Reconfigurable Hardware for Control
Applications

Graeme Richard Milligan

A themed Portfolio submitted to the Universities of,
Glasgow,
Strathclyde,
Edinburgh
and Heriot-Watt
for the degree of Doctor of Engineering in

System Level Integration.

© Graeme Richard Milligan 2008

ABSTRACT

This portfolio document is intended to present the work carried out in order to
meet the requirements of the Engineering Doctorate (EngD) program undertaken at
the Institute for System Level Integration (ISLI). This program was undertaken in
partnership with the Universities of Glasgow, Edinburgh, Strathclyde and Heriott
Watt and was funded by EPSRC and SLI Ltd.

The use of control systems is becoming ubiquitous with even the simplest of
systems now employing some kind of control logic. For this reason the project inves-
tigated the use and development of reconfigurable hardware for control applications.
This first involved a detailed analysis of the current state of the art in the reconfig-
urable field as well as some selected applications where it is thought this technology
may be of benefit.

The main body of the project was separated into three distinct areas of research
and is hence presented as a collection of three technical documents. The first of these
areas was the use of reconfigurable hardware for the implementation of Finite State
Machines (FSM) with particular reference to reducing the size of the hardware block
required to implement these structures. From this a novel implementation method
was developed based on the principle of Forward Transition Expressions which are
capable of implementing FSMs on a reconfigurable device using run-time reconfig-
uration. The second area of research was the investigation of the characteristics of
reconfigurable devices with a view to estimating the amount of hardware required
within a device from high level parameters. The final area of research was the devel-
opment of a custom reconfigurable device specifically tailored for the implementation

of FSM.

Declaration of Originality

I, Graeme Richard Milligan, declare that this thesis is my own work and has not been
submitted in any form for another degree or diploma at any university or other insti-
tute of tertiary education. Information derived from the published and unpublished
work of others has been acknowledged in the text and a list of references is given in
the bibliography.

The material contained in this thesis is my own original work produced under
the supervision of Wim Vanderbauwhede, Bob Adamson and Prof. Steve Beaumont.
Some of the work contained in this thesis was produced in collaboration with Paul

Jackson at Edinburgh University and as such, he is credited in the appropriate section.

Graeme Milligan

Dedication and Acknowledgements

This thesis is dedicated to the memory of

Mr. Thomas Jude O’Neill
22nd Dec. 1970 - 12th Dec. 2002
and
Miss. Catriona Caulfield
11th Jan. 1977 - 27th Aug. 2004
Your memory lives on with

all who knew you.

The Author would like to acknowledge the help and support of his parents, Catherine
and David, without their infinite patience and support this work would not have been
possible. I love you both very much.
I would also like to thank all of the staff at the Institute for System Level Inte-
gration for all their help and in particular Mrs. Alexandra (Sandy) Buchanan.
Finally i would like to thank all of my friends, in particular Jocelyn, Antoine and
Ruairi, for preventing me from talking about my project too much and allowing me

to escape from time to time. Thanks everyone.

PORTFOLIO DOCUMENT

Portfolio Executive Summary and
Introduction

Author: Supervisor:

Graeme Milligan Wim Vanderbauwhede

Contents

1 Executive Summary

2 Business Aspects

2.1 Area
2.2 Speed
2.3 Power

3 Project overview
3.1 Implementation of Control Systems using Reconfigurable Hardware . .
3.2 Investigation of the Characteristics of Reconfigurable Devices

3.3 Development of a Hardwired Directional Reconfigurable Architecture .

4 Portfolio Organisation

11

1 Executive Summary

This volume is intended to present the work carried out in order to meet the require-
ments of the Engineering Doctorate (EngD) program undertaken at the Institute
for System Level Integration (ISLI). This program was undertaken in partnership
with the Universities of Glasgow, Edinburgh, Strathclyde and Heriott Watt and was
funded by EPSRC and SLI Ltd. The EngD requires that 120 SCOTCAT credits
are obtained in relevant engineering subjects with a further 60 credits required in
business related subjects with the remainder of the program being taken up by an
extended period of investigation and development in a given research domain.

Initially the scope of the project suggested was “The use of Reconfigurable Hard-
ware in Communication Applications”. This title was designed to give a large scope
to the project and as such an extensive literature review was undertaken in both
the communications and reconfigurable hardware domains. The reason for the large
scope of the project was SLI Ltds relative inexperience in this field. For this reason
this project was intended to operate at a fairly high level and allow SLI Ltd to de-
velop an in-house understanding of reconfigurable hardware and also identify areas
of interest for future investigation by subsequent EngD research engineers.

In order to address a lack of knowledge of the current state of reconfigurable
hardware device development and to develop an understanding of the state-of-the-art
in this field, an extended investigation was carried out into reconfigurable hardware.
This investigation primarily focused on current novel reconfigurable architectures in
both the academic and industrial domains with particular attention paid to devices
specifically developed for the communications domain. During this period it was
found that, for industrial devices in particular, the current devices under development
were specifically targeted at the low level operations, such as encryption and encoding,
carried out in the physical layers of communication protocol stacks. Due to the high

speed and intensity of these operations these devices aimed to migrate any operations

carried out in software to take advantage of the characteristics of hardware to reduce
the area and power required when caring out these operations while maintaining the
speed required at these low levels. The report shown in appendix Al was complied
giving details of a selection of industrial and academic reconfigurable devices.

In order to identify possible areas in the communications domain that may ben-
efit from the use of reconfigurable hardware it was first necessary to undertake an
extended period of investigation into this field. Of particular interest is the possibility
of creating a single reconfigurable device for mobile applications that is capable of im-
plementing multiple communications protocols. In this way a single hardware device
could be used to implement a range of communications protocols while making use of
the low area, high speed and low power characteristics of digital hardware. For this
reason it was decided that two example wireless protocols currently used in mobile
applications should be analysed to identify areas that may be of interest for imple-
mentation using reconfigurable hardware. The protocols selected for analysis were
the Universal Mobile Telecommunications System (UMTS) and the IEEE 8802.11
wireless LAN protocol. For each of these protocols a report was compiled and they
are shown in appendix A2 and appendix A3 respectively. During this investigation
it was seen that the upper layers (MAC, RLC etc.) of the communications stack can
be modelled by a control path and a data path. The control path is responsible for
determining the state of the device based on information provided by the network
and the device. Based on the state of the control path, the data path performs the
required data process on packets obtained from the layers immediately adjacent to
the current layer in the communications protocol stack.

At this point the control path was identified as of particular interest due to the
generality of the operations carried out. It can be seen that the control path can
be implemented as a Finite State Machine (FSM) where the state of the machine is

determined by information provided by the device and from the network currently in

use by the device. As FSMs are used in almost all control applications, the use of a
reconfigurable hardware device specifically tailored for the implementation of these
control systems has a market that is not limited to the implementation of commu-
nications protocols. For this reason the scope of the project was altered to narrow
the domain of interest to the implementation of control systems and specifically the
implementation of FSMs using reconfigurable hardware. This lead to the title of the
project begin altered to “Reconfigurable Hardware for Control Applications”

As the project was intended to be used to build a general understanding within
SLI Ltd. of the reconfigurable hardware domain and to suggest possible areas of
interest for future EngD research engineers it was felt that rather than undertaking
a single monolithic project on the use of Reconfigurable hardware in the control
domain the remainder of the extended period of research should be split between
a number of related sub-projects under the title of “Reconfigurable Hardware for
Control applications” with particular focus on the development of a device tailored
to the implementation of control applications. The following section gives an overview
of the business aspects of the project and aims to provide enough information to allow
the reader to assess the desicions made and advantages of the ideas proposed in the
thesis from a business perspective. This is then followed by an overview of each of
the sub-projects with the goals of each project being identified and the objectives

achieved.

2 Business Aspects

Although much of the material presented here is mainly of a theoretical nature it is
essential to be able to assess any benifits produced by the ideas presented from an
industrial perspective. For this reason this section will outline the main design pa-
rameters, area, speed and power, and relate to the control/communications domain.

This will allow comment to be made on the impact of the ideas presented here on

these parameters and how they can be related to the overall cost/benefit of utilising
these ideas in a modern design flow.

Due to the large range of implementations that control systems find themselves
their requirements vary greatly, a control system for use in the avionics systems
must be far more reliable and faster acting than one found in a washing machine
for example. The following section presents each of the key design metrics used in

modern silicon chip design.

2.1 Area

The area of the silion chip produced during manufacture is probably the most im-
portant design metric concerning the operation and cost of a new device. The area
of the chip determines how many chips can be produced in a single production batch
at a fixed cost. This means the smaller the area of the chip the larger the number
that can be produced and hence the cost per chip is reduced. The size of the chip
also has an impact on what is known as production yield. This is the percentage of
all chips produced that operate correctly. It is found that the smaller the silicon area
the larger the production yield as any defects may affect a larger number of chips
but due to the small size this equates to a smaller percentage of the total amount
produced.

The area of the silicon required is determined by the amount of hardware required
to implement the required functionality, the wiring associated to connect these com-
ponents (transistors) as required and the production method selected. For this reason
much of the design time is concerned with the removal of redundant logic to ensure
the chip is compact as possible and place and route to reduce the length and amount
of logical interconnect required.

It is also important to ensure that before manufacture the chip has been proven

to operate as required as it is very costly to correct mistakes after manufacture has

begun and usually invovles returning to the design stage and restarting manufacture.
The area of the chip also has a direct effect on the other main design metrics as

is outlined in the following sections.

2.2 Speed

The speed of operation of a silicon chip is an essential design paramter as it is essential
to ensure that the chip operates fast enough to ensure correct operation. For example,
a system design to control the avionics on a modern jet fighter must operate at far
greater speeds than a system design as a user interface. In the later example the
device is operating at “human speeds” and can thus can operate at relatively low
speeds.

The speed of a silicon device is dependent on 2 main factors; the first of these
are the delays introduced by the actual components or transistors on the chip and
the second are delays introduced by capacitance in the interconnects between these
components. The actual speed of opeartion is highly dependent on what is known as
the critical path, this is the longest path from the inputs of the device to the outputs
of the device. Due to the importnace of this factor much research has been carried
out on modelling the delays in the critical path and optimisation to reduce the effect
of the delays introduced.

Another aspect associated with the speed of a device is latency. This is mainly
used when refering to synchrounous logic where a clock signal is required to allow
components to pass data from their inputs to the outputs. This means that for every
synchrounous component a signal must pass through a clock cycle is required. This
should not be confused with the speed of the device which is the actual speed of
the clock rate. It can be seen that the size of the chip will have a large effect on
the speed of the device as smaller chips will have shorter interconnects and hence a

shorter critical path.

2.3 Power

The power consummed by a silicon device comes from 2 main sources; static and
dynamic power consumption. Static power refers to all sources of power consumption
present when the chip is in a steady state and is usually assocaited with leakage
current from the transistors through the substarate of the device. Dynamic power
consumption concerns all power that is used in a silicon device during operation.
The main source of dynamic power consumption is the power required to drive the
trnasistors on the device and the capacatance in the interconnects. Dynamic power
is far more significant than static power consumption and as such much research has
been produced aimed at reducing the dynamic power consumption of devices.

It can be seen that one of the most important factors in dynamic power is the
size, or area, of the device as this dictates the number of transistors that must be
charged during operation and also the capacitance of the interconnects. For this
reason it is normal to assume that the smaller the silicon device the lower the power
consumption but it should be noted that this is only true where the operating speed
remains constant as reducing the size will be offset by the increase in frequency that

the dynamic conponents must be charged.

2.4 Control Domain

Due to the varied nature of the control domain, the requirements of differing ap-
plication will vary greatly. As stated, control systems are found in all application
domains from space and military applications to simple consumer electronics devices.
In general it can be seen that the selection of the method of implementation is highly
dependent on the application and is in effect a balancing act between producing a
technically acceptable solution and non-enginneering factors such as design time and
cost. For this reason, although it would be desirable to produce the smallest, fastest

and most power efficient implementation of the required control system, this is often

imractical due to the high cost of designing such a device.

If the control domain is concidered from the mobile communications device per-
spective, as was the oriignal scope of this project, it is desirable to utilise very small
device as this allows for the reduction in size of the communications device. It is also
essential to ensure that the device be as power efficient as possible to increase the
battery life of the device. Depending on the nature of the control system within the
device, speed varies in importance as a design metric as user interface control systems
are intended to work at “human” speeds whereas the undelying control systems for
the communications protocols must operate at very high speeds and hence require a

high speed device.

3 Project overview

As stated, the main period of extended research was divided into a collection of inter-
related sub-projects under the umbrella of the overall project title. This allowed a
number of aspects of the use of reconfigurable hardware for control applications to
be researched with the view of developing an understanding of the possible uses
and also suggest future projects that could be undertaken by SLI Ltd. For this
reason two main areas were identified; the use of reconfigurable hardware in the
implementation of Finite State Machines (FSMs) and the investigation of a novel
device specifically tailored for this application. In order to achieve this the first sub-
project was primarily concerned with identifying the optimal use of reconfigurable
hardware in the implementation of the control structures. The remaining two sub-
projects undertaken were then concerned with investigating the characteristics of
the device required to implement these structures based on the use of reconfigurable
hardware suggested in the previous project.

The following presents a short overview of each of the sub-projects.

3.1 Implementation of Control Systems using Reconfigurable Hard-

ware

This project was primarily concerned with the investigation of the optimal use of
reconfigurable hardware when used to implement control systems and in particular
FSMs. Although it is possible to simply map FSMs directly to reconfigurable devices
it was considered that this does not make use of the particular characteristics, and
in particular the ability of reconfigurable hardware to be programmed during device
operation (run-time reconfiguration). As such the traditional method of implemen-
tation of FSM was investigated in great detail with a view to altering this to take
advantage of the characteristics of reconfigurable hardware.

During this investigation a general model of FSM was developed and based on
this a novel method of FSM representation was suggested. This representation was
based on using the current state of the reconfigurable device to represent the current
state of the FSM rather than using a feedback register as would traditionally be
the case. This representation allowed a far smaller block of logic to be used when
determining state changes.

In order to investigate the novel FSM representation presented in this sub-project
a C based circuit generator was developed that is capable of implementing the hard-
ware required to implement an FSM using the representation presented. This gen-
erator is capable of generating all of the components required to produce the device
required to implement the FSM and has demonstrated in simulation the correct op-
eration of this novel device and the novel FSM representation presented.

The work carried out during this sub-project was considered novel enough to be
considered for patenting by SLI Ltd. Although extensive consultation was undertaken
with patent lawyers, due to the length of time required to draft the patent application,
at the time of writing this work, this patent has yet to be filed. Although the

commercial advantage of patenting this work, and indeed the general use of patents

in this field, is questionable it is felt that the purpose of this process was to improve
the profile of SLI Ltd. Due to the delays incurred by this application process and
the patent not being filed by the end of the project a paper was instead submitted to
the NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2007) where

it has since been accepted for publication.

3.2 Investigation of the Characteristics of Reconfigurable Devices

This sub-project was primarily concerned with the investigation of the hardware
required within reconfigurable devices for the implementation of logic like that used in
the calculation of the next state of FSMs. The next state of FSMs is calculated using a
Combinatorial Logic Block (CLB) that calculates the next state of the FSM based on
a set Combinatorial Logic Expressions (CLE). For this reason the hardware required
to implement CLEs was investigated with the goal of determining the optimal amount
of hardware that should be placed within the reconfigurable device fabric in order to
allow for the implementation of these expressions.

Initially the Sum-of-Products representation and Boolean simplification of CLEs
was investigated in order to determine if a link existed between the number of inputs
to an expression and the hardware required to implement these expressions. By
generating every possible expression with a fixed number of inputs it was found that
the number of inputs to the expression had a direct effect on the hardware required
to implement these expressions but due to the extremely large number of possible
expressions this form of exhaustive testing was impractical for expressions with even
very small numbers of inputs. In order to extend this investigation a pseudo-random
circuit generator was developed that was capable of generating very large numbers
of expressions with a fixed number of inputs. The hardware required to implement
these expressions could then be found and based on this the distribution of hardware

requirements could be calculated. The results obtained using this method were then

compared to those obtained in a previous project, carried out to determine the average
hardware requirements of logic based devices, to confirm the accuracy of the circuit
generation method. This method was then extended to memory based architectures
where no comparative research has been identified.

Although this method allows the hardware requirements of CLEs to be inves-
tigated it was found that even for the pseudo-random circuit generation method
that the time taken to obtain results for CLEs with large numbers of inputs was pro-
hibitive. For this reason a mathematical method of determining the average hardware
requirements of CLEs was developed in conjunction with Dr. Paul Jackson at Ed-
inburgh University. This method is based on cube cover and allows the calculation
of the average hardware requirements of logic based reconfigurable devices based on
the number of inputs to the expression.

Based on the work carried out in this sub-project a conference paper has been
compiled and has been submitted to XXV IEEE Intenational Conference on Com-
puter Design 2007 (ICCD-2007) where it currently in the process of peer review prior

to publication.

3.3 Development of a Hardwired Directional Reconfigurable Archi-

tecture

This sub-project focused on the development of a novel reconfigurable device for
the implementation of CLEs like those used in the next state calculation of FSMs.
In order to develop this device it was necessary to develop a sound understanding
of the method by which these expressions are traditionally implemented in existing
reconfigurable devices. Based on this a device architecture is suggested that makes
use of the characteristics of these expressions to reduce the overhead introduced by
reconfigurable hardware in providing the flexibility required by these devices.

A device generator was then developed to allow for the investigation of this ar-

10

chitecture. The generator is capable of generating all of the hardware components
required to implement this architecture and produce a fully functioning device. Due
to the nature of the device a novel synthesis tool was also developed to allow a high
level description of the CLE to be synthesised to produce the bit-file required to
implement the CLE on this novel reconfigurable device. The synthesis tool made use
of existing synthesis algorithms to obtain a representation of the CLE suitable for
implementation and automatically performs the place and route operation required
to fully implement the CLE on the architecture suggested. The hardware charac-
teristics of the device required to implement these CLEs could then be compared to
those required using standard reconfigurable devices such as FPGAs.

Again the work presented in this sub-project was considered novel enough to be
considered for patenting by SLI Ltd but due to time constraints this patent has yet
to be filed.

4 Portfolio Organisation

As the extended period of research was subdivided into three sub-projects a separate
and distinct portfolio document has been produced to present each of these sub-
projects. The structure of this document is shown in figure 1. As this shows each
of the sub-project has its own distinct report entitled Technical report (TR) 1-3.
The literature reviews carried out on communications protocols and reconfigurable
hardware are presented in the appendix with titles appendix (A) 1-3. Finally the
papers produced concerning TR1 and 2 are presented at the end of this document

and are named Conference Paper (CP) 1 and CP2 respectively.

11

Executive Summary

!

_

Technical Reports (TR)

Appendix (A)

Conference Papers (C)

Implementation of Control Systems

Reconfigurable Hardware:

Implementation of Finite State Machines

TR1 . _ .)
using Reconfigurable Hardware Al Literature review CP1 on a Reconfigurable Device
Investigation of the Characteristics Universal Mobile Telecommunications Random Circuit Generation for the
TR2 . . A2 . . cpP2 . _
of Reconfigurable Devices system: Protocol Review Testing of Programmable devices
. Development of a Hardwired Directional A3l IEEE 802.11: Protocol Review

Reconfigurable Architecture

tion Chart

1Sa

Portfolio Organi

Figure 1

12

PORTFOLIO DOCUMENT TRI1

Implementation of Control Systems using
Reconfigurable Hardware

Author: Supervisor:

Graeme Milligan Wim Vanderbauwhede

Contents
1 Introduction

2 Background Theory

2.1 Formal Definition of Finite State Machines

2.2 Traditional Implementation of Finite State Machines

2.2.1 Finite State Machine extraction

2.2.2 State Transition Graph representation of Finite State Machines
2.2.3 State Transition Table representation of Finite State Machines

2.2.4 State Labeling

2.2.5 Transition Expression (TE) Extraction and Optimization

2.2.6 ASIC implementation of FSMs

2.2.7 FSM implementation on a Reconfigurable Device

2.2.8 FSM operation on a reconfigurable device

3 Novel representation of FSMs for reconfigurable hardware

3.1 Investigation of characteristics of CLB
3.2 Removal of current state feedback

3.2.1 Derivation of FTEs for Mead-Conway traffic light FSM

4 FSM implementation on a custom reconfigurable architecture

5 Reconfigurable device for the implementation of FTEs

5.0.2 Combinatorial Logic Block (CLB)
5.0.3 Configuration memory
5.0.4 State Controller.
5.0.5 Memory Controller
5.0.6 Device operation

5.1 Generation of device Implementation of Custom Reconfigurable device

5.1.1 Generation of Generic device
5.1.2 Generation of Domain specific device

6 Results

7 Future Work

7.1 Virtual Output addressing
7.2 Virtual Input addressing

7.3 Partial reconfiguration and Configuration Caching
8 Conclusion

References

16
16
17
18

18

21
22
24
26
26
27
29
29
30

31

34
34
35
36

37

40

List of Figures

0 ~J O O W N

Simplified FSM design flow for ASIC and Reconfigurable device . .. 5
FSM extraction o e 6
STG for Mead-Conway Traffic Light Controller [11] 7
FSM implementation on a reconfigurable device 13
General Hardware model of FSM using Reconfigurable hardware . . . 15
Hardware design flow of a FSM for Custom Reconfigurable Device . . 20
Custom Reconfigurable device for implementation of FSMs 21
Configuration Memory Structure 24

List of Algorithms

1
2

FSM operation on a reconfigurable device 16
FSM operation on a custom reconfigurable device 28

List of Tables

= O 00 ~J O U i W N =

STT of Mead-Conway Traffic Light Controller 8
Binary Encoding of State Labels 9
Truth-Table representation of the Mead-Conway traffic light controller 11
Sub-truth-tables for state HG 19
Sub-truth-tables for state HY 19
Sub-truth-tables for state FY 0oL 19
Sub-truth-tables for state FG o 0oL 19
Number of LUTs in CLB for TE and FTE implementation methods . . 33
State HG sub-Truth-Table 35

Address Translation 35

1 INTRODUCTION

1 Introduction

In modern engineering the use of control systems to implement complex system be-
haviour is ubiquitous and found in almost all engineering disciplines. Whether they
are inferred or purposely designed into devices, control systems are required to allow
devices to operate in an intelligent manner rather than simply reacting to the current
operating conditions of the system. The use of control systems allows a device to de-
termine its response to a sequence of events rather than simply producing a response
based on a single event. Determining the response of devices in this way allows more
complex behaviour to be implemented and allows a greater degree of automation,
reducing the need for human intervention.

Although for simple applications it is often unnecessary to explicitly specify the
control system, and it is instead inferred from the functional description of the appli-
cation, for more complex applications a high-level model is required to allow designers
to specify the control behaviour of the system. A commonly used high-level model
is the Finite State Machine (FSM). FSMs are abstract models used to describe the
behaviour of a control system in response to a sequence of inputs and are based on
the theory of finite automata in computer science [9].

Due to the ubiquitous nature of FSMs a device capable of efficiently implementing
these models would have applications in almost all domains. As the characteristics
of FSMs are highly dependent on the particular application, it is dangerous to create
a device for the implementation of general FSMs using domain profiling techniques
such as that suggested in [7]. In this method benchmark circuits from a particular
domain are used to determine the characteristics of reconfigurable device targeted
at particular application domains such as communications or digital signal process-
ing (DSP). Instead a more generalized approach is required to determine the most
efficient use of reconfigurable hardware for the implementation of FSMs. The use of

FSMs to implement the control behaviour of systems is well established and as such

1 INTRODUCTION

a large number of texts are devoted to this subject including [6, 11, 12].

The implementation of FSMs can be broadly separated into two sections, the
extraction of the FSM from the high level specification of the system and the im-
plementation of the FSM. The extraction of FSMs is independent of the method
of implementation and is concerned with developing a high-level description of the
control aspects of the specification.

The implementation of the FSM can be split into two main groups, the FSM can
either be implemented in software or hardware. Software implementation of FSMs
allows rapid development and deployment due to short software design cycles. where
as implementation in dedicated hardware involves the production of an Application
Specific Integrated Circuit (ASIC) that implements the required behaviour. This
approach produces devices with low area and power requirements but requires lengthy
and expensive hardware design and manufacturing processes making it impractical
for low volume applications or for developers with limited resources. An alternative
to the use of full custom hardware is the use of reconfigurable devices such as the
Field Programmable Gate Array (FPGA).

Reconfigurable hardware combines the speed and efficiency of hardware with the
flexibility and programmability of software. The introduction of this flexibility and
programmability requires the introduction of hardware required to program the de-
vice resulting in a lower efficiency when compared to full-custom ASIC design.

Recently there has been much interest in making use of the ability of recon-
figurable devices to be programmed while the device is in operation. This allows
devices to implement multiple functions simultaneously by dynamically switching
between functions or ’contexts’. This process, known as run-time reconfiguration,
allows a small reconfigurable device to masquerade as a larger device by implement-
ing applications that require larger hardware resources than are available on a single

reconfigurable device.

2 BACKGROUND THEORY

This section of the portfolio is intended to give details of the work carried out
on the development of a novel method for the implementation of FSMs using recon-
figurable hardware. This method makes use of a novel representation of FSMs that
allows the implementation of these machines using a far smaller reconfigurable device
than would be traditionally required. This section begins by presenting the formal
definition of FSMs in section 2.1 and is followed by an overview of the traditional
method of FSM implementation in full-custom hardware and on a reconfigurable
device to allow for comparison with the novel method presented here.

The novel representation of FSMs suggested is then presented in section 3 before
the design flow required to implement this representation is presented in section 4.
Section 5 then presents the device required to implement the novel FSM representa-
tion presented. In order to prove the usefulness of this method it is then compared
to the traditional method of implementation for a range of FSMs and the results of

this comparison are presented in section 6 before final conclusions are made.

2 Background Theory

In order to investigate the most suitable use of reconfigurable hardware for the im-
plementation of control systems it is first necessary to understand both the theory
and implementation of FSMs. This section begins by presenting a formal definition
of FSMs and is followed by a description of the process of FSM extraction before the
implementation of FSMs is discussed for both the ASIC and reconfigurable device

design flows.

2.1 Formal Definition of Finite State Machines

FSMs are abstract models used to represent the sequential behaviour of systems.
They are used in control applications to define the response of a system to a sequence

of input events. This allows designers to implement systems with complex behaviour

3

2 BACKGROUND THEORY

as opposed to simple systems that can react to only the current operating conditions
of the system.
An FSM can be fully described using the 6-tuple

M = (S,1,0,A,A,R), where

S is a finite set of states, and |S| is the total number of unique states,

I is a finite input space, and |I|is the total number of inputs,

e O is a finite output space, and |O| is the total number of outputs,

Ais a set state transitions based on the current state and the current inputs,

e Ais the output relation defined in terms of the current state and the current

input vector,

e and R is a set of reset states.

State transitions are assigned to each state and based on the current inputs and
current state are used to determine the next state of the FSM. The current state
of the FSM is determined by the initial state of the FSM and the previous input
sequence applied to the machine. This means if the previous input sequence and
start state of the FSM is known it is possible to predict the current state of the FSM.
The output of the state machine (O) can be generated in two ways: either the
output is dependent only on the current state (Moore machine) or is dependent on
the current state and the current inputs (Mealy machine). In the case of the Moore
machine the output relation A will contain only a single output for each state. This
section is only intended to present the formal description and overview of FSMs, a
more detailed discussion of FSMs can be found in many texts including [6, 11, 12].
It should be noted that as the novel implementation method suggested here is

only concerned with the generation of the next and current state of the FSM it is

4

2 BACKGROUND THEORY

applicable to both Moore and Mealy machines. In the case of the Mealy machine an

addition block of logic would still be required to produce the final outputs.

2.2 Traditional Implementation of Finite State Machines

The implementation of FSMs can be broadly separated into two sections, the extrac-
tion of the FSM from the specification of the system and the implementation of the
FSM using the appropriate technology. The FSM design flow for both full-custom
ASIC and reconfigurable hardware devices is shown in figure 1. As this illustrates
the extraction of the FSM is independent of the method of implementation and is

hence common to both design flows.

high level State Transition
design specification Graph (STG)
Fintie State Machine State Transition
(FSM) extraction Table (STT)
) N Truth-Table
State Labeling Representation
Transition Boolean
Expression (TE) w| representation of
extraction and 71 Transition Expressions
logic optimisation

FSM Extraction

FSM Implementation

ASIC | Reconfigurable

v

Hardware Device
A\ 4 Selection Spec
Hardware *
Implementation GDSII Layout
(synthesis)
Y Hardware Configuration
Implementation file

(synthesis)

Figure 1: Simplified FSM design flow for ASIC and Reconfigurable device

2 BACKGROUND THEORY

2.2.1 Finite State Machine extraction

The conventional method of FSM extraction is shown in figure 2. As this shows a high
level description of the control requirements of the proposed device are first extract
from the initial specification of the system. This behaviour can then be expressed
as an FSM using a high level model such as a State Transition Graph (STG) or
State Transition Table (STT). Based on this model it is then possible to produce a
description of the FSM suitable for the implementation of the control requirements
of the system.

The following sections give details of each of the main stages in extraction of
FSMs. For the purposes of clarity the Mead-Conway traffic light controller [11] will

be used to provide a detailed worked example.

high level State Transition
design specification Graph (STG)
Fintie State Machine State Transition
(FSM) extraction Table (STT)
. - Truth-Table
State Labeling Representation
Transition Boolean
Expression (TE) I representation of
extraction and Transition Expressions
logic optimisation \/\

Figure 2: FSM extraction

2.2.2 State Transition Graph representation of Finite State Machines

The State Transition Graph (STG) is a graphical representation of FSMs. The STG
uses nodes to represent the states of the FSM and edges to represent state transitions.
The output behaviour of the FSM is associated with the states as required and the
edges are labeled with the input conditions necessary to cause transitions.

A sample STG of the classic Mead-Conway traffic light controller is shown in

2 BACKGROUND THEORY

figure 3. This is a simple 4-state (HG, HY, FG, FY) FSM, where |S| = 4, with an
input alphabet of C, T}, T, |I| = 3. The STG shows each of the states and the state
transitions, with each of the transitions labeled with the necessary input conditions

to cause the transitions.

not(not(c) or t1)

Figure 3: STG for Mead-Conway Traffic Light Controller [11]

The Mead-Conway traffic light controller represents the control system required
to control the traffic lights at the crossroads between a field road and a highway.
The system comprises a light on the highway (hl) and a light on the field (fl) with a
crossing button (c¢) that is pressed to request the lights to change.

The system would usually be in the HG state where the highway lights are set
to green and the field road lights are set to red. On entering this state a timer (1)
is started. After this timer has expired and if the cross button (c) is pressed a state

change is triggered to state HY.

2 BACKGROUND THEORY

In state HY a timer (¢4) is started and the highway light is set to yellow while
the field light remains red. After a set time has passed another state transition is
triggered to state FG.

In state FG the field road light is set to green and the highway light is set to red,
a timer (¢1) is again set. If the button is released or the timer has finished a state
change is triggered to state FY.

In state F'Y the field road light is set to yellow and the highway light remains red.
A timer (t4) is again set and the FSM returns to its start state on the expiry of this

timer.

2.2.3 State Transition Table representation of Finite State Machines

An alternative to the STG is the State Transition Table (STT). The STT of the
Mead-Conway traffic light controller is shown in table 1. The table shows each of the
required state transitions of the FSM and gives the current state and input conditions
required to cause these transitions. In this simple example there are only two possible
transitions from each state and the conditions that cause these transitions are listed.
The outputs produced by the FSM are listed in the table, it should be noted that it
is customary to produce a hardware block responsible for implementing the FSM and

a separate block that produces the outputs based on the current state of the FSM.

‘ current state ‘ Inputs ‘ Next State ‘ Outputs ‘
HG not(c and ;) HG hl=GREEN; l=RED
HG c and t; HY hl=GREEN; l=RED
HY not(ts) HY hI=YELLOW; l=RED
HY ts FG hlI=YELLOW; fi=RED
FG not(not(c) or ¢;) FG hlI=RED; il=GREEN
FG not(c) or t; FY hlI=RED; il=GREEN
FY not(tg) FY hl=RED; l=YELLOW
FY ts HG hlI=RED; iI=YELLOW

Table 1: STT of Mead-Conway Traffic Light Controller

2 BACKGROUND THEORY

2.2.4 State Labeling

To allow digital logic to implement the FSM it is necessary to perform state encoding.
State encoding takes the symbolic representation, i.e. label, of the states and replaces
it with a Boolean representation that can be produced using digital logic. Although
a number of encoding methods exist, the most commonly used technique is binary
encoding.

In binary encoding each state is given a unique binary code and this is associated
with the state label as shown in table 2. Using binary encoding a hardware block
with only logs(]S|) outputs is capable of indicating the next state of an FSM with
|S| states. This hardware block is responsible for calculating the next state of the

FSM and producing the corresponding binary code at its outputs.

Encoding
State Label | Zj ‘ 1
HG 0 0
HY 0 1
FY 1 0
FG 1 1

Table 2: Binary Encoding of State Labels

By replacing the labels in the STT with their binary equivalents, as given in table
2, it is possible to build a truth table representation of the FSM. Table 3 gives the
truth table for the Mead-Conway traffic light controller. From this it can be seen
that the STT presented in section 2.2.3 has been expanded to give all of the possible
input conditions for each current state (Z,(t), Z1(t)) and the next state (Z,(t + 1),
Z1(t 4+ 1)) for each of these conditions has been specified.

Using a vector notation
Z = (Zy,7Z1), HG = (0,0), etc.

and using the shorthand (X = Y)for). X; @Y, the generator expression for this

2 BACKGROUND THEORY

table can be written as:

Z(t+1)

2.2.5 Transition Expression (TE) Extraction and Optimization

A

Z(t) = HG.(cf; HG + ¢t HY) +

Z(t) = HY.(;, HY + t, FG) +

Z(t) = FG.c+ t.FG + (¢ + t,).FY) +

Z(t) = FY.(5,.FY + t,. HG)

From the truth-table representation it is possible to extract the logic expressions

required to implement the behaviour of the FSM. The extracted expressions are

termed Transition Expressions (TE) as they calculate the required state transitions

based on the primary inputs and the current state.

If the transition expression is expressed in sum-of-products format, each 1 in the

output columns of the truth-table results in the addition of a product term to the

TE. For the example shown in table 3 the logic expression required to calculate the

next state Zo(t + 1)is

Zo(t +1)

+ o+ o+ o+ o+ + o+
N
S

10

2 BACKGROUND THEORY

Next State

Zot+1) | Z1t+1)

Primary
Input

ts

tq

current
state

Zo(t) | Zu(t)

Table 3: Truth-Table representation of the Mead-Conway traffic light controller

11

2 BACKGROUND THEORY

This expression can be optimized using boolean simplification techniques to re-
move redundant logic. This simplification process is well established and can be
performed by tools such as SIS [5]. Performing boolean simplification on the above

transition expression results in

Zo(t+1) = Zo(t)t, +Za(t)ts

As this shows, the removal of redundant product terms, using boolean minimiza-
tion techniques vastly reduces the size of the logic block required to implement the

transition expressions and hence makes this a vital step in the extraction of the FSM.

2.2.6 ASIC implementation of FSMs

This process is commonly known as synthesis as it involves taking a high level de-
scription and converting this to a description that can be used to produce an ASIC
capable of implementing the required functionality.

The implementation of a FSM in full-custom hardware involves first producing
a description of the device in a hardware description language such as Verilog [10].
This is a hardware description language (HDL) that describes the functionality of
the required device in a high level programming language that is capable of being
used to produce a silicon implementation of the device.

Due to the mature nature of silicon implementation, many of the steps involved
are hidden from the device designer and automatically carried out by design tools
such as [1]. The tools can be used to perform synthesis of HDL to a format such as
GDSII [2] that can be used by manufacturers to produce a silicon implementation.

Synthesis takes the HDL description of the FSM and converts this to a netlist
format that expresses the hardware required to implement the HDL as well as the
interconnects between these components. Extensive testing is then required to en-

sure that the device operates correctly prior to manufacture as any errors would be

12

2 BACKGROUND THEORY

costly to correct if not detected early in the design cycle. The netlist is then further
synthesised to produce a layout in GDSII format that is again tested and refined to
ensure correct device operation before manufacture.

This project is not concerned with the details of the synthesis of HDL or the
silicon implementation of devices and as such this section is not intended to detail

this process, further information can be found in a number of texts including [8].

2.2.7 FSM implementation on a Reconfigurable Device

The conventional method of implementing an FSM on a reconfigurable device is
shown in figure 4. The process outlined here is similar to the design-flow used in
full-custom ASIC design of FSMs but, where as in full-custom design flows synthe-
sis results in a description that can be used to produce a silicon implementation
of the FSM, synthesis for reconfigurable devices results in a bit-stream capable of

configuring the device to implement the FSM.

Hardware Device
Selection > Specification

v

Hardware Configuration
Implementation —» file
(synthesis)

Figure 4: FSM implementation on a reconfigurable device

2.2.7.1 Hardware selection
The selection of a suitable reconfigurable device is vital to the efficient implemen-

tation of the FSM. It is essential to ensure that the device has sufficient hardware

13

2 BACKGROUND THEORY

resources to implement the FSM but does not introduce excessive redundant hard-
ware. As the reconfigurable device is a generic part it is unlikely that the device will
have exactly the correct amount of hardware required to implement a particular ap-
plication. However, devices are available from device manufacturers in a wide range
of sizes and costs, allowing the end-user to select the device most suitable for the
chosen application.

Based on the high level description of the FSM it is possible to extract an estimate
of the hardware requirements of the device required to implement the FSM. The
end-user would then select the device with as close to these parameters as possible
to ensure excessive hardware is not introduced that would impact on the cost, area

and possibly power of the final implementation.

2.2.7.2 HDL Synthesis for reconfigurable devices

After the selection of the appropriate reconfigurable device the high level descrip-
tion of the FSM is then synthesised. Whereas synthesis to ASIC produces a silicon
implementation of the FSM, synthesis to a reconfigurable device takes the high level
description and produces the bit-stream required to program the device to implement
the FSM. As each reconfigurable device has an individual structure and hardware
characteristics, synthesis is usually performed by proprietary tools provided by the
device manufacture. The results of the synthesis process is a file containing a series
of bits that when stored in local memory on the device causes it to implement the

required functionality.

2.2.8 FSM operation on a reconfigurable device

The general hardware model of a FSM implemented in hardware is shown in figure
5. As this shows the FSM is implemented by a reconfigurable device, known as the
Combinatorial Logic Block (CLB), responsible for implementing the TEs of the FSM

and a feed back register used to store the current state of the FSM. The output of

14

2 BACKGROUND THEORY

this register is then required to be fed back to the inputs of the CLB as the current

state is required to calculate the next state of the FSM.

External Non-Volatile Memory

>
<€
<€

Primary Inputs next state

N

Y

vV

Reconfigurable device

AAA

Combinatorial Logic Block (CLB)

:l Current Sate Register &

Figure 5: General Hardware model of FSM using Reconfigurable hardware

On power up the configuration bit-file is loaded into the local memory within the
reconfigurable device from non-volatile memory. This configures the reconfigurable
device to implement the required transition expressions and the current state register.
Although many commercial devices such as FPGAs have the ability to implement
feedback within the reconfigurable fabric itself it should be noted that certain recon-
figurable devices, such as [3], do not allow feedback, this means an external register
is required and feedback must be done out with the actual reconfigurable device.

