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Abstract 
p53 is a tumour suppressor that is dysfunctional in most cancers.  In some cancers, mutation of the 

TP53 gene results in expression of a mutant protein or loss of p53 expression, while in others wild-

type p53 is retained but there is a defect in the mechanisms that allow for the activation of p53, 

including, but not limited to, upregulation of p53’s negative regulators (MDM2 and MDMX). 

Restoration of wild-type p53 function can lead to tumour regression and is therefore an attractive 

anti-cancer therapy.  Several small molecule compounds that activate wild-type p53 have been 

described, and in this study the functions of two new compounds that stabilise p53 are described. 

While these drugs may be useful to activate p53-dependent apoptosis or senescence in wild-type 

p53 tumours, an alternative approach that depends on the use of transient p53 activation to protect 

normal cells while leaving p53 null or mutant tumour cells vulnerable to cytotoxic drugs is also 

explored. Finally, the identification of pharmacodynamic biomarkers for p53 stabilisation is 

described. 

In chapter 3 a new class of MDM2 inhibitor (MPD compounds) is described.  The compounds are 

capable of stabilising and activating p53 in cells by inhibiting the E3 ligase activity of MDM2 in a 

mechanism that involves compound binding to the RING-tail of MDM2.  Although the MPD 

compounds have limitations in terms of solubility and potency they have demonstrated a new 

method of achieving MDM2 inhibition and support design of further RING-tail binding compounds 

with more favourable chemical properties. 

In chapter 4 the function of a dual inhibitor of MDM2 and MDMX has been explored (HLI373).  This 

compound is shown to activate p53 in cells and in vivo by interfering with ribosomal biogenesis, 

causing ribosomal stress and inhibiting MDM2.  In addition it is capable of reducing MDMX 

expression at the promoter level by a mechanism that requires intact MDM2-p53 binding.  Further 

work is required to fully define the mechanism of action of this compound and demonstrate its 

anticancer activity in xenograft and transgenic mouse models. 

In chapter 5 a chemoprotective approach for p53 activation, which might be applied to situations 

where tumours express mutant p53, is explored in cell lines. Low-dose actinomycin D treatment 

can activate p53 without occult DNA damage via the ribosomal stress pathway, thereby protecting 

wild-type p53 expressing cells from the cytotoxic effects of paclitaxel.  Low-dose actinomycin D 

may therefore be used to limit chemotherapy-induced toxicity to normal cells while targeting a 

mutant p53 expressing tumour. 

In chapter 6 the potential for developing pharmacodynamic biomarkers for MDM2 inhibition in 

serum, peripheral blood mononuclear cells and hair follicles taken from patients prior to and 

following chemotherapy was examined. Measurement of serum MIC-1 level showed most promise, 

although further evaluation of this marker is needed before it could be used as a pharmacodynamic 

endpoint in a clinical study. 
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NF-κB Nuclear Factor kappa light chain enhancer of activated B cells 
NF1 Neurofibromatosis 1 
NLS Nuclear Localisation Signal 
NoLS Nucleolar Localisation Signal 
NP-40 Nonidet P40 
NT Not Tested 
OD Oligomerisation Domain 
PAI-1 Plasminogen Activator Inhibitor 1 
PAX Paired box 
PCAF p300/CBP-Associated Factor 
PD Proline rich Domain 
PET Positron Emission Tomography 
PIASy Protein Inhibitor of Activated STAT y 
Pidd p53 induced protein with a death domain 
PIN1 Peptidylprolyl cis/trans Isomerase, NIMA-interacting 1 
PIRH2 p53-Induced RING H2 protein 
PLK Polo-Like Kinase 
PML-RARA Promyelocytic Leukaemia protein-Retinoic Acid Receptor Alpha 
PRIMA p53 Reactivation and Induction of Massive Apoptosis 
PSA Prostate Specific Antigen 
PSD-95 Postsynaptic Density protein 95 
PTEN Phosphatase and Tensin homolog 
PUMA p53 Upregulated Modulator of Apoptosis 
Rpm rotations per minute 
Rb Retinoblastoma protein 
RBP-Jκ Recombination signal Binding Protein Jκ 
RD Regulatory Domain 
RECIST Response Evaluation Criteria in Solid Tumours 
RETRA Reactivation of Transcriptional Reporter Activity 
RFA Radio-Frequency Ablation 
RING Really Interesting New Gene 
RITA Reactivation of p53 and Induction of Tumour cell Apoptosis 
RNA Ribonucleic Acid 
ROS Reactive Oxygen Species  
RPE Retinal Pigment Epithelial cells 
RPL26 Ribosomal Protein L26 
RT-PCR Reverse Transcription Polymerase Chain Reaction 
SirT1/2 Sirtuin ½ 
SNP Single Nucleotide Polymorphism 
SREBP Sterol Regulatory Element Binding Protein 
SUMO 
TAD 

Small Ubiquitin-Related Modifier 
Transactivation Domain 

TEMED Tetramethylethylenediamine 
TGFβ Transforming Growth Factor β 
TIGAR TP53 Induced Glycolysis and Apoptosis Regulator  
TRIM TRIpartite Interaction Motif 
TSAP6 Tumour Suppressor Activated Pathway 6 
TSC2 Tuberous Sclerosis protein 2 
TSP1 Thrombospondin-1 
TUNEL Terminal deoxynucleotidyl transferase dUTP Nick End 

Labelling 
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UK United Kingdom 
USP Ubiquitin-Specific Protease 
UTR Untranslated Region 
UV Ultraviolet 
VEGF Vascular Endothelial Growth Factor 
VHL Von Hippel-Lindau 
WWP1 WW domain containing E3 ubiquitin Protein ligase 1 
YY1 Yin Yang 1 
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1.1 Cancer 

Worldwide 10.9 million people are diagnosed with cancer and 7.5 million die from 

the disease annually2.  Cancer therefore represents a major global health and 

economic cost. 

In the UK there are approximately 309,500 new diagnoses of cancer per year, of 

which 54% originate from the four most common cancer sites (breast, lung, 

colorectal and prostate cancer)3-6.  Since cancer is primarily a disease of the older 

population, with 63% of cancer being diagnosed in people of 65 years and older, it 

is expected that cancer rates will increase as the population ages.  This increase 

in cancer rate will be further exaggerated by improved surveillance and diagnosis 

methods, resulting in a predicted rise in the number of people living with or after 

cancer by more that 3% per year7.  Reassuringly, while cancer incidence rates are 

increasing, and are expected to continue doing so, deaths from the disease are 

falling.  European age-standardised mortality rates for all cancers taken together 

fell by 20% between 1979 and 2008, from 219 to 176 deaths per 100 000 people8-

10. 

At a molecular level cancer is the result of disordered proliferation of damaged 

cells.  The generally accepted dogma is, that as a result of multiple stresses cells 

can accumulate damage leading to genetic alterations, allowing these damaged 

cells to propagate and form a cancer.  These genetic alterations result in 

mutations of genes causing them to become either inappropriately active 

(oncogenes) or alternatively lose functions that normally prevent cancer  (tumour 

suppressor genes).  Additionally epigenetic alterations can cause changes in gene 

expression that also contribute to tumourigenesis11. Exposure to environmental 

carcinogens such as ultraviolet (UV) light and tobacco increase the frequency of 

mutations and therefore the risk of cancer.  Once a tumour is established, further 

selective pressure such as the development of hypoxia and the inflammatory 

response to the tumour enable cancer cells to develop invasive capacity causing 

malfunction of local organs and metastatic spread to distant sites12-14.  Many 

cancer related deaths are due to this metastatic disease15. 
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In 2000 Hanahan and Weinberg outlined in a comprehensive review the key 

molecular characteristics common to cancer cells16.   This work detailed the 

multistep evolution of cancer by defining 6 biological abilities that cancer cells 

acquire to gain advantage over the defences of normal cells. The core capabilities 

common to all cancers include: “self sufficiency in growth signals, insensitivity to 

growth inhibitory signals, evasion of programmed cell death, limitless replicative 

potential, sustained angiogenesis and tissue invasion and metastasis”.   

More recently, in recognition of advances in understanding cancer development, 

two additional hallmarks have been added to the model17, 18. These additional 

hallmarks are: “reprogramming of energy metabolism and evasion of the host’s 

immune defences”.  

The rapid progress in understanding cancer at a molecular level over the last 

decade is in part due to the success of projects like the Human genome project19 

and the Cancer Genome Atlas16 which, as well as identifying many of the driver 

mutations implicated in the neoplastic process have spurred on improvements in 

technology which allow relatively high throughput, low cost sequencing.  In 

addition, these improvements in high throughput technologies have also facilitated 

advanced understanding of other levels of regulation such as the study of 

epigenetic modification of genes, the transcriptome, microRNAome20, proteome 

and metabolome21-23. Consequently the complexity of the multiple layers of 

regulation involved in cancer development is now being revealed and the concepts 

of oncogene addiction24, non-oncogene addiction25 and synthetic lethality26, 27 can 

be exploited for improved cancer treatment.  

Currently the general oncological principles in treatment of solid tumours are that 

localised disease should be surgically resected then depending on the histological 

appearance of the tumour and likelihood of recurrence, post-operative (adjuvant) 

chemotherapy or hormonal therapy is offered in some cases; unresectable 

disease may be amenable to other local therapies such as radio-frequency 

ablation (RFA), cryotherapy, and radiotherapy.  If disease is too advanced for 

treatment with local therapies then systemic therapy is required.  At present, 

although the era of targeted therapy has arrived, the vast majority of systemic 

therapies used in cancer treatment continue to be traditional cytotoxic agents.  The 
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cytotoxic agents in routine clinical use fall broadly into 7 categories (alkylating 

agents, platinum agents, anti-metabolites, topoisomerase-I inhibitors, intercalating 

agents, tubulin active agents and cytotoxic antibiotics).  These agents work by 

damaging DNA by a variety of mechanisms (Appendix 1: table 8-1) and cause 

high levels of damage to normal cells resulting in significant, sometimes life 

threatening, toxicity.  This is due to their lack of specificity for targeting cancer 

cells.   

In contrast, the principle of ‘targeted’ anti-cancer treatment is that drugs are 

specifically designed to exploit a feature specific to the cancer cell and can 

therefore not only be more effective but importantly cause less toxicity to normal 

tissues.  So far examples of targeted agents that have made, or are expected to 

make, significant clinical impact include Imatinib in treatment of chronic myeloid 

leukaemia (CML) and gastrointestinal stromal tumours (GIST)28, 29, Trastuzumab30 

in the treatment of HER2 positive breast cancer and Vemurafenib31-36 for BRAF 

mutated melanoma.  For these few agents impressive responses and 

improvements in survival have been demonstrated. However, resistance pathways 

have emerged resulting in new cancer genotypes against which our therapeutic 

armoury is limited35.   This highlights the need for early cell line studies to predict 

likely resistance mechanisms and to plan strategies for treatment of acquired 

resistance.  Furthermore this raises the question as to whether it may be more 

advantageous to apply a more broad brush approach by using a combination of 

biological agents to simultaneously hinder the cancer cells’ ability to evade drug 

induced anti-proliferative effects37. 

Disappointingly many molecularly targeted agents have made less clinical impact 

than initially hoped for a variety of reasons.  Firstly some targeted agents cause 

significantly more toxicity to normal tissues than predicted, perhaps suggesting the 

need for more extensive study of the role of a particular target in normal tissues 

prior to clinical study.  Secondly the clinical testing of targeted agents requires a 

dramatic change in the design of clinical studies, a realisation that is only now 

being appreciated.  New anti-cancer drugs are still mostly being tested in the 

traditional sequence of phase I, phase II then phase III studies. In phase I a group 

of heavily pre-treated cancer patients are treated in a dose escalation study, 
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aimed at establishing the recommended phase II dose, based on reaching a dose 

where 1/3 of patients experience a dose limiting toxicity (DLT).  In the subsequent 

phase II study a group of patients with a specific primary site are treated to look for 

evidence of response and then phase III compares the new drug schedule with the 

current standard of care for a particular patient group.  For targeted agents it 

makes little sense to establish a dose for further study because of its ability to 

cause toxicity to normal tissues and it would be preferable to establish the dose of 

maximal target blockade.  In phase II it may be more appropriate to select a group 

of patients who are similar because of the genotype of their malignancy rather 

than the primary site since there seems to be a lack of correlation between driver 

mutations even amongst cancers at the same site.  On average a tumour has 11 

mutated genes which contribute to tumour progression but in a group of cancers of 

the same primary site there is only a 50% overlap in driver mutations15.  Initially 

treating patients based on molecular type rather than disease site would create 

some problems since the primary site of disease has previously defined the 

standard of care for comparative study.  

Ultimately we are now in the era of personalised medicine with improved response 

rates being seen by tailoring treatment to molecular type rather than histological 

type alone in some cases30.  However our methods of clinical evaluation are not 

yet fit for evaluation of targeted agents and a dramatic cultural change is required 

to adopt novel more effective study designs38.  

1.2 Discovery of p53 

p53 was originally discovered in 1979, when it was found in complex with the large 

T-antigen of tumour virus Simian Virus 40 (SV-40)39-44.  Then, following the first 

cloning of p53 in 198445-50, the oncogenic activities of this cloned p53 were 

described50-54.   

Subsequent work soon led to a series of important landmark findings including the 

observation that tumour viruses have the ability to inactivate p5355-58.   In 1988 

murine wild-type p53 was sequenced confirming that the originally cloned p53 was 

that of a mutated, tumour-associated p5359, 60.  It was not until 1989 that p53 was 
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classified as a tumour suppressor after work that confirmed the ability of wild-type 

p53 to suppress E1A and Ras mediated transformation61-63.   

Consistent with p53’s new identity as a tumour suppressor it was confirmed in 

1989 that p53 is inactivated or lost in tumours64 and the cancer predisposition 

syndrome, Li Fraumeni Syndrome, was first described in 1990.  This autosomal 

dominant syndrome, characterised by neoplasms at multiple sites and occurring at 

an early age, was found to be due to germ-line mutation in TP53 and subsequent 

loss of the wild-type p53 allele in tumour tissues65, 66.  

p53’s tumour suppressive function was experimentally confirmed by generation of 

TP53 knockout mice.  These mice, although appearing essentially normal, develop 

spontaneous tumours by 6 months of age67, 68. 

Figure 1-1 summarises the landmark findings involved in establishing p53 as a 

tumour suppressor. 

 

 

 

 Figure 1-1: p53 timeline. 
Adapted from Levine et al, 2009 69. 
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1.3 Tumour suppressive functions of p53 

TP53 functions as a transcription factor.  In response to cellular stress (for 

example: genotoxic damage, oncogene activation, hypoxia, nutrient deprivation 

and telomere erosion) p53 activates its transcription targets that can mediate a 

multitude of responses, including cell cycle arrest, DNA repair, altered metabolism, 

antioxidant effects, anti-angiogenic effects, senescence and apoptosis (Figure 1-

2).   

 

 

 

 Figure 1-2: p53's tumour suppressive functions. 
p53 transcriptional targets are shown in boxes.  The outcomes of p53 activation that 
may play a role in response to repairable damage are highlighted by green boxes and 
outcomes of p53 activation that would be beneficial in response to irreparable damage 
are highlighted by red boxes.  TIGAR=TP53 Induced Glycolysis and Apoptosis 
Regulator, AMPK=AMP-Activated Protein Kinase, TSP1=Thrombospondin-1, PUMA=p53 
Upregulated Modulator of Apoptosis, PAI-1=Plasminogen Activator Inhibitor 1, 
Gadd45=Growth arrest and DNA damage 45.  Adapted from Vousden et al, 200970 and 
Feng et al, 201171. 
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may be repressors as demonstrated by SLUG, which binds to the p53 upregulated 

modulator of apoptosis (PUMA) promoter repressing p53’s ability to activate 

PUMA72, or activators as demonstrated by Muc1, which binds to the p21 promoter 

increasing p21 transcription73.  In addition to these co-regulators other proteins 

influence transcriptional output by binding to p53; for example Brn3A binds to p53 

and inhibits its ability to activate Bax and Noxa but activates expression from the 

p21 promoter74, 75. More recently p53 has also been shown to control the 

expression of various microRNAs71. The potential outcomes of p53 activation are 

variable and are determined by multiple factors including the activating stimulus, 

the dynamics of p53 induction76, the amount of p53 protein, p53’s modified state 

and the particular interacting partners and co-regulators present.   

Through modulation of p53’s transcriptional targets, p53 prevents or responds to 

the accumulation of cellular damage and therefore prevents the propagation of 

malignant cells77. While transcriptional activity is fundamental for p53’s tumour 

suppressor activity78, 79, further complexity is introduced through transcriptionally 

independent functions of p53 (regulating apoptosis, autophagy80 and 

metabolism81). 

It is difficult to predict the transcriptional output of p53 for each given condition. 

However a simplified model has been suggested where p53 inducible genes can 

be divided into two categories; those that are induced rapidly by low levels of 

stress that cause repairable damage and those that are induced by higher levels 

of p53/stress which cause irreparable damage82. 

1.3.1 p53’s response to repairable stress 

Under low levels of stress and cellular damage p53’s transcriptional activity 

favours induction of genes causing cell cycle arrest, DNA repair, antioxidant and 

metabolic modulation and anti-angiogenic effects (Figure 1-2).  This is to allow 

time for repair of damaged DNA prior to re-entry into the cell cycle.   

In the cell cycle cells progress through a series of stages including gap phase 

(G1), DNA synthesis (S), a second gap phase (G2) and then mitosis (M-phase).  

Progression to each phase is tightly controlled by a series of checkpoints where 
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cyclins and Cyclin Dependent Kinases (CDK) act in complexes and in concert to 

allow progression to the next phase. One important regulator of cell cycle is the 

family of E2F transcription factors, which control the expression of many key 

proteins required for proliferation. In order to progress to the synthesis phase of 

the cell cycle the Retinoblastoma protein (Rb) needs to be hyper-phosphorylated.  

In G1 phase Rb is E2-F bound and hypo-phosphorylated.  As cells pass the 

restriction point in G1 cyclin E-CDK2 begins adding phosphate groups to Rb so 

that it becomes increasingly phosphorylated (Figure 1-3), causing it to be 

dissociated from E2F. This allows E2F to initiate its transcriptional program, which 

contributes to the progress of cells into S phase. 

 

 

 

 Figure 1-3: p53’s control of cell cycle. 
R point=restriction point.  The black line represents hypophosphorylation of Rb and the 
red line represents increasing phosphorylation of Rb in a clockwise direction. A, B and 
E=cyclins and CDK=Cyclin Dependent Kinase.  Adapted from ‘The Biology of Cancer’83 
and Vogelstein et al, 200084.   
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activation p21 is upregulated and inhibits G1/S specific kinases CDK2, 3, 4 and 689 

causing Rb to remain hypo-phosphorylated to ensure that cells cannot progress to 

S phase.   

In addition p53 can cause cell cycle arrest at the G2-M checkpoint by 

transcriptionally regulating Gadd45 and 14-3-3σ expression. Gadd45 interferes 

with cyclin B-CDK1 complex formation90 and 14-3-3σ sequesters cyclin B1-CDK1 

complex outside the nucleus therefore maintaining G2 blockage91, 92.  Both 

proteins act to inhibit CDK1, which is required for the G2-M transition and therefore 

halt cells in G2.   

Furthermore p53 can repress cyclin A, cyclin B1, cyclin B2 and CDK1 via a variety 

of mechanisms including direct binding to p53 binding elements in the promoters 

of these genes or by inhibiting binding of other, more potent transcription factors93-

95.  An alternative method by which p53 can repress genes is by directly binding to 

and recruiting histone deacetylases (HDAC) (via nuclear transcription factor Y (NF-

Y)), which can also inhibit genes responsible for cell cycle progression96, 97. 

The genes involved in DNA repair that are activated by p53 in response to low 

stress conditions include Gadd4598 and p53R299. Gadd45 has been shown to be 

required for p53’s ability to repair DNA after UV damage and cisplatin treatment 

and p53R2 encodes a subunit of ribonucleotide reductase that is important for 

DNA synthesis during cell division100.  Together they assist in the DNA repair 

response following stress and therefore contribute to p53’s ability to maintain 

genetic stability. 

In response to low/reparable stress p53 also activates antioxidant genes 

(glutathione peroxidase (GPX1)101, Mn-superoxide dismutase (Mn-SOD)102, 

aldehyde dehydrogenase 4 (ALDH4)103, sestrins104) that contribute to limitation of 

reactive oxygen species (ROS) induced DNA damage and genetic instability82.   

In contrast with normal cells, which produce energy mostly by oxidative 

phosphorylation, cancer cells favour glycolysis even in the presence of normoxia -

this is referred to as the Warburg effect105.  For cancer cells glycolysis is 

advantageous since as well as providing ATP (Adenosine Triphosphate) it also 
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provides intermediates for anabolic pathways thereby supporting cellular 

proliferation in conditions of nutrient deprivation.  p53 opposes the Warburg effect 

by promoting oxidative phosphorylation through expression of Synthesis of 

Cytochrome c Oxidase (SCO2)106 and glutaminase 2107 and inhibits glycolysis by 

downregulation of glucose transporters 1 and 4108 and upregulation of TP53 

induced glycolysis and apoptosis regulator (TIGAR). To inhibit glycolysis TIGAR 

reduces fructose-2,6-bisphosphate levels.  Additionally TIGAR contributes to p53’s 

anti-oxidant function by decreasing ROS109 in unstressed conditions and therefore 

TIGAR prevents the accumulation of DNA damage and maintains genetic stability. 

As a specific response to stress such as starvation, p53 can regulate AMPK 

(AMP-Activated Protein Kinase) expression110 that in turn inhibits mTOR 

(mammalian target of rapamycin) and therefore limits protein synthesis in times of 

low nutrient availability111.  In this way p53 reduces growth signals in line with the 

interruption in cell cycle progress.  Alternatively, p53 targets sestrin 1 and sestrin 2 

induce phosphorylation of tuberous sclerosis protein 2 (TSC2) leading to inhibition 

of mTOR112 via an additional route. 

An increasingly recognised, though complex, tumour suppressive action of p53 is 

its ability to regulate autophagy (the cells ability to digest the cells own 

components through the lysosomal pathway).  Through p53 mediated activation of 

AMPK and subsequent inhibition of mTOR and directly by activating the Damage-

Regulated Autophagy Modulator (DRAM) p53 increases autophagy.  The outcome 

of this can be either promotion of cellular survival113 or contribution to apoptosis114 

however how these two conflicting outcomes balance to achieve tumour 

suppression is unclear. Low levels of cytoplasmic p53 reduce autophagy via 

induction of mTOR activity115 adding a further complexity to the system. 

As well as controlling cell-autonomous effects p53 can have a more global 

influence over the cellular microenvironment. For example through p53’s activation 

of a secretory programme116 and production of exosomes117 (the cell-membrane 

derived vesicles that carry proteins, lipid, DNA or microRNA) p53 can have non-

cell autonomous effects and mediate cell-cell communication. Formation of 

secretory exosomes containing several p53 regulated proteins is regulated by p53 

target Tumour Suppressor Activated Pathway 6 (TSAP6)118.   A further example of 
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p53’s ability to influence the microenvironment is through inhibition of 

angiogenesis.  In a multifaceted fashion p53 exerts its effects by interfering with 

regulators of hypoxia (Hypoxia Inducible Factor 1 alpha (HIF1α))119, inhibiting 

proangiogenic agents (Vascular Endothelial Growth Factor (VEGF))120 and 

increasing anti-angiogenic factors (Thrombospondin 1 (Tsp1))121.  

Ultimately in low levels of stress p53 causes cell cycle arrest and activates pro-

survival pathways to allow cell repair, replenishment of nutrients or resolution of 

oxidative stress prior to re-entry into the cell cycle. 

1.3.2 p53’s response to irreparable or oncogenic stress 

In response to high stress p53 favours activation of target genes that initiate a 

terminal cell fate (apoptosis or senescence).  

p53 contributes to both the intrinsic and the extrinsic apoptotic pathways by 

activating p53 target genes Bax, PUMA, Noxa and Fas, Death Receptor 5 (DR5) 

and p53 induced protein with a death receptor (Pidd) (Figure 1-4).   

 

 

 

 Figure 1-4: p53 and apoptosis. 
DR5=Death Receptor 5, Pidd=p53 induced protein with a death domain, PUMA=p53 
Upregulated Modulator of Apoptosis. Adapted from Jesenberger et al, 2002122.   
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In response to high stress p53 activates pro-apoptotic Bcl-2 family members 

Bax123, Noxa and PUMA124. Noxa and PUMA bind to the anti-apoptotic Bcl-2 

preventing it from inhibiting Bax125, 126.  Bax then localises to the outer 

mitochondrial membrane, causing opening of mitochondrial channels and 

subsequent release of cytochrome c127.  Cytochrome c activates intrinsic 

apoptosis initiator caspase 9, which in turn activates the executioner caspases 3, 6 

and 7. The proteolytic executioner caspases degrade cellular organelles resulting 

in cell death.   In addition p53 can more directly repress the anti-apoptotic Bcl-2 by 

inhibiting its transcription factor Brn3a128 resulting in unchecked Bax and Bak 

activity and ultimately cell death.  

The extrinsic apoptotic pathway is so named because it is initiated from outside 

the cell.  p53 activates the expression of a number of transmembrane death 

receptors (Fas129, DR5130 and Pidd131).  These death receptors are displayed on 

the cell surface and after binding to their ligands activate the extrinsic initiator 

caspase cascade (caspase 8 and 10) that eventually joins the common execution 

caspase cascade causing cell death. 

As an alternative to apoptosis, p53 can induce senescence in response to high 

levels of stress.  This is a state of irreversible cell cycle arrest, which is mediated 

by p53 targets p21 and plasminogen activator inhibitor 1 (PAI-1)132, 133.  Several 

mouse models have shown that senescence is important for p53’s tumour 

suppressive functions.  In a mouse model of hepatocellular carcinoma, where p53 

was modulated using RNA interference, tumour cells became senescent upon p53 

reactivation.  This provoked an inflammatory response and clearance of tumour 

cells by macrophages134.  Furthermore a mouse expressing the apoptosis deficient 

p53 R172P is able to suppress tumourigenesis through upregulation of p21 and 

senescence135. When this same mutant is expressed in a p21 null mouse there is 

no senescence and enhanced tumour formation, illustrating the importance of p21 

in p53 mediated senescence and tumour suppression136.  

1.4 Regulation of p53 

As described above p53 has the ability to supress tumour formation by a wide 

array of mechanisms and in a vast number of cellular contexts.  In order to achieve 
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this, p53 is subject to regulation at the transcriptional, translational and protein 

level. 

1.4.1 Structure of p53 

p53 protein is active as a tetramer of 4 chains of 393 amino acids137. Each chain 

has several domains.  At the N-terminal there are two distinct transactivation 

domains (TADI and TADII), a nuclear export signal (NES) followed by the proline 

rich domain (PD) and the DNA binding domain (DBD).  Then at the C-terminus 

there is an oligomerisation domain (OD), three nuclear localisation signals (NLS), 

a second NES and a lysine rich regulatory domain (RD) (Figure 1-5). 

 

 

 

 Figure 1-5: Functional domains of p53 protein. 
NLS=Nuclear Localisation Signal (only the most active NLS is indicated), NES=Nuclear 
Export Signal (N-terminal NES is not shown). Red boxes I-IV indicate highly conserved 
regions of p53. 

 

The TADI (residues 1-40) and TADII (residues 43-63)138 are critical for p53’s 

regulation since they provide binding sites for the transcriptional machinery and 

negative regulators MDM2 (mouse double minute 2)/MDMX.  The TADs are 

differentially involved in the activation of a distinct set of p53 target genes139, 140.  In 

addition the transactivation domain of p53 contains 1 of the 5 highly conserved 

regions in p53.  This region (box 1) is required for the binding of MDM2 and 

MDMX141, 142. 

The proline rich domain (residues 63-93) links the TAD and the DNA binding 

domain. Although the exact function is not well understood, the high proline 

prevalence is conserved though species.  In addition, from work on mouse models 

it is also known that the length of the proline domain is critical to maintain p53’s 
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tumour suppressive function143.  Furthermore this domain is the site of a common 

p53 single nucleotide polymorphism (SNP) at codon 72 indicating in vivo 

importance of this region (implications of this SNP are discussed further in section 

1.4.2). 

The DNA binding domain (residues 102-300) is pivotal for the transcriptional 

activity of p53.  It contains 4 of the 5 conserved boxes in p53 (boxes II-V as shown 

in Figure 1-5).  Through a series of studies solving the crystal structure of the DNA 

binding domain of p53 with different target DNAs, signalling proteins and viral 

oncoproteins it has been established that these conserved boxes are crucial for 

the p53/DNA interaction144-149.  Also the DNA binding domain of p53 is only 

marginally stable with a melting temperature of 44ºC which is thought to allow for 

rapid cycling between folded and unfolded states and therefore allow more rapid 

control of p53 response150.   

The oligomerisation domain (residues 325-356) allows p53 to form a tetramer 

which is organised as a dimers of dimers151. 

The C-terminus of p53 contains a cluster of three NLSs that mediate the nuclear 

location of the protein152 (the location of the most active site is indicated in Figure 

1-5 however there are 2 further NLS sites between residues 366 and 372 and 

between residues 377 and 381).  These sequences bind to specific receptors and 

allow selective passage of p53 through the nuclear pore complex153.  The C-

terminal NES, a highly conserved region has been shown to be necessary and 

sufficient for nuclear export of p53154.  There has been a further report of an N-

terminal NES between residues 11 and 27.  This NES was shown to contain 2 

sites that are phosphorylated following DNA damage resulting in inhibition of 

nuclear export of p53 and resultant enhanced p53 activity155.  Both the NLS and 

NES regions are required for nuclear-cytosolic shuttling of p53 as a means to 

regulate p53 transcriptional function. 

The regulatory domain is the region where many post-translational modifications 

including acetylation, ubiquitination, phosphorylation, SUMOylation, methylation 

and neddylation occur (although these modifications can also occur elsewhere).  

These modifications coordinate to regulate stability and activity of p53.  Studies 
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using a C-terminally truncated p53 demonstrate that the C-terminus is required for 

efficient binding and transactivation of target genes156, 157.  

1.4.2 Isoforms of p53 and p53 single nucleotide 
polymorphisms 

The human TP53 gene spans 11 exons and is located on the short arm of 

chromosome 17 (17p13.1) (GenBank Accession Number: NC_000017.10). The 

gene contains two promoters, one upstream of exon 1 and one alternative internal 

promoter in intron 4158, resulting in four mRNA variants: full-length p53, Δ40p53, 

Δ133p53 and Δ160p53 (Figure 1-6). 

 

 

 

 Figure 1-6: Genomic structure of p53. 
Noncoding sequence (grey), transactivation domain (turquoise), DNA binding domain 
(orange), oligomerisation domain (green).  Alternative splicing (α, β, γ) and alternative 
promoters (P1 and P2) are shown.  Adapted from Marcel et al, 2010 159.   

 

Full-length p53 is transcribed from the P1 promoter upstream of exon 1160.  

Δ40p53 (p47 or ΔNp53) can be produced by either internal initiation of translation 

from codon 40 or alternative splicing of intron 2 producing an N-terminally deleted 

p53 isoform.  This isoform does not complex with MDM2 and has impaired 

transcriptional activity since part of the transactivation domain is lacking.  Δ40p53 

is able to oligomerise with full-length p53 and negatively regulate its transcriptional 

activity161, 162, 163. In drosophila the p53 gene structure is conserved and 

expression of a full-length p53 and a ΔNp53 isoform is seen.  Recently this 

drosophila ΔNp53 isoform was shown to induce apoptosis in response to stress by 

inducing a distinct Inhibitor of Apoptosis (IAP) antagonist in comparison with full-

length p53164. In humans the clinical relevance of Δ40p53 has been investigated in 

ovarian cancer where the presence of Δ40p53 is a favourable prognostic marker 

in the mucinous histological subtype of ovarian cancer165. 
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Δ133p53 is transcribed from the alternative promoter in intron 4 and results in an 

N-terminally truncated p53 protein initiated at codon 133.  It is thought to be 

dominant negative towards full-length p53, inhibiting p53 dependent apoptosis and 

G1 arrest and instead favouring a G2 arrest158,166, 167.  Interestingly, clinical data 

shows that the presence of Δ133p53 predicts improved recurrence free and 

overall survival in serous ovarian cancer where approaching 100% of patients 

have a p53 mutation168, 169.  These data illustrate the biological relevance of p53 

isoforms but also indicate the need for further study of these isoforms in the 

context of both wild-type and mutant p53 background. 

Δ160p53 lacks the first 159 residues and is encoded from the Δ133p53 transcript 

using ATG160 as translation start site159.  This isoform is expressed in tumour cell 

lines however its biological significance and role are yet to be established. 

As predicted from the lack of a complete N-terminus the p53 isoforms described 

thus far cannot bind MDM2.   Despite this the isoforms are not stabilised in cells 

since their level is maintained at a low level by one or several, as yet unidentified, 

ubiquitin E3 enzymes170.  This could have implications for the treatment of isoform 

expressing tumours with MDM2 inhibitory therapy (which is discussed later). 

In addition to the described p53 isoforms there are C-terminal isoforms that result 

from alternative splicing of intron 9.  This intron 9 splicing can produce p53β 

(previously named p53i9171) and p53γ.  These isoforms encode truncated proteins, 

which lack the oligomerisation domain, fail to bind DNA in vitro and are 

transcriptionally deficient172.   

Through a combination of alternative promoters, alternative splicing and 

alternative translation start sites the p53 gene can encode at least 11 different p53 

protein isoforms (although theoretically there will be a Δ160p53γ, this has yet to 

be identified).  These p53 isoforms are expressed in a tissue-dependent manner 

and their expression is deregulated in cancers158,173 suggesting that they are 

significant in vivo. Knowledge of their specific role however is currently lacking with 

full-length p53 being by far the most studied since several of the antibodies 

commonly used to detect p53 do not recognise N-terminally truncated p53. 

Furthermore full-length p53 has been shown to regulate the transcriptional 
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expression of certain N-terminal isoforms174.  It is therefore expected that further 

studies of p53 isoforms will demonstrate that they provide another layer of 

complexity in modulating p53 response. 

To date eighty p53 polymorphisms have been identified of which the majority are 

in introns, outside splice sites or in non-coding exons.  Of the intronic 

polymorphisms TP53 PIN3 (polymorphism in intron 3), which consists of a 16 bp 

duplication, occurs at a site important for the regulation of splicing and therefore 

modulates splicing175, 176.  Of the eighteen exonic SNP, five are silent, seven are 

located after the stop codon in exon 11 and four alter the protein sequence but 

have only subtle effects on transactivation.   

The proline rich domain of p53 is the location of a common SNP (as mentioned 

earlier).  Codon 72 can be either CCC resulting in a proline or CGC encoding an 

arginine177, 178.  Its prevalence is related to latitude with the highest rates of P72 in 

the Southern hemisphere.  P72 is less active in induction of apoptosis than R72 

since P72 binds the anti-apoptotic iASPP more efficiently179.  Despite this, studies 

looking at cancer risk have been inconsistent.   A meta-analysis of cohorts of 

patients with breast cancer180 and lung cancer181 showed no significant effect on 

cancer susceptibility.  

V217M is the only non-silent polymorphism in the DBD (DNA binding domain).  It 

increases transactivation of some response elements and may protect from 

cancer182.  Another SNP, next to the tetramerisation domain (G360A) slightly 

reduces transcriptional activity and may increase cancer risk183.   

1.4.3 Transcriptional and translational regulation of p53 

Transcription of full-length p53 is influenced by multiple transcription factors (c-

myc/max heterodimers184, 185, NF1 and yin yang 1 (YY1)186, C/EBPβ-2187) that bind 

to the p53 promoter and increase its transcription.  Additionally multiple co-factors 

can also contribute to transcriptional regulation of p53 by either repressing (PAX2, 

PAX5 and PAX8188 and RBP-Jκ187) or enhancing transcription (YY1186). 
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p53 is also regulated at a translational level.  In response to stress a variety of 

mechanisms are utilised to increase translation of p53.  p53 itself can enhance its 

translation via the 3’ untranslated region (UTR)189 and HuR also enhances 

translation via the 3’UTR190. RPL26 and nucleolin bind to the 5’UTR and enhance 

translation191 as does hnRNP Q192. In addition translation efficiency can be 

influenced by cytoplasmic polyadenylation of p53193 and MDM2 binding to p53 

mRNA194.  In response to stress an ATM (ataxia telangectasia mutated) 

dependent phosphorylation of MDM2 on serine 395 leads to p53 mRNA interaction 

that appears to be required for full p53 activation following stress. Although the 

primary mechanism of MDM2’s regulation of p53 is by control of p53 protein levels 

though MDM2’s E3 ligase activity this demonstrates an additional way in which 

MDM2 can regulate p53 and highlights the complexity of p53 regulation. 

1.4.4 Post-translational modifications of p53 

p53’s function is influenced primarily by extensive post-translational modifications.  

This section describes them (ubiquitination, SUMOylation and neddylation and 

acetylation, phosphorylation and methylation) in more detail. 

1.4.4.1 Ubiquitin and Ubiquitin-like modifications of p53 

The ubiquitin-proteasome pathway (Figure 1-7) provides a highly regulated 

pathway, which specifically regulates the turnover of thousands of intracellular 

proteins including p53. It is primarily via this pathway that p53 levels are 

controlled.  

The degradation of the target protein involves a series of ATP requiring, enzymatic 

steps that result in degradation of the target protein at the 26S proteasome and 

subsequent recycling of the produced peptides and ubiquitin196.    
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 Figure 1-7: Ubiquitin proteasome system. 
DUB=Deubiquitinating enzyme, E1=activating enzyme, E2=conjugating enzyme, 
E3=ubiquitin ligase, Ub=ubiquitin. Adapted from Welchman et al, 2005 195.   

 

The 8.5kDa protein ubiquitin is activated by ubiquitin-activating enzyme (E1) that 

forms a thiolester bond between its active site cysteine and the C-terminal glycine 

of ubiquitin.  Activated ubiquitin is then transferred to a cysteine on the E2 

(ubiquitin conjugating enzyme).  The E3 then catalyses the covalent attachment of 

ubiquitin to an amino-group (mostly from lysines) in the substrate via an isopeptide 

bond.  This sequence of reactions occurs several times to build up a polyubiquitin 

chain, linking activated ubiquitin to lysine 48 of the previously conjugated ubiquitin.  

The polyubiquitin chain of at least four ubiquitins provides the mark for 26S 

proteasomal degradation197, 198.  

Although any of ubiquitin’s lysines (K8, K11, K27, K29, K33, K48 and K63) can be 

used to form chains, linkages via K48 and K63 are the most abundant.  

Importantly the particular chain linkage determines outcome for example while 

polyubiquitination via K48 linkages leads to degradation, polyubiquitination via K63 

leads to activation of NF-κB, DNA repair and targeting to the lysosome199. 

Furthermore ubiquitin chains may be linear meaning that they link through the 

amino-terminus again resulting in a different outcome. 

In contrast with the outcome seen following polyubiquitination, mono-ubiquitination 

or multi mono-ubiquitinations of a substrate regulate non-proteolytic processes 
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including substrate cellular localisation, receptor internalisation, substrate 

endocytosis and transcriptional regulation200, 201.   

Another important feature of this pathway is that this attachment of ubiquitin to the 

substrate or other ubiquitins can be reversed by the action of deubiquitinating 

enzymes (DUBs).  

While there are only two E1s202 in mammalian cells and tens of E2s, there are now 

thought to be approximately 1000 E3 enzymes203.  This results in a pathway where 

E2s are fairly promiscuous being able to act with many different E3s and where 

the E3 enzyme is primarily responsible for the substrate specificity of each 

reaction204-206.  However it is now also recognised that the E2 has more influence 

on the outcome of ubiquitination than previously thought since the E2 may be able 

to dictate the type and length of ubiquitin chain formed199.  Taken together this 

highlights the importance of efforts to identify E2/E3 pairs207, 208.  

p53 is mono-ubiquitinated and polyubiquitinated at several lysines in the DBD and 

the C-terminal tail of p53 (Figure 1-8).  E3 ubiquitin ligases for p53 are discussed 

in section 1.4.4.2. 

 

 

 

 Figure 1-8: Post-translational modifications by ubiquitin-like proteins. 
Ub=ubiquitinated, N=neddylated, S=SUMOylated, TAD=Transactivation Domain, 
PD=Proline rich Domain, DBD=DNA-Binding Domain, OD=Oligomerisation Domain, 
RD=Regulatory Domain.  Adapted from Carter et al, 2009 209. 
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SUMO to a substrate.  The process involves an enzymatic cascade of events 

similar to ubiquitination involving a SUMO-activating enzyme (E1), SUMO-

conjugating enzyme (E2) and SUMO ligase (E3).  SUMO-1 has been more 

extensively studied than SUMO2/3 and is known to modify lysine 386 of p53 

(Figure 1-8).  Some studies have reported that SUMOylation enhances 

transcriptional activity of p53 while others report that SUMOylation drives 

relocation of p53 from the nucleus to the cytoplasm, two contradictory 

outcomes210, 211.  SUMO-2 and SUMO-3, which are 96% identical to each other, 

have been less widely studied. It is known that they can conjugate to p53 and can 

modulate p53’s transcriptional activity212. Several SUMO E3s for p53 have been 

identified including topors213, TRIM family proteins214, MDM2215 and PIASy216. 

Nedd8 is also a ubiquitin-like protein that can be conjugated to p53 again via an 

enzymatic cascade involving an E1, E2 and E3.  MDM2 is a known Nedd8 ligase 

with the ability to modify lysines 370, 372 and 373 of p53 while FBXO11, another 

Nedd8 ligase, modifies lysines 320 and 321217, 218.  The consequences of 

Neddylation of p53, although subtle, include inhibition of p53’s transcriptional 

activity and regulation of p53’s promoter choice219. 

1.4.4.2 E3 ubiquitin ligases for p53 

E3 ubiquitin ligases can be divided into three groups based on their functional 

domain; Homology to E6-associated protein (E6-AP) Carboxy Terminus (HECT)-

type E3s, the Really Interesting New Gene (RING) family of E3s and U-box 

homology proteins.   

HECT family E3s have an approximately 350 amino acid C-terminal region 

homologous to that of E6-AP and an N-terminal region which is highly variable and 

may be involved in substrate recognition220. They are the only E3s, which form 

thioester intermediates with ubiquitin221, 222.  The HECT domain binds the E2-

ubiquitin and accepts ubiquitin at a cysteine residue. 

The largest family of E3s are the RING finger E3 ubiquitin ligases.  These consist 

of a RING finger domain which binds to two zinc atoms via eight conserved 

cysteines and histidines223. This group also includes a sub-family of ubiquitin 

ligases that contain a plant homeo domain.  The RING domain directly binds E2 
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and functions as an adaptor that positions the substrate lysine in close proximity to 

E2-ubiquitin complex224. 

U-box E3s contain an approximately seventy amino acid U-box.  The U-box is very 

similar to a RING domain except it lacks the zinc-coordinating cysteine and 

histidine residues225, 226.  Like RING E3s U-box E3s bind the E2 and position the 

substrate aside ubiquitin. 

When an E3 polyubiquitinates its substrate (but not when it monoubiquitinates) the 

substrate can then be delivered to the proteasome for degradation. The functional 

large 26S proteasome is formed from the ring-shaped 19S and 20S particles.  The 

20S catalytic core forms a cylindrical stack of 4 rings.  The 2 outer rings are 

composed of 7α subunits and the 2 inner rings 7β subunits227.  Each of these 28 

subunits has distinct peptidase activities.  Two 19S complexes cap either side of 

the 20S core to form the 26S proteasome.  The 19S cap is thought to have some 

control over regulating entry to the 20S core.  ATP-dependent unfolding of the 

polyubiquitinated substrate allows passage of the substrate into the catalytic 

pore228. 

Ubiquitination and subsequent degradation of p53 is the critical mechanism of p53 

regulation.  It can occur on any of the six lysines in the C-terminus of p53 as well 

as other lysines in the DNA-binding domain as shown in Figure 1-8.  It is 

interesting to note that mouse models with p53 lacking the C terminus are still able 

to control their p53 level therefore it seems likely that in the absence of these C-

terminal lysines ubiquitin will use other lysines to target p53 for degradation229, 230.  

Although a number of E3 ubiquitin ligases (table 1-1) are capable of ubiquitinating 

p53 (Pirh2231, CHIP232 & ARF-BP1233) MDM2 is crucial for p53 control.  

Table 1-1: Known E3 ligases for p53. 
E3 (references) Class Other known targets 
ARF BP1214, 225, 226 HECT Mcl1, Myc 
WWP1231-233

 
HECT KLF2, KLF5, Smad4 

Carps236, 237 RING Caspase 8 & 10 
Cullin 1/Skip 1234 
Cullin 4a/ DD61/Rac235 
Cullin 5236 
Cullin 7230 

RING 

p21, cyclin D1, BRCA2 
p21, c-jun 
VHL 
IRS-1 

Hades237 RING None identified 
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MDM2218-223
 RING 

MDM2, MDMX, Histone H2A & Histone 
H2B, hnRNP K, RB, β-arrestin, MTBP, 
E2F/DP1, p21, Numb, PSD-95, androgen 
receptor, PCAF, E-cadherin, G-protein 
coupled receptor kinase 2, TSG101, 
Tip60, Insulin-like growth factor 1 
receptor, glucocorticoid receptor 

MSL2238, 239 RING Histone H2B 
Pirh2212, 224 RING HDAC1 
Synoviolin240 RING Nicastrin, gp78 
Topors234, 235 RING Hairy (Drosophila) 
Trim 24241/28242/39243 RING None identified 
CHIP213, 229 U-box Chaperone-bound proteins, HSP70 
hnRNP=heterogeneous ribonucleoprotein particle, RB=retinoblastoma, MTBP=MDM2, 
transformed 3T3 cell double minute 2, p53 binding protein, E2F/DP1=E2F/prostaglandin 
D2 receptor, PCAF=p300/CBP-associated factor, TSG101=tumour susceptibility gene 101, 
AIB1=amplified in breast cancer 1, HDAC=histone deacetylase, KLF2=Kruppel-like factor 
2, MSL2=male-specific lethal 2.  Adapted from Love et al244. 

 
This has been demonstrated by mouse models where a deletion of MDM2 results 

in embryonically lethality that can be rescued by simultaneous deletion of TP53 245, 
246.   

In normal tissues, when the tumour suppressive activities of p53 are not required, 

p53 is kept at very low levels by MDM2. MDM2 binds to p53 at its transactivation 

domain141 preventing transcriptional activity.  MDM2 then ubiquitinates p53 leading 

to export of p53 from the nucleus, in the event of monoubiquitinatation247, and 

degradation of p53 through the proteasome following polyubiquitination248-250 

(Figure 1-9). 

 

 

 

 Figure 1-9: p53-MDM2-MDMX pathway. 
Ub=ubiquitin. 

 

In the event of cellular stress this inhibition is removed by mechanisms explained 

below and, in turn, p53 accumulates resulting in tumour suppression activity.  

