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Abstract 

Remote Sensing (RS) and Geographic Information System (GIS) approaches, combined 

with ground truthing, are providing new tools for advanced ecosystem management, by 

providing the ability to monitor change over time at local, regional, and global scales.  

 

In this study, remote sensing (Landsat TM and aerial photographs) and GIS, combined 

with ground truthing work, were used to assess wetland vegetation change over time at two 

contrasting wetland sites in the UK:  freshwater wetland at Wicken Fen between 1984 and 

2009, and saltmarsh between 1988 and 2009 in Caerlaverock Reserve. Ground truthing 

studies were carried out in Wicken Fen (UK National Grid Reference TL 5570) during 14
th 

- 18
th

 June 2010: forty 1 m
2
 quadrats were taken in total, placed randomly along six 

transects in different vegetation types. The survey in the second Study Area Caerlaverock 

Reserve (UK National Grid Reference NY0464) was conducted on 5
th 

- 9
th 

July 2011, with 

a total of forty-eight 1 m
2
 quadrats placed randomly along seven transects in different 

vegetation types within the study area. Two-way indicator species (TWINSPAN) was used 

for classification the ground truth samples, taking separation on eigenvalues with high 

value (>0.500), to define end-groups of samples. The samples were classified into four 

sample-groups based on data from 40 quadrats in Wicken Fen, while the data were from 48 

quadrats divided into five sample-groups in Caerlaverock Reserve. 

 

The primary analysis was conducted by interpreting vegetation cover from aerial 

photographs, using GIS combined with ground truth data.  Unsupervised and supervised 

classifications with the same technique for aerial photography interpretation were used to 

interpret the vegetation cover in the Landsat TM images.  In Wicken Fen, Landsat TM 

images were used from 18
th

 August 1984 and 23
rd

 August 2009; for Caerlaverock Reserve 

Landsat TM imagery used was taken from 14
th

 May 1988 and 11
th

 July 2009. Aerial 

photograph imagery for Wicken Fen was from 1985 and 2009; and for Caerlaverock 

Reserve, from 1988 and 2009.  

 

Both the results from analysis of aerial photographs and Landsat TM imagery showed a 

substantial temporal change in vegetation during the period of study at Wicken Fen, most 

likely primarily produced by the management programme, rather than being due to natural 

change. In Cearlaverock Reserve, results from aerial photography interpretation indicated a 
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slight change in the cover of shrubs during the period 1988 to 2009, but little other change 

over the study period.  

 

The results show that the classification accuracy using aerial photography was higher than 

that of Landsat TM data. The difference of classification accuracy between aerial 

photography and Landsat TM, especially in Caerlaverock Reserve, was due to the low 

resolution of Landsat TM images, and the fact that some vegetation classes occupied an 

area less than that of the pixel size of the TM image. Based on the mapping exercise, the 

aerial photographs produced better vegetation classes (when compared with ground 

truthing data) than Landsat TM images, because aerial photos have a higher spatial 

resolution than the Landsat TM images. 

 

Perhaps the most important conclusion of this study is that it provides evidence that the 

RS/GIS approach can provide useful baseline data about wetland vegetation change over 

time, and across quite expansive areas, which can therefore provide valuable information 

to aid the management and conservation of wetland habitats. 
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Chapter 1- Introduction & Literature Review 

1  

1.1  Introduction 

 

Wetlands are sited in the landscape as ecotones that appear along elevation and 

hydrological gradients between terrestrial and aquatic ecosystems (Bardley and Hauer, 

2007). They can be defined as regions that are transitional between terrestrial and aquatic 

systems, where the water table is near the surface or the land is inundated by shallow 

water, whether during the whole or part of the year (Frohn et al., 2009). Wetland 

vegetation is an important component of wetland ecosystems that plays a vital role in 

environmental function (Kokaly et al. 2003). Wetlands are important habitats because the 

heterogeneity in hydrology and soil conditions which they support results in a broad 

variety of ecological niches, and they usually support enormous biodiversity (McCartney 

and Hera, 2004).   

 

 

Wetland and riparian zones supply a variety of ecological services that contribute to 

ecosystem functions (Ehrenfeld 2000, Mitsch and Gosselink 2000). In addition, they 

provide numerous valuable functions (e.g. ground water recharge, flood mitigation, 

regulation of pollutants and water) as well as other attributes (biodiversity support, amenity 

and creation, cultural heritage), and there has been increasing awareness of their functional 

value in recent years (Owor et al., 2007). Wetland vegetation is a significant component of 

wetland ecosystems, one that plays a vital role in environmental function (Kokaly et al. 

2003; Lin and Liquan 2006). It is also an excellent indicator for early signs of any physical 

or chemical degradation in wetland environments (Adam et al. 2010). Wetlands cover 6% 

(seven to eight million km
2
) of the world's land surface (Erwin, 2009), and occur in every 

climate, from the tropics to the frozen tundra, on every continent except Antarctica 

(Mitsch, 1994).  
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1.1.1  Types of Wetlands 

 

There are many different types of wetlands. Matthews and Fung (1987) divided wetlands 

into 5 classes: forested bogs, non-forested bogs (where bogs are formed by infilling of 

shallow lakes; usually with no inflow or outflow), forested swamps, and non-forested 

swamps (swamps found in poorly drained areas near streams or lakes) and alluvial 

formations. Bogs and fens are the most common wetlands across large areas of the 

northern hemisphere, above 45
o
 north (Aselmann and Crutzen, 1989).  It is estimated that 

about half of the world‟s wetlands are in the boreal region, mostly in the form of bogs 

(Matthews, 1990). According to Aselmann and Crutzen (1989), the most widespread 

wetland category is bogs, covering 1.9 x 10
6
 km

2
, followed by fens and swamps, 

contributing about 1.5 x 10
6
 km

2
 and 1.1 x 10

6
 km

2
, respectively. Floodplains add another 

0.8 x 10
6
 km

2
, whereas marshes and lakes contribute only 7% to the total. Other major 

types of wetlands worldwide fall into the categories of coastal river deltas, inland river 

deltas, great riverine forests, saltmarshes, northern peatlands, inland freshwater marshes 

and swamps, and constructed wetlands (Mitsch, 1994). 

 

 

1.1.1.1 Freshwater Wetlands in the UK   

 

Wetlands are an important part of the British and Irish landscape, covering almost 10% of 

the terrestrial land area (Dawson et al., 2003), and both broad and priority habitat. The 

main types of wetlands are rivers, lakes, ponds, and ditches; swamps which are 

permanently saturated with water; and marshes which may be partially flooded for long 

periods (Polunin and Walters 1985).  The UK has many types of freshwater wetlands, such 

as floodplain, swamp, fen, wet grasslands, ditches and marshes (Mitsch, 1994). Fens are 

dominated by graminoid (grass-like) vegetation: grasses, sedges, and rushes. Like fens, 

marshes are also dominated by herbaceous emergent vegetation (Mitsch and Gosselink, 

2000). Common marsh species include the sedges, Carex and Cyperus spp., rushes, Juncus 

spp., and species such as cattail, Typha spp. (Craft, 2005). Great Britain and Ireland have 

almost 2,500,000 ha of bogs and fens (Taylor, 1983). The total national area of the UK is 

24,159,000 ha (excluding marine areas), and the estimate of wetland coverage within the 

UK is 2,976,585 ha (based on Davidson and Buck 1997; UK Ramsar National Report 

1999). 
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Lowland wetlands are classified into lowland raised bog and blanket bog, and lowland fen. 

The second type includes: flood-plain fen, basin fen, open-water transition fen, valley fen, 

springs and flushes, fen woodland, and fen meadow (JNCC, 2004). According to Barr et al. 

(1993), the best estimate for inland wetlands in the UK is 370,000 ha of fen, marsh and 

flush wetland; 1,660,000 ha of wet heath and saturated bogs; 210,000 ha of inland water 

bodies (i.e. lake, pond, mere, reservoir); 80,000 ha of inland watercourses (i.e. river, canal, 

drainage channels), and 60,000 ha of wet woodlands. England holds approximately 40% of 

the UK‟s fen and lowland raised bog, and over half of the reedbeds (Carey et al., 2008). A 

brief summary of vegetation types present in the UK are shown in Table 1.1. 
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Table  1-1: Shows vegetation types in the UK depending on (JCCN, 2007). 

 

Vegetation types Vegetation characteristic 

Lowland Grassland Habitat  

Lowland meadows 

 

Plant species occurs Cynosurus cristatus  

Leucanthemum vulgare. Centaurea nigra, Festuca rubra, 

Filipendula ulmaria ,Silaum silaus 

Lowland Wetland Habitat 

Lowland Raised Bog   

Usually various colourful Sphagnum mosses predominate 

(e.g. Sphagnum auriculatum, S. cuspidatum, S. 

magellanicum, S. papillosum, S. recurvum 

Lowland Fen 

Poor-fens 

Their vegetation is characteristically species-poor, with a 

moderate to high cover of Sphagnum bog mosses (mainly 

Sphagnum cuspidatum, S. palustre, S. recurvum, S. 

squarrosum) and sedges (especially Bottle sedge Carex 

rostrata), 

Rich-fens 

It includes mire vegetation dominated by a range of 

Carex sedges, mixed in with various vascular plants  

Lychnis flos-cuculi, Pinguicula vulgaris, Ranunculus  

flammula, Pedicularis  palustris, Caltha palustris, 

Cirsium palustre 

Grassland and marsh 

This category includes both areas of herbaceous 

vegetation dominated by grasses and certain wet 

communities dominated by Juncus species, Carex 

species, Filipendula ulmaria. 

 

Marsh/marshy grassland 

Covering certain Molinia grasslands, grasslands with a 

high proportion of Juncus species, Carex species or 

Filipendula ulmaria, and wet meadows and pastures 

supporting communities of species such as Caltha 

palustris or Valeriana species. 

 

Tall herb and fern 

Dominated by Pteridium aquilinum, ,this ledge 

vegetation contains species such as Angelica sylvestris, 

Filipendula ulmaria, Solidago virgaurea, Athyriurn fllix-

femina, Trollius europaeus and Crepis paludosa. 

Swamp 

vegetation includes both mixed and singlespecies 

stands of Typha species, Phragmites australis; Phalaris 

arundinacea, Glyceria maxima, Carex paniculata, C. 

acutiformis, C. rostrata or other tall sedge. 

Coastal Habitat Types 

Saltmarsh 

Salicornia species and Spartina maritima) 

 

Bog woodland 
Generally dominated by Betula pubescens, Frangula alnus, 

Pinus sylvestris, Pinus rotundata and Picea abies, 

Scrub 

Ulex europaeus, Cytisus scoparius and Juniperus 

communis scrub; stands of Rubus fructicosus and Rosa 

canina montane scrub with Salix lapponum, S. 

lanata, S. myrsinites, S. arbuscula or S. phylicifolia; 

stands of mature Crataegus monogyna, Prunus spinosa 

or Salix cinerea 
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1.1.1.2 Saltmarsh Wetlands in the UK 

 

The plants that grow in saline habitats such as saltmarsh habitats are called halophytes. 

Halophytes are defined by Flowers and Colmer (2008) as species which have adaptations 

permitting survival and growth under saline conditions. Saltmarshes are defined as 

intertidal areas of fine sediment transported by water and stabilised by vegetation 

(Boorman, 1995). The development of saltmarshes is the result of the interplay of tides, 

waves, relative sea-level rise, sediment supply and vegetation (Harvey and Allan, 1998). 

Marshes are usually inundated with surface-water, and water levels generally vary from a 

few centimetres to a metre or more (Mitsch, 1994), depending on tidal and topographical 

location. British saltmarshes are found around much of the coast, together with a few 

inland marshes; the saline habitats are not solely coastal in the UK, although the number of 

inland saltmarshes resulting from saline groundwater and salt-bearing rocks is admittedly 

hugely reduced, wherever the local physiography allows their development (Adam, 1981).  

Saltmarshes usually arise on intertidal land (often in estuaries, but also in sea lochs in 

Scotland: e.g. Taubert and Murphy, 2012) within the amplitude of the usual spring tides, 

where halophytic plants have adapted to high salinities and are able to endure periodic 

immersion in seawater. They occur in a broad variety of locations, where certain 

conditions are present which allow a net accumulation of soft sediment, allowing the 

growth of halophytic plants in this zone (Burd, 1989).    

 

 

British saltmarsh communities are not composed solely of halophytes, but frequently 

contain less-specialist species too, especially towards the upper part of the marsh (Adam, 

1981).  Saltmarshes in Britain are classified into three seres, the south coast sere, the east 

coast sere and the west coast sere; there is a fourth type in Ireland (Chapman, 1941). 

Within these broad geographical seres, three types of saltmarsh are usually recognised. The 

first type is normally ungrazed and largely restricted to southeast England; a second type is 

grazed and largely restricted to the Irish Sea coast of England and Wales, as well as the 

Scottish shore of the Solway Firth; the third type is typical of sea loch-head marshes on the 

west coast of Scotland (Adam, 1978). Saltmarsh zones in the UK are generally laid out as 

follows: lowest on the shoreline is the  pioneer zone: open communities covered by all 

tides except the smallest range of the tide, and dominated by one or more of the following - 

Spartina spp.,   Salicornia spp., and Aster tripolium. Next up the shore is the low marsh 

zone, inundated by most tides, and characterised by a closed sward community, often 
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dominated by Puccinellia maritima and Atriplex portulacoides, as well as pioneer species. 

Often the two lowest zones are combined and referred to as the low marsh. Above this is 

middle marsh, covered only by spring tides, and again in general characterised by closed 

communities with Limonium spp. and/or Plantago maritima, as well as species found 

lower on the shore. Finally the uppermost part of the marsh, inundated only infrequently by 

the highest spring tides, is the high marsh zone: in general, this is formed of  closed 

communities characterised by one or more of the following - Festuca rubra, Armeria 

maritima, Elymus pycnanthus, as well as plants found lower on the marsh (Boorman, 

2003).  

 

 

Chapman (1941) has classified the maritime saltmarshes of the world into nine main 

groups, with various sub-groups. The Solway area (within which lie the Caerlaverock 

saltmarshes that form Study Area 2 for the present work), falls into Group 1, in sub-group 

(a) North European Marshes: described as a “sandy and sandy mud type dominated by 

grasses.” Generally, grasses such as Puccinellia, with some Festuca and Agrostis, as well 

as dicots such as Armería and Plantago, dominate this saltmarsh community (Marshall, 

1962). National Vegetation Classification (NVC) described   the communities of saltmarsh 

vegetation (Rodwell et al., 2000),   subdividing them into thirteen communities in the 

lower saltmarsh, nine communities in the middle saltmarsh, and three communities in the 

upper saltmarsh (Boorman, 2003). Some 82.8% of the total saltmarsh area in Great Britain 

has officially protected conservation status, whether as Sites of Special Scientific Interest 

(SSSI), local Nature Reserves, or National Nature Reserves (NNR) (Burd, 1989). 

 

 

Burd (1995) has described the saltmarsh sites in the United Kingdom in substantial detail. 

The total area of saltmarsh in the UK is 45,337 hectares, of which 71% (equivalent to 

32,500 ha) is in England. A further 14.88% (equivalent to 6,748 ha) is in Scotland, 13.43% 

(equivalent to 6,089ha) in Wales, and 0.53% (equivalent to 239ha) in N. Ireland (Boorman, 

2003). There are four dominant saltmarsh plant communities in Scotland which occur in 

varying proportions. Following the standard NVC classification (Rodwell et al., 2003), the 

first of these comprises one or both SM8 Salicornia/SM9 Suaeda communities (less 

abundant in the North). The second, SM10 Puccinellia maritima, community, is often the 

dominant vegetation on grazed saltmarshes. The third community is SM13, Puccinellia 

Festuca, and the fourth SM16 Juncus gerardii community. Large stands of the common 
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reed Phragmites australis also feature strongly in certain saltmarshes in South East 

Scotland, notably in the Tay Estuary saltmarshes (Burd, 1989).   

As an example: in a recent study, Taubert and Murphy (2012) found that the vegetation 

present within a sample of Scottish saltmarshes (including both estuarine and sea loch  

sites) showed  the three distinct vegetation zones characteristic of  UK saltmarshes: (1) low 

marsh zone (pioneer zone) defined by soft sediments, seaweeds and a few specialist 

halophytes such as Salicornia europaea and Puccinellia maritima, (2) mid marsh zone 

(accretion zone) supporting common saltmarsh species with varying tolerance of salinity, 

such as Festuca rubra, Juncus gerardii and Agrostis stolonifera, and (3) upper marsh zone 

(mature zone) which  contains species less tolerant to salt and regular submergence, such 

as Elymus pycnanthus. 

 

 

1.2 Wetland Ecological Characteristics 

 

Wetland ecosystems typically show three characteristic ecological conditions, all of which 

are potential stressors for plant survival and growth: periodic to continuous inundation or 

soil-saturation with fresh or saline water; soils that are periodically anoxic (hydric soils); 

and hydrosoils with rhizospheres experiencing periods of low or no oxygen availability 

(Craft 2005). The rooted emergent vegetation found in wetland habitats (hydrophytic 

vegetation) must therefore show adaptations enabling them to tolerate the stresses 

produced by such conditions. In addition, saltmarsh wetland plants must tolerate the 

osmotic stresses (which produce “physiological drought” in plant cells) produced by high 

salinity conditions, and which are combated by a variety of physiological adaptations 

involving exclusion, excretion, succulence and passive removal mechanisms (Crawford 

1989). 

 

 

The level of inundation, hydrosoil redox and pH are all environmental pressures, primarily 

affecting the edaphic (hydrosoil) habitat, which strongly influence plant survival in 

wetlands (Kennedy et al., 2006). Flooding is a compound stress, composed of interacting 

changes inside plant cells induced by the floodwater surrounding the plant (Perata et al., 

2011). Plant tolerance to flooding and tissue anoxia varies widely.  In response to the 

severity of flooding stress, terrestrial wetland species have developed a variety of strategies 

to resist flooding (Vartapetian and Jackson, 1997). A major constraint resulting from 
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excess water, at least for poorly adapted species, is an inadequate supply of oxygen to 

submerged tissues; diffusion of oxygen through water is 10,000 times slower than in air 

(Armstrong and Drew, 2002; Parent et al, 2008). The most important adaptations of plants 

to tolerate waterlogging in wetlands are the development of adventitious roots, which  

functionally replace basal roots (Parent et al., 2008). Some plants have specific 

adaptations, such as a capacity for anaerobic metabolism, oxygen transfer by aerenchyma, 

or avoidance of waterlogging using seeds or tubers (Toogood et al., 2008). In addition, one 

of the most important morphological adaptions to waterlogging is the development of 

lacunae gas spaces (aerenchyma) in the root cortex, which allows diffusion of air from 

leaves above the water surface down to submerged tissues (Parent et al., 2008; Jackson and 

Colmer, 2005).  

 

 

Light is the primary source of energy for plants, and its availability may vary both within 

and between wetland habitats (Stuefer and Huber, 1998). Light availability explained a 

large part of the variation in the floristic composition of coastal wetlands (Kotowski et al., 

2001). Changes in the spectral light quality had major effects on the size of modular 

structures (leaves, ramets), whereas changes in light quantity mainly affected their 

numbers (Stuefer and Huber, 1998).  In herbaceous vegetation, light conditions for short 

species typically deteriorate over the course of the growing season, as tall dominant species 

build up their canopy (Edelkraut, Güsewell, 2006). Light limitation is often considered to 

be the mechanism excluding slow-growing, small plant species from productive or 

unmanaged grassland vegetation. The persistence of species in the lower canopy layers 

depends on their ability to tolerate low-light conditions, or to grow during periods with 

greater light availability (Stuefer and Huber 1998). Kotowski et al., (2001) analysed the 

relevance of light intensity in controlling the performance of a group of phanerogam 

species characteristic of sedge-moss fens. Where a tree canopy is present (as for example 

in fen woodland habitats, which characterise part of the area studied at Wicken Fen, Study 

Area 1 in the present work) shade impacts on ground-cover species may be substantial 

stresses for these wetland plants: most herbaceous fen species (with the exception of the 

tall reeds and similar species) can be classified as weak competitors for light. Some 

examples for shade-tolerance with Ellenberg's indicator values are Mercurialis perennis 

(3), medium shade- tolerance Oxalis acetosella (4), and open area Typha latifolia (8) (Hill 

et al., 1999).   
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The effect of grazing on wetland vegetation has been shown to be substantial in a 

Phragmites australis-dominated swamp/ wet grassland system (Vulink et al., 2000). 

Phragmites has aerenchymatous roots well adapted to tolerate anaerobic conditions in the 

hydrosoil.  Grazing or cutting of Phragmites stems at or below water-level cuts off the 

oxygen source for the roots, thus reducing their tolerance to the anaerobic conditions 

prevalent in the soft mud (Boorman and Fuller 1981). Grazing reduced the biomass of 

Phragmites australis and increased the stem densities of Glyceria maxima, resulting in a 

shift of dominance from Phragmites to Glyceria in Broadland, England (Ausden et al., 

2005). In general terms, grazing increases the intensity of disturbance affecting wetland 

plants, which by definition are stress-tolerators (Grime 2001) and therefore have a limited 

genetic ability to build additional disturbance-tolerance traits  (as evinced by the impacts of 

grazing on Phragmites outlined above). Grazing by herbivores such as cattle, sheep and 

horses is common on certain types of wetland (e.g. some saltmarsh habitats, see 1.1.2 

above) and often used as a management measure, but grazing intensities are usually 

maintained only at a low level. Grazing has been shown to exert a considerable influence 

on the species composition of wetland vegetation, for example saltmarsh communities 

(Adam et al., 1988; Adam, 2002). Grazing (especially by larger animals, where its effect is 

exacerbated by trampling damage) tends to reduce the abundance of, or even eliminate 

species with low disturbance-tolerance characteristics, and encourage their replacement by 

plants with protected meristems (such as many grasses) or grazing-resistant adaptations 

(Andersen et al., 1990). For example, sheep grazing has been shown to have an impact on 

the composition and structure of saltmarsh vegetation in northern Germany: when grazing 

was stopped, a grass –dominated community (Puccinellia maritima) was rapidly replaced 

by a mixed forb community, with Festuca rubra, Halimione portulacoides and Aster 

tripolium (Kiehl et al., 1996). 

 

 

The most important factors affecting species distribution in saltmarshes are salinity and 

aeration of the substrate, both of which critically influence the physiological ecology of 

marsh halophytes (Cooper, 1982). The availability of oxygen significantly affects plant 

growth, especially in the flood period saltmarsh, which affects germination, seedling 

growth in early stages, and root respiration (Silvestri et al., 2005). Saltmarsh plants have 

adopted different strategies in order to stay alive during periodic soil saturation -e.g. 

aerenchyma allows transport of oxygen from above-water tissues to the roots (Visser et al., 
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2000) - and increased aboveground tissue pore volumes to store oxygen for respiration 

(Armstrong, 1982). 

 

 

Saltmarsh sediments are protected from erosion by their vegetation cover; loss or 

weakening of the vegetation can initiate local erosion, which over time can expand to 

affect much larger areas (Adam, 2002). Erosion may be caused by wave action; damage 

may be initiated by a particular storm. In addition, in urban areas, the discharge of storm 

water into saltmarshes has resulted in the replacement of halophytic communities by 

assemblages more characteristic of brackish or freshwater marshes (Zedler et al. 1990). 

Table 1.2 below is shown a brief summary of wetland ecology characteristics. 

 

 

 

Table  1-2: A brief summary of wetland ecology characteristics 

 

Characteristic  Description 

Wetland soils 

 

Flooding, oxidation, aerobic decomposition, leaching and 

dehydration. The level of inundation, hydrosoil redox and pH are 

all environmental pressures, primarily affecting the edaphic 

habitat, which influence plant survival in the wetland. 

 

Wetland 

hydrology 

 

Water budgets are influenced by inflows and outflows of water, 

landscape, subsurface soil, and ground water; these are factors 

affecting the growth, development and survival of numerous plant 

species. 

 

 Wetland plants 

 

Plants adaptations by morphological & anatomical changes: 

Physical changes in plant structure to transport oxygen to the roots. 

Such as, aerenchyma, adventitious roots, shallow root systems, 

root aeration, radial oxygen loss from roots storage of carbohydrate 

reserves, hypertrophied lenticels is a common change in many 

wood species during flooding. 

  

Metabolic adaptations: plants respond by shifting from aerobic 

metabolism to anaerobic metabolism, e.g. ethanol fermentation 

Enables wetland plants to maintain a high energy level.  
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1.3 Remote Sensing Approaches Used in Wetland 
Survey  

 

The remote sensing options available to those concerned with wetlands‟ management have 

expanded considerably since the mid 1970s when aerial photography was almost 

exclusively used. Remote sensing satellite data have been applied to identify and study 

various wetland features such as tidal flats, lagoons, marshy vegetation, saltmarshes and 

saltpans. This data has also helped understand the spatial pattern, significance and extent, 

of wetlands to the local community (Bhuvaneswari et al. 2011), as well as identifying and 

monitoring them (Rani et al. 2011). Monitoring of wetlands status is increasingly seen as 

an important issue worldwide, because of their increasingly recognised role in ecosystem 

service provision, importance in maintaining human health and wellbeing, natural 

ecosystem biointegrity, and in carbon sequestration. 

 

Typical of the current status of this wetland focus is the work of Dabrowska-Zielinska et 

al., (2009) who have applied multi-spectral remote sensing techniques to obtain data on 

changes in soil moisture and evapotranspiration for the management of wetlands in Poland. 

In wetland marshes of the Paraná River Delta in Argentina, similar procedures used radar 

remote sensing for water level evaluation, and to study and understand the basic 

interactions between the soil under different flood situations and the vegetation 

composition (Grings et al., 2009). Many types of remote sensing have been used to study 

wetlands worldwide: Prigent (2001) used satellite observation to find submerged wetlands; 

and Harris et al. (2005) have applied large-scale remote sensing methods to monitor near-

surface peatland hydrological conditions, as well as to detect near-surface moisture stress 

in Sphagnum moss dominated habitats. In Finland, GIS and remote sensing tools have been 

used, combined with ground evaluations, to measure the effects of rehabilitation on the 

aquatic vegetation of a shallow eutrophic lake (Valta-Hulkkonen et al., 2004), whereas 

Mattikalli (1995) applied remote sensing and GIS to detect  the landuse change of the 

River Glen catchments in England by acquiring data from 1931 to 1989. These techniques 

have also been used for detection of the landuse and landcover change in the Kainji lake 

Basin, Nigeria (Ikusemoran, 2009). Landsat (TM) images have been used to create a 

classification of the vegetation community types and plant community structure in the 

lower Roanoke River floodplain of north eastern North Carolina, USA (Townsend and 

Walsh, 2001), and for classifying coastal wetland vegetation classes in Yancheng National 

Nature Reserve (YNNR), China (Zhang et al., 2011); similar techniques, but with high 
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resolution QuickBird imagery, were used to produce a wetland typology map in the west 

Siberian wetlands (Peregon et al., 2009). 

 

 

Meteorological satellies (GOES) and early LANDSAT imaging systems represent  low 

spatial resolution (4000m-80m), but over the decades satellite-borne platforms have 

captured imagery with spatial resolutions ranging from several hundred metres to less than 

one metre, using passive (optical) sensors. A similar spatial resolution range is available 

from satellite-borne active (radar) sensors, but these products are less popular. 

 

 

Turning to spectral resolution, typically space-borne passive sensors have had a spectral 

resolution of about 0.1microns, particularly in the visible and near-visible part of the 

electro-magnetic spectrum. However, the space-borne Hyperion sensor has offered a 

spectral resolution of about 0.01 microns, although this imagery is not universally 

available; such imagery is referred to as hyperspectral. 

The distinctions identified above are also to be found in imagery captured from air-borne 

platforms, but the emphasis is on panchromatic or infrared photography and hyperspectral 

imagery, for the passive sensors, and radar and LiDAR for the active sensors.  

 

 

The interpretation of all these different image products is enhanced when integrated with 

other geospatial information, this integration being particularly enabled through GIS 

technology. Many wetland management projects integrate processed remote sensing 

imagery with geospatial data in the GIS environment. 

 

In the following sections, projects directed towards wetland management are considered 

under the headings:  

 

1. Low/Medium Spatial Resolution Optical Systems;  

2. High Spatial Resolution Optical Systems;  

3. Hyperspectral Systems;  

4. Active Systems (RADAR, SAR and LiDAR);  

5. Air Photography; and, 

6. GIS procedures using imagery 
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1.3.1  Low/Medium Spatial Resolution Optical Systems 

       

Low spatial resolution is defined, for convenience, as images of the earth‟s surface at 

ground resolutions >50 meters; and medium resolution as > 5 meters and < 50 meters. 

(High spatial resolution imagery is dealt with in the next section, having resolutions of 5m 

or less). Low and medium spatial resolution remote sensing Earth Observation (EO) data 

have been used as a tool to aid the management and conservation of wetland habitats 

(Jones, 2009), primarily by mapping and managing wetlands, as well as for inventory 

assessment and monitoring (Mackay et al., 2009).  

 

 

Medium resolution (30 meters) Landsat (ETM+) imagery combined with ancillary 

topographic and soil data have been used to map wetland and riparian systems in the 

Gallatin valley of South West Montana (Baker et al., 2006). To discover seasonal change, 

and for mapping the inundation of wetlands, Landsat (TM and ETM+) satellite imagery 

has been used in Uganda (Owor et al., 2007), while the same imagery combined with GIS 

was applied for the analysis of ecosystem decline along the River Niger Basin (Twumasi 

and Merem, 2007). This study also used this approach to aid riverine ecosystem 

management, and to compute the nature of change in the riverine environment. Landsat 5 

Thematic Mapper (TM) data has been integrated with airborne hypersepctral date from the 

Daedalus 1268 Airborne Thematic Mapper (ATM) data, and used to map the extent of the 

intertidal zone in the Wash Estuary, in eastern England (Reid Thomas et al. 1995). 

Low resolution satellite data have been used to map extensive wetland ecosystems: for 

example to obtain information on the status of aquatic vegetation and the turbidity of lake 

water in Punjab, India (Chopra et al., 2001). In addition, Castañeda and Ducrot (2009) used 

low resolution Landsat and SAR imagery for mapping land cover of wetland areas. 

 

 

In peatlands, one of the most widespread wetland types (at least in the northern 

hemisphere), satellite sensor procedures such as Landsat (MSS, TM, ETM+ or SPOT 

HRV) have been used in wetland mapping for many years (Yang, 2005). The Moderate 

Resolution Imaging Spectroradiometer (MODIS) has been applied to map the distribution 

and extent of peatlands in the St. Petersburg region in Russia (Pflugmacher et al., 2007).  
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To analyse several ecological factors of wetlands, such as light availability, the very low 

(4km) resolution GOES (Geostationary Operational Environmental Satellite) weather 

satellite imagery and ancillary surface and atmospheric data have been used to estimate 

solar radiation and emergent wetland evapotranspiration in Florida, USA (Jacobs, 2004). 

 

 

Medium resolution Landsat (ETM+) imagery has been used to detect and map isolated 

wetlands (Frohn et al., 2009); for the classification of land cover in Trabzon city (Kahya et 

al., 2010); and, for mapping coastal saltmarsh habitats in North Norfolk, UK (Sanchez-

Hernandez et al., 2007). The same technique has been applied (combined with field survey 

data) to generate information on wetland resources, conservation management issues, and 

mapping of wetlands in the lower Mekong Basin (MacAlister and Mahaxay, 2009). Finally 

medium resolution Landsat, (TM and ETM+) images have been used for analysing and 

classifying  an area covering  the Sudd wetland, in the Nile swamps of southern Sudan 

(Soliman and Soussa, 2011).  

 

1.3.2  High Spatial Resolution Optical Systems 

 

Turning to high spatial resolution imagery, this is defined as images of the earth‟s surface 

at ground resolutions of less than or equal to 5 meters. Although the most recent satellite 

borne sensors (i.e. IKONOS, Quickbird) produce imagery of high spatial resolution, and 

recent sensors in the Landsat series and SPOT series have high resolutions, such resolution 

has traditionally been achieved from airborne platforms. The advances in the technology of 

remote sensing, resulting in high resolution imagery (IKONOS, with 1m to 4m resolution 

and Quickbird, with 0.6m to 2.8m resolution) have permitted better detection of 

environmental indicators, such as natural vegetation cover, wetland biomass change and 

water turbidity, as well as wetland loss and fragmentation.  

 

 

High resolution satellite imagery may be the only image data used in a project. One study 

used high spatial resolution Quickbird imagery for the identification and mapping of 

submerged plants in Lake Mogan, which is located in central Anatolia, Turkey (Dogan, 

2009). High resolution imagery (combined with the necessary ground truth measurements) 

was used to produce land-use/cover classification and a Normalized Differential 

Vegetation Index (NDVI) mapping for the Kelantan Delta, East Coast of Peninsular 
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Malaysia (Satyanarayana et al., 2011). QuickBird imagery was used for land cover 

classification and mapping plant communities in the Hudson River National Estuarine 

Research Reserve (NERR), New York, USA (Laba et al., 2008). Quickbird images with 

very high resolution (VHR) 0.61 m have been used for discrimination and mapping of 

saltmarsh vegetation in the Dongtan wetlands of Chongming Island, China (Ouyang et al., 

2011). Another study used high resolution Quickbird data combined with medium 

resolution airborne laser altimetry (LiDAR) to determine plant production and the effect of 

land cover on gross primary production (GPP) and net primary production (NPP) in the 

Great Lakes region of North America (Cook et al., 2009). 

 

 

High spatial resolution IKONOS satellite imagery combined with ground-based optical 

data was used for monitoring shallow inundated aquatic habitats in the Sound of Eriskay 

Scotland, UK (Malthus et al., 2003). IKONOS imagery has been used for vegetation 

composition mapping and estimation of green biomass in three riparian marshes in Ontario 

(Dillabaugh and King, 2008), and combined with airborne LiDAR altimetry data for 

coastal classification mapping (Lee and Shan, 2003). IKONOS high-resolution satellite 

imagery has been used for classification of coastal high marsh vegetation (seasonally 

inundated) into four classes (meadow/shrub, emergent, senescent vegetation, and rock) 

along the eastern shoreline of Georgian Bay, Ontario, Canada (Rokitnick-Wojcik et al. 

2011). It is worth noting that the same classification was achieved using lower resolution 

Landsat ETM+ imagery for monitoring the changes in coastal wetlands in Chesapeake 

Bay, USA (Klemas, 2011).  

 

 

High resolution Thematic Mapper satellite image (TM) data have been used to understand 

saltmarsh ecosystem function and species distribution, while canopy water content has 

been estimated by using Airborne Advanced Visible Infrared Imaging Spectrometer data in 

saltmarshes along the Petaluma River, California (Zhang et al., 1997). The same approach 

has also been applied, combining ETM+ images in conjunction with field observations, for 

the delineation and functional status monitoring of the saline wetlands, or "saladas", of the 

Monegros Desert, in northeast Spain (Herrero and Castañeda, 2009). In order to identify 

and map wetland change Zhang et al. (2009) applied high resolution Landsat MSS and TM 

remote sensing images in China, and  this approach has also been used (combined with 

ETM+)  for determining changes in  land use in Datong basin, China (Sun et al, 2009). 
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High resolution Landsat Enhanced Thematic Mapper (ETM+) has been applied to 

classification of land cover in the Lena Delta, North Siberia (Ulrich et al., 2009), and  

Landsat data (TM and ETM+) imagery and multi resolution JERS-1 Synthetic Aperture 

Radar (SAR) data have been used to map wetlands in the Congo Basin (Bwangoy et al., 

2010). High resolution Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) 

have been used to distinguish between saltmarsh and non – saltmarsh vegetation, and non-

vegetated surfaces in the Wash, England (Hobbs and Shennan, 1986). Satellite imagery 

Landsat Thematic Mapper (TM) images have also been applied for mapping salt-marsh 

vegetation communities and sediment distribution in the Wash estuary, England 

(Donoghue and Shennan, 1987). More recently, it has been used with IRS 1C LISS 3 for 

mapping the inter-tidal habitats of the Wash (Donoghue and Mironnet, 2002). 

Landsat Thematic Mapper (TM) combined with SPOT Satellite Imagery were used for 

mapping wetland species in the Coeur d‟Alene floodplain in northern Idaho (Roberts and 

Gessler, 2000).  

Imagery from high resolution satellite-borne sensing systems may also be integrated with 

similarly high resolution data from airborne platforms. A high resolution multispectral-

structural approach, using IKONOS and airborne LiDAR data, has successfully mapped 

peatland conditions (Anderson et al., 2010), and the same tools have been used to map and 

distinguish types of wetland (Maxa and Bolstad, 2009). High resolution remote sensing has 

also been used to monitor environmental indicators, such as changes in land cover/use, 

riparian buffers, shoreline and wetlands (Klemas, 2001).   

 

 

Another integration, that of high resolution multispectral SPOT-5 images with high 

spectral resolution multispectral Hyperion imagery and data from the multispectral infrared 

visible imagine spectrometer (MIVIS) data, has been used to map land cover and 

vegetation diversity in a fragmented ecosystem in Pollino National Park, Italy (Pignatti et 

al., 2009), and applied to monitor wetland vegetation in the Rhône delta near the 

Mediterranean, in southern France (Davranche et al., 2010). 

 

 

High resolution QuickBird satellite images integrated with LiDAR data have been applied 

for classification and mapping wetland vegetation of the Ragged Rock Creek marsh, near 

tidal Connecticut River (Gilmore et al., 2008),  and have also been  applied to determine 

land cover types and riparian biophysical parameters in the Fitzroy catchment in 
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Queensland, Australia (Arroyo et al., 2010). High resolution airborne Light Detection and 

Ranging (LiDAR) data have been applied for detection and mapping inundation of land 

under the forest canopy in Choptank River USA (Lang et al., 2009), and combined with 

QuickBird for mapping upland swamp boundaries, and classification of vegetation 

communities in swamps on the  Woronora Plateau, Australia (Jenkins and Frazier, 2010). 

The same technique has been applied to understand and map mangrove construction 

wetlands in southeast Queensland, Australia (Knight et al., 2009), and also been used 

(combined with multispectral imagery) to classify vegetation of rangeland in the Aspen 

Parkland of western Canada (Bork and Su, 2007).  

 

 

High resolution Landsat Thematic Mapper (TM) and RADARSAT-1 image data have been 

integrated to study and map the wetland impact and renewal of forest from Hurricane 

Katrina, in the Louisiana-Mississippi coastal region of the USA (Ramsey et al., 2009). 

Various types of high resolution remote sensing, including LiDAR, Radar altimetric, 

Landsat, TM and SPOT have been applied for analyses of riverine landscapes, such as 

water bodies connectivity and habitat communities  (Mertes, 2002), with Landsat (TM) 

used to calculate the relationship between river flow and wetland inundation of the mid-

Murrumbidgee River, Australia (Frazier and Page, 2009). It has  also has been used for 

classifying coastal wetland vegetation classes in Yancheng National Nature Reserve 

(YNNR), China (Zhang et al., 2011).  

 

From the foregoing, it can be seen that high spatial resolution imagery obtained from 

satellite and airborne sensors have become increasingly available in recent years.  

 

 

1.3.3  Hyperspectral Systems 

 

Airborne platforms are usually used to gather hyperspectral data.  Hirano et al. (2003) used 

the hyperspectral Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) with 224 

spectral bands and 20m spatial resolution for mapping wetland vegetation in the 

Everglades National Park, Florida, USA. 
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The high spectral resolution Airborne Thematic Mapper (ATM) has been applied to obtain 

hydrological information within peatland. For example, it has been used to map the effects 

of water stress on Sphagnum spp. along the Welsh coast, using Sphagnum mosses as an 

indicator for peatland near-surface hydrology, since natural wetlands play an important 

role in ground water recharge and in controlling flooding (Harris et al., 2006, 2009). This 

approach has also been applied for mapping the distribution of aquatic macrophyte species 

in Cefni Reservoir on the Isle of Anglesey (Malthus and George, 1997). The same 

techniques combined with ground - based measurement have been used for monitoring 

ditch water levels of the Elmley Marshes in southeast England (Al-Khudhairy et al., 2001).  

 

 

Zomer et al. (2009) used PROBE-1 airborne hyperspectral data for mapping and 

monitoring plant species, and the distribution of vegetation community types. A  

hyperspectral imaging sensor has been used to examine the evolution of wetland 

distribution and land coverage in  monitoring of coastal wetlands (Burducci, 2008), and for 

identification, classification, and mapping of submerged aquatic vegetation (SAV) in the tidal 

Potomac River, USA (Williams et al., 2003).   

 

 

The hyperspectral Compact Airborne Spectrographic Imager (CASI) and a Daedalus 

Airborne Thematic Mapper (ATM) have been used to provide high-resolution remote 

sensing data, combined with Landsat TM images, for monitoring and determination of the 

amount of surface water in a wetland catchment in the north Kent marshes in England 

(Shepherd et al., 2000). CASI has also been used to identify and map seasonal intertidal 

vegetation patterns in back barrier environments on the North Norfolk coast, England, UK 

(Smith et al., 1998), and for mapping of intertidal sediment types and saltmarshes from the 

Humber Estuary to North Norfolk, in eastern England, (Thomson et al., 2003).  The same 

technique has been used in conjunction with Airborne Laser Terrain Mapper (ALTM) data 

for mapping the extent of coastal vegetation classes and classification of coastal habitats in 

the Essex Tollesbury saltmarshes (eastern England) and Ainsdale sand dunes in north west 

England (Brown, 2004).  

 

 

Hyperspectral remote sensing data may be integrated with multispectral infrared and 

visible imaging spectrometer (MIVIS) data to assess the relationship between vegetation 
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patterns and saltmarsh morphology, and also to infer saltmarsh morphologic characteristics 

from vegetation mapping, in the San Lorenzo saltmarsh in the Venice lagoon, Italy 

(Silvestri et al., 2003). In the same location, high resolution multispectral and hyperspectral 

remote sensing data, accompanied by field observations, were used for mapping lagoon 

salt-marsh vegetation (Belluco et al., 2006), for discrimination and mapping wetland 

vegetation, as well as  for estimating some biophysical and biochemical properties of 

wetland vegetation (Adam et al., 2010).  The hyperspectral sensor Compact Airborne 

Spectral Imager (CASI) imagery has also been applied for mapping mixed vegetation 

communities within these saltmarshes (Wang et al., 2007). 

 

 

Also, as mentioned in section 1.3.1, Landsat 5 Thematic Mapper (TM) data has been 

integrated with airborne hypersepctral date from the Daedalus 1268 Airborne Thematic 

Mapper (ATM) data and used to map the extent of the intertidal zone in the Wash Estuary, 

in eastern England (Reid Thomas et al. 1995). 

 

1.3.4  Active Systems (RADAR and LiDAR)  

 

An example of the use of radar imagery involves low resolution RADARSAT imagery,  for 

the identification, description and mapping of wetland habitat types in Greece 

(Alexandridis et al., 2009). For classification of wetlands, Polarimetric RADARSAT-2 

satellite imagery (with a spatial resolution of 8m) has been used in the Mer Bleue wetland, 

east of Ottawa, to characterise wetland vegetation species. Using this approach, it proved 

possible to differentiate types of wetland plant communities, such as shrub bog, sedge fen, 

conifer-dominated treed bog, and highland deciduous forest, under leafy status (Touzi et 

al., 2007).  

 

 

Satellite radar imagery from ENVISAT ASAR (the Advanced Synthetic Aperture Radar 

instrument with 25m spatial resolution)) was used for monitoring inland boreal and sub-

arctic environments, to identify inundation patterns and soil moisture change over different 

hydro-periods, and applied to categorise wetlands (Bartsch et al., 2007). The same 

approach was used for management and monitoring of wetlands, especially permafrost 

transition zones, where peatlands form one of the major land cover types (Bartsch et al., 
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2009). ENVISAT ASAR Global Mode images have been used to monitor the dynamics of 

river flow and wetland areas as a response to precipitation and soil moisture variation 

respectively, in the upper Okavango basin and delta, Botswana (Bartsch et al., 2008). 

 

 

High resolution L-band Synthetic Aperture Rader (SAR) data have been used to detect 

surface level changes in the Everglades wetlands in south Florida (Wdowinski et al., 2008). 

 

Airborne Light Detection and Ranging (LiDAR) data have been used for classification of 

vegetation and determination of vegetation height, in Lake Hatchineha in Florida, USA 

(Genc et al., 2004). 

High resolution LiDAR data have been applied to detect intertidal vegetation, to assess 

saltmarsh zonation, and to map intertidal habitats and their adjacent coastal areas in the 

Gulf of St. Lawrence, Canada (Collin et al., 2010), as well as   for mapping coastal 

flooding hazard and evaluation of coastal flooding induced by surges in Cádiz Bay (SW 

Spain) (Raji et al., 2011). Multispectral imagery with LiDAR and GIS have been applied to 

carry out a geomorphological analysis of the distribution of saltmarsh features at the Great 

Marsh, Massachusetts, USA (Millette et al., 2010), and to model inundation and radiation 

characteristics within an intertidal zone located in the Minas Basin (Bay of Fundy, Nova 

Scotia, Canada: location of one of the biggest tidal amplitudes on Earth) (Crowell et al., 

2011). 

 

 

LiDAR data may be used with other DTMs. For example, high resolution LiDAR 

techniques combined with Global Positioning Systems (GPS) permitted accurate 

topographic and bathymetric mapping, including shoreline positions, in the study 

undertaken by Klemas (2009). Additionally, high-resolution LiDAR and Digital Terrain 

Models (DTM) have been used to map coastal and estuarine habitats, as well as for 

characterisation and monitoring of coastal environments, in the Bidasoa estuary, northern 

Spain (Chust et al., 2008). 

 

 

LiDAR data captured from airborne platforms may be integrated with hyperspectral data 

from the same platforms. High resolution (LiDAR) imagery combined with high resolution 
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hyper-spectral imagery (CASI) has been combined with field survey to monitor 

hydromorphology ingredients as a component of the ecological status of river, shoreline, 

and estuarine habitats in the Forth Estuary, Scotland (Gilvear et al., 2004); and also applied 

to identify and describe stream and physical riparian habitat, in South Fork Humboldt 

River, Nevada, USA (Hall et al., 2009). Hyperspectral datasets and LiDAR have been used 

for mapping and distinguishing reedbed from surrounding vegetation types, in Cumbria, 

UK (Onojeghuo and Blackburn, 2011).  