As algorithm 1 shows, after the required configuration is loaded onto the device
the next state would be calculated using the current state, initially this would be
a specified reset state, and the current inputs. The system would then be clocked
and the next state stored as the current state in the current state register, this new
current state would then be used to again calculate the next state before the device

is again clocked. This means that the clock speed of the device is limited by the time

15

3 NOVEL REPRESENTATION OF FSMS FOR RECONFIGURABLE
HARDWARE

required for the device to calculate the next state and store it as the current state.

Algorithm 1 FSM operation on a reconfigurable device
WHILE{1}
current_state=reset_state
WHILE{reset=no}
next_State=transition_expression(current_sate, primary_inputs)
IF{next_state!= current_state}
current_state=next_state
ENDIF
ENDWHILE
ENDWHILE

3 Novel representation of FSMs for reconfigurable hard-

ware

As illustrated the main fixed hardware component of the general implementation is
the combinatorial logic block (CLB). This block is required to implement the TEs of
the FSM. In order to reduce the hardware requirements of the FSM this block was
targeted for optimisation to produce a reconfigurable hardware device specifically

tailored for the implementation of FSMs.

3.1 Investigation of characteristics of CLB

As the CLB implements the transition expressions (TEs) required to calculate the
next state of the FSM from the primary inputs and the current state it is possible
to calculate a number of the key characteristics of the block required to perform this
function. The first of these is the number of outputs, if binary encoding is assumed,

this is simply

O =logy(|5])

16

3 NOVEL REPRESENTATION OF FSMS FOR RECONFIGURABLE
HARDWARE

It is also fairly trivial to show that, as feedback is required from the current state

register, the total number of inputs to the combinatorial logic block is
I=1,+0 =1,+logy(|5])

As these equations show the inputs to the CLB can be divided into two categories.
The first of these is the primary inputs; these are the input signals used to determine
the next state transition and are necessary to the operation of the FSM. The remain-
ing inputs are the feedback lines from the current state register. Consequently, if this
feedback can be removed the total number of inputs to the array can be reduced by a
factor of log,(]S|), this in turn will lead to a reduction in the hardware required due

to simplification of the expressions required to calculate the next state of the FSM.

3.2 Removal of current state feedback

As a reconfigurable hardware device has the capability of altering its functionality
through programming it is possible to remove the need for the current state to be fed
back to the inputs. This can be achieved by using the current configuration of the
reconfigurable device to store the current state of the FSM, i.e. creating an individual
configuration, or context, for each state of the FSM.

This method relies on the concept of calculating what state the FSM should move
to compared to the traditional approach where by each state calculates if the FSM
should enter this state. In this way this method directly calculates the next state of
the FSM.

As this process calculates which state the FSM should move to, the contexts
required to be loaded onto the reconfigurable device are know as FORWARD TRANSI-
TION EXPRESSIONS (FTEs). The following section describes the derivation of these

FTEs for the Mead-Conway example shown in figure 3.

17

4 FSM IMPLEMENTATION ON A CUSTOM RECONFIGURABLE
ARCHITECTURE

3.2.1 Derivation of FTEs for Mead-Conway traffic light FSM

If the example of the Mead-Conway traffic light controller is again considered it
can be seen that the truth-table shown in table 3 can be partitioned into sections
that define the behaviour of the FSM when the FSM is known to be in a particular
state. This is achieved by partitioning the truth-table into sections that contain all
transitions from a particular state. In this example the truth-table is partitioned into
four sub-truth-tables (one for each state) each of three inputs. Tables 4-7 show each
of the sub-truth-tables for the Mead-Conway traffic light controller.

If the FSM is assumed to be in the HG state the following expressions can be

used to calculate the next state:

Z(t) = HG =

Z(t+1) 2 ¢t .HG +ct). HY

Substituting the actual state labels yields:
Zo(t+1)=0; Z1(t+1) =ctl

If these expressions are analysed it can be seen that the next state is now a
function of only the primary inputs. If these expressions are implemented on the
reconfigurable device they are capable of indicating the state the FSM should enter

at the next state transition.

4 FSM implementation on a custom reconfigurable ar-

chitecture

The design flow for the implementation of FSM using the custom method suggested

is shown in figure 6. As this shows the derivation of the truth table representation

18

4 FSM IMPLEMENTATION ON A CUSTOM RECONFIGURABLE

ARCHITECTURE
‘ Primary Input | Next State ‘ ‘ Primary Input | Next State ‘
C|tl ts Zo(t+1) | Z1(t+1) C|tl ts Zo(t+1) | Z1(t+1)
010 0 0 0 010 0 0 1
00 1 0 0 00 1 1 1
011 0 0 0 011 0 0 1
011 1 0 0 011 1 1 1
110 0 0 0 110 0 0 1
10 1 0 0 110 1 1 1
1|1 0 0 1 111 0 0 1
1 1 1 0 1 1 1 1 1 1
Table 4: Sub-truth-tables for Table 5: Sub-truth-tables for
state HG state HY
‘ Primary Input | Next State ‘ ‘ Primary Input | Next State ‘
C|tl ts Zo(t+1) | Z1(t+1) C|tl ts Zo(t+1) | Z1(t+1)
0110 0 0 0 00 0 1 0
00 1 1 0 00 1 1 0
011 0 0 0 011 0 1 0
0] 1 1 1 0 01 1 1 0
110 0 0 0 110 0 1 1
10 1 1 0 110 1 1 1
1|1 0 0 0 111 0 1 0
1 1 1 1 0 1 1 1 1 0
Table 6: Sub-truth-tables for Table 7: Sub-truth-tables for
state FY state FG

of the FSM from the high level specification of the system is the same as that for
the full-custom and conventional reconfigurable implementation shown in figure 1.
However, after the truth-table representation is produced the sub-truth-tables are
extracted to produce |S| sub-truth-tables. The information contained in each of sub-
truth-tables is sufficient to derive the Forward Transitions Ezpressions for each state
of the FSM.

FTE extraction is performed to produce a set of boolean expressions capable of
calculating the next state of the FSM. This process is similar to the conventional TE
extraction process except that, due to the removal of feedback, this process results

in simplified boolean expressions that depend only on the primary inputs. As the

19

4 FSM IMPLEMENTATION ON A CUSTOM RECONFIGURABLE

ARCHITECTURE
high level STG
design specification
.
v
Fintie State Machine N STT
(FSM) extraction
\/\
12
. Truth-Table
State Labeling > Representation

Sub-Truth-Table . Sub-Truth-Table
Extraction Representation of state

Forward Transition
Expression (FTE)
extraction and
logic optimisation

FTE Representation
of single state

FSM Extraction

Device
Cofiguration N Configuration
Linking [file

Figure 6: Hardware design flow of a FSM for Custom Reconfigurable Device

Sub-Configuration
file

CLB is required to produce the binary code necessary to indicate the next state, FTE
extraction results in loga(]S|) boolean expressions for each state of the FSM.

The FTEs would then be synthesised using the appropriate synthesis tool for
the family of devices selected by the designer for implementation of the CLB. This
synthesis results in a bit-file that is capable of configuring the CLB to calculate
the next state of the FSM based on only the primary inputs. At this stage it is
then possible to calculate the hardware resources required within the CLB in order
to implement the FTEs, this would be the maximum hardware required by any
individual context. The device from the family of devices used with the closest
hardware resources to this would then be selected in order to reduce the amount of
redundant hardware in the final device.

After the final device has been selected it may be necessary to re-synthesis the

20

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

FTES in order to produce configuration files specifically for this device. After the
configuration files for each state have been produced the final stage is to link these
files together into a single bit-file that can be loaded into the local configuration

memory of the device.

5 Reconfigurable device for the implementation of FTEs

As the device required to implement FSMs using FTEs is required to alter its con-
figuration at each state change the reconfigurable device used to implement the CLB
must be rapidly reconfigurable. For this reason a local configuration memory is re-

quired to be closely coupled to the CLB.

Combinatorial Logic Block (CLB)

Primary Inputs Current state
—_— >
2 id State
< >| Controller -
Reconfigurable device S
next state N next state
A /\1\
v
. . Memory
Local Configration memor l<—
g Y Controller

A

External Non-Volatile Memory

Figure 7: Custom Reconfigurable device for implementation of FSMs

The overall architecture of the device is shown in figure 7. Similarly to the
general model shown in figure 5 this model contains a reconfigurable device used
for the implementation of the FTEs. Due to the need to perform rapid run-time

reconfiguration a local configuration memory has been added to provide local storage

21

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

for the configuration file of the FSM. However, the main difference between this
device and the traditional model is the addition of state and memory controllers
responsible for detecting if a state change is required to take place and the selection
of the configuration required to implement the next state of the FSM. After this new
configuration has been loaded the next state would again be calculated at the next
state transition based on the new context of the device.

During development of this device the similarity between this and a general pur-
pose processor was noted. It would be possible for an external source to load the local
configuration memory during operation of the device. In this way new “states” could
be added to the FSM during operation allowing it adapt to the operating conditions
of the device. In this way new states would be similar to instructions sent to the
processor. The device would then enter one of these new states and determine which
should be the next state in a very similar to branch statements on a general purpose
processor. The device would then output the next state in a similar way to how a
processor would present the result of a calculation and based on this new custom

instructions/states could be loaded as required.

5.0.2 Combinatorial Logic Block (CLB)

The CLB is a reconfigurable device used to implement the FTEs of the FSM. This
fact allows us to determine a number of characteristics of the block required to
implement these expressions as discussed in section 3.1. The reconfigurable device
must be capable of implementing combinatorial logic expressions and due to the
removal of current state feedback the number of inputs to the block is equal to the
number of primary inputs (|I|) and the number of outputs required is logs(|S]). Due
to the context changes required during state changes the device must also exhibit very
low reconfiguration times as this dictates the maximum rate at which state changes

can take place.

22

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

The reconfiguration time (C}) of the device is a function of the clock rate (Crate),
configuration bus width (Cyiq)and the amount of data (Dgopny) required to config-
ure the device. One suggested method of configuring the device is with the aid of
scan chains, these are registers chained together in series similar to a shift register
used to store configuration data. In the case of memory based reconfigurable de-
vices these registers are the memory components of the reconfigurable devices itself
chained together in series. In this way blocks of data blocks equal to the width of
the configuration bus (Cy;q) are loaded onto the device in each clock cycle and this
data is then shifted through each configuration register until all of the data required
to configure the device has been loaded. If it is assumed that a single clock cycle
is required to write each block of data to the device it is possible to calculate the

reconfiguration time of the device using the expression

Dconf

Cp = ot
Cwidth * Crate

Based on this expression it can be seen that, as the clock rate of the configuration
bus is dependent on the technology used to implement the device and is hence out
with the control of the device designer, the designer can control the configuration
times of the device in one of two ways, either the size of the configuration bus can
be altered or the amount of data can be adjusted.

By varying the width of the configuration bus the size of the data chunks written
to the device in each clock cycle can be adjusted and hence adjust the overall config-
uration time of the device. In order to reduce the configuration time it is suggested
that as wide a bus as possible be used to program the configuration memory of the
reconfigurable device but it should be noted that this increase in bus width will lead
to an increase in the overall size of the device. This means the design of a suitable
device becomes a trade off between the reconfiguration time of the device and the

overall size of the device.

23

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

The amount of data required to configure the device is dependent on the size of
the device or the amount of configurable elements in the reconfigurable array. This
means it is important to ensure that the smallest array possible be used to implement
the FTEs as this not only affects the configuration time of the device but also the
area and possibly power of the resultant device. Due to the use of FTEs the array
required to implement FSMs is far smaller than would be required using the TE
approach. This is due to the fact that, using the FTE approach, only the expressions
for a single state are required to be implemented concurrently where as for the TE
approach the expressions of each state must be implemented concurrently. In this
way it is hoped that the reduction in hardware will result in reduced configuration

times.

Cwidth

<—— Dwonf —m—m ————p

Figure 8: Configuration Memory Structure

5.0.3 Configuration memory

The configuration memory is responsible for storage of the configuration file required
to implement an FSM using the FTE based approach. The memory must thus be
capable of storing |.S| distinct configurations each of D, ¢ bits in length, where D,
is the number of bits of data required to program the CLB. Using this it is possible
to calculate the overall size of the memory block (Ms;..) required to implement an

FSM using the identity

24

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

Msize = Dconf * |S|

As minimisation of the configuration time of the CLB is vital to the operation
of the device it is suggested that a custom dual port memory block be used. This
allows a standard size bus to be used to allow the memory to be programmed using
a standard external bus of width M,;4:n and a custom sized bus for the loading of
configuration data onto the CLB of size C\;q:5. The use of a standard sized external
bus provides an interface to the memory block that allows it to interact with standard
external memory blocks such as ROM or SRAM but results in a memory block that
is a exact multiple of the bus width which is unlikely to be exactly equal to Mg;,e.
If an external bus of size M,,;q4:nis used the exact size of the configuration memory

(Megact) can be calculated using the relation

Me:cact = B* Mwidth

where B is the number of blocks of M4, required to program the block and
Mezact 2 Miize-

In order to allow for easy selection of the required configuration data for the next
state it is suggested that the memory block be partitioned as shown in figure 8. In
this way the memory block is partitioned into |S| blocks of length D.,,, s where each
block is individually addressable. This allows the next state as indicated by the CLB
to be used directly in selecting the correct configuration data. Each block would then
be subdivided into blocks of length C\,;qnthat can be passed via the configuration
bus to the CLB.

25

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

5.0.4 State Controller

The state controller is responsible for detecting when a state change is required to
take place and initiating the reconfiguration required to perform this. The state
controller locally stores the current state and constantly compares this to the next
state indicated by the CLB. If the next state is found to be different from the current
state this indicates to the controller that a state change is required.

If a state change is detected the state controller must latch the inputs and the
outputs (next state) of the CLB before initiating a reconfiguration. The state con-
troller then indicates to the memory controller that a state change is to take place
and passes control to the memory controller.

After the memory controller has performed the operations required to reconfigure
the CLB control is passed back to the state controller. The state controller then
releases its hold on the inputs and stores the next state as the current state in an
internal register.

Due to latency introduced by the reconfigurable fabric the state controller must
hold the output of the CLB for a number of clock cycles to ensure that these inputs
are allowed to ripple through the reconfigurable fabric. If the output is not held for
this period it is possible that false state changes may be indicated causing the FSM

to operate in an incorrect manner.

5.0.5 Memory Controller

This component can be separated into two main sections. The first of these is respon-
sible for loading the configuration file required to implement a FSM into the local
configuration memory. This involves reading fixed length packets from an external
bus that would usually be connected to non-volatile memory such as ROM.

The memory controller is also responsible for performing reconfiguration of the

CLB when indicated by the state controller. Using the next state as indicated by the

26

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

CLB the memory controller is responsible for selecting the appropriate context and
loading this onto the CLB. This involves reading fixed length blocks of data onto the
configuration bus and indicating to the CLB that this data is to be read. In the case
of scan chains this process continues until all of the required data has been loaded
onto the device. The memory controller would then pass control back to the state
controller to allow the device to operate using this new current state.

As the amount of data to be passed and the size of the configuration bus are de-
pendent on the CLB and configuration memory the timings and operation of memory
controller are specific to the exact characteristics of these components. This means
the memory controller can only be generated after these components have been de-
signed and the memory controller can only be used with components with these exact
characteristics. This means that if any changes are made the memory controller must
be redesigned, as such the generation of this component is usually left until all other

components have been produced and their operation ensured to be correct.

5.0.6 Device operation

The operation of the device shown in figure 7 is illustrated by the algorithm shown
in algorithm 2. The CLB obtains its initial configuration from the data stored in the
associated memory and calculates the next state based solely on the primary inputs.
The output of the CLB (next state) is then compared to the value stored in the current
state register (current state). If the next state does not equal the current state a state
change is indicated and the device obtains the FTEs for the state indicated by the
reconfigurable device. The configuration required to implement the FTEs for the
next state is then automatically obtained from the configuration memory and loaded
into the CLB. The device can then again calculate the next state using the new FTEs.

It should be noted that during reconfiguration, or state change, the state variables

(input vector) would be required to be held at their present values until the device

27

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

Algorithm 2 FSM operation on a custom reconfigurable device
WHILE{1}
device_cfg=reset_cfg
current_state=reset_state
WHILE{reset=no}
next_State=transition_expr_current_state(primary_inputs)
IF{next_state!=current_state}
device_cfg=next_state_cfg
current_state=next_state
ENDIF
ENDWHILE
ENDWHILE

is fully reconfigured to guarantee that not state change events will be missed. This
problem is fairly easily rectified at design time as the number of clock cycles required
to reconfigure the CLB are known and the input registers can be held for the required
number of clock cycles before being released by the state controller.

During reconfiguration it is necessary to either hold the output of the CLB or
instruct the state controller to ignore any state changes indicated by the CLB until
reconfiguration is complete, otherwise false state changes may be indicated to the
state controller. During reconfiguration the output of the CLB will be held in a
similar way to the state variables but due to the latency of the CLB the output would
be required to be held for a period equal to the number of clock cycles required to
propagate the state variables to the outputs of the CLB. Again, as the characteristics
of the CLB would be known at design time this would allow this value to be hard
coded into the state controller which would be responsible for releasing the hold when

applicable.

28

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

5.1 Generation of device Implementation of Custom Reconfigurable

device

In order to test the method suggested here a ’C’ based HDL generator was created
that automates the production of the code required to implement the device shown
in figure 7.

The generator takes FSM parameters, such as the number of states (|S]) and
number of primary inputs (|I|), and based on this produces the HDL required to
implement the device required to implement the FSM using FTEs. Although the
generator is capable of implementing the necessary hardware using only these high
level parameters this is achieved by estimating the the size of the reconfigurable block
required to implement the CLB. This means that in order to ensure the FSM can be
implemented, excessive redundant hardware may be added.

To reduce the amount of redundant hardware added by this estimation a method
of determining the minimum hardware required for a particular FSM, or set of FSMs,
was also developed. The generator is thus capable of operating in two ways, it can
either generate a domain specific device for specific FSMs or generic devices that

estimate the hardware requirements of the FSM.

5.1.1 Generation of Generic device

The HDL generator can produce non-application specific devices intended to be pro-
duced as off-the-shelf components. The characteristics of the device are estimated
from the maximum number of states (Sy,4,) and primary inputs ([,,qz)to the device.
In this way a range of devices would be produced that are capable of implementing
FSMs using the FTE approach presented here. For each of these devices the maxi-
mum number of primary inputs and states would be given and the end user would
select the device that is closest to the characteristics of the FSMs to be implemented.

The hardware produced using this method is likely be sub-optimal for the imple-

29

5 RECONFIGURABLE DEVICE FOR THE IMPLEMENTATION OF FTES

mentation of a specific FSM as in order to allow the device to be used in as many
applications as possible components such as the CLB and memory are designed to
have enough hardware to implement even the most complex of FTEs.

Based on the number of primary inputs the hardware resources required by the
CLB are estimated and the device generated. It is then possible to calculate the
amount of data required to configure the CLB and using this it is simple to calculate
the size of the memory block required to store the entire configuration of the FSM.
This process results in a device that is capable of implementing any FSM with less
than |S| states and |I| inputs but will likely have redundant hardware in the CLB

that will only be used when implementing a small sub-set of all possible FSMs.

5.1.2 Generation of Domain specific device

In order to reduce the inefficiencies of the generic device the tool can also produce
a device specifically tailored to a set of FSMs. In this mode a set of FSMs is used
to determine the minimum hardware requirements of the device that is capable of
implementing each of the FSMs in the set.

This is achieved by producing the sub-truth-tables for each of the FSMs and
calculating the hardware resources of the CLB required to implement each of the
states of each of the FSMs. The maximum size of CLB required by any single context
is then found and a CLB of this size produced. In this way a CLB is produced that
contains the minimum hardware required to implement the set of FSMs.

After generation of the CLB it is possible to produce the local configuration
memory required to store the configuration data. This is calculated by simply finding
the FSM in the set with the largest number of states and multiplying this by the
amount of data required to configure the CLB. The remainder of the device can be

generated in a similar way to the generic device approach discussed previously.

30

6 RESULTS

6 Results

In order to investigate the effectiveness of the method presented here it is necessary
to compare the results of implementation to those obtained using the traditional
method of implementation for reconfigurable devices. It is expected that the method
presented here will allow FSMs to be implemented using a smaller CLB than would be
required if the FSM were implemented on a reconfigurable device using the traditional
method presented in section 4.

In order to compare the implementation methods the number of LUTs used to
implement the CLB of a set of FSMs was collected for both the traditional and FTE
based implementations. The FSMs used to perform this comparison are selected from
the MCNC benchmark suite [13] and are selected to represent as broad a range of
FSMs as possible. For this reason the MCNC benchmarks were first profiled in terms
of number of inputs and states and the corner cases selected.

In order to calculate the hardware resources of the reconfigurable device required
to implement the selected benchmark circuits, using the traditional method, the
circuits are synthesised for implementation using 4 inputs LUTs. This synthesis
was performed using the SIS [5] synthesis tool and the number of LUTs required to
implement the CLB were calculated.

The results obtained using this method were then compared to a number of results
previously published concerning the number of LUTS required to implement these
benchmark circuits. Of particular interest are the results presented in [4]. These
results are very similar as they are produced using a similar synthesis method, i.e.
SIS and Flowmap, but in this case the results are lower due to the combined use of
Roth-Karp decompostion, cube-packing and modified cube extraction to ensure the
minimimum numebr of LUTs are required.

After the number of LUTs required for the traditional method are found the

FSM can be broken down into sub-truth-tables as described in section 3.2.1 and the

31

6 RESULTS

number of LUTs required to implement EACH state are calculated using SIS. As a
reconfigurable device must be able to implement all states, the minimum size of the
reconfigurable device required is equal to the maximum number of LUTs required to
implement any of the FTEs of any single state.

It is also possible to calculate the memory required to store the bit file used to
program the device based on the number of LUTs (L) and the number of inputs of

the LUTs (K); for the traditional system the number of program bits (Deonf) is

Deony = L+ 2%

In the case of the FTE based implementation the number of program bits is

calculated by
Msize = Dconf * |S| = (L * 2K)|S|

The results obtained for the selected MCNC benchmark circuits are shown in table
8. As this table shows that for each of the benchmark circuits the number of LUTs
required is substantially reduced by making use of FTEs. This is due to the fact
that only a small part of the FSM is required to be implemented at any time. It can
also be seen that in the majority of the cases presented here the amount of memory
required to store the configuration data is also reduced.

In the case of DK17 and Opus the use of FTEs actually increases the amount of
configuration data required. In these examples the FSMs have relatively large num-
bers of states compared to inputs and in particular have a few states with very large
numbers of transitions. For the FTE implementation this results in a single state,
or relatively few sates, requiring large numbers of LUTs compared to the remaining
states of the FSM. As the size of the device required is set by the maximum number
of LUTs required by ANY single state this results in a large CLB where the majority
of the states utilise only a small fraction of the available hardware but as all of the

LUTs require programming D, is the same for each state.

32

6 RESULTS

TE-based FTE-based
‘ Benchmark circuit ‘ |S] ‘ |7] | LUTs ‘ MEM (b) | LUTs ‘ MEM (b)

DK15 4 3 21 336 2 128

DK17 8 2 14 224 3 384
Planet 48 | 7 340 5440 6 4608
Kirkman 12 | 16 | 139 2224 4 768

Ex1 20 | 9 43 688 10 3200

Opus 10 | 5 143 2288 11 1760

Table 8: Number of LUTs in CLB for TE and FTE implementation methods

It should be noted that although the use of FTEs allows for simplification of the
CLE addition hardware must be included to allow for the run-time reconfiguration of
the device and the automatic detection and handling of state changes. As illustrated
in figure 7 components such as the state controller, memory controller and local
configuration memory must be added to allow for the automatic operation of the
device. It is felt by the author that any savings in the CLB will be overshadowed
by the addition of these components due to the complexity of these components.
It can also be seen that although these components would be highly dependent on
the actual structure and size of the CLB they can be directly generated once these
characteristics have been determined. This would allow a custom logic block to be
created that would allow for optimisation of these blocks reducing their area, speed
and power requirements. This means that without performing full synthesis, in terms
of silicon area, it is unclear as to what advantages this implementation would have
over the traditional method.

If the power consumption of the device is concidered it can be seen that due to
the requirement for the CLB to be completely reconfigured at every state change
the dynamic power consumption of the device is likely to be greater than that of a
traditional reconfigurable device that is required to be configured only at device start
up. Again this effect is hard to quantify without performing full synthesis as it is

unclear if the reduction in the size of the CLB will result in a sufficient reduction in

33

7 FUTURE WORK

power consumption to compensate for the need to perform reconfiguration.

7 Future Work

During the process of investigating the implementation of FSM using the method
suggested here a number of future optimisations and areas of investigation were
considered. This section gives details of some of the most promising areas for which

it is suggested that future work on this project area may be advantageous.

7.1 Virtual Output addressing

In the traditional approach to FSM implementation state labelling as shown in section
2.2.4 is performed to give each state an individual binary representation that can be
expressed using digital logic. This process requires that the CLB be able to indicate
|S| individual binary codes requiring loga(|S|) outputs and hence loga(|S|) FTEs. In
the case of FTEs the CLB is only required to be able to indicate the next state of
the FSM. This means that the CLB is only required to be able to indicate a unique
binary code for each of the states to which a transition from the current state is
possible.

Using this method the device designer would be first required to profile the FSM,
or set of FSMs, the device is required to implement. This profiling would find the state
with the maximum number of transitions 7),.,. For each state the outputs given in
the sub-truth-table would then be converted to a new virtual label l0ga(|Tina) bits
in length that is particular to each state. A new table would then be created to
implement address translation between this virtual address and the original labels
created during state labelling.

If the Mead Conway example shown in figure 2.2.2 is again revisited it can be seen
that using FTEs to implement the FSM requires a CLB with log2(4) = 2 outputs to

indicate each individual state of the FSM. If this FSM is to be implemented using

34

7 FUTURE WORK

FTEs obtained from the sub-truth-table presented in tables 4-7, it can been seen
that each of the states has a maximum of 2 possible state transitions or T4, = 2.
It is thus possible to indicate the next state of the FSM using only log2(2) = 1
outputs and performing address translation to convert the output of the CLB to
the corresponding label of the next state. If virtual addressing is carried out on the
sub-truth-table for the HG state presented in table 4 the resultant table is shown in
table 9 and the data required to perform address translation is shown in table 10.
As this method is dependent on the actual structure of the FSM this optimisation
relies on having information concerning the FSMs to be implemented and is hence

application, or at best domain, specific.

‘ Primary Input ‘ Output ‘

C|tl ts Vo
00 0 0
010 1 0
011 0 0
011 1 0 ‘ Input ‘ Outputs ‘
110] 0 0 Vo | Zo(t+1) [Zi(t+1)
110 1 0 0
1|1 0 1 1 0 1
11 1 1

Table 9: State HG sub-Truth-Table Table 10: Address Translation

7.2 Virtual Input addressing

Virtual Input addressing is a further optimisation that makes us of the fact that
many of the transitions contained in an FSM are only dependent on a small sub-set
of the primary inputs. This is related to the boolean simplification of FTEs as this
often results in simple expressions that are dependent on relatively few of the primary
inputs. In a similar way to the use of Virtual Output Addressing presented in section
7.1 FSMs would be profiled and the maximum number of inputs (I,,4,) required by

any transition would be found. A CLB with this number of inputs would then be

35

7 FUTURE WORK

able to implement the FTEs of this FSM by programming the inputs to only pass
those required by the current state

If the Mead Conway example is considered it can be seen that although the FSM
has 3 primary inputs the maximum number of inputs in any of the FTEs is 2 as for
each of the FTEs at least one of the inputs is removed during boolean simplification
reducing the number if inputs required by the CLB. Again, as with Virtual Output
Addressing, this optimisation is application specific and relies on data obtained from

the FSMs required to be implemented.

7.3 Partial reconfiguration and Configuration Caching

Recently there has been much interest in the possibility of performing partial re-
configuration of reconfigurable devices. This process involves configuring only small
sections of a reconfigurable device rather than configuring the entire device during
each reconfiguration. In this way a device could be made to implement several func-
tions simultaneously and if any of these functions is required to be altered it can
be reconfigured without interfering with the operation of the other functions imple-
mented by the device. By only reconfiguring the parts of the device that are required
to be altered this process aims to reduce the amount of data required to configure
the device.

In the case of the use of FTEs this technique could be used to limit the amount of
data required to reconfigure the CLB and hence reduce the time required to perform
state changes. Using this method, for each state change, the configuration of the
current state would be compared to the configuration of the next state and only the
differences in these configurations would be required to be loaded onto the device. It
is impractical to perform these comparisons during run-time and hence this would
be determined in advance during synthesis. In this way a distinct context would be

produced for each possible transition of the FSM rather than for each state. Although

36

8 CONCLUSION

it is hoped that this method will result in lower configuration times due to reductions
in the size of the individual configurations that must be loaded during state changes
the large number of configurations required may cause the size of the configuration
memory to grow very large and impact greatly on the efficiency of the resultant
device.

A possible solution to this issue is the use of a system similar to caching used in
modern processors. This would take advantage of the fact that only relatively few of
the states of an FSM are usually reachable from the current state and is related to
the concept of Virtual Output addressing presented in section 7.1.

In this system only the partial-configurations of states that are reachable from
the current state would be required to be loaded into the configuration memory and
the appropriate configuration selected when a state change is detected. At this point
the partial-configurations of each of the reachable states of the next state would be
loaded into configuration memory. It should be noted that although the method aims
to reduce the size of the memory block required to store configuration data this is
highly dependent on the structure of the FSM to be implemented and may result
in application specific devices. This method would also require far more complex
state and memory controller components and as such it is unclear without further

investigation if this wold result in increased efficiency in terms of area and power.

8 Conclusion

This portfolio document has presented a novel representation of FSMs specifically
tailored to take advantage of the properties of reconfigurable hardware.

The ability of reconfigurable hardware to be reconfigured during run-time allows
these devices to calculate the next state of FSMs using only the primary inputs. This
is made possible through the use of run-time reconfiguration and FTEs to produce

a unique context, or configuration, for each state. By making use of this novel

37

8 CONCLUSION

representation the feedback register traditionally used in FSM implementation is no
longer required, reducing the inputs to the CLB by a factor of log,(]S]).

In order to investigate the effect of the novel method presented here selected
MCNC benchmark circuits were implemented and the hardware characteristics recorded.
The MCNC benchmark suite was profiled and the circuits selected to represent the
corner cases in terms of number of inputs and states.

For each of the examples selected the use of FTEs vastly reduces the number
of LUTs required to implement the FSM. The results also show that FSMs with
state transitions spread evenly across the states, rather than single states with large
numbers of traditions, are most suitable for the use of FTEs as this results in FSMs
with far lower LUT counts as well as reduced configuration memory requirements.

Future areas of optimisation and investigation have also been identified which
may further reduce the hardware resources required to implement FSMs using FTEs.
Optimisations such as virtual input and output addressing allow the size of the CLB
to be further reduced but are application specific and rely on knowledge of the specific
FSMs to be implemented. The possibility of performing partial reconfigurations
instead of configuring the entire CLB during state changes aims to reduce the amount
of configuration data required and hence reduce the reconfiguration times of the
device but may produce very large configuration files as a unique configuration is
required for each state transition rather than for each state. This would result in
long start up times for the device and require very large configuration memories as
well as far more complex state and memory controller components.

The work carried out here was considered novel enough to be considered for legal
protection in the form of patenting. Although extensive consultation was carried out
with patent lawyers, due to time constraints, this process has not been completed by
the time of writing this report. Instead the paper presented in Portfolio document

CP1 has been submitted to Adaptive Hardware Systems Conference (AHS) 2007

38

8 CONCLUSION

where it is accepted for publication.

39

REFERENCES

Implementation of Control Systems using

Reconfigurable Hardware

References

[1] Cadence Encounter Digital IC Design Platform.

http://www.cadence.com/products/digital _ic/index.aspx.
[2] GDS-II Format. http://www.rulabinsky.com/cavd/text/chapc.html#GDSArray.

[3] S.J.E. Wilton A. Yan. Product-term based synthesizable embedded pro-
grammable logic cores. In IEEE Transactions on VLSI, pages 474-488,
2006.

[4] A. Dehon. Balanced interconnect and computation in a reconfigurable
computing array. In Proceedings of the 1999 International Symposium on

Field Programmable Gate Arrays, pages 69-78, 1999.

[5] E. M. Sentovich and K. J. Singh and L. Lavagno and C. Moon and R.
Murgai and A. Saldanha and H. Savoj and P. R. Stephan and R. K.
Brayton and A. Sangiovanni-Vincentelli. SIS: A system for sequential

circuit synthesis. Technical report, 1992.

[6] A. Gill. Introduction to the Theory of Finite-state Machines. McGraw-Hill,
1962.

40

[7] S. Hauck K. Compton. Flexibility measurement of domain-specific recon-
figurable hardware. In Proceedings of the 2004 ACM/SIGDA 12th inter-
national symposium on Field programmable gate arrays, pages 155-161,

New York, NY, USA, 2004. ACM Press.

|8] L. Scheffer L. Lavagno, G. Martin. Flectronic Design Automation for
Integrated Circuits. CRC, 2006.

[9] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
1967.

[10] S. Palnitkar. Verilog HDL. Prentice-Hall, 2003.

[11] T. Villa T. Kam, R. Brayton, , and A. Sangiovanni-Vincentelli. Synthesis
of Finite State Machines: Functional Optimization. Kluwer Academic

Publishers, 1997.

[12] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli. Synthesis of
Finite State Machines: Logic Optimization. Kluwer Academic Publishers,

1997.

[13] S. Yang. Logic synthesis and optimization benchmarks user guide version.

Technical report, 1991.

41

PORTFOLIO DOCUMENT TR2

Investigation of the Characteristics of
Reconfigurable Devices.

Author: Supervisor:

Graeme Milligan Wim Vanderbauwhede

Contents

1 Introduction 1
1.1 Project goals L 1
2 Background theory 2
2.1 Truth-table representation and Boolean simplification of Combinato-
rial Logic Expressions (CLE) 3
2.2 Programmable logic arrays oo Lo 4
2.2.1 Measure of flexibility o 0oL 7
2.3 Field-Programmable Gate Arrays (FPGA) 10
23.1 Logicblocks e 10
2.3.2 Interconnect Network, 12
2.3.3 Decomposition Lo Lo 15
3 Investigation of optimal number of product terms for PLAs 16
3.1 Test Strategies 17
3.1.1 Benchmark testing 18
3.1.2 Guided-Random testing 18
3.1.3 Random testing oo 19
3.1.4 Investigation of average productsin CLEs 19
3.2 Stochastic investigation of number of Product terms in simplified SOP
EXPIESSIONS .+ v v v e e e e e e e e e e e e e e e e e e e 20
3.2.1 High-level Monte-Carlo based Circuit generation for PLA testing 21
3.2.2 Random Circuit Generation 22
3.2.3 PLA Test Strategy 23
3.2.4 Results obtained using Monte-Carlo based circuit generator . . 24
3.3 Mathematical investigation of product terms in random CLE 28
3.3.1 Definitions 28
3.3.2 Boolean Minimisation Algorithm 30
3.3.3 Analysis of average case behaviour 31
34 Analysisof Results 33
3.5 Conclusion 37
4 TInvestigation of the characteristics of LUT based reconfigurable de-
vices 38
4.1 FExperimental Investigation of characteristics of LUT based reconfig-
urable devices L 40

5 Conclusion 41

List of Figures

Implementation of SOP expression
PLA structure L
FPGA Architecture
Logic Block of Xilinx Virtex-5 [4]
Example of Wilton switch block [29]
Decomposition of 5-input CLE to network of 3-input LUTs
Existing test strategies oL
Production of 3-input CLE using 8 bit random number
Graphical representation of Mean Product terms in CLE expressions. .
PDF and CDF of product terms in 11-input CLE
Graphical representation of calculated and experimental mean values. .
CDF of product terms in 4-input expression

© 00 ~J O O i W N

—_ =
= O

—
[\)

List of Algorithms

1 PLAteststrategy
2 Boolean minimisation oo oL

List of Tables

1 Sample 3-Input truth table 0000000

2 3-Input K-map of function with maximum number of product terms

3 Experimental results of Stochastic investigation of Product Terms in
CLES e

4 Mean number of product termsin CLE

5 Comparison of Analytic and Mathematical results to those presented
N [33] ..

6 Mean number of LUTs and depth of CLE after decomposition

1 INTRODUCTION

1 Introduction

Reconfigurable hardware, such as Field Programmable Gate Arrays (FPGAs) and
Programmable Logic Devices (PLAs), can be used to introduce hardware flexibility
to modern electronic devices. Hardware programmability introduces the ability to
determine the functionality of a silicon device after manufacture, allowing hardware
designers to begin the hardware design process earlier in the design cycle and develop
the necessary configuration files concurrently. The use of reconfigurable hardware
allows design errors to be corrected after a device has been manufactured by simply
reprogramming the device hence reducing the quantity of pre-manufacturing testing
that must be carried out on new devices. This introduces the concept of using pre-
design and verified generic hardware devices that can be programmed as required by
the user, allowing the design cost of these devices to be amortized over a number of
future projects in a similar way to the use of the generic microprocessor.

One of the main issues concerning reconfigurable hardware is the difficultly in
determining the type and amount of hardware required for an application where a
final implementation of the device is not yet available. This is particularly true where
the reconfigurable device is intended to act as a standard platform to be used in a
variety of applications or be embedded within a larger device such as a System on
Chip (SoC). Due to the need for generality, it is difficult for reconfigurable device
designers to determine the amount of hardware resources that should be placed within
the device. This is a difficult balancing act between the need to include enough
hardware to implement as broad a range of designs as possible and producing devices

with large amounts of wasted redundant hardware.

1.1 Project goals

This research aims to provide a method of determining the optimal hardware require-

ments of reconfigurable devices to ensure that they can implement as broad a range

2 BACKGROUND THEORY

of designs as possible while avoiding unnecessary, redundant hardware. This is based
on estimating the maximum and mean hardware requirements of the device based on
high level parameters such as the number of inputs to the device.

In order to begin such an investigation it is necessary to perform a detailed anal-
ysis of the operation of both logic and memory based reconfigurable devices with
particular focus on how these devices implement systems and how this determines
the hardware resources required within these devices. This research is presented in
section 2. Next, the amount of hardware that is required within PLA based recon-
figurable devices is presented in section 3. The method presented was then extended
to the investigation of LUT based architectures in section 4 before final conclusions

are made.

2 Background theory

Currently there are two main types of reconfigurable logic device available: these
are memory based devices such as FPGAs and logic based devices such as the PLA.
Recently memory based devices have become more popular due to their large gate
counts and the ability to implement complete, complex systems on a single device.
Along with the production of large FPGA devices such as those from Xilinx [38] and
Altera [3] there is also interest in integrating small blocks of reconfigurable hardware
into large System on Chip (SoC) devices to introduce flexibility within these devices,
an example of this is [28].

The inclusion of this hardware allows large generic chips to be produced where
the precise details of the functionality of the device can be determined post manufac-
ture, allowing for their use in a larger application domain. While this increases the
applications the device can be utilised in, the use of non-application specific hard-
ware reduces the efficiency of the device due to the general purpose nature of this

hardware and the associated logic required to provide programmability.

2 BACKGROUND THEORY

The following sections detail both the LUT and logic based approaches to recon-
figurable devices and describes the method by which logic functions are mapped to

these devices.

2.1 Truth-table representation and Boolean simplification of Com-

binatorial Logic Expressions (CLE)

One of the most commonly used methods for the representation of CLEs is the truth
table. This is a table of all possible input combinations that can be presented to the
CLE and the output required to be produced by the CLE. A sample truth table is
shown in table 1 for a 3 input CLE.