Since MDM2 is a transcriptional target of p53, a negative feedback loop is 

established which is important for recovery of cells following a stress response251.   
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Studies of the specific E2 contribution to MDM2 dependent ubiquitination of p53 

have shown that E2s, UbcH5B and C can both be involved252 and as a result of 

this most mechanistic work on ubiquitination in the p53 pathway have used either 

of these E2s. Additionally, important advances have been made in mapping the 

E2-MDM2 interaction surface, which is thought to involve residues Isoleucine 440 

(Ile440), Cysteine 441 (Cys441), Glutamine 442 (Gln442), Leucine 468 (Leu468), 

Lysine 469 (Lys469), Valine 477 (Val477) and Arginine 479 (Arg479), as well as 

neighbouring residues Valine 439 (Val439), Arginine 471 (Arg471) and Proline 476 

(Pro476)253.  Now that the functional relevance of the specific E2 involved in the 

E2-MDM2 interaction is beginning to be understood there is growing interest in this 

area to determine the specific contribution of each E2 to p53 signalling. 

Growing evidence suggests that a further group of ubiquitinating enzymes 

enhance the ubiquitination process.  The E4 enzymes or ubiquitin chain assembly 

factors, enhance the ability of E3 enzymes to form ubiquitin chains.  For MDM2 

several supporting E4 enzymes have been identified (p300/CBP (CREB1-binding 

protein)254, UBE4B255, Gankyrin256 and YY1257).  These enhance MDM2-

dependent p53 ubiquitination increasing the degradation of p53. 

In opposition with the E4s, deubiquitinating enzymes for p53 (USP10258, USP29259 

and USP42260) respond to various stresses to deubiquitinate and stabilise p53.  A 

further DUB, HAUSP (USP7), is involved in the regulation of p53 levels. HAUSP is 

a DUB for MDM2 and, p53’s other negative regulator, MDMX. In response to 

stress the interaction between HAUSP and MDM2 and MDMX is inhibited by 

phosphorylation events allowing p53 to stabilise261, 262. 

MDMX is an MDM2-like protein that is also involved in the regulation of p53.  It 

binds to p53 preventing its transcriptional activity but does not have E3 ligase 

activity and therefore does not target p53 for degradation263. Importantly dimers of 

MDM2 and MDMX can have E3 activity and these heterodimers seem to be the 

predominant form in the cell and are more potently active as an E3 ligase than 

MDM2 homodimers264-269. In concordance with the MDM2 knock-out mice, the 

MDMX knock-out mice also have an embryonic lethal phenotype, which can be 

rescued by simultaneous p53 deletion270, 271. 
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1.4.4.3 Stabilisation of p53 

Depending upon the particular stress stimuli encountered, p53 is stabilised in 

response to stress by one of three distinct pathways (Figure 1-10).  

In response to oncogenic stimuli the tumour suppressor ARF (alternative reading 

frame protein expressed from INK4a locus272, 273) binds to MDM2 inhibiting its E3 

activity and therefore causing accumulation of p53274, 275.   

 

 

 

 Figure 1-10: p53 stabilisation in response to different stimuli. 

 

 

In response to ribosomal stress, ribosomal proteins (L11, L5, L23, S14) are able to 

bind MDM2 blocking the ubiquitination of p53 (without blocking the interaction of 

MDM2 with p53) while enhancing the ubiquitination and degradation of MDMX276-

279.  Interestingly although MDMX has a similar acidic domain to MDM2 it does not 

bind ribosomal proteins280.   

In response to DNA damage, ATM and ATR (Ataxia telangectasia and rad3 

related) cause phosphorylation of serine and threonine residues at sites in both 

the N-terminus and C-terminus of p53 reducing its interaction with MDM2213 

(Figure 1-11).  
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 Figure 1-11: Phosphorylation of p53. 
P=Phosphorylation, TAD=Transactivation Domain, PD=Proline rich Domain, DBD=DNA-
Binding Domain, OD =Oligomerisation Domain, RD=Regulatory Domain.  Adapted from 
Appella et al, 2001281.   

 

Double stranded breaks are recognised by the MRN complex (MRE11-RAD50-

NBS1), which leads to activation of ATM. ATM phosphorylates CHK2 (checkpoint 

kinase 2), which in turn phosphorylates serine 20 of p53282-285. CHK2 can however 

be phosphorylated independent of ATM in response to some types of stress 

including replication fork stalling and UV irradiation286. ATM can also directly 

phosphorylate p53 on serine 15210, 211 and 46287, which regulates the ability of p53 

to induce apoptosis288.  

Other forms of DNA damage lead to single stranded regions that become coated 

with replication protein A.  This attracts ATR, which phosphorylates complexes 

that feed forward and further stimulate ATR.  In this situation (when MDM2 is no 

longer required to keep p53 in check) MDM2 can act as its own E3 ubiquitin ligase 

and is degraded289.  As discussed later p53’s negative regulators also undergo 

post-translation modifications in response to stress.  These phosphorylation 

events all contribute to reduced binding between p53 and MDM2 and MDMX and 

therefore the stabilisation of p53. 

A multitude of other kinases phosphorylate p53 in response to various stressful 

stimuli allowing p53 to integrate multiple stress signals to achieve a variety of 

functional outcomes.  Some further examples include ATR and DNA-PK mediated 

phosphorylation on serine 37.  This results in inhibition of the p53-MDM2 

interaction and enhanced apoptosis284, 290. p53 is also phosphorylated at serine 

392 in response to UV, DNA damage and interferon by kinases FACT-CK2, p38 
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and PKR (a double-stranded RNA activated protein kinase) respectively291-295.  

This phosphorylation site has been shown to influence cell cycle arrest, DNA 

binding and transcriptional capabilities of p53291, 296. Also in response to DNA 

damage p53 is phosphorylated at serines 6 and 9 and threonine 18 by casein 

kinase delta (CK1δ) and casein kinase epsilon (CK1ε)297 again leading to 

stabilisation of p53. 

Following the N-terminal phosphorylation events described above the prolyl-

isomerase, PIN1 has been implicated in integrating the phosphorylation events 

mediated by different kinases to maximise p53 activity.  PIN1 binds to the proline 

rich domain of p53 following stress induced phosphorylation leading to a change in 

conformation of p53 which enhances p53 activation by multiple mechanisms 

including promotion of p300 mediated acetylation (discussed below) and 

dissociation of anti-apoptotic iASPP298. 

Acetylation of p53 also occurs as a result of a cellular stress and acts as an 

activating signal for p53.  Acetylation can occur at multiple sites in the DBD and C-

terminal regulatory domain of p53 (Figure 1-12).  

 

 

 

 Figure 1-12: Acetylation and methylation of p53. 
Ac=acetylated, Me=methylated, TAD=Transactivation Domain, PD=Proline rich Domain, 
DBD=DNA-Binding Domain, OD=Oligomerisation Domain, RD=Regulatory Domain.  
Adapted from Carter et al, 2009209. 
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influence over which genes are activated, with acetylation of lysine 320 by 

p300/CBP-associated factor favouring cell cycle arrest genes and Tip60 or hMOF 

mediated acetylation of lysine 120 favouring apoptotic genes301-303.  A mouse 

model, where the eight acetylation sites (in the C-terminus) of p53 were mutated to 

arginines, has demonstrated the importance of acetylation in the activation of p53.  

These mutations resulted in a mouse that had lost its ability to cause growth arrest 

or apoptosis.  Despite evidence that p53 was appropriately recruited to the 

promoter of target genes there was no induction of gene expression.  This was 

thought to be due to the continued binding of MDM2 to p53 since the binding had 

not been disrupted by acetylation300.  Intriguingly another acetylation deficient 

mouse has been shown not to develop tumours despite this inability to activate 

senescence or apoptosis304. 

To date three methyltransferases have been shown to methylate p53 (Set7/9, 

Smyd2 and Set8/PR-Set7).  Unlike acetylation, methylation at some sites has 

been shown to activate p53 (Set7/9 mediated methylation of lysine 372) while at 

others p53 is inactivated by methylation (Smyd2 mediated K370 methylation and 

Set8/PR-Set7 mediated K382 methylation)305-307. 

Post-translational modifications of p53 are numerous and while individually they 

may play a small modulatory role in p53 regulation overall they are critical to 

orchestrate the appropriate p53 response to a variety of stimuli.  

1.4.5 Regulation of MDM2 

1.4.5.1 Structure of the MDM2 protein 

The full-length MDM2 protein has 491 amino acids and consists of several 

conserved functional domains, including the N-terminal p53 binding domain, a 

nuclear export signal (NES), nuclear localisation signal (NLS), the central acidic 

domain, zinc finger domain (ZF), nucleolar localisation domain (NoLS) and the C-

terminal RING domain (Figure 1-13). 
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 Figure 1-13: Domains of MDM2.   
NES=Nuclear Export Signal, NLS=Nuclear Localisation Signal, ZF=Zinc Finger, 
NoLS=Nucleolar Localisation Signal.  Adapted from Wade et al, 2010308. 

 

The p53-binding domain includes the N-terminal 100 amino acids and has been 

shown to bind to p53 at its transactivation domain and inhibit p53’s transcription141, 

309, 310.  Three amino acids of p53’s transactivation domain (phenylalanine 19 

(Phe19), tryptophan 23 (Trp23) and leucine 26 (Leu26)) insert into a deep 

hydrophobic cleft in MDM2’s p53-binding domain309. 

The NES and NLS of MDM2 both lie between the p53-binding domain and the 

acidic domain.  They are required for the shuttling of MDM2 between the nucleus, 

where it can bind p53 and inhibit its transcriptional activity, and the cytoplasm311, 

312.  However, mutations of the NES in MDM2 demonstrated that this shuttling is 

not absolutely required for proteasomal degradation of p53313. Located in the C-

terminus, MDM2 also has a cryptic NoLS, which is important for the ARF mediated 

nucleolar localisation of MDM2314. 

The acidic domain of MDM2 is necessary for MDM2’s interaction with ribosomal 

proteins L5, L11, L23 and S14 and ARF274-276, 279, 315.  In addition this domain is 

also important for efficient degradation of p53 as demonstrated by a mouse model 

expressing an MDM2 mutant lacking its central acidic domain which was able to 

ubiquitinate p53 but not target it for degradation316, 317.  These findings are 

consistent with the acidic domain of MDM2 providing a secondary site for 

interaction with p53318, 319 and also the site for interaction with p300/CBP, which 

cooperates with MDM2 to target p53 for degradation320, 321. 

The zinc finger of MDM2 is found between amino acid 289 and 331.  Its function is 

presently undefined although cancer-associated mutations in MDM2’s zinc finger 

disrupt MDM2’s interaction with L5 and L11 and impair their ability to stabilise 

p53322.  The zinc finger is therefore implicated in p53 response to ribosomal stress. 
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In the C-terminus, MDM2’s RING finger confers vital E3 ligase activity allowing it to 

monoubiquitinate and polyubiquitinate itself, p53323 and several other targets (table 

1-1).  The importance of MDM2’s E3 ligase activity has been clearly demonstrated 

in a mouse model with a C462A mutation (equivalent to C464A in humans) in the 

MDM2 RING domain, resulting in a catalytically inactive MDM2.  Similar to MDM2 

and MDMX knock-out mice, mice homozygous for C462A died in the embryonic 

stage and this phenotype was rescued by concomitant deletion of p53324.  Also 

critical for MDM2’s E3 ligase activity is the C-terminal tail of MDM2265, 266. Although 

the C-terminal tail is required for dimerisation of MDM2 with itself and MDMX, point 

mutants of MDM2 C-terminus that retain ability to dimerise are catalytically inactive 

suggesting that involvement of the C-terminus in catalytic activity is not only 

because it is required for dimerisation325. 

1.4.5.2 The MDM2 gene and isoforms 

The human MDM2 gene is located on the long arm of chromosome 12 (12q14.3-

q15) (GenBank Accession Number: NC_000012.11) and spans 12 exons (Figure 

1-14).   

The MDM2 gene was identified, along with MDM1 and MDM3 in a spontaneously 

transformed murine cell line, 3T3DM326, 327.  They were located on small 

acentromeric extrachromosomal nuclear bodies known as double minutes.  The 

human form of MDM2 (sometimes referred to as HDM2 but throughout this thesis 

MDM2 is used to refer to human MDM2 unless otherwise stated) was cloned from 

the CaCo-2 colorectal cancer cell line and subsequently MDM2 was found to be 

amplified in one-third of human sarcomas328. 

 

 

 

 Figure 1-14: Genomic structure of MDM2. 
Two promoters are shown (P1 & P2).  Full-length MDM2 (p90) is transcribed from the 
start codon in exon 3 and the short form (p76) from the ATG in codon 4.  Two major 
alternative splice variants are shown (MDM2-A & MDM2-B).  Non-coding sequence 
(purple), p53 binding domain (green), nuclear localisation signal (yellow), nuclear 
export signal (pink), acidic domain (turquoise), zinc finger (orange), RING domain 
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(grey), nucleolar localisation signal (navy) and p53 responsive elements (p53 RE).  
Adapted from Iwakuma et al, 2003329. 

MDM2 has two promoters the second of which is p53 responsive330.  From these 

promoters both full-length MDM2 and the 14kDa lighter short form, which initiates 

at an internal ATG, are generated. More than 40 different splice variants of MDM2 

have been identified occurring in both tumour and normal tissues331-333.  The vast 

majority of these isoforms lack the p53-binding domain.  Figure 1-14 shows two of 

the most commonly occurring MDM2 splice variants.  MDM2-A results from 

deletion of exons 4-9 and MDM2-B (MDM2-ALT1) from deletion of exons 4-11.  

The resulting short proteins are unable to bind p53 but bind to full-length MDM2 

sequestering it in the cytoplasm and therefore exerting a dominant negative 

influence on full-length MDM2334. 

1.4.5.3 Post-translational modifications of MDM2 

MDM2 is also extensively modified post-translationally (Figure 1-15).  

Phosphorylation of MDM2 is mediated by both damage-induced kinases (ATM, 

CHK1, CHK2, DNA-PK and c-Abl) and proliferation/survival kinases (Akt, CK-1/2 

and CDK 1/2).   

 

 

 

 Figure 1-15: Post-translational modifications of MDM2. 
P=phosphorylation, Ub=ubiquitination, S=SUMOylation, N=Neddylation, 
Ac=acetylation, p53 BD=p53 Binding Domain, AD=Acidic Domain, ZF=Zinc Finger, 
RD=RING domain, NoLS=Nucleolar Localisation Signal. Phosphorylation sites 
regulated by damage-induced kinases are in bold. Adapted from Wade et al, 2010308 and 
Meek et al, 2003335. 
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In response to stress ATM phosphorylates the C-terminus of MDM2 (S395 and 

S407) stimulating rapid degradation of MDM2336.  DNA-PK mediates damage-

induced phosphorylation at N-terminal serine 17, which disrupts p53 binding337.  

ATM also acts via a second kinase c-Abl that phosphorylates MDM2 at tyrosine 

394 reducing its ability to inhibit p53338.  Subsequently, these phosphorylation 

events result in reduced affinity of deubiqutinating enzyme HAUSP for MDM2 and 

therefore increased degradation of MDM2262. 

In contrast, phosphorylation events of MDM2 have also been implicated in 

promoting p53 degradation.  In response to oncogenic signals Akt phosphorylates 

MDM2 at serine 166 and serine 186331,332.  These modifications enhance MDM2’s 

nuclear localisation.  This then promotes interaction of MDM2 with p300 and 

inhibits MDM2’s ARF binding thereby promoting ubiquitination and degradation of 

p53.  This mechanism is one of several that may be responsible for disabling p53 

in tumours that retain wild-type p53.  

The serines that are phosphorylated in response to stress are dephosphorylated 

once stress has resolved to allow restoration of p53-MDM2 binding, degradation of 

p53 and inhibition of MDM2 autoubiquitination.  One example of this is the p53 

target and dephosphorylase Wip1 that is induced in a delayed manner following 

stress and is thought to contribute to the stress recovery mechanism339-341.  

While the location of several of the phosphorylation sites on MDM2 have been 

established, the localisation of acetylation, ubiquitination, Neddylation and 

SUMOylation that are known to occur on MDM2, remain to be determined.   

MDM2 is known to be acetylated somewhere on the RING domain by CBP and 

p300.  This acetylation reduces MDM2’s ability to ubiquitinate itself and p53342.   

ARF is known to promote SUMOylation of MDM2 on an N-terminal lysine 

somewhere between K134 and K212343.  In addition, TRIM27214 and SKI344 

enhance SUMOylation of MDM2 causing it to accumulate and degrade p53.   

MDM2 is also known to auto-Neddylate resulting in reduced efficiency of MDM2 

mediated p53 inhibition217. 
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Surprisingly we still have much to learn about the sites on which MDM2 itself is 

ubiquitinated despite much of the study of MDM2 having focussed on its E3 

ubiquitin ligase activity.  It has only very recently been suggested, through a mass 

spectrometry approach, that MDM2 itself is auto-ubiquitinated on lysine 364345. 

1.4.6 Regulation of MDMX 

1.4.6.1 Structure of MDMX 

MDMX encodes a protein, which is related to MDM2.  When it was originally 

identified, in a screen for p53 interactors, it was shown to inhibit p53 activity, albeit 

less efficiently than MDM2346. 

As detailed in Figure 1-16 MDMX has a p53-binding domain, acidic domain, zinc 

finger and RING finger.   

 

 

 

 Figure 1-16: Domains of MDMX. 
ZF=Zinc finger .  Adapted from Wade et al, 2010308. 

 

Like MDM2, MDMX’s p53 binding domain binds p53’s transactivation domain and 

blocks its transcriptional activity. This binding prevents p300 interaction with p53 

and therefore reduces p53 activation by reducing acetylation347. This domain has 

the highest sequence homology with MDM2.  This domain also binds to p53 family 

member p73348. 

MDMX’s zinc finger binds CK1α, which then phosphorylates MDMX at serine 289 

enhancing MDMX’s inhibition of p53 transcription in unstressed conditions349. 

Despite MDMX having a RING finger domain it does not have intrinsic E3 ligase 

activity, although as previously mentioned it is important as a heterodimeric 

partner with MDM2 to form an effective E3 ligase268. 
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However, following dimerisation with MDM2 via their respective RING domains, 

ZFAcidic domain 905.�ÄUNLY
MDMX 

W���IPUKPUN

19 10
2

21
5

25
5

43
7

48
31

29
0

33
2

490



Chapter 1: Introduction   

 51 

MDMX becomes nuclear350.  Several studies studying the importance of MDM2-

MDMX heterodimerisation have recently been published351.  Mice homozygous for 

a point mutation in MDMX (C462A) that is defective in MDM2 binding have an 

embryonic lethality phenotype which could be rescued by p53 deletion352.  

However using a conditional mouse model with an MDMX RING deletion revealed 

that the interaction was dispensable for regulating p53 activity and MDM2 and p53 

stability at later stages of development353.  In general the deletion of MDMX leads 

to a milder phenotype than loss of MDM2, and although MDMX is required for 

embryogenesis, it is dispensable in several adult tissues. 

1.4.6.2 MDMX Isoforms 

The human MDMX gene (also known as MDM4) is located on the long arm of 

chromosome 1 (1q32) (GenBank Accession Number: NC_000001.10) and spans 

11 exons (Figure 1-17).   

MDMX is now known to have two promoters.  The originally described promoter 

(P1) is constitutively active and located in exon one while the more recently 

characterised p53 responsive promoter in located in intron one (P2)354.   

 

 

 

 Figure 1-17: Genomic structure of MDMX. 
Two promoters are shown (P1 & P2).  Four major isoforms are shown. Non-coding 
sequence (purple), p53 binding domain (green), zinc finger (orange), RING domain 
(grey) and p53 responsive elements (p53 RE).  Adapted from Markey et al, 2008355 and 
Phillips et al, 2010354. 
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transcripts decrease while MDMX-L and XAlt2 transcripts, which are less efficient 

at p53 inhibition, increase.  It has been proposed that this may help prolong p53 

activation following stress356, 357.  MDMX-S has been associated with decreased 

patient survival in patients with soft-tissue sarcomas358 and osteosarcomas359.  

The increase in splicing to form MDMX-S was associated with a reduced protein 

expression and the presence of another lesion causing inactivation of the p53 

pathway (TP53 mutation or MDM2 overexpression).  Furthermore this alternative 

splicing could predict poor prognosis in a more sensitive manner than the 

presence of a p53 mutation, suggesting that alternative splicing of MDMX may be 

a useful biomarker for p53 pathway inactivation359. 

1.4.6.3 Post-translational modifications of MDMX 

The known MDMX phosphorylation sites are detailed on Figure 1-18.  These 

phosphorylation sites are also regulated by damage-induced kinases and 

proliferation/survival kinases. 

 

 

 

 Figure 1-18: Post-translational modifications of MDMX. 
P=Phosphorylation, Ub=Ubiquitination, S=SUMOylation, ZF=Zinc Finger, AD=Acidic 
Domain, RD=RING domain.  Phosphorylation sites regulated by damage-induced 
kinases are in bold.  S367 is phosphorylated by damage-induced kinases and 
proliferation kinases.  Adapted from Wade et al, 2010308 and Meek et al, 2003335. 
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In contrast, in proliferating cells Akt mediates phosphorylation of MDMX at serine 

367 leading to the stabilisation of MDMX and MDM2 and consequent degradation 

of p53365.  This represents a potential mechanism by which Akt can apply its 

oncogenic effects. 

A mouse model has recently shown the importance of phosphorylation of MDMX 

in allowing an efficient response to stress.  The C-terminal serines, usually 

phosphorylated by ATM and CHK2 in response to stress, were mutated to 

alanines.  These mice were resistant to ionising radiation displaying reduced p53 

dependent transcriptional activity, suggesting that phosphorylation of these 

residues is required to remove MDMX’s inhibition of p53 in the event of stress366.  

As stress resolves, MDMX can also be dephosphorylated by Wip1, causing 

stabilisation of MDMX and consequent degradation of p53 to maintain low levels in 

the now unstressed cells367.  As previously mentioned, in unstressed conditions 

CK1 alpha can induce MDMX phosphorylation at residue S289349.  This appears to 

enhance MDMX’s inhibition of p53’s transcriptional activity. 

In addition to phosphorylation, MDMX is known to be ubiquitinated and degraded 

by MDM2 but at an unknown site368. SUMOylation of MDMX also occurs and 

requires K254 and K379, but to date the functional relevance of this modification is 

unknown369. 

1.5 p53 in cancer 

Loss of p53 function contributes to the development of most cancers370.  In 

approximately 50% of all cancers there are mutations in the TP53 gene which 

result in loss of p53 expression or, in most cases, expression of a mutant p53 

protein371.  Recent improvements in sequencing technology have confirmed that 

p53 is one of the most common genetic abnormalities seen in cancer372.  In the 

remainder of cancers where wild-type p53 is retained there is frequently evidence 

for malfunction of the p53 pathway at some other level84.   
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1.5.1 TP53 mutation 

TP53 mutation rates vary significantly depending of the primary cancer site and 

the histological type373 (Figure 1-19).  

 

 

 

 Figure 1-19: TP53 mutation rate. 
n=number of cancers.  Generated from IARC database sequencing data.  Version R16, 
Nov 2012373.   

 

Mutation rates for oesophageal, colorectal, lung, gastric, liver, breast and prostate 

cancer are 45.4%, 43.3%, 37.2%, 32.4%, 31.2%, 22.8% and 16.9% respectively.  

Within some cancer sites certain histological subtypes demonstrate an increased 

TP53 mutation rate.  For example almost 100% of high-grade serous ovarian 

cancers have a p53 mutation168 while overall ovarian cancers have a mutation rate 

of only 47.5%.   

In some cases the differences in mutation rates can be explained by 

environmental exposure to specific carcinogens. In hepatocellular carcinoma 

(HCC) aflatoxin B1, a food contaminant encountered in the developing world 

produced by the fungi aspergillus parasiticus, has been implicated in the 

neoplastic process374.    Aflatoxin induces G>T substitutions clustering at codon 

249 in the DNA binding domain of p53375.   Benzo[a]pyrene diol epoxide (BPDE), 

which is one of 3000 mutagens in tobacco, forms adducts on G residues in DNA 

causing G>T mutations and has been implicated as the cause of p53 mutations in 

lung cancer, although the importance of this mutant has been called into question 

by work showing no difference in frequency of G>T mutations in lung cancer from 
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smokers versus non-smokers376, 377.  A further example of exposure to 

environmental mutagens causing mutations of TP53 is demonstrated by the 

relationship between UV and squamous cell skin cancer.  UV exposure causes 

CC---TT double-base changes, mutations at dipyrimidine sites and in particular a 

high frequency of C>T substitutions resulting in a mutation rate in squamous skin 

cancer of around 58%378. 

In contrast with most other tumour suppressor genes, which are commonly 

inactivated by frameshift or nonsense mutations, the majority of the mutations in 

p53 are missense mutations (~80%).   

Figure 1-20 shows the location of the 6 most common somatic mutations which 

are all in the DNA binding domain in the conserved regions373, 379.  In this region 

88% of mutations are missense while outside this region only 40% are 

missense182.  This highlights the importance of the DNA binding domain for p53’s 

tumour suppressive functions. 

 

 

 

 Figure 1-20: p53 hotspot mutations. 
The codon number of the 6 most common mutations is given and their location in the 
p53 DNA-binding domain shown.  Adapted from IARC TP53 Database, R15 release, 
November 2010. n=22356373. 
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worth noting however that even some contact mutants are unfolded to some 

degree150.  

The consequences of the p53 mutations seen in cancers are dramatic in that 

expression of mutant p53 has an even greater oncogenic effect than loss of wild-

type activity, resulting in the acquisition of a more aggressive phenotype.  Many 

p53 mutants can exert dominant negative regulation of remaining wild-type p53373.  

Moreover mouse models with hotspot TP53 mutations have demonstrated a ‘gain-

of-function’ phenotype that leads to the development of more invasive tumours381, 
382, 383. 

Establishing the mechanism of mutant p53 gain of function is an area of active 

research where there is still much to learn.  Although some mechanisms of gain of 

function are shared by a group of TP53 mutations, it is becoming clearer that each 

individual p53 mutant probably acts in its own specific way, although they may 

converge to affect the same pathways384.  So far it has been shown that mutant 

p53 can regulate a transcriptional programme directly through binding DNA distinct 

from the canonical p53 binding sites recognised by wild-type p53, or via 

interactions with other proteins. Various p53 mutants have been shown to interact 

with numerous transcriptional co-regulators, including the p53 family members p63 

and p73, thereby indirectly regulating transcription385-388.  Numerous 

consequences of these interactions include the regulation of expression of genes 

that contribute to invasive and metastatic behaviour, or cell survival. For example 

in breast cancer cells mutant p53 activates sterol gene promoters via transcription 

factors SREBPs, driving the mevalonate pathway (that synthesises isoprenoids 

and cholesterol).  This upregulation of the mevalonate pathway is required for the 

disorganised growth of breast cancer cells in 3D models suggesting its 

contribution to driving invasion389. Mutant p53 has also been shown to form a 

complex with Smads and p63 leading to pro-metastatic TGFβ activity, in the 

presence of oncogenic Ras, through inhibition p63388. Mutant p53 has also been 

shown to enhance Rab-coupling protein-dependent recycling of multiple receptors 

that drive mitogenic signalling pathways (EGFR, MET).  In some cellular models 

this is also dependent on inhibition of p63385, 390. 
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The TP53 status of a tumour can be clinically informative.  For example in a study 

of patients who received neoadjuvant chemotherapy for breast cancer the 

presence of a p53 mutation conferred a poorer 5-year progression free survival 

(mutant TP53 55.3% versus wild-type TP53 64.7%; all patients received FEC (5-

Fluorouracil, Epirubicin, Cyclophosphamide) chemotherapy)391.  Studies exploring 

whether TP53 mutation can predict response to chemotherapy have shown 

conflicting results.  This is thought to be due to the heterogeneous populations of 

breast cancer patients and the heterogeneous chemotherapy regimens included in 

the studies.  Some consistency does seem to have been reached confirming that 

wild-type p53 predicts a poorer response to anthracycline based chemotherapy392 

and furthermore this have been supported by some mechanistic studies393.  In 

colorectal cancer the picture is also complicated with p53 mutations having a 

different incidence and prognostic impact depending on the specific site of tumour 

origin in the large bowel394.  Clinical data on p53 mutation status in previous years 

has been based on immunohistochemical assessment of tumour p53 expression 

as mutant p53 is frequently (but not always) stabilised since MDM2 is not a 

transcription target of mutant p53.  This has lead to inconsistent results which will 

hopefully be addressed in some way now that application of sequencing 

technologies to clinical samples is much more feasible182.  It is however likely that 

the complexities of the p53 pathway will result in on-going inconsistencies which 

could be further addressed by systems biology approaches.  

1.5.2 Other causes of inactivation of the p53 pathway 

For those tumours that retain wild-type p53 the p53 pathway is frequently found to 

be defective at another level84.   

In some cancers mutations in DNA damage signalling (ATM, CHK2) cause inability 

to activate p53 sufficiently, as demonstrated by the presence of CHK2 mutations in 

a group of patients with Li-Fraumeni like syndromes395, 396. 

In other cancers there have been reports of methylation of the p53 promoter 

causing reduced transcription of p53397 and mutation in 5’ UTR reducing 

translation398.   
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Also upstream of p53, epigenetic inactivation, mutation or deletion of ARF (often 

along with p16 loss), have all been reported399. Also mutation of tumour 

suppressor phosphatase and tensin homolog (PTEN) occurs.  This allows Akt to 

increase and causes an increase in nuclear MDM2 and consequent inhibition of 

p53400, 401. Other mechanisms of constitutive activation of Akt activity therefore 

also inhibit the p53 pathway.   

Overexpression of p53’s negative regulators, MDM2 or MDMX occur in at least 

10% of human tumours402.  MDM2 is overexpressed in 14% of osteosarcomas403.  

MDMX is overexpressed in 4% of glioblastomas, 5% of breast cancers, 50% of 

HCCs, 60% of retinoblastomas and 65% of cutaneous melanomas404-407. The 

spectrum of tumours overexpressing MDM2 and MDMX differ suggesting that they 

may have site specific roles in tumourigenesis356. MDM2 can be overexpressed as 

a result of gene amplification.  In addition a single nucleotide polymorphism (SNP) 

in the MDM2 promoter has been reported which enhances transcription leading to 

a 2-4 fold increase in MDM2 mRNA and protein408.  No corresponding SNP in 

MDMX has been found. MDMX overexpression can result from enhanced 

translation of its messenger RNA, increased mRNA or increased copy number 

particularly in retinoblastoma and HCC406, 409, 410.   

For some cancers, tumour associated viruses (HPV in humans, SV40 and 

adenovirus in other mammals) play a major role in the neoplastic process by 

inactivating p53.  They encode the E6 protein and the E6-associated protein (E6-

AP) is capable of binding to wild-type p53 and targeting it for degradation via the 

proteasome411.  The most extensively studied of these oncogenic viruses is human 

papillomavirus (HPV).  Approaching 100% of cervical cancers are estimated to be 

due to infection with oncogenic HPV types 16 and 18412.  HPV’s causative role in 

cervical cancer has inspired development of an HPV vaccine and a HPV vaccine 

programme for the prevention of cervical cancer is now underway.  This 

programme is still in its infancy and therefore whether it effectively reduces the 

incidence of cervical cancer remains to be seen413.  

Another mechanism of inactivation of wild-type p53 seen in cases of some breast 

cancer is cytoplasmic location of p53 and therefore reduced transcriptional 
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activity414-416.  The specific mechanism of cytoplasmic sequestration is not yet 

known. 

1.6 p53 as a target for cancer therapy 

Three different mouse models from the groups of Lowe, Jacks and Evan have 

demonstrated that reactivation of wild-type p53 in mouse models results in tumour 

regression134, 417 with no evidence of toxicity in normal tissues418.  Restoration of 

wild-type p53 expression has more recently also been evaluated in mice with a 

mutant p53 background.  In this setting the introduction of wild-type p53 

suppressed tumour growth but did not cause tumour regression probably due to 

the dominant negative effect of mutant p53419.  These models provide strong 

evidence in support of developing agents that reactivate the p53 pathway. 

As described above lesions that inactivate p53 in cancer can occur at several 

different levels in the p53 pathway. Therefore, although the common goal is 

restoration of wild-type p53 activity, this will require several different approaches 

(Figure 1-21).   

 

 

 

 Figure 1-21: p53 activating therapy depends on tumour p53 status. 
GOF=Gain Of Function. 

 

The approach will, broadly speaking, depend on the tumour p53 status.  Where 

wild-type p53 is present, inhibition of p53’s negative regulators would be a 

reasonable approach. However, in the presence of mutant p53 this would not be 

desirable since mouse models have shown that MDM2 deletion in mice expressing 

mutant p53 leads to more invasive cancers420. 
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1.6.1 Treatment of wild-type p53 tumours 

The most extensively studied strategy to reactivate wild-type p53 in tumours with a 

wild-type p53 status has been MDM2 inhibition.  Inhibition of MDM2 could restore 

p53 activity by releasing wild-type p53 from MDM2 mediated proteasomal 

degradation.  Although less studied thus far, inhibition of MDMX is now recognised 

as another potentially useful method of wild-type p53 restoration.  Importantly 

these strategies will be useful only in cancers that retain wild-type p53.  

Mouse models previously described134, 417, 418 showed that, on restoration of the 

p53 pathway, toxicity to normal tissues was not a major feature, however, in these 

mice MDM2 was not altered and seemed to be capable of controlling p53 levels in 

normal tissues.  The issue of potential toxicity to normal tissues on specifically 

inhibiting MDM2 to achieve p53 activation has been explored using a mouse 

model with a hypomorphic MDM2 allele that expresses 30% of the normal level of 

MDM2 and results in increased p53 transcriptional activity.  These mice showed 

no evidence of premature aging and were more resistant to tumour formation421.  

However other models where there is either a hypomorphic MDM2 allele or 

haploinsufficiency of MDM2 and MDMX have shown that the resultant increased 

p53 activity causes increased sensitivity to DNA damage, a finding that obviously 

needs to be taken into consideration when designing therapies which inhibit 

MDM2 or MDMX422, 423.  Furthermore in a mouse model with a switchable 

endogenous TP53 in a MDM2 null background the normal mouse tissues 

underwent apoptosis and arrest424.  Like germ-line genetic deletion, an MDM2 

inhibitory drug should achieve p53 stabilisation in normal and tumour tissues so 

these genetic studies do raise concerns regarding the potential toxicity of this 

strategy.  To date there has been in vivo evaluation of MDM2 inhibitor Nutlin that 

did not appear to cause significant toxicity to normal tissues in a mouse xenograft 

model425.  Furthermore phase I studies of Nutlin have shown the drug to be 

tolerable426-428.  Obviously tumour cells are likely to have other genetic 

abnormalities that make them more sensitive to p53 induced senescence or 

apoptosis. However, whether there is an adequate therapeutic window remains to 

be seen. 
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1.6.1.1 Inhibitors of MDM2 and MDMX 

Several different approaches have been taken to inhibit MDM2 (Figure 1-22).  

 

 

 

 Figure 1-22: Methods of p53 reactivation in wild-type p53 tumours. 
DUB=Deubiquitinating enzyme, Ub=Ubiquitin, Ac=Acetylation, E1=ubiquitin activating 
enzyme, PI=Proteasome Inhibitor. 

 

 
Firstly anti-sense oligonucleotides have been shown to be successful in 

decreasing MDM2 expression, resulting in xenograft shrinkage in mouse 

models429, 430.  Despite these promising results due to the high potential for off 

target effects with this strategy priority has been given to clinical development of 

alternative methods of MDM2 inhibition. Secondly agents are in development, 

which are thought to inhibit the interaction between MDM2 and p53 (Nutlin, spiro-

oxinadoles, benzodiazepines and Reactivation of p53 & induction of tumour cell 

apoptosis (RITA))309, 425, 431-437.  Thirdly a group of agents designed to inhibit the 

MDM2 dependent ubiquitination of p53 are in development (HLI98).  Finally 

inhibitors of the MDMX-p53 interaction are in the very early stages of 

development. 

1.6.1.1.1 Inhibitors of p53-MDM2 interaction 

Historically it has been presumed that due to the relatively flat interacting surfaces 

of proteins, structure based design would not be useful in targeting protein-to-

protein interaction.  However, characterisation of the crystal structure of the 

MDM2-p53 interaction identified 3 critical amino acids in the interaction between 
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MDM2 and p53 (Leu26, Trp23 and Phe19)309.  These amino acids were the focus 

for a chemical library screen from which Nutlin was identified.   

Nutlin is a cis-imidazoline, which binds to the deep hydrophobic p53-binding 

pocket on MDM2.  Nutlin disrupts the interaction between MDM2 and the 

transactivation domain of p53 resulting in increased p53 expression and functional 

activity425.  Despite 50% amino acid sequence identity between the p53-binding 

domain of MDM2 and MDMX Nutlin does not disrupt the p53-MDMX interaction 

and fails to activate p53 in cells overexpressing MDMX438-440. 

Other classes of compound have been identified that disrupt the interaction 

between p53 and MDM2 (table 1-2).  

Table 1-2: Compounds that disrupt MDM2-p53 interaction. 
Molecule Strategy Chemical class Target Testing stage 
Nutlin/RG7112425 

Small 
molecules 

Cis-imidazoline MDM2 Phase 1 
RITA436 Thiophene p53 Preclinical 
MI-219432  Spiro-oxinadole MDM2 Preclinical 
TDP521252/665759433-435 Benzodiazepinedione MDM2 Preclinical 
PXN727/PXN8221 Isoquinolinone MDM2 Preclinical 
Stabilised alpha-helix of 
p53 SAH-p53441 Stapled peptides MDM2 Preclinical 

SAH-p53-8442 MDM2 Preclinical 
Adapted from Lehmann et al, 2012443 

 
Reactivation of p53 & induction of tumour cell apoptosis (RITA) was discovered 

following a cell-based chemical library screen and has been shown to activate p53 

and induce p53-dependent cell cycle arrest436.  It is thought to bind to p53 rather 

than MDM2, although crystal structures fail to confirm this437. 

Spiro-oxinadoles (MI compounds) were developed using structure based design.  

The oxindole ring mimics the side chain of Trp23.  The spiropyrolidine ring mimics 

the Phe19 and Leu26 side chains.  This class of agents has been shown to 

stabilise p53 in cells expressing wild-type p53 with low toxicity to normal cells431, 
432. 

Benzodiazepinediones (TDP521252/665759) were also discovered by a high 

throughput screen for binding of MDM2433-435.  These were shown to stabilise p53, 

cause increased transcriptional activity and lead to reduced proliferation of wild-

type p53 expressing cancer cells. 
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Isoquinolinones (PXN727/PXN822) are orally bioavailable and have been shown 

to reverse tumour growth in xenograft models1, 444. 

Finally two stapled peptides have been described that bind to the p53 binding 

pocket on MDM2441, 442 thereby preventing interaction of p53 with its negative 

regulators and activating p53. 

1.6.1.1.2 Inhibitors of E3 ligase activity 

As discussed above, p53 can be activated by DNA damage via ATM/ATR, by 

oncogenic stimuli via the ARF pathway or by ribosomal stress via ribosomal 

proteins (L11, L5, L23 and S14).  These pathways cause p53 to be released from 

the negative regulation of MDM2.  Despite retention of the p53/MDM2 interaction, 

ARF or ribosomal proteins are able to block ubiquitination and degradation of p53, 

and activate a p53 response.  An attempt was therefore made to identify small 

molecule inhibitors of MDM2s E3 ligase activity based on the observation that 

preventing degradation of p53 may be equivalent to activation of p53.   

The first chemical library screen for inhibitors of MDM2 mediated p53 

ubiquitination identified three chemical groups of interest; arylsulfonamides, 

bisarylureas and acylimidazolones445.  Surprisingly these compounds did not 

inhibit MDM2 autoubiquitination and therefore their mechanism of action may 

involve disrupting the MDM2-p53 interaction. 

An alternative approach was taken by Davydov et al, who performed a high-

throughput screen of small molecule inhibitors of MDM2 autoubiquitination.   They 

identified the HDM2 ligase inhibitor 98 class (HLI98)446.  Studies have shown that 

the HLI98 compounds inhibit E3 activity of MDM2, stabilise p53 and cause 

apoptosis of transformed cells.  Their specificity for MDM2 was also investigated, 

showing some off-target inhibition of HECT domain E3 ubiquitin ligases E3s447.  

The mechanism of action of these 7-nitro-5-deazaflavin (HLI98) compounds is not 

clear but it is proposed that they may function by blocking E2-MDM2 interaction or 

by altering RING finger structure.  Further study of the mechanism of action of 

these compounds was limited by the high redox potential of the 5-deazaflavins 

which have a nitro group which is susceptible to one-electron reduction, leading to 
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generation of nitro anion radicals.  Since p53 can be stabilised by ROS, work was 

undertaken to synthesise analogues of the original compounds, which lack the 

nitro group.  Reassuringly some of the nitro lacking analogues could stabilise and 

activate p53 in cellular assays448.  

It has been suggested that these agents, which inhibit MDM2’s E3 ligase activity 

and therefore stabilise both MDM2 and p53, may potentially prevent full activation 

of p53.  Recent mouse models have helped to address this.  A model with mutant 

MDM2 (lacking E3 ligase activity (MDM2-464)) demonstrated embryonic lethality, 

which was rescued by deletion of p53.  These results therefore show that inhibition 

of MDM2’s E3 activity, while retaining the p53 binding activity, is sufficient to 

inactivate MDM2-mediated control of p53. Interestingly, in this system the mutant 

MDM2 expressed in these mice remained at low levels and was targeted for 

degradation by another, as yet unidentified E3 ligase324.  Although it is unlikely that 

drugs inhibiting the E3 ligase activity of MDM2 would provide inhibition equal to 

deletion of the gene itself, this area does require further study. However, for 

therapeutic approaches a partial inhibition of MDM2 may be the desired outcome. 

Mouse studies have shown that complete ablation of MDM2 is highly toxic to 

normal tissues that retain wild-type p53 activity424, although in vivo treatment with 

agents that inhibit p53/MDM2 binding (rather than E3 ligase function alone) is well 

tolerated425.   

Further attempts have been made to identify selective inhibitors of MDM2 

mediated p53 ubiquitination by screening a chemical library for p53 ubiquitination 

followed by a MDM2 autoubiquitination counter screen.  From this work the most 

active chemical identified, inhibited p53 ubiquitination with an IC50 of 8µM while 

no inhibition of MDM2 ubiquitination was observed at doses up to 100µM449.  No 

further update has followed the original publication. 

Several other groups have been making efforts to identify inhibitors of MDM2 E3 

ubiquitin ligase activity.  Further examples are discussed below. 

Sempervirine was discovered as an inhibitor of MDM2 E3 ligase activity in a high 

throughput natural products screen.  It inhibits both p53 and MDM2 ubiquitination 

and stabilises p53 in cancer cells resulting in apoptosis450. 
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HLI373 is a water-soluble compound that was originally published as a derivative 

of the previously described HLI98 compound.  HLI373 has shown ability to 

stabilise MDM2 and p53, activate p53-dependent transcription and it displays 

selectivity for apoptosis in transformed cells451.  

In addition an E1 inhibitor has been described452.  Although this strategy has 

obvious limitations in that it will have p53-independent effects since the E1 

enzyme is involved in a multitude of different ubiquitination reactions the clinical 

success of proteasome inhibitors suggests development of such non-specific 

strategies may be fruitful.  Proteasome inhibitor, bortezomib, has been shown to 

be tolerable and improve one year survival rates from 66% to 80% when 

compared to dexamethasone in the treatment of refractory multiple myeloma453.  

An additional method of targeting the ubiquitin proteasome pathway is to design 

inhibitors of deubiquitinating enzymes.  To date a small molecule inhibitor of 

HAUSP (USP7) has been described to bind to the active site inhibiting its catalytic 

function.  This compound was shown to result in G1 arrest of colorectal cancer cell 

lines454. 

1.6.1.2 Inhibitors of MDMX 

As the importance of MDMX in the negative regulation of p53 has become 

increasingly apparent and study of MDM2 inhibitors has revealed that 

overexpression of MDMX can serve as a resistance mechanism, efforts have been 

made to develop inhibitors of MDMX269, 438, 455.  

Table 1-3 shows compounds in development that have been shown to disrupt p53-

MDMX binding. 

Table 1-3: Compounds that disrupt MDMX-p53 interaction. 
Molecule Target Testing stage 
SJ-172550456 MDMX Preclinical 
NSC207895457 MDMX Preclinical 
Adapted from Lehmann et al, 2012443 

 
Reed et al developed a high throughput screen to identify small molecules that 

bind MDMX and prevent its interaction with p53.   Using this method they identified 

the first MDMX inhibitor, SJ-172550. They have shown that SJ-172550 kills 
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retinoblastoma cells (which overexpress MDMX) and that the addition of Nutlin 

results in synergistic killing456. 

Another group have used a reporter-based drug screen and identified 

NSC207895, a benzofuroxan derivative (7-(4-methylpiperazin-1-yl)-4-nitro-1-oxido-

2,1,3-benzoxadiazol-1-ium)457.  NSC207895 could activate p53 in MCF-7 cells 

resulting in activation of p53 apoptotic transcriptional targets.  This compound has 

also been shown to act additively with Nutlin as a means to both inhibit p53-MDM2 

and p53-MDMX interaction. 

Table 1-4 shows peptides shown to disrupt MDM2-p53 binding and MDMX-p53 

binding. 

Table 1-4: Dual MDM2/MDMX-p53 interaction inhibitors. 
Molecule Target Testing stage 
WK298458 MDM2/MDMX Preclinical 
Hu et al459 MDM2/MDMX Preclinical 
LTFEHYWAQLTS460 MDM2/MDMX Preclinical 
6-chloro p53 peptidomimetic461 MDM2/MDMX Preclinical 
PMI462, 463 MDM2/MDMX Preclinical 
Adapted from Lehmann et al, 2012443 
 
The imidazo-indoles (WK298) have been shown to bind to both MDM2 and MDMX 

at the three subpockets of the MDM-p53 interface458.  As yet these compounds, as 

well as the other dual peptide inhibitors reported, do not appear to have undergone 

evaluation in cell line studies.  

1.6.1.3 Other non-genotoxic p53 stabilising agents 

Johnson and Johnson were developing a novel p53 stabilising agent (JnJ-

26854165), which was thought to act further down the p53 pathway. It was 

hypothesised that tryptamine (JnJ-26854165) could prevent binding of the MDM2-

p53 complex to the proteasome. Cell line studies showed stabilisation of both wild-

type and mutant p53 causing transcriptional activity464 465 466.  Xenograft studies 

showed tumour shrinkage in the presence of both wild-type and mutant p53465-467.  

The compound was the first-in-class MDM2 inhibitor in phase I clinical evaluation 

and preliminary results of this study were presented by Tabernero et al at the 

EORTC annual meeting in 2008467.  At that time 30 patients had been enrolled and 

no clinical responses or dose limiting toxicity had been observed. Subsequently 
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the phase I study was discontinued because of dubiety regarding tryptamine’s 

mode of action, but further details of this are not in the public domain. 

Tenovins-1/6 were discovered following a mammalian cell-based screen for 

activators of p53.  Using a yeast genetic screen the target of tenovin was identified 

as SirT1 & 2 (histone deacetylases).  Inhibition of SirT1 & 2 results in increased 

acetylation at lysine-382 on p53 and therefore activates p53.  Tenovin 6 inhibits 

tumour growth in vivo and kills tumour cells by p53-dependent and independent 

mechanisms468.   

