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Abstract  

The principal aim of this research was the development of a technique (based 

upon the effects of nanoscale topography) that facilitates the in vitro expansion 

of bone graft for subsequent implantation. 

 

Nanoscale topography increases the bioactivity of a material and stimulates 

specific responses at the molecular level (third generation biomaterial 

properties). Nanoscale topography thus confers these third generation properties 

upon biomaterials that are otherwise first generation (bioinert) or second 

generation (bioresorbable or bioactive) in nature. 

 

Two topographies (nanopits and nanoislands) were embossed into the clinically 

licensed bioresorbable polymer Polycaprolactone (PCL). A protocol was 

developed which enabled three dimensional cell culture using double-sided 

embossing of substrates, seeding of both sides, and vertical positioning of the 

substrates during cell culture.  

 

Human bone marrow was harvested and the mononuclear cell fraction culture 

expanded. These human bone marrow cells (HBMCs) were used for cellular 

analysis of substrate bioactivity. In addition, acellular analysis of substrate 

patterning and degradation was also performed.  

 

The osteogenic behaviour (and cell line specificity) was demonstrated using 

alizarin red staining, immunohistochemistry, real-time polymerase chain 

reaction (rtPCR), and quantitative PCR (qPCR). The osteogenicity of PCL was 

increased by the presence of nanotopography, and by the incorporation of 

hydroxyapatite (HA) into the PCL forming a hydroxyapatite-PCL composite 

(HAPCL). The performance of these substrates was compared to exposure to 

bone morphogenic protein 2 (BMP2), and the use of osteogenic media. 

 

The protocol from shim production to bone marrow harvesting and vertical cell 

culture on nanoembossed PCL has been shown to be reproducible and potentially 

applicable to economical larger scale production. 
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Chapter 1  General Introduction 

1.1 Bone 

1.1.1  Bone function and structure  

Bone functions to provide skeletal support for body tissues and acts as a lever 

against which muscles can exert the forces that facilitate movement 

(Ramachandran, 2007). In the form of the ribs and skull, bone facilitates 

respiration and protects internal organs. It has a haematological role in the 

manufacture of blood components, which adds to its involvement in calcium 

homeostasis and metabolism (Ramachandran, 2007). Bone consists of osteoid 

(uncalcified matrix of type 1 collagen (COL1) and glycosaminoglycans), calcium 

apatite or hydroxyapatite (HA), and a heterogeneous population of cells 

(Khurana, 2009; Ramachandran, 2007). The organic portion of bone forms 

approximately 40 % of its dry weight and includes COL1, osteopontin (OPN), 

osteocalcin (OCN), osteonectin, bone sialoprotein (BSP), and alkaline 

phosphatase (ALPH) (Khurana, 2009; Ramachandran, 2007). 

 

 

Three types of bone have been described, trabecular (cancellous or spongy) 

bone, compact (cortical) bone, and woven (immature) bone (Ramachandran, 

2007). Trabecular bone (figure 1.1) is located between layers of compact bone. 

Bone marrow occupies the spaces between trabeculae giving this type of bone 

its metabolic primary function (Khurana, 2009). Cortical bone is dense in nature 

and undertakes a primarily mechanical role. Concentric rings forming tubular 

osteons or Haversian systems are aligned along lines of force and are 

approximately 50 µm in diameter (Ramachandran, 2007). 

 

 

1.1.2 Bone marrow 

Bone marrow consists of haemopoietic tissue (responsible for the formation of 

blood components) and stroma (Khurana, 2009). There are two types of human 

bone marrow, medulla ossium rubra (red marrow) and medulla ossium flava 

(yellow marrow) (Bain and Clark, 2001). Adult bone marrow is approximately 50 

% red marrow and 50 % yellow marrow. Red marrow is primarily haematopoeitic 

in nature and is located in the flat bones and cancellous regions of long bones. 

Stroma is found in small concentrations in red marrow and makes up the 



 19 
majority of yellow marrow. The cellular constituent of yellow marrow is 

primarily adipocytic although fibroblasts, macrophages, osteoblasts, osteocytes, 

endothelial cells, endothelial stem cells, and mesenchymal (marrow stromal) 

stem cells are also present. Mesenchymal stem cells (MSCs) form the osteocytic 

(bone), adipocytic (fat), chrondrocytic (cartilage) and fibroblastic (fibrous) 

lineages (Bonfield and Caplan, 2010; Oreffo et al., 2005). 

 

 

 

Figure 1.1 A proximal and distal femur in cross-section (Adapted from 

functional anatomy and biomechanics (Shaw-Dunn J)).The cancellous (spongy) 

nature of the proximal and distal femur can be seen. Thinning of the cortical 

(compact) bone from the shaft to the metaphysis of both regions is evident.  

 

 

1.1.3 Bone cells  

Osteoblasts are responsible for the production and mineralization of matrix 

(osteoid) (Khurana, 2009). Cuboidal during rapid osteogenesis, these cells 

become thin, flat and elongated on the surface of slowly forming mature bone. 

Cytoplasmic processes extend toward adjacent osteoblasts and into bone 

canaliculi where they join the processes of osteocytes. Histological studies in the 

orthopaedic literature describe osteoblasts as 20-30 µm in diameter and 

arranged closely in a dense single layer covering the surface of forming bone, 

except in areas of active bone formation in which there may be several layers of 

cells (Wheeless, 2013). This layer may be seen to thicken during periods of 

active bone formation. Osteoprogenitor cells develop from MSCs and form the 

precursors of osteoblasts. 
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Osteoclasts are the large multinucleated cells responsible for bone resorption 

(Khurana, 2009). They form through the combination of a number of precursors 

from the monocytic (macrophage) cell line and are significantly larger than 

osteoblasts and just a little smaller than the 100+µm long lacunae for which they 

are thought to be responsible (Wheeless, 2013). Osteocytes form secondary to 

the encasing of osteoblasts in bone. Previously described as dormant it appears 

that osteocytes can synthesise collagen, control mineralization within their 

lacunae and may assist bone resorption (Wheeless, 2013).   

 

 

1.2 The use of bone graft 

The expansion of orthopaedics as a specialty has brought with it an increasing 

number of challenges. Bone loss is associated with trauma, fracture non-union, 

tumours, infection, implant loosening and arthroplasty loosening. Bone grafting 

and the use of bone graft substitutes is now commonplace, and in many cases 

preferable to the alternatives of endoprosthetic replacement, bone transport, 

distraction osteogenesis, and in more extreme cases limb amputation.  

 

 

Over one million fractures occur annually within the United Kingdom (UK), of 

which between 5 % and 10 % are considered to have problems with bone healing 

(Johansen et al., 1997). Large areas of bone loss due to trauma exceed the 

body’s regenerative capabilities.  Delayed healing or non-union occurs in 5 % of 

all fractures, and 20 % of high impact fractures (Dickson et al., 2007).  

 

 

Secondary bone healing is the method by which the majority, but not all, 

fractures unite. In order to achieve union fracture stability is a requirement, but 

in addition to this a potent osteogenic population of undifferentiated 

multipotent MSCs and committed osteoprogenitor cells, an osteoinductive 

stimulus and an osteoconductive matrix scaffold are also vital (Giannoudis et al., 

2007). Six months is not an unusual time frame for union to occur, and up to two 

years a possibility, however achieving union of a previously un-united fracture is 

a time consuming and costly process.  
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Since the first bone graft in Glasgow in 1880, the number performed annually 

has continued to grow, each year an estimated 300,000–600,000 patients require 

one, in the United States alone (Rea et al., 2004). A dearth of bone graft 

material remains an ongoing problem. 

 

 

Atrophic non-unions are primarily caused by defective biology and cancellous 

bone grafting should be undertaken. Hypertrophic non-union results from 

fracture instability or premature weight-bearing is primarily managed through 

alteration of the biomechanics, treatment by cancellous bone grafting is 

optional (Wheeless, 2013). 

 

 

Prosthetic implants, such as total hip replacements (THR), have an adverse 

effect on the quality of the surrounding bone; stress shielding and aseptic 

loosening are associated with a loss of bone stock. 25-year revision rates of 

primary cemented Charnley femoral components were shown, by the Mayo 

Clinic, to be 18 % for patients <40 years old, and 100 % for those over 80 years of 

age (Charnley, 1970). A Norwegian study revealed that 26 % of 4762 revision THR 

failed within 10 years (Berry et al., 2002). It is common practice for bone 

grafting, with either cancellous bone chips or femoral and tibial strut grafts, to 

accompany a change in implants during hip revision surgery. Impaction grafting 

using fresh-frozen morsellised allograft, for the management of acetabular bone 

stock loss in revision THR is effective as shown by long-term studies. It carries 

with it problems of cost, supply and potential infection (Gaston and Simpson, 

2007; Giannoudis et al., 2007; Jager et al., 2007; Nishida and Shimamura, 2008; 

Stevens and George, 2005).  

 

 

Limb reconstruction and salvage procedures are increasingly undertaken within 

the field of bone tumour surgery. Over the past 30 years improvements in 

imaging, chemotherapy, surgical technique and biomechanical engineering have 

made this change possible. Amputation is no longer the mainstay of surgical 

treatment with limb salvage being the patients’ preferred option. Combinations 

of bone graft and bone transportation operations may fill the often large 



 22 
skeletal defects, forming a living alternative to endoprostheses or amputation 

(Myers et al., 2007). Massive bone allografts, used for the reconstruction of 

limbs following bone resection for tumour, are plagued by a 19 % incidence of 

fracture, 14 % rate of non-union and 10 % chance of infection (Mankin et al., 

1992).  

 

1.2.1 Bone graft and bone graft substitutes 

Across the world, 4 million operations involving bone graft or bone graft 

substitutes are performed each year (Reid, 1968). The demand for bone graft in 

the surgical market is clear; currently the demand is met through the use of 

autograft, allograft and bone graft substitutes, all of which are associated with 

their own specific list of limitations. The optimal bone graft would be safe and 

possess osteoinductive factors to recruit the recipient’s MSCs and subsequently 

induce or modulate bone formation. Osteogenic cells, with the potential to 

differentiate into osteoblasts, would be present in an osteoconductive matrix, 

with sufficient structural integrity to provide the mechanical support necessary 

for fusion to occur.   

 

 

Osteoconduction occurs when a bone graft material acts as a scaffold onto and 

into which native osteoblasts can spread and generate new bone. Osteoinduction 

involves the stimulation of osteoprogenitors to differentiate into osteoblasts and 

begin new bone formation, an example of osteoinductive cell mediators are 

bone morphogenic proteins (BMPs). Osteogenesis is new bone growth and an 

osteogenic indicates the presence of osteoblasts. 

 

 

Autograft (cancellous and/or cortical bone) harvested from within the recipient 

remains the ‘gold standard’ bone graft for the replacement of diseased, absent 

or excised bone (Khan et al., 2012). It forms the only clinically available 

material that is osteogenic, osteoinductive, and osteoconductive whilst avoiding 

the risks inherent in transplanting viable cells or tissues from other individuals 

(Pountos et al., 2006). The major disadvantage of autograft remains the paucity 

of its available volume (Khan et al., 2012).  Collected from cadavers or living  
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donors, bone graft is available from tissue banks in the form of massive 

allografts, demineralised bone matrix, processed bone chips and cortical struts. 

Allograft is obtained from bone graft donors and is similar to autograft in its 

human origin, but differs in terms of its processing. In Scotland the source of 

most allogenic bone is the femoral heads obtained from living donors at the time 

of hip replacement for osteoarthritis (Holt et al., 2004). 

 

 

Retaining its mechanical properties, fresh-frozen donor bone that has not 

undergone the formal sterilization process is the most frequently used form of 

allograft despite the transmission of viral infections to some recipients (Emms et 

al., 2009). The transfer of highly resistant infective agents, including certain 

viruses and prions, remains a concern. Although the rate is low, unprocessed 

allogenic bone is associated with a risk of both disease transmission (e.g. 

Creutzfeldt-jakob disease) and immune reactions (Boyce et al., 1999; Dick and 

Strauch, 1994). The cellular component of bone graft may be sacrificed in order 

to minimize these risks. The remaining osteoconductive mineral scaffold assists 

bone healing but lacks the osteogenic properties of autograft. Demineralised 

bone matrix contains collagen, BMPS, proteoglycans and glycoproteins, and is the 

only form of allograft that is osteoinductive (Delloye et al., 2007). 

 

 

Synthetic bone substitutes are predominantly void fillers providing 

reconstructive surgeons with off-the-shelf osteoconductive alternatives to 

autograft and allograft. An increased potential for success in the management of 

bone defects is seen when bone substitutes are used in combination with 

osteoinductive agents, or when bone substitutes are rendered osteogenic 

through the addition of autograft or bone marrow aspirate. Calcium sulphate 

(CaSO4) pellets have combined successfully with autograft in in the performance 

of instrumented short segment posterolateral spinal fusions for degenerate 

spines (Chen et al., 2005).  
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Distraction osteogenesis techniques produce significant quantities of new bone 

in vivo but are currently limited to the lengthening of ‘long bones’. Circular 

frames and intramedullary devices facilitate the distraction and stabilization 

necessary for new bone formation to occur following an osteotomy (or bone 

division). In addition to limits in its application (limited to diaphyseal 

lengthening) one disadvantage of this method of bone growth is the duration of 

treatment, a 6 cm length of new bone takes a minimum of 180 days (Miller, 

2008).  

 

 

1.3 Tissue Engineering  

Tissue engineering aims to augment, replace, or restore the complexity of 

human tissue function through the combination of synthetic and living 

components under optimised environmental conditions (Langer and Vacanti, 

1993). It is envisaged that, with time and an appropriate amount of scientific 

interest, tissue engineering will facilitate the development of in vitro expanded 

autologous bone graft in order to overcome the pressing clinical need. 

Autologous chondrocyte implantation (ACI) is already undergoing multicentre 

clinical trials using a very similar process for generating cartilage to that which 

we propose for bone (Hench and Polak, 2002).  

 

 

In recent years tissue engineering has focused on the importance of stem cells as 

a potential autologous cell source. The in vitro production of osteogenic bone 

graft requires a population of osteoblast cells that can be derived from 

osteogenic progenitor cells, mesenchymal, skeletal (or even embryonic) stem 

cells. 

 

 

1.3.1 Stem Cells 

The invention of the microscope in the 1800s facilitated both an increase in the 

understanding of human cells and the discovery in the early 1900s that red blood 

cells, white blood cells and platelets originated from a single ‘stem’. 

Transplantation of human stem cells began in the 1950s as a management for 
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depleted functional bone marrow caused by haematological and oncological 

conditions, and in 1963 Ernest McCulloch and James Till quantitatively described 

the self-renewing properties of murine bone marrow cells (Till and McCulloch, 

1963).  

 

 

Stem cells can differentiate into multiple lineages; for example, MSCs form the 

mesenchymal lineages (predominantly osteogenic, adipogenic, chrondrogenic 

and fibroblastic) (Bonfield and Tanner, 2002) (figure 1.2), whilst embryonic stem 

cells form all of the tissues found in a developing embryo (endoderm, mesoderm 

and ectoderm). Composite grafts, formed from the combination of two or more 

materials, are being used to harness stem cell multipotency (Brady et al., 2010).   

 

 

 

 

 

Figure 1.2 MSC differentiation (taken from Bonfield and Caplan (Bonfield and 

Caplan, 2010)). Post-proliferative commitment of MSCs to the lineages of bone, 

cartilage, muscle, marrow, tendons, adipose and other tissues precedes cell 

differentiation and maturation in the development of mesenchymal tissues. 
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Stem cells ‘self renew’ maintaining their own number through time. Debate 

continues with respect to the pattern of stem cell turnover (Lopez-Garcia et al., 

2010). In asymmetric division one of the two daughter cells of a dividing stem 

cell remains a stem cell, while the other forms a committed progenitor (Robey 

and Bianco, 2006), during symmetrical stem cell division two daughter stem cells 

are produced. In tissues in which cell division of mature cells is slow or in which 

the division of differentiated cells does not occur, the promotion of symmetrical 

stem cell division is necessary for population expansion.  

 

 

Potentially the most interesting property of stem cells is their potential to 

completely reform a tissue when transplanted. In 2008 groundbreaking research 

into the use of stem cells was published in the Lancet by Macchiarini et al. A 

decellularised trachea (a cell depleted donor airway) colonized with epithelial 

and MSC-derived chondrocytes was successfully transplanted into a 30 y old 

suffering from the after effects of tuberculosis. The result was an improvement 

in her lung function and a resumed ability to climb stairs. The combination of 

cell depletion and coating with autologous, stem cells gave the benefits of a 

functional airway with the avoidance both rejection and the use of 

immunosuppressant drugs (Macchiarini et al., 2008). 

 

 

1.3.2 Human bone marrow cells (HBMCs), MSC and skeletal stem cells (SSC) 

The harvest of stem cells and human bone marrow has become more 

widespread. Human bone marrow provides a source of MSC (as more MSC niches 

have become known many now refer to the cells by origin e.g. SSCs referring to 

MSCs from bone marrow) that can be extracted using a combination of diffusion 

gradients and sub-grouped through antibody selection. Despite nearly four 

decades of research specific cell-surface markers that can uniquely identify and 

select for the MSC/SSC phenotypes remain elusive (Tare RS, 2009). Alternatives 

include the selective harvesting of heterogeneous populations of stem cell 

enriched skeletal progenitor cells using the stromal cell monoclonal antibody 

(STRO-1) (Gronthos et al., 1994; Simmons and Torok-Storb, 1991), and the 

identification and acquisition of bone and stroma regenerating progenitors using  
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the melanoma-associated cell adhesion molecule (MCAM/CD146) (Sacchetti et 

al., 2007). MCAM selected progenitors can establish a haematopoeitic 

microenvironment in vivo in addition to the formation of bone. 

 

 

MSCs are being harvested from arthroplasty patients at the time of joint 

replacement surgery. These cells display much of the phenotypic character of 

the cell population encountered by orthopaedic devices and substrates on 

implantation. Research into these cells is therefore fundamental to 

understanding the properties of bone and its interactions with biomaterials at 

micrometric and nanometric levels. The proliferative capacity and cellular 

spectrum of stem cells harvested from bone marrow affect their usefulness as a 

source of autogenic cells. Importantly these factors are independent of age and 

osteoarthritis (Scharstuhl et al., 2007). Isolated and culture expanded MSCs, 

from donors cleared of any identifiable infective load, may be useful in the 

future as a source of osteogenicity for implantation with cell deplete 

osteoconductive scaffolds. Prior to differentiation MSCs have been regarded as 

non-immunogenic (Chamberlain et al., 2007) and potentially transplantable into 

allogenic recipients without the use of immunosuppressants. Allogenic MSCs 

would have the benefit of availability to a recipient at the time of diagnosis, 

without the lag that would result from culture expansion of their own MSCs. 

 

 

Cell culture media is supplemented with serum, commonly obtained as fetal calf 

serum (FCS) although an alternative source is autologous platelet lysate. Some 

have concerns regarding the use of animal-derived media supplements for 

culture purposes. A potentially damaging mixed lymphocyte reaction modulated 

through an induction of T-cell proliferation (MacDermott and Bragdon, 1983) has 

been associated with long-term expansion of MSCs in FCS. This phenomenon can 

be prevented through the use of autologous human platelet lysate as an 

alternative media supplement (Centeno et al., 2010). 
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1.3.3 Clinical applications of chondrocytes and bone marrow stem cells  

ACI was first introduced in Sweden in 1987, and initially described as the 

harvesting of cartilage slices from minor load-bearing areas of a joint, 

chondrocyte extraction, and culture within media supplemented with autologous 

serum. Ex vivo expansion for a period of 3-4 weeks or more was undertaken prior 

to open implantation under an autologous periosteal flap taken from the 

proximal tibia (Brittberg et al., 1994): (Hench and Polak, 2002). ACI has 

undergone a number of modifications: in some cases porcine membranes are 

used, and in others chondrocytes are cultured within a collagen matrix. The 

technique known as matrix-induced ACI (MACI) requires a reduced surgical 

access for implantation.  

 

 

SSCs have been isolated, culture expanded and used in the form of injectable 

scaffolds or loaded into solid scaffolds.  Some of their orthopaedic applications 

are illustrated in figure 1.3. Fresh and culture expanded SSC have also been used 

for the regeneration of cartilage within knee joints. SSCs obtained using a cell 

separator have been mixed with both a protein matrix and a collagen/HA 

scaffold.  The cell containing matrix was transplanted into prepared 

osteochondral defects using minimally invasive arthroscopic techniques involving 

the use of a small camera (arthroscope) (Assor, 2010). Wakitani et al culture-

expanded the autologous bone marrow derived stem cells (BMSCs) prior to 

placement on collagen sheets, gelation and transplantation into full thickness 

defects (Wakitani et al., 2007). Figure 1.3 illustrates the uses of SSCs in primary 

fracture fixation, the management of fracture non-unions and the treatment of 

osteochondral defects of the knee (Pountos et al., 2006).  
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Figure 1.3 The harvest, expansion and orthopaedic uses of MSCs (taken 

from (Pountos et al., 2006). Bone marrow derived MSCs are culture expanded 

producing sufficient numbers to aid union of fresh and previously un-united 

fractures as well as aid repair of cartilage defects. 

 

 

Patients (with a degenerative condition of the knee of moderate severity 

(gonarthrosis II-III)) are being recruited for a feasibility and safety study in which 

BMSCs are isolated and culture expanded for the treatment of arthritis. Twenty-

one days later, a single intra-articular injection of approximately 40 million 

autologously derived SSCs is undertaken. The theory is that the injected SSCs 

will have a sufficiently regenerative effect on articular cartilage, that it will be 

evident on magnetic resonance imaging (MRI) (Coll R, 2010). Animal and human 

trials are also investigating the efficacy of preloading implants with SSCs for use 

in spinal fusion and fixation of non-unions. 

 

 

 

 

 



 30 
1.4 Osteoblast differentiation   

During early development bone is formed by osteoblast differentiation (figure 

1.4) from MSCs, directly in the form of membranous bone formation and 

indirectly through MSC condensation into a cartilage template, endochondral 

bone formation (Lian et al., 2006). 

 

 

 

 

 

 

 

Figure  1.4 MSC differentiation into osteoblasts 

MSC differentiation into osteoblasts involves the commitment of MSCs into the 

osteogenic lineage with the production of progenitors, pre-osteoblasts, 

chondrocytes and subsequently osteoblasts. 

 

 

1.4.1 Control of osteogenic differentiation 

As they proliferate and differentiate from MSCs, marrow precursors, 

chondrocytes, osetoblasts and osteoclasts express various proteins including 

growth factors (GFs), transcription factors (TFs) and extracellular matrix (ECM) 

proteins (figure 1.5). Based upon its location along the differentiation pathway 

each GF, TF or ECM protein has a distinct pattern of expression. 

 

 

1.4.2 Osteoblast differentiation and gene expression 

Involved in osteogenesis, cell growth and differentiation BMPs, are 

multifunctional members of the transforming growth factor beta (TGFβ) 

superfamily of ligands. Acting through runt related transcription factor 2 (RUNX2 

– also known as core binding factor alpha 1 (cbfa1)) they are involved in the 

regulation of the sequential stages of osteoblastic phenotype development, 

promoting cell phenotype commitment and osteogenesis (Lian et al., 2006). The 

path from multipotent stem cell to osteoblast is controlled by two key TFs, 

RUNX2 and osterix (OSX) (Ducy and Karsenty, 2000). 
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Preosteoblast 
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Figure  1.5 The osteogenic differentiation pathway (from (Kobayashi and 

Kronenberg, 2005)) The major differentiation steps from MSC to hypertrophic 

chondrocyte, osteocyte and multinucleated osteoclast are associated with 

growth and transcription factors. In contrast to osteoblasts and osteocytes, 

osteoclasts (responsible for bone resorption) are derived from the 

monocyte/macrophage haematopoietic lineage. Abbreviations are shown on 

pages 13-17. 

 

 

BMPs act early in embryogenesis to up-regulate many homeodomain (HD) 

proteins. HD proteins directly regulate many of the key matrix proteins including 

collagen, OPN, alkaline phosphate (ALP), OCN, and the TFs RUNX2 and OSX (Lian 

et al., 2006). Binding of BMP to the type II receptor causes recruitment of the 

BMP 1 receptor, initiating the BMP pathway and its role in transcriptional 

regulation. BMPs are used clinically as osteoinductive agents. Atrophic non-

unions in which defective biology is thought to have been responsible and spinal 

fusion surgery are two of the surgical indications. Associations between their 

usage and adverse effects have now been documented (Woo, 2012a, b). 
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RUNX2 is expressed at early stages of the MSC line, prior to bone formation, and 

has been described as the ‘principal osteogenic master gene for bone formation’ 

(Lian et al., 2006). RUNX2 is essential for osteoblastic differentiation and 

skeletal morphogenesis, and is involved in the differentiation from pluripotent 

MSCs to osteochondroprogenitors, and from osteochondroprogenitors to 

osteoblasts. RUNX2 may be involved in cells exiting the cell cycle, and in the 

change from proliferation to differentiation (Lian et al., 2006).  RUNX2 is also 

the major TF for chondrocyte development (Kobayashi and Kronenberg, 2005). 

RUNX2 whilst appearing to be down regulated in the progression of cells down 

the chondrogenic lineage is increasingly expressed at the change from columnar 

to hypertrophic chondrocytes, and in the progression towards endochondral 

ossification (Lian et al., 2006). 

 

 

OPN, a protein with a high affinity for calcium (Sodek et al., 2000), is 

synthesized by a number of cell types (primarily within the mesenchymal cell 

line) including pre-osteoblasts, osteoblasts, osteoclasts, fibroblasts, dendritic 

cells, chondrocytes, myoblasts, and endothelial cells. RUNX2 and OSX are among 

a number of TFs required for the expression of OPN. Binding of RUNX2 and OSX 

to promoters of osteoblastic specific genes COL1 alpha 1 and OPN results in their 

up-regulation.  

 

 

OCN is a bone specific marker for mature osteoblasts and contributes to the 

regulation of bone mineralization.  Osteonectin (a glycoprotein secreted by 

osteoblasts) is involved in cell-matrix interactions, collagen binding and bone 

mineralization. It is involved in the mineralization stage promoting the 

formation of mineral nodules. 

 

 

1.4.3 Phases of in vitro osteoblastic development (adapted from (Lian and 

Stein, 1995; Stein and Lian, 1993)) 

Three phases of osteoblastic development have been identified: the growth 

phase; ECM development, maturation and organization; and ECM mineralization.  
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When placed in culture bone-related genes are down regulated and the cells 

enter a proliferation phase. The initial period of cell proliferation and ECM 

deposition takes the first 10-12 days. This phase proceeds into a phase of ECM 

development, maturation, and organisation (days 12-18). ECM mineralization 

forms the final phase, from day 18 onwards.  

 

 

This first 10-12 days shows the enhanced mitotic activity associated with cell 

proliferation. The genes expressed primarily are those associated with ECM 

formation such as COL1, fibronectin and TGFβ. Towards the end of this phase 

these genes are down-regulated, although COL1 remains at a basal level 

throughout. OPN expression is active in this proliferative phase. The genes 

responsible for ECM production and deposition must be expressed for 

differentiation to progress.  

 

 

Days 12-18 are associated with a reduction in the expression of the proliferative 

proteins, and a greater than ten fold increase in the expression of ALPH, 

although this is not picked up histochemically until the third phase. A decrease 

in cell proliferation is associated with the increasing osteoblast differentiation 

that inhibits BMP2, 3, and 4 expression. OCN expression is post-proliferative. 

 

 

Initially ALPH levels continue to rise, although they reduce again when the ECM 

becomes heavily mineralized. The expression of other bone related genes (BSP, 

OPN, and OCN) increases in parallel with increasing mineralization. OCN 

expression correlates with mineralization, restarting at the onset of 

mineralization and peaking at days 16-20. OCN expressing cells are only found 

within mineralizing nodules. 

