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Abstract 

The family of mammalian 2-oxoacid dehydrogenase complexes (PDC, BCOADC and OGDC) 

are stable, high Mr assemblies composed of multiple copies of 3 separate enzymes (E1, E2 and 

E3) that catalyse key stages in carbohydrate and amino acid metabolism. Their respective E1 and 

E2 enzymes are complex-specific while E3 is the identical gene product in all 3 complexes.  

 

In general terms, the oligomeric E2 ‘cores’ provide the structural and mechanistic framework to 

which their partner E1 and E3 enzymes are tethered tightly but non-covalently. However, the 

mode of E1 and E3 binding differs significantly from complex to complex. In the BCOADC, its 

cubic E2 core is composed of 24 identical subunits to which E1b and E3 bind stably in a 

mutually-exclusive fashion via multiple subunit binding domains (SBDs). In a variation of this 

theme, the icosahedral (60-meric) E2-PDC core comprises 2 types of subunit, E2 and an                    

E2-related polypeptide, E3 binding protein (E3BP). In this case, E1p and E3 bind independently 

to specific SBDs located on E2 and E3BP, respectively.  In contrast, OGDC differs significantly 

from its counterparts as its 24-meric E2 core does not contain any apparent SBDs. In addition, 

there is no equivalent to E3BP in this complex. Hence, how stable complex formation                                  

is achieved for the OGDC is still an area of active research, particularly in view of increasing 

evidence implicating OGDC deficiency as a major causative factor in a variety of 

neurodegenerative and oxidative stress disorders.    

 

Previous subunit-specific proteolysis, enzymatic and immunological studies on native bovine 

OGDC in our laboratory have suggested that an intact E1o N-terminal region is vital for 

maintaining the structural integrity of the complex.  In particular, a single cleavage of E1o at 
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Arg77 results in complete loss of OGDC function stemming from dissociation of both E3 and a 

large, active E1o species (E1') from the native E2 core assembly.  

 

The principal aim of this thesis was to establish the location and precise nature of the domains 

responsible for protein-protein interactions between the constituent E1o, E2o and E3 enzymes of 

OGDC and their roles in assembly, taking into account our previous data and the unique domain 

organisation of E2. It was also a goal to produce a recombinant version of the human OGDC for 

future biomedical studies including genetic analysis of naturally-occurring mutant forms. 

 

Initially, the cloning, expression and purification of a series of E1o N-terminal constructs                        

(His-tag, GST or MBP fusion proteins: 60, 90 and 153 a.a.s in length) is described extending 

from Ser1 to Phe153 of mature human E1o. Access to 10-30 mg of highly-purified E1o                           

N-terminal peptides was required to enable testing of the ability of this region to interact with E3 

(and also E2) employing a range of biochemical and biophysical techniques. High-level 

expression of full-length E1o was also achieved; however, attempts to produce active E1o in 

soluble form proved unsuccessful. Recombinant human E2o and E3 were both produced as 

soluble active enzymes in high yield. 

 

A preliminary structural characterisation of the E1o N-terminal region was also undertaken 

employing synthetic peptides, circular dichroism and a basic bio-informatics approach. These 

studies demonstrated that the N-terminal region had the potential to form 2 short α-helical 

segments linked by regions of unstructured and flexible polypeptide chain. Moreover, a                  

3D-structural prediction for mature, full-length human E1o confirmed that its N-termini were 

highly accessible, extending above the enzyme surface and situated in close proximity at one end 
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of the homodimer. Although there was no apparent sequence homology, our data also suggested 

that this region had several of the main structural features of the E3-SBD located on E3BP.  

 

Direct evidence that the N-terminal region of E1 bound to E3 post-translationally was obtained 

using peptide array technology, alanine scanning, isothermal titration calorimetry (ITC), affinity 

chromatography and gel filtration (GFC).  Interaction of E1o N-terminal peptides with E3 was 

salt-sensitive and reduced over the range 0-0.5M NaCl, i.e. similar to that required to promote E3 

dissociation from intact OGDC.  Only the longer E1o-90 and E1o-153 constructs complexed 

with E3 and evidence suggested that steric hindrance by the fusion partner blocked E3 binding to 

the short E1o-60 GST fragment.    

 

As expected, in the absence of any obvious SBD on E2o, no direct interaction could be                    

detected between E2o and E3 using ITC or GFC.  In addition, no post-translation association 

occurred between our purified E1o constructs and fully-assembled, oligomeric E2o.  In contrast,                              

co-expression of E1o-90 and E1o-153 constructs with E2o (but not E1o-60) resulted in                              

the formation of an E1o-90/E2o GST or E1o-153/E2o GST sub-complex.  Moreover, these                             

N-terminal E1o/E2o sub-complexes supported stable E3 binding as judged by affinity 

chromatography and GFC.  Taken together, the data presented in this thesis have established            

that the E1o N-terminal region is pivotal for mediating formation of a stable multi-enzyme 

assembly by directing self-integration with the E2o core during or immediately after synthesis 

and subsequently promoting high-affinity E3 binding in a manner reminiscent of E3BP 

integration with the oligomeric E2-PDC core.  
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To test the functional importance of the putative E3-binding domain on E1o, the E1o constructs 

were employed as inhibitors of OGDC and PDC activity since it was anticipated that they should 

displace E3 from its normal binding site in the intact complexes. Incubation of OGDC or PDC 

with the E1o-90 and E1o-153 (but not E1o-60) constructs caused preferential inhibition of 

OGDC activity. Conversely, an E3BP-SBD construct was a more effective inhibitor of PDC 

suggesting that the mode of E3 interaction differs significantly in these 2 complexes.    

 

In summary, our data have provided (a) new insights into the structure, organisation and       

mode of assembly of the mammalian OGDC; (b) suggested new approaches to producing                           

a recombinant model OGDC as an important biological tool for future biomedical and                         

genetic studies and (c) raised new questions concerning the subunit composition,  architecture, 

and stoichiometry of its core assembly. 
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Introduction to the 2-oxoacid dehydrogenase 
multienzyme complexes  

 

 

1.1   The multienzyme complexes 

Most metabolic pathways depend on adjacent enzymes to catalyze their individual                        

reaction steps in a defined sequence.  In many cases those enzymes associate and organize 

themselves into active complexes in which the individual enzymes can be linked covalently                   

or noncovalently to increase the efficiency of the metabolic pathway.  In particular, ordered 

arrays of enzymes can improve catalytic efficiency and protect unstable intermediates                         

by direct transfer of metabolites or substrates from one enzyme to the next within the complexes 

without releasing metabolites into the bulk medium of the cell, thereby reducing diffusion time                      

and increasing binding probability to the next enzyme. This mechanism, also termed ‘substrate 

channeling’, is a major topic in molecular biology (Easterby 1989; Perham 1991; Huang et al. 

2001).  

 

One of the primary examples of stable multienzyme complexes is the family of 2-oxoacid (alpha-

keto acid) dehydrogenase complexes, which are large multimeric assemblies located in the 

mitochondrial matrix (Smith and Neidhardt 1983). These macromolecular (Mr 4-10x10
6
) 

structures serve as paradigms for understanding protein structure-function relationships, the 

biological significance of protein assemblies, molecular recognition phenomena and protein-

protein interactions (Reed 1974). In addition, the 2-oxoacid dehydrogenase complexes are 
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amongst the largest and most complicated multienzyme complexes known at present and play a 

key regulatory role in carbohydrate and amino acid utilization (Yeaman 1986). 

 

The 2-oxoacid dehydrogenase multienzyme complexes are fundamental to the energy                  

providing mechanisms of cells in all aerobic organisms. As such they are distributed ubiquitously 

in nature where they carry out the irreversible oxidative decarboxylation of various 2-oxoacid 

substrates in carbohydrate metabolism and in the degradation of a select group of amino acids 

(Yeaman 1989; Reed and Hackert 1990).  