 

 

LiDAR has been applied for mapping elevations of tidal wetland restoration sites, and for 

comparing the accuracy of aerial LiDAR data with that from a singlebeam echosounder 

system, in the San Francisco Bay estuary, California (Athearn et al., 2010). Also, high-

resolution airborne imaging spectroscopy and LiDAR have been used to map and classify 

the saltmarsh, mud flats and riverbank vegetation in the Scheldt basin in northern Belgium 

(Bertels et al., 2011).  

 

 

High resolution LiDAR and GIS have been applied to inventory important wetland 

hydrogeomorphic features (area, volume, catchment area, hydroperiod) and structural 

attributes (soil, vegetation, land use) in the coastal prairie wetlands surrounding Galveston 

Bay, Texas, USA (Enwright et al., 2011).  

 

1.3.5  Aerial Photography 

 

Application of aerial photography in the coastal zone has a long history, including the 

study of coral reefs in the East Indies in the early part of the twentieth century. Throughout 

the same period in Germany, aerial photographs were being used for mapping coastlines 

(Baily and Nowell, 1996). Between 1973 and 1998, aerial photographs at 1:5000 scale 

were used, to monitor, map and quantify saltmarsh change along 440km of shoreline 

within the county of Essex, south-east England (Cooper et al., 2001), and have also been 

applied combined with Airborne Thematic Mapper (ATM) to determine vegetation change 

in saltmarsh communities of the Dee estuary, northwest England (Huckle et al., 2004). 

High resolution aerial photographs have been used for discriminating and mapping all 

coastal, lowland and upland habitats in Wales (Lucas et al., 2011), and to map and identify 
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vegetation communities on Bullo River Station, Northern Territory, Australia (Lewis and 

Phinn, 2011).  

 

 

High spatial resolution colour-infrared aerial photography has been used to detect  the 

change  in vegetation over time in a variable tidal marsh environment, and restoring of 

tidal marsh in  Petaluma River Marsh (Carl‟s Marsh) in  California, USA (Tuxen, 2008),  

as well as to identify vegetation types present on a sub-tropical coastal saltmarsh in 

southeast Queensland, Australia (Dale et al. 1986). 

 

Remote sensing using digital aerial photos has been applied to classify the Lakkasuo 

peatland ecosystem in Southern Finland (Huang and Sheng, 2005). 

 

1.3.6  GIS Procedures Using Imagery 

  

Although GIS techniques have been applied to estimate the contemporary extent of 

important wetlands (peatlands) in Ireland from soil and land cover maps dating from the 

1970s, 1980s, and 1990s (Connolly et al., 2007), Remote Sensing (RS) integrated with the 

Geographic Information System (GIS) are now providing new tools for advanced 

ecosystem management, at local, regional and global scales over time (Zubair, 2006). 

Remote sensing technology and GIS are considered useful tools in analysing complex 

ecosystem problems.  

 

 

High resolution remote sensing Landsat (TM) images and GIS have been used to 

determine the real extent of the cover and rate of change in wetland in Kuala Terengganu 

in Malaysia (Ibrahim and Jusoff, 2009). Mentioned above in section 1.3.1 is a project 

mapping ecosystem decline along the River Niger Basin, which integrated Landsat (TM 

and ETM+) satellite imagery with GIS facilities (Twumasi and Merem, 2007). 

 

 

In South Carolina, United States, satellite images (medium resolution Landsat) and aerial 

photographs combined with GIS have been used to obtain spatial information and assess 
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temporal changes affecting the function and structure of wetlands over large geographic 

areas (Mironga, 2004). 

 

 

This technique of using medium resolution remote sensing data in combination with GIS is 

common. It has been applied to describe the condition of wetlands along the coastline of 

Sri Lanka in relation to trends in land use arising from changes in agriculture and 

sedimentation (Rebelo et al., 2009). Identical techniques have been applied to classify and 

map the plant communities of wetlands in the Prairie Pothole Region of Central North 

Dakota (Mita et al., 2007). Medium resolution remote sensing and GIS tools have been 

used for habitat and species mapping, land change detection and monitoring of 

conservation areas (De Roeck et al., 2008), for example to acquire data on land cover/use 

changes, and to determine the main environmental factors affecting these changes in Lake 

Cheimaditida, located in Northern Greece (Papastergiadou et al., 2008).  

It may seem self-evident that higher resolution imagery will provide better results. 

However, it can be suggested that this comes at a cost, and is not universally available. 

Acknowledging that higher resolution imagery is likely to provide more information, it is 

also useful to consider what might be adequate. Internationally there are thousands of 

wetlands sites to be protected, and a first step in that protection is change monitoring. 

Currently, Libya has almost forty coastal wetland sites (EGA-RAC/SPA, 2012) a large 

number of which are unprotected (Flink, 2013). To determine whether they need protection 

requires change monitoring. The Ramsar Convention Seretariat has published guidelines 

for monitoring wetlands, and the use of medium resolution imagery is supported (Lowry, 

2010). Part of the research reported in this thesis will investigate whether medium 

resolution satellite imagery is indeed adequate for wetlands monitoring, through two 

British examples. Resolution is one constraint on the use of satellite imagery, but 

availability is another. Availability reflects price and supply. Many high resolution sensors 

on Earth orbiting platforms could supply data on anywhere on the Earth‟s surface every 2-

3 weeks, or more frequently, at a price. The low cost (or no cost) suppliers exhibit some 

constraints; For example if they are providing free data, they may only supply imagery of a 

limited coverage, often only of their home nation (for example the UK‟s Landmap service 

or Canada‟s GeoGRATIS service); otherwise there is a charge. An exception is the 

GLOVIS service of the USGS. At no cost to the recipient, several decades of medium and 

low resolution Landsat images are available. Certainly, medium resolution data for 

monitoring wetlands anywhere in the world is available from this source.  
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As it seems that success can be achieved with medium resolution imagery (Lowry, 2010) 

in the context of wetlands management, and as GIS is now becoming an increasingly 

important management tool, the combination of low cost and universally available medium 

resolution imagery with GIS is attractive to those concerned with the issue. This is an 

important data processing environment investigated in this study. 

 

 

1.4 Application of Remote Sensing Techniques on 
Wetland studies in the UK 

 

A variety of remote sensing techniques have been used in the UK.  Those with the longer 

history have involved aerial photos, but more recently successful projects have involved 

low, medium, and high resolution satellite imagery. Aerial photographs at 1:500 scale were 

used for monitoring, mapping and to quantify saltmarsh change along 440km of shoreline 

within the county of Essex between 1973 and 1998, southeast England (Cooper et al., 

2001). High resolution aerial photographs have been applied to discriminate and map all 

coastal, lowland and upland habitats in Wales (Lucas et al., 2011), and also have been 

combined with Airborne Thematic Mapper (ATM) to determine vegetation change in salt 

marsh communities of the Dee estuary, northwest England, (Huckle et al., 2004). Aerial 

photography combined with the ground survey have been used to compare the results 

obtained from Landsat MSS imagery for  peat detection and classification, in Cumbria, UK 

(Cox, 1992). Aerial photography has been formed to the very reliable, but is with increase 

analysis expensive. 

 

Less expensive low / medium resolution remote-sensing data from (1984 to 1989) and GIS 

have been used for monitoring of land use change in the River Glen catchments in England 

(Mattikalli, 1995). Reid Thomas et al. (1995) have used Landsat 5 Thematic Mapper (TM) 

data    combined with airborne hypersepctral date from the Daedalus 1268 Airborne 

Thematic Mapper (ATM) data to map the extent of the intertidal zone in the Wash Estuary, 

in eastern England. Medium resolution Landsat (ETM+) imagery has been used for 

mapping coastal saltmarsh habitats in North Norfolk, UK (Sanchez-Hernandez et al., 

2007), also medium resolution Landsat 5 Thematic Mapper data and GIS  have been used 

for a comprehensive survey of land cover, classification, and  produce land cover map 

(LCM2000) for UK  habitats (Fuller et al. 2005). The reliability of these approaches 

depends very much on the quality of ground truth available. 
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Better results might be expected with higher resolution, but expensive, data sets now 

becoming available. In the Sound of Eriskay Scotland, high spatial resolution IKONOS 

satellite imagery combined with ground-based optical data was used for monitoring 

shallow inundated aquatic habitats (Malthus and Karpouzli, 2003). High resolution Landsat 

(MSS) and (TM) images have been applied in the Wash, England to distinguish between 

salt marsh and non – salt marsh vegetation, and non-vegetated surfaces (Hobbs and 

Shennan, 1986). Donoghue and Shennan (1987) have used high resolution Landsat 

Multispectral Scanner (MSS) and Thematic Mapper (TM) to distinguish  between salt 

marsh and non – salt marsh vegetation, and non-vegetated surfaces in the Wash, England. 

More recently, the same technique has been used with IRS 1C LISS 3 for mapping the 

inter-tidal habitats of the Wash (Donoghue and Mironnet, 2002). Multi-temporal satellite 

imagery   (TM and ETM+) have been used for mapping and monitoring of habitats and 

agricultural land cover in Berwyn Mountains, North Wales, UK (Lucas et al., 2007).  

 

Considering hyperspectral data, rather than multispectral, the high-resolution Daedalus 

Airborne Thematic Mapper (ATM) has been used for monitoring the distribution of aquatic 

macrophyte species in Cefni Reservoir, Anglesey, UK (Malthus and George, 1997). High-

resolution remote sensing data (The hyperspectral Compact Airborne Spectrographic 

Imager (CASI) and a Daedalus Airborne Thematic Mapper (ATM)) combined with 

Landsat TM images have been used to monitor and determine of the amount of surface 

water in a wetland catchment in the north Kent marshes in England (Shepherd et al., 2000).  

 

 

Thomson et al. (2003) have reported on the application of  the hyperspectral Compact 

Airborne Spectrographic Imager (CASI) for mapping intertidal sediment types and 

saltmarshes from the Humber Estuary to North Norfolk in eastern England, and also CASI 

has been used to identify and map seasonal intertidal vegetation patterns in back barrier 

environments on the North Norfolk coast, England, UK (Smith et al., 1998). The same 

technique and (LiDAR) combined with field survey for monitoring hydromorphology 

ingredients as a component of the ecological status of river, shoreline, and estuarine 

habitats in the Forth Estuary, Scotland (Gilvear et al., 2004). Multi-spectral remotely 

sensed data (aerial photos and ATM) and LIDAR have been applied for mapping 

individual tree location, height and species broadleaved deciduous forest in the New 

Forest, southern England , UK (Koukoulas and Blackburn, 2005). 
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1.5 Ecological Factors  

Remote sensing and GIS techniques offer advantages for monitoring wetland resources and 

provide information on wetlands.  The techniques aid the detection of several ecological 

factors in wetlands, such as light-availability, evaporation and soil condition. The review in 

the following sections does not measure and assess these factors themselves, but rather 

explains how RS and GIS techniques can be used to do so. 

 

1.5.1  Water Level 

 

Radar remote sensing has been used to determine water level in wetland marshes of the 

Paraná River Delta in Argentina. It is based on the analysis of satellite images, taken at 

different places, to observe different flood situations and the composition of vegetation 

(Grings et al., 2009). Satellite images and GIS tools have been used, in combination with 

chemical and physical water analysis, to examine the impact of land use activities on 

vegetation cover and water quality in the Lake Victoria Basin (Twesigye et al., 2011); also, 

satellite images combined with ancillary ground truth data have been used for the 

management of water body resources in Lake Victoria (Cavalli, 2009).  As already 

mentioned,  satellite imagery, such as Landsat (TM) data, have been used for mapping lake 

water quality in Lake Erken, Sweden (Östlund et al., 2001), and have been also applied 

combined with ground truth data, to compute water turbidity and depth (Bustamante, 

2009). 

 

 

Multi-temporal Landsat Thematic Mapper (TM) imagery and ground – based measurement 

have been applied to monitor the ditch water levels of the Elmley Marshes, in southeast 

England (Al-Khudhairy et al., 2001); also, satellite images were used to monitor the water 

spread and aquatic vegetation status (and turbidity) of the Harike wetland ecosystem in the 

Punjab, India (Chopra et al., 2001). Along the Welsh coast, Harris et al. (2006) have 

applied airborne remote sensing to obtain hydrological information within peatlands, as 

well as to map the effects of water stress on Sphagnum moss. In addition, Synthetic 

Aperture Radar (SAR) data have been used to detect surface level changes in the 

Everglades wetlands, in southern  Florida (Wdowinski et al., 2008), and  to measure water 

level changes in an Amazon lake (Alsdorf et al., 2001),  as well as  in Amazon floodplain 
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habitats (Alsdorf et al., 2001). Satellite imagery (ENVISAT) has been used for monitoring 

and analysing water stage measurement in river and wetlands in the Amazon basin (Santos 

Da Silva et al., 2012).  

 

 

Interferometric Synthetic Aperture Radar (InSAR) has been used for detecting water level 

changes in various wetlands environments around the world, including the Everglades 

(south Florida), the Louisiana Coast (southern USA), Chesapeake Bay (eastern USA), 

Pantanal wetlands of Brazil, Okavango Delta (Botswana), and the Lena Delta (Siberia) 

(Wdowinski et al., 2006), as well as for mapping water level changes in coastal wetlands in 

north China (Chou et al., 2010). The same technique has been applied for multi-temporal 

monitoring of wetland water levels in the Florida Everglads (Hong et al. 2010), and has 

also been used, combined with Radarsat-1 imagery, to map water level changes of coastal 

wetlands of southeastern Louisiana (Lu and Kwoun 2008). 

 

 

Medium Resolution Imaging Spectrometer (MERIS) images have been used to monitor 

water quality in some large European lakes, Vänern and Vätter in Sweden, and Peipsi in 

Estonia/ Russia (Alikas and Reinart, 2008), and LiDAR data have been applied to calculate 

isolated wetland water storage capacity in north central Florida (Lane and D‟Amico, 2010). 

Aerial photography and satellite imagery have been applied for study of frequent changes 

in water bodies and vegetation cover in Cheyenne Bottoms wetland, Kansas, USA (Owens 

et al., 2011). 

 

1.5.2  Soil Condition 

 

Advanced technologies of remote sensing provide an opportunity for studying hydrological 

changes in wetlands, especially peatlands, because Sphagnum mosses which characterise 

peatland vegetation, are very sensitive to changes in moisture availability. Harris et al. 

(2005) have applied remote sensing methods for monitoring near-surface peatland 

hydrological conditions, and detecting near-surface moisture stress in Sphagnum moss. 

Dabrowska-Zielinska et al. (2009) used remote sensing with various bands to obtain 

changes of soil moisture and evapotranspiration for management of wetlands in Poland;  

this technique has also been used for estimation of evaporation and soil moisture storage in 

the swamps of the upper Nile (Mohamed et al., 2004). Radar remote sensing (high 
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temporal resolution of ENVISAT ASAR WS data) has been used to observe the sensitivity 

of soil humidity and changes in water surface area of wetland in central Siberia (Bartsch et 

al., 2004). The same technique has been applied for mapping and monitoring soil moisture 

in wetland Biebrza National Park, Poland (Dabrowska-Zielinska et al., 2010). ENVISAT 

ASAR Global Mode has been used to monitor the dynamics of river discharge or inundated 

areas as a response to precipitation and soil moisture variation in the upper Okavango basin 

(Bartsch et al., 2008), and has also been used, in combination with multi-temporal C-band 

SAR data C-HH and C-VV from ERS-2, for investigation of inundations and soil moisture 

determination in Coastal Plain forested wetlands in the Mid-Atlantic Region, USA (Lang 

et al., 2008). 

 

1.5.3  Light Availability 

 

Recently developed remote sensing techniques have been used for the detection of several 

ecological factors in wetlands, such as light-availability, evaporation, etc. GOES satellite 

imagery and ancillary surface and atmospheric data have been used to estimate solar 

radiation and emergent wetland evapotranspiration in Florida, USA (Jacobs, 2004). For 

most wetlands, the rate of evapotranspiration (ET) is an important component of the 

wetland water cycle and often the main vector of moisture loss, especially in warmer lower 

latitudes. High resolution SPOT satellite image and MODIS data (MODerate-resolution 

Imaging Spectroradiometer) have been used to estimate evapotranspiration, humidity, and 

solar radiation in the Yellow River Delta wetlands of China (Jia et al., 2009). In addition, 

Spectral information from NOAA AVHRR data have been used to estimate water 

evaporation and transpiration in wetlands in Florida, USA (Chen et al., 2002). Remote 

sensing data (Airborne Hyperspectral Scanner AHS) has been applied to estimate 

evapotranspiration in the Doode Bemde Wetland in Belgium (Palmans and Batelaan, 

2009), while Landsat 7/ETM+ remote sensing images have been used for estimation of 

evapotranspiration in Yellow River Delta Wetland, China (Li et al., 2011), and in the Nansi 

Lake wetland of China (Sun et al., 2011).  
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1.6 Aims of the Study 

 

The aim of the study is to investigate the proposal that vegetation changes over time (e.g.  

scrub invasion; successional changes) have an effect on wetland plant community structure 

in UK wetland systems, which can be detected and quantified using remote sensing 

imagery. This proposed approach combines remote-sensing analysis of imagery over time 

with ground truth of existing wetland vegetation communities at two contrasting wetland 

sites in the UK. 

 

   

The specific objectives of the study are:                                                                                       

 To assess the value of using differing forms of remote sensing imagery in the 

mapping and monitoring of spatial and temporal variation in wetland vegetation, 

with a particular view to developing procedures which  can be transferred to Libya. 

 To  evaluate procedures by investigating temporal wetland plant community change 

at two contrasting UK locations by combining analysis of remote sensing data and 

the use of GIS techniques. 
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Chapter 2- Methodology 

2  

Selection of study areas 

The study areas (Wicken Fen & Caerlaverock Reserve) were selected primarily because of 

their contrasting vegetation types, and also because of: 

- The availability of aerial photographs and satellite images in past periods for comparison 

with recent images. 

- The availability of previous references and studies of the plant communities in these 

areas, which helped in the detection of change that has happened in this area, using 

remote sensing techniques. 

- The resemblance of the sites to wetland sites found in the author‟s homeland, Libya. 

 

2.1   Aerial Photographs     

 

Aerial photography was the first remote sensing method to be employed for mapping 

wetland vegetation; it is most useful for detailed wetland mapping, because of its minimum 

mapping unit (MMU) size (e.g. Seher and Tueller 1973; Shima et al. 1976; Howland 1980; 

Lehmann and Lachavanne 1997). Additionally, low-level photography, using helicopters 

or unmanned aerial vehicles (UAVs) can provide even smaller MMUs. 

 

 

Aerial photographs at high resolution (0.25 m) of Study Area 1 (Wicken Fen) were 

obtained for this research from the UK Aerial Photos Database for 2009. These were 

received as JPEG files, of 4000 × 4000 pixels. For Wicken Fen, 1985, panchromatic 

images were received as JPEG files, 8267 × 8267 pixels. These Wicken Fen images were 

of a very flat area, and were directly taken in to ArcGIS.  For Study Area 2 (Caerlaverock 

Reserve), aerial photographs in the form of orthophotos at high resolution (0.5m) were 

obtained from the UK Blue Sky for 2009, as a JPEG 11310 × 17310 pixels. Caerlaverock 

aerial photos for 1988, in panchromatic form were received in PNG format, 2845 × 2840 

pixels. These were used to create an orthophoto in SOCET.  The aerial photograph images 

were geometrically corrected and geocoded to the UK national grid co-ordinate systems 
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using the 2-D affine transformation facility available in ArcGIS. The control points were 

chosen from the original map (1:10,000 Ordnance Survey Map) of the study areas (at least 

four points per photo) for all aerial photographs.  

 

 

2.1.1  Orthophotography  

 

The orthophotography mosaic with stereo allowed easy differentiation of vegetation with 

differing heights, canopy shapes, and tree spacing; also, it provided a more accurate base 

for mapping. A Caerlaverock orthophotograph of 2009 was obtained from UK Blue Sky. 

As well three 1988 panchromatic photographs acquired as stereo pairs were obtained of 

Caerlaverock Reserve.  These photographs were taken at a flying height of 12775 ft 

(equivalent to 3894 m) and with a focal length of 152 mm. The Caerlaverock 

orthophotograph 1988 was created by using BAE Systems SOCET SET (v6). There are 

some preliminary steps required before using BAE Systems SOCET SET. For example: 

converting the image from PNG to TIF format,  then selecting control points from the 

topographic map (Ordnance Survey Map 1:10000 scale) of the Study Area; and afterwards 

calculating the Photographic Scale (PS) using the following formula:  

 PS =  
H

f
 

where f is the focal length, and H is the flying height. The steps adopted in this study to 

create the orthophoto map from aerial photos using BAE Systems SOCET SET (v6) are 

summarised in the flowchart shown in Figure 2.1 below. 
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Figure  2-1:  Flowchart to create an orthophotograph from aerial photography in BAE 
Systems SOCET SET (v6) (Refer to Appendix 1 for further details of this process). 
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2.2 LiDAR Data 

 

 

LiDAR data were used because they greatly support the creation of a database of 

geographic information, adding height information to enhance surface measurement at 

intervals of between 1m and 2m on the ground. The quoted vertical accuracy of each 

height point is +/- 15 cm, and although this may be challenged in areas of variable terrain 

where accuracies have been found to range from 6 – 100cm (see: 

http://www.ctre.iastate.edu/mtc/papers/2002/Veneziano.pdf) in the flat terrain of the fens is 

supported. LiDAR data are easily compatible with other geographic databases available in 

Britain, particularly when based on the British National Grid. LiDAR is an option in 

remote sensing technology that optimises the precision of biophysical measurements and 

extends spatial analysis into the third dimension (Popeocu, 2007). It allows us to directly 

measure the distribution of plant canopies in three dimensions, in addition to sub-canopy 

topography, thus providing highly accurate approximations of vegetation height, cover, 

and canopy structure, and high resolution topographic maps (Lefsky et al., 2002). 

 

 

LIDAR data (2 m resolution) for Wicken Fen in 2004 were acquired from the UK 

Environment Agency. The data were received as Digital Surface Models (DSM) and 

Digital Terrain Models (DTM), with all of the data referenced using the British National 

Grid.  

 

2.3  ArcGIS Desktop 

 

An important step in geographic analysis is choosing the way to represent data on the map. 

A Geographical Information System (GIS) is a computerised database designed for the 

management and use of spatial data. GIS is an essential tool for mapping existing wetlands 

and for identifying areas for wetland restoration or creation. GIS, such as ArcGIS, 

comprises spatial databases that store data as coordinates or vectors, or as grid-cells in a 

raster matrix (Harris, 2007). The use of GIS allows the analysis of multiple datasets, and a 

visual representation of mapped areas that may be suitable for wetland monitoring. 

ArcMap-GIS (v. 9.3) was used to produce the Wicken Fen- preliminary details map 

(shapefile) of the first Study Area, and the Caerlaverock Reserve- preliminary details map 

(shapefile) of the second Study Area (Fig.2.2 & 2.3). The ArcMap-GIS was also used to 

http://www.ctre.iastate.edu/mtc/papers/2002/Veneziano.pdf
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map quadrat positions on the map that was prepared, using coordinates taken in the field by 

GPS in Wicken Fen during fieldwork in June 2010, and at Caerlaverock during July 2011. 

 

 

Figure  2-2: Preliminary details Wicken Fen map.  
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Figure  2-3: Preliminary details Caerlaverock Reserve map. 
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ArcMap-GIS (v.9.3) was used to calculate vegetation height by subtracting the DTM from 

the DSM.  Then, a mosaic was created in ArcMap by using the calculations that had been 

performed to obtain vegetation heights to develop a single geographical representation of 

the Study Area. ArcMap-GIS was used to choose the control points for all aerial 

photographs, and for transformation to TIFF format by  Georeferencing in the Geographic 

Information System (GIS),  ArcMap. Each pixel has 8 bits with three colours (RGB) and 

0.25 centimetre cell size.  Pixel sets can easily be assembled to form the entire area. The 

steps adopted in this study to create the mosaic map from aerial photos and LiDAR data in 

ArcMap GIS (v9.3) are summarised in the flow chart shown in Figure 2.4 below. 

 

 
 

Figure  2-4: Flowcharts showing creation of mosaic map from aerial photos and LiDAR data 
in ArcMap GIS. 
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2.4  Landsat TM Images  

 

Landsat TM and SPOT images are commonly used for mapping vegetation types in 

wetlands (e.g. Adam et al., 2010). Landsat 4 (TM) satellite images with 30-meter 

resolution, taken on 14 May 1988 for Caerlaverock Reserve, and on 18 August 1984 for 

Wicken Fen, were used. The Landsat (TM) scenes were obtained from the internet using 

the GLOVIS tool of the U.S. Geological Survey (USGS). The satellite imagery was 

received, with each band separated as a TIF file.  All processing to convert TIF files from 

the single band to seven bands in a single image was done with ERDAS ER Mapper. A 

second set of images was used, utilising Landsat7 (TM) satellite imagery with 30 meter 

resolution for Caerlaverock Reserve, taken on 1 June 2009, and on 23 August 2009 for 

Wicken Fen.  It can be noted that both sets of images were only a few days apart in their 

respective years, with similar cloud cover, thus radiometric balancing was not considered. 

These were obtained from the same agency (USGS), with each band separated as a TIF 

file. The same procedures were followed as above to obtain a one-layer satellite image 

with seven bands (Fig. 2.5). An visual interpretation of the  study areas at these places 

where no changes seems to have occurred revealed little difference in the radiometric 

balance, so the ER Mapper tool was not used. In addition, a frame_and_fill program 

developed by the National Aeronautics and Space Administration (NASA) was used to 

rectify the gaps problem (SLC gap-fill) seen in 2009 Landsat imagery (Fig. 2.6). This 

„cosmetic solution‟ was inappropriate; the unsupervised classification does not work 

effectively with the “filled” with Landsat 1 June 2009, and the gaps appeared again as 

differently classified bands. For this reason, the image taken on 1 June 2009 was not used, 

and another image for Caerlaverock Reserve, taken on 11 July 2009, was used instead. 
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Figure  2-5: Flow chart showing procedure to separate TIFF bands from a Landsat TM scene 
and reformed as an ER Mapper as a 7 Band image. (Refer to Appendix 2 for further details of 
this process including displaying a natural colour image on screen using 3 bands).   
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 (a)                                                                   (b) 

 

Figure  2-6: Shows (a) gaps in Landsat 2009TM image, (b) Landsat 2009TM image, after gap 
filling procedure, using NASA’s GapFill program a ‘cosmetic’solution. The gaps reappeared 
after classification as differently classified stripes. 

 

                  

 

2.5  Image Classification Approach  

 

Common image analysis techniques used in mapping wetland vegetation include digital 

image classification (i.e. unsupervised and supervised classification: e.g. May et al. 1997; 

Harvey and Hill 2001) and vegetation index clustering (Yang 2007). Two remote sensing 

techniques were used to identify and classify vegetation in the two Study Areas. 

 

 

Unsupervised and supervised satellite classifications were performed on Landsat 4 and 7 

(TM) satellite images. Classifications are a computer-generated analysis of an image based 

on reflectance values. The classification results in a map of land cover. In order to consider 

only the Study Area portion of the whole image, the individual images (Wicken 

Fen1985TM, 2009TM, and Caerlaverock Reserve 1988TM, 2009TM) were subset to 

extract the Study Area, using the subset tool in ERDAS ER Mapper. The process of 

creating a subset involves two steps: the first identifies appropriate rows and columns for 

the study area (using the PAINT tool in this case), and the second uses the subset tool in 

ER Mapper to produce the resulting subset images (see Fig. 2.7, and Figure 2.8).  The 

methodology adopted in this study for image preparation and vegetation classification by 

using ER Mapper is summarised in the flow chart shown in Figure 2.9. 
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Figure  2-7: Procedure for choosing the Study Area from whole satellite image using the ER 
Mapper. (Refer to Appendix 3 for further details of this process).   
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a: Subset 1988 TM (Caerlaverock Reserve)   b: Subset 2009 TM (Caerlaverock Reserve) 

 

 

 

           
c: Subset 1984 TM  (Wicken Fen)                   d: Subset 2009 TM  (Wicken Fen) 

 

Figure  2-8: Subset images showing the study area. 
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Figure  2-9: Landsat TM image analysis approach using ER Mapper, supporting both 
Unsupervised and Supervised classification. 
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2.5.1  Unsupervised Classification  

 

Unsupervised procedures (using the ISODATA algorithm) can classify images into 

spectral classes, focused solely on the natural groupings derived from the image values 

(Govender et al., 2007). The unsupervised approach is often used in vegetation cover 

mapping. The benefits of unsupervised classification methods are that they involves the 

transfer of original image data, which provides information of higher classification 

accuracy (Xie et al, 2008). This classification (ISODATA algorithm) is based on the 

natural groupings of the spectral properties of the pixels, which are usually selected by the 

Remote Sensing software without any influence from the user. ISODATA is an 

unsupervised classification method that uses an iterative approach incorporating a number 

of heuristic procedures to compute classes. The ISODATA utility repeats the clustering of 

the image into classes until a specified maximum number of iterations has been performed, 

or a maximum percentage of unchanged pixels has been reached between two successive 

iterations (Melesse and. Jordan, 2002), for a specified number of classes.  

 

 

In this study, unsupervised classification was used to produce land cover classes for each 

Study Area. In the unsupervised classification, the ISODATA algorithm in ERDAS ER 

Mapper was used, which classifies the image into a pre-selected number of classes using 

an iterative calculation procedure to ensure maximum statistical separability based on the 

spectral data.  An unsupervised classification was performed on the image specifying 6 and 

10 classes with 25 iterations, and a 0.98 confidence interval. 

 

2.5.2  Supervised Classification 

 

The maximum likelihood classifier (MLC) is a parametric classifier that assumes normal or 

near normal spectral distribution for each feature of interest in the target image. A 

supervised maximum likelihood classification algorithm was used to detect change in 

vegetation cover, because supervised classification depends to a greater extent than other 

methods on a combination of background knowledge and personal experience of the areas 

under investigation (Jensen, 2005). It consists of the identification of areas of specific 

features for each land use type or land-cover of interest to the analysis, (Govender et al., 

2007). 
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Supervised maximum likelihood classification was chosen to compare the outputs with 

unsupervised classification results, which is particularly important for this study, because it 

identifies and locates land cover types that are known a priori through a combination of 

interpretation of aerial photography, Ordnance Survey map analysis, and fieldwork. 

 

 

Traditional techniques of classification in remote sensing used pixel-based image 

classification, either using supervised or unsupervised classification. Vegetation indices are 

very often used in pixel based classification as an input channel to improve the 

classification result (Walter, 2004), pixel based approaches certainly can be useful for 

characterizing the land cover, and are particularly useful when landscape components of 

interest have very different spectral signatures (Gibbes et al., 2010). In this study pixel-

based classification was used to classify the images. The analysis process in this method 

depends only on the spectral information in the images and it deals only with the optical 

value of each pixel. 

 

Functional object based classification techniques, distinct from pixel based techniques, 

began to emerge in the 1990s (Janssen, 1993). The particular strength of object based 

techniques over pixel-based techniques has been found to be with high resolution imagery, 

particularly in urban environments or other patterned environments (Myint, et al. 2011; 

Zhou et al., 2009). However with regard to trees and shrubs (of particular interest in this 

research), Myint and colleagues found user and producer accuracies of 90% and 77% 

respectively for pixel based approaches and 84% and 86% for object oriented approaches, 

even with high resolution Quickbird imagery. There is thus little difference between the 

two approaches, for trees and shrubs, with user's accuracy in fact slightly higher for the 

pixel based approach, and it was concluded that the pixel based approach, for the medium 

resolution images used in this investigation, was adequate. The examination and 

development of object based approaches continue to be active research areas in the earth 

observation sector. 
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2.5.3  Change Detection in Wetlands with ArcMap GIS 

 

Wetlands ecosystems are prone to possibly substantial change over time, in both habitat 

conditions and vegetation cover. ArcMap GIS 10.1 Raster calculator (an extremely flexible 

tool with which the author was familiar) was used to perform change detection analysis 

using Landsat TM. It has been assumed that all detected changes have arisen from changes 

in vegetation; however it must acknowledged that in British context there changes might, 

sometimes, arise from changes in illumination, wetness, shadow and colour; to calculate 

the change in the cover between the times selected in the areas of study by following the 

steps: 

 

- Convert the outcome map from the ER Mapper supervised classification to TIF 

            format (created in ER Mapper) as three separate bands for subsequent to use  in  

            ArcGIS. 

- Loading the TIFF file as three separate bands in ArcGIS, because if loading it as a 

single image loses the details of the supervised classification. 

- Use “Raster Calculator”  for combining the three bands as follows: 

(1×band1+ 2×band2+3×band3) to retain the original supervised classification. 

- Using “Raster Calculator Re-class” to reclassify the single image that was obtained 

in the previous step and re-label with the given in Tables 3.8 and 3.9. 

- Obtain identical area for both images through clipping two areas by using extract 

by the rectangle. 

- Multiply the area from image date 1 and the area from image date 2 to obtain the 

change detection image of vegetation zone, then interpretation the outcome pixel 

values, as shown in Table 3.10. 

 

 The steps adopted in this study for change detection map from Landsat TM using 

ArcMapGIS 10.1 are summarised in the flowchart shown in Figure 2.10 below. 
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Figure  2-10: Flowchart to get change map of vegetation from Landsat TM 

in ArcGIS 10.1.  
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2.6 Ground Truthing Analysis  

2.6.1  Line Transect 

The line transect approach is particularly useful in studying flooded riverine and fen 

wetlands, which characteristically support ecotones (ecological spatial gradients). 

Transects had random starting points and were run in lines through the plant community, 

with total length depending on local conditions. Along the transect, quadrat samples were 

taken at intervals to record plant community composition and abundance, and relevant 

environmental characteristics (e.g. water depth, shade from scrub or tree vegetation, 

physico-chemical attributes etc). Vegetation state variables, e.g. total cover, average height 

and species diversity (S) were also recorded. These methods are standard for wetland 

vegetation survey (e.g. Kennedy et al., 2006; Timoney, 2008; De Steven et al., 2004; 

Bukland et al., 2007).    

 

In this study, sampling was undertaken along six transects in Wicken Fen, in June 2010 

and seven transects in Caerlaverock Reserve, in July 2011.  

2.6.2  Quadrats 

 

In Study Area 1 (Wicken Fen) the survey was conducted on 14
th

-18
th

 June 2010: forty 1 m
2
 

quadrats were taken in total, placed randomly along six transects in different vegetation 

types (usually running from open area into shaded land) within Wicken Fen. The survey in 

the second Study Area was conducted on 5
th

-9
th

 July 2011, with a total of forty-eight 1 m
2
 

quadrats placed completely randomly along seven transects in different vegetation types 

within Caerlaverock Reserve (Eastpark Farm).  

 

 

In each sample quadrat, species assemblage, frequency and richness (S, number of species 

per m
2
) was recorded within a 1m × 1m quadrat with one hundred 10cm x 10cm sub-

divisions. The abundance of each plant species (as number of “hits” in sub-squares to 

obtain % frequency: %F) was recorded within each quadrat; see Appendix 4a, 7a.  
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Measurements of soil pH and soil conductivity (µS/cm) were made in each quadrat using a 

Hanna meter. The number of vegetation layers was recorded. Water depth was measured in 

some quadrats, when standing water was present; and light measurements were taken, at 

head height, using a SKYE  PAR single-sensor meter, under, and  immediately outside 

overhanging vegetation, when the quadrat was under or adjacent to scrub or trees, in order 

to assess % shade: see Appendix 4c, 7c . Paired light measurements for this purpose were 

taken as quickly as possible to minimise error, due to changing incoming light conditions 

(fortunately both surveys were undertaken during periods of hot, sunny weather which 

minimised this problem). The latitude and longitude of each quadrat were recorded (to 10 

m accuracy) using a handheld Garmin GPS. Latitude and longitude co-ordinates measured 

in the field were subsequently converted to X and Y (meter) values using the website 

nearby.org.uk, and then input to the GIS to show the position of each guadrat on the study 

area map. 

 

2.6.3  TWINSPAN Classification of Ground reference 
Vegetation Survey Data 

 

In this study, Two-Way Indicator Species Analysis (TWINSPAN: version 2.3-August 

2005) was used to carry out species classification of the vegetation samples (Murphy et al. 

2003). Information output from the analysis is contained in the results file (results.txt). For 

each division, TWINSPAN identifies the strength of the division as an eigenvalue: a high 

eigenvalue (approaching 1.00) indicates strong separation of the two sample groups 

produced, with little similarity in species composition; a low eigenvalue (approaching 

zero) indicates strong overlap of sample groups in terms of species composition), the 

values were adopted more than 0.5; the indicator pseudo species (species at a predefined 

range of abundance, which characterises the sample group) and lists the samples assigned 

to each sample group. For the purposes of this study, the most useful feature of 

TWINSPAN is the final output two-way table (Kooh et al. 2008).  
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2.6.4  TABLEFIT Classification 

 

TABLEFIT 1.0 (Hill, 1996) was used to determine UK National Vegetation Classification 

(NVC) categories (delineated by eigenvalues with high values (>0.500) and equivalent 

community types in the European CORINE biotopes classification) for the ground 

reference data sample-groups that were identified by TWINSPAN. Currently, national 

vegetation classification (NVC) is the standard  phytosociological approach  to the 

classification of natural, semi-natural and major artificial habitats in Great Britain, 

describing  over 250 community types (Kennedy and Murphy, 2003). 

 

2.6.5  Statistical Analysis  

 

For normally distributed data, a one-way analysis of variance (ANOVA) was applied to 

determine significant differences between environmental and vegetation variables for 

sample groups identified by TWINSPAN. Tukey‟s mean comparison tests were used to 

determine which groups were significantly different in mean values for soil pH, 

conductivity, and vegetation height in the groups designated by TWINSPAN. 

 

 

2.7 Achieving the Aims of the Investigation 

 

Having developed the methodology in this chapter, it is hoped that the following two 

chapters will show how this has been implemented in the two study areas in order to 

achieve the study aims and objective, namely:   

 To investigate the proposal that vegetation changes over time (e.g.  scrub invasion; 

successional changes) have an effect on wetland plant community structure in UK 

wetland systems, which can be detected and quantified using remote sensing 

imagery. This proposal is investigated using an approach which combines remote-

sensing analysis of imagery over time with ground truth of existing wetland 

vegetation communities at two contrasting wetland sites in the UK. 
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  The specific objectives of the study are:                                                                                       

 To assess the value of using differing forms of remote sensing imagery in the 

mapping and monitoring of spatial and temporal variation in wetland vegetation, 

with a particular view to developing procedures which  can be transferred to Libya. 

 To  evaluate procedures by investigating temporal wetland plant community change 

at two contrasting UK locations by combining analysis of remote sensing data and 

the use of GIS techniques. 
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Chapter 3- Wicken Fen study area 1 

3  

3.1  Introduction   

 

Wicken Fen is an English fen wetland which was acquired and has been managed by the 

National Trust since the late 19
th

 century.  During the first half of the 20
th

 century, 

cessation of cropping and falling water levels led to extensive invasion of the Fen by fen 

carr. In 1961, a management plan was drawn up to alter the Fen‟s successional decline and 

to restore its former habitat (Painter, 1998). A section of Wicken Fen named Wicken Sedge 

Fen has particular ecological and historical importance, because it is reputedly the sole 

undrained remnant of the Cambridgeshire Fenland.  Drainage of this area for cultivation 

since the 17
th

 century has dramatically reduced the area of fen and open water in 

Cambridgeshire until, by 1900, Wicken Sedge Fen (130 ha) was the only substantial area 

of fen remaining (Rowell, 1986). Many wetlands are now recognised as important 

ecosystem resources and have varying levels of protection in the UK,  such as Special 

Areas of Conservation (SACs), Sites of Special Scientific Interest (SSSIs) and local nature 

reserves (Kennedy and Murphy, 2004). 

 

 

Wicken Fen is one of the oldest and most intensively studied nature reserves in the British 

Isles. From the middle of the nineteenth century, it has been a prized collecting and 

recording ground for naturalists. As the fenland all around was drained for agriculture, the 

Fen become an isolated refuge for the characteristic species of fen habitats (Friday and 

Harley, 2000). Wicken Fen nature reserve is designated as a National Nature Reserve and 

is a sanctuary for birds, plants, insects and mammals, including otters and rare butterflies. 

The diverse landscape at Wicken Fen is made up of open fen habitats (including sedge 

beds, reed communities and fen meadows); aquatic habitats (such as dykes and pools); 

drier grassland and woodland. Intensive farmland surrounds the site, but the Fen represents 

an ancient landscape of high diversity and aesthetic appeal (Hine et al., 2007). 
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3.2 Description of the study area 

 

Wicken Fen (UK National Grid reference TL 5570) is located 15 km north-east of the city 

of Cambridge. It is a floodplain fen of about 130 ha, and a site of considerable natural 

history and conservation value, a remnant of the original peat fens of the East Anglian 

basin. It is bounded on its north and west sides by clay banks, on the south by a broad 

watercourse known as Wicken Lode, and on the east by the rising land of the Wicken ridge 

(Fig.3.1). The location is partly covered by fen carr with Frangula alnus (Alder 

Buckthorn) and Salix cinerea (grey sallow) as the most abundant tree species. Frangula 

alnus Mill. synonyms Rhamnus frangula L. is a small deciduous tree, or coarse shrub. 

Distribution of Frangula alnus in the British Isles, as shown in Figure (3.2), avoids 

permanently waterlogged and drought-prone sites. It is found on a wide range of soils, in 

scrub on fen peat, on the edges of raised mires, in scrub, and in woodland. It is 

characterised by regenerating strongly after cutting, burning or grazing; indeed, this 

species was planted for charcoal production (Online Atlas of the British & Irish Flora, 

2013). Over 10.5 ha are covered by Cladium mariscus (Great Fen-sedge). The remainder 

of the herbaceous vegetation is dominated by Molinia caerulea (Purple Moor-grass), 

Calamagrostis epigejos (Wood Small-reed), C. canescens (Purple Small-reed), or Phalaris 

arundinacea (Reed Canary-grass) (Rowell et al., 1985; Rowell, 1986; Rowell and Harvey, 

1988). Some communities at Wicken Fen are represented by National Vegetation 

Classification (NVC) categories M24 (Molinia caerulea-Cirsium dissectum) and S24 

(Phragmites australis - Peucedanum). The M24 community is almost dominated by 

Molinia, typically with Potentilla erecta (Tormentil), Succisa pratensis (Devil's-bit 

Scabious), Cirsium dissectum (Meadow Thistle) and smaller Carex species. Community 

S24 is represented by Phragmites australis (Common Reed), Peucedanum palustre (Milk-

parsley), Peucedano-Phragmitetum australis and Caricetum paniculatae peucedanetosum 

(tall-herb fen); this is the most widespread herbaceous community found at Wicken Fen 

(McCartney and de la Hera, 2004). Other plant communities present in Wicken Fen 

include M22 usually represented by Juncus subnodulosus (Blunt-flowered Rush) and  

Cirsium palusture (marsh Thistle) fen-meadow, and the W2 community (woodland)  Salix 

cinerea (Grey Willow), Betula pubescens (Downy Birch) and Phragmites australis 

(Rodwell, 1991); this is the most botanically diverse vegetation community at Wicken Fen.   
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(source: www.wicken.org.uk/intro_map.htm) 
 

 Figure  3-1: Location of Wicken Fen.  

 

 

 

 

 

 

 

http://www.wicken.org.uk/intro_map.htm
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(Source:http://www.brc.ac.uk/plantatlas/index.php?q=plant/frangula-alnus ) 

Figure  3-2: Distribution of Frangula alnus in the British Isles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.brc.ac.uk/plantatlas/index.php?q=plant/frangula-alnus
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3.3  Airborne and Space-borne Surveys 

 

Aerial photographs of Wicken Fen were obtained from the UK Aerial Photos Database, 

and the LandsatTM scenes were obtained from the internet using the GLOVIS tool of the 

U.S. Geological Survey (USGS). It might be worth noting that satellite imagery is now 

much cheaper to acquire (using GLOVIS, for example enables acquisition with lower 

costs) than aerial imagery (UK Aerial Photos Database prices are about £30- £100 per 

photo); for this reason, satellite images were used in this study, and their results compared 

with those obtained from aerial photos. 

 

    

3.3.1  Aerial Photography Interpretation 

 

Geo-referenced air-photo mosaics were used as base maps from which cover types present 

in Wicken Fen were digitised on-screen using ArcGIS. Major structural changes in 

vegetation were determined by comparing vegetation maps interpreted from aerial 

photographs taken in 1985 (black and white) see Figure 3.3 and 2009 (true colour) see 

Figure 3.4. Vegetation was mapped on the basis of tree and shrub canopy cover. Areas 

were classified as herbaceous fen (white colour, in Figures 3.5, 3.6, 3.7, 3.8) if no trees 

were apparent in the photographs. The result obtained from interpretation of 2009 air-

photos (Fig 3.8), when compared to air- photos of 1985 (Fig 3.5), has shown vegetation 

cover has changed, especially in Verrall‟s Fen (A), and  Sedge Fen (B); see Figures 3.5 and 

3.8 to compare total  cover of trees and shrubs in 1985 and 2009. Details of the 

methodology used are given below. 
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Figure  3-3: Verrall’s Fen (A), and Sedge Fen (B) in Wicken Fen 1985 aerial photograph (Black 
& White)  

 

 

 

 

Figure  3-4: Verrall’s Fen (A), and Sedge Fen (B) in Wicken Fen 2009 aerial photograph. 

A 
B

A 

B  
A 
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The total cover of trees and shrubs was delineated on-screen using the ArcMap GIS 9.3, 

and later ArcMap GIS 10.1, based on aerial photographs (1985, 2009), and groundtruthing 

fieldwork in 2010. To classify the aerial panchromatic imagery of 1985 Ordnance Survey 

map analysis and visual interpretation only were used. In addition, 1999 and 2003 Google 

Earth imagery of the study area of Wicken Fen was also delineated, and the result showed 

the changes in tree/shrub cover from 1999 to 2003 (Figs. 3.6 and 3.7).  