 

 

The time taken for these three phases to occur can be manipulated to an extent. 

Culture on a COL1 film accelerates progression towards the osteoblastic 

phenotype, has an inductive effect on osteoblast differentiation and enhances 
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ALPH and OCN expression. High levels of collagen synthesis and ECM 

accumulation are associated with a cessation of cell proliferation at a lower than 

normal cell density.  

 

 

Dexamethasone in media accelerates differentiation and increases expression of 

post-proliferative genes and relatively early mineralised nodule formation. 

Dexamethasone may deplete the pool of proliferating undifferentiated cells by 

pushing cells to a terminal degree of differentiation beyond the natural rate. 

 

 

Culture of MG-63 (human osteosarcoma cell line) on cell matrix and purified 

COL1, results in morphological changes inducing the formation of long 

extracellular processes. In addition osteonectin levels increase up to 2.5 fold 

immediately after cell seeding, and ALPH increases up to 2.5 fold. These 

transient changes were maximal on days 6-8 after cell seeding, and reduced as 

cell confluence was achieved (Andrianarivo et al., 1992). The transient nature of 

the increases would be reflected in transient increases in mRNA levels. When 

considering qPCR results multiple time points or comparison with the levels of 

proteins expressed is therefore important. 

 

 

1.5 Biomaterials 

1.5.1 Development of biomaterials 

Tissue engineering requires the development of materials that will precisely 

control cellular morphology and the functions of adhesion, proliferation, 

differentiation and gene expression (Curtis and Wilkinson, 2001; Du et al., 1999). 

 

 

The first generation of biomaterials was inert in nature, developed to perform a 

supportive role with minimal toxic effects. As such they produced neither 

beneficial nor detrimental effects in the surrounding tissues. The second-

generation of biomaterials was designed to be either resorbable or bioactive. 

The third-generation of biomaterials was designed to stimulate specific, 

reproducible, cellular responses at the molecular level (Hench and Polak, 2002). 
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My aim in this thesis is to develop a third generation biomaterial combining 

bioactivity with bioabsorbability in order to aid bone regeneration.  

 

 

First generation biomaterials can be rendered second generation through a 

change in the material topography (configuration or shape), chemistry (by 

alteration of the material used or adhesion of substances to the surface), or by 

chemically augmenting topographically modified surfaces. In a smooth form 

metals (such as titanium), ceramics and plastics used in the manufacture of 

orthopaedic implants can be described as first generation biomaterials, tending 

to be bioinert in nature. Clinical experience has shown that a fibrous capsule 

forms around an implant in the presence of a smooth surface, whereas bone 

forms more readily on rough surfaces. The uncemented implantation of smooth 

surfaced first generation biomaterials was associated with implant loosening in 

the absence of active stimulation of osteogenesis.  

 

 

In 1911 contact guidance was noted by R.G. Harrison (Harrison, 1911)  and in 

1964 the reaction of cells to the topography of their environment was 

popularized (Curtis and Varde, 1964). Clinical findings support laboratory 

findings in which in vitro osteoblast-like cells attach more readily and 

differentiate faster, with enhanced HA formation, on rough surfaces (Blumenthal 

N, 1989). A region of roughness, porosity or chemical (for example HA) coating 

adds bioactivity to inert implants and hence renders them second generation. 

This thesis will focus on defined topography as a move to third generation 

biomaterials (as defined surfaces will provide reproducible response), but it is 

acknowledged that much prior work has focused on simple roughening. 

 

 

1.5.2 Osseointegration and osteoinduction 

The processes of osseointegration and osteoinduction represent the positive 

tissue responses to material chemistry and topography sought in the fields of 

orthopaedics and tissue engineering.  
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A large proportion of the work relating to the interaction between mesenchymal 

and osteogenic cells and substrates has been undertaken in the field of implant 

(joint replacement) manufacture. Differing opinions dominate this subspecialty. 

Debates regarding cemented versus uncemented fixation, and optimal bearing 

surface continue among hip and knee arthroplasty surgeons, as well as debate 

about the surface modifications chosen by users of the uncemented implant 

group. The primary aim of uncemented prostheses is the elimination of the 

osteolysis associated with the wear and loosening of cemented arthroplasty 

components.  

 

 

Osseointegration refers to a direct structural and functional connection between 

an implant and living bone, and is associated with an absence of intervening soft 

tissue. Representing a combination of bone apposition to the implant with 

functional fixation (Petrie T, 2008) osseointegration is a prerequisite for the 

success of uncemented orthopaedic implants. This requires a surface to which 

osteoblasts and supporting connective tissue can attach, or pores into which 

these cells and tissues can migrate. Osseointegration can be verified 

microscopically or radiologically by the presence of spot welds of new endosteal 

bone contacting a porous surface or by the absence of reactive lines around an 

implant (Engh and Bobyn, 1988).  

 

 

Osseointegration can be achieved through the modification of surface 

topography, chemistry or both. Topography is traditionally altered for implants 

by sintering (coalescing heated solid particles onto the surface of implants), 

sandblasting, etching (using acid (Amrich and Burghouwt, 2010; Cho and Park, 

2003; Engh and Bobyn, 1988), laser, or plasma), or machining. Chemistry is 

commonly altered through the addition of HA, tricalcium phosphate (TCP) or a 

composite HA/TCP to a material or its surface. 

 

 

Bioactive materials, such as HA coated implants, are generally considered to be 

osteoconductive, producing a physico-chemical bond between the bone and the 

coating that ankyloses it to bone. Osteoblastic cells need to be able to adhere 
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and proliferate, osteoblastic precursors, such as SSCs, need to differentiate 

osteogenically, and terminally differentiated mature osteoblasts need to adhere, 

secrete and initiate mineralization of bone matrix. Sceptics of the use of 

chemistry in order to add bioactivity express concerns primarily relating to the 

stability of the chemical-implant interface, and the potential ease of its 

disruption. 

 

 

1.5.3 Topography 

Every surface has an inherent topography that is dependent on its mode of 

manufacture and the material used. The topography of even the flattest of 

materials is referred to according to its average roughness (Ra). It is worth 

pointing out that Ra is a term to consider carefully as two surfaces can have 

similar Ras but look very different and this is a big problem in comparing 

response of random topographies. Topography may be randomly produced or 

more carefully controlled. Topographies may be applied to a surface for 

example sintered, embossed onto it, or cut into it (sandblasting, etching, or 

machining).  

 

 

Corundumization or blasting with Corundum (Aluminium oxide, the second 

hardest mineral) produces a roughened surface, in the case of the VerSys hip 

system 24-grit (1035 µm) (Zimmer, 2010). A corundumized surface finish can be 

created throughout an implant surface or in combination with a porous option 

developed using a fibre mesh circumferentially wrapped around the proximal 

femoral stem (Anatomic Fibre Metal Plus Stem and VerSys Fibre Metal Taper Hip 

Prosthesis, Zimmer (figure 1.6)). An alternative porous option uses sintered 

beads (VerSys Beaded Fullcoat Plus, Zimmer).  
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Figure 1.6 Corundumized and fibre metal surface modification of hip 

prostheses (obtained from Zimmer (Zimmer, 2010)). The femoral stem is shown 

within a sectioned proximal femur. The smooth distal stem has been 

corundimized in the mid portion of the implant and is accompanied by a 

circumferential fibre metal porous surface at the intertrochanteric region. 

 

 

Well-designed topographical features can be retained over time although 

concave topographies are more resistant to abrasive wear than convex 

alternatives. Despite long-term clinical studies that show good to excellent 

implant longevity, beads from sintered bead surfaced implants cause third body 

wear should they debond. The design basis of certain implants has been 

developed to mimic the trabecular structure of bone and includes a porous 

trabecular surface incorporated on the surface of a solid titanium (Ti) implant 

(Delta TT, Lima Corporate (Corporate, 2013)). High trabecular strength within 

the porous component aims to reduce the likelihood of topography loss, and 

particulate debris formation.  

 

 

The cemented vs uncemented debate with respect to total hip arthroplasty 

continues. The perceived advantages of uncemented topographically or 

chemically enhanced implants in part relate to the effects of polyethylene wear. 

Wear debris (e.g. from polymeric components) inhibits the osteoblast functions 

associated with bone formation, and induces secretion of factors capable of 

influencing nearby osteoclasts and macrophages. Osteoblasts may themselves 
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play a role in the events leading to granuloma formation, osteolysis, and implant 

failure (Dean et al., 1999). It is proposed that the osseointegration of the 

implant to bone prevents the osteolytic effects of polyethylene by sealing the 

proximal implant bone interface.  

 

 

1.5.4 Chemistry 

The surface chemistry of a biomaterial can be altered through a change in the 

material composition or through the addition of a soluble or insoluble surface 

chemistry to the material surface. These two options have both been used in 

orthopaedics. A disadvantage of soluble mediators is that following detachment 

they may be transported away from the site of implantation, which carries an 

inherent risk of undesirable effects systemically. 

 

 

Different chemical factors have been added to implant surfaces. Osteogenic 

biomolecules, such as BMP2 (Kashiwagi et al., 2009) and fibroblast growth factor 

(FGF) (Park et al., 2006) covalently bonded to Ti may be gradually degraded or 

lost as a consequence of the tissue environment. HA coating of smooth 

acetabular implants has failed with retrieval analysis showing cell-mediated HA 

resorption. Conversely, HA is commonly applied to the surfaces of femoral stems 

with enhanced osseointegration.  

 

 

It should be remembered that the environment into which an implant has been 

implanted can change from the normal tissue environment and for which it was 

designed into a tissue environment developing in response to the presence of the 

implant. For example in the case of an uncemented acetabular cup, 

polyethylene wear at screw hole insertion points in the outer shell of the cup 

(the notch effect) leads to an associated reduction in oxygen content of the 

body fluid creating a localized acidosis resulting in corrosion of the biomaterial 

(Antoniac et al., 2003). 
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An interesting example of use of HA chemistry is HAPEX, a composite of HA with 

polyethylene that mimics the HA collagen composite bone. Osteoblasts have 

been shown to grow over the surface of HAPEX attaching to the surface HA 

particles. In vivo testing revealed that a strong and stable interface had 

developed between the implant and surrounding bone. HAPEX has been used to 

treat orbit deficiencies; it had the advantage over blocks of HA in that it could 

be shaped during the procedure with standard tools. HAPEX middle ear implants 

have been shaped in the operating theatre and restored sound conduction in the 

recipients (Bonfield and Tanner, 2002). Work is ongoing into the use of HAPEX as 

the outer surface of a multicomponent inter-vertebral disc replacement, the 

mechanically sound HAPEX surface would provide the osseointegration to the 

vertebra above and below whilst the fiber reinforced hydrogel would provide 

functional benefit (Gloria et al., 2011). 

 

 

1.5.5 Surface modification of orthopaedic implants: chemistry and or 

topography  

Topography can have a more significant effect than chemical composition of a 

matrix (Dalby et al., 2000). Controlled topography can be used in isolation or in 

combination with a chemical composition designed to increase osseointegration. 

 

 

In 1977 De-Puy introduced the anatomical medullary locking (AML) hip 

replacement (Engh, 2013). A porous coating of cobalt chrome alloy (CoCr) beads 

sintered to the proximal 1/3 of the implant facilitated dense cortical-cancellous 

bone ingrowth (Whiteside et al., 1993). In the 1980s they introduced a 

chemically modified alternative, the Corail, a fully HA coated non-porous stem 

manufactured in forged titanium alloy. The literature suggests that this stem 

design should be implanted with cancellous autograft impacted proximally 

(DePuy, 2013a).  

 

De Puy combined the chemical and topographical approaches in the design of 

the Pinnacle acetabular cup system. An aluminium shell is combined with a 

porocoat of sintered Ti, a duofix porous coating with 30 µm depth of HA or a 

high friction porous option. The Gription high friction option combines macro 



 41 
and micro topography in order to increase cell adhesion and cell proliferation. 

The pore size and porosity of the Ti increases incrementally from the implant to 

the bone interfaces (DePuy, 2013b). 

 

 

At least five different surfaces including plasma spray coating, sintered beads, 

trabecular metal, fibre metal, HA/TCP coated fibre metal surfaces are used 

alone or in combination in the design of Zimmer hip prostheses (figure 1.7) 

(Zimmer, 2003b). Zimmer has developed a ceramic coating that can be applied 

to fibre mesh. The HA/TCP composite applied using plasma spray technology 

coats the mesh to a thickness of approximately 70 µm and has a biphasic 

resorption profile.  

 

 

 
 

Figure 1.7 Topographical and chemical surfaces of uncemented hip implants 

adapted from http://www.zimmer.com. Images A-E are 50x F-J 200x 

magnification. Images A and E show a plasma spray coat, B and F sintered beads, 

C and G trabecular metal, D and H fibre metal, E and I HA/TCP coated fibre 

metal (Zimmer, 2003b). 

 

 

The Mayo hip prosthesis reduces the quantity of bone excised from the proximal 

femur and incorporates three topographies, a polished Ti alloy taper, 

circumferential corundumisation of the stem and the inclusion of fibre metal 

pads (figure 1.8a) (Zimmer, 2006). Combination with chemical enhancement 

using a regionally applied Calcicoat* of a HA/TCP composite (figure 1.8B) is 

available (Zimmer, 1999). 
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a  b 

Figure 1.8 The Mayo Conservative hip prosthesis adapted from 

http://www.zimmer.com. The stem taper has been highly polished, the stem 

has been corundumised proximally, and a fibre metal pad has been included to 

maximize osseointegration (Zimmer, 2006). A HA/TCP coating may also be used, 

images ‘a’ without enhanced chemistry and image ‘b’ with calcicoat  

 

 

Bone implant integration is less than 25 % despite good bone to implant contact 

(figure 1.9). Appositional bone index (ABI) and ingrowth are becoming an 

increasingly common addition to survivorship in the publication of the results of 

uncemented prostheses. In 1991 Bloebaum et al described a 22 % ingrowth 

despite a 67 % ABI (the percentage of bone in direct contact with the porous 

surface) and in association with cancellous structured Ti (CSTi) and a 9 % ABI and 

0 % ingrowth with CoCr beads surfaces on a tibial baseplate (Bloebaum et al., 

1991). The same author published an 84 % ABI and 12 % ingrowth on an 

acetabular shell and a 73 % ABI and 6 % ingrowth on a tibial baseplate in 1997 

(Bloebaum et al., 1997). 
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Figure 1.9  A comparison of bone ingrowth and biological fixation of 

implants obtained from (Zimmer, 2003a). The bone ingrowth levels on these 

surfaces are disappointing (0-22 %) despite bone apposition up to 84 %. 
 

 

1.6 Tissue responses to surface modification  

1.6.1 Cellular responses to surface modification 

Surface chemistry and topography regulate a diversity of cellular behaviour; 

including cell adhesion, spreading, proliferation, and differentiation (Hamilton 

and Brunette, 2007). Chemical, topographical and Young’s modulus (material 

stiffness) changes (Dalby et al., 2007; Engler et al., 2006; Kilian et al., 2010; 

McBeath et al., 2004; Oh et al., 2009) have been shown to influence cell 

adhesion size, shape and number (Biggs et al., 2008), and change cytoskeletal 

arrangements (Dalby, 2009). Stem cells respond to chemical cues (Curran et al., 

2006), stiffness in 2d and 3d culture (Wang et al., 2010) and topographical 

features (Dalby et al., 2007). Cells’ interactions with islands of topography, and 

islands of chemistry may be produced by similar mechanisms (Dalby et al., 

2002b). 
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Biomimetic materials are developed using inspiration from nature. Chemistry, 

stiffness and topography influence MSCs and this can be biomimetic. The 

material may be made of the same components such as laminin in extracellular 

matrix or HA in bone. By growing cells on materials of the desired stiffness cells 

can also be influenced towards the development of a desired tissue. Hydrogels 

with a low Young’s modulus, similar to the muscular surfaces upon which they 

commonly lie, are used to culture neurons whereas materials with a high 

Young’s modulus such as Ti in trabecular metal are used to culture bone. The 

biomimetic effects may also relate to the shape or topography of the material. 

Adding biomimetic levels of disorder (i.e. biological standard deviation) can 

further trigger an appropriate cell response (Dalby, 2009).  

 

 

Nature does not exhibit the exact replication associated with current 

manufacturing techniques. A normal distribution variation is seen in virtually all 

measurements taken, for example macroscopically from height to weight and 

microscopically in terms of the exactitudes of fiber size and orientation in the 

extracellular matrix. In this work the +/- 50 nm displacement of the nanopits 

aims to replicate this natural variation. 

 

 

The influence of material topography at a scale below that of cell size has a 

greater effect on cell development than larger features (Rea et al., 2004). An 

understanding of the influence of micrometric topography is eased by an 

appreciation of the sizes of the cells and extracellular matrices. Osteoclasts and 

their associated resorption pits are approximately 40 µm in diameter. ECM 

components include individual fibril elements and fibril bundles in tendon tissue 

these range from 15 to 400 µm in diameter (Dalby et al., 2003). The topography 

of collagen fibres, with repeated 66 nanometer (nm) banding, and 

nanotopography from neighbouring cells both appear to effect cellular responses 

(Curtis and Wilkinson, 1999). It has become well documented that many cell 

types react strongly to micrometric topography.  Extensive characterization of 

the associated morphological changes has been undertaken (Dalby et al., 2002b).  
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The filopodia of osteoprogenitor cells, which probe the surfaces for suitable 

adhesion sites, are in the range of 100 nm in diameter and favour submicron-

scale topography (Zhao et al., 2006). In the light of this knowledge 

microtechnology is evolving into nanotechnology. There is increasing evidence 

that cells respond to nanometric cues in vitro (Dalby et al., 2002b). Reactions to 

nanometric surface features, below 20 nm in dimension, have been documented 

(Dalby et al., 2007; Maclaine et al., 2012; McNamara et al., 2011; Sjostrom et 

al., 2009a; Sjostrom et al., 2009b).  MSCs have been stimulated to produce bone 

in vitro (Dalby et al., 2007), using 14nm high nanoislands HOBs have been 

stimulated to produce the osteoblast specific matrix protein, OCN, on PCL 

(Maclaine et al., 2012) and MSCs quiescent on planar Ti have undergone 

transition to an active phenotype with bone matrix nodule formation after 21 

daysusing 15nm nanopillars (McNamara et al., 2011; Sjostrom et al., 2009a).  

 

 

Nanotechnology aims to create and use structures and systems in the size range 

of 1–500 nm. This size range incorporates the atomic, molecular, and 

macromolecular length scales (Biggs et al., 2010). Nanoscale changes in 

topography have been shown to alter the differentiation of MSCs (Dalby et al., 

2007; Wilkinson et al., 2011). Osteoconversion of MSCs has been achieved using a 

± 50 nm level of disorder, applied to a pattern of nanopits (Dalby, 2009). A 

surface disordered at the nanoscale level has, in the absence of osteogenic 

media, been shown to stimulate MSCs to produce bone mineral on a surface 

comprised of poly-methylmethacrylate (PMMA), the main constituent of bone 

cement (Dalby et al., 2007). PMMA is not otherwise noted for its osteogenic 

properties and is more regularly considered with respect to osteolysis and 

aseptic loosening of implants. 

 

 

A combination of nanotopographical features with micrometric surface features 

is under investigation. A complex patterning of submicron topographies has been 

manufactured within 30 µm pits. The regularly spaced pits were produced by 

photolithography on otherwise smooth Titanium disks. The internal aspect of the 

pits had a variety of topographies engraved from smooth (40-60 nm), to porous 
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anodized (400 nm) and acid etched (700 nm). A combination of sand-blasting and 

acid etching (SLA) created an alternative pattern of comparatively shallow, 

irregularly placed craters of 10-100 µm diameter. Osteoblast-like (MG63) cells 

cultured on these surfaces showed differing morphology, with a continuous 

monolayer on the smooth surfaces and an elongated morphology on the acid 

etched surfaces (anchoring in adjacent cavities). The porous anodized Ti 

exhibited a combination of the two morphologies. The cells on the acid etched 

and SLA surfaces were lower in number, more differentiated in phenotype, and 

with increased OCN, prostaglandin E2 (PGE2), and TGFβ1 expression.  

Differences were noted in the results from the regular acid etched topography 

and the irregular SLA topography (Zhao et al., 2006).  

 

 

Research, combining chemical and topographical work, revealed that the effect 

of HAPEX on human osteoblasts (HOBs) was enhanced by the addition of 

micrometric topography. The cells attached more rapidly and in greater numbers 

to the optimized surface (Dalby et al., 2002a). The development, application 

and use of new osteogenic compounds (Kantawong et al., 2010) in addition to 

differing presentation of existing chemistries, such as the nanoparticulate 

coating of HA to microstructured Ti (Nishimura et al., 2007), continues.  

 

 

1.6.2  Intracellular responses to surface modifications 

Alterations in gene and protein expression can occur within minutes of a cell 

adhering to a surface. Focal adhesion complexes mediate the phosphorylation of 

several intracellular signalling proteins (e.g. focal adhesion kinase, FAK). The 

phosphorylation of proteins at focal adhesions (the bridge between the 

extracellular matrix and the cytoskeleton) creates docking sites for the 

activation of the cytosolic protein kinases/phosphatases involved in migration, 

cytoskeletal organization, gene expression, and cell cycle progression (Hamilton 

and Brunette, 2007). An example is extracellular-signal related kinase 1/2 

(ERK1/2). This key signalling hub is stimulated by e.g. FAK activation and it 

controls cell growth (Biggs et al., 2009). For MSCs, if ERK1/2 is not stimulated 

the cells will become post-mitotic and the transcription factor peroxisome 

proliferator-activated receptor gamma (PPARG) will promote adipogenesis 
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(adipocytes and poorly adhered, round cells) (Biggs et al., 2009). If medium ERK 

activation is stimulated proliferation and fibrogenesis will occur. If ERK is 

heavily phosphorylated it will negatively feed back on itself to slow growth and 

e.g. RUNX2 will be phosphorylated promoting osteogenesis (hence osteoblasts 

are large cells with large adhesions) (Biggs et al., 2009). 

 

 

Morphological and gene expression differences have been noted with changes in 

the in vitro environment presented to stem cells (including 2 dimensional (2d) 

culture versus 3 dimensional (3d) scaffolds).  Culture of mouse embryonic stem 

cells in porous tantalum and on solid substrates revealed the exclusive 

expression of several genes following 3d culture, including the gene encoding 

BMP 4 (Liu et al., 2006). 

 

 

An in vitro study of chemical vapour deposit (CVD) nanopatterned diamond 

features suggested that features in the range of 30-100 nm were more 

supportive of osteoblastic functions than features approaching 100-600 nm in 

size. Feature clustering may have contributed to the effect (Webster et al., 

2009). CVD can nanopattern bulk areas of material. Defined pillar-like titania 

nanofeatures manufactured using through-mask anodisation, at a height of 15 

nm can be particularly effective at promoting the differentiation of MSCs into 

osteoblasts (McNamara et al., 2011; McNamara LE, Manuscript in Preparation; 

Sjostrom et al., 2009a).  

  

 

Culture of calvarial osteoblasts in differentiation media, on grit blasted Ti with 

and without hydrogen fluoride, revealed an in vitro RUNX2 (2-6 fold) increase, 

OSX (0-3 fold) increase, BSP at days 1-14 (1-8 fold) increase (maximal at day 3). 

BSP expression was reduced by day 14 (Guo et al., 2007). Fluoride-modified 

rough etched Ti surfaces have been associated with an increase in RUNX2 

expression by human embryonic palatal mesenchymal cells at 7 days (Isa et al., 

2006). 
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MSC differentiation can be controlled to favour differentiation into osteoblasts 

through low levels of distortional strain and interstitial fluid flow (Huiskes et al., 

1997), a principle important in the development of 3d scaffolds seeded with 

stem cells and cultured to produce autologous osteochondral grafts.  

 

 

1.7  My hypotheses and the progression to protocol development 

The effects of nanotopography on MSCs and osteoblasts have been discussed. 

The aim of this research is to investigate the possibility of using PCL in 

combination with nanotopography as a substrate for expansion of autogenous 

bone graft. I plan to test the hypothesis that both NSQ50 and nanoisland 

topography will support osteogenesis on PCL and that the addition of HA into the 

PCL will enhance the osteogenic effects.  

 

The research outlined in chapter 4 using nanoisland topographies using HOBs 

obtained from Promocell GmbH (Germany) was undertaken prior to my 

development of techniques to isolate HBMCs and the research into the effects of 

nanopit topographies on these cells. The research was performed in this way in 

order to confirm or refute pilot studies undertaken by a colleague (Miss Gadhari) 

and to hone my own tissue culture, immunofluorescence and qPCR techniques. 

This part of my research has also led to experience in publication of manuscripts 

{Maclaine, 2012 #162}. 

 

The experiments that followed were undertaken in order to develop the 

protocols for HBMC isolation and reduce the need for external and expensive cell 

acquisition. Concurrently experiments examined dual-sided culture and the 

effects of the NSQ50 topography. Human bone marrow was harvested from hip 

arthroplasty patients, the mesenchymal stem cells culture expanded and used 

for cellular analysis of substrate bioactivity. The cell line specificity and 

osteogenic behaviour was demonstrated through immunohistochemistry, 

confirmed by real-time PCR and quantitative PCR. Mineralisation was 

demonstrated using alizarin red staining. Through the use of the HBMCs for 

definitive research I hoped to show the protocols from shim production to bone 

marrow harvesting and dual sided cell culture to be reproducible and potentially 

applicable to economical larger scale production. 
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Chapter 2 Protocol Optimisation: Materials and Methods 

2.1 Introduction to materials and methods  

The methods, pilot study results and discussion detailed (chapter 2.2-2.4) 

provide an understanding of the thoughts and processes that led to the definitive 

protocol used to delineate the effect of nanotopography on HBMC culture. The 

process was gradual. The salient features are detailed with a discussion (chapter 

2.4) following a description of the pilot study results (chapter 2.3). Three 

nanotopographies (nanopits (NSQ50) and nanoislands (14 nm and 18 nm high)) 

were manufactured using two different techniques. Each technique is outlined. 

The production pathway from shim to substrate was common to all topographies 

varying solely with respect to the single or dual-sided nature of patterning.  

 

Acellular analysis of substrates was undertaken with both the planar and 

patterned surfaces being scrutinized using scanning electron microscopy (SEM) 

and atomic force microscopy (AFM). Polycaprolactone (PCL) and nanopattern 

degradation was determined after a 28-day period of exposure to air, simulated 

body fluid (SBF) and media. SBF has ion concentrations approximately equal to 

human blood plasma. Cellular analysis of substrates was undertaken using a 

combination of light microscopy, immunofluorescence microscopy, gel and 

quantitative PCR. The acquisition and culture of HBMCs from local sources is of 

increasing interest to the Centre for Cell Engineering, at Glasgow University, and 

was newly undertaken (2.2-2.4).  

 

Single sided cell culture upon the uppermost surface of substrates is common 

practice and procedures universally accepted (Kantawong et al., 2010; Kilian et 

al., 2010; McMurray et al., 2011; McNamara et al., 2011). A significant amount 

of work has enabled cell culture on the surface of biomaterials, within gels, and 

within 3d constructs (Liu et al., 2006; Wang et al., 2010). Research has focused 

on nutrient flow to the centre of such scaffolds (Huiskes et al., 1997). To our 

knowledge there has been no attempt to culture cells on both surfaces of planar 

and embossed substrates. I developed this new technique alongside my research 

into the effects of nanotopography on HBMCs. The four methods of seeding and 

cell culture trialled in the development of my dual-culture technique are 

described (2.2-2.4). 
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Osteogenic media remains the gold standard to which the osteogenic properties 

of a substrate, culture media or technique are commonly compared (Dalby et 

al., 2007; Jorgensen et al., 2004; Maclaine et al., 2012; Yang et al., 2003). 