 

The general mechanism of 2-oxoacid oxidation in animal tissues and microorganisms is detailed 

below: 

 

 

RCOCO2H  +  CoA-SH  +  NAD
+
    RCO-S-CoA  +  CO2  +  NADH  +  H

+ 

 

 
Where R =    -CH3            (pyruvate)     

or    -CH2CH2COOH         (2-oxoglutarate) 

or    -CH(CH3)2                   (3-methyl-2-oxobutyric acid; a product of valine transamination)     

or    -CH2CH(CH3)2           (4-methyl-2-oxopentanoic acid; a product of leucine transamination)                                                                                                                                                                                                                             

or    -CH(CH3)CH2CH3       (3-methyl-2-oxopentanoic acid; a product of  isoleucine transamination)           

or    -CH2CH3                    (2-oxobutyric acid; a product of threonine transamination)     

or    -CH2CH2SCH3           (4-methylthio-2-oxobutyric acid; a product of methionine transamination)      

 

 

 

 

This reaction represents a general overview of the oxidative decarboxylation of 2-oxoacid 

substrates linked to nicotinamide adenine dinucleotide (NAD
+
) and coenzyme A (CoA), which 

occurs in the mitochondrial matrix of eukaryotic cells (Hackert et al. 1983; Randle 1983; 

Yeaman 1986). 
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Acetyl Coenzyme A (acetyl CoA), the main reaction product of the pyruvate dehydrogenase 

complex, is a key intermediate in the biosynthesis of fatty acids, ketone bodies and cholesterol                             

in addition to its role in oxidative energy generation (Fig. 1.1). Oxidative decarboxylation                          

of pyruvate, 2-oxoglutarate, and branched-chain 2-oxoacids occurs via a sequence of reactions 

involving acyl group transfer via a covalently-linked lipoic acid cofactor (Schwartz and Reed 

1970; Reed 2001).   

 

 

Figure 1.1: The role of acetyl CoA in glycolysis and the citric acid cycle 

 

 

Interestingly, three major structurally and mechanistically analogous 2-oxoacid dehydrogenase 

multienzyme complexes have been characterized to date. These are as follows: the pyruvate 

dehydrogenase complex (PDC) that is specific for pyruvate; the 2-oxogluturate dehydrogenase 

complex (OGDC) that is specific for 2-oxoglutarate, and a third branched-chain 2-oxoacid 

dehydrogenase complex (BCOADC) that is involved in the oxidative decarboxylation of                        

2-oxoacids derived from the breakdown of leucine, isoleucine, valine, threonine and also 

methionine (Yeaman 1986; Perham 1991; Perham 2000). 
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These three multi-enzyme complexes control pivotal steps linking glycolysis to the citric acid 

cycle, a key step within the citric acid cycle itself and in the degradation of the keto-acid 

derivatives of the branched-chain amino acids feeding into the cycle. Additionally, these 

multienzyme complexes are members of the thiamine diphosphate (ThDP)-requiring                                   

2-oxoacid dehydrogenase complex family, while also sharing a common protein component 

dihydrolipoamide dehydrogenase (E3) utilizing the coenzymes lipoamide, flavin adenine 

dinucleotide (FAD) and NAD
+
 (Mattevi et al. 1992a; Jordan et al. 2000).  The products of the 

catalytic reactions of the 2-oxoacid complexes are acetyl CoA in the case of PDC, succinyl CoA 

in the case of OGDC, and several branched-chain acyl CoAs in the case of BCOADC (Patel and 

Roche 1990; Harris et al. 1997) (Fig. 1.2).  

 

 

Figure 1.2: Flowchart representation of the role of 2-oxoacid dehydrogenase complexes in 

cellular metabolism 
Enzymes are shown in blue and their products in red. 
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All of those complexes have distinctive general morphologies involving large non-covalent 

assembles comprising multiple copies of three separate enzymes: 2-oxoacid dehydrogenase (E1), 

dihydrolipoamide acyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). The E3 

enzyme is common to PDC, OGDC and BCOADC in mammals and is involved in reoxidation of 

the dihydrolipoamide group and the transfer of electrons via FAD to NAD
+
 (Jones et al. 2000; 

Reed 2001).  Furthermore, the complex-specific E1 and E2 enzymes are referred to as (E1p, E2p, 

E1o, E2o, E1b, E2b) in PDC, OGDC and BCOADC, respectively. 

 

 1.2     Reaction mechanism of the 2-oxoacid dehydrogenase 
complexes 

It is clear that the oxidative decarboxylation of pyruvate and 2-oxoglutarate undergo a parallel 

sequence of reactions to give rise to acetyl CoA and succinyl CoA. The reactions are detailed 

below (Reed 1974; Bunik 2003). 

 

RCOCO2H + ThDP-E1  [RCH(OH)- ThDP]-E1 + CO2 
 

[RCH(OH)- ThDP]-E1 + LipS2-E2  ThDP-E1 + [RCO-S-LipSH]-E2 
 

[RCO-S-LipSH]-E2 + HS-CoA  RCO-S-CoA +  [Lip(SH)2]-E2 
 

[Lip(SH)2]-E2 + E3-FAD  LipS2-E2 + Reduced E3-FAD 
 

Reduced E3-FAD + NAD
+
  E3-FAD + NADH + H

+ 

 
Where R =    -CH3           (pyruvate)     

or    -CH2CH2COOH        (2-oxoglutarate) 

or    -CH(CH3)2                  (3-methyl-2-oxobutyric acid; a product of valine transamination)     

or    -CH2CH(CH3)2          (4-methyl-2-oxopentanoic acid; a product of leucine transamination)                                                                                                                                                                                                                             

or    -CH(CH3)CH2CH3       (3-methyl-2-oxopentanoic acid; a product of  isoleucine transamination)           

or    -CH2CH3                    (2-oxobutyric acid; a product of threonine transamination)     

or    -CH2CH2SCH3         (4-methylthio-2-oxobutyric acid; a product of methionine transamination)      

ThDP (Thiamine diphosphate).  

LipS2 and Lip(SH)2 (Lipoamide and its reduced form). 
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In each case, the catalytic process involves significant coupling between the various enzymes 

(E1, E2 and E3).  Thus, while OGDC catalyses the conversion of 2-oxoglutarate, CoA, and 

NAD
+ 

into succinyl-CoA, NADH, and CO2 with the aid of its FAD and thiamine diphosphate 

(ThDP) cofactors (Mattevi et al. 1992a; Sheu and Blass 1999a), mitochondrial PDC catalyzes the 

parallel conversion of pyruvate to acetyl-CoA (Reed 2001; Ciszak et al. 2006). 

 

E1 is responsible for the decarboxylation of substrate (pyruvate in the case of PDC                                   

or 2-oxoglutarate in the case of OGDC) and the subsequent reductive acylation of the                 

lipoamide prosthetic group on E2 via its cofactor ThDP (Mattevi et al. 1992a; Jordan et al. 2000; 

Perham et al. 2002). The interaction of pyruvate or 2-oxoglutarate with ThDP on E1                    

promotes the formation of a nucleophilic carbanion on the coenzyme in the presence                             

of Mg
2+

 facilitating the release of CO2 (Sheu and Blass 1999a; Perham et al. 2002). 

Subsequently, E2 transfers the acetyl group (succinyl group in the case of OGDC) from the 

lipoamide cofactor to CoA (Tanaka et al. 1974).  

 

Finally, the dihydrolipoamide group of E2 is reoxidised by E3 by electron transfer from the                     

E2-linked S
6
,S

8
-acetyldihydrolipoamide moiety initially to FAD and then to NAD

+
 as the final 

electron acceptor (Koike et al. 1974; Danson et al. 1978; Milne et al. 2002) (Fig. 1.3). 
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Figure 1.3: Reaction sequence of the 2-oxoacid dehydrogenase complexes 
E1, 2-oxoacid dehydrogenase; E2, dihydrolipoamide acyltransferase, and E3, dihydrolipoamide dehydrogenase.              

2-oxoacid (2-oxoglutarate or pyruvate). ThDP (Thiamine diphosphate).  LipS2 and Lip(SH)2 (Lipoamide and its 

reduced form). 
 

 

 

 

 

 

1.3    OGDC and PDC complexes: organization and   
structural information 

The mammalian 2-oxoglutarate dehydrogenase complex (OGDC), also referred to as                  

α-ketoglutarate dehydrogenase, is an enzyme complex most commonly known for its key role in 

the citric acid cycle (Lyubarev and Kurganov 1989). OGDC is located in close proximity to the 

mitochondrial inner membrane where it is involved in the conversion of 2-oxoglutarate to 

succinyl-CoA and CO2 (Mattevi et al. 1992a; McCartney et al. 1998). It consists of multiple 

copies of three components (E1o, E2o and E3) (Jones et al. 2000). The first component,                            
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2-oxoglutarate dehydrogenase (E1o) (EC 1.2.4.2), catalyses the initial rate-limiting 

decarboxylation step. Dihydrolipoyl succinyltransferase (E2o) (EC 2.3.1.61) then transfers the 

succinyl group to CoA. Finally, dihydrolipoyl dehydrogenase (E3) (EC 1.8.1.4) is required for 

reoxidation of the lipoamide on E2o (Tanaka et al. 1974; Spencer et al. 1984). The E3 

component is identical in most 2-oxoacid dehydrogenase complexes excluding a number of 

prokaryotes such as Thermus thermophilus where various complex-specific E3s have been 

detected (Nakai et al. 2008). 

