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Abstract 
 
Diamond provides extreme properties which make it suitable as a new substrate material 

for high performance electronics. It has the potential to provide both high frequency and 

high power performance while operating in extreme environments such as elevated 

temperature or exposed to corrosive chemicals or radiation. Research to date has shown the 

potential of diamond for this purpose with hydrogen-terminated diamond surface channel 

transistors already showing promise in terms of high frequency operation. The inherent 

instability of using atmospheric molecules to induce a p-type doping at this hydrogen-

terminated diamond surface has so far limited power performance and robustness of 

operation. 

 

This work reports upon the scaling of surface channel hydrogen-terminated transistors with 

FET gate lengths of 250 nm and 120 nm showing performance comparable to other devices 

published to date. The gate length was then scaled for the first time to sub-100 nm 

dimensions with a 50 nm gate length FET fabricated giving record high-frequency 

performance with a fT of 53 GHz. An adapted fabrication procedure was developed for this 

project with special attention paid to the volatility of the particles upon the diamond 

surface. Equivalent RF circuit models were extracted for each gate length and analysed in 

detail. 

 

Work was then undertaken to investigate a more stable alternative to the atmospheric 

induced doping effect with alternative electron accepting materials being deposited upon 

the hydrogen-terminated diamond surface. The as yet untested organic material F16CuPc 

was deposited on to hydrogen-terminated diamond and demonstrated its ability to 

encapsulate and preserve the atmospheric induced sub-surface conductivity at room 

temperature. 

 

For the first time an inorganic material was also investigated as a potential encapsulation 

for the hydrogen-terminated diamond surface, MoO3 was chosen due to its high electron 

affinity and like F16CuPc also showed the ability to preserve and even slightly enhance the 

sub-surface conductivity. A second experiment was performed using photoelectron 

spectroscopy to analyse in-situ deposition of MoO3 which indicated this material has the 

ability to induce surface transfer doping by itself without the aid of atmospheric particles. 
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1. Introduction 
The invention of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) using 

silicon in 1960 made possible modern electronics which over the second half of the 20th 

century progressed rapidly and revolutionised almost every aspect of our lives [1.1]. Prior 

to this, electronics was a very manual process as individual switches required human input 

to control them. Now thanks to the FET billions of switches on one processor can be 

automatically switched on and off with precisely controlled electronic voltages. The 

electronics industry today is still vastly dominated by silicon devices from calculators to 

personal computers to satellites. It has been known for many years that there is a limit to 

silicon's capabilities and today more than ever we need to investigate alternative 

technological solutions to keep up with increasing demand. This demand is not only for 

smaller, faster chips as famously discussed by Gordon Moore, but also for other 

requirements such as high power operation and heat dissipation which are intrinsically 

limited by the material properties of silicon [1.2]. 

 

Over the last three decades, demand for higher frequency operation, high power and the 

need to operate devices in more extreme conditions has led to research in alternative 

materials. The 1980s saw research begin into the High Electron Mobility Transistor 

(HEMT) using alloys of group III and V materials from the periodic table (silicon and 

germanium being in group IV) [1.3]. For example, gallium arsenide and aluminium 

gallium arsenide may be used to create heterojunctions which separate charge carriers from 

their dopants to give a two dimensional electron gas (2DEG) with very high mobility. This 

has been taken even further in recent years with advances in molecular beam epitaxy 

(MBE) allowing for more exotic structures to be grown so that lattices may be matched 

exactly, reducing defects and hence reducing traps to give extremely fast electronic carrier 

transport. These can typically take the form of pseudomorphic HEMTs (pHEMTs) where a 

very thin layer of one material is used so the lattice may be stretched or compressed to fit 
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the lattice parameter of an adjacent material or metamorphic HEMTs (mHEMTs) where a 

graded composition buffer layer containing a third material is used. While GaAs and InP 

based structures may be adopted for high frequency applications we need to turn to wide 

bandgap materials such as GaN and SiC for power. Of these GaN has seen the most 

success so far achieving over 10 W.mm-1 output power density at ~ 2 GHz on a silicon 

substrate and over 40 W.mm-1 output power density at ~ 4 GHz on a silicon carbide 

substrate [1.4-5]. Performance is still currently limited by its poor thermal management. 

 

In addition to these, diamond has often been described as the ultimate material for power 

electronics as it has the most extreme properties of the wide bandgap semiconductors. 

Figure 1.1 illustrates diamond’s extreme material properties in comparison to other 

semiconductor materials. Its wide bandgap gives devices a high electric field breakdown 

and hence the ability to use high operating voltages much like GaN. Diamond however has 

a thermal conductivity (in excess of 22 W.cm-1.K-1 at room temperature), five times greater 

than copper, making it ideal to spread heat generated away from devices [1.6]. Intrinsic 

carrier mobility and high saturation velocity also give diamond a competitive frequency 

performance, while its robustness makes it favourable for operation in ‘extreme’ 

environments. 

 

 

 

 
Figure 1.1: Comparison of the material properties of 

diamond against other semiconductor materials 



 Chapter 1 – Introduction                   3 

 

Due to the large bandgap of diamond (5.47 eV), it is essentially classified as an insulator in 

its intrinsic form. It is possible albeit challenging to dope and hence making it 

semiconducting. Some success has been achieved using boron doping and indeed FETs 

have been demonstrated using this technology [1.7]. Another method is based on an effect 

known as 'surface transfer doping'. In 1989 M. I. Landstrass and K. V. Ravi found that the 

resistivity of diamond films significantly lowered when grown in a hydrogen atmosphere 

and hence given a hydrogen surface termination [1.8]. This was later shown to be due to a 

unique form of doping involving adsorbed molecules from the atmosphere and again 

people have demonstrated FETs using this effect [1.9-10]. Both techniques have their 

limitations. With boron doped devices it is difficult to contact the channel (which is 

typically formed by a delta-doped boron layer) as a substantial barrier of intrinsic diamond 

impedes the ohmic contact as well as limiting the gates ability to control the carrier density 

beneath it. In addition, FETs using the hydrogen-terminated surface have been plagued by 

instability issues and reduced maximum power operation. Doping and ensuring these 

dopants become active and stable at room and ideally elevated temperatures remains the 

greatest challenge with diamond electronics today. 

 

Because of the challenges associated with doping and access to synthetic material, 

diamond has not yet bettered GaN electronics and reached its full potential. It is unlikely to 

ever compete with silicon due to the cost involved with growth and processing but specific 

markets for its application exist similar to GaN such as in radar, satellite communications 

or where high-performance electronics are required to operate in extreme environments. 

This project aimed to advance this emerging technology by scaling the already promising 

performance of hydrogen-terminated diamond surface channel FETs to sub-100-nm 

dimensions to see just how much frequency performance may be improved and generate 

greater understanding of the scaling limitations of these devices. This has required the 

development of an adapted fabrication processes to improve upon performance. In addition 

to this scaling study, methods to produce more stable devices via deposition of materials 

onto the hydrogen-terminated diamond surface were also briefly investigated, so diamond 

may eventually fulfil its high power and stable operation potential.  

 

The bulk of this thesis begins with Chapter 2 which introduces the diamond FET and the 

theory of its operation. Chapter 3 and Chapter 4 discuss the fabrication and characterisation 
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techniques respectively involved in this project. Chapter 5 reviews the current literature on 

diamond electronics, focussing on diamond FETs. Chapter 6 presents the bulk of the 

results from this work, showing the scaling of diamond FETs to sub-100-nm dimensions 

and presenting detailed measurements of scaled devices. Chapter 7 investigates several 

ideas to further adapt the FET device fabrication procedure and material deposition with 

the aim of fabricating more stable diamond FETs. Finally Chapter 8 concludes the thesis 

and presents some ideas for future work into this area of research. 
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2. Diamond Field Effect Transistors (Theory) 
The type of diamond FET discussed in the bulk of this work is known as a 'surface channel' 

or ‘hydrogen-terminated’ diamond FET. Atmospheric particles will readily adsorb on to a 

hydrogen-terminated diamond surface and initiate a transfer of charge due to the negative 

electron affinity (NEA) given to the diamond by hydrogen-termination [2.1]. This 

produces a shallow sub-surface p-type doped layer where electrons are displaced from the 

diamond to the atmospheric molecules, which may be used to create FETs [2.2]. Aside 

from this novel doping mechanism these devices function in much the same way as a 

standard Metal-Semiconductor FET (MESFET), using a gate deposited directly on to the 

diamond surface to control charge and hence current flow within the channel between 

source and drain ohmic contacts. 

 

This chapter begins by discussing how synthetic diamond is synthetically ‘grown’ and the 

extreme material properties it possesses, followed by an in depth look at the surface 

transfer doping model as well as a brief look at other routes to doping diamond. Surface 

transfer doping is not limited to just atmospheric adsorbate molecules. Theoretically any 

molecule with a high enough electron affinity and available energy states should allow this 

charge transfer to happen, hence alternative electron accepting materials are also discussed 

[2.3]. To fully understand the operation of these surface channel FETs it is important to 

look at some basic semiconductor theory and how it relates to device operation i.e. how 

charge moves within a semiconductor and across metal-semiconductor interfaces. Finally 

once diamond FETs have been fabricated it is important to understand various figures of 

merit to assess how well they perform and to accurately understand their operation. 
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2.1 Synthetic Diamond 

Carbon can manifest itself in several different forms or 'allotropes' due to the difference in 

bonding between the individual carbon atoms. There are six electrons present in each atom 

in the configuration (1s)2(2s)2(2p)2. One would assume the two electrons in the 2p outer 

shell are the only ones capable of bonding however orbital hybridisation of the 2s and 2p 

orbitals may occur as the energy difference between the 2s and 2p state is small enough a 

tiny perturbation such as a nearby atom will excite an electron from the 2s to the 2p state. 

This gives several possibilities for carbon bonding with sp, sp2, sp3 and even combinations 

of s, p and d orbitals possible [2.4]. The sp2 and sp3 configurations are shown in Figure 

2.1.1. It is energetically favourable for carbon to bond together in the sp2 configuration 

which most often gives the material commonly known as graphite.  

 

 

 

 

 

Graphite consists of a continuously repeating hexagonal sheet of carbon atoms stacked on 

top of each other and weakly bonded together by Van der Waals forces. Other related 

forms of sp2 carbon are a single sheet of graphite known as graphene or carbon nanotubes 

which are essentially a layer of graphene rolled up to form a tube. One of the characteristic 

properties of this form of carbon is it is incredibly strong in the horizontal plane (stronger 

than diamond even) but very weak in the vertical plane and layers will readily peel apart 

with little applied force. 

 

Figure 2.1.1: Carbon bonded in the graphite sp2 configuration (left) and 
diamond sp3 configuration (right, dotted line represents unit cell) 
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Diamond is an allotrope of carbon that occurs naturally as a mineral and can be found in 

many locations throughout the world. To form, it usually requires conditions of both high 

pressure and high temperature. Diamond bonds in an sp3 configuration with its lattice 

identical to that of silicon or germanium (face centred cubic lattice with a second identical 

set of atoms shifted by ¼ of the width of the unit cell as seen in Figure 2.1.1) however 

diamond is much stronger due to the covalent bond length between atoms being much 

shorter. This is due to fewer electron shells being present in carbon than silicon or 

germanium meaning electrons are drawn closer to the positively charged atomic nuclei. 

The lattice constant has been empirically measured to be 0.357 nm whereas in silicon it is 

0.564 nm and germanium 0.543 nm [2.5]. The bonding angle of all three structures is 109.5 

degrees thus unlike graphite diamond is strong in all directions. 

 

Over the last half century it has become possible to replicate the conditions under which 

diamond forms in a laboratory environment. Originally, natural diamond stones were 

tested for their electronic properties [2.6] but it is unlikely all the properties we desire will 

be found in a single stone. Synthetic growth however can tailor a ‘stone’ for the required 

purpose. Today there are three well recognised routes to growing diamond. The first 

synthetically created diamonds came in 1954 when H. T. Hall of General Electric utilised 

apparatus in the form of a press and created high pressure high temperature (HPHT) 

synthesis involving a graphite sample and transition metal solvent catalyst compressed 

under ~8.4 GPa pressure for one hour [2.7]. In 1962, Yevgeny Zababakhin and a team of 

scientists involved in nuclear weapons design in the Soviet Union experimented with 

TNT/RDX explosives in a closed chamber [2.8]. The blast turned the carbon in the 

explosives into nanodiamond dust. This mixture is also rich in non-diamond carbon so the 

product is too small and contaminated to be useful for devices. 

 

Chemical Vapour Deposition (CVD) is currently the most effective method for 

systematically producing relatively defect free diamond. It can be performed at 

comparatively low pressures and relies on decomposition of a carbon containing gas 

compound via DC arc jet discharge, hot filament or microwave plasma [2.9-11].  

Microwave plasma enhanced CVD (PECVD) is most used today due to the precise 

controllability of plasma, relatively high growth rate and the lack of necessity for extreme 

pressure and temperature apparatus hence relatively low cost. The carbon containing gas 

(methane is standard) is diluted with atomic hydrogen which helps to stabilise diamond 
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growth as C-H bonds prevent formation of other non-diamond carbon contaminants. This 

leaves the as grown diamond crystal hydrogen-terminated at the crystal edges (and 

semiconducting in atmosphere). This occurs as dangling carbon bonds require another 

atom at the surface to become energetically stable. Hydrogen is suitable for this purpose 

and the hydrogen rich growth conditions coupled with being allowed to cool in a pure 

hydrogen atmosphere give rise to this surface termination. This termination will change to 

oxygen (insulating) when subjected to an acid clean used to remove non-diamond 

contaminants e.g. H2SO4/HNO3 or exposure to oxygen plasma. From this CVD method it 

is possible to replicate and in some cases even improve on the extreme properties of 

natural diamond. 

 

As previously mentioned diamond has a very large bandgap for a semiconductor and it 

could almost be considered an insulator. Instead however it falls in to the category of wide 

bandgap semiconductor. When discussing electronic properties any material can generally 

be classified in one of three categories: conductor, insulator or semiconductor. If many 

atoms are bought closely together to form solid crystals we can describe them via band 

theory.  

 

Quantum mechanics suggests every atom has a series of allowed energy states and when 

bought together to form a solid these will become allowed energy bands (there are still 

individual allowed energies but they are so close together they resemble continuous 

bands). The lower bands are known as valence bands (EV) where electrons are tightly 

bound to the atomic nuclei, the upper band is known as the conduction band (EC) which as 

the name suggests involves electronic conduction throughout the material. The valence 

bands and conduction bands are separated by an energy bandgap (EG). The Fermi level 

(EF) is the energy where the probability of an energy state being filled is half, which for an 

intrinsic (pure semiconductor with no impurities or 'dopants') semiconductor will be in the 

middle of the bandgap. Insulators have a full valence band and empty conduction band 

with a large bandgap, semiconductors have an almost full valence band and almost empty 

conduction band with a relatively small bandgap and conductors have lots of states filled in 

the conduction band and there is no bandgap with the conduction and valence bands 

effectively overlapping. Figure 2.1.2 shows an illustration of these bands and how they 

may be occupied. 
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Table 2.1.1 shows that for material properties directly related to high power electronics, 

diamond surpasses all of its competitors while also having competitive properties for high 

frequency operation. 

 

 
 

Si GaAs 4H:SiC GaN Natural 
Diamond 

CVD 
Diamond 

Bandgap 1.12 1.43 3.26 3.45 5.47 5.47 

Electric Breakdown 
Field (MV.cm-1) 

0.3 0.4 3 5 10 10 

Intrinsic Electron 
Mobility (cm 2.V-1.s-1) 

1450 8500 900 440 200-2800 4500 

Intrinsic Hole Mobility 
(cm2.V-1.s-1) 

480 400 120 200 1800-2100 3800 

Saturation Velocity 
(Electrons) (x107 cm.s-1) 

1 1 3 2.5 2 2 

Saturation Velocity 
(Holes) (x107 cm.s-1) 

0.6 1 1 - 0.8 0.8 

Thermal Conductivity 
(W.cm-1.K -1) 

1.6 0.46 5 1.3 22 24 

 

 

 

Table 2.1.1: Intrinsic material properties of diamond compared to other 
semiconductors [2.12-14]. Note that 4H:SiC values are quoted as it is the form of 

silicon carbide shown to have highest mobility [2.15] 

Figure 2.1.2: Band makeup and occupation in insulators, 
semiconductors and conductors 
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The thermal conductivity of 24 W.cm-1.K-1 at room temperature for diamond is perhaps 

one of the most attractive features which again stems from the tightly packed lattice 

structure which transmits lattice vibrations (or phonons) efficiently. This thermal 

conductivity is almost five times larger than SiC and almost twenty times larger than GaN. 

Diamond's intrinsic low-field mobility is also much larger than its competitors which is 

important to produce low resistance access regions and fast acceleration to saturation 

velocity in a device. Although mobility is traditionally linked to high frequency operation, 

transistors are typically operated at high-field so we also care about saturation velocity and 

this too has a competitive value. Velocity saturation data for holes in GaN is not presented 

as p-type doping is still difficult to achieve with good activation [2.16]. SiC saturates near 

its breakdown field making velocity saturation difficult to achieve in reality [2.13]. 

Diamond saturation velocity is not only high but it saturates at an electric field of ~10 

kV.cm-1 - well below the breakdown field giving it lots of potential for high power 

operation [2.13]. Aside from these device related properties diamond has other features 

that make it desirable such as a low dielectric constant of 5.7 in comparison to 9.7 for GaN. 

This makes it desirable for RF electronics as a lower dielectric constant can give lower loss 

to the substrate making circuit elements such as transmission lines perform better [2.17-

18]. Diamond is also transparent from the far infra-red to deep ultra-violet part of the 

electromagnetic spectrum making it suitable for many optical applications [2.13].  Finally 

diamond is famously renowned for its mechanical strength which comes from its bonding 

and structure as discussed previously making it robust and inert in terms of both chemistry 

and radiation. This structural strength unfortunately hinders diamond when it comes to 

doping for electronic applications however as we shall see in the next section. These 

fantastic properties are not all possible in natural stones, for example defects will hinder 

carrier transport and lower intrinsic mobility [2.13].  

 

There are several straightforward expressions devised to directly compare semiconductor 

materials for purpose. Johnson's figure of merit is shown in equation 2.1.1 and shows the 

power-frequency product for high frequency and high power transistor operation where EB 

is the breakdown field and vs the saturation velocity [2.19]. Keye’s figure of merit is 

shown in equation 2.1.2 and describes the thermal limit of the frequency performance 

where χ is the thermal conductivity, c the speed of light and and ε0 the dielectric constant of 

the semiconductor [2.20]. Finally Baliga’s figure of merit is shown in equation 2.1.3 and 

describes material parameters to show the conduction loss in power FETs at low frequency 
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where conduction loss dominates (higher frequencies need to account for switching losses) 

µ represents mobility and EG the bandgap of the semiconductor [2.21]. 
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Table 2.1.2 shows a normalised comparison (silicon being set to 1) of these figures of 

merits again for SiC, GaN and diamond and it is clear diamond can exceed all its 

competitors. Figure 2.1.3 shows a single crystal CVD diamond sample to scale grown from 

an HPHT seed and the grains visible in a polycrystalline diamond sample also grown via 

CVD but without a diamond seed. 

 

 4H:SiC GaN Natural Diamond CVD Diamond 
Johnson’s FoM 410 280 8200 8200 

Keye’s FoM 5.1 1.8 32 32 

Baliga’s FoM 290 910 882 17200 

 

 

 

   

 

 
Figure 2.1.3: Single crystal diamond sample showing scale (left), polycrystalline 

diamond grains seen via dark field microscopy at 5x magnification (right) 

Table 2.1.2: Comparison of wide bandgap semiconductors in terms of 
power device figures of merit (normalised to silicon being 1) [2.13] 
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The major challenges left in synthetic diamond growth today are reducing its cost to make 

it a more competitive technology as well as the ability to produce large area single crystal 

material. This is difficult as the CVD process requires a natural diamond seed (usually 

from costly HPHT synthesised material). There is an alternative lower cost solution, 

polycrystalline diamond can be grown heteroepitaxially on many substrates and has 

already found uses in coatings for cutting tools among other mechanical functions. 1 inch 

diameter wafers grown on silicon substrates have been demonstrated and the diamond 

itself is of a high quality although it is found in grains of a few nm to ~100 µm [2.22]. It is 

possible to fabricate individual electronic devices within these grains but it would seem 

unsuitable for amplifier or circuit fabrication as between the diamond grains are boundaries 

containing conductive graphite and amorphous carbon. More research needs to be done but 

it has been suggested these boundaries inhibit diamond's superb thermal conductivity and 

may do the same electrically. 

 

2.2 Doping Diamond 

Doping a semiconducting material traditionally involves introducing impurity atoms in to a 

solid with either donor atoms, which contain an excess of electrons compared to the 

intrinsic material for n-type doping (shifting EF towards the conduction band), or acceptor 

atoms which have a deficiency of electrons and accept electrons from the original lattice 

creating positively charged holes for p-type conduction (shifting EF towards the valence 

band). As carbon is in group IV of the periodic table group III elements would be natural 

acceptors and group V elements donors. Doping of diamond in a conventional manner has 

proved extremely difficult to date due to the strong bonds and short inter-atomic spacing 

that gives diamond its immense mechanical strength [2.13]. Ideally, when attempting to 

dope a semiconductor the aim is to achieve substitutional doping where an atom of the 

original lattice (in this case carbon) is replaced or 'substituted' by a dopant atom. Another 

possibility is interstitial doping where dopant atoms lay between the original lattice atoms. 

If an attempt is made to insert a relatively large atom such as arsenic in to the diamond 

structure, it will disrupt the lattice, diminishing the desirable properties that were there in 

the first place. So this limits doping candidates to smaller sized atoms such as boron, 

nitrogen and phosphorous. It would take very large temperatures to achieve diffusion of 

dopant atoms in diamond (~1500° C for nitrogen) and in any case these temperatures 

would cause graphitisation of the diamond [2.23]. Ion implantation requires a post-implant 

anneal to ‘heal’ lattice defects which again would lead to graphitic growth or amorphous 
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carbon regions which compensate the charge carriers from doping and also places strain on 

the lattice.  

 

One idea is to include dopant materials in the original diamond growth i.e. inserting boron 

gas during CVD. Boron is a common impurity found in natural diamonds and gives them a 

blue colour [2.24]. It is the shallowest acceptor currently known for diamond with 

activation energy of 0.37 eV. This is too large to be useful for room temperature operation 

unless heavily doped (> 1018 cm-3), at this point hopping conduction between impurity 

atoms occurs rather than conventional band conduction [2.25]. Boron doped diamond can 

also be made semi-metallic if doped to concentrations > 1020 cm-3 [2.25]. As illustrated in 

Figure 2.2.1 the lower the activation energy the closer the dopant energy state to either the 

valence (p-type) or conduction (n-type) band, 0.37 eV is over a third of the bandgap of 

silicon and requires a large amount of thermal energy to activate.  

 

 

 

 

 

N-type doping has even tougher challenges to overcome with nitrogen having a donor 

activation energy of 1.7 eV [2.13]. Phosphorous is lower but still challenging at 0.6 eV 

[2.13]. Sulphur is a potential candidate which is still under some debate, being a group VI 

element it has the potential to be a 'double donor' although practical experiments have yet 

to produce conclusive proof of theoretical predictions [2.26]. Similarly arsenic has 

predicted activation energy of 0.4 eV but there is little empirical evidence to confirm this 

Figure 2.2.1: Boron activation in diamond 
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to date and antimony is predicted to be 0.3 eV but the antimony atom is much larger than 

the carbon atom it is trying to displace and as such is not suitable [2.26]. Aluminium is also 

predicted to be an electron acceptor at 1 eV but again is a relatively large atom with higher 

activation energy than boron [2.27]. Impurity complexes such as an individual nitrogen 

atom bonded to four silicon atoms or nitrogen-hydrogen-nitrogen have also been suggested 

from theoretical modelling with donor energies as low as 0.09 eV but again there is little to 

no proof of any experimental success and it is possible these complexes are insoluble in 

diamond [2.28-29]. There have also been some controversial results involving boron-

deuterium complexes which are as yet not widely accepted [2.30]. 

 

Boron remains the shallowest conventional dopant in diamond but the need for high 

doping concentrations hampers the carrier mobility. A solution which has seen success in 

III-V FET structures is 'delta-doping' and the natural candidate in diamond would be 

boron. The principle involves a thin (ideally one atom thick) layer of boron atoms grown in 

the diamond so the wave function of the charge carriers overlap in to the intrinsic diamond 

and hence a large percentage of charge is physically separated from the boron atoms and 

moved into the intrinsic diamond as seen in Figure 2.2.2. However in reality, doping 

profiles are currently around 1 nm wide and while Hall mobility of 900 cm2.V-1.s-1 has 

been observed room temperature conductivity mobility and field effect mobility is only 1-4 

cm2.V-1.s-1 seriously hampering the potential of devices using this technique [2.31].  

 

 

 

 Figure 2.2.2: Delta-doping profile 
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As grown surface termination of CVD diamond tends to be hydrogen-terminated but may 

easily become oxygen-terminated after being subjected to an acid surface clean [2.32]. 

This oxygen-termination is stable with regards to elevated temperature or chemical 

exposure and is typically used for delta-doped devices. The hydrogen-termination is also 

relatively stable and will remain unless heated to > 800˚ C or subjected to oxygen plasma 

[2.32]. A clean non-terminated diamond surface in vacuum has an ionisation potential (IP) 

of 5.9 eV, this being the energy required to remove an electron from the valence shell of an 

atom and ionise it. Its electron affinity (χ) is 0.4 eV, this being the energy required to 

remove one electron from the conduction band and ionise it [2.33]. This is illustrated 

diagrammatically in Figure 2.2.3. 

 

 

 

 

 

 

Oxygen-termination of the diamond surface raises its ionisation potential to 7.2 eV with χ 

of 1.7 eV [2.33]. Hydrogen-termination however lowers the ionisation potential to 4.2 eV 

resulting in a negative χ (NEA) of -1.3 eV [2.33]. This implies the vacuum level (an energy 

level defined somewhere outside the material where potential to confine electrons has 

become effectively zero so they have become ionised) actually lies below the conduction 

band energy, meaning electrons near the surface will readily leave or at least no substantial 

barrier impedes them from doing so. The energy band diagrams for oxygen and hydrogen-

terminated diamond are shown in Figure 2.2.4.  

 

 

 

Figure 2.2.3: Energy band diagram of clean 
diamond surface 
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This has shown promise in the potential use of hydrogen-terminated diamond as a cold 

cathode electron emitter but may also find use in active electronic devices. A form of 

doping using this effect known as 'surface transfer doping' is currently a popular topic of 

research and the focus of the devices presented in this thesis. Diamond is unique in that 

changing its surface termination can alter χ by up to 3 eV. Normally H-termination raises 

IP in semiconductors, hydrogen-terminated diamond has the lowest IP of any 

semiconductor as shown in Figure 2.2.5 [2.33]. 

 

 

 

Figure 2.2.4: Energy band diagram of H-terminated 
(left) and O-terminated (right) diamond surface 

Figure 2.2.5: Comparison of semiconductor 
electron affinities (blue) and bandgaps (red) 
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2.3 Surface Transfer Doping 

The NEA found in hydrogen-terminated diamond can be utilised as a doping mechanism 

with the aid of suitable electron accepting materials with high electron affinities. These 

materials will accept electrons from the surface much like a conventional p-type dopant 

would from a bulk material leaving behind a thin layer of holes ~ 10 nm below the 

diamond surface [2.34]. This layer is so thin it behaves as a quasi-two-dimensional hole 

gas (2DHG) similar to the two dimensional electron gas (2DEG) found in modulation 

doped III-V heterostructures. The best FET performance seen in diamond so far has been 

achieved using the surface transfer doping method [2.35].  