Actinomycin D (act D) is a traditional cytotoxic that has recently been identified as 

a non-genotoxic p53 activating agent when used at low-dose469.  A cell based 

screen was carried out to identify a clinically approved drug that mimicked Nutlin in 

terms of achieving p53 dependent transcription 468, 470.  Act D was identified as the 

most effective agent, and shown to be capable of activating p53 without causing 

DNA damage at low doses. 

1.6.1.3.1.1  Limitations of the MDM2/X-inhibition approach 

In the clinic, success of MDM2/MDMX inhibitors will depend on the ability to 

distinguish molecular sub-types of cancer, knowledge of the toxicity risk of p53 

activation to normal tissues and the likely mechanisms of resistance to therapy.   

Firstly MDM2/MDMX inhibition is expected to only be appropriate and beneficial for 

patients who have a wild-type p53 containing tumour.  Current UK clinical practice 

does not involve routine analysis of tumour p53 status and although p53 status 

may be examined in other centres worldwide, at present good evidence that 

knowledge of p53 status impacts patient care is lacking.  Concurrent with the 

development of MDM2 and MDMX inhibitors sequencing technologies that can 

feasibly be used to determine p53 mutation status in clinical practice are being 

developed.   Roche are developing one such technology that is designed to detect 

p53 mutations from DNA isolated from formalin fixed paraffin embedded tissues 

using an affymetrix amplichip471.  The use of fixed tissues has obvious practical 

advantages.  
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While mice null for MDM2 displayed significant toxicity to normal tissues upon p53 

activation424, the in vivo testing of Nutlin did not appear to demonstrate significant 

toxicity to normal tissues425.  Reassuringly phase I evaluation of Nutlin has shown 

that it was tolerable.  The dose limiting toxicity was thrombocytopenia (reduced 

platelet count) and it was encountered at doses below which there was biomarker 

evidence of p53 activation424, 425.  There was also evidence of some promising 

responses to treatment although clearly the study was not designed to assess 

efficacy427, 428. 

One further consideration when designing MDM2/MDMX inhibitors is that although 

they are both negative regulators of p53 there is a growing body of evidence 

establishing differences in the activities of MDM2 and MDMX. Although both 

MDM2 and MDMX knock-out mice demonstrate an embryonic lethal phenotype238, 

239, 263, 264 other mouse models have been helping to further dissect the differences 

between MDM2 and MDMX functions245, 246, 270, 271.  These differences may be 

important when designing therapies, which manipulate either MDM2 or MDMX or 

both.  For example embryos deficient in MDM2 display massive apoptosis, which 

can be partially rescued by Bax deletion while MDMX deficient mice show a mixed 

growth arrest/apoptosis phenotype that can be partially rescued by p21 deletion472, 

473.  Furthermore differences have been demonstrated in terms of tissue specificity 

of effects of gene knockout with MDM2 deletion particularly influencing progenitor 

neuronal cells and cardiomyocytes but MDMX showing milder tissue defects474, 475.  

This information could be useful in determining the likely toxicities from MDM2 and 

MDMX inhibition and perhaps suggests that MDM2 inhibition has potential to 

cause cardiotoxicity. 

Furthermore other toxicities likely to be associated with MDM2 inhibition could 

result from modulation of other pathways where MDM2 had been show to act as 

an E3 ubiquitin ligase. MDM2 acts as an E3 for several other targets including 

p21, androgen receptor and Tip60 (table 1-1).  It is therefore likely that MDM2 

inhibitors will also alter signalling via these other pathways to some extent.  

MDMX overexpression has been implicated in resistance to MDM2 inhibitors and 

inhibition of MDMX alone would stabilise p53 leading to increased MDM2 which 
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could potentially inhibit p53 therefore a dual inhibition strategy may be 

desirable264. 

MDM2 and MDMX inhibition relies on the pathways downstream of p53 functioning 

normally. Dysfunction in the mediators of the p53 response could potentially result 

in resistance to MDMX and MDM2 inhibition. In addition the effects of long-term 

inhibition of MDM2 are unknown but it is reasonable to hypothesize that this may 

have impact on homeostasis of the p53 pathway causing emergence of other 

resistance mechanisms.  So far mutations in p53 target genes have not been 

reproducibly found as a mechanism of resistance to p53 presumably because 

there are so many mediators of p53 response.  Furthermore mouse models with 

loss of p21, PUMA and Noxa alone do not appear to develop tumours suggesting 

that there several redundant activities that can provide tumour suppression. 

At the outset patients with wild-type p53 expressing tumours should be selected 

for MDM2 or MDMX inhibitory treatment. However, these same patients may have 

normal tissues expressing mutant p53476 and this raises concerns that p53 

activating agents could accelerate transformation in these tissues by stabilising 

mutant p53477.  

One recent study has highlighted some of the concerns of the effects of MDM2 

inhibition in the presence of mutant p53.  With the specific aim of investigating 

whether MDM2 regulates the level of mutant p53 in normal cells Terzian et al 

developed a homozygous TP53 mutant mouse where the MDM2 gene was 

deleted (the genetic equivalent of systemic treatment with an MDM2 inhibitor).  

The absence of MDM2 in this model led to accumulation of p53 protein in normal 

and tumour cells, the mice died from cancer earlier than mice expressing mutant 

p53 in a wild-type MDM2 background. Importantly, 17% of the mice developed 

metastatic tumours, a feature that was also not apparent in a wild-type MDM2 

background420.  Since mutant p53 expression is also controlled by MDM2 and 

mutant p53 results in an increased rate of metastasis in mouse models, MDM2 

inhibition may pose a problem in the presence of mutant p53477, 478.  Consistent 

with this, a more recent study in zebrafish showed that after morpholino 

knockdown of zebrafish homologs of MDM2 and MDMX there was dramatic 
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accumulation of mutant p53479.  The impact of this accumulation on 

carcinogenesis was not evaluated. 

1.6.1.4 p53 inhibitors for chemoprotection 

It is well documented that much of the toxicity caused by cytotoxic chemotherapy 

is p53-dependent.  Consequently it has been hypothesized that p53 inhibitors may 

protect normal cells from p53-mediated death while allowing delivery of increased 

doses of chemotherapy and radiotherapy to target cancer cells480, 481.  Furthermore 

mouse models have suggested that this need not be at the expense of a reduction 

in efficacy, since DNA damage induced apoptosis was not required for p53-

mediated tumour suppression482. 

1.6.1.5 Gene therapy 

Gene therapy to reintroduce TP53 into tumour cells by means of an adenovirus 

(Gendicine) has been investigated both as a monotherapy and in combination with 

chemotherapy and radiotherapy.  This approach would be most useful in tumours 

of wild-type p53 status because due to the dominant negative properties of mutant 

p53 this therapy may be less effective in mutant p53 tumours.  Consistent with this 

idea mouse studies have shown that restoration of wild-type p53 expression in a 

mutant p53 background did not cause tumour regression but did stop tumour 

growth.  Nevertheless, some trials in patients of mixed p53 status have 

demonstrated improved progression free survival in patients with non-small cell 

lung cancer and squamous cell carcinoma of the head and neck. Gendicine, given 

by intratumoural injection in combination with chemoradiation, was therefore 

approved for clinical use in China483, 484. It will be interesting to see if the presence 

of p53 mutation predicts resistance to this strategy. 

1.6.2 Treatment of mutant p53 tumours 

In tumours where mutant p53 is present, approaches that may stabilise mutant 

p53 could be detrimental or at least ineffective.  Tumours with a mutant p53 status 

therefore require a different approach. 
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1.6.2.1  Gene therapy 

There has been cell line and clinical studies of an oncolytic adenovirus (Onyx) that 

was thought to only replicate in TP53 mutant cells because it was deficient for the 

E1B gene product that degrades p53485, 486.  Two non-randomised phase II studies 

in recurrent squamous cell head and neck cancer patients of intratumoural Onyx 

showed sustained responses of single agent Onyx487 and of Onyx in combination 

with Cisplatin and 5-FU488.  Onyx has also been evaluated in several other early 

phase studies including a phase I/II in sarcoma patients in combination with MAP 

(Mitomycin C, Doxorubicin, Cisplatin) chemotherapy489 and a study in patients with 

recurrent colorectal cancer where Onyx was given via hepatic artery infusion490. 

Interpretation of initially promising clinical study results was compromised by 

difficulties assessing response versus non-specific effects of direct injection of 

virus intratumourally.  Subsequently Onyx was shown to be specific for tumour 

cells with altered mechanisms for RNA export rather than mutant p53485.  

1.6.2.2 Mutant p53 vaccination 

Another strategy that has seen some success is vaccination with a p53-modified 

adenovirus-tranduced dendritic cell vaccine.  Mutant p53 may provide an attractive 

target for immunotherapy when it is highly expressed in tumours.  In addition there 

is evidence that some cancer patients produce p53 reactive T cells in response to 

p53 mRNA-transfected dendritic cells and some patients have detectable levels of 

anti-p53 antibodies491, 492.  There are on-going clinical studies of the p53-modified 

adenovirus-tranduced dendritic cell vaccine.  One phase I/II study in recurrent 

small cell lung cancer patients showed that 79% of the patients who demonstrated 

an immune response to the vaccine, responded to subsequent chemotherapy 

while only 33% of those who did not mount an immune response responded to 

chemotherapy493. The results of on-going clinical studies are awaited with interest. 

1.6.2.3 Refolding of mutant p53 to wild-type conformation 

Each of the following agents aims to restore transcriptional activity to mutant p53 

by causing it to fold in a wild-type confirmation (table 1-5). This is an attractive 

approach, since mutant p53 expression is specific to the cancer cells, and the 

protein is expressed at high levels in tumours. However, this is technically 
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extremely challenging and to date only a few tumour derived p53 point mutants 

have shown themselves to be amenable to this approach. 

Table 1-5: Compounds targeting p53 mutants. 
Molecule Target Testing stage 
APR-245 (PRIMA-1)443 R273H, R175H Phase 1 
STIMA-1494 R273H, R175H Preclinical 
MIRA-1495 R273H, R175H Preclinical 
PhiKan083496 Y220C Preclinical 
Thiosemicarbazones497 R175H Preclinical 
CP-31398498 R273H, R249S Preclinical 
SCH529074499 R175H, S241F, R248W, 

R249S, R273H 
Preclinical 

Adapted from Lehmann et al, 2012443 

 
p53 Reactivation and Induction of Massive Apoptosis (PRIMA) is a low molecular 

weight compound that can restore transcriptional activity to mutant p53 cells 

resulting in apoptosis500.  It is thought to be converted to intermediate compounds 

that covalently modify mutant p53’s DNA binding domain resulting in apoptosis501.  

A derivative of the original PRIMA compound (APR-246 (PRIMA-1MET)) has now 

been evaluated in a phase I clinical study.  APR-246 (PRIMA-1MET) can bind 

mutant p53 (R273H, R175H) and restore wild-type transcriptional properties to the 

protein.  APR-246 can be safely given to humans at doses that induce p53-

dependent transcriptional activity (cell cycle arrest, apoptosis, transcription of 

Noxa, PUMA and Bax)416, 468.  We await results of phase II evaluation of anti-

cancer activity. 

STIMA-1 (SH group Targeting and Induction of Massive Apoptosis) is a low 

molecular weight compound structurally similar the CP-31398 (described below) 

and can stimulate mutant p53 DNA binding (R273H, R175H).  This leads to an 

induction of p53 targets and apoptosis in mutant p53 expressing cancer cells494.   

Mutant p53-dependent Induction of Rapid Apoptosis (MIRA-1) is a malemide-

derived molecule, which like PRIMA-1 can allow mutant p53 to bind DNA and 

regain wild-type-like transcriptional activity495.  It has been shown to cause 

shrinkage of mutant p53 tumour xenografts.  The scaffold of this compound is 

being used to design compounds with more drug-like properties. 
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PhiKan083, a carbazole derivative, was designed to bind to unfolded p53 mutant 

Y220C using in silico analysis of the crystal structure of Y220C496.   Study of the 

crystal structure of the compound bound to Y220C demonstrates key interaction 

points and informs lead optimisation of a refolding compound. 

From the National Cancer Institute’s anticancer drug screen data the 

thiosemicarbazone compounds were studied further because they arrested 

mutant p53 cells (R175H).   They were then found to refold p53 R175H into a wild-

type conformation and cause p53-dependent cell death in p53 R172H knock in 

mice497. 

Acridine derivative (CP-31398) was originally reported to activate wild-type p53 

and also allow mutant p53 to maintain an active conformation, enabling it to be 

transcriptionally activated502 by a mechanism that does not disrupt MDM2-p53 

binding or result in phosphorylation of the N-terminal of p53503.  In cellular assays, 

this compound inhibits p53 ubiquitination, stabilises p53 and activates p53 

transcriptional targets inducing cell death.  In vivo acridine derivatives induced 

transcriptional activity in tumour xenografts. It is not clear from subsequent 

mechanistic work how CP-31398 rescues mutant p53 (R273H, R249S). 

SCH529074 binds to the DNA binding domain of mutant p53 and restores wild-

type function of several mutants (R175H, S241F, R248W, R249S, R273H)499.  

Interestingly binding is displaced by a sequence derived from p53 response 

element and the compound is also capable of inhibiting ubiquitination of wild-type 

p53. 

In addition to the above-mentioned compounds some p53-derived C-terminal 

peptides have also been reported504, 505. A peptide corresponding to amino acids 

361-382 of p53 restored the ability of mutant p53 tumour cells to undergo cell cycle 

arrest and apoptosis.  This peptide could bind the core domain and displace the 

inhibitory C-terminal domain.  A second C-terminal peptide has been described.  It 

can induce p53-dependent Fas mediated cell death in cancer cell lines with mutant 

p53 or overexpressed wild-type p53506. 
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Another strategy to treat mutant p53 expressing tumours is to stimulate 

degradation of mutant p53.  Mutant p53 is known to complex with heat shock 

protein 90 (HSP90).  This inhibits the ability of MDM2 and CHIP to degrade mutant 

p53.  Treatment of mutant p53 expressing cells with a histone deacetylases 

inhibitor led to inhibition of HSP90 and MDM2 and CHIP mediated mutant p53 

degradation507, 508.  After this treatment tumours would remain null for p53 

therefore while tumours may be less invasive tumour regression may not occur.  

These agents may be useful in early disease as anti-metastatic agents. 

1.6.2.4 Targeting mutant p53 gain of function mechanisms 

Although it has been known for a considerable time that the presence of mutant 

p53 results in more aggressive cancer phenotype, the mechanisms underlying this 

phenomenon are only now beginning to be understood (as mentioned earlier).  

This improved understanding opens new paths for treatment tumours harbouring 

p53 mutations.   

For example in mutant p53 expressing cells where there is increased recycling of 

the Epidermal Growth Factor Receptor (EGFR) receptor, treatment with cetuximab 

may be effective385.  For tumours where cholesterol synthesis pathways are 

engaged, statins may prove effective therapeutics389 and where mutant p53 is 

inhibiting p53 family proteins inhibitors of p53-p73 or p53-p63 interaction may be 

useful. RETRA (Reactivation of Transcriptional Reporter Activity) activates a set of 

p73-dependent genes in mutant p53 cells by preventing interaction with p73509. 

1.6.2.5 MDM2 inhibitors for chemoprotection 

An alternative approach to the management of p53 deficient tumours is to use 

MDM2 inhibition therapy for chemoprotection.   

In contrast with p53 inhibition therapy, that may be suitable to protect normal wild-

type cells while treating a wild-type tumour, another hypothesis is that MDM2 

inhibitors could be used in combination with cytotoxic therapy to more effectively 

treat tumours expressing mutant p53.  This would allow normal tissues expressing 

wild-type p53 to be held in G1 arrest and therefore be protected from the toxicity 
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caused by subsequent delivery of cytotoxic therapy (Figure 1-23). Protecting 

normal cells would allow for a more aggressive treatment of the tumour, since 

collateral chemotoxicity would be limited.   

 

 

 

 Figure 1-23: Cyclotherapy. 
Adapted from Cheok et al, Nature Reviews Clinical Oncology 20111. 

 

This cyclotherapy principle is aimed at exploiting differences between the cell 

cycle controls that regulate normal cells (where normal checkpoints are in place) 

and those that regulate cancer cells (where checkpoint function is frequently lost).  

The strategy has been studied in cell lines using kinase inhibitors as a protective 

pre-treatment510-512 and more recently using MDM2 inhibitors as the protective pre-

treatment513-517. 

In mouse models and cell line studies, stabilisation of p53 through MDM2 inhibition 

demonstrates some specificity for activation of cell death pathways in tumour 

tissue425.  When p53 is stabilised in most normal issues it results in cell cycle 

arrest, which is thought to allow repair of DNA before re-entry into the cell cycle.  

In contrast stabilisation of p53 in tumour cells is more likely to causes apoptosis or 

senescence. Therefore pre-treatment of cells with an MDM2 inhibitor should not 

lead to loss of normal wild-type p53 expressing cells. 

Tumours expressing mutant p53 have a deficient p53 pathway and therefore in 

response to traditional cytotoxic agents G1 arrest and apoptosis are not activated. 

This loss of G1 arrest leaves the G2/M-phase as the major checkpoint functional in 

cells with mutant p53. As such, targeting this phase provides a novel opportunity 

to specifically target mutant p53 expressing cells with anti-metabolic and anti-

drug targeting 
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mitotic drugs. Therefore p53 stabilising agents may be utilised to arrest normal 

cells (with wild-type p53) in the G1-phase of the cell cycle protecting them from the 

effects of subsequent administration of cell cycle specific cytotoxic agents.  

Ultimately this provides an opportunity to target the most aggressive types of 

cancer in a more specific way, which allows some sparing of toxicity to normal 

tissue. 

1.6.3 Biomarkers 

Biomarkers are “characteristics that are objectively measured and evaluated as 

indicators of normal biological or pathogenic processes or of pharmacological 

responses to therapeutic intervention”518. 

They can be classified into three broad groups; 

Prognostic biomarkers can be used to predict the natural history of disease.  In 

clinical practice this is useful for giving patients realistic expectations of survival. 

Prognostic biomarkers also aid clinicians in making treatment decisions of how 

aggressively to treat and sometimes who to treat.  For example those with a 

poorer prognosis post cancer resection may be more likely to relapse and 

therefore may benefit more from postoperative adjuvant systemic treatment.  

Predictive biomarkers assess the probability of response to treatment so tell us 

whom to treat with certain drugs. 

Pharmacodynamic biomarkers are markers that determine whether a drug 

modulates its target pathway in the predicted way.  These are proof of mechanism 

biomarkers for a particular dose and schedule.   

Traditionally after pre-clinical evaluation, drugs proceed to phase I clinical 

evaluation which is the first in human study, aimed at establishing the maximum 

tolerated dose (MTD) of the investigational agent.  In general the MTD of drug is 

defined as the dose of a drug, which causes drug discontinuation due to toxicity in 

1/3 of patients.  In the case of cancer drugs these studies are carried out in a 
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population of cancer patients who have progressed through all proven standards 

of care.   

Once MTD is established drugs are then evaluated in phase II clinical studies 

where the primary aim is to establish if any therapeutic activity is seen with the 

investigational agent.  Traditionally the primary outcome of this type of study, in 

patients with solid tumours, would be radiological response rate as assessed by 

Response Evaluation Criteria in Solid Tumours (RECIST)519.  Response rates 

would then be compared to those historically recorded for the standard of care for 

a particular disease (although there is now a trend to perform randomised phase II 

studies).  This remains the most commonly used measure of antitumour activity 

but this cannot be sole evidence in support for regulatory approval.  Phase II 

studies are proof of concept studies where intermediate endpoint biomarkers of 

clinical benefit are evaluated.  

Once a drug has shown some evidence of anti-cancer activity it is then assessed 

in phase III where it is compared in terms of progression free, overall survival and 

quality of life to standard of care.  Phase III studies are usually large, costly studies 

required for regulatory drug approval. 

This system of drug evaluation is now recognised as highly flawed.  One 

fundamental problem is that it allows drugs to proceed from phase I to phase III 

evaluation without any measure of whether the drug actually hits its biological 

target at a dose below the dose that is tolerable to humans. MTD is a less relevant 

endpoint for drugs optimised to modulate specific molecular targets.  Omission of 

pharmacodynamic evaluation in the initial phase of drug development is both 

costly and unethical, since it exposes large numbers of patients to a drug that may 

not work.  In addition some targeted agents are not designed to cause shrinkage 

of a tumour and can have cytostatic effects or induce necrosis.  Both of these 

outcomes are not easy to evaluate by RECIST criteria and therefore other 

biomarkers of efficacy, for example functional imaging520, are required.  

The frequency of response assessment is of critical importance in determining 

progression free survival.  This is a particular issue when radiological assessment 

is being used since due to the risks of accumulating significant exposure to 
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ionising radiation frequent radiological assessment is not justified.  It is however 

more feasible and cost effective to perform biochemical measures of response at a 

more frequent interval.  Some biochemical measures of response are in clinical 

use (Ca125 in ovarian cancer, CEA in colorectal cancer, AFP in hepatocellular 

carcinoma, βHCG in germ cell tumours) however these are infrequently relied 

upon (with the exception of germ cell tumours) in the presence of radiologically 

measurable disease since these are organ specific rather than tumour specific and 

so can be misleading in the presence of benign disease. 

For a multitude of reasons, including the above mentioned, the process of clinical 

evaluation of cancer drugs is being modernised.  In an aim to prevent the futile 

development of drugs that do not hit their particular therapeutic target and to 

maximise the impact of the vastly improved understanding of the molecular basis 

of cancer, biomarkers are being developed and adopted in early phase clinical 

evaluation. 

To date some predictive biomarkers have been identified that are clinically useful 

(table 1-6).   

Table 1-6: Predictive biomarkers currently useful in clinical practice. 
Primary site Biomarker Drug 
Breast cancer HER2 amplification Response to trastuzumab 

ER expression521 Response to tamoxifen 
Lung cancer EGFR kinase domain 

mutation522 
Response to erlotinib or gefitinib 

KRAS mutation523 Resistance to erlotinib or gefitinib 
Colon cancer KRAS mutation524 Resistance to cetuximab 
Acute promyelocytic leukaemia PML-RARA translocation Response to all-trans retinoic 

acid 
Chronic myelocytic leukaemia BCR-ABL fusion Response to imatinib 
Gastro Intestinal Stromal 
Tumours 

C-kit mutation525 Response to imatinib 

Melanoma BRAF mutation35, 36 Response to vemurafenib or 
dabrafenib 

 
In most of these cases the prevalence of a particular abnormality is high and 

therefore the drugs efficacy signal was not lost in studies of patients unselected for 

the predictive molecular abnormality. 

Many molecular abnormalities, which may predict efficacy of anti-cancer drugs, 

are not of such high prevalence and therefore incorporation of development of 
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predictive biomarkers is needed at an earlier stage in the drug development 

process. 

While tumour diagnostic biopsy specimens or resection specimens are sufficient 

for study of prognostic biomarkers, predictive and pharmacodynamic biomarkers 

require multiple tumour biopsies.  Analysis of tumour biology in a primary tumour 

may not reflect biology when metastatic disease has developed therefore it could 

be argued that patients need re-biopsy at each point of progression of disease.  

Furthermore high levels of intratumoural heterogeneity526 support attempts at 

multiple biopsies at each time point to attain a specimen as representative of 

active disease as possible.  For pharmacodynamic biomarkers tumour biopsies 

prior to the experimental treatment and then at different time points through the 

dosing schedule are required.  

In reality this is fairly impractical, especially in early phase clinical studies where 

patients have already been heavily pre-treated and have resistant disease.  For 

some patients the site of their disease is simply too difficult to access even with 

image guided biopsy techniques.  In current UK practice many clinical studies are 

now requesting access to archival tissues, with all its limitations and in addition an 

optional re-biopsy is requested (meaning that re-biopsy is not a required entry 

criteria). Uptake of re-biopsy is generally poor for multiple reasons, including 

inability of consenting clinicians to justify the need for the biopsy to patients, 

patient’s preference and difficulty in organising biopsy due to poor infrastructure 

and lack of resource to support the process.  

In an attempt to address some of these problems the Stratified Medicine 

Programme has been initiated in the UK. This is a collaboration between 

pharmaceutical industry, UK government Technology Strategy Board and Cancer 

Research UK.  The aim of the project is to establish a national service of 

standardised, high quality, cost-effective genetic testing of tumours for cancer 

patients.  In addition this will have the added benefit of building a National 

database of genetic information from cancer patients, which will be useful for 

future research. In France there is a similar project underway by the national 

cancer institute, INCa (Institut National Du Cancer).  Their project is focusing on 

lung cancer, colorectal cancer and melanoma and like the UK Stratified Medicine 



Chapter 1: Introduction   

 80 

Programme the aim is to develop standardised, cost-effective testing for specific 

mutational abnormalities.  The need for standardisation of molecular testing has 

been highlighted in the development of trastuzumab where significant problems 

with inconsistent sensitivity and specificity of HER2 testing has significantly 

impacted on patient care527. In contrast, in the USA many centres have local 

programmes in place but there is no standardised approach.   In some US centres 

the move towards personalised medicine even stretches to whole exome 

sequencing in some rare cases528. In the UK, where the National Health Service 

requires convincing evidence of patient benefit and cost-effectiveness, more in-

depth genetic testing in unlikely to be adopted as routine practice soon however as 

evidence of the benefit builds and the cost of sequencing reduces genetic testing 

will make clinical impact. 

One other approach to the re-biopsy problem is to move pharmacodynamics 

studies forward to the neoadjuvant, pre-surgical, setting.  This would allow 

analysis of molecular abnormalities in the diagnostic specimen then after pre-

operative administration of the investigational agent the resection specimen could 

be analysed to confirm proof of mechanism.  

An alternative approach is to invest in development of non-invasive strategies for 

molecular profiling. Some groups have been investigating circulating tumours cells 

(CTCs) and circulating DNA as potential non-invasive strategies. 

CTCs can be isolated from blood using antibodies against cell-surface proteins 

restricted to epithelial cells500.  Though only small numbers of CTCs are isolated 

from patients with metastatic cancer the CTC number has been shown to be 

prognostic501,529.  Several studies to assess the impact of systemic treatment on 

CTC number are on going.  Furthermore, in prostate cancer CTCs it has been 

shown that tumour specific genetic abnormalities including androgen receptor 

amplification, IGF-1R (insulin-like growth factor receptor) expression and ERG (Ets 

Related Genes) expression can be independently detected in the CTCs530,531-533.   

Circulating DNA has also been explored as a potential non-invasive route to 

molecular profiling.  It was shown that cancer patients have a higher detectable 

level of circulating DNA which appears to be modulated with anti-cancer 
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treatment534 and have prognostic value535.  Additionally mutational analysis of 

circulating DNA is feasible536,534, 535.  The detection of oncogenic mutations in the 

circulating DNA and its association with survival together suggest that the 

circulating DNA is tumour derived.  

Ideally tumour tissue, rather than germ-line DNA from normal tissue, is required for 

molecular profiling. However, normal tissue samples are much more accessible 

and may be used as a surrogate for events in tumour tissues.  This, although not 

ideal, is a reasonable approach since from a plethora of experience with cytotoxic 

agents it is clear that those normal tissues with a high proliferative index (hair 

follicles and blood cells) are sensitive to drug effects.  

Normal tissues used in development of biomarkers include plucked hair follicles537, 

538, peripheral blood mononuclear cells (PBMCs), serum/plasma539 and  tumour 

specific autoantibodies540.   

Overall a biomarker assay needs to objectively measure a particular pathway of 

interest with a reasonable specificity and sensitivity.   The technique needs to be 

reproducible so that the biomarker can be used for multi-site clinical studies and 

analytically validated.  We are now beginning to see some phase I studies with 

biomarker assessment incorporated into their primary outcome, although so far 

these are still the vast minority probably due to the upfront cost of initial biomarker 

development541. 

1.6.3.1 p53 as a biomarker 

p53 itself has been shown to have some value as both a prognostic and predictive 

biomarker.   

The presence of a TP53 mutation detected by sequencing has been shown to 

predict poor outcome (ie be prognostic) in some sub-types of breast cancer, colon 

cancer, head and neck cancers and leukaemia373.   

As a predictive biomarker TP53 mutation status has also been shown to predict 

resistance to adjuvant tamoxifen and radiotherapy in the treatment of breast 
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cancer542 and predict response to anthracycline based chemotherapy as 

discussed earlier392, 393.  

Hundreds of additional studies have investigated the role of TP53 mutation as a 

prognostic and predictive biomarker in many different types of cancer but results 

have been inconsistent due to the assumption that accumulated p53 detected by 

immunohistochemistry is equivalent to TP53 mutation.  With the current improved 

access to sequencing technology these inconsistencies should be partly 

addressed. 

1.6.3.2 Biomarkers of MDM2 inhibition 

With the emergence of inhibitors of MDM2 and their progress into clinical 

evaluation, the need for biomarkers predictive of MDM2 inhibition has been 

recognised.   

So far some effort has been made to establish predictive and pharmacodynamic 

biomarkers of MDM2 inhibition. 

The main candidates as predictive biomarkers for MDM2 inhibition would be 

expected to be wild-type p53 status and overexpression of MDM2.   In addition 

detection of induction of some of the numerous p53 targets (p21, MDM2, PUMA, 

Bax, MIC-1) following treatment may be useful.  In particular measurement of 

serum macrophage inhibitory complex-1 (MIC-1)543, 544 may prove useful since this 

is a secreted protein that has been shown to be highly induced after chemotherapy 

treatment.  Furthermore MIC-1 is easily measured by Enzyme-Linked 

Immunosorbent Assay (ELISA).   

To date there have been 2 biomarker studies of MDM2 inhibitor Nutlin 

(RG7112)427, 428 (the results of which were not reported at the outset of this work).    

A phase 1 dose escalation study in patients with wild-type p53 tumours was 

undertaken.  MTD was reached with the dose limiting toxicity being 

thrombocytopenia.  The study had an expansion cohort (at MTD) of patients with 

sarcoma who had pre and post treatment tumour biopsies for assessment of 
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biomarkers.  Analysis included TP53 mutation testing, MDM2 amplification, MDM2 

rtPCR, and immunohistochemistry (IHC) for p53, p21, Ki67, TUNEL (Terminal 

deoxynucleotidyl transferase dUTP Nick End Labelling) staining, serum MIC-1 

measurement and PET scanning.  One radiological partial response was seen and 

one PET response.  Evidence of p53 activation was seen in terms of increased 

p53 and p21 on IHC, increased MDM2 on rtPCR, increased serum MIC-1, reduced 

Ki67 on IHC and increased TUNEL activity.  Activation of the p53 pathway did not 

correlate with MDM2 gene amplification. 

The second study was in liposarcoma patients with MDM2-amplified tumours who 

were eligible for tumour resection.  20 patients were enrolled in the study and had 

pre treatment and post treatment biopsy/resection.  Analysis of the p53 pathway 

was as for the prior phase I study.  Two patients in this study had a TP53 

mutation.  Again p53 activation was demonstrated by increased p53 and p21 on 

IHC and increased MDM2 on rtPCR as well as reduced Ki-67.  Drug exposure and 

haematological toxicity correlated with MIC-1 level.  One patient had a partial 

response and 14 had stable disease.  This study was innovative in terms of 

evaluating pharmacodynamic biomarkers in the neo-adjuvant setting.   

These studies establish that Nutlin is tolerable at doses which activate the p53 

pathway. However, a robust predictive biomarker for response to MDM2 inhibition 

has not yet been identified.  
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1.7 Aims of thesis 

The aim of this thesis was to explore different ways of manipulating the p53 

pathway for cancer treatment.  This has been addressed in four main sections: 

1. Characterisation of a new class of inhibitors of MDM2’s E3 ligase activity 

(MPD compounds) (chapter 3) 

2. Characterisation of an MDM2 inhibitory compound HLI373 (chapter 4) 

3. Cellular evaluation of act D and 5-Fluorouracil as chemoprotective agents 

for the treatment of mutant p53 expressing tumours (chapter 5) 

4. Development of pharmacodynamics biomarkers of MDM2 inhibition and 

p53 activation (chapter 6) 



 

 

 
 
 
 
 
 
 
 
2 Materials, patients and methods 
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2.1 Materials 

2.1.1 General reagents 

The sources of all chemicals and reagents mentioned in this work are listed in 

table 2-1. 

Table 2-1: Chemicals and reagents. 

Reagent Source 
1% Acid Alcohol Beatson Histology Services 
5-Fluorouracil Beatson Cancer Centre 
Acetone Thermo Fisher Scientific 
Acetic acid Thermo Fisher Scientific 
Acrylamide 29:1 (40% w/v) National diagnostics 
Actinomycin D Beatson Cancer Centre 
Agar Fluka 
Agarose Sigma-Aldrich 
Ampicillin Sigma-Aldrich 
APS (Ammonium persulfate) Sigma-Aldrich 
ATP (adenosine-5’-triphosphate) Roche 
Bromophenol blue Sigma-Aldrich 
BSA (bovine serum albumin) Sigma-Aldrich 
Chloroform Thermo Fisher Scientific 
Cisplatin Beatson Cancer Centre 
DAPI (4’,6-diamidino-2-phenylindole) Sigma-Aldrich 
DMEM (Dulbecco's modified Eagle medium) Life Technologies 
DMSO (dimethyl sulfoxide) Sigma-Aldrich 
DNase Roche 
Doxycycline Sigma-Aldrich 
DPX Mountant CellPath 
DTT (dithiothreitol) Sigma-Aldrich 
ECL (enhanced chemiluminescence) reagent Perbio 
EDTA Sigma-Aldrich 
Eosin Beatson Histology Services 
Ethanol Thermo Fisher Scientific 
Fetal Calf Serum GE Healthcare 
Gene Juice Novagen, Merck 
Giemsa Sigma-Aldrich 
Glutamine Life technologies 
Glycerol Sigma-Aldrich 
Haem Z CellPath 
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HBS buffer Biacore 
Histology wax Leica (code 3808605E) 
HLI373 A Weissman 
IPEGAL CA-630 (NP-40 equivalent) Sigma-Aldrich 
Kanamycin Sigma-Aldrich 
KCl Thermo Fisher Scientific 
KH2PO4 Thermo Fisher Scientific 
Methanol Thermo Fisher Scientific 
MG132 Sigma-Aldrich 
MgCl2 Sigma-Aldrich 
MTT assay kit Roche No. 11 465 007 001 
Na2HPO4 Thermo Fisher Scientific 
NaCl Thermo Fisher Scientific 
Nitrocellulose membranes VWR 
NP-40 (nonylphenoxypolyethoxylethanol) Roche 
Nutlin-3A Cayman chemicals 
Opti-MEM Life technologies 
Orange G Sigma-Aldrich 
Penicillin-Streptomycin Life technologies 
Formaldehyde TAAB labs 
Propodium Iodide Sigma-Aldrich 
Protease inhibitor cocktail Roche 
Puromycin Sigma-Aldrich 
RNase Sigma-Aldrich 
RPMI-1640 medium Sigma-Aldrich 
SDS (sodium dodecyl sulphate) Thermo Fisher Scientific 
STWS (Scott’s tap water substitute) Beatson Histology Services 
TEMED (tetramethylethylenediamine) Sigma-Aldrich 
Tris-HCL Sigma-Aldrich 
TritonX-100 Sigma-Aldrich 
Trypsin 2.5% Life technologies 
Tween-20 Sigma-Aldrich 
Vectashield Hard Set mounting media Vector Laboratories 
β-Mercaptoethanol Sigma-Aldrich 
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2.1.2 Solutions and buffers 

Buffers and solutions used in this study are listed in table 2-2. 

Table 2-2: Composition of buffers and solutions. 
Solution Composition 

Phosphate Buffered Saline (PBS) 

170mM NaCl 
3.3mM KCl 
1.8mM Na2HPO4 
10.6mM KH2PO4 
pH 7.4 

Tris-Buffered Saline (TBS) 
25mM Tris-HCl pH 7.4 
137mM NaCl 
5mM KCL 

TBS-T (TBS-Tween) TBS+0.1%Tween-20 

Lysogeny broth (LB) 

1% Bacto-tryptone 
86mM NaCl 
0.5% yeast extract 
1.5% agar 

Tris-EDTA (TE) 10mM Tris-HCl pH 8 
1mM EDTA 

2x SDS-PAGE (polyacrylamide gel 
electrophoresis) sample buffer 

125mM Tris pH 6.8 
4% SDS 
10% β-mercaptoethanol 
15% glycerol 
0.01% bromophenol blue 

3x SDS Sample Buffer 
 

188mM Tris pH 6.8 
9% SDS 
15% β-mercaptoethanol 
30% Glycerol 
0.1% Orange G 

SDS-PAGE running buffer 
0.1% SDS 
192mM glycine 
25mM Tris-HCl pH 8.3 

Electroblotting buffer 
192mM glycine 
25mM Tris 
20% methanol 

NP-40 buffer 

20mM Tris-HCL pH 8 
120mM NaCl 
1mM EDTA 
0.5% NP-40 

Lysis buffer (in vitro ubiquitination) 

50mM Tris-HCL pH 7.5 
100mM NaCl 
1% Triton 
0.8 mg/ml DTT 
supplemented with PMSF 

Reaction buffer (in vitro ubiquitination) 
50mM Tris-HCl pH 8 
2mM DTT 
5mM MgCl2 
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2mM ATP 
Blocking solution (Western blotting) 5% milk powder in TBS-T 
Blocking solution (immunostaining) 1% BSA in PBS 
Fixing solution (cells) 4% PFA in PBS 

Fixing solution (hair follicles) 50% methanol 
50% acetone 

Resolving gel 

8-10% acrylamide 
375mM Tris-pH 8.8 
0.1% SDS 
0.1% APS 
50mM TEMED 

Stripping buffer  
0.2M glycine 
1% SDS 
pH 2.5 

HUNT Buffer  
 

20 mM Tris pH 8 
120 mM NaCl 
1 mM EDTA 
0.5% IGEPAL 

PBMC freezing medium 

RPMI-1640 medium 
10% FBS 
10% DMSO 
protease inhibitor 

 
2.2 Patients 

All patients and volunteers involved in this study were consented and recruited to 

the MI45 sample collection study at The Beatson West of Scotland Cancer Centre.  

The MI45 study was first commenced in 2005 and approved by the Research 

Ethics Committee (REC ref: 04/S0709/61).  The study involved collection of 

plasma and serum from patients with advanced gastrointestinal malignancy who 

were due to receive 5-fluorouracil based chemotherapy and collection of samples 

from a small group of healthy volunteers.  An amendment to allow collection of hair 

follicles and peripheral blood mononuclear cells was made in 2009. 

2.3 Methods 

2.3.1 Cells 

Cell lines used in the work are listed in table 2-3.  All cell lines used are of human 

origin. The tissue type of origin, p53 status and the culturing medium are listed. 

HCT116 and RKO cells were gifted from Bert Vogelstein.   
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U2OS PG13 luciferase cells were made in the laboratory by stably transfecting the 

PG13 luciferase construct.   

U2OS-GFP-MDM2 TetOn cells were made by transfecting a U2OS TetOn cell line 

with a pTRE2 GFP-MDM2 plasmid and pBabe Eco Puro plasmid. Cells were then 

selected for 2 weeks using puromycin.  Colonies resistant to puromycin were 

picked and cultured in DMEM supplemented with 10% fetal calf serum, 1% 

glutamine, 50U/ml penicillin G and 50µg/ml streptomycin sulfate at 37°C and 5% 

CO2.  

Table 2-3: Cell lines. 

Cells Tissue type p53 status Medium* 

A2780/8 
epithelial ovarian 
cancer wild-type p53 DMEM 

A431 epidermoid cancer R273H mutation DMEM 

H1299 
non-small cell lung 
adenocarcinoma 

homozygous 
deletion of p53 DMEM 

HCT116 
p53-/- 

colorectal 
adenocarcinoma exon 2 deletion DMEM 

HCT116 
p53+/+ 

colorectal 
adenocarcinoma wild-type p53 DMEM 

Hek293T embryonic kidney cells Inactivated by E6 DMEM/F12 

Hela 
cervical  
adenocarcinoma 

wild-type p53, 
HPV-E6/E7 MEM 

Hep3B 
hepatocellular 
carcinoma p53 null MEM 

HT29 
colorectal 
adenocarcinoma R273H mutation 

McCoys 
medium 

MCF-10A mammary gland wild-type p53 DMEM/F12 
MCF-7 breast cancer cells wild-type p53 DMEM 
MDA-
MB231 breast cancer cells R280K mutation DMEM 
RKO 
p53-/- 

colorectal 
adenocarcinoma p53 null DMEM 

RKO 
p53+/+ 

colorectal 
adenocarcinoma wild-type p53 DMEM 

RPE 
retinal pigment 
epithelial cells wild-type p53 

DMEM/F12 
HAM** 

U2OS Osteosarcoma wild-type p53 DMEM 
U2OS 
PG13 
luciferase Osteosarcoma wild-type p53 DMEM 
U2OS 
GFP-
MDM2 Osteosarcoma wild-type p53 DMEM 
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TetOn 
* supplemented with 10% fetal calf serum, 1% glutamine and 50 U/ml 
penicillin G and 50µg/ml streptomycin sulfate; cultured at 37°C 5%CO2 
** medium also supplemented with 1.6% sodium bicarbonate 
DMEM=Dulbecco’s Modifies Eagle Medium, MEM=Minimum Essential 
Medium 

 
2.3.2 DNA preparation 

DNA preparations were carried out according to standard methods545. E. Coli 

DH5α competent cells (Molecular Biology services, Beatson Institute, Glasgow, 

UK) were thawed on ice. The 0.5µg of DNA plasmid was added to 50µl bacteria, 

mixed and incubated on ice for 20min. After a heat shock of 45 seconds at 42°C, 

the cells were incubated in 0.5 ml LB for 1 hour at 37°C with shaking at 450rpm. 

Cells were spread on agar plates with ampicillin or kanamycin and grown upside 

down at 37°C overnight. The next day the colonies were inoculated in LB with 

ampicillin or kanamycin and grown overnight at 37°C whilst shaking. Small scale 

plasmid DNA preparations were performed by Beatson Molecular Technology 

Services with the QIAgen BioRobot 9600 according to the manufacturer’s 

instructions. 

2.3.3 Plasmids 

The GFP-MDM2 plasmid used to make the U2OS GFP-MDM2 TetOn cell line 

described above was cloned from pEGFP-C1 MDM2 (wild-type MDM2 cloned into 

Clontec backbone) into the pTRE2 plasmid (Clontec). 

The following plasmids were used in this study: 

Table 2-4: Plasmids. 
Plasmid Source 
pTRE2 GFP-MDM2 Cloned by A. Hock 
pBabe Eco Puro Addgene 
pEGFP C1 MDMX Cloned by R Ludwig 
pcDNA3 empty Life Technologies 
pcDNA3 p53 (72R) published546 
pCHDM1A MDM2 published141 
pCHDM1A MDM2 C464A published547 
pMT123 HA-Ubiquitin from R Hay478 
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PG13 Luciferase published548 
TK Renilla published385 
MDMX Luciferase published549 

 
2.3.4 Transfections 

Cells were transfected with GeneJuice (MERCK Biosciences) according to the 

manufacturer’s instructions. 10cm plates were plated with 15 x 105 cells and cells 

were left to attach in 10ml medium overnight at 37°C. GeneJuice (at 3:1 ratio with 

µgDNA) was added to 500µl Optimem drop-wise.  Sample was vortexed briefly 

and incubated for 5mins. 5-10µg DNA was added and mixed by pipetting.  The 

mixture was incubated at room temperature for 5-15mins.  Mixture was added to 

plates drop-wise.  Cells were incubated for 24 hours.  Cell number, medium, 

GeneJuice and Optimem volumes and amount of DNA were scaled depending on 

plate size. 

2.3.5 Luciferase assays 

Cells were seeded to 70% confluency in 24 well plates (Fig 4-2, Fig 5-3) or 6 well 

plates (Fig 4-26).   

Fig 4-2 & Fig 5-3: U2OS PG13 luciferase cells were treated with indicated drugs 

for 16 hours.  Cells were then lysed in 100µl Promega lysis buffer for 30 minutes at 

4°C. 20µl of lysate was transferred to multi-well plates, Luciferase substrate 

(Promega) added, and luminescence was measured with the Veritas Microplate 

luminometer (Turner Biosystems) using the Glomax Software. Data was plotted as 

fold change over no treatment condition. Luciferase activity in vehicle treated cells 

was set to 1.  Error bars represent the SEM for 3 independent experiments.  For 

Fig 5-3 error bars represent standard deviation. 

Fig 4-26: Cells were transfected using GeneJuice (0.5µg MDMX-luciferase and 

0.1µg TK Renilla Luciferase). 24 hours after transfection, cells were treated with 

indicated drugs for 16 hours then lysed in 500µl Promega lysis buffer for 30 

minutes at 4°C. 20µl of lysate was transferred to luminometer plates and both 

Renilla and Luciferase substrates were added (Promega Dual Luciferase Kit), 

readings were carried out at the Veritas Microplate luminometer (Turner 
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Biosystems) using the Glomax Software. To correct for cell number and 

transfection efficiency relative luciferase units were determined by dividing the 

Luciferase readings by the values obtained for Renilla luciferase. Data was plotted 

as fold change over no treatment condition. Luciferase activity in vehicle treated 

cells was set to 1. Mean values of at least three experiments are plotted with error 

bars showing the SEM. 

2.3.6 SDS-PAGE electrophoresis and Western blotting 

SDS-Polyacrylamide gel electrophoresis was performed according to standard 

methods550. Lysates in sample buffer were heated to 95ºC for 5 mins.  After a 

short spin, samples were loaded on appropriate SDS-polyacrylamide gels (8%, 

10% or 12% acrylamide content). Electrophoresis was performed in SDS-PAGE 

buffer at 45mA on Hoefer Mighty Small vertical units SE250 (Amersham). By 

Western blotting551, 552 protein was transferred to nitrocellulose membrane using 

the Hoefer TE22 Mini transfer tank (Amersham) at 200 mA for 1-2 hours. 

Membranes were blocked in 5% milk powder in TBS-T for one hour and incubated 

with primary antibodies over night at 4ºC. The following antibodies were used for 

blotting at the indicated dilutions:  

Table 2-5: Primary antibodies.  
Target Dilution Antibody name and supplier 
Actin 1:5000 C4 (Chemicon, Merck) 
CDK4 1:1000 C-22 sc-260 (Santa Cruz) 
Flag tag 1:1000 M2 (Sigma) 
GFP 1:1000 7.1/13.1 (Roche) 
HA-tag 1:2500 16B12 (Covance, Cambridge Bioscience) 
L11 1:1000 Made in laboratory 
MDM2 1:2000 Ab-1 (Calbiochem, Merck) 
MDM2 1:2000 Ab-2 (Calbiochem, Merck) 
MDMX 1:2000 A300-287A (Bethyl Laboratories) 
NEDD4 1:1000 2740 (Cell Signaling technology) 
p21 1:2000 SC-397 (Santa Cruz) 
p21 1:1000 2946 (Cell Signaling technology) 

p53 1:10000 
DO-1 (aa 20-25) (Beatson Molecular 
Services)553 

p53 pS15 1:1000 16G8 (Cell Signaling technology) 
p53 pS392 1:1000 9281 (Cell Signaling technology) 
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Ring1b 1:1000 sc-17265 (Santa Cruz) 
Ubiquitin 1:1000 clone 6C1 (Sigma) 
XIAP 1:1000 61073 (Becton Dickenson) 

 
Membranes were then washed three times in TBS-T and incubated for 1 hour with 

appropriate secondary antibodies either horseradish-peroxidase (HRP) conjugated 

or fluorescently labelled at 1:10 000 dilution (table 2-6). 