Mitochondrial PDC from all known organisms contains three enzymes namely, pyruvate 

dehydrogenase (E1p, EC 1.2.4.1), dihydrolipoamide acetyltransferase (E2p, EC 2.3.1.1) and E3 

(Graham and Perham 1990). In addition to its vital role in regulation, E2p provides the structural 

and mechanistic framework for the complex (Reed 2001). Eukaryotic PDC contains an 

additional component called E3-binding protein (E3BP), originally referred to as protein X                        

(De Marcucci and Lindsay 1985b).   E3BP, an E2-related polypeptide, is tightly integrated into 

the E2p core assembly via its C-terminal region and supports the overall reaction of the complex 

by promoting the tight binding of E3 (Hiromasa et al. 2004). 

OGDC and PDC are stable, organized, high molecular mass assemblies (4-10 x 10
6
 Da) with E2 

forming an oligomeric core to which components E1 and E3 bound tightly, yet non-covalently 

(Burns et al. 1988; Perham 2000).  

OGDC has been characterized in human, plants, animals, bacteria, and  fungi (Ishikawa et al. 

1966; Reed and Oliver 1968; Meixner-Monori et al. 1985; Mareck et al. 1986; Patel and Harris 

1995; Millar et al. 1999). It is thought that the basic organisation of OGDC resembles PDC 

(from Gram-negative bacteria such as Escherichia coli and Azotobacter vinelandii) and 



Chapter 1                                                                                                                          Introduction 

10 

 

BCOADC, with 24 E2o subunits forming a cubic core exhibiting octahedral (point group 432) 

symmetry (Reed and Hackert 1990; Perham 1991; Wallis et al. 1996; Sanderson et al. 1996a; 

Knapp et al. 1998; Frank et al. 2005). Furthermore, electron microscopic studies on mammalian 

OGDC suggest that the diameter of the complex is about 26nm (Markiewicz  and Strumiło 

1995). In contrast, E2p in higher eukaryotes and Gram-positive bacteria such as Bacillus 

stearothermophilus, is organised as a 60-meric pentagonal dodecahedron with icosahedral (532) 

symmetry (Oliver and Reed 1982; Wagenknecht et al. 1990; Perham 2000).  

Human E2o has a distinctive structure consisting of only two domains; an N-terminal lipoyl                       

domain (LD), and a C-terminal catalytic domain (CTD); hence, unlike PDC and BCOADC,                

no obvious subunit binding domain (SBD) is apparent to promote E1o and/or E3 binding 

(Bradford et al. 1987; Nakano et al. 1994).  However, bacterial E2o, prokaryotic E2p, and E2b 

exhibit a similar multi-domain organisation comprising three domains (LD, SBD and CTD) 

(Packman and Perham 1987; Griffin et al. 1988; Thekkumkara et al. 1988; Reed and Hackert 

1990; Perham 1991; Robien et al. 1992; Mattevi et al. 1992a; Nakai et al. 2008).  

OGDC activity is controlled by feedback inhibition via its end products. Thus, NADH and 

succinyl CoA inhibit E1o activity (Roche and Lawlis 1982; Panov and Scarpa 1996; Qi et al. 

2011). In contrast, mammalian PDC activity is primarily controlled by two regulatory 

components; pyruvate dehydrogenase kinase (PDK, EC 2.7.1.99) and pyruvate dehydrogenase 

phosphatase (PDP, EC 3.1.3.43) via a phosphorylation-dephosphorylation mechanism with 

phosphorylation of the rate-limiting E1p enzyme causing total inactivation (Ciszak et al. 2006). 
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1.3.1   2-oxoacid dehydrogenase (E1)  

The E1o component of OGDC is a complex-specific homodimer (α2) with a subunit mass                     

of approx. 100,000 Da (Lindsay 1989; Perham 1991). In eukaryotic PDC and BCOADC, E1 is        

a heterotetramer (α2β2) composed of subunits with molecular masses of approx. 41,000 Da and 

36,000 Da, respectively (Burns et al. 1988; Hawkins et al. 1990; Perham 1991; Ciszak et al. 

2001).  In contrast, E1p in Gram-negative bacteria is again present as an α2 homodimer with a 

subunit Mr of 100,000 (Stephens et al. 1983; Matuda et al. 1991; Perham 1991).  

 

Each E1o subunit contains a Mg
2+

 ion and ThDP in the active site (Fig. 1.4). Twelve copies of 

E1o are thought to bind to the edges of the 24-meric cubic E2o core (Perham 1991; Mattevi et al. 

1992a).  It has been reported that Mg
2+

 is required for OGDC activity by increasing the affinity 

of  binding between ThDP and E1o (Zavala et al. 2000).  Furthermore, a highly conserved motif 

sequence (approx. 30 amino acids) constitutes the binding site for ThDP and this motif is                             

present in yeast, E. coli and human complexes (Hawkins et al. 1989).   Recently, it has been 

reported that histidine residues (H260, H298, and H729) located near the ThDP binding site 

interact with the 2-oxoglutarate substrate to promote the decarboxylation process (Shim et al. 

2011).    
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Figure 1.4: Crystal structure of E1o of the E. coli 2-oxoglutarate dehydrogenase complex 

(OGDC) 
E1o consists of two subunits as shown in green and grey. Each subunit contains a Mg

2+
 and ThDP in the active site 

(cyan spheres).  AMP is bound in a separate binding pocket (blue spheres). The image was adapted from Frank et al. 

(2007).   
 

 

Pyruvate dehydrogenase (E1p), also a ThDP-requiring enzyme, promotes the decarboxylation of 

pyruvate and the subsequent transfer of an acetyl group from ThDP to the prosthetic group of the 

E2p lipoyl domain (Kern et al. 1997; Berg et al. 1998).  Moreover, X-ray crystallographic 

studies on E1b from Pseudomonas putida, E1p from E.coli, as well as mammalian E1p indicate a 

high degree of structural similarity (Ævarsson et al. 1999; Ciszak et al. 2001; Arjunan et al. 

2002; Ciszak et al. 2003). The crystal structure of human E1p at 1.95Å resolution confirms the 

heterotetrameric arrangement of the E1α and E1β subunits (α, α`, β, β`) (Fig. 1.5) (Ciszak et al. 

2003). Its ThDP cofactor is located at the end of a 20 Å long hydrophobic channel close to the 

active site that interacts with the lipoyl-lysine of the lipoyl domain (Ciszak et al. 2003). 
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While, the E1β subunits are responsible for binding E1p to the E2p core non-covently,                      

the catalytic domain of E1α includes the ThDP binding site (Hawkins et al. 1989; Lessard and 

Perham 1995; Seyda et al. 2000). Despite, the fact that the two active sites are chemically 

equivalent, they are dynamically non-equivalent. While, one active site catalyses the 

decarboxylation step, the other active site is involved in the simultaneous reductive acetylation of 

the E2p-bound lipoamide. As a result, either pyruvate or the lipoyl-lysine moiety is allowed 

access to ThDP (at any given time), giving rise to a flip-flop enzymatic mechanism (Ciszak et al. 

2003). The crystal structure of B. stearothermophilus E1p reveals a 20 Å tunnel (proton wire) of 

acidic residues connecting the two active sites. This proton wire facilitates proton shuttling 

between two active sites without any obvious conformational changes in the structure of the two 

subunits (Frank et al. 2004).   

 

 

Figure 1.5: Crystal structure of the E1p component of the human pyruvate dehydrogenase 

complex (PDC) 
Crystal structure of the α2β2 E1p of PDC. The α, and, α' subunits are shown in magenta and grey, while β and, β' are 

shown in white and red respectively. ThDP cofactors are denoted in cyan. The image was adapted from Frank et al. 

(2007). 
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Protein-protein interaction studies by NMR on B. stearothermophilus PDC revealed that                           

the interface region between the E1α and E1β subunits houses the binding site for the                             

lipoyl domain of E2p (Howard et al. 2000), while the E1β subunits are responsible for                          

binding E1p to the E2p core.  

 

 

 

In E. coli OGDC, the sucA gene encoding E1o is located very close to the genes encoding other 

TCA cycle enzymes (Hull et al. 1983; Darlison et al. 1984). The kgd1 gene encoding E1o  has 

also been cloned from Yarrowia lipolytica (Holz et al. 2011) and Saccharomyces cerevisiae 

(Repetto and Tzagoloff 1989). Human liver cDNA (OGDH gene) encoding E1o has been 

characterised and its location assigned to chromosome arm 7p at p13-p14 (Szabo et al. 1994; 

Koike 1995; Koike 1998). 

