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Abstract 

 
Background: IL-33 is an innate cytokine and a member of the IL-1 superfamily.  

It is the ligand for ST2 and since it was first described, it has been shown to be 

involved in an increasing number of immune responses, both in health and 

disease.  Greater understanding of this field has demonstrated that IL-33 is a 

dichotomous cytokine, able to function as both a classical cytokine and as a 

nuclear factor.  Whilst numerous signalling pathways for IL-33 have been 

described, a role for the serine threonine kinase, mammalian target of 

rapamycin (mTOR), has not been assessed.  mTOR activation can be inhibited by 

rapamycin, an immunospressant that is widely used in clinical practice. 

One of the most recent advances in the field of IL-33 is its ability to induce a 

novel group of innate lymphocytes named type-2 innate lymphoid cells (ILC).  

These cells respond to IL-33 and other innate cytokines to produce the type-2 

cytokines, IL-5 and IL-13.  Much is yet to be discovered about these novel cells 

and their homeostatic and pathological roles.  More so, very little is known 

about the signalling pathways involved in IL-33-driven ILC functions and their 

interactions with the adaptive immune system.  

Aim: To determine the role of mTOR in IL-33-driven airway inflammation and in 

IL-33-induced ILC functions.  To ascertain the interactions of ILC with CD4 T cells 

in vitro and in vivo. 

Methods and Results: BALB/c mice were treated with intranasal IL-33 to induce 

airway inflammation in the presence or the absence of rapamycin.  IL-33-

induced ILC were sorted using fluorescence activated cell sorting (FACS) 

techniques to perform in vitro experiments to assess the role for mTOR in IL-33 

signalling and the interactions with FACS sorted naïve CD4 T cells.  Additionally, 

adoptive transfer experiments were performed to determine the roles of ILC in 

IL-33-driven airway inflammation as well as their effects on CD4 T cells in vivo. 

IL-33-driven airway inflammation and ILC cytokine production in vitro is 

significantly inhibited by rapamycin.  Additionally, ILC are the main source of 

type-2 cytokines in IL-33-treated lungs and they are sufficient to drive IL-33-
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induced airway inflammation in ST2-deficient mice in an mTOR-dependent 

manner. 

ILC respond to CD4 T cell-derived IL-2 by proliferating and expressing IL-4.  In 

turn, ILC induce type-2 cytokine expression in naïve CD4 T cells in vitro, whilst 

inhibiting their expression of the type-1 cytokine, interferon-γ, in a contact-

dependent manner.  This effect is partially dependent on the adhesion 

molecule, intercellular adhesion molecule (ICAM) 1.  More so, ILC are able to 

increase the proportion of activated CD4 T cells in vivo whilst enhancing their 

recruitment to the lung. 

Conclusions:  mTOR activation is required for optimum IL-33-induced airway 

inflammation and IL-33 signalling in ILC.  Additionally, ILC interact with CD4 T 

cells in vitro, enhancing a Th2 phenotype in these cells.  Furthermore, ILC 

augment CD4 T cell activation in vivo, demonstrating that ILC are able to 

influence adaptive immune responses and enhance type-2 immunity.  Taken 

together, these results further the current understating of IL-33 and ILC biology.  

More so, the results included in this thesis offer future potential avenues to be 

explored in the development of better therapies for conditions in which IL-33 

has been shown to be deleterious, such asthma.  
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1.1 Asthma 

1.1.1 Prevalence and definition 

Asthma is a common chronic inflammatory disorder of the lung characterised by 

airflow obstruction, inflammation and lung remodelling.  The incidence and 

prevalence of asthma has been rising in the westernised world, although the rate 

of increase has slowed down in the past decade [1]. The most recent estimates 

however, suggest that up to 300 million people suffer from asthma worldwide 

[1].  A growing rate of urbanization has been suggested as a possible explanation 

for the increase in prevalence, since living in a city is a risk factor for asthma.  

Evidence has shown that children living in rural areas are less likely to develop 

asthma [2].  The reduction in asthma risk is associated with decreased levels of 

sensitisation to common allergens, therefore also linking the development of 

atopy and allergy to asthma [2].  Atopy and allergy have long been associated 

with asthma and up to 40% of the children and young adults in the westernised 

world have been shown to be atopic [3], yet of these, only a third develop 

asthma [3]. As such, the clinical burden of asthma remains a substantial one and 

in the United Kingdom (UK) alone, estimates suggest 1 in 7 children and 1 in 25 

adults suffer from asthma symptoms requiring treatment [4].   

One of the greatest challenges in the management of asthma at a global level is 

the lack of a distinct definition for the disease.  The Global Initiative of Asthma 

(GINA) defined asthma as “… chronic inflammatory disorder of the airways in 

which many cells and cellular elements play a role.  The chronic inflammation is 

associated with airway hyperresponsiveness (AHR) that leads to recurrent 

episodes of wheezing, breathlessness, chest tightness and coughing, particularly 

at night or in the early morning.  These episodes are usually associated with 

widespread but variable, airflow obstruction (AFO) within the lung that is often 

reversible either spontaneously or with treatment” [1].  The lack of a precise 

pathologically-orientated definition makes the diagnosis of asthma difficult.  In 

addition, as the understanding of allergy, airway inflammation and the causes of 

AHR have developed, more emphasis and interest has been placed on 

phenotyping the different “types” of asthma.  This movement has increasingly 

gained support, as it appears that the immune characteristics of different 
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asthma sufferers vary significantly and treatments are not universally effective.  

It is therefore imperative to continue investigating the immunopathological 

mechanisms of this condition. 

1.1.2 Clinical asthma management 

The above-mentioned clinical definition of asthma encompasses several key 

clinical characteristics including AFO and AHR.  In addition to these, airway 

inflammation and remodelling are now also considered important features of the 

disease [5, 6]. 

The management of asthma involves two main strategies to treat the condition: 

bronchodilators to improve AFO and AHR symptoms, and anti-inflammatory 

medication to treat the airway inflammation. 

The British Thoracic Society (BTS) and Scottish Intercollegiate Guideline Network 

(SIGN) have developed national guidelines to aid the management of this 

heterogeneous condition (www.brit-thoracic.org.uk/guidelines/asthma-

guidelines.aspx).  The mainstay of asthma therapy includes the use of β2-

adrenergic agonists as bronchodilators and inhaled corticosteroids (ICS) to 

control airway inflammation [7-9].  There are other drugs that are also used to 

regulate airway inflammation in asthma, including leukotriene antagonists [10], 

which interfere with the effects of leukotrienes, lipid mediators of the 

arachidonic acid pathway that are produced by various cell types including mast 

cells and eosinophils [11].  Importantly, smoking has been associated with 

reduced drug effectiveness in asthma patients [12, 13] and hence smoking 

cessation is also an important management strategy in this patient group.  The 

majority of patients will have well-controlled asthma symptoms on combinations 

of the above medications.  Unfortunately however, a proportion of patients 

continue to have debilitating symptoms despite these therapies, with estimates 

suggesting up to 5% of the asthma population fall into this category [5].  These 

patients often require regular oral corticosteroids, the use of which is associated 

with substantial longterm side effects [14].  One of the most recent additions to 

the asthma management treatment regime is a monoclonal antibody against 

immunoglobulin E (IgE) [15, 16].  This treatment is only available for a small 

minority of patients with severe asthma who remain uncontrolled despite 
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receiving oral corticosteroids (CS) (www.brit-thoracic.org.uk/guidelines/asthma-

guidelines.aspx).  Whilst it is extremely effective in some, it is certainly not 

associated with improvement in symptoms in all patients [17].  Patients with 

uncontrolled asthma despite maximal therapy remain an important unmet 

clinical need, incurring substantial healthcare and socioeconomic burdens.  In 

fact, estimates suggest that whilst only representing a small proportion of all 

asthma patients, healthcare costs for these individuals amount to two thirds of 

total asthma expenditure in the UK [6].  Whilst the enhanced understanding of 

asthma pathogenesis has led to the development of numerous biological drugs 

(reviewed in [18]), most severe asthmatics still rely on systemic corticosteroids 

as their mainstay treatment [18].  Attempts to use steroid-sparing 

immunosuppressants have failed in the past due to unacceptable side effects 

[19].  For all these reasons, better understanding of the immunopathology of 

asthma is still required for many sufferers of this condition in order to allow the 

development of improved therapies with fewer side effects.   

1.1.3 Immune responses in asthma 

As previously discussed, airway inflammation has been implicated in asthma 

pathogenesis and increasingly sub-classification of the different forms of 

inflammation observed in patients diagnosed with asthma has been insightful 

into the potential mechanisms driving the disease.  As such, many biased 

methods have been used to delineate different phenotypes of asthma, based 

around clinically defined, often subjective, asthma symptoms and signs. 

Historically asthma was classified as “extrinsic” when associated with allergy 

and allergenic triggers, and “intrinsic” when there was no evidence of allergy 

driving the disease.  These are also known as “atopic” or “non-atopic”, 

respectively.  Further classifications based on the bronchoalveolar lavage (BAL) 

or induced sputum inflammatory cell compositions have also been proposed.  As 

such, “eosinophilic”, “mixed granulocytic”, “neutrophilic” or 

“paucigranulocytic” forms have been described [20].  These classifications have 

broadened the understanding of asthma, whereby different phenotypes appear 

to have differing underlying disease processes. 
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Since the dichotomous classification of adaptive T helper (Th) cell responses as 

Th1 (mainly interferon (IFN)-γ producing) or Th2 (mainly type-2 cytokine-

producing i.e. IL-4, IL-5, IL-13) [21], allergy and asthma have been classified as 

predominantly Th2-driven diseases [22].  This evidence is supported by the 

clinical finding that cells from BAL of asthma-suffers expressed higher levels of 

type-2 cytokines, compared to healthy controls [23], as well as data from animal 

models supporting the role of Th2 cells in mouse models of airway inflammation 

[24, 25].  Interestingly, in a cohort of mild ICS-naïve asthmatics, bronchial 

epithelial cell gene expression analysis demonstrated that up to 50% of that 

cohort expressed a “Th2-high” phenotype, denoted by increased expression of 

IL-13-induced genes.  However, asthmatics lacking this phenotype had gene 

profiles similar to that of healthy individuals.  Importantly, those with a “Th2-

high” phenotype responded to ICS better than those with a “Th2-low” profile, 

suggesting different underlying immune mechanisms were present in this cohort 

of asthma-suffers [26], which in turn, had an impact on their response to 

treatment. 

1.1.3.1 Immune cells in asthma 

Numerous cells have been implicated in the development in asthma, and whilst 

it is likely that each cell type contributes to asthma pathogenesis and cross-talk 

undoubtedly is important, for clarity they shall be discussed individually. 

Furthermore, whilst innate lymphoid cells (ILC) have recently been implicated in 

asthma pathogenesis, since their description is inextricably linked to IL-33, they 

shall be discussed in section 1.3.5.2.1. 

Atopic asthma has often been described as a Th2-mediated disease.  In this 

regard, Th2 cells produce many of the cytokines implicated in asthma pathology 

including IL-4, IL-5 and IL-13 [3].  More so, BAL of asthma patients showed a Th2-

like lymphocytosis [23].  Novel sub-types of Th cells have been described since 

the initial paradigm of Mossman and Coffman was proposed [21].  These include 

Th9 cells that produce IL-9, and Th17 cells, that secrete IL-17.  Both these 

subgroups have been implicated in asthma [27, 28] and Th17 cells, due to their 

ability to recruit neutrophils, have been suggested to be pathological in non-

eosinophilic, neutrophilic asthma [27, 29].  Interestingly, the lung has been 

shown to have large numbers of resident memory T cells at rest, many of which 
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are antigen-specific [30], suggesting that these cells are poised and ready to 

respond to re-encountering their cognate antigen in the lungs.  As a result, much 

work has focused on the interaction of T cells with other innate cells, in 

particular, antigen-presenting cells (APC). 

Dendritic cells (DC) are professional APC and their function in the lung has been 

studied extensively.  DC transport antigen from sites of delivery to the draining 

lymph node (LN) [31].   More recently, they have been shown to sample antigen 

in the alveolar space, through epithelial tight junctions [31], placing DC in a 

privileged position to obtain and present inhaled antigen.  In fact, DC have been 

shown to be present in induced sputa of patients with asthma and additionally, 

antigen-challenge further enhances their number within a few hours of antigen 

exposure [32], demonstrating their relevance in human asthma. 

B cells are responsible for the production of IgE via a process of class-switch, 

which allows them to shift their production of IgM to IgE [33].  In order to 

develop into IgE-producing plasma cells, B cells require two signals, one 

provided by type-2 cytokines such as IL-4 and another via cell contact and CD40 

engagement [34].  As aforementioned, IgE is a common marker of atopic asthma 

and anti-IgE therapy has been shown to be effective in some CS-resistant severe 

asthma patients [15, 16].  Whilst it was believed that B cell class switch only 

occurred in peripheral lymphoid tissue, evidence is emerging that this process 

may occur within the airways themselves [35], placing B cells at the forefront of 

the allergic asthma response.  In addition to their role as IgE-producing cells, 

antigen-activated B cells have also been shown to be able to present antigen to 

cognate T cells [36], further supporting their pathological role in asthma.   

Eosinophils are granulocytes that appear red when stained with eosin by the 

Romanovsky method due to their content of acidic granules.  They develop and 

proliferate in response to IL-5 and when activated, they degranulate, releasing a 

variety of pro-inflammatory mediators, including histamines and peroxidases 

[37].  These cells were first associated with asthma with the discovery of 

eosinophil-derived granules in the airways of asthma patients at post mortem 

[38].  Eosinophils can be found in the airways and peripheral blood of patients 

with asthma and their numbers have been shown to correlate with disease 

severity [39]. Additionally, the presence of sputum eosinophilia in patients with 



28 

asthma predicts their likely response to CS treatment [40].  More so, the 

numbers of eosinophils in induced sputa of asthma patients have been used to 

guide asthma treatment successfully [41].  All this evidence places eosinophils at 

the forefront of asthma inflammation. However, some debate remains regarding 

their pathogenic role in the lung.  Evidence from animal models, using a variety 

of transgenic mice and adoptive transfers, support their role as drivers of 

disease [42-44].  However, data from human studies are less clear.  IL-5 is an 

important eosinophil chemoattractant and growth factor [37]. An anti-IL-5 study 

showed, whilst eosinophilia was decreased by the treatment in an asthmatic 

population, symptoms and exacerbations were not significantly reduced in the 

studied cohort [45], suggesting that eosinophil reduction did not alter the 

disease process.  As discussed above, asthma is a heterogeneous disease in 

humans and subsequent studies assessing the effect of anti-IL-5 treatment in CS-

resistant patients with ongoing pulmonary eosinophilia did show improved 

clinical outcomes with this therapy [46, 47], stressing the importance of 

phenotyping asthma patients. 

Macrophages are the most abundant immune cell in the lung and they are 

divided by their location to alveolar, interstitial or intravascular macrophages 

[48].  Much work on macrophages has concentrated on the role of the alveolar 

macrophage, in particular, assessing their function under the influence of type-2 

cytokines, which skew them away from classically-activated (or M1) 

macrophages to an alternatively activated macrophage (AAM) (or M2) phenotype 

[49].  This dichotomy may be an oversimplification, in a similar way to the 

Th1/Th2 division.  However these two types of macrophage phenotypes have 

distinct roles in the airway [49].  In human asthma patients, the number of IL-

13-expressing alveolar macrophages is greatly increased compared to healthy 

controls [50].  More so, in a post-viral chronic inflammatory lung model, AAM 

appear responsible for persistent lung inflammation [50].  Interestingly, Tang 

and colleagues demonstrated that alveolar macrophage depletion exacerbates 

ova-induced allergic airway inflammation through enhanced Th2 responses, 

suggesting that alveolar macrophages may also be important regulators of 

inflammation [51].  Therefore the precise role of alveolar macrophages in 

asthma is yet to be fully elucidated. 
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Neutrophils are granulocytes most commonly associated with acute inflammatory 

responses and anti-bacterial functions. In the context of asthma, however, the 

neutrophilic phenotype is most commonly found in patients who do not appear 

to have allergy-driven disease [52].  As such, these patients have increased 

neutrophils in their BAL, rather than eosinophils, and they have been shown to 

be less responsive to ICS-treatment [53].  Additionally, patients with severe CS-

resistant asthma have increased airway neutrophilia, compared to normal 

controls or moderate asthma patients [54], and patients requiring mechanical 

ventilation for non-infectious asthma exacerbations have increased airway 

neutrophils compared to controls [55].  More recently, a role for Th17 cells has 

been suggested in patients with neutrophilic asthma, since Th17 cells are able to 

recruit neutrophils to the airway, driving non-Th2 inflammation (reviewed in 

[27]).  Whilst taken together these data demonstrate the presence of neutrophils 

in asthma inflammation, their role as pathogenic cells is less clear.  This issue is 

further confounded by the fact that many of the patients with non-eosinophilic 

asthma are on higher CS doses and in turn, CS have been shown to enhance 

neutrophil survival by preventing apoptosis [56, 57], hence suggesting that the 

increased neutrophil presence in the airway may simply reflect the use of CS in 

these patients.  Further research in this field is required to confirm whether the 

neutrophilic phenotype is a distinct inflammatory condition compared to 

eosinophilic asthma, and whether neutrophils drive this inflammatory response. 

Mast cells and basophils have also been implicated in allergy and asthma.  Both 

cell-types express the high affinity IgE receptor (FcεRI) and can bind IgE, leading 

to their degranulation, releasing numerous mediators such as histamine and 

serine proteases [58].  Additionally, both cells are sources of type-2 cytokines 

[58, 59] and have been shown to influence Th cell differentiation [60, 61].  

Interestingly, basophils have recently been suggested to have key APC-functions 

in vivo [61-63].  Furthermore, the presence of mast cells in the smooth muscle 

layer of bronchi in patients with asthma appears to correlate with airway 

hyperresponsiveness [64] and can influence smooth muscle cell functions [65, 

66] suggesting that cross-talk mechanisms between all the cell types in the lung 

may orchestrate the symptoms of asthma.  The interactions between these cell 

types are briefly summarised in Figure 1-1. 
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Figure 1-1 Summary of important cellular interactions in asthma 

Diagram depicting the important cross-talk between immune cells and non-immune cells in asthma, 
driven by their cytokine production.  Common triggers of asthma exacerbations such as viruses 
and antigens are shown as they can trigger this cytokine cascade in the lung. 
 

The inflammatory milieu induced by the immune cells and the release of their 

inflammatory mediators affect the stromal cells in the lung itself, driving the 

clinical features of asthma.  These are briefly described in Figure 1-2. 
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Figure 1-2 Summary of asthma pathogenesis and clinical features 

Diagram summarising the important interactions of the different tissues and cells types in asthma, 
leading to the characteristic symptoms of asthma. 
 

1.1.3.2 Novel cytokines in asthma 

The key role of epithelial cells in asthma has been increasingly explored.  In 

particular, disruption of the normal barrier function in asthmatic airways has 

been suggested as a self-perpetuating mechanism for chronic inflammation [67].  

Epithelial cells can produce a variety of chemokines and cytokines, and recently 

much interest has been placed on three stromal cell-derived cytokines in asthma 

pathogenesis, thymic stromal lymphopoeitin (TSLP), IL-25 (also known as IL-17E) 

and IL-33. 

TSLP was first described as a cytokine found in a murine thymic cell line and was 

described as a B cell and T cell growth factor [68].  However, its roles have 

extended to involve functions in basophil differentiation [69], DC activation 

driving Th2 polarisation [70] and mast cell activation [71].  Its levels are 

increased in patients with asthma, and levels of expression correlate with 
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disease severity [72].  More so, transgenic mice over-expressing TSLP in their 

airway epithelium develop spontaneous pulmonary inflammation with features 

resembling human asthma [73].  The evidence for an important role for TSLP is 

therefore substantial.  In fact, data described in chapter 4 and by others [74, 75] 

have demonstrated a role for TSLP in the functions of novel type 2 ILC 

populations. 

IL-25 is a recently described member of the IL-17 family of cytokines and it 

signals through both the IL-17RB and IL-17RA receptors [76]. Over-expression of 

this protein in mice in vivo leads to type-2 lung inflammation with eosinophilia, 

mucus hypersecretion and AHR as well as augmented IL-4, IL-5 and IL-13 levels 

[77, 78] suggesting a role for IL-25 in allergic disease.  In fact, neutralising IL-25 

in a mouse model of allergic airways inflammation blocked the onset of AHR and 

reduced pulmonary inflammation [79].  In addition to these findings, TSLP-

treated DC enhanced memory Th2 cells’ expression of IL-17RB, making them 

more responsive to IL-25.  IL-25, in turn, was able to increase type-2 cytokine 

production from Th2 cells and enhance their proliferation in vitro [80].  More 

recently, IL-25 has been shown to be able to induce ILC (see below) and a 

population of cells in gut lymphoid tissue named multipotent progenitor cells 

type 2 [81].  These cells have progenitor capacity and can drive type-2 immune 

responses in the gut.  Their role in the lung, if any, has not yet been 

determined. 

Finally, IL-33 is one of the most recently described members of the IL-1 family of 

cytokines [82]. The role of IL-33 in airway inflammation is the main focus of this 

thesis and will be discussed at length below. 

1.1.4 Animal models in asthma 

Much of what is currently known of the immunobiology of asthma is derived from 

murine models of type 2 allergic airway inflammation.  In an attempt to mirror 

human atopic asthma, these models often have the characteristic features of 

eosinophilic inflammation and AHR [83].  In order to induce these features, many 

models of allergic airway inflammation involve immune sensitisation with a 

protein, commonly chicken ovalbumin (ova), and subsequent challenges into the 

airway with the same protein [83]. The advantages of using ova are numerous, 
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most notably the fact that its epitope structure is well described and transgenic 

mice expressing ova-specific T cell receptor (TCR) are available.  More recently, 

numerous groups have employed antigens more relevant to human disease [74, 

84], including house-dust mite [85] and cockroach extracts [85], common 

allergens in human asthma, as well as chronic exposure of rodents to these in 

order to better replicate the disease [86, 87].  The sensitisation process is often 

via systemic administration of allergen.  However, small variations within 

protocols appear to give different results and hence the route of sensitisation 

appears to be important [88, 89].  Moreover, the addition of adjuvants can alter 

the phenotype.  The use of aluminium hydroxide (alum) enhances the 

sensitisation process via the activation of the inflammasome [90].  There are 

different methods for antigen delivery to the airway, but less invasive methods, 

such as intranasal or nebulised routes are favoured.   

Whilst variations in protocols can alter the outcomes of the models, so can the 

genetic background of the mice [89].  This is of particular importance since 

transgenic mice are often developed to investigate the contribution of a 

particular molecule or pathway and the genome of certain genetic backgrounds 

are easier to target [91]. Whilst the use of transgenic mice is a very attractive 

option, the impact of the genetic background used must be taken into account 

[91, 92].   

The mainstay method for measurement of airway inflammation has involved 

performing BAL and subsequent Romanovsky staining to provide differential cell 

counts.  Measurements of cytokine levels in the lungs are also commonly used.  

More recently, fluorescence-assisted cell sorting (FACS) techniques have been 

used to assess cell types, allowing more in-depth characterisation of the 

different cells involved in the inflammatory process. 

Numerous methods to measure AHR in mice have been developed.  The gold-

standard method remains invasive measurements of direct airway resistance 

using tracheal intubation of anaesthetised mice [93].  The description of a non-

invasive method measuring enhanced pause (Penh) [94], using whole body 

plethysmography (WBP), allowed many groups to perform AHR without the need 

for the expensive equipment and highly technical skills required for the gold-
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standard methods [95].  This technique has been shown to have limitations [96] 

and hence invasive methods remain the method of choice [93].  

Whilst informative, mouse models of allergic inflammation have received 

criticism over the last decade.  The main reason has been the variable effects of 

numerous drugs, developed using mouse models, in human trials (reviewed in 

[97]), leading to the suggestion that allergic airway inflammation induced in 

mice does not mimic asthma [97].  A well-described example of this is the anti-

interleukin (IL)-5 monoclonal antibody drug, Mepolizumab [98].  Treating mice 

undergoing an allergic airways disease model with anti-IL-5 therapy improved 

their inflammatory scores as well as AHR [99].  Initial trials in humans, however, 

failed to show clinically-significant improvements in disease [98].  Importantly 

however, since then, anti-IL-5 therapy has been shown to be effective in a 

subgroup of CS-resistant asthma patients [46, 47].  These findings demonstrate 

the relevance of mouse models of allergic inflammation, yet they stress the 

need for better patient phenotyping in order to be able to target therapies more 

successfully. 

Much effort has been put in creating better models of asthma that reflect other 

key aspects of the disease process, notably, the epithelial cell involvement, lung 

tissue remodelling and non-atopic inflammatory characteristics of human disease 

[83, 97].  These ongoing efforts, as well as knowledge of the important 

limitations of animal models, are ensuring that these methods of modelling 

disease remain a useful and key tool to enhancing the understanding of this 

heterogeneous disease.  

1.2 ST2 and IL-33 

1.2.1 ST2, in the beginning 

ST2 (suppression of tumourgenicity 2) (il1rl1), the IL-33 receptor, was first 

described by two separate groups working independently on a mouse fibroblast 

cell line, 3T3.  ST2 was induced in this cell line in the presence of serum, 

oncoproteins [100] and during proliferation [101].  Interestingly, whilst one 

group named the protein TI, they focused on its resemblance with human 

carcinoembryonic antigen [100].  Tominaga and colleagues named the protein 
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ST2, and described the similarity of the ST2 structure with that of the 

immunoglobulin (Ig) family [101].  More so, further assessment of the ST2 

protein amino-acid sequence led to the conclusion that ST2 is analogous to the 

extracellular portion of the murine interleukin-1 (IL-1) receptor [101]. However, 

no intracellular portion was found in this protein.  The discovery of ST2 was 

followed by the description of the human (IL1RL1) [102] and rat orthologs [103], 

both of which demonstrated the similarity of these proteins with the IL-1 

receptors.    

Proliferation in mouse fibroblasts was subsequently shown to produce two 

similar transcripts from the ST2/T1 gene, a short and more abundant form and a 

long, sparser form [104].  Furthermore, whilst the short form resembled the IL-1 

receptor (IL-1R), the longer protein was shown to have both an intracellular and 

extracellular domain suggesting that it could possibly induce an intracellular 

signal.  These have since been named soluble ST2 (sST2) and longer ST2 (ST2L), 

respectively.  From here therein, the ST2L form will be described as ST2.  The 

ligand for ST2 remained unknown until the discovery of IL-33 in 2005 by Schmitz 

et al [82].  In the intervening years, however, the understanding of the IL-

33/ST2 axis progressed with studies focusing on ST2. 

1.2.2 St2 gene 

The St2 gene is highly conserved amongst species, from Drosophila to humans.  

In mice, the St2 gene is located on chromosome 1, in close proximity to the IL-

1R-type 1 locus (IL1RI) [105].  In humans, the St2 gene is located on chromosome 

2 [106].  Similarly to the mouse gene, in humans, the St2 gene is localised within 

the IL-1R gene cluster, suggesting their close relationship [106].  

The product of the St2 gene has been found to have several splice sites and it 

has been shown to produce up to four different isoforms, in different species.  

The first description of St2 was shown to represent a 2.7kilobase (kb) messenger 

ribonucleic acid (mRNA) sequence [101], the product of which is now known as 

sST2.  Subsequently, it was shown that fibroblasts made another, longer form of 

ST2, encoded by a 5kb sequence which interestingly could be enhanced in 

leukocytes more readily than in fibroblasts [104].  This is now known as ST2L.  A 

further isoform, ST2V, was described in human cells as the third splice variant of 
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the St2 human gene [107].  This variant has been shown to be located bound to 

the plasma membrane of cells in organs such as stomach and colon [108], yet the 

function of the translated protein remains elusive.  Finally, during the cloning 

process in the search for the chicken sST2 and ST2L orthologs, a fourth variant 

was found.  The mRNA encoded a protein similar to the ST2L form, but lacking 

the transmembrane portion of the receptor and which appeared to be secreted 

from the cell [109].  The functional relevance of this splice variant is unknown 

and has to date not been identified in other species. 

1.2.3 ST2 protein and its expression 

As aforementioned, ST2 is a member of the Toll-like/Interleukin-1 receptor 

superfamily.  One of the key features of this family of receptors is their shared 

expression of a Toll-like/IL-1R (TIR) domain, a sequence of 200 amino acids with 

subtle differences between member subgroups.  The TIR domain can be further 

divided into three main functional sub-domains, which are highly conserved 

within the group; a central ‘core’ region, present in all IL-1R and Toll-receptors 

and two additional regions, which are critical for signalling [110].  ST2 also 

expresses an extracellular tri-Ig sequence [101], another hallmark of the IL-1R 

superfamily. Whilst both ST2 and sST2 express a tri-Ig sequence, sST2 does not 

express a TIR domain or a transmembrane domain.  The existence of two similar 

proteins encoding the same Ig-like sequence, of which only one appears capable 

of conferring an intracellular signal, mirrors that of other members of the IL-1 

family [111].  This suggests the possibility that sST2 could exist as a decoy 

receptor for the ST2 ligand whilst ST2L provided the signalling receptor. 

Whilst the search for the ST2 ligand continued, the expression of ST2 was 

identified in a large variety of cell-types.  These are summarised in Table 1-1. 
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Table 1-1 ST2-expressing cells 
Non-immune cells Mouse  Human Reference 
Fibroblast RNA and protein - [101, 112] 
Epithelial cell - RNA and protein [113, 114] 
Osteoblasts RNA - [115] 
Endothelial cell RNA and protein RNA and protein [113, 116, 117] 
Immune cells Mouse  Human Reference 
T helper 2 cell RNA and protein RNA and protein [118-122] 
Cytotoxic T cell RNA and protein  [123, 124] 
B cell RNA RNA and protein [118, 125, 126] 
NK cells Protein RNA [126, 127] 
Basophils Protein RNA and Protein [128-130] 
Monocyte RNA Protein [118, 131] 
Macrophage RNA and protein Protein [125, 132, 133] 
Mast cell RNA and protein Protein [82, 134] 
Eosinophil Protein RNA and protein [44, 135, 136] 
Dendritic cell RNA and protein - [137] 
Neutrophil RNA and protein - [138] 
Innate lymphoid cell Protein RNA and protein [139-141] 
 

1.2.4 ST2 function 

Since its discovery, ST2 has been found to be expressed in numerous cell types.  

However, the initial finding that ST2 was preferentially expressed in the CD4 Th2 

lymphocyte cell line D10, but not in Th1 cell lines, suggested a role for this 

receptor in type-2 immune responses [118].  Interestingly, Yanagisawa et al. 

demonstrated that the expression of ST2L was found in unstimulated D10 cells.  

However stimulation with phorbol ester and ionomycin induced secretion of 

sST2, suggesting differential regulation and roles for the two proteins.  

Thereafter, Xu et al. and Lohning et al demonstrated that ST2 was only found in 

type-2 cytokine-secreting T helper cells and not in interferon-γ-producing Th1 

cells [119, 120], further corroborating the possible role of ST2 in type-2 

immunity.  This possibility was also supported by the fact that during an ova-

induced allergic airway disease model, levels of ST2 expression were enhanced 

in the lung following antigen challenge [142]. 

Using blocking antibodies, the role of ST2 both in vitro [143] and in vivo [119, 

144, 145] was further assessed.  These studies supported the importance of ST2 

in Th2-driven models, whereby antigen-specific Th2 cell-mediated induction of 

eosinophilic airway inflammation could be blocked by anti-ST2 antibody [119, 

144].  Additionally, in mice undergoing a collagen-induced arthritis model, 

treatment with an sST2 monoclonal antibody appeared to attenuate disease by 

decreasing tumour necrosis factor (TNF)-α and IL-6 production [145]. 
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The evidence for a role for ST2 in type-2 immune-mediated diseases was also 

corroborated in human studies.  The selective expression of ST2 in activated Th2 

cells rather than in Th1 cells or regulatory T cells was also confirmed in human 

samples [122].  More so, sST2 was found to be elevated in the sera of asthmatic 

patients suffering of acute exacerbations [146] and in the bronchoalveolar 

lavage (BAL) of patients with eosinophilic bronchitis [147].  Additionally, 

mirroring the results in murine models, sST2 was found to be elevated in the 

sera of patients suffering a variety of autoimmune conditions, including 

rheumatoid arthritis (RA), when compared to healthy controls [148]. 

The generation of an St2 knockout (-/-) mouse greatly enhanced the 

understanding of the role of ST2 in vivo.  Two groups generated mutant mice 

lacking St2 [149, 150].  Hoshino et al. demonstrated that Th2 cells were able to 

differentiate normally in St2-/- mice [149].  However, further studies using a 

pulmonary parasite-driven model of granuloma-formation demonstrated that the 

function of the antigen-stimulated Th2 cells in ST2-deficient mice was impaired.  

Moreover, these Th2 cells produced reduced amounts of type-2 cytokines (IL-4, 

IL-5 and IL-13) in response to Schistosoma mansoni following both primary and 

secondary challenge with the parasite [150].  

The importance of ST2 in other inflammatory conditions was also ascertained 

using St2-/- mice.  Interestingly, macrophages from St2-/- mice produced greater 

amounts of inflammatory cytokines in vitro in response to bacterial 

lipolysaccharide (LPS) and IL-1 [132].  Additionally, mice deficient in ST2 were 

unable to develop resistance to endotoxin shock demonstrating an important 

role for ST2-induction in LPS-tolerance.  The exact mechanism whereby ST2 

regulated LPS-tolerance was not determined.  However, over-expression of ST2 

in macrophages blocked IL-1- and LPS-induced nuclear factor (NF) κB activation, 

an important signalling kinase in IL-1 and TLR responses.  This effect was found 

to be via ST2 sequestration of molecules upstream of NFκB, including myeloid 

differentiation primary response gene 88 (MyD88) [132].  These findings suggest 

ST2 may also play an important role in immune regulation during microbial 

infection. 
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1.2.5 IL-33, in the beginning 

The elucidation of the roles of ST2 in the immune system progressed 

substantially since its discovery in 1989.  However, the identification of its 

ligand, IL-33, was an important breakthrough in understanding the physiological 

role of this receptor.  Prior to its discovery as a ligand for ST2, IL-33 was 

described as a nuclear factor in high endothelial venules (NF-HEV) [151]. High 

endothelial venules are of interest as they form important entry and exit sites 

for lymphocytes homing in an out of secondary lymphoid tissue, and are lined 

with specialised endothelial cells [152].  Baekkevold et al. determined that NF-

HEV was localised to the nuclei of endothelial cells and that it expressed a 

putative deoxyribonucleic acid- (DNA) binding site [151].  Its function in the 

nucleus was, however, unclear.  A decade after this discovery, computational 

database searches for the ligand for ST2 found a match with NF-HEV and Schmitz 

et al. renamed it IL-33.  They went on to demonstrate that IL-33 was able to 

bind ST2L and to confer an intracellular signal, with NFκB activation [82].   