From the truth table it is possible to extract a Boolean description of the CLE
in sum-of-products (SOP) format. In SOP format, a product (AND), or minterm, is
created for each ’1’ in the output column of the truth table and the product terms
are then summed (OR) to give the final CLE. For the truth table in table 1 this

results in the following expression

7 = abc + abe + abe + abe

It is common practice to use boolean simplification techniques to remove redun-
dant logic from the expressions. This reduces the hardware required to implement the
required function. The use of Boolean algebra is common place in engineering and
has been an active area of research since the early days of Computer Aided design.
As such, a large volume of work is available detailing this process including [31, 36, 7].
This work has been used to create a number of exact minimisation algorithms, such
as espresso-EXACT [32] and Mcboole [17]. These algorithms are guaranteed to pro-
duce the minimum SOP expression. The espresso-EXACT and other minimisation
algorithms are utilised by tools such as SIS [6] to automatically perform boolean

minimisation.

2 BACKGROUND THEORY

When Boolean simplification is performed on the expression in table 1 the ex-

pression becomes

7 = ac + be

As this shows boolean simplification has reduced the number of product terms
by half. This has a direct effect on the size of the PLA required to implement the

CLE by reducing the number of equivalent gates required.

Inputs | Output
a ‘ b ‘ c Y/
0[0]0 0
0]0]1 1
0[1]0 0
0111 0
1{0]0 1
1(0|1 1
1(11]0 1
11171 0

Table 1: Sample 3-Input truth table

2.2 Programmable logic arrays

The PLA, and its variants, were the first hardware devices that provided the opportu-
nity to determine their functionality post-manufacturing and as such a large volume
of work is available on the design and operation of these devices [8, 21|. Early de-
vices achieved this through the use of one-time programmable fuses or anti-fuses
which limited the devices to be one time programmable. This prevented the reuse of
these devices and also prevented error correction through programming. In order to
solve this problem modern devices, such as [16], make use of reprogrammable blocks

to allow the devices to be programmed multiple times.

2 BACKGROUND THEORY

PLAs are designed to implement combinatorial logic expressions (CLE) and their
design is derived directly from the sum-of-products (SOP) representation of these
circuits. A simple combinatorial logic expression in sum-of-products format is shown

below

Z = abc + abe + abe

This expression is constructed of a series of product terms that implement the on
conditions of a logic expression by ANDing the necessary inputs. The final expression
is then produced by ORing, or summing, these product terms. It is thus possible to

implement the expression using simple AND and OR gates as is shown in figure 1

N

c—

}
D>
}

a —

b—
c P

Figure 1: Implementation of SOP expression

As all SOP expressions can be implemented using AND and OR gates in this
way, it possible to build a general platform that is capable of implementing these
expressions. As each of the product terms is produced by an AND gate, the device
must contain enough of these to produce the necessary number of product terms.
The outputs of the AND gates are then connected to a large OR gate to implement
the final SOP expression.

The structure of a typical PLA is shown in figure 2. This device contains a plane

of AND gates to implement the required product terms. The output of these gates

5

2 BACKGROUND THEORY

are then routed to the inputs of the OR gates in order to sum the product terms to
produce the final expression. The connections between the outputs of the AND gates
and the inputs of the OR gate are programmable through the use of programmable
switches allowing the user to determine which of the AND gates is connected to

which OR gate and hence determine the final functionality of the PLA.

o -Programmable Interconnect

Figure 2: PLA structure

The typical PLA can be fully described using the tuple

{i,p, 0}

where,
i is the number of inputs,
0 is the number of outputs and
p is the number of product terms.
Based on these parameters it is possible to determine the hardware characteristics of

the device as;

2 BACKGROUND THEORY

e The number of inputs (i) sets the number of inputs required by the AND gates
in the AND plane. As shown in figure 2 each AND gate has two inputs for
each PLA input as it is normal to provide an inverted version of each of the

inputs.
e The number of outputs (0) is equal to the number of OR gates in the OR plane.

e The number of product (p) terms determines the number of programmable
switches in the array but as a result also determines the number of AND gates
in the AND plane and the number of inputs required by the OR gates in the
OR plane. It can also be seen that the number of product terms determines
the complexity of the SOP expression that can be implemented and as such
has a major impact on the type and number of circuits the PLA is capable of

implementing.

In order to ensure the PLA can implement as broad a range of SOP expressions
as possible it is essential that enough product terms are available on the device.
From the SOP expression this can easily be found by simply counting the number of
product terms in the expression but for applications where the SOP expressions for

the application are not available this method can not be utilised.

2.2.1 Measure of flexibility

As stated the amount of hardware available in a PLA has a direct effect on the
amount and variety of circuits the device can implement. If too few product terms
are placed within the fabric of the device the complexity and hence the number of logic
circuits the PLA can implement will be severely limited. This means that although
a PLA device may report lower speed, area and power requirements when compared
to other architectures this does not give a clear indication as to the usefulness of the

device as these metrics do not include any measure of the capabilities of the device

2 BACKGROUND THEORY

to implement CLEs. For this reason [13| suggests the use of a measure of flexibility
for reconfigurable device’s that is based on the devices ability to implement a range
of logic circuits.

This measure of flexibility can also be viewed as a measure of the coverage of the
device. This is based on determining the percentage of a particular set of circuits
that the device is capable of implementing. It is then possible to use this value as
a design metric for the comparison of different reconfigurable architectures. In the
case of PLAs this method can be used to assess the effect of altering the number of
product terms within the array on the complexity and number of circuits that can
be implemented.

An alternative way of using this measure of flexibility is to use a very large set
of logic expressions and calculate the hardware requirements of the PLA required
to implement these expressions. In this way the characteristics of a PLA would be
selected based on these[26] results in order to achieve a required level of flexibility
rather than measuring this after the device has been designed. As the number of
product terms is vital in determining the hardware required by a PLA, a number
of projects [35, 5, 34] have attempted to calculate the number of product terms in
general CLE expressions with particular interest in the average, or mean, number of
product terms. In the examples it was found that the average number of product
terms in the SOP expression is related to the number of literals, or inputs, to the
expression.

This relationship is fairly evident, if the truth table in table 1 is again considered,
it can be seen that as the table is 2¢ in length and a product term is produced for
each ’1’ in the output column, the maximum number of product terms possible in a
SOP expression of I inputs is also 2/. However if an expression was created with this
number of product terms, boolean simplification would result in an expression with

no products and in reality would represent a circuit whose output is always high.

2 BACKGROUND THEORY

It can be seen that as the number of products in the unsimplified CLE increases,
the likelihood of boolean simplification taking place also increases. This means that
although an unsimplified CLE may have a large number of product terms, after
simplification the result may be a circuit with few product terms. By examining
the method of boolean simplification conventionally carried out, and in particular
Karnaugh maps (k-map) , it was found that the maximum number of product terms
that can be found in a simplified CLE is actually 2. Table 2 shows the k-map for
a 3 input CLE with the maximum number of product terms. It can be seen that if
any further 7s are added to this k-map, simplification can take place by grouping
these ’ON’ terms and does not result in extra product but instead results in either
simplified product terms or the complete removal of a product term. In terms of logic
functions this expression is the exclusive 'OR’ (XOR) boolean operation.

This simplification means a PLA produced with sufficient hardware to implement
2i=1 product terms can be guaranteed to be able to implement any combinatorial
logic expression with ¢ or less input. This is due to the fact that no CLE of I inputs
can have more than this number of product terms and a circuit with less than this
number of inputs must also have less than 2°~! product terms. This would result in
a device with a flexibility score of lor in other words a device that can implement
100% of all circuits with less than i-inputs.

Although this fact gives the maximum number of product terms for an ¢ input
expression, there are very few circuits that will require this number of product terms
with the majority having far less than this. For this reason, producing a PLA with
this number of product terms is unnecessary except for critical domains where it must
be guaranteed that the PLA can implement any circuit of less than 4 inputs where
the ability to provide upgradeability and error correction is of prime importance. Of
more interest is the mean number of product terms and the distribution of these

terms as this allows designers to select the degree of coverage, or flexibility, of the

2 BACKGROUND THEORY

PLA.
c c
ab | 0 1
ab 1 0
ab | 0 | 1
ab 1 0

Table 2: 3-Input K-map of function with maximum number of product terms

2.3 Field-Programmable Gate Arrays (FPGA)

The architecture of modern FPGAs is usually described as being island style, where
the islands are programmable logic blocks used to implement the required function-
ality surrounded by a sea of routing used to connect these logic blocks in the desired
manner. The typical architecture of an FPGA is shown in figure 3. The logic units
are usually constructed of small memory blocks known as Look-Up-Tables that im-
plement combinatorial logic expressions (CLEs). Recently device’s have begun to
include embedded components such as memories, DSP components and even com-
plete processors in order to increase the efficiency of these device’s when implementing
larger systems.

Due to the mature nature of these devices a large volume of literature is available
including [12, 9, 24]. The following section aims to give an overview of FPGA design

and circuit implementation.

2.3.1 Logic blocks

Modern FPGA devices make use of Look-Up-Tables (LUTs) for the implementation
of combinatorial logic expressions. These devices are small blocks of memory com-

monly used for the implementation of combinatorial logic expressions (CLEs). This

10

2 BACKGROUND THEORY

Logic Block
AN EMN |

o
L L L L i
= I
:EEE;E:

Figure 3: FPGA Architecture

is achieved by storing the truth table of the function in a programmable memory and
connecting the address lines of the memory directly to the inputs of the combina-
torial logic function. Based on the value presented at the inputs, the corresponding
output is selected from the memory and presented at the output of the LUT. LUTs
are usually described in terms of the number of inputs (k) to the block and as such
will be referred to as k-LUTSs for the remainder of this document.

As the LUT is required to store the entire truth table of the function it is required
to have 2¥ memory bits for a k input logic function. This results in exponential growth
in relation to the number of inputs and makes this method unsuitable for combinato-
rial logic functions with large numbers of inputs. For this reason the number of inputs
to a LUT is usually limited to avoid the need for very large memory blocks. Previous
work has shown that the use of LUTS with inputs in the range 3 < k£ <5 produces
FPGAs with the best density and speed characteristics|2, 40| although recent work
has suggested that larger LUTs may be suitable [27].

As LUTS store the entire truth-table of a k£ input logic expression it can be seen

that the device is capable of implementing any combinatorial logic expression of k-

11

2 BACKGROUND THEORY

\ 4
N
v

Y

v
__/
y

61%‘_}“ > A’J >Register >

Carry
Logic

1

V‘ {V Y.

v

Figure 4: Logic Block of Xilinx Virtex-5 [4]

inputs. In order to extend the usefulness of these blocks, additional hardware, such
as registers and carry logic, are implemented alongside the LUTs in the logic blocks
contained within the FPGA fabric. The logic block used in the Xilinx Virtex-5 is
shown in figure 4 [4]. As this shows, the basic logic block of this device is based on a
6-LUT with additional carry-logic for the efficient implementation of mathematical
functions and a register to allow the implementation of sequential circuits. The
desired mode of operation can then be selected by programming the multiplexor’s
within the logic block. In the case of the Virtex-5 it can be seen that a 6-input
LUT is utilised rather than the 4-LUT traditionally employed. The LUT used in
the logic block of the Virtex-5 has larger numbers of inputs as it is capable of being
partitioned to allow it to implement multiple functions with less than 6 inputs in
total, for example the 6-LUT can be partitioned in such a way as to act as 2 3-LUTs
or a 2-LUT and a 4-LUT simultaneously. This allows for the use of more dense logic
in creating the 6-input LUT but with the ability to use the most appropriate number

of inputs for the application.

2.3.2 Interconnect Network

The interconnect network of an FPGA is responsible for the routing of signals and

connection of logic blocks to implement large functions or even complete systems.

12

2 BACKGROUND THEORY

This is achieved through the use of switch blocks programmed to connect the inputs
of the logic blocks to the I/O pads and to other logic blocks to allow larger functions
to be implemented than is possible using a single logic block.

The interconnect network introduces a large overhead due to the generality needed
to allow systems to be implemented on the FPGA. In [22] it is reported that up to 90%
of the chip area is taken up by the interconnect network and the hardware required
to program this resource and the logic blocks. The interconnect network also dictates
the maximum speed of the device due to delays introduced by the channels used for
routing and the programmable elements used to route internal signals to the logic
blocks. For this reason much research has been undertaken on the optimisation of
the structure of the interconnect network including [25].

One of the primary methods of optimisation is to locally group logic blocks into
clusters [2]. This allows fast local interconnects to be used, reducing the delay in-
troduced by long tracks on the FPGA. Clusters are then used to implement medium
sized sub-functions that can then be connected to other sub-functions to implement
entire systems. It is also common to attempt to group related sub-functions that are
closely coupled into adjacent clusters to reduce the length of the interconnects re-
quired and hence reduce the delay of these connections. This optimisation is usually
automatically carried out by synthesis tools such as [37] and is similar to place and
route performed during ASIC design.

Place and route for ASIC design is primarily concerned with the placement of
hardware and interconnects on a silicon chip to ensure that correct timing is achieved
for the device. For FPGAs, the place and route software is concerned with producing
the bit-files required to program the interconnect network to connect the logic blocks
in order to implement the desired behaviour. One of the main issues involved in
place and route for FPGAs is the avoidance of congestion. This is caused when

insufficient routing channels are available to route signals within the FPGA to the

13

2 BACKGROUND THEORY

required locations. This is often caused if a sub-function is required to communicate
with large numbers of other sub-functions and hence requires a very large number of

routing channels.

01234

O~ N WD
O, N WM

01234

Figure 5: Example of Wilton switch block [29]

The interconnect network is based on a variety of length channels used to carry
signals around the FPGA and switch blocks used to connect these channels and the
channels to the inputs/outputs of the logic blocks. As the switch blocks introduce
delays the optimisation of these blocks has been researched in great detail and as such
a large volume of material, including [29], is available on this subject. An example
of a modern switch block is shown in figure 5. As this shows, due to the island style
architecture used, the channels are usually categorised as being either vertical or
horizontal routing channels. The switch blocks then connect these channels to route
signals to the required logic-block.

In order to allow systems to be implemented using k — LUT's it is necessary to
first break these systems down into a collection of interconnected sub-functions that
are realisable using these blocks. The process of taking large systems and breaking
them down into realisable sub-functions is known as decomposition and is discussed

in the following section.

14

2 BACKGROUND THEORY

2.3.3 Decomposition

Decomposition takes logic functions with large numbers of inputs (i) and attempts to
implement these functions as a network of sub-functions where each sub-function has
a maximum of k-inputs Decomposition is at the heart of modern synthesis as it allows
the implementation of large systems using networks of small hardware components
and as such a large number of algorithms exists that automate this process including
Flowmap [14], and DAG-map [11].

Decomposition is achieved by making use of the fact that any logic function can
be implemented using simple two input gates. Figure 6(a) shows a 5 input logic
function implementation using only 2 input gates. The decomposition algorithms
attempt to group these gates together while ensuring that no single group requires
more than k-inputs as is shown in figure 6(a). Figure 6(b) shows this covering for a

k value of 3.

(a) 5-input CLE (b) Decomposed CLE for with k=3

Figure 6: Decomposition of 5-input CLE to network of 3-input LUTs

This covering results in a network of 3 input LUTS that implements the function

in figure 6(a). In this way it is possible to use LUTs with fairly small k£ values to

15

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

implement large combinatorial logic functions. During decomposition one of the key
parameters that must be considered is the depth (d) of the resulting array. This is
the longest path from the inputs to the output of the array. The depth is calculated
by counting the number of logic elements a signal must pass through on its way from
the primary inputs to the output of the system. As synchronous memory elements
are used to implement the LUTs it can be seen that a clock cycle will be required
to propagate a signal through each logic block and hence the latency of the device
will be equal to the maximum path length, or depth, of the network produced by
decomposition.

In the example shown in figure 6(b) the depth of the decomposed network is 2.
This is a key parameter as it dictates the latency of the network and as such has a
direct effect on the speed of operation. For this reason a large number [14, 11, 15] of
the decomposition algorithms are primarily concerned with producing networks with

the minimum depth possible.

3 Investigation of optimal number of product terms for

PLAs

As the future applications of PLAs can not be predicted at design time, it is difficult
to determine the amount of hardware that will be required by the end user of the
device. When creating new PLA designs it is important to ensure that the devices
can implement as broad a range of circuits as possible as this increases the application
domain of the device.

Although as shown it is possible to determine the absolute limit to the number
of product terms in relation to the number of inputs, only a relatively few CLEs
will require this number of products. This makes this measure of little use when

determining the characteristics of future PLAs. Of more interest to device designers

16

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

is the mean number of product terms as this gives an indication of the average number
of products in an i-input expression, or the number of product terms required by a
PLA to implement 50% of all possible i-input expressions.

As the limit to the number of products is dependent on the number of inputs (7)
it is possible to determine the distribution of product terms in CLEs by generating
every possible CLE with ¢ inputs but as the total number of i-input CLEs is 22i, this
makes this form of exhaustive testing impractical for CLEs with even fairly small

numbers of inputs.

3.1 Test Strategies

In order to find the distribution of product terms in CLEs a number of strategies used
to test the flexibility of new reconfigurable devices were examined. These techniques
are shown in figure 7 and range from the use of real-life circuits to completely random,
synthetic, circuits. The following section outlines the previous strategies employed in

measuring the flexibility of reconfigurable devices.

Random
testing

=
@]
o
c
©
5
e}
QL
o
=
O

Figure 7: Existing test strategies

17

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

3.1.1 Benchmark testing

Traditionally, the method used to select the characteristics of PLAs was the use
of benchmark circuits [39, 10]. This method relies on a suite of sample real-world
circuits that are mapped to PLAs using place and route algorithms such as PLAmap
[10]. [41] makes use of the MCNC benchmark circuits to determine the parameters
that resulted in the best delay and area characteristics by mapping these circuits to
PLAs with varying parameters.

Although these methods are useful in determining the optimal characteristics of
PLAs, the results are highly dependent on the use and availability of benchmark
circuits. If only a small number of benchmark circuits are available, or if they are
closely related, this method may produce results that are particular to the bench-
marks and not general applications. As the circuits in the benchmark suites are
existing real-world circuits it is also unclear how well they will represent future cir-
cuits that the device may be required to implement after manufacture and as such,
unless the circuits contained in the benchmark suites are constantly updated, they

become out-of-date rapidly.

3.1.2 Guided-Random testing

In [23, 13] methods of extending the use of benchmarks were suggested. These meth-
ods first profile a set of benchmarks to determine ranges for a number of characteris-
tics such as number of inputs, outputs and circuit complexity. Based on this a large
number of synthetic circuits can be randomly generated with characteristics within
these ranges. This allows a very large number of circuits to be generated that can be
used for testing.

In [13] these circuits were mapped to sample devices and a measure of flexibility
extracted based on the percentage of the total circuits that could be mapped using

the place and route tools allowing device designers to rapidly assess the effect design

18

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

changes have on the flexibility of the device. This method is particularly aimed
at domain specific reconfigurable devices where the final application domain of the
device is well known and hence the reliability of the results can be assured as it is
likely, although not guaranteed, that circuits within a domain will exhibit similar
characteristics.

These methods do not completely alleviate the issues relating to the availability
of sufficient benchmark circuits as, if the domain is small, it is unlikely that enough
example circuits will be available to completely profile the domain. Conversely, if the
domain is very large it is likely that the characteristics obtained by profiling will have
a large range and the random generation of synthetic circuits will result in circuits

with almost totally unconstrained characteristics.

3.1.3 Random testing

The use of completely random circuits for device testing was suggested in [18]. This
method produces randomly generated netlists used to assess the routability of re-
configurable devices by generating large numbers of circuits and performing place
and route. This method was rejected in [23] as it was claimed that the results of
the unconstrained random generation did not produce realistic circuits. It is felt
by the author that the random generation process produced unrealistic circuits as
high level optimization was not carried out on the circuits produced. As we have
seen, boolean simplification can greatly reduce the amount of hardware required to
implement CLEs and as such should be performed before random circuits are used

for device testing.

3.1.4 Investigation of average products in CLEs

A number of research projects [19, 36, 34, 35, 33, 5] have attempted to calculate

the average number of product terms in CLEs and the upper and lower bounds for

19

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

minimised SOP expressions. In [34, 35] randomly generated logic expressions are
used to calculate the average number of product terms in the expressions and the
upper and lower bounds on this are calculated mathematically in a similar way to
[5]. In both of these examples the value for the average number of product terms is
calculated using randomly generated logic circuits. Although this method seems to
generate values in the expected range for the average case behaviour it is impossible
to verify the accuracy of the random circuit generation method as no details are given
of the operation of this method. These methods also focus solely on the use of this
method in determining the characteristics of PLAs and no comparable work has been

found for the use of memory based devices such as those based on LUTs.

3.2 Stochastic investigation of number of Product terms in simpli-

fied SOP expressions

As stated in section 3 it is impractical to generate every possible CLE of i inputs
to determine the distribution of number of product terms due to the exponential
growth in the number of possible circuits. An alternative to the full testing method
is to generate large numbers of random logic expression that can be used to perform
profiling.

In order to further limit the domain it was decided that only circuits with a single
output should be considered. This avoids the need to consider situations where prod-
uct terms may be shared in multi-output circuits as it is felt that product sharing
would be minimal and a multi-output circuit can be modeled using multiple single
output circuits. Instead a method of generating completely random expression is
required to allow the distribution to characterise. The selected method involves the
random generation of CLEs based on the truth-table representation of the expres-
sions. By generating circuits at this level high-level optimisation, such as boolean

minimisation, can be performed to allow these circuits to more closely resemble real-

20

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

world circuits.

Although the use of randomly generated CLEs allows the investigation of the
number of product terms in general CLEs and the distribution of these values, it
requires the generation and simplification of large numbers of CLEs. As the number
of inputs to the CLEs increases the time required to perform simplification increases.
In the test runs undertaken 100,000 circuits were used for each value of 7 to determine
the distribution of product terms. For values of ¢ greater than 12 this results in test
runs that take days to complete. This means that the use of this method is limited
to fairly small numbers of inputs. For this reason a more generic mathematical
based approach was developed in conjunction with Dr Paul Jackson at Edinburgh
University.

The following section details both the Monte-Carlo based generation of random
circuits and the mathematical investigation of the average case behaviour for simpli-
fied SOP expressions. The results of these methods are then presented and compared
to those presented in [35] to prove the accuracy of these results in calculating the
average number of product terms in the expressions. The results obtained for the
distributions can then be used by device designers to select the required PLA char-

acteristics based on the number of inputs and the desired degree of flexibility.

3.2.1 High-level Monte-Carlo based Circuit generation for PLA testing

Although in [23] it was suggested the random generation of circuits produced results
that did not match real circuits, this is due to the fact that high-level simplification,
such as boolean minimization, was not carried out. For this reason it was determined
that circuits should be generated at a high enough level to allow simplification to
take place. The pla format [1] allows combinatorial logic circuits to be represented
at a high level in a format similar to the truth table.

By generating random logic expressions at a high level and performing high level

21

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

optimization, such as boolean minimization, it is hoped realistic logic circuits can
be generated that can then be used for device testing or to measure the flexibility
of reconfigurable devices. If large numbers of these circuits can be generated it is
thus possible to use these circuits to assess the flexibility of the PLA, similarly to the
method suggested in [13], by calculating the percentage of circuits that the device
can implement. In this way device designers can determine the effect their choice of
parameters has on the range of circuits the device is capable of implementing.

It is also possible to turn this concept around by generating large numbers of
circuits and calculating the characteristics of the PLA required to implement them.
This method allows device designers to select the flexibility required by the device and
obtain the characteristics required to achieve this value. The following section details
the high-level Monte-Carlo based approach to generating test circuits for PLAs and

how this can be used to determine a measure of flexibility of the device.

3.2.2 Random Circuit Generation

If the example shown in table 1 is again revisited, it can be seen that the behaviour
of the CLE is characterised by the sequence of on (1) and off (0) conditions in the
output column of this table. If this sequence is considered simply as a binary sequence
it can be seen that a random expression can be produced by a random sequence of
2! binary digits. This could be produced by simply generating 2! random binary
numbers but as ¢ increases this becomes impractical due to the time required to
produce this number of random values.

By making use of a random number generator, such as the Mersenne twister [30],
it is possible to generate a random function by making use of the binary representa-
tion of a random number as shown in figure 8. Although this method will produce
unrealistic functions with large amounts of redundant hardware, this can then be

removed through boolean simplification to produce more realistic functions.

22

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

As the random number generator is only capable of generating numbers with a
fixed number of binary digits it is necessary to use multiple random numbers to gen-
erate truth tables for expressions with large numbers of inputs. The random number
generator utilized produces 16-bit random numbers that are capable of producing the
necessary bit sequence for expressions of i < 4, for larger expressions 2'~* random
numbers are required.

In order to make realistic circuits from the expressions produced it is necessary
to perform high-level optimization of these circuits. The SIS synthesis tool [6] was
selected to perform simplification using the minimization algorithms originally devel-
oped for the Espresso minimization tool [20]. This results in simplified expressions

similar to those found in the MCNC, and similar, benchmark suites.

Inputs | Output
a ‘ b ‘ c 7Z
0100 1
0j0(1 0
Random number=145|:> 10010001 E> 0 110 0
0j1]1 1
17010 0
11071 0
17110 0
1111 1

Figure 8: Production of 3-input CLE using 8 bit random number

3.2.3 PLA Test Strategy

Using the method presented in algorithm 1, a large number of ¢ input expressions are
generated and the number of product terms in the simplified expressions collected.
The number of inputs is then varied over the range input-range and the results
obtained for each of the random circuits produced. The mean and standard deviation

of these results is then collected. To allow the mean and standard deviation of the

23

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

product term to be compared, the results were normalized by dividing the vales by

2% over the range of inputs.

Algorithm 1 PLA test strategy
k=digits in random number
for each i in input_range do
for each s in samples do
for each j in (i-k) do
random[i]=rand
construct_function(random)
simplify
count_product_terms[s]
store_results[i] (gather_data)
write_log

3.2.4 Results obtained using Monte-Carlo based circuit generator

Based on the method presented above the mean number of product terms in simplified
CLEs were found for the range 2 < ¢ < 15. The results are presented in figure 9. The
graph shows that, as expected, the mean values are around 2(=2) but it can be seen
that as ¢ increases the mean number of product terms in the simplified expressions
begins to fall away from this value. This is due to the large number of literals in the
expressions allowing for further simplification of the expressions using methods such

as variable reordering.

The mean and standard deviation of the product terms in CLE expressions for
2 < ¢ < 15 are shown in table 3. The results are also shown as normalised values by
diving them by 2¢. This allows the values obtained to be compared when viewed as
the number of product terms compared to the maximum number of terms possible.
These results demonstrate that although the mean and standard deviation increase

with increasing ¢ the relationship is not direct. The mean values presented in table

24

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR

100000
w
o &
10000 s
. -~

1] ,.®
£ P
2 R
B 1000 S— -
3 -
& et 22 N 22
- oS - *3 281
2 100 S N (1)
2 PR Experimental Mean
o .- _
E -
3 -~
c
c
©
Q
=

7 8 9 10 11 12 13 14 15

Number of CLE inputs (i)

Figure 9: Graphical representation of Mean Product terms in CLE expressions.

3 indicate the number of p terms required to implement 50% of all possible i in-
put, single output, expressions. Thus a PLA produced with the mean number of p
terms for ¢ inputs can implement all possible expressions with less than ¢ inputs as
o((i+1)-2) _ o(i-1)_

If the normalized mean values are considered it can be seen that the mean as a
proportion of the maximum number of p terms drops as ¢ increases. This means area
savings can be made by using PLAs with larger ¢ values rather than several smaller
PLAs to implement logic expressions while ensuring the same percentage of the total

number of expressions can still be implemented.

The results show that as the number of inputs in the CLE is increased the mean
number of product terms decreases in proportion to the maximum number of product
terms in simplified CLEs. This is due to the increased possibility of simplification
taking place due to the larger number of product terms in the unsimplified expres-
sions. This suggests that using PLAs with larger numbers of inputs results in PLAs

that require a smaller proportion of the number of products while being able to

25

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR

PLAS

‘ inputs ‘ mean e stddev ‘ St‘é# ‘
2 1.25 0.3125 0.6614 | 0.1654
3 2.35 0.29375 | 0.8061 | 0.1008
4 4.14 | 0.26875 | 0.9289 | 0.0581
5 7.53 0.23531 | 1.2333 | 0.0385
6 13.64 | 0.21311 | 1.6082 | 0.0251
7 25.1 0.19609 | 2.1710 | 0.0170
8 46.8 0.18280 | 2.9204 | 0.0114
9 88.04 | 0.17194 | 3.8999 | 0.0076
10 166.65 | 0.16274 | 5.2562 | 0.0051
11 316.35 | 0.15447 | 7.1134 | 0.0035
12 605.1 0.14773 | 9.7183 | 0.0024
13 1159.92 | 0.14159 | 13.2183 | 0.0016
14 2230.23 | 0.13612 | 17.9631 | 0.0011
15 4299.15 | 0.1312 | 24.8827 | 0.0008

Table 3: Experimental results of Stochastic investigation of Product Terms in CLEs

implement the same proportion of the total number of possible expression.

26

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

0.05 ﬂ\
z I L\
£ 0.04
7
3
d 0,03
s
g } \
£
£ 0.02
) / \

0.01) \\

140 190 240 290 340 390 440
Number of Product Terms
(a) PDF

[N}

\

% of total CLEs

=3 =3
IS o
—

o
o N}

T T T T T T T T T T
189 239 289 339 389 439

Number of product terms

w»
©

(b) CDF

Figure 10: PDF and CDF of product terms in 11-input CLE

Figure 10(a) and 10(b) show the Probability Distribution Function (PDF) and
the Cumulative Distribution Function (CDF) respectively for the number of product
terms in CLEs with 11 inputs using the method suggested. The PDF shows the
distribution of product terms in simplified expressions for a fixed number of inputs,
in this case ¢ = 11. In this case the number of expressions is normalised by dividing
the number of expressions by the total number of possible expressions, in this case
22" The CDF indicates what percentage of all possible 11 input expressions that can
be implemented using a PLA with a given number of product terms. From this data it

is possible to select the number of product terms to be placed on an 11 input PLA to

allow the maximum number of possible expressions to be implemented. Although as

27

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

stated the number of product terms required to implement every possible expression
is 219, from the distributions it can be seen that very few possible expressions will
require this.

From the graphs it can be seen that an 11 input PLA with 343 product terms is
capable of implementing 99% of all possible CLEs. Comparing this to a PLA designed
using the theoretical maximum value of 1024 products, would result in a saving of

681 product terms while allowing for all but 1% of all CLEs to be implemented.

3.3 Mathematical investigation of product terms in random CLE

This section introduces an algorithm for the production of a minimal cover of a
single output Boolean function and calculates its average case behaviour developed
in conjunction with Dr Paul Jackson at Edinburgh University. While the algorithm
does not produce a minimum cover, the average number of cubes in the cover for
randomly chosen functions is observed to be within 4% of that produced by the
simplification algorithms used in SIS synthesis tool. The section begins by listing the
definitions commonly used before presenting the minimisation algorithm and finally

presents the investigation of the average case behaviour.

3.3.1 Definitions

e We use notation T for the negation (complement) of a boolean-valued variable
X, x + y for the sum (conjunction) of variables x and y, and x.y or simply xy

for the product (conjunction) of x and y.

e Let B ={0,1} and B™ be the n-dimensional space of Boolean vectors of length
n. Let B, be the set of Boolean functions B — B. We allow n to be 0, in
which case B is a single point space, and By contains just the constant-valued

functions.

e When describing functions in B,, we typically associate a variable with each

28

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

dimension of the domain B". For example, for some f in B3, when we write
f(x,y,2) = x.y + 2z, we are associating x with the 1st dimension, y with the 2nd

and z with the 3rd.

e If we have a vector = [z1,...,zn], the vector x — zi is the vector [z1,...z(i—

1),z(i+1),...,2zn].
e A literal is a variable or the negation of a variable.

e A monomial is a product (conjunction) of literals. If the variables in a mono-
mial are drawn from those associated with the dimensions of an n-dimensional
Boolean space, the monomial can be regarded as a representation of a function
in By, and also as the subset of B that this function maps to 1. This subset
forms a sub-cube of B™ and hence we often refer to a monomial as a sub-cube
or simply a cube. A monomial can have no literals, in which case it represents

the constant 1 function.

e A polynomial is a sum (disjunction) of monomials. Any polynomial can be
regarded as representing a function in B, and all functions in B,, can be rep-
resented by a polynomial. When discussing operations on Boolean functions,
it is convenient to use notation as if the functions were represented by poly-
nomials, though other representations are possible. A polynomial can have no

monomials in which case it represents the constant 0 function.

e A cover of a Boolean function is a set of cubes whose union is the set of input
vectors for which the function returns a 1. The sum of the cubes in a cover is
one polynomial representation of the function. An empty cover is equivalent to

the constant function 0.

e A cover is minimal if, when we delete any cube from it, we no longer have a

cover.

29

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

e The cofactor of function f(z1,...,a2n) in B, with respect to zi is the func-
tion f(xzl,...,2(i —1),1,2(i +1),...,2n) in b,—1. The cofactor of function
f(z1,...,zn) in B, with respect to xi is the function f(z1,...,2(i—1),0,z(i+

1),...,2n) in B,_1.

e A cover is non-overlapping when the intersection of every distinct pair of cubes

contained in it is empty. Every non-overlapping cover is minimal.

e Two cubes are considered siblings if they are of form m.x and m.z for some

variable x. A cover is sibling-free if no two elements of it are siblings.

These definitions, apart from the last two, appear to be standard from the literature

on Boolean logic minimisation.

3.3.2 Boolean Minimisation Algorithm

To describe the algorithm, it will be helpful to first define a few types. Consider
a vector of variables x = [z1,...,2zn] labelling the dimensions of B™. Elements of
the type BoolFun(z) are functions in B, where the ith component of input vectors
is referred to using variable xi. Elements of the type Cover(x) are sets of cubes over
the variables in x. Type Vars is the set of vectors of variables. The algorithm is
shown in algorithm 2.

The effect of the calculations on lines 10-12 is the same as if x.Cx + Z.CT were
computed first and any resulting pairs of sibling were merged to form new cubes.
Lemma: The function getCover(zs, f) returns a non-overlapping sibling-free cover
for the Boolean function f over the variables zs.

Proof: By induction on the recursive structure of the program.

The features of the algorithm such as the use of a Shannon decomposition for

recursive calls and the merging of siblings are found in standard Boolean minimization

programs such as Espresso-II [6]. However, unlike such approaches, the algorithm

30

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR

PLAS

here does not attempt first to calculate prime implicants.

Algorithm 2 Boolean minimisation

1.

2
3
4.
5
6
7

10.

11.

12.
13.
14.

Cover(xs) getCover (Vars xs, BoolFun(x) f) {

if (lxs| == 0) {
if (f£() == 1) return {1} };
else return O; // O is the same as the empty set {}.
}
For all x in xs;
// Compute the Shannon decomposition of f wrt x:
// f=x.fx+7T. fT
BoolFun(xs - x) fx = cofactor of f w.r.t. x.;
BoolFun(xs - x) fT = cofactor of f w.r.t. T;
Cover(xs - x) Cx = getCover(xs - x, fx);
Cover(xs - x) Cx = getCover(xs - x, fZ);
// Extract cubes common to cofactor covers Cx and CT that
// would become siblings if lifted by product with x and T
// respectively.
Cover(xs - x) N = Cx intersection CZT;
// Reconsider monomials in N as cubes in Cover(xs).
Cover(xs) NN = (Cover(xs) N) N;
Cover(xs) C = x.(Cx - N) + 7.(Cz - N) + NN;
return C;

3.3.3 Analysis of average case behaviour

An i-cube for some natural number ¢ is an ¢+ dimensional cube. If a monomial has k&

literals and represents a function in B,, it is an (n — k)-cube.

Let c(i,n) be number of i-cubes in the n-dimensional Boolean space B,. By

considering the regular expressions of form {0, 1, x}", each of which denotes the set

of points making up a distinct cube, it is easy to show that

c(i,n) = ot

Let e(i,n) be the expected number of i-cubes in the cover returned by the above

algorithm on a randomly-chosen Boolean function in B,. We give a derivation of

31

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

e(i,n) shortly, but first we introduce an auxiliary function.

Consider when execution of getCover() reaches line 10 when the function f is in
B, (i.e. the size of the vector of variables x is n). The variable N is set to contain
the monomials representing sub-cubes of B"~! common to Cz and CZ which would
become mergeable siblings if they were lifted by product with x or T respectively to
become cubes of B". On line 11, the monomials in variable N are copied to variable
NN and re-interpreted as representing sub-cubes of B™. The sub-cubes in NN are
the new ones that would result from merging siblings in z.Cz + Z.CZ. Let m(i,n)
be the expected number of i-cubes in NN, or, equivalently, the expected number of
(i — 1)-cubes in N.

The probability that some given (i — 1) cube exists in Cx is

e(i—1,n—1)
c(i—1,n—-1)

This is also the probability that some given (i — 1) cube exists in C'xz, and hence

the probability of a given (i — 1) cube existing in both is

We can multiply probabilities here because we expect no correlation in the dis-
tributions of cubes in Cx and CZ. There are ¢(i — 1,n — 1) possible sub-cubes in
B! and so we multiply by this to get, for i > 0, the expected number of new

i-dimensional sub-cubes of B” formed by merging;:

(e(i —1,n —1))?
c(i—1,n—1)

m(i,n) =
The i-cubes in the returned cover come from 3 sources:

1. They were i-cubes in the result Cx of the recursive call that were not merged

with ¢-cubes from CZ. i.e. they were i-cubes in Cx — N. We expect there to

32

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

be e(i,n — 1) — (m(i + 1,n) of them.

2. They were i-cubes in the result CT of the recursive call that were not merged
with i-cubes from Cz. i.e. they were i-cubes in CZ — N. We expect there to

be e(i,n — 1) — (m(i + 1,n) of these too.

3. They are the result of merging sibling (i — 1)-cubes in z.Cx + TCT. We expect

there to be m(i,n) of these.

We therefore have that

e(i,n)

2(e(i,n —1) — (m(i +1,n)) + m(i,n) zfor0 <i<n
(0,n)

2(e(0,n — 1) — (m(1,n)) forn > 0

N

e(n,n) =m(n,n) forn >0
e(0,0) =0.5
To calculate the expected number e(n) of cubes in the cover returned by the

above algorithm on a randomly-chosen Boolean function in B,, we sum up over i:

Table 4 shows the calculated values of 652) for 0 < n < 9. We normalise by 2" to

allow easy comparison of e(n) for different n.

3.4 Analysis of Results

The results obtained using both the experimental method and the mathematical tech-
nique are shown in figure 11. As this graph shows the results for the mathematical
method presented previously are very close to 2°~2due to the fact that only very
simple boolean simplification is modelled using this technique. Although it can be
seen that as iincrease the calculated value of the mean begins to fall away from this
value. The experimental method produces results that are less than 272 and the
calculated values for ¢ > 4. This demonstrates the effectiveness of the simplification
algorithms contained within the SIS synthesis system and there ability to remove ex-

cess redundant hardware and also shows the inaccuracy of the mathematical method

33

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR

PLAS

n | calculated Calculated

mean normalised

mean eg,f))

0 0.5 0.5
1 0.75 0.375
2 1.3124 0.3281
3 2.4184 0.3023
4 4.5584 0.2849
5 8.7104 0.2722
6 16.8 0.2625
7 32.588 0.2546
8 63.5136 0.2481
9 | 124.2624 0.2427
10 | 243.712 0.2380
11 | 479.232 0.2340
12 | 943.7184 0.2304
13 | 1861.2224 0.2272
14 | 3676.5696 0.2244
15 | 7267.9424 0.2218

Table 4: Mean number of product terms in CLE

due to the simplicity of the method suggested. It is suggested that with further work
the complexity of this method could be improved by including further simplification
methods such as variable reordering but it is unclear as to how this will effect the run
time of the calculations required. Instead it is also suggested that the mathematical
method can be used to produce fast estimations of the mean product terms in the

expressions with the experimental method being used to refine these results.

