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Abstract 

 

 

In the past decade, limited progress has been made in identifying genetic associations with 

performance and health-related fitness phenotypes due to the use primarily of the 

traditional candidate-gene approach involving small sample sizes and few coordinated 

research efforts. Much of the genetic data relating to human performance has been 

generated while exploring the aetiology of lifestyle-related disorders such as obesity and 

type 2 diabetes mellitus (T2DM). As of 2008, over 200 autosomal gene entries and 

quantitative trait loci have been reported to be significantly associated with performance 

and health-related fitness. However, most genetic findings to date have been inconclusive 

due to studies employing relatively small sample sizes and predominantly single-gene 

approaches which are especially prone to type I errors. It is widely accepted that there will 

be many genes involved in sporting performance and health-related fitness phenotypes, and 

hence it is timely that genetic research has moved to the genomics era with the use of a 

genome-wide approach (e.g. genotyping a large number of variants simultaneously across 

the entire human genome) in a well-phenotyped, large cohort. This thesis summarizes the 

recent findings of genetic predisposition to elite human performance by using the 

conventional candidate-gene approach as well as the unbiased genome-wide approach (i.e. 

genome-wide association studies, GWASs). 

The current candidate gene study focused on investigating whether polymorphisms in the 

angiotensin-converting enzyme (ACE) and α-actinin-3 (ACTN3) genes are associated with 

elite swimmer status (stratified by swimming distance) in Caucasians and East Asians. 

ACE I/D and ACTN3 p.R577X polymorphisms were genotyped for 200 elite Caucasian 

swimmers (short and middle distance, ≤ 400 m, n = 130; long distance, > 400 m, n = 70) 

and 326 elite Japanese and Taiwanese swimmers (short distance, ≤ 100 m, n = 166; middle 
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distance, 200–400 m, n = 160). Logistic regression and multiple-testing adjustment were 

applied to test for these genetic associations. ACE I/D was found to be associated with 

swimmer status in Caucasians, with the D allele being overrepresented in short-and-

middle-distance swimmers with the largest effect being observed for the I-allele-dominant 

model (odds ratio = 1.90; logistic regression p = 0.001; permutation test p = 0.0005). In 

East Asians, however, the I allele was overrepresented in the short-distance swimmer 

group under the D-allele-dominant model (odds ratio = 1.52; logistic regression p = 0.012; 

permutation test p = 0.0098). The ACE I/D association findings in the elite swimmer 

cohorts showed that different risk alleles responsible for the associations were observed in 

swimmers of different ethnicities. ACTN3 p.R577X was not statistically significantly 

associated with swimmer status in either Caucasian or East Asian population. The lack of 

associations between the functional ACTN3 p.R577X polymorphism and elite swimmer 

status in both cohorts were in contrast to many associations with power-/sprint- 

performance in other sports previously reported. Since current sample size is relatively 

modest, larger studies will be required to further confirm these results, which, however, 

have highlighted that it is probable that the genes studied here are not the resulting variants 

responsible for the phenotypes of interest, despite the associations reported by previous 

candidate-gene studies in other sports. 

The present GWAS were conducted in an attempt to identify common polymorphisms 

associated with elite sprint and endurance status in Jamaicans, African-Americans and 

Japanese, respectively. These unique athlete cohorts comprised of athletes of the highest 

standard including world record holders, world champions, Olympians and winners of 

other international events. Following exclusion of individuals and markers failing the 

quality control filters, 609,801 autosomal SNPs in 88 Jamaican sprint athletes and 87 

Jamaican controls, 637,991 autosomal SNPs in 79 African-American sprint athletes and 

391 African-American controls, and 541,179 autosomal SNPs in 114 Japanese athletes 
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(including 60 endurance and 54 sprint athletes) and 116 Japanese controls, were available 

for association analyses. 17, 7, 36 and 21 SNPs were associated with elite athlete status at a 

p < 5 x 10
-5 

threshold of significance in elite Jamaican sprint, African-American sprint, 

Japanese sprint and Japanese endurance GWAS sets, respectively. Meta-analyses were 

performed for SNPs with unadjusted association p < 5 x 10
-5 

across the sprint GWAS 

sample sets (i.e. Jamaican sprint, African-American sprint, Japanese sprint GWAS 

cohorts), using the fixed-effects model. The top 17 SNPs (unadjusted p < 5 x 10
-5

) from the 

Jamaican sprint cohort were extracted from the association results of African-American 

sprint, Japanese sprint cohorts, respectively, for the combined effects to be calculated using 

a meta-analysis method. The same procedure was also applied to the top hits in African-

American and Japanese cohorts. The combined odds ratio for the top meta-analysis hit 

(rs10196189) was 2.61 (p = 4.66 x 10
-7

) with the allele G associated with elite sprint status 

in Jamaicans, African-Americans and Japanese. Although meta-analysis has increased the 

sample size and power to detect associations in the current GWAS, independent replication 

of these associations followed by functional studies of replicated SNPs are required.  

The results of the association studies presented here are the very first positive findings 

from GWAS involving world-class athletes and these encouraging findings provide further 

evidence of the importance of genetic predisposition to elite human performance. GWAS 

of athletes of the highest performance caliber as well as the application of meta-analysis 

across several initial GWASs seemed to help to circumvent the need for very large cohort 

of elite athletes and increase the study power. Nevertheless, future GWAS involving large 

well-funded collaborations using larger cohorts of elite athletes will be necessary in order 

to explore further the genetic architecture underlying elite human performance. Such 

initiatives may also allow gene x gene and gene x environment interactions to be explored 

to some extent, as well as the predictive utility of this genomic research. 
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1 Introduction 

 

1.1 Elite human performance 

The success of Jamaican and USA athletes (i.e. African-Americans) in sprint events is 

phenomenal. In the recent London Olympics, Jamaican and African-American sprinters 

won all medals in the men's and women's 100 and 200 m events. Moreover, USA 

swimmers (i.e. European-Americans) or other swimmers of Caucasian background took 

the medals in the men's 50 m and 100 m and in the women's 100 m, 200 m and 400 m 

swimming events. Asians are also good at swimming, dominating the men's 400 m and the 

women's 400 m individual medley. They were so successful compared to most of their 

competitors, why is this? These successes have now been considered as a result of a 

combined action of multiple genes, socio-culture, training, diet as well as other 

environmental factors (1).  

Numerous studies have been conducted to identify the responsible genetic variants in 

relation to elite human performance. Historically, heritability estimate (h
2
) was used to 

indirectly assess the genetic basis of human performance (2-4). Direct approach that tests a 

genotype-phenotype association by genotyping a well-phenotyped population has now 

been widely used. Nevertheless, genes related to increased athletic performance have not 

yet been fully identified, and the vast majority of the genes/polymorphisms that have been 

found have not been replicated due to various reasons. Several animal studies (5-7) 

exploring the mechanisms of gene-performance associations, however, have been 

successfully established and described below. 

Mosher et al. (2007) (5) demonstrated a favourable effect of a mutation (2bp deletion in 

exon 3) in the myostatin (MSTN) gene on enhanced athletic performance in the whippet. 
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This gene has been mapped to chromosome two in humans. The heterozygote whippets 

(i.e. having one copy of the mutated allele) showed greater muscle growth compared to the 

wild type and advantages in racing performance. This is likely to be caused by the 

reduction of the myostatin protein in the MSTN heterozygote, resulting in increased muscle 

mass. It has also been reported that a higher proportion of fast-twitch muscle fibres 

(generating power more efficiently) were observed in Mstn knockout (KO) mice  (6). All 

of these supported a role of MSTN gene in regulating muscle differentiation and growth, 

hence the potential to increase individual athletic ability in humans. In addition, MSTN 

mutation was found to be associated with muscle hypertrophy in a child, whose mother 

was a former professional athlete, healthy and has one copy of the mutated allele (8). No 

health problems were reported for the child at the time of the study (8). 

Another example of a well-known KO mice model was used to investigate the mechanisms 

underlying α-actinin-3 deficiency to athletic performance (7). The authors found that the 

KO mice had the reduced muscle mass (i.e. due to reduced fibre diameter of the fast-twitch 

muscle), increased activity of aerobic enzymes, longer muscle contracting time and shorter 

recovery period from fatigue, which were attributed to the characteristics of the slow-

twitch fibres. This KO mice model supported the idea of increased endurance but reduced 

muscle strength in homozygous carriers of the ACTN3 null allele (complete deficiency of 

ACTN3). 

To date, limited progress has been made in elucidating the genetic effects on human 

athletic performance. This discovery process is summarized in following sections in detail. 

1.2 Genetic variations in elite human performance 
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1.2.1 Family-based studies: genetic evidence 

Genetic variants related to phenotypic outcomes have been traditionally assessed on sets of 

related individuals by using twin studies, linkage analysis or other family-based designs, 

providing an indirect measure of the relationship between genes and the traits. Aggregation 

studies are generally the first step to study whether there is a genetic component to the 

trait, typically, in families with affected individuals as opposed to the general population. 

Heritability estimates the degree to which genes contribute to the phenotype variability, 

whereas the mode of inheritance (e.g. dominant or recessive) can be tested in pedigrees 

with known affection status using segregation analysis. Linkage analysis can be used to 

locate the genes by assessing pedigrees and genotype information for relevant markers, 

which tend to be linked and inherited together for the presence of a phenotype in related 

individuals.  

Family-based studies support a genetic basis both for continuously measured performance-

related traits (e.g. maximal oxygen uptake,    2max) and athletic ability itself. Hereditary 

influence on endurance and muscle strength include studies (reviewed in (9)) o     2max 

and    2max trainability (h
2
 = ~23% - 71%), cardiac mass, structure and function (h

2
 = ~6% 

- 93%), pulmonary function (h
2
 = ~28% - 77%), muscle strength and power (h

2
 = ~30% - 

83%), lactic acid concentrations (h
2
 = ~76% - 93%), muscle fibre distributions (h

2
 = ~25% 

- 99.5%, (4,10,11)), and performance time for a 1000 m run (h
2
 = 98% and 69% for 

monozygotic and dizygotic twins respectively, (12)). The widely differed genetic 

contribution estimation from literature is evident, and has received considerable criticism, 

including small number of twin pairs in some of the studies, different phenotype evaluation 

process, and uneven controlled environmental factors (1,9). The largest twin study so far in 

exercise related traits, comprised of 37,051 twin pairs from seven countries: Australia, 

Denmark, Finland, the Netherlands, Norway, Sweden, and United Kingdom, suggested an 

additive effect of the genetic variants contribute significantly to exercise participation (h
2
 = 
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62%) (13) and emphasised the importance of genetic variation in explaining individual 

differences in exercise behaviour. The evidence for a genetic component to human 

performance, as revealed by familial aggregation and heritability studies, is 

incontrovertible; however, questions such as putative genes & magnitude, gene locations 

and allele frequencies remain unanswered. As briefly mentioned above, a step further 

would be to map the genes on the chromosomes through linkage analysis.  

A small number of linkage based genome-wide scans have been used to identify 

chromosomal regions associated with human performance phenotypes (14). Initial linkage-

based reports were mainly generated using the cohort from the HEalth, RIsk factors, 

exercise Training And Genetics (HERITAGE) family study (14), which is a large family 

intervention study involving 742 participants from approx. 300 families who were 

subjected to a 20-wk controlled endurance training sessions to assess the genetic effects on 

cardiovascular, metabolic and hormonal responses to regular exercise 

(http://www.pbrc.edu/heritage/home.htm; (15)). These st dies re ealed a n mber o  

genetic regions associated with    2max and its response to training (16-19), maximal power 

output (18,19), exercise blood pressure (20), stroke volume (21,22) and cardiac output 

(22), sub-maximal exercise heart rate (23) and changes in body composition (24-27), 

glucose and insulin metabolism-related phenotypes (28,29) in response to training. Other 

studies have reported genomic regions related to physical activity levels (30-33) and 

muscle strength related-traits (34,35). Notably, fine mapping and follow-up replication 

studies of a previously identified linkage peak for knee strength on chromosome 12q12-14  

identified activin receptor 1B (ACVR1B) rs2854464 AA genotype associated with 

increased muscle strength (36). Moreover, rs2854464 locates in miR-24 binding site, but 

no change of mRNA expression level in quadriceps muscle was observed with this 

genotypic variation (36).  

http://www.pbrc.edu/heritage/home.htm
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A main advantage of family studies lies in its robustness to population stratification, but 

the resulting genes may be localized in a broad genetic interval since the DNA section is 

usually delimited by a crossover between a nearby marker and the actual causal locus in 

linkage analysis (37). While linkage studies have revealed some interesting genomic 

regions that may harbour genes contributing to human physical performance traits as 

described above, linkage analysis has been much less successful in detecting common 

genetic variations contributing to complex traits comparing with its success in identifying 

genes related to human monogenic traits (38). Recent advances in molecular technologies 

allow dense of markers to be genotyped simultaneously. This has accelerated the move 

from family studies to population-based case-control association studies, which are 

expected to have greater power in identifying common genetic variants through studying 

unrelated individuals (affected cases vs. healthy controls) from a population.  

1.2.2 Association studies 

Association studies are usually conducted in unrelated case-control samples by comparing 

the allele frequencies of a single marker or a set of markers in candidate regions even 

spanning the human genome. Single nucleotide polymorphism (SNP) is the most common 

form of DNA sequence variation, where a single nucleotide A, T, G or C is replaced by 

another, and this occurs more frequently in non-coding regions of the genome (39). SNP 

appears once in about every 290 nucleotides and approx. 11 million SNPs present in 

roughly 3.2 billion DNA base pairs across the entire human genome (39). Most of the 

differences exist among individuals, owing largely to the substitutions at a SNP locus (39). 

The least frequent allele of a SNP needs to be above 1% in a population to be effectively 

assessed by association studies. 

There are two types of associations: direct and indirect (Figure 1.1 (40)). The direct 

method focuses on causal polymorphism of a phenotype; such studies can be referred to as 
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candidate polymorphism studies. The identification of the casual polymorphism is 

challenging, because many of these causal variants for common and complex traits may be 

non-coding and yet insufficient and unclear information on the causation of the complex 

traits for such polymorphisms to be accurately identified. The indirect candidate gene 

association studies require prior knowledge of known function of the candidate regions 

involving a number of SNPs, which may be the causal variants themselves or in linkage 

disequilibrium (LD) with the causal polymorphisms. LD refers to the non-random 

correlation between alleles at two loci. LD may rise from linkage, but it is also possible 

that two alleles physically unlinked are associated due to e.g. non-random mating or 

selection (41). D is one of the first used methods to predict the extent of LD and it depends 

on allele frequencies (42). In a simplified manner, for a two-locus haplotype, D refers to 

the difference between the observed haplotype frequency at two loci and the expected 

frequency when they segregate randomly. Other common measurements of LD include D’ 

and r
2
. D’ = 1 indicates complete LD (no historical recombination), but D’ < 1 cannot be 

meaningfully interpreted because D’ will be inflated in small samples with high D’ values 

possibly obtained from markers in linkage equilibrium (37). r
2
 method is defined as D

2 

divided by four allele frequencies at the two loci, taking into account the allele frequency 

differences (37). The value of r
2
 varies from 0 to 1 and is in inverse proportion to sample 

size. r
2 

>
 
0.3

 
 might be taken as the minimum value for useful mapping (37). Patterns of LD 

can be influenced by genetic drift, population growth, admixture, population structure, 

natural selection, gene conversion, and mutation and recombination rates (37). GWASs are 

indirect association studies at the genome scale. In a GWAS, hundreds of thousands of 

tagSNPs (served as proxies for real causal variants based on level of LD) across the entire 

genome will be interrogated simultaneously, and this is thought to be more effective to 

discover common genetic variants underlying complex traits. 
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Figure 1.1 Using SNPs image of the CSF2 gene to elucidate the direct and indirect 
associations. a. Direct association study, in which two functional variants (red arrows) are 
genotyped directly for association analysis.  b. Indirect association study, in which only a subset of 
tagSNPs (orange arrows) is typed, other SNPs in LD (green arrows) with those tagSNPs can 
therefore be indirectly detected for association analysis. (adapted from (40)). 

 

1.2.3 Candidate gene association studies 

Since 2000, a group of researchers devoted themselves to the annual update of the human 

gene map for fitness and performance-related phenotypes (43-48). The last version of the 

gene map (the 2006-2007 update) covered over 200 genes in both the nuclear and 

mitochondrial genomes reported to influence physical performance and health-related 

fitness (48). The weakness in these yearly updates was that the genomic entries included in 

the map were from a mix of good and weak studies. The authors have shifted the focus to 

only publications with the strongest evidences in the field of exercise genomics for drafting 

subsequent reviews (49-52). The candidate gene associations with elite human 

performance have been inconclusive to date. Genes or loci related to aerobic capacity, 

endurance performance and muscle metabolism with at least one positive study reported 

previously is summarized in Figure 1.2 (reproduced from (53)). However, bear in mind, 

genetic association studies need to be always interpreted with caution (54-56), as these 

discoveries may be heavily prone to chance and hence responsible for the non-reproducible 

associations often observed with human common/complex traits.  The potential reasons 

(57,58) may include: (1) the variant genotyped is not causal and provides incomplete LD 
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with other potentially functional important variants, (2) studies are underpowered, (3) 

population stratification, (4) phenotypic and locus heterogeneity. Additionally, false 

positive discoveries are likely to occur in studies interrogating multiple genes or splitting 

the cohorts into sub-groups for separate analysis (54), while multiple testing has not been 

corrected or has been inappropriately dealt with. Candidate gene approach focuses on 

certain candidate gene regions and has advantage over GWAS (see section 1.3) if the 

candidate loci are precisely defined. However, the drawback is that candidate gene study 

precludes new biological pathways to be discovered. 

 

Figure 1.2 Genes or loci extracted from annual update/review of gene map related to aerobic 
capacity, endurance performance and muscle metabolism. (Reproduced from (53)). 
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1.3 Genome-wide association studies in complex traits 

 

The first GWAS in age-related macular degeneration (AMD) (59) revealed an intronic and 

common variant significantly related to AMD in 96 cases and 50 controls and 

consequently a functional polymorphism in Complement Factor H (CFH) gene was 

identified by resequencing. Since then, numerous GWASs in various complex traits have 

emerged rapidly (Figure 1.3, (60)).  

 

Figure 1.3 Number of GWAS publications and statistically significant SNPs exceeds 5x10
-8

 
(60). (5x10

-8
 - GWAS significance threshold, see 1.3.2 Statistical Significant Thresholds). 

GWAS mapping relies on LD structure between tagSNPs and the causal variants, aimed to 

gain good coverage of the entire genome by only assaying selected tagSNPs, which is 

more economical. GWAS is hypothesis-free (no prior assumptions made regarding the 

location or function of the causal variant), and could identify potential variants that may 

not be involved in any previous pathway analyses, hence new biology underlying a given 
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trait may be uncovered. Commercial GWAS genotyping arrays contain hundreds of 

thousands of SNPs to be genotyped per sample, and this number has been dramatically 

increased to ~ 4.3 million by using Illumina
®
 HumanOmni5-Quad beadchip (61). Data sets 

used for content selection of the GWAS chips are mainly obtained from the International 

HapMap Project and 1,000 Genomes Project. The International HapMap Project focused 

on the identification of the common patterns (haplotypes) of genetic variations and the 

determination of tagSNPs representative for these haplotypes in 11 populations of African, 

European and Asian ancestries with a total sample size of 1,184 (HapMap Phase I, II & III, 

called “HapMap 3”) (62). In “HapMap 3”, except that tagging can effectively capture 

variants/haplotypes with minor allele  req ency (M F) o  ≥ 5%, imp tation acc racy  or 

variants with lower frequencies (MAF ≤ 5%) is also improved. This integrated dataset (i.e. 

HapMap 3) provides a robust reference panel to study human variations across various 

diseases or other complex traits (62). In October 2012, the 1,000 Genomes Project 

Consortium announced the sequencing data of 1,092 human genomes from 14 populations 

drawn from Europe, East Asia, sub-Saharan Africa and the Americas, respectively. 

Ultimately, ~2,500 individuals from 26 populations will be sequenced, and the aim of the 

1,000 Genomes project is to provide a more comprehensive catalogue of genetic variations 

in human genome (63). 

African populations have haplotypes much more divergent than Europeans or Asians (64-

66).  Based on the out-of-Africa hypothesis of human origins, low diversity in other 

continental populations is a result of population bottlenecks (67,68). Since the initial 

detection of SNPs was predominantly performed in populations of European ancestry, such 

as those typed in HapMap Phase I and II, ascertainment bias may arise when mapping 

fraction of the genome in different populations using the HapMap data (69). Fortunately, 

tagSNPs are often highly portable across different human populations, however, are less 

portable for low LD populations, i.e. Africans (65,70). GWAS (using current SNPs 
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database) in African populations remain to be a particular challenge (71). Genome 

coverage should be improved with new variants eventually identified from the 1,000 

Genomes Project, and ultimately the fulfilment of individual genome-wide deep 

sequencing will help understand better the genetic architecture in African populations.  

An alternative approach in addition to GWAS was suggested by some researchers (72). 

This is to examine the gene-centric regions of the genome, including synonymous and non-

synonymous coding SNPs, and SNPs in 5′-UTR and 3′-UTR regions. They are more likely 

to have effects on RNA transcription compared to non-coding and intronic SNPs.  Which 

approach to use depends on how the research group decides to balance the completeness 

and efficiency of a study with or without knowing where the causal variants lie for a 

particular phenotype in question. Gene-centric approach focuses solely on genes, and only 

a small set of genic SNPs will be studied. Therefore, multiple-testing burden is reduced. 

This can accelerate an initial and efficient genome-wide association scan aiming to identify 

biologically functional variants with reduced type I error rate (false positive rate), but the 

indirect GWAS can have greater overall power than genic studies. 

1.3.1 Sample size and statistical power 

Statistical power of a GWAS depends largely on sample size, genetic effect size, marker 

and causal allele frequencies as well as their correlation (73).  Sample size relies on allele 

frequency and genetic effect of the risk allele in a sample set. The effect size in a case-

control study is usually estimated using odds ratio, which implies the ratio of the odds of 

an individual being a case with a particular genotype/allele vs. the odds being a control 

with the same genotype/allele. An odds ratio is greater than 1 suggesting a positive 

association between the genetic variant and the phenotype, and an odds ratio equals 1 

meaning no association. The first small GWAS in macular degeneration (59,74) 

demonstrated that SNPs, with large effect sizes meanwhile frequently enough to be 
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detected in a population, might be identified even though the sample size is small. For 

most common complex traits, small effects of common SNPs on trait/disease production 

require considerably large samples in order to obtain an adequate statistical power to detect 

these small effects. It is usually found that significant findings from GWAS of complex 

traits typically have the odds ratios ranged from 1.1 to 1.4 (majority between 1.12 and 

1.20, (75)). In this range, a sample size of 8,000 – 12,000 cases and equivalent number of 

controls can generate sufficient power to detect a variant, if the effect size and allele 

frequency of the variant can reach the required levels (see Figure 1.4, (75)). Since GWAS 

is designed based on LD pattern to identify indirect association, the extent of LD between 

the marker SNP and the causal variant can influence the likelihood of detecting an 

association. For the causal variants with moderate effect (odds ratio < 2.0) which are likely 

to be observed in GWAS of complex traits, power will be retained if there are sufficient 

LD between the marker and the causal allele, and both variants are common and have 

similar frequencies. Finally, little power will be lost without screening the comparison 

subjects (i.e. controls) if the phenotype studied is relatively uncommon (< 5% prevalence), 

and power will be improved for traits with higher prevalence (> 5%) if subjects are 

predisposed to the trait of interest are excluded from the comparison group (75). 
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Figure 1.4 Relationship among allele frequency, genetic relative risk and power (75). The images show the expected power for a phenotype with 1% prevalence 
in a population (p = 5x10

-8
), given minor allele frequency, sample size (e.g. yellow represents 20,000 cases and 20,000 controls involved in the comparison), and 

genetic relative risk (following multiplicative inheritance mode; it is similar to O.R. here, O.R. is the estimate of relative risk in a case-control study). For example, 
8,000/8,000 cases/controls will not be able to identify most of the SNPs that count for less than 20% increase in risk (genetic relative risk < 1.2), while 20,000/20,000 
set has overall greater power compared with other sample sets (i.e. 8,000/8,000; 12,000/12,000; 16,000/16,000). 



35 
 

1.3.2 Statistical significance thresholds  

GWAS produces hundreds of thousands genotype results for each sample simultaneously. 

Each SNP is tested for an association with the phenotype of interest. This creates the so-

called multiple tests/multiple hypotheses problems. If each SNP test is treated as a 

“repeat”, the con entional statistical signi icant threshold o  0.05 becomes too liberal to 

distinguish false positives from any true associations. The well-known Bonferroni 

correction is used to correct for multiple tests that have been carried out, but this is not 

ideal because it assumes SNPs tested in a GWAS data set are independent from each other 

(this is not true as SNPs are somewhat correlated in the genome, even among the 

tagSNPs). Based on Bonferroni correction, a conventional genome-wide significance 

threshold is set up at 5x10
-8 

in GWAS of non-Africans (73), it is calculated by dividing 

0.05 by one million SNPs that are thought to be effectively independent across the genome 

based on LD patterns (76). Another theoretical concept is whether we should deal with this 

as an issue of multiple hypotheses instead of multiple tests (77). At one extreme of the 

spectrum, it is argued that there is no need to correct, but to report any significant finding 

altogether with the number of hypotheses tested (78), then more focused 

studies/experiments can be developed to validate these positive findings and discard those 

that are proved to be false. Other approaches to reduce the false positive risks have also 

been proposed, such as permutation tests (79) and false discovery rate correction (80).  

1.3.3 Population stratification and its solution 

Allele frequencies of many SNPs may vary from population to population that has 

different genetic structure from one another. Admixture occurs when genetically distinct 

groups begin interbreeding. The disparity in frequencies existing between cases and 

controls would result in population stratification, which might lead to spurious results in 

association studies. Differences in trait prevalence between cases and controls have also 

been noted as responsible for false discoveries (81,82). It is even clearly stated by 
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Wacholder et al (83) that both conditions (differences in allele frequency and trait 

prevalence) must be met to raise any substantial bias on genuine associations. However, 

there are only two often used empirical examples to illustrate the effect of population 

stratification on biased association outcomes (81). One was caused by mixing individuals 

of European and American Indian ancestries in the association study of an HLA (Human 

Leukocyte Antigen System) haplotype and diabetes. Both haplotype frequency and 

diabetes prevalence differed between White Europeans and Pima Indians (84).  The other 

refers to association studies of alcoholism and the dopamine D2 receptor (DRD2), in which 

the significant associations were resulted from varied DRD2 allele frequencies and 

alcoholism prevalence differences across different ethnic groups (85,86). Other studies in 

population structure, however, demonstrated that standard methods may not be sufficient 

to detect underlying population stratification, and markers with widely spread allele 

frequencies among ethnic (sub)groups indeed elevate false positive rates in association 

studies (82,87,88). Finally, other factors that may be relevant to population stratification 

include sample size (89,90) and the number of ethnic groups (91). The effect of 

stratification tends to increase when the sample size increases, but decrease when the 

number of ethnic groups increases (among non-Hispanic U.S. Caucasians of European 

origin, (91)). Despite matching cases and controls for ancestry, different statistical methods 

have also been developed for correcting population stratification in GWAS of unrelated 

cases and controls so as to minimize potential confounding effect owing to population 

stratification. 

1.3.3.1 Genomic control 

Genomic Control is an older method that is used for population stratification evaluation. 

Devlin and Roeder (1999) (92) first innovated this concept, in which the inflated chi-

square test statistics due to population heterogeneity can be adjusted using randomly 

selected, “ nlinked” markers  (and  nrelated to the phenotype in q estion) to estimate the 
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null distribution of the usual test statistic (89,93-95). More precisely, there will be, when 

substructure problems exist, a higher median of the actual 
2
 distribution than the median 

of a null distribution. The genomic control approach measures the inflation factor  that is 

the median of 
2
 association statistic across SNPs (e.g. genome-wide 

2
 distribution in a 

GWAS) divided by the median of the normal 
2 

distribution (92). If  value is ~ 1, the 

distribution is thought to be close to ideal, suggesting no evidence of population 

stratification or other confounders; for example, family structure of cryptic relatedness 

(96). Generally,  < 1.05 is considered benign (96). When population stratification exists, 

genomic control correction can be applied by standardize the actual 
2
 statistic results over 

the  value and the corresponding p values (corrected) become less significant. It also 

should be noted that the uniform  adjustment may lead to overcorrection for markers that 

do not differentiate by allele frequencies, while insufficiently control for markers alleles 

that significantly differed across study populations (97). 

1.3.3.2 Structure assessment 

“Unlinked” genetic markers across the genome can also be  sed to de ine s bgro ps in the 

total sample set to homogeneous subgroups (94,98-101). Association tests will then be 

carried out in those matched subpopulations, independently, and these results will be 

combined statistically for the overall genotype-phenotype association (81). However, since 

this approach uses genotype data to estimate the probability that an individual belongs to a 

subgroup, it may not be always able to precisely define the exact number of subgroups, but 

capture the major structure in the data to infer the fewest number of subpopulations (98).   

1.3.3.3 Principal component analysis 

Another popular and commonly used approach for population stratification is the principal 

component analysis (PCA). PCA is used to identify patterns of a data set to visualize their 

similarities and differences, and by reducing the number of dimensions, data can be 
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compressed without losing much information (102). This data reduction procedure 

transforms variables into continuous axes of variation with the first axis (principal 

component) explaining the greatest variance in the data set, followed by an uncorrelated 

principal component accounting for the second greatest variance and so on. In population 

genetic association studies, PCA can be used to examine marker allele frequency variation 

and to assess population structure among cases, controls and selected reference populations 

(e.g. populations from the HapMap) along continuous axes of genetic variation, and these 

methods are implemented in EIGENSOFT package including EIGENSTAT (for 

population stratification, (97)) and SMARTPCA (for population structure, (103)). 

Eigenvalues on each axis (usually the first few principal components are thought to be able 

to capture the stratification patterns) can then be treated as covariates in logistic regression 

(for binary traits) or linear regression (for quantitative traits) analyses to correct for 

ancestry effects.  

1.3.3.4 Family-based controlling approach 

As mentioned above, an important advantage of family-based design over population-

based studies in genetics is that it is immune to population stratification. This is because 

the matching of case and control within a family avoid the problem of allele frequency 

differences occurring at population level (81). The transmission-disequilibrium test (TDT) 

design is a popular family-based matching method used to protect from stratification. It 

requires an affected offspring and his/her parents and assumes 50% chance of inheriting 

each allele for a polymorphic marker from each parent. Therefore, alleles that are 

transmitted from the parents to the affected offspring are the cases, and controls are the 

alleles that are not transmitted. The frequency of an allele transmitted to the affected 

individual can be estimated by TDT, and an allele with 50% chance more of the time 

appeared in the affected may indicate a positive association between the allele and the trait. 

A few drawbacks, however, should be noted for family-based TDT method: 1) Sampling 



39 
 

efficiency. The recruitment of all family members (offspring and parents) may be very 

difficult or impossible particularly in individual family with late-onset disorders or other 

severe conditions; 2) Genotyping efficiency and sensitivity.  Genotyping needs to be done 

in all three people (one affected offspring and the parents) to enable a case-control 

comparison (affected alleles vs. non-affected alleles) using TDT approach, however, one in 

fact can use full genotype information obtained from all three individuals (TDT design has 

a two-thirds of the genotyping efficiency, (104,105)). Furthermore, such design is more 

sensitive to random genotyping errors, which can cause inflated type I error rates (106); 3) 

Parents need to be heterozygous at a marker locus for allele transmission rate to be 

calculated, hence at least 50% of the parental genotype data will not be analyzed (81).  