 

The initial discovery of surface transfer doping was somewhat unexpected. Researchers 

Ravi and Landstrass reported seeing the conductivity of diamond raise by ten orders of 

magnitude when exposed to hydrogen plasma and subsequently exposed to atmospheric 

conditions, but this leap in conductivity could be reversed by a mild anneal of ~300º C 

[2.36]. It has since been proven that atmospheric molecules will adsorb on to the hydrogen-

terminated diamond surface and instigate surface transfer doping as seen in Figure 2.3.1 

[2.1]. At this point it is important to note hydrogen-termination alone is not enough for 

surface transfer doping and that a suitable surface acceptor material must be present for the 

diamond valence band electrons to transfer to. 

 

 

 

 

Figure 2.3.1: Illustrated charge transfer from diamond to 
aqueous layer with associated band diagrams 
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Although today it is widely accepted that atmospheric particles play the role of electron 

acceptors in this surface transfer doping process it is still not entirely clear how. The low 

ionisation potential of hydrogen-terminated diamond still requires electron acceptors to 

have electron affinities > 4.2 eV so that the lowest unoccupied molecular orbital (LUMO) 

aligns close to or below the diamond's valence band instigating conditions suitable for 

electron transfer. No commonly found atmospheric particle has anything close to this 

figure, in fact most are below 2.3 eV [2.1]. 

 

Rather than a simple electron transfer from diamond surface to adsorbate an 

electrochemical interaction is thought to be at work. F. Maier et al have suggested a thin 

aqueous wetting layer of various atmospheric particles forms on the surface and redox 

reactions between this and the diamond surface give rise to the electron transfer 

mechanism as shown in equation 2.3.1. [2.1] 

 

OHHdiamondOHdiamond 22
2

3 22 ++→←+ ++

  2.3.1 

 

Further calculations by Maier involving the Nernst equation have shown the chemical 

potential of this hydronium redox couple to be between -4.2 and -4.3 eV assuming the 

aqueous layer pH is between 5 and 7 [2.1]. This chemical potential (µe) lies slightly below 

the valence band of hydrogen-terminated diamond allowing electrons to leave the diamond 

to balance energy until charge neutrality is reached and the chemical potential and 

diamond Fermi level align as pictured in Figure 2.3.1. This gives spatially separated holes 

and electrons and an electrostatic potential between them and band bending occurs at the 

hydrogen-terminated diamond surface. It is possible even for the Fermi level to dip below 

valence band leaving a degenerate semiconductor and the quasi-2DHG if the surface 

transfer doping is particularly efficient and produces a high enough hole concentration. 

 

At this point it may be pertinent to ask again why this happen in only hydrogen-terminated 

diamond and no other semiconductor materials. Looking back at figure 2.2.5 no other 

candidate has the suitable valence band maximum to align with this µe. Even so hydrogen-

terminated diamond has an unpinned Fermi Level due to dangling bonds being reduced to 

such a level that surface states are low enough they are below the Mott-Schottky limit, this 

allows for surface band bending and charge transfer at the interface [2.2]. Although 

currently the best description for the interaction between atmospheric adsorbate molecules 
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and hydrogen-terminated diamond this model is far from complete. Other atmospheric 

molecules such as hydroxyl ions and ozone have also been suggested as candidates for 

similar aqueous redox reactions [2.37].  

 

The sub-surface conductivity of surface transfer doped diamond samples measured by F. 

Maier et al are similar to those originally measured by Ravi and Landstrass ~ 10-4–10-6 

S.m-1 (up ten orders of magnitude from ~ 10-16 S.m-1 for insulating oxygen-terminated 

diamond surfaces) at room temperature [2.36]. Surface sheet carrier concentration typically 

ranges from 1012-1013 cm-2 depending on efficiency of the doping [2.38] and these carriers 

tend to have a mobility between 30-70 cm2.V-1.s-1 depending on material quality but can 

reach over 100 cm2.V-1.s-1 [2.39]. This mobility value is significantly lower than the 3800 

cm2.V-1.s-1 quoted for holes in intrinsic diamond and is still a topic for debate. It is possible 

that the electrostatic potential initiated by surface transfer doping pulls the holes very close 

to the surface where they are subject to scattering and trapping processes. The sheet 

resistance of the 2DHG is typically found to be between 10 - 15 kΩ. The highest mobility 

recorded in a surface transfer doped sample to date is 335 cm2.V-1.s-1 with a carrier 

concentration of only 7 x 1011 cm-2 suggesting there may be a trade-off between the two 

values [2.40]. In principle, electrons transferred to the adsorbate molecules will also have a 

contribution to the conductivity but their mobility through the adsorbate layer will 

determine if this contribution may be neglected or not. Surface transfer doping is 

fundamentally linked to the amount of charge carriers available at the surface which in turn 

relies on the surface orientation of diamond samples as a higher concentration of surface 

atoms gives rise to more potential charge carriers. The most common form of single crystal 

diamond synthetically grown is (001) which is the orientation used in this project primarily 

because it is the easiest to grow. Others are possible however such as (111) which due to 

its crystal orientation provides a higher density of carbon atoms at the surface meaning 

potential for more carriers. These orientations are more susceptible to stacking faults and 

the creation of twin crystals during growth which are detrimental to carrier transport 

[2.41].  

 

The main drawback and perhaps the main factor limiting transfer doped diamond 

becoming commercially viable for devices presently is its inherent instability. Adsorbate 

particles will desorb from the surface at > 250º C and although they will eventually return 

when re-exposed to the atmosphere there is an urgent need for a suitable ‘passivation’ 



 Chapter 2 – Diamond Field Effect Transistors (Theory)                   21 

process to encapsulate the diamond surface to prevent degradation during operation [2.1]. 

This is especially true as diamond is considered a promising candidate for high power 

electronics and operation in extreme environments both of which are not possible with this 

current atmosphere dependent process. An alternative is the use of suitably high χ materials 

for electron accepting as a replacement for the atmospheric molecules route, this could 

perhaps be used in conjunction with an encapsulation layer. 

 

2.4 Alternative Electron Acceptors and Dielectric Coatings 

As touched upon in the previous section surface transfer doping does not necessarily have 

to rely upon a chemical reaction at the diamond surface. The basic principle is more 

straightforward in that because hydrogen-terminated diamond has a uniquely low 

ionisation potential and minimal interface state density, it is possible to match it to a 

material with χ ≥ 4.2 eV and instigate electron transfer to the materials lowest unoccupied 

molecular orbital (LUMO) or conduction band minimum as seen in Figure 2.4.1 [2.3].  

 

 

 

 

 

 

 

This is a recent development in diamond electronics research and the only materials to see 

any substantial investigation thus far have been fullerenes [2.3]. These are another 

allotrope of carbon featuring carbon atoms arranged in the sp2 configuration like graphite 

but instead of being in stacked sheets they are arranged in a spherical structure as shown in 

Figure 2.4.2. 

 

 

Figure 2.4.1: Band diagrams of charge transfer from 
diamond to an organic electron accepting material 
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Fullerenes have already seen success as electron accepting materials when employed in 

organic electronic polymer structures for applications such as polymer solar cells [2.42]. In 

terms of chemistry they are strongly oxidising which would imply they have a high χ 

[2.42]. There is some debate as to the exact value for χ for a C60 molecule. Values have 

been quoted in the range 2.7 - 3.3 eV but even for the upper bound this is still well below 

the 4.2 eV threshold. It is however generally accepted that when combined into a solid 

(fullerite) the value for χ raises by ~ 1.3 eV making it viable at high levels of coverage 

[2.33]. 

 

As well as pure carbon fullerenes it is also possible to fluorinate these molecules (adding 

fluorine atoms on to the basic C60 sphere) to varying degrees. The more fluorine atoms that 

are added the greater the χ becomes due to the high χ of fluorine. C60F48 is the most highly 

fluorinated form of an individual C60 molecule that has been synthesized thus far [2.43]. 

This has χ of ~ 4 eV (increasing to ~5 eV when combined in to solid fullerite) and can 

instigate surface transfer doping on roughly a 1:1 basis i.e. each C60F48 molecule accepts an 

electron until saturation which is reached with a single mono-layer coverage of C60F48 

giving sheet carrier concentrations in excess of 1013 cm-2[2.43]. 

 

Some investigation into other organic materials using photoelectron spectroscopy (PES) 

has begun with a recent review by W. Chen et al detailing preliminary results for 

Figure 2.4.2: A C60 molecule of the carbon allotrope 
fullerene, other examples exist such as C70 
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pthalocyanine (CuPc), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) 

and 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules with χ of 2.7, 5.24 and 4 eV 

respectively [2.44]. As expected F4-TCNQ and TCNQ instigated surface transfer doping 

whereas CuPc does not. This leaves a tantalisingly vast array of possibilities to be explored 

with plenty of other high χ organic and potential inorganic materials yet to be investigated. 

The only caveats are the material needs to possess sufficiently high χ, have enough states 

in its LUMO or valence band to accept carriers, be non-conducting in isolation and be 

stable in atmosphere. There are however other factors to be considered in practice as 

different interfaces may lead to different levels of charge trapping and reliability however 

the potential is clear. 

 

Although these alternative electron accepting materials have seen success in replicating the 

surface transfer doping process, stability of conduction through the 2DHG still remains an 

issue for investigation. Fullerenes are arguably no more stable than atmospheric particles 

on the diamond surface once the surface is heated > 250º C [2.45]. They will sublimate at 

only a few hundred degrees centigrade (even lower for the more highly fluorinated case) 

and are as yet untested in terms of electronic device characterisation, it is still unknown if 

these molecules will leave the sub-surface holes mobile enough to produce currents 

suitable for FET devices. An inorganic material may be a better choice in terms of stability 

and if an organic (or atmospheric) molecule is still deemed best it would be prudent to find 

a suitable dielectric material to encapsulate this to ensure stability of device performance. 

So far no conclusive evidence has been found to suggest any dielectric alone can preserve 

the surface conductivity sufficiently. The problem lies in the fact that deposition 

temperatures for potential encapsulation materials are generally high (~800º C for a 

technique such as metal organic chemical vapour deposition (MOCVD)) so preliminary 

research in to AlN was limited [2.46]. However recent research in to low temperature 

atomic layer deposition (ALD) of aluminium oxide (Al2O3) has shown some promise 

[2.47]. 

 

2.5 Semiconductor Theory 

As surface transfer doping initiates a p-type doping in diamond, this section and beyond 

will attempt to address mainly hole rather than electron transport in semiconductors 

although in some cases it is far more intuitive to derive expressions using the electron. A 

hole behaves like a missing electron and can be modelled simply as an electron with 
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positive charge. The mass of an electron in free space (m0) = 9.11 x 10-31 kg but this is not 

quite the case in a semiconductor crystal as both electrons and holes are not 'free', they are 

confined by a potential arising from the atomic nuclei. When confined in a crystal lattice, 

carriers can be modelled semi-classically to behave like a free electron but with an altered 

mass depending on the carrier’s position within the conduction or valence band. Holes are 

of course imaginary. It is just simpler to model the lack of a single electron (hole) in the 

valence band rather than the movement of electrons but when discussing the effective mass 

of a hole we are in fact talking about the acceleration of a hole related to the imaginary 

force on it from the effective mass. Effective mass (m*) can be shown to be [2.48]: 
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Where ћ is the reduced Planck constant, E energy and k wave number (which is 

momentum divided by ћ. This does in general give a positive effective mass for holes with 

effective mass increasing far from the band edge as it relies on the curvature of the band. 

Effective mass can be graphed as a parabola remembering this is a basic picture as it makes 

some assumptions. For example it ignores anisotropy in the crystal and assumes all carriers 

are towards the bottom of the conduction band or top of the valence band. 

 

 

 

 

 

The two mechanisms through which a hole may travel through a semiconductor are 

labelled diffusion and drift. Diffusion arises from thermal energy which allows carriers to 

Figure 2.5.1: Energy bands from modelling effective mass (left) 
and in pure diamond (right) [2.49] 
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travel in any direction, however they will tend to diffuse from densely populated regions to 

those of lower population density as thermodynamics dictates; this will produce a small 

diffusion current. 

 

Drift involves charge carriers moving under the influence of an electric field such as that 

applied between the terminals of an electronic device. Holes will move in the same 

direction as the field (towards the negative terminal) whereas an electron would travel 

against it producing a total drift current. When this external electric field is applied each 

individual hole experiences a force (F) due to it. The hole will travel through the 

semiconductor until it comes under the influence of a scattering mechanism. The average 

distance the hole will travel before being scattered is known as its mean-free path (λ) and 

the average time between scattering events is the mean free time (τc).  Scattering can be 

due to many factors which can be hard to discern from each other as they will be occurring 

all at once hence why a mean free time for all scattering events is used.  

 

Some of the more important scattering mechanisms are defect scattering, surface 

scattering, ionised impurity scattering and phonon scattering from lattice vibrations (any 

lattice above absolute zero will vibrate to a certain extent just from thermal energy). 

Surface scattering will be particularly relevant for surface transfer doped diamond and 

especially so in an FET device where carriers are confined to a narrow channel close to the 

surface. Low frequency phonons are known as ‘acoustic phonons’ and high frequency are 

‘optical phonons’. From this knowledge carrier effective mass may now be related to the 

velocity at which carriers may travel through that crystal (v) this is given by [2.50]: 

 

*m

Eq
v cτ

=       2.5.2 

 

Where q is the elementary charge, E is now the electric field strength and τc the combined 

momentum relaxation time for all scattering processes. Again this velocity is positive due 

to holes travelling with the field. The ratio of the drift velocity to the electric field is known 

as the carrier mobility i.e. how velocity of carriers changes with electric field strength 

(under low electric fields).  
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*m

q cτµ =        2.5.3 

It is worth noting that holes have lower mobility than electrons in general as they relate to 

carriers confined to the valence band hence subject to more obstruction from lattice 

vibration and attraction to atomic nuclei. This is also why hole effective masses tend to be 

higher. So when possible it is always desirable to use electrons as charge carriers in 

unipolar electronic devices. 

 

Although mobility is a useful figure in general to describe the transport of charge, for 

devices driven at higher bias and hence high electric field, the velocity saturation 

mechanism for charge limits its usefulness in predicting device performance, which is 

more related to saturation velocity. In fact it is necessary for the field to be as high as is 

possible without impacting device reliability for high power applications. The above is 

satisfactory to describe the region of operation where velocity increases linearly with field 

(known as the linear region of operation in a transistor) however as field increases so does 

the amount of scattering. Optical phonons occur more often at high fields as carriers now 

contain enough energy to instigate lattice vibrations themselves. This begins to severely 

hamper charge transport as phonons travel with high momentum and reduce carrier 

velocity greatly meaning there is no longer a linear velocity increase with field and hence 

velocity becomes independent of mobility. Eventually this leads to impact ionisation where 

charge carriers can collide with impurities and other lattice atoms with enough energy to 

ionise carriers and cause breakdown although fortunately in diamond this does not occur 

until 10 MV.cm-1 in theory. 

 

Velocity saturation can be modelled as a result of the energy loss to the optical phonons. 

This is a complex interaction but can be shown if accounting for only optical phonon 

emission to be [2.51]: 
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Where Eop is the optical phonon energy, kB the Boltzmann constant and T being absolute 

temperature. In diamond carrier velocity saturates at 2 x 107 and 0.8 x 107 cm.s-1 for 

electrons and holes respectively. These are relatively high values due to a very high Eop 
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(163 meV) [2.51] arising from the strong bonding and low atomic mass of carbon also a 

low effective mass for carriers.  

 

As charge carriers move temporarily into a region of different electric field (i.e. beneath a 

gate contact) then an effect known as velocity overshoot may also occur where the charge 

carrier’s momentum relaxation rate is slower than its energy relaxation rate [2.52]. This 

effect allows for charge carriers to temporarily exceed the saturation velocity in the 

material. It is feasible that this phenomenon could occur in the short gate length devices 

presented in this work as carriers reaching the gate region will already have a substantial 

velocity [2.52]. 

 

2.6 Metal-Semiconductor Interfaces 

In semiconductor devices, charge is also required to cross over interfaces between the 

semiconductor and metals in the form of an ohmic contact or leave the surface of the 

semiconductor completely and in to free space becoming ionised. It is also possible to 

accumulate or deplete regions of charge in the semiconductor with Schottky barrier 

contacts, giving us the ability to control the magnitude of current through devices leading 

to the field effect devices that have revolutionised electronics.  

 

When charge carriers reach such interfaces, they encounter many differences to the bulk 

material such as non-periodicity, contamination and imperfections which lead to surface 

states different to the bulk lattice. As discussed in Section 2.3 hydrogen-termination of a 

diamond surface leaves the Fermi level unpinned, this means surface states are reduced to 

the point that allows the bands to bend so the semiconductor Fermi level will match the 

metal work function (assuming thermal equilibrium). This simplifies current transport 

across metal-semiconductor interfaces a great deal. If there is a substantial difference 

between metal work function φM and that of the semiconductor φS before contact is made a 

Schottky barrier (φB) is formed as electrons diffuse from the metal into the semiconductor 

setting up an electrostatic potential which prevents further flow similar to the potential 

ensuing from surface transfer doping as seen in Equation 2.6.1 where Ec is conduction 

band energy, q the elemental charge and χ the electron affinity [2.53]:  
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The band bending experienced by a p-type semiconductor when metal and p-type 

semiconductor are brought in to intimate contact can be seen in Figure 2.6.1 

 

 

 

 

 

 

This can be seen in terms of hole transport as holes drifting deeper in to the semiconductor 

material which leaves behind ionised acceptor atoms (a surplus of negative charge) and 

forms a depletion region (lack of majority carriers in this case holes) near the interface in 

the semiconductor. The built in potential (Vb) is then the amount of band bending 

instigated by contact shown in Equation 2.6.2 [2.53]: 

 

MSbV ϕϕ −=       2.6.2 

 

There is of course a small volume of electrons transferred from the metal to semiconductor 

during the diffusion and instigation of Vb, but compared to the density of charge carriers 

Figure 2.6.1: Metal-Semiconductor (p-type) energy band diagrams in 
isolation (above) and after contact and barrier formation (below) 
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present in a typical metal this is negligible in terms of the energy band diagram. The 

depletion width into the semiconductor is represented by W which is intrinsically related to 

the doping concentration in the semiconductor and the built in potential [2.53]: 
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     2.6.3 

 

Where εSC is the semiconductor permittivity and Nd the doping concentration. This contact 

is commonly known as a Schottky contact and is used in a FET to deplete/accumulate 

charge depending on the bias conditions. If a positive potential (Vap) is applied to the metal 

with respect to the semiconductor (reverse bias) the bands are pulled further upwards and 

the barrier will increase as the depletion width is extended and holes are pushed further in 

to the semiconductor leaving more ionised acceptors as shown in Figure 2.6.2.  

 

 

 

 

 

If a negative Vap is applied (forward bias) this pulls the bands down which acts to lower the 

barrier and accumulate holes towards the interface as shown in Figure 2.6.3. It is worth 

noting here this is a simplification of what is seen in the FETs discussed in this work as the 

situation is complicated somewhat by the interface arising from the adsorbed atmospheric 

layer. 

 

 

Figure 2.6.2: Metal-Semiconductor energy band diagram in reverse bias 
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If charge is to travel across the metal-semiconductor interface to give a net flow of holes 

moving from semiconductor to metal (or analogously electrons from metal to 

semiconductor) and hence current is to flow, the carriers need to overcome the Schottky 

barrier somehow. There are three methods of achieving this: thermionic emission, field 

emission and thermionic field emission and while these often occur somewhat in unison, 

they are more or less likely depending on the barrier heights and widths. These are shown 

in Figure 2.6.4. 

 

 

 

 

Figure 2.6.3: Metal-Semiconductor energy band diagram in forward bias (below) 

Figure 2.6.4: Methods of transport across a p-type Schottky barrier 
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Thermionic emission involves charge which has enough thermal energy to pass over the 

top of the Schottky barrier so kBT ≥ qφB. The thermionic emission current density across 

the barrier at any specific bias can be shown as an Arrhenius relationship [2.54]: 
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Hence thermionic emission increases exponentially with temperature or with lower barrier 

height. Conversely field emission occurs if the Schottky barrier is thin enough so that 

quantum mechanical tunnelling of carriers through the barrier may take place. The thermal 

energy of carriers is not relevant in these circumstances and a tunnelling probability (E00) 

is defined which is strongly depends on barrier width [2.54].  
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Nd being dopant density and εS semiconductor permittivity. The dependence on N means 

this phenomenon is found in more highly doped structures making this more likely to occur 

in a highly doped contact region. With the tunnelling current density being [2.54]: 
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Finally thermionic field emission is a combination of the two previous transport methods. 

It is found where a barrier is too high for thermionic emission and too wide for field 

emission yet carriers may on occasion obtain enough thermal energy to reach a point where 

they can tunnel through the barrier. The thermionic field emission current density can be 

shown to be [2.55]: 
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The total current density across the Schottky barrier takes the same form as a diode [2.54]: 
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With η being the diode ideality factor and J0 the saturation current density. So long as kBT 

is >> E00 thermionic emission dominates but if kBT ~ E00 thermionic field emission needs 

to be accounted for and when kBT << E00 field emission becomes the dominant mode of 

transport across the barrier with the precise details of this mechanism becoming quite 

complex and beyond the scope of this thesis. 

 

Ohmic Contacts take their name from Ohm's law and they are so named as the current 

response between semiconductor and metal is linear with applied voltage. This means 

strictly speaking they should not involve thermionic emission as it is a non-linear process. 

So in general ohmic contacts tend to be made on very highly doped regions of 

semiconductor where the Schottky barrier has become so thin as to allow for field emission 

to occur in both directions between metal and semiconductor. Hydrogen-terminated 

diamond however has low enough surface states to avoid Fermi level pinning so choosing 

a high work function metal will produce an ohmic contact [2.2]. 

 

2.7 MESFET Operation 

MESFETs fabricated on surface transfer doped hydrogen-terminated diamond constitute 

the bulk of the work presented in this thesis. As seen in Figure 2.7.1 the design of a 

MESFET device utilising the hydrogen-terminated diamond surface is in principle 

conveniently simple. From the knowledge of carrier transport obtained in sections 2.5 and 

2.6 as well as the surface transfer doping phenomenon described in section 2.3 it is now 

possible to build up a picture of how this device functions. 

 

The MESFET has two ohmic contacts labelled source and drain between which a bias is 

applied to move charge from the source to the drain. There is a Schottky contact placed 

between these labelled the ‘gate’ which is used to modulate current transport within the 

FET. 



 Chapter 2 – Diamond Field Effect Transistors (Theory)                   33 

 

 

 

 

 

There are several reasons for using a MESFET design, originating from both design 

specifications and material limitations. For example, diamond has no native oxide making 

traditional metal-oxide-semiconductor field effect transistors (MOSFETs) impossible. It is 

thus necessary to ensure current can be controlled within the device but without significant 

charge leaking through the gate metal contact. As touched upon when discussing metal-

semiconductor interfaces, because hydrogen-terminated diamond falls below the Mott-

Schottky limit with respect to interface state density, it is possible to tailor metals for 

purpose depending on their work function. Hence a gate contact may be achieved by using 

a low work function metal such as aluminium (4.26 eV) which will create a significant 

Schottky barrier and allow for current modulation without significant leakage current. 

Also, an ohmic contact may be achieved by choosing a high work function metal such as 

gold (5.1 eV) with contact resistance typically between 2-5 Ω.mm [2.2].  

 

Current modulation between source and drain is achieved by applying a voltage between 

the gate and the source contacts. Upon gate contact deposition, the energy bands in the 

diamond are raised due to a built in potential between metal and semiconductor. This 

causes a depletion region the size of which for reduced gate lengths is somewhat dependent 

on the size of the contact. For the relatively small gate lengths seen in this work the contact 

does not tend to fully deplete the channel hence current will still flow at zero gate bias 

making these ‘depletion mode’ devices. Due to the p-type nature of the channel, a negative 

gate bias will cause the accumulation of charge at the surface and allowing for more 

current flow as the source contact is earthed and negative bias is applied to the drain 

Figure 2.7.1: Layout of hydrogen-terminated diamond MESFET 
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contact. A positive gate bias will deplete holes away from the interface and lead eventually 

to no current flow. The gate voltage at which drain current is reduced to a small enough 

value to define the device as ‘off’ is known as the pinch-off voltage (VP) (or threshold 

voltage in traditional silicon CMOS devices). In effect the gate acts as one side of a 

parallel plate capacitor to accumulate or deplete charge on the other side (the 

semiconductor) to either increase or decrease the resistance of the channel region beneath 

it. Figure 2.7.2 shows how current in the FET channel responds to this modulation in an 

idealised case. 

 

 

 

 

 

The linear region can be seen to the left where velocity of charge is still linearly increased 

with applied electric field. This continues until the knee voltage (Vn) is reached and the 

characteristics become saturated due to velocity saturation. Current then remains constant 

with respect to increased source-drain voltage until breakdown (Vbr) is reached and the 

device becomes irreversibly damaged from impact ionisation or another method of 

breakdown. For example in surface channel MESFETs utilising atmospheric adsorbate 

molecules, their instability upon the surface may lead to premature breakdown before 

impact ionisation occurs within the intrinsic diamond. 

 

Figure 2.7.2: Ideal Ids-Vds characteristics for p-type MESFET 
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There are several reasons why FET Ids-Vds data from real devices may differ from the ideal 

case presented in Figure 2.7.2. For example gate current leakage through the Schottky 

barrier will significantly distort the results around the origin i.e. significant current is still 

flowing even at Vds = 0 but between the gate and channel. If this becomes a critical 

problem it may be worth considering the deposition of a dielectric material between metal 

and semiconductor to create a metal-insulator-semiconductor FET (MISFET). There is 

currently some debate as to the existence of an interfacial layer between the aluminium 

gate metal and semiconductor surface in surface transfer doped diamond FETs [2.56]. In 

addition it is unclear if the aqueous atmospheric layer remains during the deposition 

process and hence forms an interfacial layer with different properties to pure aluminium. 

 

Another issue is the existence of higher electric field towards the drain side of the FET. 

This arises from a large potential difference between the gate and drain terminals and can 

lead to the possibility of buffer leakage through small amounts of residual boron in bulk 

diamond or at least the trapping of charge [2.57]. This can also cause premature breakdown 

at applied fields much lower than the intrinsic material breakdown field. Because of 

localised increases in electric field, carrier concentration becomes non-uniform and carriers 

can reach very large velocities in certain regions. It is worth noting in regards to 

breakdown that these surface transfer doped FETs depend intimately on the adsorbate layer 

which is far more likely to impact device operation before breakdown of the bulk diamond 

is reached. 

 

When designing short gate length devices there will at some point be a limit at which the 

gate can no longer fully deplete the channel with an applied bias and hence pinch-off 

cannot be reached. This results in what is known as short channel effects. It is also true that 

the effective channel length (the region of influence the gate has over the semiconductor) is 

different to the physical length of metal deposited it can differ by potentially tens of 

nanometres giving a larger (or even smaller if the aluminium gate contact becomes 

oxidised) depletion region than expected. 

