32911 oo<./c, 
..,IC'" 636 le943 ",/c· 

220 

\D U1-QJO~ <D - .. .... .. 0 

<D 
"- -0 OlaJ r"'I "'''' N N en'" 

'" '" r--.lOMOr--. '" <D "- M ",en 

N 

<D r--.r--. ...... r--.w 0"- M <D CD 

<D t-- r--. t-- r--. r--. <D'" .. N N 

0 
N l l \ ) ) 

\ I 

MeO ~ ,.-;0 

244 

200 180 :60 !40 :20 100 80 o . 0 20 o 



Current Data ParaNters 
0«12-98-1512 

20 b~ 
POOCH{) 

F2 - ACQUISItIon ParaMurs 
Dalf 981222 

" .. la 2' 
INS1~ dO.'OO 
PAOS'iO 5 .-", l>.Jal 13 
PULPROG 19JO 

TO 3<768 
S<l..VENl CoeD 
NS 16 

OS 2 
S ... 522) 685 HI 

flDllES o 250967 HI 
.0 1 992)A.4 sec 
RG IBI 
IJII 60 800 uS~C 

DE 6 00 uS!C 

TE 2980 • 
01 o 01000000 sec 
PI 9 ZO usee 
srOI 400 132'689 I'Hl 

NUCI IH 

I'll - ) 00 C9 

FZ - ProcesS Ing oaramttrrs 
SI 3<768 
Sf ' 00 1300351 MHz 

'. sse 
L8 
68 
PC 

EM 
o 

OJOHI 
o 

• 00 

10 HwR OIO t caf' pttrf"S 
CJ: 39 01 CII 

riP 9 Z50 POl 
;1 )701 20 Iil 
F29 -0 500 pp. 

f? -~~HI 
PP"OI 0 2'992 aoaln 
rilCM 99 99999 HIIe 

I • 
PO 14 5 

• I 
14 0 

~ 

~ 

c 

00 B 5 

13 5 

B 0 

~HH 

N 
Boc 

13 0 

OH 

12 5 

1,-
1, 

7 5 

" " ,, / 
.-0 
w 

o 

245 

6 5 

HHH 
·~w 

~ OMe 

I • 
12 0 

I • 
II 5 

r-

~"'~ 
" ' W 

"' 
6 0 5 5 

II 0 

5 0 

~~~~~g 

\\})) 

10 5 

,u, 

" '" '" 

4 5 

"'-"'~S"-
~hiiig 

10 0 

"If 

--"-

, I 
9 5 

~ .. 
Hi! --, 

" ____ ------1 \,,'- _ 

'--
~~ 

w "'" ~ 

User - L. Lea 
Hydroxyl adduct 

~~~~~~~~~~~~~~~~~ij~!~~~~~il~~~~~~~~~~¥~~~~~~~!~ I 
jn~~i~~l 

" 
.,J.. ... 1.1. 

~ 

) 

" ,': .. , I 
__ . ../).,-......,. ... _/ ..... -~ _ _ .J • . ___ _ 

'" 
" '" 

-_ .. _--

'-

4 0 3 3 0 2 5 2 0 1 5 o 5 o 0 



DD 

e 

'" '" 

Current Oala Pa,.a~l!"'S 
~A"!E Oec22~9B -1 5J2 

EXPHO 
PMCNO 

21 

~2 . AcQU15lt Jon Para:::eters 
~l! 981222 
II .. 18 53 
I~SHU' 001(0400 

PIOOBHO 5 _ Dual 13 

P\.I..PIlOG '90930 
TO 65536 
5!l.V[NI CDCI3 
N5 1600 
OS • 
5"" 31847 133 Hz 
,IOI1fS o '859'9 H, 

' 0 I 0289652 sec 
OG 2580 3 
j. 15 100 usee 
Jf 6 00 usee 
TE 298 0 K 
012 o 00002000 sec 
"1.13 18 00 08 
01 o 01000000 sec 
CPOPro2 ... lllIt6 
"CP02 80 00 usee 
SF02 '00 1316005 MH, 
M.C2 IH 
PI. 2 ~ 3 00 08 

PI. 12 16 00 08 
PI 6 90 usee 
SFOI 100 ~2'5 ,*" 

Nt.C I IJe 

PI. I -3 00 08 

011 o 03000000 sec 

~2 - ProcesSJnq o"ra~let's 
51 32768 
SF 100 6127290 
.row E' 
SSB 0 
_8 100Hz 
G8 0 
:>C 200 

10 ,,~ clo t carameters 
ex 39 50 c 
'IP 2.0 000 00 
F! 2,,41 05 Hz 

'2" -10 000 00 

'2 -1005 13 Hz 

"PI't" 6 32911 oo=tlc 
'11C oo: 636 78943 Hzle 

220 

W W W 0- ~CDOltO-('010 
'" 0 en - 1""10000lCO"'lr-.""Q'('01C"\J 0 en en -U1 tnN-OOCDfT'I "- C\J a> "- LO LD-l!) COr-. 1.0 __ .... U1 C\J <DW MOll""--lC oq OC'\J W lD U1 "- ('I") ...... 0ll!)1"'101J11[1 ...... 