1.2.6 IL-33 gene and product 

IL33 was identified on human chromosome 9 with the murine counterpart being 

located on chromosome 19.  The mRNA sequences of IL33 and Il33 encode 270 

and 260 amino acid polypeptides respectively, producing full-length proteins of 

30 kiloDalton (kDa) and 29kDa mass, for the human and mouse cytokines, 

respectively [82].  Human and mouse orthologs are 55% identical at amino acid 

level [82].  Whilst it was initially proposed that IL-33 was cleaved to an active 

form from its full-length protein by caspase 1, in keeping with other IL-1 family 

members [82], this has since been disputed [153-156].  Schmitz et al proposed 

that IL-33 was cleaved by caspase 1 before the IL-1-like domain producing an 

18kDa mature IL-33 protein [82].  Cayrol et al, however, demonstrated that 

caspase 1 cleaved IL-33 within the IL-1-like domain [154], producing a 20-22kDa 

product.  Disruption by caspase 1 at this site rendered the ‘mature’ protein 

inactive.  More so, using immunoprecipitation methods, un-cleaved IL-33 was 

shown to bind ST2 and signal through NFκB [154].  In a further publication, it 

was demonstrated that the ‘mature’ cleaved form of IL-33 existed 

intracellularly, independently of caspase 1 activation, suggesting that processing 

of full length IL-33 was likely due to other proteases [156]. In keeping with this 
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finding, two groups demonstrated that full-length IL-33 was cleaved by caspase 3 

[153, 154], an apoptotic caspase [157].  Since IL-33 lacks a signal sequence for 

secretion, it was speculated that active, full-length IL-33 was released from cells 

following damage, and was in turn inactivated by apoptotic caspases during 

apoptosis [153, 154].  With this hypothesis in mind, IL-33 was considered an 

‘alarmin’ which could alert other cells of danger when released from necrotic 

cells in a ‘necrocrine’ manner [158].  More recent publications, however, have 

suggested that the maturation of IL-33 differs depending on the cell-type 

assessed.  Since IL-33 plays an important role in both innate and adaptive 

immunity (see later), the possibility that other innate cell-derived proteases 

could cleave IL-33 into biologically functional forms was assessed.  Looking 

specifically at neutrophil serine proteases, the investigators showed that both 

cathepsin G and neutrophil elastase were able to cleave IL-33 into smaller 

proteins of ~18-21kDa in size [155].  Interestingly, these ‘mature’ forms of IL-33 

appeared to induce increased cytokine production from an ST2-expressing mouse 

mast cell line, MC-9 [155] suggesting that neutrophil proteases played an 

important role in IL-33-mediated inflammation. 

The comparison of IL-33 with other well-described alarmins has been made, in 

particular, its similarity to high motility group box-1 (HMGB1), a nuclear factor 

that affects transcriptional regulation.  Similarly to IL-33, HMGB1 localises to the 

nucleus.  However, it is a potent alarmin when released from the cell [159].  

Studies assessing the release of IL-33 from fibroblasts have demonstrated that IL-

33 resides in the nucleus when first formed, but it subsequently translocates into 

cytoplasmic vesicles via nuclear pores where it remains until the cell is 

stimulated. Furthermore, mechanical strain allows IL-33 secretion from the 

living cell, a mechanism that is enhanced by microtubule disruption [160].  It 

therefore appears that, as well as resembling HMGB1, IL-33 also bears 

similarities with IL-1α, since both cytokines are responsive to mechanical stress 

[161]. 

1.2.7 IL-33 expression 

The expression of IL-33 in a variety of organs and tissues has been determined.  

Interestingly, whilst the expression of ST2 appeared to be tightly regulated and 

restricted, IL-33 appears to be expressed more widely [82].  IL-33 is expressed in 
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numerous organs (Table 1-2).  Additionally, individual cell-types have been 

assessed for their expression and production of IL-33 and these are also 

summarized below (Table 1-3). Whilst ST2 is expressed in numerous immune 

cells, IL-33 expression appears to be mainly in stromal cells.  

Table 1-2 Organs expressing IL-33 
Organ Mouse  Human  Reference 
Eye RNA and protein RNA and protein [162],[163] 
Liver RNA  - [164] 
Colon RNA and protein RNA and protein [165],[166-168] 
Small bowel RNA and protein - [114] 
Stomach RNA Protein [82, 169] 
Joints RNA and protein Protein [170-172] 
Lungs RNA and protein RNA and protein [82, 169, 173-176] 
Heart RNA and protein - [82, 116, 177] 
Skin RNA and protein RNA and protein [82, 125, 169, 178] 
Central nervous system RNA and protein RNA and protein [82, 179-181] 
Spleen RNA - [82, 164] 
Kidney RNA Protein [82, 169] 
Lymph node RNA RNA and protein [82, 151, 169] 
 
 
 
Table 1-3 Cell-types expressing IL-33 
Immune cells Mouse Human Reference 
Macrophages RNA and protein RNA [82, 164, 168, 174, 182] 
Dendritic cells RNA and protein RNA [82, 164, 182, 183] 
Mast cells RNA and protein - [182, 184] 
Non-immune cells Mouse Human Reference 
Epithelial cells - RNA and protein [82, 114, 133, 169] 
Smooth muscle cells RNA RNA and protein [82, 169, 175] 
Fibroblasts RNA and protein Protein [164, 177] 
Myofibroblasts - RNA and protein [166, 167] 
Endothelial cells RNA and protein RNA and protein [116, 151, 169, 185] 
Glial cells RNA and protein - [179] 
Osteoblasts RNA and protein RNA [115, 186] 
Adipocytes - RNA [187] 
 

1.2.8 IL-33 signalling 

As a member of the IL-1 superfamily, IL-33 shares numerous features with other 

members of this family, including induction of a similar signalling pathway.  The 

functional receptor for IL-33 is composed of a heterodimer of ST2 and the IL-1 

receptor accessory protein (IL-1RAcP) [188, 189]. Interestingly, whilst sST2 binds 

IL-33, soluble IL-1RAcP enhances this neutralising function, suggesting that the 

heterodimer binds IL-33 more efficiently [189] than sST2 alone.  As 

aforementioned, ST2 expresses a TIR domain.  Similar to IL-1 and IL-18, 

recruitment of the TIR adaptor MyD88 to the membrane-associated receptor 
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complex is critical for IL-33-induced cytokine production [190].  Following this 

step IL-1R associated kinase (IRAK) 1 and 4 are recruited.  This leads to the 

downstream phosphorylation of numerous signalling molecules including 

extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 and inhibitor of NF-κB-α 

(IκB-α), which in turn allows NF-κB activation [82].  NF-κB activation results in 

target gene activation.  Since a multiplicity of cells respond to IL-33 it is perhaps 

not surprising that cell-type variations exist in the signalling pathway of IL-33.  

One such example includes Th2 cells, whereby activation of signal transducer 

and activator of transcription 5 (STAT5) by IL-2 enhances IL-33-induced IL-13 

production [191].  Similarly, mast cells have been shown to require mast/stem 

cell growth factor receptor Kit (c-kit) stimulation with stem cell factor (SCF) for 

optimum IL-33 signalling [192] and signal amplification can be achieved by 

activation of the phosphatase calcineurin via concurrent antigen stimulation 

[193].  Calcineurin dephosphorylates the transcription factor nuclear factor of 

activated T cells (NFAT), allowing NFAT translocation to the nucleus and gene 

transcription [194].  Similarly, both endothelial cells [117] and fibroblasts [112] 

have been shown to depend on TNF receptor-associated factor 6 (TRAF6) 

phosphorylation for IL-33 signalling, a step which is not necessary for IL-33-

induced basophil activation [190] 
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Figure 1-3 IL-33 signalling pathway 
 

1.2.9 IL-33 function 

1.2.9.1 IL-33 as a nuclear factor 

IL-33 was found to be associated with heterochromatin in vivo and in live cells 

[185].  Heterochromatin has repressor functions within the nucleus, suggesting 

that IL-33-binding to it may be involved in these functions.  Over-expression of 

IL-33 in the nuclei of cells in which rates of transcription were measured with a 

luciferase reporter construct demonstrated that the presence of IL-33, but not 

control protein, in the nucleus decreased transcription [185].  More evidence for 

the role of IL-33 as a nuclear factor arose when Roussel et al. demonstrated 

striking similarity between a short form of IL-33 and the latency-associated 

nuclear antigen (LANA) in Kaposi sarcoma herpesvirus (KSHV) [195].  They 

demonstrated that this form of IL-33 was able to bind and compact chromatin 

using the acidic-pocket formed between a histone dimer, in the same way the 

Kaposi herpesvirus does [195].  This suggested that the virus’ ability to affect 

transcription might have evolved by molecular mimicry of IL-33.  Furthermore, 
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co-immunoprecipitation of cytosolic and nuclear compartments of cells 

transfected with IL-33 demonstrated that IL-33 was able to interact with p50 and 

p65 NF-κB subunits.  Moreover, IL-33 binding to the p65 subunit, prevented its 

association with DNA, hence affecting gene transcription and the function of NF-

κB as a transcription factor [196].  This confirms the function of IL-33 as a 

repressor of transcription.  Interestingly, Sanada et al. demonstrated that IL-33 

inhibited the pro-hypertrophic effects of angiotensin in fibroblasts by inhibiting 

their activation of NF-κB [177] and it is possible that the mechanism described 

above is accountable for this effect. 

1.2.9.2 IL-33 as a classical cytokine 

As discussed above, upon release from cells, IL-33 is biologically active both as a 

full-length protein as well as in its cleaved form.  IL-33 functions as a classical 

cytokine driving a variety of responses depending on the cell-type assessed.  The 

effects of IL-33 on these cell types are detailed below. 

1.2.9.2.1 IL-33 and innate cells 
As described in Table 1-1, numerous cell-types express ST2 and hence IL-33 can 

affect both the innate and the adaptive immune systems.  Within the innate 

immune system, the role of IL-33 in macrophage function has been assessed.  In 

vitro treatment of macrophages with IL-33 enhances their response to LPS via an 

increase in their expression of Toll-like receptor (TLR) 4 [197]. As 

aforementioned, similarly to the dichotomous description of the Th1 and Th2 

phenotypes of CD4 T cells, a comparable paradigm can be applied to 

macrophage polarisation.  Classically-activated macrophages produce IL-1β and 

are able to eliminate phagocytosed pathogens through oxidative burst.  This type 

of macrophage is induced by IFNγ.  Type-2 cytokines such as IL-4 and IL-13 

induce an alternatively-activated phenotype on macrophages, with reduced IL-

1β production but enhanced major histocompatibility complex (MHC) II 

expression [198].  These alternatively-activated macrophages (AAM) have been 

implicated in tissue repair [198] but they also appear to contribute to airway 

inflammation in an allergic airways disease mouse model [133]. Importantly, in 

combination with IL-4 or IL-13, IL-33 enhances differentiation of macrophages to 

an AAM phenotype [133].  Interestingly, in vitro treatment of human monocytes 

with IL-33, in the presence of macrophage-colony stimulating factor (M-CSF), a 
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monocyte growth factor, induces their differentiation into functional osteoclasts 

[131].  This phenomenon links inflammation with the development of 

osteoporosis, since bone resorbtion by osteoclasts drives this disorder [199].   

DC have also been shown to express ST2 and in vitro stimulation of DC with IL-33 

induces cytokine and chemokine production, as well enhancing the expression of 

co-stimulatory molecules such as OX40L [200].  Interestingly, OX40-OX40L 

interactions have been implicated in allergic airways disease and asthma [201].  

IL-33-stimulated DC co-cultured with naïve Th cells promote atypical Th2 cells 

which produce IL-5 and IL-13, but no IL-4 [137].  In vivo, IL-33-activation of DC 

has been shown to be important to the induction of allergic airways 

inflammation in a mouse ova-induced model [200] since ST2-/- mice have 

reduced airway inflammation as well as impaired DC activation and migration.  

Mast cells express ST2 highly, making them exquisitely sensitive to IL-33 

stimulation [82, 202].  In vitro stimulation of CD34-expressing cells (a marker of 

haematopoietic precursor cells) with IL-33 enhanced mast cell development and 

induced IL-13 production from mature mast cells [202].  Interestingly, the effect 

of IL-33 on mast cell cytokine production is independent of IgE binding of FcεRI 

[134, 203], yet IL-33 stimulation is insufficient to induce either human or mouse 

mast cell degranulation [134, 203].  Notably, the combination of IgE and IL-33 

synergistically enhances both mast cell and basophil cytokine production [129]. 

Murine basophils treated with IL-33 in vitro secrete inflammatory cytokines, 

including IL-6, and histamine [128] and mice treated with IL-33 in vivo have 

increased numbers of basophils in their bone marrow [128].  

One of the most notable effects of treating mice with IL-33 in vivo is a potent 

induction of systemic eosinophilia and splenomegaly [82].  Eosinophils have 

consequently become a hallmark of IL-33-induced inflammation.  In vitro 

stimulation of mouse eosinophils with IL-33 induces IL-6 and IL-13 production as 

well as thymus and activation regulated chemokine (TARC) release [44].  

Additionally, IL-33 treatment of bone marrow haematopoietic precursor cells 

with IL-33 induces eosinophil differentiation [44].  In vivo, IL-33-activated 

eosinophils drive macrophage polarisation to AAM phenotype, leading to airway 

inflammation [44].  Human eosinophils also respond to IL-33 in vitro [130, 204], 
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leading to cytokine production, an effect that is enhanced by combining IL-33 

with either IL-1β or IL-18 [204]. 

1.2.9.2.2 IL-33 and adaptive immune cells 
Since ST2 had initially been described as a stable marker for Th2 cells [120, 

205], much research has focused on the effects of IL-33 on T cells.  The culture 

of CD4 T cells with IL-33 in vitro, in the presence of antigen, induces an atypical 

subtype of Th2 cells, which express IL-5 and IL-13, but fail to express IL-4 [173].  

Interestingly, this is the same phenotype of Th cell obtained by culturing naïve 

CD4 cells with IL-33-stimulated DC [137].  Human polarised Th2 cells also 

produce a variety of cytokines in response to IL-33 in vitro. Most notably, 

however, IL-4 is not detected in these cultures [126].  Interestingly, IL-33 also 

appears to act as a chemoattractant for ST2-expressing Th2 cells [206], similar 

to its effects on neutrophils [172].   

The importance of the cytokine milieu in defining CD4 T cell profiles has 

increasingly been understood and importantly, Blom et al. demonstrate that a 

combination of transforming growth factor (TGF)-β with IL-33 induces IL-9 

expression and secretion from Th2 cells [207]. This suggests that the effects of 

IL-33 on T cells can vary depending on the cytokine environment.   

Whilst the effect of IL-33 on T cells has mainly focused on its effects on CD4 T 

cells, recently, CD8 T cells have also been shown to be IL-33-responsive.  

Somewhat unexpectedly, cytotoxic CD8 T cells (Tc) express ST2 in a T-box 

expressed in T cells (T-bet)-dependent manner[124].  T-bet is a transcription 

factor which has been shown to be vital for Th1 development and IFN-γ 

expression [208].  Additionally, IL-33 synergises with both IL-12 and T cell 

receptor (TCR) activation in vitro enhancing Tc1 cell IFN-γ production [124].  

This is particularly interesting since IFN-γ is an important cytokine for anti-viral 

immunity [209] and IL-33 has been shown to be increased in alveolar 

macrophages and epithelial cells during lung viral illness [141, 174], suggesting a 

mechanistic link for IL-33 in virus immunity.  Intriguingly however, exposing mice 

to the TLR3 ligand polyinosinic:polycytidylic acid (poly i:c), which resembles 

viral double-stranded RNA, prior to IL-33 exposure, impairs CD8 T cell up-

regulation of ST2 and consequently impairs the synergy observed between IL-12 

and IL-33 in CD8 IFN-γ production [210]. 
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B cells can also express ST2.  The B1 subset of cells has been shown to express 

ST2 and to produce IgM, IL-5 and IL-13 in response to IL-33 in vitro [211].  

Additionally, IL-33 administration in vivo enhances B1 cell numbers in an IL-5-

dependent manner and IL-33-activated B1 cells are sufficient to exacerbate 

cutaneous inflammation in a contact-dermatitis model [211].  Additionally, IL-33 

has been shown to enhance B-cell immunoglobulin class-switch to IgE in vivo in 

an IL-4-dependent manner [212]. 

1.2.9.2.3 IL-33 and type-2 innate lymphoid cells (ILC) 
In the last two years, the discovery of novel IL-33-responsive subsets of innate 

lymphoid cells has invigorated the field of IL-33.  The first description of these 

cells arose from the assessment of a population of non-B, non-T cells found in 

intra-abdominal, peri-adipose lymphoid tissue, which the authors called fat-

associated lymphoid clusters (FALC).  These cells were found to express ST2 and 

they were able to produce large amounts of type-2 cytokines (IL-5 and IL-13) in 

response to IL-33 both in vitro and in vivo [213].  They relied on IL-7 for their 

survival in vitro and interestingly, they were found to support B1 cell 

proliferation in vivo.  They were therefore named natural helper cells (NHC) 

[213].  Their importance in the immune system was determined by performing 

an adoptive transfer into mice lacking the common-γ chain (γc) receptor and 

Rag2 genes (γc-/-xRag2-/-), which lacked FALC.  Using a model of Nippostrongylus 

infection, NHC were found to be important for parasite clearance [213]. 

Shortly after this discovery, two different groups nearly simultaneously, yet 

using different reporter mice, identified IL-33-responsive innate lymphoid cells 

that were devoid of common lineage markers [139, 214] in the gut.  Whilst the 

MacKenzie lab used IL-13 reporter mice [139], the Locksley laboratory identified 

this novel population using an IL-4-reporter mouse [214].  The use of these mice 

allowed the identification of IL-13- or IL-4-expressing cells, respectively, by their 

expression of green fluorescence protein (GFP) inserted at the promoter regions 

of these genes.  Since they were first described in IL-13-reporter mice, the 

McKenzie group named these cells nuocytes (Nu=13th letter of the Greek 

alphabet) [139].  They demonstrated that nuocytes expanded in vivo in response 

to IL-33 and IL-25.  Additionally, they showed that in a model of helminth 

infection (N. brasiliensis) nuocytes were the main source of IL-13.  More so 

nuocytes were sufficient to drive worm expulsion in this model, when they were 
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transferred into Il-17R-/- x St2-/- mice, in an IL-13-dependent manner [139].  

Similarly to NHC, these cells were also shown to proliferate in response to IL-7 in 

vitro and their response to IL-33 stimulation was similar to that of NHC, with 

increased production of IL-5 and IL-13 [139].  These findings were similar to 

those described by Price et al., since they demonstrated that these lineage 

negative lymphoid cells were key for worm expulsion and were the main source 

of type-2 cytokines in this model.  They named the cells innate type-2 helper 

cells (Ih2), which were shown to be systemically dispersed in mice treated with 

IL-33 i.p. [214].  Ih2, however, did not expand in response to γc-binding 

cytokines such as IL-2, IL-4, IL-9 IL-13, IL-15 or IL-21 [214].  Interestingly, 

transcriptome analysis of Ih2 compared to Th2 cells and basophils, clearly 

demonstrated that these cells were a distinct, novel cell type [214].  Whilst 

neither nuocytes and Ih2 expressed common lineage markers, they did share the 

expression of a small number of surface markers, suggesting that these two cell 

types were very similar and possibly the same cell type.  Interestingly however, 

Ih2 cells did not express the stem cell marker, stem cell antigen (Sca) -1 [214], 

which nuocytes did [139]. 

In these initial seminal studies, the role of ILC was mainly studied in the gut.  

Since Price et al. had demonstrated that these cells were systemically dispersed, 

the focus shifted onto the role of ILC in the lung.  In a highly informative paper, 

Chang et al. demonstrated that IL-33 was produced by alveolar macrophages in 

response to lung influenza infection, which in turn stimulated the expansion of a 

population of lineage negative ILC [174].  Additionally, these cells were an 

important source of type-2 cytokines in this model and were indeed sufficient to 

drive influenza-induced airway hyperresponsiveness, using an adoptive transfer 

model into Il-13-/- mice [174].  This paper addressed the important issue of virus-

induced asthma exacerbation [215] and suggested that both IL-33 and ILC were 

key to the mechanism for this phenomenon. 

Further evidence supporting the pathogenic role of ILC in the lung was 

demonstrated in mouse models of glycolipid-[216], ova-[217] and papain-induced 

[218] airway inflammation models.  Interestingly, ILC were shown to synergise 

with IL-33 in combination with other stromal-cell-derived cytokines, such as 

TSLP, to produce type-2 cytokines [218], indicating the importance of the 
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cytokine milieu in the activation of ILC cytokine production.  In addition, 

Wilhelm et al. demonstrated, using IL-9 fate-reporter mice, that ILC were the 

main source for IL-9 in vivo in a papain-induced model of inflammation [219].  

They also demonstrated that IL-2 was essential to drive ILC IL-9 production in 

this model, firmly linking ILC responses with the adaptive immune system in the 

lung [219]. 

The importance of type-2 immune responses in tissue repair has been 

extensively described (reviewed in [220]).  Importantly, a role for ILC in tissue 

homeostasis and repair has been described.  In fact, the Artis lab demonstrated 

that, using a similar lung influenza model of inflammation as Chang et al [141], 

ILC were necessary to drive adequate epithelial repair following a viral insult. 

ILC-mediated lung repair was in part via the production of amphiregulin, a 

member of the epithelial growth factor family [221].  By treating Rag2-/- mice, 

lacking B and T cells, with a CD90.2 antibody, this group attempted to eliminate 

all ILC in these mice, since ILC express this marker [139, 213].  Subsequently, 

some of these mice had their ILC population reconstituted by adoptive transfer 

of CD90.1+ ILC.  The mice were then used in the aforementioned influenza-

driven lung inflammation model and pulmonary repair was measured.  Lung 

function and repair was severely impaired in the mice devoid of all ILC and these 

functions were rescued with the ILC transfer [219], consistent with a 

requirement for ILC in post-viral lung repair. 

Much effort has focused on identifying phenotypes of these innate cells and 

whilst they all lack expression of common lineage markers, express ST2 and 

respond similarly to IL-33-stimulation, the question of whether they are indeed 

the same cell-type at different stages of differentiation or different cell-types, 

remains.  NHC have been shown to be of lymphocytic origin, since they are 

dependent on fms-like tyrosine kinase-3 (Flt3) expression for their development 

[222].  Flt3 is a cytokine receptor, that binds Flt3 ligand, and is highly expressed 

in bone marrow lymphoid progenitors as well as rare myeloid progenitors with 

lymphoid potential [223].  Yang et al. demonstrated, not only that Flt3 

expression was essential for NHC development, but that these cells could arise 

from lymphoid-primed multipotent lymphoid progenitors (LMMP) or common-

lymphoid progenitor (CLP) cells [222].  The finding that nuocytes also arise from 

CLP cells in the bone marrow [224] further supports the fact that all these novel 
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cells are in fact one cell-type.  Interestingly, Wong et al. demonstrated that 

nuocyte development required cell-intrinsic expression of the transcription 

factor retinoic-orphan receptor (ROR)-α [224].  This differentiated the 

development of nuocytes from IL-22-producing gut ILC which are dependent on 

ROR-γ expression [225].  An interesting finding from a large genome-wide 

association study (GWAS) looking at asthma-associated genes has highlighted not 

only the importance of IL33 in asthma, but to a lesser degree of association, 

RORA, suggesting that ILC may indeed be key players in asthma development.  

Perhaps unsurprisingly, given their type-2 immune phenotype, nuocytes [139], 

NHC [213] and Ih2 [214] all express the Th2 key transcription factor GATA-

binding transcription factor(GATA)-3 [226], however, the role of GATA-3 in ILC 

development and function is yet unknown.  A further transcription factor, 

inhibitor of differentiation 2 (Id2), which has roles in peripheral lymphoid tissue 

and natural killer cell development [227], has been shown to be important in ILC 

development, since ILC are absent in Id2-/- mice [141]. 

The above studies were all performed in mice.  However, cells resembling 

murine type-2 ILC have been described in humans [140, 141].  These cells have 

been shown to respond to IL-33 to produce IL-5 and IL-13 [140, 141] and have 

been detected in resting lung tissue [141] and foetal gut, as well as nasal polyps 

[140].  The presence of ILC in the nasal polyps of allergic patients further 

supports their role in allergy-driven inflammation.  The description of IL-13+ 

cells, in lung biopsies of severe asthmatics, which are negative for T cell, mast 

cell and eosinophil markers suggests the possibility that these cells could be 

type-2 ILC [72].  Their increased number in severe asthmatic lungs compared to 

mild asthma or healthy control lungs enticingly suggest that these cells may be 

mediators or markers of severe, rather than mild, asthma [72] but further 

characterisation of these cells is required. 

1.2.10 IL-33 in disease 

Important roles for IL-33 in disease are increasingly being described, 

demonstrating its function can be deleterious or protective, depending on the 

disease process involved. 
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1.2.10.1 Allergy and asthma 

The discovery that IL33 is an important gene associated with asthma in two 

separate GWAS studies has conclusively linked this cytokine with this condition 

[228, 229].  IL33 polymorphisms have also been associated with allergic disease 

[230]. In addition to this evidence, however, numerous studies have assessed the 

importance of the ST2-IL-33 axis in allergy and allergic airways disease. 

IL-33 levels are increased in the lungs of asthmatic patients, compared to 

healthy controls [175, 176] and these levels appear to positively correlate with 

disease severity [176].  More so, increased levels of IL-33 have been found in the 

sera of patients with allergic pollinosis [230].  Furthermore, the mRNA levels of 

IL33 in nasal biopsies of allergic individuals, unlike those of IL5, were shown to 

remain elevated during antigen exposure, despite prophylactic antihistamine 

treatment [231]. 

As discussed previously, direct inoculation of IL-33 into mouse airways induced 

many changes associated with atopic asthma, namely eosinophilia, AHR and 

mucus hypersecretion [232].  This effect did not require adaptive immune 

responses and this led to subsequent studies assessing the roles of various innate 

cells’ contributions to allergic airway inflammation in the context of IL-33-

mediated polarisation or stimulation [44, 133, 200, 233]. More recently, in a 

model of allergic rhinitis, Il13-/- mice sensitised to pollen failed to mount both an 

early (sneezing) or late (basophilic and eosinophilic inflammation) response to 

the antigen challenge [234].  Whilst IL-33 induced profound eosinophilic 

inflammation in the absence of B or T cells, it also enhanced the adaptive 

immune response.  Thus, IL-33 has been shown to induce a Th2 phenotype on 

antigen-specific T cells, which can exacerbate allergen-driven lung disease in 

mice [173].  

It is perhaps unsurprising that IL-33 can influence the pathobiology of both 

allergy and asthma as most of the cells implicated in these diseases express the 

IL-33 receptor, ST2 (Table 1-1).  Recent studies into IL-33 biology have 

demonstrated its role in the induction of a novel cell type, ILC, in the lung and 

their function in allergy has been discussed previously.  Interestingly, prior to 

the discovery of ILC, circulating haemopoeitic progenitor CD34+ cells were shown 
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to respond vigorously to IL-33 by producing large amounts of type-2 cytokines in 

vitro [235].  Additionally, these cells could be found in the sputa of allergic 

individuals and their number was enhanced within 48 hours of antigen challenge 

[235], suggesting their involvement in antigen-driven inflammation.  Similarly, 

IL-33-responsive cells resembling ILC have been described in the nasal polyps of 

patients with allergic rhinitis in increased numbers compared to healthy controls 

[140]. 

Infections are common triggers for asthma exacerbations and a role for 

macrophage-derived IL-33 in viral induced AHR has been shown in mouse studies 

[174].  More so, IL-33 has been shown to modulate cytotoxic T cell (CD8)-

mediated anti-viral responses by either enhancing them [123, 124] or hindering 

them [210], depending on the concurrent immune stimuli.  Additionally, fungal 

and bacterial infections can also precipitate deteriorations in asthma and IL-33 

has been implicated in the response to these pathogens too (Table 1-4).  

Sensitisation to the fungal pathogen Alternaria alternata has been associated 

with increased asthma severity and worsening of asthma symptoms have been 

reported when its environmental spore-counts are high [236].  It is therefore 

interesting that this same pathogen induces ILC via IL-33-production in the lungs, 

which drive pulmonary inflammation in a mouse fungus-induced allergy model 

[74]. 

The studies so far suggest a mainly deleterious role for IL-33 in the lung. 

However, IL-33-induced ILCs have also been implicated in tissue repair and 

homeostasis [141], as discussed earlier.     

1.2.10.2 Other diseases 

The role of the IL-33/ST2 axis has been investigated in numerous other diseases, 

a summary of some of these can be found in Table 1-4. 
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Table 1-4 Disease-specific roles of IL-33/ST2 
Disease Role of IL-33 Reference 
Cardiovascular	
  
disease	
  

• IL-­‐33	
  is	
  highly	
  expressed	
  in	
  endothelial	
  cells	
  
• sST2	
  is	
  a	
  biomarker	
  of	
  heart	
  failure	
  (HF)	
  
• sST2	
  levels	
  correlate	
  with	
  risk	
  of	
  developing	
  HF	
  
• IL-­‐33	
  is	
  cardioprotective	
  on	
  human	
  cardiac	
  

fibroblasts	
  and	
  antihypertrophic	
  in	
  mouse	
  
myocardial	
  infarct	
  (MI)	
  models	
  

• IL-­‐33	
  reduces	
  foam	
  cell	
  and	
  artherosclerotic	
  
plaque	
  formation	
  

[116,	
  151,	
  
177,	
  237-­‐
240]	
  

Parasite	
  infection	
   • Exogenous	
  IL-­‐33	
  aids	
  parasite	
  clearance	
  
• IL-­‐33	
  induces	
  ILC	
  which	
  promote	
  parasite	
  

clearance	
  
• Parasite	
  epithelial	
  damage	
  induces	
  IL-­‐33	
  

production	
  via	
  trefoil	
  factor	
  2	
  
• St2-­/-­	
  mice	
  have	
  increased	
  inflammation	
  in	
  

Toxoplasma	
  gondii	
  encephalitis	
  

[139,	
  165,	
  
181,	
  213,	
  
214,	
  241,	
  
242]	
  

Bacterial	
  infection	
   • IL-­‐33	
  enhances	
  macrophage	
  response	
  to	
  LPS	
  
• IL-­‐33	
  improves	
  neutrophil	
  migration	
  to	
  sites	
  of	
  

sepsis	
  
• Improves	
  inflammation	
  and	
  bacterial	
  clearance	
  in	
  

infective	
  keratitis	
  model	
  

[138,	
  163,	
  
197]	
  

Colitis	
   • Increased	
  IL-­‐33	
  expression	
  in	
  colonocytes	
  in	
  
ulcerative	
  colitis	
  (UC)	
  

• IL-­‐33	
  levels	
  reduced	
  by	
  treating	
  UC	
  with	
  anti-­‐
tumour	
  necrosis	
  factor	
  (TNF)	
  -­‐α	
  antibody	
  

• Colitis	
  model	
  is	
  more	
  severe	
  in	
  Il-­33-­/-­	
  mice	
  
• Enhanced	
  IL-­‐33	
  levels	
  in	
  TGF-­‐β-­‐deficient	
  mice	
  

with	
  colitis	
  leading	
  to	
  worsened	
  pathology	
  

[114,	
  168,	
  
243,	
  244]	
  

Arthritis	
   • Exogenous	
  IL-­‐33	
  exacerbates	
  inflammation	
  in	
  
murine	
  arthritis	
  models	
  	
  

• IL-­‐33-­‐enhanced	
  arthritis	
  inflammation	
  is	
  anti-­‐TNF	
  
therapy-­‐responsive	
  

• Elevated	
  IL-­‐33	
  levels	
  measured	
  in	
  sera	
  and	
  
synovial	
  fluid	
  of	
  rheumatoid	
  arthritis	
  patients	
  

• IL-­‐33	
  is	
  also	
  increased	
  in	
  ankylosing	
  spondylitis	
  
• IL-­‐33	
  levels	
  correlate	
  with	
  disease	
  activity	
  in	
  

humans	
  

[170-­‐172,	
  
245,	
  246]	
  

Nervous	
  system	
  
disorders	
  

• Increased	
  IL-­‐33	
  expression	
  in	
  activated	
  glial	
  cells	
  	
  
• Increased	
  IL-­‐33	
  levels	
  in	
  experimental	
  

encephalitis	
  
• IL-­‐33	
  gene	
  polymorphisms	
  are	
  associated	
  with	
  

Alzheimer’s	
  disease	
  
• Exogenous	
  IL-­‐33	
  attenuates	
  a	
  mouse	
  encephalitis	
  

model	
  by	
  promoting	
  AAM	
  differentiation	
  

[179-­‐181,	
  
247,	
  248]	
  

 

1.3 Rapamycin and the mammalian target of rapamycin 
(mTOR) 

1.3.1 In the beginning  

Rapamycin is a macrolide antibiotic that was first discovered in Easter Island 

(Rapa Nui) in 1975.  It was extracted from Streptomyces hygroscopicus and was 

initially described as an antifungal [249].  Rapamycin was subsequently found to 

have immunosuppressive effects that were initially attributed to its inhibitory 
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effect on cell cycle progression [250]. The search for a mechanism for this effect 

led to the discovery of the target of rapamycin (TOR) in Saccharomyces 

cervesiae [250].  Mutations in TOR1 and TOR2 genes led to blocking of the 

effects of rapamycin on growth cycle arrest in these cells, demonstrating the 

importance of these genes for rapamycin function.  This discovery was followed 

subsequently by the detection of the mammalian ortholog of TOR, named 

mechanistic (or mammalian) target of rapamycin (mTOR) [251], an atypical 

serine-threonine kinase of the phosphoinositide 3-kinase (PI3K) family [252].  

Whilst in the fungus two genes encoded the targets of rapamycin [250], only one 

gene was found for the mammalian equivalent [251]. The single MTOR gene 

encodes a protein that signals through two distinct complexes, mTOR complex 1 

(mTORC1) and 2 (mTORC2). mTORC1 contains the rapamycin-sensitive 

scaffolding protein regulatory-associated protein of mTOR (raptor) [253], 

mammalian lethal with Sec13 protein 8 (mLST8), proline-rich AKT substrate 

40kDa (PRAS40) and DEP-domain-containing mTOR-interacting protein (Deptor) 

[254].   mTORC2 instead contains rapamycin-insensitive companion of mTOR 

(Rictor) [255], along with mammalian stress-activated protein kinase interacting 

protein (mSIN1) and protein observed with Rictor-1 (Protor-1) [254].  