Autograft is the ‘gold standard’ graft to which all other bone grafts and their 

substitutes are compared (Khan et al., 2012). HA and BMP are clinically utilised 

alternatives to the in vitro usage of osteogenic media (Petit, 1999; Termaat et 

al., 2005). This research has combined these in vivo and in vitro gold standards 

in an analysis of the properties of nanopatterned PCL.  

 

 

The pilot studies relating to this novel work are detailed (chapters 2.2-2.4) and 

my definitive results are shown in chapters 3 and 4. Outlined in this chapter is a 

background to the materials, cell lines and techniques used during the 

development of the definitive protocols. The honing of substrate manufacture, 

cell acquisition, cell culture and cellular analysis techniques will be detailed 

with an outline and discussion of the preliminary results. Unless otherwise 

indicated Sigma-Aldrich (UK) supplied the reagents and Vector labs, UK supplied 

the immunostains. Details of the media and reagents used can be found in the 

appendix. 

 

 

2.1.1 Nanotopography 

By default or design orthopaedic implants have a surface chemistry and 

topography. In this research I am harnessing the power of topography and 

examining its effects on HBMCs and HOBs. Nanoscale topographical research over 

the last decade has fallen into two camps. Highly ordered topography is 

fabricated down to 10 nm with high precision (Vieu C, 2000). Random nanoscale 

roughness is associated with surface polishing, blasting, and anodisation 

(Anselme et al., 2000). High-order surfaces tend to be low-adhesion (Dalby et 

al., 2004a; Gallagher et al., 2002) whilst the results from roughened surfaces 

vary due to a lack of reproducibility i.e. surfaces with two similar Ra values can 

look very different. Recent evidence revealed that controlled disorder is critical 

to inducing the osteoblastic phenotype (Dalby et al., 2007). 
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The main topography of focus for my thesis, the NSQ50 topography, has been 

shown to induce similar levels of MSC differentiation to the use of osteogenic 

media (Dalby et al., 2007). NSQ50 topography uses a square pattern of pits (120 

nm diameter, 100 nm depth and 300 nm centre-centre spacing) modified by the 

addition of randomly calculated ± 50 nm displacement in X and Y (Dalby et al., 

2007). I will also explore a new bottom-up fabrication methodology. Most 

bottom-up methods, such as polymer phase separation (Affrossman et al., 2000; 

Affrossman and Stamm, 2000), can be used to manufacture nanoscale surfaces 

(Dalby et al., 2002a; Dalby et al., 2006b; Dalby et al., 2002b) but the order 

cannot be easily controlled. The use of block co-polymers has changed this 

(Cheng JY, 2002; Glass R, 2004; J. Y. Cheng and Vancso, 2002; Krishnamoorthy 

et al., 2006). Tethering phase-separating polymer blocks to each other to give 

(inverse) micelles can lead to surfaces with good (but not perfect) order, similar 

to the NSQ50. 

 

 

Three patterns incorporating nanodisorder manufactured using electron beam 

lithography (EBL) (chapter 3.1) and block co-polymer phase separation (chapters 

4.1-4.2) are represented in my thesis. EBL has been used in order to produce a 

specific pattern of nanopits (NSQ50) (Dalby et al., 2004a; Dalby et al., 2007) and 

block co-polymer phase separation has been used to produce two sizes of 

nanoislands with good, but not perfect, order (Maclaine et al., 2012). The initial 

fabrication step differed with the type of topography generated and is detailed 

in chapter 3 for NSQ50 and in chapter 4 with respect to the nanoisland 

topographies. The nickel plating and embossing of PCL was common to all 

topographies (chapter 2.2.2). 

 

 

2.1.2 Materials 

The substrates used in this research were formed from PCL, a biodegradable 

polymer (12-24 month degradation time) in clinical usage (food and drug 

administration (FDA) approved) (Gadegaard et al., 2003). The thermopolymer 

has a convenient melting point of 740C rendering it readily patternable through 

the use of hot-embossing (McMurray et al., 2011; Thoms et al., 2003). 

Comparison of a variety of topographical surfaces to osteogenic media has been 
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of long-standing import in the assessment of a substrate’s osteogenicity 

(Maclaine et al., 2012). The media consisting of basal media with the addition of 

dexamethasone and ascorbic acid can be used in vitro but is not used in clinical 

practice. In this new research I have created a composite of HA and PCL (HAPCL) 

to enable a comparison to be made between the effects of topography on 

osteogenesis with the in vivo ‘gold standards’ of HA and BMP as well as 

osteogenic media. The presence of HA in the PCL has been analysed in both 

planar and patterned substrates. 

 

 

HA and BMP are both used in vivo to enhance bone production. As previously 

mentioned HA application to femoral stems, in the presence of roughened 

topography, is commonplace (chapter 1.5.4). HA coats have been applied to 

multiple orthopaedic and dental devices including external fixator pins. HA 

containing composites have found clinical usage, for example a mixture of 20 % 

HA and 80 % β-TCP has been used in both spinal (Fujibayashi et al., 2001; Kasai 

et al., 2003; Moro-Barrero et al., 2007) and hip procedures (Stevens and George, 

2005). HAPEX™, an early bioactive composite of polyethylene and HA has been 

used successfully in the repair of orbital floor fractures and in middle ear 

implants (Tanner, 1994). BMP has been used to enhance union rates in spinal 

fusion surgery, in fracture healing de novo, and following fracture non-union 

(Chen et al., 2004). 

 

 

BMP 

BMP was the factor contained within demineralised bone matrix deemed 

responsible for induction of new bone formation when implanted in muscular 

tissue (Urist, 1965). Incubation of a clonal myoblastic cell line with BMP2 for 6 

days inhibited troponin and myosin formation and resulted in the formation of 

numerous ALP positive cells. At concentrations above 100 ng/ml there was a 

dose dependent result on ALP and OCN production, i.e. osteogenesis (Katagiri et 

al., 1994). The effect was shown for 6 days, but on removal of the stimulus the 

myogenic phenotype returned (Katagiri et al., 1994). A typical sequence of 

events can be observed leading to the induction of endochondral bone formation 

by BMPs (figure 2.1). Monocyte and mesenchymal cell recruitment and 
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proliferation precede differentiation into chondrocytes and calcification of the 

cartilage matrix. Vascular invasion is associated with osteoblast differentiation 

and bone formation. Osteoclastic remodelling of the newly formed bone is 

finally undertaken.  

 

 

 
 

Figure 2.1 The mechanisms of action of BMPs in bone repair. BMPs are 

related to chemotaxis of monocytes and a release of TGF-β enhancing 

proliferation of MSCs, the production of matrix components and the release of 

cytokines (interleukin-1 (IL-1) and interleukin-6 (IL-6) and other growth factors 

FGF and platelet-derived growth factor (PDGF)). The BM (basement membrane) 

binds TGF-β and BMPs leading to osteoblast recruitment and differentiation and 

osteoclastic remodeling. Reproduced from Bone Morphogenic Proteins. (Termaat 

et al., 2005). 
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2.1.3 Cell lines  

A number of cell lines have been used to understand the cellular behaviour of 

the skeletal system in this thesis including Htert fibroblasts, osteoprogenitor 

cells isolated from human bone marrow and HOBs.  Htert, a human telomerase 

reverse transcriptase immortalised cell line, was readily available within the 

laboratory and provided an inexpensive number of cells upon which to trial ideas 

during protocol development. These cells (obtained from ATCC, USA) are used in 

the introduction of students to tissue culture due to their ready adherence, 

rapid cell division (1:2 to 1:3 twice weekly), hardiness and phenotype 

maintenance through 15 doublings.  

 

 

As aforementioned following the acquisition of generic tissue culture experience 

I used primary HOBs were obtained from PromoCell GmbH (Germany) and 

undertook the assessment of the nanoisland topography detailed in chapter 4. 

Subsequently I isolated cells from bone marrow and from cancellous bone 

fragments (obtained at the time of hip arthroplasty). The cells obtained from 

the cancellous bone fragments were not fully characterised, and therefore solely 

used as a disposable cell line during pilot studies in the latter stages of protocol 

optimisation (chapter 2). Responsible for the synthesis of bone matrix, and in 

certain circumstances matrix mineralization, HOBs have the disadvantages of 

being relatively slow to proliferate. The proliferation of HOBs ceases with 

increasing differentiation and mineralization and therefore these cells were not 

used in the definitive experiments (chapter3). 

 

 

Human bone marrow represents a readily harvestable and locally available 

source of stem cells, progenitors and mature cells (collectively referred to as 

HBMCs hereafter) (Caterson et al., 2002). Obtained through the extraction of the 

mononuclear cell fraction (Caterson et al., 2002) the HBMCs used in my research 

have been obtained from bone marrow sourced from arthroplasty patients, a 

demographic similar to that for whom a paucity of bone graft is a problem. The 

heterogeneous nature of the cells harvested cell is representative of the cell 

population encountered by the final product (culture expanded bone graft). In 

addition to their use within my definitive research into dual sided cell culture 
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and the NSQ50 nanopit topography I also provided HBMCs for use by other 

students and subsequently teaching into their isolation. 

 

 

2.1.4 Background to experimental techniques 

My assessment of the substrates involved acellular and cellular analysis. To 

analyse the cellular reaction to the substrates I have applied techniques 

including the use of light and immunofluorescence microscopy and cell fixation 

in association with the application of cell stains. I used SEM and AFM for the 

delineation of substrate topography and degradation characteristics. 

 

 

Culture of osteogenic cells on Titanium has yielded results that illustrate the 

need for temporal analysis of gene expression and protein production in 

mineralising cultures (Ong et al., 1997). Messenger ribonucleic acid (mRNA) 

extracted from cells can be qualitatively and quantitatively analysed using 

reverse transcription (RT) and polymerase chain reactions (PCR). I have 

temporally analysed the effects of the topographies using both microscopy and 

PCR. 

 

 

Light microscopy 

The passage of visible light through or reflection by a sample enables imaging of 

dark or strongly refractive objects. Resolution of 0.2 µm is imposed due to 

diffraction of light (Croft, 2006). Contrast within images is commonly enhanced 

using dyes such as Coomassie blue (a nonspecific stain for proteins) and alizarin 

red. Alizarin red is an early stage marker of matrix mineralization, day 14 of in 

vitro culture (Caterson et al., 2002). 

 

 

Immunofluorescent microscopy 

Illumination with a specific high energy light results in the emission of 

fluorescence, a lower frequency light that differs in wavelength from the 

excitation light. In the absence of autofluorescence the use of antibodies in 

combination with a fluorophore (such as Rhodamine or Fluorescein  
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isothiocyanate (FITC)) may be undertaken. Rhodamine phalloidin (TRITC) 

staining of the cytoskeleton may be combined with DAPI staining of 

dioxyribonuclease acid (DNA) and fluorescein staining of OPN or OCN. The peak 

excitation and emission wavelengths of TRITC and FITC are 547 nm & 572 nm and 

495 nm & 521 nm respectively. DAPI shows a strong blue fluorescence 

(wavelength 455 nm) when bound to the Adenine=Thymine (A=T) rich repeats of 

chromosomes and excited by ultraviolet light (wavelength 345 nm).  

 

 

Immunofluorescent staining may be direct or indirect. Direct staining (figure 2.2) 

involves the association of a target (proteins in figure 2.2A and B) to a 

fluorescence-labelled antibody (anti-A in figure 2.2). Indirect staining involves 

the attachment of a primary antibody (for example rabbit anti-A in figure 2.2) to 

a target (A) before becoming the target for a fluorescence-labelled antibody 

(goat anti-rabbit in figure 2.2B). 

 

 

 

Figure 2.2  Direct and indirect immunohistochemical staining. Image A shows 

direct immunohistochemical staining using a labelled antibody binding directly 

to the antigen being stained for. Image B shows the indirect method using an 

antibody against the antigen being probed for, and a second, labelled, antibody 

against the first. Adapted from (Leinco, 2013). 
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AFM (Atomic Force Microscopy) 

Binnig, Quate and Gerber invented AFM, in 1985 (Eaton and West, 2010). Certain 

modes of AFM, such as that used in my research, utilise a laser beam deflection 

system. On ‘tapping mode’ a stiff cantilever oscillates close to the sample and 

the tip intermittently taps or touches the surface. The dragging or lateral forces 

associated with the contact mode were thus limited. The measurement taken is 

the deflection of the cantilever. I have included AFM and SEM images and cross-

sectional analysis of the nanoisland topography (chapter 2.3.1). 

 

 

SEM (Scanning Electron Microscopy) 

SEM was developed between 1935 and 1965 (Croft, 2006).  Surfaces are imaged 

through an analysis of the interaction of the atoms of a material surface with a 

high-energy beam of electrons. The resolution of SEM is between <1 nm and 

20 nm (Croft, 2006).  3d data can be gathered using SEM. In this research the 

SEM has been used to analyse surface topography and obtain the surface 

roughness measurements used in my research (chapter 2.3.1).  

 

 

Phenotype identification through analysis of gene expression 

Tissues may be classified according to an analysis of gene expression. 

Identification and quantification of mRNA produced is undertaken using a 

process of RT in combination with PCR plus gel electrophoresis (real time (rtPCR) 

or gel PCR) or quantitative (qPCR). 

 

 

RT (Reverse Transcription) 

RT creates single-stranded DNA from an mRNA template (figure 2.3). Ribonucleic 

acid (RNA)-dependent DNA polymerase transcribes the mRNA producing 

complementary DNA (cDNA). Reverse transcriptase degrades the RNA in the RNA-

DNA hybrids producing cDNA for use in PCR. 
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Reverse transcription  (RNA-dependent DNA polymerase) 

 

mRNA        AAAAAA 

cDNA      
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using the enzyme RNase H 

 

 

mRNA        
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Figure  2.3 RT (adapted from the Quantitect reverse transcription handbook) 

(Qiagen, 2009).  The three component steps of RT using the Quantitect RT kit 

include primer annealing, RT and RNA degradation.  

 

 

 

PCR (Polymerase Chain Reaction) 

PCR generates sufficient genetic material to investigate the genetic functions of 

the cells harvested (figure 2.4).  Thermal cycling enables the separation of the 

two stranded DNA and enzymatic DNA replication. A DNA polymerase enzyme 

(such as Thermostable DNA (Taq) polymerase assembles new strands of DNA from 

nucleotides present in the solution through the use of single-stranded DNA 

templates. DNA oligonucleotides (primers) are required for the initiation of DNA 

synthesis. Progression of the reaction is brought about when the products of the 

first reaction become substrates for the next. 
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Figure 2.4  PCR (Adapted from the National centre for biotechnology 

information (NCBI)). PCR involves cycles of DNA strand separation, annealing 

(binding of forward and reverse primers to the 2 DNA strands) and synthesis of 

new DNA using DNA polymerase (NCBI, 2013).  

 

 

DNA amplification occurs exponentially until the reaction is limited. Limiting 

factors are: the presence of inhibitors, the running out of reagent, the 

accumulation of pyrophosphate molecules, or self-annealing of the product.  

 

 

Real time PCR 

RtPCR utilizes gel electrophoresis to delineate the DNA products of PCR. 

Comparison of the DNA products with ladders incorporating known products 

indirectly identifies the mRNA harvested from the original cells or tissue. An 

approximation of quantity can be conferred from the extent of fluorescence of 

attached markers in each band. 

 

 
 
 
High temperature applied to 
the double stranded DNA 
separates the strands. 
 
 
 
The enzyme Taq DNA 
polymerase (in this case) 
generates new strands of 
DNA from the template 
starting at the forward and 
reverse primers. Primers 
(short pieces of single 
stranded DNA) are 
complementary to the target 
sequence. 
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qPCR (Quantitative PCR) 

Real-time monitoring of DNA amplification, introduced by Higuchi et al in 1993, 

utilizes the linear relationship between the quantity of target DNA obtained 

from an RT reaction and the product generated during the exponential phase of 

PCR.   A probe is attached to the DNA down-stream from the primer (figure 2.5). 

Fluorescence is emitted when the probe is reached by the DNA polymerase 

enzyme, degraded and separated from the DNA and from its quencher. A 

measurement of the fluorescence emitted provides a quantification of the DNA 

being replicated at each stage. Annealing of the primer and probe to the DNA 

strand brings the quencher back into proximity with the reporter fluorophore 

and the fluorescence stops (figure 2.5).  

 

 

 

 

Figure  2.5 Real time qPCR The real-time aspect of QPCR (Image from (NCBI, 

2013)).  The quencher absorbs the fluorophore emission until the probe is 

degraded from the DNA at the end of each replication at which point the 

emission is detected and measured. 
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Quantification is undertaken as a calculation of the number of cycles (cycle 

threshold (CT)) required in reaching the exponential phase of the reaction 

(figure 2.6). The lower the amount of the target mRNA extracted from the 

original sample, converted to cDNA in the RT reaction, and entering the qPCR 

reaction, the greater the number of cycles required to reach the CT. For 

comparative purposes similar total quantities of mRNA are used in the control 

and target assays. The quantity of target DNA obtained from the experimental 

tissues or cells relative to the quantity of DNA from a housekeeper gene is 

compared to that obtained from the control tissues or cells. A plateau effect 

occurs when amplification ceases (figure 2.6). 

 

 

Figure  2.6 A model ‘real time’ qPCR plot (Adapted from the National centre 

for biotechnology information (NCBI, 2013). Thermal cycling produces an 

exponential increase in DNA until a plateau phase is reached. Limiting factors 

include quantity of available reagent and enzyme, and the presence of reaction 

inhibitors. 

 

 

2.1.5 Gene expression and cell phenotype 

Cells express proteins as a result of up or down regulation of genes within their 

DNA. These genes can be controlled in a number of ways including the use of 

transcription and growth factors. Cells consistently express some genes 

irrespective of phenotype. These housekeeping genes, including GAPDH and 18S, 

are responsible for basic cell functions and are commonly used for comparative 

purposes in assays of gene expression.  
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When they start to differentiate into osteoblasts, Osteoprogenitors express a 

range of genetic markers, including OSX, COL1, Osteonectin, OPN and OCN 

(Table 2.1). Markers have been identified for cells of other mesenchymal 

phenotypes including cartilage, muscle, fat, and neural tissue (Table 2.1). I 

analysed multiple gene products in my determination of the effect of the 

nanotopographies on HOBs and HBMCs.  

 

 

BMPR2 Expressed by multiple tissues, involved in up-regulation of bone 

mineralisation. 

RUNX2 Expressed by immature osteoprogenitors, it upregulates 

osteogenesis. 

Osteonectin Required for calcification of collagen in bone and involved in ECM 

synthesis. 

OPN Expressed by fibroblasts, preosteoblasts, osteoblasts, osteocytes, 

hypertrophic chondrocytes, dendritic cells, skeletal muscle cells 

and some bone marrow cells. Synthesis of osteopontin is 

stimulated by calcitriol (1,25-dihydroxy-vitamin D3). 

OCN Solely secreted by Osteoblasts. 

SOX9 Marker of chondrocyte differentiation. 

MYOD1 Marker of myogenic differentiation, one of the earliest markers of 

myogenic commitment. 

PPARG Marker of and regulator of adipocytes. 

TUBβ3 Marker for neural cells, primarily expressed in neurons and 

responsible for microtubule formation. 

GAPDH Responsible for the protein involved in the catalysis of the 6th step 

of glycolysis, amongst other functions. 

18S Responsible for ribosomal RNA, important random target in PCR. 

 

Table 2.1 Gene expression and cell phenotype. Gene products may 

predominate in osteogenesis, be markers for alternative mesenchymal tissues or 

common to tissues of multiple lineages. 
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2.2 Methods 

Ethics approval obtained by Mr Meek in 2004 was sufficient to enable bone 

marrow aspiration from living donors at the time of total hip arthroplasty, HBMC 

isolation and use for this research. The ethics agreement number was 

04/S0702/22. In addition each patient was consented for the retention and use 

of residual tissue for in vitro research. Although this consent forms an integral 

part of the routine informed consent process undertaken prior to total hip 

arthroplasty, a supplementary form was also used. Nursing and medical staff 

obtained consent at the time of procedural consent. All those in contact with 

the bone marrow had been previously immunised against Hepatitis B. 

 

 

2.2.1 Shim manufacture  

Samples were fabricated using a three-step process. Shim production using 

either EBL (NSQ50) (Gadegaard et al., 2003) or the block co-polymer technique 

(nanoislands) (Maclaine et al., 2012) was followed by nickel die fabrication and 

thumb embossing. The details with respect to the shim production of the 

nanopits and nanoislands were topography specific (chapters 3 and 4). 

 

 

2.2.2 Preparation of PCL substrates 

PCL beads (molecular number (Mn) 60000) were soaked in 99 % methanol for 1 h 

prior to removal of the supernatant and air-drying in a fume cupboard for 24 h.  

 

Single bead melts  

PCL beads were placed onto a heat resistant glass sheet at 2 cm intervals and 

heated (74 degrees centigrade (oC)) until they resembled water droplets 

(defined as a wet melt). 

 

PCL sheets 

A petri dish containing dried PCL beads was emptied onto the centre of a heat 

resistant glass sheet. A second sheet applied to the top and was held in place 

with Bulldog clips. The beads were melted (74oC) until the molten PCL neared 

the glass sheet edges. Cooling at room temperature preceded clip removal. PCL 

sheets were stored between glass plates. 



 64 
 

HAPCL sheets 

HAPCL 20 % by weight was made by melt mixing HA powder into PCL. The weight 

of a PCL sheet was measured and an appropriate quantity of spray dried HA with 

a particle size 4 µm and surface area of 10 m2/g was used. Aliquots of HA were 

sequentially added to a molten PCL sheet. The HA was mixed into the molten 

PCL in a method similar to cement mixing by builders, using a microscope slide 

the molten PCL gathered into the middle of the glass sheet upon which it was 

melted and spread repeatedly until the PCL solidified, at which time it was 

remelted and further HA was added. Increasingly concentrated HAPCL sheets 

were formed by repeating the process until the composite was macroscopically 

homogeneous. 

 

 

Planar substrates  

An ethanol washed air-dried shim or glass microscope slide was warmed to 74oC 

on a copper heat sink. 1 cm2 planar substrates were manufactured as follows and 

used as controls in experiments involving the NSQ50 topography. Three bead 

melts were placed onto the slide and when wet melt was achieved (and the 

surface of the bead reflected light evenly) a further warmed glass slide was 

placed on top. The slides were placed on a heat resistant surface and thumb 

pressure applied such that 1.3 cm diameter PCL substrates were formed. Using a 

scalpel and forceps, 1 cm2 square substrates were cut out and placed in petri 

dishes. 

 

 

Planar substrates were manufactured by cutting 2.5 cm x 2.5 cm squares of PCL 

sheet and placing onto a warmed microscope slide (74oC) to melt. On wet melt a 

further warmed glass slide was placed on top. The slides were placed on a heat 

resistant surface and thumb pressure applied. 2.5 cm x 2.5 cm square substrates 

were cut out and stored for use as controls in experiments involving the 

nanoisland topography. 
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Single sided substrates  

PCL sheets were cut into squares of a size appropriate to the shim (2.5 cm x 2.5 

cm square for the nanoislands and 1 cm x 1 cm for the NSQ50). A PCL square was 

placed onto a warmed shim and on wet melting a warmed glass slide placed on 

top. The shim and slide were placed on a heat resistant surface and thumb 

pressure applied such that the PCL entirely covered the nanotopography. An 

absence of macroscopic air bubbles was ensured prior to accepting an embossed 

PCL substrate. When cooled the slide and shim were separated and the PCL 

trimmed to the area of topography. A small impression was made on the 

embossed surface and the substrates stored embossed surface uppermost. 

 

 

Dual embossed substrates  

Two shims were used in the manufacture of dual embossed surfaces. When 

cooled the shims were separated, and the PCL trimmed to the area of 

topography. Confirmation that both sides were covered with topography was 

undertaken and the substrates placed vertically in a well plate. 

 

 

Substrate sterilisation 

Each substrate was soaked in ethanol for 1 h. Substrates were air-dried vertical 

in well plates within a level 2 fume hood prior to soaking sequentially in hepes 

saline (HS) (twice) and media (twice) for periods each of five min.  

 

 

2.2.3 Acellular analysis of substrates using SEM and AFM 

Surface analysis of planar and nanoembossed substrates was undertaken using 

SEM and AFM (nanoscope III). SEM (S4700 at 10 kilovolts in backscatter mode) 

provided images of the substrate surfaces and AFM a means to measure surface 

roughness. The effect of 28 days exposure to media, air and SBF on the surface 

characteristics of NSQ50 and planar substrates was undertaken using AFM. 
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Acellular analysis of substrate degradation 

Substrates were prepared and sterilised (chapter 2.2.2) prior to vertical 

placement in 48 well plates. Two samples (of each type) were left exposed to 

air, or had 1.4 ml of either modified Dulbeccos Modified Eagles medium (DMEM) 

or simulated body fluid (SBF) added. The constituents of SBF are detailed in the 

appendix. In addition two planar samples had 1.4 ml osteogenic media added. 

The well plates were incubated under standard conditions for 28 days acellular 

culture. AFM was performed on each substrate. 

 

 

2.2.4 HBMC acquisition   

Bone marrow aspiration  

Consent obtained from patients undergoing THR procedures was extended to 

include the acquisition of bone tissue for research purposes. Bone marrow was 

aspirated at the time of THR procedures. After cutting the femoral neck, the 

exposed surface was washed with normal saline. 20 ml of bone marrow was 

aspirated using a catheter tipped syringe at the time of femoral canal rasping. 

The bone marrow aspirate was placed into 40 ml of transfer media (appendix).  

Cancellous bone fragments obtained by milling the excised femoral head and by 

curetting and rasping the femoral canal were added to a further container of 

transfer media. Samples were immediately transferred to the laboratory and the 

processing was undertaken within 24 h. 

 

 

Mononuclear cell separation 

The transfer media and the bone marrow aspirate were transferred to universal 

containers and centrifuged at 300 g for 10 min, or until the supernatant cleared. 

The cell pellet was re-suspended in 20 ml of basal media (modified DMEM) and 

the cells washed twice by centrifugation at 300 g for 10 min. The bone marrow 

supernatant was discarded and the cell pellet re-suspended in 20 ml of basal 

media.  

 

 

10 ml aliquots of the cell suspension were layered onto 5 ml aliquots of Ficoll-

paque (1.077 gram/decilitre (g/dl)) (GE healthcare bio-sciences AB, Uppsala, 
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Sweden) in universal containers. Residual blood clots were avoided during 

aspiration of the suspended cells. Centrifugation was undertaken at 450 g for 35 

min followed by 376 g for 10 min.  

 

 

The supernatant media layer was aspirated and discarded (Figure 2.7). The 

mononuclear cells were aspirated along with the Ficoll/media interface. The 

aspirate (approximately 2.5 ml) was placed into two universal containers. The 

cells were washed twice with 10 ml aliquots of basal media, and centrifuged 

prior to resuspension in 12 ml of basal media. The cell suspension was placed 

into two 25 cm2 flasks. 

 

 

 

 

Media 

 

Mononuclear Cells 

 

Ficoll Paque 

 

Granulocytes/Erythrocytes 

 

 

Figure 2.7 Cell separation using a Ficoll gradient. The mononuclear cells lie 

at the interface between the media and the Ficoll-Paque. 

 

 

HBMC separation by adhesion to cell culture plastic 

Cell culture was undertaken in modified DMEM for 5 days prior to the first media 

change. After 5 days the media were changed. The culture fluid collected 

underwent centrifugation and a pellet containing the non-adherent cells was re-

suspended in 6 ml media and placed into a further 25 cm2 flask. Incubation 

continued with 50 % media changes triweekly for 1 month or until 70-80 % 

confluence was reached. 
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HBMC harvesting from cell culture flasks  

On harvesting, the media were aspirated and the adherent cells (HBMCs) washed 

with 4 ml versene (V). 4 ml trypsin-versene (TV) was added and incubation 

undertaken for 5-10 min or until cell detachment was noted. The cell suspension 

was aspirated by pipetting and placed into a universal container. An equal 

volume of medium was added to each flask and a cell scraper used prior to 

further aspiration and addition to the universal container. The resultant 

cell/TV/media suspension was centrifuged at 300 g for 10 min. The pelleted 

HBMCs were washed in 6 ml of media with re-centrifugation (300 g for 10 min) 

and either utilized for experiments, or culture expanded at 20 x 104 cells/ 75 

cm2 flask. 