0 CD C\J - 0 I""--...,r--.r--.,.....,.....t,O 
lD '" o "- oqoqCOmCOlDlf'I"'lO'l 

'" I'l C\J COCO,......,....,......,....,...... WID ID '" (T)MC\I('\J('\JC\JC\JC'\J _ 

\ I \ \ ~~ \ I ~~ /// / 

~ OMe 

OH 

245 
~ 
II 

200 o 160 140 :20 100 80 60 <0 20 



Current Oatl Paralllflfl"'§ 
Oec22-ge-l s13 

)0 ~ 
ProCNO 

f2 • ACQVlSlllon Parar.etr!rs 

Oalf 981222 

11 .. 18 59 

lNS1~ 00 •• 00 

POOBHO 5 _ Dual 13 

PU.ProG 1930 
TO 32768 
SIl..VENT CDCl3 

NS 16 

OS 2 
5 ... 822) 6BS Hz 

flORES o 250967 Hl 

.0 t 9923 .... sec 
RG 181 

OW 60 800 uste 

DE 6 00 usee 
1£ 298 0 • 

01 o 01000000 SfC 

P' 9 20 usee 
Sf 01 "00 1324689 MHl 

NUCI IH 

PLI - ) 00 as 

fZ • ProcesSIng parallrlers 
51 )2768 
SF" .. 00 1300375 MHz 
~ £. 
SSB 0 
L8 
Gil 
PC 

o 30Hz 
o 

.00 

to frI4R DJot parameterS 
ex 39 01 c 
r,P 9 250 DO 
FI )101 20 HZ 
f2'P -0 500 DO 
F2 -200 06 Hz 
PPMCf14 0 24992 DDIII/C 

HleM 99 99999 HZ/c 

~ 

oom B 5 

· ~"'-I 

~~~~;; 

\\W 

SPh 

I 

L 
. 

~~( 
0 ,ru 

i ,.- T -

B 0 7 5 7 a 

! !~~ i II ;,If;&:;;:: 

WI 1 V 

~ OMe 

246 

r-

-f I 

--Jl F 
J\ .)l 

~U)/ l~/ "" ,, / 
CD 

0 

M '" 
.n ru ' '" 

f' 1 r -, ... - .., r" T 
. , r ' , 

5 5 5 a 5 5 5 a d 5 4 a 

• ~~:: 
~ ~~;:;, 

~1 

;\ 

"" 0>( 
i ~ 

3 5 3 a 

~~~~ ~~~~~i~~~~~¥~~~~~~ 

I\V ~~\Tjfh 

r 1 

f J~I 

User - L . Lea 

Thloether adduct 

~~ 

.~)\ I~'\JJ 
_ -----.J ~ ~'--.-"---- l ____ _ 

2 5 

~o>r----~r-~~> 
en , -
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<D 

2 0 5 

'" U"1 

I a a 5 a a 



$/P'f1//f'l'tI@/t 

E 
Q 
Q 

Current Data Para::leters 
.. ME o.c22-98- Is I 3 
,XPN{) 31 
"AOCNO 

:2 • 4CQU1Slt 10n Para"=rlers 

Jate_ Q81??2 
h .. 'g n 
I NSlRUI< 00(400 

0008H0 5 _ Dual 13 
"t.t.P!1()(; 10D030 

65536 
sa.. VENT (DC13 

'5 1600 

~ 

S'" 318.7 133 HZ 
'1()!;£S o ,859.9 Hz 
.0 I 0289652 sec 
OG 2580 3 
J. 15 100 usee 
:Jf 6 00 usee 
IE 29B 0 K 

012 o 00002000 sec 
"L\3 18 00 dB 

01 o 01000000 sec 
CPOPeG2 waltl 16 

0CP02 eo 00 usee 
51'02 "00 1316005 
NtX:2 IH 

"L2 -3 00 dB 

i'L 12 16 00 dB 

PI 6 90 usee 
Sf 01 100 625'2'5 MHz 
IO..CI IX 

"LI -) 00 dB 

J\I o 03000000 sec 

~2 - Precessing oaral'let!rS 
SI )2768 
Sf 100 6127290 .... Z 

SS8 
_8 
r.a 
'c 

E-
O 

1 00 HI 

o 
200 

10 t<o,"'i=f o l ot oaralleurs 
ex 39 50 c~ 

;lP 240 000 pom 

'I 24147 05 HI 

'2P -10 000 00' 

'2 -1006 13 HI 

-c· 6 32911 DD'!!! C 

-Ie" 636 789.(3 HZ /C I"l 

DO'" 220 200 

N 
Boc SPh 

ISO 

~ 

246 

160 

o II) 
OOl "' ... 
II)'" 

'" '" 

\ I 

OMe 

lAO 

<D'" ... ",Ol 
.0 II) II) or--
r--m '" 000 

<Dr-- '" ",0 

'" '" '" 

\1 \ \ 

20 

C'"1Il)I"'lOt.D(nUl - 0 
~ r--", ... II) 

U1r---OOlr--.O r-- r-- \DolI) 0 

C\j ........... \.DMQM 1I)r-- '"' .0 '''', 
0 

f"-.,."qr--. ............ r--.1.D or-- ... <Dm.o 01 

IDcn ...... r--. ............ ,...... ",II) '" "'N'" 

\ \ ~IV "", / 

100 60 &0 20 



~ 

c 

Currtnt Dau Parlllltttrs 

&'.!o 
PROCNO 

S..30-GG 
.0 

• 
F2 • AeQU1Slllon Paralltttrs 
o.U_ 990930 
THle 1" 06 
IHSTFUt Oox.cOQ 
PA08t() 5 _ Dual 13 

Plt.PRX; 1930 
TO 32766 
sa. VENT CDC 13 
~ .6 
OS 2 
SWH 8223 685 HZ 
FI~S o 250967 HI 
10 t 9923.4" sec 
AG 90S 
OW 60 800 uS!!!C 
DE 6 00 usee 
IE 296 .0 I( 

O. 0 . 01000000 S!!!C 
PI 9 20 unc 
51'0. 400 1324689 MHz 
MJC. ,H 
Pt. ·3 .00 Cl8 

;2 . Processing D.rlt'let!!!rs 
51 );?766 
SF 400 1300370 MHz 
~ E" 
SS8 0 
LB o 30Hz 
G8 
PC • 00 

10 M4R plot D,r"'.aaeter"'s 

ex 39 01 ell 
FlP 9 ?SO oD 
fl 3701 20 Hz 
F2P ·0 500 oD_ 
f2 ·200 . 06 HZ 
PPMCM 0 .24992 po_/e 
HZtM 99 99999 Hi/e 

H~~~ EH 
~---

" N/ ~ ~ 
Boc 

250 

I I 
~~ 

'" ~~ 
'" 

oom B 5 8 0 7 5 7 0 6 5 

H~ 

W 
5HTi!' 
:;;~~ .. ='I:t!~ 

~IP 

~CI 

,--

~;~ ; 