In order to test the validity of the results for both the analytical and experimental
methods presented here the results obtained by these methods are compared to those
presented in [33] for the range 4 < i < 10. Table 5 shows the results for each of the
methods suggested with the results presented in [33]. As this shows the results for
the experimental method agree closely with those presented in [33] and the diver-

gence of the methods as demonstrated in figure 11 is also demonstrated. This shows

34

w

INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR

PLAS

100000

Mean No. Product terms in CLE

1"'
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of CLE inputs (i)

. 20(i-2)

.. on (i-1)

hR Experimental Mean
N Calculated Mean

Figure 11: Graphical representation of calculated and experimental mean values.

that although the experimental results agree closely with those in the literature the

over simplification of the mathematical method reduces the accuracy of the results

obtained.

‘ inputs ‘ Calculated Mean ‘ Experimental mean ‘ mean|33] ‘

4 4.5584 4.14 4

5 8.7104 7.53 6

6 16.8 13.64 13
7 32.588 25.1 24
8 63.5136 46.8 46
9 124.2624 88.04 86
10 243.712 166.65 167

Table 5: Comparison of Analytic and Mathematical results to those presented in [33]

35

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

In [39] it is suggested that based on the MCNC benchmark circuits PLAs with
{12,9,3}, for small circuits, and {12,18,3} for large circuits resulted in the best
area/delay characteristics. If these PLAs are considered as single output devices and
the hardware resources are split evenly between each of the outputs this would result
in PLAs with {4,3,1} and {4,6,1}.

Figure 12 shows the Cumulative Distribution Function (CDF) of the p terms in
4 input CLEs. The values suggested in [39] are plotted on this graph and show that
values suggested, 3 and 6, produce PLAs capable of implementing 20% and 97%
of circuits respectively. As this suggests a PLA with the lower number of p terms
would have sufficient hardware to only implement expressions with low numbers of
product terms and as only relatively few of the possible expressions will have this
number of product terms will result in a device with a low flexibility score (0.2).
Alternatively the use of p = 6 means that for the inclusion of relatively few additional
product terms the device will have a far greater flexibility (0.97) and thus provide

the hardware resource required for a far greater number of applications.

A - Wilton et al

1.2

!

Coverage
=3 =]
® =

\

.',\

(=}

Number of Product Terms

Figure 12: CDF of product terms in 4-input expression

36

3 INVESTIGATION OF OPTIMAL NUMBER OF PRODUCT TERMS FOR
PLAS

The results of the random generation process thus agree closely with the values
selected by [39] . This suggests that the use of benchmark suites for determining
the best characteristics of PLAs is not necessary and the random generation and
simplification of CLEs results in circuits that are similar to those in the benchmark
suite. A large number of circuits can thus be randomly generated for this purpose
rather than making use of a limited number of benchmark circuits.

If the mean values are again considered it can be seen that although as discussed
in section 2.2.1 the maximum number of product terms is 2¢~! the approximate mean

number of product terms (pmean) can be calculated using the relation

DPmean = 2i—2 fori <10

for ¢ > 10 this relation does not hold and the mean number of product terms begins to
fall as a proportion to the maximum number of product terms. It is felt by the author
that this is due to the increased number of literals in the expressions leading to a
greater possibility of simplification and optimisation taking place using the advanced

simplification algorithms contained in SIS.

3.5 Conclusion

The section presents both an analytical and experimental method of determining the
optimal hardware requirements of PLAs to ensure that they can implement as broad
a range of designs as possible while avoiding unnecessary, redundant hardware.

The Monte-Carlo based investigation of the number of product terms allows us to
determine the distribution of product terms in combinatorial logic expressions. These
distributions can then be used to provide a method of determining the number of
product terms required by a PLA to ensure that a broad range of CLEs can be
implemented. Alternatively, based on the cumulative distribution, it is possible to

determine the percentage of the total number of possible expressions of ¢ inputs that

37

4 INVESTIGATION OF THE CHARACTERISTICS OF LUT BASED
RECONFIGURABLE DEVICES

a PLA can implement based on the number of inputs and the number of product
terms. This can then be used to provide a meaningful comparison between different
PLA architectures and a value for representing the flexibility of the device.

The results obtained using the experimental and mathematical techniques were
compared to those presented in [33]. Although the experimental technique produces
results that are close to those presented in [33] those for the mathematical technique
are less accurate and stay very close to 272

The work carried out in [39] on the selection of PTB parameters demonstrate
that the results obtained using the random circuits generated are closely related to
those in the benchmark suite. This correlation introduces the possibility of using this
method of random circuit generation for the synthetic generation of a large number
of circuits that can be used for the determination of parameters or for the testing of
architectures. The main issue with this method is the time taken to perform sim-
plification of large CLEs by the SIS decomposition tools. In order to solve this, an
algorithm was developed for Boolean minimisation and the mean number of product
terms determined in relation to the number of inputs. Although these results di-
verge from the results obtained using the experimental results they give a good fast

approximation for smaller values of i.

4 Investigation of the characteristics of LUT based re-

configurable devices

In a similar way to the design of PLAs it is impossible for the designer to predict in
which applications LUT based reconfigurable devices may be utilised. This makes it
impossible for device designers to predict how much reconfigurable hardware will be
required by the final user of the device. The traditional solution to this problem is

simply to place as much hardware as possible on the device with as much flexibility

38

4 INVESTIGATION OF THE CHARACTERISTICS OF LUT BASED
RECONFIGURABLE DEVICES

as possible. This is not an ideal solution, particularly for devices intended for certain
applications where this extra hardware may increase the power consumption and area
of the device. Even in the situation where a large reconfigurable hardware block is
produced it is still possible that this block may not have the required resources to
implement the functionality required by the user.

As stated in section 2.3.3, decomposition results in an array of interconnected k-
LUTs that implement the desired functionality. It is possible that even if a device is
used with sufficient numbers of LUTs to implement the required function the resulting
architecture may not provide enough flexibility or that congestion may result in an
unroutable implementation. This is particularly true for directional architectures
such as those suggested in [40] where no feedback is allowed within the fabric of the
device. In this case it is possible that the array produced by decomposition requires
an array that is of greater depth than that available within the device.

As demonstrated in section 3 it is possible to relate the mean number of product
terms in an expression to the the number of inputs (i) to a CLE. As the LUT network
produced after decomposition is based on large CLEs it is thus possible to determine
the distribution of the number of product terms in the expression. As decomposition
is based on breaking this logic expression down into sub-functions of k-inputs it is
speculated that in a similar way the numbers of LUTs in the decomposed array and
the depth of this array can also be related to the number of inputs in the expression.

This section present the work carried out in find the distribution of the number
on k-LUTs and the depth of array produced by the decomposition of an ¢-input
expressions where i > k. As stated in section 2.2.1 this is also closely related to the
idea of creating a measure of flexibility [13] that designers can use when selecting
device characteristics for an application where the exact hardware requirements are

not know at design time.

39

4 INVESTIGATION OF THE CHARACTERISTICS OF LUT BASED
RECONFIGURABLE DEVICES

| | K | | | K |

Inputs 3 4 5 Inputs | 3 4 |5
4 2.78 1 1 4 1.84 1 1
9 6.75 299 | 1 5 3.01 2 1
6 14.68 | 6.98 | 3 6 4.01 3 2
7 303 | 1499 | 6 7 4.01 | 3.56 | 3
8 61.68 | 30.99 | 13 8 5 4 |3
9 124.39 | 62.97 | 26 9 6 5 |4
10 250.7 127 | 53 10 7 6 5
(a) Mean number of LUTS (b) Mean network depth

Table 6: Mean number of LUTs and depth of CLE after decomposition

4.1 Experimental Investigation of characteristics of LUT based re-

configurable devices

The method suggested in section 3.2 was again used to generate a large number of
CLEs with a fixed numeral of inputs. These expressions were then simplified and
decomposition was carried out using a mixture of Roth-Karp decomposition, cube-
packing and modified cube extraction contained within the SIS synthesis tool [6].
The number of LUTs and depth of each of the resultant arrays was then collected
and based on this the distribution of these factors for an i-input expression was
obtained. During the investigation the number of inputs was varied across the range
4 < 4 < 10 and each circuit was decomposed for implementation on LUTs with k
values across the range 3 < k < 5. For each value of ¢, 1,000 circuits were generated
and decomposed for each of the values of k in the range. The mean number of LUTs
and depth of the arrays produced during decomposition are shown in tables 6(a),
6(b) respectively.

Based on these distributions of LUT count and depth it is thus possible for device
designers to select the most suitable parameters in order to achieve the required

degree of flexibility, or coverage, required for the particular domain of interest for the

40

5 CONCLUSION

device.

As the results show the number of LUTs required increases as the number of
inputs increases. This would indicate that the area and power of the logic block
required to implement the CLEs would also increase at this rate. As the amount
of routing required would also increase at this rate it is likely that more complex
routing architectures, such as segmented routing or grouping of LUTs into slices with
localised routing, would be utilised to reduce the overall size of the device. With this
increase in size it is likely that the speed of the device would be reduced as longer
interconnect paths would result in large RC delays in the interconnects resulting in
reduced clock speeds. As can be seen from the linear increase in the depth of the
required arrays the latency would also increase linearly with the number of inputs to

the array.

5 Conclusion

This report has presented a method of circuit generation that is capable of generating
very large numbers of CLEs that can be used to test the flexibility of reconfigurable
devices. Based on the percentage of these circuits that the device can implement a
measure of this flexibility can be derived.

This method was used to determine the hardware requirements of reconfigurable
devices intended to implement these CLEs based on the number of inputs to the ex-
pression. The distribution of product terms in SOP expression was then investigated
for use in determining the number of product terms that should be placed on PLAs
in order to allow the device to implement the required percentage of all possible ¢
input expressions and hence achieve a selected level of flexibility. Although this work
overlaps with previous projects such as [35] the work carried out here extended the
results obtained by vastly increasing the numbers of circuits used to determine the

mean number of product terms in a CLE expression. By comparing the results ob-

41

REFERENCES

tained using the method here to those in [33] the operation of the random circuit
generator can be verified. The results were also compared to those obtained in [39]
where real-world circuits were used from the MCNC benchmarks to determine the
optimal characteristics of PLA based devices. Although direct comparison of these
results is difficult the similarities seen indicate that the simplification of randomly
produced high-level CLEs produces results similar to those obtained using the bench-
mark circuits and hence proves that this simplification results in realistic CLEs.
The previous research carried out is primarily concerned with the structure of
PLA based device and as such no comparable work has been found on the determi-
nation of these parameters for LUT based architectures. Using the pseudo-random
circuit generator suggested in section 3.2 the distribution of number of LUTS and
depth of arrays produced as a result of decomposition was determined. This can
then be used to aid device designers in determining the characteristics of the device

produced in order to achieve a given level of flexibility.

References

[1] PLA format description. http://wwwl.cs.columbia.edu/ cs4861/sis/pla.txt.

[2] Elias Ahmed and Jonathan Rose. The effect of LUT and cluster size on deep-

submicron FPGA performance and density. In FPGA, pages 3-12, 2000.
[3] Altera. http://www.altera.com.

[4] Altera. Stratix iii fpgas vs. xilinx virtex-5 devices: Architecture and performance

comparison. Technical report, Altera, 2006.

[5] E. A Bender and J. T. Butler. On the size of plas required to realize binary and
multiple-valued functions. IEEE Trans. Comput., 38(1):82-98, 1989.

42

REFERENCES

[6]

7]

[8]
9]

[10]

[11]

[12]

[13]

[14]

Berkeley. SIS download page

. http://embedded.eecs.berkeley.edu/pubs/downloads/sis/index.htm.

Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. McMullen,
and Gary D. Hachtel. Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, Norwell, MA, USA, 1984.

S. Brown and J. Rose. Architecture of fpgas and cplds: A tutorial, 1996.

Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic.
Field-programmable gate arrays. Kluwer Academic Publishers, Norwell, MA,
USA, 1992.

Deming Chen, Jason Cong, Milos D. Ercegovac, and Zhijun Huang.
Performance-driven mapping for cpld architectures. In FPGA ’01: Proceedings
of the 2001 ACM/SIGDA ninth international symposium on Field programmable
gate arrays, pages 39-47, New York, NY, USA, 2001. ACM Press.

Kuang-Chien Chen, Jason Cong, Yuzheng Ding, Andrew B. Kahng, and Peter
Trajmar. Dag-map: Graph-based fpga technology mapping for delay optimiza-
tion. IEEE Des. Test, 9(3):7-20, 1992.

P. Chow, S. Seo, J. Rose, K. Chung, G. Paez, and I. Rahardja. The design of

an sram-based field-programmable gate array. part i: Architecture, 1999.

Katherine Compton and Scott Hauck. Flexibility measurement of domain-
specific reconfigurable hardware. In FPGA ’04: Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate arrays,
pages 155-161, New York, NY, USA, 2004. ACM Press.

J. Cong. Flowmap: An optimal technology mapping algorithm for delay opti-

mization in lookup-table based fpga designs, 1994.

43

REFERENCES

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Jason Cong and Yuzheng Ding. Combinational logic synthesis for lut based field
programmable gate arrays. ACM Trans. Des. Autom. Electron. Syst., 1(2):145-
204, 1996.

Lattice Semiconductor Corporation. Lattice semiconductor corporation.

http://www.latticesemi.com.

M. R. Dagenais, V. K. Agarwal, and N. C. Rumin. The mcboole logic mini-
mizer. In DAC ’85: Proceedings of the 22nd ACM/IEEE conference on Design
automation, pages 667673, New York, NY, USA, 1985. ACM Press.

J. Darnauer and W. W. Dai. A method for generating random circuits and its

application to routability measurement. In FPGA’96, 1996.

E. Dubrova, D. Miller, and J. Muzio. Upper bounds on the number of products

in and-or-xor expansion of logic functions, 1995.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton and A. Sangiovanni-Vincentelli. SIS: A

system for sequential circuit synthesis. Technical report, 1992.

H. Fleisher and L. I. Maissel. "an introduction to array logic". Technical report,

IBM J. Res. Develop, 1975.

R. Hartenstein. Trends in reconfigurable logic and reconfigurable computin. In

Electronics, Circuits and Systems, 2002. 9th International Conference on, 2002.

M. Hutton, J. P. Grossman, J. Rose, and D. Corneil. Characterization and
parameterized random generation of digital circuits. In ACM/SIGDA Design
Automation Conference (DAC), 1996.

A. El Gamal J. Rose and A. Sangiovanni-Vincentelli. "architecture of field-

programmable gate arrays". Proceedings IEEE, vol. 81, 1993.

44

REFERENCES

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Noha Kafafi, Kimberly Bozman, and Steven J. E. Wilton. Architectures and
algorithms for synthesizable embedded programmable logic cores. In FPGA "03:
Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field
programmable gate arrays, pages 3—11, New York, NY, USA, 2003. ACM Press.

M. Karnaugh. A map method for synthesis of combinational logic circuits.

Transactions of the AIEE, Communications and Electronics, 1953.

David Lewis, Elias Ahmed, Gregg Baeckler, Vaughn Betz, Mark Bourgeault,
David Cashman, David Galloway, Mike Hutton, Chris Lane, Andy Lee, Paul
Leventis, Sandy Marquardt, Cameron McClintock, Ketan Padalia, Bruce Peder-
sen, Giles Powell, Boris Ratchev, Srinivas Reddy, Jay Schleicher, Kevin Stevens,
Richard Yuan, Richard Cliff, and Jonathan Rose. The stratix ii logic and routing
architecture. In FPGA ’05: Proceedings of the 2005 ACM/SIGDA 13th interna-
tional symposium on Field-programmable gate arrays, pages 14-20, New York,

NY, USA, 2005. ACM Press.
Inc M2000. "m2000 flexeostm configurable ip core". http://www.M2000.fr.

M. Imran Masud and Steven J. E. Wilton. A new switch block for segmented
FPGAs. In Patrick Lysaght, James Irvine, and Reiner W. Hartenstein, editors,

Field- Programmable Logic and Applications, pages 274-281. Springer-Verlag,
Berlin, / 1999.

M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. In ACM Trans. on

Modeling and Computer Simulations, 1998.

R. L. Rudell and A. Sangiovanni-Vincentelli. Mulitple-valued minimization for
pla optimization. In IEE Transactions on Computer-Aided Design, pages 727—
750. IEEE, 1987.

45

REFERENCES

[32] Richard L. Rudell. Logic Synthesis for VLSI Design. PhD thesis, EECS Depart-

ment, University of California, Berkeley, 1989.
[33] T. Sasao. A design method for and-or-exor three-level networks, 1995.

[34] T. Sasao and P. Besslich. On the complexity of mod-2 sum pla’s. IEEE Trans.
Comput., 39(2):262—266, 1990.

[35] Tsutomu Sasao. Bounds on the average number of products in the minimum sum-
of-products expressions for multiple-value input two-valued output functions.

IEEE Trans. Comput., 40(5):645-651, 1991.

[36] Tustomu Sasao. Multiple-valued logic and optimization of programmable logic

arrays. Computer, 21(4):71-80, 1988.
[37] Synopsis. Synopsis Galaxy Design Platform. http://www.synopsys.com/.
[38] Xilinx. http://www.xilinx.com.

[39] A. Yan and S.J.E Wilton. Product term embedded synthesizable logic cores. In

IEEE international Conference on Field-Programmable Technology, 2003.

[40] Andy Chee Wai Yan. Product-term based synthesizable embedded pro-

grammable logic cores. Master’s thesis, University of British Columbi, 2005.

[41] S. Yang. Logic synthesis and optimization benchmarks user guide version. Tech-

nical report, 1991.

46

PORTFOLIO DOCUMENT TR3

Development of a Hardwired Directional
Reconfigurable Architecture

Author: Supervisor:

Graeme Milligan Wim Vanderbauwhede

Contents

1

2

Introduction

Background

2.1 FPGA
2.1.1 Logicblocks
2.1.2 Interconnect Network

2.2 Directional Architectures.
2.2.1 Hard-wire connection based architectures

2.3 Decomposition00
2.3.1 Problem Formulation
2.3.2 Logic Optimisation
2.3.3 Technology mapping

Investigation of characteristics of CLEs

Development of custom reconfigurable architecture

4.1 Architectural generation
4.1.1 Multiplexor generation
4.1.2 LUT generation
4.1.3 Array Generation
4.1.4 Device generation

4.2 Development of place and route tools for fixed routed arrays

4.3 Hardware implementation of fixed routed array
Analysis of results
Future Work

Conclusion

15

18
20
21
21
22
23
23
24

25

27

29

List of Figures

0 3 O O I WO N

FPGA Architecture 4
Logic Block of Xilinx Virtex-5 [2] 5
Example of Wilton switch block [24] 7
Directional arrays [20,32] L. 9
Transforming multi-input network to two-input network 14
Decomposition of 5-input CLE to network of 3-input LUTs 15
Hard-Wired directional array with k=3 19

Unbalanced directional fixed routed array 28

1 INTRODUCTION

1 Introduction

Due to its ability to introduce hardware flexibility, the use of reconfigurable hard-
ware has become more prevalent. Its ability to allow the end user, as opposed to
the device designer, to determine its functionality allows the use of standard generic
reconfigurable devices in a variety of applications in a similar manner to the use of
microprocessors. The design cost of these reconfigurable devices can thus be amor-
tized over a large number of projects and the end user is no longer required to enter
a lengthy and expensive ASIC design flow to gain the advantages of using hardware
devices.

Of particular interest is the use of reconfigurable hardware in system on chip
(SoC) applications. In this role a block of reconfigurable logic would be placed on a
standard SoC platform. The end-user can then program this block to implement any
functions required that are not already present on the SoC.

The reconfigurable blocks for use in SoCs can be defined as soft cores, these are
cores that are described at a high level and generated as required. The use of soft
cores allows the amount of reconfigurable hardware placed on the SoC to be tailored
to the required application. As the blocks are defined at a high level, they must be
synthesised before being used in an SoC, this means it is desirable to design these
blocks using components from standard cell libraries that are easily synthesised.

Although reconfigurable hardware devices give some of the advantages of the
ASIC design flow, such as reduced area and power, and increased operating speeds,
the flexibility of these devices introduces an overhead and reduces their efficiency.
This overhead is due to the hardware required to provide programmability and the
need to make the devices as general as possible to allow their use in a broad range
of applications. In order to reduce this overhead a number of projects have aimed to
produce reconfigurable devices that are targeted at a particular domain. The devices

make use of custom logic blocks, such as multipliers and adders, which are commonly

1 INTRODUCTION

used in the domain of interest. Projects such as Totem [10] and RaPid [14] have
been designed to target the multimedia and DSP domains and as such contain many
logic functions commonly found. In these projects a set of sample, or benchmark,
circuits from the domain of interest are used to profile the domain and develop a
list of functions that are commonly used in the domain. Based on this, a domain
specific reconfigurable device can be produced that contains these functional blocks.
In this way, large custom logic blocks can be included in the reconfigurable device
in order reduce the overhead introduced by the flexibility. Although this reduces the
overhead of the device it also limits the scope of applications that the device can be
usefully employed.

This research aims to produce a custom, domain specific reconfigurable device
targeted at implementing combinatorial logic expressions (CLEs) such as those used
to determine the next state of a Finite State Machine (FSM). Although it would be
possible to perform domain profiling by taking a large number of FSMs and deter-
mining the characteristics of the reconfigurable device required to implement them,
it is felt that, as the expressions are highly dependent on the structure of the FSM
a more general approach should be used. This document details the development
of a custom reconfigurable device for the implementation of CLEs and is organised
as follows; section 2 gives details of existing reconfigurable devices and the process
by which large CLEs can be implemented by these devices; section 3 then examines
the implementation of CLEs using reconfigurable device in order to develop a novel,
custom architecture tailored for the implementation of these expressions; the archi-
tecture suggested is then presented in section 4 along with the place and route tool
required to implement CLEs on this device and issues concerning the implementation
of the device. This document concludes by presenting areas of future work suggested

by this project in section 6 before final conclusions are made.

2 BACKGROUND

2 Background

In order to produce a device specifically tailored for the implementation of CLEs
it was first necessary to fully understand the devices currently used for such an
implementation. For this reason the following section gives details of the architecture
of modern FPGAs and two other selected reconfigurable architectures as well as a
discussion of the methods used to map CLEs to these devices. It should be noted
that the material presented in sub-section 2.1 is repeated in [25] and is included here

for completeness.

2.1 FPGA

The architecture of modern FPGAs is usually described as being island style, where
the islands are programmable logic blocks used to implement the required function-
ality surrounded by a sea of routing used to connect these logic blocks in the desired
manner. The typical architecture of an FPGA is shown in figure 1. The logic units
are usually constructed of small memory blocks know as Look-Up-Tables that imple-
ment combinatorial logic expressions (CLEs). Recently devices have begun to include
embedded components such as memories, DSP components and even complete pro-
cessors in order to increase the efficiency of these device’s when implementing larger
systems.

Due to the mature nature of these devices a large volume of literature is available
including [8, 4, 19]. The following section aims to give an overview of FPGA design

and circuit implementation.

2.1.1 Logic blocks

Modern FPGA devices make use of Look-Up-Tables (LUTs) for the implementation

of combinatorial logic expressions. These devices are small blocks of memory com-

3

2 BACKGROUND

Logic Block
AN EMN |

o
L L L L i
= I
:EEE;E:

Figure 1: FPGA Architecture

monly used for the implementation of combinatorial logic expressions (CLEs). This
is achieved by storing the truth table of the function in a programmable memory and
connecting the address lines of the memory directly to the inputs of the combina-
torial logic function. Based on the value presented at the inputs, the corresponding
output is selected from the memory and presented at the output of the LUT. LUTs
are usually described in terms of the number of inputs (k) to the block and as such
will be referred to as k-LUTs for the remainder of this document.

As the LUT is required to store the entire truth table of the function it is required
to have 2¥ memory bits for a k input logic function. This results in exponential growth
in relation to the number of inputs and makes this method unsuitable for combinato-
rial logic functions with large numbers of inputs. For this reason the number of inputs
to a LUT is usually limited to avoid the need for very large memory blocks. Previous
work has shown that the use of LUTS with inputs in the range 3 < k£ <5 produces
FPGAs with the best density and speed characteristics[1, 33] although recent work
has suggested that larger LUTs may be suitable [23].

As LUTS store the entire truth-table of a k£ input logic expression it can be seen

4

2 BACKGROUND

\ 4
N
v

Y

v
__/
y

6-input .
R t B
LUT | .. A’J N egister -

rry
Logic

V‘ {V Y.

Figure 2: Logic Block of Xilinx Virtex-5 [2]

that the device is capable of implementing any combinatorial logic expression of k-
inputs. In order to extend the usefulness of these blocks, additional hardware, such
as registers and carry logic, are implemented alongside the LUTs in the logic blocks
contained within the FPGA fabric. The logic block used in the Xilinx Virtex-5 is
shown in figure 2 [2]. As this shows, the basic logic block of this device is based on a
6-LUT with additional carry-logic for the efficient implementation of mathematical
functions and a register to allow the implementation of sequential circuits. The
desired mode of operation can then be selected by programming the multiplexor’s

within the logic block.

2.1.2 Interconnect Network

The interconnect network of an FPGA is responsible for the routing of signals and
connection of logic blocks to implement large functions or even complete systems.
This is achieved through the use of switch blocks programmed to connect the inputs
of the logic blocks to the I/O pads and to other logic blocks to allow larger functions
to be implemented than is possible using a single logic block.

The interconnect network introduces a large overhead due to the generality needed
to allow systems to be implemented on the FPGA. In [18] it is reported that up to 90%

of the chip area is taken up by the interconnect network and the hardware required

2 BACKGROUND

to program this resource and the logic blocks. The interconnect network also dictates
the maximum speed of the device due to delays introduced by the channels used for
routing and the programmable elements used to route internal signals to the logic
blocks. For this reason much research has been undertaken on the optimisation of
the structure of the interconnect network including [20].

One of the primary methods of optimisation is to locally group logic blocks into
clusters [1]. This allows fast local interconnects to be used, reducing the delay in-
troduced by long tracks on the FPGA. Clusters are then used to implement medium
sized sub-functions that can then be connected to other sub-functions to implement
entire systems. It is also common to attempt to group related sub-functions that are
closely coupled into adjacent clusters to reduce the length of the interconnects re-
quired and hence reduce the delay of these connections. This optimisation is usually
automatically carried out by synthesis tools such as [30] and is similar to place and
route performed during ASIC design.

Place and route for ASIC design is primarily concerned with the placement of
hardware and interconnects on a silicon chip to ensure that correct timing is achieved
for the device. For FPGAs, the place and route software is concerned with producing
the bit-files required to program the interconnect network to connect the logic blocks
in order to implement the desired behaviour. One of the main issues involved in
place and route for FPGAs is the avoidance of congestion. This is caused when
insufficient routing channels are available to route signals within the FPGA to the
required locations. This is often caused if a sub-function is required to communicate
with large numbers of other sub-functions and hence require a very large number of

routing channels.

The interconnect network is based on a variety of length channels used to carry

signals around the FPGA and switch blocks used to connect these channels and the

6

2 BACKGROUND

01234

O~ N WD
O, N WM

01234

Figure 3: Example of Wilton switch block [24]

channels to the inputs/outputs of the logic blocks. As the switch blocks introduce
delays the optimisation of these blocks has been researched in great detail and as such
a large volume of material, including [24], is available on this subject. An example
of a modern switch block is shown in figure 3. As this shows, due to the island style
architecture used, the channels are usually categorised as being either vertical and
horizontal routing channels. The switch blocks then connect these channels to route
signals to the required logic-block.

Recently there has been much interest in reducing the flexibility of the intercon-
nect network in an effort to reduce the overhead introduced by the generic nature of
this component. The two main methods suggested are the use of directional archi-

tectures and the use of hard-wired interconnects.

2.2 Directional Architectures

Directional architectures such as those suggested in [31, 20, 32, 21| aim to produce
simplified interconnect networks by reducing flexibility within the routing architec-
ture. These projects limit the routing within the switch blocks to a single direction
and remove the possibility of implementing feedback within the array. This is ac-
ceptable for the implementation of multi-level combinatorial logic as feedback is not
required as long as the array is deep enough to implement the desired function. This
research initially focused on these blocks to allow for the production of synthesizable

embedded programmable logic cores where the possibility of feedback within the de-

7

2 BACKGROUND

vice would cause these devices to be unsynthesizable using conventional synthesis
tools [31].

The directional and gradual architectures presented in [32, 20] are shown in figure
4(a)4(b). Although the directional architecture, shown in figure 4(a), is based on the
island style common to FPGAs the use of a simplified switch block similar to that
suggested in [21] means signals can only be routed in a single direction i.e. left
to right. This technique is more clearly demonstrated in the gradual architecture
shown in figure 4(b), limiting the flexibility of the architecture to only allow signals
to be routed in a single direction (again, left to right) allows the switch blocks to be
replaced by simple multiplexors. The horizontal routing channels increase in width
from the left to the right and the vertical channels are only accessible through the
output of the LUTs in the array. The outputs are produced by a combination of the
outputs of the LUTs in the final column and those routed from previous columns
using the horizontal routing channels. This architecture was further extended to the
use of product term blocks (PTBs) [32] and resulted in the architecture shown in
figure 4(c). As this shows the number of PTBs in each level reduces by a fixed factor
at each new level and the routing is again limited to a single direction within the

array.

2.2.1 Hard-wire connection based architectures

The use of the switch blocks to connect routing channels within the interconnect
network results in increased circuit delay [22]|, area and power [17]. In order to
reduce this overhead the use of hard-wired interconnects is suggested in [9, 29]. These
architectures replace some of the programmable interconnects within the interconnect
network with hard-wired connections, these are metal wires with very low delay and
power characteristics. This is similar to the use of segmented routing channels where

channels spanning multiple columns or rows are used to limit the number of switches

2 BACKGROUND

A Y Yy Ay
[]]
4l Vil ¥
fffﬁi 'l
- 3- 3- 3-
LUT LUT LUT
INPUTS
4 , At | i H=p X
2 § ; B i W
Lt] ~ +
e o] i -
< 3- 3- 3- e —
= LUT ~ LUT LUT & o
1 i pu . -8
" S] 1] 18 .3
BB] . JE==cispl D G @
r 3- | 3- 3> |- S LS \
~ LUT ~ LUT LUT = == B = y
~ L L : D i
v A Y i
YA A A VA v Allinputs are fed into multipiexer
(a) Directional Architecture (b) Gradual Architecture

INPUTS

(c) PTB Architecture

Figure 4: Directional arrays [20, 32]

a signal must pass through to reach the desired location. Hard-wired interconnects
take this one stage further by connecting the outputs of selected LUTs directly to
the input of other LUTs in the array.

In [29] optimised switch blocks are used that replace some of the programmable
connections with hardwired connections based on the implementation of rectilinear
Steiner trees. This allows common interconnect configurations to be implemented

without the need to program the switch blocks and avoids the introduction of the

2 BACKGROUND

delays associated with these components.

One of the main issues with this solution is the mapping of functions to arrays
containing hard-wired interconnects. [9] attempts to achieve this mapping by iden-
tifying the critical path in the array and maps this to the hard-wire interconnects in
an effort to reduce the delay introduced by the interconnect network.

In order to allow systems to be implemented using k — LUT's it is necessary to
first break these systems down into a collection of interconnected sub-functions that
are realisable using these blocks. The process of taking large systems and breaking
them down into realisable sub-functions is known as decomposition and is discussed

in the following section

2.3 Decomposition

Decomposition is the process by which logic functions with large numbers of inputs
(i) are implemented as a network of sub-functions where each sub-function has a
maximum of k-inputs and is based on the theory of combinational logic synthesis.
Decomposition is at the heart of modern synthesis as it allows the implementation
of large systems using networks of small hardware components and as such a large
number of algorithms exists that automate this process including [11, 16, 26, 7].
Combinational logic synthesis for FPGAs is concerned with producing a repre-
sentation of a logic function that can be implemented using k-LUTs. This is usually
achieved by making use of a two stage process; first the function undergoes logic op-
timisation which transforms a gate-level network into another network that is more
suitable for implementation [12]|. This is then followed by technology mapping where
the boolean network is covered using k-LUTs to obtain a K-LUT network that is
functionally equivalent to the original network. The following sections give details of

the process of decomposition.

10

2 BACKGROUND

2.3.1 Problem Formulation

In order to fully understand the process of decomposition it is useful to begin by

defining some of the terminology used.

e A Boolean network is represented by a Directed Acyclic Graph (DAG) where

nodes represent logic gates.
e The edge (i,j) exists if the output of node i is connected to the input of node j.
e A Primary Input (PI) has no incoming edge, and
e A Primary Output (PO) has no outgoing edge.
e input(v) represents a set of fanins to gate v.

e For a sub-graph H of the network, input(H) represents all nodes supplying

inputs to gates in H.
e A node is k-feasible if |input(v)| < k.
e A sub-network H is k-feasible if |input(H)| < k.

e The fanouts of node v are denoted output(v) and similarly the set of fanouts

of subnetwork H are denoted output(H).
e A node is considered fanout-free if |output(v)| <1 and
e if every non-PI node in a network is fanout-free it is called a leaf-DAG,

o if every node is fanout-free, including the PIs, the network is a tree or a forest

if there are multiple POs.
e The level (1) of a node v is the longest path from the PI to v.

e The depth (d) of a network is the largest level in the network.

11

2 BACKGROUND

There are also a number of substructures in a network that are useful when performing

decomposition.

e A cone of node v, denoted C,, is a subnetwork of N that contains v and some
of its non PI predecessors such that every path remains within C, where v is

termed the root of the tree

e A maximum cone, M (), is a cone containing all non-PI predecessors of v and,

the fanin network, NV, is a maximum cone that also contains the PI predeces-

SOrs.

A fanout-free cone (FFC) is one where all of the node outputs remain within

the cone.

A mazimum fanout-free cone (M FFCy) contains the set of all FFCs rooted at

V.

These are standard definitions that appear in a number of texts including [12, 7].
Further definitions can also be found in these texts but those presented here are

sufficient to understand the basic concepts covered in this document.

2.3.2 Logic Optimisation

Logic optimisation is the process of transforming a network into an equivalent network
that is more suitable for technology mapping. This involves producing a representa-

tion of the network that has a valid k-LUT mapping solution.

2.3.2.1 Gate Simplification The first stage in producing a k-mappable imple-
mentation of the network is to replace any nodes that represent complex gates with
simple gates (AND, OR, NAND, NOR). This can be achieved by tools such a SIS

[28] using the tech-decomp algorithm [13]. This algorithm transforms complex gates,

12

2 BACKGROUND

using balanced tree decomposition [3, 27], into a collection of simple gates that im-
plement the equivalent functionality. It should be noted that this will often involve

the insertion of a sub-network that may increase the depth of the network.

2.3.2.2 Node Decomposition The next stage in the decomposition is node de-
composition. This process re-expresses a node function by a logically equivalent
collect of nodes. This is achieved by smashing the boolean network to produce a
network containing only two-input logic gates. This ensures that every gate in the
network is k-feasible and also the use of small gates allows the mapping tools more
freedom when mapping the gates to LUTs at later stages in the algorithm.

The most straightforward method of achieving this is to replace each large gate
by a balanced tree as shown in figure 5(b). In this example the 4-input gate in figure
5(a) has been replaced by a network of 2 input gates. It can be seen that this solution
increases the depth of the network by 1. For the general case it is reported in [6]
that for a network of depth d, balanced tree decomposition may increase the depth
to dlog(d).

A number of alternative node decomposition algorithms are available including
logical decomposition methods such as Huffman tree decomposition [7] and bin-
packing decomposition [15] and symbolic decomposition methods such as OBDD
based extraction [5]. The DMIG algorithm [7] operates in a similar way to balanced
tree decomposition but aims to produce depth optimal results. As the labels in figure
5 show the depth of the resultant network is the same as in the original network using
this method. This algorithm was selected to perform node decomposition due to its

efficiency and availability in the SIS synthesis tool [28].

13

2 BACKGROUND

7
2 3 5 6
(a) Boolean network con- (b) Transform using bal- (¢) Transform using
taining 4-input gate ance tree Dmig

Figure 5: Transforming multi-input network to two-input network

2.3.3 Technology mapping

After the production of a Boolean network based on simple two-input gates using the
methods described previously, technology mapping can be carried out. Technology
mapping aims to create a cover of the network such that any new node in the network
satisfies the condition |inputs(v)| < k. The decomposition algorithms attempt to
group nodes together while ensuring no single grouping requires more than k-inputs

as is shown in figure 6(a). Figure 6(b) shows this covering for a k value of 3.

This covering results in a network of 3-LUTS that implements the function in
figure 6(a). In this way it is possible to use LUTs with fairly small & values to
implement large combinatorial logic functions. During decomposition one of the key
parameters that must be considered is the depth (d) of the resulting array. This is
the longest path from the inputs to the output of the array. The depth is calculated
by counting the number of logic elements a signal must pass through on its way from

the primary inputs to the primary outputs. For the example shown in figure 6(b) the

14

3 INVESTIGATION OF CHARACTERISTICS OF CLES

(a) 5-input CLE (b) Decomposed CLE for with k=3

Figure 6: Decomposition of 5-input CLE to network of 3-input LUTs

depth of the decomposed network is 2.

As a constant delay is introduced by each LUT in the path and by the routing
required to connect the LUT to its predecessors. As such, if a unit delay is assumed
for the LUT and the channels, the depth can directly indicate the delay of the array.
It can also been seen that, as synchronous memory elements are used to implement
the LUTs, a clock cycle will be required to propagate a signal through each logic
block. The latency of the device will thus be equal to the maximum path length, or
depth, of the network produced by decomposition. For this reason a large number of
the decomposition algorithms are primarily concerned producing networks with the

minimum depth possible [11, 7, 12] .

3 Investigation of characteristics of CLEs

If the results of the logic optimisation process shown in section 2.3.2 are again exam-
ined it can be seen that the decomposition of large CLEs results in the production
of k-bounded networks that are either trees, leaf-DAGs or MFFC. These networks

can be shown to be directional in nature, i.e. signals propagate from the PI nodes to

15

3 INVESTIGATION OF CHARACTERISTICS OF CLES

the PO nodes, where the number of nodes in subsequent levels decrease by a factor
of at least k (otherwise the network would not be k-bounded) and converge on the
root of the network. If during the technology mapping stage the LUTs are produced
to be fanout free it can be seen that the resultant network must be either a tree or
leaf-DAG. This can be achieved by duplicating any sub-cones in the network that
require |output(v)] > 1. Although this operation will result in increased numbers
of LUTs the regular nature of the network produced allows the use of an optimised
reconfigurable device that is tailored to the implementation of tree or leaf-DAG net-
works. It can also be seen that the need to perform this duplication is very slight as
it is reported in [6] that 98.5% of LUTs in LUT based FPGA designs are fanout-free.
This means that in the majority of cases the results of logic optimisation will be a
tree or leal-DAG where each of the LUTs is fanout free.