Additionally, mTORC2 shares two proteins with mTORC1, mLST8 and Deptor 

[255, 256] (Figure 1-4).   
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Figure 1-4 mTOR complexes 
 

mTORC1 has numerous substrates, however, the best understood are ribosomal 

protein S6 kinase (S6K) and eukaryote translation initiation factor 4E-binding 

protein 1 (4E-BP1) [257].  S6K phosphorylation by mTORC1 induces 

phosphorylation of the eukaryotic initiator factor 4B (eIF4B), which in turn 

allows initiation of translation via the activation of eukaryotic initiator factor A 

(eIF4A) [258].  4E-BP1 is a repressor of translation, which mTORC1 

phosphorylates, inhibiting its function and allowing translation to occur [259].  

By these two mechanisms, mTORC1 can alter protein synthesis and signalling 

pathways.   

Rapamycin binds the cytoplasmic protein FK506-binding protein of 12kDa 

(FKBP12) [260] forming a complex which specifically binds to mTORC1, 

weakening its structural integrity and abolishing its ability to phosphorylate its 

substrates [261].  Interestingly, recent cryo-electron-micoscopy of the mTORC1 

crystal structure has demonstrated that rapamycin interference with this 

complex’s stability affects its ability to phosphorylate 4E-BP1 and S6K 

differently.  In fact, Yip et al propose that the FKBP12-rapamycin complex 

prevents large molecules such as S6K from accessing the mTOR active site, 
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whilst complete dissociation of raptor from mTOR inhibits 4E-BP1 

phosphorylation [262].  Whilst initially mTORC2 was found to be resistant to 

inhibition by rapamycin [255], it was later demonstrated that prolonged 

treatment with rapamycin inhibited mTORC2 assembly and therefore could also 

inhibit mTORC2-driven functions in certain cell types [263].  Despite this finding, 

the sensitivity of rapamycin for mTORC1 inhibition in short-term assays has been 

since been thoroughly tested and confirmed [264].  

1.3.2 mTOR and the immune system 

Our understanding of the function of mTOR has, to a great extent, come from 

experiments studying the biological effects of rapamycin.  They will therefore be 

discussed in combination. As aforementioned, one of the first roles described for 

mTOR was its function in cell cycle regulation [251].  It was initially believed 

that rapamycin-induced inhibition of B cell and T cell proliferation was sufficient 

to explain the immunosuppressive effects seen with this drug [265].  Since then 

however, mTOR has been shown to regulate numerous cellular pathways, 

demonstrating the complexity of the role of mTOR in immune regulation.  The 

use of both rapamycin and gene-targeting techniques has greatly enhanced the 

understanding in this field.   

1.3.2.1 mTOR in the adaptive immune system 

Much of the understanding of the importance of mTORC1 activation in the 

immune system originates from studies on T cells.  mTORC1 is activated in 

numerous pathways in the adaptive immune system, including TCR activation, an 

effect which is further enhanced by T cell activation of other co-stimulatory 

molecules such as CD28 or OX40 [266].  Additionally, mTORC1 activation has 

been shown to be essential in the differentiation of CD4 helper T cells into their 

effector subsets.  Whilst complete deletion of mTOR leads to defects in the 

differentiation of all Th subsets, mTORC1 appears to be essential for Th1- and 

Th17- cell differentiation, but not Th2 polarisation [267].  Selective deletion of 

Rictor in mouse T cells and the consequent abrogation of mTORC2 functions 

prevents Th2 polarisation, demonstrating the non-redundant functions of the 

two distinct mTOR complexes [267].  In addition, mTORC1 is activated by a 

variety of cytokines that influence T cell activation and differentiation.  mTOR is 
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activated during IL-2 stimulation of Th cells, allowing T cell proliferation [268], 

whilst IL-7-induced mTOR activation prevents T cell atrophy and maintains naïve 

T cell size [269].  Interestingly, whilst mTORC1 activity appears not to be 

involved in Th2 differentiation, its activation is essential for IL-4-induced 

proliferation of Th2 cells, since Th2 pre-treatment with rapamycin blocked the 

proliferative effect of IL-4 [270].  The Th1 cytokine, IFNγ, also signals through 

the mTOR-S6K pathway to induce gene transcription [271].   

Interestingly, whilst rapamycin inhibits naïve T cell proliferation, it selectively 

allows the proliferation of regulatory T cells (Treg) [272].  Whilst Sauer et al. 

demonstrated that this was a consequence of rapamycin inhibition of TCR 

signalling through mTOR, which in turn enhanced the expression of the Treg key 

transcription factor, Forkhead box P3 (Foxp3) [273], Haxhinasto and colleagues 

showed that the induction of FoxP3 in Th cells by TGFβ was under the control of 

Akt and mTOR [274].   

The effects of mTOR on cytotoxic CD8 T cell activation have also been assessed.  

In particular, mTORC1 activation has been shown to be important in 

orchestrating anti-viral responses induced by CD8 T cells.  Interestingly, 

administration of low doses of rapamycin enhanced CD8 T differentiation to a 

memory phenotype in a viral-induced in vivo model, demonstrating the 

importance of mTOR in driving effector CD8 T cell fate decisions [275].  By 

contrast, high doses of rapamycin diminished anti-viral responses [269]. The 

effect of IL-12 on CD8 T cells on the upregulation of the transcription factor T-

bet is also mTOR-dependent.  Rao et al. reported that rapamycin-treatment of 

CD8 T cells stimulated with IL-12 inhibits T-bet expression in favour of 

eomesodermin [276], an important transcription factor involved in memory CD8 

T cell differentiation [277]. 

Less is known about the role of mTOR in B cell activation, however studies 

looking at the role of Sin1, an essential component of mTORC2, demonstrate 

that its deletion in haematopoietic cells prevents the normal development of B 

cells.  The lack of mTORC2 activity disrupts the ability of immature B cells to 

downregulate Rag expression, preventing them from maturing into pre-B cells 

[278].  On the other hand, deletion of Tuberose sclerosis complex (Tsc) 1, an 

mTORC1 inhibitor, leads to enhanced mTORC1 activation which partially blocks B 
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cell maturation and prevents marginal zone B cell development, suggesting that 

controlled mTORC1 activation is essential for this process [279].  These results 

must be interpreted with caution since deletion of Tsc1 and Tsc2 can also 

enhance mTORC2 activation [280]. 

1.3.2.2 mTOR and the innate immune system 

The role of mTOR in DC function has been extensively investigated via the use of 

rapamycin.  The maturation of DC appears to be regulated by rapamycin, since 

blocking mTOR activation both in vitro and in vivo reduced DC proliferation and 

maturation [281].  Additionally, rapamycin has been shown to regulate the 

functions of different subsets of mature DC too.  Haidinger and colleagues 

showed that rapamycin treatment of human monocyte-derived and myeloid DC 

inhibited their ability to produce pro-inflammatory cytokines in response TLR 

stimuli [282].  Interestingly, whilst DC expression of co-stimulatory molecules 

was reduced by blocking mTOR, the ability of DC to present antigen was not 

diminished, demonstrating the specificity of the roles of mTOR in these cells 

[282].  In fact, some reports demonstrate that inhibition of mTOR with 

rapamycin may improve DC antigen-presentation functions by enhancing 

autophagy [283], a process that is negatively regulated by mTOR [284] (see 

below). 

The role of mTORC2 in these processes is less well understood, however, loss of 

mTORC2 function by the deletion of Rictor leads to increased inflammatory 

responses to LPS in DC [285].  Interestingly, macrophage treatment with 

rapamycin in the presence of LPS activation also enhances pro-inflammatory 

cytokine production via deregulated IL-10 production [286], suggesting that both 

mTOR complexes are important in regulating innate responses to bacterial 

products.  The effects of mTOR inhibition with rapamycin in the context of LPS-

induced acute lung injury, has however, given conflicting results.  Whilst 

Feilhaber et al. demonstrated that pre-treating mice with rapamycin prior to 

LPS challenge led to reduced inflammation in a STAT1-dependent manner [287], 

Lorne and colleagues found that rapamycin enhanced the effects of LPS in the 

lung, reflecting the in vitro data on macrophage and DC responses in the 

presence of mTOR inhibition [288].  The differences between these two studies 

might be explained by the different protocols for the pre-treatment of mice with 
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rapamcyin, suggesting that the timing of mTOR inhibition is crucial to its effects 

in this model. 

1.3.3 Other important mTOR functions 

Since its discovery, descriptions of the cellular processes in which mTOR plays a 

role have been increasing at a rapid pace. Whilst these functions are not directly 

linked to the immune response, they too have an effect in the immune system.  

As discussed earlier, mTOR inhibition leads to cell cycle arrest.  Cell growth is a 

metabolically demanding cellular function, as is T cell activation.  Increasingly it 

is believed that one of mTOR’s roles is as a regulator of these functions by acting 

as a sensor for the availability of nutrients and cellular energy stores.  In this 

regard, mTOR activation is very sensitive to amino acid depletion [289].  

Additionally, mTORC1 activation is also hindered by low energy reserves, since 

diminished adenosine triphosphate (ATP) cellular stores opposes TSC2 

phosphorylation, which in turn enhances TSC-dependent inhibition of mTORC1 

activity [290]. Similarly, mTORC1 is downstream of numerous growth factors 

pathways, such as insulin and insulin-like growth factor [291], and has a role in 

cellular lipid metabolism.  As such, deletion of the mTORC1 protein, Raptor, 

leads to decreased white adipose tissue and leaner mice in vivo [292] and failure 

of adipogenesis in vitro [292].   

mTORC2 also has roles in lipid metabolism since deletion of the mTORC2 

protein, Rictor, in adipose cells  impairs their response to insulin in vitro whilst 

in vivo this deletion leads to deregulated lipolysis and insulin resistance [293].  

In similar mice, lacking Rictor in adipose cells, organomegaly was noted, 

suggesting that mTORC2 is also important in cell size regulation [294].  

Additionally, mTORC2 has been implicated in regulating the formation of the 

cellular cytoskeleton, by modulating actin functions [256]. 

Autophagy is a process that is closely linked to growth and metabolic activity.  

Autophagy is a catabolic ‘recycling’ process that allows cells to release 

intracellular stores of nutrients by degradation in lysosomes [254].  Additionally, 

autophagy is an important defensive immune mechanism against intracellular 

infections [295].  mTORC1 is a negative regulator of autophagy, preventing its 

initiation when nutrients are plentiful [296].  Autophagy related 1 (Atg1), a 
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serine/threonine kinase important in autophagosome formation, is downstream 

of mTORC1 [297] and its phosphorylation by mTORC1 reduces its function [297]. 

The importance of autophagy in disease is increasingly being understood with 

roles being described not only in infection [298] and metabolic disease [299], but 

also cancer [300] and pulmonary disorders [301], suggesting potential roles for 

mTOR in disease. 

1.3.4 mTOR in the clinic 

Since mTOR is involved in such a variety of important cellular physiological 

functions, it is unsurprising that it has been implicated in a variety of diseases. 

This section will focus on the roles of mTOR in the lung and clinical uses of 

rapamycin with brief discussion of the role of mTOR in other conditions. 

1.3.4.1 mTOR in the lung 

With increasing understanding of the importance of Th2 cells in allergic asthma, 

there has been much interest in the use of immunosuppressants in the treatment 

of this condition [19]. The most common use of rapamycin in clinical practice is 

as an immunosuppressant to prevent solid organ rejection (see below) and 

increasingly, rapamycin and derivatives are being approved for use in cancer 

therapy, including lung cancer [302].  Rapamycin remains one of the most 

efficacious and tolerated immunosuppressants and its potential application in 

the treatment of allergic airways disease is being increasingly investigated.  Most 

recently, using an acute and chronic mouse model of allergic airway 

inflammation induced by house dust mite (HDM), systemic administration of 

rapamycin reduced lung inflammation and AHR [303].  Additionally, using a 

transgenic mouse model of airway remodelling and AHR, systemic rapamycin 

treatment was also beneficial [304].  Intriguingly, however, Fredricksson et al. 

demonstrated that, whilst rapamycin administration during the induction of 

HDM-induced airway inflammation was beneficial, it was detrimental when given 

as a treatment during established disease [305].  The conflicting results in these 

models would suggest that, whilst mTOR activation is important for the onset of 

airway inflammation, it exerts anti-inflammatory effects once the inflammation 

is established.  More research is required to elucidate the exact mechanisms 

driving these differences. 
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An important cause of respiratory disease is cigarette smoking and as discussed 

in section 1.1.2, it has significant detrimental effects on the effectiveness of 

asthma therapy.  mTOR activation has been shown to be essential for the anti-

inflammatory effects of glucocorticoids on myeloid cells [306] and interestingly, 

the mTOR pathway has recently been shown to be vital in cigarette smoke-

induced lung damage [307].  In fact, cigarette smoke induced HIF-1 activated 

RTP801 (RTP801), which in turn stabilises the mTOR repressor TSC, inhibiting 

mTOR function and this pathway was responsible for smoke-induced emphysema 

in a mouse model [307].  These two publications link two important aspects of 

clinical asthma with mTOR. 

One of the drawbacks of clinical use of rapamycin has been its association with 

the risk of developing of acute interstitial pneumonitis [308], an inflammatory 

process of the distal airways.  This condition has been reported in up to a fifth of 

treated patients in some studies [309], with severity ranging from asymptomatic 

disease to severe respiratory failure [309].  The condition typically resolves 

following drug withdrawal, suggesting a causal relationship between mTOR 

inhibition and pulmonary inflammation [308].  This reiterates the need for 

better understanding of the roles of mTOR in the lung in order to allow its 

therapeutic use in lung diseases with reduced side effects. 

1.3.4.2 The role of mTOR in extra-pulmonary conditions 

The increasing understanding of the myriad of roles of mTOR has allowed this 

pathway to be investigated and targeted in ever-increasing numbers of diseases.  

The main conditions in which mTOR has been implicated are summarised in 

Table 1-5. 
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Table 1-5 The roles of mTOR in non-pulmonary disease 
Disease/ system Role of mTOR References 
Cancer/ 
tumourgenesis 

• Mutations	
  of	
  TSC	
  (which	
  regulates	
  mTOR	
  function)	
  
cause	
  familial	
  cancer	
  disorders	
  

• mTORC1	
  is	
  downstream	
  of	
  the	
  commonly	
  mutated	
  
tumour	
  suppressor	
  gene	
  (TSG)	
  p53	
  

• increased	
  mTORC2	
  activity	
  human	
  gliomas	
  and	
  in	
  
mouse	
  glioma	
  models	
  

• mTORC2	
  involved	
  in	
  murine	
  prostate	
  cancer	
  model	
  

[310-315] 

Diabetes/ 
Metabolic disease 

• Insulin	
  signals	
  via	
  mTOR	
  
• Chronic	
  rapamycin	
  treatment	
  induces	
  insulin	
  

resistance	
  and	
  hyperlipidaemia	
  
• mTOR	
  regulates	
  peroxisome	
  proliferator-­‐activated	
  

receptor-­‐gamma	
  activity	
  in	
  adipogenesis,	
  a	
  target	
  of	
  
anti-­‐diabetic	
  drugs	
  

• Mutation	
  of	
  kinase	
  suppressor	
  of	
  Ras	
  2	
  (KSR2),	
  a	
  gene	
  
implicated	
  in	
  obesity	
  and	
  diabetes,	
  induces	
  mouse	
  
obesity	
  via	
  hyperphagia	
  in	
  an	
  mTOR-­‐dependent	
  
manner	
  

[316-319] 

Neurodegeneration • Rapamycin	
  rescues	
  neuronal	
  plasticity	
  and	
  attenuates	
  
cognitive	
  impairment	
  in	
  a	
  mouse	
  model	
  of	
  tuberose	
  
sclerosis	
  

• In	
  a	
  mouse	
  Alzheimer’s	
  disease	
  model,	
  aberrant	
  
neuronal	
  cell	
  cycling	
  is	
  mediated	
  by	
  the	
  PI3K-­‐Akt-­‐
mTOR	
  pathway	
  and	
  is	
  improved	
  by	
  rapamycin	
  
treatment	
  

• Rapamycin	
  improves	
  outcomes	
  in	
  Parkinson’s	
  and	
  
Huntington	
  disease	
  models	
  

[320-322] 

 

1.3.4.3 Clinical uses of rapamycin 

Despite being first described as a fungicide [249], the potential of this agent as 

an immunosuppressant became apparent with its effects on B cell cycle 

regulation [250].  The Foods and Drugs Agency (FDA) approved rapamycin for use 

in transplant immunosuppression in 1999 and since then, its applications as a 

steroid sparing, cyclosporine-replacement treatment has extended from uses in 

solid organ transplantation to treatment of graft-versus-host disease [323].  

Since it is potentially toxic, therapeutic drug monitoring is required and its use 

has been associated with a variety of side effects including pneumonitis [308] 

and mucositis [324].  Despite this, however, it appears to be better tolerated 

than other agents and it is associated with improved transplant survival in long-

term studies [325].   One of the key advantages of using rapamycin and its 

derivatives is that, unlike other immunosuppressants, it does not increase the 

risk of cancer-development [326].  More so, the use of rapamycin and its analogs 

as anti-cancer agents is expanding since its approval in metastatic renal cell 

carcinoma [327], leading to large clinical studies looking at efficacy of this agent 

in other malignancies [328]. 
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One of the most recent uses of rapamycin is its use in cardiovascular disease.  

Whilst all immunosuppressants, including rapamycin, are associated with the risk 

of developing hypercholesterolaemia [325], the use of mTOR inhibitor-coated 

coronary artery stents have improved survival and reduced arterial re-stenosis in 

longterm studies [329]. 

With increasing knowledge of the mTOR pathway and the ability to develop more 

target-specific drugs, it is likely that the clinical applications of mTOR regulation 

will continue to develop at this swift pace.  However, greater understanding of 

the mechanisms of the side effects observed with this treatment is imperative if 

mTOR manipulation is to be used more widely. 

1.4 Objectives 

In the preceding introduction the current understanding of asthma 

immunopathogenesis and IL-33 biology have been described, as well as the 

functions of mTOR in the immune system.  Important ongoing questions remain, 

as well as a large unmet clinical need in the significant population of asthma 

patients requiring better treatments for this disease.  The use of 

immunosuppressants in asthma is mainly restricted to CS, and better 

understanding of the mechanisms disrupted by clinically available drugs is an 

important avenue yet to be fully investigated.  Hence, assessing the role of 

mTOR in IL-33-induced functions is an important question with potentially 

clinically relevant answers.   

The recent description of ILC as IL-33-responding cells that appear to be 

important in the lung immune response has raised further questions regarding 

their roles in IL-33-induced airway inflammation and their functional responses 

to this cytokine in vitro.  Additionally, their interactions with the adaptive 

immune response are unknown. 

As such, this thesis aims to address three main hypotheses: 

1. mTOR activation is important for IL-33-induced airway inflammation 
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2. IL-33-driven ILC functions are mTOR-dependent in vitro and ILC are 

sufficient to drive IL-33-induced airway inflammation in vivo in an mTOR-

dependent manner 

3. ILC and Th cells interact in vitro and in vivo to drive type-2 immune 

responses 

By performing experiments to address these hypotheses this thesis aims to 

demonstrate that IL-33 plays an important role in the airway and that mTOR is 

an important regulator of its function.  More so, these experiments also attempt 

to demonstrate the importance of IL-33-induced ILC in lung immune functions. 
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2 Methods 
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2.1 Reagents and buffers 

Recombinant mouse IL-33 was obtained from Biolegend (endotoxin <0.01ng/µg).  

All other cytokines and reagents were sourced as indicated.  Commonly used 

reagents and buffers are indicated in Table 2-1. 

Table 2-1 Commonly used reagents and buffers 
Reagent Composition 

Phosphate buffered 
saline (PBS) 

8g NaCl, 1.16g Na2HPO4, 0.2g KCl, 0.2g KH2PO4 in 1 litre distilled water, 
pH 7.4  

 

 

 

 

 

 

KH2PO4 in 1 litre distilled water, pH 7.4 

Medium RPMI (Invitrogen)+ 100IU pen strep/ml 

Complete medium 
(CM) 

RPMI (Invitrogen), 10% heat inactivated fetal calf serum (FBS), 100IU pen 
strep/ml, 2mM L-glutamine, 50 µΜ β-mercaptoethanol (all Invitrogen) 

FACS buffer PBS, 2% FCS, 5mM EDTA 

Wash buffer 0.05% Tween-20 in PBS pH 7.4 

Assay diluent buffer Ebioscience Assay diluent x1 (diluted from x5 stock in distilled water) 

Lysis buffer RIPA buffer (Thermo Scientific) containing sodium orthovanadate (1µM) +  
protease inhibitor cocktail (Calbiochem) 

Sample buffer NuPage sample buffer (Invitrogen) + 100mM dithiothreitol 

Stop buffer 90mls distilled water+ 6mls of sulphuric acid 

Avertin 1:1 weight:volume solution of 2,2,2-tribromoethanol in tert-amyl alcohol 

 

in tert-amyl alcohol 

 

Complete medium 500 ml RPMI 1640, 50 ml inactivated FBS, 5 

 

2.2 In vivo methods 

Balb/c mice were purchased from Harlan, UK.  St2-/- mice were originally a kind 

gift from Dr A MacKenzie (Cambridge) and a colony was bred in the Glasgow 

University Biological facilities. DO11xRag2-/- mice were obtained from Prof 

Garside (Glasgow).  All animals were kept in pathogen-free conditions in 

facilities managed by Biological services staff, University of Glasgow under strict 

accordance of the regulations described by the United Kingdom Home Office 

Animals (Scientific procedures) act 1986.  All procedures were performed under 

Project Licence Number 60/3791, procedure 5. 
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2.2.1 Intranasal (i.n.) dosing  

Balb/c wild-type (WT) or St2-/- mice were anaesthetised using 3% isofluorane in 

an induction chamber.  Intranasal administration was performed with the animal 

held in the upright position with gentle pressure at the lower mandible to 

prevent swallowing.  Using a 200µL pipette 30µL of solution was instilled into the 

nostrils allowing inhalation of the reagent.  When both cells and reagent were 

dosed into the mice, a final volume of 50µL was instilled.  The mice were 

allowed to recover from the anaesthetic spontaneously, in the recovery position. 

2.2.2 Intravenous (i.v.) dosing 

Mice were placed in a heat box at 38°C for 20-30 minutes prior to injection.  

They were placed in a suitable restrainer followed by inoculation of 200µL of PBS 

i.v. containing the appropriate numbers of cells, using a 1ml insulin syringe.  The 

puncture site was treated with direct pressure to prevent further bleeding and 

the mice were then released. 

2.2.3 IL-33-induced airway inflammation model 

1µg of IL-33 (or PBS) ± 1mg/kg rapamycin (Calbiochem) was instilled for 5 

consecutive days using the method described in section 2.2.1 into BALB/c or St2-

/- mice.  The mice were killed 24 hours after the last inoculation.  Samples were 

collected as described below. 

2.2.4 Adoptive transfer model 

Type 2 innate lymphoid cells (ILC) were sorted from the lungs of intranasally IL-

33-treated mice as described below.  1x106 ILC were transferred intranasally 

into St2-/ mice as described above, in 20µL PBS.  The mice were then treated 

immediately after with PBS or IL-33 ± rapamycin in 30µL PBS for 5 consecutive 

days.  The mice were then killed by schedule 1 method on day 6. 

2.2.5 Double adoptive transfer model 

CD4 T cells were sorted from DO11.10xRag2-/- mice using magnetic bead sorting 

methods as described below (section 2.4.4).  WT ILC were sorted as described in 
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section 2.4.3.  0.5x106 DO11.10 CD4 T cells ± 1x106 ILC were transferred i.v. in 

200µL PBS as described above.  Immediately after, mice were treated with 

intransal IL-33 (1µg) and ovalbumin (ova) (100µg) in 30µL PBS as described in 

section 1.2.1.  The mice were killed by cardiac puncture under terminal 

anaesthesia on day 5 after the transfer. 

2.2.6 Airway hyperresponsiveness measurement 

Non-invasive plethysmography was used to measure enhanced pause (Penh) in 

mice following 5 days of i.n. inoculations.  Briefly, mice were placed individually 

into chambers of an 8 chamber plethysmography unit (EMMS, England, UK) for a 

30 minute acclimatisation period.  Basal recordings for enhanced pause were 

made followed by recordings over 2 minutes during which the mice received 

nebulised saline or increasing concentrations of methacholine (Sigma) (1%, 3%, 

5%, 10%, 30%).  Following Penh measurements, the mice were killed by cardiac 

puncture under terminal anaesthesia and samples collected. 

2.2.7 Sample collection and processing 

2.2.7.1 Serum collection 

Mice were terminally anaesthetised with a single 500µL intraperitoneal (i.p.) 

Avertin injection (1:40 dilution of Avertin stock in PBS).  Following induction of 

complete anaesthesia, the heart was exposed and cardiac puncture using a 23G 

needle and 1ml syringe was performed.  The blood was allowed to clot at room 

temperature and serum was separated by centrifugation at 11000g for 30 

minutes.  The serum was collected and stored at -20°C until required. 

2.2.7.2 Bronchoalveolar lavage (BAL) 

After termination by exsanguination under terminal anaesthesia the trachea was 

exposed and a small incision was made in its proximal end.  Cannulation using a 

1ml syringe attached to a 23G needle sheathed with polythene tubing (0.58mm 

ID, 0.78mm OD, VWR International) was performed.  800µL of PBS was instilled 

into the lungs whilst providing a seal with forceps pressure at the tracheal 

insertion site, ensuring lung re-expansion with the instillation.  The fluid was 

aspirated following 10 seconds and the BAL fluid was collected in a 1.5ml tube 
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and placed on ice.  The process was repeated with a further 800µL PBS and the 

samples were kept separately. 

BAL samples were weighed to assess individual sample collection efficiency and 

the fluid was centrifuged at 380g at 4°C for 6 minutes to allow the cells to 

pellet.  The supernatant was collected from individual samples separately and 

kept at -20° until further processing.  The cells from individual mice were 

resuspended in 1ml of PBS and live cell counts were counts were performed 

using a Neubauer haemocytometer (Weber Scientific International Ltd, 

Teddington, UK).  Samples were diluted 1:2 in 4% trypan blue solution.  The 

remaining cells were either used to perform cytospins or used for FACS analysis 

(see below). 

2.2.7.3 Cytospin preparation 

1x105 cells were spun onto glass slides using a Shandon Cytospin3 (Thermo 

Shandon, Runcorn, UK) at 450 rpm for 6 minutes.  The slides were allowed to 

air-dry and were fixed in methanol for 10 minutes.  They were subsequently 

stained using the Romanovsky method using eosin and methylene blue stains 

(Raymond A Lamb, Eastborne, UK) and coverslides were adhered using the 

synthetic resin, DPX for protection.  The cells were counted at x100 

magnification under oil immersion. 

2.2.7.4 Mediastinal lymph node (mLN) collection 

Following BAL collection, the heart and lung was removed en bloc from the 

thoracic cavity and the mLN located and placed in 1.5ml tubes containing 

media.  These were placed on ice until further processing.  The mLN for 

individual mice were passed through 40µM cell strainers (BD) with the aid of a 

syringe plunger, and centrifuged at 300g for 10 minutes.  The pellet was then 

resuspended in medium for counting.  The remaining cells were used in culture 

or for FACS analysis (see below). 
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2.2.7.5 Lung collection 

The lungs were collected using different methods depending on the processing 

required.  When lungs were required for histology, the heart and lung block were 

placed in 5ml of buffered formalin solution for paraffin embedding. 

When the lungs were used to perform whole lung digests, the lobes were 

dissected away from the main bronchi and placed in medium, on ice, for further 

processing. 

For RNA extraction, the upper lobe of the left lung was removed from each 

animal and placed in a bijou which was immediately snap-frozen in liquid 

nitrogen and subsequently stored at -80°C for further use. 

2.2.7.6 Lung digestion 

Whole lungs were immersed in 1ml of sterile-filtered digest media (RPMI+100IU/ 

ml pen/Strep solution, 0.1mg/ml DNAse 1 (Roche), 50µL of Liberase TL at 28 

Wunsch units/ml (Roche)) in a bijou and mechanically dissociated.  The bijous 

were then placed in a mechanical rotator for 1 hour at 37°C.  The digested 

material was then passed through a 100µM filter and medium added to stop the 

digestion reaction.  Any remaining lung tissue fragments were passed through 

the filter with the aid of a syringe plunger.  The cells were centrifuged at 300g 

for 10 minutes and the cell pellet was resuspended in 1.5ml of red-cell lysis 

buffer (Sigma)	
  for 1 minute.  The cells were flooded with media and centrifuged 

again. The single cell suspension was resuspended in 25mls of complete medium 

for counting and filtered again using a 40µM filter.  The cells were then 

incubated in a 75cm2 flask at 37°C for 1 hour to remove adherant cells.   

Following incubation, the media containing non-adherant cells was collected and 

the flask was rinsed several times with FACS buffer to collect remaining cells, 

being careful not to scrape off any adherant cells in the process.  The cells were 

washed in FACS buffer at 340g for 5mins at 4°C and resuspended in 2ml FACS 

buffer and stained as per FACS protocol (see below). 
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2.2.7.7 Lymphoid tissue collection for CD4 T cells 

Mice were killed by schedule 1 procedures in keeping with Home Office 

recommendations.  Peripheral lymph nodes (LN) were collected from cervical, 

axillary, femoral and popliteal sites into bijous containing 1.5ml medium.  The 

abdominal cavity was exposed and the mesenteric LN and spleen were located 

and collected. Tissues were kept on ice until further processing. 

2.2.8 Histology 

Lungs collected in 10% buffered formalin were embedded in paraffin using a 

Shandon citadel 1000 tissue processor (Thermo Scientific) and submerged into 

paraffin blocks.  These were cut into 5µm sections using a microtome, onto 

histology slides (VWR).  They were then deparaffinised and rehydrated using 

graded alcohol solutions (Xylene, 100% ethanol, 70% ethanol and distilled water), 

ready for staining.   

2.2.8.1 Haematoxylin and eosin staining (HE) 

Where sections were stained with HE, the slides were stained with Harris 

haematoxylin for 2 minutes and excess was washed off with water.  The stain 

was enhanced with 1% acid/alcohol solution and Scots tap water substitute.  

Finally, the slides were counterstained with eosin for a final 2 minutes with 

excess washed off with water.  The sections were then dehydrated with 

increasing concentrations of alcohol (70% ethanol, 100% ethanol, xylene) and the 

tissue was covered with Di-n-butylPhthalate in Xylene (DPX) mountant (Sigma) 

and a coverslide. 

2.2.8.2 Periodic-acid Schiff (PAS) staining 

Periodic acid Schiff stains glycopeptides, a major component of lung mucus 

[330].  Slides were dehydrated as described above (section 2.2.8).  A Sigma kit 

was used to stain the slides following the manufacturer’s instructions.  Briefly, 

the slides were submerged in acid solution for 5 minutes followed by several 

washed with distilled water.  The slides were immersed in Schiff reagent for 15 

minutes and again, washed in running water for 5 minutes.  Finally, the slides 

were counter-stained with Harris haematoxylin for 90 seconds followed by a 
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brief water wash to remove excess stain.  The slides were dehydrated as before 

and the sections were covered with DPX mountant and a coverslide, ready for 

viewing. 

2.2.8.3 Histology scoring method 

All slides were assessed by 2 blinded assessors.  An arbitrary scoring system was 

used, scoring from 0 (no inflammation) to 3 (severe inflammation) in a minimum 

of 5 high power field areas of the HE-stained lung sections.  A score of 3 was 

given where peri-vascular and peri-bronchial inflammation was seen in the same 

field.  Scores were averaged for individual mice. 

Similarly, scoring for extent of PAS staining was performed by 2 blinded assessors 

scoring a minimum of 5 high power fields in each lung section.  Areas were 

marked arbitrarily 0 (no PAS staining) to 3 (high levels of PAS staining associated 

with goblet cell hyperplasia).  Scores for each slide were summed and averaged 

to provide a final score for that mouse.   

2.3 In vitro techniques 

All cell culture work was performed under sterile conditions and cultures were 

incubated in a humidified incubator at 37°C, supplemented with 5% carbon 

dioxide (CO2).  Centrifugation was performed at 380g for 5 minutes at 4°C (Jouan 

CR3i centrifuge), unless otherwise stated.  Cell counts were performed using a 

haemocytometer and cells were diluted in varying dilutions (ranging from 1:2 to 

1:10) of 0.4% trypan blue solution (Sigma). 

2.3.1 Type 2 innate lymphoid cell culture 

FACS sorted ILC were rested overnight in 1ml of CM at a density of 4-5 x106 

cells/ ml for 16 hours.  Cells were collected the next day, centrifuged in media 

and resuspended in CM ready for counting.  Whenever cells were used for 

adoptive transfer, cells were resuspended in PBS. 
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2.3.2 Cell culture for cytokine quantification by ELISA 

Cells were cultured in 96 well flat-bottomed plates for the specified time 

periods and conditions. Cytokines (IL-2, IL-7, IL-12, Thymic stromal lymhopoeitin 

(TSLP) all from Peprotech), were added at the indicated concentrations.  

Supernatants were collected and care was taken not to collect the cells in this 

process.  The samples were frozen at -20°C until further analysis was possible. 

2.3.3 Cell culture for signalling assays 

Since the incubation periods for signalling assays was very short, cells were 

cultured in sterile 1.5ml tubes to facilitate efficient processing within the 

specified time periods.  1x106 cells were used for each condition and where 

indicated, cells were pre-incubated with rapamycin (100nM) for 30 minutes prior 

to cytokine stimulation.  Following the required incubation periods, the cells 

were centrifuged at 1200g at 4°C for 3 minutes and the supernatant carefully 

discarded.   

2.3.4 Thymidine proliferation assays 

Cells were cultured as before in 96 well plates for 72 hours.  In the final 16 hours 

of culture, the cells were pulsed with 0.037MBq 3H-thymidine.  Following the 

culture period, the cells were harvested onto a membrane using a Perkin Elmer 

Filter mate cell harvester following manufacturers’ instructions.  The membrane 

was allowed to dry and it was then covered with scintillation fluid and 

radioactivity was measured using a Perkin Elmer LSC Luminescence counter 

1450. 

2.3.5 Fluorescent-labelled cell proliferation assay 

Cells were washed in PBS.  Where cells were stained with carboxyfluorescein 

diacetate succinimidyl ester (CFSE) (Invitrogen), a 1ml solution containing 1µL of 

the stock CFSE solution was made to a final concentration of 25ng/ml.  The cell 

pellet was resuspended in this solution and incubated at room temperature for 

10 minutes in the dark prior to the addition of 5mls of FBS to stop the reaction.  