\\1 1 
Bm~H 

~Vf 

User - L ~ Lea 

NBoc 

- II~.L - !ILJIJ~~,---,-__ 
lL_____ ~~,-----

I~ I 
~ 1I1 

I ~ 
~1I1 

<.D 

I ~ - ~ ,- J ' 'I ~~~~~--- -', -
60 55 50 A5 40 35 30 25 2 a 1 a a 5 o a 



~ , 1ft? 
NBoc 

e 
a a 

Current Data Paraaeters 
NAHE S.p30-99 
ExPNO 11 
PROCNO 

F2 . A,CQulSlt lon Para..et!rs 
0." 990930 
I, .. ,. 17 
I NSIRU04 do •• OO - 5 1M DuaJ 13 
PU.PHOG 19p93C 
TO 65536 
SOLVENI COCl3 
N5 600 
OS • 
SOH 318H 133 Hz 
FlllAES o _B59.9 Hz 
AD 1 0289652 sec 
RG 2896 3 
Ow 15 700 usee 
Of 6.00 usee 

N 
Boc 

250 

::=:::::::----::::: 

'"' C71 

" 
00 ... 

CI 

-q ...... <q ...... ~ C'U r-- en ...... ru 'q" m ...... C) N N r-..~C\J_"""'M 
C\Jq" CD ...... <> IT)"'" 'q"""'" - 0 

C\J 0 \."1 - ru -.:r",,......,....t,D-.:r ru ru _ - 0> ror--,......r-..r-r--- -
\ I I I \ ~I!( 

I I I I I -1--------,----------.-------- - T I I 
ppm 220 200 180 160 140 120 100 80 

TE 298 .0 K 
012 0 .00002000 se, 
I'll 3 18 00 dB 
01 0 .01000000 sec 
CPQPRG2 _.Hz 16 
I'(P02 80 .00 usee 
51'02 _00 . 1316005 ~z 
1(JC2 IH 
PI. 2 -3 .00 dB 
PI. '2 16 .00 dB 
PI 6 90 usee 
Sf 0, ,00 62S-2.S ..., 
I(JCI 13C 
Pl., -3 00 dB 
Oil o 03000000 sec 

FZ - Processlng para!leters 
51 32768 
Sf 100 6127290 
WOw EN 
sse 0 II LB 1 00 HZ 
GIl 0 
PC 2 .00 

JD hwR p lot para::let!rs 
ex 39 50 , 

"p 2"0 000 PD 
FI 2.1.7 05 Hz 

'2P -10 000 pp 
. 2 - 1006 13 HZ 
PPHCM 6 3291! DP./c 
HlCM 636 789_3 Hzlco 

<> ru 
U") '"' " <'> " ... <> 0"" <f1-

- 00 00<'><'> ODO 

... '"' -- 00 ...... '"' .., ru 

\I \i \1 
" 

I I ,I---'--~--~r---r---~---

60 40 20 0 



Current Datil Para.ters 
NAME Soo \1 -99 
ElPNO 20 
PRlCNO 

f2 - ACQU1Sltlon Parar.eters 
Oatt_ 990917 
11 .. n 16 
11IS11U< OD."oo - 51111'10ual13 
PU.PROG 1930 
10 32168 
sa..V£HT coe13 

lIS ,6 
OS 2 
SlOi 8223 68S HI 
FllJAE5 o 250961 HI 
.0 I 9923 ...... sec 
RG 905 
OW 60 .800 une 
DE fj 00 usee 
TE Z9B 0 • 

0' o 01000000 sec 
p, g?O vnc 
Sf 0' .00 1324689 ~l 
10:, ,H 
Pl1 -3 00 .8 

F2 - Process 1"9 o.,..Nlers 
51 32168 
Sf '00 '300000 
!lOW E. 
sse 0 
L8 030Hl 
GB 0 
PC ' 00 

to MI=I Dlot D.r'lIftrrs 
ex 39 01 C 

FtP 9 250 00 
F' 3701 20 Hz 
F2P -0 500 DO_ 
F2 -200 06 Hz 
PACM 0 24992 ppate 
H2O( 99 99998 Hz/C 

N 
TIPS 

251 

~ 

::=::::::--..::::: 

HHHH g~i 

w 

CI 

~H 
J:~~ 
::;§ 

\11 \11 
i~~~~i~~~~g~~~~~§~~~~~~~~;li 

~l1~\w!r\~" 

User - L. Lea 
B 

-J [C[ [ L-uL. . , ~~" --
-----'---- "i,( l~(~;n; ~~ \~~~fl~ 

, I I • I '-1· ~""'--r--J-,--~ 
35 30 25 20 15 

I 0 

55 50 55 5 .0 4 5 4 0 

PO B 5 B 0 7 5 7 0 

("""'t --.--~-.,..- - -~-~ 

10 05 00 



'J"?/ - /, l?tI 
8 

E 
0. 
0. 

<D "'''' '" 
CD 

r- "'" 
u:i 

(\I(Il ~ 

(\I ~~ 

~ ~ ~ ~1""" 

;: 
to 

'" 
,..... q'. (\.~ 

CD ~:::~~ 

'"' 0 
(\I -

" 
~ 

'" 0 
<D 

'" '" 
" 