  

Specific proteolysis of bovine OGDC with low levels of trypsin induced cleavage at a single site 

in the E1o N-terminal region (located at Arg77) resulting in loss of overall complex activity 

indicating the vital role of this region (Fig. 1.6) (Frank et al. 2007).  Loss of activity was caused 

by dissociation of a large catalytically-active E1 fragment (E1') and E3 from the E2o core 

assembly highlighting its pivotal role in ensuring overall complex stability (Kresze et al. 1981; 

Rice et al. 1992; McCartney et al. 1998).  These studies suggest that the E1o N-terminus is 

important for maintaining the structural integrity of the complex. It may also be involved directly 

in E3 binding (Rice et al. 1992).  Interestingly, immunological analysis has also shown that E1o 

antiserum cross-reacts weakly with E3BP of PDC while anti-E3BP specific serum is also able to 

recognize E1o (Rice et al. 1992; McCartney et al. 1998).   
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Previous studies on mammalian OGDC have reported tight binding of E1o to the E2o core in 

comparison to E3 (Reed and Hackert 1990). 

 

 

 

 
 

 

Figure 1.6: Simplified model representing the general structure of E1 of 2-oxoglutarate 

dehydrogenase complex (OGDC) from E. coli 
E1o consists of two subunits as shown in red and blue. Each subunit contains an Mg

2+
 and ThDP in the active site 

(green spheres). AMP is bound in a separate binding pocket (orange spheres). The N-terminal residues (77 a.a.) of 

E1o were removed by limited digestion with trypsin before crystallization (Frank et al. 2007).  

 

 

 

 

 

A recent X-ray crystallographic study of a bacterial E1o has indicated that it cannot be 

crystallized unless its N-terminal region (77a.a. in length) (Fig. 1.6), which appears to be 

natively-disordered, is removed (Frank et al. 2007). These studies are in agreement with earlier 

reports demonstrating the highly immunogenic nature of this region and its extreme sensitivity to 

proteolysis (Rice et al. 1992).   
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Amino acid sequence comparison of E1o from different sources including yeast, gram negative 

bacteria (E. coli), porcine and human tissue have indicated that human E1o has 37% and 40% 

sequence identity with the E. coli E1o and yeast E1o respectively (Koike et al. 1992; Koike 

1998). Furthermore, this study reveals that human E1o has high sequence identity (93%) with 

porcine E1o and produces an mRNA of similar size (Koike et al. 1992). 

 

Different isoforms of mammalian E1o have been identified. These isoforms may have different 

modes of regulation, and appear to be produced in a tissue-specific manner. The human OGDH 

gene located on chromosome 7 encoding E1o is known as the E1o heart isoform (OGDH-H) 

while different alternative forms has been isolated (Szabo et al. 1994; Koike 1995; Koike 1998).  

There are two main additional isoforms: human brain E1o isoform (OGDH-L) protein (Bunik 

and Fernie 2009) and a mitochondrial hypothetical protein (DHTKD1) (Bunik and Degtyarev 

2008a). 

 

OGDH-L was discovered in 2008 during the purification of OGDC from brain tissue (Bunik and 

Degtyarev 2008a; Bunik et al. 2008b). The OGDH-L gene was isolated from brain cDNA 

libraries and is located on chromosome 10 (Nagase et al. 1999; Team 2002; Bunik and 

Degtyarev 2008a). Amino acid sequence alignment of human heart OGDH-H and human brain 

OGDH-L isoforms have shown that the OGDH-L isoform conserves all the structural features 

and domain organization of the OGDH-H and has a high degree of the sequence similarity 

(approx. 85% overall similarity to OGDH-H), although the highest similarity is observed within 

their catalytic domains (Bunik and Degtyarev 2008a).    
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Mitochondrial hypothetical isoform (DHTKD1) exemplifies an additional putative                                   

2-oxoglutarate dehydrogenase-like protein. The corresponding gene encoding DHTKD1 is 

localised to the small arm of human chromosome 10 (Nagase et al. 2001; Team 2002; Bunik and 

Degtyarev 2008a). Sequence comparison of DHTKD1 with OGDH-H predicted approx. 51% 

similarity. It displays lower sequence similarity to OGDH-L compared to OGDH-H.  However, 

the N-terminal region of DHTKD1 appears to be non-conserved owing to a deletion such that 

DHTKD1 N-terminal is about 60 amino acid shorter than the corresponding OGDH-H                             

N-terminal (Bunik and Degtyarev 2008a; Bunik et al. 2008b). This deletion in the N-terminal 

region of DHTKD1 isoform may affect the interaction with E3 and/or E2o (Rice et al. 1992; 

McCartney et al. 1998; Bunik and Degtyarev 2008a; Bunik et al. 2008b). A recent study                             

has established that DHTKD1 is involved in the decarboxylation of 2-oxoadipate to                           

glutaryl-CoA, a key reaction in the lysine degradation pathway. Deficiencies of DHTKD1                             

activity caused by mutation results in elevated levels of 2-oxoaminoadipate and 2-oxoadipate 

(Danhauser et al. 2012).  2-oxoadipic aciduria is an inherited disturbance of lysine, tryptophan, 

and hydroxyl-lysine catabolism. It is a neurological disease characterised by accumulation of                      

2-oxoadipic acid and 2-aminoadipic acid in body fluids leading to ataxia, muscular hypotonia 

and epilepsy. 

 

OGDC activity is mediated by changes in the mitochondrial concentration of free Ca
2+

 (Lawlis 

and Roche 1981; Rutter and Denton 1989; Panov and Scarpa 1996). The effect of Ca
2+ 

on OGDC 

is achieved via direct binding to the complex leading to the allosteric activation of E1o and 

simultaneous lowering of the Km for its 2-oxoglutarate substrate (Roche and Lawlis 1982; Rutter 

and Denton 1989; Scaduto 1994).  
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Ca
2+ 

induced activation is generally mediated by direct binding to a specific Ca
2+

-binding motif 

or indirectly via Ca
2+

-binding proteins e.g. calmodulin (CaM) that lead to conformational 

changes enabling the regulation of function by Ca
2+

 (Zhou et al. 2006). Major Ca
2+

-binding 

motifs are the helix-loop-helix structure, referred to as an EF-hand (Rigden and Galperin 2004; 

Zhou et al. 2006) and the related EF-hand-like domains (helix-loop-strand) in bacterial proteins 

such as the galactose-binding protein of Salmonella typhimurium (Drake et al. 1997; Zhou et al. 

2006). In addition, Ca
2+

 binding sites found in many major protein families are widely implicated 

in numerous biological processes including Ca
2+

 signaling and homeostasis.  

 

Interestingly, sequence and structural comparison of the OGDC has identified a number of 

potential Ca
2+

-binding sites within the N- and C-terminal regions of E1o  (Bunik and Degtyarev 

2008a). Bunik and Degtyarev (2008a) have described three possible Ca
2+

 binding motifs; 

ExDxDx and DxDxDx within the N-terminal region and NDDxDx within the conserved catalytic 

domain of E1o supporting the important role that this divalent cation in E1o regulation.     

 

 

 

 

 

1.3.2  Dihydrolipoamide acyltransferase (E2) core 
organisation  

In general terms, E2 forms the central catalytic and structural framework of all three 2-oxoacid 

dehydrogenase complexes, to which multiple copies of E1 and E3 bind non-covalently. Crystal 

structures of several cubic OGDC cores have been solved: truncated  E. coli  (tE2o) at low 

resolution (15 - 18 Å) (Derosier et al. 1971);  porcine untruncated E2o at 7.0 Å resolution 

(Suzuki et al. 2002) and the truncated cubic core of  E. coli  tE2o at 3.0 Å resolution (Knapp et 
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al. 1998). The E. coli 24-meric core assembly has a diameter of 149 ± 15 Å displaying 

octahedral (432) symmetry (Derosier et al. 1971).  

 

PDC core assemblies comprising E2p subunits (Patel and Roche 1990) exhibit different 

morphologies and symmetries depending on the organism. In higher eukaryotes and Gram-

positive bacteria such as B. stearothermophilus, the E2p core is organised as a 60-meric 

pentagonal dodecahedron with icosahedral (532) symmetry (Fig. 1.7). In prokaryotes, 60 copies 

of E1p or 60 copies of E3 can bind to the E2p core in a mutually exclusive fashion, while in 

mammalian PDC, the E2p/E3BP core binds 20-30 copies of E1p and 6-12 copies of E3 (Oliver 

and Reed 1982; Wagenknecht et al. 1990; Perham 2000).  

 

In contrast, the E2p core of PDC of Gram-negative bacteria such as E. coli and A. vinelandii 

forms a 24-meric structure with octahedral (432) symmetry (Fig. 1.7) (Yang et al. 1985; Mattevi 

et al. 1992c).  