The cells were then washed twice with CM.  Where cells were stained with cell 

proliferation dye efluor 670 (ebioscience) a working solution made by diluting 
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1µL of stock dye in 1ml of PBS was made to a final concentration of 5nM.  The 

cells were resuspended in 800µL of PBS and 200µL of this stock solution was 

added.  The cells were incubated for 15 minutes at 37°C in the dark and 

subsequently washed twice with CM.  Cells were then cultured as before for 72 

hours at which point the cells were collected, washed with FACS buffer and 

fluorescence dilution assessed by FACS. 

2.3.6 Cell stimulation for intracellular cytokine measurement 

Lymph node cells and lung digest cells were cultured in 24 well plates at 2x106 

cells/ well in complete medium in the presence of phorbol 12-myristate 13-

acetate (PMA) (50ng/ml) (Sigma), Ionomycin (0.9nM) (Sigma) and Golgi-stop 

(6.7µL/ml) (BD) for 4 hours at 37°C.  The cells were then collected using a cell 

scraper (Corning) to allow collection of adherent cells.  The cells were placed in 

individual 6ml tubes and washed with PBS, followed by centrifugation at 380g for 

5 minutes. 

2.3.7 Ova peptide recall assay 

Whole mLN and lung cells were cultured in U-bottomed 96 well plates at a 

density of 1.5 x105 per well, in triplicate, with CM alone or either 0.5µM or 5µM 

ova peptide 323-339 (Invivogen).  The cells were cultured for 72 hours and 

supernatants were collected for cytokine ELISA measurement. 

2.3.8 Naïve T helper cell and ILC co-culture 

ILC were sorted from lungs as described below.  The ILC were rested overnight in 

CM, washed and resuspended in CM ready for counting and culture.  

CD4+CD44lo/intermediate cells (naïve) were also sorted by FACS, washed and 

resuspended in CM.  96 well flat-bottom plates were coated with anti-CD3ε 

antibody (1.5µg/ml) and anti-CD28 (3µg/ml) diluted in PBS.  The plates were 

incubated for 1.5 hours at 37°C.  Following this incubation the plates were 

washed once with PBS prior to use for culture.  1x105 of each cell type was used 

for co-culture experiments.  
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2.3.9 Semi-permeable membrane-separated co-culture  

96 well receiver plates were coated with anti-CD3/CD28 as above.  CD4 T cells 

were added to the culture plates first to ensure contact with the antibodies was 

achieved.  Where co-culture was to be separated by a semi-permeable 

membrane, ILC were added once the Transwell 0.4µm porous membrane 

(Corning) was placed.  ILC were added to the upper compartment (Figure 2-1) 

 

Figure 2-1 T cell and ILC co-culture 
 

2.4 Assays and analysis 

2.4.1 Flow Cytometry (FACS) I – cell surface staining  

The cell pellets formed in section 2.2.7.6 were resuspended in 100µL of FACS 

buffer, FcR Block (ebioscience) was applied at 1:100 dilution and incubated at 

4°C for 15 minutes.  The cells were subsequently stained for surface markers at 

1:200 dilutions in a final volume of 100µL for 25 minutes in the dark at 4°C.  

During the final 5 minutes of incubation, DAPI was added at 1:200 dilutions to 

the cells, which were subsequently washed with FACS buffer twice and 

resuspended in FACS buffer ready for analysis.  Whenever this protocol was used 

for the preparation of cells for cell sorting, up to 150x106 cells were stained in 

2ml of FACS buffer using antibodies at the aforementioned dilutions.  All FACS 

antibodies used are found in Table 2-2. 
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2.4.2 Flow Cytometry (FACS) II - intracellular staining of fixed 
cells 

The cell pellets were washed in PBS twice after collection to ensure all traces of 

FBS were washed off.  Each sample was then resuspended in 1ml PBS containing 

1µL of live-dead Aqua-dye (Invitrogen) stock solution (stock solution made fresh 

by adding 50µL DMSO to the fluorescent dye) and vortexing the cells.  The cells 

were then incubated at 4°C for 30 minutes.  Subsequently, the cells were 

washed in PBS and surface marker staining performed as above.  The cells were 

washed with PBS following staining and resuspended in 300µL BD cyto/fix 

solution, incubating the cells in the dark at 4°C for 30 minutes.  Once 

permeabilised and fixed, the cells were washed twice with BD cyto/perm 

solution (made from stock x10 solution, diluted in distilled H2O) and intracellular 

staining performed using firstly 1:100 FcR blocking agent (ebioscience) for 15 

minutes at 4°C followed by appropriate cytokine staining at 1:100 dilution for 30 

minutes at 4°C in the dark.  The cells were washed once more in BD cyto/perm 

solution and finally in FACS buffer prior to acquisition.   

BD FACS calibur and LSRII machines were used for acquisition. Whenever cells 

were sorted using the BD FACS Aria machine or lung digests were acquired, the 

cells were filtered through 40µm filters prior to acquisition to prevent blockages 

in the FACS machines. FACS data was analysed using FlowJo 8.8.4 analysis 

software. 
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Table 2-2 FACS antibodies 
Antibody Clone Isotype Source 
B220 RA3-6B2 Rat IgG2aκ eBioscience 

CD3 145-2C11 Armenian hamster IgG eBioscience 

CD4 GK1.5 Rat IgG2aκ eBioscience 

CD8 53-6.7 Rat IgG2aκ BD biosciences 

CD25 PC61 Rat IgG1λ BD biosciences 

CD44 IM7 Rat IgG2bκ eBioscience 

CD45 30-F11 Rat IgG2b eBioscience 

CD11b M1/70 Rat IgG2bκ BD biosciences 

CD11c N418 Armenian hamster IgG eBioscience 

CD127 SB199 Rat IgG2aκ BD biosciences 

C-kit ACK45 Rat IgG2b BD biosciences 

ICOS C398.4A Armenian hamster IgG BioLegend 

FcεRI MAR-1 Armenian hamster IgG eBioscience 

ICAM YN1.1.7.4. Rat IgG2bκ eBioscience 

IL-2  JES6-5H4 Rat IgG2bκ BD biosciences 

IL-4 11B11 Rat IgG1 BD biosciences 

IL-5 TRFK5 Rat IgG1κ BD biosciences 

IL-9 RM9A4 Rat IgG1 BioLegend 

IL-13 eBio13A Rat IgG1κ eBioscience 

IFNγ XMG1.2 Rat IgG1 BD biosciences 

LFA-1 2D7 Rat IgG2aκ BD biosciences 

NK1.1 PK136 Mouse IgG2a eBioscience 

Gr1 RB6-8CS Rat IgG2bκ eBioscience 

OX40L RM134L Rat IgG2bκ eBioscience 

Siglec F E50-2440 Rat IgG2a BD biosciences 

ST2 DJ8 Rat IgG1 MD Biosciences 

TCRαβ H57-597 Armenian hamster IgG eBioscience 

TCRγδ ebioGL3 Armenian hamster IgG eBioscience 

 

2.4.3 FACS cell sorting 

Cells were sorted from lung digests or lymphoid tissue following staining as 

detailed in section 2.4.1 using a BD FACS Aria machine.  The gating strategy for 

ILC is further described in chapter 4.  Cells were collected into 15 centrifuge 

falcons containing CM.  Following collection cells were centrifuged at 300g for 10 
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minutes, 4°C.  Cell pellets of ILC were resuspended in CM and cultured in a 24 

well plate at a concentration of 3-5 x106 overnight at 37°C.  Alternatively, the 

ILC were resuspended in PBS, for in vivo transfer experiments.  When CD4 T cell 

were sorted, naïve CD4 T cells were gated upon live CD4+ cells followed by CD44 

low/ intermediate expression (CD4+CD44lo), based on a histogram analysis of 

fluorescence.  Following sorting, naïve CD4 T cells were centrifuged as described 

above and resuspended in CM, ready for counting and in vitro assays.  Routine 

purities for both ILC and CD4+CD44lo cells were >95%. 

2.4.4 Magnetic bead CD4 cell sorting 

LN and spleen were dissociated separately using the plunger of a 5ml syringe and 

100µm filter to obtain a single cell suspension.  The LN cells were counted and 

kept on ice.  Since DO11 TCR x Rag2-/- mice were used, no CD4 T separation was 

necessary for the LN cells, since 90% of the cells were CD4+.  Following 

centrifugation, the spleen pellet was resuspended in red blood cell lysis buffer 

and incubated for 1 minute.  Lysis was stopped with media and the cells were 

centrifuged again.  The cells were washed with FACS buffer and cells were 

counted.  Up to 100x106 cells were resuspended in 400µL of FACS buffer and 

100µL of antibody cocktail (CD4 T cell enrichment kit, Miltenyi).  This was 

incubated at 4°C for 15 minutes after which a further 300µL of FACS buffer was 

added to the cells plus 200µL of Miltenyi magnetic beads.  The cells were 

incubated at 4°C for a final 15 minutes and then washed once with FACS buffer.  

Using a Milteny automacs machine, the cells, resuspended in 5ml of FACS buffer 

were sorted by negative selection into CD4+ and CD4- cells.  The CD4+ cells were 

collected, washed, resuspended in PBS and counted.  The cells were then 

adjusted to the required concentration, ready for adoptive transfer.  Purity 

checks were performed for both the spleen-separated CD4 cells as well as the LN 

cells by FACS (CD4+KJ126+).  Routine purity was 90%. 

2.4.5 Western blot for signalling kinases 

The cell pellets obtained as described in section 2.3.3 were resuspended in 30µL 

of RIPA cell lysis buffer (Pierce) and left on ice for 15 minutes.  They were 

subsequently centrifuged at 11000g for 5 minutes at 4°C and the supernatants 
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were collected into a new tube.  Sample buffer was added to the supernatants 

at a 1:3 ratio and the samples were stored at -20°C.   

For gel electrophoresis, the cell lysates were defrosted and incubated at 80°C 

for 5 minutes to denature the proteins.  20µL of the samples were subsequently 

loaded into 10 lane 4-12% NuPage SDS-PAGE gels (Invitrogen) alongside 7 µL of a 

molecular weight marker (See-blue Plus 2, Invitrogen).  The gels were placed 

into a western blot tank filled with x1 MES buffer (Invitrogen) and a charge of 

125 watts applied for 2 hours or until the samples had run up to the bottom edge 

of the gel. 

Using the iBlot Dry Blotting system (Invitrogen), the proteins were transferred 

onto polyvinylidene fluoride (PVDF) membranes. To ensure successful transfer, 

each membrane was briefly coated with Ponceau’s solution and checked for the 

presence of protein bands.  This solution was briefly washed off using wash 

buffer, and the membrane blocked with 10ml of 5% BSA (Sigma) made up in wash 

buffer.  The container was gently agitated at room temperature for 1 hour.  The 

membrane was then incubated overnight at 4°C in 5 ml of 5% BSA solution 

containing a 1:1000 dilution of the required antibody.  The membrane was 

washed at least 3 times for a minimum of 20 minutes with wash buffer and the 

blot was incubated for a minimum of 1 hour with PBS containing 1:2000 dilution 

of the appropriate horseradish peroxidase (HRP)-conjugated secondary antibody.  

Following three wash steps with wash buffer the membrane was covered with 

750µL of each of buffers A and B Amersham ECL chemiluminsecent reagent for 3 

minutes.  The membrane was placed in a cassette and exposed to medical X-ray 

(Kodak). 

2.4.6 Cytokine immunoassays 

Enzyme linked immunoabsorbant assays (ELISA) were performed for cytokine 

quantification using paired antibodies and kits as specified in Table 2-3 following 

the manufacturers’ instructions.  Briefly, ELISA 96 well plates (Corning) were 

coated with 50µL/well with capture antibody, diluted in PBS, overnight at 4°C.  

All wash steps were done using wash buffer.  Following three washes, the plates 

were blocked for 1h at room temperature using 200µL of x1 assay diluent buffer 

(eBioscience) in each well. The plates were then washed and 50µL of each 
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sample was added to the appropriate wells.  A minimum of 7 serial dilutions of 

the standards in duplicate was performed for each plate using assay diluent 

buffer.  A minimum of two wells were incubated with assay diluent buffer alone, 

to provide ‘blank’ wells.  The plates were then incubated at room temperature 

for a minimum of 2 hours.  Following another three washes, 50µL of detection 

antibody diluted in assay diluent buffer were added and plates incubated for 1h 

at room temperature.  The plates were washed again and HRP-streptavidin 

(Sigma) diluted 1:1000 into assay diluent buffer was added to the wells and 

incubated in the dark for 30 minutes.  Six washes were performed and 100µL of 

TMB substrate solution was added to each well.  Checking the plates regularly, 

they were incubated in the dark until developed.  The reaction was stopped by 

the addition of 100µL of stop buffer to each well.  The optical density was 

measured immediately after using a 450nm filter in a Sunrise absorbance plate 

reader machine. 

Table 2-3 ELISA kits used and sources 
Cytokine/chemokine Supplier 

IL-2 BD biosciences OptEIA kit 

IL-4 Ebioscience Ready-set-go! kit 

IL-5 BD biosciences OptEIA kit 

IL-6 Ebioscience Ready-set-go! kit 

IL-9 Biologend 

IL-13 Ebioscience Ready-set-go! kit 

Eotaxin-2 RnD paired antibodies 

MIP-1α RnD duoset 

GM-CSF Ebioscience Ready-set-go! kit 

Interferonγ Ebioscience Ready-set-go! kit 

 

2.4.7 RNA isolation and quantitative polymerase chain reaction 

Cell pellets, obtained by centrifugation, were flash-frozen in liquid nitrogen and 

stored at -20°C until further processing was possible.  The pellets were allowed 

to reach room temperature and RNA extraction was performed using Qiagen 

RNeasy minikits as per the manufacturers’ instructions.  RNA quantification was 

performed using a Nanodrop 1000 machine and 1µg of RNA was used to make 

complementary DNA (cDNA) by polymerase chain reaction (PCR) using 
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MultiScribe reverse transcriptase kit (Applied Biosystems) as per manufacturers’ 

instructions.  Real time quantitative PCR was performed in triplicate for each 

sample using Taqman probes, primer sets and an ABI Prism 7900 Sequence 

Detection System instrument real-time PCR system (Applied Biosystems).   

2.5 Statistics 

Statistics comparing groups was performed using Student’s T tests or 1-way 

ANOVA, depending on the number of groups to be compared using GraphPad v4 

software. 
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3 Rapamycin inhibits IL-33-induced airway 
inflammation 
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3.1 Introduction 

Experiments in our laboratory had shown that IL-33-induced cytokine production 

in T helper (Th) 2 cells required mammalian target of rapamycin (mTOR) 

activation in vitro.  The hypothesis that IL-33-dependent responses in vivo would 

also require mTOR activation was proposed.  Experiments described in this 

chapter aim to address this hypothesis by assessing whether IL-33 signalling 

requires mTOR signalling in vivo, using a model of IL-33-induced airway 

inflammation.  This model had been extensively investigated within the lab 

group. The reasons to use an airway inflammation model were two-fold.  Firstly, 

Th2 cells are induced by IL-33 and had been shown to play an important role in 

airway inflammation [173].  Secondly, my area of interest as a respiratory 

physician is airway inflammation and allergic airways diseases, in which IL-33 

plays a role in both murine models and human asthma [175, 176, 232]. 

When IL-33 was first described as the ligand for ST2, Schmitz et al. 

demonstrated that, in mice, daily intraperitoneal (i.p) injections of IL-33 at 

varying doses (0.4-4 µg/injection) for seven days induced substantial systemic 

inflammation characterised by peritoneal eosinophilia and splenomegaly [82].  

Subsequently, Kondo et al. showed that intranasal administration of 1 µg IL-33 in 

BALB/c mice daily for 4 consecutive days [232] led to profound airway 

inflammation with significant airway eosinophilia and mucus production.  This 

demonstrated that IL-33 could be used to induce airway inflammation in the 

absence of antigen sensitisation or challenge.   

Within our lab group, numerous researchers had previously dissected the effect 

of intranasal administration in both BALB/c and C57BL/6 mice.  Dose responses 

and kinetic effects of IL-33 administration had shown that, when IL-33 was given 

daily, airway inflammation and cellular recruitment to the lung increased 

gradually from day 3 onwards.  The peak in cytokine production, however, was 

measured following 5 daily intranasal IL-33 inoculations.  A 2 µg dose of 

intranasal IL-33 was given daily in these models as recombinant human IL-33 was 

used and had been shown in in vitro studies to have half the bioactivity of 

murine IL-33 on murine cells (M. Kurowska-Storlarska unpublished data).   
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3.2 Results   

3.2.1 Defining the IL-33 induced airway inflammation model 

BALB/c mice were used for the IL-33-induced airway inflammation model. The 

decision to use this mouse strain was based on the fact that the initial results 

showing a role for mTOR in IL-33 signalling had been shown in BALB/c-derived 

Th2 cells.  More so, BALB/c mice have been shown to have an intrinsically Th2-

skewed response in airway inflammation models, compared with mice of other 

genetic backgrounds [331].  Finally, the effect of IL-33 in Th2 responses in vivo 

had been shown previously in BALB/c mice [173].  The model was defined as per 

Figure 3-1. A daily dose of 1 µg IL-33 was administered intranasally based on the 

fact that recombinant murine IL-33 was used, rather than human IL-33 as in 

previous studies.  This dose was also in keeping with that used by our group in 

recent publications [44].  A 5-day model was employed as it had been shown 

previously that cytokine levels peaked on this day of the model, this being an 

important read-out for the current work. 

 

Figure 3-1 The IL-33-induced model of airway inflammation 

BALB/c mice were treated with PBS or 1µg recombinant mouse IL-33 intranasally in 30µL PBS 
daily for 5 consecutive days.  The mice were then killed on day 6. 
 

3.2.2 The effect of intranasal IL-33 on airway inflammation 

Initial experiments were performed in order to robustly replicate the results of 

previously described IL-33-induced airway inflammation models as per Figure 

3-1.  Intranasal administration of IL-33 for 5 consecutive days in BALB/c mice 

significantly increased the total number of bronchoalveolar lavage (BAL) cells 

from a baseline of 2.8 x 105 cells in PBS-treated mice to an average of 31.3 x 105 
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cells in IL-33-treated mice (Figure 3-2A).  Additionally, the differential cells 

counts of the BAL following haematoxylin and eosin (HE) staining and 

microscopic examination revealed a marked change in the cell types infiltrating 

the lung with a significant increase in numbers of all cell types analysed.  In 

particular, a substantial increase was observed in the proportion of eosinophils, 

from virtually none in the PBS-treated group, to an average of 19.4 x 105 

cells/ml of BAL (p=0.0000096) (Figure 3-2B). 

 

Figure 3-2 IL-33 increases total BAL cell numbers though an increase in BAL granulocytes 

BALB/c mice were treated with IL-33 or PBS as per Fig 2-1 model.  Following cardiac puncture 
under terminal anaesthesia, BAL was performed and total cell counts analysed for each individual 
mouse (A).  Differential cell counts were performed on the BAL based on microscopic morphology 
of the cell as described previously (B).  The data are representative of 2 experiments with 4-5 mice 
per group.  Error bars represent SD.  ***p<0.001 when compared to PBS control. 
 

3.2.3 The effect of intranasal IL-33 on lung cytokine production 

IL-33 induces type-2 cytokine production from numerous cell types in the lung 

including T helper cells [173], mast cells and basophils [232]. Therefore, levels 

of these cytokines in BAL fluid were measured by ELISA.  Whilst IL-4 was not 

detectable in the BAL fluid (data not shown), high amounts of IL-5 and IL-13 

were measured (Figure 3-3A). Compared with PBS-treated mice, IL-33 greatly 

enhanced the production of both IL-5 and IL-13, from barely detectable levels in 

control mice to over 1 ng/ml of IL-5 and an average of 600 pg/ml IL-13 in IL-33-

treated animals.  Levels of Eotaxin-2 (C-C motif ligand (CCL) 24), which is 

important for eosinophil recruitment, and macrophage inflammatory protein 

(MIP)-1α (CCL3), an important chemokine involved in granulocytic chemotaxis 

were also measured (Figure 3-3B). An increase in both CCL24 and CCL3 in the IL-
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33-treated group was apparent, reflecting the cellular recruitment in the BAL 

fluid. These data demonstrate that the model was in keeping with our group’s 

previous results and published data [232]. 

 

Figure 3-3 Intranasal IL-33 increases type-2 cytokines and chemokines in BAL fluid 

Cytokine ELISA was performed for IL-5 and IL-13 on the BAL obtained from each mouse (A).  
Chemokine levels for Eotaxin-2 and MIP-1α were measured on the first BAL sample (B).  Samples 
were measured for each individual mouse with 4-5 mice per group.  The data are representative of 
2 experiments.  Error bars represent SD.  **p<0.01, ***p<0.001 when compared to PBS group. 
 

3.2.4 The effect of intranasal IL-33 on lung architecture and goblet 
cell mucus production 

One of the key features of IL-33-induced airway inflammation is the induction of 

goblet cell hyperplasia and lung architecture distortion as a consequence of 

cellular infiltration [232].  This has been shown to occur following i.p. IL-33 

injections, in the absence of the adaptive immune system as it can be replicated 

in Rag2-/- mice, which lack B and T cells.  These processes are dependent on the 

induction of IL-13 production in the lung and signal transducer and activator of 

transcription (STAT) 6 activation [232].  In order to ascertain if the intranasal 



87 

model fulfilled the same histological characteristics, the lungs of the mice that 

had been treated intranasally for 5 days with IL-33 or PBS were collected and 

sections from the same lobes were assessed for architecture distortion and 

cellular infiltration on HE-stained slides, as well as mucus staining on Periodic-

acid Schiff (PAS)-treated tissue.  When comparing lung sections of the control 

mice versus the IL-33-treated mice, there was a clear increase in the cellular 

infiltration of the lung (Figure 3-4A).  The cellular infiltration predominated in 

the peri-bronchial and peri-vascular areas.  However, there were also some 

alveolar areas that appeared distorted due to increased cellular infiltration.  The 

distortion of alveolar areas was patchy and unevenly distributed.  Mucus 

production was also increased in IL-33-treated mice compared to control and 

associated with this there was increased goblet hyperplasia within the larger 

bronchi (Figure 3-4A).  With the aid of an additional assessor, these changes 

were quantified blind using an arbitrary scale looking for three main changes: 

overall change in lung architecture, cellular infiltration and mucus staining 

(Figure 3-4B).  The effect of IL-33 treatment on all the above parameters, 

compared to control, was significant (architecture score p=0.0016, cellular 

infiltration score p=0.0019, mucus staining score p=0.046). 
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Figure 3-4 IL-33 induces lung inflammation, architecture distortion and mucus 
hypersecretion  

The right lung was collected, fixed in formalin and embedded in paraffin as described previously.  5 
µm sections were cut and stained with HE for cell infiltration and architectural distortion 
assessment.  Sections were also stained with PAS for mucus quantification and goblet hyperplasia 
assessment (A).  The slides are representative of their group.  Bar represents 200 µm.  With the 
aid of an independent investigator, the sections were assessed across 5 high powered fields for 
changes in the architecture of the lung, cell infiltration quantification and extent of mucus staining 
using an arbitrary scoring system as described in chapter 2 (B).  4-5 mice were used per group.  
Error bars represent SEM.  *p<0.05, **p<0.01 when compared to PBS group. 
 

3.2.5 The effect of rapamycin on IL-33-induced airway 
inflammation 

Having validated the in vivo model, the working hypothesis that IL-33-induced 

airway inflammation required mTOR activation in vivo was tested.  This 

hypothesis was based on the finding that in vitro, Th2 cells treated with IL-33 in 

the presence of the mTOR inhibitor rapamycin produced significantly less IL-5 



89 

and IL-13 than when treated with IL-33 alone [75].  To demonstrate a role for 

mTOR signalling in IL-33-mediated airway inflammation, the mTOR inhibitor 

rapamycin was delivered intranasally alongside IL-33 or alone, as a control.  The 

inflammation model was the same as in Figure 3-1 and rapamycin was 

administered at a concentration of 1 mg/kg in keeping with the dose used by 

others using similar compounds and this drug delivery method [332]. 

3.2.5.1 Rapamycin inhibits IL-33-induced lung cell infiltration 

Following 5 days of intranasal IL-33 ± rapamycin, mice were killed by cardiac 

puncture under terminal anaesthesia and BAL was performed.  Total cell counts 

in the BAL fluid demonstrated a robust inflammatory response to the IL-33 in 

keeping with previous results described (Figure 3-2).  In turn, concomitant 

rapamycin treatment reduced the number of cells collected in the BAL by an 

average of 37% (Figure 3-5A) when compared to IL-33-only-treated mice.  The 

differential cell counts of the BAL fluid revealed that rapamycin was extremely 

efficacious at reducing the number of macrophages and eosinophils in the BAL 

(Figure 3-5B).  Intriguingly, rapamycin treatment significantly (p=0.0064) 

increased the number of neutrophils recruited into the lung.  It must be noted 

that, although the effect of rapamycin on neutrophil numbers was significant, 

proportionally they only accounted for less than 10% of the BAL cells recovered.  

However, whilst the total BAL cells remained unchanged in the group treated 

with rapamycin only, a tendency for an increase in neutrophil numbers was 

observed in this group too (Figure 3-5B). 
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Figure 3-5 Rapamycin inhibits IL-33-induced airway inflammation and cell recruitment 

BAL was performed as before and total cell counts were measured (A).  Rapamycin significantly 
decreases the number of cells recovered in BAL fluid, compared to mice treated with IL-33 alone.  
mTOR inhibition significantly decreases the number of macrophages and eosinophils in the BAL 
fluid with an increase in BAL neutrophil numbers (B).  Data representative of 2 pooled experiments 
with 7-9 mice per group.  Error bars represent SD.  **p<0.01, ***p<0.001. 
 

3.2.5.2 mTOR inhibition reduces IL-33-induced type-2 cytokine production in 
the lung 

One of the striking features of IL-33-induced airway inflammation is an increase 

in type-2 cytokines measurable in the lungs (Figure 3-3). Therefore, levels of 

these cytokines in BAL fluid as well as in the sera from IL-33-treated mice were 

measured.  Similarly to the reduction in inflammatory cells in the BAL fluid, 

rapamycin treatment decreased the amount of both IL-5 and IL-13 present in the 

BAL fluid of these mice (Figure 3-6A).  The effect of rapamycin appeared to be 

restricted to the lung, as, although intranasal administration of IL-33 resulted in 

increased levels of these cytokines in the sera of the treated mice, this was not 

significantly altered by concomitant rapamycin treatment. Although the levels of 

IL-13 in the sera suggest that rapamycin was able to reduce the level of this 
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cytokine in the blood, the amounts measured were at the very limit of the 

detection of the test. 

 

Figure 3-6 Rapamycin inhibits IL-33-induced cytokine production in the lung but does not 
affect IL-33-induced changes in serum cytokine levels 

BAL IL-5 and IL-13 levels were measured by ELISA (A).  Rapamycin decreases IL-33-mediated IL-
5 and IL-13 production in the lung.  Rapamycin does not affect levels of IL-5 and IL-13 induced by 
IL-33-treatment in the sera of mice (B).  Cytokine levels were measured for individual mice with 3-5 
mice per group.  Data are representative of 3 experiments. Error bars represent SD.  **p<0.01, 
***p<0.001, ns=not significant, when IL-33+rapamycin is compared to IL-33 treatment alone. 
 

Eotaxin-2 and MIP-1α were also measured in BAL of mice treated with IL-33 in 

the presence or absence of rapamycin.  Whilst IL-33 had been shown to elevate 

the levels of these chemokines in the lung, rapamycin did not inhibit their 

production as measured by ELISA (Figure 3-7). 

Taken together, the reduction in BAL cytokines measured in IL-33+rapamcyin-

treated mice, when compared to IL-33-treated mice, further supports the 

hypothesis that mTOR signalling is important for IL-33-induced cytokine 

production in vivo.  The results from the BAL chemokine measurements suggest, 
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however, that mTOR may not be essential for IL-33-driven chemokine production 

in this model. 

 

Figure 3-7 Rapamycin does not inhibit IL-33-induced lung chemokine production 

Mice were treated with 5 days of intranasal IL-33 in the presence or absence of rapamycin.  
Eotaxin-1 and MIP-1α was measured by ELISA.  BAL from individual mice was measured with 3-5 
mice per group.  Data are representative of 2 experiments.  Error bars represent SD, ns=not 
significant. 

 
3.2.5.3 Rapamycin inhibits IL-33-induced lung inflammation and mucus 

hypersecretion 

As previously discussed, intranasal IL-33 increases cellular recruitment in the 

peri-bronchial and peri-vascular areas of the lung, in addition to causing mucus 

hypersecretion in an IL-13-dependant manner [232].  Since concomitant 

rapamycin treatment had been shown to reduce IL-33-driven cytokine 

production, experiments to assess the effect of mTOR inhibition on these 

histological changes in the lung were performed.  Rapamycin was found to 

decrease IL-33-induced cell infiltration in the lung significantly (p=0.0252) 

(Figure 3-8B).  Rapamycin did not abolish cell infiltration into the lung fully, and 

the majority of the cell recruitment was seen in the peri-vascular areas with 

sparing of the peri-bronchial areas (Figure 3-8A).  Goblet cell hyperplasia and 

mucus hypersecretion was also decreased in the IL-33+rapamycin-treated mice 

(Figure 3-8A). 

The changes in the histological appearance of the lung were scored using an 

arbitrary score as previously described (Figure 3-8B).  Interestingly, whilst 

rapamycin clearly reduced cell infiltration and mucus hypersecretion (Figure 

3-8B) in the lungs of IL-33-treated mice, the effect on lung architecture were 



93 

less clear.  The variability observed in this histological parameter ensured that, 

although there was a trend towards a reduction in the architectural distortion, 

this did not reach statistical significance. 

These results support the inhibitory effect of rapamycin on IL-33-driven 

inflammation, providing further evidence of the importance of mTOR signalling 

in IL-33-induced airway disease. 

 

Figure 3-8 Concomitant rapamycin treatment reduces IL-33-induced lung inflammation and 
mucus secretion. 

Cell infiltration and lung architecture were assessed as described previously on the right lobe of 
treated mice using HE-stained sections.  Mucus staining was assessed in PAS-stained slides (A).  
Bar represents 200 µm.  The sections are representative of each group.  With the assistance of an 
independent assessor, lung sections were scored using a pre-defined, previously described 
method for cell infiltration, mucus staining and change in lung architecture (B).  Data are 
representative of 2 pooled experiments.  Error bars represent SEM of 7-9 mice per group. *p<0.05. 
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3.2.6 IL-33 increases lung granulocyte numbers but these are not 
the main source of IL-5 

There are a large number of cell types present in the lung that express ST2 

(Table 1-1).  Since rapamycin treatment reduced IL-33-induced airway 

inflammation, it was important to determine which cells were responding to IL-

33 in this in vivo model to allow further assessment of the effect of rapamycin 

on IL-33-induced inflammation.  As demonstrated in section 3.2.3, IL-5 

production in the lung is increased by IL-33 treatment.  Indeed, we and others 

have shown this cytokine being produced by a number of different cell types in 

vitro in direct response to IL-33 [126, 173, 211, 333]. Therefore, IL-5 production 

by cells from the lungs was used as a marker of IL-33 responses. 

The number of IL-5-producing cells in the lung digests of PBS- or IL-33-treated 

mice were determined by intracellular staining following stimulation by phorbol-

myristate acetate and ionomycin (PMA/I) and flow cytometry.  As expected from 

the BAL measurements, the number of IL-5+ cells in the lung were vastly 

increased by IL-33 treatment (Figure 3-9A).  The forward-scatter (FSC) and side-

scatter (SSC) profiles demonstrated that there was a clear increase in the 

percentage of granulocytes in the IL-33-treated mice, in keeping with the BAL 

differential counts (Figure 3-9B).  However, when gating on these cells, although 

some of these cells were IL-5+, granulocytes did not appear to be the main 

source of IL-5 in the lung (Figure 3-9C). 
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Figure 3-9 IL-5+ cells are increased in IL-33-treated mice but granulocytes are not the source 
of IL-5. 

Whole lungs of PBS-or IL-33-treated mice were obtained and following mechanical disruption and 
chemical digestion, single cell suspensions were cultured with PMA-I+GS for 4 hours.  Cells were 
collected and stained as previously described.  The level of IL-5+ fluorescence in total lung cells in 
each group was determined (A) following exclusion of dead cells (Aqua-dye+) and including single 
cells only (data not shown).  Granulocytes were gated based on FSC and SSC characteristics in 
PBS- and IL-33-treated mice (B) and their expression of IL-5 was determined (C).  Plots 
representative of each group with 3 mice per group.  Data are representative of 3 experiments. 
 

3.2.7 CD4- Lymphocytes are the main source of IL-5  

Since the effect of rapamycin on IL-33-induced functions had been shown in Th2 

cells in vitro and granulocytes had been demonstrated not to be the source of 

IL-5 in the lung, pulmonary lymphocytes were assessed.  Indeed, FSC and SSC 

views of whole lung digests in PBS- and IL-33-treated mice showed an additional 
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population in the IL-33-treated mice that were absent in the control lungs 

(Figure 3-10A).  Gating on these cells demonstrated that these cells were 

capable of producing IL-5 in large quantities (Figure 3-10B) in the IL-33-treated 

mice.  Interestingly, these cells were CD4- suggesting that they were not Th2 

cells (Figure 3-10C). 

 

Figure 3-10 CD4- lymphocytes are the source of IL-5 in IL-33-treated mice 

Total lung cells were stimulated ex-vivo and stained as previously described.  Lymphocytes were 
gated based on FCS and SSC parameters on PBS- or IL-33-treated mice (A) IL-5 fluorescence in 
the gated lymphocytes was determined (B).  Gating on IL-5+ cells, their expression of CD4 was 
measured (C).  Panels are representative of each group with 1-3 mice per group.  Data are 
representative of 2 experiments. 
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3.2.8 Lineage negative lymphoid cells are the main source of IL-5 
and IL-13 in the lung in IL-33-induced airway inflammation 

Several recent publications have described novel innate lymphoid cell (ILC)-

types which are induced by IL-25 (IL-17E) and IL-33 and produce type-2 cytokines 

[139, 213, 214].  These cells are characterised by a lack of expression of lineage-

specific markers (CD3, CD11b, CD11c, Siglec F, γδTCR, FcεRI)[139] and express 

the IL-25 receptor, IL-17BR and ST2 as well as cell surface markers such as CD45 

and ICOS. In order to ascertain if ILC were the source of IL-5 in this model, the 

cells were stained with a panel of antibodies following in-vitro stimulation with 

PMA/I.  Sequential gating on lymphocytes, using FSC and SSC (Figure 3-11A) 

parameters and subsequently assessing the level of IL-5+ fluorescence identified 

the IL-5+ cells (Figure 3-11B).  Using a panel of lineage surface markers as 

described by Neill et al [139], including CD3ε, B220, CD11b and FcεRI, as well as 

CD45, the IL-5+ cells were shown to be negative for all the lineage markers used, 

yet were CD45+ (Figure 3-11C).  More so, further analysis indicated that these 

cells co-expressed ICOS and ST2 in keeping with previously described ILC 

populations [139] (Figure 3-11D). 
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Figure 3-11 Lineage negative lymphoid cells are the main IL-5-producing cells in IL-33-
induced airway inflammation 

Whole lung digests were performed as before and cells were stimulated and stained as 
aforementioned.  Lung lymphocytes were gated based on FSC and SSC characteristics in PBS-
treated and IL-33-treated mice (A) after exclusion of dead cells (Aqua dye+) and inclusion of single 
cells only.  IL-5 fluorescence intensity was determined in the gated population (B) and expression 
of common lineage markers (CD3ε, B220, CD11b and FcεRI) and CD45 was assessed (C).  Gating 
on lineage-CD45+ cells, their expression of ICOS and ST2 was determined (D).  Panels are 
representative of each group, with 3 mice per group.  Data are representative of 3 experiments.  
 