Proteins were visualised by Pierce ECL reagent, using Fuji X-Ray Film Super RX 

on an AGFA classic E.O.S film processor. Alternatively, fluorescent signal was 

detected using an Odyssey infrared scanner (LiCor Biosciences) and quantified 

with Odyssey software. 

Table 2-6: Secondary antibodies. 
Antibody Supplier 
Donkey anti rabbit HRP-linked Amersham, GE Healthcare 
Sheep anti mouse IgG HRP-linked Amersham, GE Healthcare 
IRDye800CW LiCor Biosciences 
IRDye6980LT LiCor Biosciences 

 
2.3.7 Immunoprecipitation 

(Figure 4-14) U2OS cells at 50% confluency in 10 cm plates were transfected with 

MDM2 (pCHDM1A) 1.5µg and p53 (pcDNA3) 1.5µg or empty vector (pcDNA3) 

1.5µg) using GeneJuice.  24 hours later, cells were treated with the indicated drug 

treatment.  Cells were scraped, washed in PBS and lysed in NP-40 buffer with 

proteasome inhibitor. The suspension underwent 3 freeze-thaw cycles.  After a 

5min centrifugation at maximum speed, a 5% aliquot of the supernatant was taken 

for total protein input. The remainder of the supernatant was taken for 

immunoprecipitation (IP). Supernatant was rotated at 4°C with 5µl DO-1 antibody 

and 30µl Protein G Dynabeads (Invitrogen) for 2 hours. Beads were then washed 

three times with NP-40 buffer and resuspended in 3x sample buffer. Beads were 

incubated in denaturing sample buffer at 95°C for 5min to release precipitated 

proteins. Input and IP samples were run on SDS-Page gel, transferred to 

membrane by Western blotting and immunoblotted for p53 and MDM2. 
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(Figure 4-16) & (Figure 5-22) U2OS cells were treated with the indicated drug 

treatment then scraped, washed and lysed as described above. For this 

experiment, immunoprecipitation was carried out with 5µl L11 antibody and 30µl 

Protein A sepharose beads for 4 hours rotating at 4°C. Beads were washed three 

times with NP-40 buffer and resuspended in 2x sample buffer. Input and IP 

samples were run on SDS-Page gel and immunoblotted for L11 and MDM2. 

2.3.8 In vivo ubiquitination of p53 

(Figure 3-6) 10 cm plates were plated to 50-70% confluence with H1299 cells. 24 

hours later cells were transfected with 2.4µg p53, 0.8µg MDM2 and 1µg HA-

ubiquitin with GeneJuice. Cells were washed 20 hours later and treated with the 

indicated drug treatment and MG132 (5µM).  Cells were lysed in 200µl 1% SDS in 

TBS. The lysate was boiled for 5mins, vortexed then boiled for a further 5mins.   

400 µl 1.5% Triton-X in TBS was added. Lysates were rotated overnight at 4°C 

with 5µl DO1 antibody and 30µl Protein G beads. Beads were washed 3 times with 

HUNT buffer (20mM Tris pH8, 120mM NaCl, 1mM EDTA, 0.5% NP-40) and 

resuspended in 3x sample buffer. Samples were boiled for 5 minutes at 95°C and 

supernatant loaded on gel for Western blot analysis. 

(Figure 4-11) H1299 cells were plated to 70% confluence in 10 cm plates. 24 

hours later cells were transfected with 2.4µg p53, 0.8µg MDM2 or 0.8µg MDM2 

C464A and 0.1µg GFP with GeneJuice. Cells were washed 20 hours later and 

treated with the indicated drug treatment and MG132 (5µM).  Cells were lysed in 

50µl NP-40 with complete protease inhibitor.  Protein concentration was 

determined using the Pierce BCA (bicinchoninic acid) Protein Assay Kit (Thermo 

Fischer scientific) as per manufacturers instructions and 30µg protein per sample 

were diluted in 3x sample buffer. Samples were boiled for 5 minutes at 95°C and 

supernatant loaded on gel for Western blot analysis. 

2.3.9 Immunofluorescence labelling 

2.3.9.1  Cells 

Cells (RPE, U2OS, HCT116) were plated to 60% confluence then treated with 

drug as indicated.  For experiments using the Operetta system (PerkinElmer) cells 
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were plated on Borosilicate glass plates (Figure 5-17 & Figure 5-18).  For other 

immunofluorescence experiments cells were plated on coverslips. 

Cells were washed with PBS and fixed in 4% paraformaldehyde (PFA) in PBS for 

10min at 4ºC.  After a further 3 washes cells were permeabilised with 0.02-0.4% 

Triton X-100 in PBS for 1-10min.  Cells were then washed 3 times with PBS and 

blocked with 1% BSA in PBS for 30min.   

Cells were then incubated with indicated primary antibodies in 1% BSA/PBS.  

Primary antibodies used for immunofluorescence labelling are listed in table 2-7.  

Cells on coverslips were incubated in 100µl of the antibody solution and cells in 

glass plates were incubated in 200µl.  After overnight incubation at 4ºC, cells were 

wahed 3 times in PBS and were then incubated with secondary antibody solution 

(Alexa Fluor 488 (green), Alexa Fluor 594 (red) antibodies in 1% BSA/PBS) and 

DAPI (1:2000) for 30min at room temperature.  After a further 3 PBS washes cells 

on coverslips were mounted on slides with Vectashield hard set mounting media 

and confocal images were taken at an Olympus FV100 microscope.  For cells not 

on coverslips, after washing cells were left in PBS and fluorescence was 

monitored by the high-content screening Operetta system (PerkinElmer). At least 

10,000 cells were evaluated. 

Table 2-7: Antibodies used in immunofluorescence. 
Target Dilution Name and supplier 

p53 1:250 
DO-1 (aa 20-25) (Beatson Molecular 
Services)553 

p53 1:100 
1801 (aa 46-55) (Beatson Molecular 
Services)29 

Ki67 1:500 RM-9106-s, (Lab Vision) 
γH2AX ser139 1:200 HCS 201685, (Millipore) 
p21 1:100 554262, (BD Pharmingen) 
pHH3 1:100 sc-8656-R, (Santa Cruz) 
MDM2 1:200 Ab-1 (Calbiochem, Merck) 
MDM2 1:200 Ab-2 (Calbiochem, Merck) 
Rb 1:100 sc-50, (Santa Cruz) 
B23 (nucleophosmin) 1:100 c-19-R, sc-6013 (Santa cruz) 
Dilutions listed were used for cell and hair follicle staining. 
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2.3.9.2  Hair Follicles 

Plucked hair follicles, collected as part of the MI45 study previously described, 

were initially fixed in cold 4% PFA, 100% methanol or 50:50 methanol:acetone for 

10mins.  Following assay optimisation all subsequent hairs were fixed in 50:50 

methanol:acetone.  After fixation, hair follicles were stored in microcentrifuge tubes 

at -70ºC until processing.  Hairs were washed 3 times in PBS by rotating at 4ºC for 

5mins.  Hairs were then rotated in primary antibody solution (1% BSA) at 1:100-

1:500 dilutions overnight at 4ºC.  After further washes, hairs were incubated in 

secondary antibody (1:500) and DAPI (1:2000) in 1% BSA for 1 hour, rotating at 

4ºC.  Hairs were then mounted on coverslips with Vectashield hard set.  Cells 

were visualised on Olympus FV100 Confocal microscope.   Percentage positive 

nuclei was quantified on ImageJ. 

2.3.10 Flow cytometry 

2.3.10.1 Cell cycle profile 

For analysis of cell cycle profile after vehicle or drug treatment floating and 

adherent cells were harvested with trypsin-EDTA, cells were washed in PBS and 

fixed in ice cold methanol for at least 30mins at 4°C.  Cells were rehydrated with 

PBS and treated with 50µg/ml RNase for at least 15 mins.  DNA was stained with 

propidium iodide (PI) before flow cytometric analysis (FACScan, Becton 

Dickinson)554. DNA content was analysed in channel FL2 and the percentage of 

cells in each phase was determined by DNA content and displayed as fold 

changes versus vehicle treated cells. Experiments were performed in triplicate and 

means and SEM are plotted. 

2.3.10.2 Quantification of MDM2-GFP fluorescence 

U2OS GFP-MDM2 TetOn cells were plated in 10cm plates and induced with 

doxycycline.  After 48 hours cells were incubated with doxycycline plus DMSO, 

MPD compound (5µM) or MG132 (10µM) for 4 hours.  Attached cells and floating 

cells were collected by trypsin-EDTA.  Cells were fixed in 0.05% paraformaldehyde 

for 30 minutes and then rehydrated with PBS.  Cells were PI stained and treated 

with 50µg/ml RNase A or 2 hours.  GFP signal was measured (channel FL1) in 
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each condition by flow cytometric analysis (FACScan, Becton Dickinson). Sub G1 

cells were excluded.  Experiments were performed in triplicate and means and 

SEM are plotted. 

2.3.10.3 Peripheral Blood Mononuclear Cells 

Peripheral blood mononuclear cells, collected as part of the MI45 study previously 

described, were isolated from blood samples collected in CPT tubes (BD).  

Samples were mixed by inverting 8-10 times then centrifuged at 4000rpm for 

20mins at room temperature.  The majority of plasma was removed and 

resuspended in PBS. Cells were then spun at 2000rpm for 10mins at 20°C.  The 

supernatant was then discarded. PBMCs were stored in freezing medium (RPMI-

1640 medium supplemented with 10% FBS and 10% DMSO and protease 

inhibitor) at -70°C until processing.  PBMCs were spun at 2000rpn for 5mins and 

freezing medium was removed.  Cells were then resuspended in 500µl PBS and 

fixed in ice cold methanol for 10mins.  After a spin at 2000rpm for 5mins, methanol 

was removed and cells were resuspended in 500ml PBS.  Cells were incubated in 

1% FCS for 15mins.  After a further spin at 2000rpm for 5mins cells were 

resuspended in primary antibody or vehicle for 30mins at room temperature then 

overnight at 4°C.  Primary antibodies used are listed in table 2-8. Cells were 

washed in PBS then incubated in secondary antibody (Alexa Fluor 488 and Alexa 

Fluor 647) at 1:50 dilution for 30mins at room temperature and in the dark.  Cells 

were then washed in PBS and flow cytometry performed to quantify mean 

fluorescence in 2 channels (FL1, FL4).  The value for cells incubated with no 

primary antibody was subtracted from the mean value for each sample.  10 000 

cells in the gated population (lymphocytes) were counted for each sample. 

Table 2-8: Antibodies used in PBMC staining. 
Target Dilution Name and supplier 
p53 1:100 DO-1 (aa 20-25) (Beatson Molecular Services)28 
p21 1:50 SC-397 (Santa Cruz) 

 
2.3.11 Colony formation assays 

(Figure 5-13)  5000 RPE cells were plated on 10cm plates and incubated with the 

indicated dose of drug or vehicle for 24 hours.  Cells were then washed and drug 
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free medium was replaced.  Cells were maintained in drug free media for 9 days, 

with fresh media replaced every second day.  Cells were then washed, fixed in ice 

cold methanol and Giemsa stained for 5 minutes.  The stain was washed off with 

water and allowed to dry. Images were taken on Epson scanner and colonies were 

counted using ImageJ software. 

(Figure 5-20) HCT116 cells null for p53 plated on 15cm plates were treated with 

act D (4nM) or 5-FU (5µg/ml) for 24 hours.  Cells were washed, fixed with ice cold 

methanol and Giemsa stained for 5 minutes.  The stain was washed off with water 

and allowed to dry. Images were taken on Epson scanner and colonies were 

counted using ImageJ software. 

2.3.12 RNA extraction and qRT-PCR 

RNA was prepared using an extraction column (Qiagen) according to the 

manufacturer’s instructions.  cDNA was synthesized from two micrograms of RNA  

using a dedicated kit (DyNAmo SYBR Green two-step qRT–PCR kit (Finnzymes)) 

with    Oligo (d)T as mRNA specific primers.  For detection of pre-mRNA (Fig 4-17, 

4-18, 4-25, 4-32), RNA was subjected to DNase treatment followed by DNase 

inactivation (65°C for 20 mins) prior to reverse transcription and random hexamers 

were used instead of Oligo(d)T primers.  Primers for pre-mRNA detection were 

designed to span intron-exon junctions.  Quantitative PCR (qPCR) analysis was 

performed with 5µl of a 1:20 dilution of the cDNAs using DyNAmo SYBR Green 

two-step qRT–PCR kit (Finnzymes). 

Accumulation of fluorescent products was monitored by real-time PCR using a 

Chromo4reader (Bio-Rad) and was analysed with the Opticon Monitor 3 software. 

qPCR cycling parameters were 15 min at 95°C hot start; 40 cycles of 20 sec 

denaturing at 94°C, 30 sec annealing at 60°C, and 30 sec elongation at 72°C 

followed by 10 min final elongation at 72°C.  Examination of the melting curves 

verified that each primer pair used for the PCR amplified only one product. The 

relative quantification of gene expression was performed using the comparative 

ΔΔCt method, with normalization of the target gene to the control genes β2-

microglobulin and RPLP0 (ribosomal protein, large, P0). Results are presented 
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relative to target gene induction after treatment of cells with vehicle only.  Error 

bars represent the SEM of three independent experiments. 

The following primers were used:  

Table 2-9: qRT-PCR primers. 
Target Sequence 
RPLP0 fw gcaatgttgccagtgtctg 
RPLP0 re gccttgaccttttcagcaa 
B2M fw gtgctcgcgctactctctc 
B2M re gtcaacttcaatgtcggat 
MIC-1 fw gttgcactccgaagactcca 
MIC-1 re gagagatacgcaggtgcagg 
MDMX fw ctccgtgaaagacccaagccctct 
MDMX re tcagactctcgctctcgcacagg 
Pre-MDMX fw agactctcgctctcgcacagg 
Pre-MDMX re tgtccctggtctgtgaactcccaa 
Pri-miR-34a fw cctccaagccagctcagttg 
Pri-miR-34a re tgactttggtccaattcctgttg 
Pre-45S rRNA fw gtccgggttcctccctcgg 
Pre-45S rRNA re ctcctcccccaccaccacac 

 

2.3.13 Viability: Tetrazolium dye (MTT) colorimetric assay 

Cells (HCT116 and RPE) were plated in a 96 well plate (2000 per well).  Following 

an overnight incubation to allow the cells to attach, cells were treated with 

indicated drugs or vehicle.  Cells were subjected to chemo-protective treatment for 

24 hours, medium was then removed and cells were treated with the cytotoxic 

agent for 24 hours. After treatment cells were incubated with 10µl of MTT solution 

(Roche) for 3-4 hours at 37°C followed by an overnight incubation with 100µl of 

solvent to dissolve formazan crystals  The plate was then read on a microplate 

reader at 550-600nM. Only viable, metabolically active cells convert tetrazolium 

salt MTT to formazan crystals.  Percentage viable cells was calculated by dividing 

average absorbance values of 4-8 replicates for vehicle-cisplatin/paclitaxel, 5-FU-

cisplatin/paclitaxel or Nutlin-cisplatin/paclitaxel by values for vehicle or 

corresponding protective agent then multiplying by 100.  Values plotted are 
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therefore relative to the vehicle or protective agent treatment.  Mean values of 

three independent experiments are shown and error bars represent SEM.  

2.3.14 MIC-1 ELISA 

The MIC-1 ELISA assay was performed on serum samples collected as part of the 

MI45 study previously described. The human GDF-15 Quanitkine ELISA Kit (R&D 

Systems) was used. 100µl of assay diluent RD1-9 was added to each well of a 

microplate.  50µl of serum from each patient (in duplicate) as well as standards 

were then added.  The microplate was incubated for 2 hours at room temperature. 

Wells were washed four times using a squirt bottle with wash buffer.  To dry wells 

the plate was blotted on paper towels. 200µl GDF-15 conjugate was added to 

each well and incubated for one hour. Wells were again washed four times with 

wash buffer. 200µl of substrate solution A and B were added to each well and then 

incubated in the dark for 30 minutes. 50µl of stop solution was added to each well.  

The optical density of each well was measured at 450nm on a microplate reader. 

Measurements were also taken at 540nm and subtracted from the values at 

450nm to correct for plate irregularities.  A standard curve was plotted and serum 

MIC-1 levels were calculated. 

2.3.15 Mice/Xenografts 

(Fig 4-33) C57Bl/6 mice weighing at least 20g were treated with vehicle or HLI373 

50mg/kg by intraperitoneal (IP) injection.  Mice were also injected with 0.25mL of 

BrdU (Amersham) 1hour prior to cull. Mice were culled at 2 and 8 hours after 

treatment. The small intestine was removed and flushed with water.  It was then 

opened ‘en face’ and fixed for at least 3 hours in methacarn (4 parts methanol, 2 

parts chloroform, 1 part acetic acid).  Samples where then rolled into ‘swiss rolls’ 

and stored in formalin prior to embedding in paraffin. 

(Figure 4-34) Mice were treated at National Cancer Institute at Frederick USA 

(NCI) as part of a collaboration with Professor A Weissman.  The experimental set 

up was as follows: Athymic mice were injected subcutaneously with HCT116 cells 

into the flank.  Tumours were staged to 200mg.  Mice were then treated by an IP 

injection of vehicle or HLI373 and culled after 2 hours.  Xenografts were removed 
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and formalin-fixed and paraffin-embedded.  Blocks were sent to BICR for 

immunohistochemistry. 

2.3.16 Immunohistochemistry 

2.3.16.1 Mouse Tissue 

Immunohistochemistry was performed by the Beatson Histology services using the 

following protocol: 

Formalin-fixed paraffin-embedded sections were deparaffinized and rehydrated by 

passage through xylene and a graded alcohol series. Endogenous peroxidase 

activity was inactivated by treatment with 3% hydrogen peroxide, after which 

antigen retrieval was performed using microwave-heated citrate buffer (Labvision) 

or by incubation in citrate buffer in a pressure cooker. Sections were blocked in 5% 

serum for 1h and then incubated with primary antibody for 1h at room temperature 

or overnight at 4°C. Sections were incubated with secondary antibody for 1h (Dako 

Envision+ Kit, or Vectastain ABC system) and the staining was visualized with 

DAB (3, 3’-Diaminobenzidine).  

Table 2-10: Antibodies used in immunohistochemistry. 
Target Dilution Supplier 
p53 1:100 CM-5 (Vector Labs) 
p53 1:1000 DO-7 (Dako M7001) for xenograft 
p21 1:500 Santa Cruz 
BrdU 1:5000 BD Biosciences 

 
IHC imaging was performed using a Zeiss AxioImager A1 microscope and 

Axiovision Rel 4.7 (Zeiss) acquisition software. 

2.3.16.2 Hair follicles 

Plucked hair follicles from healthy volunteers were fixed as above (section 2.2.9.2) 

then embedded in paraffin blocks and sectioned (6µm) by the Beatson Institute 

Histology services.  For hematoxylin and eosin staining the following protocol was 

used: 
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Table 2-11: H&E staining of hair follicles. 

Reagents Time 
Xylene 4  mins 
Xylene 2 mins 
100% Ethanol 1 min 
100% Ethanol 1 min 
70% Ethanol 1 min 
Wash Tap Water 1 min 
Haem Z 13 mins 
Wash Tap Water 1 min 
1% Acid Alcohol 2 secs 
Wash Tap Water 30 secs 
STWS 2 mins 
Wash Tap Water 30 secs 
Eosin 3 mins 15 secs 
Wash Tap Water 30  secs 
70% Ethanol 30 secs 
100% Ethanol 30 secs 
100% Xylene 30 secs 
Xylene 30 secs 
Xylene 1 min 
Xylene 1 min 
Mount sections with DPX mountant 

 
IHC imaging was performed using a Zeiss AxioImager A1 microscope and 

Axiovision Rel 4.7 (Zeiss) acquisition software. 

2.3.17 In vitro ubiquitination assays 

The expression of recombinant GST-tagged MDM2 (GST-MDM2) was induced in 

25ml culture of exponentially growing Escherichia coli BL21 cells (OD600 0.6) by 

1mM IPTG for 3h.  GST-MDM2 was purified on glutathione-sepharose beads 

(Amersham).  Prior to the assay, GST-MDM2 bound beads were washed with 

50mM Tris (pH7.5).  Fluorescent-ubiquitin (5µg, Invitrogen), 50ng mammalian E1 

(Enzo), 200ng human recombinant UbcH5B E2 (Enzo) and 200ng His-p53 (Enzo) 

were mixed with reaction buffer (50mM Tris pH8, 2mM DTT, 5mM MgCl2, 2mM 

ATP). Indicated drugs or vehicle were added to the reaction mixture and the 

mixture was pipetted onto GST-MDM2 beads.  The reaction was incubated at 

37°C, shaking at 1200rpm for 1h and then stopped by the addition of 3xSDS 
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sample buffer.  Free fluorescent-ubiquitin was washed off and total fluorescent-

ubiquitin signal was measured on a monochromator plate reader (Safire). 

For non-fluorescent in vitro ubiquitination assays the procedure was as above 

except 5µg unlabelled ubiquitin (Enzo) was used. Drugs or vehicle were added to 

the mixture and the mixture was pipetted onto GST-MDM2 beads.  Incubation was 

as described above and reaction products were resolved by SDS–PAGE and 

analysed by Western blotting with anti-p53 DO-1 antibody. 

For the MDM2 RING ubiquitination assay GST-MDM2 RING beads were prepared 

as above and used in place of the full-length MDM2. 

For the MDM2 auto-ubiquitination assay the procedure was performed as detailed 

above except that no His-p53 was added to the reaction and Western blotting was 

with Ab1 and Ab2 antibodies. 

For the Cbl auto-ubiquitination assay, bacterially expressed full-length Cbl was 

used in a reaction with the previously described quantities of E1, E2 and ubiquitin.  

Ubiquitinated Cbl was detected by Western blotting using anti-ubiquitin antibody 

(Sigma clone 6C1). 

2.3.18 Surface plasmon resonance 

Sensor chip surfaces were prepared on a Biacore T100 instrument (Biacore Inc.), 

using reagents obtained from the manufacturer. FLAG antibodies where cross-

linked on a CM5 chip via amine coupling and individual flowcells where injected 

with FLAG-MDM2 RING where appropriate, or GST as a control protein. 

Measurements were performed at 25°C, 30μL per min, and a collection rate of 

10Hz. A range of compounds concentrations were prepared in 100mM HBS buffer 

with a final DMSO concentration of 5%. The experimental data were corrected for 

instrumental and bulk artefacts by comparison to a control sensor chip surface and 

buffer injections using Biacore software package V 2.0.1.  

2.3.19        Statistical analysis 

Statistical analysis was carried out using GraphPad Prism 5 software.   



Chapter 2:  Materials and methods   

 105 

To generate IC50s for inhibition of ubiquitination Prism’s built-in standard curve 

fitting equation for non-normalised values was used.   

For parametric data p-values were determined using Student’s t-test (paired or 

unpaired).  For non-parametric data Mann Whitney U test or Wilcoxon matched-

pairs signed rank test was used when there were two variables.  Kruskal-Wallis 

test was used for comparisons of non-parametric data where more than two 

variables were involved.  P-values of less than 0.05 were deemed statistically 

significant.  

To test correlation between variables Spearmann correlation Fisher’s exact 

correlation were used. 

Co-efficient of variation was calculated by diving the standard deviation of the 

samples by the mean.  This was then multiplied by 100 to express it as a 

percentage.



 

 

 
 
 
 
 
 
 
 
3 MPD compounds 
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3.1 History of MPD compounds 

The MPD compounds are analogues of a group of compounds originally named 

the HDM2 Ligase Inhibitor 98 (HLI98) class that were identified in a high-

throughput screen for inhibitors of MDM2 autoubiquitination446,447.  100,000 

compounds from a chemical library were screened.  Of those, 40 were found to 

inhibit ubiquitination of MDM2 and further testing for dose-dependent inhibitory 

activity of MDM2 in cells validated 4 compounds as inhibitors of MDM2 

autoubiquitination.  Of these remaining 4 compounds, 3 were 7-nitro-5-

deazaflavins (Figure 3-1).  These compounds were shown to increase MDM2 and 

p53 levels by specifically inhibiting MDM2, without interfering with the p53-MDM2 

interaction, resulting in activation of p53’s transcriptional program and induction of 

apoptosis particularly in transformed cells.  Due to the presence of the nitro group 

that can react with oxygen to form superoxide radicals, the HLI98 compounds 

could potentially stabilise p53 via production of reactive oxygen species (ROS). In 

an attempt to eliminate the contribution of ROS to p53 stabilisation, analogues of 

the HLI98s, lacking the nitro group, were synthesised448.  Reassuringly these initial 

analogues could also stabilise p53, increase expression of p53 targets and cause 

cell cycle arrest/apoptosis without evidence of DNA damage (as determined by a 

lack of phosphorylation of p53 on serine 15). This work therefore supported the 

mechanism of function of these compounds as direct inhibitors of MDM2. 

Figure 3-1: Chemical structures of HLI98C, D & E447. 

 
Despite the promise of the HLI98 compounds in in vitro experiments, the 

compounds were not suitable for further development as MDM2 inhibitors since 

they were not soluble in water and had relatively low activity in MDM2 inhibition. 

The group of Professor Peter Fischer, Professor of medicinal chemistry at 

Nottingham University, developed further derivatives of the HLI98 class, 
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rearranging or replacing the active groups of the molecule with more soluble 

groups (Figure 3-2).  These compounds, now referred to as the MPD compounds 

(after the chemist Michael P Dickens), were developed in an attempt to study the 

structure-activity relationship and produce more potent inhibitors of MDM2’s E3 

ligase activity.  The aim of this work was to test the biological and biochemical 

activities the MPD compounds and establish their mode of action. 

 

 

 

 Figure 3-2: Chemical structures of MPD compounds.  

 

Compound ID R1 R2 R3 R4 R5 R6 R7 R8 Compound ID R1 R2 R3 R4 R5 R6 R7 R8

3 H H H H H H H H 54 H H H NO2 H H Cl H

6 H H H H H H Cl H 55 NO2 H H H H H H H

7 H H H H F H H H 56 NO2 H H H F H H H

9 CF3 H H H H H H H 57 NO2 H H H H H Cl H

10 CF3 H H H H H Cl H 67 H H NO2 H H H H H

11 CF3 H H H F H H H 68 H H NO2 H F H H H

12 H CF3 H H H H H H 69 H H NO2 H H H Cl H

13 H CF3 H H F H H H 83 H H H H H H H Me
14 H CF3 H H H H Cl H 87 H H H H H H H Et
15 Me H H H H H H H 126 H H H H Cl H H H

16 Me H H H F H H H 127 H H H Cl Cl H H H

17 H H CF3 H H H H H 128 H H H CF3 Cl H H H

18 H H CF3 H F H H H 129 H H H H H Cl H H

19 H H H CF3 H H H H 131 H H H CF3 H Cl H H

20 H H H CF3 F H H H 132 H H H H H F H H

21 H NO2 H H H H H H 133 H H H Cl H F H H

22 H NO2 H H F H H H 134 H H H CF3 H F H H

24 H Cl H H H H H H 135 H H H H H H F H

25 H Cl H H F H H H 136 H H H Cl H H F H

26 H Cl H H H H Cl H 137 H H H CF3 H H F H

27 H H Cl H H H H H 138 H H H H Me H H H

28 H H Cl H F H H H 139 H H H Cl Me H H H

29 H H Cl H H H Cl H 140 H H H CF3 H Me H H

30 H H H Cl H H H H 141 H H H H H Me H H

31 H H H Cl F H H H 142 H H H Cl H Me H H

32 H H H Cl H H Cl H 143 H H H CF3 Me H H H

33 Cl H H H H H H H 144 H H H H H H Me H

34 Cl H H H F H H H 145 H H H Cl H H Me H

35 Cl H H H H H Cl H 146 H H H CF3 H H Me H

36 H H CF3 H H H Cl H 147 H H H F H H H H

37 H H H CF3 H H Cl H 148 H H H F H H Cl H

38 H Me H H H H H H 149 H H H OH H H H H

39 H Me H H F H H H 150 H H H OH H H Cl H

40 H Me H H H H Cl H 151 H H H H F H Cl H

42 Me H H H H H Cl H 152 H H H Cl F H Cl H

46 H H H Me H H H H 158 H H H Br H H H H

47 H H H Me F H H H 159 H H H Br H H Cl H

48 H H H Me H H Cl H 162 H H H CF3 H Cl Cl H

49 H H Me H H H H H 165 H H H CF3 H H Cl Me
50 H H Me H F H H H 166 H H H CF3 H H Cl Et
51 H H Me H H H Cl H 199 H H H CN H Cl H H

53 H H H NO2 F H H H 200 H H H CN H H Cl H
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3.2 Active MPD compounds inhibit ubiquitination of 
MDM2 and p53 

First, the new derivatives were tested in an in vitro ubiquitination assay in which 

fluorescent ubiquitin was used to quantify ubiquitination of both p53 and MDM2 

simultaneously (Figure 3-3).  

 

 

 

 Figure 3-3: IC50s for inhibition of ubiquitination of MDM2 and p53. 
IC50s were calculated with PRISM 5. For core compounds (20 and 37), the assay was 
performed in triplicate. Error bars represent SEM of 3 independent experiments. 

 

Ubiquitination reactions were set up using glutathione S-transferase (GST)-tagged 

MDM2, fluorescein isothiocyanate (FITC)-ubiquitin, E1, E2 (UbcH5b) and His-p53.  

A dose titration of each MPD compound was added to the mixture and the mixture 

was pipetted on glutathione sepharose beads to capture GST-MDM2 complexes.  

Free ubiquitin was washed off and fluorescence was measured on a fluorescence 
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plate reader set for 340nm excitation wavelength and 490nm emission 

wavelength. 

From this assay, IC50s for the inhibition of p53 and MDM2 ubiquitination were 

generated.  Of the 84 new analogues tested, 73 were inactive (Figure 3-2).  Of 

note, 10 of the MPD compounds possessed a nitro group and all of these were 

inactive. 

11 compounds showed inhibition in the ubiquitination of MDM2 and p53 with IC50s 

ranging from 1.5 to 50µM (Figure 3-3).  Subsequent experiments were designed to 

include an inactive compound, a moderately active compound and a highly active 

compound.  For most experiments these core compounds were MPD39 (inactive), 

MPD20 (moderately active, IC50 19.6µM) and MPD37 (highly active, IC50 11.9 

µM). 

Next the compounds were tested in gel-based in vitro ubiquitination assays to 

assess the relative contributions of inhibition of MDM2 autoubiquitination and 

inhibition of p53 ubiquitination to the previously generated IC50.  Ubiquitination 

reactions were set up using GST-purified MDM2, E1, E2 (UbcH5b), non-tagged 

ubiquitin and reaction buffer containing ATP.  A reaction lacking the E1 and E2 

was used as a negative control.  Reactions were incubated with a randomly 

selected panel of MPD compounds and core MPD compounds at 10µM.  MDM2 

was able to polyubiquitinate itself in the presence of the E1 and E2 enzymes as 

shown by the presence of a smear of higher molecular weight forms of MDM2 due 

to the addition of multiple or polyubiquitin molecules.  In the absence of the E1 and 

E2 enzymes no smear was detected, as expected.  The compounds previously 

categorised as inactive failed to inhibit this autoubiquitination of MDM2 while the 

active compounds inhibited MDM2 autoubiquitination (Figure 3-4).  Compound 

MPD26 appeared to cause a minor reduction in MDM2 autoubiquitination despite 

being an inactive compound in the mixed in vitro ubiquitination assay. 
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 Figure 3-4: Active MPD compounds inhibit in vitro autoubiquitination of MDM2. 
MDM2 was detected by Western blotting using AB1 and AB2 antibodies.  Activity 
according to mixed ubiquitination assay is indicated. For core compounds, the activity 
status is indicated in bold. D=DMSO. 

 

To test if the compounds could also inhibit ubiquitination of p53, they were tested 

in an in vitro assay of p53 ubiquitination.  Ubiquitination reactions were set up as 

before for MDM2 autoubiquitination but His-p53 was also added to the reaction 

mixture.  Similar to the observed inhibition of MDM2 autoubiquitination, most 

compounds also inhibited p53 ubiquitination in a pattern that reflected the 

previously generated IC50s with compounds MPD20, MPD37 and MPD131 being 

active and MPD39, MPD46 and MPD47 being inactive (Figure 3-5).  Compound 

MPD26 again showed a modest reduction in polyubiquitinated p53 despite being 

negative in the mixed ubiquitination assay. 

 

 

 

 Figure 3-5: Active MPD compounds inhibit in vitro ubiquitination of p53. 
p53 was detected by Western blotting using DO1 antibody. Activity according to mixed 
ubiquitination assay is indicated. For core compounds this is in bold. D=DMSO. 

 

In this in vitro assay the active compounds do not appear to inhibit the 

monoubiquitination of p53. Although the higher molecular weight forms of 

ubiquitinated p53, which represent multiple and polyubiquitination of p53, are 
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reduced by active compounds, none of the compounds diminished the appearance 

of the first, monoubiquitinated p53 band.   

To establish the efficacy of the compounds in a more biologically relevant system, 

they were tested for their ability to inhibit ubiquitination of p53 in cells (Figure 3-6).  

p53 negative H1299 cells were transfected with MDM2, p53 and HA-ubiquitin.  HA-

ubiquitin was used to ensure detection of ubiquitinated p53 rather than other 

posttranslational modifications such as acetylation, methylation, neddylation and 

SUMOylation, which are known to occur on p53209.  Cells were then treated with 

10µM of each MPD compound and 10µM of proteasome inhibitor MG132, to 

prevent degradation of ubiquitinated p53.  Compounds MPD37, MPD148 and 

MPD159 were used to represent a compound of high activity, no activity and 

moderate activity respectively as defined by the previous in vitro studies.  Cells 

were lysed in denaturing conditions to disrupt binding to any covalently bound 

interactors (ie MDM2) while not disrupting the non-covalent p53-ubiquitin binding.  

p53 was then immunoprecipitated using DO1 antibody and lysates were subjected 

to immunoblot analysis in which an HA antibody was used to detect ubiquitinated 

forms of p53.  Active compound MPD37 abolished all ubiquitination of p53, 

inactive compound MPD148 had no effect, while moderately active compound 

MPD159 caused a small reduction in ubiquitination of p53 (Figure 3-6).  Nutlin, a 

small molecule that prevents p53-MDM2 interaction555, reduced but did not abolish 

ubiquitination of p53, in contrast with MPD37.  The apparent lack of inhibition of 

monoubiquitination seen in vitro was not seen when the compounds were tested in 

cells since active compound MPD37 appeared to reduce all higher molecular 

weight forms of p53.  

 

 

 

 Figure 3-6: Active MPD compounds inhibit ubiquitination of p53 in cells. 
H1299 cells were transfected with p53/empty vector (EV), MDM2 and HA-ubiquitin.  
Cells were incubated with MPD compound (10µM) and MG132 (10µM) for 2 hours.  
Denaturing p53 immunoprecipitation (IP) was performed with DO1 antibody.  Input and 
IP were blotted with the indicated antibodies. Actin was loading control. D=DMSO. 
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The data presented here confirms that the active MPD compounds can inhibit 

ubiquitination of both p53 and MDM2 in vitro and in cells. 

3.3 Active MPD compounds inhibit the RING of MDM2 
specifically 

Next, efforts were made to examine the potential mechanisms by which the MPD 

compounds could inhibit the E3 ligase function of MDM2.  Clearly a ubiquitination 

reaction depends on the presence of a functional E1, E2, E3 and substrate, which 

in the case of MDM2, may be MDM2 itself.   

The RING finger E3 ubiquitin ligases are the largest family of E3 ligases and are 

responsible for regulation of a vast number of different functions in the cell through 

regulation of multiple substrates.  It is therefore important to establish whether the 

MPD compounds are specific for inhibition of MDM2 or capable of inhibiting any 

RING E3 ubiquitin ligase protein. For this the previously described in vitro 

ubiquitination assay was performed using Cbl (Casitas B-lineage Lymphoma).  Cbl 

is structurally similar to MDM2 and also capable of autoubiquitination556, making it 

a suitable comparator for testing specificity of the MPD compounds (Figure 3-7).  

Furthermore since Cbl is capable of ubiquitination in this assay using the same E1 

and E2 as used to test MDM2’s E3 ligase activity, conclusions could be drawn 

regarding any possible non-specific activity of the MPD compound against the E1 

or E2.   

 

 

 

 Figure 3-7: Active MPD compounds do not inhibit Cbl mediated ubiquitination. 
Full-length Cbl, E1, E2 and reaction buffer were incubated with MPD compound (10µM). 
Ubiquitinated Cbl was detected by Western blotting using anti-ubiquitin antibody (right 
panel). Bacterially expressed GST-MDM2 RING, His-p53, E1, E2 and reaction buffer 
were incubated with MPD compound (10µM). p53 was detected by Western blotting 
using DO1 antibody (left panel). D-DMSO. 

 

The Cbl ubiquitination assay showed that the active compound MPD37 was 

unable to inhibit Cbl ubiquitination at doses that could inhibit MDM2’s ability to 
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ubiquitinate p53, while inactive compound MPD39 was unable to inhibit either Cbl 

or MDM2 activity (Figure 3-7).  

These results therefore indicate that the MPD compounds are not capable of 

inhibiting E3 ligase activity of all RING E3s, and also that they are not general 

inhibitors of E1 and or E2.  

Multiple domains of MDM2 have been shown to contribute to MDM2’s ability to 

ubiquitinate p53, including the C-terminal RING and tail, the N-terminal p53-

binding site and the central acidic domain265, 266, 316-318, 445. However in in vitro 

ubiquitination assays the MDM2 RING domain alone is sufficient to (poly) 

ubiquitinate p53289, 557. To analyse if the MPD compounds inhibit MDM2's RING 

domain directly, the ability of the MPD compounds to inhibit MDM2 RING (a 

construct comprising residues 417-491 of MDM2)-mediated ubiquitination of p53 

was tested in an in vitro assay. Indeed, the active MPD compounds (MPD20, 

MPD37 and MPD159) also inhibited MDM2 RING ubiquitination of p53 (Figure 3-

8).  This is consistent with previous results published for the original HLI98 

compounds and confirms that the N-terminal p53-binding site of MDM2 is not 

required for the compounds’ function557. 

 

 

 

 Figure 3-8: Active MPD compounds inhibit MDM2 RING dependent p53 ubiquitination. 
MDM2 RING, His-p53, E1, E2 and reaction buffer were incubated with 10µM MPD 
compound. p53 was detected by Western blotting using DO1 antibody. Activity in 
mixed ubiquitination assay is indicated. For core compounds activity is bold. D=DMSO. 

 

More importantly, the site of action of the MPD compounds must be the RING-tail 

domain of MDM2 (since the MDM2 construct used here contained only the RING-

tail region).  

To test directly whether the active MPD compounds bind to the MDM2 RING-tail, 
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to bind to the MDM2 RING-tail using Biacore Surface Plasmon Resonance (SPR). 

SPR can be used to examine protein-compound interactions in real time.  The 

experiment involved coupling purified FLAG-tagged MDM2 RING-tail on a sensor 

chip using FLAG antibody then injecting a series of concentrations of each 

compound across the surface.  Single wavelength fixed angle light was directed 

onto the sensor surface and the surface plasmon resonance angle was measured. 

Compound binding to MDM2 caused changes in the surface plasmon resonance 

angle, which reversed relative to compound dissociation therefore provided a 

measure of the interaction and affinity of the inhibitors to the RING-tail of MDM2.  

 

 

 

 Figure 3-9: Active MPD compounds bind the MDM2 RING. 
FLAG antibody was amine coupled to a Biacore CM5 series sensor chip and 
subsequently loaded with FLAG-tagged RING domains of MDM2. Relative units were 
measured with various doses of compounds. Data are normalised to an antibody only 
surface to exclude MDM2-independent effects. 

 

Some of the MPD compounds presented technical difficulties when being tested 

using SPR technology due to their poor solubility, especially at higher 

concentrations.  Since the Biacore does not allow use of high DSMO 

concentrations to alleviate this problem, we were unable to obtain reliable data for 

the full panel of MPD compounds. For example MPD159 displayed high levels of 

non-specific binding.  Fortunately we were able to test the more soluble 

compounds, obtaining data for a representative compound from the inactive, 
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moderately active and highly active groups.  As shown in Figure 3-9, the active 

MPD compound (MPD37) did bind to the MDM2 RING-tail in a dose dependent 

manner while inactive compound MPD39 did not.  Furthermore, information about 

the binding rate suggests that compound MPD37 had a relatively slower off rate 

than the less active compounds.  Moderately active MPD compound MPD20 

showed some evidence of binding at higher dose levels. 

Taken together these data provide evidence that compounds bind to the MDM2 

RING-tail and so inhibit MDM2’s E3 ligase function. By analogy with other RING 

E3 ligases, it seems the RING domain of MDM2 forms the E2 binding domain, and 

it is possible that the interaction with the compounds inhibits the E3/E2 interaction. 

However, the MDM2 RING is also necessary for homodimerisation or 

heterodimerisation with the RING domain of MDMX351. Any compound that binds 

the MDM2 RING could therefore disrupt dimerisation, which is important for 

MDM2’s E3 ligase function.  Inhibition of dimerisation is therefore another possible 

mechanism by which MPD compounds inhibit ubiquitination.  Interestingly, in silico 

docking of the original HLI98 compound shows that the HLI98 compound fits into 

the hydrophobic cleft of MDM2 RING, consistent with the compounds ability to 

bind (Figure 3-10).  

 

 

 

 Figure 3-10: The structure of MDM2/MDMX interaction & in silico docking of HLI198. 
(A) MDMX is shown in yellow and MDM2 in orange351 (B) In silico docking model from 
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Peter Fischer University of Nottingham. 

In addition the docking model illustrates that binding to the RING region could 

potentially disrupt heterodimerisation.  

3.4 Active MPD compounds activate p53 

Previous studies have shown that the HLI98 class of compounds can stabilise and 

activate p53 in cells447.  While the MPD compounds had been shown to inhibit the 

ubiquitination of ectopically expressed p53, it was important to establish the effect 

of the MPD compounds on the stability and activity of endogenous p53.  Wild-type 

p53 expressing retinal pigment epithelial (RPE) cells were treated with inactive 

compounds MPD39, MPD47 and MPD165 and active compounds MPD20, MPD37 

and MPD159 at 2.5, 5 and 10µM for 16 hours.  DMSO and Nutlin at 10µM were 

used for the negative and positive controls respectively. 

 

 

 

 Figure 3-11: MPD compounds stabilise p53 and increase expression of p53 targets. 
MDM2, p53 and p21 were detected by Western blotting using AB1, AB2, DO1 and p21 
antibodies. Actin was used as loading control. D=DMSO, N=Nutlin. n≥3. 
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was detected as a doublet around 80kD.  This is thought to represent the full-

length MDM2 protein.  The double band suggests the presence of a modified form 

of MDM2 however the specific modification remains unknown408, 558.  When used 

at the highest dose level, compound MPD37 appeared to stabilise p53 but did not 

result in increased target expression.  This was a reproducible effect which is most 

likely a reflection of the toxicity of this compound at high concentrations, as 

demonstrated by an increase in sub G1 fraction on cell cycle analysis (Figure 3-

15).  The 3 inactive compounds failed to stabilise p53 or induce p53 target genes. 

Clearly activation of p53 would increase MDM2 levels by causing increased 

transcription of MDM2. However, since the active MPD compounds also inhibit 

ubiquitination of MDM2 we would predict that MPD compounds additionally 

increase the level of MDM2 by causing an accumulation of the MDM2 protein.  To 

investigate this we used U2OS cells engineered to express a doxycycline-inducible 

GFP-MDM2.  Using this construct allowed us to measure the accumulation of 

MDM2, as measured by an increased GFP signal, driven by a different promoter 

and therefore uncoupled from the increase in p53 transcriptional activity.  

Following induction of the GFP-MDM2, cells were treated with MPD compounds.   

 

 

 

 Figure 3-12: Active MPD compounds cause accumulation of MDM2. 
U2OS GFP-MDM2 TetOn cells were induced with doxycycline for 48h. Cells were then 
treated with DMSO, indicated MPD compound or MG132 for 4h. Cells were next 
harvested, fixed with 0.05% paraformaldehyde, rehydrated and stained with propidium 
iodine (PI) for flow cytometric analysis. Sub G1 cells were excluded from analysis and 
mean GFP signal was quantified for each condition. Error bars represent SEM of 3- to 
9-independent experiments. 

 

The active MPD compounds (MPD20, 37 and 159) induced an increase in GFP 

signal as measured by fluorescence activated cell sorting (FACS) while inactive 

F
o
ld

 c
h
a
n
g
e
 i
n
 m

e
a
n
 G

F
P

-M
d
m

2
 

re
la

ti
v
e
 t
o
 D

M
S

O
 

MPD compound (5µM)

DMSO 20 37 39 159 Mg132

(10µM)

0

1

2

3

4

*

*

*

*P<0.001



Chapter 3: MPD compounds   

 119 

compound MPD39 did not, indicating that the active MPD compounds can stabilise 

MDM2 directly (Figure 3-12).  Proteasome inhibitor MG132 was used as a positive 

control. 

As p53 accumulation can lead to cell cycle arrest or apoptosis, the biological 

effects of the active MPD compounds on the cell cycle profile and apoptosis were 

next examined.  

 

 

 

 Figure 3-13: Active MPD compounds cause G1 cell cycle arrest. 
RPE cells treated with DMSO, 5µM MPD39, 20, 37, 159 or 10µM Nutlin for 16h. Cells 
were harvested & PI stained for cell cycle analysis by FACS.  The mean fold change, 
relative to DMSO, calculated from at least three independent experiments is shown.  
Error bars show

 

RPE cells were treated with MPD compounds (20, 37, 39 and 159), Nutlin or 

DMSO followed by cell cycle profile analysis.  Figure 3-13 shows that active MPD 

compounds (20, 37 and 159) cause a G1 arrest similar to Nutlin incubation while 

MPD39 does not cause cell cycle arrest.  The active compounds appear to be 

effective regardless of their predicted potency based on in vitro data.  This could 

be because of differences in the cellular uptake, metabolism or efflux of these 

compounds.  In contrast with Nutlin, some active MPD compounds (20 and 37) 

also cause a slight decrease in G2. 
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To investigate whether these cell cycle effects were p53 dependent isogenic 

matched p53+/+ and p53-/- colorectal cancer RKO cell lines were used to examine 

the effects of MPD compounds on the cell cycle profile (Figure 3-14).   