 

Based upon the calculation of the cover of trees and shrubs in aerial photos for the target 

area, using ArcMap GIS, the results suggest a decrease from 1116072 m
2
 (equivalent to 

111.6072 ha) in 1985 (Fig. 3.5) to 671951 m
2
 (equivalent to 67.1951 ha) in 2009 (Fig. 3.8) 

in which some 444121 m
2
 (equivalent to 44. 421 ha) of tree/shrub canopy were lost.  

 

The change rate in the cover (trees and shrubs) can be calculated using the following 

formula (Veldkamp et al., 1992): 

               Change rate (percent, y 
-1

) = 100
/)( 121 



N

FFF
 

where: 

 

F1 is the cover area at the beginning of reference period; 

F2 is the cover area at the end of reference period; 

N is the number of years in reference period; and,  

y is a year.   

 

 

The calculated annual change rate in the cover trees and shrubs from 1985 to 1999 was 

2.24 %, from 1999 to 2003 was 0.28%, from 2003 to 2009 was 1.48%, and the annual 

change rate in the cover trees and shrubs of the whole period from 1985 to 2009 was     

1.66 %.  

 

 

Over the whole quarter century period (1985-2009) the percentage loss of trees and shrubs, 

based on the foregoing, was 39.8%. However on an annual basis the calculated change rate 

in the cover of trees and shrubs from 1985 to 1999 was 2.4% per annum, 0.28% from 1999 

to 2003, 1.48% from 2003 to 2009, and 1.66% overall. It might be interesting to consider 

why the annual rate of decrease varied, but it might also be worth considering whether this  
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method to monitor annual change, is justified. The method relies on digitizing photo-

interpreted polygons on aerial photographs; even amongst very experienced photo-

interpreters this technique has associated errors could be affecting this approach, in 

Wicken Fen, as described in the next paragraph. 

 

 

Polygons A, B and C of Figures 3-5 and 3-8 were each digitized five and four times each, 

respectively. The results are shown in Appendix 10.  From these results it can be seen that, 

for Figure 3-5 (i.e. 1985), the average sizes of the polygons A,B and C were 10142.8 m
2
, 

88899 m
2
 and 49182.8 m

2
    respectively, and the standard deviation of the areas of the 

polygons A, B and C were respectively 95.2 m
2
, 2455.05 m

2
 and 2284.4 m

2
. Based on 

these standard deviations (SDs) and  assuming the digitizing error is normally distributed, 

it can be claimed that there is an almost 100% (strictly 99.7%, based on 3x SD) probability 

that the size of the polygons A,B and C are between 9857.08 m
2
 and 10428.5 m

2
, 

81533.8m
2
 and 96264.2 m

2
, and  42329.6m

2 
and  56036.0m

2
   respectively - or the 

averaged area +/- 2.8%, 8.2% and 13.9% in the cases of A, B and C respectively. With 

digitizing precision at this level it becomes difficult to discuss annual changes in wood and 

scrub cover, but it is acceptable to discuss changes over several decades, as the percentage 

changes (i.e. 39.8%) are much greater than the percentage error arising from digitizing. 

 

 

Repeating this discussion for Figure 3-8 (i.e. 2009), the percentage errors associated with 

digitizing polygons A, B and C to find their areas are 0.3%, 1.4% and 2.6% respectively. 

The improved quality of digitizing in the 2009 photography can be noted, but the 

percentage errors are still of the order of the calculated annual percentage changes, thus 

precluding any reliable discussion of annual rates of change. 
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Figure  3-5: Cover of trees & shrubs (green) in Wicken Fen 1985, using air photo 
interpretation. 

 

 

 

 

 

 

 

Figure  3-6: Cover of trees & shrubs (green) in Wicken Fen 1999, using Google Earth. 
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Figure  3-7: Cover of trees & shrubs (green) in Wicken Fen 2003, using Google Earth. 

 

 

 

 

 

 
 

 

 

Figure  3-8: Cover of trees & shrubs (green) in Wicken Fen 2009, using air photo 
interpretation. 
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3.3.1.1  Change Matrices 

A „change matrix‟ is a development of the classical „misclassification matrix‟ or „error 

matrix‟ concept widely used in the Earth Observation sciences (see: “Remote Sensing and 

Image Interpretation”, edition 6, p 585, Lillesand, Kieffer and Chipman, 2008) to compare 

„ground truth‟ and the outcome from a classification process. 

 

For reasons of clarity, the creation of an error matrix is briefly described in the following 

three paragraphs, relating to Table 3.1. 

 

An error matrix compares two (usually landcover) data sets. One of these is considered to 

be of higher accuracy than the other, and the higher accuracy set represents „the truth‟; 

their comparison gives accuracy statistics for the less accurate data set. For example, the 

data set whose accuracy is being considered might be derived from a low resolution 

source, such as LandsatTM, while „the truth‟ is provided by a higher resolution data set, 

such as aerial photography, orthophotography or ground observations. An error matrix 

provides three types of statistical information:  

 

1. simple probability of the classification of the lower resolution data set being correct 

(where „correct‟ is specified by the higher resolution data set), presented in percentage 

probability terms – in the simulated example below (Table 3.1)  this is 70%;  

2. user‟s accuracy where the product provided by the producer using the lower resolution 

data set - such as a landcover map, in its practical use, is compared to „the truth‟, 

presented in percentage probability terms, per class – in the simulated example below 

(Table 3.1) this is 83% in the case of Class A and 50% in the case of Class B; 

3. producer‟s accuracy where „the truth‟ provided by the higher resolution product is 

compared to the product provided by the producer using the lower resolution data set, 

presented in percentage probability terms, per class – in the simulated example below 

(Table 3.1)  this is 71% in the case of Class A, and 66% in the case of Class B. 

 

 

A simulated example error matrix is provided in Table 3.1 below for two classes of land 

use (A,B) in a 1000 pixel site. In this example, the producers, using low resolution 

imagery, mapped 600 pixels of class A and 400 pixels of class B, whereas „the truth‟ (or 

„groundtruth‟) as found in high resolution aerial photography was that there were 700 

pixels of class A and 300 pixels of class B (Table 3.1). 
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Table  3-1: Explanatory example of an Error Matrix. 

 

PRODUCED 

MAP → 

GROUNDTRUTH 

↓ 

CLASS 

A 

CLASS 

B 
∑ Producer‟s accuracy 

CLASS A 500 200 700 
500/700  

(71%) 

CLASS B 100 200 300 
200/300  

(66%) 

∑ 600 400   

User‟s accuracy 

 

500/600 

(83%) 

 

200/400 

(50%) 

 700/1000 (70%) 

 (Simple probability of map 

being correct)  

 

 

Several of these error matrices are considered subsequently in this chapter. However, a 

particular development of the error matrix has been to use the same statistical approach to 

produce a change matrix. The change matrix compares two surveys considered to be of 

the same accuracy, but representing different dates. The statistics obtained represent 

change, and there has to be a modification of terminology, as shown below in Table 3.2. 

 

 

 

Table  3-2: Explanatory example of an Change Matrix. 

 

DATE 1 → 

 

DATE 2↓ 
CLASS 

A 

CLASS 

B 
∑ 

Percentage Date 2 class 

retained from Date 1 

CLASS A 500 200 700 
500/700 

(71%) 

CLASS B 100 200 300 
200/300 

(67%) 

∑ 

 
600 400 

  

Percentage Date 1 

class retained in 

Date 2 

500/600 

(83%) 

200/400 

(50%) 

 700/1000 (70%) (Overall 

percentage unchanged 

between the two dates) 
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It may of course be more interesting to state the above specifically in terms of percentage 

changed – rather than percentage unchanged, in which case there has been an overall 

change of 30% between the two dates, with: 17% of Date 1 Class A changing to Class B 

between the dates; 29% of Date 2 Class A having changed from Date 1 Class B between 

the dates; 50% of Date 1 Class B changing to Class A between the dates; and, 33% of Date 

2 Class B having changed from Date1 Class A between the dates. 

 

Essentially in moving from error matrices to change matrices, we are no longer considering 

percentages correct, but percentages unchanged. 

 

There are several practical examples of these change matrices considered subsequently in 

this chapter. 

 

3.3.1.2  Using change matrices and error matrices. 

 

In more detail, the results of change from aerial photography 1985 versus fieldwork 2010 

of the classification into five classes (trees and shrubs – T&S; pasture - P; farmland - F; 

herbaceous fen - HF; water - W) are shown in the change matrix Table 3.3. In Table 3.4, 

the results obtained from a two-class change matrix for aerial photography 1985 versus 

fieldwork 2010 are shown. The overall percentage unchanged between the two dates for 

the two and five class classifications were found to be 77.5% (Table 3.4) and 67.5% (Table 

3.3), respectively.  

 

 

The comparison, using error matrices between aerial photography of 2009 and fieldwork of 

2010, is performed under the assumption that there will have been little change between 

the two dates (they are consecutive years) and the error analysis serves to confirm that 

aerial photography is a worthy substitute for field work – an idea which is long established 

amongst air photo interpreters e.g. supported by Mosbech and Hansen (1994) who mapped 

vegetation classes in Jameson Land, while Verheyden et al., 2002 reported that aerial 

photographs produced accurate vegetation maps of mangrove forests. Accuracy 

percentages over 90% in the two-class assessment confirm this (see Table 3.6). 
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Table  3-3:  Five classes change matrix resulting from aerial photography1985 versus 
fieldwork 2010 for Wicken Fen.  

 
Aerial 1985 → 

 

FW 2010 ↓ 

T&S P F HF W ∑ 

Percentage retained 

unchanged in 2010 

from 1985  

T&S 19 0 0 2 0 21 
19/21 

90% 

P 0 3 0 0 0 3 
3/3 

100% 

F 0 0 0 0 0 0 NA 

HF 6 2 0 4 0 12 
4/12 

33.3% 

W 1 2 0 0 1 4 
1/4 

25% 

∑ 26 7 0 6 1 
 

 

Percentage 

from 1985 

retained 

unchanged in 

2010 

19/26 

73.1% 

3 /7 

42.9% 
NA 

4/6 

66.7% 

1/1 

100% 
 

Overall % 

unchanged between 

two dates: 

27/40 

67.5% 

 

 

 

 

Table  3-4: Two-classes change matrix resulting from aerial photography1985 versus 
fieldwork 2010 for Wicken Fen.    

 
Aerial 1985 → 

 

FW 2010 ↓ 

T&S Others ∑ 

Percentage retained 

unchanged in 2010 

from 1985 

T&S 19 2 21 
19/21 

90.5% 

Other 7 12 19 
12/19 

63.2% 

∑ 26 14   

Percentage from 

1985 retained 

unchanged in 

2010 

19/26 

73.1% 

12/14 

85.7% 
 

Overall % 

unchanged between 

two dates: 

31/40 

77.5% 

 
 

 

The results of error matrix analysis from aerial photography 2009 versus fieldwork 2010 of 

the classification into five classes with user‟s and producer‟s accuracies are shown in Table 

3.5. Table 3.6 shows the results obtained from two-class error matrix for aerial 
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photography 2009 versus fieldwork 2010. The overall accuracies for the error matrix of 

two and five classes were found to be 90% (Table 3.6) and 80% (Table 3.5), respectively.   

 

Table  3-5: Error matrix resulting from aerial photography 2009 vs. fieldwork 2010 for Wicken 
Fen, using 5 classes.   

 

Aerial 2009 → 

 

FW  2010 ↓ 

T&S P F HF W ∑ 
User‟s 

Accuracy 

T&S 17 0 0 4 0 21 
17/21 

80.9% 

P 0 3 0 0 0 3 
3/3 

100% 

F 0 0 0 0 0 0 NA 

HF 0 0 0 11 1 12 
11/12 

91.6% 

W 0 1 0 2 1 4 
1/4 

25% 

∑ 17 4 0 17 2 
 

 

Producer‟s 

Accuracy 

17/17 

100% 

3/4  

75% 
NA 

11/17 

64.7% 

 

1/2 

50% 

 

 
32/40 

80% 

 

With a positive k (“KHAT”, or “kappa”) value (0.68) the classification is shown to be 68% 

better than classification resulting from chance. 

 

 

Table  3-6: Error matrix resulting from aerial photography 2009 vs. fieldwork 2010 for Wicken 
Fen, using two classes.    

 

 

 
T&S Other ∑ 

User‟s 

Accuracy 

T&S 17 4 21 
17/21 

80.9% 

Other 0 19 19 
19/19 

100% 

∑ 17 23   

Producer‟s 

Accuracy 

17/17 

100% 

19/23 

82.6% 
 

36/40 

90% 

 

With a positive k (“KHAT” or “kappa”) value (0.80) the classification is shown to be the 

classification is shown to be 80% better than classification resulting from chance. 
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3.3.2  LiDAR image interpretation  

 
LIDAR data (2 m resolution) for Wicken Fen in 2004 were acquired from the Environment 

Agency (England and Wales). The data was received as Digital Surface Models (DSM) 

and Digital Terrain Models (DTM), with all of the data referenced using the British 

National Grid. 

 

 

Initial results for vegetation height, obtained by subtracting the DTM from the DSM in 

ArcMap, appeared as a black and white 32 bit image. Through applying pseudo-colours in 

the vegetation height channel, the heights can be visualised based on the colours (Figure 

3.9). In ArcMap, vegetation height values are fitted to the pseudo-colour, with the lowest 

value being assigned to gray, the highest to red. Trees and shrubs appeared in magenta 

colour and lower values of red. Figure 3.10 shows the mosaic map with the vegetation 

height, for visualised Wicken Fen from LIDAR data, and the OS DTM.  

  

As indicated by Popescu (2007) LiDAR, with its multiple returns is also very useful in 

assessing biomass and other vegetation characteristics. Subtle differences between trees 

and shrubs can be detected.  Determining a single “Trees &Shrubs” class does not exploit 

the full potential of LiDAR, and this could be investigated in future work. 

 

The result obtained from interpretation of 2004 LIDAR data (Figure 3.9), when compared 

to air- photos of 1985 (see Figure 3.5), clearly shows vegetation cover change in Verrall‟s 

Fen (A), and Sedge Fen (B), over the nineteen year period.   
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Figure  3-9:  Height of vegetation at Wicken Fen in a mosaic map of 2004 LIDAR data (white 
areas are unclassified, and represent open water) 

 

 

 

3.3.3  Landsat imagery interpretation 

 
 Assessment of environmental data using remote sensing is not possible without a 

characterisation of each land cover type following classification. Usually classification is 

divided into two categories, unsupervised and supervised, each of which can agglomerate 

remotely sensed data into meaningful groups. The unsupervised classification is often 

performed first, as it allows for a preliminary exploration of the data. 

 

3.3.3.1  Unsupervised Classification  

 

An unsupervised classification is theoretically better suited to application in a highly 

heterogeneous wetland environment (Harvey and Hill 2001). The results of analysis of 

1984 Landsat TM imagery using unsupervised classification techniques to produce, first, 

ten land cover classes and then, subsequently, six land cover classes, are shown in Figures 

3.10 and 3.11. 

A

A

A 

B

A

A

A 
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The ten class image (Fig. 3.10) is difficult to interpret; to interpret the image we need to 

know into which land cover type each category falls, with detailed knowledge of ground 

truth for the area, but it is not always easy to do that, especially in a flood plain area. In the 

unsupervised classification method chosen, the classes produced are based on natural 

breaks in the distribution of pixel values in the image. As a result, the created classes may 

not distinguish between the features that the user needs to resolve. For example, in this 

study, the reflectance of vegetation in flooded areas and open water types may be too 

similar for the software to separate them into distinct classes. In the six class unsupervised 

classification of the 1984 LandsatTM image of Wicken Fen, there appears to be an 

integration of open water with vegetation, see Figure 3.11 (light green) ; this has been 

labelled Trees and Shrubs in the figure. The six classes for the 1984 image were tall 

vegetation (trees, shrubs); wet grassland; pastures; waterlogged soil; and agricultural land.  

 

 

 
 

Figure  3-10:  Ten land cover classes of 1984 Wicken Fen LandsatTM image after 
unsupervised classification. (See Fig. 2-8 c for the original image, prior to classification) 
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Figure  3-11: Six land cover classes of 1984 Wicken Fen LandsatTM image after 
unsupervised classification. 

 

 

 

 

Figures 3.12 and 3.13 show the results obtained from interpretation of LandsatTM imagery 

for 2009, using unsupervised classifications in six and ten cover classes. The identified 

classes were tall vegetation (trees, shrubs), water body, wet grassland, pastures, 

waterlogged soil, and agricultural land. 

 

An unsupervised classification using ten classes results in some classes in the study area 

which could not be identified by the author (for example Fig. 3-13). Reducing the numbers 

of classes to six result in a classification which matched the author‟s pre-existing 

knowledge   
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Figure  3-12: Six land cover classes of the 2009 Wicken Fen LandsatTM image after 
unsupervised classification. 

 

 

 

 

The 10 class unsupervised classification produced classes which were difficult to identify, 

based on field work and knowledge of the area (see Figure 3.13).  
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Figure  3-13: Ten land cover classes of the 2009 Wicken Fen LandsatTM image after 
unsupervised classification. 

 

 

 

 

Results obtained from comparing  the six class unsupervised classification of the 

LandsatTM imagery for 2009, with the similarly classified LandsatTM imagery for  1985, 

show that vegetation cover has changed, especially in Sedge Fen (A): see Figures 3.14  and 

3.15. 
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Figure  3-14: Six classes unsupervised classification of 1984 Wicken Fen imagery  

 

 

 

 

 

Figure  3-15:  Six classes unsupervised classification of 2009 Wicken Fen imagery, the 
circled area (A) shows an obvious change in vegetation.        

A 
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3.3.3.2  Supervised Classification  

 

Supervised classification using maximum likelihood classification (MLC) provided better 

results than unsupervised classification for distinguishing Wicken Fen vegetation classes, 

and for subsequently monitoring change (Table 3.27). The accuracy assessment of the 

supervised classification classes was performed using aerial photos, Ordnance Survey 

maps, and fieldwork for check-values (validation sources). The Study Area was 

categorised into five-land cover classes; the classes were tall vegetation (trees, shrubs), 

pasture, farmland (crops), wet grassland, and water.  

 

 

The results of the supervised classification techniques into five land cover classes for 

Wicken Fen LandsatTM images in 1984 and 2009 are shown in Figures 3.16 and 3.17. 

 

 

 
 

 
 

Figure  3-16: Land cover classes identified for 1984 Wicken Fen through supervised 
classification. 
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Figure  3-17: Land cover classes identified for 2009 Wicken Fen through supervised 
classification 

 

 

 

 

Scattergrams of supervised classification for all five identified land cover classes of 

LandsatTM image in 1984 and LandsatTM image in 2009 for Wicken Fen are shown in 

Figures 3.18 and 3.19. It is noticed from interpretation of the scattergram that there is no 

overlap between the land cover classes; which means that the supervised classification has  

precisely determined land cover classes, and successfully avoided including pixels of 

ambiguous class (or „mixels‟). 

 

 

 

 

Ideally, training data should be based on in situ data collected in advance of image 

classification (Chen and Stow, 2002). Several spatial sampling objects are used to select 

training data in traditional supervised training from images:  single pixel and polygons or 

blocks of pixels (Jensen, 1996). In this study pixel-based classification was used to classify 

the images. To select training areas aerial photography, Ordnance Survey maps, and 

fieldwork ground reference data (TWINSPAN group classification not used for training 

areas) have all been used as a guide for the selection of vegetation classes in supervised 

classification. 
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Figure  3-18: Shows scattergram created from the five class supervised classification using 
LandsatTM bands 2 and 4 of Wicken Fen, 1984.  

 

 

 

 

 

 
 

Figure  3-19: Shows scattergram created from the five class supervised classification using 
Landsat TM bands 2 and 4 of Wicken Fen, 2009. 
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The results of  the supervised classification of the 2009 Landsat(TM), Fig. 3.21, data, when 

compared to classification of the 1985 Landsat(TM),  Fig. 3.20, data, clearly show the 

changes in vegetation cover over this period. In 2009, Landsat(TM) imagery showed a 

decrease in the total cover of trees and shrubs (green) in the zones Verrall‟s Fen (A) and 

Sedge Fen (B) compared to 1984 Landsat imagery, and also showed an increase in cover of 

trees and shrubs in the zone Edmund‟s Fen (C); see Figures 3.20 and 3.21. The results 

obtained from the supervised classification were similar to the results obtained from aerial 

photo interpretation of 1985 and 2009 for Wicken Fen (Figures 3.5 and 3.8), confirming 

that for monitoring change to or from trees and shrubs using low resolution satellite 

imagery in the context of Wicken Fen, can be justified. 

 

 

 

                     

 
 

Figure  3-20:  Wicken Fen 1984 supervised classification  

 

       C 

A 

B 
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Figure  3-21: Wicken Fen 2009 supervised classification 

 

 

 

 

3.3.3.3  Producing the change matrix  

 

In this case, the two data sets being compared are from different periods (e.g. 1984 – 

2009).  

Following classification in ER-Mapper, the data was transferred to ArcGIS as raster data 

sets.   The challenge is to represent and then visualise changes; that is, to produce a map 

showing changes between 1984-2009 (including „no change‟), and the widely used ArcGIS 

tool „Map Calculus‟ is used to do this. 

 

There are 5 original classes (trees and shrubs – T&S; pasture - P; farmland - F; wet 

grassland - WG; water - W) in each period – thus a maximum of 25 change possibilities, 

see Table 3.7. 

 

 

       C 

A 
B 
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Table  3-7: Shows the possible 25 changes (including no change). 

 

 

# 

ORIGINAL 

CLASS 

CHANGED 

CLASS 

COMMENT 

1 T&S T&S No change 

2 T&S P  

3 T&S F  

4 T&S WG  

5 T&S W  

6 P T&S  

7 P P No change 

8 P F  

9 P WG  

10 P W  

11 F T&S  

12 F P  

13 F F No change 

14 F WG  

15 F W  

16 WG T&S  

17 WG P  

18 WG F  

19 WG WG No change 

20 WG W  

21 W T&S  

22 W P  

23 W F  

24 W WG  

25 W W No change 

 

For the original class (1984) the five land cover classes were re-labelled as shown in Table 

3.8. 

Table  3-8: 1984 land cover classes, showing original class name and new label. 

 

T&S 1 

P 2 

F 4 

WG 6 

W 8 

 

For the changed class (2009) the five land cover classes were re-labelled as shown in Table 

3.9. 
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Table  3-9: 2009 land cover classes, showing original class name and new label. 

 

T&S 10 

P 14 

F 19 

WG 22 

W 24 

 

Using the ArcGIS Map Calculus tool (which is called RASTER CALCULATOR), the two 

data sets are multiplied together, to produce a new pixel map, with the possible outcome 

pixel values shown in Table 3.10 below. 

 

Table  3-10: Outcome pixel values and their meaning. 

 

 
# 

CLASS 

1984 

CLASS 

2009 

PRODUCT 

(possible outcome 

pixel value) 

 

COMMENT 

1 1 10 10 T&S to T&S No change 

2 1 14 14 T&S to P 

3 1 19 19 T&S to F 

4 1 22 22 T&S to WG 

5 1 24 24 T&S to W 

6 2 10 20 P to T&S 

7 2 14 28 P to P No change 

8 2 19 38 P to F 

9 2 22 44 P to WG 

10 2 24 48 P to W 

11 4 10 40 F to T&S 

12 4 14 56 F to P 

13 4 19 76 F to F No change 

14 4 22 88 F to WG 

15 4 24 96 F to W 

16 6 10 60 WG to T&S 

17 6 14 84 WG to P 

18 6 19 114 WG to F 

19 6 22 132 WG to WG No change 

20 6 24 144 WG to W 

21 8 10 80 W to T&S 

22 8 14 112 W to P 

23 8 19 152 W to F 

24 8 22 176 W to WG 

25 8 24 192 W to  W No change 
 

In the case of Wicken Fen, all possibilities were achieved, thus a palette of 25 colours was 

needed. 
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3.3.3.4  Detection of change in vegetation; results  

 

The results obtained from change matrix analysis using the Arc Map (v10.1) are included 

in a chart showing class changes from 1984 to 2009 in Wicken Fen (Table 3.11 & 3.12).  

Based on the table change matrix, tall vegetation (trees, shrubs) covered an area of 1535 

pixels (equivalent to 138.15 ha) in 1984: see Table 3.11. About 65.6% (1008 pixels 

equivalent to 90.7 ha) of total canopy for tall vegetation had changed by 2009 as follows: 

19.0% (292 pixels equivalent to 26.28 ha) changed to pastures, 15.4% (237 pixels 

equivalent to 21.3 ha) changed to farmland, 34.9% (388 pixels equivalent to 34.9 ha) 

changed to wet grassland, and 6.1% (91 pixels equivalent to 8.19 ha) changed to water; see 

Table 3.12. The result obtained from the calculated change matrix confirmed that the 

reduction result obtained from aerial photographs indicated there has been a change in 

vegetation during the period 1984 to 2009 at Wicken Fen, although actual change rates 

differ (1.6% pa with aerial photos, 0.4% pa with supervised classification. Figure 3.22 

shows the specific spatial distribution (location) of land cover change (change patterns) 

that have taken place between the individual cover types at Wicken Fen 1984- 2009. Table 

3.13, shows the results obtained from two-class change matrix for supervised classification 

of satellite imagery 1984 versus satellite imagery 2009, with the overall percentage 

unchanged of 80%. 
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Table  3-11: Change matrix for Wicken Fen in the 1984-2009 period, values in pixels.  

                                 

1984 → 

 

2009 ↓ 

Trees & 

Shrubs 
Pasture Farmland 

Wet 

grassland 
Water ∑ 

Percentage 

retained 

unchanged 

in 2009 

from 1984 

Trees & 

Shrubs 
527 196 550 58 42 1373 

527/1373 

38.4% 

Pasture 

 
292 292 446 144 235 1409 

292/1409 

20.7% 

Farmland 

 
237 699 536 270 490 2232 

536/2232 

24% 

Wet 

grassland 
388 105 288 187 201 1169 

187/1169 

20% 

Water 91 1032 341 438 1289 3191 
1289/3191 

40.4% 

∑ 1535 2324 2116 1097 2257 9374  

Percentage 

from 1984 

retained 

unchanged 

in 2009 

527/1535 

34.2% 

 292/2324 

  12.6% 

536/2116 

25.3% 

187/1097 

17% 

1289/2257 

57.1% 
 

Overall % 

unchanged 

between two 

dates: 

2831/9374 

        30.2% 

 

 

Table  3-12: Class distribution for changed land cover in Wicken Fen in the 1984-2009 period,  
in hectares. 

 

1984 → 

 

2009 ↓  

Trees & 

Shrubs 
Pasture Farmland 

Wet 

grassland 
Water 

Trees & 

Shrubs 
 17.64 49.5 5.22 3.78 

Pasture 

 
26.28  40.14 12.96 21.15 

Farmland 

 
21.33 62.91  24.3 44.1 

Wet 

grassland 
34.92 9.45 25.92  18.1 

Water 

 
8.19 92.88 30.69 39.42  
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Table  3-13: Two classes change matrix resulting from satellite imagery 1984 vs. satellite 
imagery 2009 of Wicken Fen. 

 

TM 1984 → 

 

TM 2009 ↓ 

    Trees & 

Shrubs  
Others ∑ 

Percentage retained 

unchanged in 2009 from 

1984 

Trees & 

Shrubs 
527 846 1373 

527/1373 

38% 

Others 1008 6993 8001 
6993/8001 

87% 

∑ 1535 7839 9374  

Percentage 

from 1984 

retained 

unchanged in 

2009 

527/1535 

34.3% 

6993/7839 

89% 
 

Overall % unchanged 

between two dates: 

7520/9374 

80% 
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 Figure  3-22: Land cover change map for Wicken Fen 1984-2009. 
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The results of the change matrix from the six classes of unsupervised classification of 

satellite imagery 1984 versus fieldwork 2010, with percentages unchanged, is shown in 

Table 3.14. Table 3.15, shows the results obtained from the two-class change matrix for 

unsupervised classification of satellite imagery 1984 versus fieldwork 2010. The overall 

accuracies for the change matrix of two and six classes were found to be 70% (Table 3.15) 

and 47.5% (Table 3.14), respectively. There are 6 original classes (trees and shrubs – T&S; 

pasture - P; farmland - F; wet grassland - WG; water – W; tall herbs- TH)  

 

 

 

Table  3-14: Six classes change matrix resulting from unsupervised classification of satellite 
imagery 1984 vs. fieldwork 2010 for Wicken Fen.  

   

 TM1984 → 

 

 

FW  2010 ↓ 

T&S P F WG W TH ∑ 

Percentage 

retained 

unchanged in 

2010 from 

1984 

T&S 18 0 0 3 0 0 21 
18/21 

85% 

P 0 1 2 0 0 0 3 
1/3 

33.3% 

F 0 0 0 0 0 0 0 NA 

WG 5 0 0 0 1 0 6 NA 

W 2 1 1 1 0 0 5 NA 

TH 2 0 2 0 1 0 5 NA 

∑ 27 2 5 4 2 0 
19/40 

47.5% 
 

Percentage 

retained 

unchanged in 

2010 from 1984 

18/27 

66.7 

1/2 

50% 
NA NA NA NA 

 Overall % 

unchanged 

between two 

periods:  

19/40   

47.5% 
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Table  3-15: Two classes change matrix resulting from unsupervised classification of 
satellite imagery 1984 vs. fieldwork 2010 for Wicken Fen.    

 
TM 1984 → 

 

FW 2010 ↓ 

T&S Others ∑ 
Percentage retained unchanged 

in 2010 from 1984 

T&S 18 3 21 
18/21 

85.7% 

Other 9 10 19 
10/19 

52.6% 

∑ 27 13 
28/40 

70% 
 

Percentage retained 

unchanged in 2010 

from 1984 

18/27 

66.6% 

10/13 

76.9% 
 

Overall % unchanged between 

two periods :28/40 

70% 

 

 

 

The results of the error matrix from six classes unsupervised classification of satellite 

imagery 2009 versus fieldwork 2009, with user‟s and producer‟s accuracies, are shown in 

Table 3.26. Table 3.27, shows the results obtained from two-class error matrix for 

unsupervised classification of satellite imagery 2009 versus fieldwork 2010. The overall 

accuracies for the error matrix of two and six classes were found to be 65 % (Table 3.27) 

and 52.5% (Table 3.26), respectively, which are somewhat low results.  
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Table  3-16: Six classes error matrix resulting from unsupervised classification of satellite 
imagery 2009 vs. fieldwork 2010 for Wicken Fen.    

 
TM 2009 → 

 

FW 2010 ↓ 

T&S P F WG W TH ∑ 
User‟s 

Accuracy 

T&S 18 2 0 1 0 0 21 
18/21 

85.7% 

P 0 3 0 0 0 0 3 
3/3 

100% 

F 0 0 0 0 0 0 0 NA 

WG 6 0 0 0 0 0 6 NA 

W 2 3 0 0 0 0 5 NA 

TH 3 1 0 1 0 0 5 AN 

∑ 29 9 0 2 0 0 
21/40 

52.5% 

 

Producer‟s 

Accuracy 

18/29 

62.1% 

3/9 

33.3% 
NA NA NA NA 

  

 

With a positive k (“KHAT”) value (0.20) the classification is shown to be better than a 

value on assignment of pixels, in this case 20% better than classification resulting from 

chance. 

 

 

Table  3-17: Two classes error matrix resulting from unsupervised classification of satellite 
imagery 1984 vs. fieldwork 2010 for Wicken Fen.    

 
TM 2009 → 

 

FW 2010 ↓ 

T&S Others ∑ 
User‟s 

Accuracy 

T&S 18 3 21 
18/21 

85.7% 

Others 11 8 19 
8/19 

42.1% 

∑ 29 11 
26/40 

65% 
 

Producer‟s 

Accuracy 

18/29 

62.1% 

8/11 

72.7% 
  

 

With a positive k (“KHAT”) value (0.28) the classification is shown to be better than a 

value on assignment of pixels, in this case 28% better than classification resulting from 

chance. 

 



 Chapter 3                              Wicken Fen   study area 1 87 

 

The results of the change matrix from five classes supervised classification of satellite 

imagery 1984 versus fieldwork 2009, with percentages unchanged, are shown in Table 

3.28. Table 3.19 shows the results obtained from the two-class change matrix for 

supervised classification of satellite imagery 1984 versus fieldwork 2010. The overall 

percentages unchanged for the change matrix of two and five classes were found to be 77.5 

% (Table 3.19) and 67.5% (Table3.18), respectively.  

 

 

Table  3-18: Five classes change matrix resulting from supervised classification of satellite 
imagery 1984 vs. fieldwork 2010 for Wicken Fen.    

 

TM 1984 → 

 

FW 2010 ↓ 

T&S P F WG W ∑ 

Percentage 

retained 

unchanged in 

2010 from 1984 

T&S 18 0 0 0 4 22 
14/21 

66.7% 

P 0 3 2 0 1 6 
3/6 

50% 

F 0 0 0 0 0 0 NA 

WG 4 0 0 4 0 8 
4/8 

50% 

W 2 0 1 0 1 4 
1/4 

25% 

∑ 24 3 3 4 6 
26/40 

65% 

 

Percentage 

from 1984 

retained 

unchanged in 

2010 

14/24 

58% 

3/3 

100% 
NA 

4/4 

100 % 

1/6 

16.7% 
 

Overall % 

unchanged 

between two 

periods: 26/40 

65% 
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Table  3-19: Two classes change matrix resulting from supervised classification of satellite 
imagery 1984 vs. fieldwork 2010 for Wicken Fen.    

 
TM 1984 → 

 

FW 2010 ↓ 

T&S Others ∑ 

Percentage retained 

unchanged in 2010 

from 1984 

T&S 18 4 22 
18/22 

81.8% 

Other 6 12 18 
12/18 

66.7% 

∑ 24 16 
30/40 

75% 
 

Percentage from 

1984 retained 

unchanged in 

2010 

18/24 

75% 

12/16 

75% 
 

Overall % 

unchanged between 

two periods:30/40 

75% 

 

The results of the error matrix from the five class supervised classification of 2009 satellite 

imagery versus 2010 fieldwork with the  user‟s and producer‟s accuracies are shown in 

Table 3.20. Table 3.27 shows the results obtained from the two-class error matrix for 

supervised classification of 2009 satellite imagery versus 2010 fieldwork. The overall 

accuracies for the error matrix of two and five classes were found to be 75 % (Table 3.21) 

and 52.5% (Table 3.20), respectively.  

Table  3-20: Five classes error matrix resulting from supervised classification of satellite 
imagery 2009 vs. fieldwork 2010 for Wicken Fen.    

 

TM 2009 → 

 

FW 2010 ↓ 

T&S P F WG W ∑ 
User‟s 

Accuracy 

T&S 16 1 0 3 1 21 
16/21 

71% 

P 0 1 0 2 0 3 
1/3 

33.3% 

F 0 0 0 0 0 0 NA 

WG 5 1 0 4 2 12 
4/12 

33.3% 

W 0 1 0 3 0 4 NA 

∑ 21 4 0 12 3 
21/40 

52.5% 

 

Producer‟s 

Accuracy 

16/21 

71% 

1/4 

25% 
NA 

4/12 

33.3% 

0/3 

NA 
  

 

With a positive k (“KHAT”, or “kappa”) value (0.23) the classification is shown to be 

better the classification is shown to be 23% better than classification resulting from chance. 
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Table  3-21: Two classes error matrix resulting from supervised classification of satellite 
imagery 2009 vs. fieldwork 2010 for Wicken Fen.    

 

TM 2009 → 

 

FW 2010 ↓ 

T&S Others ∑ 
User‟s 

Accuracy 

T&S 16 5 21 
16/21 

71% 

Other 5 14 19 
14/19 

73.7% 

∑ 21 19 
30/40 

75% 
 

Producer‟s 

Accuracy 
16/21 

71% 

14/19 

73.7% 
  

 

With a positive k (“KHAT” or “kappa”) value (0.50) the classification is shown to be 50% 

better than classification resulting from chance. 

 

 

The results of the error matrix from five classes of supervised classification of satellite 

imagery 1984 versus aerial photography 1985 with user‟s and producer‟s accuracies are 

shown in Table 3.22. Table 3.23, shows results obtained from the two-class error matrix 

for supervised classification of satellite imagery 1984 versus aerial photography 1985. The 

overall accuracies for the error matrix of satellite imagery vs. aerial photography of two 

and five classes were found to be 65 % (Table 3.23) and 52.5% (Table 3.22), respectively.  
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Table  3-22: Five classes error matrix resulting from aerial photography 1985 vs. satellite 
imagery 1984 for Wicken Fen.      

 

AP 1985 → 

 

TM 1984 ↓ 

T&S P F WG W ∑ 
User‟s 

Accuracy 

T&S 19 0 0 6 1 26 
19/26 

73.1% 

P 0 2 0 0 0 2 
2/2 

100% 

F 0 5 0 0 0 5 NA 

WG 5 0 0 0 0 5 NA 

W 2 0 0 0 0 2 NA 

∑ 26 7 0 6 1 
21/40 

52.5% 

 

Producer‟s 

Accuracy 

19/26 

73.1% 

2/7 

28.6% 
NA NA NA  

 

 

With a positive k (“KHAT” or “kappa”) value (0.13) the classification is shown to be 13% 

better than classification resulting from chance. 

 

 

Table  3-23: Two classes error matrix resulting from aerial photography 1984 vs. satellite 
imagery 1985 of Wicken Fen 

 

AP 1984 → 

 

TM 1985 ↓ 

T&S Others ∑ 
User‟s 

Accuracy 

T&S 19 7 26 
19/26 

73.1% 

Other 7 7 14 
7/14 

50% 

∑ 26 14 
26/40 

65% 
 

Producer‟s 

Accuracy 

19/26 

73.1% 

7/14 

50% 
  

 

With a positive k (“KHAT” or “kappa”) value (0.23) the classification is shown to be 23% 

better than classification resulting from chance. 
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The results of the error matrix from five classes supervised classification of satellite 

imagery 2009 versus aerial photography 2009 with user‟s and producer‟s accuracies are 

shown in Table 3.24. Table 3.25, shows results obtained from the two classes error matrix 

for supervised classification of satellite imagery 2009 versus aerial photography 2009. The 

overall accuracies for the error matrix of two and five classes were found to be 70 % 

(Table 3.25) and 52.5% (Table 3.24), respectively.  

 

Table  3-24: Five classes error matrix resulting from aerial photography 2009 vs. satellite 
imagery 2009 for Wicken Fen.      

 

AP 2009 → 

 

TM 2009 ↓ 

T&S P F WG W ∑ 
User‟s 

Accuracy 

T&S 13 0 0 8 0 21 
13/21 

61.9% 

P 1 2 0 1 0 4 
2/4 

50% 

F 0 0 0 0 0 0 NA 

WG 2 2 0 6 2 12 
6/12 

50% 

W 1 0 0 2 0 3 NA 

∑ 17 4 0 17 2 
21/40 

52.5% 

 

Producer‟s 

Accuracy 
13/17 

76.5% 

2/4 

50% 
NA 

6/17 

35.3% 
NA  

 

 

 

 

With a positive k (“KHAT” or “kappa”) value (0.25) the classification is shown to be 25% 

better than classification resulting from chance. 
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Table  3-25: Two classes error matrix resulting from aerial photography 2009 vs. satellite 
imagery 2009 of Wicken Fen. 

 
 AP 2009 → 

 

TM 2009 ↓ 
T&S Others ∑ 

User‟s 

Accuracy 

T&S 13 8 21 
13/21 

62% 

Other 4 15 19 
19/23 

78.9% 

∑ 17 23 
28/40 

70% 
 

Producer‟s 

Accuracy 

13/17 

76.5% 

15/23 

65.2% 
  

 

With a positive k (“KHAT” or “kappa”) value (0.40) the classification is shown to be 40% 

better than classification resulting from chance. 

 

 

 

A summary of overall classification accuracy from two and five classes of 2009 Wicken 

Fen aerial photography versus fieldwork 2010 is shown in Table 3.26. 

 

Table  3-26: Shows accuracy of aerial photography 2009 versus fieldwork 2010, see Tables 
3.5 and 3.6. 

 

Number 

of 

classes 

Aerial  

photography 

Overall classification 

accuracy 

2 2009 90% 

5 2009 80% 

 

 

On the basis of Table 3.26 it was concluded that aerial photography was comparable to 

fieldwork and should be use to assess the quality of satellite classification. A summary of 

overall classification accuracy from an unsupervised classification (2 and 6 classes) and 

supervised classification (2 and 5 classes) for Wicken Fen satellite image using aerial 

photography for1984 versus fieldwork 2010 is shown in Table 3.27.  
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Table  3-27: Shows accuracy of satellite imagery using 1985 aerial photography for 
validating 1984 satellite imagery and using 2010 fieldwork for validating 2009 satellite 
imagery.  

  

Classification Class 

Year of 

satellite 

imagery 

Overall classification 

accuracy 

Unsupervised 

classification 

2 
1984 70% 

2009 65% 

6 
1984 47.5% 

2009 52.5% 

Supervised 

classification  

2 
1984 75% 

2009 75% 

5 
1984 65% 

2009 52.5% 

 

 

3.4 TWINSPAN classification 

 

TWINSPAN analysis was undertaken on the 84 species in 32 families (see Appendix 4a, 

4b) recorded from 40 quadrats (coordinates captured in the field by GPS) located on 6 

transects at Wicken Fen in 2010. The distribution of quadrat samples belonging to 4 

TWINSPAN sample end-groups identified by the analysis (see below) along the six 

transects is shown in Fig. 3.23. 
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Figure  3-23: Distribution of quadrat positions (for 4 TWINSPAN sample groups) in Wicken   
Fen.     
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Sample end groups were all located at the second level of the classification, with 

eigenvalues for the divisions producing these groups all reasonably high, (> 0.500). For the 

vegetation communities that these represent, see Appendix 5.  The first division 

[Eigenvalue = 0.541] divided the 40 quadrats into a negative (right) group including 29 

quadrats, and a positive (left) group including 11 quadrats. A dendrogram showing the 

classification is given in Fig. 3.24 and list of species with their groups and indicator 

species in Table 3.28. The indicator species in the negative group were Poa trivialis (Rough 

Meadow-grass), Galium palustre (Common Marsh-bedstraw), Cladium mariscus (Great Fen-

sedge) and Symphytum officinale (Common Comfrey). The indicators in the positive group 

was Festuca rubra (Red Fescue). The second division at the second hierarchical level 

[Eigenvalue = 0.502] divided the 29 quadrats into a negative group including 10 quadrats, 

(indicator species: Carex distans (Brown Sedge)), and a positive group including 19 

quadrats (indicator species: Lysimachia vulgaris(Yellow Loosestrife), Agrostis stolonifera 

(Creeping Bent   ), and Galium palustre(Common Marsh-bedstraw  )) .  The fifth division 

[Eigenvalue = 0.520] at the same level divided the 19 quadrats into a negative group 

including 13 quadrats, (indicator species: Cardamine hirsuta (Hairy Bittercress)), and a 

positive group including 6 quadrats, (indicator species: Alopecurus geniculatus (Ground 

Elder) ).   
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Figure  3-24: Dendrogram of the TWINSPAN classification of 40 quadrats in Wicken fen. 

        (3.2 = 3 means number of Line transect, 2 means number of Quadrat) 
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Table  3-28: TWINSPAN groups, species and indicator species after species classification  

(for complete species names see Appendix 4b) 

 

Group 

Number 
Species name abbreviations 

Indicator 

species 

1 

Arel, Clma, Caac, Cadi, Capa, Ciar, Cipa, Bepe, 

Ephi, Feru, Gaap, Glhe, Hepu, Juin, Lope, Lyvu, 

Meaq, Moca, Popa, Potr, Poer, Rufr, Ruob, Sapu, 

Saca, Sopu, Syof, Phau, Phar 

 

Cadi 

2 

Ephi, Hepu, Popa, Potr, Syof, Clma, Gaap, Rufr, 

Case, Cafl, Phau, Caac, Cipa, papr, Fiul, Ajre, 

Anod, Atfi, Cahi, Civu, Crmo, Fepr, Glhe, Jubu, 

Lapr, Relu, Ruhy, Sare, Sodu, Stme, Trre, Urdi, 

Feru, Gapa, Agat, Hola, Irps, Juef, Ciar, Juin, 

Phar 

 

Cahi 

3 

Moca, Lyvu, Case, Phau, Caac, Cipa, Ansy, Alge, 

Capl, Cari, Popr, Fiul, Jubu, Urdi, Feru, Gapa, 

Irps, Lemi, Ratr, Tyla  
Alge 

4 

Rafl, Ruac, Saca, Rali, Sper, Hyvu, Alpl, Mysc, 

Lyeu, Letr, Bepe, Chau, Caot, Ceni, Crhe, Beer, 

Lyfl, Thfl, Case, Cafl, Phau, Feru, Gapa, Hola, 

Irps, Juin, Juef, Ciar, Bepe, Capa, Dagl, 

LyvuMeaq, Elun, Lemi, Ratr, 

Tyla, Phar 

Feru 

 

 

 

3.5 TABLEFIT Classification 

 

Depending on TABLEFIT classification to determine UK NVC categories (and equivalents 

in the EC CORINE biotopes classification) the first TWINSPAN group has the highest 

level of similarity to a recognised NVC type: OV26d Epilobium hirsutum tall herb wet 

meadow community (with goodness of fit 32; CORINE 37.7), sub community 

Arrhenatherum elatius- Heracleum sphondylium . The highest matched community type 

for the second group was to M28b Iris pseudacorus - Filipendula ulmaria tall herb wet 

meadow  community sub community Urtica dioica – Galium aparine (with goodness of fit  

45; CORINE 37.1). For sample-group three the  highest matched community similarity to a 

recognised NVC type was OV26b Epilobium hirsutum tall herb wet meadow community 

(with goodness of fit 48; CORINE 37.7), subcommunity Phragmites australis. The last 

TWINSPAN group had the highest matched community type: S14c Sparganium erectum 



 Chapter 3                              Wicken Fen   study area 1 98 

 

swamps and tall herb fens community (with goodness of fit 42; CORINE 53.143), 

subcommunity Mentha aquatic. 