 



 Chapter 2 – Diamond Field Effect Transistors (Theory)                   36 

 

 

 

The slope in the linear region of the Ids-Vds characteristics may be used to extract on 

resistance (RON). This comprises a combination of resistances throughout the device as 

shown in Figure 2.7.3. The resistance of the channel directly beneath the gate in what is 

known as the intrinsic part of the device combined with the sum of contact and sheet 

resistance through the contact and semiconductor material respectively (collectively 

termed access resistance) present in what is described as the extrinsic region of the device 

make up RON. It is important when discussing the merits of device performance to 

distinguish between intrinsic and extrinsic device figures of merit. 

 

2.8 DC Figures of Merit 

After fabrication of FET devices is complete there needs to be a method of judging exactly 

how well they perform. This can be split in to two sections - the DC figures of merit and 

the RF figures of merit (to be presented in the following section). 

 

An important metric of DC performance is the total drive current that can be passed 

through the device between source and drain terminals. The total current beneath the gate 

contact can be related to the two dimensional charge density present in the device channel 

(n), the charge velocity (v) and the device width (WG): 

 

  vnqWI g=       2.8.1 

 

As has been discussed, v varies with field up until saturation so the saturation current 

varies depending on the amount of charge and the device dimensions. With the ability to 

Figure 2.7.3: RON in MESFET 
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accumulate and deplete charge it is important to know just how well the device is able to 

do this which can be defined via a quantity known as transconductance. Transconductance 

is defined as the rate of change of drain current (Ids) with applied gate voltage (Vgs) at 

constant source drain voltage (Vds). There are two measures of this: Intrinsic 

transconductance (gm
*) involving the charge accumulation in the gate region just 

considering gate voltage between gate and channel and extrinsic transconductance (gm) 

accounting for the applied gate voltage between source and gate contact which is subject to 

a voltage drop in the source access region.  
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Treating the gate contact and the channel as an idealised parallel plate capacitor i.e. no 

charge leaks across the barrier and permittivity does not change and assuming again a 

simplified two-dimensional model the intrinsic transconductance can be expressed as 

[2.58]: 
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      2.8.3 

 

Where h is the spacing between gate and channel charge and v is carrier velocity at the 

source end of the gate. Hence critical to achieving high transconductance is high velocity 

of carriers beneath the gate and low gate-channel separation. When considering the entire 

device, the total source access resistance becomes crucial as charge carriers will pass 

through this region introducing a drop in voltage before reaching the charge modulation 

region beneath the gate. Extrinsic transconductance (gm) after accounting for this can then 

be shown to be [2.59]: 
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High transconductance can be observed graphically as the differential of the Ids-Vgs 

response as shown in Figure 2.8.1.  
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Continued increase in drain current even after saturation due to effects such as buffer 

leakage are seen graphically as a sloped rather than horizontal saturation current as seen in 

Figure 2.8.2. This slope still relates to the resistance of the device but is now dominated by 

the resistance in the channel or alternatively its reciprocal termed the output conductance 

(gds) which is the rate of change of the drain current with respect to drain voltage at a 

constant gate voltage within the ‘saturation’ region:  
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Figure 2.8.1: Changing transconductance as seen on an Ids-Vgs plot 
for 250 nm FET 
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2.9 RF Figures of Merit and the Small Signal Equivalent Circuit  

It is possible to better understand FET operation by modelling each parameter of the 

devices as individual lumped circuit elements which combined provide an equivalent 

circuit of FET behaviour for small signals at RF frequencies.  

 

At low frequency, DC characterisation techniques may provide a realistic view of FET 

operation. However modelling the equivalent circuit tells us more about the extrinsic 

device parts and how performance alters particularly at higher frequencies.  It is then 

possible to determine exactly how each element contributes to overall performance and 

scale the device parameters suitably to improve FET figures of merit. An example of the 

RF equivalent circuit for a diamond MESFET is presented in Figure 2.9.1 with the 

individual elements described in Table 2.9.1 [2.58]: 

 

 

 

 

 

 

 

 

Figure 2.8.2: Output conductance seen graphically 
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Circuit Element Description 
Current Source (gm

*.Vgs) Model for the source-drain current modulation 
(intrinsic transconductance) controlled by voltage 
across gate capacitor. 

Source-Drain Resistance (Rds) The source-drain resistance of the intrinsic device 
Intrinsic Channel Resistance (Ri) Finite channel resistance through the distributed 

capacitance of Cgs 
Gate-Source Capacitance (Cgs) Gate capacitive coupling to channel distributed to 

the source side of the gate 
Gate-Drain Capacitance (Cgd) Gate capacitive coupling to channel distributed to 

the drain side of the gate 
Drain-Source Capacitance (Cds) Capacitance along channel due to varying charge 

carrier density 
Gate Resistance (Rg) Resistance associated with gate contact  
Gate Inductance (Lg) Inductance associated with gate contact 

Source Resistance (Rs) Resistance associated with source contact 
Source Inductance (Ls) Inductance associated with source contact  
Drain Resistance (Rd) Resistance associated with drain contact 
Drain Inductance (Ld) Inductance associated with drain contact  

Gate-Source Pad Capacitance (Cgsp) Capacitance between gate and source contacts 
Gate-Drain Pad Capacitance (Cgdp) Capacitance between gate and drain contacts 

Drain-Source Pad Capacitance (Cdsp) Capacitance between drain and source contacts 
 

 

 
Table 2.9.1: Description of equivalent circuit elements 

Figure 2.9.1: Extrinsic diamond MESFET equivalent circuit with intrinsic 
region highlighted 
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To maximise FET performance it is essential for extrinsic and external elements that act to 

impede charge flow to be as low as possible. For example to minimise extrinsic resistances 

thick layers of metal are normally deposited. However there is a trade-off between 

lowering the resistance and raising other important parasitics such as capacitance which 

will allow signal to travel between the gate and other parts of the device outside the gate 

region. In terms of the gate, multiple gate fingers can be used to reduce the total Rg 

(additional gate fingers will act as resistors in parallel, meaning the total Rg is the sum of 

the reciprocal of each finger’s resistance). This will also increase the width of the channel 

to increase maximum drive current. To further reduce Rg a T-shaped gate may be 

employed to increase cross sectional area (reducing resistance) without increasing the gate 

length as seen in Figure 2.9.2. It should also be noted that RF gate resistance as seen in the 

equivalent circuit is roughly one third of the value for DC characterisation [2.60]. 

 

 

 

 

 

 

For RF operation it is desirable for an FET to exhibit gain in terms of both current and 

power. The gain a device provides tends to decrease with frequency until a point where no 

more is given by the device. The frequency at which current gain reaches unity (ie: where 

I in = Iout) is known as the ‘Cut-Off Frequency (fT)’ the maximum frequency at which the 

Figure 2.9.2: Increase in cross-sectional gate area benefitting from a T-
shaped gate structure 
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device exhibits current gain. The difference between intrinsic and extrinsic performance 

has been touched upon already and again for RF measurement access resistances along 

with other parasitic elements will be detrimental to performance. In the case of fT 

particularly, access resistances can play a large role, so intrinsic and extrinsic fT can vary 

substantially. For the case of intrinsic fT the magnitude of the current signal input to the 

device (Iin) will be: 

 

( )gCin CfVI
g

π2=      2.9.1 

 

Where Cg is the total gate capacitance (i.e. Cgs + Cgd). The current signal flowing out of the 

device (Iout) becomes: 

 

gCmout VgI *=       2.9.2 

 

Hence when Iin = Iout intrinsic fT is given by: 
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It may be also written in terms of the average velocity of carriers under the gate and gate 

length (Lg) as shown. Hence intrinsic transconductance, gate length and total gate 

capacitance are crucial to fT and as Lg is the easiest to scale during fabrication it is easy to 

see why FET gate length is so aggressively scaled. When accounting for how parasitic 

elements can affect this frequency performance the result may be seen below for the 

extrinsic fT [2.59]: 
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This is the value as measured for the entire device. It is clear that if (Rs + Rd) is large and 

Rds is small then the extrinsic fT will be much reduced from the intrinsic value. It is likely 
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that as gate dimension is reduced, Rds will also be reduced as the output conductance 

increases due to potential short channel effects. 

The second important figure of merit for RF performance detailed here is fMAX  which is 

defined as the point where there is unity power gain (Pin = Pout). Access resistances will 

still have a negative influence over fMAX  including the gate resistance, Rg. The equation 

below describes the intrinsic expression for fMAX  [2.60]: 
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As (Rg + Ri) becomes larger and Rds smaller then the smaller fMAX  will become. As 

discussed previously a common method used to lower Rg and increase fMAX  is employing a 

T-shaped gate feature (Figure 2.9.2). This maximises the cross-sectional area of the gate 

and hence lowers its cross-sectional resistance. When extrinsic components are accounted 

for fMAX  can be shown to be [2.61]: 
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Again while other extrinsic factors play a role as with fT, Rg is perhaps the most important 

component affecting the extrinsic fMAX  figure. Also this equation is only valid for certain 

approximations. – Namely Rsgds << 1, Cgd << Cgs and Rsgm
* << 1 [2.58]. 

 

So scaling FET devices is very much a trade-off between achieving the smallest possible 

dimensions fabrication processes will allow and ensuring extrinsic components do not 

dominate the DC and RF performance. There are other RF figures applicable to high power 

measurement and although this is the ultimate goal with diamond these cannot be 

considered seriously until areas such as repeatability and stability of FETs have been 

addressed. 

 

2.10 Summary 

This chapter has provided a brief background on synthetic diamond and why it is an 

attractive material for high performance electronics. The challenges in doping have been 
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summarised with a promising solution known as surface transfer doping discussed. Having 

addressed the theoretical and basic principles of diamond FET operation in Chapter 2, the 

physical fabrication processes used to produce these devices are presented in Chapter 3. 
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3. Fabrication 
 
The scaling of electronic devices to nanometre dimensions naturally leads to the need for 

ever more advanced fabrication techniques and this becomes even more apparent when 

working with a material as challenging to process as diamond. This chapter details some 

standard tools and procedures and how they may be adapted for diamond FET fabrication, 

allowing for the production of the devices characterised in later chapters of this thesis. 

 

First there is a brief look at sample preparation and hydrogen-termination procedures, then 

electron beam lithography is investigated as an alternative to optical UV lithography for 

reasons such as minimum feature size amongst others. Techniques to metallise samples are 

discussed and how these can be adapted to create the best quality contacts to the surface 

transfer doped diamond material. Intimately linked to this is the sensitivity of the 

hydrogen-terminated diamond surface and how this needs to be accounted for in the form 

of metal sacrificial layers (which will also need specialised etching techniques to be 

selectively removed) amongst other processing considerations. Then after all the tools 

necessary to produce a diamond MESFET are presented the ‘standard’ process flow for 

these devices is reviewed and the best way to effectively scale gate geometry is discussed. 

Finally there is a brief discussion of some alternative fabrication techniques that were 

investigated over the course of this research and their relative merits.  
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3.1 Hydrogen-Termination and Sample Preparation 

As with all nanoscale fabrication a clean uncontaminated surface is essential and this is 

particularly true for this research with its strong dependence on the quality of the diamond 

surface. Ideally the hydrogen-terminated diamond surface would be atomically smooth so 

as to minimise trapped charge and scattering in the surface channel FETs [3.1]. It has been 

shown that one of the best possible ways to produce a smooth clean diamond surface with 

little in the way of contamination from non-diamond carbon is to expose the diamond to 

hydrogen plasma at the end of growth [3.2]. This is beneficial for this research for another 

reason in that the samples are required to be hydrogen-terminated for surface transfer 

doping to occur. While it is also true that strongly acidic solutions such as aqua regia or 

combinations of sulphuric and nitric acids will remove graphitic contaminants these cleans 

will also oxidise the diamond surface leaving the need for a subsequent hydrogen-

termination process anyway [3.1]. 

 

Hydrogen-termination was typically performed by collaborators at Université Paris 13 

before arrival at Glasgow which involved a high power hydrogen plasma performed at a 

temperature of 580° C for 30 minutes. Upon arrival at Glasgow the samples should be 

relatively clean of non-diamond carbons but a simple de-grease was performed to remove 

any mild organic contamination from transit. This involved a 2 hour soak in acetone in a 

50° C water bath followed by isopropyl alcohol (IPA) rinse and blow dry with pure 

nitrogen (N2). These have no known detrimental effect on the hydrogen-termination 

however it is good practice to leave the diamond sample for 24 hours before commencing 

further fabrication to allow for atmospheric adsorbate molecules to fully maximise the 

surface transfer doping effect [3.3]. 

 

3.2 Electron Beam Lithography 

Lithography is perhaps the most crucial tool involved in this research and semiconductor 

device fabrication in general. It allows for the definition of patterns of any shape down to 

the nanometre scale and encompasses optical lithography which is the most commonly 

used lithography method in the semiconductor industry through to electron beam (e-beam) 

lithography and even lithography via imprint techniques. Both optical and e-beam 

techniques derive from the same principle, the modification of a thin radiation sensitive 

coating known as resist and selective removal of this after exposure.  
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All fabrication carried out in this research used e-beam rather than optical lithography as 

the FETs fabricated all contain nanometre sized gate features and while modern optical 

lithography techniques are capable of these dimensions [3.4], ever changing patterns from 

sample to sample would be an uneconomical usage of lithography masks. E-beam 

lithography may be slower and costlier but it is better adapted for research due to the 

versatility with changing devices (e-beam patterns can be altered electronically as they are 

electronically stored and the pattern is directly written with no need for a mask).The e-

beam lithography process is shown in Figure 3.2.1 and described below.  

 

 

 

 

 

 

First the clean diamond sample is coated with a thin sacrificial layer (SL) of Au which is a 

special requirement of the hydrogen-terminated diamond to protect it from subsequent 

processing. Au is used as it can be etched with an acid which does not cause any detriment 

to the atmospheric induced sub-surface conductivity [3.3]. The substrate is then coated in a 

polymer (dissolved into the solvent oxylene) resist using a spin-coating technique. This is 

performed at high RPM (typically around 5k) to give total uniform sample coverage apart 

from narrow edge beading towards the edge of the sample. Adapting the RPM as well as 

the ratio of polymer to solvent can very accurately control the thickness of resist coating 

down to nanometre scales. Once coated the sample is baked with all bakes undertaken 

during this research at a relatively low 120° C to attempt to minimise any potential damage 

Figure 3.2.1: Lithography procedure 
involving a positive resist 
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to the surface adsorbate layer from baking while still suitable to evaporate the solvent and 

leave just the desired polymer coating. All fabrication in this project involved the use of 

the positive e-beam resist poly(methyl methacrylate) (PMMA) in different concentrations. 

Being a positive resist, when exposed to a significant dose of electrons the exposed area 

will de-polymerise and become easier to dissolve in a suitable chemical developer. To aid 

metal lift-off a bi-layer of resist is spun on to the sample with different molecular weights, 

this will be discussed in detail later.  

 

The inverse process is possible using a negative resist such as hydrogen silsesquioxane 

(HSQ) where during exposure more cross-linking of the polymer chains will occur making 

it denser and less easily dissolved in developer. Negative resist tends to be used for etching 

small features from a substrate i.e. 'subtractive' processes and is not utilised in this work. 

Instead positive resist is used to define small scale features for metal deposition on to the 

substrate, an 'additive' process. 

 

The final step before submission to the e-beam lithography tool is the deposition of a thin 

charge dissipation layer (CDL). This is necessary as the insulating diamond substrate will 

quickly become charged under e-beam exposure becoming a problem when the charge 

build up begins to deflect the incident electron beam and hence distorts the pattern being 

written. The CDL needs to be thick enough to provide electrons with a fast path to ground 

but not too thick so as to impede electrons penetrating it and expose the resist. In this work 

15 nm of Al is used as it is relatively cheap and can be easily removed using MF-CD26 

developer with no detriment to the resist below [3.5].  

 

The James Watt Nano-fabrication Centre (JWNC) at the University of Glasgow is 

equipped with a Vistec Vector Beam 6 Ultra-High Resolution Extremely-Wide Field (VB6 

UHR EWF) lithography tool capable of ~ 3 nm beam size, 50 MHz writing speed and 1.3 

mm field at 100 kV acceleration voltage along with the capability for lower 50 kV 

acceleration. The VB6 is displayed in a diagrammatic representation in Figure 3.2.2. It 

contains a thermionic field emission tungsten tip with a zirconium oxide (ZrO) bead which 

can emit a beam of electrons in a similar manner described in section 2.7. This beam is 

then focused and aligned by a series of coils and magnetic lenses along the column and 

then either blanked or deflected as required by the pattern. The Faraday cup is placed on 

the stage to monitor the beam current and the sample may be loaded under vacuum via the 
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load-lock with the stage also capable of movement under the beam to produce the desired 

pattern. 

  

 

 

 

 

 

To create the pattern a computer aided design (CAD) package may be used for multi-layer 

GDSII file creation, although as the VB6 has a maximum field of 1.3 mm this needs to be 

fractured via a computer aided transcription system (CATS) in to sub-fields and written as 

CFLT files. The pattern is fractured as standard in to 1200 x 1200 µm blocks and stitched 

together with accuracy of within 10 nm. These files are finally converted to IWFL files that 

are readable by the VB6 hardware via in house software called 'Belle'. Once the pattern is 

read by the software the beam is blanked and the stage moved beneath it to each 

determined exposure. For the general set-up there are a total of 220 exposure sub fields 

along each axis giving a resolution of: 

 

nm
mm

25.1
2

31072.1
20

=      3.2.1 

Figure 3.2.2: Simplified schematic of VB6 e-beam 
lithography tool 
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Parameters input by the user may then further affect pattern and exposure for example the 

amount the beam moves between each exposure is its step size which is equal to the 

resolution multiplied by a term known as variable resolution unit (VRU). It is sensible to 

choose a step size equal to the  minimum required feature size divided by ~ 5 to give well 

defined spot features if it is too large lines may become tapered, too large and over-

exposure may occur. The length of time (T) the beam dwells on each sub-field is 

determined by an input known as dose. This is related by: 

 

T
I

DA =      3.2.2 

 

Where D is the dose parameter, A the sub-field area and I beam current. Other factors to 

consider in pattern creation are electron forward and back scattering. This is where the 

resist alters an incident electron's velocity and direction slightly exposing more resist than 

specified (forward scattering) or the substrate atoms deflect electrons greater than 90° and 

hence back through the resist again exposing more resist than desired (back scattering). In 

extreme cases patterns need to be altered with proximity corrections to account for this 

however this tends to be needed only for small structures close together such as gratings 

and the fact high accelerating voltages (100 kV) are used in this work also lessens 

scattering and reduces the need for this. 

 

Once the pattern has been written, the resist can then be ‘developed’. The CDL is removed 

first with a soak in MF-CD26 developer. The resist beneath can be developed in a solution 

of methyl isobutyl ketone (MIBK) diluted with IPA to specific concentrations and 

submerged at specific temperatures depending on the feature size required.  

 

Many of the devices fabricated in this research require multi-layer patterns which require 

accurate alignment between them by a technique known as registration. When required, an 

extra lithography step is therefore performed prior to device fabrication to create small 

metallic markers to give the e-beam a reference to align later lithography levels to. 

 

3.3 Selective Etching of Metals 

Apart from a mild plasma etch used for removal of resist residue from samples, no other 

dry etches were used in this project due to the potential damage to the hydrogen-terminated 
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diamond surface. Instead wet etches were undertaken with samples submerged in a 

potassium iodide (KI/I2) solution used to selectively etch the Au SL via the reaction [3.6]: 

 

  

 22 22 AuIIAu →+      3.3.1 

 

This is chosen as it does not oxidise the diamond surface. Other acids may etch gold but 

will leave the surface oxygen-terminated and hence insulating [3.3]. Not much more is 

known about the interaction between KI/I2 and hydrogen-terminated diamond beyond the 

fact it does not seem to damage the surface conductivity. To achieve a sensible etch rate, 

the Au etch solution is diluted with reverse osmosis (RO) water by a ratio of RO water 

10:1 Au etch. Unfortunately although this form of etching has its benefits in protecting the 

surface termination it leads to a rough Au etch and is unrepeatable. It is used to create the 

source-drain gap in FETs by etching through the Au SL and undercutting beneath the resist 

layer to leave a gap as shown in Figure 3.3.1. This leaves the ohmic contact edges rough 

and the source-drain gap unpredictable as seen in Figure 3.3.2. Other pitfalls include the 

re-deposition of Au residue from the etch solution onto the diamond surface even after the 

sample is thoroughly rinsed in RO water. 

 

 

 

 

 

 

 

Figure 3.3.1: Approximate source-drain gap formed by Au etch 
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3.4 Metallisation Deposition, Ashing and Lift-Off Techniques 

Metal can be deposited in the exposed and developed regions of the sample and then 

'lifted-off' where not required by soaking in warm acetone for 2 hours which is enough to 

dissolve and strip the PMMA from the sample. To aid this process it is beneficial to spin 

on a bi-layer of resist with the bottom layer being a lower molecular weight and hence 

more sensitive to e-beam exposure than the top layer. Development will then produce an 

undercut profile which aids the lift-off process as it creates a clean break between the metal 

in contact with the semiconductor and that on top of the resist as shown in Figure 3.4.1: 

 

 

 

 

 

Figure 3.4.1: Metallisation and lift-off with the aid 
of bi-layer resist 

Figure 3.3.2: SEM image of diamond MESFET gate with rough 
ohmic contact edges visible 
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Prior to etching the Au SL it is necessary to perform a low power oxygen plasma 'ash' to 

remove resist residue which is always present even after development and resembles 

granules of a few nanometres in size [3.7]. Plasma etching is a process whereby a high 

electric field ionises electrons from their atoms (in this case oxygen) giving radical species 

which will react with the resist and the products of this reaction are removed with the gas 

flow.  The SL is used to provide protection to the hydrogen-terminated diamond surface 

from this process but nevertheless care is taken to ensure preservation of surface 

conductivity so the power is kept down to a relatively low 40 watts and only performed for 

1 minute. This same oxygen based ash process may be used to provide electronic isolation 

around the outside of individual devices by selectively removing the hydrogen-termination 

from the diamond surface. In FET processing, typically a mesa-etch is required for 

electronic isolation, however here a weak oxygen plasma is sufficient to provide insulating 

regions.  As diamond does not grow a native oxide after development and etching the 

sample may be left in atmosphere until metal deposition with no de-oxidisation step 

required. Metal may then be deposited via a number of evaporation or sputtering methods. 

The majority of metal deposition in this work utilised a Plassys MEB 550S e-beam 

evaporation tool as shown in Figure 3.4.2.  

 

 

 

 

 

 

 

Figure 3.4.2: Simplified schematic of Plassys e-beam 
metal evaporation tool 
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This tool contains an electron gun operating similarly to the VB6 but using lower 

accelerating voltages (<50 kV) creating a beam which is magnetically focused on to an 

ingot of the required source metal to locally heat up and eventually sublimate specific 

regions of this metal yielding very high purity coatings over the sample. A quartz crystal is 

used to monitor the deposition rate, which is set to oscillate at a resonant frequency so as 

evaporated material hits the crystal it alters this frequency. With typical evaporation 

pressures being at 10-7 Torr the metal will travel unimpeded towards the sample giving a 

non-conformal, directional coating.  

 

The e-beam lithography CDL is an example of metallisation with aluminium used as it can 

be completely removed via a short submersion in MF CD-26 with this developer not 

having any adverse effect on the resist beneath. This Al layer is kept at 15 nm for reasons 

discussed earlier although instead of being deposited at a standard Plassys deposition rate 

of 0.3 nm.s-1 a much slower rate of 0.05 nm.s-1 is used to keep stress on the resist and SL 

below to a minimum and prevent damage. 

 

As mentioned in section 2.3 the hydrogen-terminated diamond surface leaves the Fermi 

level unpinned hence the metal-diamond interface can be tailored depending upon work 

function to give ohmic or Schottky contacts. For the FET gates aluminium is chosen as it 

has a low work function creating a Schottky barrier between diamond surface and metal. 

Gold is chosen for the ohmic contacts due to its high work function and the ability to 

selectively etch the Au SL to give ready-made ohmic contacts and minimise fabrication 

steps. 

 

3.5 Standard Diamond MESFET Process Flow  

The design of FETs for RF measurement is slightly more complex than for purely DC 

measurement (which will be shown in Section 4.4). Coplanar waveguides need to be 

incorporated into the device structure to land the three-armed RF probes on with a ground-

signal-ground set-up to transmit the RF signal. In more conventional FET fabrication these 

waveguides would be deposited as bond pads to the main device in the final fabrication 

step but for this technology some essential alterations need to be made. Since a final 

additional layer of lithography (resist spin, bake and e-beam exposure) may well damage 

the surface conductivity of the exposed gate region, the waveguides here are incorporated 

in to the device structure partly in to the ohmic contact Au SL etch as extension of source 
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and drain contact pads and partly in to the gate deposition as an extension of the gate 

contact pad. Although this method works in as much as successful measurements can be 

obtained it leaves several non-ideal scenarios. The RF FET design can be seen in Figure 

3.5.1. 

 

 

 

 

 

 

The waveguide metal tends to be much thinner than is normal for such structures meaning 

these contacts are more resistive than would be desired and they will scratch off from the 

surface very easily usually after a single measurement making re-measurement difficult if 

not impossible. This also gives the undesirable situation of the waveguides being partly on 

insulating (gate pad) and partly on conducting (source and drain pads) material. Ideally 

these would all be on insulating material so as to minimise interaction between the metal 

and charge present in the substrate.  

 

As the FETs are scaled to sub-100-nm dimensions the device yield becomes far less due to 

a higher probability of damage to the gate from more challenging lithography. With 

coplanar waveguides added to FET devices the total device size now takes up a significant 

amount of the usable surface area (each single crystal diamond sample is only 4.7 x 4.7 

mm). So with a lower yield and only ~ 20 RF devices present on each sample measurement 

becomes extremely challenging and is compounded by device degradation from repeat 

measurement as will be discussed in the results section of this thesis.  

Figure 3.5.1: Layout of an RF FET with zoomed in view of device 
which utilises two gate fingers 
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The extra metal associated with the waveguides will bring additional resistance, 

capacitance and inductance which although not part of the device itself act as external 

parasitic components to degrade RF performance. Hence these need to be subtracted to 

give an accurate picture of the actual device operation especially as the source and drain 

RF pads are placed on non-insulating material.  

 

The most straightforward way of doing this is creating two extra structures (a short and 

open) and measure and subtract the RF response of these from the overall measurements 

the process of which will be described in more detail in section 4.6. These on-wafer de-

embedding structures can be seen in Figure 3.5.2. The open structure can be fabricated 

alongside the rest of the RF FETs with an extended isolation etch. However the short will 

require an extra fabrication step to deposit the extended gate pad and overlap the existing 

metal. 

 

 

 

 

 

With this in mind the process flow by which the diamond MESFETs fabricated in this 

project follow can be categorised as seen in Table 3.5.1. With a summary of the gate 

contact deposition and source-drain gap definition also shown in Figure 3.5.3. 

 

 

 

 

Figure 3.5.2: SEM images of on-wafer de-embedding structures 
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Step Description 

1 Sacrificial layer deposition 

2 Marker deposition 

3 Isolation/ohmic contact definition (plus waveguide) 

4 De-embedding structure ‘gate pad’ deposition 

5 Gate contact deposition (plus waveguide) 

6 Acceptor material deposition (not required for devices but 

investigated as a potential final step to provide stability) 

 

 

 

 

 

 

 

 

 

 

Table 3.5.1: Process flow for diamond MESFET fabrication 

Figure 3.5.3: Gate contact deposition and source-drain gap definition 
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Note that the order of these steps is crucial and it is essential that the gate is deposited after 

the previous fabrication steps to ensure the exposed surface region may receive minimum 

exposure to high energy electrons and resist coating. In the case of acceptor material 

deposition it is particularly important that the exposed surface region does not have other 

contaminants such as resist residue prior to deposition. The details for each of these steps is 

described below with full details for each individual process being given in Appendix A. 