 

 

 

 Figure 3-14: Active MPD compounds cause a p53 independent G2 cell cycle arrest. 
RKO cells either wild-type or null for p53 were treated with DMSO, 5µM of MPD 39 or 20 
or 10µM Nutlin for 16h. Cells were harvested & PI stained for cell cycle analysis by 
FACS. 4 independent experiments were performed. Error bars show SEM. 

 

As seen in RPE cells the active MPD compound 20 caused a G1 arrest in the 

p53+/+ cells. However on loss of p53, MPD20 causes a modest increase in cells in 

G2 which although statistically significant is unlikely to be biologically meaningful. 

Further investigation of the p53 dependence of the effects of MPD compounds 

demonstrated that the highly active MPD37 also had some p53 independent 

effects since when tested in the p53 RKO null cells, MPD37 caused significant 

apoptosis (Figure 3-15). 
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 Figure 3-15: Highly active MPD compounds cause p53 independent apoptosis. 
RKO cells either wild-type or null for p53 were treated with DMSO or 5µM of compound 
37 for 16h. Cells were then harvested and PI stained for cell cycle analysis by FACS. 
Experiments were performed at least in triplicate. Representative histograms are 
shown.  The % of FACS event with sub G1 DNA content is indicated. 

 

3.5 Summary and discussion 

In this chapter the biological and biochemical activities of the MPD compounds 

were analysed and their mode of action explored.   

The results show that, like their parent compounds (HLI98), the active MPD 

compounds inhibit the ubiquitination of MDM2 and p53 in vitro and in cells. 

However, in comparison with the original HLI98 class of compounds many of these 

new compounds are more potent inhibitors of MDM2 and p53 ubiquitination (IC50 

1.5-50µM versus 75µM).  Direct evidence has been described to show that the 

MPD compounds bind directly to the MDM2 RING-tail and that they are specific for 

MDM2, being unable to inhibit E1 and E2-dependent and Cbl-mediated 

ubiquitination.  This is the first description of direct binding and inhibition of MDM2 
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via the RING-tail domain.  Importantly the resultant inhibition of MDM2’s E3 ligase 

activity by the MPD compounds results in stabilisation and activation of p53. 

In the present study a major challenge was presented by the availability, stability 

and poor solubility of the MPD compounds.  For these reasons, following initial 

testing, a core set of compounds was selected for further evaluation.  This set 

included a representative compound from each of the three groups: inactive, 

moderately active and highly active (as based on their IC50 in the mixed 

ubiquitination assay).  This allowed discontinuation of use of compounds that 

required high levels of DMSO for suspension since high levels of DMSO are not 

compatible with cell line testing or evaluation by SPR.  Furthermore, focus was 

given to those compounds less active in vitro but less detrimental to cell growth 

because it was more feasible to assess them in cellular assays.  Initial analysis 

showed that all of the compounds that were highly active in vitro were toxic to 

cells, and so their testing was limited.  

For cellular assays a dose of 10µM was selected as a reasonable dose level 

because the active compounds were able to stabilise p53 at this dose.  Since in 

vitro experiments do not account for differences in compound uptake into cells and 

differing cellular metabolism or efflux it was difficult to extrapolate a suitable dose 

for cell line testing from in vitro data.  In line with this the compounds most active 

in vitro did not necessarily retain this relative activity in cells. 

Here the active MPD compounds were shown to inhibit ubiquitination of p53 

resulting in stabilisation of p53 in cells.  This increased p53 level caused increased 

expression of p53 targets and cell cycle arrest.  It is generally accepted that the 

outcome of p53 activation depends on multiple factors including the level of p53, 

the dynamics of the increased p53, the modified state of p53 and the particular co-

factors recruited76, 82.  It has therefore been suggested that activating p53 by 

inhibiting MDM2’s E3 ligase activity may not fully activate p53 for several reasons 

including the induction of an elevated MDM2 level, the lack of disruption to MDM2-

p53 binding, the absence of a DNA damage signal and the differing post-

translational modification profile. 
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In opposition to the suggestion that the increased MDM2 level induced by E3 

ligase inhibitors could act in some way to inhibit p53 activation, mouse models with 

ligase inactive MDM2 display the ability for full p53 induction.  By substituting a 

zinc-coordinating cysteine 462 (464 in humans) with alanine, a mutant MDM2 that 

lacks E3 ligase activity but retains p53 binding capabilities was created.  The 

mouse model expressing this MDM2-C462A mutant had elevated levels of both 

p53 and MDM2 and was embryonic lethal.  The phenotype was rescued by 

deletion of p53 demonstrating that p53 was active despite accumulation of 

MDM2324. Drug induced inhibition of MDM2’s E3 ligase function would be expected 

not to be as catastrophic as demonstrated in this mouse models since drugs will 

cause only reversible inhibition in the E3 ligase activity of MDM2 and are unlikely 

to provide inhibition equal to genetic abolition of MDM2’s E3 ligase function. 

Although it has been proposed that persistent p53-MDM2 binding following MDM2 

E3 ligase inhibition may prevent maximal transcriptional activity of p53 there is 

evidence to the contrary.  Bortezomib, a proteasome inhibitor in clinical use in 

treatment of multiple myeloma, activates p53 without disrupting p53-MDM2. On a 

physiological level p14ARF, L11, L5 and L23 all activate p53 without causing 

disruption of the p53-MDM2 interaction and shown here MPD compounds activate 

p53276, 278, 559-561.  Previous data suggest that HLI98 does not affect p53-MDM2 

binding447. It will therefore be interesting to study whether MPD compound 

mediated-p53 activation would be enhanced further following additional disruption 

of p53-MDM2 binding.  This could be explored by examining the p53 activating 

capabilities of the MPD compounds in combination with Nutlin, which could act to 

disrupt p53-MDM2 binding and also inactivate the excess of MDM2 caused by E3 

ligase inhibition.  

Currently the vast majority of anti-cancer drugs work by causing irreparable DNA 

damage to cancer cells.  It has been proposed that the lack of a DNA damage 

signal seen following treatment with MDM2 inhibiting, non-cytotoxic, drugs may 

result in inadequate p53 activation.  In contrast however a mouse model where 

p53 status was reversibly switched showed adequate suppression of radiation-

induced lymphoma despite abrogation of the acute radiation response by 

temporarily turning off p53482.  Therefore acute DNA damage response is not 
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required for p53-mediated tumour suppression.   Although from this model it can 

be concluded that the acute damage response is not necessary for tumour 

suppression it does not rule out a requirement for intact DNA damage signalling for 

tumour suppression.  This has however been addressed by other mouse models 

where the DNA-damage dependent phosphorylation sites on p53 were mutated to 

alanines.  The S18A562, 563(equivalent to human S15A) and S23A564, 565(equivalent 

to S20A) mice have only subtle defects in p53-induced apoptosis but maintained 

intact tumour suppressor function, supporting a model where at least some DNA 

damage induced post-translational modifications are not required for tumour 

suppression. The non-genotoxic activation of p53 achieved by inhibition of 

MDM2’s E3 ligase activity should therefore lead to adequate tumour suppression. 

In contrast with the modest effects demonstrated by mouse models with deficient 

phosphorylation of p53, recent work examining the importance of acetylation of 

p53 has shown that acetylation is required for cell cycle arrest, apoptosis and 

senescence. However, despite absence of all of these responses this acetylation 

deficient mouse also maintained tumour suppression capabilities300, 304. 

Importantly this emphasises the contribution of p53’s regulation of metabolism and 

antioxidant function to tumour suppression.  Acetylation sites seem to be common 

to both DNA damage and ARF-mediated pathways and since the MPD 

compounds function through a mechanism with similarity to ARF-mediated p53 

induction, in that they cause p53 activation by binding to MDM2 and inhibiting its 

E3 ligase function without breaking the p53-MDM2 interaction, they may cause 

acetylation in a similar pattern566, 567.  An important difference between MPD 

mediated p53 induction and ARF mediated induction is that MPD compounds and 

ARF bind at different locations on MDM2 (the RING-tail and acidic domain 

respectively).  It would be of particular interest to examine whether the post-

translational modifications seen, if any, following MPD treatment mirror those 

induced by ARF or if the binding in a different area of MDM2 causes a unique 

post-translational modification profile resulting in a different spectrum of p53 

activity. Furthermore since p53’s lysines are subject to several other types of 

modifications including methylation, NEDDylation and SUMOylation perhaps by 

inhibiting one modification (ubiquitination) you drive the other modifications and 

therefore again affect the spectrum of p53 activity209.  Alternatively the modification 
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pattern of p53 could be altered via changes in MDM2 function caused by MPD-

MDM2 RING-tail binding.  Since MDM2 promotes ubiquitination, NEDD8 

modifications and SUMO modifications of p53’s lysines inhibiting ubiquitination 

could cause MDM2 itself to drive the other modifications of p53.  In particular 

MDM2 driven SUMOylation of p53 is known to require intact p53-MDM2 binding 

but not be dependent on the MDM2 RING function212.  It could be predicted 

therefore that the MPD compounds could drive SUMOylation of p53 with 

consequent impact on the transcriptional output of p53. 

Work on the original HLI98 compounds showing that, in addition to being able to 

inhibit MDM2, they were able to inhibit in vitro autoubiquitination of the HECT E3, 

Nedd4, when used at high doses. This led to the hypothesis that the compounds 

may work by binding to E2, preventing transfer of ubiquitin from E1 to E2447. The 

present study has shown that the MPD compounds are unable to inhibit Cbl 

mediated ubiquitination in a reaction utilising the same E1 and E2 as used in the 

MDM2 ubiquitination assay.  The site of action is therefore not on the E2 and is 

specific to MDM2.  

Despite attempts to map the MDM2-E2 interaction site, poor solubility of the 

MDM2 RING under NMR conditions and weak E2-E3 interaction have made 

attempts unsuccessful568.  It is therefore not possible to directly test for inhibition of 

MDM2-E2 binding although this remains a potential mechanism of action. Recent 

work by Dou et al, which may be relevant to many E3s, has shown an additional 

level of regulation of Cbl ubiquitination556.  In the inactive state Cbl has an auto-

inhibited conformation where the tail shields the E2 binding site on the Cbl RING.  

Upon activation, a phosphorylation event at the linker region, leads to a 

conformational change of Cbl where the E2 binding site is exposed and the E2 

binding site and RING domain are moved closer to the substrate.  In the study 

presented here the MDM2 RING-tail was used and therefore the MPD compounds 

may function through either the MDM2 RING or tail. If MDM2 autoubiquitination is 

similar to Cbl ubiquitination perhaps binding of the MPD compounds to the MDM2 

RING-tail maintains an inhibited conformation that shields the E2 binding site and 

therefore inhibits ubiquitination.  Alternatively MPD binding could block a 

phosphorylation event required for E3 ligase activation.  To examine this further 
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the crystal structures of MDM2-MPD complex and MDM2-E2 complex would be 

helpful. 

Another possible mechanism of function of the MPD compounds is to inhibit 

MDM2 homodimerisation or heterodimerisation with MDMX. The MDM2-MDMX 

heterodimer is thought to be a more abundant and potent E3 dimer therefore the 

MPD compounds could work by binding to the MDM2 RING and impeding 

heterodimerisation264-269. A recent publication by Wade et al demonstrated 

inhibition of MDM2’s ubiquitin ligase activity by expression of an MDMX C-terminal 

tail point mutant F488A or an MDM2 C-terminal tail point mutant Y489A both of 

which are unable to form dimers569. Surprisingly this model of E3 ligase inhibition 

by inhibition of dimerisation seemed to not be adequate for full p53 activation and 

the authors suggested that inhibition of both MDMX and MDM2 together might be 

required for p53 activation.  It would therefore be interesting to explore the effect 

the MPD compounds have on dimerisation of MDM2 and MDMX.  This could be 

investigated by immunoprecipitation experiments firstly with overexpressed 

proteins where MDM2 C464A could be used as a control to show reduced 

MDM2/MDMX binding and then with endogenous MDM2 and MDMX.  Furthermore 

it would be interesting to examine whether the MPD compounds are capable of 

binding to MDMX since as suggested by Wade et al dual inhibition of MDM2 and 

MDMX may be an attractive strategy for p53 activation and due to the structural 

homology between the 2 proteins it may be anticipated that compounds binding 

the MDM2 RING-tail could also bind MDMX RING-tail. 

Small molecules that prevent the MDM2/MDMX interaction would also inhibit the 

MDM2 mediated degradation of MDMX, which contributes to full activation of p53 

and this could perhaps explain the findings of Wade et al360, 361, 366. In contrast, cell 

line studies have shown that the high level of MDM2 seen following Nutlin 

treatment can actually enhance Nutlin induced cell death due to an increase in 

MDM2 mediated degradation of MDMX570.  The MDM2 present after Nutlin 

treatment is Nutlin-bound but maintains E3 ligase activity and therefore is capable 

of mediating MDMX degradation. This is in contrast with the abundance of E3 

ligase dead MDM2 induced by MPD treatment.  A full analysis of the stability of 

MDMX following MPD treatment may be informative. 
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This work provides proof of the principle that compounds that bind the MDM2 

RING-tail can inhibit MDM2’s E3 ligase activity.  Ultimately solving a co-crystal 

structure of the compounds bound to the MDM2 RING-tail would provide the 

information required to design other MDM2 inhibitors, which bind the MDM2 RING-

tail and display more desirable chemical characteristics and improved potency. In 

addition the co-crystal structure would allow informed predictions to be made 

regarding likelihood of influence on dimerisation and potential to also bind the 

similarly structured MDMX RING-tail.  



 

 

 
 
 
 
 
 
 
 
4 HLI373 
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4.1 History of HLI373 

HLI373 was first described by Kitagaki et al in 2008451.  Following identification of 

the 7-nitro-5-deazaflavins (HLI98 compounds) described in chapter 3, which 

displayed poor solubility and potency447, a chemical database was searched for 

soluble compounds with a structure bearing some similarity to HLI98. From this 

HLI373 (5-[3-(dimethylamino)propylamino]-3,10-dimethylpyrimido[4,5-b]quinoline-

2,4-dione) was identified (Figure 4-1).  This compound was reported to be soluble 

and stabilise p53 and MDM2 in cells.  

 

 

 

 Figure 4-1: The structure of HLI373 in comparison with HLI98. 
(A) HLI98 (B) HLI373 

 

The previous report showed that treatment of cells with 1µM HLI373 inhibited 

ubiquitination of p53 and MDM2, increased p53 transcriptional activity and had a 

p53 dependent mode of action.  Further mechanistic details were not provided, 

apart from an in vitro MDM2 autoubiquitination assay using 32 P-labeled ubiquitin, 

where HLI373 was shown to inhibit ubiquitination at a dose of 3µM. 

In collaboration with Professor Allan Weissman from The National Cancer 

Institute, Maryland, USA, the in vivo activity and mode of action of HLI373 was 

further analysed. 

4.2 HLI373 stabilises and activates p53 in cells 

To confirm HLI373 induced activation of p53’s transcriptional activity, a wild-type 

p53 expressing osteosarcoma cell line (U2OS) stably expressing PG13-luciferase, 

a p53 reporter with a firefly luciferase gene under the control of 13 p53 consensus 
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response elements548, was treated with vehicle or a dose titration of HLI373 for 16 

hours. From 1µM a significant increase in luciferase signal was seen indicating 

activation of the response elements (Figure 4-2).  

 

 

 

 Figure 4-2: HLI373 increases transcriptional activity of p53. 
U2OS cells stably expressing a PG13 luciferase reporter were treated for 16 hours with 
vehicle (V) or the indicated doses of HLI373.  After addition of luciferin substrate, 
luciferase activity was determined using a luminometer.  Error bars represent SEM of 6 
replicates. 

 

A further p53 target, Macrophage Inhibitory Cytokine-1 (MIC-1), was assessed 

using quantitative real time-PCR (qRT-PCR).  As discussed more fully in chapter 

6, MIC-1 is dramatically induced by p53 activation571 and as such may be a 

potentially useful marker of efficacy of p53 activating therapies544. p53 wild-type 

expressing colorectal cancer cell line, HCT116 was treated with vehicle, HLI373 or 

Nutlin (the non-genotoxic p53 activating agent). Quantitative RT-PCR detection 

showed that HLI373 induced transcription of MIC-1 mRNA to a similar magnitude 

as achieved by Nutlin treatment in HCT116 cells (Figure 4-3). 

 

 

 

 Figure 4-3: HLI373 increases MIC-1 mRNA expression. 
HCT116 cells were treated with vehicle (V), HLI373 (H) 5µM or Nutlin (N) 10µM for 22 h.  
MIC-1 mRNA levels measured by qRT-PCR. Expression is quantified relative to control 
genes according to the comparative ΔΔCt method.  Values from three independent 
experiments are displayed as mean of 2 –ΔΔCt. Student’s two-tailed T-test indicated a 
significant change for H and N compared to V. Error bars represent SEM.*p<0.05. 
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To confirm that HLI373 stabilises and activates p53, retinal pigment epithelial cells 

(RPE) were treated with vehicle or a dose titration of HLI373 for 16 hours.  In 

agreement with Kitagaki et al, HLI373 stabilised p53 and caused increased 

expression of p53 targets p21 and MDM2, although this effect required a slightly 

higher dose than previously published (2.5µM versus 1µM).  Furthermore when 

tested in the wild-type p53 expressing, ovarian cancer cell line, A2780, HLI373 

similarly stabilised p53 and increased expression of p53 targets (Figure 4-4 A & 

B). 

 

 

 

 Figure 4-4: HLI373 stabilises p53 & increases expression of p53 targets. 
(A) RPE cells or (B) A2780 cells were treated for 16 hours with vehicle or 
concentrations of HLI373 as indicated. Expression of p53, p21, MDM2 and Actin 
(loading control) determined by immunoblot analysis. 

 

To establish the dynamics of this increase in p53 and its targets, RPE cells were 

treated with 5µM of HLI373 over a time course from 1 hour to just over 7 hours.  

HLI373 stabilised p53 after only 1 hour of treatment while MDM2 expression 

increased at 4 hours consistent with at least some of the increase in MDM2 

expression being due to an increase in p53’s transcriptional activity (Figure 4-5). 

 

 

 

 Figure 4-5: HLI373 stabilises p53 after 1 hour of treatment. 
RPE cells were treated with 5µM of HLI373 for indicated time.  Expression of p53, MDM2 
and Actin (loading control) determined by immunoblot analysis. 

 

To confirm that the increase in p21 seen following HLI373 treatment resulted in a 

cell cycle arrest, RPE cells were treated with vehicle, HLI373 or Nutlin for 24 

hours. As seen following treatment with Nutlin, HLI373 treatment caused a cell 

cycle arrest in G1 with a concomitant loss of cells in S-phase (Figure 4-6). No sub-
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G1 population of cells was seen, suggesting that the activation of p53 does not 

lead to apoptosis in this untransformed cell line. 

 

 

 

 Figure 4-6: HLI373 causes cell cycle arrest as measured by FACS analysis. 
RPE cells were treated with vehicle, 5µM HLI373 or 10µM Nutlin for 24 h.  Cells were 
harvested, PI stained & analysed by FACS.  The percentage of cells in G1, S and G2-
phase was determined and displayed as fold changes versus vehicle treated cells. 
Experiments were performed in triplicate, means & SEM are plotted. * p<0.05 using an 
unpaired, two-tailed T-test. 

 

To determine whether the effects of HLI373 are dependent on p53, isogenic 

HCT116 p53 wild-type and HCT116 p53 null cells were treated with vehicle, 

HLI373 or Nutlin as a positive control, and the cell cycle profile was quantified by 

flow cytometry.  In this case, HLI373 treatment caused cell death (as measured by 

an accumulation of cells with a subG1 DNA content) in p53 expressing, but not 

p53 null cells (Figure 4-7A).  
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 Figure 4-7: HLI373 causes a p53 dependent S phase reduction and sub G1 increase. 
HCT116 p53 wild-type or null were treated for 16 hours with indicated treatment then 
after PI staining cell cycle profile was analysed by FACS.  The cell number in each cell 
cycle phase was determined using cell quest software.  Experiments were performed in 
triplicate.   Fold change in percentage of cells in each cell cycle phase was calculated 
for each experiment and vehicle treated cells were set to 1 in each cell cycle phase.  
Averages values are plotted with SEM.  * p<0.05 as calculated by T-test. 

 

HLI373 also caused a significant and p53 dependent decrease in S-phase (Figure 

4-7B).  By contrast, Nutlin caused a p53-dependent G1 cell cycle arrest in HCT116 
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a cell cycle arrest and HLI373 promoting p53-dependent apoptosis. Previous 

studies have shown that the presence of additional oncogenic insults or DNA 

damaging signals (E2F-1, Ras, 53BP1) in cancer cells can sensitise cells to cell 

death following MDM2 inhibition treatment572-574.  While Nutlin treatment does not 

provoke this response, HLI373 can induce cell death in the cancer cell lines 

tested. 

4.3 HLI373 inhibits p53 ubiquitination in cells 

HLI373 causes an increase in expression of MDM2 (Figure 4-4) and on the basis 

of previous data suggesting HLI373 stabilises MDM2 via its inhibition of E3 ligase 

function it was assumed that this increase in expression represented both an 

increase in p53’s transcriptional activity to contribute to enhanced MDM2 

transcription and an increase in MDM2 stability.  There are several hundred RING 

E3 ligases, many of which function as dimers like MDM2. To test whether HLI373 

is specific for inhibition of MDM2’s E3 ligase activity, or capable of inhibiting other 

E3 RING ubiquitin ligases, the effect of HLI373 on the stability of two related E3 

ubiquitin ligases, XIAP and Ring1b, was examined575, 576.  HLI373, at doses 

sufficient to stabilise p53 and increase expression of MDM2, was unable to 

stabilise RING E3 ligases XIAP or Ring1b (Figure 4-8A).  There was also no clear 

effect on the expression levels of a HECT domain E3 ligase, NEDD4 (Figure 4-

8B).  

 

 

 

 Figure 4-8: HLI373 does not inhibit XIAP or Ring 1b degradation. 
(A) U2OS cells were treated with DMSO or two dose levels of HLI373, 2.5µM and 5µM.  
Lysates were run on Western and blotted for Ring1b, MDM2, XIAP, p53 and Actin 
(loading control). (B) U2OS cells were treated with PBS, DMSO or two dose levels of 
HLI373, 2.5µM and 5µM.  Lysates were run on Western and blotted for NEDD4, MDM2, 
p53 and Actin (loading control). 
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To confirm that HLI373 is a direct inhibitor of MDM2’s E3 ligase activity its ability to 

inhibit MDM2 autoubiquitination was assessed in an in vitro ubiquitination assay. 

However, even high doses of HLI373 were not able to inhibit the in vitro MDM2 

autoubiquitination reaction (Figure 4-9). 

 

 

 

 Figure 4-9: HLI373 does not inhibit MDM2 autoubiquitination. 
Bacterially expressed full-length MDM2, E1, E2 and reaction buffer (including MgCl2 
and adenosine triphosphate (ATP)) were incubated with vehicle (V) or a dose titration of 
HLI373. MDM2 was detected by Western blotting using AB1 and AB2 antibodies. 

 

To further investigate the mechanism of HLI373’s reported ability to inhibit p53 

ubiquitination, in vitro p53 ubiquitination assays were carried out. Both full-length 

MDM2 and the MDM2 RING promoted efficient ubiquitination of p53 (although the 

full-length MDM2 functioned more efficiently to polyubiquitinate p53), an activity 

that was dependent on the presence of E1 and E2. Surprisingly, HLI373 failed to 

inhibit ubiquitination by the MDM2 RING and only weakly impeded full-length 

MDM2 driven ubiquitination at very high doses (Figure 4-10).   

 

 

 

 Figure 4-10: HLI373 does not inhibit the in vitro ubiquitination of p53. 
Bacterially expressed MDM2 RING or full-length MDM2, His-p53, E1, E2 and reaction 
buffer (including MgCl2 and adenosine triphosphate (ATP)) were incubated with vehicle 
(V) or a dose titration of HLI373. The reaction was incubated at 37ºC shaking at 1200 
rpm for 1 h. p53 was detected by Western blotting using DO1 antibody. 

 

This is in contrast with previous work by Kitagaki et al showing inhibition of p53 

ubiquitination at doses of 3µM in an alternative assay.   

N
o
 E

1
/E

2
HLI373 (µM)

V 10 50 150

Mdm2

p53

MDM2/X RINGS Mdm2 RINGS Mdm2 FL

no
 E

1/
E2 V

10
µM

50
µM

15
0µ

M
no

 E
1/

E2 V

10
µM

50
µM

15
0µ

M



Chapter 4: HLI373   

 136 

Previous studies had identified HLI373 on the basis of its structural relationship to 

the HLI98 compounds, although this similarity was not profound. However, HLI373 

clearly induced a p53-dependent response in cells, so I sought to confirm the 

reported activity of HLI373 in the inhibition of ubiquitination of p53 in cells.  Non-

small cell lung cancer, p53 null H1299 cells, overexpressing p53, GFP, MDM2 or 

MDM2-C464A (an E3 ligase deficient mutant) were treated with proteasome 

inhibitor MG132 to allow accumulation of ubiquitinated p53, and Nutlin or HLI373. 

Wild-type MDM2, but not MDM2-C464A promoted the ubiquitination of p53 that 

was inhibited by Nutlin. In agreement with Kitagaki et al, HLI373 also inhibited 

ubiquitination of p53 from 1µM (Figure 4-11).   

 

 

 

 Figure 4-11: HLI373 inhibits ubiquitination of p53 in cells. 
H1299 cells transfected with p53, MDM2 or MDM2-C464A and GFP were treated with 
MG132 and vehicle, HLI373 or Nutlin (10µM) for 5 hours.  Lysates were run on Western 
and blotted for p53 and GFP. 

 

These results show that although HLI373 inhibited ubiquitination of p53 and 

stabilised and activated p53 in cells, this was not the result of the direct inhibition 

of MDM2’s E3 activity. 

4.4 HLI373 does not cause DNA damage or disrupt p53-
MDM2 binding 

The results so far indicated that HLI373 was not able to inhibit MDM2’s E3 ligase 

activity.  However, HLI373 was found to inhibit ubiquitination of p53 in cells, 

activating p53’s transcriptional programme and resulting in cell cycle arrest and 

apoptosis.   These results suggested that the effect of HLI373 on p53 might be 
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indirect, so further studies were carried out to identify the mechanism of function of 

HLI373. 

p53 can be activated via at least three distinct pathways; the DNA damage 

pathway, the oncogene activation pathway or the ribosomal stress pathway.  To 

test whether HLI373 functions through the induction of DNA damage, RPE cells 

were treated with vehicle, HLI373 at 5µM or a DNA damaging dose of act D.  The 

presence of γH2AX foci, which can be induced by double-strand DNA breaks, 

replication stalling or single stranded breaks, was detected by 

immunofluorescence577-580.  After treatment with 5µM of HLI373, a dose capable of 

p53 induction, there was no evidence of γH2AX foci (Figure 4-12).  However 

following high dose act D treatment multiple γH2AX foci were seen in each cell 

since act D treatment at high dose causes DNA damage. Thus, HLI373 does not 

appear to enhance p53 expression by inducing DNA breaks. 

 

 

 

 Figure 4-12: HLI373 does not cause formation of γH2AX foci. 
RPE cells were plated then treated for 20 hours with vehicle, 5µM HLI373 or 500nM act 
D.  Cells were then fixed, permeabilised, blocked and stained with anti-γH2AX antibody 
(green).  DAPI (blue) indicates the nuclei.  

 

In response to a multitude of stresses including replication stress, stalled 

replication forks, hypoxia, DNA strand breaks and glucose starvation p53 is 

phosphorylated on serine 15 by activation of kinases ATR, DNA-PK, ATM and 

AMPK 110, 290, 581-583.  This phosphorylation serves to disrupt the binding of p53 and 

MDM2, thereby allowing p53 to accumulate and become active.  HLI373’s ability to 

induce phosphorylation of p53 on serine 15 was tested284.  U2OS cells were 

treated with vehicle, a dose titration of HLI373 or Nutlin, the non-genotoxic p53 

stabiliser.  HLI373 stabilised p53 and increased expression of p21 from 2µM.  

However, despite the increase in overall p53 levels, there was no increase in the 

detection of p53 phosphorylation on serine 15, which remained at levels very 

Vehicle HLI373 5µM High dose actinomycin  D 
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similar to those seen in untreated or Nutlin treated cells (Figure 4-13). HLI373 

therefore does not induce strong phosphorylation of serine 15 in p53. 

 

 

 

 Figure 4-13: HLI373 does not cause phosphorylation of p53 serine 15. 
U2OS cells treated with vehicle (V), a dose titration of HLI373 or Nutlin 10µM for 22h.  
Lysates were run on Western and blotted for p53, pS15 p53, p21 and Actin (control). 

 

HLI373 displays a similar effect on p53 activity in cells as Nutlin.  Furthermore 

Nutlin also does not inhibit MDM2 in an in vitro p53 ubiquitination assay, since 

Nutlin binds to the N-terminus of MDM2 in a region that is not required for E3 

activity (which is carried out by the RING)319.  This similarity led me to consider 

whether HLI373 could inhibit p53-MDM2 binding.  To test this, the effect of HLI373 

and Nutlin on the p53-MDM2 interaction was tested in cells. This interaction could 

be detected in control conditions, and was clearly reduced by Nutlin (Figure 4-14). 

However, HLI373 treatment led to only a small reduction in the 

immunoprecipitation of MDM2 with p53, but this correlated with slightly lower 

levels of MDM2 input.  Lane 4, where no p53 was transfected demonstrated that 

the immunoprecipitation was specific for pull down of p53 (Figure 4-14). Taken 

together, there is no evidence that HLI373 interferes with the ability of MDM2 to 

bind p53. 

 

 

 

 Figure 4-14: HLI373 does not disrupt p53-MDM2 binding. 
U2OS cells were transfected with MDM2 and p53 or empty vector.  Cells were treated 
with vehicle (V), Nutlin (N, 10µM) or HLI373 (H, 5µM).  Cells were lysed and 5% taken for 
input.  p53 was immunoprecipitated using DO1 antibody.  Input and IP samples were 
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run on Western and blotted for p53 and MDM2. 

4.5 HLI373 causes ribosomal stress 

As detailed in chapter 1 p53 can also be activated via pathways that do not require 

disruption of p53-MDM2 binding. Oncogene activation causes ARF to bind to 

MDM2 and inhibit MDM2-mediated p53 ubiquitination without breaking the 

interaction between p53 and MDM2. Similarly ribosomal stress causes ribosomal 

proteins to bind MDM2 inhibiting it without preventing the p53-MDM2 interaction276, 

278, 279, 559, 561, 584-587.  Since HLI373 is capable of stabilising p53 in U2OS cells, 

which have lost ARF588, it is unlikely that HLI373 works via ARF.  HLI373’s ability 

to cause ribosomal stress was therefore investigated.  

U2OS cells were treated for 20 hours with vehicle, HLI373 or low doses of act D, 

which causes ribosomal stress and perturbs ribosome biogenesis by inhibiting 

RNA polymerase I (as discussed further in chapter 5)469, 589.  This is in contrast 

with act D’s use at high doses where it inhibits RNA polymerase II590, 591. After drug 

treatment cells were fixed and nucleolar protein nucleophosmin/B23 was detected 

by immunofluorescence.  Both act D, and HLI373 - used at a dose sufficient to 

activate p53 - caused loss of nucleolar integrity as determined by translocation of 

nucleophosmin staining from the nucleoli to the nucleoplasm592 (Figure 4-15). 

 

 

 

 Figure 4-15: HLI373 causes translocation of nucleophosmin. 
Equal numbers of U2OS cells were plated & treated with vehicle, HLI373 5µM or 
act D 50nM for 12 hours.  Cells were fixed & permeablised then probed with anti-
B23 antibody (red).  DAPI indicated the nuclei (blue).  A higher magnification of a 
single cell image is shown in the white box. 

 

To establish further evidence that the activation of p53 seen following HLI373 

treatment is via the ribosomal stress pathway, ribosomal protein binding to MDM2 

was investigated. U2OS cells were treated with vehicle, HLI373 or act D for 16 
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hours, after which ribosomal protein L11 was immunoprecipitated and MDM2 

binding assessed.  Like act D, HLI373 appears to enhance MDM2-L11 binding 

(Figure 4-16).  This is consistent with HLI373 inducing ribosomal stress dependent 

MDM2 inhibition. 

 

 

 

 Figure 4-16: HLI373 enhances MDM2-L11 binding. 
U2OS cells were treated with vehicle, HLI373 5µM or act D 5nM for 16h.  Cells were 
treated with MG132 for 4h pre-harvest.  Cells were lysed and 5% taken for input. L11 
was immunoprecipitated.  Input & IP samples were run on Western & blotted for L11 & 
MDM2.  Act D was run on the same blot but irrelevant bands have been removed. 

 

As ribosomal stress is caused by perturbations in the biogenesis of ribosomes, the 

effect of HLI373 treatment on production of ribosomal RNA was explored. U2OS 

cells were treated with vehicle, HLI373 or act D.  Pre-RNA was harvested and after 

reverse transcription, 45S pre-rRNA and the control genes, ribosomal protein large 

P0 (RPLP0) and beta-2-microglobulin (B2MG), were measured by qRT-PCR.  

HLI373 clearly reduced transcription of 45S pre-rRNA relative to the control genes 

consistent with HLI373 having effects similar to act D on ribosomal biogenesis 

(Figure 4-17). 

 

 

 

 Figure 4-17: HLI373 reduced 45S pre-ribosomal RNA expression. 
45S Pre-rRNA expression determined by qRT-PCR in cells treated with 5µM HLI373 or 
act D (Act D) 5nM as compared to vehicle alone.  Expression is quantified relative to 
control genes according to the comparative ΔΔCt method.  Values from three 
independent experiments are displayed as mean of 2 –ΔΔCt.  Student’s two-tailed T-test 
for all comparisons indicated a significant change for both HLI373 and act D compared 
to vehicle treated cells (*).  Error bars represent SEM. 
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Like act D, HLI373 appears to activate p53 via the ribosomal stress pathway by 

interfering with ribosome biogenesis.  As both HLI373 and act D are able to 

activate p53 while retaining p53-MDM2 binding the role of p53-MDM2 binding in 

inhibition of 45S pre-rRNA was investigated by examining the effect of Nutlin 

treatment on 45S pre-rRNA expression following HLI373 and act D treatment. 

Since Nutlin would interfere with p53-MDM2 binding, it would be expected to 

prevent an HLI373 induced reduction in 45S pre-rRNA, if p53-MDM2 binding is 

required for this effect.  Indeed, there was significant although modest rescue of 

the inhibition of 45S pre-rRNA expression by HLI373 treatment by the addition of 

Nutlin, consistent with a role for the p53-MDM2 interaction in this response. 

However, Nutlin treatment failed to rescue the act D induced decrease in 45S pre-

rRNA production (Figure 4-18), suggesting that this was achieved through a 

different mechanism. Importantly, Nutlin treatment alone did not affect 45S pre-

rRNA expression. 

 

 

 

 Figure 4-18: Intact p53-MDM2 binding contributes to HLI373 induced reduction in 45S 
pre-mRNA.  
45S Pre-rRNA expression determined by qRT-PCR in cells treated with Nutlin 10µM, 
5µM HLI373, Nutlin 10µM, act D 5nM, HLI373 & Nutlin or act D & Nutlin as compared to 
vehicle alone. Expression is quantified relative to control genes according to the 
comparative ΔΔCt method.  Values from three independent experiments are displayed 
as mean of 2 –ΔΔCt.  Error bars represent SEM.*p=0.0082 using Student’s two-tailed T-
test compared to HLI373 treatment alone. 

 

HLI373 interferes with ribosomal biogenesis causing ribosomal stress and p53 

activation via a mechanism that at least partly dependent on p53-MDM2 binding.  

4.6 HLI373 reduces MDMX expression 

It has previously been shown that MDMX modulates p53’s response to ribosomal 

stress.  Gilkes et al proposed that the decrease in MDMX seen following ribosomal 

stress is due to an increase in MDM2 dependent degradation of MDMX280.  The 
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MDMX levels following HLI373 treatment were therefore examined in U2OS cells.  

HLI373 clearly reduced the level of MDMX at doses where it stabilised p53 and 

increased levels of MDM2, By contrast, Nutlin had no effect on MDMX levels 

(Figure 4-19A).  Furthermore, the HLI373 induced reduction in MDMX expression 

after 4 hours of HLI373 treatment was concomitant with the increase in MDM2 

levels.  MDMX was no longer detectable after 8 hours of treatment (Figure 4-19B).   

 

 

 

 Figure 4-19: HLI373 causes a reduction in MDMX expression. 
(A) U2OS cells were treated with vehicle, HLI373 (2.5µM, 5µM, 10µM) or Nutlin (2.5µM, 
5µM, 10µM) for 16 hours.  Expression of MDMX, MDM2, p53 and Actin (loading control) 
was detected by immunoblot analysis. (B) RPE cells were treated with 5µM of HLI373 
for varying times as indicated.  Expression of MDMX, MDM2 and Actin (loading control) 
was detected by immunoblot analysis. 

 

To examine whether the reduction in MDMX is due to increased degradation of the 

protein, cells were treated with HLI373 and MG132 to inhibit the proteasome, to 

rescue the MDMX expression levels. MG132 treatment resulted in the stabilisation 

of p53, indicating that proteasomal inhibition has been successfully achieved. 

However, MG132 treatment was unable to restore MDMX levels after HLI373 

treatment (Figure 4-20).   

 

 

 

 Figure 4-20: MG132 treatment does not rescue HLI373 induced MDMX reduction. 
HCT116 cells were treated as indicated.  Expression of MDMX, p53 & Actin (loading 
control) was detected by immunoblot analysis. V=Vehicle, H=HL1373, M=MG132. 

 

To further confirm that HLI373 treatment does not cause MDMX degradation, 

U2OS cells were transfected with MDM2 and GFP-MDMX then treated with 

HLI373.  Consistent with the HLI373 induced reduction in MDMX expression not 
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being due to an increase in degradation of MDMX via the proteasome, HLI373 was 

not able to reduce the level of MDMX when driven by an exogenous promoter 

(Figure 4-21).  

 

 

 

 Figure 4-21: MDMX expressed from an alternative promoter is not reduced by HLI373. 
U2OS cells were transfected with MDM2 and GFP-MDMX.  24 hours later cells were 
treated with vehicle (V), HLI373 (H,5µM) or Nutlin (N,10µM) for 16 hours. Expression of 
MDMX, p53 and Actin (loading control) was detected by immunoblot analysis. 

 

Since HLI373 does not affect MDMX protein stability, other mechanisms to 

regulate expression were examined. The extent of protein expression reflects a 

series of regulatory steps that include transcription, the modification of the primary 

transcript to become mature messenger RNA, and translation (Figure 4-22).  As 

such some of these steps were explored to establish at which point HLI373 

influences MDMX expression. 

 

 

 

 Figure 4-22: RNA processing. 
TF=transcription factor. 

 

Firstly, MDMX mRNA was examined to explore whether the reduction in MDMX 

protein seen following HLI373 treatment could be the reflection of a decrease in 
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transcription. MDMX mRNA levels were measured following vehicle, HLI373 or 

Nutlin treatment of RPE, HCT116 and U2OS cells.   A significant reduction in 

MDMX mRNA expression was seen following HLI373 treatment of each cell line 

tested (Figure 4-23).   

 

 

 

 Figure 4-23: HLI373 reduces MDMX expression at a transcriptional level. 
RPE (A), HCT116 p53 wild-type (B) and U2OS (C) cells were treated with vehicle, HLI373 
(5µM) or Nutlin (10µM) for 20 hours.  Levels of MDMX mRNA were measured on real-
time PCR.  Expression is quantified relative to control genes according to the 
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comparative ΔΔCt method.  Values from three independent experiments are displayed 
as mean of 2 –ΔΔCt. Error bars represent SEM.  

The most profound reduction was seen in RPE cells, although the largest variation 

between experiments was also seen in this cell line.  The reduction in MDMX 

mRNA levels occurred under conditions where transcription of Pol II-dependent 

gene beta 2 microglobulin was not affected, demonstrating the selectivity of 

HLI373 for MDMX.  As expected there was no change in transcription of MDMX 

following Nutlin treatment. 

Both HLI373 and Nutlin induce p53, increase expression of p53 targets (to a 

similar degree) and cause cell cycle arrest. However, only HLI373 induced a 

reduction in MDMX, suggesting that this effect is likely to be p53 independent.  To 

assess this directly, MDMX mRNA was measured following 17 hours of vehicle, 

HLI373 or Nutlin treatment in isogenic HCT116 cells either wild-type or null for 

p53. HLI373 clearly reduced MDMX mRNA regardless of p53 status, therefore 

HLI373 reduces MDMX via a p53 independent mechanism (Figure 4-24). 

 

 

 

 Figure 4-24: The effect of HLI373 on levels of MDMX mRNA expression is p53 
independent. 
HCT116 cells wild-type (wt) or null for p53 were treated with vehicle, HLI373 (5µM) or 
Nutlin (10µM) for 17h.  MDMX mRNA measured by real-time PCR.  Expression is 
quantified relative to control genes according to the comparative ΔΔCt method.  Values 
from three independent experiments are displayed as mean of 2 –ΔΔCt.  Error bars show 
SEM.   

 

Changes in mRNA expression can result from changes in transcription or mRNA 

stability. In order to address whether MDMX transcription or mRNA stability were 

affected by HLI373, MDMX pre-mRNA was measured after vehicle, HLI373 or 

Nutlin treatment of RPE cells, revealing a clear ability of HLI373 treatment to 

reduce MDMX pre-mRNA levels, although no change was seen following vehicle 
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or Nutlin treatment (Figure 4-25). These data support a model where HLI373 

inhibits the MDMX promoter activity. 

 

 

 

 Figure 4-25: HLI373 reduces MDMX pre-mRNA. 
RPE cells were treated with vehicle, HLI373 (5µM) or Nutlin (10µM) for 20 hours.  Levels 
of MDMX pre-mRNA were measured on real-time PCR.  Expression is quantified relative 
to control genes according to the comparative ΔΔCt method.  Values from three 
independent experiments are displayed as mean of 2 –ΔΔCt.  Error bars represent SEM. 

 

To further establish whether the reduction in MDMX mRNA is through promoter 

regulation, an MDMX-luciferase construct was used.  This construct was 

previously constructed by cloning the 5’ upstream region of MDMX of 1100bp into 

a luciferase reporter plasmid pGL2-Basic (Figure 4-26A) 549. The MDMX-luciferase 

construct and TK-renilla construct (transfection control) were transfected into 

U2OS cells, which were then treated with vehicle, a dose titration of HLI373 or 

Nutlin.  HLI373 induced a dose dependent reduction in MDMX promoter activity 

relative to TK promoter activity (Figure 4-26B), supporting the hypothesis that 

HLI373 represses the MDMX promoter. 

 

 

 

 Figure 4-26: HLI373 reduces activity of the MDMX promoter as measured in a 
luciferase reporter assay. 
(A) Schematic model of the MDMX luciferase reporter construct. (B) U2OS cells 
were transfected with MDMX-luciferase and TK renilla.  After 24 hours cells were 
treated with vehicle, a titration of HLI373 as indicated or Nutlin (10µM) for 16 
hours.  After lysis and substrate addition luminescence was quantified on a 
luminometer.  Luciferase activity in vehicle treated cells was set to 1. Mean 
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values of at least three experiments are plotted with error bars showing the SEM. 

Since HLI373 causes reduced MDMX mRNA expression at the promoter level a 

search for potential transcription factors that the regulate MDMX promoter was 

undertaken.  Using Genomatix on-line software, the MDMX promoter was 

therefore screened for potential transcription factor binding sites.  From this, 38 

sites (Figure 4-27) for 30 different transcription factors (table 4-1) were predicted.  

Of the predicted transcription factors two (ETS-1 and Elk) have previously been 

reported to be involved in the transcription of MDMX549.   

 

 

 

 Figure 4-27: Predicted transcription factor binding sites on MDMX promoter. 
38 sites for 30 transcription factors identified using genomatix on-line software. 
Different colours are indicative for different transcription binding sites and upward or 
downward orientation of the colours indicates the orientation of the transcription 
binding site.  The grey and black divisions indicate 50bp intervals. 

 

Each of these transcription factors may play a role in mediating the effect of 

HLI373 on MDMX expression. 

Table 4-1: Transcription factors predicted to bind the MDMX promoter. 
Rank Transcription factor Frequency 
1 EVI1 encoded factor, amino-terminal zinc finger domain 1 
2 Hmx2/Nkx5-2 homeodomain transcription factor 2 
3 Pdx1 pancreatic and intestinal homeodomain transcription factor 1 
4 Homeobox transcription factor Gsh-1 2 
5 Carbohydrate response element binding protein & Max-like protein X 

bind as heterodimers to glucose responsive promoters 
1 

6 Collagen krox protein 1 
7 Interferon regulatory factor 4 2 
8 Interferon regulatory factor 3 1 
9 GATA binding factor 3 1 
10 Hox-1.3, vertebrate homeobox protein 2 
11 Elk-1 2 
12 Homeobox and leucine zipper encoding transcription factor 2 
13 ETS 1 
14 Zinc finger transcription factor ZBP-89 1 
15 Metal induced transcription factor 1, MRE 1 
16 POZ/ zinc finger protein transcriptional repressor 2 
17 E2F-1/DP-2 heterodimeric complex 1 
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18 Wilms tumour suppressor 1 
19 Estrogen-related receptor beta 1 
20 Nuclear hormone receptor TR2, DR5 binding sites 1 
21 POU class 6 homeobox 1 1 
22 Zinc finger protein 263, ZKSCAN12  1 
23 Monomers of nur subfamily of nuclear receptors 1 
24 Serum response factor 2 
25 Tumour suppressor p53 1 
26 Erythroid krueppel like factor 1 
27 PAX-3 paired domain protein, expressed in embryogenesis 1 
28 V-myb, variant of AML v-myb 1 
29 Myc associated zinc finger protein 1 
30 Myeloid zinc finger protein 1 
All predicted sites have 100% core similarity & listed ranked by highest matrix similarity.  
Transcription factors already known to regulate MDMX expression are shown in bold. 

 
In addition to the control of transcription, mRNA levels can be affected by several 

mechanisms that control mRNA stability (5’ capping, 3’ polyadenylation, alteration 

of regulatory elements and nuclease activity, miRNA). To examine this, U2OS 

cells were treated with act D at doses capable of blocking all pol II activity.  Cells 

were then treated with HLI373 or vehicle and MDMX mRNA levels determined at 

different time points. No significant difference was seen between the half-life of 

MDMX mRNA measured in cells treated with vehicle versus those treated with 

HLI373 (Figure 4-28).  

 

 

 

 Figure 4-28: HLI373 does not alter the half-life of MDMX mRNA. 
U2OS cells were treated with act D (400nM) and vehicle or HLI373 (5µM).  Cells were 
harvest at the times indicated and MDMX mRNA was measured by quantitative real 
time PCR.  Expression is quantified relative to control genes according to the 
comparative ΔΔCt method.  Values from three independent experiments are displayed 
as mean of 2 –ΔΔCt.  Error bars indicate the SEM. 
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Splicing of pre-mRNA provides another level of regulation of gene expression.  

Furthermore previous publications have reported alternative splicing of MDMX in 

response to stress that can also occur in cancer cells355, 357, 358.  Eight splice forms 

of MDMX are reported in literature however these cannot all be detected with the 

antibodies used here (Figure 4-29A).  Furthermore the quantitative RT-PCR data 

used primers which detect MDMX FL and MDMX L. (Figure 4-29B). 