As discussed in [32] the use of a completely flexible interconnect network in
FPGAs is not required for the implementation of Combinatorial logic expressions
(CLEs). The use of a fully flexible FPGA interconnect network actually prevents
their use as synthesizable soft-cores for use in embedded applications such as on
SoCs. The high degree of flexibility in fully flexible interconnect networks allows
combinatorial logic loops and hence prevents the automatic synthesis of these blocks.

If the sum-of-products implementation of CLEs is considered it is obvious that
the routing structure is only required to route signals from the primary inputs to the
outputs with no feedback. For this reason [32] suggests a uni-directional architecture
for the implementation of CLEs. This architecture, shown in figure 4(c), routes
signals from the inputs to the outputs and is based on columns of product term
blocks (PTB) rather than the island style adopted by FPGAs. Between each column
a simple routing mechanism based on multiplexers routes the signals from one column
to the next to implement CLEs.

This research suggests the use of a triangular array for the implementation of

16

3 INVESTIGATION OF CHARACTERISTICS OF CLES

CLEs, with y PTBs in the first level and n; = o~y in the ith level. Based on results
obtained using a suite of benchmark circuits it was found a = 0.5 produced the best
area/delay characteristics. This results in an array where the number of PTBs in a
column is half that of the previous column. It should be noted however that this
value was calculated for PTBs with a fixed number of inputs, outputs and product
terms and the effect of varying these parameters was not considered on the choice of
.

As the interconnect architecture of this device is uni-directional it is essential to
ensure that a device with sufficient depth is created i.e. array depth > d. However,
even for an array with sufficient depth, this does not guarantee any CLE can be
mapped to a device of this type. This is due to the fact it is possible that the number
of edges, or inputs, required at any level could be k.n; and for the array shown in
4(c) only % edges can be provided by the PTBs in the previous level. This means
the remaining edges must be provided by the horizontal routing channels, shown at
the bottom of the array, from previous columns or directly from the primary inputs.
This may not be possible if all of the PTBs in the previous columns are already in
use. This is equivalent to congestion in an FPGA and would result in a function that
can not be mapped to this array, reducing the domain that this array can be utilised
in. Although there are relatively few circuits that will be affected by this problem,
and obviously none of the benchmark circuits used exhibited this, this may cause
issues if this device was used in safety critical applications were the flexibility of the
device is used to provide error correction or upgradeability.

One possible method of resolving this issue is to use a = % This would result in
an array where the numbers of programmable elements in the array is reduced by a
factor of k at each level. This ensures there will be sufficient numbers of PTBs at
each level to feed all of the inputs of the PTBs in the next level with no need to allow

signals to be routed from levels other than that immediately previous. Although

17

4 DEVELOPMENT OF CUSTOM RECONFIGURABLE ARCHITECTURE

this would guarantee that any CLE can be mapped to the array, this would result in
arrays with larger numbers of programmable elements as the number of elements in
each column increases by a factor of k rather than 2 as was suggested.

It can clearly be seen that if an array of this type was to be created, providing the
results of decomposition resulted in a fanout-free tree or leaf-DAG, the interconnect
network could be simplified as the horizontal routing channels are now redundant.
Hard-wired connections, like those suggested in [29, 9], could then be used between
levels completely removing the area, delay and power overhead introduced by pro-

grammable switches or in this case multiplexors.

4 Development of custom reconfigurable architecture

Although in [32] it is suggested that improved performance can be achieved through
the use of appropriately sized PTB blocks compared to use of LUTs it was decided
that LUTs would be used for architectural investigation due to relative ease of de-
sign and use and the availability of these components in the standard cell libraries,
although it should be trivial to change the architecture to one based on PTBs at a
later date.

If the architecture presented in figure 4(c) is again revisited it can be seen that
reducing the number of PTBs in each column by a factor of k, instead of 2 as sug-
gested, allows the interconnect network to be further simplified. As stated the use
of hard-wired interconnects allows the inputs of a node to be fed directly from the
outputs of k nodes in the previous level. The use of hard-wired interconnects results
in the architecture shown in figure 7. This architecture is a regular tree structure
that grows by a factor of k, in this case k=3.

Although this array will require larger numbers of LUTs than one using the ar-
chitecture suggested by [32] it will require less routing due to the removal of the

global routing channels and the inter-level routing, resulting in area savings. The

18

4 DEVELOPMENT OF CUSTOM RECONFIGURABLE ARCHITECTURE

h LUT
{1,0
i LT
(LUJ {0,0}

— LUT
1 a2

- ~ <=
So|[SelISel]r? 7
CREIREIEE

Input Muxi Level 2 Level 1 Level 0

Figure 7: Hard-Wired directional array with k=3

main difference in the architecture suggested in figure 7 compared to that shown in
figure 4(c) is that the routing overhead introduced by the flexibility between layers
is replaced by what has been termed a logic overhead. This logic overhead is due to
the fact that a large number of decomposed CLEs would not require all of the LUTs
in the array. Although many of the LUTs will not implement a logic expression they
may still be required to route PI to the appropriate LUT and due to the removal of
the horizontal routing channels it is no longer possible to inject Pls at the required

level.

For an array of this type it can be guaranteed that providing the CLE has less
than I, inputs and the decomposed CLE depth is not greater than the depth of
the array, the array will be able to implement any CLE. Using the work carried
out previously [25] it is possible to determine the maximum possible depth for a
decomposed CLE with respect to the primary inputs. This in turn makes it possible
to generate an array that is deep enough to ensure that any CLE of I, or less, inputs

can be implemented on a fixed routed array.

19

4 DEVELOPMENT OF CUSTOM RECONFIGURABLE ARCHITECTURE

As figure 7 shows, the only routing required within a device of this nature are
the multiplexors used to route the PIs to the appropriate LUTs in the last column of
the array. It should be noted that, unlike the majority of architectures studied, the
column that produces the POs is termed the first column and given the label number
0 and the last column is the one immediately adjacent to the inputs MUXs. This is
due to the nature of the place and route tool and the results of decomposition. In
traditional decomposition labelling starts from the PIs and moves through the array
to the POs.

Due to the regular growth of the array the number of LUTs (XV;) in any level (I)

can be calculated by the expression

N, =k

using this the total number of LUTs (Ny) in an array of depth d can be calculated
by

and as a multiplexor is required to feed each of the inputs of the LUTs in the final

column the number of multiplexors in the array (N,,) has to be

N, = k* k¥ 1 = k¢

4.1 Architectural generation

In order to investigate the architecture suggested, an HDL generator was created
to automate the generation of arrays. The generator takes the number of inputs
(Ip) to the array, the array depth (d), the number of outputs (O,) and the size of

the LUTs (k) and generates the required HDL code to implement the array. The

20

4 DEVELOPMENT OF CUSTOM RECONFIGURABLE ARCHITECTURE

following section gives a brief description of the process of generating each of the
main components of the array. It should be noted that after each component has been

generated a short test script ensures the correct operation of each of the components.

4.1.1 Multiplexor generation

The first component to be generated are the input multiplexors. These are basic
{I,+1} : 1 multiplexors. It is necessary to allow for an extra input to be provided to
allow constant '0’ to be applied to the array for situations where LUTs are unused.

The multiplexors provide a configuration bus logs(I, + 1) in width that is used
to select the desired inputs to be passed to the output. The programming of these
components is synchronous and hence the multiplexors require a clock in order to
read the program bus. These components have been designed to be as simple as
possible as it is envisioned that they will be replaced by standard cell components

when synthesised.

4.1.2 LUT generation

The LUTs are generated based on the value of k given. Internally a register is created,
2 in size, that is used to store the configuration of the bus. A configuration bus 2*
wide is then provided to allow the LUT to be completely programmed in a single
clock cycle. This component is synchronous with an input being used to indicate to
the device the availability of configuration data.

Although a number of architectures for the LUTs have been considered, includ-
ing individually addressable LUTs and handshaking to avoid race conditions, it was
decided to use the simplest implementation possible to allow for replacement with

standard cell components prior to synthesis.

21

4 DEVELOPMENT OF CUSTOM RECONFIGURABLE ARCHITECTURE

4.1.3 Array Generation

The array is then generated by instantiating the required number of LUTs and mul-
tiplexors to produce a completely fixed routed array. The array produced has I,
inputs, a depth of d and a single output. The output LUT is generated first, followed
by k& LUTs in the next column connected directly to the inputs of the PO LUT. This
operation continues until an array of depth d has been produced. At this point a
mutliplexor is connected to each of the LUT inputs in the final column and connected
directly to the Pls.

In order to allow for initial investigation and to reduce the configuration time
required for the device the configuration buses of all of the components in the array
are made available. This allows the entire array to be programmed in a single clock
cycle, this results in a configuration bus width for the array (A;) of

I=d—1

Ap = 2Ny +1loga (I, +)Ny = 28 D7 k' +loga (I, + 1)k
=0

The use of addressable LUTs could be used to reduce this bus width by using a more
complex bus structure where each LUT is given a unique address and placed on a
common bus. In this way packets of data 2* in length would be placed on the bus
with the address of the LUT the configuration data is intended for. This scheme
would only required a bus width of loga(Ny) + 2¥ but would require at least a clock
cycle for each LUT in the array. This idea was rejected in initial testing due to the
complexity of the LUTs required and the need for hand-crafted components during
synthesis.

The use of Scan-Chains was also considered where the configuration memory
of several LUTS are chained together to act as a shift register. In this way the
configuration data would be passed to the first LUT in the chain and then on to the

next LUT in the chain in the next clock cycle untill the configuration data reaches the

22

4 DEVELOPMENT OF CUSTOM RECONFIGURABLE ARCHITECTURE

corrcet LUT in the chain. Again, this was rejected due to the use of non-standard
components and also the time increase incurred during reconfiguration. It is felt
however that for future development this is the most promising route to follow to

reduce the size of the configuration bus required by the array.

4.1.4 Device generation

The final device can then be produced by instantiating the number of arrays required
to produce the required number of outputs. As this is based on the array produced
the configuration bus size now increase by a factor of O,. Each of the arrays has its
own set of inputs and configuration buses and the device generator is required to label
each of these inputs individually and supply the clock required for the synchronous

LUTs and multiplexors.

4.2 Development of place and route tools for fixed routed arrays

Due to the lack of flexibility in the fixed routed system the place route tools required
to map CLEs to this array are very simple. Readily available decomposition tools,
such as SIS [28], can perform the decompositions necessary to break the CLE down
into an array of k bounded sub-expressions. In the case of the array shown in figure
7 this would be an array of expression with a maximum of 3 inputs. It should be
noted that the number of POs is limited to 1. This treats each output as a distinct
cone and hence requires an array to be produced for each PO.

The place and route tool first identifies the PO node in the decomposed network
that produces the output of the CLE. The bit sequence required to program the
output LUT, LUT{0,0}, to implement the expression for this node is then calculated.
The function mapped to this LUT is then called the parent function and each of the
nodes that act as inputs are the child nodes of this expression. As the CLE has been

decomposed to sub-functions with a maximum of k inputs there will be at most k

23

4 DEVELOPMENT OF CUSTOM RECONFIGURABLE ARCHITECTURE

children of any parent function in the array.

The place and route tool then moves to the next column and maps each of the
children to the corresponding LUTs so they are connected directly to the parent
function. Each of these child functions then becomes a parent in its own right and
the process of identifying its children is carried out and the bit streams required to
implement the functions of the children are created. In this way the algorithm starts
at the output column and works its way back to the PIs, moving down the columns
and mapping the children to the required LUTS. If at any stage the child of a parent
node is found to be a primary input the LUT is programmed to forward one of its
inputs and perform no combinatorial operation on this function.

In the case of a parent with less than k children the LUTs connected to the inputs
of the parent that are not required are programmed to perform no operation and for
future systems it is envisioned that this would represent a low power state to prevent

unused LUTs from unnecessarily increasing the power consumption of the device.

4.3 Hardware implementation of fixed routed array

Although synthesis has not been carried out on the array it is possible to consider
what the results of synthesis will be. The hardware implementation of the array
would result in a balanced tree of LUTs hardwired together. It would be necessary
to implement a clock to provide clock signals to each of the LUTs as they are syn-
chronous. It is not necessary, and in fact undesirable, to use a common clock signal
for each of the LUTs in the array as if a parent and child LUT are clocked simultane-
ously race conditions may occur as the output of the child LUT would change as the
parent LUT reads its input. This may result in the array exhibiting unpredictable or
undesirable behaviour and prevent the synthesis tools achieving timing closure. This
is not only confined to the synthesised array but has also been seen in simulation.

A number of possible solutions were considered, such as the use of asynchronous

24

5 ANALYSIS OF RESULTS

LUTs making use of handshaking, but as these require the use of none standard
components they were rejected due to the need for custom design. An alternative
solution is the use of delays on the clock tree. In this way the clock tree would ripple
through the array and be delayed at each column in the array by the minimum delay
time of the LUTs used. In this way the clock could arrive at the first column in the
array, where it would clock the LUTs and perform the functions required of the LUTs
in this column. A delay element would delay the clock for the period of time required
by the LUT to calculate their new output. This delayed clock would then be applied
to the LUTs in the next column allowing the new output of the child LUTs. The clock
would again be delayed to allow the LUTs in this column to calculate their output
before clocking the LUTs in the next column. This would then continue through the

array until the final output is calculated.

5 Analysis of results

Based on the work carried out in [25] it is possible to investigate the amount of logic
overhead introduced by the array. This overhead is due to the fact that many of the
branches within the array will not be used to implement a sub-function but will be
instead required to forward PIs to the appropriate LUT or simply to carry out no
operation. This would be the case for a sub-function that has less than k-inputs. In
this case some of the child LUTs would no longer be required and hence all of the
LUTS contained in the cone of this LUT would also be unused. In order to investigate
this the data presented in [25] was used to investigate the number of LUTs and depth
of array required to implement the average CLE with I -inputs. Based on the depth
of the array required to implement the average CLE it is possible to calculate the

number of LUTs in the resultant fixed routed array using the relationship

25

5 ANALYSIS OF RESULTS

this can then be compared to the average number of LUTs required to implement the
CLE on a conventional architecture as given in [25]. Based on this the LUT usage
percentage can be calculated and these are presented in table 1 for CLEs with inputs
in range 4 < I, < 10 that have been decomposed for implementation using LUTs

with k values in the range 3 < k < 5.

[k |
3 4 5
69.48 | 100 100
51.92 | 59.86 | 100
36.6 | 33.26 | 50
75.74 | 17.63 | 19.35
50.97 | 36.45 | 41.94
34.17 | 18.47 | 16.67
2294 | 9.3 6.79

Sl | oo | o] or| k|5

Table 1: Percentages of LUTs usage for average case.

As this table shows the percentage of the LUTs used drops as the number of
inputs increase due to the increase in the depth of the array. The results show
the relationship between the percentage of LUTs used and the number of inputs is
actually stepped in nature due to the fact that the depth of the array required to
implement an [, input expression does not increase linearly. For eample an array of
depth 4 is required to implement expressions with I, = 6 and I, = 7 for k=3. Due
to the regular nature of the array this would result in an array containing 40 LUTs
to be required for both I, = 6 and I, = 7. As the mean number of LUTs required

to implement an expression for I, = 7 is greater than that for I, = 6 the usage

26

6 FUTURE WORK

percentage increases for this case. It can then be seen that this percentage drops for
I, = 8 for k=3 as expressions of this nature require an extra level and hence more
LUTs in the array. Although the LUT usage appears to be low this does not take into

account the massive reduction in routing overhead produced by this architecture.

6 Future Work

As development of this system is still at the early stages a number of areas of future
work have been identified. These are mainly concerned with optimising the array to
reduce the overhead introduced by the excessive numbers of LUTs in the array. It has
been found that only around 40% of the total LUTs in the array are being utilised
to implement sub-functions with the remainder either implementing no function or
simply routing PIs to the required level within the array.

In order to improve this an unbalanced tree structure has been suggested. This
is capable of implementing a large subset of the functions possible as it is unlikely
that all of the sub-functions of the network will require |inputs(v)| = k. In this case
it can be seen that if the number of inputs is less than k some of the child nodes of
the array will not be used and all of the LUTs in the cone of these unused LUTs will
also be unused.

For this reason it is suggested that branch pruning be performed where different
length branches be used as shown in figure 8. As this shows several of the LUTs
from the architecture presented in figure 7 have been removed and the LUTs can
be fed directly with the PIs to avoid the need for a LUT to forward these signals.
This process would require more complex mapping algorithms that can identify the
critical path in the decomposed network and map this to the longest available path
in the network. In order to efficiently implement an array using this method it is
suggested that a large number of networks be profiled to determine the distribution

of levels within the decomposed network and this information be used to perform

27

6 FUTURE WORK

branch pruning.

PI:3}
= LUT
LUT
LUT
LuT | ‘ -l LuT
] {1,0} |
LUT —| wr | Y wr

{11 |] 0,00 [
LUT J
F] L2y [

Input Mux i Level 2 i Level 1 ! Level O

Figure 8: Unbalanced directional fixed routed array

Due to the simplicity of the place and route algorithm it can be executed very
rapidly once decomposition has been carried out. In fact it was found during testing
that the most time consuming operation carried out by the tools created was the
decomposition of the original CLE using the SIS synthesis tool. This opens up the
possibility of performing place and route on the fly, where a block of logic implements
the simple P&R tool and is provided with decomposed arrays to be implemented

from an external, or even local, source. This would allow an adaptive system to be

28

7 CONCLUSION

created where the device determines the necessary changes to its own configuration
and actually maps and loads this new configuration with no external intervention.
This could be very useful in applications that are difficult to gain access to in field

such as in a nuclear reactor or in space applications.

7 Conclusion

This section has given details of a hardwired directional array that is specifically
tailored to the implementation of CLEs based on the results of decomposition. This
architecture is an extension of the directional architecture suggested in [32] and the
concept of using hardwired interconnects suggested in [29]. Although in [9] it was
reported that the use of hardwired interconnects increased the difficulty in mapping
networks to device this was due to the fact that only selected channels were hardwired.
As the architecture suggested here contains only hardwired interconnects the place
and route operation is extremely simple and fast.

At present the code necessary to generate an array of this type in a hardware
description language has been created to allow for the investigation of the use of fixed
routed arrays. The simple place and route tool required to derive the bit-stream to
implement a CLE has also been developed. The next stage in development is the
synthesis of the HDL descriptions of the array in order to obtain the performance
metrics, such as area, speed and power, to allow its comparison to other domain

specific architectures such as that suggested in [33].

29

REFERENCES

[1]

2]

3]

4]

[5]

[6]

References

Elias Ahmed and Jonathan Rose. The effect of LUT and cluster size on
deep-submicron FPGA performance and density. In FPGA, pages 3-12,
2000.

Altera. Stratix iii fpgas vs. xilinx virtex-5 devices: Architecture and per-

formance comparison. Technical report, Altera, 2006.

R. K. Brayton, R. Rudell.and A. Sangiovanni-Vincentelli, and A. R. Wang.
Mis: A multiple-level logic optimization system. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, 1987.

Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G.

Vranesic. Field-programmable gate arrays. Kluwer Academic Publishers,

Norwell, MA, USA, 1992.

Shih-Chieh Chang and Malgorzata Marek-Sadowska. Technology mapping
via transformations of function graphs. In International Conference on

Computer Design, pages 159-162, 1992.

Kuang-Chien Chen and Jason Cong. Maximal reduction of lookup-table
based fpgas. In EURO-DAC ’92: Proceedings of the conference on Eu-
ropean design automation, pages 224-229, Los Alamitos, CA, USA, 1992.

IEEE Computer Society Press.

30

REFERENCES

[7] Kuang-Chien Chen, Jason Cong, Yuzheng Ding, Andrew B. Kahng, and
Peter Trajmar. Dag-map: Graph-based fpga technology mapping for delay
optimization. IEEE Des. Test, 9(3):7-20, 1992.

[8] P. Chow, S. Seo, J. Rose, K. Chung, G. Paez, and I. Rahardja. The de-
sign of an sram-based field-programmable gate array, part i: Architecture,

1999.

[9] Kevin Chung and Jonathan Rose. TEMPT: Technology mapping for the
exploration of FPGA architectures with hard-wired connections. In Design

Automation Conference, pages 361-367, 1992.

[10] K. Compton and S. Hauck. Totem: Custom reconfigurable array genera-

tion, 2001.

[11] J. Cong. Flowmap: An optimal technology mapping algorithm for delay
optimization in lookup-table based fpga designs, 1994.

[12] Jason Cong and Yuzheng Ding. Combinational logic synthesis for lut based
field programmable gate arrays. ACM Trans. Des. Autom. Electron. Syst.,
1(2):145-204, 1996.

[13] Jason Cong and Yean-Yow Hwang. Structural gate decomposition for
depth-optimal technology mapping in LUT-based FPGA designs. ACM
Transactions on Design Automation of Electronic Systems., 5(2):193-225,
2000.

[14] C. Ebeling, D. C. Cronquist, P. Franklin, and C. Fisher. RapiD - A
configurable computing architecture for compute-intensive applications.

Technical Report TR-96-11-03, 1996.

31

REFERENCES

[15] R. FRANCIS. Technology mapping for lookup-table based fieldpro-

grammable ga te arrays, 1992.

[16] Robert Francis, Jonathan Rose, and Zvonko Vranesic. Chortle-crf: Fast
technology mapping for lookup table-based fpgas. In DAC ’91: Proceedings
of the 28th conference on ACM/IEEFE design automation, pages 227-233,
New York, NY, USA, 1991. ACM Press.

[17] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. Irwin, and

T. Tuan. A dual-vdd low power fpga architecture, 2004.

[18] R. Hartenstein. Trends in reconfigurable logic and reconfigurable com-
putin. In Electronics, Circuits and Systems, 2002. 9th International Con-
ference on, 2002.

[19] A. El Gamal J. Rose and A. Sangiovanni-Vincentelli. "architecture of

field-programmable gate arrays". Proceedings IEEE, vol. 81, 1993.

[20] Noha Kafafi, Kimberly Bozman, and Steven J. E. Wilton. Architectures
and algorithms for synthesizable embedded programmable logic cores. In
FPGA ’03: Proceedings of the 2003 ACM/SIGDA eleventh international
symposium on Field programmable gate arrays, pages 3—-11, New York,

NY, USA, 2003. ACM Press.

[21] Sami Khawam, Tughrul Arslan, and Fred Westall. Unidirectional switch-
boxes for synthesizable reconfigurable arrays. In FCCM ’04: Proceed-
ings of the 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 293-295, Washington, DC, USA, 2004. IEEE

Computer Society.

32

REFERENCES

[22]

[23]

[24]

[25]

[26]

M. Khellah, S. D. Brown, and Z. Vranesic. Minimizing interconnection
delays in array-based fpgas. In in Proc. Custom Integrated Circuits Conf,

pages 181-184, 1994.

David Lewis, Elias Ahmed, Gregg Baeckler, Vaughn Betz, Mark
Bourgeault, David Cashman, David Galloway, Mike Hutton, Chris Lane,
Andy Lee, Paul Leventis, Sandy Marquardt, Cameron McClintock, Ke-
tan Padalia, Bruce Pedersen, Giles Powell, Boris Ratchev, Srinivas Reddy,
Jay Schleicher, Kevin Stevens, Richard Yuan, Richard Cliff, and Jonathan
Rose. The stratix ii logic and routing architecture. In FPGA ’05: Pro-
ceedings of the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pages 14-20, New York, NY, USA, 2005. ACM

Press.

M. Imran Masud and Steven J. E. Wilton. A new switch block for seg-
mented FPGAs. In Patrick Lysaght, James Irvine, and Reiner W. Harten-
stein, editors, Field-Programmable Logic and Applications, pages 274-281.
Springer-Verlag, Berlin, / 1999.

G. Milligan. Investigation of the characteristics of reconfigurable devices.

In EngD Portfolio Document (TR2), 2007.

Rajeev Murgai, Yoshihito Nishizaki, Narendra Shenoy, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli. Logic synthesis for programmable
gate arrays. In DAC ’90: Proceedings of the 27th ACM/IEEE conference
on Design automation, pages 620-625, New York, NY, USA, 1990. ACM

Press.

33

[27]

28]

[29]

[30]

[31]

[32]

[33]

Martine Schlag, Jackson Kong, and Pak K. Chan. Routability-driven tech-
nology mapping for lookup table-based fpgas. Technical report, University
of California at Santa Cruz, Santa Cruz, CA, USA, 1992.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. SIS: A system for sequential circuit synthesis. Technical re-

port, 1992.

Satish Sivaswamy, Gang Wang, Cristinel Ababei, Kia Bazargan, Ryan
Kastner, and Eli Bozorgzadeh. Harp: hard-wired routing pattern fpgas.
In FPGA °05: Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pages 21-29, New York,

NY, USA, 2005. ACM Press.

Synopsis. Synopsis galaxy design platform.

http://www.synopsys.com /products/solutions/galaxy platform.html.

Steven J. E.. Wilton, Noha Kafafi, J. Wu, K. Bozman, V. Aken’Ova, and
R. Saleh. Design considerations for soft embedded programmable logic

cores. In IEEE Journal of Solid-State Circuits, pages 485-497, 2005.

Andy Yan and Steve J. E. Wilton. Product-term-based synthesizable em-
bedded programmable logic cores. In Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, pages 474-488, 2006.

Andy Chee Wai Yan. Product-term based synthesizable embedded pro-
grammable logic cores. Master’s thesis, University of British Columbi,

2005.

34

PORTFOLIO DOCUMENT Al

Reconfigurable Hardware:
Literature Review

Author: Supervisor:

Graeme Milligan Wim Vanderbauwhede

Contents

1

2

3

Introduction
Background
System Classification

Industrial Reconfigurable Hardware Systems

4.1 PACT XPP e e
4.2 PicoChip o e
4.3 Reconfigurable Algorithm Processor (RAP)

4.4 Conclusion e
Academic Reconfigurable Hardware Systems

51 DReAM
5.2 PRO®

5.3 Conclusion L

Conclusion

10
10
11
12

13

List of Figures

Structure of PACT XPP taken from [4]

RAP architecture
Hardware Structure of DReAM array .

SO W N+

Levels of coupling in Reconfigurable system

PicoChip array structure taken from [11]

PRO3functional architecture and data paths

2 BACKGROUND

1 Introduction

The exponential growth in the cost of ASIC design has lead to research in a number
of areas including system on chip, IP usage and Reconfigurable hardware. Recon-
figurable hardware is of particular interest as it promises to cut design cost while
increasing product life cycle by introducing flexibility to hardware designs.

Traditionally, systems were either implemented in hardware, VLSI, ASIC, etc, or
in software running on a general purpose processor. Although hardware implementa-
tion leads to highly efficient, high performance systems they suffer from long design
cycles and inflexibility. This means that they are costly to design and have very
short life cycles. The software route allows systems to be designed rapidly and allows
them to be reprogrammed in-field. This flexibility means that these processors must
be designed to be as general as possible and are hence very inefficient. In order to
reduce this inefficiency there has been a drive to produce more application specific
processors, such as DSP’s. Reconfigurable hardware aims to combine the advantages
of both software and hardware by providing the speed and efficiency of hardware and
the flexibility of software. Thus is achieved by utilising hardware which contains an
array of computational elements which are programmable. These elements, known
as logic blocks, are connected using a set of programmable routing resources.

This report aims to give background information and review a selection of cur-
rent academic and industrial approaches to reconfigurable hardware and the issues

concerning this subject.

2 Background

The concept of configurable hardware began in the 1960’s with the development of
the gate array. Initially these consisted of a base platform containing an array of

gates with no interconnect, which could be produced in bulk. The functionality of

2 BACKGROUND

these platforms could then be customised by designing the interconnects and applying
these in the final mask stages. Although this reduced production cost and simplified
design, the systems could only be programmed once and were less efficient than
full-custom design.

The next stage in the development of configurable systems was the advent of field
programmable gate arrays (FPGA’s). These are arrays of gates with interconnects
which can be programmed by applying a high current to an anti-fuse. Once this has
been done, a permanent connection is made between the gate and the interconnect.
This means that these devices could only be programmed once and suffered from
low gate densities due to the large amount of hardware required for routing and
programming. For this reason it was impractical to implement complete systems on
FPGA’s and they were mainly utilised for emulation or system prototyping.

In recent times with the development of FPGA’s, such as EEPROMS and SRAM
based FPGA'’s, which can be reprogrammed multiple times, truly reconfigurable sys-
tems are now possible. The large increase in the available gate counts (over 1M in
modern SRAM FPGA’s) also means that it is now possible to implement large, com-
plex systems on a single FPGA. Due to the capability of SRAM based FPGA’s for
rapid reconfiguration (less than 1 microsecond) there has been much interest in dy-
namically reconfigurable hardware. This is an FPGA, or other reconfigurable device,
which can be fully or partially reconfigured during system operation. This means that
a single reconfigurable hardware block can be used for one operation until complete
and then be reconfigured to perform another function.

Due to the generality of FPGA’s it is fairly obvious that they far less efficient than
full custom designs. It has been reported that only 1 percent of the chip area serves
the real application, where as the other 99 percent is reconfigurable overhead [8].
This is mainly due to the routing required to interconnect the reconfigurable units.

For this reason many FPGA’s are beginning to incorporate standard components

3 SYSTEM CLASSIFICATION

such as MAC units, multipliers and even processors in order to reduce this overhead.
This hybrid approach gives the flexibility of the reconfigurable gate array with the
added efficiency of full custom design. A number of examples of this including the
Xilinx Virtex series of FPGA’s which contain the IBM PowerPC processor [13] and
the Altera Excalibur series which contains an ARM922T processor [2, 8].

This approach has also lead to the idea of producing course grained reconfigurable
platforms. In these platforms the reconfigurable units are larger (ALU’s as opposed
to gates) and hence incur a smaller overhead due to routing. This form of platform
is especially efficient in datapath designs where a number of these elements can be
connected together to form standard width (16 bit, 32 bit etc.) datapaths. As this
reduces the routing overhead it also reduces the power consumption and increases

the switching speed.

3 System Classification

Due to the broad range of tasks to which reconfigurable hardware is currently being
applied it is necessary to develop a system of classification. This could be achieved
using a number of criteria including application area and granularity. It seems fairly
obvious that due to the flexibility inherent to reconfigurable hardware, that it would
be unwise to classify these systems by application area as it is likely that a given
approach will be used in a number of very different applications. Although it is
possible to classify reconfigurable systems by their granularity, this would be very
objective and vague. For example a system which is made up of reconfigurable ALU’s
could be described as course-grained when compared to an FPGA but would be fine-
grain compared to a platform containing arrays of reconfigurable processors.

In [6] reconfigurable systems are classified by the degree of coupling between the
microprocessor used to control reconfiguration and the reconfigurable logic. Figure

1 shows that it is possible to broadly classify all reconfigurable systems into four

3 SYSTEM CLASSIFICATION

categories. The first of these categories is the case where reconfigurable hardware
is used to provide reconfigurable functional blocks within the host processor. This
allows the processor to be used as normal with the addition of custom instructions
designed for a given application. In this form of coupling an overhead is introduced as
the processor and reconfigurable unit must communicate every time a reconfigurable

instruction is used.

Workstation
Fess T s saess e s T sss s e ey Standalone Processing Unit
¢ Coprocessor Attached Processing Unit : =
1T 1111 _II11
111 | |
ooooono]]
5 CPU : ||||-||||-||||
| [
2] g Memory I I/0 n u
= FU| (4 Caches Interface u u
= u u
H nlimiminlinin

...

Figure 1: Levels of coupling in Reconfigurable system

The second category is the use of reconfigurable hardware as a coprocessor. The
coprocessor is normally able to perform fairly complex tasks and can operate inde-
pendently of the processor. In this form of coupling it is likely that the processor
would be responsible for initialising and providing input data to the coprocessor, the
coprocessor would then operate independently and when complete return the result
to the processor. This allows the coprocessor and the main processor to operate si-
multaneously and hence reduces any communications overhead i.e. the processor no
longer has to stall while the reconfigurable hardware is operating.

Third, an attached reconfigurable processing element behaves as an additional

attached processor in a multiprocessor system. The host processors data cache is

4

3 SYSTEM CLASSIFICATION

not visible to the reconfigurable processing unit and hence there is a greater delay in
any communication between the units. To improve efficiency communication would
happen less frequently and involve larger chunks of data. This means that the recon-
figurable processing unit would often be larger than the coprocessor approach and
carry out more complex tasks. This allows for a great deal of computation indepen-
dence and allows greater parallelism by shifting large amounts of the computation
over to the reconfigurable unit.

The final, most loosely coupled form of reconfigurable hardware is that of an
external stand-alone unit. This reconfigurable hardware communicates infrequently
with the host microprocessor (if there is one present). In this model it is likely that
the reconfigurable unit will perform processing over long periods of time and hence
have limited communications. This form of coupling allows the processor to send
large amounts of data to the reconfigurable unit and then forget about it until the
reconfigurable unit completes its processing task.

Each of these approaches has its own advantages and disadvantages. The tighter
the coupling the more frequently the reconfigurable unit can be used due to a small
communications overhead. However, the reconfigurable hardware is unable to oper-
ate independently for long periods of time and hence requires frequent intervention
from the host processor. In loosely coupled systems a large communications over-
head is introduced but a higher degree of parallelism is achieved. The amount of
reconfigurable hardware available is also often much larger in these systems.

The following sections are intended to give an overview of both industrial and
academic research in the field of reconfigurable hardware and highlight a selection of
interesting approaches to this subject. A list of reconfigurable research and systems
can be found at |7, 1], although these contain only short summaries of the projects

and are incomplete.

4 INDUSTRIAL RECONFIGURABLE HARDWARE SYSTEMS

4 Industrial Reconfigurable Hardware Systems

This section is not intended to detail every reconfigurable system and research project
in industry but instead give an overview of selected systems of interest and give
references to the location of further information. Although several of the a large
FPGA manufacturers, including Xilinx and Altera, have produced platforms which
are intended for use in reconfigurable systems it is felt that these platforms have been
covered extensively in literature and hence it would serve little purpose to examine
them here. Instead the novel PACT XPP platform [4], the picoChip [11] and the
Elixent RAP [10] will be described.

4.1 PACT XPP

The PACT eXtreme Processing Platform (XPP) is a run time reconfigurable plat-
form designed for data processing. Figure 2 shows the structure of a typical XPP
device. The architecture is based on a hierarchical array of coarse-grain elements
called Processing Array Elements (PAE’s) and a packet oriented communications
network. Each PAE contains an ALU and registers (FREG and BREG) used to con-
trol internal routing. PAE’s are grouped into rectangular blocks called Processing
Array Clusters (PAC’s) and each XPP device is made up of one or more of these
PAC’s, the example in figure 2 contains four PAC’s.

As the configuration of the device is controlled by a hierarchical tree of configu-
ration mangers (CM’s) it is possible for the leaf CM’s to configure individual PAE’s
while there neighbours are operating. The root CM is called the supervising CM
(SCM) and contains an external interface which usually connects the SCM to an
external configuration memory. The PAE’s communicate using a packet-oriented
network which can transmit data packets of uniform bit width specific to the device
type. In this way the XPP can be used to pass data packets rapidly around the

platform and perform word length operations efficiently. This makes it ideal for data

4 INDUSTRIAL RECONFIGURABLE HARDWARE SYSTEMS

intensive operations such as DSP and low level protocol operations.

XPP device PAC+ Configuration Manager
x 4 4 4 4 4 4
== 10 : 10)4t=
PAC i PAC ; o
7 Configuration
=2(10)— — 10 hess Manager SM
M) |i| (tm ;
i a sxbarh arh eoh b eb o 10 et
= st w | JEER NEEE NN R NE IR §EEQ gu R §
{ S] £ (o {ar | e
: e
M M i
== 10 £] 10 == E, y. Z z. Z
PAC PAC - | i N 8 N N N J IR, U B
=r7{_10 10 7= g .
b P 20w A0 W 00 1w W e A O
e PLIVLIWL /WLIVL WLV =
. -#— Horizontal bus
ALU-Object PAE.~
| _see | 2] [Switch—Object
data and event hees AFE
N lh‘]put ports C2) BAE
- = m Vertical bus and connects
ikl | By | Bim || sooeeesstsanesanaaResesIaam
o il Vs i oo -
|# *l S —Z .. Configuration bus
4"\1\1\[1:”1\%?5:{[2[} ‘ Vertical data and
T +== 7 event busses

Figure 2: Structure of PACT XPP taken from [4]

4.2 PicoChip

The picoChip platform is a scalable multi-processor baseband IC designed for use
in 3G base stations and other high performance communications applications. The
picoChip is based on an array of 430 processing elements, where each element is
designed specifically for wireless communications systems and has the equivalent
processing power of an ARM9 embedded processor. Each processor is a 16-bit device
containing its own ALU, processing elements, program and data memory and can
operate at 160 MHz and implements 3 instructions per cycle. The elements are
interconnected by a proprietary 5 Gbit/Second bus structure shown in figure 3. The

processing elements in the array can be subdivided into 4 "flavours" in order to

7

4 INDUSTRIAL RECONFIGURABLE HARDWARE SYSTEMS

accommodate W-CDMA baseband processing operations. The first of these contains
instructions such as spread/despread and acceleration for forward-error correction.
The second contains dedicated Multiply-Accumulate units for filtering operations.
The third type has four times the memory of the previous two to allow it to perform
applications such as block processing so that the designer can load more substantial
software to the processor for control based tasks. The final "flavour" has four times
the memory again and is used for scheduling operations. It is possible to map an
individual task to a single or multiple processors depending on the processing power
required. The processors have no run-time scheduling or arbitration, while the data
flow within the array is completely scheduled. This means that the performance
of the system is determined at compile time, allowing simulations to be both bit
and cycle accurate. Each of the processors is programmed in C and the interconnects

automatically generated, this allows applications to be developed and verified rapidly.

i (] I [I [] e
o [] D [] e |1

3 [[| Get || G

= [Qg [gein 117

Processing . ;
EI Element @ Switch Matrix

III Inter-picoArray
Interface

Figure 3: PicoChip array structure taken from [11]

4 INDUSTRIAL RECONFIGURABLE HARDWARE SYSTEMS

4.3 Reconfigurable Algorithm Processor (RAP)

The Reconfigurable Algorithm Processor (RAP) from Elixent is a coarse-grain recon-
figurable platform designed for DSP and multimedia applications. The reconfigurable
hardware, know as the D-fabrix, is made up of an array of hundreds of 4-bit ALU’s
and register/buffer blocks that can be cascaded together to accommodate larger data
lengths. This allows the fabric to operate on the 8-24 bit data lengths common in
multimedia applications. The ALU’s are arranged in a chessboard style, alternating
with switchboxes which can act as a cross-point switch or 64 bits of configuration
memory. Figure 4 RAP Architecture showing chessboard layout, alternating ALU
and cross point switch/memory block with RAM blocks interspersed as required.
As can be seen in figure 4 the array also contains 256-byte memory blocks dis-
persed around the array. The choice of nibble sized ALU’s means that only a few
bytes of memory are required to configure each ALU allowing rapid reconfiguration
and improved density. The large amount of on-chip memory also allows ALU’s to be
fed instruction streams generated within the array reducing off-chip memory traffic to
improve overall performance. The RAP has been targeted at multimedia and wireless
base-station applications and in applications such as JPEG compression they have

shown speed up of 238x against a 32-bit DSP and 38x against an FPGA.

!:ll‘l A LA
A I TY
. .‘ Zkbit RAM

Bhit addr

. 8bit dala

Figure 4: RAP architecture

5 ACADEMIC RECONFIGURABLE HARDWARE SYSTEMS

4.4 Conclusion

These examples show that the majority of industrial projects in reconfigurable hard-
ware are aimed mainly at producing general purpose platforms which although aimed
at high end communications and multimedia applications, are as general as possible
to allow them to be utilised in a number of applications. It can also be seen that
many of these systems have adopted a course grain architecture in order to reduce the
overheads associated with fine grain reconfiguration e.g. routing and reconfiguration
overhead. Although a number of applications have been designed for these platforms
they are intended to act as benchmarks to demonstrate speed and power improve-
ments over traditional FPGA and microprocessor implementations. At present, the
majority of these platforms have yet to be utilised for any complete application and

hence real analysis of their performance is yet to be performed.