1.3.4 Genetic architecture of complex traits: CDCV hypothesis, 
infinitesimal model, rare allele model and the broad sense 
heritability model 

In the field of genetic epidemiology studies of common and complex traits, identification 

of underlying genetic structure by GWAS initially relied on the Common Disease-

Common Variant hypothesis (CDCV hypothesis), which assumed that the risk of common 

and complex traits are largely explained by a moderate number of common variants (107-

110). However, the small fraction of genetic variation revealed by current GWAS loci 

raised the issue of missing heritability (111,112) Another three models were developed to 

look further into the problem: 1) The infinitesimal model, in which genetic variance is 

attributable to numerous common variants with small effects (113); 2) The rare allele 

model, in which genetic variance is attributable to many rare variants (allele frequency is 

typically less than 1%) with large effects (114); and 3) The broad sense heritability model 

(relative to the narrow sense heritability that refers to the additive portion of the genetic 

variance), in which genetic variance is attributable to the non-additive components: the 

gene x gene interactions (i.e. epistasis), gene x environment interactions and epigenetics 

(e.g. the effect of DNA methylation, histone modification, and microRNA (miRNA) 
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expression on a genotype without change of the DNA sequence) (115-117). An intuitive 

illustration of the above 3 models as well as the CDCV hypothesis model is displayed in 

Figure 1.5 (taken from (115)). There is no clear answer for which elements contribute to an 

inferred genetic variance and in what proportion, but a way forward is to think about how 

these proposed hypotheses work together and build the genetic foundation of a complex 

trait (118). 

 

Figure 1.5 Genome-wide association signals for elucidation of four models related to 
common and complex traits (115). Each plot represents an expected distribution of SNP effects 
for a study of 2,000 cases and controls. The Y axis shows the percentage of genetic variance 
explained by each SNP for a trait in a population, and X axis refers to the chromosomal location for 
each SNP. In the plot of the CDCV model, a small number of SNPs show strong effects on trait 
being studied (i.e. the expended scale of the percentage of variance on the Y axis compared to 
other plots). In the plot of the infinitesimal model, the strongly associated signals are explained by a 
large number of SNPs with small effects. In the plot of the rare allele model, rare causal variants 
(shown in yellow) may have large effect in a few individuals, although they are not common in a 
population to explain a reasonable amount of variance and to result in genome-wide significance. 
In the plot of the broad sense heritability model, for associations that are only present under certain 
conditions (e.g. influenced by environmental factors, shown as green and orange signals), the 
overall effect will be reduced in a mixed population at such loci (see arrows, bottom right) and this 
would lead to few associations to be detected, hence less variance observed (115). 

1.3.5 GWAS of exercise-/performance-related traits 

A few GWASs of exercise/performance-related traits have been reported to date. These 

studies that have been published (summarized in Table 1.1) have identified several signals 

in relation to bone mineral density (BMD; which is thought to correlate with the increased 

likelihood of injury, therefore BMD was included as a trait of interest when searching the 
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GWAS Catalog (119)), lean body mass, left ventricular mass, exercise participation and 

heart rate variability related traits.  In the summary table (Table 1.1), all eight studies have 

been performed in a small to moderate number of samples (i.e. from ~ 200 cases and 

controls to ~ 1,600 cases and controls in their GWAS discovery cohorts), authors from five 

of the studies attempted to replicate the results, and only two studies (after replication) 

reached the conventional GWAS significance threshold of 5x10
-8

. These findings are 

nevertheless interesting, e.g. warrant further replication (for those that have not been 

replicated) or zoom into the already identified GWAS regions (for those after replications). 

Kiel et al (2007) (120) did not find any associations for BMD (called the Framingham 

Osteoporosis Study) exceeding 5x10
-8

 in 1,141 individuals from the Framingham Heart 

Study (FHS; the most comprehensively characterized multi-generational studies in the 

epidemiology of cardiovascular disease (121)) by analyzing 70,897 SNPs (the genomic 

coverage of these SNPs was low); the Framingham Osteoporosis Study is a derived study 

from the FHS. Xiong et al (2009) (122) found that rs11864477 in ADAMTS18 gene was 

significantly associated with hip BMD (p = 2 x 10
-8

) after replications and meta-analyses 

across different ethnic groups (i.e. White U.S. samples, Chinese and west African ancestry 

samples), and future molecular studies are needed for better understanding of the 

mechanisms.  

De Moor et al (2009) (123) identified three suggestive SNPs in association to exercise 

participation in the Dutch and American cohorts of 2,622 individuals using approx. 1.6 

million imputed SNPs. Rankinen et al (2011) (124) performed a GWAS in 472 individuals 

of European ancestry from the HERITAGE Family Study, their data suggested that ten 

most significant SNPs could account for 35.9% of the variance in the submaximal exercise 

heart rate response, and 9 of these SNPs contribute 100% to the heritability of this heart 

rate variability trait. Nevertheless, these studies require either further replications or 

additional studies to confirm these identified loci. 
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Despite of small sample size (GWAS cohort) and limited genomic coverage provided by 

Affymetrix 100K chip used in the study of Arnett et al (2009) (125), the authors reported 

that five SNPs from the initial GWAS of left ventricular mass in Caucasians were 

subsequently validated in an independent Caucasian cohort with a much greater number of 

individuals compared to the GWAS samples. In addition, a SNP within the intron of a 

previously reported candidate gene (KVNB1) for left ventricular hypertrophy was 

replicated in the African-American cohort (a 2
nd

 replication cohort used by the authors). 

Future fine mapping and functional studies are required to find the causal genetic variant 

and its functional relevance to left ventricular hypotrophy, which is also often seen in 

sprint/power-oriented athletes. 

Two GWASs of lean body mass (one of the studied phenotypes) in Chinese populations 

were carried out (126,127). Although authors from both studies attempted to replicate their 

association results in larger cohorts of European ancestry, most significantly replicated 

SNPs did not reach genome wide significance of 5x10
-8

. The authors aware that further 

replications would be needed in other populations and in a larger scale, while these 

findings are interesting and deserve detailed investigation on the biological function of the 

putative loci once further confirmed.  

Polymorphisms in the thyrotropin-releasing hormone receptor (TRHR) gene in relation to 

skeletal muscle trait, which were identified from a genome-wide association scan and 

confirmed in three additional replications and meta-analyses, seem the most promising 

(128). Another study used genomic predictor score to establish a panel o          s 

contrib ting to    2max trainability in response to standardized endurance exercise training 

followed by replications in other cohorts, offering an alternative way to conduct GWAS in 

exercise-related traits. These two studies are described in detail below.  
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Table 1.1 Summary of studies for exercise-/performance-related traits from the NHGRI 

GWAS Catalog (adapted from (119)). 
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First AuthorDate Disease/Trait Initial Sample Size Replication Sample Size Region
Reported
Gene(s) Mapped_gene

Strongest
SNP-Risk
Allele Context

Risk Allele
Frequency p-Value p-Value (text)

OR or beta; 95%
C.I. Platform [SNPs passing QC]

Han Y 08/31/2012
Compressive strength and
appendicular lean mass 825 CA females, 802 CA males 1,059 EA males, 2,227 EA females 11q12.2 FADS1, FADS2 FADS1 rs174547-C intron 0.33 2.00E-07 (Males + Females) NR; NR Affymetrix [701,525]

Han Y 08/31/2012
Compressive strength and
appendicular lean mass 825 CA females, 802 CA males 1,059 EA males, 2,227 EA females 11q12.2 FADS1, FADS2 FADS1 rs174549-A intron 0.3 8.00E-07 (Males) NR; NR Affymetrix [701,525]

Hai R 06/29/2012
Lean body mass and age
at menarche (combined) 801 Han Chinese women 1,692 EA women 1q23.2 DARC DARC rs3027009-? nearGene-5 NR 7.00E-07 (Bivariate) NR; NR Affymetrix [909,622]

Rankinen T 12/15/2011 Heart rate variability traits472 EA individuals from 99 familiesNR 2p25.1 YWHAQ ADAM17 - YWHAQ rs6432018-? Intergenic NR 8.00E-07 NR; NR Illumina [320,000]
Rankinen T 12/15/2011 Heart rate variability traits472 EA individuals from 99 familiesNR 8p12 RBPMS RBPMS rs2979481-? intron NR 4.00E-06 NR; NR Illumina [320,000]

De Moor MH 2009-2-9 Exercise (leisure time)
1,644 Dutch individuals, 978
European individuals NR 10q23.2 PAPSS2 PAPSS2 rs10887741-T intron NR 4.00E-06 1.32; 1.17-1.49

Affymetrix and Perlegen [~1.6 million]
(imputed)

De Moor MH 2009-2-9 Exercise (leisure time)
1,644 Dutch individuals, 978
European individuals NR 18p11.32 C18orf2 C18orf2 - METTL4 rs8097348-G Intergenic NR 7.00E-06 1.36; 1.19-1.56

Affymetrix and Perlegen [~1.6 million]
(imputed)

De Moor MH 2009-2-9 Exercise (leisure time)
1,644 Dutch individuals, 978
European individuals NR 2q33.1 DNAPTP6

C2orf47 -
SPATS2L rs12612420-A Intergenic NR 8.00E-06 1.43; 1.22-1.67

Affymetrix and Perlegen [~1.6 million]
(imputed)

Arnett DK 05/19/2009 Left ventricular mass 101 EA cases, 101 EA controls 704 EA siblings, 1,467 AA ancestry siblings7q21.11 CD36 CD36 rs10499859-? intron 0.45 3.00E-06 (Caucasian) 0.09; NR (LVMI) Affymetrix [96,258]
Arnett DK 05/19/2009 Left ventricular mass 101 EA cases, 101 EA controls 704 EA siblings, 1,467 AA ancestry siblings5p13.2 RAI14 C1QTNF3 - RAI14 rs409045-? Intergenic 0.38 8.00E-07 (Caucasian) 0; NR (LVMI) Affymetrix [96,258]

Liu XG 2009-4-3 Body mass (lean) 1,000 individuals
1,488 individuals,  1,972 family
members, 2,955 Chinese individuals 8q23.1 TRHR TRHR rs7832552-T intron 0.32 4.00E-10

0.1; 0.04-0.16 kg
increase Affymetrix [379,319]

Xiong DH 02/25/2009 Bone mineral density 1,000 EA individuals

4,925 EA individuals, 350 CA hip
fracture cases, 350 CA controls, 2,955
CA individuals, 908 WA ancestry men 1p22.1 TGFBR3 TGFBR3 rs17131547-A intron 0.01 1.00E-06 (spine BMD)

1.2; % [NR] of
variance
explained Affymetrix [379,319]

Xiong DH 02/25/2009 Bone mineral density 1,000 EA individuals

4,925 EA individuals, 350 CA hip
fracture cases, 350 CA controls, 2,955
CA individuals, 908 WA ancestry men 16q23.1 ADAMTS18 ADAMTS18 rs11864477-C intron 0.12 2.00E-08 (hip BMD)

1; % [NR] of
variance
explained Affymetrix [379,319]

Kiel DP 09/19/2007 Bone mineral density 1,141 individuals(Framingham) NR 13q21.31 Intergenic
RPL32P28 -
OR7E156P rs9317284-? Intergenic NR 2.00E-07 (FNBMDm) NR; NR Affymetrix[70,897]

Kiel DP 09/19/2007 Bone mineral density 1,141 individuals(Framingham) NR 10p15.2 Intergenic PITRM1 - KLF6 rs2165468-? Intergenic NR 1.00E-06 (FNBMDm) NR; NR Affymetrix[70,897]
Kiel DP 09/19/2007 Bone mineral density 1,141 individuals(Framingham) NR 3p24.1 RBMS3 RBMS3 rs10510628-? intron NR 3.00E-06 (TRBMDm) NR; NR Affymetrix[70,897]
Kiel DP 09/19/2007 Bone mineral density 1,141 individuals(Framingham) NR 20q11.23 CTNNBL1 CTNNBL1 rs4811196-? intron NR 1.00E-06 (TRBMDf) NR; NR Affymetrix[70,897]
Kiel DP 09/19/2007 Bone mineral density 1,141 individuals(Framingham) NR 4p16.1 Intergenic RAF1P1 - ZNF518B rs9291683-? Intergenic NR 2.00E-06 (BUA) NR; NR Affymetrix[70,897]

Kiel DP 09/19/2007 Bone mineral density 1,141 individuals(Framingham) NR 12q21.1 Intergenic
RPL31P48 -
VENTXP3 rs10506701-? Intergenic NR 1.00E-06 (TRBMD) NR; NR Affymetrix[70,897]

Kiel DP 09/19/2007 Bone mineral density 1,141 individuals(Framingham) NR 7q35 CNTNAP2 CNTNAP2 rs2214681-? intron NR 3.00E-06 (BUA) NR; NR Affymetrix[70,897]
Kiel DP 09/19/2007 Bone mineral density 1,141 individuals(Framingham) NR 16q23.3 Intergenic MPHOSPH6 - CDH13 rs4087296-? Intergenic NR 3.00E-07 (TRBMDf) NR; NR Affymetrix[70,897]
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AA: African-American; CA: Chinese ancestry; EA: European ancestry; NR: not reported; OR: odds 
ratio; 95%CI: 95% confidence interval; QC: quality control; ?:  risk allele not reported; p-Values are 
round to 1 significant digit (e.g. a reported p-Value of 4.8x10

-7
 is rounded to 5x10

-7
); p-Value (text): 

information describing context of p-Value. 

1.3.5.1 GWAS of skeletal muscle trait 

Loss of muscle function can cause a number of diseases, particularly in elder people 

(129,130). Lean body mass is an indicator for skeletal muscle quantity and quality (131). 

The authors have found strongly associated SNPs in TRHR gene with lean body mass. The 

study can be divided to three stages: initial GWAS scan, replication stage and the meta-

analyses. The study flow is extracted from Liu et al (2009) (128) (Figure 1.6). 

 

Figure 1.6 Study stages of Liu et al (2009) (128) to identify polymorphism related to lean 
body mass. 
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The authors set the significance level for their genome-wide association scan as 1.32 x 10
-

7
, and this was calculated by 0.05 divided by the number of available SNPs (n = 379,319) 

for association analysis. rs16892496 and rs7832552 in intron of the TRHR gene exceeded 

the threshold in the initial genome-wide associaiton scan. Both SNPs were subsequently 

replicated in three independent cohorts of multi-ethnic groups, and the strength of both 

signals was enhanced after the meta-analyses of the GWAS and replication studies. The 

combined p values were of 5.53 x 10
-9

 and 3.88 x 10
-10 

for rs 16892496 and rs7832552, 

respectively (see Table 1.2; (128)). The authors have argued that the findings are unlikely 

to be artificial, because 1) conservative Bonferroni correction was applied to claim for 

significant associations following genome-wide association scan, 2) other 15 SNPs in the 

TRHR gene region also made the same suggestive association signals along with 

rs16892496 and rs7832552, indicating that the two most significant signals are unlikely 

subjected to genotyping errors, 3) confounder, such as population stratification, was 

examined and strictly controlled, 4) independent replications confirmed the initial findings. 

Table 1.2 Significant association results of the TRHR SNPs for lean body mass across the 
three stages. (128)  

 

a. Sample 1, unrelated U.S. white sample; Sample 2, unrelated Chinese sample; Sample 3, U.S. 
white families. b. Effect sizes in U.S. white families were calculated based on founders. c. Meta-
analyses were computed under the random-effect model. The values in the table above are p 
values followed by effect sizes expressed by beta coefficients ± standard errors. 

Thyroid hormone has an important role in skeletal muscle development (132-134). The 

TRHR gene is considered as a candidate for the study of muscle power and strength (49). 

Liu et al (2009) (128) published the TRHR findings in 2009, since then there is not any 

functional study has further looked into the role of TRHR in muscle metabolism or other 

related pathways. There is an urgent need for such studies to be conducted for establishing 
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functional/physiological relevance of TRHR to lean body mass variation and muscle 

strength. 

1.3.5.2            2max trainability 

This is the  irst      o     2max changes in response to standardized exercise training. 

The authors (135) hoped to identify SNPs and genes using an intervention study design to 

precisely define the phenotype of interest (i.e.    2max was meas red twice at baseline and 

post-training).      association analysis was per ormed in a s bset (n = 470) o  whites in 

the H  IT    Family  t dies to identi y genetic polymorphisms associated with the 

increase in    2max, the genotyping was done  sing Ill mina H man   370-  ad 

 eadchips. 39    s (M F ≥ 8%) were reported to be associated with    2max training 

response at the p < 1.5x10
-4

. Among them, the redundant SNPs (mainly due to high LD) 

were eliminated using a backward regression model, 21 out of the 39 SNPs retained in the 

final model (p   0.05). These 21    s explained  48.6%    2max response variation, 

notably, 6 indi id al    s each acco nted  or ≥  3% o  the  ariance. The a thors then 

comp ted a s mmary “predictor score”  sing the 21    s, and the     was coded as “0 = 

low-response allele homozygote, 1 = heterozygote, and 2 = high-response allele 

homozygote”. In theory, the predictor score wo ld range  rom 0 to 42 (2 times 21), and the 

observed range was from 7 to 31. Individuals with a score o  ≤ 9 had a mean increase o  

221 ml min in    2max, while indi id als showed a m ch higher    2max response (mean = 

604 ml min) with a score o  ≥19. 15 most signi icant    s o  the 21 were re-tested for 

replication in a subgroup of blacks from the HERITAGE Family Study (n = 247), women 

in the Dose Response to Exercise (DREW) Study (n = 112), and men and women in the 

Studies of a Targeted Risk Reduction Intervention Through Defined Exercise (STRRIDE, 

n = 183), and they were genotyped by Illumina GoldenGate assay and Veracode 

technology on the BeadXpress platform. The concordance between GoldenGate and 

GWAS arrays were 100% through genotyping 20 HERITAGE white subjects using both 
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methods. SNPs were retained if reached the significance of p < 0.05 in the replication 

cohorts, and only 5 of the 15 SNPs were replicated. As the authors aware that a few 

explanations for the lack of replication exist: 1) low genomic coverage of the initial 

genome-wide association scan in the HERITAGE whites, genotyping a larger panel of 

SNPs may produce more significant signals for subsequent replications; 2) although the 

HERITAGE blacks (replication cohort) were selected and trained based on the same 

protocol as the HERITAGE whites, the irreproducible GWAS association results may be 

due to discrepancies of allele frequencies and LD structures in individuals of European and 

African descent; 3) the DREW and STRRIDE (the other two replication cohorts) were 

subjected to different training programmes (relative to the HERITAGE Family Study),  

subjects in these two st dies were  20 yr older than the H  IT    whites and blacks and 

the increase in    2max response were lower than those in the HERITAGE subjects , these 

might result in the reduced strength of the replication signals to be detected;  4) lastly, 

sample size of the initial GWAS was moderate at most, and the three replications gave 

even smaller sample size. Despite these limitations, the phenotype o     2max training 

response was clearly defined and measured, this carefully designed intervention study 

might reduce the number of confounders and therefore the sample size required to detect 

SNPs with a significant effect size (136). Furthermore, the genomic predictors o     2max 

training response identified from the summary score analysis provided candidate markers 

for the new biology of aerobic fitness and adaptation to regular exercise.   

1.3.6 Replication 

In association studies, most reported association findings between genotypes and 

phenotypes failed in subsequent replication. Replication is recognized as a main tool to 

distinguish chance from true associations for both candidate gene and GWAS associations. 

This is even more true for GWAS replication, because the large number of SNPs analyzed 

reflect a significant amount of tests/hypotheses to be statistically tested, hence increasing 



49 
 

the likelihood of finding type I errors. The goals of replication for the initial association 

hits from GWAS can be summarized as following (137): 

1) To pro ide con incing statistical e idence  or association. In  ayes’ theorem, a tr e 

association depends not only on the observed p value, but power of the study (as indicated 

before, power is a function of minor allele and the correlated allele frequencies, effect size 

and sample size), prior probability of the associated variant for a given trait, and the 

anticipated effect size (138-140). Given yet unclear genetic architecture underlying the 

common/complex traits (see section 1.3.4), the true effect of a variant causing a specific 

phenotype is unknown. Formal replication can be applied to genotype the most promising 

GWAS SNPs in an independent sample of sufficient size to re-confirm these signals before 

taking them forward for functional studies. An alternative approach to replication is to 

include a region in a predictive genomic score for the trait so as to provide an update for 

the prior for association in subsequent studies based on Bayesian probability theory, and a 

less stringent threshold may be applied. 

2) To eliminate false association due to bias. Other artificial effect accounting for a 

significant association may be the present, for example, population stratification and 

technical bias owing to the differences in genotyping and analysis procedures between 

cases and controls.   

3) To improve the reliability for effect estimation. The effect size is often to be inflated in 

the discovery GWAS due to inadequate power to detect the true effect with smaller 

magnitude, this is known as “winners’ curse” (141-144).  Replications in additional 

samples taking into account appropriate calculation for the number of samples required 

should be able to produce more accurate estimates of the genetic effect. 
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4) To generalize an association across different populations. Given discrepancies in allele 

frequencies and LD structure in various populations, the initial replications should be 

carried out in samples of similar genetic ancestry to the discovery cohort. After this, 

replications in different ethnic populations may be taken forward for potential common 

functional variants to be identified across these different populations.   

1.4 Extreme phenotype 

 

Complicated genetic architecture underlying common and complex traits have made the 

determination of the resulting genetic variants extremely challenging. For such genetic 

studies, particularly at genome-wide scale, an adequate power is difficult to achieve, 

because an insufficient sample size may be employed for the identification of common 

genetic variations with small and modest effects or rarer variants with larger effects.  One 

strategy that may increase efficiency is to study individuals at the two extremes of a 

phenotype distribution, in which the allele frequency may be enriched in one or both 

phenotype extremes; therefore, the need for very large samples may be circumvented and 

potential candidate genes/SNPs may be uncovered (145). For example, in a GWAS of 

obesity and its related traits (146), the authors analyzed a few hundred (a classical GWAS 

typically requires a sample size of a few thousands at least) cases (extremely obese) and 

similar size of controls (never overweight) and then successfully replicated top ~500 

GWAS SNPs in the combined  cohort of cases, controls and family members using a 

different genotyping platform, they found genome-wide significant SNPs within the fat 

mass and obesity associated (FTO) gene (16 SNPs) and neurexin 3 (NRXN3) gene (1 SNP) 

associated with obesity (as a binary trait) and body fat distribution, respectively. Another 

research group used exome sequencing and an extreme phenotype study design in 

individuals with cystic fibrosis to identify genetic factors leading to Pseudomonas 
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aeruginosa infection in cystic fibrosis, the authors successfully performed exome 

sequencing in 91 participants (out of 96), including 43 individuals with early age of onset 

of chronic P. aeruginosa infection (treated as early P. aeruginosa extreme cases) and 48 

oldest individuals who had not had chronic P. aeruginosa infection as late P. aeruginosa 

extreme controls (147). Genetic variants in the dynactin 4 (DCTN4) gene, encoding a 

dynactin protein, were significantly associated with time to chronic P. aeruginosa 

infection. The authors demonstrated that the success of this approach (using exome 

sequencing to discover genes responsible to a complex trait) was partially due to well 

phenotyped and matched extreme samples, relatively large estimated effect size for 

DCTN4 and reasonably high MAF variants included in the analysis (147). 

1.5 Aims 

 

The overall aim of the studies described in this thesis is to identify genetic variants related 

to elite human performance by analysing athletes of the highest standard including world 

record holders, world champions, Olympians and winners of other international events by 

carrying out two types of association studies: the candidate gene association study and 

GWAS. Therefore, the specific aims of this thesis are: 

 To investigate whether two genes encoding angiotensin converting enzyme (ACE) 

and actinin, alpha 3 (ACTN3), which have evident roles in the regulations of 

circulatory homeostasis and muscle metabolism, respectively, are associated with 

elite swimmer status in both Caucasians and East Asians, who consistently show 

high levels of performance in swimming, using the candidate gene association 

approach;  limited efforts has been made to investigate the relationship between the 

two genes and elite swimmer status in the two populations; 
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 To identify common polymorphisms associated with elite sprint athlete status by 

carrying out GWAS in Jamaicans, African-Americans and Japanese, respectively. 

As an aside, potential common polymorphisms involving in elite endurance 

performance in Japanese are also examined using the genome-wide association 

approach; 

- To perform a meta-analysis of the combined three sprint GWAS 

cohorts, namely Jamaicans, African-Americans and Japanese; 

 Additionally, to investigate whether sprint-related SNPs identified from published 

reports show predictive utility on elite sprint performance, assessed by using the 

genomic data generated from current GWAS cohorts.  
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2 Materials and methods 

 

This chapter summarizes the procedures applied to sample collection, DNA preparation, 

storage and transportation, genotyping and data analyses. 

2.1 Study samples 

Elite athletes were sampled from the population of world record holders, world champions, 

Olympians and winners of other international events, or athletes who had at least either 

participated in international or national level competitions. The sport events mainly include 

swimming, running, jumping and throwing. Controls were drawn from geographically 

matched regions as the elite athletes.  

2.1.1 Elite athlete cohorts 

Elite Caucasian and East Asian Swim Cohort: The elite swimmer cohort consists of 

Caucasian and East Asian subjects. 200 elite Caucasian swimmers from European, 

Commonwealth, American and Russian sub-cohorts were sampled during swimming 

competitions during 2005 and 2006 and sub-divided into short and middle distance (SMD 

≤ 400 m, n = 130) or long distance swimmers (LD > 400 m, n = 70). Caucasian swimmers 

of the European, Commonwealth and American sub-cohorts were of world-class status or 

highly competitive in international competitions (lifetime World Rankings in the top 50, 

averaging of the World Rankings of these swimmers in these events within the top 20; 

swimming World Rankings can be accessed through http://www.fina.org/H2O/). 

Caucasian swimmers of the Russian sub-cohort (n = 21) all had represented their country 

in international competitions at very long distances (5 – 25 km), and many were World 

Champions or World Championship prizewinners. Caucasian controls were drawn from 

previous published reports (ACE-C: n = 1248, (148); ACTN3-C: n = 1694, (149-153)).  

http://www.fina.org/H2O/
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Differences in ACTN3 R577X allele frequency between East and West Europe were dealt 

with by including Russian controls in the same proportion as Russians made up in the 

swimmer cohort (21 Russians in a total of 193 genotyped swimmers = 10.9%). Therefore, 

184 Russian controls were randomly selected for inclusion in the analysis. 158 elite 

Japanese and 168 elite Taiwanese swimmers were classified as short distance ( D ≤ 100 

m; n = 166) and middle distance (MD: 200 – 400; n = 160), and all had either participated 

in international competitions such as the Olympics, World Championships and Asian 

Games, or were participants in national competitions. Controls were pooled from general 

Japanese (n = 649) and Taiwanese (n = 603) populations, respectively and were healthy 

adults of both sexes and not professionally connected with athletics/sport. Gender, 

ethnicity, event and level of performance were recorded for all subjects.  

Elite Jamaican and USA sprint cohorts: These cohorts are comprised of elite Jamaican and 

African-American athletes representing the highest level of sprint performance and 

geographically matched controls. In the Jamaican cohort, 116 athletes (male = 60, female = 

56) and 311 control subjects (throughout the whole island; male = 156, female = 155) were 

recruited (154). 71 and 35 athletes had participated in 100-200 m and 400 m sprint events, 

respectively; and 10 athletes were involved in the jump and throw events. These athletes 

can be further classified into national (n = 28) and international athletes (n = 88) who were 

competitive at the national level in Jamaica and the Caribbean or at major international 

competitions for Jamaica. Among the 88 international athletes, 46 had won medals at 

major international events or held world records in sprinting. In the African-American 

cohort, samples from 114 elite sprint athletes (male = 62, female = 52) and 191 controls 

(throughout the United States; male = 72, female = 119) were collected (154). Among 

these athletes, 48, 42 and 24 athletes participated 100-200 m, 400 m, and jump and throw 

events, respectively. Athletes can be subdivided into 28 national and 86 international 



55 
 

athletes; 35 of these athletes had won medals at international games and/or broken sprint 

world records.   

Elite Japanese track-and-field (TF) athlete cohort: The elite Japanese TF athlete cohort 

involves 60 international endurance and 54 international sprint athletes, but not necessarily 

the medallists. 118 healthy controls of both sexes who were not involved in competitive 

sports were recruited from general Japanese population.  

2.1.2 DNA collection, extraction, quantification, storage and 
transportation 

DNA from elite Jamaican and USA sprint and elite Caucasian swim cohorts was isolated 

from buccal cells. These subjects were asked not to consume food or drink for at least 30 

minutes before providing a sample. Buccal cell samples were collected by a trained 

individual by firmly rubbing a brush (Medical Packaging Corporation, Camarillo, CA, 

U  ) against the inside o  each s bject’s cheek  or at least 15 seconds. The head o  the 

brush was cut into a screw cap tube containing cell lysis solution (0.1 M Tris-HCl pH 8.0, 

0.1 M EDTA; 1 % SDS). DNA was extracted using the QIAamp
®
 DNA Mini kit (QIAgen, 

Hilden,  ermany) according to the man  act rer’s instr ctions (155) with minor 

adjustments. In brief, 500 μl o  each sample was trans erred to a clean 1.5 ml 

microcentri  ge t be,  ollowed by adding in 15 μl proteinase K and then inc bated at 55°  

for 30 minutes to 1 hour in an air incubator (Binder B28, BINDER GmbH, Tuttlingen, 

 ermany). 500 μl o  100% ethanol was added to the microcentri  ge t be, mixed by 

vortexing thoroughly and then was carefully transferred to a spin column with a pipette.  

The supernatant in the 2 ml collection tube after centrifuge was then discarded and the 

DNA was absorbed to the membrane of the spin column. The DNA was washed twice 

 sing 500 μl o  two di  erent b   ers (AW1 and AW2) and  inally was dissol ed in 200 μl 

of AE buffer (10 mM Tris-Cl; 0.5mM EDTA; pH 9.0). The DNA samples were then 

quantified using the Nanodrop Technologies Nanodrop
® 

ND-8000 Spectrophotometer 
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(Wilmington, DE, USA) measuring 8 samples at a time with a multichannel pipette to 

transfer 2 µl undiluted sample to the sample pedestals, and DNA concentration was 

determined using the absorbance method (i.e. absorbance at 260 nm (A260)). 

There are also a few athletes DNA samples that were collected from whole saliva using 

Oragene DNA Self Collection Kit – disc format (OG-250) (DNA Genotek Inc., Canada). 

Participants were advised to rinse mouths with drinking water, and to wait for 5 minutes 

before saliva collection. About 2 ml of saliva was collected under appropriate supervision. 

The trained individual would then cover the disk with the cap tightly and invert the 

container repeatedly for 10 seconds in order to sufficiently mix the saliva sample with the 

Oragene chemistry (DNA Genotek Inc., Canada). DNA was extracted following 

man  act rer’s instr ctions  or man al p ri ication o  D    rom 0.5 ml o  sample  sing 

DNA Genotek’s prepIT∙L2  D   extraction kit (156) with minor adjustments. In brief, 

500 μl o  sali a sample was trans erred into a 1.5 ml microcentri  ge t be. 20 μl  ragene 

DNA purifier solution was added to the microcentrifuge tube containing the sample, mixed 

by vortexing for 3 seconds and then placed on ice for 10 minutes. The sample mix was 

centrifuged using a microcentrifuge at room temperature for 10 minutes at 13,000 rpm 

(15,000 × g). The supernatant was carefully transferred into a fresh tube and an equal 

 ol me o  100% ethanol (500 μl) was added, mixed by inverting gently 10 times. The mix 

was incubated at room temperature for 10 minutes to allow full precipitation of the DNA, 

and was centrifuged at room temperature for 2 minutes at 13,000 rpm. The supernatant was 

removed and discarded this time, and pellets were dried in an air incubator at 50°C for 

about 20 minutes and dissolved in 300 μl o  T  b   er (100 mM Tris, 10 mM  DT , pH 

8.0). Samples were then stored at room temperature overnight to allow complete 

rehydration of the DNA, followed by vortexing. Undiluted DNA samples were quantified 

by the absorbance method using the Nanodrop Technologies Nanodrop
® 

ND-8000 

Spectrophotometer (Wilmington, DE, USA). 
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Samples were held at 4°C while processing (for example, during DNA extraction and 

quantification). For longer term storage, the remained buccal cells/saliva samples as well 

as the extracted DNA were frozen at -20°C. For whole genome genotyping using Illumina 

Omni Whole Genome Assays, the purified genomic DNA samples of elite Jamaican and 

USA sprint cohort were then shipped to Tokyo Metropolitan Institute of Gerontology, 

Japan, where the samples were further processed and prepared for whole genome 

genotyping, by a logistic transportation courier (DHL, UK). These DNA samples were 

stored in 8 x 12 format sterile Thermo Scientific Matrix Storage Tubes (0.75 ml, Thermo 

Fisher Scientific, Hudson, New Hampshire, USA) and placed in Polystyrene Cold Boxes 

covered with dry ice during transportation, and arrived to Japan in a maximum of 72 hours. 