 

 

 

 Figure 4-29: MDMX splicing map and qRT-PCR primer location. 
(A) Schematic of the known alternative splice forms of MDMX. (B) Location of primers.  
RE=response element, P=promoter, F=forward, R=reverse. 

 

To investigate a potential effect of HLI373 on mRNA splicing, a panel of normal 

and cancer cells was examined, to determine whether more than one MDMX 

isoform was detectable. Several of the cell lines used here display evidence of 

alternatively spliced forms of MDMX, with most cells expressing two forms of 

MDMX protein at around 76 and 60kD, while HCT116 has a further form at around 

40kD (Figure 4-30).  As shown previously, MDMX level correlated with p53 

status593.  p53 null and mutant tumour cell lines (H1299, Hep3B, MDA-MB231, 

A431, HT29) have a low MDMX levels, as do HPV18 E6 expressing HeLa cells. 

p53 wild-type tumour cell lines (MCF-7, U2OS, A2780/8, Hek293T, HCT116) show 

higher levels of MDMX, while the two untransformed cell lines (RPE and MCF-10a) 

also express low MDMX levels (Figure 4-30).  This suggests that the high level of 

MDMX expression is important for inactivating p53 in these tumour cell lines. 
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Figure 4-30: Several different isoforms of MDMX are expressed in tissue culture cells. 
40µg lysates of each cell line were run on Western and Actin (loading control) and 
MDMX (polyclonal antibody) level was measured by immunoblot analysis. (B) 
Quantification of MDMX forms relative to Actin. 

 

To investigate whether HLI373 differentially influences the level of each MDMX 

form, HCT116 cells (where three isoforms of MDMX can be assessed) were 

treated with vehicle or a dose titration of HLI373.  All three forms of MDMX seem 

to be reduced to a similar degree, therefore there is no evidence that HLI373 

treatment alters the splicing of MDMX (Figure 4-31). 

 

 

 

 Figure 4-31: Expression of MDMX isoforms in response to HLI373 treatment. 
HCT116 cells were treated with vehicle (V) or HLI373 as indicated for 16h.  Expression 
of MDMX and Actin (loading control) was assessed by immunoblot analysis. 
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Finally, micro-RNAs may also contribute to the levels of MDMX expression, 

miRNAs are small nucleotide sequences that bind the 3’ untranslated region of 

their target mRNA to regulate gene expression through various mechanisms, 

including the promotion of degradation of mRNA and repression of translation594. It 

is therefore possible that, in addition to the regulation of transcription, HLI373 

functions through the control of miRNAs that target MDMX, although the 

observation that HLI373 does not affect MDMX mRNA stability (Fig 4-28) makes 

this less likely. Nevertheless, MDMX levels are regulated by miR-34a (a p53 

target)595, 596 which has a miR-34a binding site the its 3’ untranslated region597. 

Real-time PCR revealed only a modest increase in pri-miR-34a following both 

HLI373 and Nutlin treatment in HCT116 cells (Figure 4-32). Since Nutlin treatment 

induced pri-miR-34a to a similar degree as HLI373, but Nutlin did not induce 

changes in MDMX mRNA levels, it is unlikely that miR-34a is a major factor 

contributing to the HLI373 induced reduction in MDMX. However, it remains 

possible that other miRNAs are involved in mediating the effect of HLI373 on 

MDMX. 

 

 

 

 Figure 4-32: HLI373 has a modest effect on miR-34a. 
HCT116 cells, p53 wild-type, were treated with vehicle, HLI373 (5µM) or Nutlin (10µM) 
for 16 hours.  pri-miR-34a was measured by quantitative real-time PCR. Expression is 
quantified relative to control genes according to the comparative ΔΔCt method.  Values 
from three independent experiments are displayed as mean of 2 –ΔΔCt.  Error bars 
represent SEM. 

 

4.7 HLI373 in vivo 

As described earlier, HLI373 was selected for further study in part due to its 

favourable solubility, which would allow in vivo evaluation of its potential as an 

anti-cancer p53 stabilising agent.  In addition, work presented here suggests that 

HLI373 may be an inhibitor of both MDM2 (via its ability to cause ribosomal stress) 

and MDMX (by inducing a reduction in activity of the MDMX promoter).  As one of 
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the earliest dual inhibitors of MDM2 and MDMX, HLI373’s ability to stabilise p53 in 

vivo was examined. Vehicle or HLI373 50mg/kg was administered intraperitoneally 

(IP) to C57BL/6 mice.  Mice were culled after 2 and 8 hours. No mice were 

sacrificed earlier than the experimental plan dictated.  Immunohistochemistry was 

performed to look for evidence of p53 pathway activation.  At 2 hours after 

treatment mice treated with HLI373 had an increased expression of p53 in 

gastrointestinal crypts (Figure 4-33).  By 8 hours after treatment the level of p53 

was restored to normal levels but p21 activation could be seen, consistent with 

increased transcriptional activity of p53. 

 

Figure 4-33: HLI373 activates p53 in normal mouse tissues. 
C57BL/6 mice were treated with vehicle or HLI373 50mg/kg IP. Mice were taken at 2 and 
8 hours.  Intestinal tissue was harvested and fixed.  Gut rolls were then formed and 
paraffin embedded.  Sections were taken and mounted onto slides for p53 and p21 IHC.   

 

HLI373 was next evaluated in a tumour model to look for evidence of anti-cancer 

activity as a result of the p53 activation.  Nude mice were injected with HCT116 

cells to form subcutaneous xenografts.  Xenografts were allowed to reach 

approximately 200mg then mice were treated with vehicle or HLI373 50mg/kg.  

Mice were also treated with Bromodeoxyuridine (BrdU) IP 1 hour prior to mice 

being taken.  Mice treated with HLI373 had increased levels of p53 in their tumour 

xenograft at 2 hours post treatment.  There was a corresponding reduction in 

proliferation as shown by a reduction in BrdU staining (Figure 4-34). 

HLI373 appears to have the ability to stabilise p53 and reduce xenograft 

proliferation in the short-term experiments described here. This is encouraging, 
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and supports further in vivo study to look for evidence of anti-cancer activity in 

terms of xenograft shrinkage. Further evaluation of HLI373 induced MDMX 

modulation in normal and xenograft tissue will be interesting. 

 

 

 

 Figure 4-34: HLI373 stabilises p53 and reduces proliferation in xenografts. 
Athymic nude mice were injected with HCT116 cells subcutaneously to form a 
xenograft.  Tumours were staged to 200mg then treated with IP vehicle, IP HLI373 
50mg/kg Three mice were treated for each condition.  Tumour samples from mice taken 
at 2 hours post treatment are shown.  After fixation and paraffin embedding sections 
were cut to perform IHC for BrdU and p53.  Representative images are shown.  
Magnification is indicated. 

 

4.8 Summary and discussion 

These studies show that HLI373 interferes with ribosomal biogenesis at the level 

of rRNA transcription by a mechanism that is enhanced by intact p53-MDM2 

binding.  This inhibition of ribosomal production leads to a consequent release of 

ribosomal proteins, which bind to MDM2 and inhibit it.  

Additionally via a p53 independent mechanism HLI373 inhibits MDMX transcription 

at the promoter level.   The specific mechanism of this inhibition of MDMX 

transcription remains to be determined but one could speculate that HLI373 is 
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likely to act via one or several of the transcription factors predicted to bind the 

MDMX promoter. 

HLI373 is therefore a dual inhibitor of MDM2 and MDMX and the stabilisation and 

activation of p53 demonstrated in cells and in vivo following HLI373 treatment is 

therefore likely to be through activation of the ribosomal pathway and inhibition of 

MDMX expression.  

While the importance of MDM2 as a negative regulator of p53 has been 

appreciated for some time it is only in recent years that MDMX’s importance has 

also been appreciated.   Mouse models have shown that MDM2 and MDMX play a 

non-redundant role in keeping p53 under control during embryogenesis and 

development246, 270. Neither can compensate for the other and both have tissue 

specific roles.  While MDM2 has E3 ligase activity alone, by cooperating with 

MDMX to form a heterodimer a more effective E3 ligase is created.  Mouse models 

expressing the MDMX C462A mutant, which is unable to heterodimerise with 

MDM2 and is embryonic lethal have demonstrated that this MDM2-MDMX 

complex formation is essential for the negative regulation of p53352 as MDM2 

knockout mice are similarly embryonically lethal.  Since MDMX is vital in the 

negative regulation of p53 it makes sense to design drugs to inhibit this negative 

regulation and therefore reactivate p53 in MDMX overexpressing tumours.  

Furthermore in a mouse model of c-myc induced lymphomagenesis deletion of 

one allele of either MDM2 or MDMX suppressed lymphomagenesis suggesting 

that therapeutic inhibition of MDMX should be effective in reactivating p53s tumour 

suppressive activities423, 598.  Moreover pre-clinical experience of MDM2 inhibition 

therapy thus far has shown that increased expression of MDMX is one of the 

mechanisms of primary resistance to MDM2 inhibition suggesting that concurrent 

MDMX inhibition could improve the effectiveness of MDM2 inhibition therapy434, 438-

440. Taken together this makes dual inhibition of MDM2 and MDMX an attractive 

anti-cancer strategy264, 599.   

The most well established method of MDMX inhibition to date is through 

administration of DNA damaging chemotherapeutic agents, which activate DNA 

damage signalling causing phosphorylation of MDMX and MDM2 leading to 

dissociation of HAUSP and MDM2-mediated autoubiquitination and ubiquitination 
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of MDMX262, 600-602.  Furthermore both cell line studies and animal models have 

investigated the effectiveness of MDM2 inhibitors in combination with genotoxic 

chemotherapeutic agents and have shown this to be a particularly effective 

strategy in treatment of tumours overexpressing MDMX406, 439, 570, 603, 604. 

Despite MDM2 and MDMX having fairly similar structures neither Nutlin nor MI-219 

(another low nanomolar inhibitor of the MDM2-p53 interaction) are able to bind to 

MDMX with high affinity406, 432.  Attempts at structural based design of specific 

inhibitors of p53-MDMX inhibitors have proved difficult due to the shallower and 

less accessible p53 binding pocket of MDMX605-607. So far one MDMX inhibitor has 

been described, however the compound displayed only very poor potency456.  

Bernal et al reported a stapled peptide that could inhibit the p53-MDMX, but not 

the p53-MDM2 interaction608.  A few MDM2/MDMX dual peptide inhibitors have 

now also been reported, but these have not yet undergone testing in cells459-463 458.   

More recently Graves et al reported a small molecule inhibitor of both MDM2 and 

MDMX which works by binding the N-terminal p53 binding site of MDM2 and the 

N-terminal p53 binding site of MDMX causing MDMX and MDM2 to heterodimerise 

via their N-termini and therefore be unable to negatively regulate p53609.  This 

compound has been shown to be able to stabilise and activate p53 in cells. 

HLI373 may therefore be the second dual inhibitor of MDM2 and MDMX, which 

has been tested in cells.  However at present there are outstanding questions 

regarding the specific mechanism of action of HLI373 and in particular regarding 

its ability to inhibit activity of the MDMX promoter. 

Firstly since ELK1 and ETS have previously been shown to be involved in 

transcription of MDMX HLI373’s effect on mitogenic signalling should be explored 

by cell line studies looking for HLI373 induced alteration in mitogen-activated 

protein kinase (MAPK) pathway activity549.  

The next step would be to create deletion constructs from the full-length 1100bp 

MDMX-luciferase construct and then perform luciferase assays with a dose 

titration of HLI373.  This would help identify which area of the MDMX promoter 

HLI373 is inhibiting. Subsequently predicted transcription factor binding sites in the 
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region of interest could be mutated to establish which transcription factor the 

HLI373-induced reduction in MDMX is dependent on.  Following this the 

transcription factor of interest could be chromatin immunoprecipitated to the 

MDMX promoter after a dose titration of HLI373. 

Regardless of the outcome of the work suggested above it would also be of 

interest to establish the contribution that the HLI373 induced down-regulation of 

MDMX makes to the p53 activating ability of HLI373 perhaps by testing HLI373’s 

p53 activating ability in a panel of cells with a range of basal levels of MDMX and 

examining the response of cells to HLI373 treatment with and without MDMX 

knock down. 

Ultimately after cell line studies gaining insight into HLI373’s mechanism of action 

further in vivo evaluation of HLI373 would be beneficial.  Firstly a larger cohort of 

mice should be treated to confirm the p53 activating ability of HLI373 in mouse 

tissue and xenografts.  Secondly the ability of HLI373 to inhibit MDMX in vivo 

remains to be explored.  Thirdly experiments over a longer time course are 

required to look for evidence of anti-cancer activity of HLI373.  This could include 

xenograft studies as well as study in genetically engineered mice that express a 

tumour specific MDMX/MDM2 overexpression. 

In conclusion much remains to be studied regarding HLI373’s mechanism of action 

however early indications are that it stabilises p53 by activating the ribosomal 

stress pathway and inhibits MDMX at the promoter level.  This makes HLI373 the 

first dual inhibitor of MDM2 and MDMX described to work in this way. 



 

 

 
 
 
 
 
 
 
 
5 MDM2 inhibitors for chemoprotection 
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5.1 History of chemoprotection strategy 

In clinical practice, the use of MDM2 inhibition treatment, with consequent p53 

activation, may be useful in two broad settings.   

Firstly MDM2 inhibitors are being developed as therapeutics for the treatment of 

wild-type p53 expressing cancers, in particular where p53 has been inactivated via 

upregulation of MDM2 or MDMX1. These tumours would be predicted to be highly 

sensitive to the stabilisation and activation of p53, and various mouse models 

have suggested that the activation of p53 can promote tumour regression134, 417, 

418. A general prediction from mouse models and clinical data426-428 is that transient 

activation of p53 in normal tissue is not extensively toxic, and the differential 

sensitivity of transformed cells to p53-mediated death has been described in a 

number of systems572, 573, 610. 

The second application for an MDM2 inhibitor is as a chemoprotective agent for 

use in the treatment of p53 deficient tumours (mutant or null for p53). The principle 

here is to induce a transient cell cycle arrest in normal cells while allowing tumour 

cells (that have deregulated proliferative signals) to continue cycling. In this 

setting, some cytotoxic drugs should be effective only on the proliferating, tumour 

cells – sparing normal tissue (Figure 5-1). The chemoprotective agent would 

therefore reduce the toxicity, widen the therapeutic window and allow maintenance 

of high dose intensity and potentially escalation of the cytotoxic treatment.  

 

 

 

 Figure 5-1: Schematic of chemoprotective strategy.  
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To date there are 2 low-dose traditional chemotherapy agents (low-dose 

doxorubicin and low-dose act D) that have been investigated in this 

chemoprotective setting, however as yet none of the studied 

chemoprotectant/therapeutic combinations are in clinical practice510-512, 611-613 

(table 5-1).  MDM2 inhibitors, including the p53-MDM2 interaction inhibitor Nutlin, 

should also be capable of arresting the cell cycle of normal wild-type p53 

expressing tissues prior to administration of cytotoxic agents to target the cycling 

p53 deficient tumour cells. The cell line studies investigating the potential of a 

variety of chemoprotectant/therapeutic combinations are listed in table 5-1.  

Table 5-1: Cell line studies investigating chemoprotective strategy. 

Author Protective  Therapeutic agent 

Protection 
p53  
wild-type 

p53 
deficient 

Blagosklonny et 
al612 LD 

doxorubicin 

A
nt

i-m
ito

tic
 a

ge
nt

s 

Epitholones A and B Yes No 
Blagosklonny511 Paclitaxel Yes Yes 
Blagosklonny et 
al612 Vinblastine Yes No 
Rao et al613 LD act D AK inhibitor VX680 Yes Yes 
Cheok et al517 

Nutlin 

AK inhibitor VX680 Yes No 
Sur et al515 PLK inhibitor BI-2536 Yes No 
Apontes et al614 Nocodazole Yes No 
Apontes et al614 
Carvajal et al514 
Tokalov and 
Abolmaali516 

Paclitaxel Yes No 

Kranz and 
Dobbelstein615 

A
nt

i-m
et

ab
ol

ite
 

Ara-C Yes No 

Kranz and 
Dobbelstein615 Gemcitabine Yes No 

Kranz and 
Dobbelstein615 

N
on

-
sp

ec
ifi

c 

Cisplatin No NT 
Kranz and 
Dobbelstein615 Doxorubicin No NT 
(NT)=Not Tested (AK)=Aurora Kinase (LD)=Low-Dose (Act D)=Actinomycin D (PLK)=Polo-Like 
Kinase. Grey shaded boxes indicate combinations where wild-type p53 expressing cells are 
protected from cytotoxic effects while p53 deficient cells are not.  Adapted from van Leeuwen 
2012616. 

 
These studies suggested that several drug combinations may allow specific 

protection of wild-type, but not p53 deficient cells (grey shaded combinations).  Of 

these, the combinations of particular interest fall into 2 groups: 

1. Chemoprotective agent with anti-metabolite. 
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• Nutlin with Ara-C (cytosine arabinoside).   

Ara-C is a pyrimidine analogue, which is administered intravenously and then 

undergoes intracellular phosphorylation to become active (ara-CTP).  This 

conversion is catalysed by multiple kinases including deoxycytidine kinase, which 

has its highest activity in S-phase.  The active ara-CTP then directly inhibits DNA 

polymerase, is incorporated into DNA causing chain termination and inhibiting 

DNA synthesis.  Ara-C also inhibits ribonucleotide reductase therefore inhibits 

synthesis of deoxynucleoside triphosphates.  Deaminating reactions catalysed by 

cytidine deaminase cause degradation of active metabolites of ara-C.  In clinical 

practice ara-C is the cornerstone of treatment for AML (acute myeloid leukaemia) 

however it has only minor activity in solid tumours. This may be due to the high 

deaminase levels of solid tissues or differences in the intracellular activation of 

ara-C617.  Ara-C’s S-phase specific activity makes it an attractive candidate for the 

chemoprotective/therapeutic combination however since its main use is in AML 

where the vast majority of tumours express wild-type p53618 the clinical impact of 

this combination would be low. 

• Nutlin then gemcitabine.  

Gemcitabine (2,2-difluorodeoxycytidine) is also a pyrimidine analogue but in 

contrast this does have activity in solid tumours.  Its mechanism of action is very 

similar to ara-C except that gemcitabine has a far greater affinity for deoxycytidine 

kinase and its active form (dFdCTP) inhibits cytidine deaminase resulting in more 

activity and less degradation than ara-C617.  Although gemcitabine is an S-phase 

specific agent which is used commonly in treatment of bladder cancer, pancreatic 

cancer and non-small cell lung cancer619 clinical studies have demonstrated that 

maintaining a dose intensity greater than standard dose does not improve 

outcomes620.  There is therefore little to be gained by the chemoprotective strategy 

with this combination. 

2. Chemoprotective agent with drugs targeting mitosis. 

• Nutlin with the Aurora kinase (AK) inhibitor VX680.   
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AKs are required for localisation of centromeres, spindle assembly and 

chromosome segregation.  AK inhibitors therefore cause disruption of spindle 

assembly checkpoint, failure of chromosome segregation, endoreduplication, 

cytokinesis failure and cell death621.  From several early phase clinical studies 

evaluating AK inhibitors the dose limiting toxicity has been established as 

neutropenia and they appear to be cytostatic622,623.  Their clinical development is in 

progress. 

• Nutlin then nocodazole.  

Nocodazole also targets mitosis but via a different mechanism.  It binds to tubulin 

and inhibits microtubule tubule assembly.  It has not undergone clinical evaluation. 

• Nutlin then Polo-like kinase (PLK) inhibitor BI-2536.   

PLK1 has essential roles in mitosis via control of activation of CDK1.  In cellular 

models inhibition of PLK1 leads to effects in mitosis, loss of cell proliferation, and 

increased cell death624. PLK inhibitors are currently under early phase clinical 

evaluation.  In phase I only minor responses (one partial response and one stable 

response, n=40 patients) have been achieved and neutropenia is the dose limiting 

toxicity625.  PLK inhibitors continue to be in clinical development. 

• Nutlin then paclitaxel.  

Paclitaxel is a tubulin stabilising agent that causes formation of tubules resistant to 

depolymerisation therefore it blocks progress to anaphase (discussed further 

below, Figure 5-18).  It is used widely in clinical practice for the treatment of 

ovarian cancer, breast cancer and lung cancer619.  

With the exception of paclitaxel, all of these drugs targeting mitosis are in pre-

clinical or early phase development and therefore it will be considerable time 

before they are approved for clinical use.  Similarly Nutlin, the direct, non-

genotoxic activator of p53, which is ideally suited as the chemoprotective agent to 

induce p53 is in the drug development pipeline and is yet to be approved for 

clinical use. It is therefore of interest that some more traditional chemotherapeutic 
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agents have been shown to stabilise p53 through mechanisms that do not require 

DNA damage469, 626, 627. Indeed previous cell line data has shown some potential of 

a combination of low-dose doxorubicin with epitholones A and B or vinblastine.  

Ixabepilone, an epitholone B analog is approved by the U.S. Food and Drug 

Administration (FDA) for treatment resistant advanced breast cancer but failed to 

achieve approval by the European Medicines Agency (EMEA) due to concerns 

over the rates of neurotoxicity and relatively small benefit. Although vinblastine is 

used in the treatment of solid tumours it is only used infrequently.  

The aim of this part of the project was firstly to examine the potential of traditional 

anti-cancer drugs at low-dose as non-genotoxic p53 activators and secondly to 

explore their potential as chemoprotective agents prior to administration of 

clinically relevant chemotherapeutics.  By focussing on agents currently in clinical 

use clinical evaluation of the schedule could be streamlined and this would 

therefore allow for a more immediate realisation of any potential benefit for 

patients. 

5.1.1 Mechanism of action of actinomycin D 

Act D is a cytotoxic antibiotic currently used in clinical practice for the treatment of 

Wilm’s tumours, rhabdomyosarcomas, Ewings sarcoma and testicular cancer628.  

As with other traditional cytotoxic agents in clinical use, early phase clinical studies 

previously established the DLT of act D.  The dose required for 1/3 of patients to 

experience a DLT was used to determine the MTD.  In the case of act D 

neutropenia was established as the DLT629.  

In the early 1960s cell line studies of act D established that it works by binding to 

the minor grove of DNA specifically where two consecutive guanine-cytosine base 

pairs are present630.  By intercalating with the DNA at these points act D blocks the 

passage of RNA polymerase.  Since ribosomal DNA is more guanine-cytosine rich 

there is a dose-dependent inhibition of first RNA pol I then RNA pol II at higher 

doses (Figure 5-2)591, 631.  The ability of act D to intercalate where there are 2 

consecutive guanine-cytosine (G-C) base pairs is specific for binding to DNA.  Act 

D is not able to bind consecutive guanine-cytosine base pairs in RNA due to the 

steric requirement to bind to the most common structured DNA; B-DNA 632-634. 
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 Figure 5-2: Mechanism of action of act D. 
(A) RNA polymerase I controls transcription of ribosomal RNA (rRNA).  Act D binds to 
the G-C rich DNA.  (B) RNA polymerase II controls transcription of mRNA.  Act D binds 
to the G-C pairs which occur less frequently than in rRNA. 

 

There is strong evidence showing that low-dose act D (which at higher 

concentrations inhibits transcription) activates p53 via the ribosomal stress 

pathway due to its impact on ribosome biogenesis469. Act D has previously been 

evaluated in one cell line study as a chemoprotective agent prior to the 

administration of the AK inhibitor VX680613.  In this study it appeared to protect 

both wild-type and p53 deficient cells (table 5-1).   Despite this it warrants further 

examination as a chemoprotective agent with alternative and more clinically 

pertinent cytotoxic combinations.  

5.1.2 Mechanism of action of 5-FU 

In current clinical practice the anti-metabolite 5-FU is the backbone for treatment 

of upper and lower gastrointestinal cancers and is also used in the treatment of 

breast cancer and head and neck cancers635.  It is a pyrimidine analog that is 80% 

catabolised in the liver to dihydrofluorouracil by the enzyme dihydropyrimidine 

dehydrogenase.  The remaining 5-FU in converted intracellularly to three main 

active metabolites (Figure 5-3).   

G

C

T

A

G

C G

CPol II
T

A
Act D

G

C

G

C G

CPol I
T

A
Act D

G

C
Act D

A

B



Chapter 5: Chemoprotection   

 164 

 

 

 

 Figure 5-3: Mechanism of action of 5-FU. 
5-Fluorodeoxyuridine Monophosphate (FdUMP), Fluorodeoxyuridine triphosphate 
(FdUTP), Fluorouridine triphosphate (FUTP),  deoxyuridine monophosphate (dUMP),  
thymidine monophosphate (dTMP)  Adapted from Longley et al636. 

 

1. 5-FU is converted to 5-fluorodeoxyuridine monophosphate, which 

inhibits thymidylate synthetase (TS) preventing the conversion of 

deoxyuridine monophosphate to thymidine monophosphate.  Subsequently 

the resultant imbalance in the deoxynucleotide pool disrupts DNA synthesis 

and repair resulting in DNA damage637, 638. 

2. Secondly 5-FU is converted to fluorodeoxyuridine triphosphate, which is 

incorporated into DNA, resulting in uracil DNA glycosylase mediated base 

excision and subsequent DNA fragmentation and cell death639.   

3. Thirdly 5-FU is converted to fluorouridine triphosphate, which is 

incorporated in all forms of RNA and leads to inhibition of ribosomal RNA 

processing and ultimately to cell death640. 

Modulation strategies using co-administration of leucovorin, which enhances 

binding of FdUMP to TS, have been shown to increase anticancer activity of 5-FU 
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and therefore in clinical practice 5-FU is given in combination with leucovorin641, 

642.   

Cell line data suggests that low doses of 5-fluorouracil (5-FU) may be efficient in 

activating p53 via the ribosomal pathway.  Consistent with this, gene expression 

analysis of cell lines shows that the effects of 5-FU treatment clusters with RNA 

synthesis inhibitors276, 469, 643, 644. 5-FU is therefore suitable for investigation as a 

potential non-genotoxic p53 activator to be used as a chemoprotective agent. 

5.2 Low-dose actinomycin D and 5-FU stabilise p53.  

To examine the consequences of low-dose act D treatment on the p53 pathway, 

untransformed retinal pigment epithelial cells (RPE) were treated with a range of 

doses of act D for 16 hours.  Cell lysates were run on Western blot and probed for 

p53, MDM2, p21 and Actin, as a loading control.  In RPE cells, act D stabilised 

p53 from doses as low as 1nM and increased expression of both p53 targets 

MDM2 and p21 (Figure 5-4A). At a dose of 100nM a reduction in MDM2 level was 

seen consistent with act D induced RNA polymerase II inhibition591.  Similarly p21 

expression was reduced at a dose of 500nM.  p53 levels continued to increase in 

a dose-dependent manner even after high dose act D treatment. This would be 

consistent with act D causing p53 accumulation by increasing its stability to levels 

sufficient to compensate for an act D induced inhibition of transcription of p53. 

Actin levels appear equal demonstrating similar loading of lysates in each lane.   

To confirm this effect of act D, wild-type p53 expressing osteosarcoma cell line 

U2OS cells were treated with a dose range of act D for 16 hours.  Consistently, 

doses of act D as low as 1nM led to a dose-dependent stabilisation of p53 and 

increased expression of MDM2 levels, with a reduction in MDM2 levels at doses 

higher than 10nM (Figure 5-4B).   
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Figure 5-4: Low-dose act D stabilises p53. 
(A) RPE cells (B) U2OS cells treated with indicated doses of act D for 16 hours. Lysates 
were run on Western blot and the expression of MDM2, p53 and p21 was examined. Actin 
was used as loading control. 

Next the p53 stabilising effects of 5-FU were investigated by treating RPE cells 

and U2OS cells with a dose range of 5-FU. In RPE cells, 5µg/ml 5-FU resulted in a 

clear stabilisation of p53, with increased expression of MDM2 and p21 (Figure 5-

5A). U2OS cells appeared to be more sensitive with an increase in p53 and MDM2 

levels in response to 1µg/ml 5-FU (Figure 5-5B). 

 

 

 

 Figure 5-5: Low-dose 5-FU stabilises p53. 
(A) RPE (B) U2OS cells were treated with indicated doses of 5-FU. Lysates were run on 
Western blot and the expression of MDM2, p53 and p21 was examined. Actin was used 
as loading control. 

 

To confirm that the increase in MDM2 and p21 levels seen following low-dose 

treatment with either act D or 5-FU resulted from increased transcriptional activity 

of p53, luciferase reporter assays were performed.  U2OS cells stably expressing 

the PG13 luciferase reporter86 construct in which a promoter consisting of a series 

of optimised p53 binding sites is cloned upstream of a luciferase reporter gene, 

were treated with a dose range of either act D or 5-FU for 16 hours.  Luciferase 

assays, plotted as fold change of relative luciferase units, show a modest but 

significant increase in p53’s transcriptional activity after 1nM of act D treatment 

and a further increase after 4nM treatment (Figure 5-6A).  Treatment of cells with 

1µg/ml of 5-FU similarly revealed a modest but significant increase in luciferase 

activity, which further increased in a dose dependent manner (Figure 5-6B). 
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Figure 5-6: Low-dose act D and 5-FU significantly increase p53's transcriptional activity. 
U2OS PG13 cells were treated with indicated doses of (A) act D or (B) 5-FU for 16 hours.  
Cells were lysed and luminescence was measured on a microplate luminometer.  Values 
were plotted as fold change relative to the vehicle (0) treated condition which was set to 1.  
The mean of triplicates was plotted and error bars display the SD. *p<0.05, Students T-test. 

To confirm that p53’s increased transcriptional activity following low-dose act D 

and 5-FU treatment led to functional effects, cell cycle analysis was performed.  

RPE cells were treated with PBS, act D (4nM) or Nutlin (10µM) for 16 hours.  Cells 

were harvested, fixed and PI (propidium Iodine) stained for FACS analysis.  As 

with Nutlin treatment, act D led to a cell cycle arrest in G1 and a corresponding 

reduction in S-phase (Figure 5-7A). Similarly treatment of cells with 5µg/ml of 5-FU 

caused a cell cycle arrest in G1 and a reduction in the cells in S-phase (Figure 5-

7B). 

 

 

 

 Figure 5-7: Low-dose act D and 5-FU cause cell cycle arrest. 
(A) RPE cells were treated with indicted doses of act D.  Cells were also treated with 
PBS (negative control) and Nutlin 10µM (positive control).  After 16 hours treatment 
cells were harvest for PI staining and FACS analysis.  Values were plotted as fold 
change relative to the PBS treated condition which was set to 1.  The mean of three 
independent experiments was plotted and error bars display the SEM. *p<0.05, 
Students T-test. 
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 (B) RPE cells were treated with indicted doses of 5-FU.  Cells were also treated with 
PBS (negative control) and Nutlin 10µM (positive control).  After 16 hours treatment 
cells were harvest for PI staining and FACS analysis.  Values were plotted as fold 
change relative to the PBS treated condition which was set to 1.  The mean of three 
independent experiments was plotted and error bars display the SEM. *p<0.05, 
Students T-test. 

 

5.2.1 Does low-dose actinomycin D cause DNA damage? 

The aim of this study was initially to determine the lowest dose of act D that 

reliably stabilises and activates p53 (the MDM2 inhibitory dose).  Furthermore the 

hypothesis that p53 activation occurred in the absence of DNA damage was 

tested.  DNA damaging agents effectively stabilise p53 as a result of multiple 

phosphorylations on both p53 and MDM2, which result in an inhibition of 

degradation. Key phosphorylation sites on p53 are serine 15 and 392, and the 

modification of these residues can be used as a marker of DNA damage.  DNA 

strand breaks lead to activation of damage activated kinase, ATM which then 

phosphorylates p53 on serine15210, 211.  Phospho-serine 392 has been shown to be 

phosphorylated in response to UV, DNA damage and interferon via kinases FACT 

(facilitates chromatin transcription)-CK2, p38 and protein kinase R respectively293-

295. To investigate the relationship between stabilisation of p53 and the induction of 

genotoxicity by act D, overall p53 levels and phospho-serine p53 was measured in 

RPE cells after treatment with a dose range of act D.  As shown previously, act D 

stabilised p53 at 1nM – however under these conditions there was no evidence of 

phosphorylation at serine 15 (Figure 5-8). As a positive control, much higher act D 

concentrations (100 and 500nM) did induce this phosphorylation event. By 

contrast, a clear increase in serine 392 phosphorylation could be detected at 1nM 

act D (Figure 5-8).  Taken together, these results suggest that low levels of act D 

do not stimulate a DNA damage response, but can activate kinases capable of 
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phosphorylating p53 on serine 392. Importantly, previous studies have shown that 

Nutlin treatment also results in the phosphorylation of p53 serine 392, but not 

serine 15, although the exact mechanism of 392 phosphorylation was not 

defined469.  

 

 

 

 Figure 5-8: Low-dose of act D does not cause phosphorylation of p53 at serine 15. 
RPE cells were treated with indicated doses of act D for 16 hours.  Lysates were blotted 
for total p53, phosphorylated p53 (pSer15 and pSer 392) and Actin was used as loading 
control. 

 

To further confirm a lack of DNA damage signalling following low-dose act D 

treatment, the presence of phosphorylation of H2AX histone, an early sign of DNA 

double strand breaks, was examined by immunofluorescence645. RPE cells were 

plated and treated with vehicle and Nutlin as negative controls and a titration of act 

D. In line with previous work showing DNA damage signalling occurring from 

200nM-500nM of act D, γH2AX foci were clearly detected at the time point 

examined. By contrast, only a very small increase in γH2AX positive cells was 

detected after treatment with 1nM act D, although this did appear to be slightly 

enhanced over background levels (Figure 5-9 A and B).   
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Figure 5-9: Act D causes only low levels γH2AX foci formation at low-dose. 
(A) RPE cells were plated on cover slips then treated with 1nM, 500nM and 1000nM of act D 
for 16 hours.  Cells were then fixed, permeabilised and incubated with anti- γH2AX antibody 
followed by AlexaFluor 466 anti-mouse antibody.  Cover slips were mounted on slides and 
images taken on Olympus FV1000 microscope.  (B) Cells with γH2AX foci were counted and 
the percentage of positive cells plotted. DAPI staining was used to visualize cell nuclei and 
to count the number of cells with or without positive gamma H2AX staining.  Error bars 
represent SEM of three independent experiments. 50 cells were counted per condition. 

Further studies were therefore carried out using doses of act D in the range 1-

4nM, since phosphorylation of serine 15 did not occur until doses greater than 

10nM and FACS data examining the cell cycle showed a robust G1 arrest at 4nM.  

Previous pharmacokinetic studies of act D established a Cmax (maximum 

concentration) in the region of 25.1ng/ml (2M) and a median Area Under the Curve 

(AUC) at six hours of 2.67mg/l/minute (2.13µM per minute)646, 647.  A dose of 4nM 

is therefore around 500,000,000 fold less than the DNA damaging, 

myelosuppressive dose range used in clinical practice.  It has been shown in cell 

lines that evidence of DNA strand breaks begins to occur at doses above 200nM, 

albeit by a different assay590. 

5.2.2 Does low-dose 5-FU cause DNA damage? 

The minimum dose range of 5-FU that induces p53 is 1µg/ml-5µg/ml (Figure 5-2).   

To determine whether DNA damage also occurs with these low-dose 5-FU 

treatments, cells were treated with a dose titration of 5-FU for 16 hours and γH2AX 

foci were visualised by immunofluorescence.  Almost all cells were γH2AX positive 

after a 50µg/ml 5-FU treatment (Figure 5-10 A & B).  This is consistent with 

previous work which has shown phosphorylation of p53 at serine 15 and induction 

of γH2AX foci in 50% of cells from 5-FU doses of around 13µg/ml 5-FU648.  As 

seen with act D, lower levels of 5-FU treatment (0.05-5ug/ml) induced a low level 

of DNA damage (above background seen following vehicle and Nutlin treatment), 
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at the time point examined.   The extent of damage was much less profound than 

the extent of γH2AX staining seen at a known genotoxic dose. 

 

 

 

 Figure 5-10: 5-FU causes only low levels of γH2AX foci formation at low-dose. 
(A) RPE cells were plated on cover slips then treated with indicated doses of 5-FU for 
16 hours.  Cells were then fixed, permeabilised and incubated with anti- γH2AX 
antibody followed by AlexaFluoro 466 anti-mouse antibody incubation.  Cover slips 
were mounted on slides and images taken on Olympus FV1000 microscope.  (B) Cells 
with γH2AX foci were counted and the percentage of positive cells plotted using DAPI 
that stained for nuclei in all cells. 

 

It is difficult to be sure how doses in this low-dose range in cell line studies 

compare to maximum drug concentration (Cmax) and AUC (Area under the curve) 

seen in patients when 5-FU is used in its conventional DNA damaging role not 

least because pharmacokinetic (PK) data demonstrates a large inter-individual PK 

variability affected by genotype, age, gender, disease state, drug-drug interactions 

and organ function.  Importantly the PK has a direct impact on efficacy and 

toxicity649.   In addition the level of dihydropyrimidine dehydrogenase activity in a 

particular cell line will have a significant impact on the dose of active metabolites 

that cells are exposed to.  In patients this is a clinically significant issue with 

heterogeneity of dihydropyrimidine dehydrogenase contributing to the PK 
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variability in a small number of cases and more importantly causing some patients 

to have severe 5-FU induced toxicity when given conventional 5-FU doses. 

Studies examining pharmacokinetically guided management, aiming for an 

optimum AUC of 20-24mg/h/l with an infusional 5-FU/leucovorin schedule resulted 

in more objective responses, higher survival rates and fewer grade 3/4 toxicities650, 

651.  Despite this pharmacokinetically guided dosing, 5-FU has not been adopted 

as standard since standard of care is now a chemotherapy doublet.  More recently 

a phase II study has shown that pharmacokinetically guided dosing of 5-FU when 

given as part of the FOLFOX regimen is also beneficial651, 652. Taken overall, 

however, it is clear that doses of 5-FU that have been used clinically exceed the 

exposure that would be necessary to induce p53 as a chemoprotective agent. 

For further study, a 5-FU dose range of 5-10µg/ml was selected since p53 

stabilisation and consequent cell cycle arrest can be seen while there is only very 

low levels of DNA damage based on the γH2AX foci assays.  

5.3 Actinomycin D and 5-FU cause reversible cell cycle 
arrest. 

For the pre-treatment strategy to be feasible it is vital that normal cells arrested by 

low-dose drug treatment are able to resume normal cycling once the treatment is 

discontinued. This was examined by studying the cell cycle profile and the longer-

term clonogenic capacities of cells upon drug treatment and drug removal.  

For cell cycle studies, RPE cells were treated with vehicle or act D 1nM.  After 12 

hours treatment cells were washed and harvest for FACS to assess the cell cycle 

profile.  Two act D treated plates were incubated in drug free medium then 

harvested after 12 and 36 hours recovery time. It appeared that 36 hours after 

removal of act D from cells the proportion of cells in S-phase started to return 

towards pre-treatment levels (Figure 5-11).  This was consistent with the decrease 

in G1 fraction seen after 36 hours recovery.  This suggests that low-dose act D-

induced cell cycle arrest is reversible. 
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 Figure 5-11: Low-dose act D causes a reversible cell cycle arrest. 
(A) Schematic of experimental design.  (B) RPE cells treated with vehicle or 1nM act D 
for 12 hours.  Medium was removed and cells were washed before incubation in drug 
free medium for the indicated times.  Cells were harvest for PI staining and FACS 
analysis. Values were plotted as fold change relative to the vehicle treated condition 
which was set to 1.  The mean of two independent experiments is plotted and error bars 
represent SD. 

 

The reversibility of 5-FU-induced cell cycle arrest was also investigated.  RPE cells 

were treated with vehicle or 10µg/ml of 5-FU for 12 hours followed by drug removal 

and incubation in drug free medium.  Cells were harvested after 24 and 36 hours 

recovery. p53-induced cell cycle arrest appeared to have resolved by 36 hours as 

indicated by an increase in S-phase fraction from 2% 24 hours after treatment to 

27% after 36 hours recovery (Figure 5-12).   
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 Figure 5-12: Low-dose 5-FU causes a reversible cell cycle arrest. 
RPE cells treated with vehicle or 10µg/ml 5-FU for 12 hours.  Medium was removed and 
cells were washed before incubation in drug free medium for the indicated times.  Cells 
were harvest for PI staining and FACS analysis.  The bar marks S-phase (S). 

 

Accordingly following 36 hours recovery from 5-FU treatment, levels of p53 

returned to pre-treatment levels, as did p21 and MDM2 levels.  CDK4 levels show 

equal protein loading (Figure 5-13). 

 

 

 

 Figure 5-13: After low-dose 5-FU p53 levels normalise after 36 hours recovery. 
RPE cells were treated with low-dose 5-FU then allowed to recover.  They were then 
harvested for Western blotting and expression of MDM2, p53, CDK4 (loading control) 
and p21 was examined.  
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To examine whether long-term recovery after low-dose drug treatment coincided 

with a maintenance of clonogenicity, RPE cells were sparsely plated and then 

treated for 24 hours with vehicle, act D 1nM, act D 10nM, 5-FU 1µg/ml or 5-FU 

10mg/ml.  Cells were washed and incubated in drug free medium for 9 days.  After 

fixation and Giemsa staining a similar number of colonies could be seen after 

recovery from the low-dose act D (131 colonies with no treatment and 138 

colonies after recovery from 1nM act D) although the colonies were smaller.  On 

recovery from 5-FU, the majority of the colonies were maintained but again smaller 

(113 colonies with no treatment and 80 on recovery from 1µg/ml). At the higher 

dose levels of both drugs there is a reduction in the number of colonies – 10nM act 

D treatment resulted in a drop in colony number from 131 to 73 and for 5-FU the 

colony number dropped from 113 to 0 after a 10µg/ml treatment (Figure 5-14). 

 

 

 

 Figure 5-14: After low-dose act D and low-dose 5-FU cells still have 
clonogenic potential. 
RPE cells were plated on 10cm plates (5000 cells per plate). Cells were 
treated with vehicle, act D or 5-FU at indicated doses for 24 hours.  Cells 
were then incubated in drug free medium for 9 days before Giemsa 
staining. 

 

5.4 Effects of low-dose actinomycin D are p53 
dependent. 

To exclude p53 independent off-target effects of low-dose of act D or 5-FU p53 

null HCT116 cells were used.  To verify that low-dose act D caused similar effects 

in HCT116 cells as in the cell lines previously studied, HCT116 wild-type or null 

were treated with vehicle, low-dose act D or Nutlin for 16hrs after which the cell 
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cycle profile was studied. After both low-dose act D and Nutlin treatment p53 wild-

type cells underwent a significant G1 arrest which was not seen in cells null for 

p53 (Figure 5-15).  

 

 

 

Figure 5-15: Act D has p53 dependent effects on cell cycle. 
HCT116 cells wild-type (A) or null (B) for p53 were treated with the indicated doses of 
vehicle, act D or Nutlin for 16 hours.  Cells were harvest for PI staining and FACS analysis.  
Values were plotted as fold change relative to the PBS treated condition which was set to 1.  
Error bars *p<0.05 as calculated by Student’s T-test. 

Next, a colony formation assay was performed in which p53 null HCT116 cells 

were treated with vehicle, low-dose act D or low-dose 5-FU for 24 hours (Figure 5-

15).  Cells were then Giemsa stained.  Act D treatment had no effect on p53 null 

cells indicating that the effects of low-dose act D observed in Figures 5-4, 5-6 and 

5-7 are p53 dependent.  In contrast low-dose 5-FU treatment caused a dramatic 

reduction in colony formation indicating p53 independent effects.  5-FU at this 

dosage is therefore unlikely to be a suitable chemoprotective agent. 
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 Figure 5-16: Low-dose 5-FU treatment has p53 independent off-target effects on 
clonogenic survival. 
Hct116 cells null for p53 were plated on 15cm plates. Cells were treated with act D 
(4nM) or 5-FU (5µg/ml) for 24 hours.  Cells were washed, fixed and Giemsa stained.  

 

5.4.1 Does low-dose actinomycin D cause ribosomal stress? 

Act D’s effects on ribosomal RNA biogenesis are thought to lead to ribosomal 

stress and subsequent translocation of ribosomal proteins such as L11, L5 and 

L23 to the nucleoplasm where they can bind and inhibit MDM2653 276, 561. To 

confirm that act D-induced p53 activity is initiated via the ribosomal stress 

pathway, cells treated with act D were examined for evidence of nucleolar 

disruption.  B23, sometimes named nucleophosmin, is a protein normally 

associated with the nucleolus that can be translocated to the nucleoplasm after 

ribosomal stress.  It has previously been published that act D is capable of 

disrupting the nucleoli in a dose and duration dependent manner654, although it 

has also been shown that disruption of the nucleoli is not necessary for L11-

induced p53 activation655. Cells were therefore examined for evidence of B23 

translocation under treatment conditions used in the present study since its 

presence confirms nucleolar disruption its absence does not preclude L11-induced 

p53 activation.  U2OS cells were treated with vehicle or act D (5nM) for 16 hours, 

thereafter B23 localisation was determined by immunofluorescence.  Figure 5-17A 

shows that B23 is located to the nucleolus in untreated cells while after low-dose 

act D treatment staining is more defuse and not localised to the discreet nucleolar 

compartments, suggesting that act D indeed caused ribosomal stress under these 

treatment conditions. 

To confirm a corresponding act D induced enhancement in the proportion of 

MDM2 in complex with L11, MDM2-L11 binding was examined.  Consistent with 

this model, after treatment of cells with act D, MDM2-L11 association was 
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enhanced (Figure 5-17B). While an increase in MDM2 co-precipitating with L11 

was also seen following Nutlin treatment, this resulted from an overall increase in 

MDM2 levels. 

 
Figure 5-17: Low-dose act D causes ribosomal stress. 
(A) U2OS cells were plated on coverslips and treated with vehicle or low-dose act D (5nM) 
for 16h.  The localization of B23 was detected using immunofluorescence with B23 specific 
antibodies. (B) U2OS cells were treated with vehicle, Nutlin (10µM) or act D (5nM) for 16h.  
immunoprecipitation (IP) for L11 was then performed, followed by Western blot analysis 
Expression of MDM2 and L11 in Input and IP samples examined. 

Taken together these data show that low-dose act D is clearly capable of inducing 

ribosomal stress, increasing L11-MDM2 binding and subsequently causing a p53 

dependent cell cycle arrest without causing DNA damage. 

5.5 Choice of subsequent cytotoxic? 

As previous studies have shown the success of the chemoprotection strategy is 

also dependent on choice of an appropriate chemotherapeutic agent (table 5-1).  

Furthermore as discussed earlier most success appears to have been 

demonstrated with chemoprotection/chemotherapeutic combinations where the 

second agent was an S-phase or M-phase specific drug- that is a drug whose 

mode of action depends on cells proliferating or dividing.  You could however also 

propose that pre-treatment with a chemoprotective agent prior to other less phase-
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specific agents that effect proliferating cells more than resting cells, could still be 

beneficial.  