 

1. Sacrificial Layer Deposition: 

After the Hydrogen-terminated diamond sample is cleaned and ready for use an 80 nm Au 

SL is deposited to protect the hydrogen-terminated diamond surface from potentially 

damaging fabrication processes such as e-beam exposure or oxygen plasma [3.8]. Gold is 

chosen due to the ability to etch it with a chemical wet etch and the process of doing so not 

having a negative impact on the surface conductivity. There is however a significant 

challenge in using gold for this layer in that it adheres poorly to hydrogen-terminated 

diamond, so badly so in fact that a tiny scratch in the SL will cause the entire layer to 

buckle and begin peeling off when next exposed to vacuum (see Figure 3.5.4). Similarly if 

deposited all the way towards the edge of the sample, gold will begin peeling away from 

the edges due to this poor adhesion. 

 

 

 

 

 

Figure 3.5.4: Au SL adhesion issues imaged via optical microscope 
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A specialised holder was therefore designed as shown in Figure 3.5.5 and used for the SL 

deposition where the sample sits in a shallow recess the same dimensions as itself 

(typically 4 x 4 x 0.5 mm for single crystal material and 10 x 10 x 0.5 mm for 

polycrystalline) and is clamped securely from behind with the front containing a rounded 

window slightly smaller than the sample to allow for SL deposition up to almost the edge 

of the sample leaving ~ 500 µm around the edges which can be used for e-beam alignment 

markers. 

 

 

 

 

 

 

2. Marker Deposition: 

As device fabrication requires several individual layers of lithography, it is essential to 

align each layer to the previous one accurately. Since this involves aligning the gate 

contacts to sub-µm accuracy it needs to be done by the e-beam tool and would be 

unrealistic to do by hand. Hence the first layer of e-beam lithography defines small arrays 

of metallic markers between the Au SL and the edge of the sample with several 20 x 20 µm 

squares in each along with a row of 150 x 150 µm crosses along the bottom edge of the 

sample as pictured in Figure 3.5.6.  

Figure 3.5.5: Specialised holder created for Au SL deposition 
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The e-beam prior to performing lithography can then detect these markers. To ensure this 

can be done accurately a metallisation is used for the marker layer (20 nm Ti to promote 

adhesion to the diamond substrate topped with 100 nm Au) where the contrast between this 

and the substrate is clear from the backscattered electron intensity. It is important to have 

several markers in each array as this process of exposure can deform markers especially if 

subjected to an Au etch processing step. In performing alignment for a subsequent 

lithography level (referred to as a registration level) the beam begins by locating the 

bottom left hand corner of the sample and then measures the distance from here to the 

cross specified for use by the user. This determines accurately any difference between the 

pattern distance and the physical distance which may have arisen in deposition of the 

markers. Next the e-beam will attempt to locate ideally four markers around the edges of 

the sample (ideally in the corners) to produce accurate reference points across the substrate 

from which transformations can be made to write the substrate pattern exactly where 

required. 

 

Figure 3.5.6: Marker and cross layout on typical diamond sample 
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Due to the small size of the diamond samples another specialised holder needed to be 

created for the purposes of e-beam lithography as shown in Figure 3.5.7. This was 

necessary for the purposes of alignment. 

 

 

 

 

 

3. Isolation/Ohmic Contact Definition (Plus Waveguide): 

Following the marker layer deposition, the Au SL may now be selectively etched to form 

the outer edge of source and drain ohmic contacts as well as the extended waveguides 

required for RF measurement. The exposed hydrogen-terminated diamond surface post-

etch is then subjected to a brief oxygen plasma to electrically isolate individual devices, the 

recipe of which is the same as the resist ash although here the oxygen plasma interacts 

directly with the exposed hydrogen-terminated diamond surface leaving it oxygen-

terminated and insulating [3.8]. The region intended for gate deposition at this point 

remains encapsulated by the Au SL and ready to be etched after further lithography. A 

device after isolation can be seen in Figure 3.5.8. 

 

 

 

 

Figure 3.5.7: Specialised holder created for e-beam lithography 
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4. De-Embedding Structure 'Gate Pad' Deposition: 

At this point an extra stage of lithography is used to deposit an extended gate pad for the 

short de-embedding structure. This cannot be incorporated in with the regular gate 

lithography level as it involves etching to remove and undercut the metal which would 

leave the short structure disconnected. Al is deposited for an extended gate pad which 

overlaps the device region creating an effective short. It is clearer now how some of the 

pads are on conductive material and some not, as the gate pad region will have received the 

oxygen isolation treatment prior to deposition. However the source and drain pads as well 

as device region will be protected by Au SL and will have conductive material underneath, 

making de-embedding the pad contributions from measurement all the more essential for 

accurate results. 

 

5.  Gate Contact Deposition (Plus Waveguide): 

This is the most crucial step of the fabrication procedure as it defines the FET intrinsic 

properties and to a large extent the overall device performance. Simple rectangular gates 

were fabricated here using a much thinner bi-layer coating of PMMA than would be 

utilised for markers/isolation along with higher e-beam dose and lower VRU. Development 

is undertaken in a more highly diluted solution of MIBK for longer along with a standard 

ash, then as touched upon in section 3.3 a wet etch through the SL is performed with an 

undercut to create the source-drain gap. Gate metallisation takes place on top of the 

exposed diamond surface with a standard deposition of 25 nm Al / 25 nm Au employed. 

The height being low so as to maximise lift-off success, it is generally recommended that 

the maximum deposition height should be 1.5x feature length as above this in-fill will 

occur where the metal on the surface of resist overlaps the gap completely and blocks any 

Figure 3.5.8: Isolated RF diamond MESFET 
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further deposition. Longer gate lengths could employ thicker metallisations but when 

scaled down to 50 nm thin metal layers are essential. Although T-gates would be desirable 

for lower gate resistance and hence better fMAX  performance this process is as yet unrefined 

and will take some additional research to incorporate into the Au SL process. The in-fill 

problem is illustrated in Figure 3.5.9.  

 

 

 

 

 

 

Al is chosen for its low work function and creates the necessary Schottky barrier between 

gate and diamond. As Al readily oxidises in atmosphere, an Au cap is deposited while still 

under vacuum to minimise this although oxidation may still take place around the sides and 

minimise the effective gate length. The gate ‘feed’ is formed as a large square feature at 

the end of the gate on oxygen-terminated material to aid adhesion to the substrate and 

again maximise lift-off success which is achieved as standard by a 2 hour strip submerged 

in 50° C acetone. Full realisation of 50 nm gates will be discussed in greater depth in 

Chapter 6 along with optimisation of other components such as the waveguides. A 

completed RF device is shown in Figure 3.5.10 along with the two finger gate region in 

Figure 3.5.11. Note that two gate fingers are used to enable the coplanar waveguide 

configuration but also increase gate width to increase drive current through the device. 

 

 

 

 

Figure 3.5.9: 50 nm length gates are limited to ~ 80 nm high 
metallisations 
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6. Acceptor Material Deposition: 

Deposition of alternative acceptor materials was undertaken at the National University of 

Singapore and at Glasgow. Both F16CuPc and MoO3 materials were deposited via resistive 

(thermal) evaporation. This being a similar process to that described for e-beam 

metallisation however instead of heating via an electron beam the sample holder itself is 

heated to temperatures hot enough to sublimate the material to be deposited. There is also 

the capability to heat the substrate holder and potentially drive off adsorbed atmospheric 

particles from the surface prior to deposition. Detailed results from these procedures are 

given in sections 7.2 and 7.3 

 

Figure 3.5.11: SEM image of two completed gate fingers 

Figure 3.5.10: Completed RF device 
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3.6 Alternative Fabrication Procedures 

An attempt was made to fabricate bond pad structures by a slightly modified fabrication 

procedure, instead of isolating the Au as seen in Figure 3.5.8. Instead just a small square 

was isolated as seen in Figure 3.6.1. 

 

 

 

 

 

A thick Au layer of 300 nm could then be deposited (with the bonus of being upon oxygen-

terminated and hence insulating material), then gate lithography was undertaken as normal. 

Unfortunately this resulted in a very poor lift-off after gate lithography as seen in Figure 

3.6.2, thought to be due to the thin resist bi-layer used for gate lithography not fully 

overlapping the thick bond pads hence not allowing acetone to reach and lift-off the gate 

metal. 

 

 

 

 

 

 

 

 

Figure 3.6.1: Isolated Au SL prior to bond pad deposition 
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Alternatives to the standard fabrication procedure were investigated over the course of this 

work to try and replace the non-ideal Au SL process. For example an Al SL was 

implemented as an inverse process with the idea being that Au ohmic contacts could be 

deposited after an Al etch with MF CD26. The benefit being these ohmic contacts would 

be perfectly smooth as defined by the lift-off process. Other variations included an 

alternative ash process using SF6 gas rather than oxygen for the plasma. Metallisation via 

thermal evaporator deposition and also standard thick waveguides were also attempted to 

try and maximise stability and repeatability of device measurement. Results of these 

processes can be seen in section 7.1 

 

3.7 Summary 

This chapter has outlined the fabrication techniques used for diamond MESFETs giving 

processing details as well as the equipment used for fabrication. Most of these are based on 

standard semiconductor fabrication techniques yet almost all have needed some adaptation 

to ensure preservation of diamond sub-surface conductivity. Particular attention has been 

paid to successful fabrication of an RF device layout and the challenges in scaling to sub-

100-nm gate lengths as well as potential techniques for enhancing and stabilising the 

surface conductivity. 

Figure 3.6.2: Poor gate lift-off due to thick bond pads 
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The following chapter continues with details of how to characterise these devices to 

determine the figures of merit for measuring device performance. 
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4. Characterisation and Metrology 
 
To fully understand device operation and to be able to compare their relative performance, 

accurate characterisation techniques are crucial. This encompasses not only device figures 

of merit but also material properties with particular focus on surfaces for this research. 

Knowledge of both the material and device allows further refinements which can then be 

made to fabrication procedures discussed in Chapter 3 to produce improved devices in the 

future. 

 

This chapter details all forms of characterisation undertaken during this project. The Van 

der Pauw (VDP) method, which is used to extract the amount of charge present in the 

diamond material and its mobility, is initially discussed. This is complemented by 

transmission line method (TLM) measurements which assess parasitic resistances from 

ohmic contact structures. Capacitance-voltage measurement gives insight into the 

performance of the gate contact, while current-voltage measurements help analyse gate 

leakage. MESFET device characterisation follows with both DC and RF measurements 

discussed and the extraction of various figures of merit for the extrinsic and intrinsic 

device. Surface profiling is touched upon with atomic force (AFM) microscopy and 

scanning electron microscopy (SEM) used to investigate sample properties such as surface 

roughness as well as mechanical yield of devices. Finally photoelectron spectroscopy 

(PES) shows accurate material composition during in-situ growth with insight into any 

impurity incorporation and can also monitor any energy shifts during acceptor material 

deposition. 
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4.1 Material Characterisation 

To achieve competitive device performance it is crucial to ensure material quality is 

exceptional with as few defects or impurities as possible to hinder movement of charge. It 

is also imperative the hydrogen-termination processing of diamond samples is a high 

quality again with little in the way of impurities as this contributes greatly to the surface 

structure as well as the ability to accumulate charge. As seen in Section 2.8 the amount of 

charge directly influences the drain current in an FET. Low-field mobility can tell us about 

device performance as it will have an effect on the RON of an FET it can also shed some 

light on the nature of charge transport through the diamond and if it is significantly 

impeded. All these factors are crucial for devices to realise their full potential. 

 

The Hall effect utilises an external magnetic field transverse to a sample to exert a Lorentz 

force on the charge moving within it. The charge is then deflected perpendicular to the 

magnetic field (Bz) and its direction of motion as seen in Figure 4.1.1 resulting in an 

electric field (Ey) between the difference in charge across the sample opposing the Lorentz 

force which continues until equilibrium is reached. This potential difference is known as 

the Hall voltage (VH) which is equal to Ey multiplied by the width of the sample (w) [4.1]. 

 

 

 

 

 

 

 

Figure 4.1.1: Deflection of charge carriers via the Hall Effect 
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The Hall Effect may be applied to a semiconductor material such as diamond via four 

ohmic contacts in a technique invented by Leo Van Der Pauw. As long as the sample is 

flat, relatively two-dimensional and homogeneous, measurement using this technique is 

independent of sample geometry [4.2]. A VDP structure fabricated on a diamond sample is 

shown in Figure 4.1.2. The Au SL layer is etched in a similar manner to that during device 

fabrication. Firstly isolation is performed using the same oxygen plasma as during 

MESFET fabrication around the edges of the VDP structure as seen on the left of Figure 

4.1.2. An active region is fabricated in the centre again using the Au SL etch but without 

the plasma isolation.  

 

 

 

 

 

 

As this structure is symmetrical, we can write: 

 

R
I

V

I

V
==

14

23

34

12       4.1.1 

 

Meaning if a current is made to flow between two contacts i.e. 3 & 4 then the voltage 

measured across the opposite side (1 & 2) gives rise to a resistance that is symmetrical 

around the whole sample. Van der Pauw then showed that [4.2]: 

 

Figure 4.1.2: Van der Pauw structure as fabricated on diamond 
(isolated structure on the left, finished VDP on the right) 
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Where t is the thickness of the sample and ρ its resistivity which can be simplified to: 

 

R
t

2ln

πρ =       4.1.3 

 

Sheet resistance, Rsh is a material’s resistivity divided by its thickness and can be used to 

simplify the above expressions further as well as providing a useful, easily measurable 

figure of merit for characterising the sample surface. 

 

2ln

R

t
Rsh

πρ ==      4.1.4 

 

Rsh can be measured from four point current-voltage probing of the pads without an 

external magnetic field. Mobility and carrier concentration however requires the magnetic 

field to instigate the Hall Effect. So if for example a small voltage (so that transport is 

linear and not saturated) is applied between pads 1 and 3 (V13) and a transverse magnetic 

field is applied, the current flow will become deflected and charge will begin to 

accumulate at pads 2 and 4 building up an electric field between them (E24). This continues 

until equilibrium is reached and no more charge flows where an expression can be stated 

for the forces in equilibrium [4.1]: 

 

zBqvqE 1324 =    4.1.5 

 

Where qv13Bz is the Lorentz force felt by charge carriers with v13 being the drift velocity 

and qE24 being the force opposing movement built up by the electric field E24. Voltage can 

be measured between pads 2 and 4 and is equivalent to the Hall voltage (VH) which may be 

related to the sheet carrier concentration (nsh) by [4.1]: 

 

H

z
sh Vq

BI
n 13=       4.1.6 
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The mobility may then be determined from [4.1]: 

 

shshRqn

1=µ       4.1.7 

 

Further measurements may then be taken between each of the diagonal contacts in both 

directions with a total averaged value for a more accurate measurement.   

 

This technique is useful for characterising material properties such as carrier concentration 

and mobility which can vary significantly due to impurities such as boron contamination or 

poor quality hydrogen-termination. This should be easy to discern from Van der Pauw 

measurements as carrier concentration would be lower than expected due to less free 

charge being present. Mobility may be lower or higher than expected depending on 

trapping within the crystal structure and scattering mechanisms. Unfortunately if there are 

similar amounts of holes and electrons it is not possible to discern the two using this 

technique. The Hall voltage accounts for the overall charge difference between pads and 

hence it is more suitable for use on samples where the carrier concentration for one charge 

carrier is orders of magnitude higher than the other. This should be true of hydrogen-

terminated diamond. However in diamond structures using electron acceptor materials on 

the diamond surface there may be two effective channels with opposite charge carriers in 

each. This will need to be carefully considered upon deposition of these materials. 

 

4.2 – Ohmic Contact/Sheet Resistance Measurement 

In FET devices to maximise performance, extrinsic resistance needs to be kept as low as 

possible, especially as dimensions are scaled to the nanometre scale. Creating transmission 

line model (TLM) structures allows the determination of these resistances as they 

essentially resemble FET devices minus the gate which allows for the accurate 

measurement of the extrinsic parasitic resistances that contribute to RON. Looking back 

again at Figure 2.7.4 we can see the elements that contribute to RON in a MESFET. Several 

gaps of differing separation are required to determine a trend. Fabricated TLM test 

structures may be seen in Figure 4.2.1. 
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The sheet resistance is assumed to be the same in each hence the resistance measured 

should increase proportionally to gap separation which may be plotted as in Figure 4.2.2 

[4.3]. 

 

 

 

 
Figure 4.2.2: Plot of resistance with varying gap separation as seen 

in a TLM structure 

Figure 4.2.1: Fabricated TLM structure with approximate gap distances 
and SEM image of the 2 µm gap (actual gap distance of 3.5 µm) 
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The total contact resistance for both ohmic contacts (2Rc) may be extracted by 

extrapolating the trend backwards to zero contact separation whilst the gradient of the line 

gives the sheet resistance (Rs) divided by the contact width (W). LT is known as the 

transfer length and gives the minimum contact length necessary for a contact to display 

ohmic type behaviour. 

 

There are two conventions for quoting contact resistance: That normalised to the width of 

the device (Ω.mm) or that normalised to the area of the contact that contributes to current 

flow (Ω.cm2). The second, which is also referred to as the specific contact resistance, is 

useful as it takes in to account LT and hence current crowding where a non-uniform current 

density is present through a contact. However this process assumes that the sheet resistance 

under the contact is equal to the sheet resistance of the material between the contacts, thus 

potentially giving an inaccurate value due to the inaccurate value extracted for LT. Due to 

difficulty in determining an accurate vale for RSH beneath the ohmic contact Ω.mm is 

quoted in this work. 

 

Structures were designed to have 150 x 150 µm ohmic pads with separations of 1, 2, 3 and 

4 microns although as the Au etch process is used to fabricate these gaps they may vary 

substantially from these designed values. It was therefore important to observe each under 

a microscope to determine the exact separation which will still involve a large margin for 

error due to the rough contact edges formed by the etch.  

 

The outside of each rectangular structure is isolated with an oxygen plasma to remove the 

hydrogen-termination and oxygen-terminate the surface in these areas. This acts to isolate 

the TLMs electrically and prevent any fringing current around the edges of each gap, 

ensuring an accurate measurement. 

 

4.3 - CV Measurement 

As well as testing the quality of the ohmic contacts it is also important to characterise the 

gate contact so the full picture of device operation may be broken down in to its 

component parts. To do this, diode structures are fabricated with a circular aluminium gate 

contact surrounded by an Au ohmic as pictured in Figure 4.3.1.  
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This diode structure serves several purposes with the first being the ability to demonstrate 

accumulation and depletion beneath the gate contact by measuring capacitance with 

respect to voltage as well as shedding some light on trapping mechanisms between the 

material and gate contact. This is seen in hysteresis of capacitance sweeps by measuring 

both from off to on and on to off voltages while the inability to maintain accumulated 

charge may indicate leakage. Sweeps may be performed at different frequencies with lower 

frequencies more likely to reveal trapping as a higher frequency sweep will move charge 

faster than the time constant of most trapping mechanisms. This structure also gives the 

potential to test for gate leakage current by measuring current with respect to voltage. 

 

Figure 4.3.2 shows a typical capacitance-voltage sweep with capacitance normalised to the 

area of the Al gate contact and both forward and reverse sweeps present showing some 

hysteresis between the two. 

 

 

Figure 4.3.1: CV structure during fabrication with Au etch undercutting resist (top left) to 
leave a gap between Al and Au post deposition 
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4.4 - DC Device Characterisation 

The RF device setup as discussed in Chapter 3 is used for the majority of measurements in 

this work however some more basic preliminary FETs are also discussed which employ 

just a single finger gate and small pads for DC measurement. This allows FET 

characterisation via standard DC probes without the need to fabricate more complex 

waveguide structures. FET characterisation as well as TLM and CV measurement was 

performed using an Agilent B1500 semiconductor parameter analyser (SPA) running 

Agilent’s EasyEXPERT measurement software. The DC FET structures are shown in 

Figure 4.4.1 

 

 

 

 

 

 

 

Figure 4.3.2: CV sweep for 100 µm diameter diode structure on 
hydrogen-terminated diamond at 1 MHz 
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To measure the drain current characteristics of an FET device, the source is kept at ground 

while the drain voltage is swept across the desired range. This may be repeated several 

times with varying gate voltages to give full Ids-Vds characteristics, an example of which 

may be seen in Figure 4.4.2. These are known as the output characteristics with the current 

conventionally normalised to gate width i.e. mA.mm-1.  

 

 

 

 

Figure 4.4.1: Fabricated DC FET structure utilising single finger 
gate and basic probe pads 

Figure 4.4.2: Output characteristics for 100 nm gate FET 



 Chapter 4 – Characterisation and Metrology 82 

To measure transconductance, a similar process is performed but instead gate voltage is 

swept while the drain voltage is incrementally stepped to give an Ids-Vgs plot. This is 

known as the FET transfer characteristics. The change in the drain current with respect to 

gate voltage may then be plotted to give transconductance as seen in Figure 4.4.3 and as 

discussed previously in Section 2.8. These measurements yield the important DC figures of 

merit also discussed in Section 2.8. Finally gate leakage may also be monitored for 

different gate or drain voltages by measuring gate current with respect to either drain or 

gate voltage. 

 

 

 

 

 

4.5 - RF Characterisation 

For DC characterisation relevant performance metrics can be related to static currents and 

voltages. However as measurements move to higher frequency, small signal parameters (S-

parameters) become more relevant. These describe the amount of RF signal transmitted 

and reflected through a device at a given frequency and hence vary with both frequency 

and bias. It is possible to model a diamond MESFET as a 2-port network for this purpose 

as shown in Figure 4.5.1. A signal is sent in to both ports and four s-parameters describe 

the resulting signal as described in Table 4.5.1. 

 

 

Figure 4.4.3: Transconductance for 120 nm gate FET 
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S-Parameter Description 

S11 Input Reflection Coefficient 

S22 Output Reflection Coefficient 

S12 Reverse Gain 

S21 Forward Gain 

  

 

 

In this work there is a particular interest in S21 as this can be converted to the H-parameter 

H21 which represents the current gain of the device. To visualise the complex impedance 

response with frequency of the MESFET device a Smith chart is plotted as shown in 

Figure 4.5.2 where all S-parameters may be plotted simultaneously. 

 

 

 

 

Figure 4.5.1: 2-port network including input and output signals (above). 
Visual representation of MESFET 2-port network (below) 

Table 4.5.1: S-parameters and their meaning 
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The horizontal axis represents the real part from zero at the left hand side to 1 in the centre 

and infinity at the right hand side with circles representing constant real values. The 

complex part of the impedance is represented vertically being zero at the centre, positive 

(or inductive) in the top half and negative (or capacitive) in the bottom half of the chart. 

The curved lines represent constant imaginary values. The Smith charts shown in this work 

are normalised to a characteristic impedance of 50 Ω, so the centre where Z = 1 represents 

a 50 Ω load. 

 

RF characterisation in this project was carried out with the SPA with Picoprobe probes 

replacing the standard DC probes as these are capable of both DC and RF measurement. 

These are connected via Agilent frequency extender arms to an Agilent E8361A PNA 

network analyser. As touched upon in Section 2.9 when it comes to RF measurement the 

FET needs to be treated as a two-port device so a signal may be sent into each port and the 

fraction of reflected and transmitted signal is measured by scattering parameters (S-

parameters) which describe both magnitude and phase of these signals across a specified 

frequency range and bias conditions. The diamond MESFET can be treated as such with 

Figure 4.5.2: Example Smith chart 
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port 1 being the gate, port 2 drain and the source as earth as seen in with the input (a1 and 

a2) and output (b1 and b2) signal contributions also shown. 

 

The signals are related to each other in a matrix format and it is not only S-parameters 

which may be used to describe the action of the network on these signals, there are also H, 

Y and Z parameters although S-parameters are the most straightforward to obtain with two 

simple expressions relating them to the signals at each port: 

 

2121111 aSaSb +=      4.5.1  

2221212 aSaSb +=      4.5.2 

 

If the 2-port network is modified so that a2 or a1 = 0 by creating a signal source at port 1 

and terminating port 2 with a 50 Ω load to ensure no reflection making a2 negligible or vice 

versa making a1 negligible then the S-parameters are related as so: 
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Calibration of the measurement apparatus is required to obtain accurate S-parameter 

measurements. This effectively removes the contribution of the probes, cables and the 

actual network analyser system itself from measurement data. Several structures with a 

known signal response may be used to calibrate the system. These are taken from a 

Cascade Microtech Impedance standard substrate (ISS). Standard short, open, load, thru 

(SOLT) calibration was utilised in measurements for this research where an open circuit is 

created by simply raising the probes from the substrate. The short, load and thru are 

fabricated on the ISS where the short resembles two strips of metal to short circuit the three 

tips on each probe together, thru is a strip of metal for each tip between ports 1 and 2 and 

finally line consists of two 100 Ω resistors in parallel between the tips on each probe to 

give in total a 50 Ω characteristic impedance. These structures are shown in Figure 4.5.3. 
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Although this allows for accurate RF measurement there is still a significant contribution 

to the S-parameters present from the on-wafer coplanar waveguides connecting the probes 

to the device. To accurately measure the FET response it is important to de-embed the 

effects of these and be left with the extrinsic device performance as this is how the device 

would appear in a potential integrated circuit (IC) i.e. the waveguides are purely to enable 

RF measurement. There are two methods of achieving this: - they may be modelled as part 

of the equivalent circuit if enough is known about their precise dimensions and interaction 

with the substrate. However the situation is complicated here in that the waveguides sit on 

both insulating and semiconducting material giving complex interactions which are 

extremely challenging to model. Hence the on-wafer de-embedding structures as discussed 

in Section 3.5 were employed with their S-parameters independently measured and then 

their contributions subsequently removed. This was done via a two-step de-embedding 

procedure on each device removing the parallel and series parasitic elements of the 

waveguides leaving just the device under test (DUT) [4.4]. The parallel elements are 

obtained by converting S-parameters of the open structure to Y-parameters while the series 

elements are obtained from the Z-parameters of the short structure. 

 

Getting from device S-parameters to RF figures of merit still requires some manipulation. 

To obtain cut-off frequency (fT) S-parameters may be converted in to H-parameters as 

shown in equation 4.5.3 with H21 giving the current gain of the FET [4.5]. 
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Figure 4.5.3: Short, through and line calibration structures 
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If this is then plotted against frequency the point where H21 reaches unity gives the value 

for fT. Current gain decreases at a rate of -20 dB/decade if the cut-off frequency occurs 

higher than the upper limit of the measurement frequency this line may be extrapolated to 

give an accurate value. In terms of power gain and extracting fMAX  the process becomes 

more complex and it becomes necessary to deal with Maximum Stable Gain (MSG) and 

Maximum Available Gain (MAG). MSG is simply defined as [4.6]: 
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This applies to the region of operation where the FET is described as ‘conditionally stable’ 

as it could potentially oscillate under certain load impedances. This region can be defined 

by Rollet’s stability factor (K) [4.6]: 
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When K < 1 the device obeys the MSG regime above, if however K > 1 the device 

becomes ‘unconditionally stable’ where the power gain now follows MAG [4.6]: 
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The second important RF figure of merit fMAX  can then be extracted at the frequency at 

which the power gain becomes zero. The method of extracting fMAX  here is graphically and 

is the method employed throughout this work and can be seen in Figure 4.5.4.  
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Unfortunately due to the thin poorly adhering waveguide metal used to fabricate the FETs 

in this work, it is difficult to characterise RF devices more than once and even so repeat 

measurements are seen to reduce the DC current performance slightly each time most 

likely due to instabilities in the adsorbate layer. Fresh devices for each measurement are 

therefore desirable, although limited structures are available per 4.7 x 4.7 mm single 

crystal diamond sample which presents difficulties in obtaining large systematic volumes 

of data as well as making measurement of multiple bias points unrealistic for this work. 