DNA quantity and quality were evaluated again in Japan using PicoGreen
®
 Assay (a more 

precise measurement for quantifying double stranded DNA); samples with at least 50 ng of 

DNA were taken forward for whole-genome genotyping. For single SNP genotyping using 

Taqman Assays, the DNA was diluted and standardized to a working concentration of 3 

ng∙µl
-1

 and stored, during the genotyping, at 4 °C in Rigid Thin Wall 96 x 0.2 ml Skirted 

Microplates (Starlabs UK Ltd, Buckinghamshire, UK). 

2.2 Genotyping 

Taqman
®
 SNP genotyping method was used for genotyping of ACE and ACTN3 

polymorphisms. The whole genome genotyping arrays were used for whole genome wide 

association analysis by interrogating > 700,000 markers/sample simultaneously across the 

entire human genome. 

2.2.1 Taqman® SNP genotyping  

2.2.1.1 Taqman® assay 

Taqman
®
 SNP genotyping assay contains sequence specific forward & reverse primers, 

and two Taqman
®

 minor groove binders (MGB) probes. All Taqman
® 

SNP genotyping 
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assays are designed to work with Taqman
®
 universal master mix, containing AmpliTaq 

Gold
® 

DNA polymerase and buffer components optimized for tight endpoint fluorescence 

cluster. More specifically, the two primers are used for DNA chain extension and 

amplification during the Polymerase Chain Reaction (PCR), and the two Taqman
® 

MGB 

probes provide a fluorescence signal for each targeted allele. The two probes are labelled 

with two fluorescent dyes at their 5 prime ends with the VIC-dye attached to the 5′ end of 

the allele 1 probe and the FAM-dye to the 5′ end of the allele 2 probe, and a nonfluorescent 

quencher (NFQ) is attached to the 3 prime end of each probe. When the reporter dye (VIC-

/FAM-dye) and the quencher dye on the probe is intact, the reporter fluorescence is 

absorbed by the quencher dye. AmpliTaq Gold
®
 polymerase  extends the primers bound to 

the template DNA in a 5′ to 3′ direction. Once a probe matched with a specific sequence, 

the AmpliTaq Gold
®
 polymerase cleaves, resulting in separating the reporter dye from the 

NFQ and leading to the increase of the fluorescence emissions during the real-time PCR 

amplification using the   I’s  tep ne l s
TM

 Real Time PCR system (Applied 

Biosystems, CA, USA). Genotypes were called from end-point reads  sing   I’s 

StepOne
TM

 Software v2.1 (see 2.2.1.2 for more).    

2.2.1.2 PCR conditions and endpoint reading using StepOneTM software v2.1 

The recommended purified genomic DNA template as per the man  act rer’s instr ctions 

is 1 – 20 ng with a uniformed concentration. A total volume of 20 μl reaction mix, 

including 9 ng gDNA (i.e. 3ng/μl for 3 μl), 1.0 μl 20 x Taqman genotyping assay, 10.0 μl 

TaqMan universal PCR master mix and 6.0 μl distilled water, was used for real-time PCR 

for each sample processed at Glasgow (i.e. Caucasian swimmers, see experimental Chapter 

3). Different reaction design is possible as long as it meets the initial recommendation from 

the manufacturer (e.g. roughly equivalent DNA concentration/quantity for all samples 

across the whole PCR plate). For each 96-well PCR plate, it included 94 DNA reactions 

and 2 no template (or negative) controls. The genotyping was performed using ABI 
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StepOnePlus
TM

 Real Time PCR system (Applied Biosystems, CA, USA) with the 

man  act rer’s recommended     thermal cycling conditions: AmpliTaq Gold enzyme 

activation (10 minutes at 95°C), followed by 40 cycles at  92°C for 15 seconds (denature) 

and at 60
o
C for  1 minute (anneal/extend). Genotypes were then called from end-point 

reads using ABI StepOne
TM

 Software v2.1 measuring the fluorescence during plate reading 

to plot the fluorescence values based on the signal for each DNA sample. The automatic 

allele calls were set up during calling. A successfully genotyped plate would show tightly 

clustered VIC- and FAM-dye homozygote and heterozygote clusters. The genotyping 

results can be exported as an excel file for further analysis. 

2.2.2 Illumina whole-genome genotyping 

2.2.2.1 Illumina Infinium DNA analysis BeadChips 

The Infinium
®
 high density array is designed to genotype a large number of SNPs across 

the whole human genome by interrogating genomic markers through two steps: 

hybridization of the 50-mer probes to the markers of interest and enzymatic single-base 

extension with labelled nucleotide on Beadchip (157). Subsequent fluorescent staining and 

signal intensities can then be detected  sing Ill mina’s Hi can i can imaging systems. 

Automated genotype calling can be analyzed using Illumina GenomeStudio Software, 

where three distinct colour specifies homozygotes and heterozygote for a given marker and 

individual. 

Current analysis used two Beadchips: the HumanOmniExpress and HumanOmni1-Quad 

Beadchips (Illumina, San Diego, California, USA).  The HumanOmniExpress Beadchip 

genotypes more than 700,000 markers per sample, tagSNPs from this Beadchip are 

selected from all three phases of the International HapMap Project and are able to capture 

the greatest amount of common SNP variation. An up to 200,000 markers can be added to 

the OmniExpress chip to allow researchers to carry out their unique studies. Full content of 
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the OmniExpress chip is contained within the HumanOmni1-Quad Beadchip, on which 

markers are derived from the 1,000 Genomes Project and all three HapMap phases for 

common variation and copy number variation (CNV) discovery by looking at 1,000,000 

markers/sample at a time. Both assays consistently produce high average call rates (> 99%) 

and reproducibility (> 99.9%). All samples were genotyped in Japan. An additional 350 

African-American controls were previously genotyped using the HumanOmni1-Quad 

Beadchip at University of Maryland, USA (published data (158)) and the genotype data 

was provided to us in order to boost the number of African-American controls for current 

analysis (i.e. Originally, only 47 African-American controls were genotyped). 

2.2.2.2 Illumina GenomeStudio v2010.3/v1.8: genotyping module 

Illumina GenomeStudio Software (v2010.3/v.18, Illumina, San Diego, California, USA) is 

used for data visualization and analysis generated by all Ill mina’s plat orms. The 

GenomeStudio Software package comprises of seven different application modules for 

DNA/RNA/CHIP sequencing, genotyping, gene expression, methylation and protein 

analysis.  The results can be easily exported as plain text files for use with a number of 

third-party software tools for further analysis. 

Here, the Genotyping Module was applied to analyze SNP data across hundreds of 

thousands of markers on the chip and detect sample outliers. The genotype clusters 

displayed in GenomeStudio with data points marked in three colours (e.g. red=AA, 

purple=AB, blue=BB), and each data point represents an individual. Genotypes are called 

for each sample by signal intensity and allele frequency based upon information derived 

from a standard cluster file provided by Illumina, which uses a representative sample set of 

over 100 samples from the HapMap CEU (Caucasian), CHB+JPT (Chinese + Japanese) 

and YRI (Yoruban) populations; and this standard cluster file should represent the genetic 

diversity well in these populations (for a clustering example, see Figure 2.1). If needed, 

data quality can be optimized before generating a final report, by performing individual 
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locus analysis, for example, sorting on call rate or cluster separation, and then do re-

clustering.  

 

Figure 2.1 Image of genotyping clusters in GenomeStudio. Each data point corresponds to a 
sample with 3 colour coding (red, purple and blue). Norm R on Y-axis refers to signal intensity and 
Norm Theta on X-axis refers to allele frequency. Dark shading surrounding each genotype cluster 
implies the standard cluster position for a given marker. Three figures under each cluster are the 
number of samples for each genotype group. 

2.3 Software  

Standard analytical software, such as IBM
®
 SPSS

®
 statistics 19 (SPSS, Inc., Chicago, 

USA) and R (R Foundation for Statistical Computing, Vienna, Austria), was used for data 

sorting, visualization and basic statistical runs. Here the focus is to introduce a few other 

commonly used programmes for analyzing genotypic data for whole genome-wide 

association analysis. 

2.3.1 PLINK 

PLINK (159,160) is a free, open-source and command-line based toolset for whole genome 

wide association analysis. It is used to deal with the large scale genomic data in a 

comp tationally e  icient manner, req iring all commands to start with typing “plink” at 

the command prompt followed by other options (e.g. --option) indicating files and methods 
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involved. PLINK output results are stored as plain text files; the extensions of the files are 

various and depend on the content of the results. 

Main features implemented in PLINK include, basic data management (data recoding, 

reordering, merging, extracting and DNA-strand flipping), standard summary statistics 

(e.g. missing genotype rate, MAF, HWE failures), thresholds set-up (based on summary 

statistics), IBD estimation (identity-by-descent estimate, looking for individuals look too 

similar in a data set), association tests (for binary and quantitative traits etc.), meta-analysis 

(combining two or more generically-formatted files, and testing for fixed and random 

effects models) and other features (e.g. family-based association, permutation procedures, 

multimarker tests, imputation). For computational efficiency, GWAS analyses reported 

here were performed on a remote server via the open-source Telnet/SSH client PuTTY 

(http://www.chiark.greenend.org.uk/~sgtatham/putty/) and files were managed remotely 

using WinSCP (http://winscp.net/eng/index.php), an open-source SFTP, FTP and SCP 

client for Windows.  

PLINK results files are often large; the genome-wide outputs may subsequently uploaded 

to other applications, such as R programme, Haploview (161) and EIGENSRAT (97), for 

data visualization and manipulation.  

2.3.2 Haploview 

Various functions that Haploview (161) may provide include LD & haplotype block 

analysis, single SNP & haplotype association tests, permutation tests, haplotype frequency 

estimation in a population, and PLINK GWAS results visualization as well as advanced 

filtering options. 

In current studies, Haploview was used to take in PLINK outputs – a map file of markers 

containing information of SNP identifier, chromosome and base-pair position for each 
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marker and a PLINK association or quality control results file. SNPs in the map file and 

PLINK results file need not be in the same order, and the map file may contain SNPs that 

are not present in the PLINK results file. Once uploaded to Haploview, the PLINK results 

file is displayed as a sortable table with selective filter options based on parameters, for 

example, association p- al e and M F. I  req ired, one can also  se “ ombine  - al es” 

and “plot”   nctions to prod ce combined p-values for 2-5 specified SNPs (note that this 

does not take into acco nt e  ect direction  sing the Fisher’s combined algorithm 

implemented in Haploview) and graphical plots given the uploaded PLINK outputs (the x-

axis will always represent chromosomes, while the y-axis can be defined from the drop-

down men   or possible parameters to base plots on; parameters re er to the “col mns” 

a ailable  rom the  LI K res lts  ile, s ch as “the col mn” o  “p- al es”).   

2.3.3 EIGENSTRAT 

EIGENSTRAT (97) is based on principle component analysis for detection of ancestry 

differences between cases and controls in GWAS. The correction of population 

strati ication  sing  I     T  T is speci ic to a single marker’s  ariation in  req ency 

across ancestral populations along continuous axes of variation. This method can easily 

handle hundreds of thousands of markers in a GWAS data set. As of December 2006, 

EIGENSTRAT is included as a part of the EIGENSOFT package (97,103).  

Three directories, CONVERTF, POPGENE and EIGENSTRAT are included in the 

EIGENSOFT package. The convertf programme is used to convert files among five 

formats (ANCESTRYMAP, EIGENSTRAT, PED, PACKEDPED and  

PACKEDANCESTRYMAP), the smartpca programme in POPGENE directory is for 

running PCA, and the EIGENSTRAT method for population stratification correction as 

well as a smartpca.perl script (to call the smartpca programme in POPGENE) are stored in 

the EIGENSTRAT directory. 
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The EIGENSTRAT method focuses on individual genotype data to infer continuous axes 

of genetic variation and aims to describe major data variation in as few dimensions as 

possible; then genotypes and phenotypes are continuously adjusted given amounts 

attributable to ancestry along each axis, by computing residuals of linear regressions; 

finally, association statistics are calculated based on ancestry-adjusted genotypes and 

phenotypes (97). The axes of variation (dimensions), explaining maximum data variability, 

are called principle components (PCs), and these can also be referred to as “eigen ectors 

(or the largest eigen al es corresponding with the axes)”. The axes are ranked according to 

the amount of variation represented by the axes. 

By simulations, the EIGENSTRAT method is shown to be insensitive to the sample size 

(EIGENSTRAT effectively corrected for stratification in sample size as low as 100, and up 

to 1,000) (97). It is also suggested to use the EIGENSTRAT method for at least 100,000 

SNPs, because the inclusion of a candidate marker in a smaller set of markers may lead to 

power loss (97). The authors also tested EIGENSTRAT in an admixed population using 

simulated data. The association statistics significances were computed using the Armitage 

trend 
2 

statistic (not corrected for stratification), genomic control and EIGENSTRAT. 

EIGENSTRAT was reported for achieving higher power than genomic control on 

correcting population stratification at highly differentiated SNPs as well as the causal 

SNPs. 

The same authors (97) also pointed out that the insensitivity of EIGENSTRAT to the 

number of axes of variation used as long as a sufficient number of axes are involved to 

capture the true effect of population structure. By default, the number of axes is set at 10 

for running EIGENSTRAT; on the other hand, the number of statistically significant axes 

of variation may be adopted. Lastly, despite of ancestry effect, assay artefacts, if present, 

can also be detected by EIGENSTRAT. For example, in the European American data set 
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explored by Price et al. (2006) (97), the top two axes describe population stratification 

effects, whereas the third axis explains the subtle differences present in laboratory 

treatment among samples. 

2.4 Statistical analysis 

In this section, statistical tests used for candidate gene association analysis in elite 

Caucasian and East Asian swimmers (Chapter 3, section 3.2.4 ) and GWAS in elite 

Jamaican and USA sprint cohort as well as in elite Japanese TF athlete cohort (Chapter 4, 

section 4.1) are described. 

2.4.1 Candidate gene association analysis 

Two genes (ACE and ACTN3) were studied in relation to elite swimmer status in 

Caucasians and East Asians. Genetic associations were evaluated by multinomial logistic 

regression, and PTest and MAX3 test were accommodated for multiple testing adjustment 

to investigate whether polymorphisms in ACE and ACTN3 are associated with elite 

swimmer status in Caucasian and East Asian populations.  

Three genetic models, additive allelic effects and two models assuming complete 

dominance of each allele in turn, were tested by multinomial logistic regression. To control 

for multiple testing across genetic models, two further tests (PTest and MAX3) were 

applied in parallel.  Test is a perm tation test tool that generates association χ
2
 test p-

values effectively adjusted for multiple testing 

(http://rosalind.infj.ulst.ac.uk/Software.html#PTest; ref (162)). MAX3 implements an 

efficiency robust trend test implemented in the R Package Rassoc (163). The ‘boot’ 

method was used to compute simulation-derived empirical p-values based on data 

resampling to generate the null distribution for the test statistic, and inherently adjusted for 

multiple testing of three genetic models. In addition, the effect of ethnic subdivision within 

http://rosalind.infj.ulst.ac.uk/Software.html#PTest
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the East Asian cohort was evaluated by including a genotype x ethnicity interaction term in 

the multinomial logistic regression model and assessing significance using a likelihood 

ratio test.  

Analyses were carried out using IBM
®
 SPSS

®
 Statistics 19 software (SPSS, Inc., Chicago, 

USA), and R (R Foundation for Statistical Computing, Vienna, Austria). p-values for 

significance (α  al es) were de ined as  ollowing: no adj stment was carried o t  or testing 

of the two genes, because the published literature supported a prior hypothesis that we 

would find association in each case; stratifying by ethnic group was then adjusted for and 

the α  al e  or signi icance o  the m ltinomial logistic regression test perm tation test in 

each ethnic subgroup was considered at p < 0.025; further multiple testing after 

stratification into two event distance groups (vs. controls) was handled by adjusting further 

 or these pairwise comparisons, and the α  al e  or signi icance o  the pairwise logistic 

regression/permutation tests was therefore defined as p < 0.0125. Specific details of 

statistical analysis for the candidate gene association study are described in “Methods” o  

Chapter 3 (section 3.2.4). 

2.4.2 Analysis of GWAS  

2.4.2.1 Power calculations 

Power for GWAS was estimated under multiplicative, additive, dominant and recessive 

models using CaTS Power Calculator version 0.0.2 

(http://www.sph.umich.edu/csg/abecasis/cats/; ref(164)). CaTS is specifically designed for 

power calculations in large genetic association studies. For simulating a similar magnitude 

relative to current GWAS in elite athletes, 200 samples (half cases and half controls) were 

used here for power estimation. The relationship between power and effect sizes (or the 

odds ratios) for 100 cases and 100 controls, with a range of MAF varied from 0.05 to 0.5, 

assuming low prevalence of the trait at 0.1, was explored (Figure 2.2). It should be noted 

http://www.sph.umich.edu/csg/abecasis/cats/
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that this estimation gives a rough idea of the power possibly achieved given varying MAFs 

and effect sizes as well as a pre-defined sample size and prevalence of the trait. Sensible 

judgement on power gained should be made accordingly upon one actual study. 

 

Figure 2.2 Power vs. effect size for 100 cases and 100 controls under the multiplicative (top 
left), additive (top right), dominant (bottom left) and recessive (bottom right) models, 
assuming a low prevalence of the trait at 0.1 for MAF varied from 0.05 to 0.5. 

The simulated data showed the failure of detecting any association, when underlying 

genetic effect is smaller than and equal to 1.5, under any of the genetic models examined 

here in 200 samples, although the allele of a variant may be frequently present in the study 

samples. This is in line with previous reports showing typical significant association 

findings from GWAS of complex traits with an odds ratio ranging from 1.1 to 1.4 would 

require thousands of samples for obtaining power at a reasonable level (75). For 80% 

power, minimum effect sizes are required to be ~ 3.02, 5.04, 6.07 and 5.36 with the 

corresponded MAF of 0.3/0.4, 0.2, 0.1 and 0.5 under the multiplicative, additive, dominant 

and recessive models, respectively. 

2.4.2.2 Formats converting from Illumina output files to PLINK formats  

Using Illumina GenomeStudio software, genotype data was exported as plain text files, 

including a final report, a sample and a map files. The Illumina final report contains 10 
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header rows of descriptive information, and the data following the headers is represented 

as a row for each individual for each marker. The separate sample and map files (for 

samples’ and markers’ annotations, respecti ely) can be created in order to red ce the size 

of the final report. There are a number of fields can be included to the final report file, 

however only sample ID, SNP name, allele 1, and allele 2 are used for generating PLINK 

LGEN file. Because the samples involved in current studies are unrelated individuals, no 

family IDs are available. The family ID was therefore duplicated with the individual ID (or 

the sample ID) and added as a fifth column to meet PLINK LGEN format requirement. All 

header rows need to be removed when converting from Illumina output files (final report, 

sample and SNP files) to PLINK long-format filesets (LGEN, MAP – listing marker 

information and FAM – listing individual information). The long-format filesets can then 

be transformed to PED or BED format for downstream data analysis in PLINK. 

The PED file can be a space, white-space, or tab delimited file, with first six columns 

(mandatory) specifying family ID, individual ID, paternal ID, maternal ID, sex and 

phenotype, followed by genotypes from column 7 onwards (markers must be biallelic). In 

current studies, family ID and individual ID were replaced with sample ID. Paternal and 

maternal IDs were coded as 0 for the unrelated individuals studied. The accompanied MAP 

file must contain the same set of markers (one row per marker) as in the PED file, and the 

order of markers in the MAP file should align with the order of the PED file markers. 

Three columns in the MAP file are expected, including chromosome, SNP identifier and 

base-pair position.  

Another PLINK file format, binary PED files (the BED files) can be created, comprised of 

the binary file (*.bed; genotype information), a separate pedigree/phenotype FAM file 

(*.fam; first 6 columns of the PED file) and an extended MAP file (*.bim; with two extra 

columns containing information of the allele names). The BED fileset is smaller than the 
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PED files, and easier for analysis manipulation. The BED files were used in current 

studies. 

2.4.2.3 Quality control 

The basic quality control (QC) steps include sex check, missingness check, and 

examinations of marker MAFs and markers deviated from HWE.  

X-chromosome data is used to determine sex based on X chromosome heterozygosity 

estimate, this information is compared to the recorded sex from the FAM/PED file. 

Individuals showing mis-matched sex information should be excluded unless a typo of the 

recorded sex or other human errors can be identified. 

In the missingness analysis, two output files are generated: *.imiss and *.lmiss, implying 

missingness by individual and by locus, respectively. For each sample, proportion of 

missing    s  or this sample is recorded by the col mn o  “F_MI  ” in the *.imiss  ile. 

For each SNP, proportion of sample missing for this SNP is indicated under the column of 

“F_MI  ” in the *.lmiss  ile.  

MAF for each SNP can be produced using the allele frequency command. SNPs that fail 

the Hardy-Weinberg test can be identified by specifying a significance threshold using the 

--hwe filter; by default, for family-based data, this test is based on founders; for case-

control data, markers excluded given HWE is for controls only (165). 

2.4.2.4 Detection of cryptic relatedness and population stratification 

Cryptic relatedness may exist among seemingly unrelated individuals, it is important to 

rule out such confounding effect on a GWAS. PLINK allows to calculate genome-wide 

IBD given identity-by-state (IBS) and allele frequencies for every pair of individuals using 

genome-wide data (ideally, 100,000 independent    s or more).  LI K “--genome” 
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command creates a file called *.genome, in which several features are reported. Among 

them, fields of Z0 and Z1 refer to the proportion of markers identical by descent 0 and 1, 

respecti ely.  dditionally, by adding another  lag “--min 0.05”, only the indi id al pairs 

showing high levels of IBD sharing (i.e. pairs with proportion IBD > 0.05) are displayed as 

a result in *.genome, and these pairs are of particular interest.  

The relationship between Z0 and Z1 for every pair can be visualized using R programme 

(i.e. plot Z1 on y-axis against Z0 on x-axis), and each data point can be colour coded based 

on the relationship type from the PED file. The R code was provided at 

http://gettinggeneticsdone.blogspot.co.uk/2009/10/visualizing-sample-relatedness-in-

gwas.html. Parent-offspring pairs share 100% of their alleles IBD=1. If a pair shows 

P(IBD=0) = 0 and P(IBD=1) = 0, this means this pair shares two alleles identical by 

descent at every locus across the genome, implying they are either duplicated samples or 

identical twins. Unrelated individual pairs are expected to show up at bottom right 

quadrant of the plot. 

EIGENSTRAT was used to detect population stratification (i.e. to identify outliers lying 

away from the main population cluster of interest in a PCA plot) and subsequently to 

correct for it using eigenvectors as covariates in association analysis if needed. Prior to 

EIGENSTRAT, the study samples (i.e. cases + controls) were merged with a subset of 

individuals from the HapMap3, including 112 CEU; 84 CHB; 86 JPT; 113 YRI and 88 

TSI, to allow for comparison with densely genotyped ancestral population groups.  

2.4.2.5 Association tests 

PLINK provides basic association tests for detecting an association between a variant and 

case/control status, via comparing allele frequencies. The asymptotic p-value for this test is 

 s ally reported. Fisher’s  xact test can be called to generate exact p-value for 

significance. Alternative association tests (rather than these basic allelic tests), such as 

http://gettinggeneticsdone.blogspot.co.uk/2009/10/visualizing-sample-relatedness-in-gwas.html
http://gettinggeneticsdone.blogspot.co.uk/2009/10/visualizing-sample-relatedness-in-gwas.html
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Cochran-Armitage trend test, genotypic test (2 d.f.) and dominant/recessive gene action 

test (1 d.f.), can be also applied. Another two tests, the linear and logistic regressions allow 

 or m ltiple co ariates as well as their interactions to be incl ded to the tests’ models  or 

association analyses. The covariates can be continuous or binary.  For linear regression, the 

regression coefficient is returned; and for logistic regression, odds ratio is reported.  The 

linear and logistic regression tests are more flexible than the basic association tests 

described above in terms of specifying covariates and interactions, genetic models and 

joint tests (e.g. jointly test a main effect and interaction effect against the null hypothesis). 

It is also important to be aware that the basic allelic tests assume Hardy-Weinberg 

equilibrium, SNPs show severe deviations from HWE in controls may reflect genotyping 

or stratification issue in a sample set, therefore we should be cautious with such SNPs and 

exclude them from following analyses.  

For current studies, the standard case-control allelic association test using asymptotic p-

value was run in PLINK by comparing allele frequencies between cases and controls. 

SNPs and individuals must meet following inclusion criterion: maximal proportion of 

missing SNPs per sample 0.05; minimum minor allele frequency 0.01; minimum Hardy-

Weinberg disequilibrium frequency p-value 1 x 10
-7

; maximum proportion of missing 

samples per SNP 0.05. Individuals with discordant sex (as identified by the QC filter of sex 

check), related individuals and individuals who were outliers when population 

stratification was assessed were also removed. Two arbitrary genome-wide significance 

thresholds were set up at p < 5 x 10
-5

 and 5 x 10
-6

, and the threshold of 5 x 10
-5

 is used for 

prioritizing a set of SNPs to be taken forward into further investigations. 

Adjustments for significance values were also done, such that genomic control corrected p-

values and Bonferroni adjusted p-values amongst other parameters were produced. 

Logistic regression analysis was conducted, where population stratification or other 
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adjustments required, by entering relevant variables as covariates into a logistic regression 

model.  

2.4.2.6 Meta-analysis 

Meta-analyses were performed for elite Jamaican sprint, African-American sprint and 

Japanese sprint GWAS cohorts. The combined effects from SNPs with unadjusted 

association p < 5x10
-5 

across these populations were computed using the meta-analysis 

option implemented in PLINK. The odds ratio and standard error of each SNP for each 

study was entered into analysis. SNPs across input files for meta-analysis need neither be 

in the same order nor featured in all files; only SNPs present in two or more files are 

reported by default. Both fixed- and random-effects odds ratios and p-values of the 

common SNPs across multiple input files are stored in *.meta PLINK output file, which 

also contains the  ields o   ochran’s   test p-value and the I
2
 index for assessing between-

study heterogeneity. 

Both within-study variability and between-study variability account for heterogeneity in a 

meta-analysis (166).  The former is due to sampling error that would always present since 

each single study uses different samples. The latter is caused by varying characteristics 

among a set of studies (e.g. sample characteristics, variations in study design and quality), 

and this is known as the true heterogeneity (among the population effect sizes estimated by 

the individual studies) over sampling errors. The extent of true heterogeneity (or between-

study variability) can be measured by I
2
 index, which is calculated by dividing the 

difference between the Q test value and its degree of freedom (k-1) by the Q statistic itself, 

where k re ers to the n mber o  st dies. The  ochran’s   test comp tes the   statistic by 

summing the squared deviations of each single study effect estimate from the average 

effect estimate overall, and the contribution of each study is weighted by its inverse 

variance. The Q statistic follows a chi-square distribution with k-1 degree of freedom under 
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the null hypothesis of homogeneity (for the effect sizes). The power of Q statistic is 

sensitive to the number of samples. For example, this test has low power to detect true 

heterogeneity when a small number of studies included in the meta-analysis, but enlarges 

any negligible variability when the number of study is large. Additionally, the Q test does 

not tell the extent of true heterogeneity, but its statistical significance. Instead, the I
2
 index 

as defined above can be interpreted as the percentage of the total variability among the 

effect sizes owing to true heterogeneity, therefore, it is treated as an assessment for the 

extent of true heterogeneity.  

The fixed-effects model is usually adopted when only the within-study variability exists or 

the estimated effect sizes only differ because of sampling error (166). The random-effects 

model should otherwise be used to take into account the between-study variability. Finally, 

it should be noted – although I
2 

can be used to infer the extent of true heterogeneity, it also 

suffers the same low power problem as the Q test and should be interpreted with caution 

with a small number of studies (k < 20) on deciding which statistical model (fixed- or 

random-effects model) to use in a meta-analysis (166). 

2.4.2.7 Annotation  

Regional association plots of the top signals (unadjusted p < 5 x 10
-5

) were created using 

LocusZoom Version 1.1 (http://csg.sph.umich.edu/locuszoom/; ref (167)), which is 

designed to view the local association results with information of the location and 

orientation of the genes, recombination rates and LD coefficients. GWAS summary results 

can be uploaded to the web-based form of LocusZoom to create a plot of region of interest 

at a time or can be submitted using batch mode to create multiple plots in one go. Each 

regional association plot was specified by the SNP of interest (i.e. the index SNP), which is 

treated as the key marker representing for that region. 500kb flanking region on each side 

of the index SNP was specified. Plots  were generated based on Human Genome Build 19 

http://csg.sph.umich.edu/locuszoom/
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(hg19). LD levels between the index SNP and its surrounding SNPs, as well as 

recombination rates, were estimated using samples from 1,000 Genomes Project (the 

version released in March 2012) as the reference populations. 

The Single Nucleotide Polymorphism database (dbSNP) collects simple genetic 

polymorphisms, including SNPs, deletion insertion polymorphisms, retroposable element 

insertions and microsatellite repeat variations.  Information for such variants contains the 

sequence context, frequency of the SNP (at population or individual level), and relevant 

experimental materials (e.g. methods and protocols) (168). The current dbSNP build for 

h man is 137 based on    h37.p5 (“p” stands  or patch that corrects seq ence or adds 

sequence in a major release). OMIM, the Online Medelian Inheritance in Man (169), 

contains all known mendelian disorders and focuses on the relationship between genotype 

and phenotype. The database is updated daily and now has > 21,000 gene entries (assessed 

on 3
rd

 January, 2013). The precursor of OMIM was the book edition archiving for 

mendelian traits and disorders, published between 1966 and 1998, called the Mendelian 

Inheritance in Man (MIM). The online version was created in 1985 and made available 

since 1987. Main information from OMIM includes gene phenotype 

relationships/correlations, cloning, gene structure and function, molecular genetics, animal 

models and allelic variants (mutations that are disease-causing). Both dbSNP and OMIM 

are hosted by the National Center for Biotechnology Information (NCBI) that provides 

access to biomedical and genomic information through a variety of housed databases. All 

these databases can be browsed through the Entrez cross-database search system in NCBI. 

2.4.2.8 Genotype score analysis in addition to common variants for 
prediction of elite performance 

Genotype score was constructed on the basis of the number of risk alleles inferred from 

previously identified sprint performance-related SNPs (primarily derived from candidate 

gene association studies), assuming an additive effect (Chapter 4, section 4.2). Receiver 
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Operating Characteristic (ROC) curve was used to interpret sensitivity and specificity levels 

of the genotype score approach in distinguishing elite sprint athletes from endurance athletes 

and/or controls. The area under the curve (AUC) and 95% C.I. were calculated for the 

overall diagnostic accuracy of a ROC curve. It aims to investigate whether SNPs identified 

from published reports show predictive utility on elite sprint performance, assessed by using 

the genomic data generated from current GWASs.   

2.4.2.9 Flow of current and perspective studies 

Before biological validation and clinical translation can be carried out, multiple stages are 

needed for the discovery and replication of associated genetic markers. A general flow 

from GWAS to clinical translation is elucidated in Figure 2.3. The discovery GWASs of 

elite performance in Jamaican, African-American and Japanese populations would reveal a 

number of potential associations. Several steps below may be used to protect against false 

positives:  

- To apply a stringent GWAS significance threshold (i.e. 5 x 10
-8

) to select markers 

to follow up for formal replication;  

- And/or, to perform meta-analysis across several individual GWASs, thus, to 

improve power by increasing sample size; 

- And/or, to adopt a less stringent threshold by analyzing SNPs in a predictive 

genomic score for subsequent studies (such permissive early thresholds may 

minimize false negative reports).  

Details for the initial GWASs, which were carried out at the discovery stage, and marker 

annotation and selection for replication are described in Chapter 4. Fine 

mapping/sequencing studies could then be performed for the identification of risk 
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enhancing alleles across identified GWAS loci, and functional studies can help understand 

more of the biological basis of athleticism. Such findings are also likely to have 

implications on clinical research related to public health as genetic variants affecting elite 

performance are also expected to have impact on cardiac and skeletal muscle functions 

(53). 

 

Figure 2.3 A summary of current and perspective studies. 