 

 

Cell Counting 

HBMC were counted using a modified Fed-Fuchs Rosenthall haemocytometer. 

The total volume of 1 large square was 0.2 mm3. The average number of cells 

per large square multiplied by 0.5 equalled the cell concentration x 104 per ml. 

 

 

HBMC harvesting from bone fragments 

Washed bone fragments were treated with collagenase (36.5 mg of collagenase 

was added to 50 ml of basal media in an unvented 75 cm2 flask). 50 ml of 

filtered carbon dioxide (CO2) was added and the flask placed on a shaker 

platform in a hot room at 37oC for 3-4 h. The flasks were turned hourly. Washing 

was undertaken using 750 ml of sterile phosphate buffered saline (PBS) and the 

bone fragments placed in four 75 cm2 flasks with 25 ml of basal media and 50 ml 

of filtered CO2. An unvented lid was used and media flow induced by placing the 

flasks on a shaker platform. 

 

 

After 28 days in culture the media were aspirated, the bone fragments washed 

with PBS, and sufficient TV added to cover the bone fragments. Incubation was 

undertaken until cell detachment was noted. The cell suspension was aspirated 

and an equal volume of media added. The cells were then pelleted and washed 

in media using the centrifugation method described above. Re-suspended cells 
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were cultured in 6 ml basal media in vented 25 cm2 flasks under standard 

conditions. Media covered the bone fragments, CO2 was added and they were 

cultured in unvented flasks. The flasks were placed in the hot room and 50 % 

media changes undertaken bi-weekly. The harvesting process was repeated 4 

times at monthly intervals prior to the bone fragments being discarded. 

 

 

2.2.5 Cell Culture 

HOBs and HBMCs were harvested at passage 1 or 2. Cells from the different 

flasks were combined to provide a standard cell mix that was either used for a 

single sided experiment or split with half being returned to the flask for re-

harvesting the next day for dual sided culture. An HBMC pellet was generated by 

centrifugation at 300 g for 4 min. The HBMCs were washed using media and 

centrifuged at 300 g for 4 min. The HBMC pellet was re-suspended in media and 

the cells counted. 

 

 

Multiple different methods of seeding and cell culture were trialled. The seeding 

and culture protocols varied with the number of sides seeded. The well plates 

and volume of media used varied with the size of the substrates. Planar and 

embossed substrates were treated the same way within each experiment or set 

of experiments. The protocols were as follows unless otherwise stated (see 

chapter 4). The well plates were incubated for a predetermined time period and 

50 % media changes undertaken tri-weekly. The cells were subsequently stained 

in situ or harvested for use in rtPCR or qPCR. 

 

 

Initially a Cellon rotatory bioreactor was used for dual sided culture with cells 

being seeded directly within the bioreactor or cultured on the substrates for a 

few days prior to placing in the bioreactor (figure 2.8). A variety of bioreactor 

settings were used. Dual sided cell seeding was subsequently followed by culture 

within well plates with and without substrate turning, suspension on sterile 

sutures (figure 2.9) and vertical placement in a 48 well plate (figure 2.10).   
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Figure 2.8 Rotatory bioreactor. The 4 circular nanopit embossed substrates 

are shown (arrow) in a gravity dependent position following switching off the 

rotation.  

 

 

Single sided cell seeding 

A PCL substrate was placed in each well of an appropriately sized well plate. 

The exactitudes of cell seeding are as follows unless otherwise indicated (as in 

chapter 4). 2.5 x 104 cells were seeded in 65 µl of media per cm2 substrate. Cells 

were left to adhere (covered) for 30 min prior to the addition of 1 ml of either 

basal or osteogenic media. Care was taken to minimise disruption of the initial 

fluid at this stage.  

 

 

Dual sided cell culture  

The initial seeding of substrates was undertaken as above and after 24 h culture 

the substrates were turned over using two sterile forceps. Care was taken to 

minimise disruption of the adhered cells and maintain sterility. A further 2.5 x 

104 cells were pipetted onto the centre of each substrate and left undisturbed 

for 30 min to adhere. The well plates were subsequently incubated for 18 h.  
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The turning technique involved turning substrates over at 24 h intervals. 

Developed using sterile surgical instruments, the suspension technique involved 

the aseptic threading of substrates (green arrow) onto sterile suture material 

(red arrow) and their suspension within media in 12 well plates (figure 2.9). The 

angle of suspension varied slightly but both sides of the substrate had access to 

media (blue). 

 

 

 
Figure 2.9 The suspension culture technique. The 1 cm2 substrates can be 

seen orientated in a near vertical position in this 24 well plate. Green arrows 

show the substrates through which the suture thread  (red arrows) has been 

passed. The media (blue) was able to contact both surfaces of the substrates. 

Diagram A shows the plate from above and B the plate from the side. 

 

 

I developed the vertical culture technique (figure 2.10) during pilot studies 

undertaken as follows: 400 µl of fresh media was placed into the wells of a 48 

well plate. The substrates were aseptically transferred and placed vertically into 

corresponding wells of a 48 well plate. One ml of media was transferred with 

each substrate.  
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Figure 2.10 The vertical culture technique. The 1 cm2 substrates (green 

arrows) can be seen orientated in a near vertical position in this 48 well plate. 

The media (blue) was able to contact both surfaces of the substrates. The 

substrate position was supported by walls of the culture wells of the 48 well 

plate. Diagram A shows the plate from above and B the plate from the side. 

 

 

It should be noted that whilst the substrates in some samples were truly 

vertical, the term ‘vertical culture’ denotes the method of culture chosen (to 

facilitate media access to both substrate surfaces) and substrates were not truly 

set at 90o to the horizontal in all cases. Cell culture was undertaken in 1.4 ml of 

media for the appropriate number of days. Samples were turned vertically by 

180o at weekly intervals and 50 % media changes undertaken tri-weekly.  

 

 

Cell media 

Planar PCL samples, nanoembossed samples and nanoembossed HAPCL samples 

were cultured in modified DMEM unless otherwise stated. Where indicated 

osteogenic media (modified DMEM with Dexamethasone (10 nM) and L-ascorbic 

acid (150 g ml-1)) was used in combination with planar PCL substrates as an 

osteogenic control. 100 ng/ml of BMP was added to the culture flask 12 h prior 

to harvesting and the seeding of substrates. BMP exposure where indicated was 

temporary and cells exposed to BMP were cultured in modified DMEM for the 

remainder of the culture period. 
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2.2.6 Cell staining and imaging 

Cell fixation 

Cells on test materials were fixed using 4 % formaldehyde in PBS, with 1 % 

sucrose at 37°C for 15 min. Once fixed, the samples were washed with PBS. Two 

replicates of each substrate were used per stain per experiment.  

 

 

Coomassie Blue Staining 

Cell fixation was followed by application of microfiltered coomassie blue for 2 

min and washing with filtered PBS until the solution ran clear. Substrates were 

mounted between 2 cover slides. Microscopy of both sides was undertaken using 

the Zeiss Axiovert 25 microscope.  

 

 

Alizarin Red Staining. 

Cells were fixed as above. The alizarin red 2 % by volume in H2O was 

microfiltered immediately prior to its application to each substrate. Staining was 

undertaken for 60 min. Dipping in 70 % ethanol or Coomassie blue counterstain 

for 1-2 seconds (s) preceded washing with PBS. Substrates were placed between 

coverslides and viewed using the Zeiss Axiovert 25 microscope.  

 

 

Immunostaining 

Fixed samples were permeabilised with a buffered solution (pH 7.2) of 0.5 ml 

Triton X-100, 10.3 g sucrose, 0.292 g NaCl, 0.06 g MgCl2, 0.476 g (4-(2-

hydroxyethyl)-1-piperazine-ethanesulphonic acid) (HEPES) in 100ml PBS; at 4°C 

for 5 min. Non-specific binding sites were blocked with 1 g bovine serum albumin 

(BSA) in 100 ml PBS, at 37 °C for 5 min.   

 

 

Substrates were incubated for one h with a 1:50 concentration of rhodamine 

phalloidin (Invitrogen, UK) and a primary antibody. All antibodies were used at 

1:50 in 1 BSA / PBS. Each stage was preceded by washing in 0.5 % Tween 20/PBS 

(5 × 3 min). The appropriate (anti-mouse or anti-goat) biotinylated monoclonal 

horse antibody (Vector Laboratories, UK) at 1:50 was added for 1 h (37oC) prior 
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to washing and the addition of FITC conjugated streptavidin (Vector 

Laboratories, UK) at 1:50 4oC for 30 min. Substrates were mounted between 

cover slides using Vectorshield mountant for fluorescence (Vector Laboratories, 

UK) prior to viewing with a Zeiss Axiovert 200M microscope with a Zeiss Plan 

Neofluor 10x, 20x or 40x lens. The colour channels were superimposed in Adobe 

Photoshop (Adobe Systems Inc., USA). Antibodies for OCN, OPN, COL2a, MYOD, 

TUBβ3, PPARG, and PSELECTIN were used (obtained from Autogen Bioclear (UK) 

and Santa Cruz Biotechnology (USA) (appendix)). 

 

 

2.2.7 RNA extraction for qPCR 

Direct and indirect cell lysis was trialled. Initially cells were harvested prior to 

cell lysis but during the latter stages of protocol development and in the 

definitive method the following direct lysis technique was used. RNA was 

extracted using Stratagene RNA Miniprep (Agilent technologies). The elution 

buffer was warmed to 60oC. The 70 % ethanol (made using 70 ml RNAase free 

water and 30 ml 99 % ethanol) was removed from the fridge. The quantities of 

reagent shown were used for 16 RNA samples, and appropriately reduced for 9 

RNA samples. 6300 µl lysate buffer was mixed with 45 µl βmercaptoethanol 

(βME). The medium was removed and the substrates transferred to a 6 well plate 

(one 2.5 cm2 nanoisland substrate or four 1 cm2 NSQ50 dual sided substrates per 

well). 300 µl lysis buffer-βME mix was added to each well. A cell scraper was 

used and the fluid obtained pipetted into 1.5 ml eppendorf tubes. The wells 

were washed with a further 50 µl lysis buffer-βME mix and the fluid added to the 

eppendorf.  

 

 

Cell lysates were passed three times through a 21 gauge (0.8 mm) needle, the 

tubes vortexed and the fluid pipetted onto prefilter spin cups. Filtration using an 

Eppendorf minispin centrifuge was undertaken at 13.4 r.p.m. for 5 min and 

preceded discard of the filter and addition of 350 µl 70 % ethanol to the filtrate. 

Vortexing for 5 s preceded fluid transfer into RNA binding cups (in fresh 

centrifuge tubes) and centrifugation for 60 s. Binding cups were washed with 600 

µl low salt wash buffer and centrifugation for 60 s, the filtrate was discarded, 

the cup closed and centrifuged for a further 2 min. 900 µl DNase digestion buffer 
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was gently mixed with 90 µl RNase free DNase. 55 µl of the DNase digestion 

buffer - RNase free DNase mix was added to the matrix of each spin cup, the lids 

were closed and the cups incubated at 37oC for 15 min. Spin cups were 

sequentially washed with 600 µl high salt wash with 60 s centrifugation, 600 µl 

low salt wash with 60 s centrifugation, 300 µl low salt wash with 2 min 

centrifugation. 

 

 

Each spin cup was placed into a 1.5 ml microcentrifuge tube. 30 µl warm elution 

buffer was added, incubation was undertaken at room temperature for 2 min 

and the microcentrifuge tube centrifuged for 1 min. Unless otherwise stated this 

process was repeated with a further 20 µl warm elution buffer. The RNA 

obtained was quantified using a nanodrop 1000 and stored at -80oC.  

 

 

2.2.8 PCR 

The three best RNA samples (based upon concentration and purity (260/280 

ratio) were chosen for each qPCR experiment. An equal quantity of RNA was 

added to each 0.2 ml thin walled tube and the volume made up to 24 µl using 

RNAase free water. 4 µl of genomic DNA (gDNA) wipeout buffer was added to 

each tube and the tubes agitated, centrifuged for a few seconds and placed in 

the thermocycler (setting 42oC for 2 min cooling to 4oC thereafter). 12 µl of 

master mix was added to each tube prior to placement in the thermocycler and 

incubation (setting 42oC for 15 min, 95oC for 3 min and cooling to 4oC). The cDNA 

was stored at -80oC until required. 

 

 

QPCR was common to all topographies tested. SYBR green and Taqman kits were 

trialled. The Taqman protocol detailed below was the final modification 

developed with the alterations detailed in the discussion (chapter 2.4). The 

Taqman gene expression assay protocol was followed for standard rate qPCR and 

a 7500 Fast Real-Time PCR system (Applied Biosystems) used.  

 

45x master mixes were made for each primer-probe and 59.4 µl of master mix 

added to each 0.2 ml tube. 6.6 µl of cDNA was added prior to agitating the tubes 



 76 
and centrifuging for 15 s. 20 µl was added to each well in the reaction plate 

prior to its centrifugation at 3600 g for 15 s using an Eppendorf centrifuge 

5804R. Two plates were set up simultaneously using GAPDH and 4 genes of 

interest. Negative controls were used for each mastermix. Genes analysed were 

RUNX2, BGLAP (OCN), SOX9, PPARG, and GAPDH. 

 

 

The run details for the Taqman qPCR were as follows 50oC 2 min, 95oC 10 min, 

40 cycles (95oC 15 s, 60oC 1 min). The thresholds were manually set at the 

midpoint of the straight region of each log curve and checked against the 

position on the linear curve. The melt and amplification curves of each well 

were analysed for evidence of impurities. The individual CT values were 

exported to Excel (Microsoft Corporation, USA) and used for calculations to 

normalise gene expression against GAPDH, and compare against the planar 

control surface. The delta CT for each substrate and replicate was calculated  

(CT gene tested-CT endogenous control). Relative quantification (RQ) was then 

calculated using the delta-delta Ct (change in CT of the sample-change in CT of 

the planar substrate). The RQ represents the fold increase or decrease in gene 

expression in comparison to the planar PCL substrates. Statistical analysis was 

undertaken in Excel using T-test and analysis of variance (ANOVA). 

  

  

2.3 Results 

The most influential of the results obtained during the pilot studies and the 

developmental process are discussed within this chapter. The findings of the 

acellular analysis of substrates using AFM and SEM of planar and nanoembossed 

surfaces are presented (chapter 2.3.1) in addition to those obtained from the 

analysis of substrate degradation over 28 days (chapter 2.3.2), the yields of 

HBMCs from bone marrow and bone spicules are outlined (chapter 2.3.3).  

 

 

The results obtained using light microscopy after cell culture within the rotatory 

bioreactors, in well plates using a variety of turning regimens and those 

following suspension and vertical culture are included and show the progression 

towards the definitive dual sided culture protocol. The light and 
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immunofluorescence microscopy of cells following dual sided vertical culture are 

detailed, and those obtained from rtPCR and qPCR are outlined. The definitive 

results obtained from the single and dual sided culture of HBMC on NSQ50 

nanopit topography can be found in chapter 3 and those relating to the 

nanoisland topographies in chapter 4. 

 

 

2.3.1 Acellular substrate analysis  

SEM analysis of the dual embossed nanopit (NSQ50) substrates 

SEM of the dual embossed substrates revealed successful reproduction of the 

controlled disorder of nanopits in this topography using the hot embossing 

technique (chapter 2.2.2). The pattern was reproduced on two sides of each 

substrate and there was a clear demarcation between the embossed and planar 

regions (figure 2.11A-D).  

 

 

 

 

Figure 2.11 SEM images of the NSQ50 nanoembossed substrates. Image A 

shows The NSQ 50 embossed region of a substrate and image B the other side of 

the same substrate. Images C and D include a junction between the NSQ50 

nanoembossed and planar regions. Two magnifications are shown in this figure 

and the scale lines in each image represent 1 µm.  

 

AFM analysis of the dual embossed nanopit (NSQ50) substrates 

AFM images revealed successful reproduction of the nanopit topography with its 

associated controlled disorder of pit placement on the PCL and HAPCL (figure 

2.14 images B and D). The surface roughness (RMS) of planar HAPCL (RMS 15.6 
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nm ± 3.2) was greater than planar PCL (RMS 11.0 nm ± 6.5). The surface 

roughness of nano-embossed HAPCL (RMS 25.8 nm ± 1.5) was greater than the 

nanoembossed PCL (RMS 11.4 nm ± 1.5).  

 

 

 

Figure 2.12  AFM images of Planar and NSQ50 embossed PCL and HAPCL. 

These images taken after 28 days exposure to air under standard incubator 

conditions show a difference in appearance between the planar PCL (image A), 

planar HAPCL (image C) and nanoembossed PCL and HAPCL (images B and D 

respectively) substrates. The controlled disorder of the nanopits is apparent. A 2 

µm scan size was used. Scale bar 1 µm. 

 

 

2.3.2 Acellular assessment of substrate degradation 

AFM images taken after a 28-day period of exposure to air, media and SBF 

(under standard incubator conditions) revealed changes in the appearances the 

planar and nanoembossed topographies (figures 2.12-2.14). The NSQ50 

topography appears much clearer following exposure to SBF (figure 2.13) in 

comparison to basal media (containing FBS) (figure 2.14). It is postulated that 

protein deposition on the substrates may be the cause for the smaller 

appearances of the nanopits seen on images 2.14B and D, in comparison to those 

on figures 2.12 and 2.13, images B and D. 
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Figure 2.13 AFM images after a 28-day period of exposure to SBF. The 

random topography of the planar PCL (image A) and planar HAPCL (image C) 

after this period of time and the controlled disorder of the NSQ50 PCL and 

HAPCL (images B and D respectively) substrates are shown. Scale bar 1 µm. 

 

 

Figure 2.14 AFM images after a 28-day period of exposure to media. The 

random topography of the planar surfaces (images A, C, E and F) after this 

period of time and the controlled disorder of the NSQ50 topography (images B 

and D) are appreciable on both the PCL and the HAPCL. The images were taken 

as follows: image A planar PCL, image B NSQ PCL, image C planar HAPCL, image 

D NSQ50 HAPCL, image E planar PCL exposed to BMP and image F planar PCL 

kept in osteogenic media. Scale bar 1 µm. 
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RMS values were obtained using AFM (figure 2.15).  The differences in RMS were 

compared by topography type and between substrates using single factor 

ANOVA. After 28 days exposure to basal media (containing FBS) the differences 

between topography/substrate types were statistically significant (p<0.05). The 

RMS of NSQ50 PCL was statistically significantly different (p<0.05) after 28 day 

exposure to each condition (air, media and SBF). 28 day exposure to media was 

associated with a reduction in the RMS of the NSQ50 surface that may be due to 

protein deposition on the substrate surface.  

 

 

The RMS value of the planar substrate exposed to BMP containing media for 24 h 

and then air for 27 days had a surface roughness (8.3 nm ± 4.3) between that of 

planar PCL exposed to air (11.0 nm ± 6.5) and that kept in media (6.4 nm ± 5.2) 

for this period.  

 

 

 
 

Figure 2.15 Surface roughness of PCL and HAPCL substrates after 28 days 

exposure to air, media and SBF. The average RMS of substrates ranged between 

3 and 30 nm. Standard error bars are shown (number of repeats (n)=1-5). 
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2.3.3 HBMC acquisition  

Bone marrow harvests, cell separation and HBMC culture, using my modification 

of the technique described by (Caterson et al., 2002), was successful and 

resulted in multiple yields. The spherical HBMC imaged at two days (figure 

2.16A) are spread and proliferating by 28 days (figure 2.16B). A typical yield 

from one bone marrow aspirate was 60 x 104 cells at 28 days. Transfer into two 

75 cm2 flasks at 80 % confluence increased the yield to 172 x 104 and 230 x 104 

cells at 8 and 9 weeks culture respectively. Cell culture from bone spicules was 

successful and the cells obtained were used in latter protocol development 

experiments. Images taken at 38 and 56 days are shown in figure 2.16 images C 

and D.  

 

 

Figure  2.16 HBMC from bone marrow and fragments. HBMC cultured from 

human bone marrow aspirate (after separation using the Ficoll gradient) 

spherical at 2 days (A) have proliferated and spread by 28 days (B). Images C and 

D show cells growing from a bone spicule at 38 days and radially from a 

cancellous bone fragment at 56 days. Scale bars 100 µm. No staining was used.  

 

 

Multiple bone marrow samples were processed during this research. Qualitative 

assessment of this suggested that yields obtained from aspiration of bone 

marrow released by rasping the femoral canal resulted in greater initial yields 

(at the time of separation by adherence to plastic) than the bone marrow 

obtained by aspiration from the cut femoral neck using a syringe and 19 gauge 

(1.1 mm) white needle. The yield of cells from hand cut bone chips were greater 

than that obtained from acetabular reamings. 
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2.3.4 Single sided cell culture  

My initial pilot studies used HTERT fibroblasts and a single sided culture protocol 

to allow for rapid seeding observations. The difficulties encountered during the 

dual sided culture within the rotatory bioreactor (chapter 2.3.5) led to the 

expansion of my pilot studies to include cell adhesion time, plasma treatment of 

PCL, the choice of PCL, and its soaking in methanol prior to use. 

  

 

Cell culture on planar and nanoembossed PCL substrates (piloted using the 

HTERT cell line and a seeding density of 2.5 x 104) revealed cell adherence after 

30 min (figure 2.17). The Coomassie blue stain used was associated with a 

degree of background colouration on light microscopy (figure 2.17A). The HTERT 

were clearly visualised on seeded samples. A profound increase in confluence 

was noted at four days on the 14 nm nanoisland substrates (figure 2.17D).  

 

 

 

 

Figure 2.17 Coomassie blue staining of HTERT at 30 min and 4 days. Image A 

shows background staining of PCL with Coomassie blue on an unseeded surface. 

Image B shows HTERT 30 min after seeding on planar PCL, and image C on 14 nm 

nanoisland embossed PCL. Image D shows the confluence of the HTERT after 4 

days static culture on the 14 nm nanoisland topography. Scale bar 100 µm. 
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Comparisons of HTERT adherence on PCL with and without prior plasma 

treatment using different seeding densities revealed greatest confluence after 

15 s plasma treatment and after seeding at a density of 10 x 104 /ml (figure 

2.18D). Plasma treatment was subsequently noted to alter the topography of the 

PCL when assessed using AFM. 

 

 

 

 

Figure 2.18 Coomassie blue images of HTERT using varied seeding densities 

and plasma treatment of the substrates. HTERT seeded at 5 x 104 /ml were 

associated with a lower cell density (images A, C and E), than when seeded at 10 

x 104 /ml cells (images B, D and F). Plasma treatment of 5 s (images C and D) 

and 15 s (images E and F) was associated with markedly increased cell number 

and cell spreading of these planar substrates at 5 days in comparison to the 

control (A and B). Scale bar 100 µm. 

 

 

2.3.5 Cell culture on dual sided substrates 

Simple turning regimens were piloted in addition to culture in the rotary 

bioreactor and the suspension/vertical culture techniques (chapter 2.2.5).  
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Static culture 

Dual sided seeding of HTERT (chapter 2.3.4) in association with horizontal 

culture in a well plate (for 5 days) was associated with marked variation in cell 

confluence across the upper and lower substrate surfaces. Cell location was also 

dependent on the position with respect to the central or peripheral location 

visualised on the surfaces resting on the well floor.  

 

 

HTERT cultured on the uppermost surface of nanoembossed PCL were 

significantly more confluent by 5 days as illustrated by figures 2.19B (peripheral) 

and D (central). HTERT cultured on the undersurface of the nanoembossed 

(NSQ50) PCL facilitated cell survival and cell spreading solely at the periphery 

(fig 2.19A) whereas the staining on the central region of the lowermost surface 

appeared more like cell debris with no evidence of cell spreading or cell division 

(fig 2.19C) (resting on the well floor).  

 

 

 
 

Figure  2.19  Dual sided culture of HTERT on nanoembossed PCL. HTERT 

confluence in the central and peripheral regions of the nanopit (NSQ50) 

embossed PCL at 5 days is evident on the uppermost surface following Coomassie 

blue staining. HTERT were significantly less confluent on the periphery of the 

lower most surface (A) and staining centrally gave the appearances of debris 

only (C). Scale bar 100 µm. 
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Rotatory bioreactor and static culture with turning over of substrates  

During the first pilot study the rotation rate was set to optimize separation of 

the substrates.  

 

Coomassie blue staining of MSCs seeded onto planar substrates and cultured for 

48 and 56 h showed the cells to be attached and well spread (figure 2.20A and 

B). Planar PCL seeded in a similar fashion, placed in the bioreactor (chapter 

2.2.5) and imaged at 48 and 56 h respectively revealed coomassie blue staining 

of protein or cell debris that appeared residual in nature (figure 2.20C and D). 

The cell spreading and increased cell confluence associated with the static 

culture plus turning (with turning over at 24 h intervals) was not present after 

culture within the rotatory bioreactor despite a low revolution rate (7.3 

rotations per minute (r.p.m.) and minimisation of contact between substrates. 

Comparison of figure 2.19A and B with figure 2.20A and C suggests that the 

phenomenon of reduced cell survival in the lowermost central region of a dual 

sided PCL surface is overcome by turning over of the substrate at 24 h intervals.  

 

 

 

 

Figure 2.20 Static (with turning) and rotary bioreactor dual-sided culture of 

HBMCs. Coomassie blue staining of MSC after dual sided seeding with daily 

turning over in a well plate (images A and B) and continuous rotation in a 

bioreactor (images C and D) revealed well spread cells following the static 

culture and the suggestion of cell residue only on substrates cultured within the 

bioreactor. This was seen at both time points (images A and C taken after 48 h 

and B and D after 56 h). Scale bar 100 µm. 
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Suspension Culture 

Macroscopic imaging of samples (at day 21) revealed positive Coomassie blue 

staining on both surfaces of each substrate. Figure 2.21 illustrates, using 

scanned images, the aggregation of staining at the pole opposite to the 

suspension hole. This phenomenon was more pronounced on the planar sample 

(A) than the embossed surface (B) upon which the staining appeared more 

congruent. Macroscopic and microscopic analyses of Coomassie blue stained 

samples at 21 days revealed aggregation of HBMC in gravity dependent positions 

(figures 2.21 and 2.22).  On both substrates cells were visible adjacent to 

suspension points, the holes made by the suture needle at the time of 

suspension on the sterile suture or ‘washing line’ (figure 2.21). On the planar 

surfaces the cells were primarily located and relatively confluent in gravity 

dependent regions (figure 2.21 and 2.22 C and D). In general on the embossed 

surfaces cells were more evenly spread over both surfaces (figure 2.22 H) 

although a few small areas of confluence were present (figure 2.22 G).   

 

 

 

 
 

Figure 2.21 Macroscopic images obtained after suspension culture. These 

scanner images show the holes (white arrows) through which the suspending 

suture had been passed and cell spread 21 days after dual sided seeding (1.25 x 

104 cells per side). Image A shows aggregation of cells in the lower gravity 

dependent regions on the planar control and image B a more even distribution 

on the embossed surface. Scale bar 10 mm. 
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Figure 2.22 Coomassie blue staining following suspension culture. Images 

obtained at 21 days from one surface of a planar substrate, A (upper half) and C 

(lower half), are paired with images of the other surface, B (upper half) and D 

(lower half). Similarly images E and G from one surface of a nanoembossed 

substrate and F and H the other. Increased HBMC confluence at the lower or 

gravity dependent regions was more notable on planar substrates (images C and 

D) in comparison with the nanoembossed surfaces (images G and H). Image G 

shows that areas of confluence can be found in the lower regions of the 

nanoembossed substrates, overall these were not common. Scale bar 100 µm. 
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Temporal and cellular aspects of the substrate suspension technique 

HOBs harvested at monthly intervals from bone fragments (chapter 2.2.4) and 

culture-expanded were used successfully in the temporal analysis of the gravity 

dependence. At seven days the tendency of HOBS to gather on the gravity 

dependent regions of the planar substrates was greater than on the NSQ50 

substrates (figure 2.23).  