             

3.6   Statistical analysis 

 

The significance of differences in the mean values of environmental and botanical 

variables, measured at sample quadrats between the four sample groups, was tested using 

one-way ANOVA with mean comparison by Tukey‟s method, in Minitab (version 16).  

 

 

 

Table 3.29 shows the mean values (± SD) for all measured environmental variables across 

the quadrats sampled in Wicken Fen, together with the results of ANOVA by Group. 

ANOVA tests produced no significant inter-group differences for three environmental 

variables (soil conductivity, water conductivity and water depth).  Two environmental 

variables (soil pH and shade %) and one vegetation variable (plant height), did however 

show significant differences among the four TWINSPAN groups.  

 

 

 

 

Table  3-29: Shows mean  values and standard deviation of the mean (± SD) for a) soil pH;  b) 
soil conductivity;  c) water conductivity; d) shade; e) water depth; and f) mean vegetation 
height  for TWINSPAN Groups, as shown by one-way ANOVA and application of Tukey’s 
mean separation test. Mean values sharing a superscript letter in common, per variable, are 
not significantly different. 

 

 

Groups 

 

a) Soil pH b) Cond. 

Soil 

(µS cm
-1

)  

c) Water 

Cond  

(µS cm
-1

) 

d) Shade % e) Water 

depth (m). 

f) Height 

(m) 

Mean Mean Mean Mean Mean Mean 

Group 1 7.5060
a
 ± 0.33 539.5±203.4 147.7±316.5 31.60

ab
 ±43 0.0

 
3.847

ab
± 5.1 

Group 2 7.4085
a
 ±0.36 640.1±130.3 0.0 68.57

a
±41.95 0.0 7.352

a
± 5.6 

Group 3 7.2336
a
 ±0.77 551.2±177.6 392±432 44.

33ab
±48.92 0.043± 0.069 4.4

ab
±4.1 

Group 4 6.9517
a
 ±0.35 870.5±587.7 462±856 0.0

b 
0.69±0.126

 
1.1

b
±0.95 

F3, 36 2.37 2.03 1.97 6.91 2.47 3.99 

P ns n.s n.s *** n.s * 

 

*     = p≤ 0.05          **   = p≤ 0.01         *** = p≤ 0.001       n.s   = p >0.05 
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The analysis confirmed that the % shade had a significant difference between group means 

in group 2 and group 4 (p = 0.001) (Figure 3.25), with group 2 samples being largely 

located under tree/ shrub overstorey vegetation, while group 4 samples were much more 

open. There was a significant difference between height in group 2 and group 4 (p = 0.015) 

(Figure 3.26).  

 

 

Figure  3-25: Mean (± S.D) values for soil pH for 4 sample groups. Different letters above 
value bars represent a significant difference between group means. 
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 Figure  3-26: Mean (± S.D) values for shade height for 4 sample groups. Different letters 
above value bars represent a significant difference between group means. 

 

 

 

 

 

In addition to testing the significance of differences in mean values of environmental and 

botanical variables, I measured the significance of differences in mean values of 

Ellenberg‟s indicator values, based on the data for UK plant species given by Hill et al. 

(2004), see Appendix 6. 

 

 

Table 3.30 shows the mean values (±SD) for Ellenberg‟s indicator values for all plant 

species present in samples, comprising each sample group in Wicken Fen, together with 

the results of ANOVA by Group. ANOVA tests produced no significant inter-group 

differences for reaction (soil pH or water pH) and light.  Moisture value, however, did 

show significant differences among the four TWINSPAN groups.  
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Table  3-30: Shows ean values and standard deviation of the mean (± SD) for a) Light; b) 
Moisture; c) soil/water pH) for TWINSPAN groups depending on Ellenberg’s indicator values 
for plants, as shown by one-way ANOVA and application of Tukey’s mean test. Mean values 
sharing a superscript letter in common are not significantly different. 

 

 

Groups 

 

a) Light b) Moisture d) Reaction (soil 

pH or water pH )   

Mean Mean Mean 

Group 1 7.13 ± 0.57 6.93
b
 ± 1.57 6.3 ± 1.26 

Group 2 6.93± 0.65 6.71
b
 ± 1.57 6.29 ± 0.87 

Group 3 7.05 ± 0.51 8.55
a
 ± 1.7 6.2 ± 1.00 

Group 4 7.09 ± 0.46 7.72
ab

 ± 2.02 6.16 ± 0.95 
P n.s *** n.s 

 

                  *** = p≤ 0.001          n.s = p> 0.05 

 

 

ANOVA analysis confirmed that there was a significant difference between the four 

TWINSPAN groups in mean moisture (P = 0.001) (Figure 3.27), with samples from Group 

3 supporting species with high Ellenberg soil moisture values. There were no significant 

differences between the four TWINSPAN groups for mean light and mean reaction (soil 

pH or water pH).  

 

 

 
 

Figure  3-27:  Mean (± S.D) values for shade percentage for 4 sample groups. Different letters 
above value bars represent a significant difference between group means. 
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3.7 Discussion  

 

Successful use of aerial photography interpretation in the study of wetland vegetation 

ecology depends mainly on the high spatial resolution of images to provide good results for 

interpretation, mapping, and the comparisons between different periods. However, this 

investigation has shown that similar information can be acquired from satellite imagery, 

which is much more accessible. In the past three decades, major advances have been made 

in the application of remote sensing techniques to landscape characterisation, habitat 

monitoring, and spatial analysis of surface cover change (Ahmed et al., 2009).  

 

 

Depending on the results obtained from aerial photographs and Landsat TM used in for 

Wicken Fen during the period between 1985 and 2009, they proved effective at detecting 

changes in vegetation over time. There is clearly potential to, apply this technique, 

elsewhere, for example to detect temporal changes in wetland vegetation in Libya. Plant 

communities of wetlands in semi-arid areas are particularly sensitive to any change, 

whether natural or change as a result of human activity (especially changing rainfall 

pattern, drainage etc.); so using remote sensing techniques to study these ecosystems will 

provide valuable information that is useful for management plans and conservation of these 

habitats. 

 

 

 

Aerial photographs were used successfully for studying the vegetation cover in Wicken 

Fen in the period between 1985 and 2009. As is clear from interpretation of 1985 aerial 

photos, when comparing this period with 2009 aerial photos in Verrall‟s Fen and Sedge 

Fen (parts of Wicken Fen), the total cover of tall vegetation (trees and shrubs) has changed. 

Calculation of total cover of trees and shrubs and delineation using ArcMap GIS for four 

years 1985, 1999, 2003 and 2009, quantified the changes in tree/shrub cover. Godwin 

(1936) reported that some scrub, such as Frangula (a small tree), suffers from ″die-back″ 

caused by the fungi Nectria  cinnabrina and Fusarium sp., and is an important cause of 

loss of dominance in adult carr. Also, Friday (1997) noted that in Wicken Fen a large 

proportion of the Frangula standing on all parts of the Fen became dead wood. However, 

undoubtedly much more important than this is active management to clear fen carr and 
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woodland, and restore open fen vegetation within the Nature Reserve over the study 

period. 

 

 

The most common vegetation mapping technique in the world is aerial photography 

interpretation (Lewis and Phinn, 2011),  which has a higher level of detailed mapping for 

vegetation communities, and high accuracy using manual interpretation techniques, for 

example in a tropical freshwater swamp (Harvey and Hill, 2001). Pollard and Briggs 

(1984) reported that aerial photography provided valuable information for determining the 

distribution of carr vegetation at Wicken Fen in 1929. 

Based on morphometric measurements made from the aerial photography interpretation 

obtained from the delineation of total tall vegetation cover of Wicken Fen (see Figures 

3.11 and 3.14), the total tall vegetation cover decreased annually by 1.7% from 1985 to 

2009. This quantified change of canopy height in Wicken Fen over the study period is most 

likely primarily of the woodland and carr removal management programme, rather than 

due to natural change. Rowell and Harvey (1988) reported that the major vegetation in 

Wicken Sedge Fen in the 1980s was scrub, and the most abundant species were Salix 

cinerea and Frangula sp. A part of the carr in Sedge Fen (a part of Wicken Fen) was 

removed due to subsequent management operations, and evidence of recent clearance 

activities was personally observed during ground truth field work in 2010. Mountford et 

al., (2012) noted some evidence that fen herbaceous vegetation was re-establishing on 

Verrall's Fen (a part of Wicken Fen), where carr had been cleared.   

 

 

Overall classification accuracy from aerial photography of 2009, for two and five classes 

(90% and 80% respectively) indicates that through my classification method, it was 

generally possible to correctly distinguish map classes (see Table 3.26).  

 

 

The results obtained  from analysis of LIDAR imagery clearly show the changes in 

vegetation cover in both Verrall‟s  Fen (A) and Sedge Fen (B) (see Figure 3.8), compared 

with the aerial photos of 1985 and 2009. This result suggests that using LIDAR for the 

study of vegetation cover change has great potential for use in ecological research, because 

it directly measures the physical attributes of vegetation canopy structures, that are highly 

correlated with the basic plant communities at differeing canopy levels.  Genc et al., (2004) 
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state that the most practical methodology for determining the size of vegetation based on 

height is LIDAR, providing an accurate and cost-effective alternative to mapping wetlands 

from the ground). Antonarakis et al. (2008) used LiDAR data to classify forest and ground 

types, and reported success in accurately classifying around 95%. However, it is expensive 

to obtain – and therefore the „repeats‟ needed for monitoring may not be available.  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

In addition, when comparing aerial photos for 2009 with Wicken Fen-NVC map results 

(Colston, 1995), it can be shown that much of Verrall‟s Fen (a part of Wicken Fen)  has 

changed from W2 community  (Salix cinerea, Betula pubescens, Phragmites australis, 

typically a community of topogenous fen peats, encompassing most of the woodland 

recognised as „fen carr‟ in Britain: Rodwell 1991) to OV26c  (Epilobium hirsutum, tall 

herb wet meadow community: characteristic of moist but well-aerated soils,  shade–

sensitive, and on mesotrophic to eutrophic mineral soils and fen peats in open water: 

Rodwell 1991).  

 

Colston (1995) noted that almost all of Verrall‟s fen (a part of Wicken Fen) carr falls into 

the W2 woodland community, and usually the average of soil pH based on the Ellenberg‟s 

indicator values is between 4-6. According to TABLEFIT results, it showed the W2 

community changing to OV26c (tall herb wet meadow community), which prefers 

circumneutral soil conditions. Rodwell (1991) has described the habitat of   Epilobium 

hirsutum (which is an indicator of OV26c) as tall herb wet meadow, sensitive to shade. It 

grows in open areas avoiding the canopy of tall trees and shrubs, indicating that areas of 

Verrall's Fen were cleared from their woodland canopy to become open areas suitable for 

growth of the tall herb community. 

 

Unsupervised and supervised classifications are the usual methods used for satellite image 

interpretation. The results obtained from LandsatTM image analysis for 1984 imagery 

using unsupervised classification demonstrates good results using six land cover classes. A 

limitation of this method is that the classes are produced based on natural land cover 

features, which may not correspond to the features that the user needs to resolve. In the six 

classes, LandsatTM image analysis of the 2009 imagery succeeded in showing some 

change compared with 1984, with the results being fairly similar to those obtained from 

analysis of aerial photography. Using ten land cover classes produced classes which were 
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difficult to identify, based on field work and knowledge of the area (see Figure 3.12). 

Analysis of Landsat satellite imagery and aerial photography for the detection of land-

cover changes between the two decades was done successfully elsewhere (e.g. Awotwi  

2009;  Adu-Poku 2010), while  aerial photographs and GIS were used in an analysis of 

vegetation change  for meadow landscape and forest watershed,  and provided good results 

(e.g. Miller 1999; Anderson 2007). The classification of LandsatTM satellite imagery 

achieved a high level of accuracy, and the satellite data provides an adequate description of 

the major land cover for Wicken Fen wetland, but it remains apparent that aerial 

photography can sometimes provide information that cannot be extracted from satellite 

data.  

 

Depending on the results obtained from supervised classification, maximum likelihood 

classification (MLC) showed better results for distinguishing Wicken Fen vegetation 

classes (see Table 3.27). Supervised classification often yields maps with a higher mapping 

accuracy (Johnston and Barson 1993), and achieves good separation of classes (Soliman 

and Soussa, 2011).  Aerial photography, Ordnance Survey maps, and field work ground-

truthing all proved useful here as a guide for the selection of vegetation classes in 

supervised classification.  

 

The spectral overlap between wetland cover types is a problem frequently identified in the 

application of remote sensing to wetland environments (e.g. Johnston and Barson 1993, 

Sader et al. 1995), because, commonly, different vegetation types may possess the same 

spectral signature in remotely sensed images (Xie et al. 2008). The results from 

scattergrams of supervised classification for all land cover classes of the LandsatTM image 

in 1984 and LandsatTM image in 2009 showed no overlap between the land cover classes; 

which means that by not including class pixels other than the intended class, it was clearly 

possible to show decreases in the total of tall vegetation cover here between 1984 – 2009. 

 

 

Results for the detection of change in vegetation using ArcMap (v 10.1) showed that cover 

of tall vegetation decreased by 65.6% between 1984 and 2009. More than half of the 

percentage change in the tall vegetation cover is change to wet grassland, with a further 

19.0% change to pasture (Table 3.11). For unsupervised classification (two classes) of the 

LandsatTM images for 1984 and 2009 at Wicken Fen, the classification had an overall 
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accuracy of 70% and 65% respectively; and in six class the classification had a lower 

overall accuracy of 47.5% and 52.5% respectively. This is because in an unsupervised 

classification, the classes produced are based on natural breaks in the distribution of pixel 

colour in the image, and the vegetation in flooded and open water types may be too similar 

for the software to separate them into distinct classes. Overall classification accuracy from 

two classes supervised in   the  LandsatTM images for 1984 and 2009 were 75% (Table 



 

TWINSPAN classification showed that sample-group 1, the largest TWINSPAN group, 

representing all transects examined at the site. The indicator of the group 2 was Cardamine 

hirsuta, which has the highest level of similarity to a recognised NVC type: M28b. 

However, statistical analyses showed that shade % had a significant difference between 

group means 2 and group 4, as well as in height, suggesting that quadrats position group 2 

samples being largely located under tree/ shrub overstorey vegetation, while group 4 

samples were much more open.   

 

The changes of vegetation cover that occurred in Sedge Fen and Verrall's Fen over the 

whole period of the study, 1985-2009, were substantial, and remote sense imagery analysis 

proved able to show and quantify these changes. In 1985, Verrell‟s Fen was almost 

completely covered by tall vegetation (Fig3.9), mainly fen scrub, abundant by alder 

Frangula (e.g. Rowell and Harvey 1988). Comparing aerial photos of 1985 with aerial 

photographs of 1999 showed some change in scrub cover change, which may be a result of 

successional change; and possible impact of "die-back" caused by fungal disease. A big 

change occurred after the deliberate removal of scrub in Verrall‟s Fen and Sedge Fen (B) 

see Figure (3.2)  as  part of the management plan  to protect herbaceous wetland  species 

such as Molinia caerulea (Purple Moor-grass), which has declined in southern England 

(though still common in the northern mountains and wet moors), and Cladium mariscus 

(Great Fen-sedge), which is now rare in Europe (Colston and Friday 1999).  
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Chapter 4- Caerlaverock Reserve study area 2 

4  

The reader should note that the investigation of this chapter follows the same procedures as 

chapter 3, and is reported in a very similar way, for reasons of ease of comparison. 

 

4.1  Introduction  

 
The Solway is the largest area of saltmarsh in Scotland, recognised as one of the most 

important estuaries in the UK (JNCC, 2004), and usually classified as one geographic unit 

(Harvey and Allan, 1998). Saltmarshes are commonly associated with estuaries (also called 

firths and sea lochs in Scotland: e.g. Taubert & Murphy, 2012). An important feature of 

Scottish saltmarshes is the frequent occurrence of natural transitional habitats; they are 

under-represented by the National Vegetation Classification (NVC:  JNCC, 2004). In 

Scotland a transition from saltmarsh to terrestrial vegetation (e.g. grassland, freshwater 

swamp or woodland) commonly develops, and is often complete (Harvey and Allan, 

1998).  

 

Saltmarshes of the Solway contain a wide range of plant communities, including 

transitions to grassland and brackish fen, which are characteristic of Scottish marshes 

(Barne et al., 1996). A few surveys have examined NVC classes for Solway saltmarshes, 

including the merses of Caerlaverock NNR (Peberdy 1989) and estuaries entering the 

Solway (Zimmerman and Murphy, 2007). Other relevant studies of the Solway include 

geomorphological mapping (Tipping and Adams, 2007; Hansom, 2003), coastal 

management (Hansom and McGlashan, 2004), erosion and sediments (Allen, 1989), 

morphological areal changes using maps and aerial photographs (Marshall 1962). 

 

The Scottish coasts hold about 15% (equivalent to 6748 ha) of the British 45,337 ha 

saltmarsh resource, of which the marshes in the Solway Firth account for 8% (equivalent to 

539.8 ha: Hansom and McGlashan, 2004). The sea lochs and the coastal saltmarshes of 

Scotland's estuaries are the least well studied of the country's rich array of habitats, with 

only limited studies of Scottish saltmarshes (Harvey and Allan, 1998). In west Scotland a 

Puccinellia-Festuca community, often also with large areas of Juncus gerardii, commonly 

dominates the vegetation structure of the marshes.  In northwestern marshes, a large area in 
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the pioneer and low marsh communities are dominated by Salicornia, Suaeda, sometimes 

with Puccinellia, and often also combined with Scirpus and Phragmites at some sites, 

though the areas are not large (Burd, 1989). 

 

Along the northern (Scottish) shore of the Solway, the upper marsh zone is rich in sedges 

(Carex spp.) and rushes (Juncus spp.), and often shows transitions to freshwater and 

brackish marshes. Sea-purslane (Atriplex protulacoides) saltmarsh is less widespread than  

on south and east coasts due to the prevalence of grazing, mainly by cattle. The common 

saltmarsh-grass (Puccinellia maritima) is the first colonist of the mudflats in parts of the 

Solway, while in the main mid-to-upper marsh the vegetation type is dominated by red 

fescue (Festuca rubra) saltmarsh (Juncetum gerardii) (Barne, et al., 1996). Burd (1989) has 

described the saltmarshes of Scotland in considerable detail as part of the NCC survey of 

British saltmarshes. They are dotted all around the coast, but with only eight of the thirteen 

recognised NVC lower saltmarsh communities, and six of nine NVC middle saltmarsh 

communities being found in Scotland (Boorman, 2003). 

 

 

4.2  Description of the study area (Caerlaverock 
NNR) 

 

Caerlaverock National Nature Reserve (NNR) (National Grid reference NY045647) is one 

of 58 NNRs in Scotland. It is located 10 km south of Dumfries on the northern shore of the 

Solway Firth. It is the largest wetland reserve in Britain (Clyne et al., 2007), about 8 km 

long, and widening from less than 100 m wide at the Nith‟s mouth in the west, to almost 1 

km wide at the Lochar Water in the east (Hansom, 2003). Caerlaverock Merse, including 

the 77 ha of Priestside Bank at its eastern end, extends to 563 ha (Fig.4.1 study area) 

(Barne, et al., 1996). Caerlaverock saltmarsh is designated a Special Area of Conservation 

(SAC), a Special Protection Area (SPA), a National Nature Reserve (NNR) and it is part of 

the Nith Estuary National Scenic Area. It contains 8.34% of the saltmarsh in Scotland 

(Hansom, 2003), and is dominated by a mainly Puccinellia, Festuca and Glaux sward with 

small stands of reeds (Phragmites australis) (Burd, 1989). Common saltmarsh-grass 

(Puccinellia) and samphire (Salicornia) occur in the creeks (Hansom, 2003). Within the 

grazed Merses of the Reserve the communities represented are SM16 Juncus gerardii 

(Saltmarsh Rush) – Leontodon autumnalis (Autumn Hawkbit) ; and SM16b Festuca rubra 

(Red Fescue), Agrostis stolonifera (Creeping Bent) and Potentilla anserina ( Silverweed). 

In ungrazed merses NVC communities present include SM28 Elymus repens (Common 
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Couch)  saltmarsh, with smaller amounts of Festuca rubra, and Agrostis stolonifera;  and 

SM13d  is almost dominated by Puccinellia maritima  (Common Saltmarsh-grass) with 

Plantago maritima  (Sea Plantain ) and Armeria maritima (Thrift) (Peberdy, 1989). 

 

 

 

 

Figure  4-1: Map section of Caerlaverock Reserve showing Eastpark Merses study area. 
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4.3  Airborne and Space-borne Surveys 

 

Aerial photographs of Caerlaverock Reserve were obtained from the UK company Blue 

Sky, and the LandsatTM scenes were obtained from the internet using the GLOVIS tool of 

the U.S. Geological Survey (USGS). It might be worth noting that satellite imagery is now 

much cheaper to acquire (using GLOVIS for example it is free to download) than aerial 

imagery (UK Blue Sky prices are quite high - £70 – £100 per stereo-pair); for this reason 

satellite images were used in this study, and their results compared with those obtained 

from aerial photos. 

 

 

4.3.1  Orthophotography interpretation 

 

 

The geo-referenced orthophotograph (produced from a stereo-pair processed in BAE 

System‟s SOCET Set) was used as a base map from which cover types present in 

Caerlaverock Reserve were digitised on-screen using ArcGIS. Major structural changes in 

vegetation were determined by comparing vegetation maps interpreted from 

orthophotographs produced from photography taken in 1988 (black and white) and also in 

2009 (true colour): Figures (4.2 & 4.3).  Canopy cover was mapped for both years on the 

basis of tree (symbolised using a dark green colour) and shrub (symbolised using a light 

green colour): Figures 4.4 and 4.5.   
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Figure  4-2: Orthophotograph of Caerlaverock Reserve 1988 

 

 

 

Figure  4-3: Orthophotograph of Caerlaverock Reserve 2009. 

 

Shrubs 

Trees 

Shrubs 

Trees 
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Total cover of trees and total of shrubs were delineated on-screen using the ArcMap GIS 

9.3 and later ArcMap GIS 10.1 based on orthophotographs (1988, 2009), and 

groundtruthing fieldwork in 2011.  Based upon the calculation of the cover of trees and the 

cover of shrubs in the orthophotographs, for the target area, using ArcMap GIS, the results 

showed that the cover of trees increased through the twenty-one years from 34707 m
2
 

(equivalent to 3.4707 ha) in 1988 (Fig. 4.4) to 47767 m
2
 (equivalent to 4.7767 ha) in 2009 

(Fig. 4.5), an increase of 13060 m
2
 (equivalent to 1.3060 ha). Whereas, the results obtained 

from the cover of shrubs suggest a slight decrease in the cover from 59962 m
2
 (equivalent 

to 5.9962 ha) in 1988 (Fig.4.4) to 59841 m
2
 (equivalent to 5.9841 ha) in 2009 (Fig.4.5), a 

decrease of 121 m
2
 of the shrub canopy through twenty-one years. 

 

The change rate in the shrubs cover can be calculated using the following formula 

(Veldkamp et al., 1992): 

               Change rate (percent, y 
-1

) = 100
/)( 121 



N

FFF
 

where: 

 

F1 is the cover area at the beginning of reference period; 

F2 is the cover area at the end of reference period; 

N is the number of years in reference period; and,  

y is a year.   

 

The calculated annual change rate in the shrubs cover from 1988 to 2009 was 0.009 %, so 

it could be said that there is only a slight change in the shrubs cover, while a tree cover 

increase of 1.3% per year is a natural result for the growth of trees during the twenty-one 

years. 
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Figure  4-4: Cover of trees (dark green) and shrubs (light green) in Caerlaverock Reserve 
1988. 

 

 

 
 

Figure  4-5: Cover of trees (dark green) and shrubs (light green) in Caerlaverock Reserve 
2009. 
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4.3.1.1  Change Matrices 

 

A „change matrix‟ is a development of the classical „misclassification matrix‟ or „error 

matrix‟ concept widely used in the Earth Observation sciences (see: “Remote Sensing and 

Image Interpretation”, edition 6, p 585, Lillesand, Kieffer and Chipman, 2008). The error 

matrix compared „ground truth‟ and the outcome from a classification process. 

 

For reasons of clarity, the creation of an error matrix is briefly described, in the following 

three paragraphs, relating to Table 4.1. 

 

An error matrix compares two (usually landcover) data sets. One of these is considered to 

be of higher accuracy than the other, and the higher accuracy set represents „the truth‟; 

their comparison gives accuracy statistics for the less accurate data set. For example the 

data set whose accuracy is being considered might be derived from a lower resolution 

source, such as LandsatTM while „the truth‟ is provided by a higher resolution data set, 

such as aerial photography, orthophotography or ground observations. An error matrix 

provides three pieces of statistical information:  

 

1. simple probability of the classification of the lower resolution data set being correct 

(where „correct‟ is as specified by the higher resolution data set), presented in 

percentage probability terms – in the simulated example below (Table 4.1) this is 70%; 

2. user‟s accuracy where the product provided by the producer using the lower resolution 

data set - such as a landcover map, in its practical use, is compared to „the truth‟, 

presented in percentage probability terms, per class – in the simulated example below 

(Table 4.1) this is 83% in the case of Class A and 50% in the case of Class B;   

3. producer‟s accuracy where „the truth‟ provided by the higher resolution product is 

compared to the product provided by the producer using the lower resolution data set, 

presented in percentage probability terms, per class – in the simulated example below 

(Table 4.1) this is 71% in the case of Class A and 66% in the case of Class B. 

 

A simulated example error matrix is provided below for two classes of land use (A, B) in a 

1000 pixel site. In this example, the producers, using low resolution imagery, mapped 600 

pixels of class A and 400 pixels of class B, whereas „the truth‟ (or „groundtruth‟) as found 

in high resolution aerial photography was that there were 700 pixels of class A and 300 

pixels of class B (Table 4.1). 
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Table  4-1: Explanatory example of an Error Matrix. 

 

PRODUCED 

MAP → 

GROUNDTRUTH 

↓ 

CLASS 

A 

CLASS 

B 
∑ Producer‟s accuracy 

CLASS A 500 200 700 
500/700 

(71%) 

CLASS B 100 200 300 
200/300 

(66%) 

∑ 600 400   

User‟s accuracy 
500/600 

(83%) 

200/400 

(50%) 

 700/1000  (70%) 

(Simple probability of 

map being correct) 

 

 

There are several of these error matrices considered subsequently in this chapter. However, 

a particular modification of the error matrix, as also explained in Chapter 3, has been to use 

the same statistical approach to produce a change matrix. The change matrix compares 

two surveys considered to be of the same accuracy, but representing different dates. The 

statistics obtained represent change, and there has also to be a modification of terminology, 

as shown below in Table 4.2. 

 

 

Table  4-2: Explanatory example of Change Matrix. 

 

DATE 1 → 

 

 

DATE 2↓ 

CLASS 

A 

CLASS 

B 
∑ 

Percentage Date 2 class 

retained from Date 1 

CLASS A 
500 200 700 

500/700 

(71%) 

CLASS B 
100 200 300 

200/300 

(67%) 

∑ 

 600 400   

Percentage Date 

1 class retained 

in Date 2 

500/600 

(83%) 

200/400 

(50%) 
 

700/1000  (70%)  

(Overall percentage 

unchanged between the 

two dates) 
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It may of course be more interesting to state the above specifically in terms of percentage 

changed – rather than percentage unchanged, and this would be that there has been an 

overall change of 30% between the two dates, with: 17% of Date 1 Class A changing to 

Class B between the dates; 29% of Date 2 Class A having changed from Date 1 Class B 

between the dates; 50% of Date 1 Class B changing to Class A between the dates; and, 

33% of Date 2 Class B having changed from Date1 Class A between the dates. 

  

Essentially in moving from error matrices to change matrices we are no longer considering 

percentages correct, but percentages unchanged.  

 

There are several practical examples of these change matrices considered subsequently in 

this chapter. 

 

4.3.1.2  Using change matrices and error matrices. 

 

The results of change between 1988, based on orthophotography,  and  2011, based on 

fieldwork, of the classification into five classes are shown in the change matrix Table 4.3. 

In Table 4.4, the results obtained from a two-class change matrix between the 1988 

orthophotography and the 2011 fieldwork are shown. The overall percentages unchanged 

between the two dates for the two and five class classifications were found to be 93.4% 

(Table 4.4) and 83.3% (Table 4.3), respectively.  

 

The comparison, via error matrices between aerial photography (orthophotography) of 

2009 and fieldwork of 2011 (they are only two years apart)  serves to confirm that aerial 

photography (orthophotography) is a worthy substitute for field work, which is long 

established amongst air photo interpreters e.g. Mosbech and Hansen (1994) state the aerial 

photographs had mapped vegetation classes well in Jameson Land, also Verheyden et al., 

2002 reported that aerial photographs produce accurate vegetation maps of mangrove 

forests. Accuracy percentages over 93% in the two-class assessment of the Caerlaverock 

work all confirm this (see Table 4.5). 

 

There are five original classes (trees– T; shrubs -S; wet grassland - WG; water – W; 

saltmarsh- SM).  
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Table  4-3: Five classes change matrix resulting from aerial photography1988 (Aerial) versus 
2011 fieldwork (FW) for Caerlaverock Reserve.  

 

 Aerial 1988 → 

 

FW  2011 ↓ 

T S WG W SM ∑ 

Percentage 

retained 

unchanged in 

2011 from 1988 

T 6 0 0 0 0 6 
6/6 

100% 

S 0 4 0 0 0 4 
4/4 

100% 

WG 0 2 24 0 1 27 
24/27 

88.8% 

W 0 1 2 0 0 3 NA 

SM 0 0 2 0 6 8 
6/8 

75% 

∑ 6 7 28 0 7 
 

 

Percentage from 

1988 retained 

unchanged in 2011 

6/6 

100% 

4/7 

57.1% 

24/28 

85.7% 
NA 

6/7 

85.7% 
 

Overall % 

unchanged 

between two 

dates: 40/48 

83.3% 

 

 

 

 

 

Table  4-4: Two-classes change matrix resulting from aerial photography1988 versus 2011 
fieldwork  for Caerlaverock Reserve.    

 

Aerial 1988 → 

 

FW  2011 ↓ 

T&S Others ∑ 

Percentage 

retained 

unchanged in 

2011 from 1988 

T&S 10 0 10 
10/10 

100% 

Other 3 35 38 
35/38 

92.1% 

∑ 13 35   

Percentage from 

1988 retained 

unchanged in 

2011 

10/13 

76.9% 

35/35 

100% 
 

Overall % 

unchanged 

between two 

dates: 45/48 

         93.4% 
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The results of an error matrix analysis from aerial photography 2009 versus 2011 

fieldwork of the classification into five classes with user‟s and producer‟s accuracies are 

shown in Table 4.5 (it has been assumed that checking 2009 API against fieldwork two 

years newer was acceptable). Table 4.6, shows the results obtained from two-class error 

matrix for aerial photography 2009 versus fieldwork 2011. The overall accuracies for the 

error matrix of two and five classes were found to be 92% (Table 4.6) and 83.3% (Table 

4.5), respectively.   

 

 

Table  4-5: Error matrix resulting from aerial photography 2009 versus 2011 fieldwork  for 
Caerlaverock Reserve, five classes.   

 

Aerial 2009 → 

 

FW 2011 ↓ 

T S WG W SM ∑ 
User‟s 

Accuracy 

T 6 0 0 0 0 6 
6/6 

100% 

S 0 3 1 0 0 4 
3/4 

75% 

WG 0 2 24 0 1 27 
24/27 

88.8% 

W 0 1 2 0 0 3 NA 

SM 0 0 1 0 7 8 
7/8 

87.5% 

∑ 6 6 28 0 8 
 

 

Producer‟s 

Accuracy 

6/6 

100% 

3/6 

50% 

24/28 

85.7% 
NA 

7/8 

87.5% 
 

40/48 

83.3% 

 

 

With a positive k (“KHAT”  or “kappa”) value (0.73) the classification is shown to be 73% 

better than classification resulting from chance. 

 

 

 

 

 

 

 

 

 

 

Table  4-6: Error matrix resulting from aerial photography 2009 versus 2011 fieldwork  for 
Caerlaverock Reserve, two classes.   
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Aerial 2009 → 

                   

FW  2011↓ 

T&S Other ∑ 
User‟s 

Accuracy 

T&S 9 1 10 
9/10 

90% 

Other 3 35 38 
35/38 

92% 

∑ 12 36   

Producer‟s 

Accuracy 
9/12 

35/36 

97.2% 
 

44/48 

92% 

 

With a positive k (“KHAT” or “kappa”) value (0.76) the classification is shown to be 76% 

better than classification resulting from chance. 

  

 

 

4.3.2  Landsat imagery interpretation 

 

A characterization by land cover type is necessary for environmental assessment; 

classification of remotely sensed data offers this. Usually classifications are divided into 

two categories, unsupervised and supervised approaches that can each agglomerate 

remotely sensed data into meaningful groups.    

 

 

4.3.2.1  Unsupervised classification  

 

The results that were obtained from LandsatTM image in 1988 using unsupervised 

classification techniques to produce, first, six land cover classes and then, subsequently, 

ten land cover classes are shown in Figures 4.6 and 4.7. To interpret the image we need to 

know into which land cover types each class falls, with detailed knowledge of ground truth 

for the area, but it is not always easy to do that; the ten classes image is difficult to 

interpret, see Figure 4.7. In unsupervised classification, the classes produced are based on 
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natural breaks in the distribution of pixel values in the image. As a result, the created 

classes may not distinguish between the features that the user needs to resolve.  

For example in this study, the colour (spectral response) of shrubs in wet grassland areas 

may be too similar for the software to separate them into distinct classes and likewise the 

colour (spectral response) of vegetation in flooded areas (saltmarsh)  and open water. In 

the six classes LandsatTM image for 1988 at Caerlaverock Reserve, there appears to be an 

integration of open water with a part of the saltmarsh vegetation symbolised using the 

same colour (magenta). It might be due to the image being captured in the period of high 

tide; also, shrubs and wet grassland in the target area are visualised in the same colour 

(red),   see Figure 4.6.  The six classes for 1988 image were trees; shrubs; wet grassland; 

pastures; open water, and saltmarsh. 

 

 

 

 

 

 

Figure  4-6: Six land cover classes of the 1988 Caerlaverock LandsatTM image after 
unsupervised classification. 

 

 

 

 

The 10 class unsupervised classification produced  classes which were difficult to identify, 

based on field work and a knowledge of the area (see Figure 4.7). 
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Figure  4-7: Ten land cover classes of the 1988 Caerlaverock LandsatTM image after 
unsupervised classification. 

 

 

 

 

Figures 4.8 and 4.9 show the results that were obtained from interpretation of LandsatTM 

imagery for 2009 using unsupervised classifications in six and ten cover classes. The 

identified six classes were trees; shrubs; wet grassland; waterlogged soil; open water, and 

saltmarsh. 
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Wet grassland Pasture 

Shrubs 

Water Saltmarsh 

Waterlogged soil 
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Figure  4-8: Six land cover classes of the 2009 Caerlaverock LandsatTM image after 
unsupervised classification .  

 

 

 

 

The 10 class unsupervised classification produced classes which were difficult to identify, 

based on field work and a knowledge of the area (see Figure 4.9). 
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Figure  4-9: Ten land cover classes of the 2009 Caerlaverock Reserve LandsatTM image after 
unsupervised classification. 

 

 

 

 

4.3.2.2  Supervised classification    

 

The accuracy assessment of distinguishing the Caerlaverock Reserve vegetation classes 

following supervised classification was performed by using aerial photos, an Ordnance 

Survey map, and fieldwork as reference sources. The Study Area was categorised into five-

land cover classes; the classes were trees, shrubs, wet grassland, saltmarsh and water. To 

select training areas aerial photography, Ordnance Survey maps, and fieldwork ground 

reference data (TWINSPAN group classification not used for training areas) have all been 

used as a guide for the selection of vegetation classes in supervised classification.  

 

The results of the supervised classification techniques in five land cover classes for 

Caerlaverock Reserve LandsatTM images in 1988 and 2009 are shown in Figures 4.10, 

4.11. 
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Figure  4-10: Land cover classes identified for 1988 Caerlaverock Reserve LandsatTM image 
through supervised classification. 

 

 

 

 

Figure  4-11: Land cover classes identified for 2009 Caerlaverock Reserve LandsatTM 
through supervised classification. 
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Scattergrams of supervised classification for all five identified land cover classes of 

LandsatTM image in 1988 and LandsatTM image in 2009 for Caerlaverock Reserve are 

shown in Figures 4.12 and 4.13.  It is noticed from interpretation of the scattergram that 

there is no overlap between the land cover classes; which means that the supervised 

classification has precisely determined land cover classes and successfully avoided 

including pixels of ambiguous class (or „mixels‟).  

 

 

 

 

 

 

 

 
 

Figure  4-12: Shows scattergram created from the five class supervised classification using 
LandsatTM bands 2 and 4 of Caerlaverock Reserve, 1988. 
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Figure  4-13: Shows scattergram created from the five class supervised classification using 
LandsatTM bands 2 and 4 of Caerlaverock Reserve, 2009. 

 

 

4.3.2.3   Producing the change matrix  

 

The two data sets being compared to identify change are from 1988 and  2009.  

Following classification in ER-Mapper, the data were transferred to ArcGIS as raster data 

sets.   The challenge is to represent and then visualise changes, that is to produce a map 

showing changes between 1988-2009 (including „no change‟), and the widely used ArcGIS 

tool „Map Calculus‟ is harnessed to do this. 

There are 5 classes (trees- T; shrubs – S; wet grassland - WG; water – W; saltmarsh- SM) 

in each period – thus a maximum of 25 change possibilities, see Table 4.7. 
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Table  4-7: Shows the possible 25 changes (including no change). 

 

# 
ORIGINAL 

CLASS 

CHANGED 

CLASS 
COMMENT 

1 T T No change 

2 T S  

3 T WG  

4 T W  

5 T SM  

6 S T  

7 S S No change 

8 S WG  

9 S W  

10 S SM  

11 WG T  

12 WG S  

13 WG WG No change 

14 WG W  

15 WG SM  

16 W T  

17 W S  

18 W WG  

19 W W No change 

20 W SM  

21 SM T  

22 SM S  

23 SM WG  

24 SM W  

25 SM SM No change 

 

The challenge is to visualise these changes, that is to produce a map showing these changes 

(including the no change), and GIS map calculus is used to do this. 

 

For the original class (1988) the five land cover classes were re-labelled, using a numeric 

pixel value, as shown in Table 4.8. 

Table  4-8: 1988 land cover classes, showing original class name and new label. 

 

T 1 

S 2 

WG 4 

W 6 

SM 8 
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For the changed class (2009) the five land cover classes were re-labelled, using a numeric 

pixel value, as shown in Table 4.9. 

Table  4-9: 2009 land cover classes, showing original class name and new label. 

 

T 10 

S 14 

WG 19 

W 22 

SM 24 
 

 

Using the ArcGIS map calculus tool (which is called RASTER CALCULATOR), the two 

data sets (1988 and 2009) can be multiplied together, to produce a new pixel map, with the 

following possible outcome pixel values shown in Table 4.10. 

Table  4-10: Outcome pixel values and their meaning. 

 

 
# 

CLASS 

1988 
CLASS 

2009 

PRODUCT 

(possible 

outcome 

pixel value) 

 

COMMENT 

1 1 10 10 T to T             No change 

2 1 14 14 T to S             Not found in study area 

3 1 19 19 T to WG          

4 1 22 22 T to W            Not found in study area 

5 1 24 24 T to SM          Not found in study area 

6 2 10 20 S to T 

7 2 14 28 S to S              No change 

8 2 19 38 S to WG 

9 2 22 44 S to W            

10 2 24 48 S to SM 

11 4 10 40 WG to T 

12 4 14 56 WG to S 

13 4 19 76 WG to WG     No change 

14 4 22 88 WG to W 

15 4 24 96 WG to SM 

16 6 10 60 W to T            Not found in study area 

17 6 14 84 W to S            Not found in study area 

18 6 19 114 W to WG        Not found in study area 

19 6 22 132 W to W           Not found in study area 

20 6 24 144 W to SM         Not found in study area 

21 8 10 80 SM to T 

22 8 14 112 SM to S          Not found in study area 

23 8 19 152 SM to WG 

24 8 22 176 SM to W 

25 8 24 192 SM to  SM     No change 



Chapter 4               Caerlaverock Reserve study area 2 129 

 

In the case of Caerlaverock Reserve, not all possibilities were achieved (i.e. „Not found in 

study area‟), thus a palette of only 16 colours was needed. 

4.3.2.4  Detection of change in vegetation; results  

 

The results obtained from change matrix analysis using Arc Map (v10.1) are included in a 

chart showing class changes from 1988 to 2009 in Caerlaverock Reserve (Table 4.11, 

4.12).  Based on the change matrix table, trees only covered an area of 1 pixel (equivalent 

to 0.09 ha), the shrubs covered an area of 18 pixels in 1988; see Table 4.11. The total 

canopy of shrubs had changed by 2009 as follows: 30 % (324 pixels equivalent to 29 ha) 

changed to trees, 67% (705 pixels equivalent to 63.45 ha) changed to wet grassland, 0.3% 

(3 pixels equivalent to 0.27 ha) changed to saltmarsh see Table 4.12. Figure 4.14 shows the 

specific spatial distribution (location) of land cover change (change patterns) that has taken 

place between the individual cover types at Caerlaverock Reserve from 1988 to 2009. The 

results obtained from the two-class change matrix for supervised classification of satellite 

imagery 1988 versus satellite imagery 2009, with overall percentage unchanged of 64.4% 

is shown in Table 4.13. 

 

This result is unlikely to be true; the supervised classification included some grasses that 

were mapped as shrubs in 2009, perhaps, because of the similar reflectivity of some rough 

grazing areas to the shrub Gorse, the supervised classification failed to distinguish the two 

types.  For this reason, in the outcome map of five classes using a supervised classification 

the cover of shrubs is greater than reality compared with aerial photographs of the same 

year.  In addition, some wet grassland on the grounds was shrubs in the map for 1988. This 

could be due to the small study area and that the trees and shrubs covered an area less than 

one pixel size in the Landsat TM image, so probably the selected training area for TM 

image of 1988 included some grass with the shrubs. 
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Table  4-11: Change matrix for Caerlaverock Reserve in the 1988-2009 period values in   
pixels.    

                               

 

1988 → 

 

2009 ↓ 

 

Trees Shrubs 
Wet 

grassland 
Water Saltmarsh ∑ 

Percentage 

retained 

unchanged 

in 2009 

from 1988 

Trees 1 324 1294 0 55 1674 
1/1674 

0.06% 

Shrubs 0 18 5 0 0 23 
18/23 

78.26% 

Wet 

grassland 
1 705 1299 0 1129 3134 

1299/3134 

41.4% 

Water 0 2 15 0 724 741 
NA 

 

Saltmarsh 0 3 5 0 223 231 
223/231 

96.5% 

∑ 2 1052 2618 0 2131 5803 
 

Percentage 

from 1988 

retained 

unchanged 

in 2009 

1/2 

50% 

18/1052 

1.7% 

1299/2618 

49.6% 
NA 

223/2131 

10.5% 
 

Overall % 

unchanged 

between 

two dates: 

1541/5803 

26.5% 

 

 

Table  4-12: Class distribution for changed land cover in Caerlaverock Reserve in the 1988-
2009 period, in hectares. 

 

1988 → 

 

2009 ↓ 

 

Trees 

 

Shrubs 
Wet 

grassland 
Water Saltmarsh 

Trees  29.16 116.46 0 4.95 

Shrubs 0  0.45 0 0 

Wet 

grassland 
0.09 63.45  0 101.61 

Water 0 0.18 1.35  65.16 

Saltmarsh 0 0.27 0.45 0  
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Table  4-13: Two-classes change matrix for Caerlaverock Reserve in the 1988-2009 period, 
values in pixels. 

 

1988 →    

 

2009 ↓ 

Trees & 

Shrubs 
Others ∑ 

Percentage 

retained unchanged 

in 2009 from 1988 

Trees & 

Shrubs 
343 1354 1697 

343/1697 

20.2% 

Others 711 3395 4106 
3395/4106 

82.7% 

∑ 1054 4749 5803  

Percentage 

from 1988 

retained 

unchanged in 

2009 

343/1054 

32.5% 

3395/4749 

71.5% 
 

Overall % 

unchanged 

between two dates: 

3738/5803 

64.4% 
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Figure  4-14: Land cover change map for Caerlaverock Reserve 1988-2009. 
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The change matrix from the six classes unsupervised classification of satellite imagery 

1988 versus fieldwork 2011 with percentages unchanged is shown in Table 4.14. Table 

4.15, shows the the two-class change matrix for the unsupervised classification of satellite 

imagery 1988 versus fieldwork 2011. The overall percentages unchanged for the change 

matrix of two and six classes were found to be 81.2% (Table 4.15) and 10.4% (Table 4.14), 

respectively. There are 6 original classes (trees– T; shrubs -S; wet grassland - WG; water – 

W; pasture - P; saltmarsh- SM)  

 

Table  4-14: Six classes change matrix resulting from unsupervised classification of satellite 
imagery 1988 vs. fieldwork 2011 for Caerlaverock Reserve.    

 

TM 1988 → 

 

 

FW  2011↓ 

T S WG W SM P ∑ 

Percentage 

retained 

unchanged 

in 2011 

from 1988 

T 0 1 1 1 0 3 6 NA 

S 0 0 0 0 0 4 4 NA 

WG 0 4 3 1 6 11 25 
3/25 

12% 

W 0 0 1 0 0 2 3 NA 

SM 0 0 4 1 2 0 7 
2/7 

28.5% 

P 0 1 0 1 1 0 3 NA 

∑ 0 6 9 4 9 20 
 

 

Percentage from 

1988 retained 

unchanged in 

2011 

NA NA 
3/9 

33.3% 
NA 

2/9 

22.2% 
NA 

 Overall % 

unchanged 

between 

two dates: 

5/48 

    10.4% 
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Table  4-15: Two classes change matrix resulting from unsupervised classification of 
satellite imagery 1988 vs. fieldwork 2011 for Caerlaverock Reserve.    