102 Jamaican controls 
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3 Candidate gene association study in elite 
swimmers 

 

In this chapter, the relationship between the two genes (ACE and ACTN3) and the elite 

swimmer status was explored in both Caucasian and East Asian populations. This work 

(170) has recently been published in the American College of Sports Medicine (ACSM) 

monthly journal - the Medicine & Science in Sports & Exercise (MSSE). The hardcopy 

publication is scheduled for the May 2013. This published paper is adapted into a thesis 

chapter and referenced where appropriate.  

3.1 Introduction 

Numerous candidate gene association studies have been carried out to identify genes 

related to elite human performance (see section 1.2.3), however, genetic contributions to 

high level performance in swimming have received little attention (148,171). Therefore, a 

candidate gene study was carried out to examine two genes encoding angiotensin 

converting enzyme (ACE) and actinin, alpha 3 (ACTN3) in relation to elite swimmer status 

in Caucasians and East Asians, respectively. 

Variants in both ACE and ACTN3 have been reported to be associated with elite athletic 

performance, and with normal, quantitative physical performance traits in the general 

population. Angiotensin converting enzyme plays a critical role in circulatory homeostasis 

as a component of the circulating renin-angiotensin system (RAS), catalysing the 

conversion of angiotensin I to the vasoconstrictor angiotensin II and the degradation of the 

vasodilator bradykinin. However, local (tissue or cellular) RAS in a variety of tissues 

subserve diverse roles, including the regulation of inflammation, cell growth, and aspects 

of metabolism (172). A 287bp Alu repeat insertion/deletion (I/D) polymorphism (rs4340) 

in intron 16 is associated with circulating and tissue ACE levels, with higher ACE activity 
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being associated with the D (deletion) variant in both Caucasians (173) and East Asians 

(174). In contrast, in populations of sub-Saharan African descent, the I/D polymorphism is 

associated with ACE activity to a considerably lower extent, reflecting the LD structure 

across the gene and the fact that the I/D variant is not thought to be the functional variant 

affecting ACE activity (175).  

ACE I/D is associated with a variety of exercise-related phenotypes, including sporting 

performance (176), fatigue resistance in response to physical training, the cardiac growth 

response, differences in muscle efficiency and strength, hypoxic ventilatory drive, and 

skeletal muscle fibre distribution (reviewed in (172)). It has also been suggested, at least in 

part, that the associations between ACE and performance-related phenotypes are mediated 

through bradykinin, whose actions are mediated by the bradykinin receptor β2 (BDKRB2) 

gene (177). Bradykinin, through BDKRB2, may lead to the increase of glucose uptake and 

GLUT-4 translocation in skeletal muscle in response to exercise (178), as well as lowered 

respiration in skeletal muscle and heart mitochondria (179,180) via the production of nitric 

oxide that inhibits cytochrome-c oxidase (the mitochondrial complex IV) (179). The ACE 

I/D polymorphism has been previously shown to modulate levels of bradykinin, with ACE 

I-allele associated with higher kinin activity (181). A haplotype analysis between ACE I/D 

and BDKRB2 -9/+9 (a 9-base pair repeat in exon 1 of the BDKRB2 gene, related to higher 

mRNA expression of the receptor) has found that the ACE I/BDKRB2 -9 haplotype was 

significantly associated with higher skeletal muscle efficiency and endurance running 

performance in Caucasians, suggesting that the associations between ACE and human 

physical performance may in part be due to the elevation of kinin activity (177).  In 

Caucasian populations, the I-allele has previously been reported to be associated with 

enhanced elite endurance performance in long-distance runners and rowers, and with 

enhanced performance at high altitude (172), all activities requiring endurance capabilities; 

the D-allele, on the other hand, has been reported to be associated with strength/power 
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sports, such as sprinting (182) and swimming events of ≤ 400 m (148,171). It should be 

noted that the discrepancies exist between studies of muscle strength and size in relation to 

ACE I/D genotype, for example, with gains of muscle strength in the I-allele carriers (e.g. 

(183)), the D-allele carriers (e.g. (184,185)) or no association (e.g. (186)). It might be 

explained as the result of the competing effect of higher ACE activity and production of 

angiotensin II (a cellular growth factor), associated with the D-allele, on muscle growth, 

and enhanced muscular contraction efficiency mediated through the I-allele in association 

with bradykinin activity (172,177,185). Data from populations of East Asian descent, 

however, have revealed conflicting results relative to the above ACE association findings 

in Caucasians, the D-allele being associated with elite Japanese long distance runner status 

(187) and the I-allele with elite Korean power-oriented athlete status (188). Another 4 

studies of ACE I/D in sport have also been carried out in East and Southeast Asian 

populations (189-192), but the results of these studies are much less reliable due to very 

small sample sizes (ranging from 17 to 108)  and/or multiple-testing problems that have 

not been properly dealt with. Both factors would result in inflated type I error rate. 

ACTN3 encodes α-actinin-3, an actin-binding protein with a structural role at the 

sarcomeric Z-line in glycolytic (type II, fast-twitch) muscle fibres and an increasingly 

evident role in the regulation of muscle metabolism (reviewed in (193)). A common 

nonsense polymorphism, p.R577X (located in exon 16 of the gene), exists in many human 

populations. The 577X-allele is a protein-null allele, from which no ACTN3 is produced, 

so that XX homozygotes do not express ACTN3 at all in their muscles (193). In the 

knockout mouse, it is clear that Actn3 deficiency alters skeletal muscle function (193). The 

577X-allele is found worldwide but at widely differing frequencies in different populations 

(193). Associations have been reported between R577X and physical performance both in 

elite athletes and in the general population, with the 577R-allele being associated with 

increased sprint performance (149,194). The 577XX null genotype has been reported to be 
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found at a reduced frequency in elite Australian Caucasian and Finnish sprinters and other 

sprint/power athletes (149,195). The 577X-allele is found at very low frequency in sub-

Saharan Africa (193), and, in line with this, associations with sprint or power athletic status 

in Nigerians, Jamaicans and African-Americans (154,196), or with endurance athletic 

status in East Africans (196), have not been found. Only 2 studies of ACTN3 

polymorphism in elite East Asian athletes have been found. Among them, the first study 

was carried out in Chinese male and female endurance athletes, however, the findings are 

subject to high probability of type I errors (197), and the second study examined the role of 

ACTN3 polymorphism in Taiwanese swimmers, the reason that this paper cannot be cited 

as an independent evidence for a genetic association is that the individuals used in this 

reference are a subset of those included in current bigger study population in order to boost 

overall sample numbers, therefore, it was rather cited purely for the purpose of stating the 

details of the genotyping assay (see section 3.2.3.3). 

The aims of the study as indicated at the beginning of the chapter were two-fold:  

- To explore further the associations of ACE and ACTN3 genotype with elite 

swimmer status; 

And, 

- To investigate whether such associations differed by swimming event distance or 

by ethnicity, focusing on Caucasian and East Asian populations.  

3.2 Methods 

3.2.1 Subjects 

Two elite swimmer cohorts, comprising Caucasian and East Asian subjects, respectively, 

were studied with the approval of the respective local ethics committees (the Sports 
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Studies Ethics Committee (SSEC) at the University of Stirling, Scotland; the Institutional 

Review Board of Tokyo Metropolitan Institute of Gerontology, National Institute of Health 

and Nutrition, Japan; and the Institutional Review Board of Chang Gung Memorial 

Hospital, Taiwan). Written informed consent was obtained from all subjects. Parental 

consent was sought for subjects under 16 years of age in both cohorts.  

3.2.1.1 Caucasians 

A total of 200 elite Caucasian swimmers from European, Commonwealth, American and 

Russian sub-cohorts were sampled during swimming competitions during 2005 and 2006 

and categorized as short and middle distance ( MD ≤ 400 m, n = 130) or long distance 

swimmers (LD > 400 m, n = 70) (Table 3.1). Distances of 400 m and below have been 

previously used to study swimmers excelling in a shorter swimming duration (148). 

Competitive swimmers are generally unable to excel (i.e. win world-class competitions) in 

events in both short-distance and longer-distance categories, but several swimmers had 

taken part in events spanning this 400 m cutoff. Caucasian swimmers were classified as 

LD if their event range included distances of 500 m and above, or if they were described as 

competing in “Middle and Distance” or “Distance” events; all other swimmers in the 

Caucasian sample were classified as SMD. For the European, Commonwealth and U.S. 

sub-cohorts, the swimmers were of world-class status or highly competitive in international 

competitions (lifetime World Rankings in the top 50, averaging within the top 20; 

swimming World Rankings can be accessed through http://www.fina.org/H2O/). For the 

Russian sub-cohort (n = 21) all had represented their country in international competitions 

at very long distances (5 – 25 km), and many were World Champions or World 

Championship prizewinners. Controls for this cohort comprised individuals of known 

genotype from the general population reported in previous studies (ACE-C: n = 1248, 

(148); ACTN3-C: n = 1694, (149-153)). Differences in ACTN3 R577X allele frequency 

between East and West Europe were dealt with by including Russian controls in the same 

http://www.fina.org/H2O/
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proportion as Russians made up in the swimmer cohort (21 Russians in a total of 193 

genotyped swimmers = 10.9%) to minimize any potential stratification effects. Thus, 184 

Russian controls were randomly selected for inclusion in the analysis.  

3.2.1.2 East Asians 

Elite Japanese (n = 158) and Taiwanese (n = 168) swimmers were recruited and classified 

as short distance (SD; n = 166) if their best event in competition was below 200 m and 

middle distance (MD; n = 160) if their best event was at 200 m or 400 m (Table 3.1). None 

of these swimmers excelled at distances greater than 400m. All had either participated in 

international competitions such as the Olympics, World Championships and Asian Games, 

or were participants in national competitions. Controls for this group came from two 

sources - Japanese controls were recruited for this study from the general population in 

Tokyo and its environs (n = 649); Taiwanese controls were a randomly selected subset (n = 

603) of a larger cohort (n = 3000) recruited from the general Taiwanese population, as 

previously described (198). All controls were healthy adults of both sexes and were not 

professionally connected with athletics/sport. These Japanese and Taiwanese subgroups 

were combined in the analysis as a single control group except in models testing ethnicity 

x genotype interactions (see below). It should be noted that the Taiwanese samples and 

data for ACTN3 have been previously published (see section 3.2.3.3; (199)) and they were 

included in the current study to boost overall sample numbers. 

 

Table 3.1 Total numbers of elite Caucasian and East Asian swimmers recruited in this study. 

Cohort Event Male Female Total 

Caucasians 
SMD (≤ 400 m) 74 56 130 

LD (> 400 m) 42 28 70 

East Asians 
SD (≤100 m) 101 65 166 

MD (200 – 400 m) 95 65 160 

The Caucasian and East Asian swimmers reported here include all elite swimmers used for 
genotyping. The number of Caucasian swimmers differed from those included in the analysis as 
some samples were not successfully genotyped. 
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3.2.2 DNA collection/extraction/quantification 

 

3.2.2.1 Caucasians 

Sample collection, DNA extraction and quantification for Caucasians have been previously 

described in 2.1.2.  

3.2.2.2 East Asians 

East Asians swimmers and controls were collected, extracted and quantified by Japanese 

and Taiwanese collaborators in Japan and Taiwan, respectively. For the Japanese 

swimmers and controls, genomic DNA was isolated from either 7 ml venous blood or 2 ml 

saliva using QIAamp
®
 DNA Blood Mini or Maxi Kits (QIAgen, Hilden, Germany) or 

Oragene
®
 DNA Self-Collection Kit (DNA Genotek Inc., Ottawa, Ontario, Canada). DNA 

was then quantified using either a Nanodrop or a GeneQuant Pro (Amersham Biosciences, 

Amersham, UK) Spectrophotometer. For the Taiwanese swimmers and controls, 5 ml 

venous blood was collected into heparinized tubes (Vacutainer). The whole blood was 

centrifuged within 24 hours, and buffy coat cells stored at -70 °C until extraction of 

genomic DNA as previously described (200).  

3.2.3 Genotyping  

3.2.3.1 TaqMan SNP genotyping method 

Genotypes were determined using TaqMan
®
 assays (Applied Biosystems, Warrington, UK; 

Applied Biosystems, CA, USA). For the Caucasian swimmers, and for the Japanese 

swimmers and controls, genotypes were obtained at ACE SNP rs4341 (ABI assay ID: 

C__29403047_10) and at ACTN3 p.R577X (rs1815739; ABI assay ID: C____590093_1_). 

rs4341 is known to be in perfect LD with I/D (rs4340) in Caucasian and Asian populations 

(201,202).  For Caucasian swimmers (as described in section 2.2.1.2), amplifications were 

carried out in 20 μl reactions containing 10 μl universal master mix, 1.0 μl ABI assay mix 

(20 ×), 6 μl distilled water and 9 ng genomic DNA. For Japanese subjects, amplifications 
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were carried out in 5 μl reactions containing 2.5 μl Taqman
®
 GTXpress

TM 
master mix, 

0.125 μl   I assay mix (40 ×), 1.375 μl sterile water and 10 ng genomic D  . 

 mpli ications were carried o t  sing   I’s  tep ne l s
TM

 Real Time PCR system 

(Applied Biosystems, CA, USA). Genotypes were called from end-point reads  sing   I’s 

StepOne
TM

 Software v2.1.  ACE I/D genotypes were calculated from rs4341 genotypes as 

follows: rs4341 G/G was called as D/D; C/G was called as I/D; C/C was called as I/I. 

 

3.2.3.2 Allele discriminatory PCR method 

Genotyping of ACE I/D (rs4340) in Taiwanese swimmers and controls was performed 

using a standard gel-based allelic discrimination assay method as previously described 

(203). The PCR primers for ACE I/D were Forward: 5′-

CTGGAGACCACTCCCATCCTTTCT-3′ and  e erse: 5′-

GATGTGGCCATCACATTCGTCAGAT-3′. The     was per ormed in a 25 μl reaction 

using a Mastercycler gradient thermocycler (Eppendorf, Hamburg, Germany). The PCR 

constituents were 100 ng genomic DNA, 3.5 mm MgCl2, 200 μM dNTPs, 1 unit of Taq 

polymerase, and 400 nM of each primer in 1× PCR buffer for 35 cycles under the 

following conditions: 95 °C for 1 min, 58 °C for 30 s, and 72 °C for 40 s. PCR products 

were electrophoresed through an 8% polyacrylamide gel, stained with ethidium bromide, 

and photographed under UV light. The I- and D-alleles yielded fragments of approx. 480 

bp and 190 bp, respectively. Because amplification of the I-allele can be suppressed in ID 

heterozygotes, resulting in allelic dropout and miscalling of heterozygotes as DD 

homozygotes, all samples classified as DD genotype were subjected to a second PCR using 

an I-allele-speci ic primer pair: Forward: 5′-TGGGACCACAGCGCCCGCCACTAC-3′ 

and  e erse: 5′-TCGCCAGCCCTCCCATGCCCATAA-3′ (185) (using 30 PCR cycles of 

1 min at 95 °C, 40 s at 67 °C, and 2 min at 72 °C). Products were detected by 6% 

polyacrylamide gel electrophoresis. A 335 bp fragment indicated the presence of the I-
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allele, and samples positive for both this 335 bp fragment and the 190 bp fragment in the 

first PCR were called as ID heterozygotes. 

3.2.3.3 PCR-RFLP genotyping 

Genotyping of Taiwanese swimmers and controls at ACTN3 R577X was carried out after 

PCR amplification across the polymorphic site and restriction digestion, as previously 

described (199). 

3.2.4 Statistical analysis   

Genotype and allele frequencies were calculated for both ACE and ACTN3 polymorphisms 

and Hardy-Weinberg equilibrium (HWE) assessed  sing a χ
2
 test. Three separate tests were 

performed to investigate associations between genotype and swimmer (case/control) status. 

In the first test, multinomial logistic regression tests were applied, with three outcome 

states were used in the models, analyzing the regional cohorts separately. For Caucasians, 

the outcome states were SMD swimmer, LD swimmer and control. For East Asians, the 

outcome states were SD swimmer, MD swimmer and control. Associations of genotype 

with outcome were modeled using three genetic models - additive allelic effects and two 

models assuming complete dominance of each allele in turn. To control for multiple testing 

across genetic models, two further tests were applied in parallel, PTest and MAX3. PTest 

(http://rosalind.infj.ulst.ac.uk/Software.html#PTest; ref. (162)) is a permutation test tool 

that generates association χ
2
 test p-values effectively adjusted for multiple testing of, in this 

case, the three genetic models being examined while maintaining an experiment-wide type 

I error rate of 0.05. For each calculation, 99,999 permutations were computed (Appendix 

A1.1 for permutation input and output files; (170)). Separate tests were run for each 

regional cohort at each gene tested. MAX3 implements an efficiency robust trend test 

implemented in the R Package Rassoc (163). We used the ‘boot’ option, in which the 

program reports simulation-derived empirical p-values based on data resampling to 

http://rosalind.infj.ulst.ac.uk/Software.html#PTest
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generate the null distribution for the test statistic, which adjusts for the inherent multiple 

testing of three genetic models. Additionally, the effect of ethnic subdivision within the 

East Asian cohort was evaluated by including a genotype x ethnicity interaction term in the 

multinomial logistic regression models and assessing significance using a likelihood ratio 

test. Analyses were carried out using IBM
®
 SPSS

® 
Statistics 19 software (SPSS, Inc., 

Chicago, USA), and R (R Foundation for Statistical Computing, Vienna, Austria). p-values 

 or signi icance (α  al es) were de ined in relation to the n mber o  tests done in the 

following way: no adjustment was carried out for testing two genes, as the published 

literature supported a prior hypothesis that we would find association in each case; 

stratification by event distance and the inherent multiple testing that thus arose due to 

ha ing more than two ‘o tcome’ categories was handled via the use of a single, 

multinomial logistic regression test and a permutation-based test; stratifying by ethnic 

gro p was explicitly adj sted  or; th s the α  al e  or signi icance o  the m ltinomial 

logistic regression test/permutation test in each ethnic subgroup was p < 0.025; further 

multiple testing after stratification into event distance groups was handled by adjusting 

further for the two pairwise comparisons (i.e. SMD vs control, and LD vs control), thus the 

α  al e  or signi icance o  the pairwise logistic regression/permutation tests was p < 

0.0125. 

3.3  Results 

In the Caucasian cohort, genotype data were available for 191 cases (swimmers) and 1248 

controls for ACE, and 193 cases and 1694 controls for ACTN3. For East Asians, data were 

available for 326 cases and 1244 controls for ACE, and 326 cases and 1252 controls for 

ACTN3. Both polymorphisms were in HWE in both cases and controls for both Caucasian 

and East Asian cohorts (Appendix Tables A1.2 and A1.3; (170)). In addition, ACE and 

ACTN3 genotype frequencies in the two East Asian ethnic sub-cohorts have also been 

provided for both swimmers and controls (Appendix Tables A1.4 and A1.5; (170)). Allele 
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frequencies for ACE I/D (as measured using rs4341 in Caucasian swimmers and Japanese 

swimmers and controls) in the control groups were consistent with the published literature, 

with the I-allele being at relatively higher frequency in East Asians (187,188). For the 

Caucasian cohort, ACE I/D control group was based on a UK study in which the D-allele 

frequency was 0.51. The average D-allele frequency across Europe (148,204,205), 

Australia (206) and the U.S. (207) is 0.52, and it was therefore concluded that effects of 

population stratification due to use of swimmers from several separate populations of 

European origin are unlikely to be large. Allele frequencies for ACTN3 showed only small 

differences between the regional subgroups and were in line with expectation (149-

153,194,197). The ACTN3 data in Caucasian controls were obtained from 5 separate 

studies. There were no differences in allele frequencies or genotype distributions between 

these studies (genotype comparisons: χ
2 

= 6.03, p = 0.64; Appendix Table A1.6; (170)). 

 

ACE I/D genotype was associated with elite swimmer status in Caucasians. The 

multinomial logistic regression models were significant (Table 3.2; (170); p = 0.017 for the 

additive model and p = 0.005 for the I-allele-dominant model;). This association was 

mediated by effects in SMD swimmers (Figure 3.1, Table 3.2; (170)), with the largest 

effect size observed for the I-allele-dominant model (D-allele homozygotes vs. I-allele 

carriers: odds ratio = 1.90; logistic regression p = 0.001; permutation test p = 0.0005; 

MAX3 test statistic = 3.37, p = 0.0017), with the D-allele being over-represented in the 

swimmers. The D-allele is associated, in recessive fashion, with elite SMD swimmer status 

in Caucasians. No significant association was found between the ACE I/D polymorphism 

and Caucasian LD swimmer status (Figure 3.1, Table 3.2; (170)). 
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Table 3.2 Multinomial logistic regression and other analyses of associations between ACE and ACTN3 polymorphisms and elite Caucasian and East Asian 
swimmer status. 

Gene Cohort Group 
Risk 

allele
#
 

Additive Model Dominant Model
†
 

L.R. 
Model 

p
&
 

PT 
model 

 p* 

O.R.
$
 

(95% C.I.) 
pairwise 

p
¶
 

PT 
pairwise 

p
§
 

Dom. 
allele 

L.R. 
Model 

p 

PT 
model  

p 

O.R.
†† 

(95% C.I.) 
pairwise 

p 

PT 
pairwise  

p 

ACE 

Caucasians  

SMD D 

0.017 0.021 

1.46 
(1.12 - 1.90) 

0.005 0.003 I 

0.005 0.0033 

1.90 
(1.30 –2.78) 

0.001 0.0005 

LD (D) 
1.04 

(0.74 - 1.47) 
0.82 >0.05 I 

1.12 
(0.65 - 1.93) 

0.70 >0.05 

East Asians  

SD I 

0.085 0.043 

1.33 
(1.03 - 1.72) 

 0.029  0.041 D 

0.031 0.0299 

1.52 
(1.10 - 2.11) 

0.012 0.0098 

MD (I) 
1.04 

(0.81 - 1.34) 
  

0.74 
>0.05 D 

0.93 
(0.67 – 1.29) 

 
0.65 

>0.05 

ACTN3 

Caucasians  

SMD (X) 

0.27 >0.05 

1.12 
(0.86 – 1.44) 

0.41 >0.05 X 

0.12 >0.05 

1.20 
(0.80 – 1.80) 

0.37 >0.05 

LD (R) 
0.78 

(0.55 – 1.12) 
0.18 >0.05 X 

0.63 
(0.39 – 1.03) 

0.065 >0.05 

East Asians  

SD R 

0.082 >0.05 

1.30 
(1.03 – 1.65) 

0.026 >0.05 X 

0.069 >0.05 

1.50 
(1.07 – 2.12) 

0.02 0.015 

MD (R) 
1.03 

(0.82 – 1.31) 
0.78 >0.05 X 

1.13 
(0.78 - 1.63) 

0.53 >0.05 

 

# risk allele is designated as the allele whose frequency is higher in the relevant swimmer group than in controls; it has no meaning where tests reveal no significant association  (see 
parentheses). 
& p-values are given for the multinomial logistic regression (L.R.) model, in which two swimmer groups (e.g. SMD and LD, for Caucasians) are compared against controls in a single test. 

* p-value calculated using a single model permutation test (PT) based on a 
2
 test implemented in PTest, inputs for this test were “Class” – swimmer group e.g. SMD, LD, Control, and 

“Feature” – in this case separate variables denoting genotype under 3 genetic models, additive (genotypes coded as “0, 1, 2”) and two dom inant models (genotypes coded as “0,0,1” and 
“0,1,1”, respectively).  These p-values are inherently adjusted for the multiple genetic models included in the overall model. p-values > 0.05 are not reported by PTest. 
$ O.R. - odds ratio; 95% C.I. - 95% confidence interval. Odds ratios are reported for the designated risk allele for ACE, and for the ACTN3  577X-allele  in Caucasians and the 577R-
allele in East Asians. 
¶ p-value for the estimate of β for the effect of genotype on the pertinent pairwise outcome comparison (e.g. SMD vs Control) embedded within the multinomial L.R. test. 
§ p-value calculated using a pairwise PT approach implemented in PTest, in which a single swimmer group (e.g. SMD, for Caucasians) is compared against controls. Inputs were 

otherwise as described above. 
† for each cohort, the model p value is given for the dominant model (as indicated in the ‘Dom. allele’ column) with the lowest p value. 
†† O.R. - odds ratio; 95% C.I. - 95% confidence interval. Odds ratios are reported for the designated homozygous of the risk allele for ACE, and for the ACTN3 577X-allele in Caucasians 
and 577RR genotype in East Asians. 
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Figure 3.1 Genotype frequency distribution for ACE I/D in elite Caucasian swimmers and 
controls.  

Before deciding how to treat the East Asian sample in the association analyses, 

m ltinomial logistic regression models were e al ated  or ‘genotype by ethnicity’ 

interactions (i.e. the models were Outcome = genotype + ethnicity(Japanese/Taiwanese) + 

(genotype x ethnicity) + error) to determine whether effects on outcome differed between 

the two ethnic sub-cohorts. In models evaluated for both ACE and ACTN3 under all three 

genetic models (additive and both dominant models), the interaction term was not 

significant (p ≥ 0.11; Appendix Table A1.7; (170)). As a result, the Japanese and 

Taiwanese subgroups were treated as a single East Asian cohort in all subsequent analyses. 

In East Asian SD swimmers, ACE I/D genotype was also associated with swimmer status 

(Figure 3.2, Table 3.2; (170)). The multinomial logistic regression models approached 

significance (Table 3.2; (170); p = 0.085 for the additive model and p = 0.031 for the D-

allele dominant model). This tendency towards association was mediated by effects in SD 
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swimmers (I-allele homozygotes vs D-allele carriers: odds ratio = 1.52; logistic regression 

p = 0.012; permutation test p = 0.0098; MAX3 test statistic = 2.53, p = 0.026), with the I-

allele being over-represented in the swimmers. It is therefore concluded that I-allele 

predisposes, in recessive fashion, to elite SD swimmer status in East Asians. No significant 

association was found between the ACE I/D polymorphism and East Asian MD swimmer 

status (Figure 3.2, Table 3.2; (170)). 

 

Figure 3.2 Genotype frequency distribution for ACE I/D in elite East Asian swimmers and 
controls.  

For ACTN3 R577X, no statistically significant associations were observed in either 

regional subgroup for any of the swim distance subgroups (Table 3.2, Appendix Table 

A1.3, Figures A1.8 and A1.9; (170)). The multinomial logistic regression model for East 

Asian swimmers approached significance (p = 0.082 and 0.069 under the additive and 

577X-allele dominant models, respectively), with most of the effect coming from the SD 
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swimmers (logistic regression p = 0.02, permutation test p = 0.015) in whom the 577R-

allele would be the performance-enhancing allele. 

3.4  Discussion 

The results show that the ACE I/D polymorphism is associated with elite swimmer status in 

both Caucasians and East Asians. The association is not seen in the longer distance events 

in each group, but only in SMD swimmers in Caucasians and only in SD swimmers in East 

Asians. ACTN3 p.R577X genotype was not significantly associated with swimmer status in 

these samples. 

The findings for ACE I/D need to be interpreted in the context of population differences in 

I/D allele frequency. Previous reports have highlighted the fact that allele frequencies at 

this locus differ somewhat between regional populations, with the D-allele occurring at 

lower frequency in Asian populations than in individuals of African or European descent 

(208,209). The frequency of the D-allele has been reported as 0.3 and 0.4 in Chinese and 

Japanese population samples, respectively (210,211), while in Caucasians, the average 

frequency of the D-allele is 0.52 (Appendix Figure A1.10; (170)). ACE I/D allele 

frequencies observed in the control samples employed here either came from these 

previously published studies or were entirely consistent with those previous reports. The 

lower minor allele frequency in East Asians reduces power to detect associations 

somewhat, but did not prevent an association being detected here, at least in the shorter 

distance swimmers. Despite the association in Caucasians being observed in swimmers of 

combined SD and MD designation (the SMD swimmer subgroup), there was no tendency 

for genotypes of East Asian MD swimmers to differ from controls in the same direction as 

in the significantly associated SD swimmers. Limited power is unlikely to explain this lack 

of trend, and the possibility should therefore be entertained that the populations differ in 

the extent to which ACE I/D affects swimmers at different distances. 
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In terms of direction of effect, the observation that the D-allele was associated with SMD 

swimmer status in Caucasians while the I-allele was associated with SD swimmer status in 

East Asians is particularly notable. The pattern of association of ACE I/D across ethnic 

groups is, however, in line with previous reports based on studies of other sporting events. 

Previous studies, though using smaller samples, have reported associations between the D-

allele and elite SMD swimming status in Caucasians (148,171). The direction of effect in 

East Asians is consistent with previous reports if ACE affects other endurance/power-

related sports in the same way as it does swimming - the D-allele has been reported to be 

associated with endurance performance in elite Japanese marathon runners (187), whereas 

the I-allele has been reported to be associated with elite power athlete status in Koreans 

(188). No associations with longer distance events were observed in the current study, but 

it is not always the case that complementary associations must be observed in opposing 

phenotypes and whether in fact these genotype effects operate across the entire phenotypic 

distribution in the whole population is not known. 

While associations of opposite direction in different ethnic groups can be a result of type I 

error, there are several other possible explanations consistent with real association. Firstly, 

it may be that, although the causative variant(s) are identical in Caucasians and East 

Asians, the ACE haplotype networks found in Caucasians and East Asians are sufficiently 

different in the environs of these variants that different I/D alleles are on the predisposing 

haplotype more of the time in each group. Secondly, it may be that there are different 

causative variants in Caucasians and East Asians, with I- and D-alleles being on different 

haplotypes with respect to these more of the time in each regional subgroup. While the idea 

that common polymorphisms show association with phenotypes because of so-called 

‘synthetic associations’ - where a number of different, individually rare causative alleles 

are all captured by a single tagging variant - is popular at present (212), there is remarkably 

little evidence for associations between a single complex phenotype and different 
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predisposing alleles in different populations (213). In addition, the relatively simple 

haplotype structure around I/D and relatively deep haplotype branching pattern (175), 

suggesting haplotype divergence predating the separation of the Caucasian and East Asian 

populations approx. 30-50,000 years ago, would argue against these first two explanations 

here. A third possible explanation is that ACE affects the relevant physiology differently in 

Caucasians and East Asians as a result of other changes in physiology appearing since the 

two population subgroups diverged. Thus, for example, higher ACE activity may 

predispose to short distance swimming performance in one population and lower ACE 

activity have the same effect in the other population. 

The failure of previous studies to observe associations between ACE I/D and power-related 

performance in sub-Saharan African and African American/Jamaican samples (154), or 

indeed with endurance-related performance (214,215), is easier to explain. The I/D 

polymorphism is not thought to be the causative site influencing serum ACE activity, 

which is thought to be located between intron 18 and the 3′ UTR (175), with potential 

additional functional sites located in the 5′ region of the gene (175,216)). The haplotype 

structure in Caucasians and East Asians means that I/D is in very strong LD with at least 

one of these functional sites, almost certainly as a result of the out-of-Africa bottleneck. In 

Africa, however, there is much greater haplotype diversity across ACE and the LD 

structure means that I/D is not strongly associated with serum ACE activity (175); this is 

likely to be a large part of the explanation for the lack of association with sporting 

performance in African populations. An alternative explanation, however, may be that 

serum ACE activity is not the important factor influencing associations with performance 

and that local actions of ACE within skeletal or cardiac muscle that influence blood flow 

or other determinants of muscle performance over the life course or during performance 

tasks, for example, are more important (172,176). Other commonly genotyped ACE 
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variants may capture the effects of functional variants on such local ACE actions more 

effectively than the I/D polymorphism does. 

The lack of clear association between ACTN3 genotype and swimmer status is interesting 

in light of previous studies. In Caucasians, multiple studies have reported the ACTN3 

577X-allele to be under-represented in elite sprint/power event athletes (reviewed in 

(217)). Few studies have focused on this polymorphism in East Asian elite athletes 

(197,199). Of the two ethnic groups studied here, the East Asians came closest to showing 

an association, this effect being in the same direction as in previous studies (with the 577R-

allele being moderately over-represented in SD swimmers). Although ACTN3 deficiency 

has a modest effect on muscle fibre distribution (50), its impact on ability to perform in 

elite power events may have just as much to do with the role of ACTN3 in muscle 

metabolism as it does with muscle structure or fibre-type distribution per se (193,194). It 

may be that none of these roles sub-served by ACTN3 are of particular importance in 

swimming, or it may be that the aspect of power performance affected by the 

polymorphism is under-engaged in swimming relative to other sports, possibly because of 

the relatively lower stress put on muscles supported in water and lack of eccentric 

contractions (218). It may also be that swimming performance has a much greater 

component of technique than other power events. Lastly, there is the possibility that type II 

error accounts for the fact of lack of association here. Although a meta-analysis of 

associations between ACTN3 and sprint/power athlete status has been published and does 

find evidence for a real association (219), many studies, mainly with small sample sizes, 

have failed to observe any association between ACTN3 variants and sporting performance.  