5 Academic Reconfigurable Hardware Systems

Again, this section is not intended to cover every academic research project cur-
rently underway, but give an overview of novel approaches to reconfigurable hard-
ware. Compared to the industrial projects listed previously there is a much greater
diversity of approaches in academia but the majority of projects are still aimed at
the multimedia and communications application regions due to the challenging speed
and power requirements of these applications. The systems selected for this review
are the DReAM architecture developed at Darmstadt University of Technology and

Ohio University [5] and the PRO3 protocol processor.

5.1 DReAM

The Dynamically Reconfigurable Architecture for Mobile systems (DReAM) con-

sists of an array of parallel operating course-grain Reconfigurable Processing Units

10

5 ACADEMIC RECONFIGURABLE HARDWARE SYSTEMS

(RPUs). It is tailored to perform all the required arithmetic manipulations required
for the data-flow oriented mobile applications area. With this in mind the RPUs were
designed to efficiently perform the course-grained (8-bit) integer operations required
for these applications. The complete DReAM array architecture, shown in figure 5,
connects all RPUs with reconfigurable 16-bit local and global communication struc-
tures. The overall operation of the array is controlled by the Communication Switch-
ing Units (CSUs), each of these units controls the configuration of two Configuration
Memory Units (CMUs), which themselves each control four RPUs, and four global
interconnect Switching Boxes (SWBs). The overall control of the complete array
is performed by the global communications unit which also controls communication

with other hardware components.

Dedicated IO (DEFO)
Comm. Svitching Unit (CSU)

Legemna
=] Reconf. Proc. Linit (RPUD)
=
-
= Configuration Memory Umnit (CRMLT)
= i i s 5
=)

16-Bit Local Interconnect Line

Figure 5: Hardware Structure of DReAM array

5.2 PRO?

The reconfigurable Protocol Processor (PRO?) developed as an academic and indus-
trial joint venture by Lucent, Hyperstone, IMEC, Ellemedia and the National Techni-
cal university of Athens is designed to accelerate the execution of telecom transport
protocols by extending a RISC core with reconfigurable pipelined hardware. This

form of acceleration is common to a number of academic projects including PRISM

11

5 ACADEMIC RECONFIGURABLE HARDWARE SYSTEMS

[3], GARP [9] and DISC [12]. The platform is designed to allow CPU demanding
real-time protocol functions to be executed by the programmable hardware, while
the remaining functions and higher layer protocols will be handled by the on-chip
RISC. The overall design of the PRO? is shown in figure 6. From this it can be seen
that the reconfigurable hardware is intended to work in parallel with the RISC core
and could be considered as another stage in the processor pipeline. This is a very
tightly coupled system where performance gains are expected by identifying protocol
functions which are executed most often and migrating these functions to hardware.
At this stage it is unclear if the project will utilise the fine-grain reconfiguration of
FPGA technology or a more course-grain approach. At this time it is unclear how
efficiently these protocol functions can be implemented in a reconfigurable system,
as the flexibility required to implement a broad range of functions will also lead to a

large routing overhead.

H>

A 4

IN Message ~—» Generic | =
recognition decoder

Re-configurable
Pipelined
Module

Generic | === OUT
encoder

Timer Memory External
pool management memory

Figure 6: PRO3functional architecture and data paths

5.3 Conclusion

The projects given here are intended to give examples of the approaches to reconfig-
urable hardware currently utilised in academic projects. The coprocessor approach

used by the PRO? project is very common in academic research. This approach

12

REFERENCES

allows standard components such as an off the shelf processor and FPGA array to be
utilised and hence requires less design effort than the approach utilised by industrial

platforms such as PACT XPP.

6 Conclusion

The exponentially increasing cost of ASIC design and the need for performance
greater than that available in present microprocessors has lead to great interest in
Reconfigurable hardware. Reconfigurable hardware promises to give improved perfor-
mance over microprocessors and improved flexibility over ASIC designs. It is hoped
that this will cut the cost of system design while giving the performance required for
modern applications. In this paper a selection of academic and industrial approaches
to reconfigurable system design were presented in order to give an overview of the
current state of the art. It can be seen that the majority of industrial projects are
intended to produce a platform which contains the flexibility of reconfigurable sys-
tems but is tailored to a particular application. This approach allows platforms to be
used for a number of applications within a particular field, i.e. a receiver for several
protocols, while not suffering an unacceptably high overhead due to this flexibility.
Many of the academic projects are based around a custom processor approach. As
stated previously this allows a system to be produced rapidly from off the shelf com-
ponents, this allows researchers to concentrate on other aspects of the reconfigurable
hardware such as how the processor and reconfigurable hardware interact, and tool

development to allow rapid system development.

References

[1] R. Abielmona. Alphabetical list of reconfigurable computing architectures.
http://www.site.uottawa.ca/ rabielmo/personal /rc.html.

[2] Altera. http://www.altera.com.

13

REFERENCES

[3] P.M. Athanas. A functional reconfigurable architecture and compiler for adaptive
computing. In Twelfth Annual International Phoeniz Conference on Computers
and Communications, 1993.

[4] V. Baumgarte, G. Ehlers, F. May, A. Nuckel, M. Vorbach, and M. Weinhardt.
PACT XXP a self-reconfigurable data processing architecture. J. Supercomput-
ing., 26(2):167-184, 2003.

[5] J. Becker, L. Kabulepa, F. Renner, and M. Glesner. Simulation and rapid pro-
totyping of flexible systems-on-a-chip for future mobile communication applica-
tions. In RSP ’00: Proceedings of the 11th IEEE International Workshop on
Rapid System Prototyping (RSP 2000), page 160, Washington, DC, USA, 2000.
IEEE Computer Society.

[6] K. Compton and S. Hauck. Reconfigurable computing: A survey of systems and
software, 2000.

[7] S. Guccione. List of fpga-based computing machines.
http://www.io.com/~guccione/HW _list.html.

[8] R. Hartenstein. Trends in reconfigurable logic and reconfigurable computin. In
Electronics, Circuits and Systems, 2002. 9th International Conference on, 2002.

[9] J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor with a reconfigurable
coprocessor. In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE Symposium
on FPGAs for Custom Computing Machines, pages 12-21, Los Alamitos, CA,
1997. IEEE Computer Society Press.

[10] ELIXENT Ltd. The reconfigurable algorithm processor.
www.elixent.com/assets/WP0001_D_Fabrix_ Apps.pdf.

[11] Picochip. http://www.picochip.com.

[12] M. J. Wirthlin and B. L. Hutchings. Sequencing run-time reconfigured hardware
with software. In FPGA ’96: Proceedings of the 1996 ACM fourth international
symposium on Field-programmable gate arrays, pages 122-128, New York, NY,
USA, 1996. ACM Press.

[13] Xilinx. http://www.xilinx.com.

14

PORTFOLIO DOCUMENT A2

Universal Mobile Telecommunications
System: Protocol Review

Author: Supervisor:

Graeme Milligan Wim Vanderbauwhede

Contents

1

UMTS 1
Spreading and Modulation in WCDMA 2
Radio Access Network 4
UMTS protocol stack 5
4.1 Physical layer 6
4.1.1 Transport channels 6
4.1.2 User Data Transmission 9
4.2 Media Access Control (MAC) layer 12
421 MAC-c/shentity 14
422 MAC-dentity 16
423 MAC-hs 17
4.2.4 Mapping of Logical channels to Transport Channels 19
4.3 Radio Link Control Protocol (RLC) 20
43.1 RLC transparent mode (Tr) 21
4.3.2 RLC Unacknowledged mode (UM) 21
4.3.3 RLC Acknowledge mode (AM) 21
4.3.4 Functions provided by RLC 22
4.4 The Radio Resource Control (RRC) Protocol 23
4.4.1 RRC layer architecture L. 23
442 RRCservicestates 25

4.4.3 RRC functions and Signaling procedures 26

List of Figures

0 ~J O O W N

el e e el el)
0O~ O UL i W N M= O

Common transmission techniques 2
Spreading and despreading in UMTS 3
UTRAN architecture, 5
UTRAN FDD Radio Interface Architecture 6
Mapping of Transport Channels to Physical Channels 9
Uplink Dedicated Channel structure 9
Uplink Mulitplexing and channel coding chain 10
Downlink Dedicated Physical Channel 11
Downlink multiplexing and channel coding chain 12
UE side MAC Architecture 13
UE side MAC Architecture- MAC-c/sh details 14
UE side MAC Architecture- MAC-d details 16
UE side MAC Architecture- MAC-hs details 18
Mapping of Logic channels to Transport channels 20
RLC layer Architecture 20
RRC layer Architecture 24
RRC states and state transitions including GSM/GPRS 26

Inter-system Handover procedure from UTRAN to GSM 30

1 UMTS

1 UMTS

The Universal Mobile Telecommunication system (UMTS) has become the standard
radio system for the third-generation (3G) of mobile communication systems in Eu-
rope and Japan with a similar system (cdma2000) being adopted in America. UMTS
has been under development in Europe since the late 1980’s with the RACE and
RACE 2 projects. In 1999 the development and standardisation of UMTS was given
to the Third Generation Partnership Project (3GPP). 3GPP is global partnership
made up of standardisation organisation from Europe, Japan, Korean and the USA
and aims to produce a global standard mobile communications system.

Within UMTS two air interfaces are specified, Wide-band Code Division Multiple
Access (WCDMA) Frequency Division Duplex (FDD) and WCDMA- Time Division
Duplex (TDD). The FDD interface is based on paired 60MHz bands (1920MHz-
1980MHZ and 2110 MHz-21170MHz) where the lower band is utilised for uplink and
the upper for downlink. The TDD interface makes use of a single 25MHz chan-
nel (1900-1920 and 2020-2025) for both uplink and downlink. For the purposes of
simplicity WCDMA will be used to refer to both of these modes of operation.

In order to allow for backward compatibility with 2G communications systems,
such as GSM, many of the features of these systems have been adopted in UMTS and
any additional features will not adversely affect the operation of 2G systems. The

main features of UMTS include

e Bit Rates of up to 2Mb.

Variable bit rate to offering bandwidth on demand.

Multiplexing of services with different QoS requirements.

Low frame error and bit error rates.

Support of asymmetric uplink and downlink traffic.

2 SPREADING AND MODULATION IN WCDMA

e High spectrum efficiency
e Coexistence of FDD and TDD modes.

The increase in bandwidth is expected to allow new services to be supplied to mobile
terminals (referred to as User Equipment (UE) by 3GPP) such as video telephony and
rapid downloading of data such as news reports and internet access. It is possible for

UMTS to achieve these bandwidths through its use of WCDMA interface techniques.

Code

A A
Frequency band ‘ » © N [User 4
Guard Band oo | E - E - 5] - l User 3
Z Frequency band ‘ E 3 ; 5|z |8 ; = Z [User 2
g Guard Band S |2 |58 |2 |5 v |8 |& 5 User 1
£y 8 5 & S =
3 Frequency band | = 3
= =
Guard Band &9
Frequency band L » _
- i Time »
Time Time
(a) FDMA (b) TDMA (c) CDMA

Figure 1: Common transmission techniques

2 Spreading and Modulation in WCDMA

Traditionally, communication systems have employed either a Frequency division
Multiple Access (FDMA) technique (figure 1(a)), where each user is given it own
specified range of frequencies for communication, or Time Division Multiple Access
(TDMA) techniques (figure 1(b)), where each user is allocated a time slot where it
can use the entire frequency range for communication. In Code Division Multiple
Access techniques every user has access to the entire frequency range for all time
for communication and individual signals are separated using a given spreading code
(figure 1(c)).

These spreading codes are created using orthogonal variable spread factor (OVSF)
codes [6] that are selected to allow for maximum separation and hence allow the

2

2 SPREADING AND MODULATION IN WCDMA

separation of signals from different UE. The process of spreading and de-spreading is
shown in Figure 2. From this it can be seen that the original rate of the user data,

R, has been increased to 8*R after the spreading code has been applied.

<Symbol
Data L] _:
_Ehg | Spreading
Spreading code [T LL __ML ——I__ J_—_ _I_—I.___ _:

e UL Iiggiggiggiipiigiiggi®

Spreacing code e
Data 1
= Spread signal x code | T —1

Figure 2: Spreading and despreading in UMTS

For UMTS a fixed chip rate of 3.84 Mchip/s is used, from this it can be seen that
it is possible to alter the transmission rate by increasing or decreasing the number
of chips user per bit of user data. This is known as the spreading factor and is a key

factor in providing Bandwidth on Demand (BoD) i.e.

spreading factor = %Z;ﬁergzze = 3?;2’“ = 256
_ 3840k _
= sk = 98

From this it can be seen that it is possible to utilise data rates in the range
15-480Kb/s utilising between 8-256 chips per user symbol. As the inclusion of this
spreading factor increases the bandwidth of the data these systems are normally
referred to as wide-band systems.

The individual signals from each UE can then be separated by making use of

a correlation receiver which makes use of the same spreading code to determine

3

3 RADIO ACCESS NETWORK

the correct data sequence. In this type of operation it is vital to ensure that the
spreading code at the receiver is perfectly synchronised with that if the UE otherwise
reception errors will occur. In addition to spreading, scrambling is also utilized in
the transmitter and as such will be briefly described here, a more detailed discussion
can be found in [3, 6].

Although it is possible to separate signals that have been spread using different
spreading codes, scrambling is used on top of spreading to allow identical spreading
codes to be used by a number of transmitters. Scrambling does not alter the band-
width but simply allows signals from different sources to be separable through the

use of long Gold codes and shorter S2 codes.

3 Radio Access Network

In order to allow a more open standard, a number of elements have been described
which make up the UMTS network. These are divided into the Terrestrial Radio
Access Network (TRAN) which is responsible for the radio related functionality and
the core network (CN) which is concerned with the switching and routing within
the UMTS network as well as connections to external networks. The standard also
specifies the UE which connects the user to the radio resource. A block diagram

showing the interfaces between each of these groups is shown in Figure 3

In UMTS only the UTRAN and the UE are new protocols where as, the CN
has been adopted from GSM. This allows the system to make use of proven CN
technology and also allow backward compatibility with GSM systems.

The UMTS standard is designed to allow the implementation of each of these ele-
ments to be determined by the designer and hence limits itself to a detailed definition

of the interfaces between these elements.

4 UMTS PROTOCOL STACK

Uu
I
""""""""""""""""""""""""""""""""" Tu CS
USIM MSC/ VLR|
cu ><

ME SGSN
"""""""""""""""""""""""""""""" wpPs

UE

CN

UTRAN

Figure 3: UTRAN architecture

o Cu interface: This is the electrical interface between the USIM smartcard and
the mobile equipment (ME). This allows the ME to access the user data stored

on the USIM and follows the standard format for smartcards.

o Uu interface: This is the WCDMA air interface and allows the UE to access the

fixed part of the network. This is the main component of the 3GPP standard.
e Ju interface: This connects the TRAN to the CN.

e Iur interface: This is the interface between the Radio Network Controller (RNC)

and allows soft-handover between different cells within the UMTS network.

e Iub Interface: This is the interface between node B (base station) and the RNC.

The specification of these interfaces allows any manufacturer to develop components

for the UMTS network and hence increase competition in this area.

4 UMTS protocol stack

The overall radio interface protocol architecture [1] is shown in 4. It can be seen

that the radio link layer (layer 2 of OSI model) has been split into two sub-layers:

4 UMTS PROTOCOL STACK

the Media Access Control (MAC) and the Radio Link Controller (RLC). In the user
plane two other service-dependent protocols are also included: Packet Data Coverage
Protocol (PDCP) and the Broadcast/Multicast Control Protocol (BMC). The layer

3 functionality is implemented in the control plane using the Radio Resource Control

(RRQ).
Control Plane User Plane
O ‘
o)
=2
=X U-Plane radio Bearers

Signalling Radio Bearers

[|

T T acioms I

Transport channels

| PHY

Figure 4: UTRAN FDD Radio Interface Architecture

4.1 Physical layer

As the Physical layer directly affects the achievable performance of communications
between the base station and the terminal much of the 3GPP specification is devoted
to this layer. The Physical layer is responsible for the mapping of user data contained

in the transport channels to the physical channels contained in the physical layer.

4.1.1 Transport channels

In order to support variable bit rate and QoS, two types of transport channel exist:

the dedicated channel and the common channel. The dedicated channel, identified

4 UMTS PROTOCOL STACK

by a code, is reserved for a single user, where as the common channels are used by
all users in a given cell. The following section gives general information on these

channels and the mapping between the transport and the physical channels.

4.1.1.1 Dedicated Transport Channel 3GPP has defined a single dedicated
transport channel (DCH) for the transportation of all information intended for the
user, coming from the higher layers, including data and control information. The
dedicated transport channel, DCH, is mapped to two physical channels: the Dedi-
cated Physical Data Channel (DPDCH) and the Dedicated Physical Control Channel
(DPCCH). The DPCCH is used to transport control information generated at the
physical layer and the DPDCH transports user data from the upper layers.

The DCH is characterized by its use of fast power control, variable data rate
on a frame by frame basis, and the ability to make use of adaptive antennas for

transmission to particular areas within a cell.

4.1.1.2 Common Transport Channels 3GPP have specified a number of Com-
mon transport channels. The characteristics of each of these channels are discussed

below

Broadcast Channel (BCH) The broadcast channel (BCH) is used to transmit
information specific to a given Cell or UTRAN, this could include the available access
codes and slots. As this channel must be received by all UE attempting to register
with the network this channel must be available throughout the cell and have a low

enough data rate to allow all terminals in the cell to decode this information.

Forward Access Channel (FACH) The FACH is used to transmit control
information to a UE located within a given cell. Although it is possible for a cell
to contain multiple FACH, one of these must be high enough power and have a low

enough data rate to be received by all UE in a cell. The FACH does not use fast

7

4 UMTS PROTOCOL STACK

power control and any messages transmitted must contain identification information

to ensure reception by the correct UE.

Paging Channel (PCH) The PCH is a downlink transport channel used to
transmit required data to the UE when the network wishes to initiate communication.
As any UE in standby mode must wake-up and check this channel for paging messages
at regular intervals this channel has a significant effect on UE battery life. This signal

must also be available for reception in the entire cell.

Random Access Channel (RACH) The RACH is an uplink channel used to
transmit control information from the UE, such as requests to set-up a connection,
and can also be used to send small amounts of user data. The random-access trans-
mission is based on a slotted ALOHA approach with fast acquisition indication [2].
This channel must be available to all UEs in a cell and hence must have fairly high

transmission power and a low data rate.

Uplink Common Packet Channel (CPCH) The CPCH is an extension to
the RACH and is intended to transmit packet-based user data in the uplink direction.
The CPCH transmission is based on DSMA-CD with fast acquisition indication. The

CPCH employs fast power control and transmissions may last for several frames.

Downlink Shared Channel (DSCH) The DSCH is intended to carry dedi-
cated user data and/or control information and can be shared by multiple UEs. The
DSCH employs fast power control and supports variable bit rates on a frame by frame
basis. The downlink shared channel is always associated with a DCH.

The RACH, FACH and PCH are required for the basic network operation while
the use of the DCSH and CPCH are optional and can be decided by the network. The
diagram in Figure 5 shows the mapping of the transport channels to their associated

physical channels. From this it can be seen that several channels are introduced

8

4 UMTS PROTOCOL STACK

by the physical layer itself, the synchronization channel (SCH), the Common Pilot
Channel (CPICH) and the Acquisition Indication channel (AICH), as such these
channels are not directly visible to the upper layers. In order to operate the CPCH
it is also necessary to introduce the CPCH status Indication Channel (CSICH) and

the Collision Detection/Channel Assignment Indication channel (CD/CA-ICH).

Transport Channels Physical Channels

BCH «—— Primary Common Control Physical Channel (PCCPCH)

FACH :7# Secondary Common Control Physical Channel

PCH (SCCPCH)

RACH 4—————>> Physical Random Access Channel (PRACH)

DCH +— Dedicated Physical Data Channel (DPDCH)
‘\5 Dedicated Physical Control Channel (DPCCH)

DSCH 4——————> Physical Downlink Shared Channel (PDSCH)

CPCH 4— Physical Common Packet Channel (PCPCH)

Synchronisation Channel (SCH)

Common Pilot Channel (CPICH)

Acquisition Indication Channel (AICH)

Paging Indication Channel (PICH)

CPCH Status Indication Channel (CSICH)
Collision Detection/ Channel Assignment Indication
Channel (CD/CA-ICH)

Figure 5: Mapping of Transport Channels to Physical Channels

4.1.2 User Data Transmission

The following section aims to give an overview of user data transmission on the

physical channels in both the uplink and downlink directions.

2560 chips

DPDCH ’ Data ‘

DPCCH’ Pilot I TFCI I FBI ITPC‘

Uplink DCH 0‘ ! |2|%| |14
-

Ll
10 ms

Figure 6: Uplink Dedicated Channel structure

4 UMTS PROTOCOL STACK

4.1.2.1 TUplink Dedicated channel The Uplink Dedicated Channel is made
up of a single DPCCH and up to 6 DPDCH channels, these channels are I-Q/code
multiplexed and then transmitted in a single slot using the format shown in Figure
6 The pilot bits are used for channel estimation and the Transmit Power Control
(TPC) bits carry downlink power control information. The Transport Format Control
Indicator (TFCI) is used to inform the receiver which channels are in use and provide
information such as the coding rate and the spreading factor used. The overall process
performed during the transmission of user data on the uplink-dedicated channel is

shown in Figure 7

Rate matching
|
|
- aw

DCHs (QoS5)

CRi

|
MUX
Chanml| coding
| Intﬂ*lcaw1|1g([rncr) |
Seament ‘(Rahmen)

Transport channels
(MAC PDUs)
Interleaving (Intra)

3
=
g
ol
Z
=l
o
£
@
A

C | mee
Rate matching
T
L
DPDCH1 DPDCH2
Physical channels

DCHs (Q0S 1)
|
CRC

|
| MUX
Charmel| coding
| [mEr]esng (Inter) |
‘veamem‘ (frame)

Figure 7: Uplink Mulitplexing and channel coding chain

After receiving a transport block from higher layers a CRC is attached to allow
error detection at the physical layer. The CRC is variable length (0, 8, 12, 16 or
24 bits) and can be altered depending on the error detection required by the block.
After CRC attachment the blocks are either concatenated together or segmented
into different blocks. This allows a standard block size to be used as defined by

the channel coding method. Radio Frame equilisation is then performed to ensure

10

4 UMTS PROTOCOL STACK

that data can be divided evenly when transmitted over multiple 10ms slots. This
is achieved through the use of padding bits. After interleaving and segmentation is
performed rate matching is used to ensure that the number of bits to be transmitted
matches the number available in a single frame. This is achieved either by the use
of puncturing or repetition. The different transport channels are then multiplexed
together by the transport channel multiplexer. The transport channels provide 10ms
blocks of data with are serially multiplexed on a frame-by-frame basis. After a second
interleaving operation is performed the data is mapped onto the relevant physical

transport channel.

4.1.2.2 Data transmission on the RACH It is also possible to transmit user
data on the RACH, which is mapped to the Physical RACH (PRACH). This is
intended for low data rate packet data where it is not necessary to ensure continuous
connection. The PRACH first transmits a preamble and signature sequence and waits
for acknowledgment on the AICH; once this is received it is possible to transmit a
10ms message. It should be noted that a fixed spreading factor of 256 is used for the
preamble but the message can use a spreading factor of anywhere between 256 and

4.

2560 chips
< >

DPDCH | Data |

DPCCH| Pilot | TFCI | FBI |TPC|

Uplink DCH 0|1|2|3|... |14
<

10 ms

Figure 8: Downlink Dedicated Physical Channel

11

4 UMTS PROTOCOL STACK

4.1.2.3 Downlink Dedicated Channel The downlink Dedicated Channel is
transmitted on the Downlink Dedicated Physical Channel (DDPCH). The DDPCH
applies time multiplexing of the DPDCH channels and the DPCCH channel as shown
in Figure 8 The overall channel coding chain is shown in Figure 9, from this it
can be seen that extra stages are required in the DDPCH, these are necessary as
the spreading factor for the highest data rate determines which channelisation code
will be reserved. This means that for lower data rates it is necessary to employ
Discontinues Transmission (DTX) by gateing the transmission on/off. It should be
noted that this technique is not used in the uplink due to audible interference cause

by DTX techniques.

7 e s
.

a : 2 |2 (5| |8 |2

% ol 1| 1B |5 |3 & |& 3

g {1 .
. < 2 z E B z £ .
2, £ AN
£ 7 |
£5 B & - g 3]
£n El g g g
o L e B OO O s e = =] g
To E 5 = =
2= s 3 A =
23 = - 3
E< | 18l e 2 5] E
= = E 2 | |2 |B 2 2 =

< £l 2] 18| (B

- 811« 18 |5 |2 5 [E a8 a

s B2 e 218 a

= & @ % 3

o 2 |3 |Z| |8

5 g 5| (< |8 [8 5,"

o o 2.

Figure 9: Downlink multiplexing and channel coding chain

4.2 Media Access Control (MAC) layer

The MAC layer is responsible for the mapping of logical channels from the upper
layers to the transport channels. It is also responsible for selecting the appropriate
Transport Format (TF) for each transport channel, depending on the required data

rate, with respect to the Transport Format Combination Set (TFCS).

The MAC layer consists of the logic entities shown in Figure 10 [4] with the

addition of the MAC-b entity. In the downlink if dedicated channels are mapped

12

4 UMTS PROTOCOL STACK

PCCH BCCHCCCH cTCcHSHCCH MAC Control pccHDTCH DTCH
I N . -
HHREE I MAC ‘

MAC-c/sh

1
I'HS-DSCH | PCH FACH RACH CPCH USCH DSCH DCH

Associated Downlink Associated Uplink
Signalling Signalling

Figure 10: UE side MAC Architecture

to the common channels the MAC-d entity receives data from the MAC-hs or the
MAC-c/sh channels via the connections shown in Figure 10. In uplink, if it is required
that the dedicated channels be mapped to the common channels as determined by
the RRC this is again achieved using the connections show. The MAC entities are

assigned the following functionality.

e MAC-b is the MAC entity that handles the BCH channel.

e MAC- c/sh is the MAC entity that handles the following transport channels:
e Paging channel (PCH).

e Forward access channel (FACH).

e Random access channel (RACH).

e Common packet channel (UL CPCH) (exists only on FDD mode).

e Downlink shared channel (DSCH).

e Uplink shared channel (USH) (exists only in TDD mode).

13

4 UMTS PROTOCOL STACK

e MAC-d is the MAC entity responsible for the Dedicated Transport Channel
(DCH)

e MAC-hs is the MAC entity responsible for High Speed Downlink Shared Chan-
nel (HS-DSCH)

The following sections give a detailed description of each of these entities from the

UE side only, a detailed description of the MAC entities in the Node-B can be found

in [4, 6].
PCCH SHCCH (TDD only) CCCH CTCH BCCH
MAC -Control
-
MAC -c/sh
add/read to MAC -d
UE Id
‘ TCTF MUX]
Scheduling/Priority
TFC J
selectio
[ASG][ASG]
selection)| selection
| | ¥
1 |
_<|¥ T T T T 1 T T T
pcH DSCH USCH FACH RACH GPCH (FDD only)

Figure 11: UE side MAC Architecture- MAC-c/sh details

4.2.1 MAC-c/sh entity

The structure of this entity is shown in Figure 11. The RLC provides RLC-PDUs to
the MAC that fit into the available transport blocks on the transport channels.

The MAC-c¢/sh entity performs the following functions:

14

4 UMTS PROTOCOL STACK

e Target Channel Type Field (TCTF) MUX

— This function handles the insertion for uplink and detection and deletion
for downlink of the TCTF field in the MAC header. This entity also
handles the mapping between logical and transport channels as the TCTF

field indicates if the common logical or a dedicated channel is to be used.

e Add/read UE id

— The UE is added for transmissions on the CPCH and the RACH.

— The UE id, when present, indicates data to this UE.

e Uplink (UL) transport format (TF) selection

— In the case of CPCH transmission the TF is based on TF availability de-
termined from status information on the CPCH Status Indication Channel

(CSICH).

e Access Service Class (ASC) selection

— For RACH and CPCH the MAC indicates the ASC associated with the
PDU to the physical layer. This is to ensure that RACH and CPCH
messages associated with a given ASC are sent on the appropriate signa-
ture and time slot. The MAC also applies the appropriate back-off

parameter associated with the ASC.

e Scheduling/priority handling

— This functionality is used to transmit information on the RACH and
CPCH based on the logical channels priorities and is related to the TF

selection.

15

4 UMTS PROTOCOL STACK

e TFC selection

— Transport format and transport format combination selection according

to the Transport format combination set.

4.2.2 MAC-d entity

The MAC-d entity is shown Figure 12. The MAC-d entity is responsible for mapping
dedicated logical channels for the uplink to the dedicated transport channels or the
transfer of data to the MAC-c/sh to be transmitted via the common channels. The
MAC-d has connections to the MAC-c/sh and MAC-hs entities to allow data to be

transmitted or received on the common or high speed channels.

MAC Conrdd DCCH DTCH DTCH

oL e

MAC-d

[Trarsport Channel Type Switching

[Leciphering
CiT Muj
from hlAC-hs e— CST
halld
Towfrom had&C-
w'sh

[UL TFC selection |

[Ciphering |

DZH OCH

Figure 12: UE side MAC Architecture- MAC-d details

The MAC-d performs the following functions

16

4 UMTS PROTOCOL STACK

Transport channel type switching

— Transport channel switching is performed by this entity based on decisions
taken by RRC. If requested the MAC will switch the mapping of the logical

channels between common, high speed and dedicated channels.

C/T MUX

— The C/T MUX is used when multiplexing several dedicated logical chan-

nels onto a single transport channel.

Ciphering

— The MAC-d performs any ciphering of transparent mode data as required.

Deciphering

— The MAC-d performs any deciphering of ciphered transparent mode data

as required.

UL TFC selection

— TF and TFC selection according to the TFCS configured by RRC is per-

formed.

4.2.3 MAC-hs

The MAC-hs handles the High-Speed Downlink Packet Access (HSDPA) specific

functions. As shown in figure 13 the MAC-hs comprises of the following elements:

e HARQ: The HARQ entity is responsible for handling the MAC functions relat-
ing to the Hybrid Automatic Repeat Request (HARQ) protocol. The detailed

17

4 UMTS PROTOCOL STACK

1 |
ToMAC-d <— =
MAC — Control
MAC-hs .
Disassembly Disassembly
[ReorderingJ ‘ Reordering ’
|
Re-ordering queue distribution
|
[HARQ J
I I
i i
e —————
HS-DSCH
Associated Downlink Signalling Associated Uplink Signalling

Figure 13: UE side MAC Architecture- MAC-hs details

configuration of the HARQ protocol is provided by the RRC over the MAC-
Control SAP.

e Reordering Queue distribution: This function routes the MAC-hs PDUs to the

correct reordering buffer based on the Queue ID.

e Reordering: The reordering entity reorders received MAC-hs PDUs according
to the Transmission Sequence Number (TSN). PDUs with consecutive TSNs
are delivered to the disassembly function upon reception. PDUs with non-

consecutive TSNs are not delivered until any missing PDUs are received.

e Disassembly: This entity is responsible for the removal of MAC-hs headers and

any padding bits. The PDUs are then delivered to the upper layers.

18

4 UMTS PROTOCOL STACK

4.2.4 Mapping of Logical channels to Transport Channels

The data transfer services of the MAC layer are provided on logical channels. The
logical channels are divided into two broad categories: Control channels and traffic
channels. Control channels are used to transfer control plane information and traffic
channels for user plane information.

The control channels are:

Broadcast Control Channel (BCCH). A downlink channel for broadcast system

control information.

e Paging Control Channel (PCCH). A downlink channel used to transfer paging

information.

e Dedicated Control Channel (DCCH). A point-to-point bi-directional channel

used to transmit dedicated control information between the UE to the RNC.

e Common Control Channel (CCCH). A bi-directional channel for transmission
of control information between the UE and the network. This channel is always

mapped to the RACH or the FACH transport channels.
The traffic channels are:

e Dedicated Traffic Channel (DTCH). A point-to-point channel dedicated to one

UE for the transfer of user information.

e Common Traffic Channel (CTCH). A point-to-multipoint downlink channel for

transfer of dedicated user information for all or a group of specified UEs.

The mapping of these logical channels to their respective transport channels is shown
in Figure 14 Where it is possible for a logical channel to be mapped to multiple

transport channels or vice versa, the mapping is determined by the RRC.

19

4 UMTS PROTOCOL STACK

Uplink Downlink
DCCH DCCH
CCCH DTCH Logic PCCH BCCH CCCH CTCH DTCH
Channels
Transport
Channels
RACH CPCH DCH PCH BCH FACH DSCH DCH

Figure 14: Mapping of Logic channels to Transport channels

4.3 Radio Link Control Protocol (RLC)

The RLC provides segmentation and retransmission of user and control data. The
RLC is controlled by the Radio Resource Controller (RRC) and can operate in one
of three modes: transparent mode (Tr), unacknowledged mode (UM) or acknowledge
mode (AM). In the control plane the services of the RLC are termed Signaling Radio
Bearers (SRB) where as in the user plane, along with the PDCP and BMC, the RLC
provides Radio Bearer (RB) services.

The RLC architecture is shown in Figure 15. The RLC entities connect the RLC-
Service Access Points (SAPs) to the logical channels which are in turn connected to
the MAC-SAPs as shown. For all RLC modes CRC checks are done at the physical

layer and the results as well as the data are passed to the RLC.

Tr-SAP AM-SAP UM-SAP
9 £ i S >
Transmitting Receiving Acknowledge Transmitting Un- Receiving Un-
Transparent Transparent mode Entity Acknowledge. acknowledged
Entity Entity Entity Entity
BCCH/PCCH/CCCH/ DTCH/DCCH CCCH/CTCH/
DCCH/DTCH DTCH/DCCH

Figure 15: RLC layer Architecture

20

4 UMTS PROTOCOL STACK

4.3.1 RLC transparent mode (Tr)

In Tr mode, no protocol overhead is added to higher layer data by the RLC. Erroneous
protocol data units (PDUs) can be either marked or discarded by this layer. The
RLC can provide data streaming where data is passed to the MAC layer with no

segmented.

4.3.2 RLC Unacknowledged mode (UM)

In UM mode no retransmission and no delivery guarantees are provided. Again,
erroneous PDUs can be either marked or discarded. On the transmit side a timer
based discard is used with no explicit signaling to upper layers, this means that
RLC-SDUs not transmitted within a given time limit are deleted from the buffer.
Segmentation and concatenation of upper layer data is possible through the addition
of a sequence number in the RLC header field. This allows large upper layer data
units to be broken down into smaller RLC-PDUs for transmission and the integrity of
upper layer PDUs to be observed. User services that utilize UM are the cell broadcast

service and voice over IP (VoIP).

4.3.3 RLC Acknowledge mode (AM)

In AM mode an automatic repeat request (ARQ) mechanism is used for error detec-
tion. The transmitting entity is signaled if a PDU was not received correctly and
will then attempt retransmission. The quality and delay performance of the RLC
can be controlled by the RRC through configuration of the number of retransmission
before PDU is discarded and the upper layers notified. When a PDU is discarded the
peer RLC entity is also notified to allow the associated PDUs stored in the buffer to

be discarded. This notification can be achieved by piggy-backing status information

21

4 UMTS PROTOCOL STACK

on the back of PDUs. This is possible when the payload of the PDU has not been
completely filled by the upper layer data, rather than inserting padding bits the RLC
inserts status information. In this mode the RLC can be configured to deliver up-
per layer PDUs in-sequence, order of PDUs is maintained, or out-of-sequence, where

PDUs are delivered to upper layers as soon as they are completely received.

4.3.4 Functions provided by RLC

The functions provided by the RLC are:

e Segmentation and reassembly. Higher layer PDUs converted to/from smaller
RLC payload units (PUs) for transmission and then reassembled at receiver
side. The size of this RLC-PDU can be adapted to the valid Transport Format
Set (TFS) of the MAC layer.

e Concatenation. If the RLC-SDU does not fit into an integral number of PUs,
the first segment of the next SDU may be concatenated with the last segment

of the previous SDU.

e Padding. When concatenation is not possible, any remaining space in the PU
is filled with padding bits. As mentioned previously, it is also possible to use

this space to transmit statues information in AM mode.

e Error detection. When SDUs are segmented, the PDUs are numbered consec-
utively. This allows the peer RLC to determine the integrity of the received

SDU and allows erroneous SDUs to be discarded.

e Error correction. In AM error correction is provided through retransmission of

erroneous PDUs.

e In sequence delivery of higher layer SDUs. RLC-SDUs are passed to upper

layers in the order they were received by the peer RLC. If this function is not

22

4 UMTS PROTOCOL STACK

used RLC-SDUs are passed as soon as they are received with no errors.

e Duplication detection. RLC detects duplicated RLC-SDUs and ensures they

are passed only once to upper layers.
e Flow control. The RLC can control the rate at which peer RLCs transmit data.

e Ciphering. This is performed in AM and UM modes and utilizes the same
algorithm used by the MAC layer.

e Suspend/resume data transfer. This function is necessary during the security
mode control procedure to ensure that the same ciphering keys are used by
peer entities. The suspension and resumption operation are controlled by the

RRC through the control interface.

4.4 The Radio Resource Control (RRC) Protocol

RRC control messages account for the majority of control signaling between the
UE and the TRAN. These control messages contain all the information required to
set-up, modify and release all layer 1 and 2 protocol entities. The payload of the
RRC control messages can also contain higher layer signaling (MM, CM, SM). The
RRC also controls the mobility of UEs when in connected mode i.e. measurements,

handover etc.

4.4.1 RRC layer architecture

The logical architecture of the RRC layer is shown in Figure 16. The RRC layer is

made up of the four following logical entities.

e Dedicated Control Function Entity (DCFE). This function handles all func-
tions and signaling specific to one UE. In this mode the RRC mostly utilises
acknowledge mode RLC (AM-SAP) but can also make use of the Unacknowl-
edged mode (UM) and Transparent modes (Tr).

23

4 UMTS PROTOCOL STACK

e Paging and Notification control Functional Entity (PNFE). The function han-
dles the paging of idle mode UEs and makes use of the PCCH via the Tr-SAP

of the RLC.

e Broadcast Control Function Entity (BCFE). This function handles the broad-
casting of system information and uses either the BCCH or FACH via the
Tr-Sap of the RLC.

e Routing Function Entity (RFE). This function handles the routing of higher
layer messages to the different MM /CM entities on the UE side and different
core network domains on the UTRAN side. All higher layer messages are pig-
gybacked into one of three RRC direct transfer messages; initial direct transfer

(uplink), uplink direct transfer or downlink direct transfer.