 

4.6 - Surface Profiling 

In addition to device electrical characterisation there are some tools which further detail 

device structure along with material quality and can shed light on issues with device yield. 

The Atomic Force Microscopy (AFM) technique uses a silicon cantilever with a sharp tip 

of the order of a few nm across which is scanned via a piezoelectric scanner. This moves 

across the specified sample area and the vertical deflection of the tip by sample features is 

measured by a laser providing feedback to the AFM software which produces a 

topographical map of the area scanned. All AFM work undertaken in this project used a 

Figure 4.5.4: Example plots of H21, MSG and MAG with extraction of 
figures of merit taken from 50 nm gate length FET 
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Veeco Dimension 3100 SPM. There are many different operating modes available however 

only contact mode was used for this work as features are not so fragile the tip would cause 

them damage. 

 

The AFM allows accurate measurement of surface roughness of the diamond sample 

before any fabrication takes place. For device fabrication, samples should be as smooth as 

possible (ideally sub-nm) to produce less scattering mechanisms at the surface which could 

heavily impact device performance. The AFM may also confirm metallisation thicknesses 

or resist profiles although it is somewhat less adept at lateral measurement due to the 

limitations associated with the dimensions and geometry of the AFM tip. The tip is only 

capable of measuring features larger than its own dimensions i.e. for a trench that is 

smaller than the size of the tip accurate measurement is impossible. Other features such as 

an overhang would also be difficult to measure with AFM.  

 

Scanning Electron Microscopy (SEM) may be used for assessing features that are too small 

for optical microscopy and will readily pick up small surface features as well as giving 

very accurate lateral measurements. Operation is very similar to the electron beam 

lithography set up described in Section 3.2 although the accelerating voltage is either 10 or 

20 kV, so much lower than for lithography purposes. This project’s work was carried out 

with a Hitachi S4700 Field emission SEM and relies on the measurement of the emission 

of secondary electrons from a sample. This is useful in observing features such as the 

source-drain gap of a finished FET or an Au etched TLM. It can also shed light on 

fabrication errors such as broken or discontinuous gates and residue from the Au etch. 

 

4.7 Photoelectron Spectroscopy (PES) 

X-ray photoelectron spectroscopy (XPS) is a technique which enables characterisation of 

the composition of materials and their electronic states. Relying on the photoelectric effect 

the sample is exposed to x-ray radiation and a specialised synchrotron facility is required to 

produce the high energy x-rays used in this work and hence XPS characterisation was 

performed by collaborators at the National University of Singapore. Lower energy ultra 

violet radiation was also used for UVPES. Due to surface contamination post atmospheric 

exposure it is desirable to measure in-situ during or immediately after growth. 
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The binding energy (EB) of an electron emitted via the XPS process is given by [4.7]: 

 

( )φγ +−= ..EKB EEE      4.7.1 

 

With Eγ being the x-ray photon energy, EK.E. the emitted electron’s kinetic energy and φ  

the work function of the spectrometer. From measurement EB may be accurately worked 

out and a plot may be produced as shown in Figure 4.7.1.  

 

 

 

 

 

 

Each element has a characteristic XPS peak and the number of counts for each binding 

energy is directly related to the amount of that element present within the surface of that 

sample hence an accurate picture of sample composition may be obtained including any 

potential contamination i.e. residual boron or nitrogen within diamond. 

 

4.8 Summary 
The various techniques used to characterise the diamond material and devices fabricated 

upon it have been summarised in this chapter. It is crucial to fully understand these 

Figure 4.7.1: XPS plot showing the C1s peak characteristic of a clean 
diamond surface (irradiated with 350 eV x-ray synchrotron radiation) 
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methods their calibration and application to be able to produce accurate measurements as 

well as de-embedding external measurement data from actual devices. 

 

Particularly important is the Hall effect which can show to an extent material purity and 

doping while TLM and device measurement allow accurate device modelling and 

extraction of figures of merit to assess overall performance. PES is used to monitor the 

composition of the diamond surface during acceptor material deposition. Before discussing 

the results of this research the next Chapter briefly summarises the very latest 

developments in diamond FET technology. 
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5. Current Technology Review 
 
In this chapter, the current state of the art in diamond FET technology is discussed. 

Compiling the latest developments in surface transfer doping of diamond, device 

fabrication and performance a benchmark can be set out to compare the results in the 

following chapters to as well as giving insights into new routes to repeatability and 

eventual commercialisation of this technology. 

 

Other routes to diamond FET fabrication are also discussed such as, boron delta-doping of 

diamond which has yielded some preliminary device data although the performance of 

these FETs has some way to go to match surface channel FETs. 
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5.1 Surface Transfer Doping 

Since the surface transfer doping model for atmosphere exposed hydrogen-terminated 

diamond was proposed by F. Maier et al in 2000, the development in understanding of the 

interaction between atmospheric particles and the diamond surface has slowly developed 

with much still to be explained about this interaction [5.1]. It is however the most widely 

accepted theory for the p-type doping at the hydrogen-terminated diamond surface and is 

gaining more support such as work by V. Chakrapani et al who performed a detailed 

investigation into the redox reactions at the surface while attempting to explain issues such 

as how an aqueous layer adsorbs on to what is essentially a hydrophobic surface [5.2].  

 

Meanwhile separate research has confirmed just how attractive intrinsic diamond is as an 

electronic material with proof of intrinsic high mobility (4500 cm2.V-1.s-1 for electrons and 

3800 cm2.V-1.s-1 for holes) by J. Isberg et al encouraging further research into diamond 

electronics [5.3]. Significant progress has been made in the search for alternative acceptor 

materials to replace atmospheric particles at the diamond surface with a more stable 

solution. P. Strobel et al demonstrated from photoyield spectra in 2004 that C60 molecules 

could produce the same sub-surface p-type doping effect and fluorinating these molecules 

enhances their doping efficiency [5.4-5]. After annealing at 400° C, enough to remove 

atmospheric particles but not damage the hydrogen-termination of the diamond surface, 

they deposited C60 and C60F48 molecules. With electrical characterisation performed in-situ 

saw an increase in conductivity from 10-12 S to 10-6 S for C60 and 10-5 for C60F48 in the case 

of C60F48 they predict a 1:1 doping for each fullerene molecule with sheet hole density 

induced in the diamond above 1013 cm-2.  

 

This has led others such as W. Chen et al to search out other organic molecules to provide 

stable doping alternatives with surface transfer doping also observed using a covering of 

F4-TCNQ [5.6]. D. P. Langley et al have demonstrated doping via a molecular 

heterojunction of ZnTPP and C60F48 with the ZnTPP layer acting to prevent atmospheric 

doping while allowing fullerene induced doping [5.7]. To the authors knowledge there has 

yet to be any research into inorganic surface coatings with the aim of replacing the electron 

accepting layer by using a dielectric with electron affinity > 4.2 eV. To date, dielectrics 

have only been utilised as encapsulation layers to try and preserve surface transfer doping 

instigated by atmospheric particles. It seems the best route forward would be to employ a 

high electron affinity dielectric for the purpose of electron accepting rather than purely 
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encapsulation as they will tend to be far more stable on the diamond surface assuming a 

low stress conformal film can be successfully deposited. Figure 5.1.1 shows the relative 

band energy levels of semiconductors and some candidate surface acceptor materials as 

speculated by W. Chen et al [5.6]. A preliminary investigation into alternative surface 

acceptor materials is presented in Chapter 7 of this thesis. 

 

 

 

 

 

 

5.2 Surface Channel Diamond Transistors 

It is widely accepted that minimisation of FET gate length improves its frequency 

performance and this is no different in diamond FETs which employ surface transfer 

doping. Over the past decade, diamond FET gate length has been gradually reduced from 

~2.5 µm to 100 nm, with the expected enhancement in frequency performance observed. 

Beginning with H. Taniuchi et al in 2001 and the first reported microwave measurements 

using a 2-3 µm gate, an fT of 2.2 GHz and fMAX  of 7 GHz was obtained from a hydrogen-

terminated diamond FET [5.8]. Since this initial demonstration, two independent groups 

had reported the highest microwave performance to date for diamond FETs using a T-

shaped gate. Firstly K. Ueda et al in 2006 where fT of 45 GHz and fMAX  of 120 GHz were 

Figure 5.1.1: Relative band energies of semiconductors and various 
organic acceptor material candidates [5.6] 
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observed for two separate MESFET devices optimised with different gate widths and gate 

length of 100 nm as seen in Figure 5.2.1 [5.9]. 

 

 

 

 

 

 

K. Hirama et al replicated similar results with an experiment instead using a 3 nm 

dielectric layer of Al2O3 beneath the gate to create a MISFET device and a 150 nm gate 

length. Both authors used polycrystalline diamond in their respective research [5.10].  

 

Power measurement for surface channel FETs is still in its infancy as degradation and 

repeatability is currently a huge challenge with this technology. However K. Hirama et al 

managed to produce 2.14 W.mm-1 output power with a power added efficiency (PAE) of 

42% from a surface channel MISFET with gate length of 300 nm and unquoted gate width 

operating at 1 GHz [5.10]. M. Kasu et al again achieved very similar results 2.1 W.mm-1 

output power, maximum power gain of 10.9 dB and PAE of 31.8% from a surface channel 

MESFET with gate length of 100 nm and gate width of 100 µm operating at 1 GHz as 

shown in Figure 5.2.2 [5.11].  

 

 

 

 

 

Figure 5.2.1: RF measurement for diamond MESFET [5.9] 
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P. Gluche et al have performed some preliminary investigation in to high voltage operation 

for a device with 3 µm gate length, 100 µm gate width and 12 µm source-drain spacing. 

They obtained a maximum drain-source voltage of 200 V prior to breakdown [5.12]. Other 

research groups have attempted power measurements of these types of devices, most 

notably in Italy where attempts have also been made to model the large-signal equivalent 

circuit although their performance is as yet not as competitive as that described above 

[5.13]. Prior to this project, no research has been reported on the operation of sub-100 nm 

diamond FETs where parasitic resistances need to be seriously considered in scaling to 

keep improving device performance. Results of this work are presented in the following 

Chapter.  

 

As well as the search for alternative electron accepting materials effort has been made to 

provide passivation for the exposed region of atmospheric FET devices. Attempts to grow 

AlN via MOCVD on top of existing devices would seem fundamentally flawed due to the 

high deposition of > 800° C potentially removing the hydrogen-termination yet some 

success has been observed and put down to the spontaneous polarisation of AlN films 

instigating some charge transfer [5.14]. More success seen with atomic layer deposition 

(ALD), D. Kueck et al report maintaining 65% of the original device current from this 

method even with a deposition temperature of 370° C, which is high enough to remove 

Figure 5.2.2: Power measurement for diamond MESFET [5.11] 
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atmospheric adsorbates [5.15]. Other dielectrics that have been investigated as potential 

gate insulating materials in MISFET devices include SiO2 and CaF, but have not yet been 

investigated for passivation of the active device regions exposed between source and gate 

and gate and drain contacts. 

 

Makoto Kasu’s research group at NTT in Japan have tried various experiments involving 

gas exposure of devices to individual constituents of the atmosphere. They have observed 

particular success when exposing devices to NO2 gas and recently combined this process 

with an ALD Al2O3 layer recording record output current density of 1.3 A.mm-1 from a 

diamond MESFET [5.16]. However the ALD deposition temperature (< 150° C) is below 

that at which atmospheric particles desorb from the hydrogen-terminated diamond surface, 

raising the issue of whether this process modifies and encapsulates the atmospheric 

adsorbate molecules rather than replacing them. 

 

Hiroshi Kawarada’s group at Waseda University in Japan have also attempted various 

other alternative fabrication procedures for surface channel diamond FETs. A recent paper 

describes a ‘hydrogenation last’ process where robust titanium carbide contacts are initially 

made to an oxygen-terminated diamond surface known to provide an ohmic contact which 

is far more strongly bonded to the diamond surface than the standard Au process [5.17]. 

This is followed by selective hydrogen-termination of the active regions with their standard 

gate process. Although this procedure is yet to produce competitive device results it is 

foreseeable that its refinement, possibly incorporating another electron accepting material, 

could be a potential route to more stable diamond FETs. They have also experimented with 

different crystal orientations of diamond to produce more carriers for devices theorising 

that more exposed dangling bonds given by a (111) surface termination gives the potential 

for a greater electron transfer [5.18]. 

 

Device Instability 

All surface channel FETs to date have demonstrated an inherent instability with repeat 

measurement leading to seriously degraded drain currents. Ever since the first surface 

channel transistor reported by H. Kawarada et al in 1994 these problems have persisted 

with little discussion in the literature addressing these issues. In one publication it was 

noted that the FETs were only stable up to 200° C in air, far lower than would be hoped for 

with diamond technology [5.19]. M. Kubovic et al reported in 2002 that fabricating surface 
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channel FETs by conventional lift-off lithography was detrimental to the atmospheric 

adsorbate layer and suggested that the now widely used Au SL and etch technique has a 

‘slightly passivating’ effect on the surface due to the KI/I2 based etch [5.20]. Little more is 

known about this interaction apart from the fact is does not lead to oxygen-termination of 

diamond. 

 

A thorough report investigating degradation due to repeat measurement is to the author’s 

knowledge as yet unpublished. However there have been plenty of anecdotal mentions of 

this phenomenon [5.20-22]. M. Kasu et al investigated a device close to breakdown with 

source-drain voltage pushed to -100 V at which point they saw bubbles forming on their 

ohmic contacts. These are suggested to be hydrogen bubbles evaporating from the diamond 

surface due to high energy carriers breaking the C-H bond. They believe this to be the 

cause for premature breakdown in surface channel FETs as it is a function of the surface 

and not the intrinsic diamond itself. This theory is yet to garner wide scale acceptance and 

the debate over degradation and premature breakdown continues. 

 

K. Hirama et al recently reported their Al2O3 encapsulation layer combined with a pre-

deposition exposure to NO2 gas is sufficient to prevent degradation due to repeat 

measurement in their FETs however there does still appear to be ~ 12.5% drain current 

degradation after 250 measurements [5.23]   

 

Another theory is the Schottky barrier between diamond and gate metal contact is not 

sufficient to prevent significant gate leakage in MESFET devices hence why some groups 

employ MISFET devices instead [5.10]. These do not however show vastly improved 

performance compared to their MESFET counterparts [5.9]. Another controversial theory 

by J. A. Garrido et al suggests the gate does not in fact accumulate charge beneath it at all 

instead they describe an ‘in-plane’ capacitance at the edge of the gate contact as 

capacitance does not scale with gate area but with the periphery [5.24]. 

 

Although device performance is being improved upon there is still much to understand 

about the hydrogen-terminated diamond surface and its properties. 
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5.3 Boron Delta-Doped Diamond Transistors 

The delta-doping of diamond with boron has been presented as a potential competitor to 

the hydrogen-terminated surface channel FET discussed in this project. It has the benefit of 

being stable due to an oxygen-terminated surface being employed and all conduction 

taking place within the bulk diamond. However in the FET devices fabricated so far via 

this method the gates ability to control the channel has been poor meaning full pinch-off is 

difficult to achieve [5.25].  

 

A gate recess is a potential solution to bring the gate closer to the delta layer as seen in 

Figure 5.3.1. 

 

 

 

 

 

High power dry etches involving bombardment with large ions such as an argon plasma are 

required to etch diamond. This leads to damage and graphitisation of the diamond surface 

and give the need for another acid etch clean, so this quickly becomes a complex 

fabrication processes [5.26]. Even if this is all successful a dielectric is then required to 

prevent gate leakage and buffer leakage from residual boron doping is also an issue [5.25]. 

Finally there is a need for highly doped regions to create ohmic contacts and provide low 

Figure 5.3.1: Boron delta-doped diamond FET design [5.25]  
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resistance access to the channel. Even with the latest structures channel mobility is still 

only ~20 cm2V-1s-1 as limited by the doping profile [5.25]. 
 

5.4 Summary 

This chapter has summarised the current state of diamond surface channel FET technology 

which although in its infancy has seen plenty of encouraging results including a vast 

potential of materials which could provide a route to stable devices along with some 

already very promising device results. 

 

The following chapter now deals with this project’s contribution to diamond FET scaling 

to below 100 nm gate dimensions and the improved frequency performance achieved with 

this study. Chapter 7 then contributes to further understanding of electron accepting 

materials on diamond with two alternative electron accepting materials that to the author’s 

knowledge have not yet been investigated as a surface acceptor on diamond. These results 

include the first example of a potential inorganic electron accepting material. 
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6. Device Results - Scaling Diamond FETs to Sub-100 nm 
Gate Length 
  
Previous chapters have outlined the basics of FET operation while showing how important 

scaling the physical dimensions of the gate can be in relation to improving the intrinsic 

performance of a device. The current technology review chapter discussed how various 

groups have already worked to reduce the dimensions of diamond FET gate lengths to sub-

micron dimensions with significant success but as yet no research has been published on 

sub-100 nm gate length devices. This chapter details work done throughout this project 

with this goal in mind. 

 

Prior chapters have also shown it is sensible to isolate the individual components 

comprising the FET to assess and improve these individually before combining them to 

make a device. So this chapter begins with the analysis of basic material and contact 

properties from VDP, TLM and CV measurements. Then moving on to DC and RF 

characterisation of RF FET structures with gate lengths of 250, 150 and 50 nm to produce 

a full picture of the effects of scaling on diamond FETs and the potential limiting factors 

involved in terms of their operation and peak performance. 

 

Finally there is a brief investigation in to the effect of measurement and how it can lead to 

degradation of the drain current in a surface channel FET and what may be the underlying 

cause of this phenomenon. 
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6.1 VDP and TLM Measurements 

Several single crystal and polycrystalline diamond samples were used throughout the 

course of this research all of which were sourced from Element Six Ltd and Diamond 

Microwave Devices Ltd. Hydrogen-termination procedures on the other hand evolved over 

the course of this research to produce cleaner, more repeatable and improved processes at 

several facilities outside of Glasgow. 

 

To begin with, experimental work was undertaken using polycrystalline samples as they 

are slightly larger (10 x 10 mm) compared to the single crystal (4.7 x 4.7 mm) and hence 

are easier to handle and process, along with having more space on each sample to create 

structures. The vast majority of surface channel FET devices reported to date have been 

fabricated on polycrystalline material so it is also a useful comparison to have. 

 

To assess material quality, VDP measurements were performed on the electron beam 

defined structures described in Section 4.1 with Table 6.1.1 showing a comparison 

between an early polycrystalline sample at the beginning of the hydrogen-termination 

process development and  the single crystal material used later to fabricate RF devices. 

 

 Early Polycrystalline 

Sample 

Single Crystal Sample Used 

for Device Fabrication 

Carrier Concentration (cm-2) 5.51 x 1011  5.55 x 1012 

Sheet Resistance (kΩ/) 46.7 11.3 

Mobility  (cm2.V-1.s-1) 211  90 

 

 

 

 

It is clear these values differ greatly and there are two possible explanations for this. Firstly 

the difference in quality between polycrystalline and single crystal diamond. The grain 

boundaries present in the polycrystalline material may perhaps impede the charge transport 

although this does not fit with the results seen here since mobility is in fact higher on the 

polycrystalline sample. There have also been previous reports of VDP measurements on 

diamond which are comparable to those obtained on the single crystal sample here [6.1]. 

Instead it is speculated that the difference observed here is due to the hydrogen-termination 

Table 6.1.1: Comparison of VDP measurement 
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procedure. The values for the single crystal sample are close to what has been previously 

reported with perhaps just a slightly low value for the sheet carrier concentration. 

 

The hydrogen-termination for the early experimental work undertaken here was performed 

in an old hot filament system at Heriot-Watt University which has been used for many 

different experiments including doping with boron which is known to contaminate 

chambers and be extremely difficult to remove hence subsequently contaminating other 

substrates [6.2]. The sheet carrier concentration is an order of magnitude lower than may 

be expected. This would suggest possible contamination of the hydrogen-terminated 

diamond surface with impurities which impede the surface transfer doping mechanism, 

giving less active carriers and also leading to a higher sheet resistance. The mobility is 

higher than anticipated which may be explained by less scattering mechanisms present, for 

example if the surface transfer doping mechanism is impeded the charge may not be drawn 

as close to the surface as would normally be the case. 

 

TLM measurements were then performed to confirm the sheet resistance seen in VDP 

measurements and to also obtain the contact resistance between the Au ohmic metal and 

diamond. This was undertaken on electron beam defined structures as described in Section 

4.2. Figure 6.1.1 shows current voltage sweeps for four separate TLM gaps on the 

polycrystalline sample along with an average graph combining four TLM structures. 
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The sweeps were performed between 0 and -10 V with the individual sweeps not quite 

saturating before the -10 V final measurement value. It is important to only extract the 

resistance where the current-voltage plot is linear and hence ohmic prior to saturation. The 

gradient of each sweep up to -3 V gives resistance which is averaged over four TLM 

structures to give the average plot. It is important to note that even though the gaps are 

designed to be 1, 2, 3 and 4 µm respectively this is not actually the real physical separation 

as previously mentioned in section 4.2 so before plotting the resistance against gap 

distance it is crucial to observe the structures under the SEM. Even for a short 1 minute Au 

etch used as standard there can be significant variation in etch distances between samples, 

especially for larger gaps. E.g. the 4 µm polycrystalline sample is actually ~ 4.5 µm 

whereas on the single crystal sample the gap is actually ~ 5.5 µm.  

 

The TLM plots for the single crystal sample can be seen in Figure 6.1.2. This hydrogen-

termination procedure took place at Université Paris 13, it involved a pre-clean with 

H2SO4/HNO3 to remove any graphitic contaminants on the diamond surface as well as 

leaving it oxygen-terminated. Subsequently the sample was loaded in to a CVD reactor and 

exposed to high power hydrogen plasma for 30 minutes at 580° C. 

 

Figure 6.1.1: a) TLM measurements for polycrystalline sample with 
possible boron contamination, b) average graph 
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From observing the plots we see an order of magnitude difference in carrier concentration 

between the two samples gives rise to a much larger current in the TLM structure on the 

single crystal sample. For the single crystal sample the TLM sweeps have not fully 

Figure 6.1.2: a) TLM measurements for single crystal sample with 
hydrogen-termination used later in the project, b) average graph 
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saturated by -10 V but it is still a sufficient range to obtain an average TLM plot as shown. 

The error in resistance measurement is relatively low as long as the gradient of the plots is 

averaged over a wide range of linear behaviour and over several TLM structures. This can 

be attributed to errors in the measurement apparatus and is small enough that the error bars 

are not visible on the average TLM plot. The error in gap distance however is a different 

matter. As can be seen in Figure 6.1.3 the actual ohmic contact edge can be difficult to 

define. In this instance the variation can be said to be ~ 250 nm. This introduces an error of 

500 nm in the ohmic contact spacing. The extracted TLM results are summarised in Table 

6.1.2. 

 

 

 

 

 

 

 Polycrystalline Sample Single Crystal 

Contact Resistance (Ω.mm) 10.1 (± 5.3) 5.7 (± 1.3) 

Sheet Resistance (kΩ/) 42.5 (± 6.0) 10.3 (± 2.0) 

 

 

 

The 42.5 kΩ/ value for sheet resistance for the polycrystalline sample agrees within error 

with the value obtained from Hall measurement. As does 10.3 kΩ/ for the single crystal 

sample. The margin for error is more significant in terms of contact resistance as the large 

Figure 6.1.3: Ohmic contact edge roughness due to Au etch 

Table 6.1.2: Comparison of TLM measurement 



 Chapter 6 – Device Results 109 

error in gap distance (the x-axis) will significantly shift the y-intercept whereas the 

gradient is not as substantially affected. A sheet resistance of 10.3 kΩ/ is comparable to 

sheet resistances obtained by other groups [6.3] while 42.5 kΩ/ again suggests an un-

optimised hydrogen-termination procedure. 

 

As for contact resistance, 5.70 Ω.mm is perhaps a little high but still comparable to work 

done by other groups [6.3] and although both sheet and contact resistance are very high 

compared to a more mature material technology such as silicon, competitive device 

performance has still been achieved with similar values and work can be undertaken to 

improve this although it is not currently a priority. 

 

The hydrogen-termination process successfully employed for the single crystal sample was 

then used for all subsequent samples to obtain a good quality sub-surface hole 

accumulation layer for device fabrication. Also due to a lack of polycrystalline material as 

well as an interest to produce FETs on single crystal material to compare the performance, 

the rest of this work involves single crystal diamond. 

 

6.2 CV Results 

Following material quality analysis by VDP and having achieved a competitive ohmic 

contact resistance it was important to analyse the gate contact employed by the FET 

device. This was done using CV measurement as discussed in Section 4.3 with electron 

beam defined diode structures as discussed previously. These measurements took place on 

a single crystal sample. 

 

Sweeps can be performed at a range of frequencies to show data relating to trapping at the 

surface which while interesting would be difficult to discern correctly from just this 

measurement as the knowledge of the surface transfer doping process is still in its infancy. 

Here data for just 1 MHz is presented at which traps should be less noticeable due to the 

charge being shifted faster so some basic information about the sub-surface hole 

accumulation layer may be deciphered. Sweeping the voltage across the gate from +2 to -4 

V allows for both depletion and accumulation beneath the gate contact, with sweep 

performed in both directions to show any hysteresis. The results can be seen in Figure 

6.2.1.   
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The sweep shows clear accumulation underneath the gate which tends to disagree with the 

theory of in-plane capacitance suggested by J. A. Garrido et al. The saturated capacitance 

extracted from the graph can be related to a parallel plate capacitor to get an idea of how 

deep the sub-surface hole layer is below the diamond surface [6.4]. 

 

Figure 6.2.1: CV sweep at 1 MHz on single crystal diamond sample 

Figure 6.2.2: IV sweep for gate contact 
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The parallel plate capacitor equation is as follows: 

 

d

A
C r 0εε

=       6.2.1 

 

Where C represents the capacitance, εr the relative dielectric constant of the medium 

between the parallel plates, ε0 the permittivity of free space, A the area of the parallel 

plates and d the distance between the plates. The dielectric constant for diamond is known 

to be 5.7 while the permittivity of free space is 8.85 x 10-12 F.m-1. The radius of the 

fabricated gate contact is 50 µm giving a plate area of 7855 µm2 (± 157). Extracting the 

capacitance per unit area from the graph in Figure 6.2.1 which saturates at ~ 0.8 µF.cm-2 

and then dividing the relative permittivity by this should yield the spacing between gate 

contact and hole accumulation layer (which acts as the second plate) in the diamond.  