IL-33 stimulates IL-13 production by numerous cell types [44, 126, 173, 190, 

203], including type 2 ILC [139, 214].  The BAL cytokine measurements 
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confirmed that IL-13 production in the lung was increased by intranasal 

administration of IL-33 (Figure 3-3A). Therefore, the role of the ILC population in 

IL-33-mediated IL-13 production was assessed.  Using the same method as for IL-

5 staining, cells from lung digests were stained for IL-13.  Following gating of the 

lymphocyte populations (Figure 3-12A), IL-13 fluorescence levels were measured 

(Figure 3-12B).  These experiments clearly showed that, in keeping with the IL-5 

results, IL-13-producing cells in IL-33-treated mice were lymphocytic.  

Additionally, the vast majority of these cells were lineage-CD45+ (Figure 3-12C) 

and co-expressed ICOS and ST2 (Figure 3-12D).   

These data further confirm that ILC respond to IL-33 in vivo to produce both IL-5 

and IL-13 in the lung and are therefore an important contributor to IL-33-driven 

airway inflammation.  
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Figure 3-12 Lineage negative ILC are the main IL-13+ population in IL-33-induced pulmonary 
inflammation 

Following whole lung digestion and stimulation, cells were stained as described in Fig 2-9.  
Lymphocytes were gated following exclusion of dead cells (Aqua dye+) and including single cells 
only in PBS- and IL-33-treated mice (A).  IL-13 fluorescence was measured in gated lymphocytes 
(B).  IL-13+ cells are predominantly lineage-CD45+ (C) and ICOS+ST2+ (D).  Data are representative 
of 2 experiments with 3 mice per group. 
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3.2.9 Intranasal rapamycin inhibits IL-33-induced ILC 
accumulation in the lung 

Having determined the role of ILC in IL-33-induced production of type-2 

cytokines in the lung, the effects of intranasal rapamycin on these cells were 

assessed. As before, mice were treated for 5 consecutive days with intranasal IL-

33 in the presence or absence of rapamycin.  The lungs were harvested on day 6 

and intracellular IL-5 and IL-13 expression in ILC analysed by FACS. The results of 

these experiments indicated that IL-33 greatly enhanced the number of ILC in 

the lung, although a small number of ILC were also present in PBS-treated mice.  

Importantly, the number of ILC induced by IL-33 was significantly (p=0.02) 

reduced by rapamycin treatment (Figure 3-13A).  Additionally, rapamycin 

treatment also resulted in a reduction in the absolute number of IL-5+(Figure 

3-13B) and IL-13+(Figure 3-13C) suggesting that the reduction in cytokines by 

rapamycin measured in the BAL may be a consequence of reduced ILC numbers 

in the lung. 

 

Figure 3-13 Rapamycin inhibits IL-33-induced ILC in the lung 

Mice were treated with intranasal IL-33 +/- rapamycin and lung digests were performed as before.  
ILC were gated as single cells that were Aqua-Lineage-CD45+ST2+ICOS+.  Total ILC are increased 
in IL-33-treated mice and reduced by concomitant rapamycin treatment (A).  IL-5+ ILC (B) and IL-
13+ (C) are reduced by mTOR inhibition in IL-33-treated mice.  Error bars represent SD for 3-4 mice 
per group.  Data are representative of 5 (Total ILC and IL-5+ ILC) and 2 (IL-13+ ILC) experiments. 
*p<0.05. 
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3.2.10 IL-33 induces AHR which is not inhibited by rapamycin 

Intranasal IL-33 has been shown to drive airway hyperresponsiveness (AHR) in the 

absence of the adaptive immune system [232].  However, the cells responsible 

for this effect have remained elusive until now.  Since the discovery of ILC, a 

number of publications have demonstrated a role for these cells in respiratory 

function.  Chang et al demonstrated that these cells were responsible for IL-13-

driven AHR in an influenza model of airway inflammation [174]. Additionally, the 

role of ILC in AHR in a variety of allergic airway inflammation models, including 

a glycolipid-induced and an ova allergic airway inflammation model, has been 

shown [74, 217]. Interestingly, rapamycin has also been shown to have 

therapeutic effects on AHR when given systemically in a transgenic model of 

airway remodelling [304] and in mice in which a house-dust mite (HDM)-induced 

model of airway inflammation was assessed [303]. 

Enhanced pause (Penh) measurement is a non-invasive method using whole body 

plethysmography to measure AHR.  Mice were administered IL-33 intranasally for 

5 days in the presence or absence of rapamycin and Penh measured on day 6 

following methacholine nebulisation to induce AHR.  The results showed that IL-

33-treated mice presented with substantial AHR in response to increasing doses 

of methacholine.  Whilst concurrent rapamycin treatment did not have an effect 

on AHR at lower methacholine doses, it appeared to reduce the average Penh 

measured in those mice at higher challenge doses (Figure 3-14).  This did not 

reach statistical significance.  Interestingly, rapamycin-only treated mice had an 

enhanced response to methacholine when compared to PBS-treated mice and 

this difference did achieve significance (p=0.0017 at 5mg/ml methacholine, 

p=0.00011 at 10mg/ml methacholine, p=0.011 at 30mg/ml methacholine, when 

compared to PBS control). 
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Figure 3-14 IL-33 induces increased Penh, which is not inhibited by rapamycin 

Mice were treated with intranasal IL-33 +/- rapamycin for 5 consecutive days.  On day 6, the mice 
were exposed to increasing concentrations of methacholine as discussed in chapter 2 and Penh 
was measured.  Data represents 2 pooled experiments with 7-14 mice per group. 
 

3.3 Conclusions 

From these data it is clear that intranasal administration of IL-33 induces 

profound airway inflammation.  IL-33 drives the recruitment of numerous 

inflammatory cells into the lung, which is reflected by increases in the BAL total 

cell number and differential cell types.  Eosinophils are the main cell-type found 

in the BAL following IL-33 administration and are a hallmark of IL-33-induced 

inflammation [232].  Eosinophils have been shown to differentiate from 

haematopoietic precursors in the bone marrow with IL-33 in an IL-5-dependent 

manner [44].  Additionally, IL-33 increases expression of C-C motif receptor 

(CCR) 3 on eosinophils [44], a chemokine receptor involved in both cell 

trafficking out of the bone marrow as well as a marker of eosinophils activation 

[334].  CCR3 binds eotaxin-1, -2 and -3 to induce eosinophil chemotaxis [37].  

Furthermore, when eotaxin-2 is given exogenously, it co-operates with IL-5 to 

induce IL-13 production in the lung and AHR [335].  Interestingly, the numbers of 

macrophages in BAL are also increased in the lung in response to IL-33.  IL-33, in 

combination with IL-13, has been shown to induce an alternatively activated 

phenotype on macrophages [133].  These macrophages were able to produce 

eotaxin-1 and -2 and induced eosinophil recruitment in IL-33-induced airway 

inflammation [133].  Whilst the phenotype of the macrophages obtained in the 
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BAL in these studies was not ascertained, it is likely that these are alternatively 

activated, in keeping with previous publications.   

Work in our group has demonstrated that cellular recruitment into the lung is 

preceded by an increase in chemokines (N. Pitman Thesis 2009).  Alveolar 

macrophages expressing ST2 and stimulated by IL-33 have been shown to 

produce eotaxin-1 and -2 as well as well as thymus and activation regulated 

chemokine (TARC) (CCL17).  Macrophages have also been shown to produce MIP-

1α (CCL3) in response to IL-33, which was important for neutrophil recruitment 

in a model of inflammatory joint disease [172].  Mast cells, which are also found 

in the lung and express ST2, have been shown to produce monocyte chemotactic 

protein (MCP)-1 (CCL2) in response to IL-33 [336].  Whilst MCP-1 was not 

detected in the BAL (data not shown), this may be due to the time point 

selected for the sacrifice, which was optimised for cytokine measurement but is 

late for peak chemokine measurement (N. Pitman Thesis 2009).  This may also 

explain the low, yet significantly elevated, levels of MIP-1α measured in the IL-

33-treated mice when compared to control.  Eotaxin-2 levels, however, 

remained high despite the late time point, suggesting different kinetics for the 

secretion of these chemokines.   

In addition to enhanced cell recruitment and chemokine production, IL-5 and IL-

13 production was also increased by IL-33 treatment. IL-13 has been shown to 

mediate IL-33-induced goblet hyperplasia and mucus production [232].  Since 

levels of IL-13 were found to be elevated in the BAL fluid of treated mice, it is 

not surprising to find substantial increases in mucus secretion, as noted by PAS 

staining, in their lungs.  The histology further confirms the effect of IL-33 on cell 

recruitment, which extends beyond the alveoli and is mainly peri-bronchial and 

peri-vascular in nature.   

Rapamycin is a specific inhibitor of mTOR that, as discussed in chapter 1, is in 

clinical use as an immunosuppressant.  The choice of mTOR inhibitor was made 

on the basis that rapamycin is clinically relevant, since it is already in use in 

humans, therefore making it a safe drug for in vivo modulation of mTOR.  

Moreover, rapamycin targets mTOR very specifically compared to other mTOR 

inhibitors.  In short-term studies, the effect of rapamycin on mTOR inhibition is 

restricted to suppression of the mTORC1 pathway.  However, prolonged 
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treatment with rapamycin blocks all newly-formed, un-complexed mTOR, hence 

having an effect on the mTORC2 pathway too [263].  Whilst other mTOR 

inhibitors such as PP242 have recently been shown to have off-target effects on 

other kinases such as Janus kinase (JAK) 1, 2 and 3 [264], studies have 

demonstrated the exquisite specificity of rapamycin [337].  In keeping with the 

in vitro effects of mTOR inhibition on Th2 cells, rapamycin treatment 

significantly reduced IL-33-mediated airway inflammation.  The effect of 

rapamycin on eosinophil numbers was substantial.  This reduction may be due to 

the reduced amounts of IL-5 produced in the lung, which enhances survival, cell 

trafficking and effector functions in eosinophils [338].  Interestingly, inhibition 

of mTOR by rapamycin has been shown to inhibit IL-5-mediated eosinophil 

survival in vitro [339].  Rapamycin also affected the production of IL-13 in 

response to IL-33, which in turn inhibited goblet cell hyperplasia and mucus 

production in the lung, a process which has been shown to be IL-13-dependent in 

this model [232]. 

The effect of rapamycin on the number of alveolar macrophages in the lung was 

particularly striking.  Thus, there was a marked reduction in the number of 

macrophages in the BAL of mice co-administered rapamycin and IL-33 as 

compared to mice receiving IL-33 alone.  It had been believed that, being 

resident cells, alveolar macrophages did not proliferate in the lung.  However, a 

recent paper challenged that view demonstrating that in the presence of a type-

2 immune response, alveolar macrophages proliferated in the lung in an IL-4-

dependent manner [340]. Further experiments to assess whether rapamycin 

affects alveolar macrophage proliferation would be interesting in view of the 

pathological role that IL-33-induced alternatively macrophages have been shown 

to play in allergic airway inflammation [133].   

Interestingly, rapamycin significantly increased the number of neutrophils found 

in the lung.  The number of neutrophils was very small by comparison to the 

other cell types in the BAL.  The mechanism underlying the effects of rapamycin 

on neutrophil numbers is at present uncertain.  IL-33 has been shown to enhance 

neutrophil migration to sites of sepsis and to prevent the down-regulation of 

interleukin 8 receptor beta (C-X-C chemokine receptor (CXCR) 2) expression in 

response to lipopolysaccharide (LPS) [138].  On the other hand, in a model of 

house dust mite (HDM)-induced airway inflammation, systemic rapamycin 
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decreased lung neutrophil recruitment [303].  MCP-1 is an important chemotacic 

factor for neutrophils.  However this was not measurable in the BAL at the time 

of sacrifice.  This may be due to the kinetics of IL-33-induced chemokine 

production in the lung (N Pitman thesis, 2009).  In order to ascertain in the 

increase in neutrophils in response to rapamycin is due to an effect on 

chemokine secretion, measurements at earlier time-points could prove 

insightful.  Interestingly, a number of groups investigating the anti-rejection 

properties of rapamycin in transplant models in rats have shown a reduction in 

chemokine secretion with rapamycin [341], suggesting that this may not be the 

mechanism for this observation.  An additional candidate would be IL-8 (C-X-C 

chemokine ligand (CXCL) 8), which is produced in the lung by human epithelial 

cells (data not shown) as well as eosinophils [135], basophils [130] and 

endothelial cells [342] in response to IL-33 and is also elevated in IL-33-induced 

airway inflammation (N Pitman thesis, 2009).  IL-8 is a chemoattractant for 

neutrophils [343] and analysis of the effect of rapamycin on IL-33-induced IL-8 

levels in the lungs would be an important experiment to clarify this result.  

Whilst rapamycin reduced the production of cytokines in the lung significantly, it 

did not affect the levels of any of the chemokines measured. The levels of MIP-

1α were very low and within the limits of the detection of the ELISA kit.  

However, the levels of eotaxin-2, however, remained high despite rapamycin.  

Whilst the timing for measurement of IL-33-induced chemokines was not optimal 

as previously discussed, the lack of effect of rapamycin on eotaxin-2 levels 

suggests that these IL-33-driven effects may not be mTOR-dependant.  Further 

experiments performed during optimised timepoints would be beneficial to 

clarify this. 

As discussed in chapter 1, there are a large number of cells in the lung that 

express ST2 and are hence IL-33-responsive (Table 1-1). Using multi-parameter 

FACS, it appeared that neither granulocytes nor CD4+ T cells were the main 

source of IL-5 and IL-13 in IL-33-treated lungs. The recent description of IL-33 

responsive fat-[213] and gut-associated [139] ILC suggested the possibility that 

these novel cells could be important in IL-33-induced airway inflammation.  

These cells were negative for common lineage markers but expressed a small 

number of other surface markers, including ST2, IL-17BR, CD45 and ICOS [139].  
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Using a combination of lineage markers previously described [139], the IL-5- and 

IL13-producing cells in the lung were found to indeed be lineage-negative and, 

intranasal rapamycin administration significantly reduced the numbers of ILC 

found in the lung.  The mechanism for this reduction was unclear and a number 

of possibilities existed.  The effects of mTOR inhibition on the proliferation of 

numerous cell types have been investigated, including B cells [344], NK cells 

[345] and T cells [346].  The possibility of rapamycin having a similarly direct 

effect on ILC function is the focus of the experiments described in Chapter 4.  In 

the future, experiments investigating whether ILC are resident cells which 

proliferate in situ, similarly to alveolar macrophages, or that are recruited from 

extrapulmonary sites would be insightful. 

The effect of rapamycin on IL-33-induced cytokine production in the lung might 

be sufficient to explain the significant reduction in ILC in the lung.  Experiments 

described in Chapter 4 aimed to clarify whether mTOR inhibition has a direct 

effect on ILC or whether a reduction in total numbers solely accounts for the 

effect of rapamycin on BAL cytokine levels.  The reduction in cytokines 

measured in the lung during concomitant rapamycin treatment is significant, yet 

not complete.  Whilst rapamycin has been shown to affect mTORC2 pathways in 

vitro, rapamycin derivatives also appear to be able to reduce mTORC2 signalling 

in leukaemic cells in vivo [347].  In vitro data using Th2 cells has demonstrated 

that IL-33 phosphorylates both S6K1 and Akt, suggesting both mTORC1 and 

mTORC2 are activated [75].  The effect of rapamycin in inhibiting mTORC2 in 

vivo in this model was not assessed and further experiments using either mTOR 

inhibitors such as Torin-1, which inhibits both mTORC1 and mTORC2 [264] would 

be useful to assess whether the incomplete effect of rapamycin was due to 

suboptimal mTORC2 inhibition.  An additional explanation for these data could 

result from suboptimal dosing of rapamycin and additional experiments to assess 

whether increased doses could further reduce the cytokine production could be 

informative. 

Systemic rapamycin was recently shown to inhibit AHR in a transgenic airway 

inflammation model [304], as well as in a HDM-induced model of allergic airways 

disease [303].  Since AHR in IL-33-induced airway inflammation had been shown 

to be dependent on IL-13 [232] and rapamycin appeared to inhibit its production 

in the lung, it seemed plausible that mTOR inhibition would be sufficient to 
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reduce IL-33-induced AHR.  More so, ILC induced in a model of pulmonary 

influenza infection had been shown to drive AHR [174] and in our model, 

rapamycin was able to reduce the number of ILC in the lung.  In combination, 

these results hinted at the possibility of rapamycin being sufficient to reduce IL-

33-induced AHR. From these results it is clear that IL-33 increases the Penh 

value in mice, compared to control, however there appears to be no difference 

when mice are also treated with rapamycin.  Additionally, mice receiving 

rapamycin alone have higher Penh than control mice.  This suggests that 

rapamycin may be having an effect in the lungs, driving AHR.  Whilst this is 

unexpected, there are a number of possible causes to explain the results.  

Firstly, when comparing these results to those from other groups assessing the 

effect of rapamycin on AHR, the method of delivery differ [303, 304].  It may be 

that direct inoculation of rapamycin in the lung has a toxic effect driving AHR.  

Whilst there were no obvious changes noted in the histology of rapamycin-only 

treated mice, subtle abnormalities could be missed.  

A potentially important caveat to the analyses of AHR in IL-33-treated mice is 

the fact that several groups have questioned the reliability of Penh as a measure 

of hyperresponsiveness. The measurement of Penh was first described by 

Hammelman et al.[94] as a non-invasive method to measure AHR in mice.  In this 

paper, the authors demonstrated the correlation of enhanced pause with 

changes in pleural pressure during AHR as well as an increase in Penh in both an 

allergic model of airway inflammation and in response to methacholine   Since 

the publication of this paper, numerous groups have used this method of whole 

body plethysmography (WBP) to measure AHR in mice [348, 349].  Despite its 

widespread use, Penh has increasingly been criticised by a variety of groups 

questioning the value of this derived measurement as a measure of airway 

reactivity.  The main question posed by these authors is whether Penh is really 

derived from a respiratory parameter at all.  The pressure changes induced by a 

change in the airway calibre are extremely small and many feel that deriving a 

number such as Penh from this flux is not scientifically robust.  This then has a 

knock-on effect on all numbers derived thereafter, including the comparison of 

changes of Penh from baseline, putting into question the value of Penh as a 

measure of AHR [96].  Unfortunately due to Home Office constraints and local 

expertise, measurement by Penh was the only available option.  In future 
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experiments, it would therefore be ideal to measure AHR in IL-33-treated mice 

by measuring airway resistance invasively in the gold-standard fashion [93] to 

make robust conclusions on this matter. 

In conclusion, data in this chapter demonstrate that IL-33 induces profound 

airway inflammation characterised by increased chemokine and type-2 cytokine 

secretion.  Additionally, ILC are the main source of IL-33-driven lung IL-5 and IL-

13 production.  Intranasal treatment of mice receiving both IL-33 and rapamycin 

have substantially less cellular infiltration, cytokine amounts and ILC in the lung, 

pointing at an important role for mTOR signalling in IL-33-driven biological 

effects in vivo. 
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4 The role of mTOR in IL-33-induced innate 
lymphoid cell functions in vitro and in vivo 
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4.1 Introduction 

In chapter 3 it was shown that the mTOR inhibitor rapamycin inhibits IL-33-

induced airway inflammation, suggesting a role for mTOR signalling in the in vivo 

functions of IL-33.  The reduction in cytokine production observed in the 

bronchoalveolar lavage (BAL) was mirrored by significantly fewer type-2 innate 

lymphoid cells (ILC) in the lung.  Since ILC were demonstrated to be the main 

producers of IL-5 and IL-13 in the lung under the influence of IL-33, it was 

possible that the inhibitory effect of rapamycin on BAL cytokines was indirect, 

via a reduction in ILC numbers, rather than a direct inhibition of mTOR signalling 

induced by IL-33.  Experiments described in this chapter were designed to 

answer this question.  ILC from IL-33-treated lungs were isolated and in vitro 

experiments were performed to assess the effects of rapamycin on IL-33-induced 

effects directly.  Experiments in this chapter also assessed the biological effects 

of IL-33 on ILC in vitro and the importance of mTOR activation in these 

processes.  Finally, the contribution of ILC to IL-33-induced airway inflammation 

was determined using an adoptive transfer model into ST2-/- mice in order to 

isolate the effects of IL-33-stimulated ILC in vivo. 

4.2 Results 

4.2.1 ILC sorting from IL-33-treated lungs 

Using multi-parameter FACS, ILC were isolated from lungs.  Since the number of 

ILC found in naive mice had been shown to be very small (Figure 3-13) the 

decision to use mice treated with IL-33, as described in Chapter 3, to induce a 

larger population of ILC, was made.  Following lung digestion, single cell 

suspensions were incubated in complete medium (CM) for 1 hour to remove 

adherent cells, such as macrophages and epithelial cells.  The cells were 

subsequently stained with a panel of antibodies as previously described [139] 

and sorted using a BD FACS Aria flow cytometer following the gating strategy 

shown  (Figure 4-1A).  Post-sort purity was checked and shown to routinely be 

>96% (Figure 4-1B).  
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Figure 4-1 Gating strategy for ILC sort 

BALB/c mice were treated with 1µg IL-33 for 5 days.  Lungs (3-4) were digested as before and 
adherent cells were removed.  Cells were stained with FITC ST2, PE Lineage (CD3, FCεRI, B220, 
CD11b), PerCP-Cy5.5 ICOS, AF700 CD45 and V450 DAPI.  Cells were gated (A) and post-sort 
purity was checked (B). 
 

4.2.2 Characterisation of sorted ILC 

ILC populations have been described by a number of different groups.  The 

evidence suggests that these populations are very phenotypically similar and are 

probably the same cell type.  However subtle differences in surface marker 

expression have been shown [74, 139, 213, 214] and hence the surface markers 

expressed by sorted ILC were determined.  During the sorting process it was 
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established that IL-33-induced lung ILC did not express CD3, B220, CD11b and 

FCεRI.  Additionally, freshly sorted ILC did not express CD11c, NK1.1, TCRγδ or 

TCRβ (Figure 4-2A).  These results are in keeping with the surface phenotypes of 

described ILC[74, 139, 213].  Additionally, ILC did express a number of surface 

markers in addition to ST2, ICOS and CD45 (surface markers used for gating 

strategy).  These included CD25, CD127 and c-Kit (Figure 4-2B).  

 

Figure 4-2 ILC surface markers 

ILC were sorted as previously described. Expression of specific lineage markers were measured 
on freshly sorted ILC (A).  Expression of additional surface receptors was also measured (B). Filled 
gray histograms represent isotype controls, ILC represented in solid black line (A) or red (B).  
 

4.2.3 The effect of IL-33 on ILC in vitro 

4.2.3.1 IL-33 induces IL-5 and IL-13 production from ILC 

From the FACS data shown in Chapter 3 it was clear that ILC represented the 

major IL-5- and IL-13-producing cell type present in the lungs of IL-33-treated 

mice. Therefore, initial experiments were performed in order to confirm the 

ability of ILC to respond directly to IL-33. The sorted ILC were rested overnight 

in complete medium (CM) alone prior to stimulation as initial experiments using 

freshly sorted cells demonstrated that their baseline cytokine production 

remained very high when measured shortly after the sort (data not shown).  This 

was likely to be a consequence of their recent exposure in vivo to large amounts 
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of IL-33 in the previous 24 hours. Following resting, ILC were cultured with 

varying amounts of IL-33 for 24h and IL-4, IL-5 and IL-13 in culture supernatants 

were measured.  ILC produced substantial amounts of IL-5 (Figure 4-3A) and IL-

13 (Figure 4-3B) in response to even small amounts of IL-33.  No IL-4 was 

detected (data not shown).  From these data, it appeared that 1 ng/ml IL-33 

was sufficient to drive peak IL-13 production from ILC.  However, the amount of 

IL-5 production continued to increase with incremental doses.  Based on these 

results, the decision to use 10 ng/ml IL-33 for in vitro ILC stimulation was made. 

 

Figure 4-3 Incremental doses of IL-33 induce increasing amounts of type-2 cytokines from 
ILC 

Rested sorted ILC (1x105) were cultured with incremental doses of recombinant IL-33 in triplicate 
and supernatants were collected after 72hrs.  IL-5 (A) and IL-13 (B) were measured by ELISA.  
Error bars represent SD for experimental triplicates.  CM=complete medium. 
 

4.2.3.2 IL-33 induces p38 phosphorylation and IκB-α degradation 

The IL-33-induced signalling pathway has been extensively investigated in 

numerous cell-types [82, 112, 117, 188-190, 350].  Similar to other members of 

the IL-1 family of cytokines, IL-33 recruits myeloid differentiation primary 

response gene 88 (MyD88) and induces phosphorylation of mitogen-activated 

protein (MAP) kinases, including p38 and also induces inhibitor of kappa B-alpha 

(IκB-α) degradation, leading to nuclear factor kappa B (NFκB) activation [82].  In 

order to ascertain if IL-33 also induced activation of these canonical pathways in 

ILC, these cells were treated with 10 ng/ml IL-33 for the described times and 

lysates prepared for western blot (WB) analysis of phosphorylated p38 (pp38) 
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(Figure 4-4A) and IκB-α degradation (Figure 4-4B).  IL-33 treatment resulted in 

elevated levels of p38 phosphorylation that increased from 5 minutes to 30 

minutes stimulation and had started to decrease by 60 minutes. IL-33-induced 

IκB-α degradation appeared to peak at 30 minutes.  From the data obtained, it 

was clear that IL-33 induced these canonical pathways in ILC, in keeping with 

data from other cell types. 

 

 

Figure 4-4 IL-33 induces p38 phosphorylation and IκB-α  degradation 

Sorted ILC (5 x 105 cells) were treated for the indicated time with 10ng/ml IL-33.  Cell lysates were 
collected as previously described and WB performed blotting for phosphorylated p38 (A) and pan-
p38 for loading control.  Blots were stripped and re-blotted for IκB-α (B) with actin as loading 
control. 
 

4.2.4 The effect of rapamycin on IL-33-induced ILC function in 
vitro 

The above data confirmed that IL-33 directly stimulated cytokine production and 

activation of the IL-33 canonical pathway in isolated ILC.  It was therefore 

important to determine the role of mTOR activation in IL-33-dependent ILC 

responses in vitro. 

4.2.4.1 Rapamycin inhibits IL-33-induced S6 phosphorylation but does not 
affect IκB-α degradation 

The role of mTOR in IL-33-induced ILC activation was assessed first by measuring 

S6 phosphorylation levels in IL-33-treated ILC in the presence or absence of the 
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mTOR inhibitor, rapamycin.  As discussed in Chapter 1, mTORC1 activation leads 

to phosphorylation of S6 kinase 1 (S6K), which in turns phosphorylates the 

ribosomal protein S6 (S6). S6 phosphorylation has therefore been widely used as 

a marker of mTORC1 activity [253].  Whilst previous experiments using Th2 cells 

[75] had demonstrated increased S6 phosphorylation induced by IL-33, it was 

important to establish whether IL-33 was able to enhance S6 phosphorylation in 

ILC. Ex-vivo ILC were therefore pre-treated with rapamycin (100nM) for 30 

minutes prior to stimulation followed by IL-33 for 60 minutes.  Whole cell lysates 

were prepared and WB performed, blotting for phosphorylated S6 (pS6) (Ser 

240/244) and actin as a loading control (Figure 4-5A).  The data shown 

demonstrated that whilst IL-33 induced S6 phosphorylation, this effect was 

blocked by rapamycin.  This experiment confirmed that IL-33 induces S6 

phosphorylation in ILC in an mTOR-dependent manner. 

As previously discussed (Chapter 1), the inhibitory effects of rapamycin on mTOR 

have been shown to be highly specific [264].  Nonetheless, the effect of 

rapamycin on IL-33-induced IκB-α degradation was ascertained, to ensure that 

any effects of rapamycin on IL-33-induced functions were direct effects of mTOR 

inhibition only.  ILC were therefore pre-treated with rapamycin (100nM) for 30 

minutes, as before, and stimulated with IL-33 for the indicated times.  WB for 

IκB-α was performed on the cell lysates collected (Figure 4-5B).  The blot was 

then stripped and re-blotted for actin.  The data showed that rapamycin did not 

affect levels of IκB-α degradation indicating that whilst rapamycin inhibits IL-33-

induced mTOR activation, it does not affect additional signalling pathways 

induced simultaneously by IL-33 in ILC.   
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Figure 4-5 Rapamycin inhibits IL-33-induced S6 phosphorylation but not IκB-α  degradation 

Ex-vivo ILC (1 x105) were rested overnight and pre-treated with rapamycin (100nM) for 30 minutes 
prior to IL-33 stimulation (10ng/ml) for 60 minutes.  Cell lysates were collected and WB for S6 (Ser 
240-244) was performed, followed by re-blotting for actin (A).  ILC were pre-treated with rapamycin 
as before and treated with IL-33 for the indicated time.  Cell lysates were collected and WB 
performed.  This was blotted for IκB-α and subsequently re-blotted for actin (B).  Blots are 
representative of 3 (S6) and 2 (IκB-α) experiments.  CM=complete medium. 
 

4.2.4.2 Rapamycin inhibits IL-33-induced cytokine production in ILC 

Whilst the above results confirmed that mTOR activation occurred in ILC in 

response to IL-33 and that rapamycin was able to inhibit S6 phosphorylation, the 

biological importance of mTOR activation by IL-33 in ILC functions was yet to be 

determined.  In order to clarify this, ex-vivo ILC were stimulated with 10ng/ml 

IL-33 in the presence or the absence of 100nM rapamycin for 24 hours.  

Supernatants were collected and cytokine levels were measured by ELISA.  As 

before, ILC produced large amounts of IL-5 and IL-13 (Figure 4-6A) in response to 

IL-33.  Importantly, rapamycin significantly inhibited the amounts of IL-5 

(p=0.00074) and IL-13 (p=0.00069) in the supernatants, reducing the levels of IL-

5 and IL-13 by 40%, demonstrating a key role for mTOR in IL-33-induced cytokine 

production. 
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In addition to the well-described ability of ILC to produce type-2 cytokines, it 

has also been demonstrated that these cells are capable of producing IL-6 and 

granulocyte monocyte-colony stimulating factor (GM-CSF) [139].  Therefore, the 

effects of IL-33 on production of these cytokines was assessed. Not only was IL-

33 able to drive ILC to produce IL-6 and GM-CSF, but rapamycin was shown to 

inhibit these processes in ILC (Figure 4-6B) with a reduction of 50% in IL-6 

production and 40% GM-CSF production from the cells.  However, the levels of 

both these factors were substantially lower than those measured for the type-2 

cytokines.    

These data conclusively demonstrate the vital role for mTOR signalling in ILC IL-

33-induced cytokine production. 

 

Figure 4-6 ILC produce cytokines in response to IL-33 in an mTOR-dependent manner 

ILC were rested overnight and stimulated in vitro with IL-33 (10ng/ml) for 24 hours.  Supernatants 
were collected and type 2 cytokines (A), IL-6 and GM-CSF (B) were measured by ELISA.  Error 
bars represent SD from experimental triplicates.  Data are representative of 3 separate 
experiments. *p<0.05, **p<0.01, ***p<0.001. CM=complete medium. 
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4.2.4.3 Rapamycin does not inhibit IL-33-induced cytokine message 
ribonucleic acid (mRNA) production 

Since it was clear that rapamycin partially inhibited IL-33-induced cytokine 

production, the mechanism for this effect was sought.  mTOR regulates protein 

synthesis via altering ribosomal biogenesis as well as by regulating rates of mRNA 

translation [351].  In order to determine whether rapamycin regulated type-2 

cytokine mRNA levels in ILC, the levels of Il5 (Figure 4-7A) and Il13 (Figure 4-7B) 

were measured in ILC stimulated with 10ng/ml IL-33 for 4 hours. Cells were 

stimulated with IL-33 in the presence or absence of rapamycin and pelleted.  

The cell pellets were flash-frozen in liquid nitrogen followed by RNA extraction.  

Complementary deoxyribonucleic acid  (cDNA) was prepared by reverse 

transcriptase polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR) 

was performed using specific Taqman probes for each cytokine.  qPCR 

measurement of hypoxanthine phophoribosyltransferase (Hprt) levels was also 

performed to allow comparison of the cytokine mRNA levels with that of a stable 

‘house-keeping’ gene.   The data showed that rapamycin did not impact upon 

either basal or IL-33 induced levels of Il5 or Il13 mRNA. This suggests that mTOR 

primarily functions to regulate ILC cytokine expression at a post-transcriptional 

level. 
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Figure 4-7 IL-33 induces Il-5 and Il-13 mRNA production in an mTOR-independent manner. 

ILC were stimulated with IL-33 for 4 hours.  Cell pellets were obtained and flash frozen for RNA 
extraction as described before.  cDNA was generated by reverse transcription polymerase chain 
reaction (RT-PCR) and levels of Il5 (A) and Il13 (B) were measured by quantitative PCR using 
Taqman probes and Hprt levels as a control.  Data show 2 separate experiments with relative 
values calculated from technical triplicates of each sample. CM=complete medium. 
 

4.2.4.4 IL-33 does not induce ILC proliferation in vitro 

IL-33 vastly increased the number of ILC in the lung in vivo and rapamycin 

profoundly reduced their number when given concomitantly (Chapter 3).  A 

possible reason for this was the possibility that IL-33 directly induced ILC 

proliferation in an mTOR-dependent manner.  In order to test this possibility, ILC 

were cultured with IL-33 ± rapamycin for 72 hours.  Proliferation was assessed by 

measuring incorporation of 3H-Thymidine during the final 16 hours of culture. 