The 50-m and 100-m swimming events require speed and power for a short duration (< 2 

mins; mainly anaerobic) (220). As the swimming distance increases, the ability for a 

swimmer to maintain the same speed for a longer duration (2-5 mins, 200 – 400 m; mixed 

anaerobic and aerobic) becomes more important; that is to say that muscular endurance 
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starts to make more contribution to swimming performance (220). The reason for studying 

Caucasian swimmers who were competitive at 400 m and less together rather than further 

subdividing it into the SD (50 – 100 m) and MD (200 – 400 m) groups as done for East 

Asian swimmers is that 36 Caucasian swimmers out of 200 total swimmers were 

competitive for swimming events ranging from 50 – 200 m, 100 – 200 m or 100 – 400 m. 

It would be reasonable to include and analyze all swimmers excelling in 400 m and below 

as the SMD group to possibly maximize the power of the study. Moreover, a previous 

study reported the decreased frequency of the D-allele beyond the 200-m swimming event 

in elite Portuguese swimmers (171). It is unlikely that the inclusion of the middle distance 

swimmers (e.g. at 200/400 m) has given rise to the significant association found between 

the ACE D-allele and Caucasian SMD swimmer status in the current study.  

The limitations of the study reported here relate primarily to this issue of sample size, and 

also to the consequences of this for study design. Although this study was carried out using 

the largest elite swimmer sample yet assembled, it is still a relatively modest sample size 

for a genetic association study, and conclusions should be drawn with caution since small 

samples are more prone to other hidden biases, such as population stratification and cryptic 

relatedness, both of which may lead to increased type I error rates.  Such effects have been 

controlled to the greatest extent possible using current study design, in which only two 

candidate SNPs were selected for genotyping. If indeed a role for ACE gene variation in 

elite swimming ability has been identified using the candidate gene approach adopted here, 

these findings prompt a number of questions that require further study; for example, it 

would be interesting to know whether such associations are observed in cohorts of 

swimmers adhering to different training regimes/intensities, whether history of injury 

affects the association, or whether the range of event distances in which the effect is 

observed is wide or narrow.  The findings from this study should be interpreted with 

caution until confirmed by future studies, but are interesting nonetheless. 
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4 Genome-wide association study of elite 
performance 

Despite extensive research in the investigation of the genetic basis of common/complex 

human traits over the last decade, linkage and candidate gene association studies have often 

failed to produce informative results. This statement is also true for the complex phenotype, 

elite human performance (43-52), studied here. Recent advances enable unbiased genome-

wide approaches to be developed and applied for unlocking the genetic make-up of human 

common/complex traits. The international HapMap project documents common patterns (i.e. 

haplotypes) of genome-wide variations in 11 populations of 3 ancestral populations (i.e. 

African, European and Asian ancestries) (62), accelerating development of a robust 

reference panel to study human variations. Moreover, the 1,000 Genomes Project provides a 

more comprehensive catalogue of genetic variations across the human genome by 

sequencing 11 populations of African, European and Asian descent (63). Dense genotyping 

arrays, containing hundreds of thousands of SNPs selected from above reference panels (i.e. 

the International HapMap and 1,000 Genome Projects), would provide good coverage of the 

genome.  These have facilitated a GWAS approach to become feasible. 

In this chapter, GWASs in elite Jamaican sprint, African-American sprint, Japanese sprint 

and Japanese endurance athletes are summarized, including details on quality control 

measures, association analyses, and meta-analyses that have been carried out. The main 

focus of this chapter is to identify SNPs related to sprint performance by analyzing these 3 

regional populations. The inclusion of GWAS of Japanese endurance athletes is an addition 

in the reason that (1) relevant genotype data was also available at the time of analysis and 

(2) it is thought that it would also be interesting to explore endurance-related SNPs, when 

possible. Finally, a genotype score approach was briefly introduced, which aims to 

investigate whether sprint-related SNPs identified from published reports show predictive 
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utility on elite sprint performance, assessed by using the genomic data generated from 

current GWASs. 

4.1 GWAS of elite human performance 

This subsection describes per-sample and per-marker QCs that are undertaken in 3 regional 

cohorts (cases + controls) of West African (i.e. Jamaicans and African-Americans) and 

East Asian (i.e. Japanese) ancestries. Participants and SNPs failing the QC thresholds are 

excluded as a result. Population stratification is assessed and corrected, and specific 

methods for this assessment and correction are outlined.  Population characteristics of the 

final sample set for the formal association analysis are then summarized. Finally, 

association results (including meta-analyses results) are presented and discussed. For 

reference, general information for GWAS genotyping methods, statistical packages and 

relevant statistical analysis applied are provided in detail in Chapter 2 sections 2.2.2, 2.3 

and 2.4.2. (i.e. 2.4.2.1 – 2.4.2.7).  

All subjects supplied written informed consent, which was approved by the 

UHWI/UWI/FMS Ethics Committee, University of West Indies, Jamaica; participating 

institutions in the United States; the Institutional Review Board of Tokyo Metropolitan 

Institute of Gerontology; and National Institute of Health and Nutrition, Japan.  

4.1.1  Per-individual QC 

4.1.1.1 Gender inspection: estimated sex vs. recorded sex 

X chromosome homozygosity estimate across all X-chromosome markers is used to detect 

discrepancies between sex estimated by genotype information and sex assigned in the 

phenotype file for each individual. Males have only one copy of the X chromosome; in 

theory, they are expected to have a homozygosity rate of 1. Individuals were inspected if 

they were recorded as males but showed an excess amount of heterozygous genotypes for 



98 
 

X-chromosome markers (estimated homozygosity rate < 0.2), or recorded female samples 

had a higher than expected homozygosity rate (> 0.8). If sample sex discordance cannot be 

identified confidently based on the genotype data or the recorded phenotype data, 

problematic individuals with sex mismatch are then needed to be excluded from further 

analyses.  

4.1.1.2 Missingness and heterozygosity rate 

Samples with low DNA quality would often result in lower than average call rates. 

Samples with genotype missing rate > 5% were therefore removed. 

Sample quality can also be measured by autosomal heterozygosity rates. Samples with 

excessive heterozygous genotypes may imply potential sample contamination, whereas 

reduced  heterozygous rates may indicate inbreeding. Mean heterozygosity per individual 

is calculated given the difference between the number of non-missing genotypes and the 

number of observed homozygous genotypes divided by the number of non-missing 

genotypes. Samples with heterozygosity rate > ±3 standard deviations from mean 

heterozygosity were removed.  

4.1.1.3 Cryptic relatedness 

Unexpected relatedness between study samples were examined for every pair of 

individuals with proportion IBD > 0.05. The relationship between Z0 and Z1 were 

inspected. For problematic pairs (i.e. duplicated samples/identical twins), sample with 

lower call rate in each pair were excluded from further analyses.  

4.1.1.4 Outliers of PCA 

Ancestry detection was examined using principle component analysis for current GWAS 

cohorts along with the HapMap reference populations (Europe: CEU + TSI; Asia: CHB + 

JPT; Africa: YRI). 10 PCs were extracted using EIGENSTRAT (implemented in the 
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EIGENSOFT package). By default, extreme outliers were firstly removed (sigma 6.0 – ≥ 6 

standard deviations from the mean along one of the top 10 PCs, by 5 iterations) (97).  

The first two PCs were able to separately cluster individuals from the 3 HapMap 

populations given large genetic differences among these 3 ancestral groups, and allowing 

individuals of the GWAS cohorts to be clustered along with these HapMap groups. Current 

GWAS samples that were not clustered with the rest were subsequently removed.  

Individuals removed at each sample QC step are shown in Table 4.1. Examples of outliers 

removed based on PCA are shown in Figure 4.1-4.3. 

Table 4.1 Individuals failed sample QCs and excluded from further association analyses in 
current GWAS cohorts. 

 Jamaica USA Japan 

Sex-check 2 athletes 
2 controls 

6 athletes 
2 controls 

- 

Call rate  1 athlete 
1 control 

- - 

Outliers of 
heterozygosity 

4 controls 6 athletes 
2 controls 

2 controls 

Cryptic  relatedness 1 athlete 
4 controls 

2 athletes 
1 control 

- 

Outliers of PCA 3 athletes 
4 controls 

13 athletes 
 

- 
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Figure 4.1 First two PCs for ancestry clustering of Jamaican sprint athletes and Jamaican 
controls alongside with 5 Hapmap3 reference populations (CEU: Utah residents with 
Northern and Western European ancestry; TSI: Toscani in Italy; CHB: Han Chinese in 
Beijing, China; JPT = Japanese in Tokyo, Japan; YRI = Yoruba in Ibadan, Nigeria). Top graph: 
before removal of outliers; bottom graph: after removal.  
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Figure 4.2 First two PCs for ancestry clustering of African-American sprint athletes and 
African-American controls alongside with 5 Hapmap3 reference populations (CEU: Utah 
residents with Northern and Western European ancestry; TSI: Toscani in Italy; CHB: Han 
Chinese in Beijing, China; JPT = Japanese in Tokyo, Japan; YRI = Yoruba in Ibadan, 
Nigeria). Top graph: before removal of outliers; bottom graph: after removal. Control-1: originally 
collected African-American controls; Control-2: African-American controls’ genotype data received 
from another group at the University of Maryland. 
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Figure 4.3 First two PCs for ancestry clustering of Japanese endurance, sprint athletes and 
Japanese controls alongside with 4 Hapmap3 reference populations (CEU: Utah residents 
with Northern and Western European ancestry; TSI: Toscani in Italy; JPT = Japanese in 
Tokyo, Japan; YRI = Yoruba in Ibadan, Nigeria).  

4.1.2 Per-marker QC 

For Jamaican and African-American samples, both Illumina
®
 HumanOmniExpress and 

HumanOmni1-Quad Beadchips were used for the whole genome genotyping. Data was 

firstly merged and cleaned (i.e. by QCs) for genotypes generated using the same 

genotyping platform, and then the cleaned genotype data from these 2 platforms was 

merged and QCs were repeated and the numbers of markers failed are reported below.  For 

Japanese samples, all was genotyped using Illumina
® 

HumanOmniExpress Beadchip; 

however, genotyping data was received multiple times and merged prior to data cleaning. 

The numbers of markers excluded from the final merged data set are listed below. 
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4.1.2.1 Missingness 

267,969, 297,404 and 48,490 SNPs with a genotype missing rate more than 5% were 

excluded from GWAS cohorts of Jamaicans, African-Americans and Japanese, 

respectively.  

4.1.2.2 Minor allele frequency 

9 SNPs with a MAF less than 1% were removed from GWAS of African-Americans. No 

SNPs were excluded from Jamaican and Japanese GWAS cohorts given MAF < 1%. 

4.1.2.3 Hardy-Weinberg Equilibrium 

Control samples were used for testing markers deviated from HWE, and the significance 

threshold was declared at p ≤ 1 x 10
-7

 for excluding SNPs showing deviations from HWE. 

31 SNPs were removed from further investigation for Japanese GWAS cohort, whereas no 

SNPs exceeded HWE p of 1 x 10
-7

for Jamaican and African-American GWAS sample sets.  

After SNP quality controls, a final set of 609,801, 637,991 and 541,179 autosomal SNPs 

were available for Jamaican, African-American and Japanese GWAS association analyses.  

4.1.2.4 Population stratification adjustments using PCA in Jamaican and 
African-American GWAS   

For Jamaicans, the top PCs extracted from PCA were entered into logistic regression 

models as covariates (athlete/control status ~ SNPs + PC1 + PC3 +… +   10) to account 

for population structure within a sample set and subsequently correct for population 

stratification. For African-Americans, except involving PCs, a co ariant o  “genotyping 

centre” was also included in the model (athlete/control status ~ SNPs + PC1 + PC3 + … + 

PC10 + Genotyping Centre) to minimize the between-centre effect on genotype calling, 

which may induce false associations. 
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4.1.3 Association analysis 

The final sample set available for formal analysis for each regional cohort is presented in 

Table 4.2. After removing individuals and SNPs failing QC, 609,801 autosomal SNPs in 

88 Jamaican sprint athletes and 87 Jamaican controls, 637,991 autosomal SNPs in 79 

African-American sprint athletes and 391 African-American controls, and 541,179 

autosomal SNPs in 114 Japanese athletes (including 60 endurance and 54 sprint athletes) 

and 116 Japanese controls, were available for analysis. 

Table 4.2 Number of samples available in the formal analysis for each regional cohort. 

 Jamaican            
cohort 

African-American 
cohort 

Japanese  
cohort 

Athletes    88 (sprinting) 79 (sprinting) 60 (endurance) 

 54 (sprinting) 

Controls 87  391 116 

 

Genetic associations were evaluated by logistic regression, assuming an additive effect, for 

Jamaicans and African-Americans, respectively. For association analysis of Jamaicans, 

population stratification was adjusted by entering PCs into the logistic regression model. 

For association analysis of African-Americans, both population stratification and 

genotyping-centre e  ect were corrected by incl ding   s and “genotyping centre” 

variables as covariates in the logistic regression model. Standard allelic association 

analysis was performed by comparing allele-frequency differences between Japanese 

endurance athletes and controls, and Japanese sprint athletes and controls, respectively.  

The Quantile-Quantile p-value plots of observed versus expected –log10(p) values for each 

comparison are shown in Figure 4.4. Genomic inflation factor () values are 1.075 and 

1.070 for GWAS of Jamaicans and African-Americans, respectively, after necessary 
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corrections (see paragraph above).  values in Japanese GWAS cohort are of 1.002 and 

1.031 for endurance and sprinting sub-cohorts, respectively, and are smaller than 1.05 

indicating that there is no substantial evidence of population stratification. Manhattan plots 

of –log10(p)  values for association of elite athletic status with markers in 22 autosomes are 

shown in Figure 4.5-4.8. 

 

Figure 4.4 Quantile-Quantile plots of observed vs. expected –log10(p)  values for genome-
wide data. Red line indicates the null line of no association. (A) Jamaican sprint cohort; (B) 

African-American sprint cohort; (C) Japanese sprint cohort; (D) Japanese endurance cohort.  = 
1.075, 1.070, 1.031, 1.002 for A, B, C and D, respectively. 

 

(C)  (D)  

(B)  (A)  
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Figure 4.5 Manhattan plot of –log10(p) values against genomic position for association of elite sprint status with markers in 22 autosomes in Jamaicans. 
Red line refers to p = 5x10

-6
; blue line refers to p = 5x10

-5
. 
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Figure 4.6 Manhattan plot of –log10(p)  values against genomic position for association of elite sprint status with markers in 22 autosomes in African-
Americans. Red line refers to p = 5x10

-6
; blue line refers to p = 5x10

-5
. 
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Figure 4.7 Manhattan plot of –log10(p) values against genomic position for association of elite sprint status with markers in 22 autosomes in Japanese. Red 

line refers to p = 5x10
-6

; blue line refers to p = 5x10
-5

. 
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Figure 4.8 Manhattan plot of –log10(p) values against genomic position for association of elite endurance status with markers in 22 autosomes in Japanese. 

Red line refers to p = 5x10
-6

; blue line refers to p = 5x10
-5

.  
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Table 4.3 - Table 4.6 present the association results for markers with an unadjusted p < 5 x 

10
-5

. Out of the total 609,801 SNPs entered into the association analysis in the Jamaican 

sprint cohort, 17 met this threshold of significance; similarly, 7 out of 637,991 SNPs, 36 

out of 541,179 SNPs and 21 out of 541,179 SNPs were found exceeding the same 

threshold in the African-American sprint, Japanese sprint and Japanese endurance cohorts, 

respectively. Furthermore, 1, 0, 1 and 3 SNPs attained p < 5 x 10
-6 

(unadjusted) for each of 

these cohorts. 

GC adjusted p values were also reported. 10, 6, 24, and 21 SNPs with GC adjusted p < 5 x 

10
-5 

are present in the association results of Jamaican sprint, African-American sprint, 

Japanese sprint and Japanese endurance cohorts, respectively; and 1 and 3 SNPs are 

remained significant in Japanese sprint and endurance cohorts at a GC adjusted p value of 

5 x 10
-6

.  
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Table 4.3 Association results for markers with unadjusted p < 5 x 10
-5

 in Jamaican sprint 
cohort. 

 
Chr. – Chromosome 
O.R. – Odds Ratio 
95% C.I. – 95% Confidence Interval 
GC – Genomic Control 

 

Table 4.4 Association results for markers with unadjusted p < 5 x 10
-5

 in African-American 
sprint cohort. 

 
Chr. – Chromosome 
O.R. – Odds Ratio 
95% C.I. – 95% Confidence Interval 
GC – Genomic Control 
 

SNP Chr. Position O.R. 95% C.I. Unadjusted p GC adjusted p 

rs4557742 8 145508113 3.27 1.99 - 5.37  3.11E-06 6.86E-06 

rs4977203 8 145513753 2.92 1.82 - 4.69  8.58E-06 1.77E-05 

rs11998675 8 145514420 2.92 1.82 - 4.69  8.58E-06 1.77E-05 

rs4977219 8 145516698 2.92 1.82 - 4.69  8.58E-06 1.77E-05 

rs4815390 20 25158241 0.32 0.19 - 0.53  1.10E-05 2.23E-05 

rs2303115 19 7708214 0.33 0.2 - 0.54  1.37E-05 2.74E-05 

rs35253356 8 145519034 2.86 1.78 - 4.6  1.51E-05 3.00E-05 

rs2606193 17 77211481 0.23 0.12 - 0.45  1.76E-05 3.46E-05 

rs187167 5 139029000 5.19 2.42 - 11.13  2.41E-05 4.64E-05 

rs2374482 2 43305926 0.33 0.2 - 0.55  2.51E-05 4.81E-05 

rs8027231 15 98968160 0.30 0.17 - 0.53  2.73E-05 5.21E-05 

rs7336411 13 96014509 0.37 0.23 - 0.59  2.78E-05 5.30E-05 

rs804944 14 86817161 3.40 1.91 - 6.08  3.42E-05 6.42E-05 

rs10415518 19 7763917 0.33 0.19 - 0.56  4.25E-05 7.87E-05 

rs17107388 14 70357182 0.25 0.13 - 0.49  4.72E-05 8.68E-05 

rs10196189 2 154826491 2.98 1.76 - 5.05  4.89E-05 8.97E-05 

rs734366 10 10968124 0.31 0.18 - 0.55  4.89E-05 8.98E-05 

SNP Chr. Position O.R. 95% C.I. Unadjusted p GC adjusted p 

rs7175629 15 60393976 0.21 0.11 – 0.42 1.08E-05 2.10E-05 

rs3864067 3 7677215 0.19 0.09 – 0.4 1.30E-05 2.50E-05 

rs17034251 2 67955919 0.21 0.1 – 0.43 1.93E-05 3.63E-05 

rs4054851 3 5193135 0.22 0.11 – 0.44 2.26E-05 4.21E-05 

rs7716847 5 161662347 0.20 0.09 – 0.42 2.35E-05 4.37E-05 

rs4747094 10 72499334 0.16 0.07 – 0.37 2.50E-05 4.62E-05 

rs10111342 8 142730519 5.03 2.36 – 10.71 2.91E-05 5.33E-05 
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Table 4.5 Association results for markers with unadjusted p < 5 x 10
-5

 in Japanese sprint 
cohort. 

SNP Chr. Position O.R. 95% C.I. Unadjusted p GC adjusted p 

rs12450878 17 17084269 9.08 3.27 - 25.19 7.04E-07 1.04E-06 

rs10497155 2 157875846 5.09 2.37 - 10.95 6.73E-06 9.33E-06 

rs7921820 10 35554947 3.27 1.91 - 5.62 9.56E-06 1.31E-05 

rs10763704 10 29586483 2.89 1.79 - 4.67 9.63E-06 1.32E-05 

rs1715747 5 76274537 2.81 1.75 - 4.51 1.34E-05 1.83E-05 

rs1400938 4 18725182 3.06 1.82 - 5.12 1.40E-05 1.90E-05 

rs2046046 5 76644962 3.24 1.87 - 5.62 1.63E-05 2.20E-05 

rs1875999 5 76264982 2.75 1.72 - 4.42 2.03E-05 2.72E-05 

rs1053989 5 76265035 2.75 1.72 - 4.42 2.03E-05 2.72E-05 

rs356045 17 6451937 2.71 1.70 - 4.33 2.37E-05 3.17E-05 

rs17033272 3 35509452 0.08 0.02 - 0.35 2.38E-05 3.18E-05 

rs13439619 8 121948544 2.81 1.72 - 4.58 2.52E-05 3.37E-05 

rs6942407 7 86861313 0.36 0.22 - 0.59 2.61E-05 3.48E-05 

rs3740082 10 35502533 3.06 1.79 - 5.21 2.65E-05 3.52E-05 

rs16935888 10 35432405 3.06 1.79 - 5.21 2.65E-05 3.52E-05 

rs1531550 10 35464778 3.06 1.79 - 5.21 2.65E-05 3.52E-05 

rs4503948 2 237758257 2.77 1.71 - 4.50 2.70E-05 3.59E-05 

rs17766292 7 86830190 2.71 1.69 - 4.35 2.81E-05 3.73E-05 

rs6431485 2 237760783 2.94 1.75 - 4.93 2.97E-05 3.94E-05 

rs4750319 10 13268710 2.72 1.69 - 4.40 3.20E-05 4.24E-05 

rs789481 6 150594363 2.66 1.67 - 4.26 3.30E-05 4.36E-05 

rs16894449 8 121950167 2.77 1.70 - 4.52 3.32E-05 4.39E-05 

rs6747313 2 157873775 3.33 1.85 - 6.00 3.34E-05 4.41E-05 

rs6806282 3 194060008 2.74 1.68 - 4.45 3.67E-05 4.84E-05 

rs7778976 7 86944642 2.67 1.66 - 4.30 3.98E-05 5.23E-05 

rs11880216 19 44444416 2.87 1.72 - 4.80 4.08E-05 5.37E-05 

rs7223686 17 16960911 3.33 1.84 - 6.05 4.23E-05 5.56E-05 

rs12452303 17 16968670 3.33 1.84 - 6.05 4.23E-05 5.56E-05 

rs10852845 17 17017584 3.33 1.84 - 6.05 4.23E-05 5.56E-05 

rs9840798 3 197136335 3.86 1.95 - 7.62 4.44E-05 5.82E-05 

rs7220712 17 74782513 3.86 1.95 - 7.62 4.44E-05 5.82E-05 

rs7812191 7 86767689 2.65 1.65 - 4.25 4.51E-05 5.92E-05 

rs8075751 17 16941236 3.20 1.80 - 5.69 4.54E-05 5.94E-05 

rs11658904 17 16944622 3.20 1.80 - 5.69 4.54E-05 5.94E-05 

rs4773783 13 94929371 0.29 0.15 - 0.54 4.88E-05 6.38E-05 

rs4985714 17 16953884 3.30 1.82 - 6.00 4.95E-05 6.47E-05 

 
Chr. – Chromosome 
O.R. – Odds Ratio 
95% C.I. – 95% Confidence Interval 
GC – Genomic Control 
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Table 4.6 Association results for markers with unadjusted p < 5x10
-5

 in Japanese endurance 
cohort. 

SNP Chr. Position O.R. 95% C.I. Unadjusted p GC adjusted p 

rs921665 2 3174321 0.32 0.20 - 0.52 1.68E-06 1.72E-06 

rs11975386 7 93705033 3.14 1.92 - 5.13 3.07E-06 3.15E-06 

rs4854131 2 3173024 0.34 0.21 - 0.54 3.52E-06 3.60E-06 

rs2910756 5 37860074 0.28 0.16 - 0.50 7.58E-06 7.75E-06 

rs10007111 4 88749701 2.87 1.79 - 4.62 9.72E-06 9.93E-06 

rs16906888 8 138243618 2.97 1.79 - 4.92 1.58E-05 1.62E-05 

rs2973033 5 37839633 0.31 0.17 - 0.54 2.34E-05 2.39E-05 

rs4541108 17 77328609 4.00 2.03 - 7.90 2.51E-05 2.56E-05 

rs7975710 12 26534066 0.34 0.20 - 0.57 2.54E-05 2.59E-05 

rs6548153 2 3326045 0.37 0.23 - 0.59 2.69E-05 2.75E-05 

rs494219 4 172758442 0.20 0.09 - 0.45 3.01E-05 3.07E-05 

rs558129 4 172751111 0.20 0.09 - 0.45 3.01E-05 3.07E-05 

rs12582235 12 26537202 0.33 0.19 - 0.56 3.36E-05 3.42E-05 

rs7668194 4 168472046 4.71 2.14 - 10.37 3.49E-05 3.55E-05 

rs8081466 17 77330461 3.62 1.91 - 6.87 3.97E-05 4.04E-05 

rs7209293 17 77333274 3.62 1.91 - 6.87 3.97E-05 4.04E-05 

rs2761291 10 95088180 3.54 1.89 - 6.64 4.03E-05 4.10E-05 

rs10245760 7 93746499 3.01 1.75 - 5.15 4.12E-05 4.20E-05 

rs17690338 10 77117556 2.63 1.65 - 4.21 4.21E-05 4.29E-05 

rs2887311 2 3190384 2.54 1.61 - 3.99 4.73E-05 4.82E-05 

rs7650685 3 11702456 2.54 1.61 - 3.99 4.73E-05 4.82E-05 

 
Chr. – Chromosome 
O.R. – Odds Ratio 
95% C.I. – 95% Confidence Interval 
GC – Genomic Control 

Meta-analyses were performed for SNPs with unadjusted association p < 5 x 10
-5 

across the 

sprint GWAS sample sets (i.e. Jamaican sprint, African-American, Japanese sprint and 

Japanese GWAS cohorts), using the fixed-effects model (221,222). For example, the top 

17 SNPs (unadjusted p < 5 x 10
-5

) from the Jamaican sprint cohort were extracted from the 

association results of African-American sprint, Japanese sprint cohorts, respectively, for 

the combined effects to be calculated using a meta-analysis method. The same procedure 

was applied to the top hits in African-American and Japanese cohorts in turn. The new 

significance levels after meta-analyses were defined as 3 x 10
-6

, 8 x 10
-6

 and 2 x 10
-6

, 

which were calculated given 5 x 10
-5 

divided by the number of extra meta-analysis tests 

carried out in each meta-analysis. After the meta-analysis, rs10196189 which was initially 

identified from Jamaican sprint GWAS remained significant (p = 4.66 x 10
-7

, exceeding 3 
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x 10
-6

), and rs1531550 from Japanese sprint GWAS attained at 2 x 10
-6

 (p = 1.88 x 10
-6

) 

(see Table 4.7). 

 

Regional association plots of the SNPs crossed an unadjusted p < 5 x 10
-5

 were further 

inspected for four GWAS cohorts (including the Japanese endurance GWAS samples) 

respectively, leading to the exclusion of 10, 0, 18, and 9 problematic SNPs, which are 

considered as either redundant or false signals. The regional association plots for the 

remaining SNPs, served as the key markers representing for those regions, are presented in 

the Appendix A2 to A5. In general, these SNPs that are not filtered out could be taken 

forward for future studies. Among the top SNPs discovered from the three initial sprint 

GWAS cohorts, no common SNPs are found. Nevertheless, given the results of the meta-

analyses of combined sprint GWAS, rs10196189 is considered as the first candidate SNP 

for validation and replication, with the allele G (odds ratio = 2.61, p = 4.66 x 10
-7

; Table 

4.7) associated with elite sprint status in Jamaicans, African-Americans and Japanese. The 

regional association plots for this hit in the 3 sprint GWAS cohorts are presented in Figure 

4.9 – 4.11, respectively. The second significantly associated signal is from rs1531550, and 

the same effect direction of  the allele A is only observed in Jamaican and Japanese sprint 

GWAS cohorts (odds ratio = 3.09, p = 1.88 x 10
-6

; Table 4.7). Plots that demonstrate the 

regional association relationships between rs1531550 and the surrounding SNPs are 

displayed in Figure 4.12 and 4.13 for Japanese and Jamaicans, respectively.  
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Table 4.7 Significant meta-analyses results of the top SNPs with an unadjusted fixed-effects p-value < 5x10
-5

 across Jamaican sprint, African-American sprint, 
Japanese sprint GWAS samples. 

 
Initial 
GWAS 

Chr SNP BP A1  A2 MAF  
JAM 

O.R.  
JAM 

95% 
C.I. 
JAM 

p        
JAM 

MAF 
AA 

O.R. 
AA 

95% 
C.I. 
AA 

p    
AA 

MAF 
JAP 

O.R. 
JAP 

95% 
C.I. 
JAP 

p            
JAP 

N p           
(F) 

O.R.    
(F) 

Q I
2
 

JAM 2 rs10196189 154826491 G  
 

A 0.36 2.98 1.76 – 
5.05 

4.89E-05 0.32 2.16 1.12-
4.15 

0.02 0.06 2.52 1.04-
6.12 

0.036 3  4.66E-07 2.61 0.75 0 

JAP 10 rs1531550 35464778 A  G 0.07 3.19 1.25-
8.14 

0.015 - - - - 0.21 3.06 1.79-
5.21 

2.65E-05 2  
(JAM, 
JAP) 

1.88E-06 3.09 0.94 0 

 
JAM - Jamaican, AA – African-American, JAP – Japanese; 
Chr – chromosome; BP – base pair; A1 – minor allele; A2 – the alternative allele; 
MAF – minor allele frequency; O.R. – odds ratio (with respect to allele A1); 95% C.I.: 95% confidence interval; the shaded area refers to the initial association results of the top SNPs from each GWAS cohort;  
N – number of valid studies for this SNP in meta-analysis; p (F) – fixed-effects meta-analysis p value; O.R. (F) - fixed-effects odds ratio estimate; Q – P-value for Cochrane's Q statistic; I

2
 – I

2
 heterogeneity index (0-100). 
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Figure 4.9 Regional association plot of rs10196189 (purple filled circle) from the Jamaican 
sprint GWAS with 500Kb flanking region on each side. –log10 transformed p-values on the Y-
axis indicate the strength of the association with elite sprint status in the Jamaican cohort. The level 
of LD between rs10196189 and its surrounding SNPs as well as the recombination rate are 
estimated using 1000 Genomes AFR samples (Mar 2012). The level of LD is indicated by the 
colour key with red corresponding to high LD, and the recombination rate is represented by the 
blue line. Functional annotation key: triangle = framestop/splice, inverted triangle = non-
synonymous, square = synonymous/UTR, star = conserved transcription factor binding site, square 
with diagonal lines = region is highly conserved in placental mammals, circle = no annotation. 
RPRM: reprimo; GALNT13: UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 13. 