 

 

Figure 1.7: Simplified models representing structures of the E2 cores of the 2-oxoacid 

dehydrogenase complexes 
The E2 core structure can be pictured as 24-meric cubic (OGDC, BCOADC, and PDC of E. coli and A. vinelandii) 

or a 60-meric pentagonal dodecahedron (PDC of B. stearothermophilus and mammals).                        
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Interestingly, two models of mammalian PDC core formation have been proposed: the ‘addition’ 

model (60 copies of E2p plus 12 copies of E3BP) based on a cryo-electron microscopy study 

(Stoops et al. 1997) and the ‘substitution’ model (48 copies of E2p plus 12 copies of E3BP) by 

means of small angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC) 

(Hiromasa et al. 2004). However, a recent SAXS and small angle neutron scattering (SANS) 

study on the PDC core (rE2p/E3BP), truncated PDC core (tE2p/E3BP) and native bovine heart 

PDC core (bE2p/E3BP) has shown that all of the PDC core assemblies have open (unoccupied) 

pentagonal faces supporting the ‘substitution’ model with 12 copies of E3BP replaced an 

equivalent number of E2ps within the 60-meric core (Vijayakrishnan et al. 2010).  In addition, 

owing to variation in the composition between bovine and recombinant PDC cores, in which 

number of E3BPs  can range from 0 to 20 depending on the availability of E3BP, a ‘variable 

E3BP substitution model’ has been proposed incorporating 40 copies of E2p plus 20 copies of 

E3BP at maximal occupancy (Vijayakrishnan et al. 2010).  

 

The organization of the bacterial E2o core has also been determined by electron microscopy and 

X-ray crystallography (Reed 1974; Oliver and Reed 1982). Moreover, an electron 

cryotomography study of  E. coli  OGDC has shown that the E1o and E3 subunits bind flexibly 

approximately 11 nm away from the E2o core surface (Murphy and Jensen 2005).  

 

In E. coli, the OGDC core structure is organised as a cube with the E2o trimers occupying each 

of the 8 vertices (Fig. 1.8). Each E2o trimer is capable of binding E1o and/or E3 (Reed et al. 

1975; Najdi et al. 2010).  In mammalian OGDC, E1o binds more tightly to the E2o core than its 

E3 counterpart (Reed and Hackert 1990).   
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Figure 1.8: Simplified model of the E2o core structure of the 2-oxoglutarate dehydrogenase 

complex 

The OGDC core structure can be pictured as a cube with a trimer of E2o occupying each vertex. 

 

 

E2p (Mr 59,600) comprises three types of domain (Fig. 1.9). Firstly, there is an N-terminal lipoyl 

domain (Mr. 9,000) that acts as a ‘swinging arm’ visiting all three active sites within the complex 

and varying in number according to the organism (Reed and Hackert 1990). While, only one LD 

exists in yeast and gram positive bacterial PDC (60-meric, icosahedral), there are two or three 

LDs in the icosahedral mammalian and 24-meric, octahedral gram negative bacterial PDCs, 

respectively (Perham 1991; Perham 2000).  

  



Chapter 1                                                                                                                          Introduction 

22 

 

The LD is followed by a SBD (Mr 4,000), to which E1p binds tightly but noncovalently (Spector 

et al. 1998). Both E1p and E3 bind to E2p in bacterial PDC, while specific binding occurs 

between E1p:E2p and E3:E3BP in mammalian PDC.  Finally, the SBD is followed by a 300 

amino acid CTD that assembles to form the octahedral (24-meric) or icosahedral (60-meric) 

inner core depending on the source (Izard et al. 1999; Zhou et al. 2001; Milne et al. 2002).  

Furthermore, all these domains are joined by flexible and extended linker regions (LR) (20-30 

amino acid residues) rich in alanine, proline and other charged amino acid residues (Reed 1974; 

Hackert et al. 1983; Westphal and de Kok 1990; Green et al. 1992; Perham 2000; Milne et al. 

2002).  

 

 

Figure 1.9: Schematic representation of the domains and linker regions of the E2p and 

E3BP from various sources 
The domains are separated by long, flexible linker regions. Lipoyl domain (LD), Subunit binding domain (SBD) and 

C-terminal domain (CTD) are also shown.  Lipoyl groups are indicated by a yellow star.  

(•) E3BP has no acetyltransferase activity.  
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Mammalian E2o has subunit mass of approx. 48,000 Da (Lindsay 1989) and differs significantly 

from E2s of its companion 2-oxoacid dehydrogenase complexes (PDC and BCOADC), as it does 

not contain an E1o or E3-SBD as judged by the cDNA sequence analysis (Fig. 1.10). Hence, 

human E2o has a unique structure comprising only two domains (LD and CTD) (Bradford et al. 

1987; Packman and Perham 1987; Wagenknecht et al. 1990; Nakano et al. 1994).                                                

It is postulated that the exon encoding the putative E1o-SBD or E3-SBD might have been lost 

during gene evolution (Lawlis and Roche 1981; Spencer et al. 1984; Bradford et al. 1987; Reed 

and Hackert 1990; Westphal and de Kok 1990; Nakano et al. 1994; Koike et al. 2000).   

 

In contrast, NMR studies, sequence analysis and selective proteolysis of E2o of E. coli                              

and A.
 
vinelandii OGDC have shown that a 50 amino acid domain exists between the LD                            

and CTD, which serves as a binding site for E3 (Fig. 1.10); hence, specific proteolysis at                                 

a single site located between the bacterial LD and CTD results in dissociation of E3 from                               

the E2o core assembly (Packman and Perham 1986; Guest 1987; Robien et al. 1992; Mattevi et 

al. 1992a). Furthermore, recent X-ray crystallography studies have determined the structure                                      

of the equivalent T. thermophilus SBD (approx. 35 residues) in association with its E3                          

partner (Nakai et al. 2008).  
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Figure 1.10: Schematic representation of the domains and linker regions of the E2o chains 

of 2-oxoglutarate dehydrogenase complexes (OGDC) 
The domains are separated by long, flexible linker regions.  Lipoyl domain (LD), Subunit binding domain (SBD) 

and C-terminal domain (CTD) are also shown. Lipoyl groups are indicated by a yellow star.  

 

 

Interestingly, bacterial and mammalian E2o exhibits greater sequence conservation than                  

their corresponding E2b or E2p counterparts (Russell and Guest 1991; Matuda et al. 1992); 

therefore, E. coli E2o and mammalian E2o are likely to exhibit similar quaternary structures 

(Tanaka et al. 1972; Bunik et al. 2000).   In E. coli, E2o is encoded by the sucB gene which is 

close to sucA, the gene encoding E1o (Stephens et al. 1983; Spencer et al. 1984; Guest 1987; 

Park et al. 1997).   

 

Human fibroblast cDNA encoding E2o has been characterised and the DLST gene assigned to 

chromosome 14q at q24.2-q24.3 (Nakano et al. 1993; Patel and Harris 1995; Bunik and Fernie 

2009). Moreover, the sequence of the human gene showed 97% similarity to that of rat E2o 

(Nakano et al. 1991; Nakano et al. 1993). The basic architectural, design and structural features 

of the bacterial octahedral E2o, mammalian E2b (Griffin et al. 1988; Hakozaki et al. 2002) and 
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E. coli E2p are similar as predicted from inspection of their amino acid sequences (except that 

E2o contains only one LD) (Packman and Perham 1987; Graham et al. 1989). Interestingly, 

several studies have established a reduction in OGDC activity linked to Alzheimer’s disease 

(AD) and in some AD cases are linked to polymorphism of the DLST gene (Nakano et al. 1997; 

Sheu et al. 1999b). 

 

The general structural features of bacterial OGDC have been studied by electron microscopy and 

electron cryotomography (Murphy and Jensen 2005; Najdi et al. 2010). The E1o and E3 subunits 

are located above the surface of the E2o core and frequently separated by a gap (3-5 nm), 

although a thin strand of density is sometimes apparent perhaps suggesting the presence of the 

SBD and linker sequences in this region. Moreover, cryo-electron microscopy of E. coli OGDC 

demonstrated that the linker gap in E2o-E3 sub-complexes was more easily pictured than in the 

E2o-E1o sub-complexes suggesting that the bridge between the E2o-E1o sub-complexes 

contains more mass  than the E2o-E3 bridges (Wagenknecht et al. 1990). 