Whilst IL-33 appeared to enhance the amount of 3H-Thymidine incorporation 

(Figure 4-8), this did not reach statistical significance.  These data demonstrate 

that IL-33 did not induce ILC proliferation in vitro. 
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Figure 4-8 ILC do not proliferate in response to IL-33 in vitro 

ILC were cultured with IL-33 in the presence or absence of rapamycin for 72 hours.  They were 
pulsed with 3H-Thymidine for the final 16 hours of culture.  Thymidine incorporation was measured 
using a beta counter as described in Chapter 2.  Error bars represent SD of experimental 
triplicates.  Data are representative of 3 experiments. CM=complete medium. 
 

4.2.4.5 IL-7 and Thymic stromal lymphopoietin (TSLP) synergise with IL-33 
to induce ILC cytokine production 

One of the first descriptions of ILC demonstrated that these cells expressed 

CD127 (IL-7Rα) [139] and this was also demonstrated in ex-vivo sorted ILC 

(Figure 4-9B). CD127 is important for biological responses to both IL-7 and TSLP 

[352]. Interestingly, whilst IL-7 has been shown to be important in lymphocyte 

development [353], TSLP has been shown by numerous groups to be involved in 

allergic processes [69, 72, 354], similarly to IL-33.  Therefore, the effects of 

both IL-7 and TSLP on ILC function were determined.  ILC were treated in vitro 

with combinations of IL-33 ± IL-7 or TSLP in the presence or absence of 

rapamycin.  Whilst individually each of the cytokines induced type-2 cytokine 

production by ILC, the synergistic effect of IL-33 with either IL-7 or TSLP on IL-5 

(Figure 4-9A) and IL-13 (Figure 4-9B) production was substantial.  Interestingly, 

this effect was more marked with TSLP activation than with IL-7. Importantly, 

treatment of ILC with rapamycin strongly inhibited the induction of IL-5 and IL-

13 production by IL-33, IL-7 and TSLP alone or by combinations of these 

cytokines (Figure 4-9). These data demonstrate the important role of mTOR 

signalling in cytokine production induced by other cytokine pathways in ILC as 

well as interesting synergistic effects of IL-33 with other innate cytokines.  
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Figure 4-9 IL-33 synergises with TSLP and IL-7 to induce ILC type-2 cytokine production in 
vitro 

Ex-vivo ILC were sorted as before and rested overnight.  The cells were stimulated with the 
indicated cytokines (10ng/ml) in the presence or absence of rapamycin (100nM) and supernatants 
were collected.  IL-5(A) and IL-13(B) were measured by ELISA.  Error bars represent SD for 
experimental triplicates.  Data are representative of 3 experiments. Left panels represent single 
cytokine stimulations.  Data in right panels demonstrate both single (as per left panels) and 
combined cytokine stimulations (note different scales in left and right panels).  *p<0.05, ***p<0.001. 
CM=complete medium. 
 

4.2.4.6 IL-7 and TSLP induce ILC proliferation in an mTOR-dependent 
manner 

Having determined the ability of IL-7 and TSLP to induce cytokine production, 

the effects of these cytokines on ILC proliferation were assessed. Whilst IL-33 

did not induce proliferation of ILC in vitro, the effect of TSLP and IL-7 on ILC 

proliferation was clear (Figure 4-10A). TSLP, but not IL-7, in combination with 

IL-33, synergised to induce ILC proliferation in vitro (Figure 4-10B).  Rapamycin 

inhibited levels of 3H-thymidine incorporation induced by TSLP and IL-7 by 84% 
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and 46% respectively, indicating an important role for mTOR in ILC proliferation. 

 

Figure 4-10 ILC proliferate in vitro in response to IL-7 and TSLP in an mTOR-dependent 
manner. 

ILC were sorted and cultured as described previously.  They were stimulated with the indicated 
cytokines at 10ng/ml for 72 hours with 3H-Thymidine added in the final 16 hours of the culture 
period.  Thymidine incorporation was measured using a beta-counter.  Error bars represent SD 
from experimental triplicates.  Data are representative of 3 experiments. **p<0.01, ***p<0.001, 
ns=not significant. CM=complete medium. 
 

4.2.5 The role of ILC in IL-33-induced airway inflammation 

Whilst others had demonstrated roles for ILC in gut immunity [139, 213, 214] and 

viral-mediated airway hyperresponsiveness [174], the importance of these cells 

in driving IL-33-induced airway inflammation was unknown.  The following 

experiments were aimed at answering this important question. 

4.2.5.1 The adoptive transfer model 

Kondo and colleagues had demonstrated that intranasal IL-33 induced airway 

inflammation in the absence of the adaptive immune cells, as this model could 
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be replicated in recombination activating gene (Rag) 2-/- mice [232].  This 

therefore suggested that this model was dependent on the innate immune 

response.  Since ILC were the main source of type-2 cytokines in this model of 

airway inflammation (as discussed in Chapter 3), it seemed plausible that these 

cells could be sufficient to drive the inflammation induced by IL-33.  As 

discussed previously, there are a variety of cells that express ST2 in the lung and 

are hence IL-33-responsive.  It was therefore important to use an in vivo model 

in which the effects of IL-33 on ILC alone could be assessed.  In order to 

accomplish this, an adoptive transfer model was used in which sorted WT ILC, 

induced by IL-33 as before, were intranasally transferred to ST2-/- mice (Figure 

4-11).   These mice were then challenged with IL-33 or PBS as a control.  Since 

the transferred wild type (WT) ILC were the only cell-type in the recipient mice 

expressing ST2, these were the only cells that could respond directly to the IL-33 

challenges.  The effect of these challenges when compared to PBS-challenged 

mice would determine the contribution of IL-33-activated ILC to the airway 

inflammation model. 

 

Figure 4-11 The adoptive transfer model 

WT BALB/c mice were treated with intranasal IL-33 as before for 5 consecutive days.  The mice 
were culled on day 6 and lungs were digested as before.  Using a BD FACS Aria and the sorting 
strategy described (Fig 2-1A), WT lung ILC were isolated and rested overnight.  They were then 
transferred intranasally in 30µL PBS into ST2-/- mice, followed by vehicle or 1µg IL-33 in 20µL PBS.  
The cytokine challenges were continued for a further 4 days and mice were killed 24 hours after the 
final challenge and samples were collected. 
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4.2.5.2 ILC are sufficient to induce IL-33-driven airway inflammation 

Following ILC adoptive transfer and IL-33 or PBS treatment, ST2-/- mice were 

killed and BAL was performed following cardiac puncture under terminal 

anaesthesia.  Total BAL cell counts were performed and a clear increase in the 

number of cells recruited in the lung was noted in mice transferred with ILC and 

treated with IL-33 (Figure 4-12A).  This result stressed the importance of 

activating the ILC with IL-33 to induce the airway inflammation, as this effect 

was not seen in PBS-treated mice.  In addition, lung digests were performed, as 

described previously, and total lung cell numbers were determined.  The number 

of total lung cells was also increased in mice receiving IL-33 in keeping with the 

BAL results (Figure 4-12A).   

The lung digest cells were stained for surface markers and FACS was performed 

to assess the cell types present.  There was a clear increase in the number of 

granulocytes in the lung (data not shown) and further surface marker assessment 

demonstrated that the number of total eosinophils (CD11b+, Siglec f+, Gr1int), 

macrophages (CD11b+, Siglec f-, Gr1int) and neutrophils (CD11b+, Siglec f -, Gr1hi) 

were significantly increased (p=0.0016, p=0.0024, p=0.0072, respectively) in IL-

33-treated mice compared to mice receiving PBS (Figure 4-12B).  Additionally, 

the number of ILC recovered from the lung was also increased in IL-33-treated 

mice (Figure 4-12B).  These data demonstrated clearly that ILC were sufficient 

to mediate the lung inflammatory cell recruitment induced by IL-33. 
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Figure 4-12 ILC are sufficient to drive IL-33-induced cellular infiltration in the lung 

ST2-/- mice, which had received WT ILC, were treated with PBS or IL-33 for 5 days and killed on 
day 6.  BAL were performed and total cell counts were determined (A).  Left lungs were digested 
and total cells were counted (A).  FACS staining of lung digests were performed and absolute 
numbers of each cell type was determined based on surface markers (B).  Dots indicate individual 
mice and bars represent means.  Data representative of 2 pooled experiments. *p<0.05, **p<0.01. 
 

4.2.5.3 IL-33-activated ILC are sufficient to induce type-2 lung cytokine 
production 

As discussed in chapter 3, ILC were found to be the main source of IL-5 and IL-13 

induced by IL-33 in the lung.  Consistent with these data, ST2-/- mice that 

received WT ILC and were treated with IL-33 had significantly higher (p=0.0007) 

amounts of IL-5 in their BAL fluid (Figure 4-13A) as well as enhanced IL-13 levels 
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(Figure 4-13B).  Interestingly, transferring ILC alone was not sufficient to induce 

high levels of cytokine production in the lungs, underpinning the importance of 

IL-33 in driving ILC functions in vivo.  Additionally, endogenous IL-33 was 

insufficient to stimulate the ILC in mice treated with PBS, suggesting that basal 

IL-33 levels are low in the resting mouse.  Whilst it is likely that the ILC 

themselves are the main source of the IL-5 and IL-13 measured, the effect of ILC 

on the recruitment of other cells capable of producing type-2 cytokines, such as 

eosinophils [37], make it possible that these recruited cells might also contribute 

to the type-2 cytokine production. 

 

Figure 4-13 IL-33-stimulated ILC are able to increase IL-5 and IL-13 levels in the lung 

BAL from ST2-/-, treated with PBS or IL-33 following intranasal transfer of WT ILC, was collected 
and IL-5 (A) and IL-13 (B) were measured by ELISA.  Error bars represent SD of measurements 
from individual mice (n=4-5/ group).  **p<0.01, ***p<0.001.  Data are representative of 3 
experiments. 
 

4.2.5.4 WT ILC are sufficient to increase cell recruitment and mucus 
production in IL-33-treated ST2-/- mice 

As discussed previously, intranasal IL-33 induced histological changes in the lung.  

These had been shown to be dependent on the innate, rather than the adaptive 

immune system and were driven by IL-13 [232].  As shown above, IL-33-treated 

ILC had been shown to be sufficient to induce cell recruitment to the lungs and 

increase type-2 cytokine production in the lung. Therefore the ability of ILC to 

drive the histological changes seen in IL-33-induced airway inflammation was 

assessed. 
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Using the adoptive transfer model, the right lungs of recipient mice were fixed 

and heamatoxylin and eosin (HE) staining performed.  In keeping with the results 

in WT mice (as discussed in chapter 3) and by Kondo el al [232], IL-33-treated 

ILC were able to recruit inflammatory cells to the peri-bronchial and peri-

vascular areas of the lung.  Additionally, some patchy changes were noted in the 

alveolar spaces (Figure 4-14A). Two blinded assessors quantified the changes in 

cell infiltration (Figure 4-14C) and lung architecture (Figure 4-14D) using an 

arbitrary scoring system.  The lung sections were also stained with periodic-acid 

schiff (PAS) demonstrating that transferred WT ILC treated with IL-33 were 

sufficient to induce goblet cell hyperplasia and mucus hypersecretion in the lung 

of recipient ST2-/- (Figure 4-14B).  The amount of mucus staining in the PAS-

stained lung sections was quantified (Figure 4-15E) demonstrating a significant 

(p=0.0141) increase in mucus secretion when recipient mice were treated with 

IL-33 rather than PBS.  These data demonstrate that, in the absence of 

additional IL-33-responsive cell populations, WT ILC are sufficient to induce all 

the key pathological changes associated with IL-33-driven airway inflammation. 



129 

 

Figure 4-14 WT ILC are sufficient to induce lung histology changes in ST2-/- mice in 
response to IL-33 

Lung sections from recipient ST2-/- treated with PBS and IL-33 were prepared and stained with HE 
(A) and PAS (B).  Using an arbitrary score, 2 assessors quantified the differences in cell infiltration 
(C), lung architecture (D) and extent of mucus staining (E) blind.  Sections were representative of 
the group.  Bars on sections represent 200µm.  Error bars represent SEM from individual mice 
(n=8-9/ group from two pooled experiments).  *p<0.05, **p<0.01. 
 

4.2.5.5 Rapamycin inhibits ILC-driven, IL-33-induced airway inflammation 

Taken together, the data described above demonstrated a key contribution of 

ILC to IL-33-induced airway inflammation.  In order to directly determine 

whether mTOR is important in IL-33-activated ILC function in vivo the adoptive 

transfer model was adapted to assess the effects of rapamycin by the inclusion 

of an IL-33+rapamycin group.  The results demonstrated that ILC-administered 

ST2-/- recipient mice developed IL-33-induced airway inflammation that was 
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inhibited by rapamycin.  Thus, the total lung cell numbers were reduced by 

concomitant rapamycin treatment (Figure 4-15A).  The effect of mTOR inhibition 

was also noted in the reduction of the numbers of different granulocytes 

recruited to the lung (Figure 4-15B).  Although there was a significant reduction 

in both neutrophil and eosinophil numbers in the lung, the reduction in 

macrophage numbers did not reach statistical significance.  Nonetheless, there 

was a trend for a reduction in macrophage numbers with concomitant rapamycin 

treatment.  Additionally, mTOR inhibition reduced the number of ILC recovered 

in the lungs of the recipient mice, in keeping with the results obtained from WT 

IL-33-treated mice (chapter 3). In addition, whilst IL-33 induced cytokine 

production in the lungs of ILC-recipient ST2-/- mice (Figure 4-15C), this effect 

was inhibited by rapamycin treatment. Finally, a further group of mice receiving 

a sham transfer and treated with IL-33 alone demonstrated that IL-33 had no 

effect on cell counts and cytokine levels measured in the lungs of ST2-/- mice 

(Figure 4-15).  These data clearly demonstrate that mTOR is vital for IL-33-

induced functions in vivo and that ILC are key to driving IL-33-induced airway 

inflammation. 
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Figure 4-15 IL-33-activated ILC-induced airway inflammation is mTOR-dependent 

ST2-/- mice received intranasal adoptive transfer of WT ILC or sham, were treated with intranasal 
PBS, IL-33 or IL-33+Rapamycin.  The mice were killed and lung cells were counted as before (A).  
Lung digests, prepared as before and cells were stained as previously described.  Absolute 
numbers of eosinophils (CD11b+, Siglec f+, Gr1int), macrophages (CD11b+, Siglec f-, Gr1int) and 
neutrophils (CD11b+, Siglec f-, Gr1hi) were determined (B).  Absolute numbers of ILC were 
assessed using the gating strategy described in Figure 4-1 (B).  Cytokine levels were measured by 
ELISA.  Dots represent individual mice with bars representing means for 2 pooled experiments.  
Error bars represent SD of ELISA measurements from individual mice (n=2-3/ group).  *p<0.05, 
**p<0.01, ***p<0.001. 
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4.3 Conclusions 

The experiments described in this chapter were designed to further characterise 

IL-33-induced responses in ILC and the importance of mTOR in these processes.  

Using FACS-sorted ex vivo ILC, the effects of IL-33 on ILC signalling pathways, 

cytokine production and proliferation were determined, increasing our 

understanding of this novel cell type.  The results of these experiments prove 

that ILC are IL-33 targets and that it induces a canonical signalling pathway in 

these cells, as well as activating mTOR.  In fact, mTOR activation is essential for 

optimal IL-33-driven ILC cytokine production in vitro.  Since Kondo et al. had 

previously demonstrated that IL-33-driven airway inflammation was independent 

of the adaptive immunity [232], it was important to determine the contribution 

of ILC in this model of inflammation.  The in vivo adoptive transfer model 

described in this chapter isolates ILC responses and demonstrates their 

contribution to IL-33-driven inflammation.  The results from these experiments 

also demonstrate that, whilst ILC are sufficient to drive IL-33-induced airway 

inflammation, mTOR activation is vital for maximal IL-33 effect in vivo.  

Firstly, it was essential to establish whether the ILC isolated from the lungs of 

IL-33-treated mice were phenotypically similar to those described previously by 

other groups investigating ILC in other organs. Using a similar gating strategy to 

that described by Neill and colleagues [139], it was clear that the lung ILC did 

not express a number of lineage markers (FcεRI, CD3, CD11b, B220) yet they did 

co-express CD45, ST2 and ICOS, demonstrating that these cells were indeed 

similar to those described by others [139, 174, 214]. 

Importantly, the absence of expression of other lineage markers such as TCRγδ, 

TCRβ, NK1.1 and CD11c was found in the lung ILC.  This was also in keeping with 

the results published by others [139, 174, 214, 217, 355].  An important marker 

common to the first publications describing this novel population is the 

expression of c-kit [139, 174, 213, 214].  The extent of c-kit expression differed 

amongst the publications.  However, this may simply be a reflection of the 

different models used to drive ILC numbers, which in turn may affect their 

activation status or phenotype.  C-kit is a receptor tyrosine kinase that binds 

stem cell factor (SCF) and induces phosphoinositide 3-kinase (PI3K) 

phosphorylation.  It is expressed in a number of structural cells as well as 
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haematopoetic precursor cells, stem cells [356], mast cells [357] as well as 

peripheral eosinophils and basophils [358].   Interestingly, ST2 expression occurs 

early in mast cell development [359] and IL-33-induced mast cell cytokine 

production is optimal with concomitant c-kit activation [192] [129].  The 

functional relevance of ILC c-kit expression is yet to be determined, however 

some preliminary experiments have shown that, similar to mast cells, co-

stimulation of ILC with IL-33 and SCF had a synergistic effect on type-2 cytokine 

production (data not shown), suggesting that indeed, the presence of c-kit in ILC 

is functionally relevant.  

As ILC expressed ST2, it was imperative to assess the direct effects of IL-33 on 

these cells. IL-33-induced MAP kinase and NF-κB canonical signalling pathways 

have been described in numerous cell types [82, 112, 117, 189, 190, 192, 350, 

360], (discussed in chapter 1) and the activation of these pathways by IL-33 in 

ILC was tested.  This was achieved by assessing the phosphorylation of p38 and 

degradation of IκBα, a marker of NF-κB activation [361].  Western blots 

performed on lysates of IL-33-activated ILC confirmed that these pathways were 

activated by IL-33.   

In order to assess whether mTOR activation occurred in ILC as a result of IL-33 

treatment, rapamycin was used and S6 phosphorylation measured.  As discussed 

previously, mTORC1 activation leads to the phosphorylation of S6K, one 

substrate of which is the ribosomal protein S6.  The phosphorylation of S6 is 

therefore a useful marker of mTOR activation.  It is important to note, however, 

that S6 is also the substrate of the MAP kinase ribosomal S6 kinase (RSK), which 

phosphorylates S6 in an S6K-independent pathway [362]. S6 is phosphorylated at 

4 of its sites, Ser235, Ser236, Ser240 and Ser244.  Whilst phosphorylation at the 

Ser235 and Ser236 sites are partially rapamycin insensitive, phosphorylation of 

the Ser240 and Ser244 residues are not [362].  A further publication assessing 

the mechanisms of S6 phosphorylation downstream of TCR signalling in CD8 T 

cells demonstrated that, in fact, phosphorylation of S6 at the Ser235/236 

residues involved redundant roles for RSK and S6K, and although RSK did 

contribute to phosphorylation of S6 at the Ser240/244 sites, S6K was the 

dominant kinase for those sites [363].  It therefore seemed sensible to assess S6 

phosphorylation using an antibody directed against the Ser240/244 residues.  
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Western blots of lysates of IL-33-treated ILC demonstrated an increase in S6 

phosphorylation levels, which was abolished by concurrent rapamycin treatment, 

conclusively demonstrating the role for mTOR activation in this model.  

Additionally, the lack of effect of rapamycin on p38 phosphorylation and IκB-α 

degradation demonstrate the specificity of rapamycin as an mTOR inhibitor 

[263].   

The biological effect of mTOR inhibition in this in vitro system was determined 

by measuring the effects of rapamycin on IL-33-induced ILC cytokine production.  

Similarly to the in vivo experiments, rapamycin strongly inhibited IL-33 driven IL-

5 and IL-13 production by ILC. Taken together, these results confirmed the vital 

role of mTOR signalling in IL-33-induced ILC cytokine production. It is important 

to note that rapamycin was able to significantly reduce, but not abolish, the 

effects of IL-33 on cytokine production.  Experiments performed in our group, 

using Th2 cells and the mouse Th2 cell line, D10, demonstrated that IL-33 

induced phosphorylation of both mTORC1 and mTORC2 substrates, S6 and Akt 

respectively.  Akt is both upstream and downstream of mTOR activation.  In the 

case of mTORC1, Akt activity is required to release mTORC1 from the inhibition 

of tuberous-sclerosis complex 2 (TSC2) [364].  mTORC2, however, phosphorylates 

Akt at the Ser473 residue [365], making it a downstream event in mTOR 

activation. As previously discussed rapamycin is known to be a relatively poor 

inhibitor of mTORC2 [263]. Furthermore, recent data suggest that inhibition of 

mTORC1 functions by rapamycin is incomplete [366]. It is therefore likely that 

not all IL-33-driven mTOR-dependent signals were inhibited by rapamycin in the 

current work. Further experiments using pan-mTOR inhibitors, capable of 

inhibiting both mTOR complexes, such as Torin-1 [264] would be informative.  

However, since rapamycin is already clinically available and in use, the 

experiments performed focused on the use of this commercially available, 

clinically relatively safe compound [367]. 

Interestingly, ILC have been shown to produce a variety of cytokines in vivo and 

in vitro [139, 214, 219].  Whilst neither IL-9 nor IL-4 was detected in this in vitro 

system (data not shown), this may be due to the fact that additional triggers are 

required to allow for these cytokines to be released.  Certainly, the presence of 

IL-2 has been shown to be necessary to allow ILC IL-9 production in vivo [219] 
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suggesting that the cytokine milieu is important in defining the ILC cytokine 

profile. This issue is of particular interest since ILC are able to respond to a 

variety of cytokines that affect their own cytokine production.  From the surface 

marker assessment made on sorted ILC, it was noted that they expressed CD127 

(IL-7Rα), making these cells potentially responsive not only to IL-7 [368] but also 

TSLP [352].  TSLP requires the presence of the TSLP-specific receptor (TSLPR) as 

well as IL-7Rα to form a high-affinity binding site for TSLP [369].  Whilst the role 

of IL-7 in the development of numerous haemopoietic cell types has been 

described [353], TSLP appears to play a complex role in the immune system with 

an important role in supporting type-2 immune responses [354].  Experiments 

described in this chapter demonstrated synergistic effects of IL-33 with both IL-7 

and TSLP on ILC cytokine production. These data suggest that the environments 

in which ILC are present will profoundly affect the effector function of these 

cells. The expression of TSLP is enhanced in airway epithelial cells stimulated 

with rhinovirus, a common respiratory pathogen [370] and TSLP is elevated in 

murine allergic airway inflammation models [73].  More so, mice with transgene-

driven lung-specific tslp had evidence of spontaneous eosinophilic lung 

inflammation [73], confirming the role of TSLP as an important inducer of type-2 

airway inflammation.  Since ILC have been shown to play an important role in 

influenza-induced airway disease [174] and TSLP expression is increased by viral 

triggers in the lung [370], it seems plausible that ILC could respond to this 

cytokine during viral infection driving allergic airway inflammation.  The most 

recent evidence that this may indeed be the case was recently reported by 

Shikotra et al. [72] who demonstrated increased TSLP expression in severe 

asthmatic patients’ airways, compared to controls, as well as the presence of 

lineage negative, IL-13+ cells in these patients.  These lineage negative cells 

could indeed be ILC, but further confirmation of this is required with additional 

studies.   

Despite the synergy of either TSLP or IL-7 with IL-33 in ILC cytokine production, 

mTOR inhibition with rapamycin was still sufficient to significantly diminish this 

effect.  Whilst IL-7 has been shown to activate mTOR [269], the effect of 

rapamycin on TSLP-driven effects has yet to be fully elucidated.  From these 

data shown here, however, it would appear that TSLP-induced mTOR activation 

is important for ILC cytokine production.  
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Since mTOR was determined to be important in IL-33-induced ILC cytokine 

production, the mechanism for this effect was sought. Il5 and Il13 mRNA levels 

in ILC, activated with IL-33 in the presence or absence of rapamycin, were 

measured.  Rapamycin did not appear to affect IL-33-induced mRNA levels of 

these cytokines, suggesting that mTOR was important in driving IL-33 effects at a 

post-transcriptional level. Importantly, mTOR is known to regulate gene 

expression at the level of translation by a number of mechanisms. Thus, the 

discovery that S6K modulation decreased the translation of a number of proteins 

vital for efficient ribosomal formation suggested that this could be a mechanism 

whereby this kinase affected gene translation [371].  S6K also phosphorylates 

eukaryotic initiator factor 4 (eIF4) B, which increases the RNA helicase activity 

of eIF4A, an important first step in translation initiation [258].  These 2 

processes are believed to contribute to mTOR’s ability to drive gene translation.  

Another key mTOR target is the eukaryotic initiation factor 4E-binding protein 1 

(4E-BP1), a potent suppressor of translation initiation [372].  Whilst 

hypophosphorylated, 4E-BP1 binds eIF4E, preventing gene translation.  Activated 

mTOR phosphorylates 4E-BP1, which in turn releases eIF4E, allowing translation 

of mRNA to proceed [372].  Therefore the effects of mTOR on 4E-BP1 

phosphorylation and S6K may be responsible for driving IL-33-induced cytokine 

gene translation.  Further experiments using commercially available S6K 

inhibitors [373] could prove helpful at pinpointing the exact mechanism for 

mTOR-dependant IL-33-induced cytokine production.   

The effect of IL-33 on ILC proliferation was determined using 3H-Thymidine 

studies.  Interestingly, whilst IL-33 was a potent inducer of IL-5 and IL-13 

production in ILC, it did not drive cell proliferation in this system.  This result 

was unexpected since the number of ILC found in the IL-33-induced airway 

inflammation model (discussed in chapter 3) was greatly enhanced by IL-33 

treatment.  These data would therefore suggest that the increase in ILC numbers 

in the lung following IL-33 inoculation is driven by an indirect mechanism, either 

affecting proliferation of the cells or recruitment into the lung.  Whilst IL-33 is 

able to affect the proliferation of other ST2-expressing cells, including basophils 

[128], eosinophils [44] and B1 cells [211], this effect is indirect via the 

stimulation of the production of additional growth factors and cytokines.  

Interestingly, the number of ILC recovered in the adoptive transfer model was 
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higher in IL-33-treated mice compared with PBS controls.  Since ILC are the only 

cells in that system that were IL-33-responsive, this would suggest that IL-33 

induced ILC to produce a factor that in turn could stimulate other cells to 

produce a pro-survival factor for ILC.  Since ILC did proliferate in an mTOR-

dependent manner in response to TSLP and IL-7 in vitro, it was possible that 

these cytokines mediated this effect on ILC numbers in vivo.  TSLP levels in BAL 

fluid of WT IL-33-treated mice were measured to test this possibility.  The levels 

of this cytokine in IL-33-treated mice were not elevated compared to PBS-

treated mice (data not shown).  IL-7 levels were not measured and performing 

this experiment could be informative.  It is possible, however, that basal levels 

of TSLP or even IL-7 in the lung are sufficient to synergise with the exogenous IL-

33 given, to drive ILC proliferation.  Further experiments using Tslpr-/- or Il-7rα-/- 

mice may help assess this question. 

Interestingly, a synergistic effect on proliferation between IL-33 and TSLP was 

found, that was absent in IL-7+IL-33 cultures.  This would suggest that both TSLP 

and IL-7 exert similar, but not identical effects on ILC.  This is particularly 

interesting given the important role of both IL-33 and TSLP in allergic disease, 

suggesting that this synergy may be of relevance in vivo.  

As discussed in chapter 1, there are a variety of cells in the lung that are IL-33-

responsive (Table 1-1).  Kondo et al. demonstrated that IL-33-induced airway 

inflammation[232] was independent of the adaptive immune system.  From the 

data shown in Chapter 3 it was clear that ILC were an important source of IL-5 

and IL-13 in IL-33-induced airway inflammation.  It was essential, however, to 

determine how important these cells were in driving the model.  In order to 

answer this question, an adoptive transfer model was designed, aimed at 

isolating IL-33-driven ILC responses in the mouse.  These experiments 

demonstrated that, in an airway inflammation model, ST2-expressing ILC were 

sufficient to drive the inflammatory effects induced by IL-33 in the lung. These 

included not only the recruitment of cells to the lungs, but also the increased 

cytokine levels measures and key pathological changes which are characteristic 

of IL-33-induced airway inflammation.  Importantly, they also demonstrated that 

transfer of ILC alone was insufficient to drive airway inflammation since they 

required IL-33 to induce this effect.  Additionally, the data demonstrated that 
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rapamycin inhibited the IL-33-induced effects in the lung, proving that IL-33-

induced airway inflammation is mTOR-dependent and can be driven by ILC.  

Unexpectedly, whilst rapamycin clearly reduced the recruitment of both 

neutrophils and eosinophils to the lung, it did not significantly diminish 

macrophage numbers.  This effect may be simply due to the variability seen in 

the macrophage numbers, and increasing the mouse group size may make the 

trend for a reduction statistically significant. 

The number of cells that could be sorted at one time limited the number of mice 

used in these experiments, hence restricting the numbers of mice per groups in 

each experiment.  The decision to use rested cells for the transfers also had an 

impact on the final number of cells available, since some cells died during the 

overnight rest.  However, it was felt that the overnight rest was necessary in 

order to be able to provide appropriate PBS-treated mice controls since freshly 

sorted cells had high basal production of IL-5 and IL-13.   

Isolating the effects of ILC to determine their contribution in in vivo models has 

proven difficult and different groups have used a variety of methods, each with 

its own limitations.  In a number of publications the contribution of type-2 

cytokine-producing ILC in a parasite model [139] and an allergic airway 

inflammation model [217] was assessed by transferring WT ILC into Il13-/-.  

Another group assessed the ability of ILC to drive parasite expulsion by 

transferring WT ILC into lymphocyte common gamma-chain (γc-/-)x Rag2-/- mice, 

devoid of both the adaptive immune system and cells reliant on common-γc 

cytokines [213, 214].  These mice were found to have no ILC.  In these transfer 

models, ILC were sufficient to drive worm expulsion.  Whilst demonstrating that 

ILC are sufficient to drive these responses in these models, proving that ILC are 

essential for an effect is trickier.  In an attempt to determine whether ILC were 

essential to drive lung repair in a post-influenza model, Rag 2-/- were treated 

with CD90.2 antibody to remove all cells expressing this marker [141].  This 

included ILC as well as a small proportion of natural killer cells [374].  These 

mice were infected with influenza virus and CD90.1+-sorted ILC were transferred 

intravenously into them.  This model aimed to deplete the host ILC only and 

restore them with the transferred population, which differs from the other 

models discussed above.  Whilst this is not a perfect experiment as ILC are not 
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the only lymphoid cell-type in Rag 2-/- that express CD90, it will remain difficult 

to specifically deplete ILC until a specific, unique marker is found for this cell-

type. 

Despite the caveats of the adoptive transfer experiments described in this 

chapter, these experiments were key to isolating the effects of IL-33-stimulated 

ILC in vivo.  Contrary to a recent publication [375], no obvious inflammatory 

effects were noted by treating ST2-/- with IL-33 alone.  Luzina et al. 

demonstrate that full-length IL-33 can induce non-Th2 inflammation in ST2-/- 

suggesting this is an ST2-independent effect [375].  Whilst the authors also noted 

a small lymphocytosis with full length and mature IL-33, this effect was not 

detected using the commercially available form of IL-33 used in the above 

experiments.  The discrepancy between these results may result from the 

different delivery methods used to deliver the cytokine to the lung [375].   

ILC are a novel cell type and little is known about their signalling pathways.  

Data shown in this chapter conclusively demonstrate that ILC are IL-33-

responsive and that, in addition to the activation of the MAPK and NFκB 

pathways, IL-33 activates mTOR.  Moreover, mTOR activation is essential for 

maximal IL-33-induced ILC functions, since concurrent treatment of ILC with 

rapamycin inhibits IL-33-driven cytokine production at a post-transcriptional 

level.  In addition, these data reveal the key role played by ILC in IL-33-driven 

airway inflammation, as well as the importance of mTOR in these functions in 

vivo.  Taken together however, the data in this chapter conclusively 

demonstrate that optimal IL-33-induced ILC responses require mTOR activation 

both in vitro and in vivo.  
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5 ILC and the adaptive immune response 
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5.1 Introduction 

From the data described in chapters 3 and 4, it can be concluded that ILC, when 

activated with IL-33 are able to produce a variety of cytokines and induce an 

inflammatory response in the lung, characterised by an influx of granulocytes, 

including eosinophils.  Previously, it had been demonstrated that IL-2 drives ILC 

proliferation [213] and IL-9 production in vivo [219], indicating that T cell-

derived cytokines can influence ILC responses.  Furthermore, Moro and 

colleagues showed that type 2 ILC could provide help for B1 cells and enhance 

immunoglobulin (Ig) A production [213]. These data indicate that type 2 ILC 

interact with and can influence the adaptive immune system.  In this chapter, 

experiments to assess the effects of CD4 T cells on ILC function and the 

reciprocal effects of these innate cells on Th cells will be described. 

5.2 Results 

5.2.1 Adoptive transfer of ILC affects draining lymph node (LN) 
cells 

In initial experiments, the effects of transferred wild type (WT) ILC on LN T and 

B cell numbers and phenotype were assessed. Using the adoptive transfer model 

described in chapter 4 (Figure 4-11), WT ILC induced by IL-33 were sorted using 

FACS and intranasally adoptively transferred into St2-/- mice.  One group of St2-/- 

mice received a sham transfer only.  These mice were then treated with 

intranasal PBS or IL-33 for 5 consecutive days.  The mediastinal LN (mLN) were 

collected for assessment as described previously.   

5.2.1.1 WT ILC are able to increase cell numbers in the mLN 

Total mLN cell counts were performed (Figure 5-1A).   The St2-/- mice that had 

received WT ILC had increased numbers of cells in their mLN compared to the 

sham-transferred mice.  Interestingly, these differences achieved statistical 

significance (p=0.004) when the mice were treated with IL-33 intranasally.  

Further characterisation of the cell types in the mLN by FACS demonstrated an 

increase in the proportion of B220+ cells (Figure 5-1B) and the total number of 

B220+ cells (Figure 5-1C).  B220 is a marker of B cells [376], as well as dendritic 
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cells (DC) precursors [377]. Since the B220+ cells appeared lymphocytic, based 

on size and granularity (data not shown), these are more likely to represent B 

cells. These data indicate that IL-33-stimulated ILC are able to induce either 

cellular recruitment or proliferation of cells in the draining mLN. 