" " 
ITl 
0 

-
\1 ~ \/ 

Current Oat NAME e Parallleters 
SeP17-99 

EXPNO 21 
PROCNO 

F2 - A,CQU151 

"N/~ 
Olte_ llon Parameters 
flme 990917 

13 . 23 

TIPS -.:::: 
~ f el 

INSlFU< - 5 dp,,"OO 
I11I'II O\JaJ 13 

P\A.PROG 
TO 

Z9P93O 
65536 

251 
SIl.\'ENT COCl3 
NS 320 
os 4 

SIIH 31S .. 7 133 Hz 

FlORES o 485949 Hz 
00 I 0289652 sec 
RG 2580 3 
O~ 

DE 
15 700 usee 

6 00 usee 

I II J 
I I I I I --~---------'--~--I--------'-----------'--- I ~-",,--~-~-~-,,----r------~-

180 160 140 120 100 80 60 40 20 
I I I 
ppm 220 200 

IE 29BOK 
012 o 00002000 sec 
PI.I3 18 00 CIS 

01 o 01000000 sec 
eP0PRG2 wa lll16 
PCP02 eo .OO usee 
Sf 02 400 1316005 MHz 

NUC2 IH 

PL2 -3 .00 OB 

PLI2 16 00 OB 

PI 6 .90 usee 
Sf 01 100 6254245 

NUCI 13C 

PI. I -3 00 oB 

011 o 03000000 sec 

('2 - ProceSSJng oarameters 
51 32768 

Sf 100 6127290 MHz 

~w EM 

sse 0 

LB 1 00 Hz 

GB 0 

PC 2 00 

10 tNR clot oarntters 
ex 39 50 e 
F IP 2.0 000 DO 

FI 24147 05 HZ 

F2P -10 000 000 

F2 -1006 13 Hz 
_CM 6 32911 DDo/e 

HICM 636 7B9'3 HZ/C. 



C.urrtnl Oala Par"eltl"s 
NAIOE 50.23-99 
[Xl'!«) 2C 
PROCHO 

f2 - ACQu1S IUan P'I" •• ltrs 
Otlt_ 990923 
YUle 16 13 
IHSTR...t4 ClpJI..oo 
PA08t() 5 lUI Dua 1 13 
PULPRJG zglO 
TO 32768 
SQ.VENT CllCll 
os 16 
DS 2 
SIIH 
fJ(R"S 

' 0 
AG 
ow 
DE 
IE 
al 
PI 
SFOI 
PUC I 
PI.1 

82Z3 .685 Hz 
o Z50967 HZ 

1 992344. 5!C 
lal 

60 . 800 usee 
6.00 usee 

298 . 0 K 
o OtOOOOOO sec 

9 .20 usee 
400 1324689 fIttz 

'" -3 00 08 

F2 - Process lng paralleteors 
51 32768 
SF 400 1300000 I+Iz 
110_ E. 
sse 0 
La 0 . 30 Hz 
G8 
PC • 00 

10 frfriR plot para_lers 
ex 39 01 eM 
FlP g 250 PO. 
F! 3701 ZO Hz 
F2P -0 .500 PPM 
FZ -200 . 06 Hz 
PI'ICCJO o 24992 DDIl/CM 
HIC. 99 . 9999B Hz/ell 

~'''i ~~2i_ y--- HHH~j 
~ ..... 