117 
 

 

Figure 4.10 Regional association plot of rs10196189 (purple filled circle) from the African-
American sprint GWAS with 500Kb flanking region on each side. –log10 transformed p-values 
on the Y-axis indicate the strength of the association with elite sprint status in the African-American 
cohort. The level of LD between rs10196189 and its surrounding SNPs as well as the 
recombination rate are estimated using 1000 Genomes AFR samples (Mar 2012). The level of LD 
is indicated by the colour key with red corresponding to high LD, and the recombination rate is 
represented by the blue line. Functional annotation key: triangle = framestop/splice, inverted 
triangle = non-synonymous, square = synonymous/UTR, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
no annotation. RPRM: reprimo; GALNT13: UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 13. 
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Figure 4.11 Regional association plot of rs10196189 (purple filled circle) from the Japanese 
sprint GWAS with 500Kb flanking region on each side. –log10 transformed p-values on the Y-
axis indicate the strength of the association with elite sprint status in the Japanese cohort. The 
level of LD between rs10196189 and its surrounding SNPs as well as the recombination rate are 
estimated using 1000 Genomes ASN samples (Mar 2012). The level of LD is indicated by the 
colour key with red corresponding to high LD, and the recombination rate is represented by the 
blue line. Functional annotation key: triangle = framestop/splice, inverted triangle = non-
synonymous, square = synonymous/UTR, star = conserved transcription factor binding site, square 
with diagonal lines = region is highly conserved in placental mammals, circle = no annotation. 
GALNT13: UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 
13. 
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Figure 4.12 Regional association plot of rs1531550 (purple star) from the Japanese sprint 
GWAS with 500Kb flanking region on each side. –log10 transformed p-values on the Y-axis 
indicate the strength of the association with elite sprint status in the Japanese sprint GWAS cohort. 
The level of LD between rs1531550 and its surrounding SNPs as well as the recombination rate 
are estimated using 1000 Genomes ASN samples (Mar 2012). The level of LD is indicated by the 
colour key with red corresponding to high LD, and the recombination rate is represented by the 
blue line. Functional annotation key: triangle = framestop/splice, inverted triangle = non-
synonymous, square = synonymous/UTR, star = conserved transcription factor binding site, square 
with diagonal lines = region is highly conserved in placental mammals, circle = no annotation. 
PARD3: par-3 partitioning defective 3 homolog (C. elegans); CUL2: cullin 2; CREM: cAMP 
responsive element modulator; CCNY: cyclin Y; FZD8: frizzled family receptor 8; GJD4: gap 
junction protein, delta 4, 40.1kDa; MIR4683: microRNA 4683. 
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Figure 4.13 Regional association plot of rs1531550 (purple star) from the Jamaican sprint 
GWAS with 500Kb flanking region on each side. –log10 transformed p-values on the Y-axis 
indicate the strength of the association with elite sprint status in the Jamaican sprint GWAS cohort. 
The level of LD between rs1531550 and its surrounding SNPs as well as the recombination rate 
are estimated using 1000 Genomes AFR samples (Mar 2012). The level of LD is indicated by the 
colour key with red corresponding to high LD, and the recombination rate is represented by the 
blue line. Functional annotation key: triangle = framestop/splice, inverted triangle = non-
synonymous, square = synonymous/UTR, star = conserved transcription factor binding site, square 
with diagonal lines = region is highly conserved in placental mammals, circle = no annotation. 
PARD3: par-3 partitioning defective 3 homolog (C. elegans); CUL2: cullin 2; CREM: cAMP 
responsive element modulator; CCNY: cyclin Y; FZD8: frizzled family receptor 8; GJD4: gap 
junction protein, delta 4, 40.1kDa; MIR4683: microRNA 4683. 
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4.1.4 Discussion 

Four GWASs were carried out to identify common variations associated with elite 

sprint/power and endurance athlete status by use of elite sprint/power athletes from 

Jamaica, USA and Japan, and high level endurance athletes from Japan. Sample 

characteristics for these samples were specified in section 2.1.1. The association results 

from the four initial GWAS sample sets showed no overlap among the SNPs exceeding an 

unadjusted significance threshold of 5 x 10
-5

. The meta-analysis results of combined 

effects in sprint GWAS cohorts revealed that 2 SNPs remained significant after taking into 

account the extra tests performed.  

The phenotype of interest here is elite human performance. The true genetic architecture 

under this complex trait is unknown. Except that common variants of small to modest 

effect and rare variants of large effect may contribute to this phenotype variation, common 

variants of large effect as well as rare variants of small effect may also exist (Figure 4.14; 

ref(112)).  

 

Figure 4.14 Feasibility of identifying genetic variants by risk allele frequency and 
strength of genetic effect (odds ratio) (112). 
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Unlike most of other common and complex traits, genetic study of a large and elite athlete 

cohort with the number of thousands is practically unachievable due to limited resources.  

Therefore, current GWASs were carried out in an attempt to increase the efficiency of 

identifying genetic variants in relation to elite athlete status by comparing allele 

frequencies in elite athletes who are at one extreme of the phenotype distribution to their 

geographically matched controls from the general populations. The allele frequency may 

be enriched in one or both phenotype extremes to circumvent the need for very large 

samples (136,145). In addition, the first GWAS in AMD revealed an intronic and common 

variant (with an effect size of 7.4) significantly related to AMD by comparing 96 cases to 

50 controls, and subsequently a functional polymorphism (in LD with the risk allele of this 

common variant) in the CFH gene was identified by resequencing (59), suggesting that it is 

not unreasonable to expect that variants of large effect may be detected in a small study. 

As described in section 1.3.1, power is a function of sample size, effect size, correlation 

between the marker and the causal variant as well as their allele frequencies. When effect 

size of a variant is large and the variant is frequent enough to be detected in a population, 

the power for detecting it is also increased. In section 2.4.2.1, power was estimated for 

current initial GWAS sample sets based on simulation on 200 samples (100 cases and 100 

controls), in which the relationship between power and effect sizes, with marker MAF 

varying from 0.05 to 0.5, was examined, assuming low prevalence of the trait at 0.1 (see 

Figure 2.2). Under these conditions, to achieve 80% power, minimum effect sizes range 

from 3.02 to 6.07 under the four different genetic models (i.e. the multiplicative, additive, 

dominant and recessive models). While power calculation is an important measure to 

ensure true discoveries in an association study, thorough data cleaning at the discovery 

phase and meta-analysis for combing several discovery studies (to increase the sample 

size, where applicable) are also very important and would help improve power. The 

estimated odds ratios from current discovery GWASs are likely to be inflated due to the 

inadequate power (e.g. due to small samples) in these initial GWASs (141-144). However, 
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as stated above, meta-analyses of these independent GWASs have greatly increased the 

sample size and statistical power. For example, the association of rs10196189 to elite 

sprint performance has been significantly improved after meta-analyses of the 3 initial 

sprint GWASs, with an odds ratio of 2.61 (p = 4.66 x10
-7

) in 221 sprint athletes and 594 

controls (i.e. size of meta-analyses samples). rs10196189 is an intron-variant located in the 

GALNT13 gene on chromosome 2, which encodes glycosyltransferase that initiates mucin-

type O-glycosylation (223). The GALNT13 gene is also conserved across species, e.g. 

chimpanzee, dog, cow, mouse, rat, chicken and zebrafish (see:  

http://www.ncbi.nlm.nih.gov/gene/114805). Variations in introns of this gene have been 

reported to be associated so far with menopause, sudden cardiac death, echocardiography, 

erythrocyte indices, and blood pressure, and these associations are catalogued in the 

Phenotype-Genotype Integrator (PheGenl) database housed by NCBI (see: 

http://www.ncbi.nlm.nih.gov/gap/phegeni?tab=1&gene=114805). Several intergenic SNPs 

have been found to be related to coronary artery disease, tunica media and 

electrocardiography (see: 

http://www.ncbi.nlm.nih.gov/gap/phegeni?tab=1&gene=114805). There is the possibility 

that rarer causal variants of large effect correlate with common variants identified by 

GWAS, and because the GALNT13 is not a large gene (i.e. 506Kb, see: 

http://omim.org/entry/608369), it is probably sensible to have deep sequencing for the 

whole gene region, on the premise that the GWAS tagSNP(s) (i.e. rs10196189 in this case) 

is replicated, in order to capture more detailed variation structure in this region that may 

influence the trait of interest (i.e. elite sprint performance in this case). Another meta-

analysis-signal of interest is rs1531550, which is a conserved transcription factor binding 

site on chromosome 10 in the CREM gene (see: http://omim.org/entry/123812), which 

regulates the transcription of cAMP-responsive genes and may be involved in the 

regulation of cardiac gene expression (224). Non-coding SNPs in the CREM gene or the 

http://www.ncbi.nlm.nih.gov/gene/114805
http://www.ncbi.nlm.nih.gov/gap/phegeni?tab=1&gene=114805
http://www.ncbi.nlm.nih.gov/gap/phegeni?tab=1&gene=114805
http://omim.org/entry/608369
http://omim.org/entry/123812
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surrounding SNPs have been found to associate with Parkinson disease (see: 

http://www.ncbi.nlm.nih.gov/gap/phegeni?tab=1&gene=1390 ).  

Despite successful GWAS in identifying novel genetic variants for AMD (59), T2DM 

(225),  the interleukin 23 pathway in Crohn's disease(226)  and obesity-related traits (227), 

important limitations have also been noticed. SNPs identified by GWAS have typically 

explained a small fraction of the heritability. For example, human height is a highly 

heritable quantitative trait (up to 90% of variation most likely explained by genetic factors) 

(228-231) as well as stable and easy to measure. One of the largest studies (n = 183,727) to 

date identified at least 180 loci associated with adult height (explaining only 10% of the 

phenotypic variation in height) (232). There have been suggestions that common variants 

do explain up to 45% of the variance in height (233), but the small effect size of these 

variants may render these variants undetectable by common study designs (112). 

Furthermore, the identified common variants associated with most complex diseases do not 

show predictive utility (234). Thus, much of the heritability of complex traits remains 

hidden or missing (112,235), and several explanations have been proposed to account for 

this missing heritability (115) – the CDCV model, the infinitesimal model, the rare allele 

model, the broad sense heritability model (as previously described). Additionally, 

structural variation (e.g. CNVs, inversions, translocations etc.) that has not been 

substantially investigated in relation to complex traits are also responsible for the missing 

heritability (112). Although common variants of small to modest effect size are likely to be 

detected by GWAS, there are no published papers to date on GWAS of elite human 

performance and true genetic architecture underlying elite athlete status is not known. 

Despite a study of 4488 adult British female twins showing athlete status is highly 

heritable (h
2
 = 66%) (33), the proportion of phenotypic variation that can be explained by 

GWAS markers is currently unclear. For example, the heritability of elite sprint athlete 

status that can be explained by the two intronic meta-analysis hits, rs10196189 and 

http://www.ncbi.nlm.nih.gov/gap/phegeni?tab=1&gene=1390
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rs1531550 (yet to be proven to be true by independent studies), as discovered from current 

GWASs may be extremely limited given the polygenic nature of elite performance. 

Nevertheless, GWAS has been able to detect many loci that implicate biologically related 

genes and pathways (232). At present, GWAS remains to be an effective way of 

investigating genetic variants associated with common diseases and complex traits. The 

association signals identified from GWAS may highlight the genomic regions harbouring 

other forms of variation, such as rare and structural variants. Following GWAS, additional 

approaches, such as fine mapping and sequencing, may be used to find other common 

variants with larger effect sizes than GWAS tagging SNPs and to identify rarer variants 

across GWAS loci. Through these efforts, it is hoped to fill up much missing part of 

heritability for the common/complex traits. 

Elite athlete status is a phenotype with multiple genes contributing to a set of advantageous 

performance-related phenotypes, for example, genetic variants that are positively related to 

cardiorespiratory fitness (assessed by    2max obtained during a progressive intensity test 

before exhaustion) and muscle fibre type distribution (higher percentage of type I muscle 

fibres) would together contribute significantly to the make of an elite endurance athlete. 

Many GWASs conducted to date are based on qualitative diagnoses of cases and controls 

(236,237). It is acknowledged that genetic component is distributed quantitatively in these 

common/complex traits. In other words, common/complex traits such as elite athlete status 

are the extremes of quantitative traits (238), representing the quantitative extremes of 

continuous distributions of genetic risk. Genes found for elite athlete status in a case-

control study will not only be associated with differences between athletes and controls, 

but with individual differences in sporting ability throughout the entire range of variation.  

Most GWAS has been primarily focused on European populations. Research beyond 

European populations could also contribute significantly to the determination of genetic 
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variants in relation to multifactorial traits. For example, study of genetic variation in 

populations of African ancestry (i.e. with greater genetic diversity, (67)) may help 

understand why some diseases have a greater impact on some groups compared to others 

and find ways to deal with them more effectively. The methodological challenges of 

GWAS in African and African-derived populations are present owing to the high levels of 

genome variation and population structure in these populations (71).  The Illumina 

OmniExpress and Omni1-Quad Beadchips were used for current GWAS. The company 

Illumina launched the Omni family of microarrays in 2009 using tagSNPs derived from the 

International HapMap and 1,000 Genomes Projects. Coverage for the two beadchips used 

here are better for CHB + JPT samples (HumanOmni1-Qaud chip: 76% and 

HumanOmniExpress chip: 74% with 1kGP marker MAF > 5%; HumanOmni1-Qaud chip: 

63% and HumanOmniExpress chip: 62% with 1kGP marker MAF > 1%) and CEU 

samples (HumanOmni1-Qaud chip: 76% and HumanOmniExpress chip: 73% with 1kGP 

marker MAF > 5%; HumanOmni1-Qaud chip: 63% and HumanOmniExpress chip: 58% 

with 1kGP marker MAF > 1%). For YRI samples, the HumanOmni1-Qaud chip has a 

coverage of 48% and 31% for 1kGP markers with MAF > 5% and > 1%, respectively, and 

the two coverage values are 40% and 25% for the HumanOmniExpress chip. The shorter 

LD present in African populations produces higher genetic diversity compared to the non-

Africans and results in the lower variation coverage rates as identified using the two 

Illumina chips described above, with a maximum number of markers just above 1 million 

selected from the whole genome. The newest version of HumanOmni5-Quad Beadchip 

provides a much more extensive coverage of the genome using > 4 millions of selected 

tagSNPs, the variation captured by this chip is thus significantly improved for YRI samples 

(i.e. 71% for 1kGP markers with MAF > 5%, and 58% for 1kGP markers with MAF > 1%). 

The two Illumina genotyping platforms used for current GWAS are the most recent 

releases at the time of study. The full content of the OmniExpress chip is contained within 

the HumanOmni1-Quad Beadchip. Most Jamaican and African-American athletes and 
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controls were randomly mixed and genotyped on the beadchips, following the central rule 

that cases and controls should be treated and analyzed under the same experimental 

conditions. However, at the end, only more athletes were genotyped in order to increase 

the number of athletes being studied and spend the limited budget on analysing more 

athlete samples, including 18 Jamaican and 58 African-American sprint athletes. After 

QCs, no substantial substructure was observed, and logistic regression model involving top 

PCs as covariates was used to further minimize any confounding effects that may be 

caused by different batches as well as population stratification. Japanese control and 

athlete samples were genotyped sequentially rather than in parallel. No evidence of strong 

effects caused by these experiments was found after QCs that were carefully conducted.   

In summary, the genome-wide association analyses in Jamaican, African-American and 

Japanese cohorts uncovered a few subsets of SNPs associated with elite sprint/power 

athlete status at a significance level of p < 5 x 10
-5 

(unadjusted). The combined effects of 

the top sprint-related signals revealed that 2 SNPs, rs10196189 and rs1531550, remained 

significant after the meta-analysis. They are considered the most informative signals and 

could be the focus for follow-up replications in large number of subjects in the cohorts of 

the same ethnicity or carrying out multi-ethnic replications for both SNPs that present in 

two or more different ethnic groups.  

 

4.2 A GWAS-derived investigation: genotype score 
approach in addition to common variations for prediction 
of elite athlete status 
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4.2.1 Characteristics of sprint-related SNPs from published 
reports and current GWAS data 

The 2006-2007 update of the human gene map for fitness and performance-related 

phenotypes (48) and subsequent reviews in 2008-2009, 2010, 2011 and 2012 (49-52) with 

the focus on the strongest evidences in the field of exercise genomics were reviewed. 25 

SNPs at 22 loci associated with muscle power/strength were identified in at least one 

previously published study and looked up in Jamaican sprint, African-American sprint, 

Japanese sprint and Japanese endurance GWAS data for current genotype score analysis. 

The common loci between the literature-reported SNPs and the current GWAS SNPs 

associated with elite sprint performance are listed in Table 4.8.  
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Table 4.8 Common loci associated with elite sprint performance-related phenotypes between the literature-identified SNPs and the GWAS SNPs. 

Rs Number Gene 
Symbol 

Risk Allele 
(literature)* 

Related 
Traits 

Minor Allele
#
 

(HapMap 
CEU)  

MAF
#
     

(HapMap 
CEU) 

Minor 
Allele

$
 

(GWAS) 

MAF 
(Jamaican 
sprint GWAS)  

MAF                    
(African-American 
sprint GWAS) 

MAF  (Japanese 
sprint/endurance 
GWAS) 

rs1815739 ACTN3 C/T Sprint 
athlete 
status 

C 0.49 T 0.16 0.20 0.47/0.47 

rs2854464 ACVR1B A/G Muscle 
strength 

G 0.22 G 0.39 0.44 0.43/0.47 

rs699 AGT C/T Sprint 
athlete 
status 

C 0.41 T 0.16 0.16 0.19/0.18 

rs1800169 CNTF A/G Muscle 
strength 

A 0.16 A 0.05 0.04 0.21/0.19 

rs11206244; 
rs12095080 

DIO1 
haplotype 

TA Muscle 
strength 

T;                   
G 

T: 0.36;         
G: 0.10 

T;               
G 

 

T: 0.16;          
G: 0.18 

T: 0.21;              
G: 0.20 

- 

rs2296135 IL15RA A/C Trainability 
of Lean 
mass 

A 0.50 A (C) 0.23 0.25 0.45/0.46 

rs1049434 MCT-1 A/T Lactate 
transport 
capability 

T 0.36 T 0.13 - - 

rs1800629 TNF G/A Muscle 
strength 

A 0.17 A 0.15 0.13 0.02/0.02 

rs7832552 TRHR T/C Lean body 
Mass 

T 0.33 T (C) 0.18 0.19 0.44/0.45 

* Risk allele is underscored for each SNP identified from literature. 
# 

Minor allele and MAF of HapMap CEU population are reported above, since most study populations from literature are of European ancestry so to provide some 

information on marker allele frequency variation relative to current GWAS discovery populations. 
$
 Minor allele of each common SNP across current GWAS datasets (i.e. Jamaicans, African-Americans and Japanese). Note that for IL15RA and TRHR SNPs, the 

alternative allele is the minor allele (shown in bracket) for Japanese GWAS cohort.
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4.2.2 Genotype score analysis 

Genotype score was constructed on the basis of the number of risk alleles, which were 

inferred from previously identified sprint-related SNPs (derived primarily from the 

candidate gene association studies), assuming an additive effect. A score of 2 is assigned to 

the “optimal” genotype contrib ting to power-related phenotypes, and a score of 0 is 

assigned for the alternative homozygous genotype of the less “optimal” allele. For example, 

a genotype score of 2 would be assigned for CC genotype of ACTN3 (see Table 4.8), a score 

of 0 would be assigned for ACTN3 TT genotype and finally, a score of 1 would be for the 

heterozygous genotype of TC. The sum of genotype scores from the SNPs for each 

individual is then standardized, namely total genotype score (TGS). An equation for TGS 

calculation (239) is : 

“T   = (s m o  all genotype scores   (the n mber o  st died polymorphisms*2)) X 100” 

Except the sampling distribution of Japanese sprint athlete is normal (p = 0.09), other 

sampled athletes and controls in the GWAS cohorts are not normally distributed for the TGS 

data, assessed by the Kolmogorov-Smirnov test (p ≤ 0.002). Therefore, the differences of 

mean TGS between GWAS athletes and controls were examined using the non-parametric 

tests. The mean TGS across athletes and controls did not differ significantly in any of the 

GWAS sample sets (data shown in Figure 4.15 - 4.17 for Jamaicans, African-Americans and 

Japanese, respectively; asymptotic two-sided p ≥ 0.43).  
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Figure 4.15 Mean TGS (± standard error) in Jamaican sprint athletes (45.5±0.8) and controls 
(44.6±0.9); p = 0.43 (two-sided).  

 

 

Figure 4.16 Mean TGS (± standard error) in African-American sprint athletes (48.6±1.0) and 
controls (48.3±0.5); p = 0.81 (two-sided).  
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Figure 4.17 Mean TGS (± standard error) in Japanese sprint (53.1±1.5), endurance (51.2±1.2) 
athletes and controls (51.9±1.0); p = 0.62 (two-sided).  

The frequency distributions of TGS across athletes and controls from each GWAS cohort 

were depicted in Figure 4.18. By visual inspection, in both Jamaican and African-American 

samples, frequency of TGS tends to be higher in controls than sprint athletes at “the lower 

score” end; and in African-Americans, a higher frequency of TGS is observed in sprint 

athletes relative to controls at “the higher score” end. In Japanese, at the lower scores, a 

higher frequency of TGS is noticed in endurance athletes compared to sprint athletes and 

controls; at the higher scores, sprint athletes have a higher frequency of TGS in comparison 

to that in controls and endurance athletes. In addition, Japanese control group shows a wider 

range of TGS towards the lower scores. However, the TGS distribution did not reveal any 

distinguishable pattern (not statistically significant) between athletes and controls of any of 

the studied GWAS cohorts, in other words, the distribution of TGS is the same across 

athletes and controls.  
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Figure 4.18 Frequency distribution of TGS in Jamaicans 
(top left), African-Americans (top right) and Japanese 
(bottom).  
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The proportion of advantageous genotypes based on TGS was also calculated. In 

Jamaicans, 3% or 22% of the elite sprint athletes possess a minimum of 5 or 4 (out of 9) 

optimal genotypes, respectively, relative to 3% or 24% in controls. In African-Americans, 

24% of the elite sprint athletes had at least 4 (out of 8) optimal genotypes and this 

percentage is 21% in controls. In Japanese, 24% of the elite sprint athletes had more than 

or equal to 4 (out of 8) optimal genotypes, and these figures are 25% and 19% in Japanese 

endurance athletes and controls, respectively. Furthermore, none of athletes had a TGS of 

100 in any of the GWAS cohorts. The ranges of TGS are of 33 – 67, 25 – 75, 31 – 75, and 

38 – 69 in Jamaican sprint, African-American sprint, Japanese sprint and Japanese 

endurance athletes, relative to the score range of 28 – 78, 25 – 75, and 19 – 75 in their 

respective controls.  

4.2.3 ROC curve 

The ROC curve was used to interpret sensitivity (true positive rate) and specificity (true 

negative rate) levels of the genotype score approach in distinguishing elite sprint athletes 

from elite endurance athletes and/or controls. The AUC and 95% C.I. were calculated for the 

overall diagnostic accuracy of a ROC curve. A few features in a ROC curve to be noted 

include:   

-  Y-axis: Sensitivity = true positive rate; X-axis: 1- Specificity (true negative rate) = 

false positive rate.  

-  Red line: null line (null hypothesis: true AUC = 0.5). The closer to 1 of the AUC, 

the better. The point (0,1) indicates perfect classification. 

The ROC analyses indicate that the TGS approach using literature-identified sprint-related 

SNPs has no predictive power in identification of an elite sprint athlete using the genomic 

data derived from current GWAS cohorts (Figure 4.19-4.21).  
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Figure 4.19 The ROC curve analysis for the reliability of TGS in distinguishing elite 
Jamaican sprint athletes from controls. AUC = 0.53, 95% C.I. = 0.45 – 0.62, p = 0.45. 

 

 

Figure 4.20 The ROC curve analysis for the reliability of TGS in distinguishing elite African-
American sprint athletes from controls. AUC = 0.51, 95% C.I. = 0.44 – 0.58, p = 0.81. 
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Figure 4.21 The ROC curve analysis for the reliability of TGS in distinguishing elite Japanese sprint athletes from controls (A), endurance athletes (B) as 
well as endurance athletes from controls (C). (A): AUC = 0.53, 95% C.I. = 0.43 – 0.62, p = 0.61; (B): AUC = 0.55, 95% C.I. = 0.44 – 0.66, p = 0.35; (C): AUC = 0.47, 
95% C.I. = 0.38 – 0.56, p = 0.54. 

(A) (B) 
(C) 
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4.2.4 Discussion 

As reviewed in previous chapters, it is acknowledged that elite performance is a complex 

multifactorial trait, and genetic endowment is commonly perceived as one of the important 

factors contributing to it. A number of genes have been reported to be associated with elite 

performance by the primarily employed candidate gene approach. Knowing that multiple 

variants may contribute small amount of effects to elite performance, it is natural to combine 

alleles of several genes in order to explore further the underlying genetic architecture of the 

trait. Thus, the polygenic profile of the elite athletes currently being analysed under GWAS 

is assessed using the sprint-performance-associated genetic variants inferred from previously 

published reports.   

The main findings are 1) mean TGS is not significantly differentiated between any GWAS 

athlete-control sample sets, or the distribution of TGS is the same across athletes and 

controls in each individual GWAS cohort. 2) ROC curves confirm that the TGS approach 

has no predictive power in talent identification as assessed by using current GWAS samples. 

3) 3% and 22% of the elite Jamaican sprint athletes had more than or equal to 5 and 4 (out of 

9) optimal genotypes, respectively, and these two number are 3% and 24% in Jamaican 

controls. 4) 24% of the elite African-American sprint athletes had more than or equal to 4 

(out of 8) optimal genotypes, this percentage is 21% in controls. 5) 24% of the elite Japanese 

sprint athletes had more than or equal to 4 (out of 8) optimal genotypes, and 25% and 19% 

in Japanese endurance athletes and controls. 6) Finally, the optimum polygenic profile does 

not differ between sprint and endurance-oriented Japanese athletes in current analysis, which 

is, in fact, against a conventional notion that the genetic profiles of endurance and sprint 

performance are likely to be different owing to the variations in the phenotypic traits that 

determine performance in both types of events (240,241).  
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The use of a genotype score for polygenic profiling is not new. Williams and Folland (2008) 

(239) firstly introduced the TGS model in 2008; in this study, genotype score of 23 

endurance-related genetic polymorphisms in 19 genes were computed to form an optimal 

polygenic endurance profile.  However, 99% of the population (Caucasians) exhibited scores 

in the range of 37 – 65 and it has been estimated that the chance for one Caucasian 

individual (on the globe) possessing all 23 optimal alleles is extremely low (0.0005%). 

Similar studies carried out by Ruiz et al in 2009 (242) and 2010 (241) aimed to identify 

optimum endurance and power polygenic profiles using elite Spanish endurance and power 

athletes. In the 2009 study (242), 7 polymorphisms in 7 genes associated with endurance 

phenotypic traits were included in the TGS calculation for 46 elite endurance athletes and 

123 controls. The average TGS is 70 in endurance athletes versus 62 in controls. In the 2010 

study (241), TGS analysis of 6 power-oriented polymorphisms in 6 genes was performed in 

53 elite power, 100 elite endurance athletes and 100 controls. The elite power athletes had a 

higher average TGS of 71 compared to 60 in endurance athletes and 63 in controls. Both 

studies have partially supported the concept of TGS on distinguishing different athletes 

groups (as well as controls). At the individual level, 60% of the elite power athletes had less 

than or equal to 3 (out of 6) optimal genotypes and 20% of the elite endurance athletes had 4 

or 5 optimal genotypes (50). The small number of polymorphisms included in the TGS and 

the genuineness of these polymorphisms identified from literature may account for the high 

false negative rate at the individual TGS data of power athletes, and more importantly the 

low power of the study (50). Despite of a similar magnitude in terms of sample size between 

current GWAS cohorts used for TGS analyses and Ruiz et al studies (241,242), the negative 

observations from current TGS analyses using 9 previously reported sprint-related genetic 

loci may be explained, in part, by 1) the small number and validity of the power-related 

polymorphisms from previous studies, 2) varied allele frequencies and LD block structure 

across populations. Therefore, a genetic variant identified from one ethnic group (e.g. 
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Caucasians, from whom the selected SNPs are derived) might not well explain the 

underlying biology for other specific populations (e.g. Africans and Asians).  

Biotechnology companies, such as Sports X factor and Atlas Sports Genetics, offered for 

genetic testing of athletic ability using a limited number of genes. For example, Sports X 

factor selects a panel of 7 genes, including ACTN3, ACE, PPARGC, DIO1, VEGFR, NOS3, 

and IL6, as performance indicators for individual genetic testing, whereas Atlas Sports 

Genetics looks at specifically the ACTN3 gene. The development of current genetic profiling 

in elite performance is still in its infancy. The complex nature of this trait is yet to be 

understood and this would prevent any potential direct and effective genetic testing from 

using previously “identi ied” genetic markers  rom p blished reports. The lack of predictive 

utility of the TGS approach adopted here may also reflect the low reliability of the reported 

genetic variants predisposing to elite performance. Therefore, genetic testing in athletes is 

currently not recommended for coaches and athletes, who want to get such tests run (243).  

To summarize, the results of current TGS analyses are not statistically significant, and 

inconsistent with previous investigations, in which TGS approach did show some predictive 

power on distinguishing athletes and controls. Interestingly, the genetic profiles (based on 

the 8 polymorphisms currently tested) of Japanese elite endurance and sprint athletes are not 

statistically significantly differed. This might partially be due to those reported optimum 

polymorphisms (examined here) derived mainly from studies of Caucasian populations may 

not well represent the exact genetic causation for a different population, and the small 

number of polymorphisms analyzed are not the causative SNPs or in good LD with the 

casual ones. Or perhaps, these SNPs studied here may be involved in certain biological 

pathways that would result in certain common phenotypes contributing evenly to both 

endurance and sprint performance; however, such mechanisms are yet to be found and 

understood. 
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5 General discussion and prospects 

 

This thesis involved two types of association studies (i.e. candidate gene association study 

and GWAS) in an attempt to examine the genetic component of elite human performance. 

As such, a candidate gene association study of ACE and ACTN3 was conducted in elite 

Caucasian and East Asian swimmers (see Chapter 3, starting page 77). The ACE I/D 

polymorphism was found to associate with elite swimmer status in both Caucasian SMD 

swimmers and East Asian SD swimmers. More specifically, DD homozygotes were found 

to be associated with SMD swimmer status in Caucasians, with the largest effect size 

observed for the I-allele dominant model (i.e. odds ratio was calculated for DD 

homozygotes relative to the I-allele carriers), while the I-allele homozygotes were found to 

be over-represented in East Asian SD swimmers under the D-allele dominant model (i.e. 

odds ratio was calculated for I-allele homozygotes with respect to D-allele carriers). 

ACTN3 p.R577X was not significantly associated with swimmer status in any of the 

sample sets. However, there was a trend for ACTN3 R-allele being modestly over-

represented in the SD swimmers in East Asians, which is line with previous studies in 

sprint-/power-oriented sports. Detailed results for ACE and ACTN3 associations with elite 

swimmer status can be found in section 3.3, page 86.  

Notably, allele frequencies for ACE I/D vary across different populations, with a lower 

frequency of the D allele present in Asians (0.3 in Chinese, (210) and 0.4 in Japanese, 

(211)) relative to populations of African (0.56, (209)) and European (the average: 0.52, 

(148,204-206)) descent.  ACE control data for the present thesis was obtained from a 

previous study (148), and the D allele frequency was 0.51 and consistent with above 

European populations (i.e. 0.52). Unlike the significant ACE association with Caucasian 

SMD swimmer (SD + MD) status, similar findings were not found in East Asian MD 
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swimmers despite of over-representation of I-allele homozygotes in East Asian SD 

swimmers. This finding may be because ACE I/D affects swimmers of varying swimming 

distances differently across populations. Alternatively and less likely, this lack of 

association in East Asian swimmers may be due to insufficient power to detect a 

difference. As already discussed in Chapter 3, page 78/79, ACE associations in opposing 

direction in the two ethnic groups are in line with previous studies in the same populations. 

For example, in Caucasians, the I allele has been reported to be associated with elite 

endurance performance in long-distance runners and rowers, and mountaineers at high 

altitude (172), and the D allele has been found to be associated with strength/power 

sports(e.g. sprinting (182) and swimming events of ≤ 400 m (148,171)). However, data 

from populations of East Asian descent have revealed that the D allele was associated with 

elite Japanese long distance runner status (187) and the I-allele with elite Korean power-

oriented athlete status (188). Several explanations for the opposing effects of the ACE I/D 

alleles include: the same causative variant with different I-/D-alleles being on the 

predisposing haplotype more of the time in each group; different causative variants with I- 

and D-alleles being on different haplotypes more of the time in each group; or ACE affects 

related physiology differently in the two groups. There is less evidence currently to support 

the first two explanations (see Chapter 3, page 92), while the third explanation exists, 

where higher ACE activity may have an impact on swimming performance of shorter 

distance in one population and lower ACE activity may have the same impact in the other 

population since the two populations diverged approx. 30-35,000 yrs ago.  