 

Figure 5-1 St2-/- recipient mice have increased cell numbers in their mLN following IL-33 
treatment 

WT ILC from IL-33-treated mice were sorted as described previously (Chapter 4) and transferred 
intranasally into St2-/- recipient mice.  Following 5 days of either PBS or IL-33-treatment, the mice 
were killed and mLN were collected.  Full mLN counts were performed (A).  Using FACS, the 
percentage of mLN B220+ cells were determined.  Representative histogram of percentage of 
B220+ cells (filled grey represents sham-transferred mice treated with IL-33 only, blue line 
represents mice receiving ILC+PBS and red line represent mice receiving ILC+IL-33) (B).  mLN 
B220+ cell numbers were quantified(C). +33 denotes mice receiving IL-33.  Data are representative 
of 2 pooled experiments.  Error bars represent SD measurements for individual mice (n=2-
6/group).  **p<0.01, ***p<0.001. 
 

5.2.1.2 WT ILC affect mLN T cell numbers and activation profile in St2-/- 
recipient mice 

The effects of transferred WT ILC on the number of and phenotype of host St2-/- 

CD4 cells were assessed (Figure 5-2A).  Similar to the effects observed for total 

mLN cells, the number of CD4+ cells was significantly increased when the mice 

receiving ILC were additionally treated with IL-33 (p=0.0055).  Interestingly, the 

numbers of these cells that expressed high levels of CD44 (CD44hi) was increased 

in recipient mice treated with IL-33 (Figure 5-2B) suggesting an increased 

number of activated CD4 T cells in the mLN.  Since this could merely reflect the 

increased number of cells in the mLN, the proportion of CD4 T cells expressing 

high levels of CD44 was determined (Figure 5-2C) compared to sham transferred 

mice.  Additionally, other markers of CD4 T cell activation were measured, 

including CD25 and CD69 (Figure 5-2C). Quantification of the proportion of cells 
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expressing these activation markers demonstrated that the transfer of ILC with 

subsequent IL-33 treatment increased the proportions of CD4 T cells that 

expressed high levels of CD44, CD25 and CD69 (Figure 5-2D).  Finally, the effect 

of ILC on CD8 T cells was determined.  ILC transfer and activation by IL-33 

increased the total number of CD8 T cells in the LN (Figure 5-3A).  Whilst there 

was no increase in the proportion of CD44hi or the CD25+ CD8 T cells in the LN 

(data not shown), there was a significant increase in the percentage of CD8 T 

cells expressing CD69 (p=0.0371, when compared to sham-transferred mice 

treated with IL-33) (Figure 5-3B and C).  From this data, it appeared that WT ILC 

treated with IL-33 were sufficient to affect the activation status and numbers of 

CD4 and CD8 T cells in the draining LN. 
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Figure 5-2 ILC affect mLN CD4 activation status in vivo 

St2-/- recipient mice received adoptive transfers of ILC (or PBS only) intranasally and were 
subsequently treated with IL-33 or PBS.  mLN were collected and total CD4 T cell numbers (A), as 
well as number of CD4 cells expressing high levels CD44, were assessed by FACS (B).  
Representative figures of CD4 T cell expression of CD44 (sham-transferred in filled grey histogram, 
ILC+IL-33 mice in solid line), CD25 and CD69 in sham-transferred and ILC-transferred mice, 
treated with IL-33 (C).  Quantification of proportion of CD4+ cells expressing CD44, CD25 and 
CD69 (D). Data representative of 2 pooled experiments.  Error bars represent SD measured for 
individual mice (n=2-6/group). *p<0.05, **p<0.01, ***p<0.001. 
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Figure 5-3 Adoptive transfer of ILC affects mLN CD8 T cell numbers and CD8 T cell 
activation 

St2-/- recipient mice received adoptive transfers of ILC (or PBS only) intranasally and were 
subsequently treated with IL-33 or PBS.  mLN were collected and total number of mLN CD8+ cells 
(A).  Representative histogram of CD8 T cells CD69 expression levels (sham-transferred in filled 
grey histogram, ILC+IL-33 mice in solid line) (B) and percentages (C).  Data representative of 2 
pooled experiments.  Error bars represent SD measured for individual mice (n=2-6/group). *p<0.05, 
**p<0.01, ***p<0.001. 
 

5.2.2 CD4 T cell-ILC co-culture experiments - the effects of T 
helper (Th) cells on ILC function 

Results from the adoptive transfer experiments suggested that IL-33 activated 

ILC were able to affect the phenotype and numbers of mLN CD4 cells.  It was not 

possible however, from these data, to determine if these effects were a direct 

or indirect effect of the ILC.  In order to determine whether ILC could have 

direct effects on CD4 cells and vice versa, in vitro experiments were performed. 

5.2.2.1 ILC respond to IL-2 in vitro 

It was imperative to first understand the effects of adaptive immune cell-

derived cytokines on ILC function.  In this regard, a role for IL-2 in ILC function 

in vivo has been reported by several groups [219].  Since ILC expressed CD25, 

the IL-2α-chain receptor, (Figure 5-4A and chapter 4) it was likely that they 

would be able to respond to IL-2.  Therefore, the effect of IL-2 on ILC 

proliferation was determined by 3H-Thymidine incorporation (Figure 5-4B). IL-2 

induced ILC proliferation in vitro and was found to have greater mitogenic 

effects than IL-7.  Additionally, the effect of IL-2 on ILC cytokine production was 

determined, by ELISA.  When given alone, IL-2 substantially increased the 

amounts of IL-5 and IL-13 (Figure 5-4C) produced by ILC.  Furthermore, there 
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was a powerful synergistic effect of IL-2 with IL-33, similar to that seen with IL-7 

(Figure 5-4D).  These data confirm that the T cell cytokine IL-2 potently 

stimulates ILC proliferation and cytokine production. 

 

Figure 5-4 IL-2 stimulates ILC function in vitro 

ILC were sorted as before and CD25 expression measured by FACS (A) (filled grey histogram 
represents Isotype control, solid red line represents CD25 staining).  Rested ILC (0.5x105 
cells/well) were cultured with CM (complete medium alone), IL-33, IL-7 or IL-2 (all 10ng/ml) for 72 
hours and pulsed with 3H-Thymidine for the final 16 hours of culture.  Levels of 3H-Thymidine 
incorporation were measured (B).  Rested ILC (1x105 cells/well) were cultured for 72 hours with the 
indicated cytokines (10ng/ml) or CM and supernatants collected.  Cytokine measurements were 
made by ELISA.  ILC respond to IL-2 to produce IL-5 and IL-13 (C) and synergises with IL-33 to 
induce greater cytokine production (D).  Error bars represent SD of experimental triplicates.  Data 
are representative of 2 experiments.  ***p<0.001.  
 

5.2.2.2 IL-2 licences IL-4, an effect inhibited by IL-33 

As IL-2 was clearly able to affect ILC production of IL-5 and IL-13, its effect on 

the production of other type-2 cytokines was sought.  Since a role for IL-2 in ILC 

IL-9 expression in vivo had been reported [219], the effect of IL-2 on ILC IL-9 
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expression in vitro was determined. ILC were cultured for 72 hours with the 

indicated cytokines and were subsequently stimulated with phorbol myristate 

acetate and ionomycin (PMA-I), prior to intracellular cytokine staining and FACS 

analysis.  Results indicated that only a small proportion of ILC expressed IL-9 at 

baseline (Figure 5-5A) and this was not modulated by IL-2 treatment (Figure 

5-5B).  Moreover, IL-33 appeared to inhibit IL-9 expression on ILC (Figure 5-5C) 

and this effect prevailed even with the addition of IL-2 (Figure 5-5D), although it 

must be noted that the basal levels of IL-9 were very low in the control group.  

Importantly, measurement of IL-9 in culture supernatants by ELISA failed to 

demonstrate measurable quantities of this protein.  These data suggest that IL-2 

is not sufficient to drive ILC IL-9 production in vitro.   

Approximately 5% of ILC cultured in complete media alone expressed IL-4 

following PMA-I re-stimulation (Figure 5-5A). Interestingly, the proportion of IL-

4+ cells in IL-2-stimulated ILC cultures was substantially higher (~26%) (Figure 

5-5B).  Intriguingly, IL-33-treated ILC failed to up-regulate IL-4 expression 

relative to control cells (Figure 5-5C).  Furthermore, IL-33 appeared to inhibit 

the effects of IL-2 on IL-4 expression (Figure 5-5D).  These data demonstrate 

that different cytokines have differing effects on ILC cytokine expression profiles 

and that IL-33 appears to oppose the effects of IL-2 on ILC IL-4 expression.  

Furthermore, whilst PMA-I re-stimulation resulted in IL-4 expression by IL-2-

treated ILC, prior to PMA-I treatment, IL-4 levels in the supernatants of IL-2-

treated cell cultures were below the level of detection by ELISA (data not 

shown).  These data indicate that whilst IL-2-treated ILC are capable of IL-4 

expression, additional stimuli are likely to be required to allow its secretion. 
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Figure 5-5 IL-2 increases ILC IL-4 expression in vitro, and this is inhibited by IL-33 

FACS-sorted ILC were cultured with complete medium (CM) or the indicated cytokines (10ng/ml) 
for 72 hours prior to PMA-I and Golgi-stop (GS) for 4 hours.  Cells were stained for intracellular 
cytokines as described previously and assessed by FACS.  Levels of IL-9 and IL-4 expression 
were determined in cells cultured with CM alone (A), IL-2 (B), IL-33 (C), and both IL-2 and IL-33 
(D).  Data are representative of 3 separate experiments. 
 

5.2.2.3 ILC proliferate in co-culture with CD4 T cells 

The results described above indicated that the T cell cytokine IL-2 was a potent 

modulator of ILC responses in vitro. In order to directly ascertain the effects of 

CD4 T cells on ILC and vice versa, co-culture experiments were performed.  ILC 

were sorted from IL-33-treated WT mice, as described previously. To allow 

assessment of the impact of ILC on T cell activation and differentiation, naïve 

CD4 T cells were sorted for co-culture, using levels of CD44 expression as a 

marker to distinguish naïve (CD44 low) from memory / effector CD4 T cells 

(CD44 hi) [378, 379]. Furthermore, in order to distinguish the effects of IL-33-

driven ILC responses from direct effects of IL-33, the CD4 T cells were sorted 

from St2-/- mice.  

The effects of CD4 T cells on ILC proliferation was assessed. ILC were stained 

with carboxyfluorescein diacetate succinimidyl ester (CFSE) prior to use and 

cultured either alone, with IL-7 as a positive control, or with naïve CD4 T cells. 
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In all cases, cells were cultured on anti-CD3+CD28-coated plates for 72 hours.  

Proliferation was assessed using FACS and CFSE dilution. ILC failed to proliferate 

when cultured with complete media (CM) alone (Figure 5-6A), in keeping with 

findings described in chapter 4, and showing that anti-CD3/28 did not impact 

directly upon their activation.  As shown in Fig 1-4B and in chapter 4, IL-7 is a 

potent mitogen for ILC and in its presence, 54% of ILC divided during the culture 

period (Figure 5-6B).  Finally, in co-culture with CD3/28-stimulated CD4 T cells, 

ILC also proliferated, with over 64% of cells demonstrating a dilution of CFSE 

fluorescence (Figure 5-6C). These data demonstrated that ILC were able to 

respond and proliferate when cultured in the presence of activated CD4 T cells 

in vitro. 
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Figure 5-6 ILC proliferate in co-culture with CD4 T cells 

Sorted ILC were rested overnight and stained with CFSE as described previously.  Cells (1x105/ 
well) were cultured in flat-bottomed 96 well plates pre-coated with α-CD3 (1.5µg/ml) and α-CD28 
(3µg/ml) with complete medium (CM), IL-7 (10ng/ml) or CD4 cells (1x105/ well) for 72 hours.  CFSE 
dilution was measured by FACS.  Percentage of divided cells was determined for ILC alone (CM), 
treated with IL-7 (B) or in co-culture with CD4 cells (C).  Solid black line represents measured 
fluorescence with blue lines representing cell cycles as determined by the analysis software (FloJo 
8.84) and solid red line representing contours imposed by the analysis software.  Data are 
representative of 2 experiments. 
 

5.2.2.4 ILC have increased IL-4 expression in co-culture which is inhibited 
by IL-33 

In order to determine if CD4 T cells could affect ILC cytokine expression profile, 

following 72h of co-culture, cells were stimulated with PMA-I and GS to allow for 

intracellular assessment of individual cells in co-culture.  Interestingly, ILC in 

culture with activated T cells expressed higher levels of IL-4 (Figure 5-7B) than 

ILC alone (Figure 5-7A).  Furthermore, when ILC were treated with IL-33 in co-

culture, this effect was abolished (Figure 5-7C).  It must be re-iterated that the 

only IL-33-responsive cells in the culture were the ILC as the CD4 cells lacked 
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ST2.  The percentage of IL-4+ ILC was measured in experimental replicates 

(Figure 5-7D), showing that the effect of CD4 T cells on ILC IL-4 expression was 

increased compared to ILC cultured alone.  Furthermore, the inhibitory effect of 

IL-33 on ILC IL-4 expression was also statistically significant, compared to co-

culture alone (p=0.0162).  These data demonstrate that CD4 T cells impact upon 

the cytokine profile of ILC in vitro and that IL-33 modulates this process.  

 

Figure 5-7 Co-culture in the presence of activated CD4 T cells augments ILC IL-4 expression 
and this effect is abrogated by IL-33 

ILC and CD4 T cells were co-cultured (1x105 cells/ well each) in the presence or the absence of IL-
33 (10ng/ml) on α-CD3/ α-CD28-coated 96 well plates.  Cells were co-cultured for 72 hours 
followed by 4 hours of PMA-I and GS stimulation.  The cells were then stained for surface and 
intracellular cytokines as described previously.  ILC were distinguished from CD4 T cells by 
absence of CD4 marker and presence of ST2.  FACS dot plots show ILC IL-4 expression in cells 
cultured in complete medium (CM) alone (A), co-cultured with CD4 T cells (B) or in co-culture plus 
IL-33 (C).  Quantification of the proportion of IL-4+ cells from experimental replicates for co-culture 
conditions (D).  Error bars represent SD of experimental replicates (n=3 for all groups except ILC 
alone) and data are representative of 4 experiments.  *p<0.05.  
 

5.2.2.5 Effect of CD4 T cells on ILC is IL-2-dependent 

The data shown in Figure 5-5 and Figure 5-6 demonstrate that co-culture with 

CD4 T cells or treatment with IL-2 have similar effects on ILC function, namely 

an increase in proliferation and enhanced IL-4 expression that is abolished by 

concurrent IL-33 treatment.  In view of this, it was hypothesised that the effect 
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of CD4 T cells on ILC was IL-2-dependent.  In order to answer this question, ILC 

and T cells were co-cultured as before, in the presence or absence of 

neutralising IL-2 antibody (Ab).  As before, ILC cytokine profile was determined 

following 72 hours of co-culture and 4 hours of subsequent PMA-I and GS 

stimulation.  The results of these experiments demonstrated that ILC IL-4 

expression was enhanced by co-culture with CD4 T cells, as before, and this 

effect was abolished by concurrent anti-IL-2 treatment (Figure 5-8A).  A 

significant reduction in proportions of IL-5+ ILC was also apparent following anti-

IL-2 treatment (Figure 5-8A). In order to rule out the possibility that anti-IL-2 

treatment was directly toxic to ILC, the proportion of cells that were alive prior 

to intracellular staining was determined by FACS using a live/dead marker as 

described before.   Not unexpectedly, the majority of the ILC cultured with 

complete medium alone were dead (Figure 5-8B).  However, the proportion of 

dead cells in co-culture plus anti-IL-2, compared to that of cells in co-culture 

alone, was similar, suggesting that the effect of anti-IL-2 on ILC cytokine 

production was not via the decreased survival of these cells.  These data confirm 

the hypothesis that ILC IL-4 expression was increased by CD4 T cell-derived IL-2. 
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Figure 5-8 The effect of CD4 T cells on ILC IL-4 expression is IL-2-dependent 

CD4 T cells (1x105 cells/ well) were cultured with ILC (1x105 cells/ well) as before, in the presence 
of plate-bound α-CD3/αCD28, with or without IL-2 neutralising antibody (anti-IL-2) (10µg/ml) for 72 
hours, followed by 4-hour stimulation with PMA-I and GS.  Intracellular cytokine levels were 
determined by FACS. ILC were differentiated from CD4 T cells on FACS plots by absence of CD4 
marker and presence of ST2.  Percentage of IL-4+ and IL-5+ ILC were determined (A).  Percentage 
of live cells as determined by lack of fluorescence of live/dead marker was determined in each 
culture condition (B).  Error bars represent SD of experimental triplicates (all groups except ILC 
alone).  Data are representative of 2 experiments. *p<0.05, ***p<0.001. 
 

5.2.3 CD4 T cell / ILC co-culture- effects on CD4 T cells 

Whilst the data presented thus far confirms the effect of CD4 T cells on ILC, 

when in co-culture in vitro, the in vivo data supported the possibility of a role 

for ILC in CD4 T cell functions.  The following experiments were designed to 

focus on the effects of ILC on CD4 T cell function. 

5.2.3.1 CD4 cells do not proliferate with ILC unless activated 

The effect of ILC on T cell proliferation was determined by analysis of dilution of 

Alexa fluor 647 cell proliferation dye by FACS (Figure 5-9). Un-stimulated CD4 T 

cells did not proliferate, irrespective of the presence (Fig 1-9B) or the absence 

(Figure 5-9A) of ILC in the culture.  CD4 T cells were, however, stimulated to 

proliferate by the presence of CD3 and CD28 antibodies (Figure 5-9C) and this 
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did not appear to be greatly affected by ILC (Figure 5-9D).  These data suggest 

that, whilst ILC proliferate in response to CD4 T cell-derived cytokines in co-

culture, ILC alone are unable to induce CD4 T cell activation. 

 

Figure 5-9 CD4 T cells fail to proliferate unless stimulated in co-culture 

Sorted CD4 T cells were stained with an alexa-fluor 647 (AF647) cell proliferation dye and cells 
were cultured (1x105 cells/ well) alone or in co-culture with ILC (1x105 cells/ well) in the absence 
(A) or the presence (B) of α-CD3/αCD28, as before.  The cells were cultured for 72 hours and CD4 
cell proliferation was determined by assessing fluorescence dilution by FACS. Solid black line 
represents measured fluorescence with blue lines representing cell cycles as determined by the 
analysis software (FloJo 8.84) and solid red line representing contours imposed by the analysis 
software.  Data are representative of 3 separate experiments. 
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5.2.3.2 CD4 T cells express type-2 cytokines when co-cultured with ILC 

Whilst it appeared that ILC were unable to affect CD4 T cell proliferation in 

vitro either in the presence or absence of T cell receptor (TCR) stimulation, the 

effect of ILC on the cytokine profile of CD4 T cells was determined.  

Interestingly, co-culture with ILC appeared to induce a Th2-like phenotype on 

the naïve CD4 T cells in co-culture, which was absent when the cells were 

cultured with TCR-stimulation alone (Figure 5-10A).  Importantly, the presence 

of ILC resulted in IL-4, IL-5 and IL-13 expression in the CD4 T cells (Figure 

5-10B).  In fact, the proportion of IL-4+ CD4 T cells increased 3 fold, when 

cultured with ILC, whereas, the increase in IL-5+ CD4 T cells was 30 fold.  

Finally, the increase in IL-13+ CD4 T cells in co-culture with ILC was 20 fold.     

 

Figure 5-10 CD4 T cells express type-2 cytokines when co-cultured with ILC 

CD4 T cells were stimulated as before (with platebound α-CD3/αCD28) and cultured alone or in 
combination with ILC.  Following 72 hours of culture the cells were re-stimulated with PMA-I and 
GS and subsequently stained for surface markers (CD4 and ST2) as well as intracellular cytokines 
as above.  Dot plots demonstrate IL-4-, IL-5- and IL-13-expressing CD4 T cells (gated as CD4+ST2-

) when cultured alone (A) or in co-culture with ILC (B).  Panels are representative of experimental 
triplicates of 3 separate experiments. 
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5.2.3.3 The effect of ILC on CD4 T cell type-2 cytokine expression is contact-
dependent 

In order to determine how ILC were able to influence the CD4 T cell cytokine 

signature, co-culture experiments using a semi-permeable membrane/ transwell 

(TW) were performed.  These were done to ascertain if the co-culture effect 

was through a soluble mediator or via a contact-dependent mechanism.  From 

these experiments it was clear that the ILC had an effect on CD4 T cell cytokine 

expression in a contact-dependent manner since separating the cells with a TW 

abolished the induction of type-2 cytokines completely (Figure 5-11).   

 

Figure 5-11 The effect of ILC on CD4 T cell cytokine expression is contact dependent 

CD4 T cells (1x105 cells/ per well) were cultured in the presence or the absence of ILC (1x105 cells/ 
per well) for 72 hours.  The plate was coated with α-CD3/αCD28 as before.  Whenever the 
transwell (TW) was used to separate the two cell types, the CD4 T cells were plated in the bottom 
compartment to ensure contact with the plate-bound antigens.  Following 4 hours of PMA-I and GS 
stimulation, the cells were stained with surface and intracellular antibodies.  CD4 T cells were 
identified as CD4+ST2- cells and percentage of IL-4+, IL-5+ and IL-13+ cells were quantified.  Data 
are representative of 5 experiments. Error bars represent SD for experimental triplicates.  *p<0.05, 
**p<0.01, ***p<0.001.    
 

5.2.3.4 ILC inhibit CD4 T cell interferon-γ  (IFNγ) in a contact dependent 
manner 

Whilst it was interesting that ILC were able to induce CD4 T cell production of 

IL-4, IL-5, and IL-13, it was possible that the effects of ILC were not limited to 

Th2 cytokine production.  In order to clarify this possibility, the expression of 

the Th1 signature cytokine, IFNγ was measured in co-cultured CD4 T cells.  

Intriguingly, co-culture with ILC reduced the proportion of IFNγ+ CD4 T cells 

compared to CD4 T cells cultured alone from 3.5% to 1.65% (Figure 5-12A).  This 

inhibitory effect was lost upon separation of the cells by a TW membrane.  In 
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fact, analysis of replicate cultures demonstrated that differences in levels of 

IFNγ production were statistically significant when comparing cells in co-culture 

to CD4 T cells alone or cells separated by TW (p=0.0219 and 0.0035, 

respectively) (Figure 5-12C).   

To ascertain if ILC also had an inhibitory effect on CD4 T IFNγ production when 

the T cells were deliberately polarised to a Th1 phenotype, the cells were 

cultured in the presence of IL-12 (Figure 5-12B).  The results of these 

experiments demonstrated that the inhibitory ILC effect was still present when 

cells were treated with IL-12 (Figure 5-12D).  As expected, IL-12 enhanced the 

proportion of IFNγ+ CD4 T cells with over 30% of CD4 T cells expressing this 

cytokine (Figure 5-12B and D).  Co-culture with ILC resulted in a ~70% decrease 

in the proportion of IFNγ+ CD4 T cells.  However, this inhibitory effect was lost 

when the cells were cultured separated by a semi-permeable membrane (TW) 

(Figure 5-12B and D). ILC did not express IFNγ in either culture condition (data 

not shown). 

Interestingly, whilst ILC inhibited CD4 T cells’ expression of IFNγ in cultures 

supplemented with the IL-12, they were still able to enhance the T cells’ 

expression of type-2 cytokines IL-4 (Figure 5-13A) and IL-5 (Figure 5-13B) in a 

contact-dependent fashion.  These results demonstrate that ILC drive a Th2 

cytokine profile on CD4 T cells in co-culture and simultaneously inhibit the 

development of a Th1 phenotype in a contact-dependent manner.  Furthermore, 

the effect of ILC on CD4 T cell expression of IL-4 and IL-5 is still evident when 

the cells are cultured in a Th1-polarising milieu. 
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Figure 5-12 ILC inhibit CD4 T cell IFNγ  production in a contact-dependent manner 

Cells were co-cultured as before, on α-CD3/αCD28-coated plates for 72 hours, followed by PMA-I 
and GS treatment.  The cells were stained for surface and intracellular markers and CD4 T cells 
were gated (CD4+ST2-).  The proportions of IFNγ+ cells were quantified in cells cultured in complete 
medium (CM) (A) or in the presence of IL-12 (10ng/ml) (B).  Panels are representative of 
experimental triplicates for each condition.  The percentage of IFNγ+ cells in the experimental 
triplicates of CM-cultured (C) and IL-12-treated (D) was quantified.  Error bars represent SD of 
experimental triplicates, representative of 3 experiments.  *p<0.05, **p<0.01, ***p<0.001.    
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Figure 5-13 ILC are able to induce CD4 T cell expression of type 2 cytokines in Th1 
polarising conditions 

Cells were co-cultured as before, on α-CD3/CD28-coated plates for 72 hours, followed by PMA-I 
and GS treatment.  The cells were stained for surface and intracellular markers and CD4 T cells 
were gated (CD4+ST2-).  The proportions of IL-4+ (A) and IL-5+ (B) cells were quantified in cells 
cultured in complete medium (CM) or in the presence of IL-12 (10ng/ml) alone, in co-culture or 
separated by a semi-permeable membrane (transwell).  Error bars represent SD of experimental 
triplicates, representative of 3 experiments.  *p<0.05, **p<0.01, ***p<0.001.    
 

5.2.3.5 Blocking ICAM-1 partially inhibits ILC-induced, contact-dependent 
CD4 type-2 cytokine expression 

Since the effects of ILC on CD4 T cell cytokine production were mediated in a 

contact-dependent manner, it was likely that a surface receptor interaction was 

important.  Whilst they have been shown to lack numerous common lineage 

markers, ILC have been shown to express a small number of cell surface 

receptors [139].  A search of the published literature suggested that ILC express 

intercellular adhesion molecule 1 (ICAM-1), as identified by microarray analysis 

[139].  Salomon et al. had demonstrated that neutralising Ab for ICAM-1 and 

ICAM-2 altered CD4 T cells’ ability to produce type-2 cytokines in vitro [380].  

The ligand for ICAM-1 is lymphocyte function-associated antigen-1 (LFA-1, also 

CD11a).  It was therefore hypothesised that ILC-CD4 T cell ICAM-1-LFA-1 

interactions could be important in ILC regulation of CD4 T cell type-2 cytokine 

production.  In order to test this hypothesis, the levels of expression of LFA-1 

(Figure 5-14A) and ICAM-1 (Figure 5-14B) by ILC were measured.  FACS analysis 

demonstrated that ILC expressed high levels of both LFA-1 and ICAM-1 both when 

cultured in the presence or absence of T cells.  Interestingly, the levels of ICAM-
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1 expression were lower in the ILC cultured in the TW, when compared to ILC in 

co-culture (Figure 5-14C), suggesting that ILC ICAM-1 expression may be 

modulated in a contact-dependent manner.  The expression of ICAM-1 was also 

measured in CD4 T cells (Figure 5-14D), yet no difference in ICAM-1 expression 

was found in the CD4 T cells in the different culture conditions. 

In order to determine if ICAM-1 played a role in the ILC-CD4 interaction, the 

levels of type-2 cytokines expressed by CD4 T cells were determined following 

co-culture with ILC in the presence or absence of an ICAM-1 blocking antibody.  

Interestingly, whilst control IgG did not have significant effects on either IL-4 or 

IL-5 expression by CD4 T cell, blocking ICAM-1 led to a small but significant 

reduction in the proportions of IL-4- and IL-5-expressing CD4 T cells in co culture 

(Figure 5-14E) (p=0.0053 and p=0.0289, respectively).  These data suggests that 

ICAM-1-LFA-1 interactions are important in ILC-driven induction of CD4 T cell 

expression of type-2 cytokines in vitro.  
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Figure 5-14 ICAM-1 is important in ILC-CD4 T cell interactions 

ILC were freshly sorted and expression of LFA-1 was measured by FACS (filled gray= Isotype 
control, solid black line= ICAM-1) (A).  ILC and CD4 T cell were cultured as before and ILC 
expression of ICAM-1 was determined following culture in co-culture (red solid line) or in transwell 
(TW) (blue solid line) (B).  Mean fluorescence index was calculated for ILC ICAM-1 expression in 
experimental triplicates (C).  ICAM-1 expression in CD4 T cells in co-culture (red solid line) and TW 
(blue solid line).  Isotypes in filled in gray.  ILC and CD4 T cells were cultured as before, for 72 
hours, in the presence or the absence of ICAM-1 blocking antibody (10µg/ml) or control IgG 
(10µg/ml).  Expression of IL-4 and IL-5 was measured in CD4+ST2- cells following PMA-I and GS 
stimulation followed by intracellular staining (E).  Error bars represent SD of experimental 
triplicates.  *p<0.05, **p<0.01, ***p<0.001. 
 

5.2.4 Impact of ILC-CD4 T cell interactions in vivo 

Having shown that ILC could modulate T cell cytokine production in vitro, it was 

important to ascertain the impact of ILC on CD4 T cell polarisation and 

activation in vivo.  The experiments detailed below were designed to answer 

this question. 

5.2.4.1 Double adoptive transfer model 

In order to test the influence of ILC on CD4 T cell activation in vivo an adoptive 

transfer model was designed. DO11.10 TCR transgenic mice, that express a 

major histocompatibility (MHC) Class II restricted TCR specific for a peptide 
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derived from ovalbumin (ova), were used as the source of CD4 T cells for the 

transfer. DO11.10 CD4 T cell can be tracked using a mAb specific for the 

clonotypic TCR (KJ-126). Since, in previous experiments (Figure 5-1, Figure 5-2), 

ILC activation with IL-33 appeared to be important in vivo, the decision to use 

St2-/- mice as recipients, was made in order to avoid effects of IL-33 on host 

cells. The model is described in Figure 5-15, but briefly: 2 groups of St2-/- mice 

received ova-specific KJ-126+ DO11.10 CD4 T cells intravenously and an 

intranasal challenge of 1µg IL-33+ 100µg ova.  Only one group received WT ILC 

concurrently intravenously, alongside the CD4 T cells.  Mice were killed after 5 

days.  Lungs and mLN were collected for total cell counts, CD4 counts, DO11.10 

T cell counts and lung CD4 intracellular cytokine measurements, by FACS.  

Additionally, both total lung and mLN cell preparations were used for antigen 

(Ag)-recall responses in vitro, followed by cytokine measurement from the 

supernatants.  The model therefore tested not only the ability of ILC to interact 

and enhance CD4 T cell activation in vivo, but also their ability to induce the 

recipient CD4 T cells to produce cytokines and the strength of Ag recall 

responses. 
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Figure 5-15 Double adoptive transfer model 

WT ILC were sorted as described in Chapter 4.  The ILC (1x106) were adoptively transferred into 
St2-/- mice intravenously (i.v.) alongside magnetic-bead-sorted DO11.10 CD4 T (0.5x106 cells/ 
mouse).  A further group of St2-/- mice received only DO11.10 CD4 T cells.  Both groups were 
treated intranasally (i.n.) with 1µg IL-33 and 100µg ova.  The mice were killed as described 
previously after 5 days.  Lungs and mLN were harvested. 
 

5.2.4.2 ILC increase recipient CD4 T cell activation and cytokine production 
as well as DO11.10 T cell recovery in the lung 

Mice in the DO11.10 CD4 T cells + ILC group had increased total lung cell counts 

(Figure 5-16A) compared to mice receiving DO11.10 T cells alone. Despite this 

increase in total lung cells, the number of recipient mouse CD4 T cells in the 

lung was not increased (Figure 5-16B).  Interestingly, however, the proportion of 

host CD4 T cells expressing IL-4, IL-5 and IFNγ in the lung were all significantly 

increased in the lungs of recipient mice in the DO11.10 T cells+ILC group (Figure 

5-16C) (p=0.0152, 0.0129 and 0.0263, respectively).  Additionally, when the host 

CD4 T cells were assessed for their expression of CD44, the mice that had 

received DO11.10 T cells+ILC had increased proportions of activated CD44hi CD4 
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T cells (Figure 5-16D). This increase was statistically significant (p=0.0109) 

compared to mice that received DO11.10 CD4 T cells alone (Figure 5-16E).  

Importantly, following i.v. transfer, ILC were found to migrate to the lungs of 

recipient mice (Figure 5-16F).  Notably, the proportion of KJ-126+ DO11.10 T 

cells in the lung of mice in the DO11.10 T cells+ILC group was increased 10-fold 

compared to control mice (DO11.10 CD4 T cells alone group) (Figure 5-16G).  

Furthermore, the increase in the number of KJ-126+ cells in the lung was highly 

statistically significant (0.0003) (Figure 5-16H). Taken together, these data 

indicate that transfer of ILC enhances both the host CD4 T cell and co-

transferred DO11.10 T cell response to intranasal Ag. 
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Figure 5-16 Co-transfer of ILC increases host and DO11.10 CD4 T cell responses to Ag in 
vivo 

DO11.10 CD4 T cells ± WT ILC were transferred i.v. to St2-/- mice, followed by i.n. administration of 
IL-33 and ova.  The mice were killed after 5 days and total lung cells counted (A).  Cells were 
stimulated with PMA-I and GS for 4 hours followed by staining for surface and intracellular markers.  
The number of CD4 T cells were determined by FACS (B).  Intracellular expression of IL-4, IL-5 
and IFNγ (C) in recipient mice CD4 T cells were determined by FACS.  Representative panel of 
levels of CD44 expression in recipient lung CD4 T cells (D) (mice that received DO11.10 cells in 
solid blue, mice that received ILC+DO11.10 cells in solid red).  Proportions of CD44hi CD4 T cells 
in the lung (E).  Homing of ILC to the lung (F) (lung cells gated as described in Chapter 4).  
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Increased numbers of DO11.10 CD4 T cells in the lung of concurrently transferred ILC (G).  
Representative panels for each group shown.  Quantification of DO11.10 T cells in the lung of each 
group.  Error bars represent SD for individual mice (n=4/ group).  Data are representative of 3 
similar experiments.  ns= not significant, *p<0.05, ***p<0.001. 
 

5.2.4.3 Increased mLN cell counts and CD4 T cell numbers in mice receiving 
ILC+DO11.10 CD4 T cells  

The mLN were also assessed to determine the effect of ILC on T cell responses in 

lung draining lymph nodes.  Interestingly, the total numbers of cells in the mLN 

were increased in mice receiving both ILC and DO11.10 T cells (Figure 5-17A), as 

was the number of host (KJ-126-) CD4 T cells (Figure 5-17B).  There was also a 

trend for an increase in the proportion of activated CD4 T cells, denoted by their 

expression of high levels of CD44, however, this difference did not achieve 

statistical significance (Figure 5-17C).  Whilst the proportion of mLN KJ-126+ T 

cells was similar in both groups (Figure 5-17B), the absolute number of DO11.10 

cells recovered from the mLN of mice that received ILC was significantly 

increased (p=0.0155), similar to the increased number of KJ-126+ cells present in 

the lung (Figure 5-17D).  
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Figure 5-17 Increased cell counts and CD4 T cells in mLN of St2-/- mice that received 
DO11.10 cells +ILC  

St2-/- mice underwent the model as described above.  mLN of recipient mice were dissociated 
mechanically and total cell counts assessed (A).  Total cells were stained with surface markers as 
before and total CD4 T cells measured (B).  DO11.10 T cells +ILC cells had increased numbers of 
CD4 T cells in mLN.  Levels of CD44 expression in recipient CD4 T cells quantified (C) and number 
of KJ-126+ cells determined (D).  Error bars represent SD from individual mice (n=4-5/ group).  
Data are representative of 2 pooled experiments.  ns= not significant, *p<0.05, ***p<0.001.  
 