 

The primary function of E2 in 2-oxoacid dehydrogenase complexes is in the transfer of the acyl 

group to CoA via a dihydrolipoyl group covalently attached to a specific lysine residue in the LD 

(Howard et al. 2000; Milne et al. 2002). Owing to the flexibility of the LRs, the LDs have 

sufficient mobility to interact with all three active sites within the complex, the so-called lipoyl 

‘swinging arm’ (Radford et al. 1989; Perham 2000). Amino acid sequence comparison has 

confirmed that the LR (31 amino acids) of A. vinelandii E2o at the end of its single LD is similar 

to that existing at the end of all three LDs of E. coli PDC (Westphal and de Kok 1990).   
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1.3.2.1    The lipoyl domain (LD) 

The LDs of human E2 play a key role in the overall reaction. They are about 80 amino acid 

residues in length with a molecular mass of approx. 8 kDa (Perham 2000; Reed 2001; Murphy 

and Jensen 2005).  Lipoyl domains house the essential lipoic acid cofactor that is linked to a 

specific lysine residue of the LD by a lipoyl ligase (Wallis et al. 1996). In the intact complex,  

lipoamide serves as a substrate for E1 , E2, and E3, although E1 requires it to be attached to a 

folded domain for measurable activity (Graham et al. 1989).  

 

Protein lipoylation in mammals is a two-step enzymatic process: the first step is catalysed by the 

lipoate activating enzyme that promotes the formation of lipoyl-AMP, followed by the transfer of 

lipoate onto the LD by the lipoyl-AMP:N
6
-lysine lipoyl transferase (Fujiwara et al. 1996).                     

In contrast, protein lipoylation in bacteria is a one-step enzymatic process catalysed by lipoate-

protein ligase A that promotes covalent attachment of the lipoic acid cofactor to the folded                   

apo-protein via activation/ transfer of lipoate (Morris et al. 1994; Zhao et al. 2003).  

         

The structures of the LDs of PDC and OGDC from various organisms have been determined by 

NMR.  Three-dimensional structures have been solved for the E2o LD from E. coli (Ricaud et al. 

1996) and  A. vinelandii  (Berg et al. 1995)  and display close structural similarity. Moreover, 3D 

structures have been solved for the E2p-LDs of E. coli, A. vinelandii and human which are also 

extremely similar with no major variations observed (Wallis et al. 1996). The typical LD forms a 

flattened β-barrel comprising two antiparallel β-sheets: each of them contains four strands with a 

two-fold quasi-symmetry axis (Ricaud et al. 1996). The lysine residue, to be lipoylated is 
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situated on a prominent loop at the tip of a type I β-turn (Fig. 1.11) (Dardel et al. 1993; Wallis 

and Perham 1994).  

 

 

Figure 1.11: Atomic structure of the lipoyl domain (LD) 
The two β-sheets are shown in green and blue. The lysine residue is drawn in stick representation. The surface loops 

involved in E1 binding are shown in cyan and yellow, respectively (Dardel et al. 1993). 

 

 

The N-terminal and C-terminal residues are neighbours in one β-sheet (Ricaud et al. 1996). 

Moreover, NMR and secondary structure assignments have indicated that the A.  vinelandii  E2o 

LD exhibits high structural similarity to the E2p LD (Berg et al. 1995). Nevertheless, E. coli E1o 

exhibits a high degree of specificity for its cognate E2o LD whereas E. coli E1o does not interact 

with the corresponding E2p LD (Graham et al. 1989). 

 

 

1.3.2.2   The subunit binding domain (SBD) 

In the bacterial OGDC and PDC, the E1 and E3 subunits appear to bind to the SBD and the inner 

core-catalytic domain (Packman and Perham 1986; Packman and Perham 1987; Robien et al. 

1992; Mattevi et al. 1992a; Nakano et al. 1993; Spector et al. 1998).   
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The SBD is responsible for binding E1o and/or E3 to the bacterial E2o core. It is the                         

smallest folded, stable domain known to date (35 amino acid residues, approx. 4 kDa) (Perham 

1991; Hipps et al. 1994; Lessard and Perham 1995; Murphy and Jensen 2005). Surprisingly,                   

no equivalent SBD involved in E1o and/or E3 binding is apparent in mammalian OGDC.                                    

In B. stearothermophilus both E1p and E3 compete to bind to the E2p-SBD (Frank et al. 2005), 

while, in mammalian PDC, E1p specifically binds to E2p-SBD and E3 binds to the E2-related                    

E3BP-SBD (Perham 2000). A three-dimensional solution NMR structure of a synthetic peptide 

comprising the E. coli  SBD-E2o (Robien et al. 1992) and a recent crystal structure of E3-SBD-

E2o sub-complex from T. thermophilus (Nakai et al. 2008) have shown similar structures 

comprising two parallel α-helices (H1 and H2), separated by a short 3
10

-helix or β-turn and two 

irregular loops (L1 and L2). The irregular loops along with the α-helices appear to form the 

domain core (Fig. 1.12). Moreover, conserved hydrophobic residues provide stability to the core 

(Robien et al. 1992; Nakai et al. 2008). It is also apparent that the basic SBD structure is similar 

to the other known SBDs of PDC and BCOADC (Kalia et al. 1993).  

 

 

Figure 1.12: Atomic structure of the E2p-SBD of B. stearothermophilus 

Two short parallel α-helices (H1 & H2) shown in red are attached to a 3
10

-helix via two loops 

(L1 & L2) denoted in green. 
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1.3.2.3   The C-terminal domain (CTD) 

The CTD of OGDC, (approx. 300 a.a.s; ~26 kDa) assembles to form its octahedral (24-meric) 

inner core by association of trimeric intermediates located at each vertex (Reed et al. 1975; 

Robien et al. 1992; Murphy and Jensen 2005). The CTD of E2p assembles to form an octahedral 

(24-meric) or icosahedral (60-meric) inner core depending on the organism (Izard et al. 1999; 

Zhou et al. 2001; Milne et al. 2002). The tE2o-CTD crystal structure from E. coli has been 

solved to 3.0 Å resolution (Knapp et al. 2000). No major differences in protein-protein contacts 

and overall CTD organization have been observed between eukaryotic E2o and E2b (Knapp et 

al. 1998; Kato et al. 2006).  Moreover, Koike and his colleagues (Koike et al. 2000) have 

established that the porcine E2o C-terminal residues, Leu383, Leu384, and Leu385 are involved 

in the trimer–trimer interactions and important for cubic core formation as deletion of these 

residues leads to a failure of core formation. 

 

The E2o CTD contains the trans-succinylase active site (Westphal and de Kok 1990)                             

with a 30Å long channel at the interface between adjacent E2o subunits forming the entrance                    

for lipoamide and CoA. The E2p CTD possesses the active site motif (DHRXXDG) required                   

for the acetyltransferase activity of the complex (Radford et al. 1987; Stoops et al. 1992). 

Interestingly, chloramphenicol acetyltransferase (CAT), a naturally-occurring trimer in                      

bacteria, has limited structural homology to E2-CTD (Leslie et al. 1988).  Moreover, its 

conserved C-terminal active-site histidines have a catalytic function similar to the C-terminal 

proton acceptor residues (His375-E2o, His602-E2p, and His391-E2b) located at the centres                          

of the E2 active sites (Spencer et al. 1984; Guest 1987; Kato et al. 2006). 
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1.3.3    Dihydrolipoamide dehydrogenase (E3) 

E3 is a FAD containing flavoprotein. It serves as a common component for all three 2-oxoacid 

dehydrogenase multienzyme complexes (OGDC, PDC and BCOADC) and in most organisms is 

encoded by a single gene. Nevertheless, in prokaryotes such as T. thermophilus and in plants 

such as pea (Pisum sativum) multiple E3s have been detected (Conner et al. 1996; Nakai et al. 

2008).  In addition, in some cases, E3s are encoded for different complexes (Nakai et al. 2008). 

E3 always consists of two identical subunits forming a homodimer (Mr 106,000) with one FAD 

molecule noncovalently bound per subunit (Patel and Harris 1995; Harris et al. 1997; Lindsay et 

al. 2000). 

 

The primary function of E3 is to reoxidise the reduced lipoamide moiety of the E2 polypeptide 

via electron transfer from the dihydrolipoamide moiety to FAD and NAD
+
 (Carothers et al. 

1989; Mande et al. 1996).   