 
TM 1988 → 

 

FW  2011↓ 

T&S Others ∑ 

Percentage retained 

unchanged in 2011 from 

1988 

T&S 6 9 15 
6/15 

40% 

Other 0 33 33 
33/33 

100% 

∑ 6 42   

Percentage from 

1988 retained 

unchanged in 

2011 

6/6 

100% 

33/42 

78.5% 
 

Overall % unchanged 

between two dates:  

39/48 

81.2% 

 

 

The results of the error matrix from the six classes unsupervised classification of satellite 

imagery 2009 versus fieldwork 2011 with user‟s and producer‟s accuracies are shown in 

Table 4.16. Table 4.17 shows the results obtained from the two-class error matrix for 

unsupervised classification of satellite imagery 2009 versus fieldwork 2011. The overall 

accuracies for the error matrix of two and six classes were found to be 79% (Table 4.17) 

and 43.75% (Table 4.16), respectively.  

 

Table  4-16: Six classes error matrix resulting from unsupervised classification of satellite 
imagery 2009 vs. fieldwork 2011 for Caerlaverock Reserve. 

    

TM 2009 → 

 

FW 2011↓ 

T S WG W SM P ∑ 
User‟s 

Accuracy 

T 0 0 3 0 0 3 6 
0/6     

0% 

S 0 0 4 0 0 0 4 
0/4     

0% 

WG 0 0 15 0 3 7 25 
15/25 

60% 

W 0 0 2 0 1 0 3 
0/3     

0% 

SM 0 0 1 0 6 0 7 
6/7 

85.7% 

P 0 0 1 0 2 0 3 
0/3 

0% 

∑ 0 0 26 0 12 10 
 

 

Producer‟s 

Accuracy 
NA NA 

15/26 

57.7% 
NA 

6/12 

50% 

0/10 

0% 

 21/48 

43.75% 
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With a positive k (“KHAT”) value (0.20) the classification is shown to be 20% better than 

classification resulting from chance. 

 

Table  4-17: Two classes error matrix resulting from unsupervised classification of satellite 
imagery 2009 vs. fieldwork 2011 for Caerlaverock Reserve.    

 

TM 2009 → 

 

FW  2011↓ 

T&S Others ∑ 
User‟s 

Accuracy 

T&S 0 10 10 
0/10        

0% 

Other 0 38 38 
38/38 

100% 

∑ 0 48   

Producer‟s 

Accuracy 
NA 

38/48 

79% 
 

38/48 

79% 

 

With A k (“KHAT”) value (0) the classification is shown no better than a value on 

assignment of pixels, in this case 0% no better than classification resulting from chance. 

 

 

The results of change matrix from five classes supervised classification of satellite 

imagery1988 versus fieldwork 2011 with percentages unchanged are shown in Table 4.18.  

Table 4.19 shows the results obtained from two-class change matrix for supervised 

classification of satellite imagery 1988 versus fieldwork 2011. The overall percentages 

unchanged for the change matrix of two and five classes were found to be 75 % (Table 

4.19) and 58.3% (Table 4.18), respectively.  
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Table  4-18: Five classes change matrix resulting from supervised classification of satellite 
imagery 1988 vs. fieldwork 2011 for Caerlaverock Reserve.    

 
TM 1988 → 

 

 

FW  2011↓ 

T S WG W SM ∑ 

Percentage 

retained 

unchanged in 

2011 from 1988 

T 0 4 2 0 0 6 NA 

S 0 1 3 0 0 4 
1/4 

25% 

WG 0 6 19 0 2 27 
19/27 

70.4% 

W 0 1 2 0 0 3 NA 

SM 0 0 0 0 8 8 
8/8 

100% 

∑ 0 12 26 0 10 
 

 

Percentage 

from 1988 

retained 

unchanged in 

2011 

NA 
1/12 

8.3% 

19/26 

73.7% 
NA 

8/10 

80% 
 

Overall % 

unchanged 

between two 

dates: 28/48 

  58.3% 

 

 

 

Table  4-19: Two classes change matrix resulting from supervised classification of satellite 
imagery 1988 vs. fieldwork 2011 for Caerlaverock Reserve.    

 
 TM 1988 → 

 

FW 2011↓ 

T&S Others ∑ 

Percentage retained 

unchanged in 2011 

from 1988 

T&S 5 5 10 
5/10 

50% 

Other 7 31 38 
31/38 

81.5% 

∑ 12 36   

Percentage from 

1988 retained 

unchanged in 

2011 

5/12 

41.7% 

31/36 

86.1% 
 

Overall % unchanged 

between two dates: 

36/48 

75% 

 

 

The results of the error matrix from the five class supervised classification of  2009 

satellite imagery  versus 2011 fieldwork  with user‟s and producer‟s accuracies are shown 

in Table 4.20. Table 4.21 shows the results obtained from two-class error matrix for 

supervised classification of 2009 satellite imagery versus 2011 fieldwork. The overall 
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accuracies for the error matrix of two and five classes were found to be 52 % (Table 4.21) 

and 25% (Table 4.20), respectively.  

 

Table  4-20: Five classes error matrix resulting from supervised classification of satellite 
imagery 2009 vs. fieldwork 2011 for Caerlaverock Reserve.    

 

TM 2009 → 

 

FW 2011↓ 

T S WG W SM ∑ 
User‟s 

Accuracy 

T 0 3 3 0 0 6 NA 

S 0 2 2 0 0 4 
2/4 

50% 

WG 0 16 10 0 2 26 
12/26 

38.5% 

W 0 1 1 0 0 2 NA 

SM 0 1 4 0 0 8 NA 

∑ 0 23 20 0 2 
  

Producer‟s 

Accuracy 
NA 

2/23 

8.7% 

10/20 

50% 
NA NA  

12/48 

25% 

 

With a negative k (“KHAT” or “kappa”) value the classification is shown to be poorer than 

than classification resulting from chance. 

 

Table  4-21: Two classes error matrix resulting from supervised classification of satellite 
imagery 2009 vs. fieldwork 2011 for Caerlaverock Reserve.    

 

TM 2009 → 

 

FW 2011↓ 

T&S Others ∑ 
User‟s 

Accuracy 

T&S 5 5 10 
5/10 

50% 

Other 18 20 83 
20/38 

52.6% 

∑ 23 25   

Producer‟s 

Accuracy 
5/23 

21.9% 

20/25 

80% 
 

25/48 

52% 

 

With a negative k (“KHAT”) value the classification is shown to be poorer than than 

classification resulting from chance. 
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The results of error matrix from five classes supervised classification of satellite imagery 

1988 versus aerial photography 1988 with user‟s and producer‟s accuracies are shown in 

Table 4.22. In Table 4.23, shows the results obtained from two-class error matrix for 

supervised classification of satellite imagery 1988 versus aerial photography 1988. The 

overall accuracies for the error matrix of satellite imagery vs. aerial photography of two 

and five classes were found to be 79.2 % (Table 4.23) and 62.5% (Table 4.22), 

respectively. 

 

Table  4-22:  Five classes error matrix resulting from aerial photography 1988 vs. satellite 
imagery 1988 for Caerlaverock Reserve.      

 

Aerial 1988 → 

 

TM 1988↓ 

T S WG W SM ∑ 
User‟s 

Accuracy 

T 0 0 0 0 0 0 NA 

S 4 3 5 0 0 12 
3/12 

25% 

WG 1 4 20 0 4 29 
20/29 

68.9% 

W 0 0 0 0 0 0 NA 

SM 0 0 0 0 7 7 
7/7 

100% 

∑ 5 7 25 0 11 
 

 

Producer‟s 

Accuracy 

0/5   

0% 

3/7 

42.8% 

20/25 

80% 
NA 

7/11 

63.6% 
 

30/48 

62.5% 

 

With a positive k (“KHAT”) value (0.40) the classification is shown to be 40% better than 

classification resulting from chance. 
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Table  4-23: Two classes error matrix resulting from aerial photography 1988 vs. satellite 
imagery 1988 of Caerlaverock Reserve. 

 

Aerial 1988 → 

 

TM 1988↓ 

T&S Others ∑ 
User‟s 

Accuracy 

T&S 7 5 12 
7/12 

58.3% 

Other 5 31 36 
31/36 

86.1% 

∑ 12 36   

Producer‟s 

Accuracy 

5/12 

41.7% 

31/36 

86.1% 
 

38/48 

79.2% 

 

With a positive k (“KHAT”) value (0.44) the classification is shown to be 44% better than 

classification resulting from chance. 

 

The results of error matrix from five classes supervised classification of satellite imagery 

2009 versus aerial photography 2009 with user‟s and producer‟s accuracies are shown in 

Table 4.24. In Table 4.25, shows the results obtained from two-class error matrix for 

supervised classification of satellite imagery 2009 versus aerial photography 2009. The 

overall accuracies for the error matrix of two and five classes were found to be 50 % 

(Table 4.25) and 27.1% (Table 4.24), respectively.  
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Table  4-24: Five classes error matrix resulting from aerial photography (air) 2009 vs. satellite 
imagery (TM) 2009 for Caerlaverock Reserve.      

 

Air 2009 → 

 

TM 2009 ↓ 

T S WG W SM ∑ 
User‟s 

Accuracy 

T 0 0 0 0 0 0 NA 

S 3 2 15 0 2 22 
2/22 

9.1% 

WG 3 4 11 0 3 21 
11/21 

52.4% 

W 0 0 0 0 3 3 NA 

SM 0 0 2 0 0 2 NA 

∑ 6 6 28 0 8 
 

 

Producer‟s 

Accuracy 
NA 

2/6 

33.3% 

11/28 

39.3% 
NA NA  

13/48 

27.1% 

 

With a negative k (“KHAT”) value the classification is shown to be poorer than 

classification resulting from chance. 

 

 

 

Table  4-25: Two classes error matrix resulting from aerial photography (Air_2009) 2009 vs. 
satellite imagery (TM2009) 2009 of Caerlaverock Reserve. 

 
Air 2009 → 

 

TM 2009 ↓ 
T&S Others ∑ 

User‟s 

Accuracy 

T&S 5 17 22 
5/22 

22.7% 

Other 7 19 26 
19/26 

73.1% 

∑ 12 36   

Producer‟s 

Accuracy 

5/12 

41.7% 

19/36 

52.8% 
 

24/48 

50% 

 

With a negative k (“KHAT”) value the classification is shown to be poorer than 

classification resulting from chance. 
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A summary of overall classification accuracy from two and five classes of 2009 

Caerlaverock Reserve aerial photography versus fieldwork 2011 is shown in Table 4.26. 

 

Table  4-26: Shows accuracy of aerial photography 2009 versus fieldwork 2011, see Tables 
4.5 and 4.6.  

 

Number 

of 

classes 

Aerial  

photography 

Overall classification 

accuracy 

2 2009 92% 

5 2009 83.3% 

 

 

On the basis of Table 4.26 it was concluded that aerial photography was comparable to 

fieldwork and should be use to assess the quality of satellite classification. A summary of 

overall classification accuracy from an unsupervised classification (2 and 6 classes) and 

supervised classification (2 and 5 classes) for Caerlaverock Reserve satellite image using 

aerial photography for1988 versus fieldwork 2011 is shown in Table 4.27.  

 

 

Table  4-27: Shows accuracy of satellite imagery using 1988 aerial photography for 
validating 1988 satellite imagery  and using 2011 fieldwork for validating 2009 satellite 
imagery.  

 

Classification Class 

Year of 

satellite 

imagery 

Overall classification 

accuracy 

Unsupervised 

classification 

2 
1988 81.2% 

2009 79% 

6 
1988 10.4% 

2009 43.75% 

Supervised 

classification  

2 
1988 75% 

2009 52% 

5 
1988 58.3% 

2009 25% 
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4.4  TWINSPAN classification 

 

 

TWINSPAN analysis was undertaken on the 73 species in 22 families (see Appendix 7a, 

7b) recorded from 48 quadrats (coordinates captured in the field by GPS) located on seven 

transects at Caerlaverock Reserve in 2011. The distribution of quadrat samples belonging 

to five TWINSPAN sample end-groups identified by the analysis (see below) along the 

seven transects is shown in Fig. 4.15. 
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 Figure  4-15: Distribution of quadrat positions (in five TWINSPAN groups) in the 
Caerlaverock Reserve. 
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Sample end groups were all located at the level of the classification that stopped at the 

third level of division, with eigenvalues for the divisions producing these groups all 

reasonably high, (> 0.500). For the vegetation communities that these represent see 

Appendix 8.   The first division [Eigenvalue = 0.823] divided the 48 quadrats into a 

negative (right) group including 23 quadrats, and a positive (left) including 25 quadrats. A 

dendrogram showing the classification is given in Fig. 4.16 and list of species with their 

groups and indicator species in Table 4.28. The indicator species in the negative group 

were Urtica dioica (Common Nettle), Galium aparine (Cleavers), Holcus lanatus 

(Yorkshire-fog), and Dryopteris filix-mas (Male-fern). The indicators in positive group 

were Puccinellia maritima (Common Saltmarsh-grass)   and Festuca rubra (Red Fescue). 

The second division at the second level [Eigenvalue = 0.708] divided the 23 quadrats into a 

negative group including 6 quadrats, (indicator species:  Bellis perennis: Daisy), and a 

positive group including 17 quadrats (indicator species:  Ulex europaeus (Gorse), Juncus 

effusus (Soft-rush)   and Trifolium repens (White Clover).  The third division [Eigenvalue 

= 0.701] at the same level divided the 25 quadrats into a negative group including 19 

quadrats, (indicator species: Lotus corniculatus (Common Bird's-foot-trefoil), and a 

positive group including 6 quadrats, (indicator species: Salicornia europaea (Common 

Glasswort). The fifth division at the third level [Eigenvalue = 0.608] divided the 17 

quadrats into a negative group including 10 quadrats, (indicator species: Urtica dioica 

(Common Nettle), and a positive group including 7 quadrats (indicator species: Lolium 

perenne (Perennial Rye-grass), Ranunculus repens (Creeping Buttercup), Festuca 

arundinacea (Tall Fescue), Cynosurus cristatus (Crested Dog's-tail), Ranunculus acris 

(Meadow Buttercup).  
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Figure  4-16: Dendrogram of the TWINSPA sample classification of 48 quadrates in 
Caerlaverock. 

 (3.1 = 3 means number of Line transect, 1 means number of Quadrat).  
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Table  4-28: TWINSPAN groups, species and indicator species after species classification  

            (For a complete species names see Appendix 7b) 

 

Group 

Number 
Species name abbreviations 

Indicator 

species 

1 

ranu repe, ranu acri, bell pere, equi arve,  dact 

glom, poa triv, urti dioi, gali apar, holc moll, 

dryo fili, hede heli, hera spho, gera robe,  sile dioi   

elym pycn, poa subc    

 

bell pere 

2 

 leon autu,  rubu frut, junc effu, gali palu,  junc 

infl, symp  tube, arme mari, rume acet, ulex euro, 

, stel nemo,junc bufo, card prat, equi arve, poly 

pers, epil angu,  agro capi, lotu corn, eleo unig, 

urti dioi, gali apar, gyce decl, 

urti dioi 

3 

fest arun, ranu acri, sene jaco, cyno cris,bell pere, 

lath prat, loli pere, phle prat, trip mari, caps burs, 

poa annu, cirs arve, elym repe, holc lana,   stel 

holo, anth odor, agro stol, , fest rubr, ranu repe, 

dact glom, trif repe, care nigr, pote anse, , care 

flacc, oena lach, 

 

 

loli pere  

ranu repe 

fest arun 

cyno cris 

ranu acri 

4 

agro capi, lotu corn, eleo unig, poa triv, elym 

pycn, trif repe, care nigr, pote anse, gyce decl, 

care flacc, oena lach, agro stol, leon autu, poa 

subc, care dist, atri hast, spar mari, fest rubr, junc 

gera, scir mari,ranu baud, trip mari, alop geni, 

care dins, coch angl, glau mari, arme mari, pucc 

mari, plan mari, 

 

lotu corn 

5 

fest rubr, glau mari, plan mari, arme mari,  sali 

euro,aste trip, pucc mari, coch offi 

 

sali euro 

 

 

 

 

 

4.5  TABLEFIT Classification 

 

Using the TABLEFIT classification to determine NVC categories (and equivalents in the 

European CORINE biotopes classification) the first TWINSPAN group has the highest 

level of similarity to to OV24 Urtica dioica (Common Nettle) – Galium aparine  

(Cleavers) tall herb community (coefficient = 49.0; CORINE 87.2). The highest matched 

community type in the second group was to OV27b Epilobium angustifolium (Alpine 
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Willowherb) tall herb (coefficient =32; CORINE 87.2), sub community Urtica dioica - 

Cirsium arvense (Creeping Thistle). Group three was matched to MG12a Festuca 

arundinacea (Tall Fescue) mesotrophic  grassland inundation community (coefficient = 

56; CORINE 37.242), sub community Lolium perenne (Perennial Rye-grass) - Holcus 

lanatus (Yorkshire-fog). The fourth TWINSPAN group had a best match to MG12b 

Festuca arundinacea community (coefficient = 50; CORINE 37.242), community 

Oenanthe lachenallii  (Parsley Water-dropwort). The last TWINSPAN group had a good 

match with SM 13d Puccinellia salt-marsh (coefficient = 89; CORINE 15.31), sub 

community Plantago maritima (Sea Plantain) - Armeria maritima. 

 

4.6  Statistical analysis 

 

The significance of differences in mean values of environmental and botanical variables, 

measured, between the five sample groups, was tested using one-way ANOVA with 

Tukey‟s method for mean comparison, in MINITAB version 16.  

 

Table 4.29 shows the mean values (±SD) for all measured environmental variables across 

the quadrats in Caerlaverock Reserve, together with the results of ANOVA by Group. 

ANOVA tests produced significant inter-group for two environmental variables (soil 

conductivity, water conductivity) and one vegetation variable (plant height) among the five 

TWINSPAN groups. 

 

Table  4-29: Mean values and standard deviation of the mean (± SD) for a) soil pH; b) soil 
conductivity; c) shade; and d) mean vegetation height for TWINSPAN Groups, as shown by 
one-way ANOVA and application of Tukey’s mean test Mean values per variable sharing a 
superscript letter in common are not significantly different. 

   

 

Groups 

 

a) Soil pH b) Cond. soil d) Height  

Mean Mean Mean 

Group 1 6.0383
b
 ± 0.37 215

c
   ± 121 4.7800

a
 ± 2.58 

Group 2 5.7880
b
 ± 0.40 898

bc
  ± 1144

 
0.7060

b
 ± 0.21 

Group 3 6.2771
a
 ± 0.82 204

c
   ± 125 0.2937

b
 ± 0.32 

Group 4 7.0753
a
 ± 0.51 1736

b
 ± 1204 0.2363

b
 ± 0.1648 

Group 5 7.1233
a
 ± 0.14 6767

a
 ± 3404 0.0667

b
 ±  0.04 

P *** *** *** 

 

*** = p≤ 0.001        



Chapter 4               Caerlaverock Reserve study area 2 148 

 

ANOVA analyses confirmed that there were significant differences between the five 

TWINSPAN groups for mean soil pH (P = 0.000) (Fig.4.17), mean soil conductivity (P = 

0.000) (Fig.4.18), and mean vegetation height (P = 0.000) (Fig.4.19).  

 

 

 

Figure  4-17: Mean (± S.D) values for soil pH of TWINSPAN groups. Different letters above 
value bars represent a significant difference between group means. 

 

 

 

 

 

 

Figure  4-18: Mean (± S.D) values for max vegetation height for TWINSPAN groups. Different 
letters above value bars represent a significant difference between group means. 
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Figure  4-19: Mean (± S.D) values for soil conductivity of TWINSPAN groups. Different letters 
above value bars represent a significant difference between group means. 

 

 

 

In addition to testing the significance of differences in mean values of environmental and 

botanical variables, I measured the significance of differences in mean values of 

Ellenberg‟s indicator values based on the data for UK plant species given by Hill et al. 

(1999), see Appendix 9. 

 

Table 4.30 shows the mean values (± SD) for Ellenberg‟s indicator values for all plant 

species present at samples comprising each sample group in Caerlaverock Reserve, 

together with the results of ANOVA by Group. ANOVA tests produced significant 

difference inter-groups for light, moisture, and salt-tolerance among the five TWINSPAN 

groups. It is clear from the results of Ellenberg‟s indicator values for TWINSPAN groups 

that: 

Group 1 somewhat shadier and drier sites, non-saline,  

Group 2 somewhat moister than latter, and with a minor salt influence, 

Group 3 sunnier and as dry as group 1, but with minor saline influence, 

Group 4 – still better illuminated, quite moist/wet, with moderate saline influence, and  

Group 5 – very well lit, wet and with marked saline influence. 
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Table  4-30:  Mean values and standard deviation of the mean (± SD) for a) Light; b) Moisture; 
c) salt-tolerant) for TWINSPAN groups using Ellenberg’s indicator values for plants, as 
shown by one-way ANOVA and application of Tukey’s mean test. Mean values sharing a 
superscript letter in common are not significantly different. 

 

 

Groups 

 

a) Light b) Moisture d) Salt  

Mean Mean Mean 

Group 1 6.20 ± 1.08 5.73 ± 0.59 0.00
c
 ± 0.00 

Group 2 6.73 ± 0.88 6.41 ± 1.37
 

0.45
c
 ± 0.91 

Group 3 7.23 ± 0.71 5.77 ± 1.18 0.50
c
 ± 0.86 

Group 4 7.64 ± 0.68 6.93 ± 1.68 2.07
b
 ± 1.88 

Group 5 8.37 ± 0.52 7.00 ± 1.07 4.25
a
 ± 2.19 

P *** *** *** 

 

              ** = p≤ 0.01    *** = p≤ 0.001      

   

 

 

    

ANOVA analysis confirmed that there was a significant difference between the five 

TWINSPAN groups in mean light (P = 0.000) (Figure 4.20), with samples from Group 1 

and Group 5 supporting species with high Ellenberg   light values. There were significant 

differences between the five TWINSPAN groups for mean moisture (P = 0.005) (Figure 

4.21), due to samples from Group 2 and Group 3 supporting species with high Ellenberg   

moisture values. Also ANOVA analysis confirmed that there was a significant difference 

between the five TWINSPAN groups in mean salt-tolerance (P = 0.000) (Figure 4.22), 

because of  samples from Group 1, Group 3 and Group 5,  supporting halophilic species 

with high Ellenberg salt values. 
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Figure  4-20: Mean (± S.D) values for shade percentage between TWINSPAN groups. 
Different letters above value bars represent a significant difference between group means. 

 

 

 Figure  4-21: Mean (± S.D) values for shade percentage between TWINSPAN groups. 
Different letters above value bars represent a significant difference between group means. 
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Figure  4-22: Mean (± S.D) values for shade percentage between TWINSPAN groups. 
Different letters above value bars represent a significant difference between group means. 
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4.7 Discussion 

 

Remote sensing images are especially appropriate for reconnaissance mapping and 

information monitoring for different types of wetlands over large geographic areas. 

Successful use of remote sensing for detailed interpretation in the study of wetlands 

depends mainly on the spatial resolution of images to give good results for interpretation, 

mapping, and the comparisons between different periods. Aerial photography and 

orthophotography were more often used for delineation of the wetlands (Barrette et al., 

2000). Duhaime et al (1997) used orthophotography as an alternative to satellite data for 

assessing vegetation in Block Island and Rhode Island (including freshwater and saltwater 

wetlands) , and provided valuable information for preparing detailed vegetation maps. 

 

 

The orthophotographs were used successfully for studying the vegetation cover in 

Caerlaverock Reserve in the period between 1988 and 2009. As is clear from interpretation 

of 1988 orthophotograph when visually comparing this period with 2009 orthophotograph, 

the total cover of shrubs showed no change, while the total cover of trees showed a slight 

increase. Based on to the morphometric measurements made from the orthophotograph 

interpretation obtained from the delineation of total cover of trees and shrubs (see Figures 

4.4 and  4.5),  the total cover of shrubs slightly decreased annually by  0.009% , total cover 

of trees increased annually by 1.3% from 1985 to 2009. The slight decrease in the cover of 

shrubs, might be as a result of grazing, especially shrubs located in the grazing zone was 

personally observed during ground truth field work in 2011, while the percentage increased 

in the cover of trees as a result of the growth of trees through twenty one years. 

 

 

 

The most common mapping technique in the world is still based on aerial photography 

interpretation (Lewis and Phinn, 2011) and measurement. It is used successfully for 

detailed mapping of vegetation communities and to a high accuracy using manual 

interpretation techniques, for example in a tropical freshwater swamp (Harvey and Hill, 

2001). Overall classification accuracy from aerial photography of 2009, for two and five 

classes (92% and 83.3% respectively) indicates that through my classification method, I 

was generally able to correctly distinguish map classes (see Table 4.16 
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Unsupervised and supervised classifications are usually the methods used for Landsat TM 

and other remotely sensed image interpretation.  The results obtained from Landsat TM 

image analysis for 1988 imagery using unsupervised classification show unsatisfactory 

results using six land cover classes, while showing a good result from two classes (Table 

4.27).  A limitation of this method is that the classes are produced based on natural features 

which may not correspond to the features that the user needs to resolve. Cawkwell et al 

(2007) reported that an unsupervised ISODATA classification into six classes failed to 

distinguish the small areas of Juncus and grassland in the saltmarsh habitat.  Unsupervised 

classification (two classes) of the Landsat TM images for 1988 and 2009 at the 

Caerlaverock Reserve provided fairly good results, where the classification had an overall 

accuracy of 81.2% and 79% respectively; and in six classes the classification had a lower 

overall accuracy 10.4% and 43.7% respectively, because of in an unsupervised 

classification the classes produced are based on natural breaks in the distribution of pixel 

values in the image. Overall classification accuracy from two supervised classes of the 

Landsat TM images for 1988 and 2009 were 75% and 52% respectively (Table 4.27). 

 

 

In the six classes Landsat TM image analysis of the 2009 imagery the method succeeded in 

showing some difference compared with 1988, with the result being fairly different to 

those obtained from analysis of aerial photography. Using ten land cover classes produced 

classes that were difficult to identify, based on field work and knowledge of the area (see 

Figure 4.7). A difference between the image of 1988 and the image of 2009 image may be 

due to the image in 1988 being captured in the high tide period and showed a large area 

immersed by water (Magenta colour Figure 4.6), while in 2009 the image captured in the 

period of low tide and it appeared that some areas were not inundated (Figure 4.8). 

 

 

The classification of Landsat TM satellite imagery achieves an acceptable level of 

accuracy specially with the two classes unsupervised classification (Table 4.26), and the 

satellite data provide a description of the major land cover for Caerlaverock Reserve 

wetland, but it remains apparent that aerial photography at high resolution can sometimes 

provide better information that cannot be extracted from satellite data, especially in small 

areas like Caerlaverock. But it is worth remembering that Landsat TM imagery is now 

much cheaper to acquire (e.g. GLOVIS) than aerial imagery.  
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Depending on the results obtained from scattergrams of supervised classification 

maximum likelihood classification (MLC) showed better results for distinguishing 

Caerlaverock Reserve vegetation classes (Figures 4.11, 4.12). Supervised classification 

often yields maps with a higher mapping accuracy (Johnston and Barson 1993), and it 

achieves good separation of classes (Soliman and Soussa, 2011). In addition, Donoghue 

and Shennan (1987) noted that the maximum likelihood classification with Landsat TM 

showed good separation of saltmarsh vegetation communities. Aerial photography, 

Ordnance Survey maps, and field work ground-truthing all proved useful here as a guide 

for the selection of vegetation classes in supervised classification.  

 

 

The spectral overlap between wetland cover types is a problem frequently identified in the 

application of remote sensing to wetland environments (e.g. Johnston and Barson 1993, 

Sader et al. 1995), because commonly different vegetation types may possess the same 

spectral signature in remotely sensed images (Xie et al. 2008). Sanchez-Hernandez et al 

(2007) state unacceptable maximum likelihood classification (MLC) for monitoring habitat 

in saltmarsh due and the error (or confusion) matrix illustrates that the saltmarsh class was 

confused with the fenland class, also Reid Thomas et al (1995) reported that the maximum 

likelihood classification (MLC) with Landsat TM had difficulty in mapping the vegetation 

of the Pioneer zone in saltmarsh vegetation due to mixed pixels of classes.  

 

The results from scattergrams of supervised classification for all land cover classes of the 

Landsat TM image in 1988 and Landsat TM image in 2009 showed no overlap between the 

land cover classes; which means that the supervised classification has precisely determined 

land cover classes and successfully avoided including pixels of ambiguous class. 

 

 

The results obtained from the detection of change in vegetation using ArcMap (v 10.1) 

showed   the cover of trees between 1988 and 2009 changed by 50% to wet grassland, 

shrubs cover decreased by 87% in the same period.  More than half of the percentage 

change in the shrubs cover is change to wet grassland, a further 30.0% change to trees 

(Table 4.11), and this result seems difficult to accept, and poor quality classification is 

confirmed by low k (“KHAT”) statistic. However, supervised classification included some 

grasses that are mapped as shrubs in an OS map (1:10000 scale) for 2009, because the 

reflection for some grasses from the rough grazing area is the same as the shrub Gorse 
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(Ulex europaeus L.), and supervised classification considered the same reflectivity to be 

one type. For this reason, in the outcome map of five classes using a supervised 

classification the cover of shrubs is greater than reality compared with aerial photographs 

of the same year, see Figure 4.23 below. In addition, some wet grassland on the grounds is 

shrubs in map for 1988. This could be due to the small study area, and the trees and shrubs 

covering an area less than one pixel size in the Landsat TM image, and probably  when 

selected training area for TM image of 1988 includes some grass with the same colour as 

shrubs see Figure 4.24. Band 2 in the Landsat TM5 is (0.52-0.6 µm), this means including 

reflected waves for Green colour (0.500- 0.578 µm) and Yellow colour (0.578- 0.592 µm). 

For this reason some grass may share reflectivity with shrubs, although the scattergrams of 

supervised classification showed better results  for all five identified land cover classes of 

the Landsat TM image in 1988 and Landsat TM image in 2009 for Caerlaverock Reserve 

(Figures 4.12 and 4.13). 

 

 

According to TWINSPAN classification divided the samples into five groups depending 

on eigenvalues with high value (>0.500), and showed that the sample-group 4, the largest 

TWINSPAN group, contained quadrat representing all transects examined at the site. The 

indicator of the group was Lotus corniculatus, which has the highest level of similarity to a 

recognised NVC type: MG12b. The indicator species of group 5 was Salicornia europaea, 

which has the highest level of similarity to a recognised NVC type: SM13d, this 

community is the most widespread and extensive perennial community of the lower 

saltmarsh (Rodwell 2000). This group has the highest average mean conductivity and the 

shortest average mean vegetation height. However, statistical analyses showed the soil 

conductivity had a significant difference between a group means in-group 1 and group 5, 

as well as in mean height. Depending on the Ellenberg‟s indicator values, group 5 has the 

highest mean for salt tolerance, moisture and light, which mean these species are adapted 

to live in the high levels of salt and in submerged or saturated soil water and are light 

loving, while, the group 1 has the lowest mean for salt tolerance, moisture and light. 
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Figure  4-23: Shows the rough grazing zone inside the yellow line that has shrubs and 
grasses following supervised classification for 2009 Caerlaverock Reserve Landsat TM.    

 

 

 

 

 

Figure  4-24: Shows the rough grazing zone inside the yellow line that has shrubs and 
grasses following supervised classification for 1988 Caerlaverock Reserve LandsatTM.    
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Chapter 5- General Discussion & General 
Comparison of Survey Approaches 

5  

5.1  General discussion 

 

The decline of wetland resources and ecosystem services worldwide is usually closely 

connected with local ecological negative effects, e.g. in Libya natural conditions (drought) 

or abuse from human activities, or both. Using remote sensing techniques and geographic 

information systems will allow us to detect the change that occurs in the vegetation in the 

wetlands as a result of such impacts, and assist corresponding effective protection and 

utilization measures, as well as helping provide the scientific basis for the restoration of 

wetland resources and conservation. 

 

Remote sensing imagery, analysed using GIS tools, is becoming increasingly useful for 

reconnaissance mapping and information monitoring of different types of wetlands over 

extensive geographic areas. Remote sensing tools seem to be one of the only practical 

ways to study environments that can be difficult to access for landscape characterisation, 

habitat monitoring, and spatial analysis of surface cover change (Rehnquist et al., 2001). 

 

The aim of this project was to investigate the proposal that vegetation changes over time 

(e.g. scrub invasion; successional changes) have an effect on wetland plant community 

structure in UK wetland systems, which can be detected and quantified using remote 

sensing imagery. This proposal was investigated using an approach which combined 

remote-sensing analysis of imagery over time with ground truthing of existing wetland 

vegetation communities at two contrasting wetland sites in the UK 

 

 

5.1.1  Aerial Photography Interpretation 

 

In Study Area 1, Wicken Fen, interpretation performed on aerial photographs for the years 

1985, 1999, 2003, and 2009, using ArcMap GIS, provided quantitative information on 

changing total vegetation cover (trees and shrubs, versus open herbaceous fen vegetation) 
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within the 24-year study period. The most significant annual change rate of Wicken Fen 

vegetation cover during this period, based on morphometric measurements made from 

aerial photography interpretation obtained from the delineation of total tall vegetation 

cover (trees and shrubs), is for the period between 1985 and 1999, with  a 2.24% reduction 

per year, while the annual rate of change for the period 2003 to 2009 was a 1.48% 

reduction per year.  Friday (1997) noted that in Wicken Fen, a wave of die-back swept 

through the Frangula carr in the 1980s, and a large proportion of the Frangula carr 

standing on all parts of the Fen became dead wood; also, in the 1990s, fire was a frequent 

occurrence in the dead, dry shrubs. This could be the major cause of a decrease in the tall 

vegetation canopy in Wicken Fen, especially Verrall‟s Fen in the period 1985 to 1999; and 

provides a likely interpretation of the high annual change rate observed in decreasing 

tree/shrub cover during this period.  

 

The second significant, though lower, annual change rate, over the period 2003 to 2009 of 

1.48%, is most likely due to the active woodland and carr removal management 

programme underway during this period, rather than to natural change. Part of the carr in 

Sedge Fen was removed for subsequent management operations, and evidence of recent 

clearance activities was personally observed during ground truth fieldwork in 2010. 

Mountford et al., (2012) noted that there is some evidence that fen herbaceous vegetation 

was re-establishing on Verrall's Fen, where carr had been cleared.  

 

Overall classification accuracy obtained using aerial photography from 2009 for two and 

five classes (90% and 80% respectively) indicates that, through the classification method 

developed in this study, it was generally possible to correctly distinguish map classes for 

Wicken Fen (see Table 3.26).  

 

In Study Area 2, an interpretation of the orthophotographs in the 21-year period between 

1988 to 2009 for Caerlaverock Reserve, using ArcMap GIS, also showed changes in the 

total vegetation cover (trees/shrubs versus open herbaceous meadow and saltmarsh 

vegetation) over the study period. Based on the morphometric measurements made from 

the orthophotography interpretation obtained from the delineation of total tall vegetation 

cover of Caerlaverock Reserve using ArcGIS, the annual change rate in shrub cover was 

0.009% (i.e. only a slight decrease), while tree cover increased annually by 1.3%from 1985 

to 2009. This slight decrease in shrub cover  might be  a result of grazing of shrubs located 

in the grazing zone (grazing damage, by cows and Soay sheep was personally observed 
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during ground truth field work in 2011), while the percentage increase in the cover of trees 

is a result of the growth of trees over twenty one years. 

 

 

Aerial photography and orthophotography are often used for delineation of wetlands 

(Barrette et al., 2000). Overall, approaches utilising aerial photography interpretation are 

still the most common technique (Lewis and Phinn, 2011).  

Overall classification accuracy from aerial photography of 2009, for two and five classes 

(92% and 83.3% respectively) indicates that, through the classification method developed 

in this work, it was generally possible to correctly distinguish map classes for the 

Caerlaverock study area (see Table 4.26). 

 

5.1.2  Landsat TM Image Interpretation 

 

The Landsat TM image used in this study had a 30-meter pixel resolution, and was able to 

support an MMU closer to 0.1 hectares. The most important factor in distinguishing cover 

classes in the target area of study is the spatial resolution of the sensor. Landsat TM 

provided a good class separation when one class covers more than the pixel size (30×30 m) 

in the TM image.  

 

 

In study Area 1, Wicken Fen, the Landsat TM images were classified using two methods:  

unsupervised and supervised. The results obtained from Landsat TM image analysis for 

1984, using unsupervised classification, show good results using six land cover classes. In 

the six classes output map from unsupervised classification of Landsat TM image analysis 

for 2009, the method succeeded in showing some change when visually compared with the 

output map for 1984, with the result being fairly similar to those obtained from analysis of 

aerial photography.  

 

 

Supervised classification achieves good separation of classes (Soliman and Soussa, 2011), 

and often yields maps with higher accuracy (Johnston and Barson 1993). Depending on the 

results obtained from supervised classification, maximum likelihood classification (MLC) 

showed better results when compared with unsupervised classification for distinguishing 
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Wicken Fen vegetation classes, and the best classification accuracy was achieved using a 

two classes supervised classification for both the 1984 and 2009 images (Table 3.27). 

Supervised classification is depend on the user definition for training areas; aerial 

photography, Ordnance Survey maps, and field work ground-truthing; all proved useful 

here as a guide for the selection of vegetation classes in a supervised classification.  

 

 

The results from scattergrams of supervised classification for all land cover classes of 

LandsatTM images in 1984 and 2009 at Wicken Fen showed no overlap between the land 

cover classes; which indicates that the supervised classification has  clearly  determined 

land cover classes, and successfully avoided including pixels of ambiguous class (or 

„mixels‟). 

 

 

The results obtained from using ArcMap (v 10.1) for the detection of change in vegetation 

at Wicken Fen showed that the total cover of trees and shrubs decreased by 65.6% between 

1984 and 2009, and more than half of the percentage change in the total cover is change to 

wet grassland. Overall classification accuracy from two classes using a supervised 

classification of the LandsatTM images for 1984 and 2009 was 75% (Table 3.27). A 

comparison of the overall accuracy was conducted to find out which method(s) provided 

good results. It was found that supervised classification produces more accurate results 

than unsupervised classification for two classes in Wicken Fen. Alrababah and Alhamad 

(2006) found that supervised classification worked better than unsupervised classification; 

also, Mohd Hasmadi et al (2009) found that supervised classification appears more 

accurate than unsupervised classification for land cover mapping. The same result was 

found in Wicken Fen. 

 

 

In Study Area 2 Caerlaverock Reserve, the results obtained from Landsat TM image 

analysis for 1988 imagery using unsupervised classification show an unsatisfactory result 

using six land cover classes, but a good result from two land cover classes. The results 

from an unsupervised classification (two classes) of the Landsat TM images for 1988 and 

2009 at Caerlaverock Reserve showed a good result, and the classification had an overall 

accuracy for the two years of 81.2% and 79%, respectively. In the six classes unsupervised 

classification the result was worse,  overall accuracy in this study being only 10.4% and 
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43.7% respectively. A limitation of this method is that the classes are produced based on 

the natural groupings of the spectral properties of the pixels, selected by the remote sensing 

software, which may not correspond to the actual features of the vegetation. 

 

  

Overall classification accuracy for the two classes supervised analysis of the Landsat TM 

images for 1988 and 2009 was 75% and 52% respectively (Table 4.27).  Visual 

comparison of the outcome map of 1988 and 2009 for the Caerlaverock Reserve 

supervised classification showed that there was some difference between two images. This 

is most likely due to the timings of the captured images: in 1988, the image was captured at 

high tide, while in 2009 the image was captured at low tide. 

 

 

A comparison of the overall accuracy was conducted to find out which method provided 

better results. Based on the results shown in Table 4.27, it was found that an unsupervised 

classification produced more accurate results than supervised classification for two classes 

in Caerlaverock Reserve. In this it case might be that the supervised classification has 

included in the training areas some grasses that were mapped as shrubs in the OS map 

(1:10000 scale) for 2009. Or because the reflectivity for some grasses from the rough 

grazing area is very similar to the shrub Gorse, and probably when selecting training areas 

for the TM image of 1988 using aerial photography as a guide some grass was included as 

shrubs. Thus for  the outcome map of five classes using a supervised classification, the 

cover of shrubs is greater than reality for the same year, and some grass may share 

reflectivity with shrubs. For these reasons, when calculating the change in the cover using 

the results from unsupervised classification is better than supervised classification in two 

classes. Considering others working similarly, Rozenstein and Karnieli (2011) found that 

an unsupervised classification produced more accurate results than supervised 

classification for land use classification for the northern Negev, while Cawkwell et al 

(2007) working in similar areas to Caerlaverock (in N England and Wales) reported that an 

unsupervised classification using six classes failed to distinguish the small areas of Juncus 

and grassland in a saltmarsh habitat. 

 

 

The most important problem facing the researcher in the application of remote sensing to a 

wetland environment, when using supervised classification, might be considered to be the 
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issue of overlapping classes when selecting the training area, which leads to inaccurate 

results in the study area. The obtained results from scattergrams of supervised 

classification for all land cover classes of the Landsat TM image in 1988 and Landsat TM 

image in 2009 showed no overlap between the land cover classes, which means that the 

digitised training areas were not including pixel classes other than the intended pixel 

classes. 

 

 

The results from the detection of change in vegetation using ArcMap (v 10.1) showed that 

the cover, in trees, between 1988 and 2009 decreased by 50% and in shrubs by 87% (Table 

4.11); this result is unlikely to be true. However, the supervised classification included 

some grass-covered areas as “shrubs” in the map for 2009, perhaps because the reflected 

wavelengths for some grasses from the rough grazing area are similar to the reflected  

wavelengths for the shrub Gorse (Ulex europaeus). For this reason, the resulting map of 

supervised classification showed the shrub cover of to be greater than in reality, when 

compared with aerial photographs of the same year. In addition, some wet grassland was 

recorded as “shrubs” in the map for 1988. This could be due to the small study area, the 

fact that trees and shrubs covered an area less than a pixel size in the Landsat TM image, 

and, probably, the selected training area for the TM image of 1988 included some grass 

with the same colour as shrubs. However, the scattergrams of supervised classification 

showed reasonable separation for all five identified land cover classes of the Landsat TM 

image in 1988 and 2009 for Caerlaverock Reserve.  

  

5.1.3  Ground Reference Data Analysis 

In Wicken Fen, TWINSPAN classification showed that the samples divided into four 

groups, delineated by eigenvalues with high values (>0.500). TWINSPAN classification 

showed that sample-group 1, the largest TWINSPAN group, and contained quadrats from 

all transects examined at the site. The indicator of group 2 was Cardamine hirsuta  (hairy 

bittercress), which has the highest level of similarity to a recognised NVC type: M28b. 

However, statistical analyses showed that shade % had a significant difference between 

group means 2 and group 4, as well as in height, suggesting that quadrats position group 2 

samples being largely located under tree/shrub overstorey vegetation, while group 4 

samples were much more open, regardless of on which transect they occurred (transects 

were placed to run through several habitat conditions, e.g. wet to dry, open to woodland). 
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In Caerlaverock Reserve, TWINSPAN classification divided the samples into five groups, 

again delineated by eigenvalues with a high value (>0.500), and showed that sample-group 

4, the largest TWINSPAN group, contained quadrats representing all transects examined at 

the site (as at Wicken, most transects were run across a range of conditions, in this case 

from land to seaward conditions), and had the highest level of similarity to a recognised 

NVC type: MG12b. Salicornia europaea (glasswort) was an indicator species of group 5, 

which has the highest level of similarity to a recognised NVC type: SM13d; this 

community is the most widespread and extensive perennial community on the lower salt 

marsh (Rodwell 2000). This group has the highest average mean conductivity and the 

shortest average mean vegetation height. However, statistical analyses showed a significant 

difference in soil conductivity between a group mean in group 1 and group 5, as well as in 

mean height. Depending on the Ellenberg‟s indicator values, group 5 has the highest mean 

for salt tolerance, moisture, and light, which means that  these species are adapted to live in 

high levels of salt and in submerged or saturated soil water, and are light loving. In 

contrast, group 1 has the lowest mean for salt tolerance, moisture, and light preference. 

 

 

5.2 General Comparison of Survey Approaches 

 

 

Comparison of aerial photography and Landsat TM imagery classifications allowed 

assessment of the time taken, and which method provided a good result for mapping 

compared with fieldwork survey. In the aerial photos, especially in large areas, more time 

is required to collect the photos into a single image; this process requires several steps, and 

is sometimes not easy to implement (e.g. control points, clips), but these steps are 

necessary to get a mosaic of high quality for the entire study area. While Landsat TM 

images usually cover a large region (in this study, much greater than the study area), and 

there is a need to subset the chosen area (study area), this does not take much time and is 

easy to undertake. 

 

 

The comparisons via error matrices - between aerial photography of 2009 and fieldwork of 

2010 Wicken Fen, and aerial photography of 2009 and fieldwork of 2011 Caerlaverock 

Reserve, are performed under the assumption that there will have been little change during 

the two dates, and the error analysis serves to confirm that aerial photography is a worthy 
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substitute for field work, which is long established amongst aerial photo interpreters: e.g. 

Mosbech and Hansen (1994).   

 

In Wicken Fen, overall classification accuracy for vegetation classes produced from aerial 

photography in 2009 (Table 3.26), was compared with overall accuracies obtained for 

vegetation classes from Landsat TM 1984 and 2009 (Table 3.27). As well, in Caerlaverock 

Reserve, overall accuracies for vegetation classes from Landsat TM image 1988 and 2009 

(Table 4.27) were compared with the overall accuracy obtained from vegetation classes 

from aerial photographs 2009 (Table 4.26). The obtained result from comparisons of 

overall classification accuracies showed that the aerial photographs had a better overall 

accuracy because, it is suggested, they have a higher spatial resolution than the Landsat 

TM image, and in Caerlaverock Reserve, it is suggested that the areas covered, especially 

by shrubs, were less than the pixel size in a TM image. Hence, there were unsatisfactory 

results here, and low overall accuracy. 