5.2.4.4 Enhanced cytokine production in Ag-recall assays of lung and mLN 
of mice receiving ILC+DO11.10 T cell transfers 

In order to measure the magnitude of the DO11.10 CD4 T cell recall response to 

their cognate Ag, cells from both lung and mLN were cultured with CM alone or 

varying concentrations of ova peptide 323-339, the cognate antigen for the 

DO11.10 TCR.  When equal numbers of total cells were used in recall assays, Ag-

induced cytokine production was elevated in the lung cell cultures derived from 

mice that received ILC.  In particular, there were increased levels of IL-2 (Figure 

5-18E) and IFNγ (Figure 5-18F) measured in the supernatants of the lung cultures 

of mice that received both ILC and DO11.10 T cells. It was important to 

ascertain what proportion of the cells in the starting cultures were stained by 

the KJ-126 mAb and would therefore be able to respond to the Ag.  Importantly, 
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the proportion of KJ-126+ cells was significantly increased (p=0.0064) in the 

lungs of mice that received ILC (Figure 5-18A). Therefore, the elevated levels of 

cytokine production by cells from these mice may simply reflect differences in 

the numbers of KJ-126+ cells within the respective cultures. By contrast, the 

proportion of KJ-126+ cells in the mLN of both groups were not significantly 

different and hence differences in the levels of cytokine production between 

groups were likely to reflect altered activation or differentiation rather than 

differences in the numbers of responding cells.  In this regard, increased levels 

of IL-2 and IFNγ were measured in mLN cultures from the mice that also received 

ILC (Figure 5-18G and H).  The baseline IL-2 levels were not significantly 

different in both groups, however the levels of this cytokine increased in a dose-

dependent manner to a greater extent in the cultures from mice that received 

both DO11.10+ILC, than in the control group.  This increase was 3.5 fold higher 

in mice that received ILC (Figure 5-18G).  In a similar fashion, the amounts of 

IFNγ measured in cultures from mice that received ILC was the same at baseline 

to the control group.  However, these increased upon Ag-stimulation and were 

significantly higher at the highest Ag dose, when compared to control mice 

levels (Figure 5-18H).  Type-2 cytokines were also measured in these cultures, 

however no IL-4 was detected in them.  Additionally, the levels of both IL-5 

(data not shown) and IL-13 in both the lung (Figure 5-18C) and mLN (Figure 

5-18D) cultures were substantially higher in the group of mice that had ILC 

adoptively transferred alongside DO11.10 CD4 T cells.  However, since both ILC 

and CD4 T cells are able to produce these cytokines it is not at this stage 

possible to determine which cells in the cultures are responsible for the 

measured levels IL-5 and IL-13. 
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Figure 5-18 Elevated Ag recall responses of DO11.10 T cells from ILC-transfer mice  

St2-/- recipient mice adoptively transferred with DO11.10 CD4 T cells± ILC were killed and mLN and 
lungs collected.  Proportions of DO11.10 cells in lung (A) and mLN (B) were determined by FACS 
(KJ-126+ CD4+ cells).  1.5x105 cells of either lung cells or mLN cells were cultured with complete 
medium alone (CM), 0.5µM or 5µM ova 323-339 for 72 hours and cytokines were measured by 
ELISA on culture supernatants.  Lung (C) and mLN (D) culture supernatant levels of IL-13.  IL-2 (E) 
and IFN (F) levels were measured in lung culture supernatants.  IL-2 (G) and IFN (H) levels were 
measured in culture supernatants of mLN.  Error bars represent SD of individual mice (A and B) 
and experimental culture triplicates for individual mice (C-H).  Data are representative of 2 
experiments.  ns=not significant, *p<0.05, **p<0.01, ***p<0.001. 
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In summary, the results from these in vivo adoptive transfer experiments 

demonstrate a role for ILC in CD4 T cell activation in the lung and draining LN.  

More so, despite being transferred systemically, ILC migrate to the lung and 

enhance the numbers of Ag-specific CD4 T cells within this organ, suggesting 

that ILC may be important in regulating the pulmonary recruitment and/or 

expansion of adaptive immune cells.  ILC also appear to be able to induce a 

milieu in which Ag-specific T cell responses are enhanced in the mLN, suggesting 

a supportive role for ILC in Ag-specific immune responses. 

5.3 Conclusions 

In this chapter the interactions between ILC and CD4 T cells were assessed. The 

experiments were prompted by the initial finding that intranasal transfer of ILC 

resulted in an increase in mLN cell numbers and an increase in the proportion of 

activated T cells in the draining lymph node.  Whilst an increase in cell numbers 

was not entirely unexpected, since in Chapter 4 ILC were shown to be sufficient 

to drive IL-33-induced airway inflammation, the finding that ILC were able to 

affect CD4 T cell activation was interesting and unforeseen.  A variety of 

markers for CD4 T cell activation were used to assess this effect, including CD44, 

CD25 and CD69.  Whilst CD25 expression is up regulated in regulatory CD4 T cells 

[381] it can also be present in effector CD4 T cells [382], hence making CD25 a 

less reliable marker of activation.  In a similar manner, CD69 expression is 

increased upon cellular activation.  However, this is only transient [383] and it is 

therefore not the best marker for CD4 T activation.  CD44 is a glycopeptide 

involved in cell trafficking and adhesion as well as regulation of apoptosis [384] 

that is stably up regulated in activated T cells [378, 379].  All T cells express this 

marker.  However, naïve T cells express lower levels whereas activated cells 

express this receptor at higher levels [385].  Since the up regulation of this 

marker is permanent, it was a reasonable choice for assessing both CD4 T cell 

activation and as a tool to sort naïve CD4 T cells by FACS.  

ILC are responsive to a variety of innate-derived cytokines, including IL-33, IL-

25, TSLP and IL-7 [74, 139, 174, 214, 219].  The finding that they are also 

responsive to IL-2, links their function to the adaptive immune response.  Whilst 

Wilhelm and colleagues demonstrated that IL-2 in vivo could alter the biological 

function of ILC [219], the results described above demonstrated that the 
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cytokines ILC express are dependent on the cytokine milieu.  This may explain 

why some groups have reported that ILC produce the type-2 cytokine IL-4, whilst 

others have failed to do so [139, 214].  Interestingly, IL-2 and IL-33 synergise to 

induce IL-5 and IL-13 production by ILC, in a similar fashion to the effects of IL-7 

and TSLP with IL-33, described in chapter 4.  Furthermore, synergistic effects of 

IL-2, IL-7 and TSLP with IL-33 on Th2 cell cytokine production have previously 

been reported [214]. The importance of this synergy in vivo has yet to be 

elucidated.  However, it would suggest that ILC are an important bridge 

between the innate and the adaptive immune responses.  It is therefore likely 

that, whilst ILC can provide an innate immune response as a first line defence 

against organisms [139, 213, 214] or in allergic inflammation [74, 217, 219], this 

response is further enhanced and modulated by the recruitment of adaptive 

immune cells.  More so, DC have also been shown to be a source of IL-2 early 

during microbial infections [386] and therefore it is possible that the synergy 

observed between IL-33 and IL-2 allows an escalation of the ILC immune 

response even in the absence of activated T cells. 

Culture in the presence of IL-2 followed by PMA-I re-stimulation induced IL-4 

expression by ILC, yet this was inhibited by IL-33 suggesting that ILC IL-4 

expression is under tight control.  This is further supported by the fact that in 

vitro stimulation of ILC with IL-2, without PMA-I re-stimulation did not result in 

detectable levels of IL-4 being secreted into culture supernatants.  Therefore, 

whilst IL-2 was able to polarise the ILC into an IL-4-‘competent’ phenotype, it 

was not sufficient to drive IL-4 protein production.  It is likely that an additional 

stimulus is therefore required to allow its release from the cells.  

The Stockinger lab had shown that IL-2 was essential for ILC-derived IL-9 

production in vivo [219], yet the levels of IL-9-expression in ILC cultured with IL-

2 were very low.  This difference may simply be due to the lack of the additional 

stimuli that were available in vivo.  An additional difference lies on the type of 

mice used by Wilhelm and colleagues in their experiments.  The group used an 

IL-9 fate-reporter mouse and hence, by definition, ILC would be marked by 

expression of enhanced yellow fluorescent protein (eYFP) at any stage after the 

IL-9 gene had been expressed, irrespective of the cell’s current IL-9-production 

status.  More so, they demonstrated that ILC-derived IL-9 was an early event 

during the onset of inflammation and that their IL-9 production gradually 



172 

diminished over time, to be replaced by IL-5 and IL-13 secretion [219].  It is 

possible that the ILC in the experiments described in this chapter expressed IL-9 

early on but that expression was lost in favour of other type-2 cytokine such as 

IL-4, IL-5 and IL-13.  Importantly, the ILC sorted for these experiments had 

received IL-33 for 5 days in vivo, and therefore, these cells may have expressed 

IL-9 prior to sorting.  Further experiments assessing different culture time 

points, sorting ILC from WT, untreated mice or even using IL-9-fate reporter-

derived ILC would be informative. 

Since the biological effects of IL-2 on ILC had been assessed in vitro, it was 

exciting to confirm the similar effects that co-culturing ILC with CD4 T cells had 

on their function.  The results of the co-culture experiments confirmed that CD4 

T cells were able to support ILC proliferation and IL-4 expression via the 

production of IL-2.  The use of an IL-2 neutralising antibody was useful.  

However, a more definitive method to confirm these results would involve using 

ILC derived from mice lacking IL-2Rα [387], which would make them 

unresponsive to the IL-2 produced by activated CD4 T cells.  These mice were 

not available, however. 

Whereas CD4 T cells were able to induce ILC proliferation, the converse was not 

observed.  The CD4 T cells proliferated in response to α-CD3/α-CD28 treatment 

and co-culturing them with ILC did not enhance their level of proliferation.  It 

must be noted, however, that the mitotic stimulus conveyed by the TCR-

stimulation used was substantial and therefore it could potentially mask any 

effect induced by the ILC.  Additional experiments titrating the level of TCR 

activation could clarify this point. 

One of the most interesting effects of co-culturing ILC with naïve CD4 T cells was 

their ability to enhance the T cells’ expression of type-2 cytokines.  Since ILC 

were able to express IL-4 in co-culture with CD4 T cells, it was possible that the 

effect of the ILC on T-cells was a result of ILC IL-4 production.  Whilst this was 

the initial hypothesis, it became clear that this was unlikely to be the 

mechanism whereby ILC exerted their influence on the T cells.  Firstly, as 

aforementioned, no IL-4 was detected in the culture supernatants of stimulated 

ILC nor in co-culture with CD4 T cells, suggesting that, whilst the ILC were 

capable of IL-4 production, they did not release it in these culture conditions.  
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Secondly, the finding that separating the cells with a semi-permeable membrane 

completely abrogated this effect, confirmed that a soluble factor, such as IL-4, 

was not sufficient for this phenomenon.  Notably, whilst promoting a Th2 

cytokine profile by a contact-mediated mechanism, ILC also inhibited the 

expression of the Th1-cytokine, IFNγ.  This effect was also abrogated upon cell 

separation by TW in culture, further substantiating the importance of cell-to-cell 

contact.  More so, ILC also impacted upon CD4 T cell cytokine production when 

cells were cultured in a Th1 milieu, with the addition of IL-12 to the culture 

media, i.e. a contact-mediated reduction in IFNγ expression and concomitant 

increase in Th2 cytokine expression. 

Using microarray data published by others [139, 214], the decision to test the 

possibility that ICAM-1 could mediate the ILC-CD4 interactions was made.  ICAM-

1 is an adhesion molecule which can be expressed by a variety of cell types 

including T cells, B cells, eosinophils, macrophages, DC as well as stromal cells 

including endothelial and epithelial cells [388].  ICAM-1 ligands are integrins that 

allow cell-to-cell contact and include LFA-1 and macrophage antigen (Mac)-1 

[388].  Investigators have demonstrated increased expression of ICAM-1 in the 

airways of asthma patients [389, 390] and on peripheral blood CD4 T cells, 

following allergen exposure [391]. Interestingly, allergen exposure via 

bronchoscopy, significantly increases local cellular recruitment (eosinophils, 

neutrophils, CD3+ cells) as well as ICAM-1 expression in the treated area, within 

6 hours of exposure, compared with control areas (treated with saline only) in 

the lungs of the same asthma patient [390].  This is mirrored by an up regulation 

of LFA-1 expression in stromal cells [390] suggesting that ICAM-1/LFA-1 

interactions are enhanced in allergy [390, 391]. Interestingly, the Bluestone 

laboratory had demonstrated that blockade of ICAM-1 led to reduced Th2-type 

cytokine production in vitro, when co-cultured with DC [380].  However, others 

have shown the opposite [392].  In fact, ICAM-1 blockade in in vivo models of 

allergic airway inflammation have been shown to be therapeutic [393].  

Rhinovirus (RV) infections have been linked to asthma development in childhood 

[394] and are a common cause for asthma exacerbations [215].  RV can bind 

ICAM [388] and hence its role in asthma pathogenesis has been linked to the 

expression of this molecule [394].  T cells have been shown to express both LFA-

1 and ICAM-1 [388] and ILC also express both these molecules on their surface, 
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as shown above.  This would suggest that the cross-talk induced by these 

molecules could be bi-directional in the co-culture.  Blocking the ICAM-1/LFA-1 

interactions in the co-culture significantly reduced the effects of ILC on CD4 T 

cell cytokine expression.  This reduction was only partial, however, suggesting 

that there may be other cell surface molecules contributing to these effects.  It 

is interesting that the effects of ILC on the CD4 T cells was contact-dependent, 

whereas, the effects of the T cells on the ILC was not since the presence of the 

TW membrane did not affect T cell-induced ILC IL-4 expression (data not 

shown).  More so, the effect of T cells on ILC was blocked by neutralising the 

soluble factor, IL-2, demonstrating the variety of mechanisms in play mediating 

the ILC-CD4 T cell cross-talk.   

It was interesting to observe that ILC were able to impact upon the adaptive CD4 

T cell response.  There are other important examples of such interactions in 

asthma.  In particular, there has been much interest in the way DC can help 

define adaptive immune responses depending on their priming milieu [70, 395, 

396].  The interactions between DC and T cells are not solely Ag-driven, but also 

rely on DC expression of co-receptors that induce CD4 T cell activation, including 

OX40L (CD134) [70] or RELM-α (also known as found in inflammatory zone 1) 

[395].  The interactions of DC expressing these receptors with their ligands on 

CD4 T cells have demonstrated that CD4 cells develop into particular phenotypes 

following the cues offered by the innate immune system.  Interestingly, OX40L is 

up regulated by DC following treatment with TSLP in vitro [70] and in vivo [397], 

and this co-receptor allows priming of T cells to a Th2 phenotype that drive 

airway inflammation [397].  Neill and colleagues had demonstrated that gut ILC 

did not express OX40L [139].  However, it was possible that lung ILC could 

express this protein or up-regulate its expression in co-culture.  This possibility 

was tested, however, experiments performed demonstrated that freshly sorted 

lung ILC did not express OX40L and co-culture did not induce its expression (data 

not shown).  More so, using a blocking antibody for OX40L during co-culture, 

there was no reduction in the ILC-induced T cell type-2 expression levels (data 

not shown).  These data show that, unlike DC, ILC do not enhance CD4 Th2 

responses through OX40L-OX40 interactions.   
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The importance of direct ILC-CD4 T cell interactions in vivo were difficult to 

measure, since isolating the effects of ILC on only one population of cells is 

impossible in vivo.  The double adoptive transfer model was designed to be able 

to assess the effect of ILC on the response of CD4 T cells to Ag, hence the use of 

DO11.10 CD4 T cells.  Preliminary in vivo experiments performed assessed 

effects of ILC on CD4 cells in the spleen, following i.v. cell transfers and 

intraperitoneal (i.p.) Ag and IL-33 injection.  Interestingly however, no ILC were 

found in either the spleen or the mesenteric LN.  These cells were found in the 

lung, suggesting that lung-derived ILC will preferentially home back to the lung 

when transferred systemically.  As a result of these observations, the model was 

modified to include an i.n. challenge following i.v. cell transfer.  The results of 

this model demonstrated that ILC were not only able to home the lung, but also 

increase the number of Ag-specific CD4 T cells in the lung.  It is difficult to 

ascertain if the increased numbers of KJ+ cells found in the lungs of mice 

receiving ILC was due to these cells being recruited in the lung, or due to 

increased local proliferation and / or cell survival as any of these processes 

alone or in combination could explain this effect. Further experiments 

transferring CFSE-labelled cells could be informative, however, the model would 

have to be shortened as the dilution of this marker after 5 days is likely to be 

too great to allow accurate assessment of proliferation.   

Interestingly, ILC were unable to drive CD4 T cell proliferation in vitro, yet 

elevated numbers of DO11.10 CD4 T cells were found in the lungs and mLN of 

mice that also received ILC.  It is likely that the reductionist in vitro 

experiments did not reflect the in vivo milieu.  The presence of additional 

cytokines and cell types in the in vivo experiments is likely to explain the 

differences in the ability of ILC to support T cell expansion in vitro and in vivo. 

Furthermore, ILC have been shown to express low levels of major MHCII [139], 

suggesting that these cells may be able to present Ag.  Improved Ag-presentation 

by lung ILC could enhance DO11.10 CD4 T cell proliferation and additional 

experiments to assess this possibility would be informative. 

Another exciting finding of the in vivo model was the increased cytokine levels 

measured in the recipient CD4 cells in the lung.  Whilst this is likely to represent 

an ability of ILC to enhance the host T cell response to ova, since ILC produce 
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large amounts of type-2 cytokines when stimulated with IL-33, it is possible that 

this contributed to the activation of lung CD4 T cells in a direct manner.  

The elevated levels of cytokine production measured in mLN cell Ag-recall assays 

demonstrated the ability of ILC to drive CD4 T cell activation.  In this regard, it 

was interesting to see that mice that had received ILC had greater Ag-induced 

recall responses than mice that only received KJ+ cells.  Unfortunately, 

measurement of intracellular cytokine expression by mLN cells using FACS was 

not possible due to limited numbers of cells and hence, whether ILC were able 

to induce a Th2 or Th1 response in T cells was difficult to confirm.  This is due to 

the high levels of type-2 cytokines measured in the cultures of mice that 

received ILC.  It is possible that the ILC are an important source of the IL-13 

measured since, whilst the baseline levels were not very different in both 

groups, the levels of IL-13 measured in the cultures containing Ag were over 24 

fold higher in the mice that received ILC, in the lung, and 2.8 fold higher in the 

mLN cultures.  Whilst the increases in IL-13 measured in these cultures did not 

increase in an Ag dose-dependent manner, the levels were increased, from 

baseline in the cultures containing Ag.  ILC had been found, following i.v. 

transfer, in the lung of recipient mice and since IL-2 was shown to enhance their 

proliferation and cytokine production, it was possible that CD4 T cell-derived, 

Ag-induced IL-2 was sufficient to drive ILC IL-13 production in the lung cultures.  

ILC were not identified by FACS in the mLN (data not shown) however, so the 

effect of IL-2 on ILC-induced cytokine production does not completely explain 

the phenomenon seen in the mLN.  Since ILC do not appear to be able to 

produce IFNγ or IL-2 (data not shown and [139]) it is clear from the ELISA results 

that the activation of the Ag-specific CD4 T cells were responsible for the 

cytokine levels measured.  The measured type-2 cytokines appeared to increase 

in response to Ag, however the precise cells responsible for that effect would 

require single cell-type assessment and intracellular cytokine expression 

measurement by FACS. 

Whilst ILC were able to inhibit CD4 T cell expression of IFNγ in the in vitro co-

culture experiments, they enhanced their production of this cytokine in the in 

vitro Ag-recall assays as well as by intracellular staining in recipient lung CD4 

cells of the in vivo model.  Whilst the in vitro environment is very controlled, 
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there will be numerous cell interactions occurring in the lung during the in vivo 

model.  Indeed, as described in chapter 4, ILC were sufficient to drive IL-33-

induced airway inflammation, driving the activation and recruitment of 

numerous cell types that could affect the lung CD4 T cell responses.  In this 

respect, the ILC were able to influence the proportion of lung CD4 T cells 

expressing type-2 cytokines, more so than IFNγ levels.  

In the double cell transfer experiment, IL-33 was included in the model since 

this appeared to be important in the effects of ILC seen in vivo.  In the in vitro 

experiments, IL-33 was not used since preliminary results showed no 

improvements in the effects of ILC on CD4 T cells in the co-culture models (data 

not shown).  The DO11.10 CD4 cells transferred in the double adoptive transfer 

model were ST2+/+, and hence capable of responding to IL-33.  Whilst both 

groups received the same IL-33-treatment, ideally, the in vivo transfer 

experiments should be conducted using Ag-specific CD4 T cells derived from St2-

/- mice to eliminate this variable.  Additional experiments could also be 

performed in vitro using both ILC and CD4 cells from WT mice, treated with IL-

33, to ascertain if the interactions between the two cell types differed when 

both were able to respond to this cytokine. 

In conclusion, the results described in this chapter demonstrate that CD4 T cells 

influence ILC function and cytokine production via IL-2.  Additionally, ILC are 

able to induce a Th2 phenotype, whilst inhibiting a Th1 phenotype, on CD4 T 

cells in a contact-dependent manner in vitro.  This process is partially 

dependent on ICAM-1/LFA-1 interactions between the cells.  Finally, ILC enhance 

the cytokine production and activation status of CD4 T cells in the lung and mLN 

in vivo. 
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6 Final discussion 
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6.1 mTOR activation in IL-33 signalling 

The results shown in this thesis demonstrate the importance of mTOR activation 

in IL-33 biology.  The finding that IL-33-induced airway inflammation can be 

inhibited by rapamycin demonstrates that the cells in the lung responding to IL-

33 require mTOR activation to drive inflammation.  It was interesting to discover 

that the main cells producing type-2 cytokines in the lung in response to IL-33 

were the newly described cell type, type-2 innate lymphoid cells (ILC) and 

additionally, these cells were sensitive to rapamycin-induced mTOR inhibition in 

vivo.  The in vitro experiments described in chapter 4 demonstrate that ILC are 

able to respond to IL-33 stimulation directly.  Furthermore, in keeping with the 

in vivo findings, their ability to produce type-2 cytokines in response to IL-33 in 

vitro is diminished by mTOR inhibition.  This inhibitory effect appears to be at a 

post-transcriptional level, since IL-33-induced transcripts of Il-13 are unaffected 

by rapamycin.  These data therefore, in combination, demonstrate a previously 

unknown role for mTOR in IL-33 signalling in lung ILC.  Based on the results in 

this thesis and additional experiments performed by others in the lab group [75], 

an additional signalling pathway induced by IL-33 is therefore described in Figure 

6-1. 
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Figure 6-1 Summary of revised IL-33 signalling pathway including mTOR activation 

The IL-33 signalling pathways as described previously are shown with the addition of the novel 
mTOR pathway in IL-33 signalling, as supported by data shown in this thesis, in solid and dashed 
black line. 
 

6.2 IL-33 and ILC in asthma 

Since its discovery, our understanding of the physiological roles of IL-33 has 

developed from the initial description as a type-2 cytokine [82] to include 

numerous other functions including its roles as an alarmin (reviewed in [159]), as 

well as a nuclear factor affecting gene transcription [196].  IL-33 has been 

implicated in numerous diseases, with both beneficial and detrimental effects, 

demonstrating the complexity of the interactions induced by this molecule.  Its 

roles in allergy and asthma have been the subject of much research and the 

recent discovery of its importance in a genome-wide association study (GWAS) as 

a key gene associated with the risk of developing asthma [228] has placed IL-33 

at the forefront of research in these disease processes.  Additionally, the recent 

addition of a novel subset of innate helper cells [139, 213, 214] to the growing 

list of IL-33-responsive cells suggests that much is still to be learnt about the 

functions of IL-33 in health and disease.  More so, ILC appear to have important 
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roles in the lung, both in the provision of homeostasis and in disease [74, 141, 

174, 216-219, 398].  Furthermore, the possibility that their presence is 

associated with more severe forms of asthma [72] offers the exciting possibility 

of a previously overlooked pathogenic population of cells that could be targeted 

with better treatments. 

As discussed previously, asthma is a heterogeneous disease and whilst the 

incidence and prevalence of this condition continue to increase, our ability to 

provide effective therapies to those who endure the most severe forms of this 

condition remains poor.  These patients constitute a large socioeconomic burden 

but more importantly, they continue to be failed by the medical profession due 

to the lack of adequate, safe and effective interventions to treat them.  Whilst 

corticosteroids (CS) remain the mainstay treatment for asthma, increasing 

understanding of the condition suggests that targeted immunomodulation may 

be required for those who fail to improve with maximal CS treatment. 

6.3 mTOR inhibition in asthma 

Rapamycin is a highly effective immunosuppressant in clinical use [326].   The 

growing interest and the increasing number of applications for mTOR inhibitors 

in clinical medicine makes the findings described in this thesis timely.  Whilst 

the importance of mTOR in a variety of diseases is increasingly understood, the 

field of oncology is pioneering the use of drugs targeting the mTOR pathway in 

cancer (reviewed in [302]).  These are important seminal studies addressing not 

only clinical effectiveness of the drugs but also safety, an important aspect 

given the significant rate of side effects associated with use of rapamycin and its 

derivatives. 

Smoking is associated with significant co-morbidity in numerous diseases 

including asthma and chronic obstructive airways disease (reviewed in [13]).  

Within the population of asthma sufferers, one in four patients smoke [13].  

Cigarette use has been shown to worsen lung function decline in these patients 

and hinder the therapeutic effects of the treatment regimens used in asthma 

[12].  The finding that mTOR inhibition, induced by cigarette smoke, is a key 

mechanism preventing lung repair demonstrates the importance of mTOR 

pathways in lung homeostasis [307].  These data additionally highlight the 
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limited understanding of the roles of the mTOR pathways in normal lung 

physiology.  A further avenue to be explored in this subgroup of asthma patients 

is the role of ILC in smoking-induced lung damage.  These cells have been shown 

to contribute to lung homeostasis and epithelial repair [141], yet their role, if 

any, in smoke-induced lung damage is unknown.  More so, the role of mTOR in 

ILC-driven lung repair and homestasis is also yet to be determined. 

The therapeutic use of mTOR inhibitors in allergy and asthma may be a 

possibility in the future.   Certainly the data shown in this thesis and by others 

would support the use of mTOR modulation in allergic airways disease [303-305], 

however, better understanding of the roles of IL-33, mTOR and ILC in health and 

disease is still necessary. An important question raised by the experiments 

described in this thesis is the role of rapamycin in airway hyperresponsiveness 

(AHR).  Whilst others have clearly demonstrated the therapeutic effects of 

systemically delivered rapamycin in mouse models of airway inflammation, the 

findings described in Chapter 3 suggest that mTOR inhibition could exacerbate 

AHR.  There were limitations in these experiments due to the methods used to 

measure AHR, however, before mTOR modulation can be used in clinical 

practice, better understanding of the role of mTOR in AHR is required.  IL-13 has 

been shown by numerous publications to be a key cytokine driving mouse AHR, 

and whilst rapamycin treatment reduced the levels of this cytokine in the lungs 

of IL-33-treated mice, there was no inhibition of AHR, highlighting the fact that 

the mechanisms driving AHR in mice are incompletely understood. 

6.4 Important outstanding questions regarding IL-33-
induced ILC in the lung 

Whereas the discovery of a role for mTOR activation in IL-33-induced functions is 

novel, these data have also led to further important questions that need to be 

answered to drive the understanding of this field further.  Whilst intranasal 

administration of IL-33 results in an increase in the number of ILC in the lung, 

these experiments and those performed by others have not addressed the 

question of the origin of these cells [74, 141, 174, 216, 217, 219, 398].  ILC have 

been shown to be of lymphoid origin [222], and they are systemically dispersed 

when mice are treated with systemic IL-25 or IL-33 [214].  Further experiments 

to ascertain whether ILC proliferate locally or are recruited from the bone 
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marrow or peripheral lymphoid organs would enhance our understanding of these 

cells.   

An additional question that arises from IL-33-induced ILC induction in the lung is 

within what compartment of the lung are these cells found?  This may be 

important since it may suggest the possible interactions with adjacent cells.  

Additionally, macrophages within different compartments in the lung have 

differing roles and phenotypes (reviewed in [399]), important to their function 

and this may be true for ILC too.  Since the ILC in the experiments described in 

this thesis were assessed by FACS analysis of whole lung digests, it was 

impossible to pinpoint the location of ILC within the lung.  Analysis of the BAL of 

IL-33-treated mice did show small numbers of ILC in this fluid, however ILC were 

not detected in the BAL of untreated control mice (data not shown).  Following 

the findings described in chapter 5, it seemed that ILC preferentially relocated 

to the lung following i.v. adoptive transfer.  It would therefore be informative to 

perform immunohistochemical (IHC) analysis of the lungs of mice receiving ILC to 

determine their location following the transfer.  Since ILC do not express any 

lineage markers and the surface markers they do express are shared with other 

cell types, the cells would have to be labelled prior to transfer in order to be 

able to localise them within the lung.  

The lack of a specific cell surface marker for ILC is an important hurdle when 

assessing their role in human disease.  This is exacerbated by the difficulty in 

obtaining human lung tissue from both healthy controls and patients with 

asthma.  ILC are found in very small numbers in untreated control mice and it is 

likely that this is also the case in humans.  The difficulty in conclusively 

demonstrating the presence of ILC in human lung tissue was demonstrated by 

Shikotra and colleagues [72].  They showed the presence of IL-13+ cells in lung 

biopsies of patients with asthma and they suggested that they could be ILC.  

They demonstrated that these cells did not express markers for T cells, mast 

cells or macrophages, yet they were unable to show that these cells expressed 

any ILC-associated markers [72].  Much of the cell type assessment in human 

tissue is performed by IHC methods due to the limited tissue availability, 

however this restricts the number of markers that can be excluded from a cell 

type at one time.  The Artis laboratory overcame this particular problem by 

using whole lungs that had been deemed unsuitable for organ donation to 
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establish the presence of ILC in human lung by FACS [141].  This method is not 

sustainable to assess the role of ILC in pulmonary disease and better markers to 

identify these cells are required. 

As discussed above, ILC have been shown in the lung of non-asthma patients 

[141] and they have also been identified in the nasal polyps of allergic rhinitis 

patients [140].  These findings suggest a role for ILC in human asthma and 

allergy, however further research in this field is warranted to determine 

whether ILC are simply innocent bystanders or whether they have pathogenic 

roles in these conditions.   

One of the important roles of ILC is their function in lung repair and homeostasis 

[141].  The immune system has evolved as a protective mechanism, however, its 

roles in dampening inflammation and driving restoration of normality following 

an insult are important too. Type-2 immune responses have been shown to be 

key mediators of this function (reviewed in [220]), and therefore the finding that 

ILC are able to aid epithelial growth following viral damage is interesting yet not 

entirely unexpected [141].  ILC are highly responsive to stromal-cell derived 

factors such as IL-33, IL-25 and thymic stromal lymphopoeitin (TSLP) and 

epithelial cells are able to produce these three factors [400] suggesting an 

important reciprocal relationship may exist between ILC and epithelial cells.  

This possible relationship has not been explored extensively and further studies 

to assess ILC-epithelial cell interactions could be informative, since epithelial 

cell dysfunction is a common finding in asthma [401]. 

6.5 ILC and CD4 T cell interactions in vitro and in vivo  

The interactions shown in chapter 5 between ILC and CD4 T cells have 

demonstrated the important cellular cross-talk that is present in the lung in both 

health and disease.  The demonstrated effects of CD4 T cells on ILC functions 

are consistent with previous work showing that ILC are responsive to IL-2 and 

their cytokine profile can be modulated by this cytokine [219].  It was rather 

more unanticipated to see the effects of ILC on the T cells.  Interestingly, ILC 

are able to induce type-2 cytokine production in naïve CD4 T cells in a contact-

dependent manner.  This is partly mediated by ICAM-1-LFA-1 interactions as a 

blocking antibody for ICAM-1 significantly reduced this effect.  Furthermore, ILC 
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are not only able to induce type-2 cytokine production, but also inhibit 

expression of the type-1 cytokine, IFNγ by CD4 T cells.  The importance of Th2 

cells in asthma and allergy has been extensively investigated and hence, the fact 

that IL-33-induced ILC are able to drive this adaptive immune response is 

interesting.  This finding further supports an important role for IL-33 in asthma 

and offers a novel pathway whereby IL-33 can drive innate and adaptive immune 

responses in the lung.  Whilst the effects of ILC on T cells were shown to be 

partially dependent on ICAM-1, the interactions of other co-receptors are also 

likely to be in play.  The nature of these additional stimuli are unknown, 

however, further experiments to determine what other receptors are important 

in these interactions would enhance the understanding of this field.  

Furthermore, experiments to assess whether ILC can impact upon human CD4 T 

cell activation are also necessary. 

The effects induced by ILC on CD4 T cells required stimulation of the TCR, but 

the effect of ILC on the response of effector CD4 T cell to cognate antigen was 

not assessed.  ILC have been shown to express major histocompatibility complex 

(MHC) Class II [139] and preliminary experiments performed on IL-33-induced ILC 

demonstrated that they were able to present ova peptide to CD4 T cells from 

DO11.10 mice (that express ova-specific TCR) (data not shown).  This finding 

raises the possibility of a further mechanism for ILC to modify the adaptive 

immune responses in the lung and future work specifically addressing the 

question of the antigen presentation capacity of ILC is fundamental. 

6.6 Final comments 

Taken together, the data presented in this thesis provide a contribution to the 

greater understanding of IL-33.  Importantly, the results shown demonstrate a 

novel signalling pathway contributing to IL-33 functions in vivo and in vitro, as 

well as the role of mTOR in ILC cytokine-induced functions.  These findings 

provide a possible avenue for future work, which may provide ideas for potential 

therapies for asthma.  In addition, a novel mechanism for ILC-driven, contact-

mediated induction of CD4 T cell type-2 immune responses has been shown, 

demonstrating the complex interactions of the innate and the adaptive immunity 

in the lung. 
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