 

 

 

 

Figure 2.23    Coomassie blue images after 7 days. Cells are gathered on the 

lower (B) 1/3 of the planar substrate in comparison to the upper 1/3 (A). 

Greater numbers of HOBs remained in the upper 1/3 (C) of the nanoembossed 

substrate in comparison to the planar version (A). HOBS obtained from bone 

fragment culture were seeded at 2 x 104 per side following 5 s plasma 

treatments of the PCL. 

 

 

At 14 days the tendency for cells to migrate downwards and aggregate in gravity 

dependent positions on the planar surfaces appeared enhanced. Significantly 

increased cell numbers were apparent (figure 2.24 image B) than had been at 

day 7 (figure 2.23B). 
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Figure 2.24    Coomassie blue images after 14 days. Coomassie blue images of 

HOBS cultured using the suspension technique show a gravity dependent position 

at 2 weeks, especially on the planar surface. Image B shows the propensity of 

HOBS on the lower half of the planar scaffold, with image A showing few 

remaining cells on the upper half. The HOBS were more widely spread on the 

NSQ50 scaffold as illustrated by images C and D. Show through of staining from 

cells on the contralateral side is shown in the upper left corner of image D 

(arrow).  

 

 

Alizarin red staining 

It was noted that staining with alizarin red (chapter 2.2.6) at early time points 

7-21 days was associated with the identification of deposits which appeared 

indistinct from stained particles. A decision was taken to counter stain with 

Coomassie blue and the images obtained were the definitive images and are 

therefore shown in chapter 3. The deposits were successfully delineated using a 

combination of filtering the stain, and counterstaining for one min with 

Coomassie blue (figure 3.3). At 28 days counter stain was not required and cell 

morphology could be seen directly with alizarin red (figure 3.3). 

 

 

Immunofluorescence staining 

HOBS seeded on both sides at a seeding density of 1.25 x 104 cells per cm2 

substrate per side and were successfully stained using streptavidin for actin, 

fluorescein for OPN and OCN, and DAPI for nuclear material (chapter 2.2.6). 
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Immunofluorescence show-through from the other substrate surface created 

difficulties in the production of clear images. The streptavidin and fluorescein 

images have been superimposed (figures 2.25 and 2.26). Cells cultured on planar 

and NSQ50 substrates produced OPN (fig 2.25 images A, B and C). The protein 

distribution paralleled that of the cells. A moderate confluence was evident on 

the middle 1/3 of the embossed surfaces and high confluence on the lower 1/3 

of the embossed and planar surfaces.  

 

 

 

 

 

Figure 2.25 OPN immunofluorescence after 3 weeks. The greatest cell 

numbers were seen in image B, the lower half of the planar control following the 

three weeks suspension culture. The HOBS were more diffusely spread on the 

NSQ50 nanoembossed surfaces, although increased cell numbers were still seen 

in the lower half (image D) in comparison to the upper half (image C). OPN, 

evident as positive staining with fluorescein, was produced by HOBS on both 

substrates (images A, B and C). Actin red, OPN green and scale bar 100 µm. 

 

 

The bone specific protein, OCN, was produced by HOBs on both the planar and 

NSQ50 substrates (figure 2.26 B and D). The protein distribution paralleled that 

of the cells, with a moderate confluence over the middle 1/3 of the embossed 

surfaces and high confluence in the lower 1/3 of the embossed surfaces and 

A B 
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planar controls. The interface between cells and no cells was much wider over 

the embossed surfaces, in comparison to the planar controls.   

 

 

 

Figure 2.26  OCN immunofluorescence after 3 weeks. Greatest cell numbers 

are seen in image B, the lower half of the planar control. The cell spread on the 

NSQ50 (images C and D) was more diffuse, although an increased cell number is 

still seen in the lower half (image D) in comparison to the upper half (image C). 

Actin red, OCN green and scale bar 100 µm. 

 

 

Some yeast infections were encountered during the period of investigation using 

suspension culture. My development of the alternative technique of vertical 

culture (without the need for suture material) was associated with an 

eradication of problematic yeast infections. In the final protocol substrates were 

turned over 180o (about the horizontal) at 7 day intervals.  

 

 

2.3.6 RNA extraction optimization 

Two methods of RNA extraction were trialled, direct cell lysis and the indirect 

method of cell harvesting prior to cell lysis. Calculations of the probable cell 

density at the times of harvest were used to calculate the mixture requirements 

(chapter 2.2.7) and revealed the necessity of maximizing the mRNA yield for 

each sample. Direct cell lysis was the method of choice in minimising the risk of 
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cell loss. Four dual sided substrates or six single sided substrates were required 

to produce sufficient mRNA in each extraction. Table 2.1 shows the RNA yield 

from 12 µl of RNA following 33 days single sided culture of two planar 

substrates. Table 2.2 shows the RNA yield following 28 days culture of four 

double-sided 1 cm2 substrates. 11 µl of RNA was extracted.  

 

The importance of mRNA integrity was highlighted by my pilot experiments and I 

decided to obtain four mRNA samples per substrate type and progress the 

optimal three to RT, facilitating the use of mRNA from an experiment in which 1  

mRNA sample was suboptimal. The RNA yield, and integrity 260 and 280 values 

are tabulated in the appendix for each of the definitive qPCR experiments.   

 

Coomassie blue staining of substrates following cell/mRNA harvesting revealed 

residual protein, following either agitation of the substrates or the use of TV 

alone. TV exposure for 10 min accompanied by agitating the substrates on the 

base of a well plate stopped this phenomenon. 

 

Substrate ng/µl ng RNA 

HAPCL planar 1 1.63 19.6 

HAPCL planar 2 3.98 44.2 

BMP Rx 1 2.67 32.0 

BMP Rx 2 2.90 34.8 

Osteo 1 2.01 24.1 

Osteo 2 0.48 5.76 

 

Table 2.2 RNA yield at 33 days, single sided culture combining two planar 

substrates. 12 µl of RNA was extracted. 

 

Substrate ng/µl  

Planar PCL + DMEM 215.66 

Embossed PCL + DMEM 207.70 

Planar PCL + Osteogenic Media 132.98 

Embossed HAPCL + DMEM 171.41 

 

Table 2.3 RNA yield at 28 days, double sided culture of four substrates. 11 µl 

of RNA was extracted. 
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QPCR 

The results of the qPCR are detailed in chapters 3 and 4. Initially SYBR green 

primers and probes and Taqman primer-probes were trialed and I noted that the 

results of the Taqman primer-probes were more consistent and therefore these 

were used throughout the definitive experiments. 

 

 

2.4 Discussion 

The definitive protocol was a product of the pilot studies and results outlined 

(chapter 2.3). This discussion highlights some of these results and my 

understanding of the probable causes behind the differences noted and the 

choices ultimately contributing to the definitive protocol. The development 

from pilot to definitive protocol formed a continuum up until the definitive 

results (chapter 3 and 4) were gathered. For reasons of clarity the results 

(chapter 2.3) are not presented in the temporal order according to which they 

were applied. The difficulties in seeding and cell culture in the rotatory 

bioreactor led to the cell attachment experiments.  

 

 

2.4.1 Shim manufacture, substrate preparation and acellular analysis 

PCL 

Following the initial period of protocol development changes in the PCL 

available from the supplier resulted in difficulties in manufacturing 

homogeneous PCL sheets (without spaces and or air bubbles). The problems 

related to retention of the outer surface of the PCL beads on melting. Instead of 

a wet melt being achieved and thumb pressure creating homogeneous circular 

substrates, compression between two microscope slides created the appearance 

of a cracked shell with a macroscopically apparent topography of its own. 

Multiple different molecular weight PCLs were trialled and PCL with a number 

average molecular weight (Mn) of 60000 was chosen. I combined this PCL choice 

with soaking in methanol for 1 h and drying prior to processing. This combination 

produced a wet melt and homogeneous PCL sheets once more. 
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Hot embossing 

Cold glass slides applied to a PCL wet melt was associated with uneven 

solidification of the PCL and a potentially uneven surface. I prevented this by 

warming the top slide prior to hot embossing and slow cooling on the metal fume 

hood surface. 

 

 

PCL handling and sterilisation 

PCL substrates were noted to scratch when stored in petri dishes and when 

handled. PCL samples were therefore moved using 21 gauge (0.8 mm) needle 

tips or forceps at the edge of each substrate and handling was minimised. 

Storage of PCL sheets was between the glass slides. I protected the integrity of 

experimental surfaces by storing dual embossed substrates vertically in well 

plates. Prolonged exposure of PCL to ethanol caused visible disruption of the 

PCL integrity. I limited substrate sterilisation to 1 h and this ceased. Washing 

substrates with HS without drying them first was associated with substrates 

floating and HS not mixing with the surface ethanol. Drying of the ethanol was 

noted to leave deposits on both petri dishes and substrates. I dried the 

substrates vertically and reduced both of these problems.  

 

 

AFM images of all NSQ50 nanoembossed subtrates reveal the presence of the 

nanopits. The clarity of the pattern on the substrates after 28 days exposure to 

air, FBS containing media and SBF was seen to vary. After 28 days exposure to 

basal media (containing FBS) the differences in RMS between 

topography/substrate types were statistically significant (p<0.05). Differences in 

surface roughness attributable to surface topography and surface chemistry can 

be associated with different RMS values however 2 very different looking 

surfaces may have the same RMS value, this appears to be true when comparing 

my RMS values and the AFM and SEM images (figures 2.11 - 2.15). Embossing of 

the NSQ50 to the surface did not dramatically change the RMS measurement 

despite AFM and SEM images revealing the nanoembossed pattern. AFM analysis 

revealed that the roughness of planar and NSQ50 HAPCL was greater than the 

PCL equivalents.  
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The RMS of NSQ50 PCL was statistically significantly different (p<0.05) after 28 

day exposure to each condition (air, media and SBF). 28 day exposure to media 

was associated with a reduction in the RMS of the NSQ50 surface that may be 

due to protein deposition on the substrate surface. I believe that whilst RMS is 

universally used for topographical description it has limitations with respect to 

the detection of nanopits of this size.  

 

 

2.4.2 Human bone marrow aspiration and HBMC acquisition 

HBMC separation 

Blood clots were associated with a reduced clarity of layering in the density 

gradients. Bone marrow samples were processed as early as possible, and I 

added the anticoagulant ethylenediaminetetraacetic acid (EDTA) to the 

transport media in order to minimise clot formation. Aspiration of clots was 

avoided. When layering onto the Ficoll-Paque I avoided mixing of the layers by 

slowly pipetting down the side of a near horizontal universal container. 

Aspiration of the supernatant media prior to collection of the media-Ficoll 

interface aided cell collection. The interface and up to 2.5 ml of associated 

Ficoll and media enabled harvesting of the visible cell layer. 

 

 

HBMC adherence, culture and harvesting 

I extended the initial period of three days prior to the first media change to five 

days. Cell adherence was noted from the supernatant media aspirated at three 

days. Alpha modified eagles medium (αMEM) was the medium of choice for HOBs 

when the initial experiments were undertaken (chapter 4) however laboratory 

policy changed and subsequent experiments were undertaken using modified 

DMEM using individual additives (such as nonessential amino acids). 

 

 

HBMC harvesting using the recognised technique of flask irrigation with PBS 

followed by 4 min exposure to 4 ml TV was associated with minimal disruption of 

the adherent HBMCs. Irrigation with 4 ml Trypsin prior to incubation with 4 ml 

TV for 4 min maximised cell disruption. Microscopy following cell harvesting 
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revealed residual HBMC both adherent and non-adherent. Cell scrapers 

maximised cell detachment and using media to rinse flasks provided the media 

necessary to inhibit TV action during centrifugation and minimised loss of 

residual cells.  

 

 

The paper by Tuli et al recommended a 20 x 104 cells per flask in order to 

maximise yield following HBMC culture (Tuli et al., 2003), whereas Sotiropoulou 

et al. recommended an initial plating of 38-75 x 104 cells per flask 75 cm2 

(Sotiropoulou et al., 2006). Trials of different flasks revealed increased 

adherence using thermolite (Thermo Fischer) flasks. This difference was greatest 

at the time of cell separation and therefore I used thermolite flasks at this stage 

and the standard 75 cm2 flasks at the first passage.  

 

 

HBMC yields were higher with an increased initial cell concentration. I noted 

that yields could be maximised by dividing the HBMC obtained from cell 

separation into two 25 cm2 flasks for initial cell adherence and culture prior to 

combining into three 75 cm2 flasks at the first passage. The yield after 1 passage 

was sufficient to facilitate an immunostaining or qPCR experiment. 

 

 

Bone chips from the femoral head and rasping the femoral canal were associated 

with successful culture however those obtained from acetabular reamings were 

not. I suspect that the heat generated in acetabular reaming may be associated 

with cell death. Infection with fungi and or bacteria are noted in 1 in 3 bone 

donation samples on screening for clinical use (by communication with the 

National Health Service blood and transplant services). For this reason I doubled 

the dose of antibiotics and antifungals used in the transport medium. Harvesting 

from bone fragments was undertaken 4 times in accordance with the protocol 

described by Tuli et al (Tuli et al., 2003).  

 

 

In view of the success of the HBMC acquisition and difficulties in ensuring or 

identifying fungal infection in bone fragment flasks following the pilot studies 
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HBMC became the cells of choice. I decided to use cells after passage 1 in order 

to minimise any potential for terminal differentiation prior to the experiments 

starting. Cell numbers were limited and qPCR was not possible on the same cell 

batch as the microscopy. The concept was tested with experiments that were 

repeated from bone marrow acquisition through to qualitative and quantitative 

results using multiple patient donors. HBMC culture using a mixture of different 

donors was not associated with cell detachment or cell death, however I chose 

not to use this technique for experiments in order to minimise the potential for 

discrepancies in the results. 

 

 

2.4.3 Single and dual sided cell seeding and culture 

Problems were found with cell culture within the rotatory bioreactor. Cell 

detachment was seen within the bioreactor even after successful seeding and 

initial culture in well plates. The cell detachment was not overcome by 

measures such as altering the speed of rotation or minimising the substrate 

number in each bioreactor. I decided therefore to investigate dual sided culture 

in well plates and experiments revealed that cell culture throughout the 

uppermost surface and at the periphery of the lowermost surface was possible 

using dual seeding and simple face-up culture techniques. Turning of substrates 

was successful in culturing cells on both surfaces but involved daily handling of 

substrates and I feared inoculation with infection and topography damage (cells 

had been noted to adhere to the topography around forceps marks). 

 

 

Vertical culture using substrate suspension facilitated media access to both 

substrate surfaces and cell culture. I hypothesised that the increase in infection 

rate could be due to the threads passing over the wells and between substrates 

in addition to the use of HOBs from bone fragments. I developed vertical culture 

within smaller wells in order to remove the need for suture material. Gravity 

dependent positioning of the cells was noted after the first culture that was of 

21 days duration. Further investigation revealed that turning over of substrates 

at weekly intervals minimised this and resulted in a more even spread across 

substrate surfaces.  
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The desire to maximise the number of substrate repeats and the number of 

control and test conditions possible for each experiment whilst only using cells 

from one bone marrow harvest rendered it necessary to develope a technique to 

maximise the cell density obtained from cell seeding. Following seeding with 

cells in a 1 ml suspension, cells were seen on light microscopy to adhere to the 

bottom of wells in addition to the surface of the substrate. I trialled a variety of 

cell suspension volumes and noted that a 65 µl droplet of cells fully covered the 

surface of a 1 cm2 substrate without seepage over the edge. After 30 min 

substrates were flooded with media for nutritional purposes. 

 

 

Cell adhesion experiments revealed that cells were adherent within 30 min of 

seeding. However, I decided that in order to stabilise these adhesions 24 h would 

be left prior to turning over of the substrates to seed the second side and prior 

to placing in suspended or vertical culture. This technique was successful in 

producing cell attachment and cell culture without any cell detachment from 

the under-surface and facilitated the definitive dual sided culture experiments. 

 

 

2.4.4 Coomassie blue and alizarin red staining 

Coomassie blue staining facilitated all of my protocol developments. In the 

simplest experiments, Coomassie blue staining was combined with scanning of 

stained substrates to give a macroscopic appreciation of the cell spread. 

Coomassie blue and alizarin red staining resulted in the appearances of non-cell 

shaped deposits. I eliminated any doubt as to the origin of these by 

microfiltration immediately prior to use. Despite fixation (chapter 2.2.6) alizarin 

red resulted in detachment of the cell layer when irrigated with PBS. Dipping in 

Coomassie blue or ethanol prior to dipping in PBS stopped this. Co-staining with 

Coomassie blue facilitated a distinction between intra and extracellular calcium 

deposits at early time points and these were the images used as definitive 

figures in chapter 3 (figure 3.3). 
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Microscopy of both sides of stained substrates was limited by show through from 

the other surface. At low cell densities show through was seen whilst at higher 

cell densities problems were encountered with gaining adequate light passage 

through the samples. I limited the duration of Coomassie blue staining to reduce 

this. 

 

 

2.4.5 Immunostaining and light microscopy 

No problems were encountered with immunostaining and imaging the single-

sided samples (results are seen in chapters 3 and 4). Dual sided samples stained 

for actin for periods greater than 7 days (at which time the cells were spread 

throughout the surfaces and increasing in density) were difficult to focus. It 

appeared that show through of fluorescence from the other side was again a 

problem. I diluted the antibody concentration and limited incubation to 1 h in 

order to minimise this. The immunostaining images were clearer when only the 

FITC staining was imaged and I kept records of both this and combination 

staining.  

 

 

2.4.6 RNA harvesting, RT and qPCR 

Calculations with regard to the number of substrates required to provide 

sufficient cells for RNA harvesting indicated that maximising the percentage 

yield was vital. The compromise I reached indicated that one 2.5 cm by 2.5 cm 

square or three 1 cm2 substrates would provide sufficient RNA. A variety of 

methods of RNA extraction were used with different extraction kits. I observed 

that the yield following direct lysis was higher than that obtained from the two-

stage indirect method in which cell lysis followed cell harvest. Direct 

experimental comparisons were not undertaken comparing the two techniques 

with the same HBMC population. The Stratagene kit was associated with a 

greater RNA yield than the Quantitect alternative. The Stratagene kit was 

thought from previous experience to be associated with less clogging of the cell 

column and higher RNA yields.  
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Following the loss of the results from one experiment purely as a consequence of 

one poor RNA sample, the numbers of each substrate were increased to allow 

RNA collection from four substrate groups per condition and the use of the 

optimal three for qPCR thereafter.  

 

 

The difficulties experienced with the reproducibility of results within qPCR 

experiments were overcome in two ways. Taqman probes were associated with 

an increase in result consistency over the SYBR green alternative and I chose 

these for the definitive assays. The solutions were made up in bulk for each of 

the primer probes and the cDNA diluted into three wells for each. The three 

repeat option (as opposed to two repeat) was taken for all measurements. I 

undertook the greatest experiment sizes possible in order to maximise the 

number of genes tested for each control (GAPDH). 

 

 

2.5 Conclusion 

I have undertaken HBMC acquisition from the intra-operative bone marrow 

sampling through separation by Ficoll gradient and adherence to plastic to 

culture expansion and experimental use on test substrates. My careful 

optimisations and trials have led to established marrow isolation protocols now 

widely used in CCE. Robust data analysis of the cellular responses of NSQ50 and 

nanoislands, in comparison to osteogenic media, BMP2 exposure and HA inclusion 

within the PCL can be found in following chapters. 
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Chapter 3 Analysis of nanopit (NSQ50) embossed PCL  

3.1 Introduction 

In this chapter the effects of the NSQ50 topography on HBMCs are examined. The 

nanopits arranged in the near-square arrangement have been produced using EBL 

technology and reproduced in PCL and HAPCL (chapter 2.2). HA (used to 

enhance the stability of uncemented implants) has been shown to exhibit 

bonding osteogenesis after 10 days post implantation (Furlong and Osborn, 

1991). BMP2 has found increasing interest for the management of bone defects, 

non-union fractures and spinal fusion (Chen et al., 2004). MSCs cultured in vitro 

using osteogenic (dexamethasone containing) media express those markers 

expressed by osteoblasts, the cells responsible for laying down bone matrix and 

mineral during bone formation in vivo (Birmingham et al., 2012). 

 

 

The aim of the research within the following chapter is to culture HBMCs simply 

and reproducibly on two sides of PCL substrates and simultaneously use NSQ50 in 

order to quantify its potential osteogenic effect in comparison to the clinically 

used (BMP and HA) and in vitro alternatives (control conditions and osteogenic 

media). 

 

 

3.2 Materials and methods 

NSQ50 topography, produced through the use of EBL technology, was embossed 

onto PCL and HAPCL. Acellular analysis of the topography was undertaken with 

AFM and SEM (chapter 2.3). The cellular effect of the topography was studied 

using HBMCs in conjunction with immunocytochemistry, fluorescence microscopy 

and qPCR.  

 

 

The NSQ50 shim was manufactured using EBL. In EBL an electron gun is used to 

“shoot” a beam of electrons (e-beam) in a specific direction. The emitter is 

heated to produce and excite electrons on the surface, following which 

application of a high voltage causes the excited electrons to accelerate towards 

a structure, or anode. By varying the voltage, the trajectory and the focus of the 

beam can be manipulated (Cheng, 2007). A system of lenses, within a vacuum,  
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has the ability to focus the electrons into a concentrated beam in a desired 

direction by a combination of electromagnetism and optics. Two 

electrostatically charged parallel plates result in an electric field capable of 

bending the beam in a desired direction (Cheng, 2007). After the beam is 

directed and concentrated by the optical column, it is focused on the surface. As 

with most lithography techniques, a substance covers the surface, a photoresist. 

High-energy electron bombardment causes bond breakage in the polymer and 

when the beam hits the surface, either an additive or subtractive reaction takes 

place. An additive writing method uses the electrons to induce a deposition of a 

compound on the surface. In the raster scan technique the e-beam is swept 

across the entire surface, pixel by pixel, with the beam being turned on and off 

according to the desired pattern. This method is easy to design and calibrate 

(Cheng, 2007). 

 

 

In conventional EBL arrays of dots are designed as an array of circles. Our 

strategy was to effectively use a vector scan Leica EBPG5-HR beam writer as a 

raster scan tool. In this fast method the pattern is laid out as a rectangle and 

each shape is formed directly by a single exposure with a given spot size. Each 

shape is spaced by the beam step size (Gadegaard et al., 2003).  

 

 

3.2.1 Shim manufacture  

Nanopit topography (NSQ50) 

Samples were made in a three-step process of electron beam lithography, nickel 

die fabrication and hot embossing. Silicon substrates were coated with ZEP 520A 

(a positive-tone resist) to a thickness of 100 nm. After the samples were baked 

for a few hours at 180oC they were exposed in a Leica LBPG 5-HR100 beamwriter 

at 50 kV. A 1 cm2 area was efficiently patterned with 1–10 billion pits 

(Gadegaard et al., 2003). The spot size was 80 nm, resulting in pits with a 

diameter of 120 nm after embossing. The pitch between the pits was 300 nm. 

After exposure the samples were developed in o-xylene at 23oC for 60 s and 

rinsed in copious amounts of iso-2-propanol. Nickel dies were made directly from 

the patterned resist samples. A thin (50 nm) layer of Nickel–Vanadium (N-V) was  

sputter coated on the samples. This layer acted as an electrode in the 
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subsequent electroplating process. The dies were plated to a thickness of 

approximately 300 nm (Dalby et al., 2004a). 

 

 

Polymeric replicas were made in PCL by hot embossing. Sheets of PCL were 

melted on a hot plate and the nickel die pressed by a thumb into it for about 10 

s and then transferred to a water bath at room temperature to allow the sample 

to cool (Dalby et al., 2004a). Single and dual sided substrates were 

manufactured from PCL and HAPCL as has been described in (chapter 2.2.2).  

 

 

3.2.2 Substrate conditions 

All substrates were cultured in modified DMEM unless otherwise stated. Planar 

substrates were also cultured in osteogenic media. The use of planar PCL, NSQ50 

PCL and osteogenic media was common to all experiments. Where indicated 

comparisons were also made to planar HAPCL, NSQ50 HAPCL and planar PCL 

using HBMCs with prior exposure to BMP2. BMP2 exposure was undertaken by 

adding 100 ng/ml of BMP2 to a 75 cm2 flask of HBMCs 12 h prior to the cell 

harvest. The BMP2 containing media was removed at cell harvest. 

 

 

3.2.3 Horizontal single sided culture for microscopy 

HBMCs used were obtained from 2 source patients and concurrently culture 

expanded (chapter 2.2.4-2.2.5). HBMCs were cultured on planar PCL in DMEM 

and in osteogenic media. Comparisons were made to HBMCs cultured on NSQ50 

PCL substrates, cultured on planar HAPCL substrates, and cultured following 

BMP2 exposure. Media changes were 50 % and undertaken bi-weekly in order to 

provide sufficient nutrients, retain exocytosed growth factors, and maintain 

surface wetness of the substrates. HBMCs were seeded at 2.5 x 105 per substrate 

(chapter 2.2.5). 

 

 

The cells were fixed after 28 days. The cellular stains alizarin red (for 1 h) and 

Coomassie blue (for 1 s) (chapter 2.2.6) were used and images were taken using 

light microscopy. Substrates from each combination were immunostained for 
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actin, DNA and OPN or OCN (chapter 2.2.6). The surfaces were examined in their 

entirety and qualitative comparisons made for cell spread and stain intensity. 

The settings used for the capture of immunofluorescence images were kept 

constant. 

 

 

3.2.3 Horizontal single sided culture for qPCR  

Cell culture 

The HBMCs used were obtained from locally sourced bone marrow and culture 

expanded (chapter 2.2.4-2.2.5). HBMCs were cultured on planar and NSQ50 PCL 

in DMEM for 7 days. Media changes were 50 % and undertaken bi-weekly. HBMCs 

were seeded at 2.5 x 105 per substrate (chapter 2.2.5) and 3 substrates used to 

harvest each sample.  

 

 

RNA extraction  

RNA was extracted using Stratagene RNA Miniprep (Agilent technologies) 

according to the manufacturer’s protocol. The elution buffer was warmed to 

60°C, in a water bath. 70 % ethanol was made using 30 ml 98 % ethanol and 70 

ml RNase free water. Cell lysis was undertaken directly using 300 µl of lysis 

buffer/βME mix per well (in 6-well plates). Cell scrapers ensured maximal cell 

disruption. RNA collection was maximized by flushing the wells with a further 50 

µl lysis buffer/βME. The lysate samples were passed 3 times through an 18 gauge 

needle prior to vortexing for 30 s. 

 

 

DNase digestion buffer was added to RNA free DNase and gently mixed prior to 

pipetting 55 µl onto the matrix of each spin cup. The spin cups were placed in 

1.5 ml centrifuge tubes and 30 µl of warmed elution buffer added to the matrix. 

A further 20 µl of warmed elution buffer was added, incubated at room 

temperature for 2 min and microcentrifuged for a further minute. The spin cups 

were discarded and the RNA analysed using the nanodrop 1000 prior to storage 

at -80oC. 
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RT 

The 3 samples with the highest purity (230/280 ratio) and or concentration were 

used for RT and qPCR. Warming of the gDNA wipeout to 37oC until fully dissolved 

preceded vortexing. Flicking of the tubes mixed the reagents and centrifugation 

gathered the liquid at the base of each tube. The reagents were stored and the 

RNA thawed on ice. Appropriate volumes of RNA suspension and RNAase free 

water combined in 0.2 ml reaction tubes produced a suspension of 9.12 ng of 

RNA in 12 µl. gDNA wipeout (7x) (2 µl) was added to each suspension. Incubation 

was undertaken in the thermocycler at 42oC for 2 min. 