The ACTN3 polymorphism has a modest effect on muscle fibre distribution (50), and 

carriers of the XX genotype do not express ACTN3 in the muscles (193). The XX genotype 

is reported to be at a lower frequency in sprint/power athletes in previous studies 

(149,195). It is worth noting that there is a lack of relationship between ACTN3 and elite 

swimmer status in the current study. It may be due to ACTN3 polymorphism not being of 
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particular importance in swimming or type II errors. The sample size of this study is 

relatively modest, although it is the largest elite swimmer sample yet assembled (current: 

200 Caucasian swimmers and 326 East Asian swimmers vs. other studies: 35–120, 

(148,171,244)). Despite numerous candidate gene studies carried out in the field of 

exercise science, candidate gene approach has produced inconsistent results in studies 

employing relatively small sample sizes and neglecting multiple testing adjustments. Other 

confounding factors may also exist, such as wrong causative SNPs selected, population 

stratification, phenotypic and locus heterogeneity (discussed in section 1.2.3, page 28). 

Here, only two SNPs (ACE I/D and ACTN3 p.R577X) were selected for association 

analysis and multiple-testing issue was carefully controlled, therefore the reliability of 

current results is believed to be improved to the greatest extent possible. Again, the 

findings from this study are interesting in light of the opposing effects of ACE on elite 

swimmer status in Caucasians and East Asians (pointing out the possibility that this SNP 

may not be the key candidate seriously implicated in human performance in general and 

the causal variant(s) that affect(s) ACE activity through the I/D polymorphism might locate 

outside of the ACE gene region, perhaps in a nearby gene) as well as the lack of association 

between ACTN3 and elite swimmer status in both populations (possibly because swimmers 

may require different components to excelling at power-dominated swimming events 

relative to other sprint/power sports that may be largely influenced by the ACTN3 

polymorphism). Nevertheless, these findings should be interpreted with caution until 

confirmed by larger studies.  

GWAS is a preferred unbiased approach to identify genes contributing to elite sporting 

ability; howe er, a traditional      wo ld req ire  ery large “case” cohorts, which 

would preclude a study design involving established world-class athletes from similar 

sporting disciplines. On the other hand, the use of elite athletes who are at one extreme of 

the phenotype distribution might circumvent the need for very large cohorts since the allele 
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frequency may be enriched in the group of high level athletes, hence increased chance of 

finding common variants of larger effect in relatively small samples (145). The application 

of meta-analysis across several independent GWASs is also a good practice for increasing 

the overall sample size and improving statistical power to identify true associations (73). In 

terms of this thesis, the present GWASs were carried out in an attempt to identify common 

variations associated with elite sprint/power and endurance status in Jamaicans, African-

Americans and Japanese, respectively (see Chapter 4, starting page 96). Meta-analyses 

were then performed for SNPs with unadjusted association p < 5 x 10
-5

 across the sprint 

GWAS sample sets (i.e. Jamaican sprint, African-American sprint, Japanese sprint GWAS 

cohorts). 2 SNPs remained significant after adjusting for the additional tests done given the 

meta-analysis (see section 4.1.3, page 113). Both SNPs are common intronic-variant with 

an intermediate meta-analysis fixed-effect size between 2.6 and 3 (see section 4.1.3, Table 

4.7). The “synthetic associations” theory implies that se eral rare ca sal alleles may be 

tagged by the same common variant, and therefore the true effect size and proportion of 

variance explained by the set of rare variants may be underestimated by a common tagSNP 

identified from a GWAS (212). This theory would have implications on interpretation of 

GWAS signals as well as on the design of follow-up studies. For example, fine-mapping 

studies would be straightforward for identifying common casual variants of large effect in 

small sample sizes by zooming into the candidate region that is prioritized by GWAS 

association signals of small to modest effect (212). However, if common polymorphisms 

show associations with phenotypes beca se o  the “synthetic associations”, targeted long 

range resequencing extending beyond the LD block of GWAS-identified common variants 

would be helpful in finding multiple causal variants of low frequency. This is because the 

“synthetic associations” could be due to rare variants that lie megabases (Mb) away from 

the common variants being identified by GWAS (245). Therefore, if rs10196189 and 

rs1531550 (see above) can be replicated by further studies, the next step would be to 

sequence large regions (e.g. ideally 10 Mb as recommended by Dickson et al 2010 (245)) 
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around the discovery hits so as to obtain comprehensive sequence data on both common 

and rare casual variants potentially contributing to elite human performance. Furthermore, 

the cost of large-scale sequencing has dramatically dropped, from the first complete human 

genome costing $3 billion to sequence in 2000 to $1,000 per genome as promised by the 

company Ion Torrent (a division of Life Technologies) using the new benchtop Ion Proton 

sequencer with the Ion PI chip in 2012, and the cost of large-sequencing will become even 

cheaper over the next years. Undoubtedly sequencing will become the most important and 

widely used approach in the next generation of GWAS through targeted sequencing in the 

candidate genomic region in large cohorts, whole exome sequencing, and ultimately whole 

genome sequencing in a large number of subjects.  

Despite key advances in molecular biology, heritability remains largely unexplained for 

most complex traits. In the GWASs of elite performance (see Chapter 4), out of > 1 million 

common SNPs, only two meta-analysis hits were identified (with some level of 

confidence) to be associated with sprint performance. Even if both hits can be replicated, 

the heritability that could be explained by these two SNPs would be extremely limited 

given the multiofactorial nature of sporting performance. Additional discoveries would be 

required on rarer associated variants, better understanding of the modes of inheritance and 

interactions of gene x gene and gene x environment, and refined heritability estimates (73). 

Moreover, it is highly likely that many common variants with small effect that cannot be 

captured using a standard GWAS design account for much of the "missing heritability". 

Some researchers (246) have tried to investigate whether genomic data from GWAS could 

be used to improve discrimination of complex disease affection status by applying the 

genomic score approach (or can be said as doing “genomic pro iling”) to the  ellcome 

Trust Case Control Consortium (WTCCC) genome-wide data (237) of seven common 

diseases and looking at multiple genetic loci of small effect, which is very likely possessed 

by many common alleles, simultaneously. Interestingly, the authors found that profiling 
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using GWAS data tended to show the greatest prediction utility when a less stringent 

threshold was adopted for the additional SNPs to be included for the score calculation. 

This is in line with the possibility that there may be many variants of small effect spread 

widely across the genome reflecting true loci that do not meet the stringent levels required 

for the genome-wide statistical significance and these loci would contribute to at least 

some o  the “missing heritability”. In contrast,  or some disease traits st died by  T   , 

the discriminative ability is the most reliable for SNPs at stringent thresholds, suggesting 

that most loci influencing these traits have been discovered, therefore, the remaining 

genome-wide data has little added value. The genome-wide scores are not constructed for 

GWAS cohorts studied in this thesis since the sample sizes are small, which would prohibit 

the many variants with smaller effects from being reliably detected. However, the genotype 

score approach has been used to examine the ability of previously reported sprint-

associating SNPs (from literature) on discrimination of athlete-control status using the 

genome-wide data available from the present GWASs. Based on the genotype score 

analysis (see section 4.2, page 127), discrimination is very poor. The selected variants from 

published reports showed no predictive value at all in discriminating athlete-control status 

in current GWAS sample sets; therefore, there is little utility of such variants on athletic 

talent identification at the present time, at least this would apply to populations of West 

African and East Asian ancestries. 

Future research involving large well-funded collaborations/consortia using large cohorts 

would be required to better understand genetic fundamentals of exercise performance. For 

instance, the IDEFICS (Identification and prevention of dietary- and lifestyle-induced 

health effects in children and infants) is an integrated project initiated with funding from 

the sixth Framework Programme of the European Commission (247). It is one of the 

largest single studies to investigate genetic and environmental factors in childhood obesity 

in 16,224 young children (ages 2–9 years). The IDEFICS project has been successful in 
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generating one of the largest DNA biobanks with multiple, high quality phenotype datasets 

collected from a large cohort of young children (including objectively measured physical 

activity levels using accelerometry). From the total number of samples collected using the 

whole saliva and the sponge collection methods, 4,678 samples were randomly selected for 

extraction (248). Both collection methods provided sufficient DNA yields and quality for 

large-scale genetic epidemiological studies (248). The saliva-based/buccal-cell-based 

collection method is relatively inexpensive, convenient, and noninvasive in comparison to 

blood sampling for DNA collection (249). It is worth noting that, in the present GWASs 

described in this thesis, DNA isolated from buccal cells have also shown a high utility for 

genotyping at a genome-wide scale with high and consistent successful genotyping rate 

present (typically, > 99%) across the genotyped samples.  

In order to understand the function of loci underlying complex traits, the genomic region 

harbouring a genetic variant contributing to gene expression variation is of particular 

interest in recent years (250-254). This is achieved by studying variable transcription levels 

among individuals through expression association mapping (eQTLs, expression 

quantitative trait loci) by treating transcript abundance as a quantitative trait (73). The 

complex trait associated SNPs identified from GWAS that are also associated with 

quantitative transcript levels of eQTL variants may help to shed light on mechanisms of the 

underlying biology. Findings from previous studies contribute to evidence that there is the 

overlap between the genetic and eQTL variants (255,256), and that GWAS trait-associated 

SNPs are significantly enriched for eQTLs comparing to MAF-matched SNPs (257). 

Transcription is also limited by structural variations (i.e. CNVs), insertion-deletion 

polymorphisms and short tandem repeats (258). Their (including SNPs) relations to the 

genome, transcripts and other functional data can be annotated through the VarySysDB 

database. Other publicly available datasets for eQTL studies include GENe Expression 

VARiation (Genevar, http://www.sanger.ac.uk/resources/software/genevar/, ref (259)) and 

http://www.sanger.ac.uk/resources/software/genevar/
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Genotype-Tissue Expression (GTEx; https://commonfund.nih.gov/GTEx/). Genevar is a 

database aimed for analysing SNP-gene associations in eQTL studies, through studying 

eQTL association patterns within a genomic region of interest. However, only three tissue 

and cell types are available from a limited number of study cohorts that may not be 

relevant to other specific traits studies. The GTEx programme focuses on gene expression 

and regulation in multiple tissues, with the potential to be developed into the most 

comprehensive tissue bank for numerous studies in the future. Correlations between 

genetic variation and tissue-specific gene expression levels will be examined to provide 

insights into the mechanisms of gene regulation. 

Other systems genetics approaches to integration of large sets of genetic variants (e.g. from 

GWAS results) with other data, such as methylation and miRNA regulatory networks, can 

also be used to aid identification of biology of a complex trait. DNA methylation (one of 

the epigenetic mechanisms) regulates gene expression. For example, more methylation 

near gene promoters correlates with no or low transcription, and this process significantly 

depends on cell type (260).  The integration of methylation data with GWAS genotyping 

data may therefore help to understand the interplay between methylation state and genetic 

variations in driving the traits of interest. Most variants identified from GWAS do not 

appear to be functional themselves. It is very probable that the functional polymorphisms 

in LD with the GWAS SNPs are yet to be discovered. Some researchers (261), who 

utilized GWAS SNPs that alter miRNA seed sites (the most important region for binding 

and repression of mRNA by a miRNA), have successfully identified functional candidate 

SNPs in relation to traits/diseases. This has helped to prioritize GWAS candidate SNPs for 

follow-up functional studies. The investigation of gene x environment interaction 

contributing to a complex trait has not been widely carried out, due primarily to lack of 

information on environmental exposure variables. Also, large perspective cohorts are 

needed in order to facilitate the testing for gene x environment interaction. The gene x gene 

https://commonfund.nih.gov/GTEx/
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interaction study would suffer from the increased multiple testing burden (262), hence it 

has not been examined by most GWAS or has only been tested on a limited number of 

well-established SNPs (263). 

GWASs of complex traits have been mainly conducted in populations of European descent 

previously. GWASs in e.g. Africans and Asians are also emerging in recent years. GWASs 

in different populations are required as they would help to identify population-specific 

associations with causative mutations occurring after major ethnic groups migrated (73). 

Notably, many GWAS signals have been replicated across different ethnic populations 

(264,265). However, significant differences in allele frequency and lack of effect in one 

population relative to the other have also resulted in differences on GWAS signals between 

populations (266). Interestingly, it is suggested that signal mapping across multi-ethnic 

groups may greatly increase the power to detect associations (267). This is consistent with 

the current findings of the meta-analyses hit – rs10196189, for example. MAF of 

rs10196189 is low in Japanese sprint GWAS cohort (i.e. 0.06), whereas rs10196189 is 

frequently present in Jamaicans and African-Americans with MAF of 0.36 and 0.32, 

respectively. The statistical power is boosted for the detection of the association effect of 

rs10196189 in the meta-analysis samples in comparison to the effect observed in the 

Japanese samples only.  This may be caused by genetic drift elevating allele frequencies of 

certain variants across different populations (267). 

These molecular-based approaches will improve our understanding of the factors that limit 

physical performance in both health and disease. Gene transfer technology has been 

successfully applied to life-threatening diseases such as tumors (268,269), 

cardiomyopathies and muscular dystrophy (270,271), human severe combined 

immunodeficiency (272), and  arkinson’s disease (273). Genes related to muscle 

metabolism may be used in the context of gene-based therapy for treating patients 

suffering from muscle atrophy or other skeletal-muscular diseases. On the other hand, 
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enhanced muscle function improved by gene therapy may be misused by individuals who 

try to obtain a competitive edge at all costs in sports.  Similarly, genes related to oxygen or 

energy delivery that may be manipulated to enhance sports performance also have clinical 

implications in treating dialysis patients or lifestyle diseases, such as obesity and T2DM. 

As discussed throughout this thesis, current genetic architecture underlying elite athletic 

performance is unclear, despite great effort made and being made in search for 

performance-related markers. The predictive utility of established SNPs (from literature) is 

extremely low, preventing drawing any conclusions too strongly given current state of 

knowledge. To fight with misuse of genetic information in gene doping, it is preferable to 

be proactive and to develop substantial understanding of the biological mechanism 

underlying high level performance. 

 

Finally, both candidate gene and genome-wide association studies using current study 

designs have shed some light on the genetics of elite human performance. The very first 

positive findings through using an unbiased genome-wide approach, i.e. GWAS, are 

encouraging. Further studies are required to validate/replicate these findings. Functional 

annotation studies could be then carried out to explore further the fundamental biology 

underlying elite athlete performance before this knowledge can be used for translational 

medicine.  
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A1.1 Explanatory notes for ACE and ACTN3 association results in elite Caucasian 

and East Asian swimmers 

Input and output files for the PTest permutation-based association analysis, to 

allow for replication of the analysis. Data under each model are presented in 

collapsed from, with one line per genotype type, indicating how many individuals 

were used in the input  ile by rep rting ‘n’   r each gen type.  

A1.1.1 PTest input and output files for a model testing ACE associations with 
swimmer status (SMD vs LD vs controls) in Caucasians. 
 

 

Data in the input and output files are represented by tables. In the table for the input file, “Class” 
(1st column) indicates swimmer group, and the columns after that represent different “Features” - 
each indicates genotype under one of the three genetic models tested - 2nd column = additive 
allelic effects (genotypes coded as “0, 1, 2”), 3rd and 4th columns = two dominant models 
(genotypes coded as “0,0,1” and “0,1,1”, respectively); 5th column (not required for the actual input 
file) ‘Notes’ = no. of individuals with each coding pattern (i.e. with each underlying genotype); these 
lines are replicated ‘n’ times in the actual input file, but are shown collapsed here for the sake of 
brevity. In the table for the output file, PTest only reports P-values for ‘Features’ with P < 0.05 

 
PTest input: 
 

Class Add. Idom. Ddom. Notes 

SMD 0 0 0 n=24 

SMD 1 0 1 n=50 

SMD 2 1 1 n=51 

LD 0 0 0 n=16 

LD 1 0 1 n=31 

LD 2 1 1 n=19 

Control 0 0 0 n=301 

Control 1 0 1 n=615 

Control 2 1 1 n=332 
 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 3 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 

Feature test_statistic raw_P-value Adj_P-value Adj_P-value B&H Adj_P-value_(PT) 

Add 1.14E+01 2.21E-02 6.63E-02 3.31E-02 2.12E-02 

Idom 1.14E+01 3.34E-03 1.00E-02 1.00E-02 3.28E-03 
 
Number of features whose P-values were below significance level (0.05): 2 
Number of features whose P-value was below significance level according to Bonferroni correction: 
1 
Number of features whose P-value was below significance level according to Benjamini and 
Hochberg (B&H) correction: 2 
Number of features whose P-value was below significance level according to permutation test: 2 
Adj P-value: adjusted P-value, based on Bonferroni multiple testing correction. 
Adj P-value B&H: adjusted P-value, based on Benjamini and Hochberg multiple testing correction. 
Adj P-value (PT): adjusted P-value, based on permutation test. 
----------------------------------------------------------------------------------- 
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A1.1.2 PTest input and output files for a model testing ACE associations with 
swimmer status (SD vs MD vs controls) in East Asians 
 
 
PTest input: 
 

Class Add Idom Ddom Notes 

SD 0 0 0 n=16 

SD 1 1 0 n=58 

SD 2 1 1 n=92 

MD 0 0 0 n=12 

MD 1 1 0 n=79 

MD 2 1 1 n=69 

Control 0 0 0 n=140 

Control 1 1 0 n=544 

Control 2 1 1 n=560 
 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 3 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 

Feature test_statistic raw_P-value Adj_P-value Adj_P-value B&H Adj_P-value_(PT) 

Add 9.91E+00 4.20E-02 1.26E-01 6.30E-02 4.31E-02 

Ddom 6.95E+00 3.10E-02 9.30E-02 9.30E-02 2.99E-02 
 
Number of features whose P-values were below significance level (0.05): 2 
Number of features whose P-value was below significance level according to Bonferroni correction: 
0 
Number of features whose P-value was below significance level according to Benjamini and 
Hochberg (B&H) correction: 0 
Number of features whose P-value was below significance level according to permutation test: 2 
Adj P-value: adjusted P-value, based on Bonferroni multiple testing correction. 
Adj P-value B&H: adjusted P-value, based on Benjamini and Hochberg multiple testing correction. 
Adj P-value (PT): adjusted P-value, based on permutation test. 
----------------------------------------------------------------------------------- 
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A1.1.3 PTest input and output files for a model testing ACTN3 associations with 
swimmer status (SMD vs LD vs controls) in Caucasians 
 
 
PTest input: 
 
Class Add Rdom Xdom Notes 

SMD 0 0 0 n=35 

SMD 1 0 1 n=65 

SMD 2 1 1 n=25 

LD 0 0 0 n=29 

LD 1 0 1 n=27 

LD 2 1 1 n=12 

Control 0 0 0 n=540 

Control 1 0 1 n=840 

Control 2 1 1 n=314 
 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 3 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 
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A1.1.4 PTest input and output files for a model testing ACTN3 associations with 
swimmer status (SD vs MD vs controls) in East Asians 
 

 

PTest input: 

 

Class Add Rdom Xdom Notes 

SD 0 0 0 n=31 

SD 1 1 0 n=78 

SD 2 1 1 n=57 

MD 0 0 0 n=39 

MD 1 1 0 n=76 

MD 2 1 1 n=45 

Control 0 0 0 n=289 

Control 1 1 0 n=640 

Control 2 1 1 n=323 

                                              
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 3 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 
-----------------------------------------------------------------------------------       
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A1.1.5 PTest input and output files for pairwise comparison ACE association with 
swimmer status (SMD vs controls) in Caucasians 
 
 
PTest input: 
  
Class Add Idom Ddom Notes 

SMD 0 0 0 n=24 

SMD 1 0 1 n=50 

SMD 2 1 1 n=51 

Control 0 0 0 n=301 

Control 1 0 1 n=615 

Control 2 1 1 n=332 

 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 2 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 

Feature test_statistic raw_P-value Adj_P-value Adj_P-value B&H Adj_P-value_(PT) 

Add 1.14E+01 3.36E-03 1.01E-02 5.04E-03 3.00E-03 

Idom 1.14E+01 7.40E-04 2.22E-03 2.22E-03 5.40E-04 
 
Number of features whose P-values were below significance level (0.05): 2 
Number of features whose P-value was below significance level according to Bonferroni correction: 
2 
Number of features whose P-value was below significance level according to Benjamini and 
Hochberg (B&H) correction: 2 
Number of features whose P-value was below significance level according to permutation test: 2 
Adj P-value: adjusted P-value, based on Bonferroni multiple testing correction. 
Adj P-value B&H: adjusted P-value, based on Benjamini and Hochberg multiple testing correction. 
Adj P-value (PT): adjusted P-value, based on permutation test. 
----------------------------------------------------------------------------------- 
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A1.1.6 PTest input and output files for pairwise comparison ACE association with 
swimmer status (LD vs controls) in Caucasians 

 
 
PTest input: 
 
Class Add Idom Ddom Notes 

LD 0 0 0 n=16 

LD 1 0 1 n=31 

LD 2 1 1 n=19 

Control 0 0 0 n=301 

Control 1 0 1 n=615 

Control 2 1 1 n=332 

 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 2 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 
----------------------------------------------------------------------------------- 
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A1.1.7 PTest input and output files for pairwise comparison ACE association with 
swimmer status (SD vs controls) in East Asians 

 
 
PTest input: 
 
Class Add Idom Ddom Notes 

SD 0 0 0 n=16 

SD 1 1 0 n=58 

SD 2 1 1 n=92 

Control 0 0 0 n=140 

Control 1 1 0 n=544 

Control 2 1 1 n=560 

 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 2 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 

Feature test_statistic raw_P-value Adj_P-value Adj_P-value B&H Adj_P-value_(PT) 

Add 6.43E+00 4.02E-02 1.21E-01 6.04E-02 4.06E-02 

Ddom 6.38E+00 1.15E-02 3.46E-02 3.46E-02 9.79E-03 
 
Number of features whose P-values were below significance level (0.05): 2 
Number of features whose P-value was below significance level according to Bonferroni correction: 
1 
Number of features whose P-value was below significance level according to Benjamini and 
Hochberg (B&H) correction: 1 
Number of features whose P-value was below significance level according to permutation test: 2 
Adj P-value: adjusted P-value, based on Bonferroni multiple testing correction. 
Adj P-value B&H: adjusted P-value, based on Benjamini and Hochberg multiple testing correction. 
Adj P-value (PT): adjusted P-value, based on permutation test. 
----------------------------------------------------------------------------------- 
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A1.1.8 PTest input and output files for pairwise comparison ACE association with 
swimmer status (MD vs controls) in East Asians 

 
 
PTest input: 
 
Class Add Idom Ddom Notes 

MD 0 0 0 n=12 

MD 1 1 0 n=79 

MD 2 1 1 n=69 

Control 0 0 0 n=140 

Control 1 1 0 n=544 

Control 2 1 1 n=560 

 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 2 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 
----------------------------------------------------------------------------------- 
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A1.1.9 PTest input and output files for pairwise comparison ACTN3 association with 
swimmer status (SMD vs controls) in Caucasians 

 
 
PTest input: 
 
Class Add Rdom Xdom Notes 

SMD 0 0 0 n=35 

SMD 1 0 1 n=65 

SMD 2 1 1 n=25 

Control 0 0 0 n=540 

Control 1 0 1 n=840 

Control 2 1 1 n=314 

 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 2 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 
----------------------------------------------------------------------------------- 
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A1.1.10 PTest input and output files for pairwise comparison ACTN3 association 
with swimmer status (LD vs controls) in Caucasians 

 
 
PTest input: 
 
Class Add Rdom Xdom Notes 

LD 0 0 0 n=29 

LD 1 0 1 n=27 

LD 2 1 1 n=12 

Control 0 0 0 n=540 

Control 1 0 1 n=840 

Control 2 1 1 n=314 

 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 2 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 
----------------------------------------------------------------------------------- 
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A1.1.11 PTest input and output files for pairwise comparison ACTN3 association 
with swimmer status (SD vs controls) in East Asians 

 
 
PTest input: 
 
Class Add Rdom Xdom Notes 

SD 0 0 0 n=31 

SD 1 1 0 n=78 

SD 2 1 1 n=57 

Control 0 0 0 n=289 

Control 1 1 0 n=640 

Control 2 1 1 n=323 

 
PTest outputs: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 2 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 

Feature test_statistic raw_P-value Adj_P-value Adj_P-value B&H 
Adj_P-
value_(PT) 

Xdom 5.45E+00 1.96E-02 5.88E-02 5.88E-02 1.54E-02 
 
Number of features whose P-values were below significance level (0.05): 1 
Number of features whose P-value was below significance level according to Bonferroni correction: 
0 
Number of features whose P-value was below significance level according to Benjamini and 
Hochberg (B&H) correction: 0 
Number of features whose P-value was below significance level according to permutation test: 1 
Adj P-value: adjusted P-value, based on Bonferroni multiple testing correction. 
Adj P-value B&H: adjusted P-value, based on Benjamini and Hochberg multiple testing correction. 
Adj P-value (PT): adjusted P-value, based on permutation test. 
----------------------------------------------------------------------------------- 
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A1.1.12 PTest input and output files for pairwise comparison ACTN3 association 
with swimmer status (MD vs controls) in East Asians 

 

 
PTest input: 
 
Class Add Rdom Xdom Notes 

MD 0 0 0 n=39 

MD 1 1 0 n=76 

MD 2 1 1 n=45 

Control 0 0 0 n=289 

Control 1 1 0 n=640 

Control 2 1 1 n=323 

 
PTest output: 
 
-----------------------------------Input information----------------------------- 
Total number of features: 3 
Number of classes: 2 
Test statistic: Chi-square - Categorical data 
Number of permutations: 99999 
Significance level: 0.05 
------------------------------Permutation results-------------------------------- 
----------------------------------------------------------------------------------- 
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A1.2 Observed ACE genotypes and allele frequencies in Caucasians and East 
Asians. 
 Caucasian cohort East Asian cohort 

Groups SMD LD Controls
  a

 SD MD Controls 

Observed 
Genotype 
Counts,     
n (%) 

D/D 51 (40.7) 19 (28.8) 332 (26.6) 16 (9.6) 12 (7.5) 140 (11.3) 

I/D 50 (39.8) 31 (47.0) 615 (49.3) 58 (34.9) 79 (49.4) 544 (43.7) 

I/I 24 (19.5) 16 (24.2) 301 (24.1) 92 (55.4) 69 (43.1) 560 (45.0) 

Total 125 66 1248 166 160 1244 

Allele 
Frequency 

D 0.61 0.52 0.51 0.27 0.32 0.33 

I 0.39 0.48 0.49 0.73 0.68 0.67 

HWE P-value 0.07 0.63 0.63 0.096 0.079 0.65 

a. Caucasian control data were drawn from a previous published study  (148). 

A1.3 Observed ACTN3 genotypes and allele frequencies in Caucasians and East 
Asians. 
 Caucasian cohort East Asian cohort 

Groups SMD LD Controls 
a
 SD MD Controls 

Observed 
Genotype 
Counts,    
n (%) 

R/R 35 (28) 29 (42.6) 540 (31.9) 57 (34.3) 45 (28.1) 323 (25.8) 

R/X 65 (52) 27 (39.7) 840 (49.6) 78 (47.0) 76 (47.5) 640 (51.1) 

X/X 25 (20) 12 (17.6) 314 (18.5) 31 (18.7) 39 (24.4) 289 (23.1) 

Total 125 68 1694 166 160 1252 

Allele 
Frequency 

R 0.54 0.625 0.57 0.58 0.52 0.51 

X 0.46 0.375 0.43 0.42 0.48 0.49 

HWE P-value 0.60 0.21 0.69 0.76 0.55 0.41 

a. The total controls combined from five published ACTN3 Caucasian controls (see A1.6). 

A1.4 Observed ACE genotypes and allele frequencies in Japanese and Taiwanese, 
respectively. 
 Japanese Taiwanese 

Groups SD MD Controls
  
 SD MD Controls 

Observed 
Genotype 
Counts,    
n (%) 

D/D 7 (10) 8 (9.1) 79 (12.2) 9 (9.4) 4 (5.6) 61 (10.3) 

I/D 24 (34.3) 42 (47.7) 301 (46.4) 34 (35.4) 37 (51.4) 243 (40.8) 

I/I 39 (55.7) 38 (43.2) 269 (41.4) 53 (55.2) 31 (43.1) 291 (48.9) 

Total 70 88 649 96 72 595 

Allele 
Frequency 

D 0.27 0.33 0.35 0.27 0.31 0.31 

I 0.73 0.67 0.65 0.73 0.69 0.69 

HWE P-value 0.27 0.45 0.71 0.31 0.10 0.33 

 
 
A1.5 Observed ACTN3 genotypes and allele frequencies in Japanese and 
Taiwanese, respectively. 
 Japanese Taiwanese 

Groups SD MD Controls
  
 SD MD Controls 

Observed 
Genotype 
Counts,    
n (%) 

R/R 20 (28.6) 19 (21.6) 132 (20.3) 37 (38.5) 26 (36.1) 191 (31.7) 

R/X 37 (52.9) 41 (46.6) 346 (53.3) 41 (42.7) 36 (50) 294 (48.8) 

X/X 13 (18.6) 28 (31.8) 171 (26.3) 18 (18.8) 10 (13.9) 118 (19.6) 

Total 70 88 649 96 72 603 

Allele 
Frequency 

R 0.55 0.45 0.47 0.60 0.61 0.56 

X 0.45 0.55 0.53 0.40 0.39 0.44 

HWE P-value 0.57 0.58 0.07 0.28 0.66 0.80 
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A1.6 Observed ACTN3 genotypes and allele frequencies in Caucasian controls 
drawn from 5 published studies. 
 ACTN3 Caucasian controls 

Studies Yang  
et al. 2003 

 Lucia  
et al. 2006 

Roth  
et al. 2008 

Santiago 
 et al. 2010 

Ahmetov 
 et al. 2010 

Observed 
Genotypes 
Counts, n (%) 

R/R 130 (29.8) 35 (28.5) 218 (32.6) 90 (31.8) 67 (36.4) 

R/X 226 (51.8) 66 (53.7) 317 (47.5) 141 (49.8) 90 (48.9) 

X/X 80 (18.3) 22 (17.9) 133 (19.9) 52 (18.4) 27 (14.7) 

Total 436 123 668 283 184 

Allele 
Frequency  

R 0.56 0.55 0.56 0.57 0.61 

X 0.44 0.45 0.44 0.43 0.39 

HWE P-value 0.29 0.34 0.36 0.80 0.72 

Chi-squared P-value 0.64 (Chi-squared statistic = 6.03) 
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A1.7 Results    likelih  d rati  tests examining the e  ect    ‘gen type x ethnicity’ 
interaction within association analysis models in the East Asian cohort. 

 Likelihood Ratio Test 

 Chi-square d.f. Significance p 

ACE 

Intercept .000 0 . 

I-ADD .000 0 . 

Ethnicity 3.34 2 0.19 

Ethnicity x I-ADD 0.89 2 0.64 

Intercept .000 0 . 

D-DOM .000 0 . 

Ethnicity 6.91 2 0.032 

Ethnicity x D-DOM 1.74 2 0.42 

Intercept .000 0 . 

I-DOM .000 0 . 

Ethnicity 1.54 2 0.46 

Ethnicity x I-DOM 0.17 2 0.92 

ACTN3 

Intercept .000 0 . 

R-ADD .000 0 . 

Ethnicity 7.67 2 0.022 

Ethnicity x R-ADD 2.30 2 0.32 

Intercept .000 0 . 

R-DOM .000 0 . 

Ethnicity 9.71 2 0.008 

Ethnicity x R-DOM 4.34 2 0.11 

Intercept .000 0 . 

X-DOM .000 0 . 

Ethnicity 7.38 2 0.025 

Ethnicity x X-DOM 0.18 2 0.92 

 
Models were of the form: Outcome (swimmer status) = error + genotype + 
ethnicity(Japanese/Taiwanese) + ‘genotype x ethnicity’ 
 
Models with genotype coded for additive allelic effects and for both dominant effects were run 
separately. 
 
p-values are reported for all terms in the model for completeness; genotype and ethnicity p-values 
can be ignored as they are misleading in the presence of an interaction term. No significance values 
were generated for covariants (i.e. genotype) involved in higher-order interaction and returned as a ‘.’ 
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A1.8 Genotype frequency distribution for ACTN3 R577X in elite Caucasian 
swimmers and controls. 