~CI N 
Boc 

253a 

HU 

\ir 
Hi 

\11 
!~[~i~5~~~5~~j~j~i~~~;~~ 
~~~IJj~--­
~,~~ 

~ 

c 

=111 =it ~ ~lIJJI)~.\ . 

_-f =L - l l l~(l~( ~;r ls( ~M./ 
1:1 

7 5 7 0 6 5 6 0 5 5 
-r-y--r- ! ---'--. -.. I --,.- T---r----r--r-~-,--,.. ..... 

50 45 40 35 30 75 ~··r T-1 ~-'-r--r--'-"T 

2 0 I 5 o 
ppm 

~....,-~~ .. ~ 

fl 5 8 0 
.,.-,----.--.,.~--;~--,--- ..... -----

User - L . Lea 

r r 

o 5 o 0 



'(717 'f'd' 

on to CD 0 to .... .... to CD 0 ru r--..C\J(IJ'Q'(Tl 
CD on ...... to on ... ru 0 Ol 0 U)'Q'I.ONN E CD '" CD(\J NN to ....... 0 ... OOOln'Q' 0 0. 
Ol '" (\J- -0 '" ............ on C'\J0"l CD OJf"'-. 0. ... '" (\J (\J CD ............ ... (Tl ('\J ru C\J C\J 

\ I \/ I ~( \ \V( 
Current Oata Parameters 
.4HE S.pZ3-99 
EXPHO Z' 
PROCNO , 
F'2 - ACQU1Slt Jon Parameters 
Oate_ 9909Z3 
T, ... 16 .20 
INSHI.14 dpxJlOO 
PROO/() 5 ..... Dual 13 
Pt.t.PROG zgpg30 
TO 65536 
SIllVENT CDCI3 
HS 320 
OS • 
SlftoI 318.7 . 1J3 Hz 
F100ES o '859.9 Hz 
AO 1 0289652 sec 
AG 1300' 
011 J5 700 usee 

_ ",L _ _ J It ._ ... _ .... .J 
IE 6 00 usee 

,.1 J 
I I I I I I I ---r I I I I 
ppm 220 200 180 160 140 120 100 80 60 40 20 0 

Te Z98 0 K 

DIZ 0 . 00002000 •• e 
f'1I3 18 00 08 
01 o 01000000 sec 
C!'OPAG2 . ,!tzt6 
?tP02 80 00 usee 
SF02 400 1)16005 

IU2 IH 
Pl2 -3 00 dB 
P1I2 16 00 08 
PI 6 90 usee 
5(01 100 625<2'5 
'«)(1 IJe 
PlI ·3 00 08 
011 o 03000000 sec 

F2 - ProcesS)"g parameters 
51 32768 
SF 100 61Z729O - E~ 

SSB 0 
L8 1 00 1"41 

G8 0 
PC ZOO 

10 ~ Dlel parnetrrs 
e,l 39 50 ca 
f If' 2'0 000 pp 
fl 
<<J> 
<2 

,.z 

24tH 05 HZ 

- 10000 DO 
-1006 IJ Hz 
6 32911 ocele 

636 7eg43 .. z/ e .... 

_"" .. ., ... '_.' .... "'" ' ............ , ,," .... , ............... "JL,_-..... , '" .. _ '" ., 'u • • ,-,.,j ,c 

~CI 
N 
Boc 

253a 

t-_ .. _·" .... 



DD 

Current Data ParUlflfrs 
NAME $ep17- GG 
ElPNO 30 
PF«HQ 

f2 - 4CQu lS)llcn P'l"a_ars 
o.tf_ 990917 
lUI! 13 33 
IHST~ ClO.'OO 
PI>09t() 

PU.ProG 
TO 
SQ.VENT 

NS 
OS 
Sift< 
FlORES 
AO 
RG 
00 
DE 
TE 
01 
PI 
Sf 01 
1«1 
Pu 

Dual J3 
1930 

32168 
CDC]) 

16 
Z 

8ZZ) 685 Hz 
o 250967 Hz 

t 99Z3444 src 
]81 

60 800 usee 
6 00 usee 

298 0 • 
o 01000000 sec 

9 20 usee 
400 13241689 Mil 

lH 
-J 00 oB 

F2 - ProceSS Jng par_.let'S 
51 32768 
SF '00 1300000 Ntl 
WOO E" 
SS8 0 
L8 
GO 
PC 

o 30Hz 
o 

'00 

so ~ plot oara_lr!"s 
ex 39 01 c. 
rIP 9250 DOli 
n 3701.20 Hz 
F2P -0 .500 PD. 
f2 -200 . 06 Hz 
PPI40t 0 24992 PDllIe 
HIeM 99 99998 Hz / c_ 

8 5 8 0 

§.~ 
::~i 

\V 
H ~H 

wv 

~CI 
N 
TIPS 

253b 

~tR 
r--

o 

7 5 7 0 

\ gj 
.... 
(\J 

6 5 

\ aJ /\ .... 
11.0 : -

'" '" 
'" (\J 

6 0 5 5 5 0 
I 

.~" .~~ 

\11 

\ 0 
a> 
M 

A5 AO 35 

User - L. Lea 
C 

I~§ ii i ~~ ~ i~~~~~~~i~i~&i'~;~~~ ~ ~~ i ~i~ 

\f1 UUU'~fP/~- -" 

'" '~ 
I ' I ' r-J --.-

30 25 20 l5 
I '----,----r--..........-

lO 05 00 



~11 ~j' 

c 

" " " co ""'"'' <:> lnCD-Ol 

" M com -OlD 0 ....... 1J1CX)1O 
E '" " "'''' ""0 " QM,......"Q" 
a 

ID " en ID .,., IT) C'l CD ,.... c. " " " M '" 00 " " " " M t"\I N C'\J 

\/ ~( \ \1/ 
Current Data Paraoelers 

~CI 
NAI4E 5<017-99 
EXPNO 31 
?ROCNO 

;2 . ACQUlS1tJon Parameters N 
Date 990917 TIPS I, .. 13 40 
INSIIUC dgx400 - 5 .. DuaJ 13 
PU.PR:lG Z90930 253b 10 65536 
S!l.Yt:HI CDC I3 
HS 320 
OS 4 
51<!< 31847 . 133 HZ 
FlORES 0 . 485949 Hz 
00 I 0289652 soc 
;<G 72982 
OW 25 700 usee 

II ~ 
DE 6.00 usee 

I I I j I ! T I I I 
ppm 220 200 180 160 I~ O 120 100 80 60 40 20 

If 2980 K 
012 o 00002000 soc 
PUl 18 00 08 
01 o 01000000 soc 
CP!IPRG2 waltz16 
PCP02 80 00 usee 
SFD2 400 1316005 
M.C2 IH 
Pl.2 -3 .00 08 
"U2 16 DO 08 
PI 6 90 usee 
SFOI 100 6254245 
10:1 DC 
PI. I -3 00 08 
011 0 .03000000 sec 

r2 - Process lng par-aDele ,..s 
51 32768 

'" .. . ",. ' , "I.. II ... ..' , .. " I' rr SF 100 6127290 ...., 
111). E" 
sse 
LB 1 00 HI 
G8 0 

PC 2 00 

10 ~ Dlot Dara=eters 
ex 3950c 
flP 240 000 CD 

'I 24 U7 05 HZ 
f2" - 10 DOD 011 
.2 -1006 13 HZ 
PPMC_ 6 3291 t Dc_Ie 
-<IC_ 636 78943 ",Ie 

0 
en 

'" ID 

" 0 

'" 

--, 
a 



It) 0 
(l) 

-.J 

-.J 

L 
(l) 
(f) 

::J 