 

 

Combination of 13.2 µl Ominiscript reverse transcriptase (QRTase), 52.8 µl 

Omniscript RT (ORT) buffer (5x) and 13.2 µl RT primer mix preceded placing on 

ice. 6 µl of this transcription mix was added to each reaction tube and mixed 

with the RNA suspension. The reaction tubes were replaced into the 

thermocycler at 42oC for 15 min followed by 95oC for 3 min. The DNA suspension 

was frozen at 20oC prior to use in qPCR. 

 

 

QPCR  

QPCR was performed using Taqman gene expression primers for BMPR2, 

osteonectin and OPN. The Taqman gene expression assay protocol was followed 

for standard rate qPCR (chapter 2.2.9) and a 7500 Fast Real-Time PCR system 

(Applied Biosystems) used. Gene specific reaction mixes were made, vortexed 

for 30 s and centrifuged for 30 s. RT product (6.6 µl of cDNA suspension) was 

added to 59.4 µl gene specific reaction mix, mixed by pipetting and the tubes 

centrifuged for 15 s. 20 µl of the resultant suspension (per well) was pipetted 

into each of three wells in the reaction plate yielding 3 technical replicates for 

the 3 biological replicates. QPCR was undertaken in order to compare NSQ50 

with the planar control. Target gene expression was normalised against GAPDH 

and comparisons undertaken using the T-test in Excel. 
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3.2.4 Vertical dual sided culture for microscopy  

HBMCs were obtained from a single source patient and culture expanded 

(chapter 2.2.4-2.2.5). Cells were seeded (2.5 x 104 per substrate) using the 

standard seeding protocol for vertical dual sided culture (chapter 2.2.5). NSQ50 

HAPCL with DMEM was added to the aforementioned five combinations of 

substrate and media, namely planar PCL, NSQ50 PCL, planar PCL in osteogenic 

media, planar PCL with BMP2 exposed HBMCs, and planar HAPCL (chapter 3.2.3). 

 

 

Seeding of the second side was undertaken at 24 h and substrates were 

transferred to vertical culture in a 48 well plate after a further 24 h. Media 

changes were 50 % and bi-weekly. On day 14 the substrates were aseptically 

turned 180o across their horizontal axis. Cells were fixed in situ at 28 days 

(chapter 2.2.6). Substrates were stained using alizarin red (for 1 h) with 

Coomassie blue (for 1 s) (chapter 2.2.6). Immunostaining for actin, DNA and OPN 

or OCN and microscopy were undertaken (chapter 2.2.6). 

 

 

3.2.6 Vertical culture for immunofluorescence analysis of phenotype 

Four substrate media combinations (planar PCL, NSQ50, NSQ50 HAPCL, and 

planar PCL cultured in osteogenic media) were used and 2.5 x 104 cells seeded 

per substrate (chapter 2.2.5). FITC was used to stain for all markers of 

phenotype, in combination with specific antibodies for COL2a, MYOD, TUBβ3, 

OCN, and PPARG. The settings for image capture were consistent for all images.  

 

 

3.2.7 Vertical culture for qPCR  

Cell culture   

3.6 x 104 cells were used per substrate (1.8 x 104 cells per side) using the 

standard protocol (chapters 2.2.5 and 3.2.5). Four substrate media combinations 

were used (planar PCL in DMEM, NSQ50 in DMEM, NSQ50 HAPCL in DMEM, and 

planar PCL in osteogenic media). Sixteen replicates of each substrate were 

cultured. Cells were cultured for 11 and 28 days. On day 14 the 28-day 

substrates were aseptically turned 180o across their horizontal axis. Four 

substrates were used to harvest each RNA sample.  
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RNA extraction, RT and QPCR  

The RNA extraction, RT and qPCR protocols were as described for the horizontal 

cell culture (chapter 3.2.4). QPCR was performed using Taqman gene expression 

assays for RUNX2, OCN (BGLAP), SOX9, MYOD, PPARG, GAPDH, and 18S. Three 

technical replicates for each of the 3 biological replicates were used. Target 

gene expression was normalised against GAPDH and 18S. Statistical significance 

was assessed using ANOVA. 

 

 

3.3 Results 

3.3.1 Single sided HBMC culture  

HAPCL was the optimal substrate for both localised confluence and OPN/OCN 

production (figure 3.1). OPN immunofluorescence was also present on NSQ50 and 

following the use of BMP2 exposed HBMCs in combination with planar PCL. 

Planar PCL cultured in modified DMEM and in osteogenic media was associated 

with least OPN expression (figure 3.1). Similarly OCN was maximally visualized 

on the planar HAPCL substrates. OCN was expressed on NSQ50 and planar 

substrates seeded with standard HBMCs and BMP2 exposed HBMCs.  

 

 

 

 

Figure 3.1 Immunofluorescence analysis of OPN and OCN expression. 

Positive staining for OPN and OCN was seen on all substrates. The relative 

abundance of OPN and OCN is indicated by colour intensity. OPN and OCN 

staining were maximal on HAPCL, on NSQ50 PCL and following BMP2 exposure on 

planar PCL at this 28-day time point. Scale bar 50 µm. 
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After 28 days calcium staining was apparent on all substrates (figure 3.2). 

Osteogenic media and planar HAPCL (and to a lesser extent BMP2 stimulated 

HBMCs, and NSQ50) were associated with protein aggregates.  

 

 

 

Figure 3.2  Coomassie blue cell staining and Alizarin red staining of HBMCs. 

At 28 days staining of the NSQ50 substrates and planar controls using HBMCs 

from a locally sourced bone marrow sample revealed the presence of calcium on 

all substrates. Intracellular alizarin red staining (black arrows) was visualized the 

most on the planar PCL substrates. Aggregates of Coomassie blue staining are 

noted on the HAPCL and NSQ50 substrates. Scale bar 50 µm. Blue = protein, Red 

= calcium. 

 

3.3.2 Single sided culture for qPCR analysis of gene expression  

At 7 days NSQ50 expressed significantly greater quantities of BMPR2, osteonectin 

and OPN. OCN was not expressed by HBMCs on either substrate (figure 3.3). 

 

 
Figure 3.3 Relative gene expression at day 7. NSQ50 was associated with 

increased BMPR2, OPN and osteonectin expression after 7 days single sided 

horizontal culture of HBMCs. No OCN was detected. Statistical significance (t-

test p ≤ 0.05) is indicated by ‘*’ when compared against the planar control 

surface and normalized against GAPDH. Standard error bars are shown (n=3). RQ: 

relative quantification. 
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The most immunofluorescently osteogenic material was HAPCL (Figure 3.1) and 

NSQ50 expressed significantly greater amounts of BMPR2, OPN and osteonectin 

all of which are involved in osteogenic differentiation and expression (figure 

3.3.). I chose to combine HAPCL with NSQ50 in the latter experiments in order 

to assess any enhancement of osteogenicity. The duration of Coomassie blue 

counter staining was reduced in order to reveal the location of calcium with 

respect to the cells, but without risking masking its presence with the intense 

areas of blue stain.  

 

 

3.3.3 Dual sided culture and OPN, OCN and Alizarin red staining  

Images of confluent regions revealed greatest OPN expression on NSQ50 HAPCL 

and NSQ50 PCL (figure 3.4B, F). OPN was clearly visible on the planar PCL 

cultured in osteogenic media (figure 3.4C) and from HBMCs exposed to BMP2. 

OPN immunofluorescence was least on planar PCL cultured in DMEM (figure 3.4A) 

and planar HAPCL. OPN expression was more widespread and at a lesser 

intensity across the planar HAPCL surface (figure 3.4E) than the NSQ50 HAPCL 

(figure 3.4F). OPN staining was both cytoplasmic and intra-nuclear in all samples 

(figure 3.4A-F. Aggregates of intense staining were seen with an increasing OPN 

expression.  
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Figure 3.4 Immunofluorescence analysis of OPN expression. At 28 days the 

greatest OPN expressed was seen on NSQ50 HAPCL (Image F). Images A (planar 

PCL), B (NSQ50 PCL), C (planar PCL in osteogenic media), D (planar PCL with 

BMP2 exposed HBMCs), E (planar HAPCL) and F (NSQ50 HAPCL) reveal OPN 

expression on all substrates to a varying degree and in varying locations within 

the cells.  Scale bar 50 µm. Red = actin, Green = OPN, Blue=nuclei. 

 

 

Imaging confluent regions of cells revealed that OCN expression was greatest on 

NSQ50 HAPCL (figure 3.5F), then NSQ50 PCL and planar HAPCL (figure 3.5B and 

E). OCN was seen to a lesser extent on the planar PCL surfaces with HBMCs 

exposed to BMP2 showing most OCN (figure 3.5D), then planar PCL cultured in 

osteogenic media (figure 3.5C) and in DMEM (figure 3.5A).  
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Figure 3.5 Immunofluorescence analysis of OCN expression. At 28 days the 

greatest OCN expressed was seen on NSQ50 HAPCL (Image F). Images A (planar 

PCL), B (NSQ50 PCL), C (planar PCL in osteogenic media), D (planar PCL with 

BMP2 exposed HBMCs), E (planar HAPCL) and F (NSQ50 HAPCL) reveal OCN 

expression on all substrates in varying locations within the cells. Scale bar 50 

µm. Red = actin, Green = OCN, Blue=Nuclei. 

 

OCN was cytoplasmic and nuclear following culture in osteogenic media (figure 

3.5C) but nodular with less cytoplasmic staining after using DMEM only (figure 

3.5A). OCN was widespread across the planar HAPCL surface (figure 3.5E) and at 

a lesser intensity to the NSQ50 equivalent (figure 3.5F).  

 

At 28 days the Alizarin red staining of cells on the two NSQ50 nanoembossed 

substrates was greatest and was greatest on the HAPCL (figure 3.6). Staining of 

cells on NSQ50 was greater than that on planar PCL cultured in basal and 

osteogenic media. The staining on NSQ50 HAPCL and NSQ50 PCL, and using BMP2 

exposed cells was more aggregated appearance than the less intensely stained 

alternatives (figure 3.6).   
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Microscopy of HBMCs cultured using the dual sided vertical technique described 

(chapter 3.2.5) revealed osteogenic expression by the HBMCs on both sides of 

the substrates (figures 3.4 - 3.6). Immunostaining using OPN, OCN and cell 

staining using alizarin red (chapter 3.2.6) has revealed that NSQ50 HAPCL was 

consistently associated with the greatest expression of the osteoblastic 

phenotype (OPN, OCN and Alizarin red) (figures 3.4, 3.5 and 3.6).  

 

 
Figure 3.6 Analysis of calcium deposition at 28 days, following vertical 

culture of HBMCs. The greatest calcium deposition was associated with HBMC 

culture on: NSQ50 HAPCL, planar HAPCL, NSQ50 PCL and planar PCL with BMP2 

exposure of HBMCs (BMP treatment (BMP Rx)). Scale bar 50 µm. Red = Calcium. 
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3.3.4 Preliminary analysis of phenotype  

In the assessment of phenotype, given the number of genes I plan to examine 

(both for screening markers of the predominant mesenchymal phenotypes and 

also for more detailed analysis of the osteogenic phenotype) I decided to limit 

the number of test substrates to four in order to make the experiments more 

managable. The planar PCL control and the in vitro comparator osteogenic 

media were obvious choices. BMP2 exposure did not appear more osteogenic 

than NSQ50 on horizontal single or vertical dual sided culture I therefore 

discontinued its use. Planar HAPCL was less osteogenic than NSQ50 HAPCL and I 

made the decision to use NSQ50 HAPCL in the latter experiments. The four 

substrates chosen for the immunofluorescence analysis of phenotype were 

planar PCL, NSQ50 PCL, NSQ50 HAPCL, and planar PCL with osteogenic media.  

 

 

Immunofluorescent analysis of phenotype at 21 days 

Culture of HBMCs on all substrates was associated with expression of the bone 

marker OCN at 21 days (figure 3.7). Staining for the alternative phenotype 

markers was minimal; some PPARG staining was seen on the planar PCL and to a 

lesser extent the NSQ50. Pselectin, a marker of activated endothelial cells and 

platelets, was expressed solely on the NSQ50 HAPCL. The chondrogenic, 

myogenic and neurogenic markers COL2a, MYOD and TUBβ3 were universally 

absent. The images showing minimal or an absence of staining were not included 

(figure 3.7).   

 

 

 
Figure 3.7  Immunofluorescence analysis of phenotype. OCN (black) is 

relatively scarce at this 21-day time point but is seen on all four substrates. 

Scale bar 50 µm. 
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3.3.5 QPCR analysis of phenotype 

At 11 days OPN expression was significantly increased by NSQ50 PCL and NSQ50 

HAPCL relative to control (planar PCL) (ANOVA p ≤ 0.05) (figure 3.8). The 

presence of HA in the PCL in association with the NSQ50 topography resulted in a 

further statistically significant increase in OPN expression compared to NSQ50 

PCL without HA (figure 3.8). A lower OPN expression was noted on the planar 

PCL in the presence of osteogenic media (figure 3.8). The relative increase in 

OCN expression under all test conditions (compared to planar control) was 

significant (ANOVA p ≤ 0.05) (figure 3.8).  The rna yield and integrity is detailed 

in appendix 7 (table A1). 

 

No statistically significant difference was seen in RUNX2 or TUBβ3 (neurogenic) 

expression between substrates. The reduction in SOX9 expression (compared to 

planar control) was statistically significant ANOVA p ≤ 0.05) (figure 3.8). MYOD 

(myogenic) expression was universally absent (figure 3.8). 

 
Figure 3.8 Relative gene expression at day 11. OPN expression was 

significantly increased by the NSQ50 topography using PCL and HAPCL. OCN 

expression was also increased by the use of osteogenic media. The relative gene 

expression after this dual sided vertical culture of HBMC was normalized against 

GAPDH. Statistically significant differences were identified between substrate 

types is indicated by ‘*’ (ANOVA p ≤ 0.05). A statistically significant difference 

was noted between NSQ50 and NSQ50 HAPCL with respect to OPN expression 

indicated by ‘*’ (ANOVA p ≤ 0.05). Standard error bars are shown (n=3). RQ: 

relative quantification. 



 115 
The differences in gene expression seen in OCN and SOX9 expression at 28 days 

were statistically significant, however all of the differences measured were 

small and may not be clinically significant. The osteogenic marker OCN was 

reduced in association with the test conditions, indicating the transient nature 

of the comparatively elevated OCN at day 11, with respect to the planar control. 

The apparent increase in RUNX2 and reduced OPN expression on the NSQ50 

topographies were not statistically significant (figure 3.9). The rna yield and 

integrity is detailed in appendix 7 (table A2). 

 

 

 

 

Figure 3.9 Relative gene expression at day 28. OCN expression was 

significantly lower on NSQ50 PCL and HAPCL, and after culture in osteogenic 

media in comparison to the planar control.  The relative gene expression after 

this dual sided vertical culture of HBMC was normalized against GAPDH. 

Statistical significance (ANOVA p ≤ 0.05) is indicated by ‘*’. Standard error bars 

are shown (n=3). RQ: relative quantification. 

 

 

3.4 Discussion 

The results outlined above are indicative of the success of the bone marrow 

aspiration, cell separation by Ficoll gradient and adherence to plastic techniques 

The HBMCs used in all of these results were produced according to the protocol I 

developed and detailed in chapter 2.2.4. HBMC seeding and culture protocols for 

both single-sided horizontal and dual sided vertical culture have yielded positive 

results. The osteogenic phenotype has predominated both microscopically and 

on PCR analysis. 
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The vertical culture technique I have developed has simply and cheaply 

rendered dual sided culture possible for periods of up to and including 28 days 

(chapter 2.2.5). Immunofluorescence and alizarin red staining have revealed the 

presence of the osteogenic phenotype on both sides of all substrates at 11 and 

28 days (figures 3.4, 3.5 and 3.6). The early difficulties encountered with 

respect to the effect of cell accumulation in gravity dependent regions I have 

overcome by turning substrates at 14 days (chapter 2).  

 

 

NSQ50 nanotopography has consistently expressed the greatest osteogenicity on 

both PCL and HAPCL. Semi-quantitative analysis of the horizontal culture results 

(table 3.1) following culture of HBMCs for 28 days revealed that HAPCL was 

associated with maximal osteogenicity based upon immunofluorescent results 

(figure 3.4). The use of the NSQ50 nanotopography was at least comparable to 

the exposure of HBMCs to BMP2 (table 3.1). The early qPCR and 

immunofluorescence results were consistent. A pilot 7-day qPCR experiment 

revealed an increased expression of BMPR2, OPN and osteonectin on NSQ50 in 

comparison to planar PCL (figure 3.3). All of these proteins are involved in early 

osteogenic differentiation (chapter 2.1.5). OCN a marker for mature osteoblasts 

was absent.  

 

 

 Planar Osteogenic BMP2 HAPCL NSQ50 

OPN + + ++ +++ ++ 

OCN + - + ++ + 

Alizarin red ++ ++ ++ + + 

 

Table 3.1 Summary of horizontal single sided culture results at 28 days, 

from chapter 3.3.1 (figures 3.1 and 3.2). Planar HAPCL appeared most 

osteogenic on immunofluorescent staining (figure 3.1 and 3.2). Differences in 

Alizarin red staining were not as marked, although greatest calcium appeared to 

be present on the less osteogenic substrates by immunoflourescent analysis.  
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Combined alizarin red and Coomassie blue images  (figure 3.2) may have 

resulted in a masking of calcium deposits, for example by blue coloured staining 

of proteins involved in the endocytic process. All five substrates were used for 

further investigation during the work upon the dual sided culture techniques. 

 

 

The semi-quantitative microscopy results obtained at 28 days and shown in table 

3.2 reveal that combining the NSQ50 nanotopography with HA in the PCL had an 

additive effect on the osteogenicity of the substrates. Compared to the two 

planar controls, OPN and OCN expression, maximal on NSQ50 HAPCL, was 

expressed to a markedly greater degree on NSQ50 PCL than on the planar control 

(figures 3.4 and 3.5). Differences between planar PCL, with and without 

osteogenic media and following the use of BMP were less apparent (table 3.2).  

 

 

Imaging of confluent regions of HBMCs at 28 days has revealed that NSQ50 is 

associated with increased bone marker (OPN and OCN) expression compared 

with the planar alternatives including those using osteogenic media and HBMCs 

exposed to BMP2 (figures 3.4, and 3.5). Immunofluorescence and alizarin red 

staining of planar PCL revealed the least expression of osteogenic markers and 

calcium deposition (figures 3.4, 3.5 and 3.6, table 3.2).  Differences have been 

noted in the cellular location (cytoplasmic and nuclear) of OPN and OCN in 

addition to the degree of OPN and OCN aggregation. 

 

 

 Planar NSQ50 Osteogenic BMP2 
exposure 

Planar 
HAPCL 

 NSQ50 
HAPCL 

OPN ++ +++ ++ ++ ++ ++++ 

OCN ++ +++ + ++ +++ ++++ 

Alizarin red + +++ ++ +++ ++ ++++ 

 

Table 3.2 Summary of vertical dual-sided culture results at 28 days, from 

chapter 3.3.3 (figures 3.4 - 3.6). The NSQ50 topography was associated with 

enhanced osteogenicity, in comparison to planar equivalents. On microscopy 

NSQ50 HAPCL was consistently the most osteogenic.  
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Alizarin red staining of calcium deposits on vertically cultured substrates (figure 

3.6) was much clearer than following the horizontal culture (figure 3.2), due to 

the shorter duration of Coomassie blue counter-staining performed. The alizarin 

red images support the immunofluorescence findings in determining the 

osteogenicity of the substrates. The microscopy results suggested that all 

substrates supported differentiation into mature osteoblasts and that NSQ50 

HAPCL and NSQ50 PCL were optimal. Slight variations between the results given 

by OPN, OCN and alizarin are noted with respect to differentiating between 

planar HAPCL, BMP2 and to a lesser extent osteogenic media, although they 

were all more osteogenic than planar PCL. I took the decision to use RT and 

qPCR to further analyse the osteogenic effects of NSQ50, NSQ50 HAPCL and the 

use of osteogenic media in comparison to planar PCL. In addition I decided to 

ensure that the enhancement of the osteogenic phenotype was specific and that 

other mesenchymal phenotypes were not similarly affected.  

 

 

A time lag is inherent in comparisons between mRNA analysis and protein 

identification. Fluorescence on microscopy identifies the presence of proteins 

such as OPN and OCN whereas the evidence of gene expression obtained on qPCR 

relates to the presence of mRNA secondary to gene transcription. The time 

dependent expression of osteogenic markers has been well documented (Stein 

and Lian, 1993). OCN and calcium deposition are markers of differentiated 

osteoblasts whereas BMPR2, RUNX2, and osteonectin are transcribed relatively 

early in the differentiation pathway. OPN is expressed in between these two 

extremes and you would expect the mRNA to be detectable before the protein 

itself.  

 

 

RUNX2 expression was at or below control levels at day 11 (figure 3.8) and with 

the exception of NSQ50 HAPCL was at control levels on day 28 (figure 3.9). 

RUNX2 was marginally but significantly elevated on NSQ50 HAPCL (ANOVA p ≤ 

0.05) (figure 3.9).   
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OPN expression, relative to control (planar PCL in combination with DMEM), was 

significantly increased by the NSQ50 topography in association with both PCL and 

HAPCL at 11 days. OPN appeared reduced by these topographies at 28 days 

however, this was not statistically significant (p ≤ 0.05) (figures 3.8 and 3.9, 

tables 3.3 and 3.4). At day 11 OCN expression was significantly increased by the 

presence of the NSQ50 topography (PCL and HAPCL) and osteogenic media 

(figure 3.8) whilst by day 28 it was significantly reduced especially with 

reference to HBMCs cultured using osteogenic media and on the NSQ50 

topography (figure 3.9, tables 3.3 and 3.4).  

 

 

The qPCR results and immunofluorescence results support each other in terms of 

the identification of the optimal substrate, NSQ50 HAPCL. It is likely that the 

apparent reduction of OPN and OCN expression shown by the qPCR results at the 

28-day time point (in comparison to the day 11 qPCR and to the 

immunofluorescence) relates to progression from the transcriptional level to the 

protein level by the later time point (tables 3.3 and 3.4). Nonetheless it should 

be noted that NSQ50 PCL was more osteogenic than planar PCL alone or in 

combination with osteogenic media. The inclusion of HA into the PCL is 

therefore preferable, however, should this prove disadvantageous during pre-

clinical or clinical trials NSQ50 PCL would also produce the desired effects. 

 

 

 NSQ50 Osteogenic NSQ50 HAPCL 

RUNX2 - - - 

OPN ++*  - * +++ * 

OCN ++* ++* +++* 

SOX9 -* -* -* 

TUBβ3 - -  +  

MYOD Absent Absent Absent 

 

Table 3.3  Phenotype analysis at day 11. The osteogenic phenotype 

predominates in relative expression under test conditions (NSQ50, osteogenic 

media and NSQ50 HAPCL. Statistical significance (ANOVA p ≤ 0.05) indicated by 

‘*’ (n=3). 
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A reduction in relative gene expression has been noted at day 28. It appears that 

expression of the osteogenic phenotype (OPN and OCN) has reduced at 28 days 

with mRNA detected at lower than control levels. The reduction in OCN was 

statistically significant on all test substrates (table 3.4, figure 3.9).  

 

 NSQ50 Osteogenic NSQ50 HAPCL 

RUNX2 + + + 

OPN - + - 

OCN -* --* -* 

SOX9 -* -* +* 

TUBβ3 + - - 

MYOD - + - 

PPARG - - - 

 

Table 3.4 Phenotype analysis at day 28.  The expression of the osteogenic 

phenotype was greatest on the planar topography at day 28. Statistical 

significance (ANOVA p ≤ 0.05) indicated by ‘*’ (n=3). 

 

 

The osteogenic phenotype expressed on NSQ50 to a comparatively greater 

extent on NSQ50 at 7 days than on planar PCL (figure 3.3) was also present on 

substrates at 21 days (figure 3.7). OCN was also shown by immunofluorescence 

at 28 days (figure 3.5). The minimal expression of the adipogenic phenotype 

noted on the planar and NSQ50 PCL (chapter 3.3.4) was comparable to planar 

control levels at day 28 (figures 3.9). Expression of the chondrogenic marker 

SOX9 was reduced in association with NSQ50 and osteogenic media (figure 3.9) 

although statistically significant the less than 2 fold differences are not thought 

to be clinically significant. The myogenic lineage (MYOD) most notable in its 

absence at days 11 to 21 (chapter 3.3.4, immunofluorescence figure 3.7 and 

qPCR figure 3.8) was present on all substrates at day 28 (figure 3.9). The 

adipogenic lineage (PPARG) also relatively poorly represented on 

immunofluorescence was present at levels comparable to the planar control at 

day 28 (figure 3.9). 
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Sources of error, limitations and future plans 

On considering the results described in chapter 3.3 and discussed in chapter 3.4 

it is important to realize the potential limitations of the experiments 

undertaken. The microscopy images reveal a small area of the entire substrates. 

Whilst images were taken using the same resolution and camera settings they 

rely upon the stain uptake being proportional to the quantity of the test 

substance (OPN, OCN, and calcium). Representative images were taken and the 

entire surface considered when drawing conclusions; nonetheless these are 

qualitative data. 

 

 

In chapter 2 the difficulties of stains showing through the substrates in 

microscopy of dual sided substrates were described. As a result there was a need 

to reduce stain intensity, this rendered microscopic analysis without excessive 

show through possible. Some difficulty in obtaining clear images was still 

encountered and affected the choice of representative images. Regions 

overlying intense staining on the contralateral side did not produce the contrasts 

necessary for clear images. The background of the HAPCL substrates stained to a 

degree with Coomassie blue (figure 3.2), alizarin red (figure 3.2, 3.6) and also 

had a tendency to autofluoresce (figure 3.1, 3.4, 3.5). I adjusted the contrast 

and brightness of these images as necessary to eliminate the influence of this 

problem on the results. The selection of the regions imaged and the adjustment 

of the HAPCL images to produce images with the same background staining is a 

potential source of error. The microscopy results have been looked at in 

combination with the quantitative qPCR results and found to be consistent. It is 

for this reason I am confident that the qualitative differences noted on 

microscopy are real. 

 

 

The HBMCs used within each experiment were from a single source patient. 

However, the research in its entirety was undertaken using HBMCs from a 

number of source patients. The 1 or 2 bone marrow samples that did not yield 

300 x 104 HBMCs, sufficient to experiment with, were discarded. This in itself, 

whilst necessary by the experimental protocol, yields a potential source of bias 

in terms of HBMC quality.  
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In combination, the results of the microscopy and qPCR provide proof of 

principal based upon a large number of patient samples. However, individually, 

each experiment has not been repeated with multiple source patients. 

Differences in the 21 and 28 day results for OCN may be time dependent with 

OCN being a later marker of osteogenicity or may represent differences between 

source patients.  

 

 

RNA levels depend upon both growth and differentiation of cells. Early 

differentiation is associated with an earlier cessation of proliferation. The 

difference in RNA acquisition may relate to the number of cells present in 

addition to the stage of differentiation. At first glance cells may appear less 

active whereas it may be that the cells are further ahead in terms of their 

differentiation than the transcriptionally active cells. In post-transcriptional 

cells the activity is concentrated at the protein level. The combination of 

immunofluorescence, alizarin red and qPCR assays assists in the differentiation 

between pre and post and transcriptional cells.   

 

 

Visible differences in expression were apparent in the qPCR results in the 

absence of statistical significance. Ideally repeats using greater substrate 

numbers would be undertaken to reduce variance and confirm or refute the 

significance of these differences. Such experiments would necessitate either a 

greater cell number to be culture expanded prior to seeding or a reduction in 

the number of primer-probes chosen.  