 

There are two restrictions when attempting to distinguish between vegetation types in 

satellite images. The first is that it is almost always difficult to map the vegetation class if 

its coverage is less than the pixel size of the TM images. The second is that distinguishing 

vegetation classes is not possible if there is no difference in the reflected wavelengths. 

                                                                                                        

Comparisons of Landsat TM images and aerial photograph classification illustrated that at 

a structural level of two and five classes, Landsat TM does not facilitate a significantly 

higher level of mapping accuracy. However, there is no dispute that Landsat TM imagery 

allows for far more detailed classification than merely five classes. Generally, it has the 

advantage when mapping large areas, because it is fast, objective and less expensive, e.g. 

Mansur and Rotherham (2010) state that Landsat TM gave a good result for determination 

of land cover/land use changes in the Libyan Al-jabal Alakhdar region. Also, Esam et al 

(2012) reported that Landsat TM imagery provided good accuracy for quantifying land 

cover changes, and very useful information for natural resources management of the West 

Tahta Region, Sohage Governorate, Upper Egypt, but it still lacks the spatial resolution to 

map all important cover classes, especially in small areas, where the class area covered less 

than the pixel size in the TM image. Finally, it might be worth noting that usual costs 

increase roughly in proportion to increases in mapping resolution (Lunetta and Balogh 

1999). 
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Chapter 6- Conclusion & Recommendations  

6  

6.1 Conclusions 

Wetlands are amongst the Earth‟s most productive ecosystems, and are a valuable natural 

resource of considerable scientific value because they are associated with high biological 

diversity. Also they provide important ecological functions and values, such as habitat for 

flora and fauna species, biodiversity (Mitsch and Gosselink 1993), ground water recharge, 

flood mitigation, and regulation of pollutants and water. Recently, wetlands have been 

under increasing pressure from anthropogenic activities, including conversion to intensive 

agricultural use and to other industrial and residential uses. Detection and assessing 

changes in wetland vegetation over time is hence important for both natural resources 

management and ecological research (Zaman et al., 2011). 

                        

 

In the UK, wetlands are an important part of the landscape, covering almost 10% of the 

terrestrial land area (Dawson et al., 2003), e.g. Wicken Fen in England; Insh Marshes in 

Scotland. Traditional field investigation methods are often inadequate to achieve the 

detection of changes in vegetation for these ecosystems in a timely manner. Using remote 

sensing and GIS techniques will allow us to detect changes in these ecosystems with high 

accuracy and in a timely manner, and also can provide valuable information to aid the 

management and conservation of wetland habitat. 

 

 

Wetland degradation in arid, semi-arid and sub-humid areas is strongly affected by human 

activities (e.g. grazing and planting crops); the application of remote sensing techniques 

provides accurate and timely information for mapping and monitoring vegetation cover in 

threatened systems. In Libya, Farwà Lagoon is an example of important coastal wetlands 

(Pergent et al., 2002); these are sensitive ecological systems and provide many valuable 

ecosystem services e.g. for tourism, recreation and fishing. Vegetation is an important 

component of wetland ecosystems and it also serves as an excellent indicator of early signs 

of any physical or chemical degradation of the land, so application of remote sensing and 

GIS to these ecosystems will help in the detection of change that has happened in these 

habitats.  
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Several oases in Libya, for example the Al Jufrah Oases, hold rare and important plants, 

and provide a natural shelter for many animals.  It is difficult to monitor these systems by 

conventional methods such as field survey.  The application of remote sensing techniques 

for monitoring and change detection  in these ecosystems, which is essential to warn of 

potential collapse of these vulnerable ecosystems, can hence provide valuable information 

to aid the management and conservation of these habitats. 

 

 

Data from Earth Observation satellites has become important in mapping the Earth‟s 

features and infrastructures, managing natural resources, and studying environmental 

change. The use of Remote Sensing (RS) and Geographic Information System (GIS) 

approaches, combined with ground truthing where appropriate, are now providing new 

tools for advanced ecosystem management, and assessment of change at local, regional, 

and global scales, over time.  

 

Since this research started object oriented classification as supported by Definiens and 

open source GIS software (e.g. QGIS) have become available, there are useful uses to 

which these systems could be put, with regard to mapping Libya‟s wetlands, and this is in 

need of further investigation. 

 

This study researched vegetation changes in two contrasting wetland sites in the UK:  a 

freshwater wetland at Wicken Fen between 1984 and 2009, and saltmarsh wetland between 

1988 and 2009 in Caerlaverock Reserve. The study provides the first assessment using 

remote sensing (Landsat TM and aerial photographs) and GIS, combined with ground 

truth, to assess wetland vegetation change over time at these locations. The study clearly 

showed the ability of the RS/GIS approach, using both satellite imagery and aerial 

photography, to detect spatial and temporal variation in two quite different wetland 

vegetation types, both provided valuable information and can aid in management and 

conservation. 

 

 

The study found that different types of imagery, produced classification results of varying 

degrees of accuracy for wetland vegetation assessment. Aerial photography (airborne 

platforms) provided higher accuracy than Landsat TM images (satelliteborne platforms), 

and the results obtained here serve to confirm that aerial photography is a worthy substitute 
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for field work, which is long established amongst photo interpreters, because the aerial 

photos have a higher spatial resolution than Landsat TM images. It might be worth noting 

that satellite imagery is now widely applied, because medium resolution datasets are free 

of charge (for example using GLOVIS) and available worldwide (von Wehrden et al., 

2009), whereas there are usually costs attached to obtaining aerial imagery. Direct 

comparison between the outcome of maps obtained from Wicken Fen (study area 1) 

showed that Landsat TM images provided a fairly good separation of classes, when one 

class occupied an area more extensive than the pixel size (30×30 m) in the TM image. In 

this case, the spatial resolution of the Landsat TM sensor was the most important factor in 

obtaining a good separation of vegetation classes in a wetland environment. (Ground 

reference data is important in both the interpretation of the aerial photography, and in the 

selection of training areas for the interpretation of the Landsat TM images, so the process 

can never be entirely remote.) 

 

Satellite image (TM) information extraction was carried out using unsupervised and 

supervised classification to produce wetland cover classes in two study areas. Supervised 

classification did not provide a good result in Caerlaverock Reserve and this can be 

attributed to the resolution of Landsat TM image, with it not being possible to locate 

clearly small vegetation patches in the image. There were also problems in separating 

vegetation classes larger than the pixel size (30m ×30m), such as waterlogged soil, and wet 

grassland, (especially in selecting a training area) due to the difficulty of distinguishing 

between classes producing similar  colours of  the reflection,  leading to them being coded 

with the same colour in the Landsat TM image.  

 

According to TWINSPAN classification (halting the analysis at end groups produced by 

reasonably high separation eigenvalues:>0.500) in Wicken Fen, the samples from 40 

quadrats were classified into four groups, while the data from 48 quadrats  were divided 

into five groups in Caerlaverock Reserve. However, statistical analyses in Wicken Fen 

showed that shade % had a significant difference between group means 2 and group 4, as 

well as in height, suggesting that quadrats in group 2 samples were largely located under 

tree/shrub overstorey vegetation, while group 4 samples were much more open.   
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In Caerlaverock Reserve study area 2, statistical analyses showed that soil conductivity had 

a significant difference between a group means in-group 1 and group 5, as well as in mean 

height. In addition, depending on the Ellenberg‟s indicator values, group 5 has the highest 

mean for salt tolerance, moisture and light, while group 1 has the lowest mean for salt 

tolerance, moisture and light. These outcomes suggest that the ground-truthing exercise 

was picking up vegetation classes which reflected real environmental variation across the 

two sites, and which formed a real basis for the classifications detected by the RS/GIS 

approach. 

 

Finally, perhaps the most important conclusion of this study is that it provides evidence 

that the RS/GIS approach can provide useful baseline data to monitor wetland vegetation 

change over time, and across quite expansive areas, which can therefore provide valuable 

information to aid the management and conservation of wetland habitats.  Both the  results 

obtained from  aerial photographs and Landsat TM  showed a change in vegetation during 

the period 1984 to 2009 at Wicken Fen, most likely, though not exclusively, due to active 

management.  In contrast, in Caerlaverock Reserve, results indicated only a slight change 

in the vegetation cover (mainly in shrub vegetation) during the period 1988 to 2009, a 

result which is in line with the findings of other studies about the stability of saltmarsh 

communities (e.g. the recent study by Taubert and Murphy (2012), which found a high 

level of stability in Scottish saltmarsh plant communities over a five-decade period). 

 

In Libya which is located in semi-arid region, many wetlands are threatened due to natural 

conditions (drought) e.g. Al Jufrah Oases, and/or abuse from human activities e.g. Farwà 

Lagoon. It is difficult to monitor these systems by conventional methods such as field 

survey, using remote sensing techniques and geographic information systems will allow us 

to detect the change that occurs in the vegetation in the wetlands as a result of such 

impacts, and assist corresponding effective protection and utilization measures, as well as 

helping provide the scientific basis for the restoration of wetland resources and 

conservation.  
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6.2  Limitations and recommendations 

 

Some limitations noted in this study should be mentioned: 

1- When creating a mosaic of aerial photographs, it is sometimes difficult to find good 

control points from the original map (1:10,000 Ordnance Survey Map) in some 

areas. Choosing control points which do not correspond with the image will 

provide a high error rate. Re-choosing the control points  to obtain  suitable  points  

with an error of  less than one pixel, to produce an acceptably good mosaic of the 

entire area is time consuming, and this problem will directly increase in proportion 

to the increasing size of  the study area. 

 
2- During selection of training areas  on Landsat TM images:  

- It is difficult to map a training area if a class size is less than a pixel size of the 

Landsat TM images. 

- Distinguishing vegetation classes is not possible if there is no difference in the 

reflected wavelength of vegetation types involved. 

 

To overcome this problem, several researchers have developed and used, in their 

studies, sub-pixel classification approaches that consider variations within pixels to 

overcome the mixed pixel problem and which aim to detect materials smaller than 

one pixel (Wang and Lang, 2009) or suppress the limitations of coarse resolution 

imagery (Verbeiren et al., 2008).  

 

A recommendation for further work arising from this study is as follows: This 

study used RS imagery collected at fairly low spatial resolution by manned aircraft 

photography, and satellite imagery. It would be of considerable interest to compare 

the outcome of the assessments of vegetation variation at both Wicken and 

Caerlaverock, undertaken here, with imagery captured by photography using 

unmanned aerial vehicles (UAVs) which can fly much lower, and acquire remote 

data more rapidly and at lower cost than traditional aerial photographs, at very high 

spatial resolutions.  
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Appendices 

 

Appendix 1: Instructions for production of Orthophoto using BAE 
SYSTEMS SOCET SET (v5.6) 

 

Login as „workstation only‟, using the following:  

 

User name: SHTOPO 

Password:  topoontour 

 

Start the Socet Set software by clicking on the green icon on the desktop. 

 

Several windows open towards the left side of the screen (quite slow!).  

 

1. The first step is to CREATE A NEW PROJECT 

 

From the menus select : 

 

Project>Create/Edit Project - a dialogue box will appear at the right side of the screen 

 

We want to create a new project so select File>New. The dialogue box will refresh (ignore 

warning box if it appears). 

 

Project path   F:\users\shtopo\data\JED (use your 

initials not   JED!) 

Options/select datum   

 Ordnance_Survey_of_Great_Britain_1936(Scotland)   

….. way down the list! 

Units      metres 

Co-ordinate system    LSR local 

Vertical reference    MSL (mean sea level) / EGM96 

Minimum ground elevation (estimated) 0 

Maximum ground elevation (estimated) 500 

LOCATION     DEFAULT 

Options/LSR Origin    Lat 49:00:00 and Long –2:00:00 Rotation 0 

(This       is the origin of the National Grid in latitude 

and        longitude values, and its rotation with 

respect to        the meridian direction) 
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2. IMPORTING DATA INTO THE NEW PROJECT 

 

From the menus which appear along the top of the project box select: 

Preparation>Import>Image>Frame      (… the Frame Import dialogue box appears)                                    
    

 

Select File > open and navigate to the  images to be 

imported. 

 

Select each to be imported and click OPEN, using right 

click and ADD in the Input Images space, for further 

images. 

 

In the dialogue box below (Output Image(s)), select 

Image and Support File 

  

Select Image Format as VITEC(but TIFF is fine!) 

 

In the Import Settings section select the correct Camera 

calibration file (Balmacara05.cam) and click OPEN 

 

     
Only apply atmospheric and water refraction correction if necessary. 

 

In the Review/Edit Settings dialogue box complete the section for: 

 

Camera Position/Orientation by adding the approximate co-ordinates for the Centre of 

each photo and add the approximate flying height for each image – to give approximate 

values for the camera position. CLOSE 

 

File>save as - JED     - OK                                           

Message appears -  Project JED.prj created 

 

File> Exit     (confirm with „Yes‟ to 

project modification in a subsidiary 

window – if it appears)  

Enter Project Name (in subsidiary 

window) JED - OK 

File>Load project -select JED.prj (in 
subsidiary  window) 

OK 

 

(…and a new, empty, project is ready) 
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In the Frame Import window Options menu choose to create minifications (Auto 

Minify) and then click START. This takes several seconds and includes the minification 

process. 

 

Once the process has completed select: File>Exit 

 

3. TO DISPLAY THE IMAGES 

 

Make sure that split screen is selected   

File>Load images 

Image Loader window appears    

 Select    710_0123.sup (as LH image) 

 Select    710_0124.sup (as RH image) 

 Load 

 (Select Close to put the Image Loader window away) 

 

4. STAGES OF ORIENTATION 

 

a) Interior Orientation 

 

From the main menu - Preparation>Interior Orientation/Manual Interior 

Orientation 

 

 

  
    

Click File>Open 

 

***Select image   710_0123.sup  OPEN  

 

The above dialogue box will appear; the view should be changed to Mono. 

  

-The cursor will move to the approximate position of the first fiducial. 

Better to have 

six! 
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-Locate this fiducial (screen cursor should automatically centre over the centre of the  

fiducial cross – as long as it was „within‟ the fiducial mark – and if this does not work, 

then do position the screen cursor within the fiducial mark manually using the Extraction 

cursor/3D cursor) Position the mark exactly using the Extraction cursor.  

-Sample the point and Accept sample  

-Next Point - (the cursor will move to the approx position of the second point) 

-Locate this fiducial (repeat as before) 

-Accept sample (once you are satisfied that you have the best position) 

-Repeat the above steps for each of the fiducials available. 

-Once all fiducials have been measured and the RMS value is acceptable (in the case of 

Balmacara less than 1) 

-File>save  

-Repeat from *** above for the right hand image 710_0124.sup and exit, saving points 

and solution. 

-File>exit 

 

b) Preparation for exterior orientation: creating a Ground Point File  

 

Select – Preparation>Control point editor 

A new dialogue box  (Control Point Editor) appears 
 

 
 

 

 

Repeat from ** for the remaining control points in the model. 

 

When all points have been added File>Save as JED.gpf 

File exit 

 

 

 

 

Datum select  OSGB… OK 

Elev (MSL) 

 

**Right click in the box below Point ID 

and choose - Add 

 

Add the following information  

Point ID  type name of point 

PT type  select  - x,y,z 

Use   select – ON  (tick) 

X/Long  type easting value 

X/Long accuracy type relevant 

accuracy from GPS result sheet eg 0.02 

Y/Lat   type northing value 

Y/Lat - accuracy type relevant 

accuracy from GPS result sheet eg 0.02 

Z/Elev   type height value 

Z/Elev - accuracy type relevant 

accuracy from GPS result sheet eg 0.05 
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C) Solving for the exterior orientation elements 

 

Select - Preparation>Multi-Sensor Triangulation 

 

 
 

   

Check that the correct Ground Point File is showing in the first window. 

 

In the section headed STRIPS, select Add and type 1 in the dialogue box which appears 

(as we only have a pair of photos) 

 

Click OK 

 

From the window (Select Support Files) which opens with the images, select the correct 

images (710_123.sup, 710_124.sup). Click OK. 

 

Click the button for Exterior Initialise and accept any warnings which appear. 

 

Click OK. 

 

The window returns to the Automated Triangulation window. 

 

Next Select - Interactive Point Measurement 

 

 

 

 

 

 

Load a project file 
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Interactive Point Measurement 

 

This stage involves measuring the photo co-ordinates for each of the ground control points. 

 

** Highlight the first point to be measured in the point list. 

 

Right click in the box under Image Points and add the 2 images. 

 

Make sure the correct image is on the Left. On the main window select zoom of 1:32 or 

1:64 to enable the whole model to be shown and display both images with the split screen. 

 

Find the approximate position of the first control point on each photo using paper prints 

and control point diagrams to assist. 

 

 

 
 

Check the position stereoscopically to achieve the best position on each image.  

 

Once satisfied that no improvement can be made select SAMPLE from the menu and 

repeat from ** for the remainder of the control points. 

 

SAVE 

CLOSE 

 

Next using the Extraction cursor as 

demonstrated, along with the 

LOCKING of images alternately, 

position the cursor as accurately as 

possible at maximum zoom over the 

ground control point in each photo 
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5. NORMALISATION (Rectification) 

 

Preparation>Resample>Rectification>Pairwise 

 
 

Click 

OPEN 
Click 

OPEN 
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6. CREATING THE DTM. 

 

File>Load images  (menu as before) 

 

Select images   710_0123_l.sup and 710_0124_r.sup   

 

From the main menu bar – Extraction>Terrain>Automatic Extraction 

 

 

 

File> Create DTM  

 

The Create DTM window appears: 

 

 

 
 

Use the browse button to name (or find) the DTM file, in the new window (Select a 

DTM(s)). The name for the new DTM should be added (e.g. jeddsm) or selected. Click 

OK: 
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In Create DTM select DTM properties and work through the first three tabs: 

 

 
 

In the first tab, select the two rectified files to be used for image matching. 

 

 
 

In the second tab, for the post spacing in the DTM select 2 metres for x and y. 

 

To choose the area (Define DTM boundary) for the DTM select Use MBR Around 

Polygon and using the „mouse-trak‟ extraction cursor draw a polygon (click Draw 

Polygon) for the area to be included in the DTM (red rectangle around green quadrilateral 

should appear). 
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In the third tab from CREATE DTM, in ATE properties: 

 

Select   adaptive 

Select   smoothing - medium  

precision    - medium   

SAVE 

START (in Automatic Terrain Extraction window) 

 

This process takes several minutes depending on the spacing of the points chosen and the 

size of the area chosen. It also involves 7 passes, during which the image matching (and 

hence DTM quality) is refined. 

 

Once the process is complete, there will be a message which states 

 

Saving DTM after last pass then DTM collection complete 

 

File>Exit 
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7. TO DISPLAY THE DTM DATA 

 

File>Load images as before 

Select the rectified image support files eg 016_l.sup and 017_r.sup 
 

Extraction/Terrain>Interactive Edit (Interactive Terrain Edit Window appears) 

 

 

File>open DTM   

 

The ‘Select a DTM(s)’ window appears 

 

Select   (e.g.) jedsm  OK 

 

 
Choose Set Up DTM button and from the „Preferences‟ menu select 

Mode   Editable contours 

Line style  solid 

Graphics width thin 

Rendering  quick 

Contour interval 1 

Index interval  50 

x-steps off set  1  0 

y-steps offset  1  0 

Colour source  Elevation (click Edit Ranges to ensure the correct values are 

available) 

Apply 
OK 

 

From the Interactive Terrain Edit menu   

select  DRAW terrain graphics (a pencil symbol!) 

 

The  images will display with contours overlaid. (These contours cannot be directly 

exported but the DTM can be exported for use in a Terrain modelling package such as 3D 

Analyst in ArcView or Vertical Mapper in MapInfo.) 

 

(You might care to inspect these contours under magnification and in stereo – but beware 

forest areas are quite confusing….) 

 

File>Exit 
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8. ORTHOPHOTO PRODUCTION 

 

Products>Orthophoto generation 

A new window appears with various sections to be completed. 

 

On the first screen/tab select „Orthophoto‟ 

 

On the second (input) screen the Primary image should be selected from the pair of 

photos. Choose the rectified image which you think will be clearer to Digitise. 

 

At the right hand side of the screen – choose to get height from the DTM and enter 

the file name for your own DTM. 

 

On the third (output) screen, the area to be converted to the Orthophoto is selected. In 

the calculate box Primary Image drop down menu, choose the DTM as the area for the 

Orthophoto and click the „UPDATE‟ button. 

 

In Output Options: 

 

Name:    e.g. JED_0123_ortho 

Output file format  select  Tif (this means it can be used directly in other  

packages eg ArcGIS etc  

GSD (ground separation distance)  1 

 

On the Options screen complete as instructed : 

Eg Gridlines? 

Select grid spacing  200 or 500 or 1000? 

Select grid grey  254 (for white lines) or 1 for black lines 

CreateWORLD file?   Do this if you intend taking the orthophoto into ArcGIS. This  

step creates a .tfw file to allow the image to be added directly 

to  

ARCGIS 

Options/Auto minify  (ensure this is selected) 

 

Start (the process begins and again takes a few minutes) 

 

Once the orthophoto has been produced, it is possible to create a stereomate to enable the 

orthophoto to be viewed stereoscopically. Repeat the process above for creating an 

orthophoto but this time select 

Options/Stereomate 

Select  base to height ratio  1 

Select  Left mate 

OK 

and give a suitable (but different) name to the image to be created eg XXXmate. 

(NB Do not choose to make grid lines this time) 

 

File/EXIT 

 

 

 

 

 



Appendices   209 

 

9. EXPORTING DTM TO MAPINFO/ARCVIEW 

 

To export DTM files – in ARC Grid format 

From the Output menu select Output/File Export/Terrain/Arc Grid 

 

The ASCII ArcGrid Export dialogue window appears. 

 

Select the input DTM file, 

Grid spacing, 

Output file name 

Start 

   

To export the orthophoto to ArcMAP ensure you have produced the tfw file and the 

tif file as mentioned in the previous section (8). 

 

10. ArcGIS 

 

For the orthophoto: 

In ArcGIS use ADD  with the TIF file (the orthophoto) (in ArcMap) to bring it into 

ArcMAP. (PLEASE NOTE the .TFW file must be in exactly the same directory as the .TIF 

file or the coordinates revert to pixel coordinates.) 

 

For the DTM: 

Change the extension for the DTM file from .OUT to .ASC. 

In ArcGIS the DTM file will need to be converted from ASCII to raster, using: 

ArcToolbox/Conversion Tools/To Raster/ASCII to Raster. 

(For contouring the DEM us Spatial Analyst/Surface/Contour) 

 

 

 

The data are now ready for subsequent GIS editing and processing. 

 

Jane Drummond, Nov. 2012 
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Appendix 2: Creating a seven-band image from seven TM bands, 

originating as seven separate TIFF files. 

 
Unsupervised Classification 

To create a seven-band image from seven separate TIFF (.tif) bands from a 

Landsat TM scene in ER mapper  
OBJECTIVE: 

The bands we have are: 

 

 
 

Which are the seven Landsat thematic mapper (TM) bands. 

This description shows you how to create a seven-band image from seven TM bands, 

originating as seven separate TIFF files 

 

 

 

 

 

 

 

 

 

 

 

 
STEPS: 

 1. Open ER-mapper 

 2. Click the Edit Algorithm button  

 

The following algorithm appears: 
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3. To create seven layers activate the Pseudo Layer which has appeared and using 

the duplicate button six times, create 7 pseudo layers.  

 

 
The following algorithm appears: 

 

 
 

4. To load the data into each layer: 
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activate the layer; 

 click the Load dataset button; 

  select the data set you want in that layer; 

   click Apply this layer only; and, 

    click OK. 

 

 
The following algorithm appears: 
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5. To rename the layers appropriately, double click on each layer’s name (currently 

Pseudo Layer) and rename them, such as Band 1, Band 2, Band 3, etc. 

 

 
 

 

 

 

 

The following algorithm appears: 

 

 
 

 

 

 

 

 

 

 

 

Note: this diagram shows the 

situation part way through 

the renaming process…. 
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6. To save as an ER-mapper format dataset (.ers): 

Click Save As; 

 Choose an appropriate volume for saving; 

  Choose an appropriate out put file type (i.e. .ers); 

   Choose an appropriate file name; and 

    Click OK. 

 

 
 

 

Then……  
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Tick Delete output transforms; select Output Type Multi layer; click OK (x2) 

 

 
 

…to finish saving the .ers data file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. To save the algorithm 
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Click Save As; 

 Choose an appropriate volume for saving; 

  Choose an appropriate out put file type (i.e. .alg); 

   Choose an appropriate file name; and 

    Click OK. 
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8. To check all is well – 1! (We’ll make an RGB display) 

Close the Algorithm and display windows.  

Click the open button and select the newly created .ers file (i.e. SAT7band.ers), 

click OK  

 

  
 

and ensure it displays. 

 

 
 

 

9. To check all is well – 2! (We’ll highlight vegetation using NDVI) 
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Add the Forestry (or Remote Sensing) tool bar to ER-Mapper 

 
Run the NDVI process: 

 
…achieving the outcome: 
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10. To check all is well – 3! (We’ll use the TM tool to ensure our .ers data set (which 

we have made from the 7 TIFF files, behaves like a 7 band TM image): 

 

choose the TM process and the appropriate .ers file. 

 

 

 

 

 

 and note the appropriate RGB display. 

 

 
 

The data set is now ready for more sophisticated analysis (such as an unsupervised 

classification……) 
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Appendix 3: Showing  how to produce a scene of an appropriate 
size for work. 

 

1. Display the whole scene, using Open, selecting an appropriate file and clicking 

„OK‟: 

 

 
2. To select a subset of the image, select Utilities/File maintenance/Datasets/Save a 

subset of image 

 

 
Selecting an appropriate WINDOW from the subset, to save as a separate working scene: 
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(note: to do this you will have to have discovered the appropriate rows and columns you 

require to bound your study area. PAINT is a useful tool for this!). 

3. To display your new area, again use „Open‟, but select your new data set. 
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Appendix 4a:  Plant taxa recorded from 40 quadrats in Wicken 
Fen with common names, density and frequency. 

Family Species Name Common Name 
Density 

(m
-2

) 

Frequ- 

ency 

% 

Asteraceae Bellis perennis L. Daisy 1 2.5 

Asteraceae Cirsium arvense (L.) Scop Creeping Thistle 1.025 12.5 

Asteraceae Cirsium palustre (L.) Scop Marsh Thistle 0.2 7.5 

Asteraceae Cirsium vulgare (Savi) Ten. Spear Thistle 0.175 2.5 

Asteraceae Centaurea nigra L. Common Knapweed 0.55 2.5 

Apiaceae Angelica sylvestris L. Wild Angelica 0.15 2.5 

Apiaceae Berula erecta (Huds.) Coville Lesser Water-parsnip 0.625 2.5 

Apiaceae Hydrocotyle vulgaris L. Marsh Pennywort 5 5 

Alismataceae Alisma plantago-aquatica L. Water-plantain 0.025 2.5 

Ranunculaceae    Ranunculus flammula L Lesser Spearwort 0.025 2.5 

Betulaceae Betula pendula Roth Silver Birch 0.275 5 

Brassicaceae Cardamine  hirsute L. Hairy Bittercress 0.2 2.5 

Boraginaeae Myosotis scorpioides L. Water Forget-me-not 0.1 5 

Boraginaeae Symphytum officinale L. Common Comfrey 1.55 12.5 

Convolvulaceae Calystegia sepium (L.) R. Br. Hedge Bindweed 4.55 25 

Cyperacaea Carex acutiformis Ehrh. Lesser Pond-sedge 3.75 7.5 

Cyperacaea Carex distans L. Brown Sedge 0.5 2.5 

Cyperacaea Carex flacca Schreb. Glaucous Sedge 5.125 15 

Cyperacaea Carex otrubae Podp. False Fox-sedge 0.025 2.5 

Cyperacaea Carex panicea L. Carnation Sedge 2.05 7.5 

Cyperacaea Carex riparia Curtis Greater Pond-sedge 0.5 2.5 

Cyperacaea Cladium mariscus (L.) Pohl Great Fen-sedge 8.125 12.5 

Cyperacaea 
Eleocharis uniglumis (Link) 

Schult. 
Slender Spike-rush 8.75 10 

Crassulaceae 
Crassula helmsii (Kirk) 
Cockayne  

Australian swamp 

stonecrop 
0.1 2.5 

Caryophyllaceae Lychnis flos-cuculi L. Ragged-Robin 0.125 2.5 

Caryophyllaceae Stellaria alsine Grimm Bog starwort  0.425 2.5 
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Appendix 4a 

Family Species Name Common Name 
Density 

(m
-2

) 

Freque-

ncy 

% 

Dryopteridaceae Athyrium filix-femina (L.) Roth Lady Fern 2.525 5 

Euphorbiaceae Mercurialis perennis L. Dog‟s mercury 0.1 2.5 

Salicaceae Salix repens L. Creeping Willow 0.025 2.5 

Fabaceae Lathyrus pratensis L. Meadow Vetchling 0.05 2.5 

Iridaceae  Iris pseudacorus L. Yellow Flag 1.925 17.5 

Juncaceae Juncus bufonius L. Toad Rush 1.275 5 

Juncaceae Juncus effusus L. Soft-rush 4.65 7.5 

Juncaceae Juncus inflexus L. Hard Rush 10 17.5 

Lamiaceae Ajuga reptans L. Bugle 0.1 2.5 

Lamiaceae Glechoma hederacea L Ground-ivy 1.5 10 

Lamiaceae Lycopus europaeus L. Gypsywort 0.25 2.5 

Lamiaceae Mentha aquatica L. Water Mint 4.775 27.5 

Lemnaceae Lemna minor L. Common Duckweed 65 10 

Lemnaceae Lemna trisulca L. Ivy-leaved Duckweed 0.125 2.5 

Onagraceae 
Chamerion augustifolium (L.) 

Holub 
Rosebay Willowherb 0.15 2.5 

Onagraceae Epilobium hirsutum L. Great Willowherb 3.075 10 

Poaceae Trifolium repens L White Clover 0.125 2.5 

Poaceae Agrostis stolonifera L. Creeping Bent 16.85 30 

Poaceae Alopecurus geniculatus L. Marsh Foxtail 5 5 

Poaceae Anthoxanthum odoratum L. Sweet Vernal-grass 0.5 2.5 

Poaceae 
Arrhenatherum elatius (L.) P. 

Beauv. Ex J. Presl & C. Presl 
False Oat-grass 0.15 2.5 

Poaceae Dactylis glomerata L. Cock's-foot 0.3 5 

Poaceae Festuca pratensis Huds. Meadow Fescue 0.5 2.5 

Poaceae Festuca rubra L. Red Fescue 15.5 22.5 

Poaceae 
Helictotrichon pubescens 

(Huds.) Pilg. 
Downy Oat-grass 4.025 7.5 

Poaceae Holcus lanatus L. Yorkshire-fog 2.625 7.5 

Poaceae Lolium perenne L. Perennial Rye-grass 0.15 2.5 
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Appendix 4a 

Family Species Name Common Name 
Density 

(m
-2

) 

Freque-

ncy 

% 

Poaceae Molinia caerulea (L.) Moench Purple Moor-grass 0.925 7.5 

Poaceae Phalaris arundinacea L. Reed Canary-grass 4.8 15 

Poaceae 
Phragmites australis (Cav.) 

Trin. Ex Steud. 
Common Reed 21.9 72.5 

Poaceae Poa palustris L. Fowl bluegrass 3.775 10 

Poaceae Poa pratensis L. 
Smooth Meadow-

grass 
6.925 12.5 

Poaceae Poa trivialis L. Rough Meadow-grass 6.3 15 

Plantaginaceae Callitriche platycarpa Kuetz.    
Various-leaved 

Water-starwort 
0.25 2.5 

Primulaceae Lysimachia vulgaris L. Yellow Loosestrife 2.42 22.5 

Polygonaceae Rumex acetosa L. Common Sorrel 0.05 2.5 

Polygonaceae Rumex hydrolapathum Huds. Water Dock 0.075 2.5 

Polygonaceae Rumex obtusifolius L. Broad-leaved Dock 0.125 2.5 

Rosaceae Crataegus monogyna Jacq. Hawthorn 0.025 2.5 

Rosaceae Rubus fruticosus L. Bramble 1.175 7.5 

Rosaceae 
Filipendula ulmaria (L.) 

Maxim. 
Meadowsweet 1.3 10 

Rosaceae Potentilla erecta (L.) Raeusch. Tormentil 0.075 2.5 

Ranunculacaea Ranunculus lingua L. Greater Spearwort 0.125 2.5 

Ranunculacaea 
Ranunculus trichophyllus 

Chaix 

Thread-leaved Water-

crowfoot 
2.85 12.5 

Ranunculacaea Thalictrum flavum L. 
Common Meadow-

rue 
0.65 5 

Ranunculacaea Caltha palustris L. Marsh-marigold 0.25 2.5 

Resedaceae Reseda lutea L. Wild Mignonette  0.975 10 

Rubiaceae Galium aparine L Cleavers 5.25 7.5 

Rubiaceae Galium palustre L.   
Common Marsh-

bedstraw 
7.875 37.5 

Salicaceae Salix caprea L. Goat Willow 2.1 12.5 

Salicaceae Salix pentandra L. Bay Willow 0.25 2.5 

Salicaceae Salix purpurea L. Purple Willow 0.225 2.5 

Sparganiaceae Sparganium erectum L. Branched Bur-reed 0.15 5 

Solanaceae Solanum dulcamara L. Bittersweet  0.175 2.5 

Typhaceae Typha latifolia L. Greater Reedmace 1.475 5 

Urticaeae Urtica dioica L. Common Nettle 1.8 17.5 
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Appendix 4b:  Field data collected from 40 quadrats at Wicken 
Fen during June 2010.  (T =  Line transect; Q =  Quadrat

Species  Abb. T1Q1 T1Q2 T1Q3 T1Q4 T1Q5 T1Q6 T1Q7 T1Q8 

Angelica sylvestris Ansy 0 0 0 0 0 0 0 0 

Agrostis stolonifera Agst 0 20 0 0 0 0 0 0 

Ajuga reptans Ajre 0 4 0 0 0 0 0 0 

Alisma plantago-

aquatica 
Alpa 0 0 0 0 0 0 0 0 

Alopecurus geniculatus Alge 0 0 0 0 0 0 0 0 

Anthoxanthum odoratum Anod 0 0 0 0 0 0 0 0 

Arrhenatherum elatius Arel 0 0 0 0 0 0 0 0 

Athyrium filix-femina Atff 0 31 0 0 0 0 0 0 

Ranunculus flammula Rafl 0 0 0 0 0 0 0 0 

Bellis perennis Blpe 0 0 0 0 0 0 0 0 

Berula erecta Beer 0 0 0 0 0 0 0 0 

Betula pendula Btpe 0 0 0 0 0 0 0 0 

Callitriche platycarpa Clpl 0 0 0 0 0 0 0 0 

Caltha palustris Capa 0 0 0 0 0 0 0 0 

Calystegia sepium Clse 9 0 0 48 0 0 0 0 

Cardamine  hirsuta Cahi 0 0 0 0 0 0 0 0 

Carex acutiformis Cxac 0 0 0 0 60 0 0 50 

Carex distans Cxdi 0 0 0 0 0 0 0 0 

Carex flacca Cxfl 0 0 0 0 0 0 0 0 

Carex otrubae Cxot 0 0 0 0 0 0 0 0 

Carex panicea Cxpa 0 0 60 16 0 0 0 0 

Carex riparia   Cari 0 0 0 0 0 0 0 0 

Centaurea nigra Cnni 0 0 0 22 0 0 0 0 

Chamerion augustifolium Chau 0 0 0 0 0 0 0 0 

Cirsium arvense Ciar 0 0 0 0 0 0 0 0 

Cirsium palustre Cipa 0 0 0 0 0 0 0 0 

Cirsium vulgare Civu 0 0 0 0 0 0 0 0 

Cladium mariscus Clma 0 0 0 0 0 0 0 20 

Crassula helmsii Crhe 0 0 0 0 0 0 0 0 

Crataegus monogyna Crmo 0 0 0 0 0 0 0 0 

Dactylis glomerata Dcgl 0 0 0 0 0 0 0 0 

Eleocharis uniglumis Elun 0 0 0 0 0 0 0 0 

Epilobium hirsutum Ephi 0 0 0 0 0 0 0 0 

Festuca pratensis Fepr 0 0 0 0 0 0 0 0 

Festuca rubra Feru 0 0 0 0 0 0 0 0 

Filipendula ulmaria Fiul 0 0 0 0 0 0 23 0 

Galium aparine Gaap 0 0 0 0 0 0 0 0 

Galium palustre Gapa 0 11 14 23 1 10 15 0 

Glechoma hederacea Glhe 0 0 0 0 0 0 0 0 

Helictotrichon pubescens Hepu 0 0 0 0 0 0 0 0 

Holcus lanatus Hola 0 0 0 0 0 0 0 0 
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Appendix 4b 
 

Species  Abb. T1Q1 T1Q2 T1Q3 T1Q4 T1Q5 T1Q6 T1Q7 T1Q8 

Hydrocotyle vulgaris Hyvu 0 0 100 100 0 0 0 0 

Iris pseudacorus Irps 0 0 0 0 0 6 0 0 

Juncus bufonius Jubu 0 0 0 0 0 0 0 0 

Juncus effusus Juef 0 0 0 0 0 0 0 0 

Juncus inflexus Juin 100 0 100 100 0 0 0 0 

Lathyrus pratensis Lapr 0 0 0 0 0 0 0 0 

Lemna minor Lemi 0 0 0 0 0 0 1 0 

Lemna trisulca Letr 0 0 0 0 0 0 0 0 

Lolium perenne Lope 0 0 0 0 0 0 0 0 

Lychnis flos-cuculi Lyfc 0 0 0 0 0 0 0 0 

Lycopus europaeus Lyeu 0 0 0 0 0 0 0 0 

Lysimachia vulgaris Lyvu 17 0 2 0 0 14 0 0 

Mentha aquatica  Meaq 0 0 22 14 0 12 0 0 

Molinia caerulea Moca 0 0 0 0 0 0 0 0 

Myosotis scorpioides Mssc 0 0 0 0 0 0 0 0 

Trifolium repens Trre 0 0 0 0 0 0 0 0 

Phalaris arundinacea Phar 0 0 0 20 10 0 0 0 

Phragmites australis Phau 17 15 24 0 100 35 3 21 

Poa pratensis Papr 0 8 0 0 0 0 50 0 

Poa trivialis Patr 0 0 0 0 0 0 0 0 

Potentilla erecta Pter 0 0 0 0 0 0 0 0 

Ranunculus lingua Rali 0 0 0 0 0 0 0 0 

Ranunculus trichophyllus Ratr 0 0 0 0 0 4 0 0 

Reseda lutea Relu 0 0 0 0 0 0 0 0 

Rubus fruticosus Rufr 0 0 0 0 0 0 0 16 

Rumex acetosa Ruac 0 0 0 0 0 0 0 0 

Rumex hydrolapathum Ruhy 0 3 0 0 0 0 0 0 

Rumex obtusifolius Ruob 0 0 0 0 0 0 0 0 

Salix caprea Saca 0 0 0 0 0 0 0 0 

Salix pentandra Sape 0 0 0 0 0 0 0 0 

Salix purpurea Sapu 0 0 0 0 0 0 0 0 

Solanum dulcamara Sodu 0 0 0 0 0 0 0 0 

Sparganium erectum Sper 0 0 0 0 0 0 0 0 

Stellaria media Stme 0 0 0 0 0 0 0 0 

Symphytum officinale Syof 11 0 0 0 0 0 0 0 

Thalictrum flavum  Thfl 0 0 4 22 0 0 0 0 

Typha latifolia Tyla 0 0 0 0 0 0 0 0 

Urtica dioica Urdi 0 0 0 0 0 0 0 0 

Salix repens Sare 0 0 0 0 0 0 0 0 
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Appendix 4b 
 

Species  Abb. T1Q9 T1Q10 T2Q1 T2Q2 T2Q3 T2Q4 T2Q5 T2Q6 

Angelica sylvestris Ansy 6 0 0 0 0 0 0 0 

Agrostis stolonifera Agst 0 0 0 0 0 24 0 0 

Ajuga reptans Ajre 0 0 0 0 0 0 0 0 

Alisma plantago-

aquatica 
Alpa 0 0 0 0 0 0 0 0 

Alopecurus geniculatus Alge 0 0 0 0 0 0 0 100 

Anthoxanthum odoratum Anod 0 0 0 0 0 0 0 0 

Arrhenatherum elatius Arel 0 0 0 0 0 0 0 0 

Athyrium filix-femina Atff 0 0 0 0 0 0 0 0 

Ranunculus flammula Rafl 0 0 0 0 0 0 0 0 

Bellis perennis Blpe 0 0 0 0 0 40 0 0 

Berula erecta Beer 0 0 0 0 0 0 0 0 

Betula pendula Btpe 0 0 0 0 0 0 0 0 

Callitriche platycarpa Clpl 0 0 0 0 0 0 10 0 

Caltha palustris Capa 0 0 0 0 0 0 10 0 

Calystegia sepium Clse 0 0 0 0 0 0 0 12 

Cardamine  hirsuta Cahi 0 8 0 0 0 0 0 0 

Carex acutiformis Cxac 40 0 0 0 0 0 0 0 

Carex distans Cxdi 0 0 20 0 0 0 0 0 

Carex flacca Cxfl 0 0 30 0 0 25 0 0 

Carex otrubae Cxot 0 0 0 0 0 0 0 0 

Carex panicea Cxpa 0 0 0 6 0 0 0 0 

Carex riparia   Cari 0 0 0 0 0 0 0 20 

Centaurea nigra Cnni 0 0 0 0 0 0 0 0 

Chamerion augustifolium Chau 0 0 0 0 0 0 0 0 

Cirsium arvense Ciar 0 0 0 0 0 0 0 0 

Cirsium palustre Cipa 5 1 2 0 0 0 0 0 

Cirsium vulgare Civu 0 0 0 0 0 0 0 0 

Cladium mariscus Clma 0 0 0 100 0 0 0 0 

Crassula helmsii Crhe 0 0 0 0 0 0 0 0 

Crataegus monogyna Crmo 0 1 0 0 0 0 0 0 

Dactylis glomerata Dcgl 0 0 0 0 0 0 0 0 

Eleocharis uniglumis Elun 0 0 0 0 0 0 0 0 

Epilobium hirsutum Ephi 0 15 0 0 6 0 0 0 

Festuca pratensis Fepr 0 0 0 0 0 0 0 0 

Festuca rubra Feru 0 0 0 0 0 0 0 0 

Filipendula ulmaria Fiul 0 3 0 0 0 0 0 0 

Galium aparine Gaap 0 0 10 0 0 0 0 0 

Galium palustre Gapa 20 0 0 0 0 0 50 40 

Glechoma hederacea Glhe 0 4 0 0 0 0 0 0 

Helictotrichon pubescens Hepu 0 0 100 55 0 0 0 0 

Holcus lanatus Hola 0 0 0 0 0 0 0 0 
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Appendix 4b 
 

Species  Abb. T1Q9 T1Q10 T2Q1 T2Q2 T2Q3 T2Q4 T2Q5 T2Q6 

Hydrocotyle vulgaris Hyvu 0 0 0 0 0 0 0 0 

Iris pseudacorus Irps 5 0 0 0 0 35 1 0 

Juncus bufonius Jubu 0 0 0 0 0 0 0 1 

Juncus effusus Juef 0 0 0 0 0 0 0 0 

Juncus inflexus Juin 0 0 0 15 15 40 0 0 

Lathyrus pratensis Lapr 0 2 0 0 0 0 0 0 

Lemna minor Lemi 0 0 0 0 0 0 0 0 

Lemna trisulca Letr 0 0 0 0 0 0 0 0 

Lolium perenne Lope 0 0 0 0 0 0 0 0 

Lychnis flos-cuculi Lyfc 0 0 0 0 0 0 0 0 

Lycopus europaeus Lyeu 0 0 0 0 0 0 0 0 

Lysimachia vulgaris Lyvu 12 0 10 25 0 0 0 8 

Mentha aquatica  Meaq 0 0 0 0 5 26 0 0 

Molinia caerulea Moca 0 0 0 0 25 0 0 2 

Myosotis scorpioides Mssc 0 0 0 0 0 0 0 0 

Trifolium repens Trre 0 0 0 0 0 0 0 0 

Phalaris arundinacea Phar 0 0 0 0 0 0 0 0 

Phragmites australis Phau 12 0 0 7 18 0 27 0 

Poa pratensis Papr 100 89 0 0 0 0 0 0 

Poa trivialis Patr 0 0 0 0 0 0 0 0 

Potentilla erecta Pter 0 0 0 3 0 0 0 0 

Ranunculus lingua Rali 0 0 0 0 0 0 0 0 

Ranunculus 

trichophyllus 
Ratr 0 0 0 0 0 0 0 1 

Reseda lutea Relu 0 0 0 0 0 0 0 0 

Rubus fruticosus Rufr 0 0 0 0 0 0 0 0 

Rumex acetosa Ruac 0 0 0 0 0 0 0 0 

Rumex hydrolapathum Ruhy 0 0 0 0 0 0 0 0 

Rumex obtusifolius Ruob 0 0 5 0 0 0 0 0 

Salix caprea Saca 0 0 0 50 3 0 0 0 

Salix pentandra Sape 0 0 0 0 0 0 0 0 

Salix purpurea Sapu 0 0 0 0 0 0 0 0 

Solanum dulcamara Sodu 0 0 0 0 0 0 0 0 

Sparganium erectum Sper 0 0 0 0 0 0 0 0 

Stellaria media Stme 0 0 0 0 0 0 0 0 

Symphytum officinale Syof 0 0 0 0 8 0 0 0 

Thalictrum flavum  Thfl 0 0 0 0 0 0 0 0 

Typha latifolia Tyla 0 0 0 0 0 0 0 9 

Urtica dioica Urdi 12 0 0 0 0 0 0 0 

Salix repens Sare 0 0 0 0 0 0 0 0 
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Appendix 4b 
 