0((11[0 

['IO!IO~ 
. MUD 

;;::::~ OIUD I 
I~~O I 

""" U,>/O I 
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AAOCNO 

~I Fe? ~ ACQulSlllDn Paraaeters 
Datt_ 990917 
I, ... 1358 N 
IHSIIVt "PIICOO TIPS PROOHO 5 NI Cual 13 
PU.PROG 19D93O 
10 65536 
SOlVENT (606 254 HS 3Z0 
OS • 
5'" )IB.7 133 HI 
FlORES o '85949 Hz 

'0 1 OZB9652 sec 
RG 2298 9 

L 
011 15 700 usee 
(E 6 00 usee 

-

I I I i I I 
ppm 220 200 180 160 140 120 

I i I I 
100 80 60 AO 20 

If 296 0 K 
OIZ o 00002000 sec 
Pt.1) IB 00 08 
01 o 01000000 5"' 
CPOPAG2 .. alt1t6 
PCPQ2 80 00 usee 
SF02 'DO 1316005 >til 
HIG IH 
Pt.2 -) DO 08 

Pt.12 16 00 08 
PI 6 90 us!e 
SFOI 100 6254245 I+fz 

1M: I DC 
Pt.1 -3 00 dB 
011 o 03000000 sec 

F2 - Process In; oara.ettf"'5 
51 ~7~ 

SF .DO 6127069 14HZ 

W!lW £~ 

sse 0 

L8 100HZ 

GB 0 

PC 2DO 

!O ~ D10l Dlr.!lltte"s 
ex 3950e 
tIP 2et'! 000 DO 
'I 2'141 05 HI 
<2P -10 DOD DD 

'2 -1006 I) HI 
ppocw 6 32'911 Ct./c: 
lo;l(tt 636 18925 HI. Ie 



Currenl ()au Paralleurs 
HOME 5<.23-99 
EXPHO 10 
pro(NQ 

F2 - ACQU1S1Uon ParlMlers 
Oile 990923 
11_ 15 56 
INSt~ ctlJl400 
PR08Hl 5 _ (kJa) 13 

I'lI-PROG '930 
TO 32768 
SG-VEHI CDC)3 
NS 16 

OS Z 
SOH B2Z3 . 61!5 HZ 
FIIRS 0 250961 HZ 
AO 1 9923444 sec 
~ 18t 
ON eo BOO usee 
tt: 6 00 usee 
IE Z98 . 0 • 

01 
PI 
SFOI 
WCI 
PlI 

0. 01000000 Sfe 
9 .20 usee 

400 1324689 I4iZ 
I. 

-3 00 dS 

F2 - P'l"'ocuslng par •• Hers 
51 32768 
Sf 400 1lOOOOO HHl 
II!ltO E. 
5se 0 
LB 
G8 
PC 

o 30Hz 

• 00 

to ~ plOl parltlturs 
ex 39 01 e 
Fl. 
FI 
F2P 
FZ 
PI'MCJI 
HID< 

" o 

g 250 DO-
3101 ZO Hz 
-0 500 ppa 

-zoo 06 Hz 
o 24992 DD.tC. 

99 99'198 '" I c 

HH \r-~ 

~OMe 
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~ • ~ ~ • 
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Current Dala Paral'leters 
NAME 5'023-99 
EXPNO 

PROCHO " I 
F2 - ACQUISition Para.eters 
Da,,_ 990923 
I,.. 16 03 
INSTAJ( dpl('OO 
_ SullY,! 13 

PI.l.PROG 100030 
10 65536 
SOLYfNI CDC!3 
.5 320 
OS • 
5WH 31847 133 HZ 

FURS o .. 85949 HZ 
AO 1 0289652 sec 
FIG 2580 3 
OW 15 700 usee 
DE 6 00 usee 

IE 29B 0 • 
012 0 .00002000 sec 
1'1.13 18 00 08 

01 o 01000000 sec 
CI'D'R>2 llIaltl16 
PCP02 80 00 usee 
Sf 02 400 1316005 f+il 

IoUC2 IH 

1'1.2 -3 00 08 

1'1.12 16 00 OS 
PI 6 90 usee 
Sf 01 100 62542.5 .... 

.0:1 IX 

PI. I -) 00 OS 

OIl o 03000000 sec 

'"2 - PrOCfSSln9 p,ra-=eltrs 
51 ~7ffi 

Sf 100 6127290 

S5B 
LB 
G8 
PC 

E-
O 

100HZ 
o 

200 

10 HMR Dlot Dar.=eters 
n : 3950c 
FlP 2'0 000 P~ 
'"I 2414' 05 HI 
F29 -10 000 PO 
'2 -1006 tJ Ifl 
"P'<04 6 32911 elll'tc 
oQCio! 636 78943 "'(l I ef!. 

..... ClNCO-CT'lC'l If') ..... m U"1 ru <D 

0 ,....ru -- OCO""" CT'l ..., ru .... 
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Curr!:nt Oatl Parlllttf!rs 

~ 
PRCO«l 

S.p~-99 

20 

F2 - ""QUISll Ion PJrl.ters 
Oate_ 990915 
TI_ 20 07 
INSTRIJtIt C101l400 
PAOBt() 5 IKI Qu,l 13 

PU..PFOi 1930 
TO 32166 
sa. VENT C606 
N5 Z56 
OS 2 

SWH B223 685 "' 
flORES 0 .250967 HZ 
"'0 t . 9923.u 4 Stc 
RG 256 
OW 60.800 us!:e 
DE 6 00 usee 
TE 298 0 • 
01 0 01000000 ste 
PI 9 20 usee 
SFOt 400 1324689 MHz 
NJCt lH 
Pl1 -J 00 dB 

F2 - Processing par,mrters 
51 3276B 
Sf 400 1 )00695 HHz _ E. 

5se 0 
LB 030", 
G8 0 
PC 4 00 

1D NNR plot oararaelers 
ex 39 01 ell 
FtP 9 250 OP 
F1 3101 20 Hz 
F2P -0 SOO ppa 

F2 -200 .06 Hz 
PPMCM 0 . 24992 DOIII/C. 

HICM tOO 00000 Hz/ell 

~ 

c 
~ , _____ ~~_____T 

8 5 8 0 ppm 

i g~gh~H ~;!~~i~ci!!I~~~§i:~~l&~i~'@§~~~~~~~~5 
~ .... ~~~-~~~--~---~-----------------~ 1}}ddpJjj dJ J J J J JJ; 
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Current Data Parameters 
NAMe Sep25-99 
EKPHO 50 
PROCNO I 

F2 - ACQU lsltlon Parameters Et0 2C 
Oate_ 990926 
h"" o 13 
IHSTRJH dP1400 Et0 2C - 5 .. Dua, 13 
PU..PROG IgpgJO 
10 65536 
sa.VENT C606 
HS 5000 
OS • 
SHH 3184] 133 Hz 
flORES o 4S59<9 Hz 
AD 102896525ec 
RG .298 S 
Ott 15 700 usee 
Of 6 00 usee 

/ \ 
N 
TMS 

266 

-<0 
(IJ ..... 
lOOl 

en CD 
lO<O 

)( 

CDU1M"qU1fTlCT)'q" 
Nq-NOCDlDMru 
MOlaJt--.l!"JvO"lO 

0"1 CI)<DCD COCDfTlM 