 

As stated previously, a novel E3BP polypeptide is responsible for binding E3 to the mammalian 

E2p core while in prokaryotes such as gram positive bacteria, E3 competes with E1p for binding 

to the E2p core (De Marcucci and Lindsay 1985b; Behal et al. 1989; Sanderson et al. 1996a; 

Sanderson et al. 1996b; McCartney et al. 1998).  However, the stability of the bacterial E3-E2p 

sub-complex is considerably greater than the equivalent E3-E2o sub-complex (Poulsen and 

Wedding 1970; Bunik et al. 2000). In the BCOADC, E3 also appears to bind weakly to the intact 

assembly (Clarkson and Lindsay 1991). 
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E3BP is tightly bound to the dihydrolipoamide acetyltransferase core and cannot be removed 

from the core except under denaturing conditions (Gopalakrishnan et al. 1989; Rahmatullah et 

al. 1989; McCartney et al. 1997). Previous stoichiometry studies showed that E3BP and E3 

formed a stable 2:1 complex (Smolle et al. 2006). While one LD of this complex is docked into 

E3, the other is peripherally extended away from the
 
E3 dimer suggesting the presence of                             

a possible dynamic ‘flip-flop’ enzymatic mechanism, as in the case of E1p. However, a crystal 

structure of the E3BP-SBD/E3 sub-complex indicates a 1:1 stoichiometry (Ciszak et al. 2006). 

Electron microscopy studies suggest that E3 is located a about 60 Å above the surface of  the                   

S. cerevisiae oligomeric E2p assembly (Stoops et al. 1997). 

 

In mammalian PDC, 20-30 copies of E1p are specifically bound to the E2p core (Reed 1974; 

Stoops et al. 1997), while, 6-12 copies of E3 associate with E3BP (Sanderson et al. 1996a). 

Furthermore, the mammalian E2p:E3BP core is thought to comprise 12 copies of E3BP and 48 

copies of E2p (Hiromasa et al. 2004). As stated previously, a ‘variable E3BP substitution model’ 

has also been proposed where 40 copies of E2p bind 20 copies of E3BP incorporated at maximal 

occupancy (Vijayakrishnan et al. 2010).  

 

X-ray crystallography of E3 from A. vinelandii, P. putida, Pseudomonas fluorescens,                          

B. stearothermophilus, S. cerevisiae, pig heart and human has provided detailed information 

regarding its overall structure (Takenaka et al. 1988; Schierbeek et al. 1989; Mattevi et al. 1991; 

Mattevi et al. 1992b; Mattevi et al. 1993; Mande et al. 1996; Toyoda et al. 1998; Brautigam et 

al. 2005).  It is clear that the main E3 structural features are similar between eukaryotes and 

prokaryotes.  Alignment of human liver E3 has also shown 96% sequence identity with pig heart 
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E3 (Sanderson et al. 1996a).  E3 comprises four principal functional domains: a FAD binding 

domain, NAD
+
 binding domain, interface domain and central domain (Fig. 1.13) (Lindsay et al. 

2000; Ciszak et al. 2006). 

 

 

 
 

Figure 1.13: Crystal structure of the dihydrolipoamide dehydrogenase (E3) 
The various domains namely, FAD binding domain (green), NAD

+
 binding domain (yellow), interface domain (light 

green) and central domain (orange) are denoted. The FAD cofactors are shown. The image was taken from Ciszak    

et al (2006). 

 

 

 

 

1.3.3.1   Glycine cleavage system (GCS) 

Another mitochondrial multienzyme complex also containing a similar lipoamide dehydrogenase 

is the glycine cleavage system. The glycine decarboxylase complex, also known as the GCS                 

is composed of four different components: glycine decarboxylase (P-protein, Mr 210,000),                      

a lipoic acid-containing protein (H-protein, Mr 14,000), tetrahydrofolate transferase (T-protein, 

45,000 Da) and lipoamide dehydrogenase (L-protein, Mr 100,000).  
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When these four components were isolated from bacterial sources, they were referred to as P1, 

P2, P3, and P4 respectively (Freudenberg and Andreesen 1989; Douce et al. 2001; Hasse et al. 

2009). The GCS is located in the inner mitochondrial membrane and catalyses the irreversible 

oxidation of glycine to yield carbon dioxide and ammonia, with the reduction of NAD
+
 to 

NADH (Hasse et al. 2009). 

 

The reaction mechanism involves a cycle of reactions including the initial decarboxylation step,  

transfer of an amino methyl group to the lipoyl group of H-protein (catalysed by the P-protein), 

methylamine transfer (catalysed by the T-protein) and electron transfer (catalysed by the                         

L-protein) (Douce et al. 2001). The H-protein plays a central role in carrying reaction 

intermediates and, in essence, acting as a substrate for the three component enzymes during the 

enzymatic reaction. 

 

 

Interestingly, GCS exhibits a significant degree of similarity to the various 2-oxoacid 

dehydrogenase complexes (OGDC, PDC, and BCOADC) as the H-protein is analogous to an E2 

lipoyl domain. Its lipoyl group is covalently bound to a lysine residue and serves as the structural 

heart of the GCS (Faure et al. 2000). Moreover, the L-protein (E3) is also a component of the 

OGDC, PDC, and BCOADC in plants (Faure et al. 2000; Douce et al. 2001). 

 

The GCS does not form a stable complex as an integrated assembly has never been isolated. 

Precipitation and fractionation experiments have shown that the components of GCS dissociate 

easily into independent species suggesting that all components involved in the GCS interact very 
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weakly (Walker and Oliver 1986). In addition, a large excess of the H protein is found free in 

cell extracts (Douce et al. 2001). 

 

 

Stoichiometry studies using ultracentrifugation and quantitative ELISA of the matrix of pea 

mitochondria have shown that the GCS components are present in the ratio 4 P-protein:                                 

27 H-protein: 9 T-protein: 2 L-protein (Oliver et al. 1990; Douce et al. 2001). Moreover, X-ray 

crystallography and small angle X-ray scattering experiments on solutions containing a mixture 

of H-protein and L-protein have failed to detect any significant interaction between the two 

components (Faure et al. 2000; Neuburger et al. 2000). Interestingly, specific recognition by                   

T and H proteins to form a 1:1 complex has been characterized by small X-ray angle scattering 

(Cohen-Addad et al. 1997). However, the precise physical structure and organization of the GCS 

has not been completely resolved to date. 

 

 

1.3.4  Mitochondrial targeting and assembly of the 2-oxoacid 
dehydrogenase complexes 

Mitochondria are membrane-enclosed organelles present in most eukaryotic cells. They are 

responsible for the chemical reactions involved in oxidative phosphorylation. Mitochondrial 

DNA encodes 13 essential subunits of the 4 major inner membrane complexes involved in the 

respiratory chain and ATP production (Takenaka et al. 1988; Wang et al. 2002). 
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Most mitochondrial proteins (800-1000) are encoded by nuclear genes and translated in the 

cytoplasm as cytosolic precursors that are often characterized by the presence of  N-terminal 

matrix-targeting sequences allowing the nascent unfolded polypeptide chains to pass through 

mitochondrial membranes post-translationally (Pfanner and Truscott 2002a; Pfanner and 

Wiedemann 2002b). Cytosolic precursors are generally cleaved by a specific protease during 

polypeptide translocation into the mitochondrial matrix (Douglas et al. 1986).  

 

Mitochondrial presequences are rich in hydroxylated amino acids (threonine and serine) and 

positively charged amino acids such as arginine and lysine, and usually display an absence of 

acidic residues (Hurt et al. 1986; Roise and Schatz 1988; Mukhopadhyay et al. 2007). Although, 

lacking any sequence similarity, matrix-targeting sequences tend to form amphipathic                                  

α-helices that are recognised by the main mitochondrial import receptor, MOM 70. In addition, 

cytosolic chaperones recognize mitochondrial precursors during targeting of pre-proteins to the 

mitochondria maintaining them in an ‘unfolded’, translocation-competent state (Roise and 

Schatz 1988; Neupert 1997).   

 

The delivery of proteins to mitochondria (Fig. 1.14) and import process are mediated by 

molecular chaperones that also assist the folding and assembly of proteins. To import proteins 

through translocation pores of mitochondrial membranes, they must be unfolded. Thus, during 

translation on cytosolic ribosomes chaperones Hsp70 and Hsp40 bind to nascent  precursor 

chains in order to prevent premature folding (Beddoe and Lithgow 2002). Cytosolic Hsp70 and 

Hsp40 are members of a heat shock protein family involved in protein folding while also 

preventing aggregation during or immediately after translation (Flaherty et al. 1990). Besides 
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these two major classes, several special types of heat shock proteins exist (Hsp60s and Hsp90s) 

that have important functions in protein folding and assembly and are named according to their 

molecular weight size (Neupert 1997; Voos and Rottgers 2002). 