 

 

A time course experiment could be undertaken looking at the expression of the 

different osteogenic mediators over a period of weeks, ideally this would be 

undertaken using the same source patient for all time points and repeated 2 or 3 

times with different patients. The number of cells required precluded this from 

being undertaken during this research. In other research within the department 

work is being undertaken to facilitate the culture expansion of stem cells and 
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HBMC to enable greater volumes of cells to be produced without any 

differentiation occurring (McMurray et al., 2011).  

 

 

NSQ50 HAPCL has been shown to be optimal in the culture of HBMC showing 

osteogenic properties and aiding differentiation with the production of mineral 

deposits. A cheaper alternative topography with the same osteogenic properties 

would enable these findings to become more commercially interesting. 
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Chapter 4 Analysis of nanoisland embossed PCL  

4.1 Introduction 

Block co-polymer phase separation can be used to fabricate a nanotopography, 

which exhibits a controlled level of disorder, both reproducibly and cost-

effectively. This is interesting as nanoscale techniques borrowed from the 

electronics sector (such as EBL) are expensive, time consuming and are limited 

to small areas. The focus of this chapter is the hypothesis that HOBs interact 

with a non-random but disordered array of nanoislands in an osteogenic manner 

in comparison to planar controls. The topographies created through the use of 

the block co-polymer separation of two different molecular weights of 

poly(styrene-block-poly-2-vinylpyridine) (PS-b-P2VP) provide a rapid and cheap 

alternative to surfaces fabricated by EBL.   

 

 

The osteogenic potential of the nanoisland topographies has been assessed 

through analysis of calcium deposition, OPN and OCN expression, over a 28-day 

period. Relative RUNX2 expression was assessed after 25 days in culture. 

Osteogenic nanotopographies could have massive clinical impact through 

facilitating the osseointegration of implants and/or the in vitro expansion of 

HOBs for replantation. The relatively cheap and reproducible method of block 

co-polymer phase separation in the manufacture of osteogenic nanotopographies 

would render the potential clinical applications somewhat more feasible than 

that detailed previously.  

 

 

4.2 Materials and methods  

Two nanoisland topographies, produced through the use of block co-polymer 

phase separation, were embossed onto the PCL. Analysis of the topography itself 

was undertaken with AFM, and the topography’s effect on HOBs studied through 

the use of immunocytochemistry, fluorescence microscopy, and qPCR. I 

performed the experiments on the nanoislands before I undertook the work on 

HBMC extraction and on NSQ50. HOBS obtained from Promocell were used in all 

experiments excepting the assessment of RUNX2 using qPCR. This experiment 

was performed after HBMC acquisition had been optimized and was performed 

using my own locally sourced HBMCs. The media used in 90% of the experiments 
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was α-MEM. Modified DMEM was used for the qPCR because of changes in 

protocol after it was noted that this change would represent a marked financial 

saving without detrimental effects on HBMC culture. 

 

 

4.2.1 Shim production, substrate manufacture, and acellular substrate 

analysis  

The three-step process of substrate manufacture (using shims produced using 

block co-polymer phase separation detailed below) was used in combination with 

hot-embossing (chapter 2.2.2). Two master shims with different topographical 

characteristics were produced: shims ‘A’ and ‘B’. 

 

 

In the preparation of masters for the nanoisland topography PS-b-P2VP inverse 

micelles were prepared in o-xylene with a solution concentration of 0.5 % by 

weight. The two molecular weight forms of PS-b-P2VP used to create the two 

masters were 190 500-b-190 000 grams/molecule and 91 500-b-105 000 

grams/molecule respectively (Krishnamoorthy S, 2006). A thin film of PS-b-P2VP 

micelles was spin coated onto clean silicon wafers at 5000 r.p.m. in a relative 

humidity of 20-35 %.   

 

 

Ni-V was sputter coated onto the masters, which were subsequently 

electroplated to a nickel shim thickness of approximately 300 µm (Dalby et al., 

2006a). In this phase of the research the PCL beads (Sigma, UK) were heated to 

80oC for 1.5 h in order to create the PCL sheets.  2.5 cm2 squares of PCL were 

thumb embossed to create the planar and single-side nanoembossed substrates 

(planar, 14 nm and 18 nm nanoisland topographies) (chapter 2.2.2).  

 

 

The topographical characteristics of the planar and nanoembossed surfaces were 

delineated using AFM, including surface roughness and section analysis. 15 

islands on each nanopatterned surface were section analysed to ascertain typical 

height values. A 2 nm radius tip was used in combination with a scan speed 0.4 

Hertz (Hz) and a scan size of 5 x 5 µm. 
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4.2.2 Cellular substrate analysis using light and immunofluorescence 

microscopy 

Primary HOBs were seeded at 3 x 104 cells per substrate, one substrate per well, 

in twelve well plates.  Cells were cultured in 3 ml modified α-MEM initially and 

modified DMEM latterly for 7, 14, 21, and 28 days and media changes were bi-

weekly. HOBs were fixed at each time point using the protocol previously 

described (chapter 2.2.6). The alizarin red, immunostaining, and microscopy 

protocols outlined (chapter 2.2.6) were combined with the following durations 

of stain exposure. Staining with alizarin red 2 % in H2O for 5 min facilitated 

viewing using the Zeiss Axiovert 25 microscope (chapter 2.2.6). Immunostaining 

was performed by incubating substrates for 1 h with a 1: 50 concentration of 

rhodamine phalloidin and primary antibody (OPN or OCN), biotinylated 

monoclonal horse anti-mouse at 1:50 for 1 h (37oC), and finally FITC conjugated 

streptavidin at 1:50 at 4oC for 30 min.  

 

 

4.2.3 RUNX2 analysis using qPCR 

Three 2.5 cm2 substrates of each type (planar, 14 nm and 18 nm nanoisland 

topographies) were prepared. The substrates were seeded with 2.1x104 cells, 

and cultured in modified DMEM for 25 days (chapter 4.2.2). The RNA harvest, RT 

and qPCR protocols previously described (chapter 2.2.7-2.2.9) were used in 

combination with the following reagents and quantities. RNA was extracted 

using Stratagene RNA Miniprep. Cell lysis was undertaken directly, using 600 µl 

of lysis buffer per substrate. Cell scrapers ensured maximal cell disruption. RT 

was undertaken using the Quantitect RT kit. QPCR was performed using Taqman 

gene expression primers for RUNX2 and GAPDH. RUNX2 expression was 

normalised against GAPDH and compared against the planar control surface. 

Statistical analysis was undertaken using the T-test.  

 

 

4.3 Results 

4.3.1 Acellular analysis of planar and nanoisland embossed surfaces 

Thumb embossing between 2 glass slides satisfactorily creates planar controls. 

AFM analysis of the planar controls revealed a Ra of 0.93 nm (figure 4.1A). The 

height of the topographies used to make shims A and B were 20 nm (figure 4. 1B) 
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and 30 nm (figure 4.1C) respectively. The RMS roughness of the scan area was 

4.75 nm for substrate A, and 4.98 nm for substrate B. Figures 4.1D and E show 

the successful embossing of the disordered pattern into the PCL polymer. The 

pattern spatial arrangement was transferred with high fidelity, but a slight loss 

of height was observed (figure 4.1D and E). 

 

 

 

 

Figure 4.1 AFM micrographs of control and test samples. (A) Planar control. 

(B) Image of the master of ‘A’ showing 20 nm high islands and the disorganized, 

but not random, arrangement and (D) the embossed pattern from shim ‘A’ in 

PCL showing retained spatial fidelity but loss of nanoisland height. (C) Image of 

the master ’B’ showing 30 nm high islands and their disorganized, but not 

random, arrangement and (E) the embossed pattern in PCL showing retained 

spatial fidelity but, again, loss of height (Maclaine et al., 2012).  
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Section analysis of fifteen regions of representative PCL substrates for 

topography ’A’ and ‘B’ revealed an average nanoisland height of 14 nm and 18 

nm respectively. Illustrative views are shown in Figure 4.2A and 4.2B. The 

centre-centre periodicity is constant at 150 nm for both A and B before and after 

embossing (Maclaine et al., 2012).  

 

 

 

Figure 4.2  Section analysis of substrates A and B. A loss of height 

reproduction is noted on section analysis of the PCL substrates produced using 

shims A and B. 

 

 

4.3.2 Cellular analysis of substrates using microscopy 

OPN and OCN were measured after 7, 14, 21 and 28 days of culture for all time 

points and materials. OPN was first noted in the nucleus, subsequently in the 

cytoplasm, and finally in the extracellular environment. The cell number (cell 

growth) was seen to increase with time on control and test materials, but OPN 

was expressed earlier (day 14) on the test topographies (14 nm and 18 nm) and 

in far higher levels by days 21-28 on the topographies compared to planar 

controls (figure 4.3).  
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Figure 4.3  Temporal immunofluorescence analysis of OPN expression. Good 

cell growth was observed on all materials. By day 14, OPN expression was only 

noted on the 14 nm (A) and 18 nm (B) topographies, not planar control. After 21 

days some cells on the flat material were expressing the marker around the 

nucleus, but by this time OPN expression was clearly observed within the 

cytoplasm of HOBs on the 14 nm and 18 nm topographies. By 28 days, whilst OPN 

expression was still peri-nuclear on the control, extracellular OPN was seen on 

the 14 nm topographies (white arrow). Red = actin, Green = OPN. Scale bar 50 

µm. 

 

OCN (a definitive marker of the osteoblast phenotype) was only noted at above 

background levels in HOBs on the 14 nm islands at 21 and 28 days of culture. 

Very few cells expressed OCN on the planar material and expression on the 18 

nm islands was at a level between the controls and 14 nm islands (figure 4.4).  
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Figure 4.4  Temporal immunofluorescence analysis of OCN expression. Very 

few cells on the planar control and on the 18 nm nanoislands (B) expressed OCN. 

Dense foci of green immunofluorescence were noted on the 14 nm substrates (A) 

after 21 and 28 days of culture. Red = actin, Green = OCN. Scale bar 50 µm. 

 

 

4.3.3 Cellular analysis of substrates using qPCR 

The 14 nm topography expressed more RUNX2 (ct value 1.92, s.d. 0.68) at 25 

days than the planar control (ct value 1.049, s.d. 0.42) and 18 nm topography (ct 

value 1.04, s.d. 0.61) (figure 4.5). Statistical analysis using T-test revealed a 

significant difference (p<0.05) between the RUNX2 expression on 14 nm 

nanoislands in comparison with the planar and 18 nm substrates. The rna yield 

and integrity is detailed in appendix 7 (table A3). 
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Figure 4.5  RUNX2 expression at 25 days. RUNX2 expression is greatest on the 

smallest nanotopography (14 nm). The difference between the level of 

expression on the 14 nm islands and both the planar material and the 18 nm 

islands is statistically significant (*p<0.05 T-Test). Results = mean ± standard 

deviation, n=3. RQ: relative quantification. 

 

 

4.4 Discussion 

The technique in this chapter facilitates rapid and cost effective fabrication of 

large areas (in this case 2 cm2, but could easily be larger) of disordered, but not 

random, nanoscale topography. The AFM images show that the islands had a 

fixed and controlled periodicity of 150 nm, and islands packed largely as 

honeycomb-hexagonal arrays.  

 

 

Reports have also focused on the importance of nanoscale height in the 

elicitation of a cell response. In 2004 it was proposed that sub-20 nm was 

important for stimulation of cell activities (Dalby et al., 2004b; Sjostrom et al., 

2009a). AFM results revealed a loss of nanoisland height, from the 20 nm and 30 

nm dimensions used to produce the shims, to the 14nm and 18nm dimensions 

obtained from AFM analysis of the substrates. The disordered features presented 

to the cells were sub-20 nm in height, 14 nm and 18 nm. It is postulated that the 

height loss may be due to polymer coating the shim coupled with the small sizes 

of the features involved. Measurement limitations were also present due to the 

size of the nanoprobe. 
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The differentiation time course used in this report is based on a seminal paper 

by Stein et al regarding the molecular mechanisms through which cells of the 

osteoblast phenotype undergo proliferation and differentiation, and the inter-

relationships between the two (Stein and Lian, 1993). In their work, the proteins 

secreted by osteoblasts were identified and characterized, and the proteins and 

growth factors relating to bone ECM and the mRNA transcripts analysed (Stein 

and Lian, 1993).  

 

 

My work has revealed cell proliferation and expression of the osteogenic 

phenotype, with OPN expression seen cytoplasmically at 14 days on the smaller 

topography. The more specific and latterly expressed bone marker protein OCN 

was maximal on the smaller topography, with increased levels seen at days 21 

and 28. The increased production of RUNX2 at 25 days on the 14 nm high 

topography was supported by the immunofluorescence. In this report topography 

‘A’ with the 14 nm high nanoislands produced the highest levels of 

osteoinduction in a notable absence of osteogenic media. As expected, the 

osteoblastic phenotype was minimally expressed on the planar control. 

 

 

The results presented within are in agreement with observations that disorder 

and sub-20 nm height are important factors for cell response (in this case bone 

formation). The 14 nm islands are more bioactive than their 18 nm islands 

counterparts suggesting that cells are highly responsive to very small features. 

The smallest they have been seen to respond to previously were 10 nm, at which 

height filopodial interaction was observed (Dalby et al., 2004c; Sjostrom et al., 

2009a). 

 

 

The nanoislands created by block co-polymer phase separation have been 

embossed onto the surface of PCL.  The loss of nanoisland height associated with 

thumb embossing proved beneficial whilst the spatial orientation of the pattern 

was retained. The loss of height is likely attributable to the moulding of 
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nanoscale features into a concave shim – i.e. some polymer may stick to the 

bottom of the pits in the shim resulting in smaller features in the embossed 

replica.  

 

 

4.5 Conclusion 

Highly osteogenic, disordered nanotopographies can be manufactured into 

thermoplastics in a rapid and cost-effective way through the use of block co-

polymer phase separation. Osteogenic topographies reproducibly and cost-

effectively produced have a potentially useful application in the fields of 

implant technology and regenerative orthopaedics. 
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5  Discussion 
5.1 Background 

The invention of the microscope in the 1800s facilitated both an increase in the 

understanding of human cells, and lead to the discovery in the early 1900s that 

red blood cells, white blood cells and platelets originated from a single “stem”. 

Since the discovery of stem cells, research has increased exponentially. 

Transplantation of human stem cells began in the 1950s as a management for 

depleted functional bone marrow, caused by haematological and oncological 

conditions, and in 1963 Ernest McCulloch and James Till quantitatively described 

the self-renewing properties of murine bone marrow cells (Till and McCulloch, 

1963). 

 

 

Stem cells can differentiate into multiple lineages. For example, MSCs can form 

the mesenchymal lineages (predominantly osteocytic (bone), adipocytic (fat), 

chrondrocytic (cartilage) and fibroblastic (fibrous)), whilst embryonic stem cells 

can form all tissue layers found in a developing embryo (endo-, meso- and 

ectodermal). MSCs are regarded as non-immunogenic (Chamberlain et al., 2007) 

and are potentially transplantable into allogeneic recipients without the use of 

immunosuppressants. 

 

 

MSCs are being harvested from arthroplasty patients at the time of surgery. The 

proliferative capacity, cellular spectrum and usefulness of stem cells harvested 

from bone marrow is independent of age and OA aetiology (Webster et al., 

2009). The HBMCs harvested come from the very patients who require 

orthopaedic implants and display much of the phenotypic character of the cell 

population encountered when devices are implanted. This facilitates research 

into the fundamental properties of the cells and their interactions with 

biomaterials. The harvest of stem cells and human bone marrow has become 

more widespread but despite nearly four decades of research a specific cell-

surface marker, which could uniquely identify and select for the MSC/SSC 

phenotypes, remains elusive (Tare RS, 2009). A new generation of cell markers 

and antibodies are anticipated and it may become commonplace to isolate 

progenitors or stem cells using a “cocktail” of antibodies (Tare RS, 2009). 
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Concurrently, stem cell research continues to contribute to chemical and 

topographical advancements in implant design. Composite grafts, formed from 

combinations of two or more materials, are being used to harness stem cell 

multipotency (Brady et al., 2010). Two cell types simultaneously cultured within 

a biphasic gel resulted in demarcated layers of bone and cartilage like cells 

(Brady et al., 2010). At cellular and sub-cellular levels, morphological and gene 

expression differences have been noted with changes in the culture environment 

presented to stem cells (including 2d culture versus 3d scaffolds). Culture of 

mouse embryonic stem cells (in porous tantalum and on solid substrates) 

revealed the exclusive expression of several genes following 3d culture, 

including the gene encoding BMP4 (Liu et al., 2006).  

 

 

Knee surgeons have set a precedent for the use of MSCs and HBMCs (or SSCs) in 

the prevention of osteoarthritis by the management of focal cartilage defects. 

Developed between the late 1950s and the late 1980s, techniques such as pridie 

drilling (Pridie, 1959), spongialization (Ficat et al., 1979), abrasion (Johnson, 

1986) and microfracture (Key, 1931) penetrate the subchondral bone facilitating 

the release of blood and bone marrow (containing multipotent MSCs) into the 

area of articular surface damage and the intra-articular space. Their success was 

limited by the resultant production of fibrocartilage, as opposed to the 

preferred hyaline cartilage. 

 

 

Developments in cell biology led to a change in focus away from a disruption of 

the subchondral plate to direct chondrocyte implantation within the defect. In 

mosaicplasty the chondrocytes take the form of an autogenous chondral or 

osteochondral graft, obtained from the peripheral, non-weight bearing regions 

of the joint (Yamashita et al., 1985). Autologous chondrocyte implantation (ACI) 

involves the ex vivo expansion of harvested chondrocytes followed by deposition 

into the primary defect (Brittberg et al., 1994). ACI was first introduced in 

Sweden in 1987, and was used clinically in the USA in 1995. In some cases 

chondrocytes are cultured within an implantable collagen matrix, a technique 

known as matrix-guided ACI (MACI). 



 136 
 

Combination of the two principles (subchondral bone disruption and chondrocyte 

implantation) led to the next progression in the series: bone marrow or BMSC 

deposition. Fresh non-culture expanded BMSCs are obtained using a cell 

separator, mixed with a protein matrix and collagen HA scaffold. They are then 

transplanted into microperforated and abraded osteochondral defects using 

minimally invasive arthroscopic techniques (where instruments and a small 

camera (arthroscope) are introduced into the knee joint through small portals 

(knee arthroscopy) (Assor, 2010). 

 

 

MSC isolation from autologous bone marrow and culture expansion has also been 

undertaken for the primary management of osteoarthritis. In an ongoing 

feasibility and safety study patients suffering from gonarthrosis II-III are being 

recruited. Twenty-one days after MSCs are isolated, a single intra-articular 

injection of approximately 40 million MSCs is being undertaken, with clinical 

questionnaire and MRI follow-up. The theory is that the injected MSCs will have 

a sufficiently regenerative effect on articular cartilage to be evident on MRI 

(Coll R, 2010). 

 

 

Implant osseointegration represents a combination of bone apposition to the 

implant with functional fixation (Petrie T, 2008) and is a prerequisite for the 

success of uncemented orthopaedic implants. It requires the adhesion and 

proliferation of osteoblastic cells, and differentiation of osteoblastic precursors, 

such as SSCs/BMSCs. Cells are known to be responsive to chemical cues (Curran 

et al., 2006), stiffness in 2D and 3D culture (Wang et al., 2010) and 

topographical features (Dalby et al., 2007). Attempts to functionalise 

orthopaedic implants with topographical cues have generally focused on non-

specific roughening, using techniques such as acid etching (Cho and Park, 2003), 

grit and sand blasting.  

 

 

Topography (the surface features of a material) offers the potential to present 

osteogenic stimuli in situ, ideally without the need for soluble mediators (which 
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may become transported away from the site of implantation with the inherent 

possibility of undesirable effects at distant regions). Topography, when designed 

well, has the particular advantage that the features can be retained over time, 

especially if concave in nature. This is in contrast to osteogenic surface 

chemistries (such as BMP or HA), which may be gradually degraded or lost as a 

consequence of the tissue environment (Rokkum et al., 2002).  

 

 

The control of MSC differentiation by topography at the nanoscale has been 

demonstrated (Dalby et al., 2007). A surface disordered at the nanoscale level 

has, in the absence of osteogenic media, been shown to stimulate MSCs to 

produce bone mineral on a surface comprised of PMMA (Wilkinson et al., 2011). 

Although a different grade, this is the main constituent of bone cement, a 

substance not known for its osseoinductive properties. It seems likely that the 

incorporation of biomimetic elements, such as partially disordered 

environmental cues (Wilkinson et al., 2011) and features resembling osteoclast 

resorption pits, into the design of future devices could assist in promoting 

osseointegration (Wilkinson et al., 2011). 

 

 

Recently it became possible to generate nanopatterned diamond surfaces using 

chemical vapour deposition (CVD), a technique that could offer a valuable means 

of patterning bulk areas of material with nanoscale features. An in vitro study of 

CVD deposited features suggested that the smaller features (in the range of 30-

100 nm) were more supportive of osteoblastic functions than larger features 

approaching 100-600 nm in size, although differences in clustering of the 

features was also likely to have contributed to this (Webster et al., 2009). Most 

interestingly, it has been possible to generate defined pillar-like titania 

nanofeatures using through-mask anodisation, and 15 nm high pillars were 

particularly effective at promoting the differentiation of MSCs into osteoblasts 

(McNamara et al., 2011) (Sjostrom et al., 2009a). 

 

 

MSC differentiation can also be controlled through modification of the maximum 

distortional strain and interstitial fluid flow. Differential control of the maximum 
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shear strain and relative fluid/solid velocity can be useful in the formation of 

different tissue types, possibly with variation within the same implant; to 

produce bone and articular cartilage for example. High levels of these stimuli 

favor MSC differentiation into fibroblasts, intermediate levels into chondrocytes, 

and low levels into osteoblasts (Huiskes et al., 1997). Application of the above 

principles could lead to the development of 3d scaffolds seeded with stem cells 

and cultured in the form of an autologous osteochondral graft suitable for use as 

a biologic arthroplasty. However, it is likely that the development of 3d 

scaffolds, especially custom made to a patient’s own anatomy would be 

expensive and interstitial flow, whilst controllable in vitro, would be less 

predictable in vivo. 

 

 

Research, combining chemical and topographical work, revealed that the effect 

of HAPEX on HOBs was enhanced by the addition of micrometric topography. The 

cells attached more rapidly and in greater numbers to the optimized surface 

(Dalby et al., 2002a). Nanoparticulate coating with HA on microstructured 

titania has also been undertaken (Nishimura et al., 2007). In addition, new 

osteogenic compounds are being developed with optimised topography 

(Kantawong et al., 2010). An acellular composite of poly-varepsilon-caprolactone 

and HA, spatially infused with TGFβ3-adsorbed or TGFβ3-free collagen hydrogel, 

was successfully implanted as a distal humeral replacement in rabbits (Lee et 

al., 2010). The result, a load-bearing composite of avascular regenerated 

cartilage integrated with regenerated subchondral bone containing well- defined 

blood vessels, formed using the recruitment of endogenous cells liberated at the 

time of distal humeral excision (Lee et al., 2010). 

 

 

5.2 My research choices 

My focus has been the production of bone graft material for orthopaedic usage in 

order to address the limited availability of autogenous bone graft. To this end I 

desired substrates that would be positively and exclusively osteoinductive. 

Recent work from our group and others (Biggs et al., 2009; Biggs et al., 2008; 

Dalby et al., 2006a; Dalby et al., 2006b; Sjostrom et al., 2009a) demonstrated 

the osteogenic potential of nanotopography. HA, a crystalline molecule of 
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calcium and phosphorus (a synthetic analogue of apatite, the mineral fraction of 

human bone) has been used in surgery since 1920 (Petit, 1999). HA is 

osteoconductive and has the potential to draw osteoblasts out from bone. 

However, more recent work on HA coating silk for ligament scaffolds has 

suggested that HA may also be osteoinductive (He et al., 2013). Dexamethasone 

and BMP2 have been used in vitro to induce the osteoblast phenotype (Jorgensen 

et al., 2004). Dexamethasone promotes ALP and OCN secretion in vitro (Yang et 

al., 2003) and recombinant BMP2 has been shown in pre-clinical and clinical 

studies to induce union in critical sized defects and spinal fusion (both 

intervertebral and posterolateral) (Chen et al., 2004). BMP2 has also been FDA 

approved for use in acute open tibial shaft fractures (Woo, 2012a).  

 

 

I chose a wide variety of test substrates in addition to the planar PCL control 

and the in vitro comparator osteogenic media. I added chemistries that have 

already found clinical application (namely BMP2 and HA) and topographies, the 

efficacy of which is beginning to emerge; NSQ50 (Dalby, 2009) and nanopillars 

(nanoislands) (McNamara et al., 2011) (Sjostrom et al., 2009a). The substrates 

used have evolved over the period of experimentation. The osteogenicity of 

HAPCL relative to PCL and the enhancing effect of the NSQ50 topography on PCL 

resulted in my decision to use NSQ50 HAPCL. To my knowledge the concept of 

combining HA with a bioabsorbable biomaterial is a new one, although more 

permanent substrates have previously obtained clinical use in the form of HAPEX 

(Dalby et al., 2002a) and HA coated implants (chapter 1.5.5). They have also 

been researched as HA coated structured titania (Nishimura et al., 2007), and 

HA coated silk (He et al., 2013).   

 

 

The bioactivity of the entire surface of a clinically viable substrate must be 

controlled. I successfully developed a dual embossing technique capable of 

embossing both sides of a substrate in its entirety (chapter 2). As a substrate for 

implantation, and potentially osteoinduction, seeding of both sides would not 

have been necessary, however as a proof of concept and as a transport medium 

for in vitro expanded and potentially differentiated HBMCs, dual sided culture 

was important. HBMC seeding and culture protocols for both single-sided 



 140 
horizontal and dual sided vertical culture (chapter 2.2.5) have yielded positive 

results with the osteogenic phenotype predominating both microscopically and 

on PCR analysis.  

 

 

AFM and SEM results revealed that the NSQ50 and nanoisland topographies were 

reproduced with high fidelity into the PCL substrates (figures 2.12-2.15 and 4.1). 

All of the topographies were shown to incorporate a controlled degree of 

disorder. In the case of NSQ50 this disorder was produced using e-beam 

technology and resulted in a controlled displacement of centre-centre spacing 

(chapter 2.2.1). The nanoisland disorder was produced by the cheaper to 

manufacture option of block co-polymer separation (chapter 4.2.1). The 

nanotopographies reproduced in PCL using hot embossing techniques (chapter 

2.2.2) were associated with osseoinduction to a varying degree. It is speculated 

that disorder is of fundamental biological importance. Cells have many 

nanoscale cues in their environment and these may be well ordered (e.g. 66 nm 

collagen banding pattern), however it is unlikely to be to the degree obtainable 

at the limits of EBL resolution. Intriguingly collagen type 10 forms a 

nanodisordered hexagonal lattice (Kwan et al., 1991) of similar scale to the 

nanofeatures presented by NSQ50 and the 14 nm nanoislands. This non-fibrillar 

collagen is found in cartilage during endochondral ossification, and at sites of 

large volume fracture healing (Kwan et al., 1991; Stephens et al., 1992). 

 

 

The osteogenic differentiation of cultured human mesenchymal cells derived 

from adult bone marrow has been characterized (Marom et al., 2005). Fetal calf 

serum (FCS) isolated mesenchymal cells (under the influence of dexamethasone, 

β-glycerol phosphate, and ascorbate, and in the presence of 10 % v/w) form 

aggregates or nodules expressing a 4- to 10-fold increase in alkaline phosphatase 

activity and calcium accumulation at 1 week, and increasing over time 

(Pittenger et al., 1999). The results outlined in this thesis are indicative of the 

success of my bone marrow aspiration, cell separation by Ficoll gradient, and 

adherence to plastic techniques. The HBMCs that I used in the production of 

these results were produced according to the protocol I developed and detailed 

in chapter 2  (chapter 2.2.4). I have taught these techniques to researchers 
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within and out-with the Centre of Cell Engineering and these techniques supply 

the HBMCs currently used for Msc, MD, PhD and post-doctoral research.  