As also mentioned earlier the objective here is to test the chemoprotection strategy 

using a combination of agents in current clinical practice since for these agents the 

DLT will be established and clinical evaluation of the strategy could therefore be 

more efficiently executed. Other requirements of the appropriate chemotherapeutic 

agent for combination would be that there is a proven benefit in maintaining dose 

intensity and that it is currently used for treatment of a tumour site where a 

reasonable number of tumours would be expected to be p53 deficient (mutant or 

null).   

5.5.1 Mechanism of action of paclitaxel 

Paclitaxel meets many of the criteria outlined above. It is the most commonly used 

mitosis inhibitor, which functions by binding to tubulin causing stabilisation of the 

mictrotubules and resistance to depolymerisation.  This leads to blockade of the 

transition to anaphase and activation of the mitotic spindle checkpoint and cell 

death (Figure 5-18).  

 

 

 

 Figure 5-18: Mechanism of action of paclitaxel. 
Paclitaxel targets tubulin causing stabilisation of the microtubules and prevents 
disassembly.  This then blocks progression from metaphase to anaphase of mitosis 
and activates the mitotic spindle checkpoint. 

 

Furthermore paclitaxel is used in the treatment of several tumour sites where there 

are significant numbers of cancers with a p53 mutation including high-grade 

serous ovarian cancer, breast cancer and non-small cell lung cancer cancers with 

p53 mutation rates of 97%168, 31% and 37% respectively373. There have been 

several clinical studies investigating whether dose-dense paclitaxel leads to 

clinical benefit and indeed escalated doses did result in improved progression free 

and overall survival but at the expense of increased treatment related toxicity656, 
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657. Taken together the combination of a chemoprotective agent with paclitaxel 

could lead to meaningful increases in dose intensity and therefore patient benefit. 

5.5.1.1  Low-dose act D & 5-FU protect wild-type p53 expressing 
cells from paclitaxel 

To test if low-dose act D and low-dose 5-FU are capable of protecting wild-type 

p53 expressing cells from sequential treatment with paclitaxel, wild-type p53 

expressing colorectal cancer cell line, HCT116, were treated with vehicle, act D 

(2nM) or Nutlin (10µM), as a positive control, for 24 hours.  After 24 hours pre-

treatment, cells were treated with paclitaxel 3.5nM for 48 hours and then incubated 

in drug free medium for 5 days.  Cell viability was then assessed using a 

tetrazolium dye (MTT) colorimetric assay.  This assay measures activity of 

mitochondrial reductase enzymes which inactivate shortly after cell death.  Both 

act D and Nutlin pre-treatment resulted in a higher percentage of viable cells 

following paclitaxel treatment (Figure 5-19).  

 

 
Figure 5-19: Low-dose act D protects wild-type p53 expressing cells from paclitaxel. 
HCT116 cells expressing wild-type p53 were treated with vehicle/Nutlin/act D then 
paclitaxel. Viability was measured using an MTT assay.  % Viable cells was calculated 
by dividing average absorbance values for each of vehicle-paclitaxel, act-D-paclitaxel 
or Nutlin-paclitaxel by values for respectively vehicle, act D or Nutlin treated cells 
without post-treatment and multiplied by 100. Plotted are the mean values of 4-8 
replicates and SEM of three independent experiments.  P-values were calculated using 
a Student’s T-test. * indicates significant difference relative to vehicle pre-treatment. 

Similarly, the protective effects of 5-FU were demonstrated in wild-type p53 

expressing RPE cells that were treated with vehicle, 5-FU (3µg/ml) or Nutlin 

(10µM) prior to paclitaxel treatment.  5-FU pre-treatment also caused a 

significant increase in the remaining viable cells (Figure 5-20). 
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 Figure 5-20: Low-dose 5-FU protects wild-type p53 expressing cells from paclitaxel. 
RPE cells were treated with vehicle/Nutlin/5-FU then paclitaxel. Viability was measured 
using an MTT assay. % Viable cells was calculated by dividing average absorbance 
values for each of vehicle-paclitaxel, 5-FU-paclitaxel or Nutlin-paclitaxel by values for 
respectively vehicle, act D or Nutlin treated cells without post-treatment and multiplied 
by 100. Plotted are the mean values of 4-8 replicates and SEM of three independent 
experiments.  P-values were calculated using a Student’s T-test. 

 

Histone H3 is phosphorylated during mitosis and therefore after paclitaxel 

treatment high levels of pHH3 would be expected since cells can not progress 

beyond metaphase.  As a proof of principle, 5-FU’s potential to protect cells from 

subsequent paclitaxel-induced histone 3 phosphorylation was also examined. 

HCT116 cells were treated with vehicle, 5-FU (3µg/ml) or Nutlin (5mM) for 24 

hours then paclitaxel (7nM) for a further 24 hours. Phosphorylation of histone H3 

was measured by immunostaining.  DNA was also stained with DAPI. Staining 

was quantified with an Operetta automated microscope and, the percentage of 

cells positive for phosphohistone H3 was calculated.  Using this assay 5-FU pre-

treatment clearly prevented histone H3 phosphorylation similar to Nutlin pre-

treatment (Figure 5-21).   

 

 

 

 Figure 5-21: 5-FU pre-treatment protects wild-type p53 expressing cells from paclitaxel. 
HCT116 cells were treated with pre-treatment agent indicated then paclitaxel.  Cells 
were then fixed, permeabilised, and stained for pHH3.  % pHH3 positive cells was 
quantified using the Operetta system. Mean values are plotted and error bars represent 
SD.  10 000 cells were evaluated. 
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In addition to the chemoprotective effects of Nutlin and LD doxorubicin on 

paclitaxel treatment (table 5-1), these results now demonstrate that also pre-

treatment with a low-dose of 5-FU or act D can both have protective effects. 

5.5.2 Mechanism of action of cisplatin 

Cisplatin is another widely used chemotherapeutic658.  It is used in the treatment of 

several solid tumours most of which have significant p53 mutation rates373; 

testicular cancer (5%), bladder cancer (26%), squamous head and neck cancer 

(41%), oesophageal cancer (45%) and ovarian cancer (97%)168.  It is an organic 

heavy metal complex.  After diffusing into the cell it loses its chloride ions allowing 

it to bind to DNA causing intrastrand cross-linking lesions and other less abundant 

lesions (interstrand cross-linking) (Figure 5-22).   

 

 

 

 Figure 5-22: Mechanism of action of cisplatin. 
Cisplatin causes G-G intrastrand DNA crosslinking as well as C-G intrastrand 
DNA crosslinking (not shown here) which is much less frequent.  Cisplatin also 
causes interstrand bridging (again not detailed here). Pt=platinum. 

 

These intrastrand lesions are repaired by nucleotide excision repair mechanisms 

while double strand breaks are repaired by recombinational repair.  Together this 

leads to inhibition of RNA transcription, DNA replication, chain elongation of DNA 

polymerisation and cell death659.  Cisplatin can cause DNA lesions regardless of 

the cells’ cell cycle phase and is therefore a cell cycle non-specific agent660.  Cells 

that are undergoing proliferation are however more sensitive to cisplatin-induced 

cytotoxicity than those in a resting phase.  In addition it has been shown that 

achieving a high dose-intensity of cisplatin can have a significant beneficial impact 
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on clinical outcome for some cancers661, 662. Reducing the proliferation of normal, 

wild-type p53 expressing cells prior to cisplatin treatment may allow increased 

dose delivery and therefore lead to increased cell death of a p53 deficient tumour. 

5.5.2.1  5-FU but not actinomycin D protects wild-type p53 
expressing cells from cisplatin toxicity 

To assess chemoprotection from cisplatin toxicity in wild-type p53 expressing 

cells, U2OS cells were treated with vehicle, act D, 5-FU or Nutlin prior to treatment 

with cisplatin. Act D significantly reduced the viability of cells following cisplatin 

treatment while Nutlin pre-treatment had no effect on the viability of cells following 

cisplatin treatment (Figure 5-23 A). 

Notably, 5-FU pre-treatment appeared to result in an increase in the remaining 

viable cells following cisplatin treatment (Figure 5-23 B).    

 

 

 

 

 Figure 5-23: Act D or 5-FU prior to cisplatin treatment of wild-type p53 expressing cells. 

% Viable cells was calculated by dividing average absorbance values for of 4-8 
replicates of vehicle-cisplatin, act D-cisplatin (A), 5-FU-cisplatin (B) or Nutlin-cisplatin 
by values for vehicle or corresponding protective agent then multiplying by 100. Values 
plotted are therefore relative to the vehicle or protective agent treatment.  Plotted here 
is the mean value and SEM of three independent experiments.  P-values were 
calculated using Student’s T-test. 
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Given the promising results of 5-FU as chemoprotective agent against cisplatin 

toxicity, an alternative assay was used to verify these results. Since cisplatin is a 

DNA damaging agent, immunofluorescence of γH2AX foci was used to quantify 

DNA damage following cisplatin. HCT116 cells were treated with vehicle or 5-FU 

(3µg/ml) followed by cisplatin (7.5µg/ml) treatment for 24 hours and after 

immunostaining levels of γH2AX and DAPI were measured and γH2AX signal per 

nuclei was calculated.  5-FU pre-treatment was also able to protect cells from 

genotoxic damage caused by subsequent cisplatin treatment since the 5-FU pre-

treatment condition showed a smaller proportion of cells positive for γH2AX foci 

(Figure 5-24).  

 

 

 

 

 

 

 Figure 5-24: 5-FU pre-treatment protects wild-type p53 expressing cells from cisplatin 
treatment. 
(A) HCT116 cells were treated with pre-treatment agent indicated then cisplatin.  Cells 
were then fixed, permeabilised, and stained for γH2AX. (B) γH2AX intensity per nuclei 
was quantified using the Operetta system.  Mean values are plotted and error bars 
represent SD.  10 000 cells were evaluated. 

Taken together, these results indicate that 5-FU, but not Nutlin or act D, could 

be used in a chemoprotective strategy against cisplatin toxicity. 
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5.6 Are p53 deficient cells protected? 

To test if act D treatment protects p53 null cells from paclitaxel or cisplatin, MTT 

assays were performed, this time with isogenic HCT116 cells null for p53 (Figure 

5-25 A).  

 

 

 

 Figure 5-25: Act D does not protect p53 null cells from paclitaxel or cisplatin-mediated 
decreased cell viability. 
p53 null HCT116 cells were plated in 96 well plates and treated with the indicated pre-
treatment agent.  Cells were subsequently treated with (A) paclitaxel or (B) cisplatin.   
An MTT assay was then performed.  % Viable cells was calculated by dividing average 
absorbance values for each of vehicle-paclitaxel, act-D-paclitaxel or Nutlin-paclitaxel by 
values for respectively vehicle, act D or Nutlin treated cells without post-treatment and 
multiplied by 100. Plotted are the mean values of 4-8 replicates and SEM of three 
independent experiments.  P-values were calculated using a Student’s T-test.  

 

Nutlin pre-treatment appears to enhance the cell death caused by paclitaxel 

treatment in p53 null cells while act D pre-treatment has no effect (Figure 5-25 A).  

Act D pre-treatment enhances cisplatin induced cell death while Nutlin appears to 

have no effect (Figure 5-25 B).  Although the underlying mechanisms of the 

additive toxic effects of Nutlin on paclitaxel or act D on cisplatin treatment are 

unknown, these effects could be beneficial in killing tumour cells without p53, but 

will require further study. 

Act D pre-treatment shows no evidence of protection of p53 null cells making it a 

suitable agent for further evaluation as a chemoprotective agent. These results 
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also demonstrate that the protective effect seen after act D pre-treatment, of wild-

type p53 expressing cells prior to paclitaxel, observed in Figure 5-19, is p53 

dependent. 

To investigate the effects of 5-FU pre-treatment on the response to paclitaxel and 

cisplatin, p53 deficient HCT116 cells were pre-treated with vehicle, act D (4nM) or 

5-FU (3µg/ml) for 24 hours then treated with paclitaxel (7nM) or cisplatin 

(7.5µg/ml) for a further 24 hours.  Immunofluoresence for pHH3 and γH2AX were 

used to assess the effect of paclitaxel and cisplatin respectively (Figure 5-26). 

 

 

 

 

 

 

 Figure 5-26: 5-FU protects p53 deficient cells from paclitaxel induced phosphorylation 
of histone H3 and cisplatin induced γH2AX foci formation. 
(A) HCT116 p53 null cells treated with vehicle/ act D/5-FU then paclitaxel then stained 
for pHH3 and DAPI. Quantification of mean intensity per nuclei calculated on Operetta.  
At least 10 000 cells counted.  Means and standard deviation plotted. (B) HCT116 p53 
null cells treated with vehicle/ act D/5-FU then Cisplatin then stained for γH2AX and 
DAPI.  Quantification of mean intensity per nuclei calculated on Operetta.  At least 10 
000 cells counted.  Means and standard deviation plotted. *p<0.05, Student’s T-test. 

 

 
While act D had no effect on pHH3 or γH2AX levels, 5-FU treatment prior to both 

paclitaxel and cisplatin appeared to protect p53 null cells. 
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5.7 Summary and discussion 

In an attempt to accelerate the journey to adoption of the chemoprotective strategy 

in clinical practice, the data presented here explores the usefulness of two 

traditional low-dose chemotherapeutics, with known MTD and DLTs, as 

chemoprotectants prior to treatment with other cytotoxics commonly used in 

clinical practice.  While none of the therapeutic drugs used here may be ideal (for 

example it may be preferable to use Nutlin or another direct inhibitor of MDM2, 

rather than act D of 5-FU), this limitation would be outweighed by the potential to 

devise new therapeutic strategies based on existing clinically approved drugs. 

The data presented here shows that low-dose act D and low-dose 5-FU are both 

capable of stabilising p53 without overt genotoxic damage.  Importantly, the cell 

cycle arrest seen following treatment was reversible following removal of drug.  

Furthermore both act D and 5-FU were capable of protecting wild-type p53 

expressing cells from subsequent paclitaxel treatment while only 5-FU appeared 

capable of protecting wild-type p53 expressing cells from cisplatin treatment (table 

5-2 summarises the findings).   

Table 5-2: Combinations examined in the present study. 

Protective  Therapeutic agent 
Protection 
p53 wild-type p53 deficient 

LD act D Paclitaxel Yes No 
Cisplatin No No 

LD 5-FU Paclitaxel Yes Yes 
Cisplatin Yes Yes 

LD=Low-Dose, act D=Actinomycin D  
Grey shaded boxes indicate combinations where wild-type p53 expressing cells 
are protected from cytotoxic effects while p53 deficient cells are not.  
 
Kranz and Dobbelstein previously explored the combination of Nutlin pre-treatment 

prior to cisplatin treatment and found that Nutlin was not capable of protecting p53 

wild-type cells from subsequent cisplatin treatment.  It is therefore not surprising 

that low-dose act D is also not able to be chemoprotective in this setting615.  

Cisplatin can intercalate and cause DNA damage regardless of cell cycle phase so 

although act D pre-treatment will have arrested wild-type p53 expressing cells they 

remain sensitive to the cytotoxic effects of cisplatin.   
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It is therefore interesting to observe that low-dose 5-FU treatment appears to 

protect wild-type p53 expressing cells from cisplatin treatment as measured by a 

reduction in the formation of γH2AX foci following cisplatin and a smaller reduction 

in metabolic activity following cisplatin treatment in comparison with no pre-

treatment. The mechanism of low-dose 5-FU protecting cells from cisplatin was 

not investigated further because of the p53 independent effects observed for 5-FU. 

Although this alone does not make 5-FU an entirely unsuitable chemoprotectant, 

the ability of low-dose 5-FU to protect p53 null cells from both paclitaxel and 

cisplatin does. The mechanism of protection would however be interesting to 

explore since the combination of cisplatin and 5-FU is frequently used in clinical 

practice.  When given in combination usually platinum is followed by 5-FU 

although when the oral fluoropyrimidine capecitabine is used in combination with 

platinum the oral dosing starts prior to platinum.  The reason for this sequence of 

the intravenous regimen is practical since cisplatin treatment requires hours of pre 

and post hydration and then the subsequent 5-FU is administered by a prolonged 

infusion.  Certainly clinical data suggests that this combination of agents is more 

effective than either agent alone663.  It would be interesting to explore the impact of 

the specific scheduling of the drugs.  Clearly the data presented here used low 

doses of 5-FU while the clinical data examining the cisplatin and 5-FU combination 

used DNA damaging doses of 5-FU. 

Interestingly in p53 null cells both low-dose act D and Nutlin pre-treatment were 

shown to increase the effects of cisplatin and paclitaxel respectively.  This is 

obviously a desirable effect of a chemoprotective agent.  It would be interesting to 

further explore the mechanism of this increased cellular toxicity.  Previous studies 

have shown that in p53 deficient cells Nutlin is capable of increasing apoptosis by 

disrupting p73-MDM2 binding and therefore activating its pro-apoptotic activities664, 

665.  Additionally Nutlin can inhibit MDM2-E2F1 binding allowing it to contribute to 

the upregulation of pro-apoptotic activities via p73 and Noxa666.  Why there should 

be a difference in act D and Nutlin pre-treatment in terms of contributing to 

apoptosis caused by a DNA damaging agent and a mitotic spinal poison is unclear 

however an obvious difference between these 2 agents is their mechanism of p53 

activation. While act D induces stabilises p53 via the ribosomal pathway, Nutlin 
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activates p53 by inhibition of the MDM2-p53 interaction.  It would be interesting to 

explore whether MDM2-L11 complex is capable of binding to E2F1 and p73.  

Data presented here explored the chemoprotection strategy in p53 null cells only.  

Obviously it would be valuable to explore the strategy further in p53 mutant cells.  

Some preliminary cell line studies using isogenic HCT116 cells mutant for p53 

suggest that low-dose act D does not protect cells from subsequent paclitaxel.   

The combination of low-dose act D followed by paclitaxel is suitable for further 

evaluation. Data presented here confirmed that low-dose act D reversibly 

protected wild-type, but not null p53 cells from paclitaxel.  In the treatment of 

cancer patients with cytotoxic drugs a key principal is to achieve a balance 

between therapeutic response and toxicity to normal tissues (the therapeutic 

index).  Toxicity, tumour response and survival outcomes are related to systemic 

exposure667-669.  In the first instance xenograft studies where wild-type p53 normal 

tissues and a p53 deficient xenograft can be assessed simultaneously would be 

useful.  In addition the strategy should be examined in transgenic mouse models 

with conditional mutant p53 knock-in/p53 knock-out where a p53 deficient tumour 

can be examined within its wild-type p53 microenvironment. Study of the strategy 

in vivo is vital since the success of the strategy depends on the ability to escalate 

the dose of the chemotherapeutic agent significantly.  Although act D’s ability to 

protect wild-type expressing cells from paclitaxel has been shown here the ability 

to escalate paclitaxel dose has so far not been evaluated.  Although pre-treatment 

would be expected to attenuate the myelosuppressive effects of paclitaxel it may 

not attenuate paclitaxel induced-neurotoxicity, non-haematological toxicities or 

toxicities related to the solvent required for delivery of paclitaxel.  Consequently 

new dose limiting toxicities will emerge.  Whether the therapeutic gain achieved by 

the increase in dose of paclitaxel is sufficient to compensate for the reduced 

cytotoxicity as compared with the combination of drugs used at their 

therapeutic/cytotoxic doses remains to be seen.  In vitro testing of the strategy 

could give some clues of the likely emerging dose limiting toxicities, the potential 

dose escalation achievable and the therapeutic efficacy of the strategy. 

For clinical studies to be able to evaluate the chemoprotective strategy using the 

low-dose act D/paclitaxel combination it is necessary to have a robust 
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pharmacodynamic marker of p53 activation since unlike conventional dose finding 

studies the aim is not to reach DLT with the pre-treatment but only to stabilise p53.  

The development of potential pharmacodynamic biomarkers of MDM2 inhibition 

(p53 activation) is discussed further in chapter 6. 



 

 

 
 
 
 
 
 
 
 
6 Biomarkers of p53 activation 
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6.1 The clinical challenge 

The ultimate aim of this work was to set up a clinical study to investigate the 

potential of MDM2 inhibitors as chemoprotective agents in patients with a p53 

deficient tumour. 

Clinical evaluation of the chemoprotective strategy would require the ability to 

demonstrate either the minimum dose required for MDM2 inhibition in a dose 

escalation study or, in an alternative de-escalation study design, evidence of 

MDM2 inhibition in the absence of genotoxic damage. Since MDM2 inhibition is 

designed to release p53 from MDM2 mediated degradation and therefore allow 

accumulation of p53 and restoration of anti-tumour activities, measurement of p53 

accumulation could serve as a biomarker of MDM2 inhibition.  Obviously any 

biomarker developed here would also be useful in studies developing MDM2 

inhibitors in their role in the treatment of wild-type p53 tumours.  In this therapeutic 

role evidence of p53 activation/absence of DNA damage would ideally be 

demonstrated in the tumour tissue. However, this is frequently not feasible 

because of the invasive procedures required for repeated tumour biopsy.  The aim 

here was therefore to develop an assay using easily accessible material that could 

provide a robust biomarker of normal tissue p53 activation (for use in 

chemoprotection studies) and tumour p53 activation (for therapeutic studies). 

The easy accessible normal tissues that would most likely demonstrate activation 

of p53 following chemotherapy treatment are the rapidly dividing cells of the hair 

follicles and haemopoietic system, as these are most sensitive to p53 dependent 

chemotherapy induced cell death.  

Hair growth involves cycling through 4 stages; anagen, exogen (early anagen), 

catagen and telogen (Figure 6-1)670.  Anagen phase encompasses migration of 

stem cells from the bulge, part of the upper outer root sheath, to the dermal papilla 

where the dividing matrix cells reside. A new hair is formed and the old hair shed 

(exogen) following which the lower hair follicle is destroyed but the dermal papilla 

remains associated with the regressing follicle in catagen phase.  In telogen the 

follicle rests until a new growth cycle is initiated.  At one time 90% of hair follicles 

are in anagen with rapidly dividing matrix cells susceptible to the effects of 
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chemotherapy.  Furthermore the process of chemotherapy-induced alopecia is 

known to depend on p53 as demonstrated by the p53 knockout mouse, which 

does not develop chemotherapy-induced alopecia671, 672.  

 
Figure 6-1: Hair growth cycle. 
The dermal papilla signals to the stem cells in early anagen (anagen I).  Matrix cells 
proliferate (anagen II) and a new hair shaft is produced and the old hair is released (anagen 
IV/exogen).  During catagen the lower 2/3 of the follicle is destroyed but the dermal papilla 
remains associated with the regressing follicle.  The hair develops a club structure at its 
base retaining the hair follicle.  In telogen the follicle rests until a new growth cycle is 
initiated.  The % given denotes the average % follicles in each phase of the cycle.  
(E=Epidermis, CH=Club Hair, ORS=Outer Root Sheath, CTS=Connective Tissue Sheath, 
DP=Dermal Papilla, S=Sebaceous Gland, HS=Hair Shaft, KZ=Keratogenous Zone, IRS=Inner 
Root Sheath, M=Matrix.  Adapted from Cotsarelis and Millar, 2001. 

Many groups have used immunofluorescence of hair follicles to study stem cells 

and a variety of signalling pathways in animal models673, 674. In animal studies the 

hair follicle is usually examined by taking dermal samples so that the follicle is 

always intact. To date there has been some limited success showing 

immunofluorescence/immunohistochemistry on plucked hair follicles as a potential 

pharmacodynamic marker of modulation of some signalling pathways for which 
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anti-cancer drugs are being developed537, 538, 541, 543, 544, 675.  In examining plucked 

hair samples hairs need to have an intact bulb so that the outer root sheath 

ensures harvest of the chemotherapy sensitive matrix cells of the follicle.  This 

approach has so far not been investigated as a pharmacodynamic marker of p53 

activation.  

Blood sampling is another easily accessible tissue source that can provide a 

substitute for tissues not easily accessible i.e. tumour tissues.  Again due to their 

highly proliferative nature, blood cells are sensitive to biological alterations caused 

by systemic anticancer treatment.  

Peripheral blood mononuclear cells (PBMCs) can be separated from whole blood 

by density gradient centrifugation using Ficoll, where red blood cells (RBCs) 

aggregate with Ficoll forming a lower plug and other blood constituents separate 

into layers based on their weight (Figure 6-2).  Following Ficoll separation of whole 

blood, isolated PBMCs comprise of the lymphocytes (T cells, B cells and Natural 

Killer cells) (58-68%) and monocytes (32-40%). Collection of PBMCs is relatively 

easy and can be undertaken in multiple clinical sites, since it requires only basic 

equipment and expertise.  In addition, PBMCs can be stored in liquid nitrogen for a 

significant length of time without affecting cell viability676.  Importantly this allows 

time for cells to be shipped to the appropriate lab for processing.   

 

 

 

 Figure 6-2: PBMC isolation using Ficoll.   
Adapted from www.emdmillipore.com.  RBC=Red Blood Cells 

 

Serum or plasma may also provide markers for p53 activation, and both of these 

are easily accessible. Cell line and xenograft studies have shown that the secreted 

p53 target macrophage inhibitory cytokine -1 (MIC-1) is highly induced after 

genotoxic damage of p53 wild-type cells but not cells with a mutant or null p53 

status544, 571, 677, 678. In addition, since MIC-1 is secreted it may provide a read out 
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of p53 activation from both normal cells and tumour (depending on the p53 

mutation status of the tumour). 

MIC-1 is a divergent member of the transforming growth factor beta family (TGF-β) 

and is also known as prostate-derived factor (PDF), placental TGF- β, placental 

bone morphogenetic protein, non-steroidal anti-inflammatory drug-activated gene-I 

or its murine ortholog growth differentiation factor-15.  As a member of the TGF-β 

family, MIC-1 has diverse roles in cancer.  In the early cancer stages MIC-1 has 

an anti-tumour role while in the late stages it promotes metastasis679.  Interestingly 

it has been found to have a role in the pathogenesis of cancer associated weight 

loss and is produced in response to secretion of inflammatory cytokines680.  

Presently some early clinical studies of MDM2 inhibitors are using plasma or 

serum MIC-1 level as a potential biomarker for p53 activation426. 

As discussed in chapter 5 it was previously suggested that low-dose 5-fluorouracil 

(5-FU) may be useful as a non-genotoxic p53 activator, consistent with clinical 

data showing that mutant p53 expressing tumours are less likely to respond to 5-

FU treatment, although in these studies high dose 5-FU was examined681, 682. 

Since the initial hypothesis was that low-dose 5-FU could be used as a 

chemoprotective agent, and since it is used in clinical practice in adults much more 

frequently than act D, patients receiving a 5-FU based regimen (using 

conventional cytotoxic 5-FU doses) were recruited to a sampling study to examine 

chemotherapy induced p53 activation in normal tissues. 

6.2 The sampling study design 

Originally a sampling study (MI45) was initiated in which serum and plasma 

samples were collected from patients with gastrointestinal cancers prior to and 

following 5-FU based chemotherapy treatment to explore 5-FU induced changes in 

the proteome. Patients recruited between 2004 and 2008 therefore had collection 

of serum and plasma only.  In 2008 an amendment to the study was made to 

extend the study to allow examination of easily accessed normal tissues pre and 

post 5-FU for modulation of the p53 pathway with the aim of developing a 
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pharmacodynamic biomarker of p53 activation. Patients recruited post 2008 

therefore had collection of serum, plasma, PBMCs and hair follicles.  

6.3 Patient characteristics 

The whole MI45 population consisted of 116 patients, 20 of whom had collection of 

serum, plasma, PBMCs and hair follicles. The patient population was highly 

heterogeneous as detailed in table 6-1.  

Table 6-1: Study patient characteristics. 
Characteristics  Number of patients 
Age Median 68 
 Range 22-87 
Gender Male 72 
 Female 44 
Primary tumour site Colorectal 55 
 Oesophago-gastric 61 
Disease extent Unknown 1 
 Adjuvant 16 
 Locally advanced 21 
 Metastatic 78 
Chemotherapy ECF 46 
 Capecitabine 40 
 Capecitabine (45Gy, 25) 9 
 CF 5 
 ECX 4 
 Modified de Gramont 4 
 CarboF 2 
 EOX 1 
 CAPOX 1 
 ECarboF 1 
 CAPOX/CETUX 1 
 EOF 1 
 ECX/Bev 1 
Chemotherapy cycles Median 4 
 Range 1-12 
Best clinical outcome Non-evaluable 8 
 Partial/complete response 28 
 Stable disease 42 
 Progressive disease 38 
ECF=Epirubicin/Cisplatin/5-FU, CF=Cisplatin/5-FU, ECX=Epirubicin/Cisplatin/Xeloda, 
CarboF=Carboplatin/5-FU, EOX=Epirubicin/Oxaliplatin/Xeloda (Capecitabine), 
CAPOX=Capecitabine/Oxaliplatin, ECarboF=Epirubicin/Carboplatin/5-FU, 
CETUX=Cetuximab, EOF=Epirubicin/Oxaliplatin/5-FU, Bev=Bevacizumab. 
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The median patient age was 68 years old and the majority of patients were male.  

55 patients had colorectal cancer and 61 oesophagogastric cancer.  The vast 

majority of patients had metastatic disease (67% (78 patients)). In total 13 different 

chemotherapy schedules were used.  The common backbone to all regimens was 

5-FU either intravenously or as the oral fluoropyrimidine capecitabine. As 

explained in chapter 5, 5-FU is a p53 stabilising agent, which stabilises p53 at a 

low-dose via the ribosomal stress pathway and at a high dose via the DNA 

damage pathway.  All patients would therefore be expected to have increased p53 

levels following chemotherapy administration. The median number of 

chemotherapy cycles delivered was 4, which, depending on the regimen means a 

median of 8-12 weeks of treatment.  Of 116 patients, 8 were not evaluable for 

response due to either no measurable disease or no scans being performed.  All 

patients had blood sampling prior to administration of any treatment and at some 

time following chemotherapy.  The timing of the post chemotherapy sample was 

variable depending on the patients’ particular chemotherapy regimen.  The vast 

majority of patients had their post treatment sample on cycle 2 day 1. 

6.4 Hair follicle analysis 

For a subset of patients hair follicles were collected for immunohistochemistry 

/immunofluorescence.  Hair was plucked from the eyebrow of patients prior to 

receiving chemotherapy and then again prior to delivery of the subsequent 

chemotherapy cycle.  The time from last chemotherapeutic administration was 

therefore dependent to the particular chemotherapy schedule.  The eyebrow was 

the chosen site for hair plucking since eyebrow hairs are less frequently lost during 

chemotherapy treatment.  In addition plucking an eyebrow hair is accepted as less 

uncomfortable than plucking a scalp hair.  

For assay development, eyebrow hairs were plucked from healthy volunteers, 

formalin fixed and paraffin embedded. Sections were taken in longitudinal and in 

transverse section and Hematoxylin and Eosin (H&E) stained.  In Figure 6-3 the 

nuclei of the hair follicle can be seen in both dimensions.  Due to the structure of 

the hair follicle it was extremely difficult to determine its orientation and frequently 

the hair was lost from the block completely on sectioning.  Limited published data 

has shown some success in immunohistochemistry of hair follicles using a more 
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viscous resin block; however this change in technique would require major 

investment and expertise that was beyond the scope of this study. An alternative 

option of immunofluorescence on intact hair follicles (rather than sections) with 

confocal imaging was explored537, 538, 683. 

 
Figure 6-3: H&E staining of a hair follicle. 
Hair follicles were formalin fixed and paraffin embedded then sectioned and H&E stained.  
Purple nuclei of the hair follicle can be seen in both dimensions.  The inner root sheath and 
outer root sheath can also be identified in both orientations.   

Hair follicles from healthy volunteers (n=9) were fixed with a selection of fixatives 

to establish the optimal agent.  Considerations included the relative thickness of 

the hair follicle samples in comparison with tissue culture cells, minimising the risk 

of auto-fluorescence and antigen masking and maintaining cellular integrity 

required for confocal imaging.  Cross-linking agent paraformaldehyde (PFA) was 

used since it has a small molecular weight that allows diffusion into thick samples.  

Precipitant methanol was used since it minimises auto-fluorescence and is less 

likely to mask antibody epitopes than paraformaldehyde.  Lastly a 50:50 mix of 

methanol:acetone was used since acetone is less damaging than 100% methanol 

fixation.  Following fixation with these 3 methods the hair follicles were washed, 

permeabilised (if required), incubated with anti-Ki67 antibody (a proliferation 

marker), washed, incubated with Alexa Fluoro 488 and DAPI then mounted on 

coverslips for confocal imaging.  Figure 6-4 shows Ki67 staining in each hair 

follicle. 
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 Figure 6-4: Ki67 staining of hair follicles using 3 different fixatives. 
Hairs were fixed with the indicated fixative then stained with Ki67 antibody and 
DAPI and imaged on a confocal microscope.  Shown here is a representative 
slice through each hair. 

 

PFA fixation prior to Ki67 staining showed no Ki67 positive nuclei.  Methanol 

fixation resulted in significant dehydration and shrinkage of the cells while after 

methanol:acetone fixation clear Ki67 nuclear staining was seen in the absence of 

cellular dehydration.  Methanol:acetone fixation was therefore used for subsequent 

experiments.  Ki67 antibody was chosen to assess the fixation method since it 

was expected that hair follicles should stain positive due to their high proliferative 

index.  This is consistent with subsequent data presented in table 6-2.   

49 eyebrow hairs were plucked from healthy volunteers and 45 from patients.  Of 

the 45 patient samples there were 18 pairs of pre and post treatment hairs.  Only 

8/94 (9%) hairs were lost or damaged during processing.  This is similar to studies 

using immunohistochemistry of whole plucked hair follicles537. 

Initially a selection of unpaired hairs (ie no pre and post treatment samples) was 

stained with a panel of antibodies for some proteins of interest.   Since the primary 

objective of the study was to demonstrate p53 stabilisation and activation following 

chemotherapy, some hairs were stained for p53 and its transcriptional targets p21 

and MDM2.  Other cell cycle related proteins were also examined to assess 
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functional effects of p53 stabilisation (phosphohistone H3 (pHH3), retinoblastoma 

(Rb) and Ki67). Finally, some hairs were stained for γH2AX to establish whether 

the chemotherapy dose required for p53 stabilisation could be uncoupled from the 

presence of DNA damage.  Two primary antibodies of differing species were used 

per hair as well as DAPI (to stain DNA). After initial testing it became clear that for 

several antibodies no cells of the hair follicle stained positive.  Table 6-2 shows all 

hairs imaged.  The number of hairs for each antibody that had no staining is 

shown (zero count).  Ki67 and γH2AX were used for further analysis since they 

had relatively low zero counts (37% and 60%) and the therefore relatively high 

percentages of quantifiable hairs – that is hairs with positively stained nuclei to 

count (63% and 40%) (table 6-2).  It is difficult to determine if the lack of staining 

was due to technical failure or truly a biological result.  Most hairs were double 

stained and there was no correlation between zero counts for both antibodies 

staining the same hair suggesting the lack of a technical problem. 

Table 6-2: Hair success rate. 
Antibody Number 

labelled 
Expected cellular 
location 

Zero count High 
background 

Quantified 

Ki67 49 Yes 18 (37%) 0 31 (63%) 
p53 12 NA 12 (100%) 0 0 (0%) 
p21 32 Yes 27 (84%) 0 5 (16%) 
γH2AX 25 Yes 15 (60%) 0 10 (40%) 
pHH3 2 Yes 0 (0%) 0 2 (100%) 
MDM2 4 N & C 2 (50%) 2 2 (50%) 
Rb 2 No 1 (50%) 1 1 (50%) 
N=nuclear, C=cytoplasmic.  All hairs images are detailed here including paired patient 
samples, unpaired patient samples and healthy volunteer samples. The zero count is the 
percentage of hairs stained with a particular antibody that had no positive staining. 

 
To establish the inter-subject variability of Ki67 staining, 1 hair from each of 7 

healthy volunteers was fixed, stained, mounted on a coverslip then imaged by 

confocal microscopy.  10µM slices were taken then the percentage of positive 

nuclei in each slice was quantified using ImageJ.  Figure 5 shows an example of a 

follicle with a low level of staining (0.4%), a medium level (3.6%) and a high level 

(9.8%).  The mean percentage of Ki67 positive cells for the 7 volunteers was 4.5% 

(95% confidence intervals 1.7%-7.3%) (Figure 6-6). 
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 Figure 6-5: Immune fluorescent staining of Ki67 to test inter-subject variability for Ki67. 
Plucked hair follicles from 7 volunteers were fixed, washed, stained & mounted then 
imaged on Zeiss Confocal.  10µM slices of each hair were taken.  DAPI positive & Ki67 
positive nuclei were counted using ImageJ. The percentage positive Ki67 cells was 
calculated and shown in the middle panel. 

 

 

 

 

 Figure 6-6: Quantification of inter-subject variability of % Ki67 positive hair follicles. 
Percentage Ki67 positive cells was plotted.  Mean score & SEM (1.148) is shown.  

 

The objective of the final assay was to determine when evidence of p53 activity 

occurs in one individual therefore it was vital to establish the intra-subject 

variability.  Again 7 hair follicles were collected, this time from the same individual 

on different days. (Figure 6-7 & 6-8).  Samples were analysed on the same day. 
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 Figure 6-7: Immune fluorescent staining of Ki67 to test intra-subject variability. 
7 plucked hair follicles from 1 individual were fixed, washed, stained & mounted then 
imaged on Zeiss Confocal.  10µM slices of each hair were taken.  DAPI positive & Ki67 
positive nuclei were counted using ImageJ.  The percentage of positive cells was 
calculated and shown in the middle panel. 

 

 

 

 

 Figure 6-8: Quantification of intra-subject variability of Ki67 positive hair follicles. 
Percentage Ki67 positive cells was plotted.  Mean score & SEM (1.713) is shown.  

 

Again an example of a follicle with a low (0.5%), medium (4%) and a high (13%) 

percentage of Ki67 positive cells is shown (Figure 6-7).  The mean percentage of 

Ki67 positive cells was 5.7% (95% confidence intervals 1.5%-9.9%) (Figure 6-8). 

Both the inter-subject and intra-subject variability of Ki67 staining was wide with 

coefficients of variation of 67.43% and 80% respectively.  In this case it is difficult 
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to measure the variability of the assay itself since this would require repeated 

analysis of the same sample.  This was not possible since the whole intact hair 

follicle was stained. 

Despite the wide intra-subject variability of the assay, plucked hair follicles pre and 

post chemotherapy treatment were examined for Ki67 staining.  

Plucked hair follicles for 15 patients were fixed, washed, stained.  11 hairs were 

stained for Ki67, γH2AX and DAPI.  3 hairs were stained for Ki67 and DAPI only 

and 1 hair was stained for γH2AX and DAPI only.  All hairs were then mounted 

and quantified.   

7 patients had no Ki67 positive hair follicle cells pre-chemotherapy and post 

chemotherapy.  These patients were excluded from further analysis.  

 

 

 

 Figure 6-9: Ki67 positive nuclei pre and post chemotherapy. 
Mean percentage and SEM are shown.  Wilcoxon matched-pairs signed rank test 
showed no significant difference. 

 

Of the remaining hairs the mean percentage of cells Ki67 positive was not 

significantly different at 11.6% in the pre-chemotherapy hairs (range 0.9%-39.6%, 

SEM 5.2) and 6.5% (range 0-16.6, SEM 2.2) in the post-chemotherapy hairs 

although the trend was in the expected direction (Figure 6-9).  The lack of 

statistical significance could be due to the small sample size. 

Of the 12 hairs stained for γH2AX, 6 hairs were negative post treatment.  All of 

these patients also had a negative pre-treatment hair follicle.  These 6 hairs were 

excluded from further analysis.  Of the remaining 6 patients the mean percentage 
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of γH2AX positive nuclei was 0.6% (range 0-1.4%, SEM 0.3) pre-chemotherapy 

and 3.1% (range 0.7%-7.1%, SEM 1.1) post-chemotherapy (Figure 6-10).  Despite 

a trend in the expected direction there was no significant difference as defined by 

a paired T-test although again a statistically significant difference would be difficult 

to detect due to the small sample size. 

 

 

 

 Figure 6-10: Percentage γH2AX positive cells pre and post chemotherapy. 
Mean and SEM are shown.  Wilcoxon matched-pairs signed rank test showed no 
significant difference. 

 

Unfortunately the high proportion of hairs with negative staining had a significant 

impact on the number of remaining cases for analysis and ultimately this presents 

a serious limitation of this technique. 

6.5 Peripheral blood mononuclear cells 

In an attempt to try to improve on and add to the information gained from the hair 

follicle immunofluorescence, blood was collected in cell preparation tubes (CPT) 

containing Ficoll for separation of red cells, granulocytes, platelets, plasma and 

PBMCs. For a number of patients a pre-treatment sample was obtained but no 

post treatment sample.  These samples were therefore used for optimisation of the 

assay.  

The lymphocyte population was identified by size criteria on forward scatter since 

monocytes are the largest cells present in the PBMC fraction (Figure 6-11). 
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 Figure 6-11: Isolation of lymphocytes. 
PBMCs were washed, fixed & incubated with PBS/antibodies.  Cells were run on FACS 
Calibur.  Side scatter (SSC) versus forward scatter (FSC) was plotted. 

 

PBMCs were stained for p53 and p21 and the mean fluorescence was measured 

on FACS Calibur. Each experiment included a sample with no primary antibody as 

a negative control.  As can be seen in Figure 6-12 the mean p53 fluorescence and 

the mean p21 fluorescence was greater than the no primary antibody condition, 

indicating a fluorescence signal specific to each primary antibody.  

 

 

 

 Figure 6-12: Signal intensity is specific for the primary antibody. 
After gating of the lymphocyte population the mean fluorescence intensity (488 for p53 
or 647 for p21) was plotted for each sample along side the no primary antibody control. 

 

Samples from healthy volunteers were used to establish the variability of the 

assay.  Firstly inter-assay variability was examined.  Three samples were taken 

from the same volunteer and analysed on different days.  The mean p53 
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fluorescence was 7.325 arbitrary units (range 2.38-14.53) and the mean p21 

fluorescence was 22.88 arbitrary units (range 15.47-32.23) (Figure 6-13).  The co-

efficient of variation was 87% for p53 fluorescence and 37% for p21 staining.   

 

 

 

 Figure 6-13: Inter-assay variability of PBMC staining for p53 and p21. 
Samples taken from a healthy volunteer and analysed on different days.  The mean 
fluorescence signal for p53 and p21 is shown as a horizontal line (arbitrary units).  The 
co-efficient of variation was calculated. 

 

Since the aim is to develop an assay where each patient will provide their own 

baseline p53 and p21 levels samples were again taken from a healthy volunteer 

on 5 different days and this time analysed on the same day to rule out deviations 

due to differences in sample processing (Figure 6-14). 

 

 

 

 Figure 6-14: Intra-staining variability of PBMC staining for p53 and p21. 
Samples taken from a healthy volunteer on 5 different days and analysed on same day.  
The mean fluorescence signal for p53 and p21 is shown as a horizontal line (arbitrary 
units).  The co-efficient of variation was calculated. 

 

As seen in Figure 6-14 this resulted in an improvement in the co-efficient of 

variation.  The mean fluorescence for p53 was 667.6 arbitrary units (range 576.5-

754.7) and for p21 was 1468 arbitrary units (range 1264-1805).  The co-efficient of 

variation for p53 fluorescence was improved to 9% from 87% and for p21 to 14% 

from 37%. 
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Next pre and post treatment PBMCs for each patient were prepared and analysed 

to compare the pre and post treatment p53 and p21 levels as indicated by the 

mean fluorescence signal on FACS analysis.  For 20 patients pre and post 

treatment samples were obtained for analysis of p53 fluorescence.  There was no 

significant difference in mean fluorescence levels for p53 prior to treatment which 

was 222.3 (95% confidence intervals 120.8-323.8) and following treatment, which 

was 208.9 (95% confidence intervals 113.7-304) (Figure 6-15).   

 

 

 

 Figure 6-15: Mean PBMC p53 fluorescence following chemotherapy. 
p53 fluorescence was measured by FACS analysis in PBMCs pre and post 
chemotherapy. Box plots show the mean fluorescence (horizontal line), 
AU=arbitrary units.  No significant difference was detected (Wilcoxon matched-
pairs signed rank test).  n=20. 

 

18 PBMC samples were analysed for p21 fluorescence following chemotherapy 

(Figure 6-16).  

 

 

 

 Figure 6-16: Mean PBMC p21 fluorescence following chemotherapy. 
p21 fluorescence was measured by FACS analysis in PBMCs pre and post 
chemotherapy.  Box plots show the mean fluorescence (horizontal line), 
AU=arbitrary units.  No significant difference was detected (Wilcoxon matched-
pairs signed rank test). n=18. 
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There was no significant difference in the mean p21 fluorescence of 158.1 (95% 

confidence intervals 113.3-202.8) pre-treatment and 173.7 (95% confidence 

intervals 114.5-233) post-treatment.  

A small group of 4 patients appeared to have evidence of p53 induction following 

treatment (1.5 fold increase in mean fluorescence).  Three of these patients also 

had a detectable induction of p21 (1.5 fold increase in fluorescence) (table 6-3).  

None of the patients where no p53 induction was detected induced p21.  This 

represents a significant correlation between p53 and p21 mean fluorescence 

levels following chemotherapy. 

Table 6-3: Correlation between p53 and p21 induction after chemotherapy. 

 
p21 not induced 
(<1.5x) 

p21 induced 
(>1.5x) Total 

p53 not induced 
(<1.5x) 11 0 11 
p53 induced (>1.5x) 4 3 7 
Total 15 3 18 
Fisher’s exact p=0.04 
 
Of the 3 patients who had a measurable induction of p53 and a measurable 

induction of p21 all 3 had a partial response to treatment.  None of the patients 

who did not respond to treatment (radiological stable disease or progressive 

disease) had a measurable induction of p21 in their PBMCs.  Overall there was no 

significant difference in the fold change in p21 fluorescence in responders 

(radiological complete or partial response) compared with non-responders (Figure 

6-17). 

 

 

 

 Figure 6-17: p21 induction in responders versus non-responders. 
Median fold change in mean p21 fluorescence following chemotherapy. Whiskers 
represent minimum and maximum values. n=9 responders, 5 non-responders 
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The PBMC assay therefore appeared to be specific in terms of identifying non-

responders since all 5 non-responders did not induce p21 (induction being defined 

as a 1.5 fold increase in mean fluorescence following treatment).  It was however 

not sensitive since of 9 responders only 3 (33%) had a measurable induction in 

p21.  The study population here was of mixed tumour p53 status.  This would need 

to be established to make conclusions about the significance of normal cell p53 

activation and tumour response. 

Although there are some encouraging indications in these studies, the data do not 

establish whether the PBMC assay is sensitive or specific for detection of 

increased p53/p21 activity.  To establish this, the results would need to be 

compared with quantification of p53/p21activity using another assay. 