~~~~~~~~ 

~ Iy ((' 

"' lOlDC'\J_ ... 
'O;;fU'") ....... M 

'" r--..f"I1r--.(I) 
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lDIDlOlIl 

I ~( ( 
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rp~.. 2~0 260 1~0 1~0 do 1~0 160 B~ 6'0 4'0 2'0 6 

IE 29S 0 K 
012 o ooooCOOO 50C 
I'll 3 IS 00 oS 
01 o 01000000 50C 

CP!lPRG' w,ltl16 
PCPO. 90 00 uSee 
SF02 .00 1316005 MHz 
IIJC2 IH 
Pl.. -3 00 dS 
P!.12 16 00 OS 
PI 6 90 usee 
SFOI 100 6<54.45 
HOC I IX 
PI. I -3 00 OS 
OIl o 03DDOOOO 50C 

FZ - ProcessIng parameters 
51 ~7~ 
SF 100 612676< , 
~ E. 
sse 0 
LB 1 00 .... 1 
G8 0 
PC .00 

10 HMR D)Ol oarawters 
cx 39 50 c 
F IP 2.40 000 tD~ 
" 24147 O' HI 

F2P -10 000 PC~ 
rc -1006 13 "z 
PPMCH 6 3Z921 OP!'\/C1"l 
riZOJ 636 78906 "'llc,," 



Current [)ata Par,lIII!terS 

~ 
PAOCNO 

$ep26-99 
20 

F2 - lCQuISllion P.raMUrs 
o.te 990926 
I, .. 16 01 

INS1 ..... OgxJllOO 

PROBtf) 5 I:.m Dual 13 
PU.PROG 19JO 
10 32768 

sa.VENT (606 

NS Z56 
OS 2 

SlOt 8223 685 HZ 

mlR£5 o 2'50961 HZ 

.0 , 99234114 sec 
FIG IBI 

0If 60 800 usee 
Of 6 00 usee 
IE 29B 0 K 

DI o 01000000 sec 
PI 9 20 usee 
SfDI 400 1324689 MHz 

NUt I .H 
PL. - ) 00 Cl8 

F2 - Processing Dar'lIttrrs 
51 32168 
SF 'DO I JDD658 
MOW 
sse 
LB 
G8 

PC 

E" 
o 

o JO Hz 

'DO 

10 NMA plot Dar'lIeters 
Cl 39 O. c 
FlP 9 2'50 PD-
f! 370. 20 Hz 
FlP -0 500 PPII 
'2 -2DD~Hz 
P9MCM 0 24992 PP-'CII 
HZeM 100 00000 tU/c-

Et02C 
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rJ/J 
N-\-\ 
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OW 
DE 

!1t1 

o 485949 HI 
i 0289652 sec 
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IV I I V I , 
I 

L._~~_~J ,/ .1 

f I I I I I I 
ppe 220 200 180 160 140 120 

IE 29!! 0 K 
012 o 00002000 sec 
PL 13 IB 00 dB 
01 o 01000000 sec 
CP0PRG2 . ,ltll6 
P!Y02 80 00 usee 
SF02 400 1316005 
1lUC2 IH 
Pt.2 -3 00 dB 
Pt.12 16 00 aB 
PI 6 90 usee 
SFOI 100 6254245 ""' 
MJCI IX 
Pt.1 -3 00 dB 
011 o 03000000 sec 

fZ - PrOC1!5S1"9 garamete"s 
51 l2168 
SF 100 6126163 - E_ 

SS8 0 
LB 1 00 ~l 

G8 0 
PC 200 

10 ~ cla .. car.lIeters 
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Curt"tnl Data Paraflleters 

h~ 
PIOOCNO 

5<02)-99 
eo 

F2 - ACQU ISition PJrallle t ers 
Date 99092" 
11 .. 1126 
JNSTAJM dpx.OO 

POOBHD 5,.. ru.l 13 
P\.t.PROG 1930 
10 32168 
SQ.VENI CDCI) 
>IS Z56 

OS 2 
SOH 822J 695 HI 
fl0flE5 o 250967 HZ 
40 1 9923·401" sec 
II(; 6<5 I 
OW 60 900 unc 
Of 6 00 usee 
IE 298 0 K 
O. o 01000000 sec 
PI 9 20 us!e 
SFO. .(00 1324689 MHz 

00::. IH 
PlI - ) 00 'S 

F2 - Proct5slng p,l"ultttrs 
51 32168 
Sf ~OO 1300360 I+tI 
WOW EM 
5sa 0 
LS 0 30 HI 
G8 0 
PC • 00 

10 _ c lDt oar-a.ters 
CJ 19 01 ell 
FlP 
r, 
r;>p 
r2 
PI"Ct" 
o<lCM 

D 

C 

pp:> 

9 2'50 DO-

)101 20 HI 
- 0 500 p~ 

-200 06 HI 
o 2A992 p~/c.. 

99 !19999 HIlt 

B 5 B 0 

Et02C 

Et02C 

~g ~ 

VI 

N 
Boc 
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~,.,/ 
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5 7 0 
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Current Data Parameters 
N.ME Sop23-99 
EXPNO B1 
PROeNO 

F2 - ACQUISitIon Parameters 
Oate_ 99092' 
Tlse 12 02 
INSIFlJH dpJC400 
PROSHO S I1IIR Dua 1 13 

PU..PROG Z90930 
TO 65536 
SQ.VENI eOCB 
NS 2000 
OS • 
SWH 31B47 133 Hz 
FlORES o 4859'9 Hz 

'0 I . 02B9652 sec 
RG 

IE 298 . 0 K 

012 o 00002000 sec 
I'll 3 18 00 dB 

01 o 01000000 sec 
ePOPRGZ "'aHzl6 
PCP02 80 00 usee 
SF02 400 1316005 HHz 
NUC2 1M 
PI. 2 -3 00 dB 
Pl.12 16 . 00 dB 
PI 6.90 usee 
SFOI 100 6254245 
NUCI 13C 
PI. I -3 00 oB 
OIl o 03000000 sec 