 

 

The dual embossing substrates have been shown to be reproducible. The NSQ50 

nanotopography alone is capable of inducing osteogenic differentiation over and 

above that which occurs on planar controls. The 14 nm nanoisland topography 

has also been shown to support differentiation and support the osteogenic 

phenotype (chapter 4). The vertical culture technique has simply and cheaply 

rendered dual sided culture possible for periods of up to and including 28 days 

(chapters 2 and 3). Following shim production the NSQ50 and 14 nm nanoisland 

topographies share a manufacturing pathway, i.e. hot embossing (chapter 

2.2.2).  The nanoisland topography has the advantage of using block-copolymer 

technology (chapter 4.2.1) inherent in which is a markedly cheaper and more 

available manufacturing process.  

 

 

The following discussion considers the results of the transcription analysis (qPCR) 

and immunofluorescence from the NSQ50 (chapter 3) and nanoisland 

topographies (chapter 4). These paragraphs are written with the caution that 

only the latter time-points of 21 and 28 days were used to visualize OCN during 

the NSQ50 work and only the 28-day time-point used in order to visualise OPN. 

Whilst bearing this in mind it should also be noted that whilst HOBs were used 

for the immunofluorescence experiments with regards to the nanoisland 

topographies (performed first and before the HBMC harvest and culture 

expansion was undertaken) and HBMCs were used with regards to NSQ50, the 

planar substrates themselves were consistent throughout. The transcribed 

proteins RUNX2, OPN and OCN discussed in chapter 1.4.2 are considered in turn 

here. The section concludes with a discussion of the calcium deposition.  

 

 

When HBMCs are placed in culture, bone-related genes are down regulated, the 

cells enter a proliferation phase, and manipulation of the time taken for the 

three phases of in vitro osteoblastic differentiation is possible. For example 

dexamethasone in media accelerates differentiation and increases expression of 
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post-proliferative genes and relatively early mineralised nodule formation (Stein 

and Lian, 1993). RUNX2 is expressed at early stages of the MSC line, prior to 

bone formation, and has been described as the ‘principal osteogenic master 

gene for bone formation’ (Lian et al., 2006), it was detected by qPCR at day 7 

following culture of HBMCs on planar and NSQ50 PCL (figure 3.3) and at day 25 

on the planar and nanoisland topographies (figure 4.5). In addition it was found 

at days 11 and 28 on all planar and NSQ50 topographies (figures 3.8-3.9, tables 

3.4 and 5.3).  

 

 

OPN and OCN expression increase in parallel with increasing mineralization. OPN 

expression is active in the proliferative phase and also increases at the onset of 

mineralization. Under control conditions this would equate to expression on days 

10-12 and peaking at days 16-20 (Stein and Lian, 1993). OPN transcription was 

apparent on all planar and NSQ50 substrates at days 11 and 28 and maximal on 

the NSQ50 PCL and NSQ50 HAPCL at day 11 (figure 3.8, table 5.3). The OPN 

protein seen by 7 days on the nanoisland topographies was clearly visualised 

using immunofluorescence on all planar, NSQ50 (figures 3.1 and 3.4, table 5.1) 

and nanoisland topographies (figure 4.3, table 5.2) on day 28. 

 

 

OCN is post-proliferative, and expression correlates with mineralization thus 

OCN expressing cells are only found within mineralizing nodules (Stein and Lian, 

1993). OCN transcription was apparent on planar and NSQ50 topographies at 

days 11 and 28. The relatively greater expression of OCN on the NSQ50, NSQ%) 

HAPCL and osteogenic media were significant at day 11 (ANOVA p ≤ 0.05)  (figure 

3.8). In addition the differences in OCN expression between these substrates 

were also significant. At day 28 OCN levels on the NSQ50 topographies, and 

following use of the osteogenic media, were below control levels (planar PCL) 

(ANOVA p ≤ 0.05)  (figure 3.9, table 5.3). OCN is more bone specific than OPN 

and was seen at 14 days on the 14 nm topography and days 21 to 28 on the 

planar and 18 nm nanoisland substrates. OCN was relatively scarce on all four 

planar and NSQ50 topographies following 21 days vertical culture (figure 3.7) 

however was visualised clearly using immunofluorescence on all planar, NSQ50 

(figure 3.5 
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, table 5.1) and nanoisland topographies by day 28 (figure 4.4, table 5.2).  

 

 

In cell culture of BMSCs, up to days 10-18 mainly intracellular mineralization is 

visible by numerous needle-like crystal structures in the cell cytoplasm and in 

vacuoles. After 20-30 days, the crystal content of these vacuoles is released, 

most probably by membrane fusion to the outside of the cells. At days 20-25, 

crystals accumulate extracellularly in the collagen matrix resulting in large 

plate-like and noncollagen associated crystallites on the culture disk surface 

(Zhao et al., 2008). On all six substrates used in chapter 3, calcium staining was 

noted at day 28. Of these substrates maximal calcium deposition was noted on 

the NSQ50 PCL and NSQ50 HAPCL. 

 

 

The osseoinductivity of the NSQ50 nanopit topography was enhanced by 

incorporation of HA into the PCL (chapter 3). The 14 nm nanoisland topography 

was the most osseoinductive of the substrates tested in chapter 4. A comparison 

of the results described in chapters 3 and 4 has been outlined below (tables 5.1-

5.3).  

 

 

  Planar Osteogenic BMP2  HAPCL NSQ50  NSQ50 
HAPCL 

Horizontal OPN + + ++ +++ ++  

OCN + - + ++ +  

Alizarin 
red 

++ ++ ++ + +  

Vertical OPN + ++ + +++ +++ ++++ 

OCN ++ + ++ +++ +++ ++++ 

Alizarin 
red 

+ ++ +++ ++ +++ ++++ 

 

Table 5.1 Summary of microscopy results (chapter 3) Horizontal culture 

revealed osseoinduction by HAPCL, BMP2 and NSQ50 at the 28-day time-point 

analysed (figures 3.1, 3.2). NSQ50 HAPCL was optimally osteoinductive during 

the vertical culture; HAPCL and NSQ50 were both comparatively inductive of the 

osteogenic phenotype (figures 3.4, 3.5 and 3.6). 
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 Planar 14 nm 18nm 

 7 14 21 28 7 14 21 28 7 14 21 28 

OPN + - + - + ++ +++ +++ ++ +++ ++++ ++++ 

OCN + - ++ + + ++ +++ +++ + - + ++ 

 

Table 5.2 Summary of immunofluorescence results (chapter 4). OPN 

expression was seen by 7 days on the nanoisland topographies. The more specific 

and latterly expressed bone marker OCN was seen at 14 days on the 14 nm 

topography and days 21 to 28 on the other substrates.  

 

 

  NSQ50 Osteogenic NSQ50 HAPCL 
Day 11 RUNX2 - - - 

OPN + + * - * +++ * 

OCN ++* ++* +++* 

Day 28 RUNX2  + ~ +  

OPN  -  + -  

OCN  -* --** -* 

 

Table 5.3 Summary of qPCR results comparing planar PCL and the NSQ50 

nanotopography (chapter 3, figures 3.8 and 3.9). Osteogenic markers were 

identified on qPCR at days 11 and 28 in all cases. OPN expression was greater at 

day 11 on the optimally osteogenic NSQ50 topographies reducing comparative to 

the planar control by day 28.  

 

 

A decrease in cell proliferation is associated with increasing osteoblast 

differentiation, thus OCN expression is post-proliferative (Stein and Lian, 1993). 

It is therefore unsurprising that the cells which expressed OCN first were also 

the ones associated with least confluence and the least RNA extracted, and vice 

versa (chapter 2.3.6, table 2.3). Dexamethasone in media accelerates 

differentiation, increases expression of post-proliferative genes, leads to 

relatively early mineralised nodule formation, and may deplete the pool of 

proliferating undifferentiated cells (by pushing cells to a terminal degree of 
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differentiation beyond their natural rate) (Stein and Lian, 1993). In my research 

PCL in association with osteogenic media yielded less RNA than planar PCL.  

 

 

The location of the OPN immunofluorescence and alizarin red staining of 

calcification in the cells was temporally consistent between the topographies 

(NSQ50 and nanoisland) as well as their planar controls. OPN is an acidic protein 

encoded by a single gene that is responsive to a number of different 

transcription factors. It may be soluble, working as a cytokine, or immobilised, 

as an ECM protein (Standal et al., 2004). OPN has electronegative glutamic acid 

and aspartic acid residues as well as a Ca2+ motif making it bind tightly to HA, 

inhibiting the growth of HA crystals. The secretory pathways and their mediators 

in osteoblasts remain largely unknown (Zhao et al., 2008). Exocytosis is a 

fundamental process through which eukaryotic cells release hydrophilic 

secretory products into the extracellular space, or translocate specific 

functional proteins to the plasma membrane (Chieregatti and Meldolesi, 2005; 

Verhage and Toonen, 2007), and it is a prerequisite for osteoclast and osteoblast 

function (Zhao et al., 2008). At least two types of secretory activities mediate 

bone formation by osteoblasts, the first is deposition of bone matrix proteins 

and the second is delivery of matrix vesicles into the extracellular space to 

facilitate mineralization. During osteoblast maturation, vesicles containing OPN 

and OCN change from peri-nuclear to nodular (Zhao et al., 2008). This change in 

location is consistent with the staining seen in figures 3.5, 3.6 and 4.3. 

 

 

One model of mineralization by osteoblasts involves amorphous calcium 

phosphate material which is secreted via an exocytotic process directly from 

vacuoles of osteoblasts.It is deposited extracellularly, propagates into the 

collagen fibril matrix, and maturates in to HA (Zhao et al., 2008). This model is 

supported by the presence of intracellular needle-like crystalline bone apatite in 

vacuoles in vivo in the osteoblastic cells of the periosteum of tibiae (Zhao et al., 

2008). I postulate that the appearances of the co-stained Coomassie blue and 

alizarin red images (figure 3.2), in which the topographies associated with 

greatest osteoinductivity appeared to have least calcified deposits, can be 
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explained by masking of the calcification by Coomassie blue staining of the 

protein vesicles surrounding them.  

 

 

Previous studies have shown induction of the osteogenic phenotype using 

chemistry, nanotopography and a combination of the two (Dalby et al., 2002a; 

Dalby et al., 2007; Dalby et al., 2006a; Hamilton and Brunette, 2007; He et al., 

2013). The phenotype analysis performed in this research was new and 

confirmed that the HBMC differentiation was targeted towards osteogenesis and 

that the induction of differentiation was not random in nature. I have used 

immunofluorescence and qPCR to ascertain that the NSQ50 topography in 

association with PCL and HAPCL was specifically osteoinductive. The 

differentiation of the HBMCs was ‘targeted’ towards osteogenesis, to the virtual 

exclusion of all other mesenchymal tissue types (chapter 3.3.4-3.3.6, figures 

3.7-3.9, tables 3.3, 3.4 and 5.3). Whilst I have not undertaken the same test of 

targeting for the 14 nm nanoislands, the osteoinductivity was marked.   

 

 

Work within our group has been undertaken to use nanotopography to culture 

expand undifferentiated HBMCs (McMurray et al., 2011), work is on-going to 

determine whether this may also be possible by using hydrogels. The potential to 

combine the rapidly dividing potential of HBMCs in the undifferentiated state 

(MSCs) with the substrates for subsequent cell differentiation and implantation is 

exciting and may well form the basis for the bone graft of the future. Dual 

embossed substrates of either of the nanotopographies studied could have a 

number of uses, with and without the inclusion of HA in the PCL. They could be 

applied purely as an osteoinductive agent and implanted cell free, used as a 

transport medium for in vitro culture expanded cells, or potentially used for a 

combination of both, in which dual embossing is undertaken but cell seeding is 

single-sided. This latter technique would depend upon locally available HBMCs 

and MSCs (available in the patients’ blood) colonising the un-seeded surface. 

Care would need to be taken to protect the cell-free embossed surface during 

cell culture and substrate handling.  
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Problems to be overcome. 

Concerns regarding the possible induction of neoplasia (cancer) by inoculation of 

stem cells have thus far been unfounded. MRI at 2 years following the 

inoculation of patient’s inter-vertebral discs and osteoarthritic joints was 

negative for neoplasia in all bar one of the two hundred and twenty-six patients; 

in that case neoplasia was thought to be independent of the treatment. This 

analysis of feasibility and safety did not determine the efficacy of culture-

expanded MSC inoculation (Centeno et al., 2010). It is my opinion, however, that 

patients would be much happier receiving their own cells back than taking the 

perceived risk of receiving someone else’s. 

 

 

Some concerns regarding the use of animal-derived media supplements for 

culture purposes have been expressed. Association of FCS proteins with cells 

expressing major histocompatibility complex class I molecules can result from 

long-term expansion of skeletal stem cells in FCS. This can lead to a potentially 

damaging mixed lymphocyte reaction through an induction of T-cell proliferation 

(MacDermott and Bragdon, 1983). Alternative media supplements such as 

autologous human platelet lysate are being popularized (Centeno et al., 2010). 

This could be used for cell culture in place of FBS, in order to reduce usage of 

animal derived products and alleviate any concerns expressed with respect to 

the safety of cell culture for re-implantation using FBS. 

 

 

BMP usage has been losing favour in vivo in spinal patients in whom stimulation 

of osteoclasts appears to be responsible for failures in fixation. In addition, 

hypersensitivity seems to follow BMPs first use preventing multiple applications 

to the same patient (by personal communication with Meek). Recombinant BMP2 

usage was involved in 62 adverse events outwith the spinal surgery and 834 in 

association with spinal procedures (to December 2011). 44-48 % of these patients 

required secondary procedures. Adverse events included osteolysis, heterotopic 

bone formation and pseudarthrosis (Woo, 2012a, b). 
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In terms of orthopaedic application it could be envisaged that patterns 

embossed onto polymers could be used in fracture healing as biodegradable 

templates for growth of living, bone-marrow-derived, in vitro expanded 

autologous osteoblasts. Application to the development of metal implant 

surfaces would also be interesting.  The phase separated master materials could 

be used to template for directed anodisation of e.g. Ti (Chu et al., 2005; 

Sjostrom et al., 2009a; Sjostrom et al., 2009b). Transfer of the patterns into a 

titania oxide layer may facilitate its use in the osseointegration of load bearing 

metal implants. 

 

 

Future ideas 

It would be of academic interest to confirm the timeline of transcription factors 

versus protein expression on immunofluorescence however this would require a 

significant amount of work and large cell numbers. It would be challenging to 

culture enough cells to analyse RUNX2, OPN and OCN by qPCR and 

immunofluorescence at the multiple time-points using the same cell-line without 

first culture expanding the cells within the MSC state first.  

 

 

Additional research would be required to determine whether chemical and 

topographical cues act in a genuinely synergistic manner, independently, or 

potentially even antagonistically by stimulating different pathways and resulting 

in unwanted cross talk. In view of the increase in osseoinduction shown by 

NSQ50 HAPCL and NSQ50 PCL I believe the latter is unlikely. The intra-cellular 

level of the topographical and chemical influences is yet to be fully understood. 

 

 

The results of these ideas would be of personal interest and may determine 

future regions for genetic manipulation. The osteoinductivity of NSQ50, NSQ50 

HAPCL and 14 nm nanoislands has already been identified, however, and 

therefore with the aim of a clinically useable substrate in mind I believe that a 

direct comparison of NSQ50 with 14 nm nanoislands. This work would be 

facilitated by the use of local supplies of bone marrow and the HBMC isolation 

protocols described and would be in my opinion a more urgent area of study. 
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As a transport medium I would expect the two-sided substrates (such as those 

described in chapters 2-3) in combination with either the NSQ50 or 14nm 

nanoisland topographies to function well. I have considered potential 3d options 

for protecting the topographies, including options of stacking substrates on top 

of each other or rolling the PCL into spirals after seeding. Pilot investigation 

with spirals has shown that PCL can be curled around 360 to 540o and held with 

18 gauge needles without the surfaces touching. These spirals can also be stood 

on their ends in 12-well plates and turned according to the vertical culture 

protocol outlined in chapter 2. 

 

 

5.3 Conclusion 

Highly osteogenic, disordered nanotopographies can be manufactured into 

thermoplastics in a rapid and cost-effective way through the use of block co-

polymer phase separation. These osteogenic topographies will have a potentially 

massive impact on the fields of implant technology and regenerative 

orthopaedics. The field of cartilage repair has seen HBMC usage progress from 

lab research to clinical usage. This suggests that the ex vivo culture expansion of 

cells extracted from human bone marrow and their re-implantation as 

autogenous bone graft (as explored in this thesis) has great potential to become 

a viable clinical entity. 
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Appendix 

 

The media, solutions and run protocols are detailed below. Unless otherwise stated the 

reagents were obtained from Sigma-Aldrich, UK. 

 

9 Acellular substrate analysis 

 

Simulated Body Fluid (SBF)1  

Reagents obtained from BDH lab supplies (UK) unless otherwise stated. 

MilliQ water        50 ml    

NaCl (VWR, Prolab, Belgium)    780 mg   

NaHCO3 (Fisher Scientific, UK)    35 mg   

KCL         22 mg   

K2HPO4.3H2O       23 mg  

MgCl2.6H2O        31 mg 

HCL (1M)        4 ml   

CaCl2        28 mg  

Na2SO4       7 mg  

(CH20H)3CNH2 (Sigma Aldrich, St Louis)    606 mg  

 

Reagents were added sequentially on a low temperature magnetic stirrer, pH adjusted 

to 7.40 with HCL / NaOH and the solution made up to 100ml with MilliQ water. The 

solution was filtered before use. The ion concentrations of human plasma and this form 

of simulated body fluid are equated with respect to sodium, potassium, magnesium, 

calcium, hydrogen phosphate, and sulphate ions. Chloride ion concentrations are 149 

mM in SBF and 103 mM in human plasma, whereas hydrogen carbonate ions are 4.2 mM 

in SBF and 27 mM in human plasma.1 
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2 Cell culture 

 

Antimicrobial solution: 1% Antimicrobial/antifungal/ L-Glutamine  

Penicillin 

Streptomycin 

Amphotericin B (Gibco, Invitrogen UK)   250 µg/ml  

L Glutamine        200 mM  

 

 

Modified DMEM 

DMEM         500 ml 

FBS        50 ml 

Antimicrobial solution     10 ml 

Nonessential amino acids 100X (Invitrogen, UK)  5 ml 

Sodium Pyruvate (100mM)     5 ml 

 

 

Modified αMEM  

αMEM         500 ml 

FBS        75 ml 

Antimicrobial solution     13 ml 

 

 

Osteogenic Media 

Modified DMEM       250 ml 

Ascorbic acid      4.4 mg 

Dexamethasone (39.2 mg in 100ml HS)   2.5 µl 
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3 HBMC harvest and HOBs 

 

Bone marrow transport medium 

PBS        200 ml 

EDTA        149 mg 

Antimicrobial solution     4 ml 

 

 

Ficoll Paque Premium      1.077 g/ml  

GE healthcare biosciences AB, SE-751 84 Uppsala 

 

 

Collagenase type XI      256U/ml 

 

 

HOBS  

Obtained from Promocell GmbH (Germany) 

 

 

 

Bone Morphogenic Protein (BMP2) 

BMP2        0.0012 mg  

Modified DMEM      12ml 

 

 

Trypsin-Versene Solution 

Trypsin        10X  

Versene 
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4 Cell microscopy 

 

Fixative 

Formaldehyde 37-41% (Fisher Scientific, UK)   10ml 

PBS        90ml 

Then sucrose (Fisher Scientific, UK)    2000 mg 

 

 

1% PBS/BSA 

BSA (Sigma Aldrich, St Louis)     1000 mg 

PBS   

        100 ml 

 

PBS Tween 0.5% 

PBS        200ml 

Tween 20 (Promega Corporation, Madison)   1ml 

 

 

Permeabilising buffer 

PBS        100 ml 

Sucrose        10300 mg 

Sodium Chloride (VWR, Prolab, Belgium)    292 mg 

Magnesium Chloride Hexa Hydrate (BDH lab supplies, UK) 60 mg 

Hepes (Fisher Scientific, New Jersey)    476 mg 

 

The reagents were dissolved sequentially and the pH adjusted to 7.2 using 1 M Sodium 

Hydroxide (Fisher Scientific, UK). Finally 0.5 ml Triton X 100 was added (Sigma-

Aldrich, Saint Louis).   

 

 

Antibodies  

OCN (OC4-30 and sc-73464), OPN (Akm2A1 and sc-21742), COL2a (sc-59958), MYOD (sc-

32758), TUBβ3 (sc-51670), PPARG (sc-51984) and PSELECTIN (sc-59935) obtained from 

Autogen Bioclear (UK) and Santa Cruz Biotechnology (USA) were used. 

 

5 RNA Extraction  

 

Stratagene RNA extraction 
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The elution buffer was warmed to 60oC. Mix 1 prepared: lysate buffer 6300 µl and 45 

µl βME (for 16 samples). 350 µl added per well, cell scraper used and lysate passed 

through 18 gauge needle then vortexed. ‘Absolutely mRNA protocol’ followed using 30 

µl elution buffer followed by incubation and centrifugation prior to a second elution 

stage of 20 µl elution buffer, re-incubation, and re-centrifugation. 

 

 

6 RT 

All of the reaction mixes were vortexed and microcentrifuged prior to thermocycling. 

 

Omniscript RT (50) (Qiagen) 

10ng RNA was used for ORT to yield 20 µl of ~1500 ng/µl cDNA for use in qPCR. 9 µl 

ORT mix* was added to each tube of RNA/ water control and centrifuged 8000 g for 1 

min. RNA and water were incubated at 65oC for 5 min and then held at 4oC. Incubation 

at 37oC for 60 min, inactivation at 93oC for 5 min and holding at 4oC until use or 

subsequent freezing at -20oC was undertaken.     

 

*ORT mix (for 4 test samples and a control water sample) 

10X Buffer RT 12 µl, dNTP mix (5 mM of each dNTP) 12 µl, Random Primer 12 µl, 

RNasin (40 U/µl) 1.5 µl, Omniscript RT 12 µl, and water 10.5 µl. 

 

Quantitect RT  

Genomic DNA elimination was undertaken by incubation of the following suspension at 

42oC for 2 min prior to placing on ice: gDNA wipeout (7x) 2 µl and RNA (up to 1 µg) and 

RNase free water 12 µl. 

 

RT was undertaken using the following mix and incubation undertaken at 42oC for 15 

min, inactivation of the qRTase at 95oC for 3 min and storage at -20oC for use in qPCR. 

RTase 1 µl, Quantiscript RT Buffer  (x 5) 4 µl, RT primermix 1 µl, Template RNA from 

above reaction 14 µl. 

 

 

7  QPCR 

Sybr green and Taqman qPCR kits were used as described below. 

 

The SYBR Green PCR method was used. The master mix consisted of:  

Quantifast SYBR green PCR mix for 12 reactions was 160 µl; forward primer (10 µM) 12 

µl; backward primer (10 µM) 12 µl; RNase free water 120 µl. 
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The run method was undertaken using the 7500 Fast Real-Time PCR system (Applied 

Biosystems) and was as follows: 

Hold   95oC 5 min 

Cycle x 40  (95oC 10 s, 60oC 30 s, 76oC 15 s)     

Melt Curve  (95oC 15 s, 60oC 1 min, 95oC 15 s, 60oC 15 s) 

    

     

The Brilliant III Ultra-Fast Sybr Green qPCR method was also used. The master mix for 

1 reaction consisted of: Brilliant III Ultra-Fast Sybr Green QPCR master mix 10 µl; 

Forward primer (10 µM) 1 µl; Backward primer (10 µM) 1 µl; RNase free water 5.7 µl; 

and diluted reference dye (1:500) 0.3 µl. 2 µl cDNA was added per test well and 2 µl 

RNase free water to each control well. The run method was undertaken using the 7500 

Fast Real-Time PCR system (Applied Biosystems) and was as follows: 

Settings: Quantitation CT, SYBR green, Fast 

Hold   95oC 3 min 

Cycle x 40  (95oC 5 s, 60oC 20 s) 

Melt Curve  (95oC 1 min, 55oC 30 s, 95oC 30 s) 

 

 

The Taqman qPCR was used for the definitive results. The master mix was as follows (1 

x mix): Taqman gene expression master mix 10 µl; Primerprobe  1 µl and water 7 µl. 

The reaction mixes were vortexed and microcentrifuged prior to thermocycling, and 

the plates centrifuged at 3600r.p.m. for 30 seconds (Eppendorf 5804R) prior to 

thermocycling. 

 

Settings: Quantitation CT, Taqman, Standard 

Hold   50oC 2 min, 95oC 10 min   

Cycle x 40  95oC 15 s, 60oC 1 min 

 

The Taqman primerprobe reference numbers were: 

RUNX2        HS 00231692-m1 

OPN (SPP1)        HS 00959010-M1 

BGLAP (OCN)       HS 01587814-g1 

SOX9         HS 01001343-g1 

TUBβ3        HS 00801390-s1  

PPARG        HS 001115513-m1 

MYOD        HS 00159528-M1 

18S         HS 99999901-s1) 
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8 RNA yield and integrity  

 

Table A-1 Relative gene expression at day 11 (chapter 3) 

RNA sample ng/µl A260 A280 260/280 

Planar 1 5.85 0.146 0.070 2.09 

Planar 2 5.23 0.131 0.065 2.01 

Planar 3 5.77 0.144 0.101 1.43 

NSQ50 1 5.01 0.125 0.067 1.88 

NSQ50 2 8.41 0.210 0.091 2.32 

NSQ50 3 3.54 0.088 0.052 1.71 

Osteogenic 1 5.38 0.135 0.076 1.77 

Osteogenic 2 4.89 0.122 0.056 2.18 

Osteogenic 3 4.81 0.120 0.055 2.17 

NSQ50 HAPCL 1 13.01 0.325 0.165 1.97 

NSQ50 HAPCL 2 4.67 0.117 0.056 2.08 

NSQ50 HAPCL 3 5.18 0.129 0.070 1.84 

 

 

 

Table A- 2 Relative gene expression at day 28 (chapter 3) 

RNA sample ng/µl A260 A280 260/280 

Planar 1 2.08 0.052 0.022 2.38 

Planar 2 1.73 0.043 0.013 3.31 

Planar 3 1.64 0.041 0.010 4.26 

NSQ50 1 2.48 0.062 0.027 2.26 

NSQ50 2 1.95 0.049 0.017 2.91 

NSQ50 3 3.29 0.082 0.052 1.57 

Osteogenic 1 2.28 0.057 0.036 1.59 

Osteogenic 2 1.74 0.044 0.015 2.99 

Osteogenic 3 2.36 0.059 0.023 2.53 

NSQ50 HAPCL 1 2.54 0.063 0.039 1.64 

NSQ50 HAPCL 2 1.61 0.040 0.035 1.14 
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NSQ50 HAPCL 3 5.42 0.014 0.075 1.81 

 

Table A-3 RUNX2 expression at 25 days (chapter 4) 

RNA sample ng/µl A260 A280 260/280 

Planar 1 2.64 0.066 0.006 10.51 

Planar 2 1.85 0.046 0.016 2.88 

Planar 3 2.44 0.061 0.016 3.87 

14 nm nanoisland 1 3.54 0.088 0.021 4.24 

14 nm nanoisland 2 1.94 0.048 0.014 3.36 

14 nm nanoisland 3 7.79 0.195 0.108 1.81 

18 nm nanoisland 1 2.02 0.051 0.008 6.43 

18 nm nanoisland 2 2.62 0.066 0.018 3.71 

18 nm nanoisland 3 3.20 0.080 0.010 7.65 
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