 

The distance in this instance is found to be 6.31 nm which seems to fit with the figure 

generally quoted of 5 - 15 nm although there are several factors which may introduce error 

into this result [6.3, 6.5]. The area of the gate contact is unlikely to be exact especially as 

the contact is aluminium which readily oxidizes upon exposure to the atmosphere so the 

effective area of the gate contact may be reduced. With the area of the gate contact being 

large in relation to possible nanometre scale oxidation around the edge however, this 

should not have a large impact upon the overall gate area. It is also possible and has been 

speculated by M. Kasu et al that upon Al deposition on to an atmospherically surface 

transfer doped diamond surface a thin intermediate layer may form [6.6]. This is most 

likely a form of aluminium oxide formed at the diamond surface. If indeed this is the case 

then εr may become significantly different. 

 

The current-voltage sweep shown in Figure 6.2.2 gives an insight into gate leakage through 

the Al gate contact which acts as a Schottky diode structure due to the Al forming a 

Schottky contact to hydrogen-terminated diamond. Current through the structure is 

negligible up to ~ -4 V (in both sweep directions) although beyond this current readily 

flows and increases rapidly. It should be noted that this will not be identical for FET gates 

as they are used to modulate the current between source and drain rather than purely for 

accumulation. It does however give an insight into the behaviour of this gate metallisation 

on hydrogen-terminated diamond. 
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6.3 Original 150nm DC Transistor Measurement and 50 nm 

Gate Length Realisation 

Although the polycrystalline material was shown to be less suitable for high quality device 

performance, it still proved a useful starting point for developing the fabrication 

procedures previously discussed on a relatively large area substrate. As seen in Section 6.1, 

although the current achieved is comparatively low with few carriers there are still enough 

to create a functioning device. This substrate also proved useful in scaling the fabrication 

procedures for the gate contact down to 50 nm. Before scaling, an array of forty DC 

designed FETs (as seen in Section 4.4) with 150 nm gate lengths were fabricated to assess 

yield as well as device performance. The yield of working FETs i.e. produced a drain 

current in the region of hundreds of mA and containing a gate capable of modulating this 

current worked out to be ~ 50% and presented in Figure 6.3.1 is the output characteristics 

for one of these devices.  

 

 

 

 

 

Each device is characterised over a range of drain (0 to -10 V) and gate (-5 to +4 V) 

voltages and exhibits transistor behaviour in as much as the gate contact is able to control 

the amount of current between source and drain contacts and the device can be fully 

pinched off at Vgs = +3 V. The device never fully saturates within this voltage range which 

would suggest a large value for RON. This agrees with the results previously seen in 

Figure 6.3.1: Output characteristics for 150 nm Lg FET 
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Section 6.1 where the TLM structures showed large values for sheet and contact resistance 

speculated to be due to sample contamination. 

 

Looking next at the transfer characteristics as shown in Figure 6.3.2, there are a few points 

worth noting. The threshold voltage is not clear from the plot of transfer characteristics it 

appears to change with Vds. It is also important to note that the total drain current found at 

Vgs = -5 V and Vds = - 10 V which reaches only -13 mA.mm-1. This is less than two thirds 

of the original current measured at the same bias points for the Ids-Vds measurement and 

suggests significant drain current degradation for repeat measurement. 

 

 

 

 

 

 

Figure 6.3.3 shows a transconductance plot for varying gate and drain voltages which as 

may be expected presents low values with peak transconductance of 5 mS.mm-1 at Vgs = -5 

V and Vds = -10 V although it is not saturated and appears as if it is still increasing beyond 

these bias points so further measurements were taken to attempt to push this value higher. 

 

 

 

 

Figure 6.3.2: Transfer characteristics for 150 nm Lg FET 
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Figure 6.3.4 shows the FET re-measured but pushed to a Vds of -20 V and the device still 

does not quite saturate. The current now reached -27 mA.mm-1 for Vgs = -5 V although at 

Vds = -10 V it remains degraded at -13 mA.mm-1.  

 

 

 

 

 

Figure 6.3.3: Transconductance plot for 150 nm Lg FET 

Figure 6.3.4: Output characteristics for 150 nm Lg FET up to 20 V Vds 
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Pushing Vgs higher lead to failure in the device gate so if transconductance could be 

increased it is not physically possible to reach in this device. Although the measurement of 

these 150 nm gate length devices did not yield the best performance in comparison with 

that reported elsewhere, they do demonstrate the viability of the fabrication procedure so 

the rest of the polycrystalline material was then used for 50 nm gate realisation. This 

involved the use of a much thinner resist and higher electron beam dose for pattern 

definition with the full details of the process being stated in Appendix A. 

 

As has previously been discussed, the fabrication procedure contains various elements such 

as the Au etch procedure that are difficult to control and are inherently low yield. A 

combination of repeat experiments with tweaks to the procedure eventually yielded 

working 50 nm gate length FETs but several generations of devices were required to reach 

this point. 

 

Figure 6.3.5 shows an early experiment with the Au etch recipe demonstrating the 

unreliable nature of this process. Of the two separate etches performed (isolation first 

around the active area of the device then etching of the source-drain gap prior to gate 

deposition) the procedure and etch time is kept constant yet producing radically different 

results. For a reason that wasn’t fully determined the isolation etch has only partially 

removed the Au metal leaving the devices with poor isolation.  

 

 

 

 

 

Figure 6.3.5: SEM image showing poor isolation from Au etch 
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Another pitfall in this process can be seen in Figure 6.3.6 where residue can be clearly seen 

within the source-drain gap thought to be re-deposited  by the Au etch solution. To try and 

minimise this effect subsequent etches employed a rigorous 1 minute rinse in RO water 

along with sample agitation. The extra care in rinsing is necessary due to the Au etch 

solution doing most of its work beneath the undercut of the resist layer as shown in Figure 

6.3.7, hence a quick rinse is not sufficient to remove all the Au etch solution.  

 

 

 

 

 

 

 

 

 

 

Figure 6.3.8 shows that even when thoroughly rinsed and the etch residue removed as 

much as possible, other factors may still impede the etch. Two things should be noted from 

this image. Firstly the ohmic contact edge is particularly rough and secondly the gate is 

patchy and not fully deposited. It is believed that this is related to poor development of the 

Figure 6.3.7: Au etch producing an undercut profile 

Figure 6.3.6: SEM image showing re-deposition of Au from etchings 
solution 
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gate resist profile hence impeding the effectiveness of the Au etch with residue in the gate 

region and also producing a poor lift off profile for the gate contact.  

 

 

 

 

 

Figure 6.3.9 shows that even with a thorough rinse and reasonable Au etch profile the very 

nature of the small gate contact can cause problems with lift-off of the gate metals. 

Although the gate is complete it can be seen the Au metal appears poorly adhered to the 

underlying Al with parts clearly flaking off. 

 

 

 

 

Figure 6.3.8: SEM image showing poor Au etch due to poor resist 
development 

Figure 6.3.9: SEM image showing poor gate metal adhesion 
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Finally Figure 6.3.10 shows when the procedure is successful with a 50 nm gate length 

FET produced. 

 

 

 

 

 

 

6.4 DC Measurement for 250, 120 and 50nm Devices 

With a sufficiently optimised hydrogenation process achieved and an improved lithography 

procedure allowing for gate feature definition down to at least 50 nm (as seen in Figure 

6.3.5) research then shifted to producing high performance devices. To give a comparison 

to previous work and also a deeper insight in to the scaling of these devices three gate 

nodes were investigated with gate lengths of 250, 120 and 50 nm. All these devices were 

fabricated on the same single crystal sample to maintain continuity between the material 

properties for each device. This sample had the same hydrogenation procedure applied to it 

as the single crystal sample in Section 6.1 and hence possessed very similar material 

properties. Each device was designed to have two gate fingers each with a width of 25 µm 

to give a total device gate width of 50 µm. 

 

First the 250 nm gate length devices are discussed, an SEM image of one can be seen in 

Figure 6.4.1. The DC output characteristics are shown in Figure 6.4.2 and transfer 

characteristics in Figure 6.4.3 with a transconductance plot for this device given in Figure 

6.4.4. 

Figure 6.3.10: SEM image of 50 nm gate 
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Figure 6.4.1: SEM of 250 nm FET 
 

Figure 6.4.2: Output characteristics for 250 nm Lg FET 
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The output characteristics at this gate length fully saturate at around Vds = -5 V so although 

this still represents a substantial RON it is reasonable for this technology and a vast 

improvement on the preliminary devices seen in Section 6.3. The drain current saturates at 

Figure 6.4.3: Transfer characteristics for 250 nm Lg FET 

Figure 6.4.4: Transconductance plot for 250 nm Lg FET 
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-280 mA.mm-1 for a gate voltage of -2.5 V and the device channel becomes depleted of 

carriers to the point there is negligible current present at a Vgs of +1 V. The gate voltage 

was not pushed to beyond -2.5 V due to concerns over drain current degradation and 

looking at the next measurement of the transfer characteristics this seems to have sustained 

the same saturation current confirming that a high gate voltage is intimately related to this 

phenomenon. Extracting linearly from the transfer characteristics graph the threshold 

voltage for this device is at Vgs ~ +0.75 V with a peak transconductance extracted from 

Figure 6.4.4 of 92 mS.mm-1 with a plateau between a Vds of -7 and -10 V and a Vgs of  -1 to 

-2 V. 

 

The gate leakage observed in this device was so small that it was below the noise floor of 

the measurement system. It can be seen plotted in Figure 6.4.5 on a logarithmic scale. 

 

 

 

 

 

Moving on to the 120 nm gate length device as seen in Figure 6.4.6 with the plot of output 

characteristics in Figure 6.4.7, transfer characteristics in Figure 6.4.8 and transconductance  

displayed in Figure 6.4.9. 

 

 

 

Figure 6.4.5: Gate leakage plot for 250 nm Lg FET 
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Figure 6.4.6: SEM of 120 nm FET 
 

Figure 6.4.7: Output characteristics for 120 nm Lg FET 
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To again try and maintain the drain current with minimal degradation care was taken to not 

apply too high a negative gate voltage to the device. This is because degradation appears to 

occur when charge is brought close to the surface. This time Vgs was taken between -2 and 

+ 2 V with 0.5 V intervals and again the device becomes depleted of carriers so as to give 

Figure 6.4.8: Transfer characteristics for 120 nm Lg FET 

Figure 6.4.9: Transconductance plot for 120 nm Lg FET 
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no substantial current at around Vgs = +1 V. Saturation appears to occur at reduced Vds than 

for the 250 nm Lg FET which would suggest a slightly lower RON most likely attributed to 

a smaller source-drain gap from the variable Au etch. The two SEM plots images (Figure 

6.4.1 and 6.4.5) however show similar spacing although the 120 nm device has marginally 

smoother ohmic contact edges. The maximum drain current here is higher than the 250 nm 

gate length device, reaching -360 mA.mm-1 at Vgs = -2 V. The transfer characteristics seen 

in Figure 6.4.7 confirm the threshold voltage again to be at Vgs ~ +0.75 V and again 

maintaining the same maximum drain current as from the output characteristics 

measurement. A peak transconductance of 137 mS.mm-1 is extracted from Figure 6.4.6 and 

again the transconductance plateaus between Vds of -7 and -10 V with Vgs between -0.5 

and -1.5 V. 

 

Again the gate leakage observed in this device was below the noise floor of the 

measurement system. 

 

Finally the 50 nm gate length FET was characterised (the device is shown previously in 

Figure 6.3.10). The output characteristics are shown in Figure 6.4.10, transfer 

characteristics in Figure 6.4.11 and transconductance in Figure 6.4.12. Extra care was once 

again taken to not push the gate voltage too high in the negative direction initially, hence 

due to the reduced gate length measurements were only taken between Vgs of -1 and +2 V.  

 

 

 

 
Figure 6.4.10: Output characteristics for 50 nm Lg FET 
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The maximum drain current is still high with -325 mA.mm-1 achieved at a Vgs of -1 V 

although the devices take a large drain voltage to saturate fully requiring a Vds ~ -8 V. 

Figure 6.4.11: Transfer characteristics for 50 nm Lg FET 

Figure 6.4.12: Transconductance plot for 50 nm Lg FET 



 Chapter 6 – Device Results 126 

Even at a Vgs of + 2 V the channel is still showing significant drain current at this smaller 

gate dimension. An attempt was made to deplete the channel further but not until after the 

transfer characteristics were taken. Even though extra care was taken not too push the gate 

voltage too negative current degradation was still observed. The peak transconductance is 

extracted from Figure 6.4.13 to be just 78 mS.mm-1 again with a plateau between a Vds of  

-7 to -10 V and a Vgs of -0.5 to +1 V.  

 

As for the prior devices with longer gate lengths the gate leakage observed in this device 

was below the noise floor of the measurement system. 

 

Figure 6.4.13 shows a repeat measurement of the output characteristics between a Vgs of -2 

and +4 V. The drain current is once again degraded overall giving credit to the theory this 

is intimately linked to the gate bias perhaps due to stronger negative gate voltages bringing 

charge closer to the surface and populating traps. This measurement also shows it was 

possible to deplete the channel of this device however not until a gate bias of +4 V. 

 

 

 

 

 

This is the first time any characterisation has been reported on sub 100 nm gate length 

diamond FETs and has yielded some interesting results with the details published in 

relevant scientific literature [6.7]. There appears to be a gradual shift in the threshold 

voltage linked to the scaling of the gate suggesting it becomes more and more difficult to 

Figure 6.4.13: Output characteristics for 50 nm Lg FET with increased 
range of gate bias 
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deplete the channel at these reduced gate lengths. It is thought any further reduction of the 

gate length would likely lead to these effects becoming even more apparent. A reduced 

extrinsic transconductance compared to the previous trend of increase with reduction of 

gate length appears to suggest further evidence that at this gate length the gate is losing the 

ability to control the channel as well as before. Or there is increased access resistance 

present although from the SEM image the source-drain gap appears smaller than for the 

other devices suggesting the total access resistance should be smaller. Nevertheless, 

competitive drain current is still observed with the following sub-section detailing 

successful RF measurement and further information on the make-up of these devices as 

well as trying to build up an accurate model of their operation. 

 

The DC figures of merit for these three devices are summarised in Table 6.4.1. 

 

 250 nm Device 120 nm Device 50 nm Device 

Peak Drain 

Saturation Current 

(ma.mm-1) 

 

-280 (at -2.5 Vgs) 

 

-360 (at -2 Vgs) 

 

-325 (at -1 Vgs) 

Threshold Voltage (V) +1 +1 +4 

Extrinsic 

Transconductance 

(mS.mm-1) 

 

92 

 

137 

 

78 

 

 

 

 

6.5 250 nm RF Transistor Measurement 

Along with obtaining results for DC measurement of each of the three device gate lengths 

RF characterisation was undertaken. As mentioned in Chapter 3 and expanded upon in 

Section 6.8, concerns regarding possible drain current degradation led to the use of a 

‘fresh’ FET structure for RF measurement. Since device yield is low and there are a limited 

number of devices on each small diamond substrate, this leaves few attempts for successful 

RF measurements after DC characterisation. The best results are discussed here with S-

parameter measurements taken from 1 to 20 GHz (as these were the only probes available 

Table 6.4.1: Summary of DC figures of merit for scaling study 
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for the network analyser at the time) at the DC bias points at which peak DC 

transconductance was observed to ensure that the highest possible RF figures of merit may 

be extracted. 

 

The de-embedded S-parameter measurements (i.e. the contribution of the co-planar 

waveguides having been removed) for a 250 nm Lg diamond FET at a bias of Vds = -8 V 

and Vgs = -1 V are shown in Figure 6.5.1 plotted using Agilent’s Advanced Design System 

(ADS) software and displayed in the Smith chart format for ease of visualisation.  

                  

 

 

 

 

 

From these measurements, a small signal equivalent circuit model at this bias point was 

extracted as discussed in Section 2.9. As can be seen from Figure 6.5.2 a reasonable model 

was achieved for the 250 nm device with only slight discrepancies present.  

 

 

 

 

 

 

 

 

Figure 6.5.1: S-Parameter data for 250 nm Lg FET 
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Starting from a rough knowledge of the individual parameters as extracted from DC device 

and test structure measurement a range for each parameter can be assigned, then tuning 

may be performed in the ADS software to create an accurate model for the device at this 

Figure 6.5.2: S-Parameter matching between measured data (blue) and 
modelled (red) for 250 nm Lg FET 
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bias point and frequency range. E.g. TLM measurement gives us contact and sheet 

resistances and although Rs and Rd cannot be explicitly calculated from this measurement 

(due to different ohmic contact spacing amongst other factors such as variable ohmic edge 

roughness) a reasonable range within which the component value lies can be expressed 

nonetheless.  

 

The magnitude and phase plots for each of the S-parameters show the matching in more 

detail. The Smith chart displays the complex impedance response of the FET with varying 

frequency, but the magnitude of each parameter can tell us how much of the respective 

signal is being reflected or transmitted through the device while the phase describes any 

delay in the signal. Due to the mismatch in input and output impedances S21 is in fact less 

than zero although gain is still present in the device [6.8]. Precise matching is challenging 

due to the model being dependent on a large range of values a large range of values. 

Traditional parameter extraction techniques such as ‘cold FET’ measurement were not 

possible here again due to repeat measurement leading to current degradation as mentioned 

previously which would lead to inaccurate parameter values. Extracted equivalent circuit 

values for the 250 nm device are presented in Table 6.5.1. 

 

Circuit Element Value Circuit Element Value 

gm
* 6.82 mS Rd 144.60 Ω 

Rds 1.60 kΩ Lg 0.13 fH 

Ri 14.12 Ω Ls 0.26 pH 

Cgs 45.06 fF Ld 0.13 pH 

Cgd 2.35 fF Cgsp 0.18 fF 

Cds 3.89 fF Cgdp 0.56 aF 

Rg 184.01 Ω Cdsp 1.55 aF 

Rs 144.13 Ω   

 

 

 

There is some margin for error associated with the equivalent circuit extraction and there 

are numerous reasons why the values may differ as detailed below.  

 

Table 6.5.1: Extracted equivalent circuit elements for 250 nm device 
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Beginning with transconductance which is not quite as high as one would expect from the 

extracted DC intrinsic value, although it is not too far off if compared to the value 

extracted from the DC plot of 92 mS.mm-1 in Figure 6.4.3. If this is converted from 

intrinsic to extrinsic transconductance as seen in Equation 2.8.4 we obtain 69 mS.mm-1 

(normalizing to a gate width of 50 µm). The fabrication procedure for creating the gate on 

the Au etched diamond surface is not well understood and although it was rinsed 

thoroughly there will still inevitably be residue present as has been seen in SEM pictures in 

this chapter. This could lead to surface states and traps which vary with frequency and 

affect the RF transconductance more than for the DC measurement. These traps may 

indeed be present even if deposition was possible straight on to the diamond without the 

Au etch process as unfortunately knowledge of this contact is still minimal. Finally there 

may even be traps present along the exposed surface regions. Source-drain resistance (Rds) 

is of a reasonably high value as would be expected at this gate length, there is no 

noticeable slope observed in the saturation current in the output characteristics as seen in 

Figure 6.4.2 and hence low output conductance. 

 

The total gate capacitance (Cgs + Cgd) is smaller than may be expected when modeling the 

gate and channel as a parallel plate capacitor which for a 10 nm separation between gate 

contact and device channel gives 63 fF. The equivalent circuit suggests it to be 47 fF, so 

only 75% of the parallel plate capacitor model’s value. It is thought that since the gate 

metal is aluminium which oxidizes easily in air, there may be significant oxidation at the 

gate edges, reducing the effective gate area as well as the effective gate length. Also if an 

interfacial layer is present between Al and diamond this may well have a different 

dielectric constant. Finally the separation between gate and channel is also far from certain.  

 

Gate resistance (Rg) is high but this is to be expected from a non-optimised gate design 

rather than employing a T-shape. Oxidation of the gate metal would also play a role with 

the gate stack consisting of just 25 nm Al topped with 25 nm Au. The source and drain 

access resistance are a reasonable value (both being 144 Ω) given the contact and sheet 

resistance values mentioned previously. The inductance/capacitances are small in value 

compared to the rest of the device elements hence having little effect on device 

performance. 

 



 Chapter 6 – Device Results 132 

Using the equations discussed in Section 4.5, extrinsic fT and fMAX  were extracted as 

shown in Figure 6.5.3. With fT = 19 GHz and fMAX  = 18GHz, these results are comparable 

to those obtained by M. Kubovic et al for a 200 nm gate length device [6.3]. 

 

 

 

 

 

 

Using the equations given in Section 2.9 and considering the equivalent circuit values 

established from the device RF model, it is possible to calculate a value for intrinsic fT and 

fMAX and to compare these with the extrinsic values. The intrinsic value for fT is calculated 

to be 23 GHz in comparison with an extrinsic value of 19 GHz. For fMAX  an intrinsic value 

of 27 GHz was calculated compared to the extracted value of 18 GHz. Hence it is clear that 

access resistances don’t have a significantly detrimental effect on the value of fT at this 

gate length and output conductance is still low enough to not impact the performance with 

fT reaching 83 % of its potential and fMAX  67 % (again both intrinsic and extrinsic fMAX  

could be increased further by minimising Rg with a T-shaped gate structure). 

 

As shown in Section 2.9 intrinsic fT may also be related to velocity of carriers beneath the 

gate region. Using the value of 23 GHz extracted here gives an average velocity of 0.36 x 

Figure 6.5.3: Extracted values for extrinsic fT and fMAX  for 250 nm gate 
length FET 
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107 cm.s-1. This value lies well below the saturation velocity of holes in intrinsic diamond 

(0.8 x 107 cm.s-1) and suggests velocity overshoot does not occur at this gate length 

agreeing with the value observed by H. Matsudaira et al for a 200 nm FET [6.3]. 

 

6.6 120 nm RF Transistor Measurement 

Moving to the 120 nm gate length device, biased at the same values as the 250 nm device, 

a Vds of -8 V and a Vgs of -1 V, the S-parameter plot is noticeably different as shown in 

Figure 6.6.1. The impedance response of S21 appears to vary with frequency more than the 

250 nm device besides which the other parameter responses appear similar.  

 

 

 

 

 

 

 

 

In creating the extracted equivalent circuit model, S-parameter magnitude and phase were 

again matched as closely as possible and tuned to the measured values. The measured 

signal response is again plotted against the equivalent circuit response as pictured in Figure 

6.6.2 

 

Figure 6.6.1: S-Parameter data for 120 nm Lg FET 
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Extracted equivalent circuit values are presented in Table 6.6.1 and would seem to obey 

the scaling trend as observed in the DC measurements. Beginning with intrinsic 

transconductance, this is as expected from the DC measurement higher than for the 250 nm 

device. Once again when converting and normalising by the gate width 128 mS.mm-1 does 

Figure 6.6.2: S-Parameter matching between measured data (blue) and 
modelled (red) for 120 nm Lg FET 
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not quite match the value from the extrinsic DC transconductance measurement of 137 

mS.mm-1.  

 

 

Circuit Element Value Circuit Element Value 

gm
* 17.00 mS Rd 97.30 Ω 

Rds 0.90 kΩ Lg 3.22 pH 

Ri 16.09 Ω Ls 9.54 pH 

Cgs 39.76 fF Ld 1.52 pH 

Cgd 1.80 fF Cgsp 4.90 aF 

Cds 3.10 fF Cgdp 0.56 fF 

Rg 508.00 Ω Cdsp 0.01 fF 

Rs 97.30 Ω   

 

 

 

Output resistance is slightly lower here at 0.9 kΩ compared to 1.6 kΩ for the 250 nm gate 

length. This may be expected due to the gate having slightly less control of the channel but 

not to the point where short channel effects are significantly hampering device 

performance.  

 

Total gate capacitance is lower than for the previous device but only by ~5 fF to 42 fF 

suggesting that capacitance of the gate contact does not necessarily scale with gate length 

as we would expect. A gate capacitance of 30 fF is found from the parallel plate 

approximation which is smaller than the equivalent circuit value. Perhaps the oxidation 

speculated for the previous device gate is not as prevalent here, the intermediate layer may 

be larger or the different gate lengths draw the charge to slightly different distances 

beneath the diamond surface as they apply different electric fields accounting for why this 

value is in fact larger than predicted. It should also be reinforced at this point the values 

extracted from the equivalent circuit are only accurate for this bias point. It is clear the 

parallel plate approximation is not entirely suitable here. Although the transconductance is 

significantly improved at this gate length capacitance still ultimately limits the 

performance. Access resistances are lower with both Rs and Rd = 97 Ω which is in 

agreement with the lower RON seen for the DC measurement even though there is no 

Table 6.6.1: Extracted equivalent circuit elements for 120 nm device 
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discernable difference in the ohmic contact spacing between SEM images of the 250 nm 

and 120 nm devices (seen in Figures 6.4.1 and 6.4.5 respectively) although this RON value 

also accounts for the resistance beneath the gate which as stated above is lower than for the 

250 nm device. 

 

One anomalous value in this model is the gate resistance. In comparison with the 250 nm 

gate, one would expect this to increase purely due to the smaller cross-sectional gate area. 

However the increase here is fairly substantial from 184 to 508 Ω. A crude calculation 

taking the average resistivity of Al and Au to be 2.63 x 10-8 yields a predicted resistance of 

105 Ω for the 250 nm gate and 219 Ω for the 120 nm gate. It could be suggested that 

oxidation of the gate metal could account for this however that would also affect other 

parameters such as gate capacitance and transconductance. Other causes could be defects 

in the gate structure - for example regions where the gate has been unusually constricted or 

deformed due to lithographic defects (an example can be seen in Figure 6.6.3) or perhaps 

even when metal has been deposited especially as the gate is topped with Au this layer may 

not contact the Al producing a much thinner deposition than expected. 

 

 

 

 

 

Values for fT and fMAX  were again extracted as seen in Figure 6.6.4, although this time a 

small amount of extrapolation is required as both values lie above the maximum measured 

frequency of 20 GHz. The fT value of 45 GHz is a significant result, as it matches the 

values obtained by both K. Ueda et al and K. Hirama et al although with some differences 

Figure 6.6.3: Deformation of gate due to lithographic deffect 
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in device design [6.9-10]. The result obtained by Ueda was from a 100 nm device while 

Hirama’s was 150 nm and utilised a gate insulator of Al 2O3, while both devices used 

polycrystalline material. This is by far the best result obtained to date on single crystal 

diamond proving it is just as viable for producing FET devices as polycrystalline material. 

Again the 25 GHz value for fMAX  is not as high as could be achieved with an optimised T-

gate design. 

 

 

 

 

 

Calculating the intrinsic values yields fT = 65 GHz and fMAX  = 42 GHz with the extrinsic fT 

now 69 % of the intrinsic value and the extrinsic fMAX  just 60 % of the intrinsic value 

showing that as these devices are scaled the parasitic effect of access resistance becomes 

more pronounced as well as an increased output conductance. It should be noted the figure 

for fMAX  may have the potential to be higher due to the unusually large and perhaps 

anomalous Rg for this device. 

 

Relating intrinsic fT to the carrier velocity beneath the gate as done for the previous device 

using the value of 65 GHz extracted here gives an average velocity of 0.49 x 107 cm.s-1. 

Figure 6.6.4: Extracted values for extrinsic fT and fMAX  for 120 nm FET 



 Chapter 6 – Device Results 138 

This value albeit faster again lies below the saturation velocity of holes in intrinsic 

diamond and suggests velocity overshoot does not occur at this gate length. 

 

6.7 50 nm RF Transistor Measurement 

The Smith chart for the 50 nm devices (biased at Vds = -8 V and Vgs = -0.4 V) is noticeably 

different to the other two devices as seen in Figure 6.7.1.  