F2 - ProcessIng parallelerS 
SI 3276B 
SF 100 6127290 '*'z 
woo 
ssa 
LB 
GB 
PC 

EM 
o 

, 00 Hz 
o 

200 

10 N'(R plot paraaeters 
ex 39 50 c 
F I? 240 000 PO 
Fl 2AI.t17 05 HZ 
c2P -10 000 PC 
F2 -1006 13 HZ 
PPMOc 6 32911 DOIII/C_ 

rllC' 636 7B943 Hllc 

Et02C 

N 
Boc 

270 
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<0 CD CD 

rn CD '" 

~ - -
\/ 1 
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Current Data Par __ ters 
HUE $ep23-99 
[XPNO 50 
P!lOCNO 

F2 - lCQuJ5 l tJon P,r'lWlers 
D.tr_ 990924 
I,,, 8 07 

INSI ..... 001400 

P!l(J8t() 5 IIlII Dua l 13 
P\l.PRlG zgJO 
10 32768 

5(1V£N' CDCl3 

NS 6' 
OS 2 
SOH 8223 685 Hz 

FlDAE5 o 250967 HZ 

AD t 992~A4 sec 

RG '06 • 
[)Ij 6O .BOO usee 
DE 6 00 usee 

I[ 298 0 • 

01 o 01000000 sec 
PI 9 20 usee 
Sf 01 400 132<41689 MHz 

>U:I IH 

PlI -3 00 dB 

F2 • Proce5S lIl9 paralN!!lerS 
51 32768 
SF 400 1300000 I9il 

'. 558 
L8 
G8 
PC 

EM 
o 

o JO HZ 

'00 

10 NMR plot olraaturs 
ex 39 01 c 
np 9 250 0011 

fl 370l.ZO HZ 
F2P -0 500 pp 
f2 -200 . 06 HZ 
PPMCM 0 2.992 po_/e_ 
HIC>! 99 99998 Hz l c 

(' 
pp .. 

, I 
I~ 5 

, I 
I~ 0 

N 
Boc 

, I ' 
13 5 

~~ 
C\I 
II) 

Hn~ HH H~ 

\~ ~ W 

~ -...:::: 

, T ' 
130 

, 1 ' 
12 . 5 

~ 

r~1 1 

12 .0 

~ 
\~Ao 

en rn ,.., 

OMe 
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II 5 
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11 0 

Hi ~ 
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, 1 -, 1 r I I ' 1 I , I ' I I , -

10 5 100 r 95 
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Current Data Parameters 
NAME Sep?3-99 
EXPHO 51 
PROCHO 1 

F2 - ACQu1 5Jllon Paraorters 
Da te 99(1924 
T tile 8 43 
IHSTR.J( C1p . 400 

_81() 5 "" DuBI 13 
PlA..PROG 
TO 
51l.VENI 
NS 
OS 
5WH 
F 10000S 

IQpg30 
65536 
CDCI3 

ZOOO 

• 
31B47 133 HZ 
o 'B59'9 Hz 

&0 

RG 

1 0289652 sec 
1625 5 

OW 
DE 

15 100 usee 
6 00 usee 

N 
Boc 
~ -....::::: 

4 OMe 

'" <Xl '" co ... tn - "" '" 
'" C> '" '" '" m 

\ I 

-tn ~lDCDO C> '" '" If1 tn '" "'- .... 0'1"00 .... - CO - m '" ..,. '" ,..... CTl 01.0 If1 ro 
M _ 

'" "" "'.., ,..... ,..... " tTl C> .... ro co m OJ 
co CD ,.....,.....,.....,.... '" '" '" '" 

\ I ~II I I V \/ 

~. ~~.-.~-, . ,. - , - .~-~,-... " .. " "'~""--"'T---~---- " . ... "--~-~ ... -.""'~ ........ _._ . .. ... l ........ ~_ 
I I I I I I , j I I I 
ppm 220 200 180 160 140 120 100 80 60 40 20 

IE Z98 0 K 

012 o 00002000 sec 
PI. 13 lB 00 CB 

01 0 _01000000 sec 

CPOPAG2 waltz 16 

PCP02 80 00 us!'e 

Sf 02 ' 00 1316005 "'" 
I/I..C2 lH 

Pl.2 -3 00 os 
PI. I? 16 00 OB 

PI 6 _ 90 usee 

Sf 01 100 6254245 

NUCI 13C 

PI. 1 -3 00 OB 

0 11 o 03000000 sec 

F2 ~ ProceS51t'lg p.rlllelerS 
51 3276B 
Sf 100 6127290 _ E" 

5se 0 
LB 
G8 
PC 

100HZ 
o 

2 00 

10 ).,~ c lot cara.ters 
cx 39 50 c 
; 1P 240 000 DO 
'"1 24147 05 Hz 
'"2P -10 000 pO'!l 

'2 -1006 13 HZ 
~ 6 32911 DD""'C~ 
~lC'" 636 789.3 ~l/c 

.-.... - ,I~ 

T 
'''-

~" 

'11' 
.U 

"" 
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Current Data Parallltters 

~ 
PAOO«J 

SepZO-99 
20 

F2 - ACQUIS lllon P,r'Mters 
OIle 990920 
1 ... 19 21 
IHSTfUt dpx"OO - 5 = Dual 13 
PU.PAOG 19JO 
10 32768 
SQl'EN1 CDC I 3 
lIS 16 
OS 2 
SWH 8223 685 Hz 
FlORES o 250967 Hz 
' 0 1 9921 .... sec 
RG 322 5 
OW 60 800 usec 
DE 6 00 usee 
1E 298 0 K 
01 o 01000000 sec 
PI 9 20 usee 
SFOI .cOO 1)Z.c689 
NUCI IH 
PlI - 3 00 08 

F2 - Processing Daralltters 
SI 32168 
SF .00 1300372 MfiZ 
wow 
sse 
L8 
G8 
PC 

EM 
o 

o 30HZ 

. 00 

10 JH1 Dl ot Oilraarurs 
el J9 01 c. 
flP 9 Z50 DO, 

FI 3101 20 HZ 
f2P -0 500 DO 
F2 - 200 .06 HZ 
PPMOt 0 24992 ooale 
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