 

 

A1.9 Genotype frequency distribution for ACTN3 R577X in elite East Asian 
swimmers and controls. 
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A1.10 ACE D-allele frequency distribution across Europe, the U.S. and Australia. 
Countries in Europe are displayed in longitudinal order from West to East.  
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A2. Regional association plots of key markers (or index SNPs, in purple; see A2.1-

A2.7) and 500Kb flanking region on each side of the markers for the Jamaican 

sprint cohort. –log10 transformed P values on the Y-axis indicate the strength of 

the association with elite sprint status in the Jamaican cohort. The level of LD 

between the index SNP and its surrounding SNPs as well as the recombination rate 

are estimated using 1000 Genomes AFR samples (Mar 2012). The level of LD is 

indicated by the colour key with red corresponding to high LD, and the 

recombination rate is represented by the blue line. Functional annotation key: 

triangle = framestop/splice, inverted triangle = non-synonymous, square = 

synonymous/UTR, star = conserved transcription factor binding site, square with 

diagonal lines = region is highly conserved in placental mammals, circle = no 

annotation. 
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A2.1 Regional association plot of the index SNP - rs10196189. RPRM: reprimo; GALNT13: 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 13.  
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A2.2 Regional association plot of the index SNP - rs187167. SIL1: SIL1 homolog, endoplasmic 
reticulum chaperone (S. cerevisiae); PAIP2: poly(A) binding protein interacting protein 2; ECSCR: 
endothelial cell surface expressed chemotaxis and apoptosis regulator; UBE2D2: ubiquitin-
conjugating enzyme E2D 2; PSD2: phosphatidylserine decarboxylase 2; PURA: purine-rich 
element binding protein A; SNHG4: small nucleolar RNA host gene 4 (non-protein coding); MZB1: 
marginal zone B and B1 cell-specific protein; TMEM173: transmembrane protein 173; CXXC5: 
CXXC finger protein 5;  NRG2: neuregulin 2; IGIP: IgA-inducing protein homolog (Bos taurus); 
MATR3: matrin 3; DNAJC18: DnaJ (Hsp40) homolog, subfamily C, member 18; SNORA74A: small 
nucleolar RNA, H/ACA box 74A; PROB1: proline-rich basic protein 1; SLC23A1: solute carrier 
family 23 (nucleobase transporters), member 1; SPATA24: spermatogenesis associated 24. 
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A2.3 Regional association plot of the index SNP – rs4557742. PLEC: plectin; GPAA1: 
glycosylphosphatidylinositol anchor attachment 1; FAM203A: family with sequence similarity 203, 
member A; BOP1: block of proliferation 1; ADCK5: aarF domain containing kinase 5; PPP1R16A: 
protein phosphatase 1, regulatory subunit 16A; ZNF251: zinc finger protein 251; MIR661: 
microRNA 661; CYC1: cytochrome c-1; MROH1: maestro heat-like repeat family member 1; HSF1: 
heat shock transcription factor 1; CPSF1: cleavage and polyadenylation specific factor 1, 160kDa; 
GPT: glutamic-pyruvate transaminase (alanine aminotransferase); ZNF34: zinc finger protein 34; 
PARP10: poly (ADP-ribose) polymerase family, member 10; MAF: v-maf musculoaponeurotic 
fibrosarcoma oncogene homolog (avian); SCXB: scleraxis homolog B (mouse); DGAT1: 
diacylglycerol O-acyltransferase 1; VPS28: vacuolar protein sorting 28 homolog (S. cerevisiae); 
LRRC24: leucine rich repeat containing 24; GRINA: glutamate receptor, ionotropic, N-methyl D-
aspartate-associated protein 1 (glutamate binding); SCXA: scleraxis homolog A (mouse); SCRT1: 
scratch homolog 1, zinc finger protein (Drosophila); TONSL: tonsoku-like, DNA repair protein ; 
ARHGAP39: Rho GTPase activating protein 39; SPATC1: spermatogenesis and centriole 
associated 1; TMEM249: transmembrane protein 249; KIFC2: kinesin family member C2; OPLAH: 
5-oxoprolinase (ATP-hydrolysing); FBXL6: F-box and leucine-rich repeat protein 6; CYHR1: 
cysteine/histidine-rich 1; EXOSC4: exosome component 4; SLC52A2: solute carrier family 52, 
riboflavin transporter, member 2; FOXH1: forkhead box H1; SHARPIN: SHANK-associated RH 
domain interactor; MIR939: microRNA 939; MFSD3: major facilitator superfamily domain containing 
3; KIAA1875: KIAA1875; MIR1234: microRNA 1234; RECQL4: RecQ protein-like 4; SLC39A4: 
solute carrier family 39 (zinc transporter), member 4; C8orf82: chromosome 8 open reading frame 
82. 
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A2.4 Regional association plot of the index SNP – rs4977203. PLEC: plectin; GPAA1: 
glycosylphosphatidylinositol anchor attachment 1; FAM203A: family with sequence similarity 203, 
member A; BOP1: block of proliferation 1; ADCK5: aarF domain containing kinase 5; PPP1R16A: 
protein phosphatase 1, regulatory subunit 16A; ZNF251: zinc finger protein 251; MIR661: 
microRNA 661; CYC1: cytochrome c-1; MROH1: maestro heat-like repeat family member 1; HSF1: 
heat shock transcription factor 1; CPSF1: cleavage and polyadenylation specific factor 1, 160kDa; 
GPT: glutamic-pyruvate transaminase (alanine aminotransferase); ZNF34: zinc finger protein 34; 
PARP10: poly (ADP-ribose) polymerase family, member 10; MAF: v-maf musculoaponeurotic 
fibrosarcoma oncogene homolog (avian); SCXB: scleraxis homolog B (mouse); DGAT1: 
diacylglycerol O-acyltransferase 1; VPS28: vacuolar protein sorting 28 homolog (S. cerevisiae); 
LRRC24: leucine rich repeat containing 24; GRINA: glutamate receptor, ionotropic, N-methyl D-
aspartate-associated protein 1 (glutamate binding); SCXA: scleraxis homolog A (mouse); SCRT1: 
scratch homolog 1, zinc finger protein (Drosophila); TONSL: tonsoku-like, DNA repair protein ; 
ARHGAP39: Rho GTPase activating protein 39; SPATC1: spermatogenesis and centriole 
associated 1; TMEM249: transmembrane protein 249; KIFC2: kinesin family member C2; OPLAH: 
5-oxoprolinase (ATP-hydrolysing); FBXL6: F-box and leucine-rich repeat protein 6; CYHR1: 
cysteine/histidine-rich 1; EXOSC4: exosome component 4; SLC52A2: solute carrier family 52, 
riboflavin transporter, member 2; FOXH1: forkhead box H1; SHARPIN: SHANK-associated RH 
domain interactor; MIR939: microRNA 939; MFSD3: major facilitator superfamily domain containing 
3; KIAA1875: KIAA1875; MIR1234: microRNA 1234; RECQL4: RecQ protein-like 4; SLC39A4: 
solute carrier family 39 (zinc transporter), member 4; C8orf82: chromosome 8 open reading frame 
82. 
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A2.5 Regional association plot of the index SNP – rs804944. 
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A2.6 Regional association plot of the index SNP – rs8027231. ARRDC4: arrestin domain 
containing 4; FAM169B: family with sequence similarity 169, member B; IGF1R: insulin-like growth 
factor 1 receptor ; MIR4714: microRNA 4714. 
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A2.7 Regional association plot of the index SNP – rs2303115. INSR: insulin receptor ; 
ARHGEF18: Rho/Rac guanine nucleotide exchange factor (GEF) 18; CAMSAP3: calmodulin 
regulated spectrin-associated protein family, member 3; CLEC4G: C-type lectin domain family 4, 
member G; EVI5L: ecotropic viral integration site 5-like; ELAVL1: ELAV (embryonic lethal, 
abnormal vision, Drosophila)-like 1 (Hu antigen R); FBN3: fibrillin 3; XAB2: XPA binding protein 2; 
CD209: CD209 molecule; FLJ22184: putative uncharacterized protein FLJ22184; CCL25: 
chemokine (C-C motif) ligand 25; PEX11G: peroxisomal biogenesis factor 11 gamma; PET100: 
PET100 homolog (S. cerevisiae); CLEC4M: C-type lectin domain family 4, member M ; LRRC8E: 
leucine rich repeat containing 8 family, member E ; C19orf45: chromosome 19 open reading frame 
45; PCP2: Purkinje cell protein 2; CLEC4GP1: C-type lectin domain family 4, member G 
pseudogene 1; MAP2K7: mitogen-activated protein kinase kinase 7; ZNF358: zinc finger protein 
358; STXBP2: syntaxin binding protein 2; MCOLN1: mucolipin 1; RETN: resistin; TGFBR3L: 
transforming growth factor, beta receptor III-like; PNPLA6: patatin-like phospholipase domain 
containing 6; C19orf59: chromosome 19 open reading frame 59; SNAPC2: small nuclear RNA 
activating complex, polypeptide 2, 45kDa; TRAPPC5: trafficking protein particle complex 5; 
CTXN1: cortexin 1; FCER2: Fc fragment of IgE, low affinity II, receptor for (CD23); TIMM44: 
translocase of inner mitochondrial membrane 44 homolog (yeast). 
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A3. Regional association plots of key markers (or index SNPs, in purple; see A3.1-

A3.7) and 500Kb flanking region on each side of the markers for the African-

American sprint cohort. –log10 transformed P values on the Y-axis indicate the 

strength of the association with elite sprint status in the African-American cohort. 

The level of LD between the index SNP and its surrounding SNPs as well as the 

recombination rate are estimated using 1000 Genomes AFR samples (Mar 2012). 

The level of LD is indicated by the colour key with red corresponding to high LD, 

and the recombination rate is represented by the blue line. Functional annotation 

key: triangle = framestop/splice, inverted triangle = non-synonymous, square = 

synonymous/UTR, star = conserved transcription factor binding site, square with 

diagonal lines = region is highly conserved in placental mammals, circle = no 

annotation. 
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A3.1 Regional association plot of the index SNP – rs17034251. ETAA1: Ewing tumor-
associated antigen 1; C1D: C1D nuclear receptor corepressor; WDR92: WD repeat domain 92; 
PNO1: partner of NOB1 homolog (S. cerevisiae); PPP3R1: protein phosphatase 3, regulatory 
subunit B, alpha. 
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A3.2 Regional association plot of the index SNP – rs4054851. ITPR1: inositol 1,4,5-
trisphosphate receptor, type 1; BHLHE40: basic helix-loop-helix family, member e40; ARL8B: ADP-
ribosylation factor-like 8B; EGOT: eosinophil granule ontogeny transcript (non-protein coding); 
BHLHE40-AS1: BHLHE40 antisense RNA 1;  EDEM1: ER degradation enhancer, mannosidase 
alpha-like 1; MIR4790: microRNA 4790. 
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A3.3 Regional association plot of the index SNP – rs3864067. GRM7: glutamate receptor, 
metabotropic 7. 
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A3.4 Regional association plot of the index SNP – rs7716847. GABRA1: gamma-aminobutyric 
acid (GABA) A receptor, alpha 1; GABRG2: gamma-aminobutyric acid (GABA) A receptor, gamma 
2. 
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A3.5 Regional association plot of the index SNP – rs10111342. SLC45A4: solute carrier family 
45, member 4; PTP4A3: protein tyrosine phosphatase type IVA, member 3; MROH5: maestro heat-
like repeat family member 5; GPR20: G protein-coupled receptor 20. 
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A3.6 Regional association plot of the index SNP – rs4747094. NPFFR1: neuropeptide FF 
receptor 1; EIF4EBP2: eukaryotic translation initiation factor 4E binding protein 2; PRF1: perforin 1 
(pore forming protein); ADAMTS14: ADAM metallopeptidase with thrombospondin type 1 motif, 14; 
SGPL1: sphingosine-1-phosphate lyase 1; UNC5B: unc-5 homolog B (C. elegans); LRRC20: 
leucine rich repeat containing 20; PALD1: phosphatase domain containing, paladin 1; TBATA: 
thymus, brain and testes associated; PCBD1: pterin-4 alpha-carbinolamine 
dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha; NODAL: nodal growth 
differentiation factor. 
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A3.7 Regional association plot of the index SNP – rs7175629. GCNT3: glucosaminyl (N-acetyl) 
transferase 3, mucin type; FOXB1: forkhead box B1; ANXA2: annexin A2; RORA: RAR-related 
orphan receptor A; GTF2A2: general transcription factor IIA, 2, 12kDa; NARG2: NMDA receptor 
regulated 2; BNIP2: BCL2/adenovirus E1B 19kDa interacting protein 2. 
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A4. Regional association plots of key markers (or index SNPs, in purple; see A4.1-

A4.18) and 500Kb flanking region on each side of the markers for the Japanese 

sprint cohort. –log10 transformed P values on the Y-axis indicate the strength of 

the association with elite sprint status in the Japanese cohort. The level of LD 

between the index SNP and its surrounding SNPs as well as the recombination rate 

are estimated using 1000 Genomes ASN samples (Mar 2012). The level of LD is 

indicated by the colour key with red corresponding to high LD, and the 

recombination rate is represented by the blue line. Functional annotation key: 

triangle = framestop/splice, inverted triangle = non-synonymous, square = 

synonymous/UTR, star = conserved transcription factor binding site, square with 

diagonal lines = region is highly conserved in placental mammals, circle = no 

annotation. 
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A4.1 Regional association plot of the index SNP - rs10497155. GPD2: glycerol-3-phosphate 
dehydrogenase 2 (mitochondrial);  GALNT5: UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 5 (GalNAc-T5); CYTIP: cytohesin 1 interacting protein; ERMN: 
ermin, ERM-like protein. 
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A4.2 Regional association plot of the index SNP – rs4503948. IQCA1: IQ motif containing with 
AAA domain 1; CXCR7: chemokine (C-X-C motif) receptor 7; COPS8: COP9 signalosome subunit 
8; COL6A3: collagen, type VI, alpha 3. 
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A4.3 Regional association plot of the index SNP – rs9840798. SENP5: SUMO1/sentrin specific 
peptidase 5; DLG1: discs, large homolog 1 (Drosophila); BDH1: 3-hydroxybutyrate dehydrogenase, 
type 1; KIAA0226: KIAA0226; LRCH3: leucine-rich repeats and calponin homology (CH) domain 
containing 3; NCBP2: nuclear cap binding protein subunit 2, 20kDa; MIR4797: microRNA 4797; 
FYTTD1: forty-two-three domain containing 1; IQCG: IQ motif containing G; DLG1-AS1: DLG1-AS1 
DLG1 antisense RNA 1; MIR922: microRNA 922; PIGZ: phosphatidylinositol glycan anchor 
biosynthesis, class Z; MFI2: antigen p97 (melanoma associated) identified by monoclonal 
antibodies 133.2 and 96.5; MFI2-AS1: MFI2-AS1 MFI2 antisense RNA 1. 
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A4.4 Regional association plot of the index SNP - rs1400938. 
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A4.5 Regional association plot of the index SNP - rs1715747. IQGAP2: IQ motif containing 
GTPase activating protein 2; F2RL1:  coagulation factor II (thrombin) receptor-like 1; CRHBP: 
corticotropin releasing hormone binding protein; ZBED3: zinc finger, BED-type containing 3; 
PDE8B: phosphodiesterase 8B; F2RL2: coagulation factor II (thrombin) receptor-like 2; F2R: 
coagulation factor II (thrombin) receptor; S100Z: S100 calcium binding protein Z; AGGF1: 
angiogenic factor with G patch and FHA domains 1; WDR41: WD repeat domain 41; NCRUPAR: 
NCRUPAR non-protein coding RNA, upstream of F2R/PAR1; SNORA47: small nucleolar RNA, 
H/ACA box 47; ZBED3-AS1: ZBED3-AS1 ZBED3 antisense RNA 1. 
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A4.6 Regional association plot of the index SNP – rs2046046. S100Z: S100 calcium binding 
protein Z ; AGGF1: angiogenic factor with G patch and FHA domains 1; PDE8B: 
phosphodiesterase 8B; OTP: orthopedia homeobox; TBCA: tubulin folding cofactor A; CRHBP: 
corticotropin releasing hormone binding protein; ZBED3: zinc finger, BED-type containing 3; 
WDR41: WD repeat domain 41; SNORA47: small nucleolar RNA, H/ACA box 47; ZBED3-AS1: 
ZBED3-AS1 ZBED3 antisense RNA 1. 
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A4.7 Regional association plot of the index SNP – rs789481. PCMT1: protein-L-isoaspartate 
(D-aspartate) O-methyltransferase; RAET1G: retinoic acid early transcript 1G; ULBP3: UL16 
binding protein 3; PPP1R14C: protein phosphatase 1, regulatory (inhibitor) subunit 14C; IYD: 
iodotyrosine deiodinase; PLEKHG1: pleckstrin homology domain containing, family G (with RhoGef 
domain) member 1; LRP11: low density lipoprotein receptor-related protein 11; ULBP2: UL16 
binding protein 2; RAET1E: retinoic acid early transcript 1E; RAET1K: RAET1K retinoic acid early 
transcript 1K pseudogene; ULBP1: UL16 binding protein 1; RAET1L: retinoic acid early transcript 
1L. 
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A4.8 Regional association plot of the index SNP - rs17766292. GRM3: glutamate receptor, 
metabotropic 3; KIAA1324L: KIAA1324-like; DMTF1: cyclin D binding myb-like transcription factor 
1; TP53TG1: TP53 target 1 (non-protein coding); ABCB4: ATP-binding cassette, sub-family B 
(MDR/TAP), member 4; ABCB1: ATP-binding cassette, sub-family B (MDR/TAP), member 1; 
TMEM243: transmembrane protein 243, mitochondrial; CROT: carnitine O-octanoyltransferase; 
RUNDC3B: RUN domain containing 3B. 
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A4.9 Regional association plot of the index SNP – rs6942407. GRM3: glutamate receptor, 
metabotropic 3; KIAA1324L: KIAA1324-like; DMTF1: cyclin D binding myb-like transcription factor 
1; TP53TG1: TP53 target 1 (non-protein coding); ABCB4: ATP-binding cassette, sub-family B 
(MDR/TAP), member 4; ABCB1: ATP-binding cassette, sub-family B (MDR/TAP), member 1; 
TMEM243: transmembrane protein 243, mitochondrial; CROT: carnitine O-octanoyltransferase; 
RUNDC3B: RUN domain containing 3B. 
 

 

 



194 
 

 

A4.10 Regional association plot of the index SNP – rs13439619. MRPL13: mitochondrial 
ribosomal protein L13; MTBP: Mdm2, transformed 3T3 cell double minute 2, p53 binding protein 
(mouse) binding protein, 104kDa; SNTB1: syntrophin, beta 1 (dystrophin-associated protein A1, 
59kDa, basic component 1). 
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A4.11 Regional association plot of the index SNP - rs10763704. LYZL1: lysozyme-like 1; 
PTCHD3P1: patched domain containing 3 pseudogene 1; MIR604: microRNA 604; SVIL: 
supervillin; MIR938: microRNA 938. 
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A4.12 Regional association plot of the index SNP – rs7921820. PARD3: par-3 partitioning 
defective 3 homolog (C. elegans); CUL2: cullin 2; CREM: cAMP responsive element modulator; 
CCNY: cyclin Y; FZD8: frizzled family receptor 8; GJD4: gap junction protein, delta 4, 40.1kDa; 
MIR4683: microRNA 4683. 
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A4.13 Regional association plot of the index SNP – rs4750319. CAMK1D: calcium/calmodulin-
dependent protein kinase ID; CCDC3: coiled-coil domain containing 3; OPTN: optineurin; UCMA: 
upper zone of growth plate and cartilage matrix associated; SEPHS1: selenophosphate synthetase 
1; BEND7: BEN domain containing 7; PRPF18: PRP18 pre-mRNA processing factor 18 homolog 
(S. cerevisiae); MCM10: minichromosome maintenance complex component 10; PHYH: phytanoyl-
CoA 2-hydroxylase; FRMD4A: FERM domain containing 4A. 
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A4.14 Regional association plot of the index SNP – rs356045. WSCD1: WSC domain 
containing 1; AIPL1: aryl hydrocarbon receptor interacting protein-like 1; KIAA0753: KIAA0753; 
XAF1: XIAP associated factor 1; ALOX12P2: arachidonate 12-lipoxygenase pseudogene 2; 
ALOX12: arachidonate 12-lipoxygenase; FAM64A: family with sequence similarity 64, member A; 
TXNDC17: thioredoxin domain containing 17; FBXO39: F-box protein 39; PITPNM3: PITPNM 
family member 3; MED31: mediator complex subunit 31; TEKT1: tektin 1; RNASEK: ribonuclease, 
RNase K; C17orf100: chromosome 17 open reading frame 100; RNASEK-C17orf49: RNASEK-
C17orf49 readthrough (non-protein coding); MIR4520A: microRNA 4520a; C17orf49: chromosome 
17 open reading frame 49; MIR4520B: microRNA 4520b; MIR497HG: mir-497-195 cluster host 
gene (non-protein coding); ALOX15p1: arachidonate 15-lipoxygenase pseudogene 1; MIR195: 
microRNA 195; SLC13A5: solute carrier family 13 (sodium-dependent citrate transporter), member 
5; MIR497: microRNA 497; BCL6B: B-cell CLL/lymphoma 6, member B; SLC16A13: solute carrier 
family 16, member 13 (monocarboxylic acid transporter 13). 
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A4.15 Regional association plot of the index SNP – rs7223686. ZNF287: zinc finger protein 
287; CCDC144A: coiled-coil domain containing 144A; TNFRSF13B: tumor necrosis factor receptor 
superfamily, member 13B; MPRIP: myosin phosphatase Rho interacting protein; COPS3: COP9 
signalosome subunit 3; SMCR9: Smith-Magenis syndrome chromosome region, candidate 9; 
PEMT: phosphatidylethanolamine N-methyltransferase; ZNF624: zinc finger protein 624; USP32P1: 
ubiquitin specific peptidase 32 pseudogene 1; PLD6: phospholipase D family, member 6; NT5M: 
5',3'-nucleotidase, mitochondrial; MED9: mediator complex subunit 9; FAM106CP: family with 
sequence similarity 106, member C, pseudogene; FLCN: folliculin; RASD1: RAS, dexamethasone-
induced 1; KRT16P2: keratin 16 pseudogene 2. 
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A4.16 Regional association plot of the index SNP - rs12450878. CCDC144A: coiled-coil domain 
containing 144A; TNFRSF13B: tumor necrosis factor receptor superfamily, member 13B; MPRIP: 
myosin phosphatase Rho interacting protein; COPS3: COP9 signalosome subunit 3; SMCR9: 
Smith-Magenis syndrome chromosome region, candidate 9; PEMT: phosphatidylethanolamine N-
methyltransferase; USP32P1: ubiquitin specific peptidase 32 pseudogene 1; PLD6: phospholipase 
D family, member 6; NT5M: 5',3'-nucleotidase, mitochondrial; MED9: mediator complex subunit 9; 
FAM106CP: family with sequence similarity 106, member C, pseudogene; FLCN: folliculin; RASD1: 
RAS, dexamethasone-induced 1; KRT16P2: keratin 16 pseudogene 2. 
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A4.17 Regional association plot of the index SNP – rs7220712. QRICH2: glutamine rich 2; 
AANAT: aralkylamine N-acetyltransferase; SNHG16: small nucleolar RNA host gene 16 (non-
protein coding); MXRA7: matrix-remodelling associated 7; MGAT5B: mannosyl (alpha-1,6-)-
glycoprotein beta-1,6-N-acetyl-glucosaminyltransferase, isozyme B; LINC00338: long intergenic 
non-protein coding RNA 338; SEPT9: septin 9; PRPSAP1: phosphoribosyl pyrophosphate 
synthetase-associated protein 1; RHBDF2: rhomboid 5 homolog 2 (Drosophila); ST6GALNAC1: 
ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-
sialyltransferase 1; SEC14L1: SEC14-like 1 (S. cerevisiae); SPHK1: sphingosine kinase 1; CYGB: 
cytoglobin; JMJD6: jumonji domain containing 6; SCARNA16: small Cajal body-specific RNA 16; 
UBE2O: ubiquitin-conjugating enzyme E2O; PRCD: progressive rod-cone degeneration; METTL23: 
methyltransferase like 23; SNORD1C: small nucleolar RNA, C/D box 1C; SRSF2: serine/arginine-
rich splicing factor 2; SNORD1B: small nucleolar RNA, C/D box 1B; MIR636: microRNA 636; 
SNORD1A: small nucleolar RNA, C/D box 1A; MFSD11: major facilitator superfamily domain 
containing 11; ST6GALNAC2: ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase 2. 
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A4.18 Regional association plot of the index SNP - rs11880216. LYPD3: LY6/PLAUR domain 
containing 3; PINLYP: phospholipase A2 inhibitor and LY6/PLAUR domain containing; IRGC: 
immunity-related GTPase family, cinema; LYPD5: LY6/PLAUR domain containing 5; ZNF45: zinc 
finger protein 45; ZNF222: zinc finger protein 222; ZNF234: zinc finger protein 234; ZNF233: zinc 
finger protein 233; ZNF285: zinc finger protein 285; PHLDB3: pleckstrin homology-like domain, 
family B, member 3; IRGQ: immunity-related GTPase family, Q; SMG9: smg-9 homolog, nonsense 
mediated mRNA decay factor (C. elegans); ZNF283: zinc finger protein 283; ZNF 221: zinc finger 
protein 221; ZNF223: zinc finger protein 223; ZNF226: zinc finger protein  226; ZNF235: zinc finger 
protein 235; ETHE1: ethylmalonic encephalopathy 1; ZNF428: zinc finger protein 428; KCNN4: 
potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4; 
ZNF404: zinc finger protein 404; ZNF155: zinc finger protein 155; ZNF224: zinc finger protein 224; 
ZNF227: zinc finger protein  227; ZFP112: ZNF575: zinc finger protein 575;  PLAUR: plasminogen 
activator, urokinase receptor; ZNF284: zinc finger protein 284; ZNF229: zinc finger protein 229; 
XRCC1: ZNF230: zinc finger protein 230; ZNF225: zinc finger protein 225; ZNF576: zinc finger 
protein 576; SRRM5: serine/arginine repetitive matrix 5; CADM4: cell adhesion molecule 4. 
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A5. Regional association plots of key markers (or index SNPs, in purple; see A5.1-

A5.12) and 500Kb flanking region on each side of the markers for the Japanese 

endurance cohort. –log10 transformed P values on the Y-axis indicate the strength 

of the association with elite endurance status in the Japanese cohort. The level of 

LD between the index SNP and its surrounding SNPs as well as the recombination 

rate are estimated using 1000 Genomes ASN samples (Mar 2012). The level of LD is 

indicated by the colour key with red corresponding to high LD, and the 

recombination rate is represented by the blue line. Functional annotation key: 

triangle = framestop/splice, inverted triangle = non-synonymous, square = 

synonymous/UTR, star = conserved transcription factor binding site, square with 

diagonal lines = region is highly conserved in placental mammals, circle = no 

annotation. 
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A5.1 Regional association plot of the index SNP – rs921665. TSSC1: tumor suppressing 
subtransferable candidate 1; ADI1: acireductone dioxygenase 1; RPS7: ribosomal protein S7; 
TRAPPC12: trafficking protein particle complex 12; RNASEH1: ribonuclease H1; COLEC11: 
collectin sub-family member 11. 
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A5.2 Regional association plot of the index SNP – rs6548153. TSSC1: tumor suppressing 
subtransferable candidate 1; ADI1: acireductone dioxygenase 1; RPS7: ribosomal protein S7; 
TRAPPC12: trafficking protein particle complex 12; RNASEH1: ribonuclease H1; COLEC11: 
collectin sub-family member 11. 
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A5.3 Regional association plot of the index SNP – rs7650685. HRH1: histamine receptor H1; 
ATG7: autophagy related 7; TAMM41: TAM41, mitochondrial translocator assembly and 
maintenance protein, homolog (S. cerevisiae); SYN2: synapsin II; VGLL4: vestigial like 4 
(Drosophila); TIMP4: TIMP metallopeptidase inhibitor 4. 
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A5.4 Regional association plot of the index SNP – rs10007111. HSD17B11: hydroxysteroid (17-
beta) dehydrogenase 11; DSPP: dentin sialophosphoprotein; IBSP: integrin-binding sialoprotein; 
SPP1: secreted phosphoprotein 1; ABCG2: ATP-binding cassette, sub-family G (WHITE), member 
2; NUDT9: nudix (nucleoside diphosphate linked moiety X)-type motif 9; DMP1: dentin matrix acidic 
phosphoprotein 1; MEPE: matrix extracellular phosphoglycoprotein; PKD2: polycystic kidney 
disease 2 (autosomal dominant); PPM1K: protein phosphatase, Mg2+/Mn2+ dependent, 1K; 
SPARCL1: SPARC-like 1 (hevin); HSP90AB3P: heat shock protein 90kDa alpha (cytosolic), class 
B member 3, pseudogene. 
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A5.5 Regional association plot of the index SNP – rs558129. GALNTL6: UDP-N-acetyl-alpha-
D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-like 6. 
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A5.6 Regional association plot of the index SNP – rs2910756. NUP155: nucleoporin 155kDa; 
GDNF: glial cell derived neurotrophic factor; EGFLAM: EGF-like, fibronectin type III and laminin G 
domains; WDR70: WD repeat domain 70; EGFLAM-AS4: EGFLAM antisense RNA 4. 
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A5.7 Regional association plot of the index SNP – rs11975386. MIR4652: microRNA 4652; 
TFPI2: tissue factor pathway inhibitor 2; BET1: Bet1 golgi vesicular membrane trafficking protein; 
COL1A2: collagen, type I, alpha 2; CASD1: CAS1 domain containing 1; GNGT1: guanine 
nucleotide binding protein (G protein), gamma transducing activity polypeptide 1; GNG11: guanine 
nucleotide binding protein (G protein), gamma 11. 
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A5.8 Regional association plot of the index SNP – rs16906888. 
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A5.9 Regional association plot of the index SNP – rs17690338. KAT6B: K(lysine) 
acetyltransferase 6B; DUSP13: dual specificity phosphatase 13; VDAC2: voltage-dependent anion 
channel 2; ZNF503: zinc finger protein 503; C10orf11: chromosome 10 open reading frame 11; 
DUPD1: dual specificity phosphatase and pro isomerase domain containing 1; SAMD8: sterile 
alpha motif domain containing 8; ZNF503-AS1: ZNF503 antisense RNA 1; COMTD1: catechol-O-
methyltransferase domain containing 1; ZNF503-AS2: ZNF503 antisense RNA 2. 
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A5.10 Regional association plot of the index SNP – rs2761291. EXOC6: exocyst complex 
component 6; MYOF: myoferlin; FFAR4: free fatty acid receptor 4; LGI1: leucine-rich, glioma 
inactivated 1; CYP26C1: cytochrome P450, family 26, subfamily C, polypeptide 1; CEP55: 
centrosomal protein 55kDa; PDE6C: phosphodiesterase 6C, cGMP-specific, cone, alpha prime; 
CYP26A1: cytochrome P450, family 26, subfamily A, polypeptide 1; RBP4: retinol binding protein 4, 
plasma; FRA10AC1: fragile site, folic acid type, rare, fra(10)(q23.3) or fra(10)(q24.2) candidate 1. 
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A5.11 Regional association plot of the index SNP – rs7975710. BHLHE41: basic helix-loop-
helix family, member e41; ITPR2: inositol 1,4,5-trisphosphate receptor, type 2; RASSF8: Ras 
association (RalGDS/AF-6) domain family (N-terminal) member 8; SSPN: sarcospan. 
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A5.12 Regional association plot of the index SNP – rs4541108. USP36: ubiquitin specific 
peptidase 36; CANT1: calcium activated nucleotidase 1; RBFOX3: RNA binding protein, fox-1 
homolog (C. elegans) 3; MIR4739: miroRNA 4739; CBX4: chromobox homolog 4; TIMP2: TIMP 
metallopeptidase inhibitor 2; ENPP7: ectonucleotide pyrophosphatase/phosphodiesterase 7; 
ENGASE: endo-beta-N-acetylglucosaminidase; CBX2: chromobox homolog 2; LGALS3BP: lectin, 
galactoside-binding, soluble, 3 binding protein; CBX8: chromobox homolog 8; C1QTNF1: C1q and 
tumor necrosis factor related protein 1. 
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