RFE
BMC-ctrl SAP
PDCP-ctrl SAP
RLC-ctrl SAP PNFE BCFE DCFE
MAC-ctrl SAP =
L1-ctrl SAP
RLCSAPs 1 S—
AM SAP UM SAP Tr SAP

Figure 16: RRC layer Architecture

24

4 UMTS PROTOCOL STACK

4.4.2 RRC service states

Each UE may operate in either of two basic modes, idle mode and connected mode.
In connected mode the UE may be in one of four sub-states depending on which
type of physical channels the UE is using. Figure 17 shows the main RRC states as
well as the transitions between these states. The diagram also shows the possible
transitions for a multimode terminal. In this case the terminal can perform inter-

system handovers between GSM/GPRS and UMTS.

e Idle mode. After UE switch on, it selects which Public Land Mobile Network
(PLMN) to contact and looks for suitable cell, the UE then tunes into the
control channel (this is known as camping on a cell). The UE can now receive
system information and cell broadcast messages. The UE remains in idle mode

until it transmits a request to establish an RRC connection.

e Cell DCH. In this state a dedicated channel is allocated to a UE and the
UE is known to the SRNC on a cell or active set location. The UE performs

measurements and gives results according to information from the RNC.

e Cell FACH. In this state no dedicated channel is allocated to the UE, as such
the UE utilises the FACH and RACH to transmit signaling data and small
amounts of user data. In this state the UE may also monitor the BCH for
system information and the CPCH can also be used when instructed by the
UTRAN. The UE performs cell reselection and notifies the RNC to allow for

changes in routing.

e Cell PCH. In this state the UE is still known on a cell level by the SRNC but
can only be reached by the PCH. The UE may also monitor the BCH to receive

system information and perform cell reselection.
e URA PCH. This mode is similar to Cell PCH mode but no cell reselection is

25

4 UMTS PROTOCOL STACK

performed.

UTRA RRC Connected Mode

UTRA: GSM:
URA_PCH CELL PCH Inter-RAT Handover

Handover
out of
service

CELL_DCH CELL_FACH \

out of
service Cell reselection Establish RR
Connection
L 1 ® Imtlatwn of
~ \ temporary
Release RRC Egtaplish RRC Release RRC Establish RRC block flow
Connection Connection Connection Connection i
‘ GPRS Packet Idle Mode'
Camping on a UTRAN cell Camping on a GSM/GPRS cell'
Idle Mode

Figure 17: RRC states and state transitions including GSM/GPRS

4.4.3 RRC functions and Signaling procedures

As the RRC performs the majority of signaling between the UE and the UTRAN it
is required to perform a large number of functions. The following section gives a list

of each of these functions with a short description, a more detail description can be

found in [5, 6].

e Broadcast system information. The broadcast system information comes
from the core network, the RNC and from node B’s. This system informa-
tion is contained in system information messages that are transmitted on the
BCCH logical channel mapped to the BCH or FACH. A system information
message carries system information blocks (SIBs) which group together system

information of the same nature i.e. static/dynamic information.

26

4 UMTS PROTOCOL STACK

e Paging. The RRC layer can broadcast paging information on the PCCH. This

paging procedure can be used for three purposes:

— Core network-originated call or session setup. A request is made by the

core network to begin the paging process.
— To change the UE state from Cell PCH or URA_PCH to Cell FACH.

— Indicate a change in system information. This message is sent to all UE

in cell.

e Initial cell selection and reselection in idle mode. The most suitable cell

is selected based on idle mode measurements and the cell selection criteria.

e Establishment, maintenance and release of RRC connections. The
establishment of RRC connections and signaling radio bearers (SRB) between
UE and UTRAN is initiated by requests from upper layers on the UE side.
In the case of the network side, establishment is preceded by an RRC paging
message. The RRC establishment procedure is only utilised when the UE is in

idle mode i.e. no RRC connection present.

e Control of Radio Bearers, transport channels and physical channels.
At establishment and reconfiguration of Radio Bearers, the UTRAN (RNC)
performs admission control and selects parameters describing the radio bearer
processing in layer 1 and 2. SRBs are normally setup during RRC registration

but can also be controlled with normal radio bearer procedures.

e Control of security functions. The RRC security mode control is used
to start Ciphering and integrity protection between UE and UTRAN and to
trigger the change of the ciphering keys during connection. Ciphering is used

on RLC-UM and RLC-AM, for RLC-Tr ciphering is performed by the MAC

layer.

27

4 UMTS PROTOCOL STACK

e Integrity protection of signaling. The RRC inserts a 32-bit integrity check-
sum, called Message Authentication Code (MAC-I), into most RRC PDUs. The
checksum is calculated using the UMTS Integrity Algorithm (UIA) which makes
use of a 128-bit integrity key (IK) that is generated along with the ciphering
key (CK). Any messages with missing or incorrect MAC-I are discarded by the
RRC.

e UE measurement and control. UE measurements are controlled the RNC
using RNC protocol messages, these messages contain information such as what

and when to measure, as well as how the results should be reported.

¢ RRC Connection Mobility Functions. These functions allow the UTRAN
to keep track of a UEs location, on a cell or active set level, while in connected
mode. When dedicated channels are allocated to the UE mobility control is
performed using Active Set update and hard handover procedures. In order to

support mobility the following functions are defined:

— Active Set Update. This function updates the set of connections be-
tween UE and UTRAN while UE is in Cell DCH state and can perform

Radio Link addition, subtraction or combined addition and subtraction.

— Hard Handover. This function can be used to change the radio fre-
quency band of the connection between the UE and UTRAN or between
FDD and TDD modes.

— Inter-system handover to/from UTRAN. This function allows
the handover to/from UTRAN from/to another radio access
system. The specifications support handover to GSM/GPRS,
CDMA2000 and PCS 1900. This function may be used in Cell DCH
or Cell FACH states. The UE receives non-UTRAN cell param-

eters either on system information or in a measurement control

28

4 UMTS PROTOCOL STACK

message, based on the measurement report from the UE the
RINC makes the handover decision. This process is shown in

Figure 18 for a handover from UTRAN to GSM.

— Inter-system cell reselection to/from UTRAN. These procedures
allow the UE to switch connections to/from UTRAN to another

radio access system

— Inter-system cell change order to/from UTRAN. These proce-
dures are used by the UTRAN or other radio access systems to
order the UE to switch to/from the UTRAN from/to another

radio access system.

— Cell Update. The cell update procedure can be triggered by a number of
factors including cell reselections, expiry of cell update timer or UTRAN
originated paging. The Cell update Confirm message sent by the UTRAN

can include mobility information and general control information.

— URA Update. The UTRAN registration area (URA) update procedure
is used in the Cell PCH state. As the UE may not send any information
in this state it is required to switch to the Cell-FACH state to execute the

signaling procedure.

e Open loop Power control. Prior to PRACH transmission the RRC calcu-
lates the power for the first preamble using information contained in system
information messages and measurements performed by the UE. The required
power is then recalculated if any of the parameters are altered. The RRC also
calculates the required power of transmissions on the DPCCH, again this is
calculated using system information as well as measurements performed by the

UE.

29

REFERENCES

UE UTRAN MSC GSM BSS

BCCH: system information

Or
DCCH: measurement control
< |
DCCH: measurement report .
Resource Reservation
P
P
Resource Reservation acknowledge
and handover command
| el

DCCH: Handover fromUTRAN

command (GSM handover command)

(GSM DCCH) handover access
ﬁ ﬁ .

Figure 18: Inter-system Handover procedure from UTRAN to GSM

References

[1] 3GPP. Ts25.301 Radio Interface Protocol Architecture, Dec. 2001.

[2] 3GPP. Ts25.211 Physical channels and mapping of transport channels onto phys-
ical channels (FDD), March 2002.

[3] 3GPP. Ts25.212 Multiplexing and channel coding (FDD), March 2002.
[4] 3GPP. Ts25.321 MAC protocol specification, March 2002.

[6] 3GPP. Ts25.331 Radio Resource Control (RRC) protocol specification, March
2002.

[6] H. Holma and A. Toskala. WCDMA for UMTS: Radio Access For Third Gener-
ation Mobile Communication, 3rd Edition. Wiley, 2004.

30

PORTFOLIO DOCUMENT A3

IEEE 802.11: Protocol Review

Author: Supervisor:

Graeme Milligan Wim Vanderbauwhede

Contents

1

2

3

Introduction
IEEE 802.11 Network Architecture

IEEE 802.11 protocol stack

3.1 The 802.11 MAC sublayer management entity (MLME)

3.2 The 802.11 MAC sublayer functional description
3.2.1 Distributed Coordinate function (DCF)
3.2.2 Interframe space (IFS),
3.2.3 DCF basic access procedure
3.2.4 Point Coordination Function (PCF)
3.2.5 Services provided by the MAC layer

IEEE 802.11 Physical Layer Specification

4.1 Direct Sequence Spread Spectrum (DSSS)
4.1.1 DSSS PLCP sublayer
4.1.2 DSSS PMD sublayer

List of Figures

1 ISO 802 Family of Local and Metropolitan network standards 1
2 Components of 802.11 network 3
3 IEEE 802.11 reference model 4
4 IEEE 802.11 MAC architecture 6
) IFS relationships 8
6 Basic transmission using DCF 00000 10
7 Example of PCF frame transfer 11
8 Relationship between MAC states and services 13
9 DSSS PLCP frame format 16
10 DSSS tranceiver e e e 17

1 INTRODUCTION

1 Introduction

This report is intended to give a short review of the IEEE 802.11 wireless LAN
standard [3]. This is intended to allow the comparison of this standard to the UMTS
3G mobile communication standard [1].

The TEEE 802.11 standard is a member of the 802 family of local and metropolitan
network standards. This family includes the 802.3 standard, or Ethernet, widely used
in modern computer networks. This allows 802.11 to supply wireless networking
services that can be easily integrated into most modern networks. The relationship
between the 802 family of protocols is shown in Figure 1. As this figure shows the 802
family of standards limits itself to specifying only the two lowest layers of the OSI
architecture. The DLL has also been split into two sub-layers, namely the Medium
access control (MAC) and the Logical Link Control (LLC) layers.

In order to allow for portability the 802.11 standard is limited specifying to the
required functionality to establish, maintain and finally terminate a wireless link.
This allows the upper layers to operate with no knowledge of the medium being used
for communication i.e. upper layers will not know if a fixed wired system (e.g. 802.3)

or a wireless system (e.g. 802.11) is being utilized.

4
[
[
3 & 8022 LOGICAL LINK CONTROL
e v
A
o o E DATA
= '% % 8021 ERIDGING LIME
% w LAYER
| [|=] |8
o =
= =
o E B302.3 202 4 B802.5 202 6 802.9 80211 a02.12
= i MEDIUM MEDIUK MEDIUM MEDIUK WEDIUM MEDIUK MEDILIM
E 2 ACCESS ACCESS ACCESS ACCESS ACCESS ACCESS ACCESS
)
B
o BOZ2.2 B2 .4 BOZ.5 Bl26 BO02.9 80211 80212 PHYSICAL
o PHYSICAL] |PHYSICAL] [PHYSICAL| |PHYSICAL] [PHYSICAL| |PHYSICAL] [PHYSICAL

* Formerly |EEE Sid 802.1A,

Figure 1: ISO 802 Family of Local and Metropolitan network standards

3 IEEE 802.11 PROTOCOL STACK

2 ITEEE 802.11 Network Architecture

The basic element of the 802.11 network is the Basic Service Set (BSS). A BSS
consists of more than one station (STA) controlled by a single Coordination function
(CF). In 802.11 there are two possible CFas; the mandatory Distributed Coordination
Function (DCF) and the optional Point Coordination Function (PCF).

The most basic network available to 802.11 enabled devices is the Independent
BSS (IBSS). This is an ad-hoc network containing a minimum of two STAs. By
connecting multiple BSS it is possible to create an Extended Service Set (ESS),
this is a group of BSS interconnected by a Distribution service (DS). STAs that are
directly connected to the DS are called Access Points (AP). These APas provide
Distribution System Services (DSS) which enable the MAC to communicate with
STAs not in the same BSS. Within the DS an entity know as a portal provides access
to non-802.11 networks allowing communication with different LAN&s e.g. Ethernet.

These elements are shown in Figure 2

3 IEEE 802.11 protocol stack

The reference model of the IEEE 802.11 protocol stack is shown in Figure 3. In order
to allow the integration of 802.11 networks into existing wired LANs the protocol
stack is designed to be completely transparent to the upper layers. This implies
that all wireless mobility issues must be addressed by the MAC layer. In order
to allow a single MAC layer to support multiple physical layers, the physical layer
is split into two sublayers. The physical layer convergence procedure (PLCP) is

specific to the physical transmission method and is used to convert MSDU frames

2

3 IEEE 802.11 PROTOCOL STACK

BSS BSS

STA 4»STA

Non-802.11
network

STA 4»STA

Figure 2: Components of 802.11 network

to the correct format for the selected transmission method. The physical medium
dependent layer (PMD) is responsible for implementation of the required physical
transmission method. This PHY layer, along with the MAC layer, will be the focus
of this review and will be covered in more detail in the following sections.

The station management entity (SME) is a layer independent entity responsible
for such functions as gathering layer-specific management information from the other
layer management entities. The exact functions of the SME layer are not defined
in the standard but the SME would typically perform management functions on
behalf of the general system management entities and would implement standard

management protocols.

3.1 The 802.11 MAC sublayer management entity (MLME)

The MLME provides the management service interfaces through which the required

layer management functions may be invoked. The MLME provides all the required

3

3 IEEE 802.11 PROTOCOL STACK

B
Data Link MAC SAP
L - MAC Sublayer
A MAC Sublayer <——)> Management MLME_SAP
v Entity
E PHY_SAP MLME_PLME _SAP 5
tation
I Management
Physical Entity
L PLCP Sublayer <=
e PMD_SAP PHY Sublayer
- e 00 Management
R
PMD Sublayer il

Figure 3: IEEE 802.11 reference model

management and mobility functions required for control of an 802.11 station or AP.

The MLME provides the required functions to allow all station within a BSS to
synchronize to a single common clock. This is achieved through the use of a timing
synchronization function (TSF) that must be contained locally in all stations. In
infrastructure based networks the AP is responsible for synchronization of stations.
This is achieved through the transmission of beacon frames that contain a copy of
the APs TSF. On reception of the beacon, stations will update there local TSF to
match that of the AP. In ad-hoc networks the generation of beacons is distributed
amongst the stations in the network. In this case at the beginning of each beacon
period all stations contained in an IBSS shall generate a beacon and a random time
delay, the station will then wait for this random period of time before transmission
of the beacon. Upon reception of a beacon from another station, any station with
a beacon waiting for transmission will remove it from its buffer and update its TSF
according to the information contained in the beacon.

The MLME is also responsible for the detection of 802.11 networks. This proce-

3 IEEE 802.11 PROTOCOL STACK

dure involves either passive or active scanning to detect beacon frames. The infor-
mation contained in these beacon frames gives all the required information, such as
beacon period and BSS ID, to allow a station to synchronize and register with the
network. In passive scan mode the station will monitor each channel for a period
of time long enough to ensure that any beacons will be detected. In active scan
mode the station is required to have knowledge, such as the BSS ID, of the BSS it
wishes to scan for. After performing the DCF access procedure the station is required
to transmit a probe frame. The network (station/AP) should then respond with a
probe response frame that includes information required for correct operation of the
physical layer as well as required MAC layer parameters.

In order to allow the station to perform power management in infrastructure
networks the MLME is required to notify the AP of any changes in state using the
frame control field of transmitted frames. This allows the station to enter a power-
save (PS) mode when necessary. In this state the AP is required to buffer any MSDUs
for the station and only transmit them at designated times. Stations are notified
of pending MSDUs through the use of the Traffic Indication Map (TIM) which is
contained in beacon frames. This means that stations in PS mode are required to
wake up periodically to monitor beacon frames. Upon reception of a beacon frame
that indicates an MSDU is buffered in the AP, the station shall respond with a
short PS-poll frame. The MSDU is then either sent immediately or the PS-poll is
acknowledged and the MSDU is sent later. In ad-hoc networks, stations make use
of a special ad-hoc traffic indication message (ATIM) to notify stations in PS-mode
that MSDUs are waiting to be transmitted. The ATIM is sent immediately after
beacons to allow PS-mode stations to monitor the channel once every beacon period.

This section is intended to give an overview of the services provided by the MLME,

more detailed information can be found in [3].

3 IEEE 802.11 PROTOCOL STACK

3.2 The 802.11 MAC sublayer functional description

The 802.11 MAC layer is required to support one mandatory and one optional coordi-
nate function schemes. These functions are the DCF and the PCF. The architecture
of the 802.11 MAC layer is shown in Figure 4 showing both the DCF and the PDF

functions. The following sections give more detail on these coordinate functions.

Required for contention free

/ services

1 Point Coordination] Used for contention services

Function (PCF) /
MAC

Extent

Distributed Coordination
Function (DCF)

Figure 4: IEEE 802.11 MAC architecture

3.2.1 Distributed Coordinate function (DCF)

The DCF is the fundamental access method for the 802.11 MAC and provides asyn-
chronous data transfer on a best effort basis. The DCF sits directly on top of the
PHY layer and provides contention services, these services allow stations with packets
to transmit to contend for access to the communications medium.

The DCF is based on the Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) [3, 5]. This scheme is a member of the popular ALOHA family
of protocols and is very similar to the CSMA /CD scheme used in IEEE wired LANS
e.g. Ethernet. CSMA/CA aims to avoid multiple stations attempting to access
the medium simultaneously through its use of wirtual and physical carrier sensing.
This means that any station with packets queued for transmission must first physi-
cally sense, or monitor, the medium to ensure that no other station is transmitting.

Although this scheme has been very successful in wired LANS, it presents several

6

3 IEEE 802.11 PROTOCOL STACK

problems for wireless systems. The first of these is the “hidden node problem” [4],
this is the situation where a receiver, such as an AP, can hear two separate transmit-
ters, e.g. stations, but the transmitters cannot hear each other. In this case neither
transmitter would know if the other is accessing the medium and hence collisions
would occur. Another problem introduced by wireless LAN’s is that it is not possible
for a station to both transmit and monitor the channel simultaneously as is done in
CSMA/CD systems. This means that in wireless systems the station is unable to
detect collisions on the medium and hence will continue to transmit an entire packet
even when a collision takes place. In order to solve these problems a virtual carrier
sensing mechanism is included in this scheme. Virtual sensing makes use of a Request
To Send (RTS) and Clear To Send (CTS) message to grant stations access to the
medium. A Net Allocation Vector (NAV) is included in the CTS message, which can
be heard by all stations in the BSS. The NAV indicates the amount of time required
by the current transmission and hence the delay time before stations should begin
to monitor the channel for idle status. In order to reduce the signaling overhead
introduced by RTS/CTS this feature is not used for short packets, in this case the

duration field is used to update the NAV.

3.2.2 Interframe space (IFS)

In order to introduce the concept of priority traffic, the 802.11 MAC makes use of
the interframe space (IFS). This is the time interval between the transmission of
frames and can be varied depending on the type of traffic being transmitted. The
standard defines four IFS intervals: short IFS (SIFS), PCF IFS (PIFS), DCF IFS
(DIFS) and the Extended IFS (EIFS), Figure 5 shows the relation ship between these
values. The SIFS interval is used for the transmission of high priority traffic such as
ACK frames, CTS frames or subsequent MPDUs of a fragmented burst. By making

use of the shortest IFS the MAC ensures that other stations using longer IFSs do

3 IEEE 802.11 PROTOCOL STACK

not sense the medium as being idle i.e. if a station is using the DIFS it must wait
for the medium to initially become idle and then wait for DIFS to elapse before it
may begin transmission. In this case a station sending a high priority message will
begin transmission before the end of the DIFS period and hence the medium will
not be detected as idle. A more detailed description of this process can be found
in the standard [3]. The PIFS will only be used by stations operating under the
PCF. As the PIFS is shorter than the DIFS, stations operating under PCF are of
higher priority than those using DCF. The DIFS interval will be used by all stations
operating under DCF. Stations operating in this mode will only be able to transmit
if, after a successfully received frame the medium remains idle for a period equal to
the DIF'S interval plus a random &backoff-timea calculated by the station. The EIFS
is used by the DCF following the incorrect reception of a frame as indicated by the
PHY layer. The random backoff procedure is used by the DCF to ensure that after
the medium is determined to be idle, i.e. DIFS interval expires, that all stations

waiting to transmit do not begin transmission simultaneously.

Immadizis somes when medium | frea == OIFE

DIFS FnFa il .|
¥ Buy Medkm |§'ﬂ| { Bockoftwindow /1 Mot Frame
Disfor Acoows Salmct Siot and Daoramant Banieall as long

aa medium s

Figure 5: IFS relationships

3 IEEE 802.11 PROTOCOL STACK

3.2.3 DCF basic access procedure

The basic transmission procedure for stations using the DCF function is shown in
Figure 6. In this example after Station A successfully completes transmission of a
frame and an acknowledgement is received the medium is idle. The remaining sta-
tions detect this and monitor the medium for a further DIFS period to ensure the
medium is idle. This is then followed by the backoff procedure, in this case the back-
off time calculated by station C is shorter than that belonging to station B and as
such station C is able to take control of the medium. The first stage in transmission
of data is the transmission of a RTS message. After a SIF'S period the receiver broad-
casts a CTS message containing the necessary NAV parameters. The SIFS period is
now used by the transmitter and receiver as this prevents other station from sens-
ing that the medium is idle. Again, when station C has successfully transmitted its
data and a DIFS period has passed station B will continue to decrement its backoff
timer until time-out when it will send a RTS message. In this way, by using the
IFS, the MAC layer is able to control access to the medium and avoid unnecessary
collisions. It should be noted that it is possible for the MAC layer to perform frag-
mentation of upper layer data packets; in this case each fragment will be transmitted
and acknowledged as before with the following segment being transmitted after a
SIFS period (rather than the usual DIFS period). This ensures that a transmitter

maintains control of the medium until all data segments are successfully received.

3.2.4 Point Coordination Function (PCF)

The PCF provides contention-free frame transfer for packets and is only available in
infrastructure based networks i.e. those containing an AP. Although in the standard
PCF is optional, all stations, even those with PCF disabled, will be able to operate

under this scheme as it is based on DCF. The PCF relies on the point coordinator

9

3 IEEE 802.11 PROTOCOL STACK

SIFS DIFS SIFS SIFS SIFS DIFS SIFS SIFS
Station A Frame
Station B —. RTS Data
Station C RTS Data
Destination ACK CTS IACK CTS

backoff
Remaining Backoff
Figure 6: Basic transmission using DCF

(PC), usually the AP, to perform polling, enabling polled stations to obtain con-
tention free access to the medium. The contention-free period (CFP) alternates with
the contention period (CP) as shown in Figure 7. This also shows the beacon signal
sent at the start of every CFP repetition interval. This beacon contains the maximum
length of the CFP and is used to set the NAV of all stations in the BSS, this ensures
that the PCF has control of the medium for this length of time. Within the CFP a
polled station may only transmit a single MSDU. If the MSDU was not successfully
acknowledged the station must either attempt retransmission in the CP or wait until
re-polled by the PC. The PC takes control of the medium by only waiting for a PIFS
interval after sensing the medium to be idle. As the PIFS is shorter than the DIFS

the PCF will always take control of the medium before the DCF is able to.

3.2.5 Services provided by the MAC layer

In order to allow IEEE 802.11 to be used with a variety of DS implementations,
the standard avoids specifying detail implementation issues and instead specifies ser-

vices which the MAC must provide. Due to the requirement of 802.11 to support

10

3 IEEE 802.11 PROTOCOL STACK

e Contention-Frea Repetition interval
W Contontion-Froe Parod
-) 3 AR PFA arFa
- -
—"lm ST ConbmlonPorid |
LH-mck [R ——
—J--l— —— - ST nart by Prine
FIFA s BFE he ars l e
R orpdl o WAV Wt By o
NAY | [1
t'- &F_lax_Pursiion

Figure 7: Example of PCF frame transfer

both infrastructure and ad-hoc based networks these services are grouped into two

categories- the Station Services (SS) and the Distribution System Services (DSS).

3.2.5.1 Station Services In IBSS or ad-hoc network mode only SS are avail-
able, for this reason all stations must be able to perform these services. The following
services are available in ad-hoc and infrastructure networks to allow access and con-

fidentiality:

e Authentication: In order to improve the security of WLAN connections, au-
thentication is used to allow stations to exchange their identity with stations
they wish to communicate with. The standard supports the use of shared key

authentication using the wired equivalent privacy (WEP) option.
e Deauthentication: This service cancels an existing authentication.

e Privacy: The contents of link-level messages can be protected by making use

of the WEP option.

e MSDU delivery: Data is transmitted using the DCF or PCF depending on the

network configuration.

11

3 IEEE 802.11 PROTOCOL STACK

3.2.5.2 Distribution System Services The DSS are used to distribute mes-
sages in the DS and also support mobility. These services are only available in
infrastructure networks. It should be noted that in infrastructure networks both SS

and DSS are available. DSS provides the following services:

o Integration: If the intended recipient of a message on the DS is located on a
non-802.11 LAN the message will leave the DS through a portal rather than an
AP. In this situation the DS is required to invoke an integration service which is
responsible for performing any functions necessary to deliver the message form

the DS media to the LAN media (including media or address translation).

e Distribution: This service allows the distribution of messages across the DS.
As the DS is out with the scope of IEEE 802.11 the standard limits itself to
providing the DS with enough information to determine the target AP of any
messages. The necessary information is provided by the following association

services.

e Association: In order to deliver a message within the DS the distribution service
must know which AP to access for any station on the network. Before a station
may send data via an AP it must first become associated with that AP. This
process provides the DS with the required station-to-AP mapping. In order to
provide a unique station-to-AP mapping a station may only be associated with

one AP.

e Reassociation: This service allows stations to move between BSS in an ESS by
allowing stations move associations between APs. This keeps the DS informed

as to which AP is serving which stations.

e Disassociation: This service informs the DS to remove existing association in-
formation for a station. The DS will no longer forward packets from this station

and any messages on the DS addressed to this station will be removed.

12

3 IEEE 802.11 PROTOCOL STACK

State 1:
I?::f:el Unauthenticated,
Unassociated N
DeAuthentication
Notification
Successful DeAuthentication
Authentication Notification
Class 1&2 State 2:
Frames Authenticated,
Unassociated
Successful Disassoclation
Authentication or Notification
Reassociation
Class1,2&3
Frames

Figure 8: Relationship between MAC states and services

The Authentication and association functions are used to control both access and the
level of access available to terminals. This is controlled by the state machine shown
in Figure 8 [3]. The current state of the station determines the frame types that may

be used. The frame classes are defined as follows:
1. Class 1 frames (permitted from within states 1, 2 and 3)

(a) Control Frames

i. Request to send (RTS)
ii. Clear to send (CTS)
iii. Acknowledge (ACK)

13

3 IEEE 802.11 PROTOCOL STACK

iv. Contention-free (CF)- End+ack

v. CF-end
(b) Management frames

i. Probe request/response
ii. Beacon

iii. Authentication: If successfully Authenticated the station may make

use of class 2 frames, otherwise the station remains in state 1.
iv. Deauthentication

v. Announcement traffic indication message (ATIM)
(c) Data frames

i. Data: non-DS traffic

2. Class 2 frames (permitted from within states 2 and 3)

(a) Management frames

i. Association request/response
ii. Reassociation request/response
iii. Disassociation
3. Class 3 frames (permitted only in state 3)
(a) Data frames: allows traffic to be sent/received from DS.
(b) Management frames
i. Deauthentication

(c) Control frames

i. PS-Poll

14

4 1EEE 802.11 PHYSICAL LAYER SPECIFICATION

4 IEEE 802.11 Physical Layer Specification

The 802.11 standard defines two basic physical layer access methods, frequency hop-
ping spread spectrum (FHSS) and direct sequence spread spectrum (DSSS). FHSS
physical layers have been almost totally replaced by DSSS techniques due to the in-
crease through-put of these systems. For this reason FHSS will not be covered here
but a detailed discussion can be found in the standard [3] as well as a number of

texts [5, 2]. The following section gives details of the DSSS PHY.

4.1 Direct Sequence Spread Spectrum (DSSS)

As shown in Figure 3 the DSSS PHY layer contains three functional entities: the
PMD layer, the PLCP and the PLME. The DSSS PLME is responsible for collecting
physical layer management information. This information is stored in a manage-
ment information base (MIB) that includes such things as transmit power levels and
channel related information. The PMD and PLCP are covered in more detail in the

following sections.

4.1.1 DSSS PLCP sublayer

The PLCP sublayer is responsible for the conversion of MAC protocol data units
(MPDU) to PLCP protocol data units (PPDU). This process involves the addition
of a PLCP header shown in Figure 9. The PLCP sync field consists of 128 bits of
scrambled ones used to perform the necessary operations for synchronization. The
PLCP signal bits are used to indicate to the PHY the modulation that should be used
for transmission of the MSDU. The DSSS PHY supports both DBPSK and DQPSK
modulation techniques. The PLCP length field is used to indicate the length of time,
in microseconds, required to transmit the MSDU. The length field value is used to
update the NAV value of stations within the BSS.

The DSSS PLCP is also responsible for the scrambling of PPDUs. Scrambling is

15

4 1EEE 802.11 PHYSICAL LAYER SPECIFICATION

performed to remove long strings of consecutive 1s and 0s in order to make the data
appear more like background noise. This is achieved through the use of a polynomial

scrambling function.

SYNC SFD SIGNAL SERVICE | LENGTH| CRC
128 bits 16 bits 8 bits 8 bits 16 bits | 16 bits
PLCP Preamble PLCP Header
144 bits 48 bits MPEY
PPDU

Figure 9: DSSS PLCP frame format

4.1.2 DSSS PMD sublayer

The DSSS PMD layer is responsible for all medium dependent issues including trans-
mission of packets and sensing of the medium. The block diagram for the DSSS
PMD transmitter/receiver is shown in Figure 10. The first stage in the transmission
process is to spread the data. This process takes a narrow band signal and aspreadsa
it across a larger range of frequencies. This is achieved by application of a chip se-
quence to each bit of data. This means that the chip rate must be much higher than
that of the underlying data, in the case of 802.11 DSSS an 11-bit barker sequence
is used. This means that the chip rate must be 11 times faster than the data rate.
It can be seen that this process not only spreads the signal across a wide range of
frequencies but also introduces redundancy in the signal. The result of the spreading
process is a new data sequence at a far higher rate [2].

After the sequence is filtered to ensure compliance with government regulations,
i.e. operation within specific frequency bands, the sequence is modulated. 802.11

DSSS uses two forms of modulation- differential binary phase shift keying (DBPSK)

16

REFERENCES

and differential quadrature phase shift keying (DQPSK). DBPSK encodes data by
producing phase changes in the transmitted signal. DBPSK encodes a single bit of
data per phase shift and hence operates at the chip rate produced by the spreader.
In 802.11 DSSS the PLCP header is always modulated using this scheme. DQPSK
operates in a similar way to DBPSK in that it encodes data by making use of phase
shifts in the transmitted signal. The main difference in these methods is that DQPSK
encodes two bits of data per transmitted symbol and hence transmits data at twice
the chip rate. The form of modulation used is selected by the MAC layer and is
included in the PLCP header.

Transmitter Receiver _| Timing
recovery
. DBPSK/
Transmit
PLCP |— Spreader -\ Filter—1 DQPSK Correlator ||
modulator
DBPSK/
| DQPSK de- [|De-scrambler [|
PLCP
modulator
Chip Sequence

Figure 10: DSSS tranceiver

References

[1] 3GPP. www.3gpp.org.

[2] M. S. Gast. 802.11 Wireless Networks: The Definitive guide. O’Reilly and Assoc,
2002.

17

REFERENCES

[3] ISO/IEC. Information Technology- Telecommunications and information ex-
change between systems- Local and metropolitan area networks- Specific
requirements- Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) specifications. Technical report, IEEE Pres, 1999.

[4] L. Kleinrock and F. Tobagi. Packet Switching in Radio Channels: parts I & II.

Communications, IEEE Transactions on, Dec 1975.

[5] A. Santamaria and F. Lopez-Hernandez. Wireless LAN standards and applica-

tions. Artech house, 2001.

18

PORTFOLIO DOCUMENT CP1

Implementation of Finite State Machines on a
Reconfigurable Device

Author: Supervisor:
Graeme Milligan Wim Vanderbauwhede

Implementation of Finite State Machines on a Reconfigurable Device

Graeme Milligan, Wim Vanderbauwhede
Institute for System Level Integration, University of Glasgow
graeme.milligan@sli-institute.ac.uk, wim@dcs.gla.ac.uk

Abstract

We present a novel method for the implementation
of Finite State Machines (FSM) using a reconfigurable
architecture. The proposed method utilises run-time re-
configuration to reduce the hardware required to im-
plement FSMs. This is achieved through the use of
a unique representation of the FSM which allows the
next state of the state machine to be calculated solely
from the primary inputs rather than the primary inputs
and the current state as would be traditionally required.
This reduction in parameters significantly reduces the
size of the hardware block required to calculate the next
state.

The paper presents results obtained for the MCNC
benchmark suite that demonstrate hardware savings of
around 90% for the majority of the FSMs investigated.

1. Introduction

The use of Finite State machines (FSMs) to imple-
ment the control behaviour of systems is well estab-
lished and as such a large number of texts are devoted
to this subject including [3, 4, 5].

FSMs are commonly used to allow systems to react
to a sequence of events rather than simply reacting to
the current operating conditions of the system. This
allows systems to operate automatically and reduces
the need for human intervention.

The implementation of FSMs can be broadly sepa-
rated into two sections, the derivation of the FSM from
the high level specification of the system and the im-
plementation of the FSM. The derivation of FSMs is
independent of the method of implementation and is
concerned with developing a high-level description of
the control aspects of the specification.

The implementation of the FSM can be split into too
main groups the FSM can either be implemented in ei-
ther software or hardware. Software implementation of
FSMs allows rapid development and deployment due to
short software design cycles whereas, implementation

in dedicated hardware produces devices with low area
and power requirements but require lengthy and ex-
pensive hardware design and manufacturing processes.
This is often impractical for low volume applications or
for developers with limited resources. An alternative
to the use of full custom hardware is the use of recon-
figurable devices such as FPGAs. Reconfigurable hard-
ware aims to combine the advantages of both software
and hardware by providing the speed and efficiency
of hardware and the flexibility and programmability
of software. The introduction of this flexibility and
programmability requires the introduction of hardware
resulting in a lower efficiency than full-custom ASIC
design.

Recently there has been much interest in making
use of the ability of reconfigurable devices to be pro-
grammed while the device is in operation, this allows
devices to implement multiple functions simultaneously
by dynamically switching between functions or ’con-
texts’. This process is knows as run-time reconfigura-
tion and allows a small reconfigurable device to 'mas-
querade’ as a larger device by implementing applica-
tions that require larger hardware resources than avail-
able on a single reconfigurable device.

2. Formal Definition of Finite State Ma-
chines

Finite state machines (FSM) are abstract models
used to represent sequential behaviours of systems.
They are used in control applications to define the re-
sponse of a system to a sequence of input events, al-
lowing systems to act on sequences of input events.
This allows designers to implement complex behaviour
rather than simple systems that only react to the cur-
rent operating conditions of the system.

An FSM can be fully described using the 6-tuple

(S,1,0,A, A, R), where

e S is a finite set of states, and |S] is the total num-
ber of unique states,

e lis a finite input space, and |I| is the total number
of inputs,

e O is a finite output space, and |O| is the total
number of outputs,

e A is a set state transitions based on the current
state and the current inputs,

e A is the output relation defined in terms of the
current state and the current input vector,

e and R is a set of reset states.

State transitions are assigned to each state and based
on the current input and current state are used to de-
termine the next state of the FSM. The current state
of the FSM is determined by the initial state of the
FSM and the previous input sequence applied to the
machine.

The output of the state machine (Q) can be gener-
ated in two ways; either the output is depended only
on the state (Moore machine) or is dependent on the
current state and the current inputs (Mealy machine).
In the case of the Moore machine the output relation
(A) will contain only a single output for each state.

A more detailed discussion of FSMs can be found in
many texts including [3, 4, 5].

3. FSM implementation on a generic re-
configurable architecture

Reconfigurable devices such as FPGAs present a
cost-effective alternative to full-custom ASIC design for
low volumes and rapid prototyping. These devices are
designed to be as general as possible to allow their use
in a wide variety of applications, as such their per-
formance, area and power requirements will be sub-
optimal compared to full-custom ASICs.

The functionality of reconfigurable devices is deter-
mined by programming reconfigurable elements on the
device to implement the required functionality. This is
normally achieved by loading a bit-stream into config-
uration memory that is local to the device. The pro-
duction of bit-streams is performed by synthesis tools
provided by the manufacturer of the reconfigurable de-
vice and are targeted at a specific reconfigurable device
or family of devices.

The conventional method of implementing an FSM
on a reconfigurable device is shown in figure 1. As the
figure shows, first a high-level description of the control
requirements of the proposed device is extracted from
the initial specification. The control behaviour of the
specification can be expressed as a FSM using a high-
level model such as a State Transition Graph (STG)

or State Transition Table (STT). Based on such a de-
scription it is possible to then produce the necessary
hardware to implement the required behaviour.

It should be noted that due to the mature nature
of FSM implementation many of the steps described
here would be hidden from the device designer and
automatically carried out by design tools such as [1].
By making use of these tools the designers would usu-
ally create a high level description of the FSM in a
Hardware Description Language (HDL) such as verilog
or VHDL directly from the State Transition graph or
State Transition table.

The process outlined here is similar to the design-
flow used in full-custom ASIC design of FSMs but,
where as in full-custom design flows synthesis results in
a description that can be used to produce a silicon im-
plementation of the FSM, synthesis for reconfigurable
devices results in a bit-stream capable of configuring
the device to the FSM.

Higg;;:ﬁ‘ State Transition
Graph
Specification ™ o
Finite Sate State Transition
Wachine el
Extraction _/_\
Truth table
itat] it
State Labelling S
: ‘I Boolean
ranstion description of
Expression » transition
extraction and = EXpressions
Iogic optimisation
HDL description of
Hardware design > hardwzfre
process i
Device
Hardw are Specification
selection
S Configuration file

Figure 1. Simplified hardware design flow of a Fi-
nite state machine

The following sections give details of each of the
main stages in the design flow for comparison to the
novel implementation methodology presented in this
paper. For the purposes of clarity the Mead-Conway
traffic light controller [4] will be used to provide a de-
tailed working example. reconfigurable device when
implementing the FSM.

3.1. Finite State Machine extraction

In general, the control requirements of the system
are extracted based on a high level specification of a
system and expressed in a more concise high-level de-
scription. The following section briefly describes the
STG and STT representation of FSMs.

3.1.1 State Transition graph representation of
Finite State Machines

The state transition graph (STG) is a graphical rep-
resentation of FSMs that uses nodes to represent the
states of the FSM and edges to represent state transi-
tions. The output behaviour of the FSM is associated
with the states as required and the edges are labeled
with the input conditions necessary to cause transi-
tions.

A sample STG of the classic Mead-Conway traffic
light controller [4] is shown in figure 2. This is a sim-
ple 4-state (HG, HY, FG, FY) FSM, where |S| = 4,
with an input alphabet of C,T1,Ts, |I| = 3. The STG
shows each of the states and the state transitions, with
each of the transitions labeled with the necessary input
conditions to cause the transitions.

not(c and t1)

¢ and tl

not(c) or t1

not(not(c) or t1)

Figure 2. STG for Mead-Conway Traffic Light Con-
troller [4]

3.1.2 State Transition Table representation of
Finite State Machines

An alternative to the STG is the State Transition Table
(STT) as shown in table 1. The table shows each of the
required state transitions of the FSM in terms of the
current state and current inputs of the FSM. In this
simple example there are only two possible transitions
from each state and the conditions that cause these

transitions are listed. The outputs produced by the
FSM are listed in the table, it should be noted that it is
customary to produce a hardware block responsible for
implementing the state machine and a separate block
that produces the outputs based on the current state
of the FSM.