Species  Abb. T2Q7 T2Q8 T3Q1 T3Q2 T3Q3 T3Q4 T3Q5 T3Q6 

Angelica sylvestris Ansy 0 0 0 0 0 0 0 0 

Agrostis stolonifera Agst 100 0 0 0 0 15 0 5 

Ajuga reptans Ajre 0 0 0 0 0 0 0 0 

Alisma plantago-

aquatica 
Alpa 0 0 0 0 0 0 0 0 

Alopecurus geniculatus Alge 0 0 0 100 0 0 0 0 

Anthoxanthum odoratum Anod 0 0 0 0 0 0 0 0 

Arrhenatherum elatius Arel 0 0 0 0 0 0 0 0 

Athyrium filix-femina Atff 0 0 0 0 0 0 0 0 

Ranunculus flammula Rafl 0 0 0 0 0 0 0 0 

Bellis perennis Blpe 0 0 0 0 0 0 0 0 

Berula erecta Beer 0 0 0 0 0 0 0 0 

Betula pendula Btpe 10 1 0 0 0 0 0 0 

Callitriche platycarpa Clpl 0 0 0 0 0 0 0 0 

Caltha palustris Capa 0 0 0 0 0 0 0 0 

Calystegia sepium Clse 0 3 0 0 0 0 0 10 

Cardamine  hirsuta Cahi 0 0 0 0 0 0 0 0 

Carex acutiformis Cxac 0 0 0 0 0 0 0 0 

Carex distans Cxdi 0 0 0 0 0 0 0 0 

Carex flacca Cxfl 0 0 0 0 0 0 100 0 

Carex otrubae Cxot 0 0 0 0 0 0 0 0 

Carex panicea Cxpa 0 0 0 0 0 0 0 0 

Carex riparia   Cari 0 0 0 0 0 0 0 0 

Centaurea nigra Cnni 0 0 0 0 0 0 0 0 

Chamerion augustifolium Chau 6 0 0 0 0 0 0 0 

Cirsium arvense Ciar 0 0 5 0 0 0 0 15 

Cirsium palustre Cipa 0 0 0 0 0 0 0 0 

Cirsium vulgare Civu 0 0 0 0 0 0 0 0 

Cladium mariscus Clma 0 0 0 0 0 0 0 0 

Crassula helmsii Crhe 0 0 0 0 0 0 0 0 

Crataegus monogyna Crmo 0 0 0 0 0 0 0 0 

Dactylis glomerata Dcgl 0 0 0 0 0 0 0 0 

Eleocharis uniglumis Elun 0 0 0 0 0 0 0 0 

Epilobium hirsutum Ephi 0 2 0 0 0 0 0 0 

Festuca pratensis Fepr 0 0 0 0 0 0 0 0 

Festuca rubra Feru 10 10 0 3 0 10 100 0 

Filipendula ulmaria Fiul 0 0 0 0 0 0 0 0 

Galium aparine Gaap 0 0 0 0 0 0 0 100 

Galium palustre Gapa 0 0 0 0 0 0 0 0 

Glechoma hederacea Glhe 0 0 0 0 0 0 20 0 

Helictotrichon pubescens Hepu 0 0 0 0 0 0 0 0 

Holcus lanatus Hola 0 0 0 0 0 0 0 0 
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Appendix 4b 
 

Species  Abb. T2Q7 T2Q8 T3Q1 T3Q2 T3Q3 T3Q4 T3Q5 T3Q6 

Hydrocotyle vulgaris Hyvu 0 0 0 0 0 0 0 0 

Iris pseudacorus Irps 12 0 0 0 0 0 10 0 

Juncus bufonius Jubu 0 0 0 0 0 0 0 0 

Juncus effusus Juef 0 0 0 0 0 0 0 0 

Juncus inflexus Juin 0 0 0 0 0 0 0 0 

Lathyrus pratensis Lapr 0 0 0 0 0 0 0 0 

Lemna minor Lemi 0 0 0 0 0 0 0 0 

Lemna trisulca Letr 0 0 0 0 0 0 0 0 

Lolium perenne Lope 0 0 0 0 0 0 0 0 

Lychnis flos-cuculi Lyfc 0 0 0 0 0 0 0 0 

Lycopus europaeus Lyeu 0 0 0 0 0 0 0 0 

Lysimachia vulgaris Lyvu 0 1 0 4 0 0 0 0 

Mentha aquatica  Meaq 20 0 0 0 0 0 0 0 

Molinia caerulea Moca 0 0 0 0 0 0 0 0 

Myosotis scorpioides Mssc 0 0 0 0 0 0 0 0 

Trifolium repens Trre 0 0 0 0 5 0 0 0 

Phalaris arundinacea Phar 0 0 0 0 0 0 50 0 

Phragmites australis Phau 0 15 7 1 100 20 10 25 

Poa pratensis Papr 0 0 0 0 0 0 0 30 

Poa trivialis Patr 0 100 100 0 0 0 0 0 

Potentilla erecta Pter 0 0 0 0 0 0 0 0 

Ranunculus lingua Rali 0 0 0 0 0 0 0 0 

Ranunculus trichophyllus Ratr 0 0 0 0 0 0 0 0 

Reseda lutea Relu 0 0 0 0 20 6 3 10 

Rubus fruticosus Rufr 0 0 17 0 0 0 0 0 

Rumex acetosa Ruac 0 0 0 0 0 0 0 0 

Rumex hydrolapathum Ruhy 0 0 0 0 0 0 0 0 

Rumex obtusifolius Ruob 0 0 0 0 0 0 0 0 

Salix caprea Saca 12 0 13 0 0 0 0 0 

Salix pentandra Sape 0 0 0 0 0 0 0 0 

Salix purpurea Sapu 0 0 9 0 0 0 0 0 

Solanum dulcamara Sodu 0 0 0 0 0 0 0 0 

Sparganium erectum Sper 0 0 0 0 5 0 0 0 

Stellaria media Stme 0 0 0 0 0 17 0 0 

Stellaria palustris Stpa 0 0 0 0 0 0 0 0 

Symphytum officinale Syof 0 7 18 0 0 0 0 0 

Thalictrum flavum  Thfl 0 0 0 0 0 0 0 0 

Typha latifolia Tyla 0 0 0 0 0 0 0 0 

Urtica dioica Urdi 0 0 0 0 10 6 0 0 

Salix repens Sare 0 0 0 0 0 1 0 0 
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Appendix 4b 
 

Species  Abb. T3Q7 T4Q1 T4Q2 T4Q3 T5Q1 T5Q2 T5Q3 T5Q4 

Angelica sylvestris Ansy 0 0 0 0 0 0 0 0 

Agrostis stolonifera Agst 100 0 0 0 100 100 100 10 

Ajuga reptans Ajre 0 0 0 0 0 0 0 0 

Alisma plantago-

aquatica 
Alpa 0 0 0 0 0 0 0 0 

Alopecurus geniculatus Alge 0 0 0 0 0 0 0 0 

Anthoxanthum odoratum Anod 0 0 0 0 0 0 0 0 

Arrhenatherum elatius Arel 0 0 0 0 0 0 0 0 

Athyrium filix-femina Atff 0 0 0 0 0 0 0 0 

Ranunculus flammula Rafl 0 0 0 0 0 0 0 0 

Bellis perennis Blpe 0 0 0 0 0 0 0 0 

Berula erecta Beer 0 0 0 0 0 0 0 0 

Betula pendula Btpe 0 0 0 0 0 0 0 0 

Callitriche platycarpa Clpl 0 0 0 0 0 0 0 0 

Caltha palustris Capa 0 0 0 0 0 0 0 0 

Calystegia sepium Clse 0 1 7 70 0 0 0 0 

Cardamine  hirsuta Cahi 0 0 0 0 0 0 0 0 

Carex acutiformis Cxac 0 0 0 0 0 0 0 0 

Carex distans Cxdi 0 0 0 0 0 0 0 0 

Carex flacca Cxfl 0 0 0 0 0 0 0 0 

Carex otrubae Cxot 0 0 0 0 0 0 1 0 

Carex panicea Cxpa 0 0 0 0 0 0 0 0 

Carex riparia   Cari 0 0 0 0 0 0 0 0 

Centaurea nigra Cnni 0 0 0 0 0 0 0 0 

Chamerion augustifolium Chau 0 0 0 0 0 0 0 0 

Cirsium arvense Ciar 0 0 0 0 2 0 14 0 

Cirsium palustre Cipa 0 0 0 0 0 0 0 0 

Cirsium vulgare Civu 0 0 0 0 0 0 0 0 

Cladium mariscus Clma 0 100 5 100 0 0 0 0 

Crassula helmsii Crhe 0 0 0 0 0 0 0 4 

Crataegus monogyna Crmo 0 0 0 0 0 0 0 0 

Dactylis glomerata Dcgl 0 0 0 0 2 0 0 0 

Eleocharis uniglumis Elun 0 0 0 0 0 100 0 100 

Epilobium hirsutum Ephi 0 0 0 0 0 0 0 0 

Festuca pratensis Fepr 0 0 0 0 0 0 0 0 

Festuca rubra Feru 25 0 0 0 90 0 30 0 

Filipendula ulmaria Fiul 0 0 0 6 0 0 0 0 

Galium aparine Gaap 0 0 0 0 0 0 0 0 

Galium palustre Gapa 6 0 0 5 0 0 0 0 

Glechoma hederacea Glhe 0 0 0 0 0 0 0 0 

Helictotrichon pubescens Hepu 0 0 0 0 0 0 0 0 

Holcus lanatus Hola 0 0 0 0 50 0 40 0 
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Appendix 4b 
 

Species  Abb. T3Q7 T4Q1 T4Q2 T4Q3 T5Q1 T5Q2 T5Q3 T5Q4 

Hydrocotyle vulgaris Hyvu 0 0 0 0 0 0 0 0 

Iris pseudacorus Irps 0 0 0 0 0 0 0 0 

Juncus bufonius Jubu 0 0 0 0 0 0 0 0 

Juncus effusus Juef 0 0 0 43 100 0 43 0 

Juncus inflexus Juin 0 0 0 0 0 0 0 0 

Lathyrus pratensis Lapr 0 0 0 0 0 0 0 0 

Lemna minor Lemi 0 0 0 0 0 0 0 10 

Lemna trisulca Letr 0 0 0 0 0 0 0 0 

Lolium perenne Lope 0 0 0 0 0 0 0 0 

Lychnis flos-cuculi Lyfc 0 0 0 0 0 0 0 0 

Lycopus europaeus Lyeu 0 0 0 0 0 10 0 0 

Lysimachia vulgaris Lyvu 0 0 0 0 0 0 0 0 

Mentha aquatica  Meaq 0 0 0 0 0 17 0 12 

Mercurialis perennis Mrpe 0 0 0 0 0 0 0 0 

Molinia caerulea Moca 0 0 0 0 0 0 0 0 

Myosotis scorpioides Mssc 0 0 0 0 0 0 0 1 

Trifolium repens Trre 0 0 0 0 0 0 0 0 

Phalaris arundinacea Phar 0 0 0 0 0 0 0 2 

Phragmites australis Phau 10 10 40 4 0 0 0 0 

Poa pratensis Papr 0 0 0 0 0 0 0 0 

Poa trivialis Patr 0 40 1 0 0 0 0 0 

Potentilla erecta Pter 0 0 0 0 0 0 0 0 

Ranunculus lingua Rali 0 0 0 0 0 0 0 0 

Ranunculus 

trichophyllus 
Ratr 0 0 0 0 0 0 0 7 

Reseda lutea Relu 0 0 0 0 0 0 0 0 

Rubus fruticosus Rufr 0 0 0 14 0 0 0 0 

Rumex acetosa Ruac 0 0 0 0 0 2 0 0 

Rumex hydrolapathum Ruhy 0 0 0 0 0 0 0 0 

Rumex obtusifolius Ruob 0 0 0 0 0 0 0 0 

Salix caprea Saca 0 6 0 0 0 0 0 0 

Salix pentandra Sape 0 0 0 0 0 0 0 0 

Salix purpurea Sapu 0 0 0 0 0 0 0 0 

Solanum dulcamara Sodu 0 0 0 0 0 0 0 0 

Sparganium erectum Sper 0 0 2 0 0 0 0 0 

Stellaria media Stme 0 0 0 0 0 0 0 0 

Symphytum officinale Syof 0 0 0 0 0 0 0 0 

Thalictrum flavum  Thfl 0 0 0 0 0 0 0 0 

Typha latifolia Tyla 0 0 0 0 0 0 0 0 

Urtica dioica Urdi 0 0 19 7 0 0 0 0 

Salix repens Sare 0 0 0 0 0 0 0 0 
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Appendix 4b 
 

Species  Abb. T5Q5 T5Q6 T5Q7 T6Q1 T6Q2 T6Q3 T6Q4 T6Q5 

Angelica sylvestris Ansy 0 0 0 0 0 0 0 0 

Agrostis stolonifera Agst 0 0 10 0 0 0 90 0 

Ajuga reptans Ajre 0 0 0 0 0 0 0 0 

Alisma plantago-

aquatica 
Alpa 0 0 1 0 0 0 0 0 

Alopecurus geniculatus Alge 0 0 0 0 0 0 0 0 

Anthoxanthum odoratum Anod 0 0 0 0 0 0 20 0 

Arrhenatherum elatius Arel 6 0 0 0 0 0 0 0 

Athyrium filix-femina Atff 0 0 0 0 0 70 0 0 

Ranunculus flammula Rafl 0 0 1 0 0 0 0 0 

Bellis perennis Blpe 0 0 0 0 0 0 0 0 

Berula erecta Beer 0 25 0 0 0 0 0 0 

Betula pendula Btpe 0 0 0 0 0 0 0 0 

Callitriche platycarpa Clpl 0 0 0 0 0 0 0 0 

Caltha palustris Capa 0 0 0 0 0 0 0 0 

Calystegia sepium Clse 0 0 0 7 0 0 15 0 

Cardamine  hirsuta Cahi 0 0 0 0 0 0 0 0 

Carex acutiformis Cxac 0 0 0 0 0 0 0 0 

Carex distans Cxdi 0 0 0 0 0 0 0 0 

Carex flacca Cxfl 0 0 0 22 0 16 12 0 

Carex otrubae Cxot 0 0 0 0 0 0 0 0 

Carex panicea Cxpa 0 0 0 0 0 0 0 0 

Carex riparia   Cari 0 0 0 0 0 0 0 0 

Centaurea nigra Cnni 0 0 0 0 0 0 0 0 

Chamerion augustifolium Chau 0 0 0 0 0 0 0 0 

Cirsium arvense Ciar 5 0 0 0 0 0 0 0 

Cirsium palustre Cipa 0 0 0 0 0 0 0 0 

Cirsium vulgare Civu 0 0 0 0 0 0 7 0 

Cladium mariscus Clma 0 0 0 0 0 0 0 0 

Crassula helmsii Crhe 0 0 0 0 0 0 0 0 

Crataegus monogyna Crmo 0 0 0 0 0 0 0 0 

Dactylis glomerata Dcgl 0 0 0 0 10 0 0 0 

Eleocharis uniglumis Elun 0 50 100 0 0 0 0 0 

Epilobium hirsutum Ephi 100 0 0 0 0 0 0 0 

Festuca pratensis Fepr 0 0 0 0 0 0 20 0 

Festuca rubra Feru 0 0 0 0 0 25 0 96 

Filipendula ulmaria Fiul 0 0 0 0 0 0 20 0 

Galium aparine Gaap 100 0 0 0 0 0 0 0 

Galium palustre Gapa 0 100 5 0 10 5 0 0 

Glechoma hederacea Glhe 0 0 0 1 0 0 0 35 

Helictotrichon pubescens Hepu 0 0 0 0 0 0 6 0 

Holcus lanatus Hola 0 0 0 0 0 0 15 0 

 

 

 

 



Appendices   234 

 

Appendix 4b 
 

Species  Abb. T5Q5 T5Q6 T5Q7 T6Q1 T6Q2 T6Q3 T6Q4 T6Q5 

Hydrocotyle vulgaris Hyvu 0 0 0 0 0 0 0 0 

Iris pseudacorus Irps 0 0 0 0 0 0 8 0 

Juncus bufonius Jubu 0 0 0 0 0 0 50 0 

Juncus effusus Juef 0 0 0 0 0 0 0 0 

Juncus inflexus Juin 0 0 0 0 0 0 30 0 

Lathyrus pratensis Lapr 0 0 0 0 0 0 0 0 

Lemna minor Lemi 0 10 5 0 0 0 0 0 

Lemna trisulca Letr 0 0 5 0 0 0 0 0 

Lolium perenne Lope 6 0 0 0 0 0 0 0 

Lychnis flos-cuculi Lyfc 0 0 0 0 0 0 5 0 

Lycopus europaeus Lyeu 0 0 0 0 0 0 0 0 

Lysimachia vulgaris Lyvu 0 0 0 0 0 0 0 0 

Mentha aquatica  Meaq 0 25 33 0 5 0 0 0 

Molinia caerulea Moca 0 0 0 10 0 0 0 0 

Myosotis scorpioides Mssc 0 0 3 0 0 0 0 0 

Trifolium repens Trre 0 0 0 0 0 0 0 0 

Phalaris arundinacea Phar 0 0 0 10 100 0 0 0 

Phragmites australis Phau 14 25 1 100 100 100 15 0 

Poa pratensis Papr 0 0 0 0 0 0 0 0 

Poa trivialis Patr 3 0 0 10 0 0 0 0 

Potentilla erecta Pter 0 0 0 0 0 0 0 0 

Ranunculus lingua Rali 0 0 0 0 5 0 0 0 

Ranunculus trichophyllus Ratr 0 0 2 0 100 0 0 0 

Reseda lutea Relu 0 0 0 0 0 0 0 0 

Rubus fruticosus Rufr 0 0 0 0 0 0 0 0 

Rumex acetosa Ruac 0 0 0 0 0 0 0 0 

Rumex hydrolapathum Ruhy 0 0 0 0 0 0 0 0 

Rumex obtusifolius Ruob 0 0 0 0 0 0 0 0 

Salix caprea Saca 0 0 0 0 0 0 0 0 

Salix pentandra Sape 0 0 0 10 0 0 0 0 

Salix purpurea Sapu 0 0 0 0 0 0 0 0 

Solanum dulcamara Sodu 0 6 0 0 0 0 0 0 

Sparganium erectum Sper 0 0 0 0 0 0 0 0 

Stellaria media Stme 0 0 0 0 0 0 0 0 

Symphytum officinale Syof 0 0 0 0 0 18 0 0 

Thalictrum flavum  Thfl 0 0 0 0 0 0 0 0 

Typha latifolia Tyla 0 50 0 0 0 0 0 0 

Urtica dioica Urdi 0 0 0 0 0 10 0 8 

Salix repens Sare 0 0 0 0 0 0 0 0 
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Appendix 4c: Environmental variables recorded from sample 
quadrats in June 2010 at Wicken Fen. (T =  Line transect; Q =  
Quadrat). 

Line 

transect 

 & 

Quadrat  

number 

Soil 

pH 

Soil 

conductivity 

(μS/cm) 

Water 

conductivity 

(μS/cm) 

% 

Shade 

Water 

depth 

(m) 

Vegetation  layer (m) 

Herb 
Tall 

herb 
Shrub Tree 

T1Q1 7.42 700 859 none none 0.28 0.71 absent absent 

T1Q2 6.76 491 none 44 none 0.29 1.22 3.67 absent 

T1Q3 7.11 580 none 
none 

0.01 0.23 0.94 absent absent 

T1Q4 6.97 576 none 
none 

0.01 0.61 1.11 absent absent 

T1Q5 7.31 779 none 
none 

none 0.83 2.11 absent absent 

T1Q6 6.95 700 876 
none 

0.15 0.68 1.34 absent absent 

T1Q7 6.85 460 none 93 none 0.25 0.81 5.5 absent 

T1Q8 7.22 704 none 86 none 0.25 2.02 2.97 16 

T1Q9 5.6 690 none 78 none 0.32 1.8 4.73 absent 

T1Q10 6.59 520 none 74 none 0.07 0.93 absent 11 

T2Q1 7.8 318 none none none 0.11 0.49 absent absent 

T2Q2 7.89 232 none none none 0.69 1.26 1.31 absent 

T2Q3 7.8 252 none none none 0.33 1.21 absent absent 

T2Q4 7.35 629 none none none 0.19 0.51 absent absent 

T2Q5 6.91 542 718 none 0.1 0.18 1.04 absent absent 

T2Q6 7.8 245 758 none 0.16 0.47 1.79 absent absent 

T2Q7 7.34 595 none none none 0.4 1.06 3.33 absent 

T2Q8 7.2 618 none none none 0.57 1.22 3 absent 

T3Q1 7.49 622 none none none 0.11 1.1 1.9 absent 

T3Q2 7.6 670 none 95 none 0.14 0.71 4 12 

T3Q3 7.44 571 none 95 none 0.76 1.36 5.33 absent 

T3Q4 7.42 765 none 99.4 none 0.23 0.69 absent 16 

T3Q5 7.7 758 none 98 none 0.25 .95 absent 20 

T3Q6 7.79 600 none none none 0.33 1.02 absent absent 

T3Q7 7.72 570 none 97 none 0.34 0.87 absent 7.3 
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Appendix 4c 

 
Line 

transect 

 & 

Quadrat  

number 

Soil 

pH 

Soil 

conductivity 

(μS/cm) 

Water 

conductivity 

(μS/cm) 

% 

Shade 

Water 

depth 

(m) 

Vegetation  layer (m) 

Herb 
Tall 

herb 
Shrub Tree 

T4Q1 6.86 512 none none none 0.7 2.14 2.5 absent 

T4Q2 7.36 537 none 98 none 0.86 1.75 absent 5 

T4Q3 7.74 569 none 90 none 0.48 1.71 absent 8 

T5Q1 7.77 635 none none none 0.36 0.6 absent absent 

T5Q2 7.59 785 none none none 0.15 absent absent absent 

T5Q3 7.55 658 none none none 0.35 0.81 absent absent 

T5Q4 7.47 908 875 none 0.42 0.29 absent absent absent 

T5Q5 7.72 631 none 93 none 0.67 1.35 6 absent 

T5Q6 6.8 841 629 none 0.09 0.49 1.89 absent absent 

T5Q7 6.9 758 758 none 0.13 0.44 absent absent absent 

T6Q1 7.66 806 none 93 none 0.47 1.24 absent 10 

T6Q2 6.72 2610 2820 none 0.1 0.56 1.98 absent 8 

T6Q3 7.52 550 none 97 none 0.49 1.56 6 absent 

T6Q4 7.36 686 none none none 0.26 1.15 absent absent 

T6Q5 7.6 925 none 99 none 0.2 absent absent 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices   237 

 

Appendix 5: TWINSPAN Analysis depicting final Table from 40 
quadrats in Wicken Fen. 

 

 Plant species in first column), entries in the table are the pseudospecies levels not 

quantitative values, the right and bottom sides define the dendrogram of the classification 

of species and samples, respectively. 
 

      

                                                          

                  1 22341231 1112 3 2211  3 3333 11322232 

                 7091380143912386568785634760245274925910 

 

   63 Papr       555-----5----------------------3--------  0000   

   26 Cipa       -13----2--------------------------------  000100 

    1 Aepo       --3-------------------------------------  000101 

   16 Cahi       -3--------------------------------------  000101 

   30 Crmo       -1--------------------------------------  000101 

   32 Defl       ----555---------------------------------  000101 

   40 Glhe       -2--5-5----------1----------------------  000101 

   48 Lapr       -2--------------------------------------  000101 

   59 Oxac       ---3------------------------------------  000101 

   77 Sodu       ---3---------------2--------------------  00011  

   83 Urdi       --44-43------------43--------------3----  00011  

   34 Ephi       -4-------5---32-------------------------  001000 

    7 Arel       ---------3------------------------------  001001 

   18 Cxdi       -------5--------------------------------  001001 

   38 Gaap       -------455------------------------------  001001 

   51 Lope       ---------3------------------------------  001001 

   72 Ruob       -------3--------------------------------  001001 

   13 Clpl       ---------------------4------------------  001010 

   14 Capa       ---------------------4------------------  001010 

   22 Cxve       ----------------------5-----------------  001010 

   28 Clma       ------------5--5--535-------------------  001010 

   57 Moca       -------------5---4----2-----------------  001010 

   62 Papa       --------------55-4-1--------------------  001010 

   64 Patr       ---------25-----------------------------  001010 

   65 Pter       ------------2---------------------------  001010 

   69 Rufr       ----------4-------4-4-------------------  001010 

   74 Sape       -----------------4----------------------  001010 

   75 Sapu       ----------3-----------------------------  001010 

   17 Cxac       --5-------------5-5---------------------  001011 

   80 Syof       -----4----44-33-------------------------  001011 

   15 Clse       --------4--3--21-3-35-4-5---------4-----  0011   

   41 Hepu       -------5----5---------------------3-----  0011   

   54 Lyvu       --4----4---45-1-------32--4-------------  0011   

   73 Saca       ----------4-52-3----------------4-------  0011   

   19 Cxfl       ----54-5---------5---------------54-----  010    

   37 Fiul       52------------------3-------------5-----  010    

   68 Relu       ---52---4--------------------------3----  010    

    5 Alge       ----------------------5----------------5  011    

   25 Ciar       --------433--------------------------24-  011    

   61 Phau       2-4545--54343444555525-5-55--514--454--1  011    

    8 Atff       -----5-------------------------5--------  100    

   39 Gapa       4-5--3----------1---3554544--534----3---  100    

   60 Phar       ----5-----------44------55--2-----------  100    

   47 Juin       -----------544---------55--------55-----  101    

   82 Tyla       ----------------------3------5----------  101    

   44 Irps       --3-4----------------1----3-----453-----  1100   

   45 Jubu       ----------------------1-----------5-----  1100   

   21 Cxpa       ------------3----------54---------------  110100 

    3 Ajre       -------------------------------2--------  110101 

    4 Alpa       ------------------------------1---------  110101 

    6 Anod       ----------------------------------5-----  110101 

    9 Bara       ------------------------------1---------  110101 

   10 Blpe       ---------------------------------5------  110101 

   11 Beer       -----------------------------5----------  110101 

   12 Btpe       --------------1-----------------4-------  110101 
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Appendix 5 
 

 

   23 Cnni       ------------------------5---------------  110101 

   24 Chau       --------------------------------3-------  110101 

   27 Civu       ----------------------------------3-----  110101 

   29 Craq       ----------------------------2-----------  110101 

   33 Elun       ---------------------------5555---------  110101 

   35 Fepr       ----------------------------------5-----  110101 

   43 Hyvu       -----------------------55---------------  110101 

   49 Lemi       1---------------------------443---------  110101 

   50 Letr       ------------------------------3---------  110101 

   52 Lyfc       ----------------------------------3-----  110101 

   53 Lyeu       ---------------------------4------------  110101 

   55 Meaq       -------------3---------54344455-55------  110101 

   58 Mssc       ----------------------------1-2---------  110101 

   66 Rali       -------------------------3--------------  110101 

   67 Ratr       ----------------------1--52-3-2---------  110101 

   70 Ruac       ---------------------------2------------  110101 

   71 Ruhy       -------------------------------2--------  110101 

   76 Sper       -----------------------------3----------  110101 

   79 Stpa       ----------------------------------5-----  110101 

   81 Thfl       -----------------------25---------------  110101 

    2 Agst       --------3------------------54-455554555-  11011  

   31 Dcgl       -------------------------4-----------2--  11011  

   42 Hola       ----------------------------------4--55-  11100  

   20 Cxot       --------------------------------------1-  111010 

   56 Mrpe       ---------------------------------------2  111010 

   78 Stal       -----------------------------------4----  111010 

   84 Vamy       -----------------------------------1----  111010 

   36 Feru       --------------4-----------------4--45552  111011 

   46 Juef       --------------------5----------------55-  1111   
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Appendix 6: TWINSPAN groups in Wicken Fen with Ellenberg’s 
indicator values for light -L;  Moisture- F; and  Reaction (soil pH 
or water pH ) – R. (source: Hill et al., 1999). 

Group Species  Abb. L F R 

1 

Aegopodium podagraria L. Aepo 6 5 6 

Cardamine  hirsute L. Cahi 8 5 6 

Carex acutiformis Ehrh. Cxac 7 8 7 

Carex flacca Schreb. Cxfl 6 5 6 

Cirsium palustre (L.) Scop Cipa 7 8 5 

Crataegus monogyna Jacq. Crmo 7 5 7 

Deschampsia flexuosa (L.) Trin Defl 6 5 2 

Epilobium hirsutum L. Ephi 7 8 7 

Filipendula ulmaria (L.) Maxim. Fiul 7 8 6 

Galium aparine L. Gaap 7 9 7 

Glechoma hederacea L Glhe 6 6 7 

Iris pseudacorus L. Irps 7 9 6 

Lathyrus pratensis L. Lapr 7 6 6 

Lemna minor L. Lemi 7 11 7 

Lysimachia vulgaris L Lyvu 7 9 7 

Oxalis acetosella L. Oxac 4 6 4 

Phragmites australis (Cav.) Trin. Ex Steud. Phau 7 5 7 

Poa pratensis L. Popr 7 10 6 

Reseda lutea L. Rebu 7 4 7 

Solanum dulcamara L. Sodu 7 8 7 

Symphytum officinale L. Syof 7 7 7 

Urtica dioica L. Urdi 6 6 7 

      

2 

Agrostis stolonifera L. Agst 7 6 7 

Alopecurus geniculatus L. Alge 8 7 6 

Arrhenatherum elatius (L.) P. Beauv. Ex J. 

Presl & C. Presl 
Arel 7 5 7 

Betula pendula Roth Bepe 7 5 4 

Callitriche platycarpa Kuetz.    Capl 6 11 7 

Calystegia sepium (L.) R. Br. Case 7 8 7 

Carex acutiformis Ehrh. Caac 7 8 7 

Carex distans L. Cadi 8 6 7 

Carex flacca Schreb. Cafl 7 5 6 

Carex panicea L. Capa 8 8 4 

Carex vesicaria L. Cave 8 10 5 

Cirsium arvense (L.) Scop Ciar 8 6 7 

Cirsium palustre (L.) Scop Cipa 7 8 5 

Cladium mariscus (L.) Pohl Clma 8 9 8 

Epilobium hirsutum L. Ephi 7 8 7 

Festuca rubra L Feru 8 5 6 

Filipendula ulmaria (L.) Maxim. Fiul 7 8 6 

Galium aparine L. Gaap 6 6 7 
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Appendix 6: 
Group Species  Abb. L F R 

2 Galium palustre L.   Gapa 7 9 5 

Glechoma hederacea L Glhe 6 6 7 

Helictotrichon pubescens (Huds.) Pilg. Hepu 7 4 7 

Iris pseudacorus L. Irps 7 9 6 

Juncus bufonius L. Jubu 7 7 6 

Juncus effusus L. Juef 7 7 4 

Juncus inflexus L. Juin 7 7 7 

Lolium perenne L. Lope 8 5 6 

Lycopus europaeus L. Lyeu 7 8 7 

Mentha aquatica L. Meaq 7 8 7 

Molinia caerulea (L.) Moench Moca 7 8 3 

Phalaris arundinacea L. Phar 7 8 7 

Phragmites australis (Cav.) Trin. Ex 

Steud 
Phau 7 10 7 

Poa palustris L. Popa 7 9 7 

Poa pratensis L. papr 7 5 6 

Poa trivialis L. potr 7 6 6 

Potentilla erecta (L.) Raeusch. poer 7 7 3 

Ranunculus trichophyllus Chaix Ratr 7 12 6 

Reseda lutea L. Relu 7 4 7 

Rubus fruticosus L. Rufr 6 6 6 

Rumex obtusifolius L. Ruob 7 5 7 

Salix caprea L. Saca 7 7 7 

Salix pentandra L. Sapu 7 8 6 

Salix purpurea L. Sopu 8 9 7 

Solanum dulcamara L. Sodu 7 8 7 

Symphytum officinale L Syof 7 7 7 

Typha latifolia L. Tyla 8 10 7 

Urtica dioica L. Urdi 6 6 7 

      

3 

Agrostis stolonifera L. Agst 7 6 7 

Ajuga reptans L. Ajre 5 7 5 

Alisma plantago-aquatica L. Alpl 7 10 7 

Anthoxanthum odoratum L. Anod 7 6 4 

Athyrium filix-femina (L.) Roth Atfi 5 7 5 

Baldellia ranunculoides (L.) Parl. Bara 8 10 6 

Berula erecta (Huds.) Coville Beer 7 10 7 

Bellis perennis L. Bepe 8 5 6 

Calystegia sepium (L.) R. Br. Case 7 8 7 

Carex flacca Schreb. Cafl 7 5 6 

Carex panicea L. Capa 8 8 4 

Cirsium vulgare (Savi) Ten. Civu 7 5 6 

Dactylis glomerata L. Dagl 7 5 7 

Eleocharis uniglumis (Link) Schult. Elun 8 9 7 
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Appendix 6: 
Group Species Name Abb. L F R 

3 Festuca pratensis Huds. Fepr 7 6 6 

Filipendula ulmaria (L.) Maxim. Fiul 7 8 6 

Galium palustre L.   Gapa 7 9 5 

Helictotrichon pubescens (Huds.) Pilg. Hepu 7 4 7 

Holcus lanatus L. Hola 7 6 6 

Hydrocotyle vulgaris L. Hyvu 8 8 6 

Iris pseudacorus L. Irps 7 9 6 

Juncus bufonius L. Jubu 7 7 6 

Juncus inflexus L. Juin 7 7 7 

Lemna minor L. Lemi 7 11 7 

Lemna trisulca L. Letr 7 12 7 

Lychnis flos-cuculi L. Lyfl 7 9 6 

Lycopus europaeus L. Lyeu 7 8 7 

Mentha aquatica L. Meaq 7 8 7 

Myosotis scorpioides L Mysc 7 9 6 

Phalaris arundinacea L. Phar 7 8 7 

Phragmites australis (Cav.) Trin. Ex 

Steud. 
Phau 7 10 7 

Poa pratensis L. Popr 7 9 6 

Ranunculus lingua L. Rali 7 10 6 

Ranunculus trichophyllus Chaix Ratr 7 12 6 

Rumex acetosa L. Ruac 7 5 5 

Rumex hydrolapathum Huds. Ruhy 7 10 7 

Sparganium erectum L. Sper 7 10 7 

Stellaria palustris Retz. Stpa 7 8 6 

Thalictrum flavum L. Thfl 7 8 7 

Typha latifolia L. Tyla 8 10 7 

      

4 

Agrostis stolonifera L. Agat 7 6 7 

Alopecurus geniculatus L Alge 8 7 6 

Carex otrubae Podp. Caot 6 8 7 

Cirsium arvense (L.) Scop Ciar 8 6 7 

Dactylis glomerata L. Dagl 7 5 7 

Festuca rubra L Feru 8 5 6 

Galium palustre L.   Gapa 7 9 5 

Holcus lanatus L. Hola 7 6 6 

Juncus effusus L. Juef 7 7 4 

Mercurialis perennis L Mepe 3 6 7 

Phragmites australis (Cav.) Trin. Ex 

Steud 
Phau 7 10 7 

Reseda lutea L. Relu 7 4 7 

Stellaria alsine Grimm Stal 7 8 5 

Urtica dioica L. Urdi 6 6 7 

 Vaccinium myrtillus L. Vamy 6 6 2 
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Appendix 7a: Plant taxa recorded from 48 quadrats in July 2011 at 
Caerlaverock Reserve with common names, density and 
frequency. 

Family Species Name Common Name 
Density 

(m
-2

) 

Freque-

ncy 

% 

Asteraceae Senecio jacobeae L. Common Ragwort 1.25 6.25 

Asteraceae  Cirsium arvense (L.) Scop. Creeping Thistle 2.81 8.33 

Asteraceae  Aster tripolium L. Sea Aster 1.17 6.25 

Asteraceae Bellis perennis L. Daisy 1.52 12.5 

Asteraceae Leontodon autumnalis L. Autumn Hawkbit 1.54 10.42 

Asteraceae 
Tripleurospermum maritimum 

(L.) W.D.J.Koch 
Sea Mayweed 0.42 2.08 

Apiacaea Oenanthe lachenallii C.Gmelin. Parsley Water-dropwort 0.38 8.33 

Araliaceae Hedera helix  L. Common Ivy 0.27 6.25 

Apiaceae Heracleum sphondylium  L. Hogweed 0.04 2.08 

Brassicaceae Cardamine pratense L. Cuckooflower 0.04 2.08 

Brassicaceae 
Capsella bursa-pastoris (L.) 

Medik. 
shepherds-purse 0.02 2.08 

Brassicaceae Cochlearia officinalis L. Common Scurvygrass 0.13 2.08 

Brassicaceae Cochlearia anglica L. English Scurvygrass 0.02 2.08 

Boraginaceae Symphytum tuberosum L. Tuberous Comfrey 0.15 2.08 

Caryophyllaceae Stellaria nemorum L. Wood Stitchwort 0.33 4.17 

Caryophyllaceae Stellaria holostea L. Greater Stitchwort 0.79 8.33 

Caryophyllaceae Silene dioica (L.) Clairv. Red Campion 0.06 2.08 

Chenopodiaceae Atriplex hastata L. Hastate orach 0.75 8.33 

Chenopodiaceae Salicornia europaea L. Common Glasswort 0.31 6.25 

Cyperaceae Carex flacca Schreb. Glaucous Sedge 2.6 6.25 

Cyperaceae Carex distans L. Distant Sedge 0.67 8.33 

Cyperaceae Scirpus maritimus L. Sea Clubrush 1.52 4.17 

Cyperaceae Carex nigra (L.) Reichard. Common Sedge 1.98 6.25 

Cyperaceae 
Eleocharis uniglumis (Link) 

Schult 
Slender Spike-rush 1.7 4.17 

Cyperaceae Carex disticha Huds. Brown Sedge 0.21 2.08 

Dryopteridaceae Dryopteris filix-mas (L.) Schott Male-fern 0.17 6.25 

Equisetaceae Equisetum arvense L. Field Horsetail 0.15 4.17 

http://en.wikipedia.org/wiki/Carl_Linnaeus


Appendices   243 

 

 

Appendix 7a 
 

Family Species Name Common Name 
Density 

(m
-2

) 

Freque-

ncy 

% 

Fabaceae Lathyrus pratensis L. Meadow Vetchling 1.2 8.3 

Fabaceae Lotus corniculatus L. 
Common Bird's-foot-

trefoil 
2.37 12.5 

Fabaceae Trifolium repens L. White Clover 11.27 31.25 

Fabaceae Ulex europaeus L. Gorse 4.23 14.58 

Geraniaceae Geranium robertianum L. Herb-Robert 0.3 2.08 

Juncaceae Juncus  gerardii  Loisel. Saltmarsh Rush 15.19 22.92 

Juncaceae Juncus bufonius L. Toad Rush 0.42 2.08 

Juncaceae Juncus effusus L. Soft-rush 9.02 14.58 

Juncaceae Juncus inflexus L. Hard Rush 3.63 10.42 

Juncaginaceae Triglochin maritima L. Sea Arrowgrass 4.63 22.92 

Onagraceae Epilobium angustifolium L. Alpine Willowherb 0.08 2.08 

Plantoginaceae Plantago maritima L. Sea Plantain 2.02 8.33 

Plumbaginaceae Armeria maritima (Mill.) Willd. Thrift 7.42 18.75 

Polygonaceae Rumex acetosa  L. Common Sorrel 0.19 2.08 

Polygonaceae Polygonum persicaria L. 
Spotted ladysthumb , 

redshank 
0.17 2.08 

Poaceae 
Elymus pycnanthus (Godr.) 

Barkworth 
Sea Couch 3.33 4.17 

Poaceae Holcus mollis L. Creeping Soft-grass 0.38 4.17 

Poaceae Agrostis capillaris L. Common Bent 5.94 12.5 

Poaceae Glyceria declinata Breb. Small Sweet-grass 1.02 4.17 

Poaceae Elymus repens (L.) Gould. Common Couch 0.542 6.25 

Poaceae Cynosurus cristatus L. Crested Dog's-tail 1.23 4.17 

Poaceae Dactylis glomerata L. Cock's-foot 3.13 8.33 

Poaceae Lolium perenne L. Perennial Rye-grass 6.65 14.58 

Poaceae Anthoxanthum odoratum L. Sweet Vernal-grass 0.25 4.17 

Poaceae 
Puccinellia maritima (Hudson) 

Parl.        