 

 

 

 

 

 

 

 

All parameters are once again matched to the equivalent circuit model with the matching 

plots picture in Figure 6.7.2. The matching achieved was worse than for the larger gate 

length devices although this may be expected considering the relative magnitude of the S-

parameters here are much smaller than for previous devices. 

 

The equivalent circuit values are displayed in Table 6.7.1 and seem to agree with the trends 

observed in DC device measurement. The intrinsic transconductance is smaller than for the 

120 nm FET but larger than the 250 nm device and converting to extrinsic 

transconductance then comparing to the extracted DC value this time it roughly matches at 

84 mS.mm-1. Although this transconductance value is significantly smaller than for the 120 

Figure 6.7.1: S-Parameters for 50 nm Lg FET 
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nm FET the intrinsic gate capacitances have also scaled so as not to fundamentally limit 

the RF performance. 

 

 

 

 

 

 

 

 

Figure 6.7.2: S-Parameter matching between measured data (blue) and 
modelled (red) for 50 nm Lg FET 
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Other circuit values have also changed at this gate length however and will have an impact 

on the RF figures of merit. Output resistance is less than half the value of the 120 nm FET 

at 0.37 kΩ rather than 0.9 kΩ and a quarter of that of the 250 nm (1.6 kΩ) FET. This 

suggests that short channel effects although not crucially diminishing device performance, 

are becoming important as has been noted in the DC characterisation. Where a Vgs of +2 V 

would be sufficient to pinch off the larger gate length devices there is still drain current 

present here and takes a Vgs of +4 V to fully achieve pinch off. 

 

Total gate capacitance is smaller at 16 fF than 42 fF for 120 nm gate length device and 37 

fF for the 250 nm gate length device. The parallel plate capacitor model suggests a total 

gate capacitance of 12.6 fF for 50 nm gate length which is close to this result. 

 

The gate resistance is larger at 370 Ω than for the 250 nm FET (184 Ω) but smaller than for 

120 nm (508 Ω). This is unexpected but this increased resistance would seem reasonable 

for this gate length due to the smaller cross-sectional gate area (which from a crude 

resistivity calculation yields 526 Ω). This also suggests that the high Rg value seen for the 

120 nm gate may indeed be anomalous. Both access resistances Rs and Rd at 125 Ω and 

119 Ω respectively again seem reasonable considering the range of values possible from 

variable source-drain gap spacing and contact edge roughness. 

 

Circuit Element Value Circuit Element Value 

gm
* 8.75 mS Rd 119.00 Ω 

Rds 0.37 kΩ Lg 0.70 pH 

Ri 27.20 Ω Ls 1.80 pH 

Cgs 15.20 fF Ld 1.44 pH 

Cgd 0.30 fF Cgsp 1.15 aF 

Cds 5.02 fF Cgdp 0.17 fF 

Rg 370.40 Ω Cdsp 0.89 fF 

Rs 125.00 Ω   

Table 6.7.1: Extracted equivalent circuit elements for 50 nm device 
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Extrapolation of the data seen in Figure 6.7.3 was again necessary to find the RF figures of 

merit with fT = 53 GHz and fMAX  = 27 GHz being observed. This is the largest fT value yet 

reported from a diamond FET as well as being the first RF data reported from a sub-100 

nm diamond FET. [6.11] 

 

 

 

 

 

Although this is the highest fT value yet reported and it is an improvement upon the 45 

GHz observed for the 120 nm FET it is not as significant an improvement as was seen 

moving from 250 to 120 nm where fT more than doubled. Again looking at the intrinsic 

values for fT and fMAX , intrinsic fT = 90 GHz and intrinsic fMAX  = 43 GHz for this 50 nm 

device. So extrinsic fT is now just 59 % of the intrinsic value with fMAX  being 63 %.  

 

Relating intrinsic fT to the carrier velocity beneath the gate as done for the previous device 

using the value of 90 GHz extracted here yields an average velocity of 0.28 x 107 cm.s-1 for 

carriers beneath the gate. This value is slower than for both the 250 nm and 120 nm 

devices, once again lying below the saturation velocity of holes in intrinsic diamond and 

suggests velocity overshoot does not occur even at this gate length. 

 

Figure 6.7.3: Extracted values for extrinsic fT and fMAX  for 50 nm FET 
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Hence the effect of access resistance along with the output conductance becomes 

significantly more prominent as is common when scaling devices to shorter gate lengths. 

This trend as seen in Figure 6.7.4 indicating it is unlikely that further scaling of the gate 

length geometry would lead to a large improvement in the fT of these devices.  

 

 

 

 

 

 

This trend may also be seen in Table 6.7.2 which summarises the performance of each 

device gate length and highlighting the effect of scaling on equivalent circuit elements 

important to the value of fT. It shows that instead of further gate length scaling focus now 

needs to be shifted in to minimising the extrinsic elements that limit the potential RF 

performance and/or if possible increasing the output resistance at reduced gate lengths. 

 

 

 

 

 

 

 

 

Figure 6.7.4: Plot comparing extrinsic and intrinsic fT and fMAX for each 
device gate length 
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 250 nm Lg 120 nm Lg 50 nm Lg 

fT Extrinsic 19 GHz 45 GHz 53 GHz 

fT Intrinsic 23 GHz 65 GHz 90 GHz 

Extrinsic Percentage 

of Intrinsic Value 

83 % 69 % 59 % 

fMAX  Extrinsic 18 GHz 25 GHz 27 GHz 

fMAX  Intrinsic 27 GHz 42 GHz 43 GHz 

Extrinsic Percentage 

of Intrinsic Value 

67 % 60 % 63 % 

Extracted Carrier 

Velocity Beneath Gate 

0.36 x 107 cm.s-1 

 

0.49 x 107 cm.s-1 0.28 x 107 cm.s-1 

gm
* 6.82 mS 17 mS 8.75 mS 

Total Cg  

(Cgs + Cgd) 

47.41 fF 41.56 fF 15.5 fF 

Access Resistance 

(Rs + Rd) 

288.73 Ω 194.6 Ω 246 Ω 

Rds 1.6 kΩ 0.9 kΩ 0.37 kΩ 

 

 

 

 

6.8 Degradation 

As has already been mentioned repeat measurements at a high negative gate bias leads to 

drain current degradation in these surface channel FETs. It is thought that this phenomenon 

is intimately linked to the gate contact as repeat measurement at low gate voltages or on 

TLM structures does not appear to noticeably degrade the current and the smaller the gate 

length the less gate bias will cause degradation i.e. for a 50 nm device no greater than a Vgs 

of -1 should be applied. However as shown there is no significant gate leakage in these 

devices, hence it is thought a trapping mechanism involving the gate contact may be 

responsible. 

Table 6.7.2: Comparison of device performance with gate length and 
effect of scaling on important equivalent circuit values 
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To try to provide some insight as to why this happens, DC current-voltage measurements 

at a constant bias were taken for various periods of time using the 50 nm gate length FET 

as well as a 1 µm TLM gap for a comparison. Interestingly every single measurement 

showed a change in the measured current with respect to time. Beginning with the 1 µm 

TLM gap, Figures 6.8.1 and 6.8.2 show measurement of current at -5 and -20 V 

respectively for a time of 30 seconds.  

 

 

 

 

 

 

 

In this timeframe, in the case of the -5 V sweep, the current degrades by ~ 6% of its 

original value by the end of the measurement with the -20 V measurement also degrading 

by ~6%. When the next measurements were taken however the current had fully recovered 

Figure 6.8.1: 1 µm TLM gap timed 30 s measurement for -5 V  

Figure 6.8.2: 1 µm TLM gap timed 30 s measurement for -20 V  
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at time = 0 s, (see Figures 6.8.3 and 6.8.4) which suggests degradation of current in the 

TLM structure i.e. without a gate is only temporary and recovers very quickly when 

biasing is removed. Figures 6.8.3 and 6.8.4 demonstrate this degradation across a shorter 

scan of just 1 second. Degradation is again observed although this time much more so for 

the -20 V bias which loses ~ 1% of its current compared to ~0.3% for the -5V scan. 

 

 

 

 

 

 

 

A final set of measurements can be observed in Figures 6.8.5 and 6.8.6 showing the same 

bias points again for the 1 µm TLM gap, only this time over 3 minutes. The original 

current is again fully recovered from the last scan at time = 0 s and over the course of the 3 

minutes the -5 V bias scan shows a current loss of  ~8% as opposed to 16% for -20 V. 

Figure 6.8.3: 1 µm TLM gap timed 1 s measurement for -5 V  

Figure 6.8.4: 1 µm TLM gap timed 1 s measurement for -20 V  
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Hence it appears the larger the bias the faster degradation ensues. Also in Figure 6.8.5 the 

loss of current appears to be beginning to saturate by 3 minutes whereas in Figure 6.8.6 

degradation continues. 

 

 

 

 

 

 

 

 

Moving to the 50 nm gate length device, a gate bias of Vgs = 0 V was inspected to give a 

contrast to the TLM measurements, although they cannot be compared directly as the built 

in voltage the gate provides makes these structures incomparable. A measurement at a Vds 

of -1 V which is within the linear operating regime of this device is shown in Figure 6.8.7. 

A loss of ~ 3% in current is seen over a 30 second measurement and in contrast to the 

Figure 6.8.5: 1 µm TLM gap timed 3 mins measurement for -5 V  

Figure 6.8.6: 1 µm TLM gap timed 3 mins measurement for -20 V  
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TLM structure, the current does not fully recover between each of the following 

measurements, but instead decreases slightly for each. When measured at a Vds of -10 V as 

shown in Figure 6.8.8 a ~ 36% drop can be seen in the current over 30 seconds suggesting 

that whatever mechanism degrades the current the presence of the gate contact certainly 

appears to accentuate it. 

 

 

 

 

 

 

 

 

 

Figure 6.8.7: 50 nm FET timed measurement, 30 seconds -1 V Vds, 0 Vgs 

Figure 6.8.8: 50 nm FET timed measurement, 30 seconds -10 V Vds, 0 Vgs 
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Two final graphs in Figure 6.8.9 and 6.8.10 show the same measurement of the 50 nm 

device but with a Vgs of -4 V applied. In contrast to the previous measurements, current 

actually increases here with time. This suggests the mechanism involved is detrimental due 

to its instability and is indeed intimately linked to the gate contact although it does not 

necessarily involve a decrease or ‘degradation’ in current. 

 

 

 

 

 

 

 

 

Tables 6.8.1 and 6.8.2 provides a summary of the measurements undertaken in this section 

for ease of comparison. 

Figure 6.8.9: 50 nm FET timed measurement, 30 seconds -1 V Vds, -4 V Vgs 

Figure 6.8.10: 50 nm FET timed measurement, 30 seconds -10 V Vds, -4 V Vgs 
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 -5 V -20 V 

Original Current -82.5 mA.mm-1 -300 mA.mm-1 

After 1 second bias -82.2 mA.mm-1 -297 mA.mm-1 

Percentage Change -0.3 % -1 % 

Original Current -82.5 mA.mm-1 -300 mA.mm-1 

After 30 second bias -77.8 mA.mm-1 -281 mA.mm-1 

Percentage Change -6 % -6 % 

Original Current -82.5 mA.mm-1 -300 mA.mm-1 

After 3 minutes bias -75.5 mA.mm-1 -250 mA.mm-1 

Percentage Change -8 % -16 % 

 

 

 

 Sweep 1 Sweep 2 Sweep 3 

Original Current -60.5 mA.mm-1 -60.0 mA.mm-1 -58.8 mA.mm-1 

After Bias 

(-1 V Vds, 0 V Vgs) 

-58.3 mA.mm-1 -57.9 mA.mm-1 -57.2 mA.mm-1 

Percentage Change -3.6 % -3.5 % -2.7 % 

Original Current -104 mA.mm-1 -91.1 mA.mm-1 -89.6 mA.mm-1 

After Bias 

(-10 V Vds, 0 V Vgs) 

-58.3 mA.mm-1 -57.5 mA.mm-1 -57.0 mA.mm-1 

Percentage Change -43.9 % -36.8 % -36.4 % 

Original Current -76.4 mA.mm-1 -77.0 mA.mm-1 -77.5 mA.mm-1 

After Bias 

(-1 V Vds, -4 V Vgs) 

-78.6 mA.mm-1 -78.6 mA.mm-1 -78.7 mA.mm-1 

Percentage Change +2.9 % +2.1 % +1.5 % 

Original Current -292 mA.mm-1 -308 mA.mm-1 -314 mA.mm-1 

After Bias 

(-10 V Vds, -4 V Vgs) 

-335 mA.mm-1 -342 mA.mm-1 -344 mA.mm-1 

Percentage Change +14.7 % +11.0 % +9.6 % 

 

 

Table 6.8.1: Summary of current degradation for a 1 µm TLM gap 

Table 6.8.2: Summary of current degradation for 50 nm gate length FET 
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Conclusive explanations for the mechanism behind this degradation/instability remain 

unclear. In terms of surface quality, all samples even after hydrogen-termination exhibit a 

very smooth surface as shown by an AFM scan for this sample in Figure 6.8.11 where an 

RMS roughness of 0.31 nm was measured. 

 

 

 

 

 

 

The explanation may be associated with the atmospheric adsorbate particles be it that they 

move during measurement as has been suggested by M. Kasu et al [6.12], the hydrogen 

itself evaporates beneath the contacts [6.12], or even a simpler charge trapping mechanism 

at the diamond adsorbate interface. This final explanation seems to be the most likely 

especially as slight degradation still appears even in recently fabricated devices 

encapsulated by Al2O3 [6.13]. An effect known as 'current collapse' is seen in GaN FETs 

where charge may populate surface traps causing a 'virtual gate' to deplete the channel and 

degrade the current and it is possible a similar situation occurs here especially as the 

degradation appears to be linked to the gate bias and will even act to increase the current at 

certain biases [6.14]. 

 

It would appear this effect is related to the exposed regions between source and gate and 

gate and drain as well as the gate contact itself. Instead of being charged by a virtual gate it 

is possible the relative electric field across the sample acts to further trap charge or remove 

Figure 6.8.11: AFM surface roughness scan on sample post-hydrogenation 
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it from surface traps upon the diamond surface. This is the only explanation which fits with 

the measurements taken here and emphasises the need to pursue a suitable electron 

accepting layer with minimal charge trapping. Further work also needs to be done on 

understanding the gate contact. 

 

6.9 Summary 

This chapter has summarised the FET device results obtained during this research. It has 

built on work done by previous groups in realising the high frequency potential of diamond 

transistors and provided a comparison between different gate length devices as they are 

scaled. For the first time, a sub-100 nm diamond FET has been realised and rigorously 

characterised. The data shows improvement upon previous FETs in the literature with the 

highest fT obtained to date.  

 

These results have also indicated the limitations associated with scaling and that for further 

significant improvement new fabrication techniques need to be implemented. It emphasises 

the need to replace the atmospheric dopant molecules with a more robust solution and 

degradation measurements also highlight this need as well as the potential need for a 

passivation layer. 
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7. Preliminary Investigations into Alternative Device 

Design  
The research shown so far throughout this thesis highlights the potential of diamond as an 

electronic material. Although some of the best device results yet seen for diamond have 

been shown in this work, the need for an alternative fabrication method to the conventional 

atmosphere exposed surface channel FET has also been consistently highlighted. This will 

lead to a more stable, repeatable and perhaps one day commercial set of devices as well as 

to fulfil diamond’s potential as a substrate for high power electronic devices. 

 

The greatest fabrication challenge in this work comes from the Au etch process used to 

create ohmic contacts. It is necessary to protect the hydrogen-termination beneath, 

however the etch is far from ideal and Au does not adhere to hydrogen-terminated diamond 

at all well so the most obvious route to improving the repeatability of these devices is to 

eliminate this Au etch process. Attempts at this were made and are presented in this 

chapter including the use of an ‘inverse process’ with an Al sacrificial layer and using an 

alternative ash with a non-oxygen containing SF6 gas mixture. 

 

The atmosphere exposed diamond surface itself is also non-ideal and a big factor in the 

instability of FETs. Two routes to encapsulating this were attempted both with moderate 

success as well as trying to find an alternative electron accepting material to replace the 

atmospheric particles all together which has shown substantial promise. 
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7.1 Alternative Fabrication Procedures 

When investigating an alternative to the traditional Au sacrificial layer with its subsequent 

etch to produce ohmic contacts, one place to begin is attempting an inverse process 

whereby an Al sacrificial layer is deposited first to protect the surface and subsequently 

etched back in the same manner although to produce gate features instead of the ohmic 

contact as seen in Figure 7.1.1. 

 

 

 

 

 

 The success of this method relies on a number of factors, namely the ability to produce a 

lower roughness contact edge than is possible with Au, especially as small gate features are 

desirable. The nature of the Al etch and if it adversely affects the sub-surface conductivity 

will also be crucial. 

 

The Al etch was performed using the same MF CD-26 developing solution as is used to 

remove the Al charge dissipation layer subsequent to electron beam lithography. An initial 

investigation was undertaken with a 1 minute etch on a CV structure as this has a relatively 

Figure 7.1.1: Inverse Al SL process 



 Chapter 7 – Preliminary Investigations into Alternative Device Design 155 

large gate area. Etching showed that although the edge roughness may be slightly smoother 

than its Au counterpart it is not significantly so. It can be seen via inspection of the SEM 

images in Figures 7.1.2 and 7.1.3 that metal edge roughness is still present and of the order 

of ~100 nm. It should also be noted this etch appears to leave significant re-deposition of 

material even with a thorough rinse with RO water. Hence with any improvement over the 

Au etch being marginal at best along with the process seeming to complicate rather than 

simplify matters it was quickly discarded. 

 

 

 

 

 

 

 

 

Figure 7.1.2: Al etch on diamond with re-deposition 
clearly visible 

Figure 7.1.3: Zoomed in Al etch on diamond with re-
deposition clearly visible 
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One method of potentially achieving reduced roughness and anisotropic metal etch profiles 

is by using a dry etch technique. This raises the question is there a gas chemistry which 

will produce the desired result of etching the Al without damaging the hydrogen-

termination of the diamond and degrading the sub-surface conductivity? This to the 

author’s knowledge has yet to be discovered.  

 

Another potential route to avoid the use of an Au sacrificial layer is to use an alternative 

plasma ashing technique to the process mentioned in Section 3.4, which does not contain 

oxygen as this would remove the necessity to etch any metals. Instead resist could be spun 

directly on to the diamond surface, developed and ashed with this gas prior to metal 

deposition assuming that no significant damage is caused by high energy electrons to the 

surface termination during lithography. This potential process is illustrated in Figure 7.1.4. 

 

 

 

 

 

A possibility is to use sulphur hexafluoride (SF6) as it is a mild etch used in silicon 

processing to give anisotropic profiles at relatively low temperature and pressures [7.1]. It 

does not contain oxygen so should not lead to oxygen-termination of the diamond surface. 

To test this ashing technique some TLM structures were fabricated on the bare hydrogen-

terminated diamond surface (i.e. without an Au sacrificial layer) using an SF6 ash and 

standard lift-off to produce smooth ohmic contact edges. The parameters for the SF6 ash 

were unchanged from the standard low power oxygen ash (1 minute at 40 Watts) so as to 

give a comparison between the two. 

Figure 7.1.4: Alternative ash process 
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Figure 7.1.5 shows the results of DC measurement of these SF6 ashed TLMs. There is 

clearly very little current present and where we would usually expect to see hundreds of 

mA instead there is only a fraction of a µA so something in this method has almost 

completely destroyed the sub-surface conductivity or somehow left the charge carriers 

immobile. This highlights just how delicate this surface transfer doping effect is. It is 

impossible to decouple whether the conductivity is destroyed due to a reaction between the 

diamond surface and the gas mixture (it is possible fluorination of the diamond surface 

may have occurred which although still under debate is believed to give the surface a 

positive electron affinity much like oxygen-termination), coating the bare diamond with 

resist or electron beam damage [7.2]. Further experiments should look in to decoupling 

these as although unsuccessful, this method with a suitable gas mixture may provide an 

efficient method of improving the yield of the fabrication process and would address many 

of the issues currently associated with fabricating surface channel diamond FETs. 

 

Due to the limited amount of diamond material available for experimentation, other 

parameter SF6 ashes were not attempted here, as the initial results of this experiment were 

particularly damaging to the sub-surface conductivity it was decided a method of 

encapsulation was a sensible way forward. 

 

 

 

 

 

Figure 7.1.5: TLM measurement for 1 µm gap after 
SF6 Ash for 1 minute at 40 Watts 
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7.2 Organic Coating 

There is an obvious need for a passivation layer to encapsulate finished diamond devices to 

try and prevent performance degradation. In recent years there has been a growing 

consensus that organic materials such as C60, C60F48 and F4-TCNQ may induce sub-surface 

conductivity as well as or even better than the traditional atmospheric particle method and 

may also be more stable [7.3-7.4]. Some preliminary research was thus performed to 

investigate these claims further as so far published data focuses on purely simulations, 

material characterisation, spectroscopic data and in-situ conductivity measurements with 

little in the literature to date in regards to organic surface accepting materials and their 

incorporation into devices.   

 

An organic material worth consideration that is overlooked yet already universally used to 

coat diamond for processing is electron beam resist. Following from the alternative SF6 ash 

experiment, poly(methyl methacrylate) (PMMA) electron beam resist (which is used for 

electron-beam lithography pattern transfer throughout this work) was spin-coated over an 

already fabricated TLM and any degradation of the current through it was measured to 

decouple one variable from the many discussed in the previous section as well as finding 

out if it can in fact provide a stable encapsulation to the surface. Three TLM measurements 

were taken on previously fabricated and atmosphere exposed structures initially to check 

the resistance values were stable as 6 months had passed since the previous measurement. 

Measurement was then taken immediately after coating the TLM structure with resist by 

probing through the resist layer. A following measurement was performed after the resist 

was removed with a warm acetone soak and the TLMs left to acclimatise in atmosphere for 

24 hours. Figure 7.2.1 displays these measurements graphically while the sheet and contact 

resistances for each measurement with associated errors can be seen in Table 7.2.1. It 

should be noted the sample was baked to 120° C after each resist layer deposition to mimic 

the standard process, this should be considered when analysing the results. 
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 Sheet Resistance (kΩ/) Contact Resistance (Ω.mm) 

Original 10.3 (± 2.0) 5.7 (± 1.3) 

After 6 Months 14.4 (± 0.40) 6.38 (± 0.71) 

With PMMA Coating 24.5 (± 1.80) 9.00 (± 3.26) 

After PMMA Removal 16.0 (± 1.20) 2.22 (± 1.22) 

Two Days After Removal 16.0 (± 1.20) 2.22 (± 1.22) 

 

 

 

 

 

 

 

The results show an increased sheet resistance from 10.3 kΩ/ obtained 6 months 

previously to 14.4 kΩ/. The contact resistance also sees some slight increase. There is 

some debate over the degradation with time of atmospheric induced sub-surface 

conductivity. Popular consensus appears to suggest that there is no degradation of the sub-

surface conductivity with time [7.5]. Although some believe there is slight degradation 

thought to be due to partial oxidation of the diamond surface with time [7.6]. This result 

appears to support the latter observation. 

 

The PMMA resist bi-layer coating along with subsequent bake clearly has an impact with 

the sheet resistance almost doubling and contact resistance also seeing significant increase. 

Figure 7.2.1: TLM resist comparison measurements 

Table 7.2.1: TLM resist measurement summary 



 Chapter 7 – Preliminary Investigations into Alternative Device Design 160 

The change in contact resistance should only be attributed to the resist bake as the PMMA 

should not interact with the region beneath the contact. The increase in sheet resistance 

however is likely related to the coating of the exposed areas and shows that although 

surface transfer doping still exists in some reduced form, this organic coating clearly 

hampers its efficiency. Even after being left for two days to recover from the bake the 

TLM measurements yielded the same results. 

 

Once the PMMA is removed, the sheet resistance almost fully recovers showing that the 

atmospheric adsorbate molecules are able to re-attach although perhaps to a slightly lesser 

extent due to potential resist residue still being present. The large decrease in contact 

resistance is unexplained however it should be noted these measurements are susceptible to 

large errors as seen in Table 7.2.1 and discussed previously.  

 

Copper Phtalocyanine Electron Acceptors 

Recent experiments using copper phtalocyanine (CuPc) have shown its inability to induce 

surface transfer doping on a hydrogen-terminated diamond surface due to having too low 

an electron affinity (2.7 – 2.9 eV) [7.4]. Much like C60, a fluorinated form of this material 

exists known as copper hexadecafluorophtalocyanine (F16CuPc) which possesses a higher 

electron affinity than CuPc. Due to its higher electron affinity (4.7 – 5.0 eV), F16CuPc is 

more likely to be more efficient than CuPc at inducing the sub-surface conductivity and 

has already seen success in organic electronics [7.7]. The chemical structure of both these 

organic compounds is shown in Figure 7.2.2. 

 

 

 

 Figure 7.2.2: Chemical structure of CuPc and its 
fluorinated counterpart F16CuPc 
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Similar to coating the already fabricated TLM structures with PMMA resist, 100 nm of 

F16CuPc was deposited on to some ‘fresh’ TLM structures (i.e. no resist history) on a 

sample via thermal evaporation with the substrate not intentionally heated although 

somewhat susceptible to the temperature change in the evaporation chamber (~200° C). 

Several TLM measurements from these structures are summarised below in Figure 7.2.3 as 

well as resistance values presented in Table 7.2.2, all measurements were performed on the 

same apparatus. 

 

 Sheet Resistance 
(kΩ/) 

Contact Resistance 
(Ω.mm) 

Time Since 
Deposition 

Before Deposition 12.2 (± 0.85) 9.12 (± 1.69) 0 

After Deposition 16.9 (± 1.08) 10.50 (± 2.15) 30 minutes 

After Recovery 13.9 (± 0.77) 8.17 (± 1.53) 2 days 

Before Bake  13.9 (± 0.77) 8.17 (± 1.53) 7 days 

After Bake 31.9 (± 0.80) 10.20 (± 1.59) 7 days 

After Recovery 21.8 (± 1.00) 8.36 (± 1.96) 9 days 

 

 

 

 

 

 

 

 

 

Table 7.2.2: TLM F16CuPc measurement summary 

Figure 7.2.3: Access resistances for TLM encapsulated 
with F16CuPc after various processing conditions 
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Prior to F16CuPc deposition, the original TLM measurement gave a sheet resistance of 12.2 

kΩ/ although contact resistance is relatively high at 9.12 Ω.mm which should be kept in 

mind for the following results. After F16CuPc deposition the sample was removed from the 

deposition chamber and the TLMs were re-measured (within 30 minutes after deposition) 

giving an increased sheet resistance of 16.9 kΩ/ and increased contact resistance of 10.5 

Ω.mm. Although no intentional substrate heating took place during the deposition it is 

likely that unintentional heating occurred due to the heat of the thermal evaporation up to 

200° C. Two days later another measurement was performed this time yielding sheet 

resistance of 13.9 kΩ/ and contact resistance 8.17 Ω.mm. These figures do not quite 

match the original measurements but do suggest a slight recovery of the sub-surface 

conductivity does occur. 

 

This result is similar to that seen with PMMA deposition where surface transfer doping is 

diminished by its initial encapsulation although not to the same extent here as with the 

PMMA. There are two possibilities here: either the F16CuPc is instigating surface transfer 

doping in combination with the residual atmospheric particles present on the surface or at 

the very least it is encapsulating the atmospheric adsorbate molecules in a far more 

efficient manner than PMMA. 