Present| Inputs Next Outputs
state state
HG not(c and t1) HG hl=GREEN; i=RED
HG c and tl HY hl=GREEN; l=RED
HY not(ts) HY hl=YELLOW; i=RED
HY ts FG hl=YELLOW; i=RED
FG not(not(c) or t1) FG hl=RED; l=GREEN
FG not(c) or t1 FY hl=RED; i=GREEN
FY not(ts) FY hI=RED; i=YELLOW
FY ts HG hl=RED; l=YELLOW

Table 1. STT of Mead-Conway Traffic Light Con-
troller

3.2. State Labeling

To allow digital logic to implement the FSM it is
necessary to perform state encoding. State encoding
takes the symbolic representation, i.e. label, of the
states and replaces it with a Boolean representation
that can be produced using digital logic. In the case
of binary encoding, each state is given a unique binary
code and this is associated with the state label as shown
in table 2.

| | Encoding |
State Label | Zj A
HG 0 0
HY 0 1
FY 1 0
FG 1 1

Table 2. Binary Encoding of State Labels for Mead-
Conway traffic light controller

By replacing the labels in the STT with their bi-
nary equivalents, as given in table 2, it is possible to
build a truth table representation of the FSM. Table 3
gives the truth table for the Mead-Conway traffic light
controller. From this is can be seen that the STT pre-
sented in section 3.1.2 has been expanded to give all
of the possible input conditions for each current state
(Zo(t), Z1(t)) and the next state (Zo(t + 1), Z1(t + 1))
for each of these conditions has been specified.

Next State |
Zo(t+1) | Zi(t+1)

| Present State | Primary Input |
Zo(t) Zl(t) C t1 ts

[l Bl el Bt Bl el I et Bl R Bl Bl Bl Bl Nl Il el e e e el el lerl el Bl Bl el Nl Nel el el o)
[l Bl Ml Bl Bl el B B e) el el el el I el Bl BT Bl B B B I N E =l =l E =] NN Nl el Nl o)
Hl=RRlOoO|lO|C|O|FR|RR|IRr|lO|lC|C|O|H|HR|RIR|lO|C|OC|O|HR|HRIRIRIO|lO|O|O
Ll Bl E=R E=N Nl el Nl e N B e N el el Nl Bl el el ol ol el Bl B el Nl Nl B el el L k=R =
=lOolR|lOlRr|lO|lR|O|R|O|R|lOlR|O|R|O|R|O|R|[O|R|O|lR|O|R|OIR|O|IR|O|R]|O
el Bl Ml Bl B Il B B e B B el B el Bl el B B N N e el Nl o L=l E=R =l H =] N=N Nl Nl Nl)
[« Nk Nl Rl Nal ol ol ol el ol Bl Bl ol ol Nel Nl T R L o L Ll B Bl Bl Bl E=R R = K= =2 K =1 N =]

Table 3. Truth-Table representation of the Mead-
Conway traffic light controller

Using a vector notation
7 = (ZQ, Zl), HG = (0,0), etc.

and using the shorthand (X = Y)for > . X; ®Yj, the
generator expression for table can be written as:

Zt+1) =
(Z(t) = HG).(c.t1. HG + c.t;. HY) +
(Z(t) = HY).(,. HY + t,. FG) +
(Z(t) =FG).(c+ t1.FG + (¢ + t1).FY) +
(Z(t) = FY).(t;.FY +t, HG)

3.3. Transition Expression (TE) Extraction and Op-
timization

From the truth-table representation it is possible to
extract the logic expressions required to implement the
behaviour of the FSM. The extracted expressions are
termed Transition Expressions (TE) as they calculate
the required state transitions based on the primary in-
puts and the current state.

If the transition expression is expressed in sum-of-
product format, each 1 in the corresponding column
will result in a single product term to be added to the
expression. This means that for the example shown in
table 3 the logic expression required to calculate the
next state (Zo(t + 1)) is

Zo(t +1) = Zo(t)!Z1(£)!Ct1lts + Zo(t)Z1 () Ch1lts
+Z0(1)Z1 (t)C't1ts + Zo(t)Z1 (t)Clt1!ts
+Z0(t)\Zy (£)!Ct1lts + Zio(£)Z1 () Ct1lts
+Zo(t)!Zy (t)Ct1lts + Zo(t)Zq (£)Ct1lts
1 Zo(t)Zy (£)ICIt1ts + Zio(t) Zy () Clt1ts
H1Z0(£)Zy (£)Clt1ts + Zio(t)Zy (1) Clt1ts
H1Z0(£)Zy (£)!Ct1ts + Zio(t)Zq ()| Ct1ts
H1Z0(t)Z1 (t)Ct1ts + Zo(t)Z1 (t)Ct1ts;

This expression can be optimized using boolean sim-
plification techniques to remove redundant logic. This
simplification process is well established and can be
performed using tools such as SIS [2]. Performing
boolean simplification on the above transition expres-
sion results in

Zo(t + 1) = Zo(t)!tS + Zl(t)ts

As this shows, the removal of redundant product
terms, using boolean minimization techniques vastly
reduces the size of the logic block required to imple-
ment the transition expressions.

3.4. Hardware selection

The selection of a suitable reconfigurable device is
vital to the efficient implementation of the FSM. It is
essential to ensure that the device has sufficient hard-
ware resources to implement the FSM without intro-
ducing excessive redundant hardware. As the recon-
figurable device is a generic part it is unlikely that the
device will have exactly the correct amount of hardware

required to implement a particular application. How-
ever, devices are available from device manufacturers
in a wide range of size and cost, allowing the end-user
to select a device suitable for the chosen application.

Based on the HDL description of the FSM it is pos-
sible to extract an estimate of the hardware require-
ments of the device required to implement the FSM.
The end-user would then select a device with as close
to these parameters as possible in order to ensure ex-
cessive hardware is not introduced as this would impact
on the cost, area and possibly power of the final imple-
mentation.

3.5. HDL Synthesis for reconfigurable devices

After the selection of the appropriate reconfigurable
device the HDL description of the FSM can be synthe-
sised. The synthesis process takes the HDL description
and produces the required bit-stream to program the
device. As each reconfigurable device has an individ-
ual structure and hardware characteristics, synthesis is
usually performed by proprietary tools provided by the
device manufacture. The results of the synthesis pro-
cess is a file containing a series of bits that when stored
in local memory on the device causing it to implement
the required functionality.

required to implement the FSM can be obtained be-
fore synthesis it is possible that factors such as routing
congestion may result in the chosen device being un-
suitable for the chosen application. This would result
in the end-user having to re-synthesize the HDL tar-
geting a device with sufficient routing or hardware to
implement the required functionality.

3.6. FSM operation on a reconfigurable device

The general model of a FSM is shown in figure 3. As
this shows the FSM is implemented by a Combinatorial
Logic Block (CLB) responsible for the calculation of
the next state and a feedback register used to store the
next state as the current state.

On power up the configuration bit-file is loaded
into the local memory within the reconfigurable device
from non-volatile memory. This configures the recon-
figurable device to implement the required transition
expression and the current state register. The device
may also implement the logic required to produce the
outputs associated with the current state of the FSM
or simply output the current state directly.

After the required configuration is loaded onto the
device the next state would be calculated using the cur-
rent state, initially this would be a specified reset state,
and the current inputs. The system would then be
clocked and the next state stored as the current state in

Combinatorial logic block

Primary
Inputs

TE,

S1EIS-IXeN

TE,

s1BIS-uUeLIND

Current-state register

— LI

Figure 3. General Hardware implementation of
FSMs

the current state register, this new current state would
then be used to again calculate the next state before
the device is again clocked. This means that the clock
speed of the device is limited by the time required for
the device to calculate the next state and store it as
the current state.

4. Novel representation of FSMs for re-
configurable hardware

The main fixed hardware component, of the general
implementation is the combinatorial logic block (CLB).
This block was targeted for optimisation to produce an
optimised reconfigurable hardware device for the im-
plementation of FSMs.

4.1. Investigation of characteristics of CLB

As the CLB implements the transition expressions
(TEs) required to calculate the next state of the FSM
from the primary inputs and the current state it is
possible to calculate a number of the key characteristics
of the block required to perform this function. The first
of these is the number of outputs, if binary encoding is
assumed, this is simply

O = logy(|5])

It is also fairly trivial to show that, as feedback is
required from the current state register, the total num-
ber of inputs to the combinatorial logic block is found
by

I=1,+0=1I,+logy(|5])

As these equations show the inputs to the CLB can
be divided into two categories. The first of these is
the primary inputs; these are the input signals used to
determine the next state transition and are necessary
to the operation of the FSM. The remaining inputs

Primary Input | Next State |
C|tl ts Zo(t+1) | Z1(t+1)
0 0 0 0 0
0|0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 1

1 1 1 0 1

Table 4. Sub-truth-tables for state HG
are the feedback lines from the current state register.

Consequently, if this feedback can be removed the total
number of inputs to the array can be reduced by a
factor of log,(]S))-

4.2. Removal of current state feedback

As areconfigurable hardware device has the capabil-
ity of altering its functionality through programming it
is possible to remove the need for the current state to be
fed back to the inputs. This can be achieved by using
the current configuration of the reconfigurable device
to store the current state of the FSM, i.e. creating a
separate context for each state of the FSM.

On start-up the reconfigurable device is loaded with
the context of the initial state of the FSM; the next
state of the FSM can be calculated solely from the cur-
rent inputs. If the next state is found to be different
from the current state the device is configured to im-
plement the context of the next state.

As this process calculates which state the FSM
should move to, the contexts required to be loaded onto
the reconfigurable device are know as Forward Tran-
sition Expressions (FTEs). The following section
describes the derivation of these FTEs for the Mead-
Conway example shown in figure 2.

4.2.1 Derivation of FTEs for Mead-Conway

traffic light FSM

If the example of the Mead-Conway traffic light con-
troller is again considered it can be seen that the truth-
table shown in table 3 can be separated in to sections
that define the behaviour of the FSM when the FSM
is know to be in a particular state. This is achieved by
breaking the truth table down into sections that con-
tain all possible input vectors for each state. In this
example the truth-table is broken down into a sub-
truth-table for each state, in this case this results in
four truth-tables of three inputs. Table 4 shows the
truth-table for the HG state.

If the FSM is assumed to be in the HG state the

following expressions can be used to calculate the next
state:

Z(t) =HG =

Z(t+1) = ¢i.HG +ct;.HY)

Substituting the actual state labels yields:
Zo(t + 1) =0 Zl(t +].) =c.tl

Using these expressions it is then possible to calcu-
late the next state using only the primary inputs. The
expressions are implemented on the reconfigurable de-
vice and indicate the state the FSM will enter at the
next state transition. If a state change is detected it
would then be necessary to load the FTEs for the next
state onto the reconfigurable device and again recalcu-
late the next state at the next state transition.

4.3. Reconfigurable device for the implementation
of FTEs

The overall architecture of the device is shown in
figure 4. It can be seen that although a current state
register is still required to test if a state transition has
occurred it is no longer necessary to include the feed-
back lines to the arrays.

Current-state register ClierEe

Combinatorial logic block

Primary Inputs
FIE1 - =
= =
| 55 g
Z@n %
—— FTE2 E
LT Q
o
i)
ER 8
OB =
is
g
=3
Memory [Z70R=]

Figure 4. Custom reconfigurable device for imple-
mentation of FSMs

4.3.1 Device operation

Using the design illustrated in figure 4 the array ob-
tains its initial configuration from the data stored in
the associated memory. The next state is then cal-
culated using the FTEs based solely on the primary
inputs. The output of the reconfigurable device (next

state) is then compared to the value stored in the cur-
rent state register (current state). If the next state
does not equal the current state a state change is in-
dicated and the device obtains the FTEs for the state
indicated by the reconfigurable device. The configura-
tion required to implement the FTEs for the next state
is then automatically obtained from the configuration
memory and loaded to the reconfigurable device. The
device can then again calculate the next state using
the new FTEs. The algorithm for the operation of this
device is shown in algorithm 1.

Algorithm 1 FSM operation
while 1 do
device_cfg =reset_cfg
current _state = reset__state
while reset = no do
next State =
transition _ expreurrent state (PriMary _inputs)
if next_state!=current_state then
device _cfg = next _state_cfg
current__state = next__state

5. FSM implementation on a custom re-
configurable architecture

The design flow for the implementation of FSM us-
ing the custom method and architecture suggested is
shown in figure 5. As this shows the derivation of the
FSM from the high level specification of the system is
the same as that for the full custom and conventional
reconfigurable implementation.

However, after the truth-table representation is pro-
duced using the method outlined in section 3.1 the
sub-truth tables are extracted as demonstrated in sec-
tion 4.2. This process results in S sub-truth-tables
where the information in each sub-table is sufficient
to implement the behaviour required for a single state
of the FSM.

Based on the sub-truth-table representation of the
FSM it is possible to perform FTE extraction. This
process is similar to the conventional Transition Ex-
pression extraction process but results in simplified
boolean expressions based on only the primary inputs.
FTE extraction will produce logs(|S]|) boolean expres-
sions for each state.

6. Results

In order to investigate the effectiveness of the
method presented here it is necessary to compare the

Hsgg:g?:el State Transilion
Specification ™ Graph
. 4
Finite Sate State Transition
Machine - Table
Exiraction '\,______/-’—'_H“
¥
Truth table
State Labelling o SR af
v
Sy
Sub-Truth-Table |] el Sub-Truth-Tahle
XA el Sub-Truth-Table
ot lepreat:;?agm of
| SiEE
I \‘—/—\
= & Transti Forward Transition
liplletanisy Ex|Forward Transition
Expression (FTE) Ex 48
Extraction Forward _Trans-mon
s Expression (FTE)
y
Deyica
Hardhware b
selection » Specification
|
¥
Synthesis] atan
f State 0
configuration

Figure 5. Hardware design flow of a FSM for cus-
tom reconfigurable device

results of implementation to those obtained using the
more traditional method. It is expected that the
method presented here will allow FSMs to be imple-
mented using less hardware than those produced using
the tradional design flow.

In order to compare the implementation methods
the number of LUTs used to implement the CLB of a
set of FSMs was collected for both the traditional and
FTE based implementations. The FSMs used are to
perform this comparison are selected from the MCNC
benchmark suite [6] and are selected to represent as
broad a range of FSMs as possible, for this reason the
MCNC benchmarks were profiled in terms of number
of inputs and states and the corner cases selected. The
selected benchmark circuits are synthesised using the
SIS synthesis tool and the number of LUTs required to
implement the CLB are calculated. The FSM is then
broken down into sub-truth-tables as described in sec-
tion 4.2.1 and the number of LUTs required to imple-
ment each state are calculated using SIS. As a recon-
figurable device must be able to implement all states,

| | | | TE-based | FTE-based |
Benchmark |S| | |I| | LUT§ MEM | LUT§y MEM
Circuit (b) (b)
DK15 4 3 41 656 2 138
DK17 8 2 35 560 3 384
Planet 48 7 521 | 8192 3 2304
Kirkman | 12 | 16 | 142 | 2272 5 960
Ex1 20 9 181 | 2896 10 3200
Opus 10 | 5 59 944 18 2880

Table 5. Number of LUTs in CLB
the minimum size of the reconfigurable device required

is equal to the maximum number of LUTs required the
implement the FTEs of any single state.

It is also possible to calculate the memory required
to store the bit stream used to program the device
based on the number of LUTs (L) and the size of the
LUT (K); for the traditional system the number of pro-
gram bits (B) is

B=Lx2K

In the case of the FTE based implementation the num-
ber of program bits is calculated by

B = (L *2%)|8|

The results obtained for the selected MCNC bench-
mark circuits is shown in table 5

The table shows that for each of the benchmark cir-
cuits the number of LUTs required is substantially re-
duced by making use of FTEs. This is due to the fact
that only a small part of the CLB for the FSM is re-
quired to be implemented at any time. It can also be
see that in the majority of the cases presented here the
amount of memory required to store the configuration
data is also reduced. In the case of Ex1 and Opus the
use of FTEs actually increases the amount of configu-
ration data required. In these examples the FSM have
relatively large numbers of states compared to inputs
and in particular have a few states with very large num-
bers of FTEs. For the FTE implementation this results
in a single state, or relatively few sates, requiring large
numbers of LUTs compared to the remaining states of
the FSM. As the size of the device required is set by
the maximum number of LUTs required by any single
state this results in a large CLB where the majority of
the states utilises only a small fraction of the available
hardware but as all of the LUTs require programming
the size of the configuration data required is the same
for each state.

7. Conclusion

This paper has presented a novel representation of
FSMs specifically tailored to take advantage of the

properties of reconfigurable hardware.

The ability of reconfigurable hardware to be recon-
figured during run-time allows these devices to calcu-
late the next state of FSMs using only the primary
inputs. This is made possible through the use of FTEs
to produce a unique context, or configuration, for each
state. By making use of this novel representation the
feedback register traditionally used in FSM implemen-
tation is no longer required reducing the inputs to the
CLB by a factor of log,(|S])-

As each context is only required to implement the
transitions of a single state this reduces the size of the
reconfigurable block required to implement the FSM.

In order to investigate the effect of the novel method
presented here selected MCNC benchmark circuits
were implemented and the hardware characteristics
recorded. The MCNC benchmark suite was profiled
and the circuits selected to represent the corner cases
in terms of number of inputs and states.

For each of the examples selected the use of FTEs
vastly reduces the number of LUTs required to imple-
ment the FSM. The results also show that FSMs with
state transitions spread evenly across the states, rather
than single states with large numbers of traditions, are
most suitable for the use of FTEs as this results in
FSMs with far lower LUT counts as well as reduced
configuration memory requirements.

8. Acknowledgments

This work is supported by EPSRC and SLI Ltd,
and was produced at the ISLI in partnership with the
Universities of Glasgow, Strathclyde, Edinburgh and
Heriott-Watt.

References

[1] Cadence. Cadence Encounter Digital IC Design Plat-
form. http://www.cadence.com/.

[2] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton and A. Sangiovanni-Vincentelli. SIS: A system
for sequential circuit synthesis. Technical report, 1992.

[3] A. Gill. Introduction to the Theory of Finite-state Ma-
chines. McGraw-Hill, 1962.

[4] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-
Vincentelli. Synthesis of Finite State Machines: Func-
tional Optimization. Kluwer Academic Publishers,
1997.

[6] T. Villa, T. Kam, R. Braytonand, and A. Sangiovanni-
Vincentelli. Synthesis of Finite State Machines: Logic
Optimization. Kluwer Academic Publishers, 1997.

[6] S. Yang. Logic synthesis and optimization benchmarks
user guide version. Technical report, 1991.

PORTFOLIO DOCUMENT CP2

Random Circuit Generation for the Testing
of Programmable Devices

Author: Supervisor:
Graeme Milligan Wim Vanderbauwhede

Random Circuit Generation for the
Testing of Programmable Devices

Graeme Milligan
Institute for System Level Integration,
Alba Centre, Alba Campus, Livingston
Scotland, UK, EH54 7EG.

Email: graeme.milligan @sli-institute.ac.uk

Abstract—Although the use of benchmark
suites, such as the MCNC benchmarks, provides
reconfigurable device designers with a suite of
circuits for device testing, their usefulness is lim-
ited due to the relatively small number of these
circuits. We present here a method of generating
large numbers of realistic circuits, that can be
used for device testing, using a high-level Monte-
Carlo based circuit generator. The suggested cir-
cuit generation method is used to calculate the
optimal characteristics of Programmable Logic
Arrays with respect to the range of circuits the
device can implement. The results of this process
are then compared to existing data to prove the
validity of the circuit generation method.

I. INTRODUCTION

The use of reconfigurable hardware devices is
becoming more common as they introduce flex-
ibility to the hardware design process while re-
taining some of the area, speed and power bene-
fits of full custom ASIC design. This flexibility
is introduced through the use of programmable
hardware devices such as Programmable Logic
Arrays (PLAs).

The flexibility introduced by PLAs comes
at the cost of lower efficiency when compared
to full custom design due to the overhead
introduced in providing programmability and
the generality required to allow their use in
a variety of applications. To limit the effect
of this overhead it is essential to ensure the
correct amount, and type, of hardware is placed
on reconfigurable devices. This ensures that,
while the devices provide sufficient flexibility to
allow their use in a wide variety of applications,
excessive amounts of redundant hardware is not
included.

Wim Vanderbauwhede
Department of Computing Science,
University of Glasgow, Glasgow,
Scotland, UK, G12 8QQ.
Email: wim@dcs.gla.ac.uk

As the end application of programmable de-
vices is not known at design time it is difficult
for device designers to anticipate the amount of
hardware that will be required by the end user.
This paper presents a testing method for PLAs
based on the Monte-Carlo generation of logic
expressions. This random generation method
allows PLA designers to assess the effect design
changes have on the devices ability to imple-
ment a range of logic circuits and is related to
the idea of a measure of flexibility presented
in [9]. This process gives a measure by which
device designers and end users can assess the
range of circuits the reconfigurable device is
capable of implementing.

The following section gives an overview of
PLA operation and gives necessary definitions.
This is then followed by a discussion of previ-
ous strategies used to test and assess the flex-
ibility of reconfigurable devices. The method
suggested by this paper is then presented and
the results compared to those obtained using
existing strategies to demonstrate the validity of
this method.

II. BACKGROUND THEORY

A. Programmable Logic Arrays

The PLA, and its variants, are hardware de-
vices that provide the opportunity to determine
their functionality post-manufacturing. Early de-
vices achieved this through the use of fuses or
anti-fuses and could be programmed only once.
Modern devices make use of reprogrammable
memory blocks to allow the devices to be
rapidly programmed on multiple occasions.

® programmable fuse

i

LA

T

{4
U

Fig. 1. PLA architecture

PLAs are designed to implement combina-
torial logic circuits and their design is derived
directly from the sum-of-products (SOP) repre-
sentation of these circuits.

The structure of a typical PLA is shown in
figure 1. This device contains a plane of AND
gates to implement the product terms of the
expression. The outputs of these AND gates are
then connected to OR gates to produce the final
expression. The use of programmable switches
allows the user to determine which of the AND
gates will be connected to the OR gate and
hence determines the final functionality of the
PLA.

The typical PLA can be fully described by
the tuple

{i,0,p}
where,

i=number of inputs,
o=number of outputs and,
p=number of product terms

Based on these parameters it is possible to
determine the hardware characteristics of the
device as;

o The number of inputs (i) sets the number
of inputs required by the AND gates in the
AND plane, as shown in figure 1 the AND
gate has two inputs for each PLA input as
it is normal to provide an inverted version
of each of the inputs.

o The number of outputs (o) is equal to the
number of OR gates in the OR plane.

o The number product terms (p) determines
the number of programmable switches in
the array but as a results also determines
the number of AND gates in the AND plane
and also the number of inputs required
by the OR gates in the OR plane. It can
also be seen that the number of product
terms determines the complexity of the
SOP expression that can be implemented
and as such has a major impact on the
type and complexity of circuits the PLA
can implement.

In order to ensure that the PLA can imple-
ment as broad a range of SOP expressions as
possible it is essential to ensure that sufficient
product terms are available on the device. As
it is unlikely that the final applications of the
PLA will be known at design time this is major
challenge for the device designer.

B. Existing PLA testing strategies

As the future applications of a PLAs can not
be predicted at design time, it is difficult to
determine the the amount of hardware that will
be required by the end user of the device. When
creating new PLA designs it is important to
ensure that the devices can implement as broad
a range of circuits as possible as this increases
the application domain of the device.

Traditionally device testing implies the com-
parison of new device designs to the initial
specification to ensure the device operates as
expected. In the case of reconfigurable devices
it is necessary to also test the initial specification
to ensure the device has sufficient flexibility to
implement future end-user applications. In order
to achieve this, a number of strategies have been
used to test the flexibility of new reconfigurable
devices. These techniques are shown in figure 2
and range from the use of real-life circuits to
completely random, synthetic, circuits. The fol-
lowing section outlines the previous strategies
employed in testing new reconfigurable devices.

1) Benchmark testing: Traditionally, the
method used to select the characteristics of
PLAs was the use of benchmark circuits [4],
[15]. This method relies on a suite of sample

Random
testing

S
o)
75
c
IS
B
o
@
=
>
O

Fig. 2. Existing test strategies

real world circuits that are mapped to PLAs us-
ing place and route algorithms such as PLAmap
[4]. In [4] a large number of the MCNC bench-
mark circuits were mapped to PLAs with vary-
ing parameters to determine the parameters that
resulted in the best delay and area characteris-
tics. This method was was also used in [15] to
investigate the effect of the varying the number
of product terms available on the device on the
delay and area characteristics of the PLA when
implementing a range of benchmark circuits.

Although these methods are useful in deter-
mining the optimal characteristics of PLAs, the
results are highly dependent on the use and
availability of benchmark circuits. If only a
small number of benchmark circuits are avail-
able, or if they are closely related, this method
may produce results that are particular to the
benchmarks and not general applications. As the
circuits in the benchmark suites are existing real
world circuits it is also unclear how well they
will represent future circuits that the device may
be required to implement after manufacture.

2) Guided-Random testing: In [8], [9] meth-
ods of extending the use of benchmarks were
suggested. These methods first profile a set of
benchmarks to determine ranges for a number
of characteristics such as number of inputs,
outputs and circuit complexity. Based on this
a large number of synthetic circuits can be
randomly generated with characteristics within
these ranges. This allows a very large number
of circuits to be generated that can be used for
testing.

In [9] these circuits were mapped to sample
devices and a measure of flexibility extracted
based on the percentage of the total circuits that
could be mapped using the place and route tools
allowing device designers to rapidly assess the

effect design changes have on the flexibility of
the device. This method is particularly aimed
at domain specific reconfigurable devices where
the final application domain of the device is
well known and hence the reliability of the
results can be assured as it is likely, although not
guaranteed, that circuits within a domain will be
fairly similar.

These methods do not completely alleviate
the issues relating to the availability of sufficient
benchmark circuits as, if the domain is small
it is unlikely that enough example circuits will
be available to completely profile the domain or
conversely, if the domain is very large it is likely
that the characteristics obtained by profiling will
have a large range and the random generation
of synthetic circuits will result in these circuits
being almost totally unconstrained, resulting in
almost completely random circuits.

3) Random testing: The use of completely
random circuits for device testing was suggested
in [5]. This method produces randomly gen-
erated netlists used to assess the routability
of reconfigurable devices by generating large
numbers of circuits and performing place and
route. This method was rejected in [8] as it was
claimed that the results of the unconstrained
random generation did not produce realistic
circuits. It is felt that the random generation
process produced unrealistic circuits as high
level optimization was not carried out on the
circuits produced, as would be the case for the
real circuits where it is likely that processes such
as boolean minimization would have taken place
before synthesis to netlist.

4) Investigation of average products in
CLEs: A number of research projects [6], [11],
[14], [12], [13], [1] have attempted to calculate
the average number of product terms in CLEs
and the upper and lower bounds for minimised
SOP expressions. In [14], [12] randomly gen-
erated logic expressions are used to calculate
the average number of product terms in the
expressions and the upper and lower bounds on
this are calculated mathematically in a similar
way to [1]. In both of these examples the value
for the average number of product terms is
calculated using randomly generated logic cir-
cuits. Although this method seems to generate
values in the expected range for the average case

behaviour it is impossible to verify the accuracy
of the random circuit generation method as
no details are given of the precise manner of
random circuit generation. These methods also
focus solely on determining the characteristics
of PLAs and if this work can be extended to
other reconfigurable devices such as FPGAs..

III. MONTE-CARLO BASED PLA TEST
STRATEGY

Generating random logic expressions at a
high level and performing high level optimiza-
tion, such as boolean minimization, results in re-
alistic logic circuits that can be used for device
testing. If large numbers of these circuits are
generated it is thus possible to use this approach
to assess the flexibility of the PLA, similarly
to the method suggested in [9], by calculating
the percentage of circuits that the device can
implement. In this way device designers can
determine the effect their choice of parameters
has on the range of circuits the device is capable
of implementing.

It is also possible to turn this concept around
by generating large numbers of circuits and cal-
culating the characteristics of the PLA required
to implement them. This method allows device
designers to select the flexibility required by the
device and obtain the characteristics required to
achieve this value. The following section details
the high-level Monte-Carlo based approach to
generating test circuits for PLAs and how this
can be used to determine a measure of flexibility
of the device. The results of this testing are
then compared to the results obtained using
previous methods to demonstrate the validity of
this process.

A. Monte-Carlo generation of CLEs

Although in [8] is was suggested that the ran-
dom generation of circuits produced results that
did not match real circuits, this is because high-
level simplification, such as boolean minimiza-
tion, was not carried out. A sum-of-products or
product-of-sums expression in itself cannot be
considered unrealistic, only the resultant circuit.
Circuits should thus be generated at a high
enough level to allow simplification to take
place. The pla format [2] allows combinatorial
logic circuits to be represented at a high level in

Inputs Output
a b ¢ Z
0 0 0 1 Random number=145
0 0 1 0 @
0 1 0 0
EEEREEEE
0 1 1 1
1 0 0 0
1 0 1 0
1 1 4] 0
1 1 1 1)
Fig. 3. Random circuit generation process

a format similar to the truth table representation
of expressions that can be used by tools such as
[3] to perform Boolean simplification.

The method shown in figure 3 makes use of
the fact, that for CLEs implemented in truth
table format, the functionality of the expression
is determined by the binary sequence in the
output column of the the table. Using a random
number generator (such as the Mersenne twister
[10]) it is possible to generate a random function
by using the binary representation of the num-
ber as the required output in the truth table..
Although this method will produce unrealistic
functions with redundant hardware, this can then
be removed through boolean simplification to
produce more realistic functions.

As the random number generator is only ca-
pable of generating numbers with a fixed num-
ber of binary digits it is necessary to use mul-
tiple random numbers to generate truth tables
for expressions with large numbers of inputs.
The random number generator selected utilized
produces 16-bit random numbers that are ca-
pable of producing the necessary bit sequence
for expressions of ¢ < 4, for larger expressions
i — log2(16) random numbers are required.

In order to make realistic circuits from the
expressions produced it is necessary to per-
form high-level optimization of these circuits.
The SIS synthesis tool [3] was selected to
perform simplification using the minimization
algorithms originally developed for the Espresso
minimization tool [7]. This results in simpli-
fied expressions similar to those found in the

MCNC, and similar, benchmark suites.

Algorithm 1 PLA test strategy
k =digits in random number
for each ¢ in input_range do

for each s in samples do
for each j in (i — k) do
random|[i]=rand
construct_function(random)
simplify
count_product_terms[s]
store_results[i](gather_data)
write_log

B. PLA Test Strategy

Using pla format it is thus possible to gen-
erate truth tables of combinatorial logic expres-
sions and perform high-level optimization using
tools such as SIS. It is then possible to analyze
the results of this simplification process to de-
termine the characteristics of the PLA required
to implement this function. Using this method
every possible expression of ¢ inputs could be
generated, simplified and the distribution of
the characteristics for ¢ inputs collected. The
number of inputs could then be varied over a
fixed range to allow the complete domain to
be characterized. Although this method would
allow the complete profiling the domain, as the
number of possible logic expressions of ¢ inputs
can be shown to be 22', this is impractical for
even fairly small numbers of inputs.

An alternative to the full testing method is
to generate large numbers of random logic
expressions in pla format that can be used
to perform profiling. The suggested method of
random circuit generation is shown in figure
3. In order to further limit the domain it was
decided that only circuits with o = 1 would
be considered. This avoids the need to consider
situations where product terms may be shared
in multi-output circuits as it is felt that product
sharing would be minimal and a multi-output
circuit can be modeled using multiple single
output circuits.

Using the method presented in algorithm 1,
a large number of ¢ input expressions are gen-
erated and the number of product terms in the
simplified expressions collected. The number of

inputs is then varied over the range input_range
and the results obtained for each of the random
circuits produced. The mean and standard devi-
ation of these results is then collected. To allow
the mean and standard deviation of the p values
to be compared the results were normalized by
dividing the vales by 2¢ over the range of inputs.

[inputs [mean | mean/2’ | stddev | stddev/2’ |
2 1.25 0.3125 0.6614 0.1653
3 2.35 0.2939 0.8061 0.1007
4 4.39 0.2745 1.0978 0.0686
5 8.41 0.2626 1.5210 0.0475
6 16.19 0.2529 2.1092 0.0329
7 31.41 0.2453 2.9170 0.0227
8 61.51 0.2402 4.0785 0.0159
9 121.21 0.2367 5.7370 0.0112
10 166.65 0.1627 5.2501 0.0051
11 316.35 0.1544 7.1923 0.0035
12 605.10 0.1477 9.8608 0.0024
13 1159.92 0.1416 13.2465 0.0016
14 2230.23 0.1361 18.3047 0.0011
15 4299.15 0.1312 24.8827 0.0008

TABLE I

EXPERIMENTAL RESULTS OF STOCHASTIC
INVESTIGATION OF PRODUCT TERMS IN COMBINATORIAL
LOGIC EXPRESSIONS

I'V. ANALYSIS OF RESULTS

The results for the normalized mean and
standard deviation shown in table I demonstrate
that although the mean and standard deviation
increase with increasing ¢ the relationship is not
direct. The mean values presented in table I
indicate the number of p terms required to
implement 50% of all possible ¢ input, single
output, expressions. Thus a PLA produced with
the mean number of p terms for ¢ inputs can
implement all possible expressions with less
than ¢ inputs. If the normalized mean values
are considered it can be seen that the mean
as a proportion of the maximum number of
p terms drops as ¢ increases. This means that
area savings can be made by using PLAs with
larger ¢ values rather than several smaller PLAs
to implement logic expressions while ensuring
the same percentage of the total number of
expressions can still be implemented.

The normalized mean values decreases
rapidly until around ¢ = 12, at this point,
increasing the number of inputs does not reduce

the mean number of product terms as a propor-
tion of the maximum number and as such this
suggests that this would be the best choice for .
This results is in line with the values suggested
in [15], [4]. This suggests that the random
circuits generated have similar characteristics to
those found in the MCNC benchmarks.

In order to test the validity of the results ob-
tained using the experimental method presented
here the results obtained are compared to those
presented in [13] for the average number of
product terms in an SOP expression. Table II
shows that although the values for the calculated
and experimental mean agree closely there is
some error between these and those presented
previously in the literature. It is felt by the
author that this is either due to the random
circuit generation method used in [13] or due
to the limited number of circuits generated. In
order to verify the accuracy of these results the
values obtained for the mean were used to assess
the values presented in [15].

[inputs [Experimental Mean [mean[13] |

4 4 4
5 8 6
6 16 13
7 31 24
8 61 46
9 121 86
10 167 167
TABLE II

COMPARISON OF RESULTS TO THOSE PRESENTED IN [13]

In [15] it is suggested that based on the
MCNC benchmark circuits PLAs with {12, 9,
3}, for small circuits, and {12, 18, 3} for large
circuits resulted in the best area/delay charac-
teristics. If these PLAs are considered as single
output devices and the hardware resources are
split evenly between each of the outputs this
would results in PLAs with {4, 3, 1} and {4, 6,
1}. Figure 4 shows the Cumulative distribution
function of the p terms in 4 input expressions.
The values suggested in [15] are plotted on this
graph and show that values suggested, 3 and
6, produce PLAs capable of implementing 20%
and 97% of circuits respectively.

A - Wilton et al [9]

-
N

-

/AT;; 0.97)

o
@

/

Coverage
I
(2]

/

o
'S

/

e
[

‘/(3.00, 0.20)

o

0 2 4 6 8
Number of Product Terms

Fig. 4. CDF of product terms in 4-input expressions.

V. CONCLUSION

This paper has demonstrated a high level
Monte Carlo based random circuit generation
method that can be used to generate large
numbers of circuits for the testing of recon-
figurable devices. This method allow the high
level generation of random circuits that can be
simplified and optimized to give circuits similar
to those in existing benchmark suites. These
circuits were then used to investigate the number
of product terms required by PLAs to allow
the implementation of these circuits. Based on
this the optimal characteristics of the PLAs can
be extracted and the results obtained compared
to existing data. The similarity of the results
demonstrates that the random circuits generated
give similar results to those obtained using the
MCNC benchmarks and previous attempts to
calculate the mean number of product terms in
SOP expressions. These results hence validate
the random circuit generation method suggested
here.

As the circuits are generated at a high-level
their usefulness is not limited to PLAs but can
be extended to any reconfigurable device. Based
on the circuits generated it is also possible
to extract the characteristics of Look-Up-Table
based reconfigurable devices, such as FPGAs,
and other custom architectures. This means the
next logical step is to extended the work carried
out here to other reconfigurable architectures
such as FPGAs. In this case the circuits will
be used to rapidly assess the effects of design

10

changes on the flexibility of the devices.

This method can also be used to determine a
measure of the flexibility of the new reconfig-
urable devices similarly to the method suggested
in [9] but with out the need for benchmarks
to guide the generation of synthetic circuits.
In the case of the PLAs suggested in [15] the
values number of product terms would result in
a device with a flexibility measure of 0.2 for
small circuits and 0.97 for large circuits. In this
way the flexibility of future devices could be
given to allow end users to select devices with
the required flexibility for the end application.

VI. ACKNOWLEDGMENTS

This work is supported by EPSRC and SLI
Ltd, and was produced at the ISLI in partnership
with the Universities of Glasgow, Strathclyde,
Edinburgh and Heriott-Watt.

REFERENCES

[11 E. A. Bender and J. T. Butler. On the size of
plas required to realize binary and multiple-valued
functions. [EEE Trans. Comput., 38(1):82-98, 1989.

[2] Berkeley. PLA format description.
http://www1.cs.columbia.edu/ cs4861/sis/pla.txt.

[3] Berkeley. SIS download
http://embedded.eecs.berkeley.edu/.

[4] D. Chen, J. Cong, M. Ercegovac, and Z. Huang.
Performance-driven mapping for cpld architectures.
22, NO 22, pages 1424-1431, 2003.

[5] J. Darnauer and W. W. Dai. A method for generat-
ing random circuits and its application to routability
measurement. In FPGA’96, 1996.

[6] E. Dubrova, D. Miller, and J. Muzio. Upper bounds
on the number of products in and-or-xor expansion of
logic functions, 1995.

[71 E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,
R. K. Brayton and A. Sangiovanni-Vincentelli. SIS:
A system for sequential circuit synthesis. Technical
report, 1992.

[8] M. Hutton, J. P. Grossman, J. Rose, and D. Corneil.
Characterization and parameterized random generation
of digital circuits. In ACM/SIGDA Design Automation
Conference (DAC), 1996.

[9] k. Compton and S. Hauck. Flexibility measure-

ment of domain-specific reconfigurable hardware. In

ACM/SIGDA symposium on Field-Programmable Gate

Arrays, 2004.

M. Matsumoto and T. Nishimura. Mersenne twister: A

623-dimensionally equidistributed uniform pseudoran-

dom number generator. In ACM Trans. on Modeling

and Computer Simulations, 1998.

T. Sasao. Multiple-valued logic and optimization of

programmable logic arrays. Computer, 21(4):71-80,

1988.

page.

[10]

(1]

[12]

[13]

[14]

[15]

T. Sasao. Bounds on the average number of prod-
ucts in the minimum sum-of-products expressions
for multiple-value input two-valued output functions.
IEEE Trans. Comput., 40(5):645-651, 1991.

T. Sasao. A design method for and-or-exor three-level
networks, 1995.

T. Sasao and P. Besslich. On the complexity of mod-
2 sum pla’s. IEEE Trans. Comput., 39(2):262-266,
1990.

A. Yan and S. Wilton. Product term embedded synthe-
sizable logic cores. In IEEE international Conference
on Field-Programmable Technology, 2003.