Common Saltmarsh-

grass 
12.31 16.67 

Poaceae Phleum pratense L. Timothy 0.63 2.08 
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Family Species Name Common Name 
Density 

(m
-2

) 

Freque-

ncy 

% 

Poaceae Agrostis stolonifera L. Creeping Bent 7.17 20.83 

Poaceae Poa trivialis L. Rough Meadow-grass 4.125 10.42 

Poa ceae Poa annua L. Annual Meadow-grass 0.1 2.08 

Poaceae Holcus lanatus L. Yorkshire-fog 8.85 22.92 

Poaceae Festuca rubra L. Red Fescue 27.77 39.58 

Poaceae Alopecurus geniculatus L. Marsh Foxtail 0.17 2.08 

Poaceae 
Spartina maritima (Curtis) 

Fernald. 
Small Cord-grass 2.08 2.08 

Poaceae Poa subcaerulea  Smith.  
Spreading Meadow-

grass 
2.21 8.33 

Poaceae Festuca arundinacea Schreb. Tall Fescue 4.27 6.25 

Primulaceae Glaux maritima L. Sea-milkwort 4.75 18.75 

Ranunculaceae Ranunculus baudotii Godr. 
Brackish Water-

crowfoot 
0.35 2.08 

Ranunculaceae Ranunculus acris L Meadow Buttercup 1.56 10.42 

Ranunculaceae Ranunculus repens L. Creeping Buttercup 4.58 18.75 

Rosaceae Potentilla anserina L. Silverweed 3.13 20.83 

Rosaceae Rubus fruticosus L. Bramble 0.1 2.08 

Rubiaceae Galium aparine L. Cleavers 0.92 12.5 

Rubiaceae Galium palustre L. 
Common Marsh-

bedstraw 
0.31 2.08 

Urticaceae Urtica dioica L. Common Nettle 4.33 18.75 
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Appendix 7b:  Field data collected from 48 quadrats at 
Caerlaverock Reserve during July 2011.  (T =  Line transect; Q =  
Quadrat

Species Abb. T1Q1 T1Q2 T1Q3 T1Q4 T1Q5 T1Q6 T1Q7 T1Q8 

Agrostis capillaris agr cap 0 0 40 0 0 0 0 0 

Agrostis stolonifera agr sto 0 100 0 0 0 0 100 0 

Alopecurus geniculatus alo gen 0 8 0 0 0 0 0 0 

Anthoxanthum 

odoratum 
ant odo 0 0 0 0 0 0 0 0 

Armeria maritima arm mar 0 0 0 0 0 0 5 2 

Aster tripolium ast tri 0 0 0 0 0 0 0 0 

Atriplex hastata atr has 0 0 0 0 0 0 0 0 

Bellis perennis bel per  0 0 0 0 10 20 0 0 

Capsella bursa-pastoris cap bur 0 0 0 0 0 0 0 0 

Cardamine pratense car pra 0 0 0 0 0 0 0 0 

Carex distans car dist 0 0 4 0 0 0 0 0 

Carex disticha car dis 0 10 0 0 0 0 0 0 

Carex flacca car flac 0 0 45 0 5 0 0 0 

Carex nigra car nig 0 0 0 33 0 0 0 0 

Cirsium arvense cir arv 44 0 0 0 0 55 0 0 

Cochlearia anglica coc ang 0 0 0 0 0 0 0 0 

Cochlearia officinalis coc off 0 0 0 0 0 0 0 0 

Cynosurus cristatus cyn cri 0 0 0 30 29 0 0 0 

Dactylis glomerata dac glo 0 0 0 0 0 0 0 0 

Dryopteris filix-mas dry fil 0 0 0 0 0 0 0 0 

Eleocharis uniglumis ele uni 0 0 0 0 0 0 0 0 

Elymus pycnanthus ely pyc 0 0 0 0 0 0 0 0 

Elymus repens ely rep 6 0 0 0 0 0 0 0 

Epilobium 

angustifolium 
epi ang 0 0 0 0 0 0 0 0 

Equisetum arvense equ arv 0 0 0 0 0 0 0 0 

Festuca arundinacea fes aru 0 0 0 50 0 100 0 0 

Festuca rubra fes rub 0 17 100 0 10 0 0 100 

Galium aparine gal apa 0 0 0 0 0 0 0 0 

Galium palustre gal pal 0 0 0 0 0 0 0 0 

Geranium robertianum ger rob 0 0 0 0 0 0 0 0 

Glaux maritima gla mar 0 12 19 0 0 0 19 0 

Gyceria declinata gyc dec 0 0 0 0 0 0 0 0 

Hedera helix hed hel 0 0 0 0 0 0 0 0 

Heracleum 

sphondylium 
her sph 0 0 0 0 0 0 0 0 

Holcus lanatus hol lan 0 0 0 25 5 0 0 0 

Holcus mollis hol mol 0 0 0 0 0 0 0 0 

Juncus  gerardi jun ger 0 0 50 0 0 0 100 0 

Juncus bufonius jun buf 0 0 0 0 0 0 0 0 

Juncus effusus jun eff 0 0 0 0 0 0 0 0 

Juncus inflexus jun inf 0 0 0 0 0 0 0 0 
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Species Abb. T1Q1 T1Q2 T1Q3 T1Q4 T1Q5 T1Q6 T1Q7 T1Q8 

Lathyrus pratensis lat pra 0 0 0 0 0 20 0 0 

Leontodon autumnalis leo aut 0 0 0 0 0 0 0 0 

Lolium perenne lol per 0 0 0 0 0 0 0 0 

Lotus corniculatus lot cor 0 0 0 0 0 0 0 0 

Oenanthe lachenallii oen lac 0 0 0 5 0 0 0 0 

Phleum pratense phl pra 0 0 0 0 0 0 0 0 

Plantago maritima pla mar 0 0 0 0 0 0 31 0 

Poa annua poa ann 0 0 0 0 0 0 0 0 

Poa subcaerulea poa sub 0 0 0 0 0 0 0 0 

Poa trivialis poa tri 50 0 0 0 0 0 0 0 

Polygonum persicaria pol per 0 0 0 0 0 0 0 0 

Potentilla anserina pot ans 0 0 0 0 6 0 0 0 

Puccinellia maritima puc mar 0 0 0 0 0 0 0 0 

Ranunculus acris ran acr 0 0 0 0 10 0 0 0 

Ranunculus baudotii ran bau 0 17 0 0 0 0 0 0 

Ranunculus repens ran rep 50 0 0 0 0 0 0 0 

Rubus fruticosus rub fru 0 0 0 0 0 0 0 0 

Rumex acetosa rum ace 0 0 0 0 0 0 0 0 

Salicornia europaeus sal eur 0 0 0 0 0 0 0 0 

Scirpus maritimus sci mar 0 0 0 0 0 0 0 0 

Senecio jacobea sen jac 5 0 0 0 0 0 0 0 

Silene dioica sil dio 0 0 0 0 0 0 0 0 

Spartina maritima spa mar 0 0 0 0 0 0 0 0 

Stellaria holostea ste hol 0 0 0 0 0 0 0 0 

Stellaria nemorum ste nem 15 0 0 0 0 0 0 0 

Symphytum tuberosum sym tub 0 0 0 0 0 0 0 0 

Trifolium repens tri rep 0 13 34 35 40 0 0 0 

Triglochin maritima tri mar 0 16 4 0 0 0 11 80 

Tripleurospermum 

maritimum 
tri mar 0 0 0 0 0 0 0 0 

Ulex europaeus ule eur 71 0 0 0 0 0 0 0 

Urtica dioica urt dio 28 0 0 0 0 0 0 0 
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Appendix 7b 
Species Abb. T2Q1 T2Q2 T2Q3 T2Q4 T2Q5 T3Q1 T3Q2 T3Q3 

Agrostis capillaris agr cap 0 50 25 50 20 0 0 0 

Agrostis stolonifera agr sto 0 0 0 0 0 0 0 0 

Alopecurus 

geniculatus alo gen 0 0 0 0 0 0 0 0 

Anthoxanthum 

odoratum 
ant odo 0 0 0 0 0 0 2 0 

Armeria maritima arm mar 0 0 0 0 0 0 0 0 

Aster tripolium ast tri 0 0 0 0 0 0 0 0 

Atriplex hastata atr has 7 0 0 0 0 0 0 0 

Bellis perennis bel per  0 0 0 0 0 0 24 12 

Capsella bursa-

pastoris cap bur 0 0 0 0 0 0 0 0 

Cardamine pratense car pra 0 0 2 0 0 0 0 0 

Carex distans car dist 0 0 0 0 0 0 0 0 

Carex disticha car dis 0 0 0 0 0 0 0 0 

Carex flacca car flac 0 0 0 0 0 0 0 0 

Carex nigra car nig 0 2 0 0 0 0 0 0 

Cirsium arvense cir arv 0 0 15 0 0 0 0 0 

Cochlearia anglica coc ang 0 0 0 0 0 0 0 0 

Cochlearia officinalis coc off 0 0 0 0 0 0 0 0 

Cynosurus cristatus cyn cri 0 0 0 0 0 0 0 0 

Dactylis glomerata dac glo 0 0 0 0 0 40 1 0 

Dryopteris filix-mas dry fil 0 0 0 0 0 0 0 0 

Eleocharis uniglumis ele uni 0 0 0 30 0 0 0 0 

Elymus pycnanthus ely pyc 0 0 0 0 0 0 0 0 

Elymus repens ely rep 0 0 0 0 0 0 0 0 

Epilobium 

angustifolium 
epi ang 0 0 4 0 0 0 0 0 

Equisetum arvense equ arv 0 0 6 0 0 0 0 0 

Festuca arundinacea fes aru 55 0 0 0 0 0 0 0 

Festuca rubra fes rub 0 100 0 0 0 0 0 0 

Galium aparine gal apa 0 0 0 0 0 10 0 0 

Galium palustre gal pal 0 0 0 15 0 0 0 0 

Geranium 

robertianum ger rob 0 0 0 0 0 0 0 0 

Glaux maritima gla mar 19 0 0 0 0 0 0 0 

Gyceria declinata gyc dec 0 0 0 9 0 0 0 0 

Hedera helix hed hel 0 0 0 0 0 0 0 0 

Heracleum 

sphondylium 
her sph 0 0 0 0 0 0 0 0 

Holcus lanatus hol lan 0 0 0 0 12 0 3 100 

Holcus mollis hol mol 0 0 0 0 0 0 0 0 

Juncus  gerardi jun ger 93 30 0 0 0 0 0 0 

Juncus bufonius jun buf 0 0 20 0 0 0 0 0 

Juncus effusus jun eff 0 0 100 100 0 0 0 0 

Juncus inflexus jun inf 0 0 0 10 0 0 0 0 

Lathyrus pratensis lat pra 0 0 0 0 0 0 0 0 
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Species Abb. T2Q1 T2Q2 T2Q3 T2Q4 T2Q5 T3Q1 T3Q2 T3Q3 

Leontodon 

autumnalis 
leo aut 0 8 0 0 0 0 0 0 

Lolium perenne lol per 0 0 0 0 0 0 100 16 

Lotus corniculatus lot cor 0 0 0 0 17 0 0 0 

Oenanthe lachenallii oen lac 0 0 0 0 0 0 0 0 

Phleum pratense phl pra 0 0 0 0 0 0 0 0 

Plantago maritima pla mar 0 0 0 0 0 0 0 0 

Poa annua poa ann 0 0 0 0 0 0 0 0 

Poa subcaerulea poa sub 0 0 0 0 0 0 0 0 

Poa trivialis poa tri 0 0 0 0 30 0 0 0 

Polygonum 

persicaria 
pol per 0 0 8 0 0 0 0 0 

Potentilla anserina pot ans 0 0 0 10 3 0 0 0 

Puccinellia maritima puc mar 0 0 0 0 0 0 0 0 

Ranunculus acris ran acr 0 0 0 0 20 0 21 0 

Ranunculus baudotii ran bau 0 0 0 0 0 0 0 0 

Ranunculus repens ran rep 0 0 16 0 0 15 0 8 

Rubus fruticosus rub fru 0 0 5 0 0 0 0 0 

Rumex acetosa rum ace 0 0 0 0 0 0 0 0 

Salicornia europaeus sal eur 0 0 0 0 0 0 0 0 

Scirpus maritimus sci mar 25 0 0 0 0 0 0 0 

Senecio jacobea sen jac 0 0 0 0 0 0 4 51 

Silene dioica sil dio 0 0 0 0 0 0 0 0 

Spartina maritima spa mar 0 0 0 0 0 0 0 0 

Stellaria holostea ste hol 0 0 0 0 2 0 0 0 

Stellaria nemorum ste nem 0 0 0 0 0 0 0 0 

Symphytum 

tuberosum 
sym tub 0 0 0 7 0 0 0 0 

Trifolium repens tri rep 0 100 0 0 0 0 2 0 

Triglochin maritima tri mar 0 25 0 0 0 0 0 0 

Tripleurospermum 

maritimum 
tri mar 0 0 0 0 0 0 0 0 

Ulex europaeus ule eur 0 0 26 13 51 0 0 0 

Urtica dioica urt dio 0 0 44 0 3 54 0 0 
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Appendix 7b 
Species Abb. T3Q4 T3Q5 T3Q6 T3Q7 T4Q1 T4Q2 T4Q3 T4Q4 

Agrostis capillaris agr cap 0 0 0 0 100 0 0 0 

Agrostis stolonifera agr sto 0 0 20 0 0 12 0 10 

Alopecurus 

geniculatus 
alo gen 0 0 0 0 0 0 0 0 

Anthoxanthum 

odoratum 
ant odo 0 0 0 0 0 0 0 0 

Armeria maritima arm mar 0 0 0 0 0 0 0 0 

Aster tripolium ast tri 0 0 0 0 0 0 0 0 

Atriplex hastata atr has 0 0 0 0 0 0 0 0 

Bellis perennis bel per  0 0 0 0 0 0 3 0 

Capsella bursa-

pastoris 
cap bur 0 0 0 0 0 0 0 1 

Cardamine pratense car pra 0 0 0 0 0 0 0 0 

Carex distans car dist 0 0 0 0 0 0 0 0 

Carex disticha car dis 0 0 0 0 0 0 0 0 

Carex flacca car flac 0 0 0 0 0 0 0 0 

Carex nigra car nig 0 0 0 0 0 0 0 0 

Cirsium arvense cir arv 0 0 0 0 0 0 0 0 

Cochlearia anglica coc ang 0 0 0 0 0 0 0 0 

Cochlearia officinalis coc off 0 0 0 0 0 0 0 0 

Cynosurus cristatus cyn cri 0 0 0 0 0 0 0 0 

Dactylis glomerata dac glo 0 9 0 0 0 0 0 0 

Dryopteris filix-mas dry fil 0 0 0 0 0 0 0 0 

Eleocharis uniglumis ele uni 0 0 0 0 0 0 0 0 

Elymus pycnanthus ely pyc 0 0 0 0 0 0 0 0 

Elymus repens ely rep 0 0 0 0 0 0 0 10 

Epilobium 

angustifolium 
epi ang 0 0 0 0 0 0 0 0 

Equisetum arvense equ arv 0 0 0 0 0 0 0 0 

Festuca arundinacea fes aru 0 0 0 0 0 0 0 0 

Festuca rubra fes rub 0 0 100 55 0 54 0 0 

Galium aparine gal apa 0 0 0 0 0 0 0 0 

Galium palustre gal pal 0 0 0 0 0 0 0 0 

Geranium 

robertianum 
ger rob 0 0 0 0 0 0 0 0 

Glaux maritima gla mar 0 0 18 0 0 0 0 0 

Gyceria declinata gyc dec 0 0 0 0 0 40 0 0 

Hedera helix hed hel 0 0 0 0 0 0 0 0 

Heracleum 

sphondylium 
her sph 0 0 0 0 0 0 0 0 

Holcus lanatus hol lan 35 5 0 0 90 0 0 0 

Holcus mollis hol mol 0 0 0 0 0 0 0 0 

Juncus  gerardi jun ger 0 0 100 0 0 10 0 0 

Juncus bufonius jun buf 0 0 0 0 0 0 0 0 

Juncus effusus jun eff 100 70 0 0 10 0 0 0 

Juncus inflexus jun inf 20 0 0 0 40 0 0 0 

Lathyrus pratensis lat pra 8 0 0 0 0 0 0 0 
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Appendix 7b 
 

Species Abb. T3Q4 T3Q5 T3Q6 T3Q7 T4Q1 T4Q2 T4Q3 T4Q4 

Leontodon 

autumnalis 
leo aut 0 0 0 0 0 0 0 0 

Lolium perenne lol per 40 0 0 0 0 0 50 100 

Lotus corniculatus lot cor 38 0 0 0 10 0 0 0 

Oenanthe lachenallii oen lac 0 0 0 0 0 0 0 0 

Phleum pratense phl pra 0 0 0 0 0 0 0 30 

Plantago maritima pla mar 0 0 20 0 0 0 0 0 

Poa annua poa ann 0 0 0 0 0 0 0 5 

Poa subcaerulea poa sub 0 0 0 0 0 0 0 0 

Poa trivialis poa tri 0 0 5 0 0 0 0 0 

Polygonum 

persicaria 
pol per 0 0 0 0 0 0 0 0 

Potentilla anserina pot ans 0 0 0 0 8 38 0 0 

Puccinellia maritima puc mar 0 0 20 60 0 0 0 0 

Ranunculus acris ran acr 0 0 0 0 0 0 0 0 

Ranunculus baudotii ran bau 0 0 0 0 0 0 0 0 

Ranunculus repens ran rep 3 3 0 0 0 0 100 0 

Rubus fruticosus rub fru 0 0 0 0 0 0 0 0 

Rumex acetosa rum ace 0 9 0 0 0 0 0 0 

Salicornia europaeus sal eur 0 0 0 0 0 0 0 0 

Scirpus maritimus sci mar 0 0 0 0 0 48 0 0 

Senecio jacobea sen jac 0 0 0 0 0 0 0 0 

Silene dioica sil dio 0 0 0 0 0 0 0 0 

Spartina maritima spa mar 0 0 0 0 0 0 0 0 

Stellaria holostea ste hol 0 0 0 0 0 0 0 1 

Stellaria nemorum ste nem 0 1 0 0 0 0 0 0 

Symphytum 

tuberosum 
sym tub 0 0 0 0 0 0 0 0 

Trifolium repens tri rep 0 0 30 0 0 0 100 29 

Triglochin maritima tri mar 0 0 10 0 0 0 0 0 

Tripleurospermum 

maritimum 
tri mar 0 0 0 0 0 0 0 20 

Ulex europaeus ule eur 0 21 0 0 0 0 0 0 

Urtica dioica urt dio 0 0 0 0 0 0 0 0 
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Appendix 7b 
 

Species Abb. T5Q1 T5Q2 T5Q3 T5Q4 T5Q5 T5Q6 T5Q7 T5Q8 

Agrostis capillaris agr cap 0 0 0 0 0 0 0 0 

Agrostis stolonifera agr sto 0 0 0 0 5 0 20 27 

Alopecurus 

geniculatus 
alo gen 0 0 0 0 0 0 0 0 

Anthoxanthum 

odoratum 
ant odo 0 0 0 0 0 0 0 0 

Armeria maritima 
arm 

mar 
0 33 1 100 0 0 0 0 

Aster tripolium ast tri 0 9 43 0 0 0 0 0 

Atriplex hastata atr has 0 0 0 0 9 8 0 0 

Bellis perennis bel per  0 0 0 0 0 0 0 0 

Capsella bursa-

pastoris 
cap bur 0 0 0 0 0 0 0 0 

Cardamine pratense car pra 0 0 0 0 0 0 0 0 

Carex distans car dist 0 0 0 0 0 0 0 0 

Carex disticha car dis 0 0 0 0 0 0 0 0 

Carex flacca car flac 0 0 0 0 0 0 75 0 

Carex nigra car nig 0 0 0 0 0 0 0 0 

Cirsium arvense cir arv 0 0 0 0 0 0 0 0 

Cochlearia anglica coc ang 0 0 0 0 0 0 0 0 

Cochlearia officinalis coc off 0 0 6 0 0 0 0 0 

Cynosurus cristatus cyn cri 0 0 0 0 0 0 0 0 

Dactylis glomerata dac glo 0 0 0 0 0 0 0 0 

Dryopteris filix-mas dry fil 0 0 0 0 0 0 0 0 

Eleocharis uniglumis ele uni 0 0 0 0 0 0 0 50 

Elymus pycnanthus ely pyc 0 0 0 0 0 0 0 0 

Elymus repens ely rep 0 0 0 0 0 0 0 0 

Epilobium 

angustifolium 
epi ang 0 0 0 0 0 0 0 0 

Equisetum arvense equ arv 0 0 0 0 0 0 0 0 

Festuca arundinacea fes aru 0 0 0 0 0 0 0 0 

Festuca rubra fes rub 0 0 0 100 50 45 100 48 

Galium aparine gal apa 0 0 0 0 0 0 0 0 

Galium palustre gal pal 0 0 0 0 0 0 0 0 

Geranium 

robertianum 
ger rob 0 0 0 0 0 0 0 0 

Glaux maritima gla mar 0 0 0 100 0 0 0 1 

Gyceria declinata gyc dec 0 0 0 0 0 0 0 0 

Hedera helix hed hel 0 0 0 0 0 0 0 0 

Heracleum 

sphondylium 
her sph 0 0 0 0 0 0 0 0 

Holcus lanatus hol lan 0 0 0 0 0 0 0 0 

Holcus mollis hol mol 0 0 0 0 0 0 0 0 

Juncus  gerardi jun ger 0 0 0 0 100 0 100 21 

Juncus bufonius jun buf 0 0 0 0 0 0 0 0 

Juncus effusus jun eff 0 0 0 0 0 0 0 0 

Juncus inflexus jun inf 0 0 0 0 0 0 0 0 
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Appendix 7b 
 

Species Abb. T5Q1 T5Q2 T5Q3 T5Q4 T5Q5 T5Q6 T5Q7 T5Q8 

Lathyrus pratensis lat pra 0 0 0 0 0 0 0 0 

Leontodon 

autumnalis 
leo aut 0 0 0 0 4 0 2 0 

Lolium perenne lol per 0 0 0 0 0 0 0 0 

Lotus corniculatus lot cor 0 0 0 0 0 10 0 0 

Oenanthe lachenallii oen lac 0 0 0 0 0 0 2 0 

Phleum pratense phl pra 0 0 0 0 0 0 0 0 

Plantago maritima pla mar 0 25 0 0 0 0 0 0 

Poa annua poa ann 0 0 0 0 0 0 0 0 

Poa subcaerulea poa sub 0 0 0 0 0 0 0 0 

Poa trivialis poa tri 0 0 0 0 0 0 0 0 

Polygonum 

persicaria 
pol per 0 0 0 0 0 0 0 0 

Potentilla anserina pot ans 0 0 0 0 0 0 55 4 

Puccinellia maritima puc mar 57 100 100 0 0 0 0 0 

Ranunculus acris ran acr 0 0 0 0 0 0 0 0 

Ranunculus baudotii ran bau 0 0 0 0 0 0 0 0 

Ranunculus repens ran rep 0 0 0 0 0 0 0 0 

Rubus fruticosus rub fru 0 0 0 0 0 0 0 0 

Rumex acetosa rum ace 0 0 0 0 0 0 0 0 

Salicornia europaeus sal eur 3 0 4 0 0 0 0 0 

Scirpus maritimus sci mar 0 0 0 0 0 0 0 0 

Senecio jacobea sen jac 0 0 0 0 0 0 0 0 

Silene dioica sil dio 0 0 0 0 0 0 0 0 

Spartina maritima spa mar 0 0 0 0 0 100 0 0 

Stellaria holostea ste hol 0 0 0 0 0 0 0 0 

Stellaria nemorum ste nem 0 0 0 0 0 0 0 0 

Symphytum 

tuberosum 
sym tub 0 0 0 0 0 0 0 0 

Trifolium repens tri rep 0 0 0 0 3 0 6 10 

Triglochin maritima tri mar 0 0 0 37 10 0 4 0 

Tripleurospermum 

maritimum 
tri mar 0 0 0 0 0 0 0 0 

Ulex europaeus ule eur 0 0 0 0 0 0 0 0 

Urtica dioica urt dio 0 0 0 0 0 0 0 0 
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Appendix 7b 
 

Species Abb. T5Q9 T6Q1 T6Q2 T6Q3 T6Q4 T6Q5 T6Q6 T6Q7 

Agrostis capillaris agr cap 0 0 0 0 0 0 0 0 

Agrostis stolonifera agr sto 0 0 0 0 0 0 0 0 

Alopecurus 

geniculatus 
alo gen 0 0 0 0 0 0 0 0 

Anthoxanthum 

odoratum ant odo 0 0 0 0 0 0 0 0 

Armeria maritima 

arm 

mar 2 0 23 90 100 0 0 0 

Aster tripolium ast tri 0 0 0 4 0 0 0 0 

Atriplex hastata atr has 0 0 0 0 0 0 12 0 

Bellis perennis bel per  0 0 0 0 0 0 0 0 

Capsella bursa-

pastoris 
cap bur 0 0 0 0 0 0 0 0 

Cardamine pratense car pra 0 0 0 0 0 0 0 0 

Carex distans car dist 0 0 0 0 0 8 10 0 

Carex disticha car dis 0 0 0 0 0 0 0 0 

Carex flacca car flac 0 0 0 0 0 0 0 0 

Carex nigra car nig 0 0 0 0 0 0 0 0 

Cirsium arvense cir arv 0 0 0 0 0 0 0 0 

Cochlearia anglica coc ang 0 0 0 0 0 1 0 0 

Cochlearia officinalis coc off 0 0 0 0 0 0 0 0 

Cynosurus cristatus cyn cri 0 0 0 0 0 0 0 0 

Dactylis glomerata dac glo 100 0 0 0 0 0 0 0 

Dryopteris filix-mas dry fil 0 0 0 0 0 0 0 0 

Eleocharis uniglumis ele uni 0 0 0 0 0 0 0 0 

Elymus pycnanthus ely pyc 0 0 0 0 0 0 0 100 

Elymus repens ely rep 10 0 0 0 0 0 0 0 

Epilobium 

angustifolium 
epi ang 0 0 0 0 0 0 0 0 

Equisetum arvense equ arv 0 0 0 0 0 0 0 0 

Festuca arundinacea fes aru 0 0 0 0 0 0 0 0 

Festuca rubra fes rub 0 0 14 0 100 40 100 100 

Galium aparine gal apa 0 0 0 0 0 0 0 0 

Galium palustre gal pal 0 0 0 0 0 0 0 0 

Geranium 

robertianum 
ger rob 0 0 0 0 0 0 0 0 

Glaux maritima gla mar 0 0 0 27 13 0 0 0 

Gyceria declinata gyc dec 0 0 0 0 0 0 0 0 

Hedera helix hed hel 0 0 0 0 0 0 0 0 

Heracleum 

sphondylium 
her sph 0 0 0 0 0 0 0 0 

Holcus lanatus hol lan 20 0 0 0 0 0 0 0 

Holcus mollis hol mol 0 0 0 0 0 0 0 0 

Juncus  gerardi jun ger 0 0 0 0 0 100 0 0 

Juncus bufonius jun buf 0 0 0 0 0 0 0 0 

Juncus effusus jun eff 8 0 0 0 0 0 0 0 

Juncus inflexus jun inf 0 0 0 0 0 0 0 0 
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Appendix 7b 
 

Species Abb. T5Q9 T6Q1 T6Q2 T6Q3 T6Q4 T6Q5 T6Q6 T6Q7 

Lathyrus pratensis lat pra 0 0 0 0 0 0 0 0 

Leontodon 

autumnalis 
leo aut 5 0 0 0 0 0 0 0 

Lolium perenne lol per 10 0 0 0 0 0 0 0 

Lotus corniculatus lot cor 0 0 0 0 0 0 27 0 

Oenanthe 

lachenallii 
oen lac 0 0 0 0 0 0 0 6 

Phleum pratense phl pra 0 0 0 0 0 0 0 0 

Plantago maritima pla mar 0 0 21 0 0 0 0 0 

Poa annua poa ann 0 0 0 0 0 0 0 0 

Poa subcaerulea poa sub 0 0 0 0 50 0 10 0 

Poa trivialis poa tri 0 0 0 0 0 0 0 0 

Polygonum 

persicaria 
pol per 0 0 0 0 0 0 0 0 

Potentilla anserina pot ans 4 0 0 0 0 0 0 12 

Puccinellia 

maritima 
puc mar 0 54 100 100 0 0 0 0 

Ranunculus acris ran acr 0 0 0 0 0 0 0 0 

Ranunculus 

baudotii 
ran bau 0 0 0 0 0 0 0 0 

Ranunculus repens ran rep 0 0 0 0 0 0 0 0 

Rubus fruticosus rub fru 0 0 0 0 0 0 0 0 

Rumex acetosa rum ace 0 0 0 0 0 0 0 0 

Salicornia 

europaeus 
sal eur 0 8 0 0 0 0 0 0 

Scirpus maritimus sci mar 0 0 0 0 0 0 0 0 

Senecio jacobea sen jac 0 0 0 0 0 0 0 0 

Silene dioica sil dio 0 0 0 0 0 0 0 0 

Spartina maritima spa mar 0 0 0 0 0 0 0 0 

Stellaria holostea ste hol 0 0 0 0 0 0 0 0 

Stellaria nemorum ste nem 0 0 0 0 0 0 0 0 

Symphytum 

tuberosum 
sym tub 0 0 0 0 0 0 0 0 

Trifolium repens tri rep 9 0 0 0 100 0 0 0 

Triglochin maritima tri mar 0 0 0 0 15 10 0 0 

Tripleurospermum 

maritimum 
tri mar 0 0 0 0 0 0 0 0 

Ulex europaeus ule eur 13 0 0 0 0 0 0 0 

Urtica dioica urt dio 0 0 0 0 0 0 0 0 
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Appendix 7b 
 

Species Abb. T6Q8 T6Q9 T6Q10 T7Q1 T7Q2 T7Q3 T7Q4 T7Q5 

Agrostis capillaris agr cap 0 0 0 0 0 0 0 0 

Agrostis stolonifera agr sto 10 0 40 0 0 0 0 0 

Alopecurus 

geniculatus 
alo gen 0 0 0 0 0 0 0 0 

Anthoxanthum 

odoratum 
ant odo 0 10 0 0 0 0 0 0 

Armeria maritima 

arm 

mar 0 0 0 0 0 0 0 0 

Aster tripolium ast tri 0 0 0 0 0 0 0 0 

Atriplex hastata atr has 0 0 0 0 0 0 0 0 

Bellis perennis bel per  0 0 0 0 0 0 0 4 

Capsella bursa-

pastoris 
cap bur 0 0 0 0 0 0 0 0 

Cardamine pratense car pra 0 0 0 0 0 0 0 0 

Carex distans car dist 10 0 0 0 0 0 0 0 

Carex disticha car dis 0 0 0 0 0 0 0 0 

Carex flacca car flac 0 0 0 0 0 0 0 0 

Carex nigra car nig 60 0 0 0 0 0 0 0 

Cirsium arvense cir arv 0 0 21 0 0 0 0 0 

Cochlearia anglica coc ang 0 0 0 0 0 0 0 0 

Cochlearia officinalis coc off 0 0 0 0 0 0 0 0 

Cynosurus cristatus cyn cri 0 0 0 0 0 0 0 0 

Dactylis glomerata dac glo 0 0 0 0 0 0 0 0 

Dryopteris filix-mas dry fil 0 0 0 0 0 3 4 1 

Eleocharis uniglumis ele uni 0 0 0 0 0 0 0 0 

Elymus pycnanthus ely pyc 0 0 0 0 0 60 0 0 

Elymus repens ely rep 0 0 0 0 0 0 0 0 

Epilobium 

angustifolium 
epi ang 0 0 0 0 0 0 0 0 

Equisetum arvense equ arv 0 0 0 1 0 0 0 0 

Festuca arundinacea fes aru 0 0 0 0 0 0 0 0 

Festuca rubra fes rub 100 0 0 0 0 0 0 0 

Galium aparine gal apa 0 0 3 4 15 5 7 0 

Galium palustre gal pal 0 0 0 0 0 0 0 0 

Geranium 

robertianum 
ger rob 0 0 0 0 0 0 0 14 

Glaux maritima gla mar 0 0 0 0 0 0 0 0 

Gyceria declinata gyc dec 0 0 0 0 0 0 0 0 

Hedera helix hed hel 0 0 0 0 0 2 4 7 

Heracleum 

sphondylium 
her sph 0 0 0 0 0 0 2 0 

Holcus lanatus hol lan 0 100 30 0 0 0 0 0 

Holcus mollis hol mol 0 0 0 10 8 0 0 0 

Juncus  gerardi jun ger 25 0 0 0 0 0 0 0 

Juncus bufonius jun buf 0 0 0 0 0 0 0 0 

Juncus effusus jun eff 0 0 45 0 0 0 0 0 

Juncus inflexus jun inf 0 100 4 0 0 0 0 0 
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Species Abb. T6Q8 T6Q9 T6Q10 T7Q1 T7Q2 T7Q3 T7Q4 T7Q5 

Lathyrus pratensis lat pra 0 30 0 0 0 0 0 0 

Leontodon 

autumnalis 
leo aut 55 0 0 0 0 0 0 0 

Lolium perenne lol per 0 0 3 0 0 0 0 0 

Lotus corniculatus lot cor 0 12 0 0 0 0 0 0 

Oenanthe 

lachenallii 
oen lac 5 0 0 0 0 0 0 0 

Phleum pratense phl pra 0 0 0 0 0 0 0 0 

Plantago maritima pla mar 0 0 0 0 0 0 0 0 

Poa annua poa ann 0 0 0 0 0 0 0 0 

Poa subcaerulea poa sub 16 0 0 0 0 0 30 0 

Poa trivialis poa tri 0 0 0 60 53 0 0 0 

Polygonum 

persicaria 
pol per 0 0 0 0 0 0 0 0 

Potentilla anserina pot ans 10 0 0 0 0 0 0 0 

Puccinellia 

maritima 
puc mar 0 0 0 0 0 0 0 0 

Ranunculus acris ran acr 0 0 0 0 17 0 0 7 

Ranunculus 

baudotii 
ran bau 0 0 0 0 0 0 0 0 

Ranunculus repens ran rep 0 20 5 0 0 0 0 0 

Rubus fruticosus rub fru 0 0 0 0 0 0 0 0 

Rumex acetosa rum ace 0 0 0 0 0 0 0 0 

Salicornia 

europaeus 
sal eur 0 0 0 0 0 0 0 0 

Scirpus maritimus sci mar 0 0 0 0 0 0 0 0 

Senecio jacobea sen jac 0 0 0 0 0 0 0 0 

Silene dioica sil dio 0 0 0 0 0 0 0 3 

Spartina maritima spa mar 0 0 0 0 0 0 0 0 

Stellaria holostea ste hol 0 15 20 0 0 0 0 0 

Stellaria nemorum ste nem 0 0 0 0 0 0 0 0 

Symphytum 

tuberosum 
sym tub 0 0 0 0 0 0 0 0 

Trifolium repens tri rep 30 0 0 0 0 0 0 0 

Triglochin maritima tri mar 0 0 0 0 0 0 0 0 

Tripleurospermum 

maritimum 
tri mar 0 0 0 0 0 0 0 0 

Ulex europaeus ule eur 0 0 8 0 0 0 0 0 

Urtica dioica urt dio 0 0 0 10 8 13 43 5 
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Appendix 7c: Environmental variables   recorded from sample 
quadrats in Caerlaverock. 

 
Line 

transect 

 & 

Quadrat  

number 

Soil 

pH 

Conductivity 

soil 

(μS/cm) 

% 

Shade 

Water 

depth 

(m) 

Vegetation  layer (m) 

Herb Tall herb Shrub Tree 

T1Q1 5.4 127 none none 0.077 0.873 0.883 none 

T1Q2 7.39 2704 none none 0.62 none none none 

T1Q3 6.41 863 none none 0.223 none none none 

T1Q4 7.77 435 none none 0.16 none none none 

T1Q5 5.37 247 none none 0.21 none none none 

T1Q6 6.78 282 none none none 0.93 none none 

T1Q7 7.13 1550 none none 0.31 none none none 

T1Q8 7.19 3310 none none 0.13 none none none 

T2Q1 7.3 4230 none 0.17 0.5 none none none 

T2Q2 7.00 4160 none none 0.09 none none none 

T2Q3 6.02 675 56.29 none 0.08 0.75 1.02 none 

T2Q4 6.06 3432 50 none 0.21 1.02 none none 

T2Q5 6.39 1716 46.60 none 0.04 0.23 0.68 none 

T3Q1 6.09 435 17.86 none 0.4 0.68 none none 

T3Q2 6.2 130 none none 0.04 none none none 

T3Q3 6.2 117 none none 0.12 0.49 none none 

T3Q4 5.51 93 none none 0.04 0.45 none none 

T3Q5 5.76 344 40.91 none 0.13 0.68 0.53 none 

T3Q6 7.69 551 none none 0.15 none none none 

T3Q7 7.92 263 none none 0.06 none none none 

T4Q1 5.48 173 none none 0.53 none none none 

T4Q2 7.2 1140 none 0.29 0.22 none none none 

T4Q3 5.45 96 none none 0.06 none none none 

T4Q4 6.17 118 none none 0.17 none none none 
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Appendix 7c 

 
Line 

transect 

 & 

Quadrat  

number 

Soil 

pH 

Conductivity 

soil 

(μS/cm) 

% 

Shade 

Water 

depth 

(m) 

Vegetation  layer (m) 

Herb Tall herb Shrub Tree 

T5Q1 6.97 12950 none none 0.02 none none none 

T5Q2 7.33 4650 none none 0.12 none none none 

T5Q3 7.21 5570 none none 0.02 none none none 

T5Q4 6.8 118 none none 0.13 none none none 

T5Q5 7.51 2433 none 0.12 none 0.42 none none 

T5Q6 7.45 1483 none none 0.17 0.6 none none 

T5Q7 6.08 1037 none none 0.13 none none none 

T5Q8 6.22 1078 none 0.08 0.12 none none none 

T5Q9 5.33 139 10.6 none 0.15 none 0.58 none 

T6Q1 7.1 8520 none none 0.05 none none none 

T6Q2 6.98 4580 none 0.05 0.12 none none none 

T6Q3 7.15 4330 none none 0.08 none none none 

T6Q4 7.37 2033 none none 0.16 none none none 

T6Q5 6.94 2460 none none 0.21 none none none 

T6Q6 7.24 1421 none none none 0.42 none none 

T6Q7 7.07 732 none none none 0.55 none none 

T6Q8 7.15 1393 none none 0.14 none none none 

T6Q9 5.53 651 none none none 0.47 none none 

T6Q10 6.4 190 28.32 none 0.07 0.67 0.77 none 

T7Q1 5.65 113 29.88 none 0.16 0.65 none 5 

T7Q2 6.37 165 19.70 none 0.26 1.4 none 7 

T7Q3 6.5 112 5.88 none 0.19 1.18 none 4 

T7Q4 6.05 222 17.04 none 0.16 1.1 none 4 

T7Q5 5.57 242 7.6 none none 0.92 none 8 
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Appendix 8:  TWINSPAN Analysis depicting final Table from 48 
quadrats in Caerlaverock Reserve 

 

 Plant species in first column), entries in the table are the pseudospecies levels not 

quantitative values, the right and bottom sides define the dendrogram of the classification 

of species and samples, respectively. 
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                 444144 111131244122   1332344  122333  12 233223 
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   22 fest  aru  -------------------5-5-------------------5------  0000   

   27 ranu  acr  3-4-----5-----------4-5-------------------------  000100 

    8 sene  jac  ------3---------5-----2-------------------------  000101 

   23 cyno  cri  -------------------55---------------------------  000101 

   29 bell  per  2---------------42--455-------------------------  000101 

   30 lath  pra  --------------5------4--------------------------  000101 

   31 lath  pal  ------------3--------4--------------------------  000101 

   53 loli  per  -----------45--2455---5-------------------------  000101 

   57 phle  pra  ------------------5-----------------------------  000101 

   58 trip  mar  ------------------5-----------------------------  000101 

   59 caps  bur  ------------------1-----------------------------  000101 

   60 poa  annu  ------------------3-----------------------------  000101 

    2 cirs  arv  ------54-------5-----5--------------------------  000110 

    4 elym  rep  ------3----4------4-----------------------------  000110 

   24 holc  lan  --------4-3555555--53-2-------------------------  000110 

   41 junc  eff  -------5-55354-5--------------------------------  000110 

   44 gali  pal  ---------4--------------------------------------  000110 

   46 junc  inf  ---------4--5552--------------------------------  000110 

   47 symp  tub  ---------3--------------------------------------  000110 

   50 stel  hol  --------2-----45--1-----------------------------  000110 

   54 anth  odo  --------------4-------2-------------------------  000110 

   55 rume  ace  ----------3-------------------------------------  000110 

    1 ulex  eur  ------555454---3--------------------------------  000111 

    6 ranu  rep  ---4--54--2-2-5335------------------------------  000111 

    7 stel  nem  ------4---1-------------------------------------  000111 

   37 junc  buf  -------5----------------------------------------  000111 

   38 card  pra  -------2----------------------------------------  000111 

   39 equi  arv  -1-----3----------------------------------------  000111 

   40 rubu  fru  -------3----------------------------------------  000111 

   42 poly  per  -------3----------------------------------------  000111 

   43 epil  ang  -------2----------------------------------------  000111 

   49 lotu  sub  --------4---------------------------------------  000111 

   51 dact  glo  ---5------35----------1-------------------------  000111 

   17 agro  cap  -------555---5---------------5-5----------------  001    

   21 lotu  cor  ------------544--------45-----------------------  001    

   45 eleo  uni  ---------5------------------------5-------------  001    

    5 poa  triv  -55---5-5------------------------------3--------  0100   

    3 urti  dio  343545552---------------------------------------  01010  

   52 gali  apa  -24433---------2--------------------------------  010110 

   68 holc  mol  -43---------------------------------------------  010110 

   69 dryo  fil  1---22------------------------------------------  010111 

 

 

 



Appendices   260 

 
 

Appendix 8 
 

 

   70 hede  hel  3---22------------------------------------------  010111 

   71 hera  sph  -----2------------------------------------------  010111 

   72 gera  rob  4-----------------------------------------------  010111 

   73 sile  dio  2-----------------------------------------------  010111 

   67 elym  pyc  ----5----------------------5--------------------  011    

   16 trif  rep  -----------3-----5555-2---3-55-5-245-4-5--------  100    

   25 care  nig  -------------------5--------5--2----------------  100    

   28 pote  ans  --------24-2-3------3----5544-----2-------------  100  

   48 gyce  dec  ---------3---------------5----------------------  100    

   20 care  fla  --------------------3-----5--5------------------  101    

   26 oena  lac  -------------------3------233-------------------  101    

   10 agro  sto  ---------------5--4------45-4----35--555--------  1100   

   36 leon  aut  -----------3--------------2-5--3-2--------------  1100   

   65 poa  subc  -----5------------------4---4------5------------  1100   

   18 care  din  ------------------------4---42------3-----------  110100 

   35 atri  has  -----------------------34--------3-------3------  110100 

   64 spar  mar  -----------------------5------------------------  110100 

   11 fest  rub  --------------------4--555555555555554-55--4----  110101 

   19 junc  ger  -------------------------45-55-5-55-5-55-5------  110101 

   34 scir  mar  -------------------------5---------------5------  110101 

    9 ranu  bau  -------------------------------------4----------  110110 

   12 trig  mar  --------------------------2--25554-44444--------  110110 

   13 alop  gen  -------------------------------------3----------  110110 

   14 care  dis  -------------------------------------4----------  110110 

   66 coch  ang  ------------------------------------1-----------  110110 

   15 glau  mar  -----------------------------4--5-14-444-4--5---  110111 

   32 plan  mar  --------------------------------------55--55----  1110   

   33 arme  mar  -----------2------------------2-5--5--3---555-1-  1110   

   56 pucc  mar  ---------------------------------------55-555555  1111   

   61 sali  eur  ---------------------------------------------223  1111   

   62 aste  tri  ------------------------------------------3-2-5-  1111   

   63 coch  off  ----------------------------------------------3-  1111   

 

                 000000000000000000000001111111111111111111111111 

                 000000111111111111111110000000000000000000111111 

                 011111000000000011111110011111111111111111000111 

                  0011100011111110001111  00001111111111111       

                          0001111             0000000000001       

                                              000000001111    
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Appendix 9: TWINSPAN groups in Caerlaverock Reseve with 
Ellenberg’s indicator values for light --L; Moisture -- F; and Salt – 
S, (Source: Hill et al., 1999). 

 

Group Species  
Abbreviation 

name 
L F S 

1 

Bellis perennis L. bell pere 8 5 0 

Dactylis glomerata L. dact glom 7 5 0 

Dryopteris filix-mas (L.) Schott dryo fili 5 6 0 

Elymus pycnanthus (Godr.) 

Barkworth 
elym pycn    

Equisetum arvense L. equi arve 7 6 0 

Galium aparine L. gali apar 6 6 0 

Hedera helix  L. hede heli 4 5 0 

Heracleum sphondylium  L. hera spho 7 5 0 

Holcus mollis L. holc moll 6 6 0 

Poa subcaerulea  Smith.  poa subc 7 5 0 

Poa trivialis L. poa triv 7 6 0 

Ranunculus acris L ranu acri 7 6 0 

Ranunculus repens L. ranu repe 6 7 0 

Geranium robertianum L gera  robe 5 6 0 

Silene dioica (L.) Clairv. sile dioi 5 6 0 

Urtica dioica L. urti dioi 6 6 0 

      

2 

Agrostis capillaris L. agro capi 6 5 0 

Armeria maritima (Mill.) Willd. arme mari 8 7 3 

Cardamine pratense L. card prat 7 8 0 

Eleocharis uniglumis (Link) Schult. eleo unig 8 9 3 

Epilobium angustifolium L. epil angu 6 5 0 

Equisetum arvense L. equi arve 7 6 0 

Galium aparine L. gali apar 6 6 0 

Galium palustre L. gali palu 7 9 0 

Gyceria declinata Breb. gyce decl 7 8 0 

Juncus bufonius L. junc bufo 7 7 1 

Juncus effusus L. junc effu 7 7 0 

Juncus inflexus L. junc infl 7 7 1 

Leontodon autumnalis L. leon autu 8 6 1 

Lotus corniculatus L. lotu corn 7 4 1 

Lotus subbiflorus Lag. lotu subb 7 5 0 

Polygonum persicaria L.  poly peri 7 8 0 

Rubus fruticosus L. rubu frut 6 6 0 

Rumex acetosa  L. rume acet 7 5 0 

Stellaria nemorum L. stel nemo 4 6 0 

Symphytum tuberosum L. symp tube 6 6 0 

Ulex europaeus L. ulex euro 7 5 0 

Urtica dioica L. urti dioi 6 6 0 
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Group Species  
Abbreviation 

name 
L F S 

3 

Agrostis stolonifera L. agro stol 7 6 1 

Anthoxanthum odoratum L. anth odor 7 6 0 

Bellis perennis L. bell pere 8 5 0 

Capsella bursa-pastoris (L.) 

Medik. 
caps bura 7 5 0 

Carex flacca Schreb. care flacc 7 5 0 

Carex nigra (L.) Reichard. care nigr 7 8 0 

Cirsium arvense (L.) Scop. cirs arve 8 6 0 

Cynosurus cristatus L. cyno cris 7 5 0 

Dactylis glomerata L. dact glom 7 5 0 

Elymus repens (L.) Gould.  elym repe 7 5 2 

Festuca arundinacea Schreb. fest arun 8 6 1 

Festuca rubra L. fest rubr 8 5 2 

Holcus lanatus L. holc lana 7 6 0 

Lathyrus palustris L. lath palu 7 9 0 

Lathyrus pratensis L. lath prat 7 6 0 

Lolium perenne L. loli pere 8 5 0 

Oenanthe lachenallii C.Gmelin. oena lach 8 8 3 

Phleum pretense L. phle prat 8 5 0 

Poa annua L. poa annu 7 5 1 

Potentilla anserina L. pote anse 8 7 2 

Ranunculus acris L ranu acri 7 6 0 

Ranunculus repens L. ranu repe 6 7 0 

Senecio jacobeae L. sene jaco 7 4 0 

Stellaria holostea L. stel holo 5 5 0 

Trifolium repens L. trif repe 7 5 0 

      

4 

Agrostis capillaris L. agro capi 6 5 0 

Agrostis stolonifera L. agro stol 7 6 1 

Alopecurus geniculatus L. alop geni 8 7 1 

Armeria maritima (Mill.) Willd. arme mari 8 7 3 

Atriplex hastata L. atri hast 8 7 2 

Carex distans L. care distn 8 6 3 

Carex disticha Huds. care dist 7 8 0 

Carex flacca Schreb. care flacc 7 5 0 

Carex nigra (L.) Reichard. care nigr 7 8 0 

Cochlearia anglica L. coch angl 8 8 6 

Eleocharis uniglumis (Link) Schult. eleo unig 8 9 3 

Elymus pycnanthus (Godr.) 

Barkworth 
elym pycn    

Festuca rubra L. fest rubr 8 5 2 

Glaux maritima L. glau mari 8 7 4 

Gyceria declinata Breb. gyce decl 7 8 0 

Juncus  gerardi Loisel. junc gera 8 7 3 
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Appendix 9: 

Group Species  
Abbreviation 

name 
L F S 

4 

Leontodon autumnalis L. leon autu 8 6 1 

Lotus corniculatus L. lotu corn 7 4 1 

Oenanthe lachenallii C.Gmelin. oena lach 8 8 3 

Plantago maritima L. plan mari 8 7 3 

Poa subcaerulea  Smith.  poa subc 7 5 0 

Poa trivialis L. poa triv 7 6 0 

Potentilla anserina L. pote anse 8 7 2 

Puccinellia maritima (Hudson) 

Parl.        
pucc mari 9 8 5 

Ranunculus baudotii Godr. ranu baud 7 11 4 

Scirpus maritimus L. scir mari 8 10 4 

Spartina maritima (Curtis) Fernald. spar mari 9 9 6 

Trifolium repens L. trif repe 7 5 0 

Tripleurospermum maritimum (L.) 

W.D.J.Koch 
trip mari 8 5 1 

      

5 

Armeria maritima (Mill.) Willd. arme mari 8 7 3 

Aster tripolium L. aste trip 9 8 5 

Cochlearia officinalis L. coch offi 8 6 3 

Festuca rubra L. fest rubr 8 5 2 

Glaux maritima L. glau mari 8 7 4 

Plantago maritima L. plan mari 8 7 3 

Puccinellia maritima (Hudson) 

Parl.        
pucc mari 9 8 5 

Salicornia europaea L. sali euro 9 8 9 
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Appendix 10: Shows results from digitized polygons A, B and C of 

Figure 3-5 five times and Figure 3-8 four times.  

 

 

Wicken Fen 1984 

 
 

 
 

 

 

 

A digitizing 

No. 

Area of 

polygon 

A (m
2
) 

Area of 

polygon 

B (m
2
) 

Area of 

polygon 

C (m
2
) 

Total area 

of three 

polygons 

m
2 

1 10045 85744 50992 146784 

2 10102 90106 48046 148254 

3 10169 91007 47902 149078 

4 10294 86789 52178 149261 

5 10104 90849 46796 147752 
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Wicken Fen 2009 
 

 
 

 

 

A digitizing 

No. 

Area of 

polygon 

A (m
2
) 

Area of 

polygon 

B (m
2
) 

Area of 

polygon 

C (m
2
) 

Total area 

of three 

polygons 

m
2 

1 85055 14465 7693 107213 

2 85195 14446 7572 107213 

3 85194 14598 7636 107428 

4 85068 14473 7547 107088 

 

 

 

 

 

 

 

 

 

 

 