6.6  Macrophage inhibitory cytokine-1 

In a further attempt to identify a biomarker for p53 activity, the expression of MIC-1 

was examined.  In contrast with p53 and p21, MIC-1 is secreted p53 target.  In a 

wild-type p53 xenograft model treatment with chemotherapy led to increased 

serum MIC-1 expression544.  In this model MIC-1 was analysed using an ELISA 

based protocol, which could measure human MIC-1 and therefore excluded the 

impact of secretion of MIC-1 from the normal mouse tissues. When measuring 

MIC-1 secretion solely from tumour cells a raised MIC-1 level following 

chemotherapy correlated with response in this xenograft model. However, in 

human studies measurement of MIC-1 represents MIC-1 secretion from both 

normal tissues and wild-type p53 expressing tumour tissues.  Furthermore MIC-1 

is expressed in the serum of cancer patients, prior to cancer treatment, at a higher 

level than in healthy volunteers and this correlates with tumour burden in prostate, 

breast, colorectal, pancreatic and gastric cancer (table 6-4)543, 684-688. While 

PBMCs and hair follicles provide an indication of the response of normal tissue to 

p53 activating therapy, analysis of MIC-1 expression provides a more complex 

picture of both tumour and normal cells response (depending on the tumour p53 

status). 

To confirm that a MIC-1 induction following p53 activation was p53 dependent, 

isogenic colorectal cancer cell line, HCT116, p53 wild-type or null were treated 
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with vehicle or Nutlin (the non-genotoxic p53 activating agent). Quantitative RT-

PCR detection showed that Nutlin significantly induced transcription of MIC-1 

mRNA in the p53 wild-type cells indicating that MIC-1 induction is p53 dependent 

(Figure 6-18). 

 

 

 

 Figure 6-18: Nutlin induces MIC-1 expression in p53 wild-type cells. 
HCT116 cells wild-type and null for p53 were treated with vehicle or Nutlin 10µM for 
22h.  MIC-1 mRNA levels were measured by qRT-PCR. Expression is quantified relative 
to control genes according to the comparative ΔΔCt method.  Values from three 
independent experiments are displayed as mean of 2 –ΔΔCt. Student’s two-tailed T-test 
indicates a significant change for Nutlin compared to vehicle treated wild-type cells.  
Error bars represent SEM.*p<0.05. 

 

Serum MIC-1 levels were then measured in 116 gastrointestinal cancer patient 

samples taken prior to chemotherapy using a commercially available MIC-1 

sandwich ELISA. For evaluation of MIC-1 correlation with survival, patients were 

divided into two groups of 54 patients with advanced oesophagogastric cancer and 

44 patients with advanced colorectal cancer.  This was necessary because the 

median survival for advanced oesophagogastric cancer was expected to be 

significantly shorter than for advanced colorectal cancer.  Patients were excluded 

from this analysis; if their treatment was adjuvant (n=16); if their disease stage 

was unknown (n=1); and one patient was excluded from the upper gastrointestinal 

group since they were alive at 64 months follow-up. Mean MIC-1 level was 

717.9pg/ml (range 116.6-2771, SEM 75.91) and 918.7pg/ml (range 177.6-2809, 

SEM 107.4) for oesophagogastric and colorectal cancer patients respectively. For 

the upper gastrointestinal patients the mean MIC-1 level was significantly higher 

for those who survived less than 12 months (mean 796.9pg/ml, range 137.7-

2770.6) versus those who survived longer than 12 months (mean 470.9pg/ml, 

range 116.6-1364.2) as measured by Mann Whitney U test (p=0.018).  For lower 
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gastrointestinal patients there was no significant difference (p=0.169 by Mann 

Whitney U test)) in MIC-1 level for those surviving less than 12 months (mean 

1057.8pg/ml, range 177.6-2809.5) versus those surviving over 12 months (mean 

801.3pg/ml, range 196.7-2585.4). Figure 6-19 displays a scatter plot of the 

baseline MIC-1 levels and survival for each patient group.  Spearmann correlation 

analysis gave an r value of -0.4356 and -0.2276 for the upper gastrointestinal and 

the lower gastrointestinal groups respectively therefore no strong relationship was 

seen overall.  This is in contrast with published data and may be in part a of the 

relatively small sample size in this study.  Of note there are 2 patients with 

metastatic oesophagogastric cancer with survivals far longer than expected.  

 
Figure 6-19: Correlation of baseline MIC-1 and survival. 
(A) Patients with advanced oesophagogastric cancer, n=54, Spearman correlation r=-0.4356 
(B) Patients with advanced colorectal cancer, n=44, Spearman correlation r=-0.2276. 

In line with previously published data, in this study cohort baseline MIC-1 level was 

associated with more advanced cancer stage for both oesophagogastric and 

colorectal cancer (Figure 6-20).  For oesophagogastric cancer the median MIC-1 

level for patients who received adjuvant treatment (and are therefore of the lowest 

stage) was 262.6pg/ml (n=5), for those with locally advanced disease was 

408pg/ml (n=18) and for those with metastatic disease was 599.3pg/ml (n=37).  In 

patients with colorectal cancer median MIC-1 level was 380.8pg/ml for those who 

received adjuvant treatment (n=11) (the lowest stage), 698pg/ml for those with 

locally advanced disease (n=3) and 594.4pg/ml for those with metastatic disease 

(n=41). 

Ba
se

lin
e 

M
IC

-1
 le

ve
l (

pg
/m

l)

Survival in months
0 20 40 60 80

0

1000

2000

3000

Ba
se

lin
e 

M
IC

-1
 le

ve
l (

pg
/m

l)

Survival in months

0

1000

2000

3000

0 10 20 30 40 50

A B



Chapter 6: Biomarkers   

 212 

 
Figure 6-20: Association between baseline MIC-1 and cancer stage. 
(A) Patients with oesophagogastric cancer, box and whiskers plot indicating the 5th-95th 
percentile, Kruskal-Wallis test p=0.038, n=60 (B) Patients with colorectal cancer, box and 
whiskers plot indicating the 5th-95th percentile, Kruskal-Wallis test p=0.01, n=55 

The serum MIC-1 levels pre and post chemotherapy treatment were assessed for 

101 patients. There was a significant difference between median MIC-1 level pre 

and post treatment as determined by a Wilcoxon matched-pairs signed rank test 

(p<0.0001) (Figure 6-21).  Median MIC-1 level pre-chemotherapy was 552.9pg/ml 

(range 116.6-2809, SEM 60.88) and 901.9pg/ml (range 256.3-2815, SEM 64.78) 

post chemotherapy consistent with a chemotherapy-induced increase in 

transcriptional activity of p53.  Whether this increase in p53 activity is only in 

normal tissues, as would be expected in patients with a p53 deficient tumour 

(mutant or null for p53) or whether it represents increased p53 activity in both 

normal tissues and a wild-type p53 tumour is unknown. 

 

 

 

 Figure 6-21: MIC-1 level pre and post chemotherapy 
MIC-1 level (pg/ml) pre and post chemotherapy was plotted for all patients, Wilcoxon 
matched-pairs signed rank test p<0.0001, n=101 
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There is however clearly an easily quantifiable increase in MIC-1 following 

chemotherapy treatment and cell line data here and by others support that this is a 

p53 dependent response677.  For those patients where serum, hair follicles and 

PBMCs were collected correlation between MIC-1 induction and reduced Ki67 and 

induction of γH2AX foci as detected by immunofluorescence of hair follicles and 

p53 and p21 induction in PBMCs was examined however no correlation was 

identified. 

Patients with a wild-type p53 tumour who mount a p53 response after 

chemotherapy may be more likely to achieve a response to treatment (as 

assessed by reduced tumour size on imaging, a radiological response).  The 

association between percentage fold change in MIC-1 level following treatment 

and radiological response to treatment was therefore explored (although a 

significant number of the patients here are likely to have tumours expressing a 

mutant p53, ≈50%).  Patients for whom there was no post treatment sample were 

excluded from analysis.  All patients who could be evaluated for response were 

included in this analysis.  In total 36 patients had progressive disease following 

treatment as determined by RECIST (response evaluation criteria in solid 

tumours)519 (≥20% increase in the sum of diameters of measurable lesions) and 2 

patients had clinical progression (Figure 6-22).    

 
Figure 6-22: Association between MIC-1 change and clinical benefit. 
Percentage change in MIC-1 following chemotherapy was plotted on a box and whiskers 
plot.  5-95 percentiles are indicated. Clinical benefit includes SD, PR & CR, no clinical 
benefit includes clinical or radiological progression.  Significance was tested using Mann 
Whitney test for non-parametric data.  No significant difference was detected. 
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For the 38 patients with no clinical benefit from chemotherapy the median 

percentage fold change in MIC-1 was 135% (range 41.9% -917.7%, SEM 25.94) 

(Figure 6-22).  For the 69 patients with clinical benefit, as defined by RECIST 

stable disease, partial response or complete response, the median percentage 

change in MIC-1 was 160.4% (36.56%-1246%, SEM 27.56).   

These results therefore show no significant difference in the median percentage 

fold change in MIC-1 after chemotherapy in those who had clinical benefit versus 

those who did not.   

To examine if there is a relationship between chemotherapy induced change in 

MIC-1 and survival, correlation analysis was performed on all patients for whom 

pre and post treatment samples were available and patients treated in the 

adjuvant setting were excluded (Figure 6-23).  There is no evidence of a strong 

relationship between change in MIC-1 level and survival.   

 
Figure 6-23: Correlation between change in MIC-1 and survival. 
(A) Patients with advanced oesophagogastric cancer, Spearman correlation r=0.3622, n=53 
(B) Patients with advanced colorectal cancer, Spearmann correlation r=-0.007915, n=45 

Measurement of serum MIC-1 appears to provide a complex measure of normal 

cell and tumour cell biology.  

6.7 Summary and discussion 

The aim here was to examine a variety of easily accessible tissues for activation of 

p53 in response to chemotherapy, in order to identify biomarkers of p53 activity for 

use in clinical studies evaluating the chemoprotective strategy described in 
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chapter 5.  A study of this kind is unconventional since in current clinical practice 

the endpoint in a dose finding study is MTD.  In contrast, the aim here would be to 

establish the minimum dose required to activate p53 in normal tissues (as defined 

by pharmacodynamic biomarkers) whereby protecting them from the subsequent 

cytotoxic therapy.  The normal tissues examined here included hair follicles, 

PBMCs and serum.  

It was demonstrated that the usefulness of immunofluorescence of hair follicles as 

a pharmacodynamic marker of p53 activation is severely limited by the high 

number of hairs with a zero count.  Additionally intra-subject Ki67 staining was 

found to be highly variable.  

Ideally a pharmacodynamic marker of p53 activation would be more upstream 

(more upstream than Ki67) in the p53 pathway. A good marker would be p53 

expression itself, but unfortunately no hair follicles could be successfully stained 

for p53.  Since p53 is a tightly regulated protein, the study sampling times 

determined by the respective patient’s chemotherapy schedule rather than the 

time of expected maximal p53 activation may well have been a methodological 

problem with the study design.  In future studies, it would be useful to time hair 

follicle sampling with pharmacokinetic sampling to help determine the time of 

maximal pharmacodynamic response in relation to the Tmax of the p53-activating 

agent.  Another consideration is that the success of staining hair follicles has been 

previously shown to be dependent on the site the follicle is plucked from537.  All the 

hair follicles stained were plucked from the eyebrow area however for some 

particular proteins scalp follicles produce more quantifiable and thus reliable 

staining.  As yet, it is unknown whether p53 staining of scalp follicles would be 

more successful.   

The PBMC assay described here showed no significant difference in the p53 and 

p21 mean fluorescence following chemotherapy.  Again this could be partly due to 

the inconsistent sampling times of the post treatment sample and timing sampling 

with pharmacokinetic sampling may be useful.  Reassuringly there was some 

correlation between p53 induction and p21 induction, suggesting that p53 

activation can potentially be detected.  
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To further optimise the PBMC assay, identification of the lymphocyte population 

could be improved by using antibodies against lymphocyte cell surface receptors.  

Defining the cell type studied more clearly could reduce assay variability allowing 

detection of smaller changes in p53 and p21. One other draw back of this assay 

was that sometimes lymphocyte numbers were fairly low due to chemotherapy-

induced lymphopenia.  This resulted in a prolonged sample running time which 

while not problematic here could become a problem when using the assay in a 

more heavily pre-treated patient population and also when using the assay across 

different sites. To minimise cell loss, conjugated antibodies could be used since 

this would limit assay handling steps. Ultimately the PBMC assay presented here 

has potential but would require further optimisation in a larger patient group before 

progression to biomarker qualification which in the UK would be according to the 

Cancer Research UK (CRUK) biomarker roadmap. 

The study of p53 activation in hair follicles and PBMCs is ideal to study p53 

activation in normal tissue exclusively.  In contrast, the measurement of serum 

MIC-1 may be influenced by p53 activity in both tumour tissue (if the tumour has 

wild-type p53 status) and normal tissue providing a more complex output.  

However in a chemoprotection study patients would be required to have a p53 

deficient tumour (mutant or null p53 status) therefore in this setting serum MIC-1 

should also only measure p53 activity in normal tissues. 

The results described here demonstrate that overall, in a population of mixed p53 

tumour status, a high baseline level of, p53 target, MIC-1 is an indicator of poor 

prognosis in oesophagogastric cancer.  Furthermore high baseline MIC-1 levels 

correlate with advancing disease stage in oesophagogastric and colorectal cancer.  

This is consistent with previously published data for cohorts of patients with 

oesophagogastric, colorectal and prostate cancer (table 6-4). Increased MIC-1 

levels have also been correlated with more advanced cancer stage in breast, 

pancreatic and cholangio carcinoma and shorter survival in Glioblastoma. 

Table 6-4: Previous studies associating serum MIC-1 with stage/survival.  
Primary 

tumour site 
(reference) 

p53** 
mutation  

Cancer 
vs 

Healthy 

Cancer 
Stage Response to treatment Overall 

survival 

 Initial Post tx Initial 
Prostate543, 685, 10-30% ca  adv stage   shorter 
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686, 689 690 691 docetaxel 
resistance 

docetaxel 
resistance 

Breast543 25% ca  adv stage NK NK NK 
Colorectal688, 692 50% ca  adv stage NK NK shorter 
Head & Neck693 45% ca *** NK NK NK NK 
Pancreatic, 
cholangio684 

35% ca  adv stage NK NK NK 

Glioblastoma687

* 
7-10% ca NK NK NK shorter 

Oesophago-
gastric694, 695 

40-45% ca  adv stage NK NK shorter 

*csf MIC-1 for glioblastoma, plasma samples not consistent (csf=cerebrovascular fluid)   
means increased expression or chemotherapy induced expression, **(IARC TP53 database), *** 
cell lines only, tx=treatment, adv=advanced, ca=cancer, NK=Not Known. 

 
It is interesting to consider why an increased level of a wild-type p53 target would 

be associated with a poor prognosis.  Since a high proportion of patients studied 

here are likely to have mutant p53 expressing tumours elevated MIC-1 appears to 

reflect a host (normal cell) response.  Perhaps normal wild-type p53 tissues 

respond to a tumour by secreting MIC-1 and as a tumour becomes more invasive 

to the normal tissues more MIC-1 is secreted.  This would fit with a strong body of 

data associating systemic inflammation in general with poor prognosis in cancer 

patients696.  It would therefore be interesting to explore other markers of systemic 

inflammation in our patient cohort.  Furthermore it would be interesting to measure 

the MIC-1 levels secreted from normal tissues in the presence of tumours of 

differing p53 genotypes and examine whether MIC-1 contributes to invasion in 3D 

models of invasion and animal models. 

In this study MIC-1 was being examined as a measure of p53 activation in 

response to chemotherapy treatment. Indeed serum MIC-1 level was significantly 

induced after chemotherapy suggesting p53 activation in at least some tissues. 

MIC-1 induction after chemotherapy did not predict clinical benefit from treatment.  

Again this is consistent with previous clinical data, which suggested that an 

increase in MIC-1 following docetaxel chemotherapy predicted resistance to 

docetaxel691.  

In this study and the previous study, associating increased MIC-1 levels with 

resistance to docetaxel, p53 activation was via the DNA damage pathway 

therefore it could not be assumed that non-genotoxic p53 activation will also result 

in MIC-1 induction.  However it is also shown here that in cell lines with wild-type 
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p53, MIC-1 is induced after Nutlin treatment and furthermore early phase studies 

evaluating Nutlin (RG7112) as a therapeutic for the treatment of wild-type p53 

tumours are now investigating the role of MIC-1 as a pharmacodynamic biomarker 

of p53 activation.  So far these studies have shown that serum MIC-1 levels 

correlated with increased drug exposure and haematological toxicity in a cohort of 

patients where 90% of tumours were wild-type for p53 suggesting that it may be a 

useful pharmacodynamic biomarker426-428. Ideally in these initial stages of 

biomarker development MIC-1 should be measured alongside another measure of 

p53 activation to validate it as a marker of p53 activation.  The Nutlin clinical 

studies have not reported whether increased MIC-1 levels also correlated with 

response and survival in their study population (which is unsurprising since these 

early studies were not designed to assess response or survival). 

The MIC-1 data from the present study allows only limited conclusions to be drawn 

due to the mixed p53 status population and the chemotherapy visit schedule 

determined sampling times. The results of the Nutlin clinical studies should help to 

resolve some of the complexities of the present data, in a population with mixed 

p53 status, since patients in these MDM2 inhibitor studies will mostly be of wild-

type p53 status and more importantly will at least be of known p53 status.  

Additionally the early phase Nutlin studies have been able to correlate the MIC-1 

level with pharmacokinetic information.  This will allow determination of the ideal 

MIC-1 sampling time. 

When looking for a therapeutic effect of p53 activation it is important to limit the 

analysis to wild-type p53 expressing cancers, which we have been unable to do. If 

it were possible to study only patients with a wild-type p53 tumour, MIC-1 induction 

following chemotherapy may show a stronger correlation with response to 

treatment. In contrast when looking for p53 activation in normal tissues the study 

population would need to be limited to only patients with tumours of mutant or null 

p53 status. 

The primary aim here was to develop an assay capable of establishing the 

minimum p53 activating dose of some traditional cytotoxic agents to be used as 

chemoprotectants as discussed in chapter 5. An optimised version of the PBMC 

assay presented here and the MIC-1 ELISA assay (in the presence of a p53 
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deficient tumour) could both potentially be used in this role.  Furthermore both 

assays may be useful in studies of MDM2 inhibitors as therapeutic agents for wild-

type p53 tumours.  In this setting the biological response of normal tissues would 

be used as a surrogate for events within the tumour in the PBMC assay and MIC-1 

would provide a measure of p53 activity in both normal tissues and wild-type p53 

tumour.  Presently clinical studies are on-going using MIC-1 ELISA in combination 

with a panel of other assays to evaluate the pharmacodynamic effects of MDM2 

inhibitors.  At the outset of this work, information regarding these studies was not 

available in the public domain. 
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The p53 pathway is the most commonly deregulated pathway in human cancer372.  

This may be because of mutation in the p53 locus (leading to loss of p53 or 

expression of a mutant p53) or alternatively there may be a variety of other 

perturbations at other levels in the pathway.  Ultimately most cancers have evaded 

p53 mediated tumour suppression in some way.  Furthermore this loss of p53 

appears to be required for maintenance of cancer, as demonstrated by mouse 

tumour models where in established mouse tumours reinstatement of p53 led to 

tumour regression. This was mediated via apoptosis in some models and 

senescence with associated immune mediated tumour clearance in others134, 417, 

418. Together these data support the hypothesis that restoration of wild-type p53 

activity could be a useful strategy for cancer treatment.  Clearly the appropriate 

method of restoration of wild-type p53 activity depends on the specific means of 

p53 dysfunction in the tumour. 

At the outset of this work the aims were (1) to evaluate 2 potential strategies 

designed to treat cancers where wild-type p53 has been inactivated by 

overexpression of p53’s negative regulators MDM2 and MDMX,  (2) to examine in 

cell lines a chemoprotection strategy for the treatment of p53 deficient cancers 

(p53 null or mutant) and (3) to develop a pharmacodynamic biomarker for p53 

activation capable of providing proof of mechanism in clinical studies of 

MDM2/MDMX inhibitors.   

One of the strategies tested as a means to treat cancers with wild-type p53 was 

the MPD class of compounds, described in chapter 3. These compounds are 5-

deazaflavin compounds derived from a previously described group of compounds 

(HLI98)447, which were shown to specifically inhibit MDM2’s E3 ligase activity 

leading to stabilisation and activation of p53 in cells.  The MPD compounds were 

derivatives designed to have improved chemical properties and potency in 

comparison with the parent HLI98 class.    

Shown here, these new compounds inhibit ubiquitination of MDM2 and p53 in vitro 

and in cells via a mechanism that is specific to MDM2, since the MPD compounds 

are not capable of inhibiting autoubiquitination of a similar RING E3, Cbl.  More 

specifically the MPD compounds’ activity has been shown to depend on the MDM2 
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RING-tail and furthermore, using SPR, one of the MPD compounds has been 

shown to bind to the MDM2 RING-tail. 

Despite some problems with MPD compound stability and solubility, a core set of 

compounds representing low, medium and high potency, as predicted by in vitro 

ubiquitination assays, could be tested in cell lines.  Importantly treatment of cancer 

cell lines with the MPD compounds led to stabilisation of p53 and increased 

expression of p53 transcriptional targets. As a consequence, MPD compounds 

caused a cell cycle arrest, although some of the most active MPD compounds 

appeared to have some p53 independent pro-apoptotic effects.   

As discussed at length in chapter 3, to fully elucidate the mechanism of action of 

the MPD compounds there are several interesting areas that remain to be 

explored.   The outcome of p53 activation can be diverse and is determined by the 

particular p53 activating signal, the presence of p53’s negative regulators, the 

binding partners of p53 and the modified state of p5370.  To have a full 

understanding of the likely outcomes of p53 activation in response to MPD 

treatment, the influence of MPD on these regulatory levels should be investigated.  

For example since MPD compounds specifically inhibit E3 ligase activity of MDM2 

without disrupting p53-MDM2 binding they may be expected to not fully activate 

p53 due to the absence of DNA damage signalling, continued p53-MDM2 binding, 

elevated MDM2 expression and the specific post-translation modification status.   

Reassuringly mouse models where the acute DNA damage response to radiation 

is suppressed by temporarily switching off p53 signalling482 and models where 

DNA damage activated phosphorylation sites are mutated562-565 support a 

paradigm where DNA damage signalling is not necessary for p53-mediated 

tumour suppression.  Furthermore treatment of xenograft models with Nutlin, the 

non-genotoxic p53 activator did lead to xenograft shrinkage425.  There are also 

several examples of p53 activation in the presence of intact p53-MDM2 binding 

including activation of p53 via the ribosomal pathway276-279 and in response to 

oncogene activity274, 275 as well as in response to proteasome inhibitor 

bortezomib697.  It would however be interesting to examine whether the anti-

proliferation effects of the MPD compounds could be enhanced by additional 
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disruption of p53-MDM2 binding by the addition of Nutlin treatment as has been 

demonstrated in cell line studies with the combination of Nutlin and bortezomib698.    

In contrast with Nutlin the MPD compounds increase MDM2 levels by decreasing 

the proteasomal degradation of MDM2 in addition to the transcriptional 

upregulation of MDM2 due to p53 activation.  The levels of MDM2 are therefore 

expected to be higher following MPD treatment than Nutlin treatment.  Previous 

reports have suggested that the Nutlin induced elevation of MDM2 was of additive 

value in p53 activation since the Nutlin-bound MDM2 maintained the ability to 

cause proteasomal degradation of p53’s other negative regulator MDMX570.  Post 

MPD treatment however the elevated MDM2 levels may be expected to be E3 

ligase dead and therefore incapable of reducing MDMX levels.  A full examination 

of MPD compound-induced alterations in MDMX expression would be valuable. In 

contrast it is possible that the MPD compounds are capable of directly binding and 

inhibiting MDMX since there is a high level of similarity between MDM2 and 

MDMX.  The ability of MPD compounds to bind to MDMX should therefore be 

examined.  Regardless of whether the compounds bind MDMX, it is also possible 

that they can inhibit heterodimerisation of MDM2 and MDMX, causing MDM2 to 

become a less potent E3 ligase.  Inhibition of heterodimerisation remains another 

possible mechanism of action of the MPD compounds that also warrants 

evaluation. 

MPD compounds may result in activation of p53 with a specific post-translational 

modification profile that will have some effect on determining the specific p53 

response.  As well as the expected lack of DNA damage-induced phosphorylation 

it would be interesting to examine the acetylation status of MPD compound-

induced p53 since acetylation is important for full p53 activation300, 304. Potentially 

MPD compound-induced p53 may present a pattern of post-translation 

modifications where there are high levels of Neddylation and SUMOylation since 

inhibition of MDM2’s E3 ligase activity may drive alternative MDM2-dependent 

post-translation modifications with resultant effects of p53’s transcriptional output. 

Finally, structural analysis of the MPD compound-MDM2-RING-tail complex would 

be important to guide design of other more soluble MDM2 inhibiting compounds. 

This work would help to dissect the interaction between MDM2’s E3 RING-tail and 
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E2. Such findings may shed light on the mechanistic details of MDM2’s E3 ligase 

activity and could therefore have implications for the design of new compounds.   

The work described here on the MPD compounds, presents the first evidence for a 

novel mechanism for E3 ligase inhibition, which has potential to have far reaching 

consequences for drug development and understanding the mechanism of 

MDM2’s E3 ligase activity. 

Testing of another potential MDM2 inhibiting drug – HLI373 - is described in 

chapter 4. This compound was originally discovered in a screen for soluble 

compounds structurally similar to the HLI98 class and shown to stabilise and 

activate p53 in cells451. However, in contrast to the published work, we were 

unable to see a direct effect of HLI373 on MDM2’s E3 activity in vitro, suggesting 

that the activation of p53 (and inhibition of p53 ubiquitination in cells) was indirect. 

Since p53 can be activated via three distinct pathways (DNA damage-induced 

inhibition of p53-MDM2 binding284, ARF-MDM2 binding in response to oncogene 

activity and L11-MDM2 binding in response to ribosomal stress), the effect of 

HLI373 on these pathways was explored in more detail.  HLI373 was shown to 

stabilise p53 at doses that do not cause DNA damage and that did not affect p53-

MDM2 binding.  HLI373 was capable of stabilising p53 in cell lines deficient in 

tumour suppressor ARF, indicated that HLI373 did not function via interference in 

the ARF pathway.  HLI373 inhibited ribosomal biogenesis via a mechanism 

dependent on intact p53-MDM2 binding and accordingly caused ribosomal stress 

as determined by translocation of nucleophosmin (B23) from the nucleolar 

compartment to the nucleoplasm. Furthermore ribosomal protein L11-MDM2 

association was enhanced by HLI373 treatment, confirming HLI373 activates p53 

via the ribosomal stress pathway.  The present studies confirmed that HLI373 

inhibited ubiquitination of p53 in vivo, but an inability to impair MDM2’s E3 activity 

in vitro suggested that HLI373 had an indirect mechanism for inhibition of 

ubiquitination of p53.  This observation is consistent with HLI373’s ability to 

activate p53 via the ribosomal pathway.   

Previous studies have shown that in response to ribosomal stress L11-MDM2 

binding enhances degradation of MDMX, thereby enhancing p53 activation280.  

HLI373’s influence on MDMX was therefore examined. Interestingly, HLI373 
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reduced the protein expression of MDMX and this was not rescued by inhibition of 

the proteasome.  HLI373-induced loss of MDMX expression is therefore not due to 

enhanced proteasomal degradation of MDMX.  To test whether HLI373’s effect on 

MDMX was due to reduced transcription of MDMX, quantitative RT-PCR was used 

to examine MDMX mRNA levels.  These studies showed that HLI373 inhibits 

MDMX mRNA expression via a p53 independent mechanism. Examination of 

MDMX pre-mRNA expression and MDMX promoter activity (shown by using an 

MDMX promoter luciferase) revealed that HLI373 inhibited MDMX transcription.  

Using Genomatix software the MDMX promoter was analysed for prediction of 

transcription factors that could be involved in regulating MDMX transcription and 

might therefore be the target of HLI373.  Thirty-eight transcription factor binding 

sites were identified for 30 transcription factors, 2 of which have previously been 

shown to regulate expression of MDMX (Elk and ETS)549. Clearly further 

exploration is required to fully elucidate the mechanism of MDMX inhibition but one 

could speculate that HLI373 functions through one of the transcription factors 

predicted to bind to the MDMX promoter.   

HLI373 has therefore been shown to function as a dual inhibitor of MDM2 and 

MDMX, which stabilises p53 and increases expression of p53 targets resulting in 

p53 dependent apoptosis in cancer cells. Further work to establish the contribution 

of the inhibition of MDMX to the p53 stabilising activity of HLI373 would be helpful, 

as well as confirmation that HLI373 inhibits MDMX in vivo. The dual inhibition 

strategy is attractive since one of the mechanisms of primary resistance to MDM2 

inhibitors in cell line studies has been overexpression of MDMX439.  Clearly normal 

tissues also express MDM2 and MDMX, which work together to control p53 levels, 

protecting normal cells from p53 mediated cell cycle arrest and apoptosis.  

Although the MDM2 null mouse is embryonic lethal due to p53 mediated 

apoptosis245, early clinical studies have shown that pharmacological inhibition of 

MDM2 can be achieved by drug doses that are tolerable426-428.  Likewise the 

MDMX null mouse is embryonic lethal270, however the effect of specific 

pharmacological inhibition of MDMX in humans is as yet unknown.  For HLI373, in 

vivo evidence of anti-tumour activity will be required in xenograft models or 

transgenic mouse models with tumour specific MDM2 or MDMX overexpression.  

Assuming that dual MDM2 and MDMX inhibition is not excessively toxic in longer 
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term experiments, these in vivo experiments would also be helpful in predicting 

likely secondary resistance mechanisms to the dual inhibition strategy.   

The HLI373 compound presents one of the first dual inhibitors of MDM2 and 

MDMX and further exploration of the specific mechanism of MDMX inhibition and 

in vivo evaluation will prove valuable. 

In an alternative strategy, described in chapter 5, MDM2 inhibitors may have a role 

in protecting wild-type p53 expressing normal tissues from treatment for a p53 

deficient tumour.  p53 deficient tumours have deregulated cell cycle control, with 

loss of the G1/S checkpoint and upregulation of genes controlling G(2)/M 

transition515.  This presents a cancer specific feature that can be targeted.  By 

treating patients with an MDM2 inhibitor normal, wild-type p53 expressing tissues 

can arrest while p53 deficient cells will continue to cycle.  This then leaves them 

more susceptible to subsequent cytotoxic treatment. Furthermore this may allow 

escalation and therefore increase efficacy of the cytotoxic treatment. To date there 

have been several cell line studies examining this cyclotherapy strategy which 

have shown promise510, 511, 514-517, 611-615.  However these studies have used drugs 

in the early stages of clinical development.  Based on recent evidence showing 

that low-dose traditional anti-cancer drugs can be used at low dose as MDM2 

inhibitors (non-genotoxic p53 stabilising agents)469, 643 the aim in the present study 

was to test this theory in cell lines using drugs that are clinically approved.  The 

motivation for this approach was an attempt to streamline clinical testing of the 

chemoprotection strategy to maximise timely patient benefit.   

Data presented here shows that act D can stabilise p53 at low-dose without 

causing overt DNA damage by causing ribosomal stress and increased L11-

MDM2 association, thereby inhibiting MDM2’s E3 ligase activity.  After low-dose 

act D treatment, normal cells can be reversibly arrested469, 699.   

Table 7-1 summarises the results of testing low-dose act D and low-dose 5-FU as 

chemoprotective agents prior to anti-mitotic paclitaxel and DNA damaging agent 

cisplatin. 
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Table 7-1: Combinations examined in the present study. 

Protective  Therapeutic agent Protection 
p53 wild-type p53 deficient 

LD act D Paclitaxel Yes No 
Cisplatin No No 

LD 5-FU Paclitaxel Yes Yes 
Cisplatin Yes Yes 

LD=Low Dose, act D=Actinomycin D  
Grey shaded boxes indicate combinations where wild-type p53 expressing cells are 
protected from cytotoxic effects while p53 deficient cells are not.  
 
This low-dose treatment can protect wild-type p53 expressing cells from paclitaxel 

treatment (as measured by a increased cell viability).  Importantly act D pre-

treatment did not increase the viability of p53 deficient HCT116 cells. In contrast 

low-dose act D treatment was not capable of protecting wild-type p53 or p53 

deficient cells from treatment with DNA crosslinker, cisplatin.  This finding is likely 

to be explained by cisplatin’s ability to crosslink DNA regardless of its cell cycle 

phase meaning that even if the cells are arrested in G1 phase after act D 

treatment they will still be susceptible to cisplatin-induced cell death. Pre-treatment 

of p53 deficient cells with act D prior to cisplatin reduced the cell viability in 

comparison with cisplatin treatment alone.  This ability of low-dose act D to 

enhance the cytotoxic effect of cisplatin in p53 deficient cells warrants further 

exploration and strengthens the case for use of low-dose act D in a 

chemoprotective strategy.  Previous studies have highlighted some p53 

independent mechanisms through which Nutlin can enhance the effects of 

cytotoxics, including disruption of p73-MDM2 binding and E2F1-MDM2 binding 

with resultant activation of pro-apoptotic activities of p73 via Noxa664-666. These 

pathways should therefore be examined to elucidate the mechanism of act D’s 

ability to enhance cisplatin induced cell death in p53 null or mutant cells.   

Low-dose 5-FU treatment was also explored as a potential MDM2 inhibitor.  It was 

capable of stabilising p53 via non-genotoxic means, but it also had some p53 

independent effects on clonogenic survival.  Interestingly low-dose 5-FU treatment 

was capable of protecting p53 wild-type cells and p53 null cells from both 

paclitaxel and cisplatin treatment. This suggests that 5-FU’s ability to protect cells 

from paclitaxel and cisplatin is a p53 independent effect.  Since the underlying 

mechanism for this protection is unknown, 5-FU is not suitable for use in a 

chemoprotection strategy that is dependent on p53.  As a reason for the 

protection, one could hypothesize that since 5-FU slows cells’ transit through the 
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cell cycle it reduces the cell fraction entering mitosis and consequently less cells 

are sensitive to paclitaxel. However, this is unlikely to explain 5-FU’s ability to 

protect cells from cisplatin induced cell death, since cisplatin can have its effect 

regardless of cell cycle phase.  An additional mechanism is likely to be required 

which could involve a 5-FU induced inhibition of cisplatin’s access to guanine 

residues to crosslink due to 5-FU’s incorporation of fluorodeoxyuridine 

triphosphate with DNA. It will be interesting to further explore these hypotheses. 

In this study, p53 null HCT116 cells were used to represent p53 deficient tumours. 

Although it is likely that mutant p53 expressing tumour cells would respond in the 

same way, this remains to be confirmed in cell line studies.   

Further cell line work is also required to examine the optimal duration of the 

chemoprotective treatment.  It would be anticipated that chemoprotective cell cycle 

arrest of normal cells should be maintained for the duration of the paclitaxel 

treatment however confirmation of the continued reversibility of act D-induced cell 

cycle arrest with longer duration of arrest needs further exploration.  Furthermore 

in current clinical practice it is not common to use a single agent cytotoxic and 

combinations are preferred to increase the death of cancer cells by differing 

mechanisms in an attempt to limit acquired resistance and to limit toxicity by using 

agents with different toxicity profiles.  Application of the chemoprotective strategy 

prior to combination cytotoxic therapy would allow a broader application of the 

strategy so is worth pursuing.   

Importantly the clinical success of the chemoprotective strategy relies on the ability 

to escalate the dose intensity of paclitaxel.  Although low-dose act D has been 

shown to protect wild-type p53 cells from paclitaxel no assessment of the ability to 

dose escalate and effects of dose escalation following chemoprotection have been 

made so far.  Although the dose limiting toxicity of paclitaxel is myelosuppression, 

in an attempt to maintain dose intensity patients can be supported by use of 

granulocyte colony-stimulating factor (G-CSF) however paclitaxel has other 

significant toxicities which are not easily abrogated by supportive measures. By 

adopting the chemoprotective strategy these other toxicities are likely to replace 

myelosuppression as the dose limiting toxicities. Currently the paclitaxel regimens 

in clinical use cause significant neurotoxicity leading to major patient morbidity619.  
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This neurotoxicity is known to be dependent on dose, infusion duration, treatment 

schedule and drug delivery vehicle700. Conventional paclitaxel requires to be 

dissolved in a Cremophor El (polyoxyethylated castor oil) and ethanol solvent.  

This solvent has been implicated in contributing to the incidence of hypersensitivity 

reactions to paclitaxel and the incidence, severity and time to recovery from 

neurotoxicity.   For this reason an albumin bound preparation of paclitaxel (nab-

paclitaxel) has been designed to limit hypersensitivity reactions and neuropathy 

due to paclitaxel701.  It may therefore be interesting to examine the 

chemoprotection strategy prior to nab-paclitaxel, which is approved for use in the 

treatment of breast cancer702, since there may be more potential to escalate the 

dose. 

To progress the chemoprotection strategy I would propose testing the strategy in 

xenografts formed from isogenic cell lines wild-type, null or mutant for p53 using 

low-dose act D and paclitaxel.  The strategy could also be examined in conditional 

mutant p53 knock-in/p53 knock-out transgenic mouse models.  Mouse models will 

allow simultaneous assessment of the therapeutic effect of escalation of cytotoxic 

therapy as measured by xenograft shrinkage or tumour shrinkage in a transgenic 

model, as well as the assessment of new emerging toxicities (by measuring white 

cell counts and assessing neurotoxicity using locomotor activity measures703).   

Three different methods of modulation of the p53 pathway are described in this 

thesis.  All of these strategies are in the pre-clinical development stages.  In order 

to assist in the clinical development of such strategies there is a need for early 

investment in pharmacodynamic biomarker development.  In a move from the 

tradition where drug dosage is dependent on reaching maximum tolerated dose, 

for molecularly targeted agents drug dosage should be a dose where proof of 

mechanism can be demonstrated. Furthermore the aim should be to establish a 

dose of maximal target blockade to allow for variability of drug delivery to tumour 

cells caused by differences in tumour structure and vascularisation526.  Ideally if a 

drug shows no ability to hit its target at doses that are tolerable to patients then the 

drug should not be further developed.  In practice this is difficult since it is 

desirable to prospectively validated biomarkers in cohorts of patients prior to use 

as a primary outcome measure in a clinical study.  In reality a pragmatic approach 
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would be to develop biomarkers in phase I and then use the validated biomarker in 

from phase II. Biomarkers could then be used to indicate directly that the drug is 

affecting the expected target and could allow clinical decisions to be made using 

conventional measures of response as well as information regarding the biological 

effects of the treatment.  

To test the chemoprotection strategy in a clinical study, a pharmacodynamic 

biomarker for p53 activation is needed to determine the MDM2 inhibiting dose of 

act D.  With this in mind, chapter 6 describes 3 potential assays examining normal 

tissues for evidence of p53 activation. 

Easily accessible tissues (hair follicles, PBMCs and serum) from patients prior to 

and following systemic traditional chemotherapy were examined for evidence of 

p53 activation.    

The present study shows that it is possible to use immunofluorescence followed by 

confocal imaging of intact plucked hair follicles from the eyebrow.  The assay was 

limited, however, by the high number of hairs where no nuclei stained positive.  

Disappointingly, no hairs stained positive for p53. Since p53 is tightly regulated 

with levels being kept low in normal tissues it is likely that the timing of hair follicle 

sampling in relation to chemotherapy dosing is critical.  In addition, it has been 

suggested that protein expression varies significantly depending on whether the 

hair is plucked from the eyebrow or scalp537.  In this study hairs were plucked from 

the eyebrow only since patients find this more acceptable and less uncomfortable.   

p53 and p21 activation in peripheral blood mononuclear cells (PBMCs), as 

determined by antibody labelling and FACS analysis, appeared to be detected in a 

small proportion of patients following chemotherapy treatment.  There were, 

however, a high number of patients for whom no induction of p53 or p21 was 

detected and there was no correlation between response to treatment and 

induction of p53 or p21.   In the context of a study of patients with unknown tumour 

p53 mutation status this is difficult to interpret, since PBMCs are only a normal 

tissue surrogate for drug-induced changes in the tumour.    While this is ideal for 

testing which dose of act D is suitable to use for chemoprotection, it is not ideal for 

assessing the tumour response to treatment. Ideally to assess response to 
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treatment repeat tumour biopsy could be undertaken however this is sometimes 

technically not feasible and in general patients would prefer to avoid an 

uncomfortable procedure that can potentially have complications.  For this reason 

several non-invasive methods of assessing biological changes in tumours are in 

development including quantification of circulating tumour cells (CTCs)704, 

assessment of circulating DNA705 and functional positron emission tomography 

(PET520) imaging. Overall, although the PBMC assay has high variability in its 

present protocol, it has potential for further optimisation.   

Finally serum was examined for detection of macrophage inhibitory cytokine 1 

(MIC-1) levels using a sandwich ELISA. MIC-1 is a secreted p53 target706; this 

means that serum MIC-1 may reflect p53 activity in normal and tumour cells, if the 

tumour retains wild-type p53. In the cohort of patients studied (of unknown tumour 

p53 status), an elevated baseline MIC-1 level was significantly associated with a 

poorer survival in patients with upper gastrointestinal malignancies and with more 

advanced disease stage for both upper and lower gastrointestinal malignancies.  It 

is counterintuitive that an elevated level of a p53 target gene should be associated 

with poorer survival and more advanced cancer stage.  This is however a 

consistent finding across several previous publications in cohorts of patients with 

tumours from a variety of primary sites688, 692, 694, 695. It is likely that at least 50% of 

the patient population studied here have tumours with p53 mutations therefore 

since these p53 mutant tumours would not be expected to upregulate MIC-1 

expression it seems plausible that the elevated MIC-1 levels detected reflect the 

host’s (normal cell) response to tumour burden.  This is an interesting area for 

further study.  There is a breadth of data associating systemic inflammation, as 

assessed by measurement of non-specific marker of systemic inflammation C-

reactive protein (CRP), with poor prognosis in cancer patients696 and in a study of 

gastric cancer patients, elevated MIC-1 level was associated with poorer survival 

but not independently of systemic inflammation695. It would therefore be interesting 

to look for correlation between elevated MIC-1 levels and elevated CRP levels in 

our cohort.  

In patients with a p53 deficient tumour a raised MIC-1 in response to 

chemotherapy suggests p53 induction in normal tissues. In this setting 
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assessment of MIC-1 may be a useful pharmacodynamic biomarker for p53 

activation in studies testing the chemoprotective strategy since the aim is to 

activate p53 in normal cells.  However MIC-1 is also regulated by transcription 

factor specificity protein 1 (Sp1)707 as well as a host of other regulatory factors 

therefore further evaluation of MIC-1 induction in combination with another marker 

of p53 activation (perhaps using the optimised PBMC assay presented here) is 

necessary. 

In patients with a wild-type p53 tumour, induction of MIC-1 may be both from 

normal tissues and also from tumour cells.  In this context the interpretation of 

MIC-1-induction following treatment is even more complex since tumour cells may 

be making some contribution to the MIC-1 levels detected.   In the Nutlin clinical 

studies serum MIC-1 (in a study cohort with wild-type p53 tumours) has been 

evaluated and has been shown to correlate with the level of drug exposure and 

thrombocytopenia suggesting that it is reflecting p53 activation in tissues427, 428.  

Of the 3 assays studied, the PBMC assay (although not in its current protocol) and 

measurement of serum MIC-1 appear to have potential as pharmacodynamic 

biomarkers for p53 activation.  Further studies in larger cohorts of patients, of 

known tumour p53 status, are needed to validate the assays and establish 

threshold levels for p53 activation. Hopefully this can be achieved in the on-going 

clinical studies of p53-MDM2 inhibitor Nutlin.  

Taken together data presented in this thesis highlight 3 potential strategies in 

which our knowledge of p53 pathway regulation could be used to develop 

promising new strategies to treat cancer patients.  Furthermore, this study 

revealed some of the additional difficulties with using patient samples in biological 

assays due to high levels of variability.   

Figure 7-1 suggests a scheme for applying knowledge of p53 pathway status to 

direct treatment decisions with the aim of achieving the most appropriate, most 

effective and least toxic treatment of cancers. 
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 Figure 7-1: p53 directed anti-cancer treatment. 
PD=progressive disease, NOTCH1=Notch homolog 1, translocation-associated, 
wt=wild-type, mut=mutant. 

 

Firstly the application of the strategies presented here in clinical practice will 

require knowledge of tumour p53 status.  At diagnosis patients will require 

sequencing of their tumour to establish the p53 status.   

For those patients who have a p53 deficient tumour the cyclotherapy strategy 

could be adopted.  On completion of treatment patients would be assessed until 

disease progression.  Clearly if the progression free survival is substantial then re-

challenge with the previously effective regimen would be the most sensible 

approach however in the event of a short disease free interval re-biopsy should be 

supported where possible to allow molecular testing for resistance pathways of 

interest (for example tubulin mutations may be acquired following paclitaxel 

treatment708).  Understanding of the emergence of resistance mechanisms can 

then inform future treatment decisions. In the future hopefully non-invasive 

measures of tumour biology will be more informative however to achieve the 

required validation of these techniques a culture of re-biopsy on progression is 

required.  



Chapter 7: Summary and conclusions   

 234 

In the event of a wild-type p53 tumour, subsequent testing for MDMX 

overexpression is needed since MDMX overexpression would cause primary 

resistance to MDM2 inhibitors and indicate the need for MDMX inhibition or dual 

MDM2/MDMX inhibition438.  Then on progression (depending on the duration of the 

progression free interval) tumour re-biopsy should be undertaken since the 

emergence of p53 mutations may be seen709-711.  Furthermore in cell line work 

other resistance mechanisms have been seen including upregulation of NOTCH1 

signalling, a finding that may suggest tumour sensitivity to mTOR inhibition 

therapy712. 

This aim of this simplistic scheme is to highlight the benefit that knowledge of p53 

status could bring in terms of more rational treatment decisions and most 

importantly limiting patient exposure to systemic therapies (and their associated 

toxicities) which are likely to be ineffective.  In the development of MDM2 inhibition 

therapy an issue of potential concern is that some normal (non-tumour) tissues 

have p53 mutations (fallopian tube713 and UV damaged skin476).  Potentially 

stabilising the mutant p53 in non-tumour tissues could promote tumour formation.  

The early phase studies of Nutlin so far have not indicated any concerns regarding 

the emergence of new primary tumours however these early phase studies have 

been in patient populations where patients have advanced, multi-resistant disease 

and the emergence of new primary tumours is therefore likely to be irrelevant.  In 

future studies long term follow-up of patients for second malignancies will require 

close attention. 

In the era of targeted therapy, knowledge of driving molecular forces of a particular 

tumour are required and the most robust way of determining this is by biopsy at 

diagnosis and on progression of disease.  Even when this is technically feasible 

this is however not without limitations in that individual tumours themselves can be 

highly heterogeneous526, 714. The most sensible method of dealing with this is to 

take several biopsies at each timepoint, however, attention would need to be paid 

to the specific site of tumour biopsy since signalling pathways are likely to vary 

between the necrotic, hypoxic tumour centre and the leading edge. 

As understanding of regulation of MDM2/MDMX and p53 is improved, multiple 

potential anti-cancer drug targets are likely to be identified.  With the addition of 
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clinical studies, where pharmacodynamic biomarkers are utilised to demonstrate 

proof of mechanism below maximum tolerated dose, rational drug design and 

development should lead to improved cancer outcomes for patients. 
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