 

A week after the deposition another measurement was taken which confirmed identical 

results to the previous measurement taken two days after F16CuPc deposition suggesting a 

stabilization of the TLM characteristics. Immediately after this the sample was baked on a 

180° C hot plate and immediately re-measured with the sheet resistance more than 

doubling to 31.9 kΩ/ and contact resistance also increasing to 10.2 Ω.mm. Even after a 

two day recovery period following heating of the sample, the sheet resistance did reduce 

but still remained relatively high at 21.8 kΩ/ with contact resistance reducing slightly to 

8.36 Ω.mm. 

 

This suggests that if the F16CuPc is indeed instigating surface transfer doping then it is not 

stable on the surface and hence is not necessarily any more worthwhile a pursuit than the 

atmospheric adsorbate molecules. There are some positives to note in these results 

however. The initial deposition clearly did not impede the sub-surface conductivity to an 

extent that it would be unfeasible to incorporate this process in to FET devices. It may be 

possible to encapsulate the F16CuPc layer with another material so surface transfer doping 
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is preserved by the 100 nm F16CuPc coating which is in turn encapsulated by a suitable 

dielectric although this thick multi-layer stack may prove problematic if an FET gate was 

intended to be placed on top.  

 

Future work in this area should look into deposition of the F16CuPc material on to 

hydrogen-terminated diamond surface baked to above 300° C and kept under vacuum to 

ensure all the atmospheric particles are removed from the surface prior to deposition and 

then see if it is capable of inducing surface transfer doping by itself [7.8]. Unfortunately 

this substrate heating capability was not available on the thermal evaporator used for this 

F16CuPc work. It is possible that the F16CuPc just acted to encapsulate the atmospheric 

particles already present on the surface or even that the F16CuPc layer is porous to these 

atmospheric particles. This may explain the lack of a full recovery in the sheet resistance 

after heating. 

 

7.3 Transition Metal Oxide Coating 

Although various inorganic coatings have been deposited on to hydrogen-terminated 

diamond in an attempt to stabilise their conductivity they have as yet involved relatively 

low electron affinity materials such as AlN and Al2O3 [7.9-7.10]. 

 

As explained in Section 2.4 it is thought that an inorganic material with a high enough 

electron affinity material could induce surface transfer doping at the hydrogen-terminated 

diamond surface in the same way various organics have been shown to with the added 

benefit that inorganic materials tend to be far less volatile in atmosphere. There are many 

candidate materials which may be tried such as but not exclusively CrO3, V2O5, WO3, TiO2 

etc. The energy band levels of some of these candidates is illustrated in Figure 7.3.1. Here 

we have opted for MoO3 due to its high electron affinity, low reactivity, ease of deposition 

(via thermal evaporation) and knowledge of prior success as an electron acceptor material 

in organic electronic systems [7.11]. 
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A similar experiment to that using F16CuPc was performed with deposition of 100 nm of 

MoO3 on to readily fabricated fresh TLM and VDP structures on a single crystal sample. 

Again no intentional substrate heating was performed so possible encapsulation of 

atmospheric particles may have occurred.  

 

A second single crystal sample was prepared at a later date and sent to the National 

University of Singapore to gain insight through both high energy x-ray photoelectron 

spectroscopy (XPS) and lower energy ultraviolet light (UPS) into in-situ surface transfer 

doping using MoO3. It had a 1 µm thick epitaxial layer grown on top by collaborators at 

Université Paris 13, lightly doped with boron to enable the XPS measurement before 

subsequent acid clean and hydrogen-termination procedures as discussed in Section 3.1. In 

contrast to the electrical test sample, this sample was annealed at a temperature ~ 437° C in 

vacuum immediately prior to MoO3 deposition to ensure removal of any residual 

atmospheric material. Both are shown in Figure 7.3.2. 

 

 

 

 

 

 

Figure 7.3.1: Comparison of transition metal oxide electron affinities 
(right) with diamond energy band levels as seen in Section 2.2 [7.12] 
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The TLM encapsulation experiment much like the F16CuPc deposition showed promising 

results as summarised in Table 7.3.1 and presented in Figure 7.3.3.  

 

 Sheet Resistance (kΩ/) Contact Resistance (Ω.mm) 

Before Deposition 15.8 (± 0.12) 8.21 (± 0.23) 

After Deposition 11.3 (± 0.27) 5.86 (± 0.49) 

After 1 Day Recovery 11.7 (± 0.49) 6.43 (± 0.87) 

 

 

 

 

Figure 7.3.2: Dual MoO3 Experiments 

Figure 7.3.3: TLM MoO3 comparison measurements 

Table 7.3.1: TLM MoO3 measurement summary 
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An original sheet resistance value of 15.8 kΩ/ was measured and improved to 11.3 kΩ/ 

after deposition of MoO3 along with a somewhat unexplained reduction of the contact 

resistance from 8.21 Ω.mm to 5.86 Ω.mm. The improvement in sheet resistance is still 

clearly visible after 1 day so this does indeed seem to be promoting surface transfer doping 

very well. However after a day the current-voltage characteristics became slightly more 

Schottky in nature making TLM measurements unreliable and suggesting a significant 

increase in the sheet resistance (assuming the contact resistance didn’t change over time) 

possibly due to a gradual interaction between atmospheric particles under the coating and 

the MoO3 itself. 

 

Again with future experiments it will be essential to instigate a pre-deposition bake in 

vacuum of at least over 300° C for similar TLM encapsulation experiments to decouple 

whether the MoO3 is indeed inducing surface transfer doping by itself. In this preliminary 

experiment, it was unknown as to whether the Au ohmic contacts would be degraded by 

this high temperature anneal, which was therefore avoided at this stage. 

 

The VDP characterisation done in parallel with TLM measurements can perhaps shed 

some light on how this degradation manifests. Table 7.3.2 summarises VDP measurements 

taken over the course of 4 weeks along with Figure 7.3.4 presenting this in graphical form.  

 

 Carrier Concentration 

(x 1012 cm-2) 

Sheet Resistance 

(kΩ/) 

Mobility 

(cm2/V.s) 

Before Deposition 3.63 13.5 130 

After Deposition 9.88 9.75 63.2 

1 Day After Deposition 7.66 10.0 81.6 

4 Days After Deposition 8.64 10.1 71.2 

1 Week After Deposition 7.36 9.42 90.2 

2 Weeks After 

Deposition 

5.15 14.2 85.1 

1 Month After 

Deposition 

3.29 15.5 123 

 

 

 
Table 7.3.2: VDP MoO3 measurement summary 
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It is clear that deposition of the MoO3 lead to a significant increase in carrier concentration 

with the figure almost trebling from 3.63 x 1012 to 9.88 x 1012 cm-2 leading to a reduced 

sheet resistance and mobility. This strongly suggests that MoO3 is increasing the efficiency 

of surface transfer doping even if it is impossible to separate its contribution conclusively 

from the atmospherically induced process in this experiment which does not include a pre-

deposition bake. To ensure parallel conduction was not occurring through the MoO3 a 

sample of silicon dioxide (SiO2) was used to also deposit 100 nm of MoO3 onto and 

measured simultaneously via two probes placed within a few µm. This registered no 

current, just noise suggesting no conduction through the MoO3. Over the course of the next 

month further measurements were taken and the three measured values gradually returned 

to approximately their pre-MoO3 values over this time, suggesting once again either a slow 

reaction between adsorbate molecules and MoO3 takes place or the MoO3 is porous to the 

atmospheric molecules gradually reducing the values back to an equilibrium. The 

likelihood of this process could be further investigated by depositing an additional capping 

layer material onto the MoO3. 

 

The second sample used for XPS involved deposition of MoO3 after a 437° C pre-

deposition bake was performed in vacuum so as to remove any atmospheric particles from 

the surface and attempt to induce surface transfer doping by the MoO3 alone. The substrate 

Figure 7.3.4: VDP MoO3 comparison measurements 
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was then cooled to room temperature and then kept there during deposition so as to avoid 

stress on the MoO3 film upon cooling. Figure 7.3.5 shows the C 1s carbon binding energy 

peak as measured by XPS in Singapore for the clean diamond surface with a sharp 

characteristic sp3 peak visible at 284.2 eV for an incident photon energy of 350 eV. This 

can be seen to significantly shift the binding energy (BE) upon deposition of MoO3 by ~ 1 

eV until it is no longer visible after 3.2 nm film coverage due to the XPS only capable of 

measuring the surface of a sample and the MoO3 masking the diamond by this point. The 1 

eV shift seen in the C 1s peak is indicative of band bending at the diamond surface 

associated with transfer of electrons as part of the surface transfer doping process. 

 

 

 

 
Figure 7.3.6 shows the Mo 3d binding energy peaks (two are visible due to spin-orbit 

coupling associated with the d core level) and the relative intensity upon increasing 

deposition of MoO3 material. Note there is an increase in intensity but no significant shift 

suggesting no substantial band bending in the MoO3 surface layer. It should also be noted 

XPS shows relative amounts of atoms not absolute values and is not entirely conclusive as 

it is unable to detect small atoms such as H via the system although it can give a good idea 

Figure 7.3.5: C 1s binding energy peak shift as measured by XPS 
during MoO3 deposition 
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of the relative composition of the surface. This is why the y-axis is arbitrary units and not 

an absolute value. 

 

 

 
 

 

Figure 7.3.7 shows UPS spectra with incident radiation of 60 eV allowing the valence level 

to be probed and the low kinetic energy (KE) part of the spectra displayed. The low energy 

cut-off for the KE shows the vacuum level position or in this case where the energy scale is 

referenced to the Fermi Level the work function of the diamond surface. Before MoO3 

deposition the work function is ~ 4 eV as should be expected from a hydrogen-terminated 

diamond surface with a sharp emission peak present due to the surface NEA. Upon 

deposition the work function increases rapidly until ~ 1.6 nm is deposited and a shift of ~ 3 

eV has occurred. This shift is related to the interface dipole initiated by charge separation 

along with band bending at the diamond surface.  

 

The work function shift can be seen more clearly in Figure 7.3.8 along with the shift in BE 

from the C 1s core spectra associated with upwards band bending due to hole accumulation 

in the diamond at the interface. 

Figure 7.3.6: Mo 3d binding energy peak as measured by XPS 
during MoO3 deposition 
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Figure 7.3.7: Low Energy UPS spectra showing K.E. spectra 
during MoO3 deposition 

Figure 7.3.8: Shift in work function and C 1s associated with 
MoO3 deposition 
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This data shows that MoO3 is sufficient alone to induce surface transfer doping in diamond 

and while further research will need to be done to ensure this provides a suitable and stable 

alternative to the atmospheric process all signs thus far are positive. While we cannot draw 

definitive conclusions from the VDP measurements as it is possible that atmospheric 

particles remain on the surface along with MoO3. We can conclude that the MoO3 

deposition certainly does not hinder carrier transport but in fact it acts to improve it, at 

least temporarily as observed in this as yet unoptimised experiment. With the significant 

shift seen in the XPS and UPS spectra it is plausible MoO3 could cause accumulation 

layers of concentrations ~ 1 x 1014 which is comparable to the best values achieved for 

hydrogen-terminated diamond to date [7.9]. Again to fully verify this electrically, 

TLM/VDP measurements should be performed after deposition of a MoO3 layer following 

a high temperature anneal to ensure removal of any atmospheric based residue. 

 

Another positive to note from this process is the shifts in XPS and UPS spectra all appear 

to saturate by 1.6 nm of deposition which is very beneficial if FET devices are to be 

eventually made from this technology, as an extra 1.6 nm spacing between gate contact and 

drain should not diminish the transconductance of devices a great deal.  

 

7.4 Summary 

Following on from the device results of the last chapter and the need for a paradigm shift 

in diamond FET fabrication to continue to improve device figures of merit, an initial 

investigation was undertaken to this end. 

 

Beginning by trying the same basic principles of fabrication on the volatile surface but 

substituting conventional fabrication techniques with other alternative methods little 

progress was made. However when it came to trying to change the surface and maximise 

its potential via incorporation of new materials, some very promising initial results were 

achieved. Several as before untested materials were deposited on to the diamond surface, 

both organic and inorganic in nature. Again a fluorinated molecule (F16CuPc) shows the 

potential to electrically match other proven materials such as C60F48 and F4-TCNQ along 

with an inorganic material in the form of MoO3 being electrically and spectrographically 

tested for the first time.  
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The crucial next stage in development of this technology will be to electrically characterise 

TLM and VDP structures which have had a pre-deposition anneal to drive off atmospheric 

molecules prior to electron acceptor material deposition. This will reveal critical 

information on the potential to integrate these materials into FET devices. 
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8. Conclusions and Future Work 
The potential of diamond as an electronic material has been well known for over fifty 

years. However it is only over the last two decades it has begun to be exploited in the form 

of active electronic components. Initial progress in FET design was very encouraging but 

has somewhat stalled in recent years due to the lack of an efficient and stable doping 

process, with the only real success being seen from the quasi-doping effect bought about 

by hydrogen-termination of the diamond surface to give it NEA and subsequent exposure 

to a suitably high electron affinity material. 

 

These FET devices have to date displayed high operating frequencies with a record fT = 45 

GHz and fMAX  = 120 GHz being seen in devices with 100 nm gate length [8.1]. 

Unfortunately due to the instability associated with the surface transfer doping effect due 

to its use of atmospheric particles, in most cases diamond is yet to reach its potential as a 

suitable platform for high power and high temperature electronics. 

 

The two main aims of this research were to improve upon the already impressive frequency 

performance of surface channel diamond FETs (and in turn investigate their scaling 

potential) and to look into methods of producing a stable alternative to the atmospheric 

induced sub-surface conductivity. Much more has been learnt regarding the nature of 

surface channel FETs and the surface transfer doping effect. 

 

Device scaling was focused upon to see if this frequency performance could be improved 

further. Three different gate length RF geometry FETs were produced on a single diamond 

sample, 250 nm and 120 nm to try and repeat and confirm previous results and then 

continued scaling to sub-100 nm dimensions with FET gate lengths of 50 nm being 

fabricated on diamond for the first time. These produced a new record fT of 53 GHz 
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although fMAX  did not reach the same record breaking levels. One reason for this is the gate 

design did not involve a T-shape due to fabrication challenges. 

 

The larger gate length devices (250 nm) produced similar results to those achieved by H. 

Matsudaira et al [8.2]. The 120 nm gate length device matched results achieved by both K. 

Ueda et al and K. Hirama et al for 100 nm and 150 nm respectively proving the fabrication 

process developed throughout this project worked and could match the very best diamond 

FETs produced to date [8.1, 8.3].  

 

Although the 50 nm device did achieve unique RF performance it also showed perhaps for 

the first time the limits of this technology. As shown in the extracted equivalent circuit for 

the 50 nm device the gate capacitance and transconductance have scaled to allow for 

improved intrinsic frequency performance, extrinsic factors such as source and drain 

resistances remain the same (within error associated with the unrepeatable nature of the Au 

ohmic contact etch). This combined with an increase in output conductance means 

although the intrinsic fT of this device has increased substantially to 90 GHz the extrinsic 

value of 53 GHz is only 59% of this potential value. It is expected then that further 

reduction of gate length would only lead to a similar marginal improvement. 

 

All of this coupled with the instability associated with atmospheric surface transfer doping 

leads to the need to investigate alternative methods of fabrication to further improve upon 

repeatability and perhaps increase the device performance further. Some attempt was made 

to improve the stability of these devices during this research by modifying the fabrication 

procedure slightly while sticking with the atmospheric induced sub-surface conductivity. It 

quickly became evident that this task was not straightforward and the volatile nature of the 

atmospheric particles on the diamond surface and sensitivity of the hydrogen-termination 

leaves very little room for alternative fabrication techniques, hence the motivation for the 

incorporation of the Au sacrificial layer technique in the first place. 

 

To truly improve upon the stability of this technology a different, more stable electron 

accepting material needs to be successfully incorporated in to the fabrication of hydrogen-

terminated diamond surface channel transistors. This research took the initial work done by 

various groups and extended the scope of organic materials looked at so far to include both 
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PMMA and F16CuPc. Coating TLM structures with both these organic materials managed 

to preserve the sub-surface conductivity to different extents [8.4-8.6]. 

 

In the case of PMMA, not known for having a high electron affinity the sheet resistance 

almost doubled upon deposition from 14.4 kΩ/ to 25.5 kΩ/ making it impractical as an 

encapsulation layer for diamond surface channel FETs. F16CuPc on the other hand which is 

known to have a high electron affinity ~ 5 eV encapsulates the TLM structures leading to 

no significant degradation of the sheet resistance [8.7]. However upon heating to just 180° 

C the sheet resistance does almost treble from 13.9 kΩ/ to 31.9 kΩ/ and never fully 

recovers suggesting it is just as volatile upon the diamond surface as the atmospheric 

particles. 

 

Towards the end of this project it was suggested that the search for alternative acceptor 

materials should be extended further to include non-organic materials of suitable electron 

affinity (> 4.2 eV) as they should perform the same task as their organic counterparts but 

with the prospect of also being relatively stable upon the diamond surface. Some 

preliminary tests at encapsulating TLM structures with MoO3 which has an electron 

affinity of 6.7 eV have proved very promising as it not only preserved sub-surface 

conductivity but initially at least lead to a decrease in the sheet resistance from 15.8 kΩ/ 

to 11.3 kΩ/ [8.8]. 

 

A separate sample used for photoelectron spectroscopy to measure the energy make-up of 

the sample surface in-situ during MoO3 deposition after a 400° C pre-bake to remove 

atmospheric particles showed all the characteristics associated with the valence band 

bending upward due to an accumulation of holes on the diamond side of the interface and 

an increase in work function. This suggests that it is highly probable MoO3 and other 

inorganic materials of suitable electron affinity will instigate surface transfer doping at the 

hydrogen-terminated diamond surface on their own and at a very low coverage of just 1.6 

nm. 

 

Future Work 

Although this research has succeeded in its two main aims it has also raised many 

questions for the future but fortunately there are numerous exciting routes left to explore to 

enhance this emerging technology. The main task still remains to completely stabilise the 



 Chapter 8 – Conclusions & Future Work 177 

hydrogen-terminated diamond surface and while using atmospheric particles for FETs 

appears ultimately doomed because of the inherent instability associated with them there 

are still other fabrication techniques which may be employed to try and improve the 

performance of FETs fabricated in this manner. An alternative ashing method was 

attempted in this research with SF6 employed as it is a non-oxygen containing compound. 

Although this was unsuccessful it is feasible there is another gas mixture that could 

successfully remove resist particles from the diamond surface without hampering the 

surface transfer doping effect. If this can be found then there would be no need for an Au 

sacrificial layer to be employed making ohmic contacts far more controllable and 

repeatable along with the source-drain gap spacing. 

 

It is clear however that ultimately Au is a fairly poor ohmic contact to use for hydrogen-

terminated diamond FETs as contact resistance is at best 2 Ω.mm and can reach as high as 

10 Ω.mm. There has been various research already by other groups showing the potential 

of carbide based contacts on diamond such as TiC or TaC to have a far lower contact 

resistance [8.9]. However this would involve a high temperature anneal hence requiring a 

whole new method of fabrication.  

 

A host of organic materials have already been deposited on to hydrogen-terminated 

diamond with encouraging results yet there still remain many more to try and with 

inorganic materials of high enough electron affinity also now showing promise there is 

surely a material capable of preserving the sub-surface conductivity associated with 

hydrogen-terminated diamond if not enhancing it even [8.5]. This may finally let diamond 

truly realise its potential as an electronic material with high temperature, voltage and 

power operation within reach. 

 

It is still feasible that gate length could be scaled even further below 50 nm once other 

issues with this technology have been resolved. Electron beam lithography at the 

University of Glasgow has demonstrated line features of just 3 nm and recently sub-10 nm 

silicon nanowires incorporating electron beam lithography and a dry etch process to give 

an aspect ratio ~ 50:1 [8.10-11]. Although this is by no means straightforward it just shows 

that the potential for further high frequency enhancement via lithographical techniques is 

there. 
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The thermal properties of diamond are well known so in terms of the maximum 

temperature a diamond device could eventually operate at, it is really in fact dependent on 

how high a temperature the acceptor material and the surface transfer doping process could 

cope with. 

 

As for diamond’s high power operation potential, once the surface is stable and repeat 

measurement of FETs can be done with ease there will be a far clearer picture of its 

ultimate potential.  

 

Several groups have already performed power measurement on non-encapsulated 

hydrogen-terminated diamond FETs with 2 W.mm-1 being the record output power seen to 

date. One prediction has suggested that diamond could eventually reach 75 W.mm-1 

although this has been suggested for boron delta-doping employing a field plate the 

potential of hydrogen-terminated diamond could certainly reach this and could well exceed 

the potential of any other wide bandgap material currently under development [8.12]. 
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Appendix A. Fabrication Procedures 

 

Sample Pre-Treatment/Protection via Sacrificial Layer Deposition 

Substrate Cleaning:  - 5 min soak in acetone in ultrasonic bath 

 - 5 min soak in IPA in ultrasonic bath 

 - Blow dry with N2 gun 

Sacrificial Layer Deposition: - Deposit 80 nm Au via e-beam evaporation 

 

Standard Marker Deposition 

Substrate Cleaning:  - 20 minute soak in acetone at 50° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Spin: - 12% 2010 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

 - 4% 2041 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

Metallisation: - Deposit 15 nm Al via e-beam evaporation 

Electron Beam Lithography: - Dose 700 µCcm-2, 64 nA beam spot size, VRU 40 

Metal Etch: - MF CD-26 soak for 60 s 

 - RO water rinse 

 - Blow dry with N2 gun 

Development: - MIBK:IPA (1:1) soak for 30 s at 23° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Ash: - O2 plasma at 40 W for 60 s 
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Metallisation: - Deposit 20 nm Ti/100 nm Au via e-beam evaporation 

Lift-Off: - 2 hour soak in acetone at 50° C 

 - IPA rinse 

 - N2 dry 

  

Standard Isolation/Ohmic Contact Definition 

Substrate Cleaning:  - 20 minute soak in acetone at 50° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Spin: - 12% 2010 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

 - 4% 2041 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

Metallisation: - Deposit 15 nm Al via e-beam evaporation 

Electron Beam Lithography: - Dose 700 µCcm-2, 64 nA beam spot size, VRU 40 

Metal Etch: - MF CD-26 soak for 60 s 

 - RO water rinse 

 - Blow dry with N2 gun 

Development: - MIBK:IPA (1:1) soak for 30 s at 23° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Ash: - O2 plasma at 40 W for 60 s 

Metal Etch: - KI2:RO water (1:10) soak for 60 s 

 - RO water rinse 

 - N2 dry 

Plasma Induced Isolation: - O2 plasma at 40 W for 60 s 

Lift-Off: - 2 hour soak in acetone at 50° C 

 - IPA rinse 

 - Blow dry with N2 gun 

  

De-Embedding Structure Gate Pad Definition 

Substrate Cleaning:  - 20 minute soak in acetone at 50° C 

 - IPA rinse  
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 - Blow dry with N2 gun 

Resist Spin: - 12% 2010 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

 - 4% 2041 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

Metallisation: - Deposit 15 nm Al via e-beam evaporation 

Electron Beam Lithography: - Dose 700 µCcm-2, 64 nA beam spot size, VRU 40 

Metal Etch: - MF CD-26 soak for 60 s 

 - RO water rinse 

 - Blow dry with N2 gun 

Development: - MIBK:IPA (1:1) soak for 30 s at 23° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Ash: - O2 plasma at 40 W for 60 s 

Metallisation: - Deposit 25 nm Al/25 nm Au via e-beam evaporation 

Lift-Off: - 2 hour soak in acetone at 50° C 

 - IPA rinse 

 - Blow dry with N2 gun 

  

250 nm Gate Contact Definition 

Substrate Cleaning:  - 20 minute soak in acetone at 50° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Spin: - 4% 2010 PMMA spun at 3k RPM for 60 s 

 - 120° C bake for 20 min 

 - 2.5% 2041 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

Metallisation: - Deposit 15 nm Al via e-beam evaporation 

Electron Beam Lithography: - Dose 2500 µCcm-2, 8 nA beam spot size, VRU 18 
  (For Gate Line) 

 - Dose 1800 µCcm-2, 32 nA beam spot size, VRU 32 
  (For Gate Feed) 

Metal Etch: - MF CD-26 soak for 60 s 

 - RO water rinse 
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 - Blow dry with N2 gun 

Development: - MIBK:IPA (1:2.5) soak for 1 min at 23° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Ash: - O2 plasma at 40 W for 60 s 

Metal Etch: - KI2:RO water (1:10) soak for 60 s 

 - RO water rinse 

 - Blow dry with N2 gun 

Metallisation: - Deposit 25 nm Al/25 nm Au via e-beam evaporation 

Lift-Off: - 2 hour soak in acetone at 50° C 

 - IPA rinse 

 - Blow dry with N2 gun 

  

120 nm Gate Contact Definition 

Substrate Cleaning:  - 20 minute soak in acetone at 50° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Spin: - 4% 2010 PMMA spun at 3k RPM for 60 s 

 - 120° C bake for 20 min 

 - 2.5% 2041 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

Metallisation: - Deposit 15 nm Al via e-beam evaporation 

Electron Beam Lithography: - Dose 2500 µCcm-2, 2 nA beam spot size, VRU 8 
  (For Gate Line) 

 - Dose 1800 µCcm-2, 32 nA beam spot size, VRU 32 
  (For Gate Feed) 

Metal Etch: - MF CD-26 soak for 60 s 

 - RO water rinse 

 - Blow dry with N2 gun 

Development: - MIBK:IPA (1:2.5) soak for 1 min at 23° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Ash: - O2 plasma at 40 W for 60 s 

Metal Etch: - KI2:RO water (1:10) soak for 60 s 
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 - RO water rinse 

 - Blow dry with N2 gun 

Metallisation: - Deposit 25 nm Al/25 nm Au via e-beam evaporation 

Lift-Off: - 2 hour soak in acetone at 50° C 

 - IPA rinse 

 - Blow dry with N2 gun 

  

50 nm Gate Contact Definition 

Substrate Cleaning:  - 20 minute soak in acetone at 50° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Spin: - 4% 2010 PMMA spun at 3k RPM for 60 s 

 - 120° C bake for 20 min 

 - 2.5% 2041 PMMA spun at 5k RPM for 60 s 

 - 120° C bake for 20 min 

Metallisation: - Deposit 15 nm Al via e-beam evaporation 

Electron Beam Lithography: - Dose 2500 µCcm-2, 1 nA beam spot size, VRU 5 
  (For Gate Line) 

 - Dose 1800 µCcm-2, 32 nA beam spot size, VRU 32 
  (For Gate Feed) 

Metal Etch: - MF CD-26 soak for 60 s 

 - RO water rinse 

 - Blow dry with N2 gun 

Development: - MIBK:IPA (1:2.5) soak for 1 min at 23° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Resist Ash: - O2 plasma at 40 W for 60 s 

Metal Etch: - KI2:RO water (1:10) soak for 60 s 

 - RO water rinse 

 - Blow dry with N2 gun 

Metallisation: - Deposit 25 nm Al/25 nm Au via e-beam evaporation 

Lift-Off: - 2 hour soak in acetone at 50° C 

 - IPA rinse 

 - Blow dry with N2 gun 
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Acceptor Material Deposition 

Substrate Cleaning:  - 20 minute soak in acetone at 50° C 

 - IPA rinse  

 - Blow dry with N2 gun 

Sacrificial Layer Deposition: - Deposit 100 nm F16CuPc or MoO3 via thermal 

evaporation 

 

 