 

Mitochondrial import stimulating factor (MSF) generally recognizes mitochondrial precursors 

and facilitates their import into mitochondria (Neupert 1997).  The MSF aids in the transfer of 

precursors to the translocase receptor (TOM complex) situated on the mitochondrial outer 

membrane (Hulett et al. 2008). The TOM complex comprises 7 different integral membrane 

proteins forming a general import pore (GIP) representing the entry gate into mitochondria                 

(Fig. 1.14) (Pfanner and Truscott 2002a; Pfanner and Wiedemann 2002b). After passage through 

the GIP, the precursor is transferred to the translocase of inner mitochondrial membrane                       

(TIM complex) which forms a channel across the inner mitochondrial membrane (Schleyer et al. 

1982; Pfanner and Wiedemann 2002b). However, translocation across the outer and inner 

membranes is driven by electrostatic interactions of positively charged presequence and by 

chemical energy (ATP), membrane potential (ψ) and the mitochondrial Hsp70, which all appear 

to act cooperatively to pull the precursor protein into the matrix (Gakh et al. 2002).  

  

Once the presequence is imported into the matrix, it is no longer necessary and cleaved by the 

mitochondrial matrix processing peptidase (MPP). After release of mature protein, it undergoes 

folding and maturation assisted by a matrix-located Hsp60 chaperone system analogous to the 

bacterial GroEL/ES complex (Douglas et al. 1986; Omura 1998; Pfanner and Truscott 2002a; 

Pfanner and Wiedemann 2002b). 
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Figure 1.14: Protein translocation into mitochondrial matrix 
The precursor protein is recognized by the TOM complex of the mitochondrial outer membrane. Then precursors are 

transported across the intermembrane space to the translocase complex (TIM) of the mitochondrial inner membrane 

and enter the mitochondrial matrix where the MTS is cleaved off by the mitochondrial processing peptidase. 
 

 

 

In the case of the OGDC, PDC, and BCOADC, all their constituent polypeptides are encoded by 

the nuclear genome and are individually transported post-translationally to mitochondria prior to 

assembly (Thekkumkara et al. 1988; Maas and Bisswanger 1990; Wang et al. 2002). Once inside 

the mitochondria the E2 precursor is cleaved to induce self-assembly before association with E1 

and E3 to form a stable complex (Milne et al. 2006).  
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Previous immune-precipitation studies have shown that the molecular mass of the cytoplasmic 

E1o precursor is approx. 1500-3000 kDa greater than the mitochondrial mature E1o form 

(Hunter and Lindsay 1986).  Subsequent isolation of the gene encoding E1o indicated the 

presequence of a 40 a.a. signal sequence required for mitochondrial targeting which is removed 

on entry into the organelle (Thekkumkara et al. 1988; Wang et al. 2002; Pfanner and 

Wiedemann 2002b). The signal peptides of OGDC subunits are listed in (Table 1.1). 

                     

 

OGDC 

subunits 
Protein 

Mature 

peptide 

Signal 

peptide 
Signal sequence 

E1o 
1-1002 41-1002 1-40 MFHLRTCAAKLRPLTASQTVKTFSQNRPAAARTFQQIRCY 

E2o 
1-453 47-453 1-46 MLSRSRCVSRAFSAPLSAFQKGNCPLGRRSLPGVSLCQGPGYPNSR 

E3 
1-511 43-511 1-42 MQSWSRVYCSLAKRGHFNRISHGLQGLSAVPLRTYADQPIDA 

Table 1.1: OGDC subunit signal peptide precursors 
E1o, E2o, and E3 presequences are shown (Feigenbaum and Robinson 1993; Nakano et al. 1993; Koike 1995). 

 

 

 

The basic organisation of the OGDC is directed by the self-assembly of its cubic core.  To this 

E2o core approximately 12 E1o dimers bind non-covalently (Hunter and Lindsay 1986; Nakano 

et al. 1991). Moreover, 6 copies of dihydrolipoamide dehydrogenase (E3) are also suggested to 

bind to the six faces of this complex at maximal occupancy (Reed 1974; Robien et al. 1992).   

 

Interestingly, an in vivo assembly study of the yeast OGDC core has reported that an appropriate 

expression balance between E1o and E2o is essential; thus, over-expression of E2o might cause 

ineffective complex assembly resulting in sub-optimal activity (Repetto and Tzagoloff 1991).   

http://www.ncbi.nlm.nih.gov/protein/2160381?from=1&to=1002
http://www.ncbi.nlm.nih.gov/protein/2160381?from=41&to=1002
http://www.ncbi.nlm.nih.gov/protein/2160381?from=41&to=1002
http://www.ncbi.nlm.nih.gov/protein/2160381?from=1&to=40
http://www.ncbi.nlm.nih.gov/protein/2160381?from=1&to=40
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 1.4   Regulation of the 2-oxoacid dehydrogenase 
complexes 

The major 2-oxoacid dehydrogenase complexes (PDC, OGDC) play a vital role in glucose 

metabolism by catalyzing the oxidative decarboxylation of pyruvate or 2-oxoglutarate to                           

acetyl-CoA or succinyl-CoA, respectively. It has been documented that PDC and OGDC have 

similar structural organization (Packman and Perham 1986; Yeaman 1989; Perham 1991), 

however, there are major differences in regulation and catalysis between the complexes.  

 

OGDC plays a key role in the regulation of 2-oxoglutarate levels. The regulation of OGDC is 

subjected to feedback inhibition by its end products, NADH and succinyl CoA that inhibit the 

E1o enzyme (Lawlis and Roche 1981; Panov and Scarpa 1996). OGDC activity is also mediated 

by changes in the mitochondrial concentration of free Ca
2+

 and is stimulated by Ca
2+ 

mobilizing 

hormones such as vasopressin and glucagon (Panov and Scarpa 1996). 

 

Several studies have demonstrated that free Ca
2+

 (µM range) regulates mammalian OGDC 

(Rashed et al. 1988; Zavala et al. 2000). The effect of Ca
2+ 

on OGDC is achieved via direct 

binding to the complex leading to the allosteric activation of E1o and simultaneous lowering of 

the Km for its 2-oxoglutarate substrate (Roche and Lawlis 1982; Scaduto 1994). Moreover, Mg
2+ 

also stimulates OGDC activity in the presence of ThDP by increasing the binding affinity of 

ThDP for E1o (Zavala et al. 2000; Qi et al. 2011). Interestingly, ThDP itself has a positive 

allosteric effect on OGDC which increases the affinity of OGDC for its substrate by causing 

conformational changes in the complex (Strumito et al. 2002). In addition, NAD
+
, CoA,                    

2-oxoglutarate and ADP stimulate OGDC activity whereas these effectors are antagonized by 

ATP and NADH (Rashed et al. 1988; Zavala et al. 2000).  Previous studies have demonstrated 
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that inorganic phosphate (Pi) at physiological concentrations is also a positive effector activating 

OGDC significantly (Roche and Lawlis 1982; Chinopoulos et al. 1999). 

 

Many studies have shown that the OGDC is inhibited by oxidative stress and, in particular, by 

reactive oxygen species such as hydrogen peroxide and superoxide (Halliwell and Gutteridge 

1985; Siesjo et al. 1995; Chinopoulos et al. 1999; Tretter and Adam-Vizi 2000; Sweetlove et al. 

2002). Furthermore, the cytotoxic lipid peroxidation product 4-hydroxy-2-nonenal (HNE) 

reduced OGDC activity via reacting with the E2o-LD (Humphries and Szweda 1998).                                

In addition, powerful oxidants such as peroxynitrite (ONOO
−
) formed by the reaction of 

superoxide with the free radical nitric oxide, inactivated OGDC whereas incubation with 

glutathione (GSH) restored activity (Shi et al. 2011).  

 

Normal brain function depends on oxidation of glucose via glycolysis and the TCA                                   

cycle. As OGDC is the key regulatory enzyme in the cycle, oxidative decarboxylation of                              

2-oxoglutarate has an impact on the synthesis of glutamate in neurons which can be further 

converted to γ-aminobutyric acid (GABA) neurotransmitters. Thus decreases in OGDC activity 

have been linked to a wide range of neurodegenerative diseases (Gibson et al. 2000). In brain 

tissue, OGDC defects can lead to accumulation of toxic levels of neurotransmitters such as 

glutamate that is catabolised by OGDC after its transamination to form 2-oxoglutarate (Shoffner 

1997). 
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In mammalian PDC, two principal types of regulatory mechanism are found.  The first of these     

is end product inhibition by metabolites like NADH and acetyl-CoA, while the second                        

involves covalent modification of the complex by a phosphorylation/dephosphorylation 

mechanism. PDC is regulated by specific pyruvate dehydrogenase kinases (PDKs, EC 2.7.1.99) 

that deactivate the complex and pyruvate dehydrogenase phosphatases (PDPs, EC 3.1.3.43), that 

activate it (Fig. 1.15) (Linn et al. 1969; Behal et al. 1993; Harris et al. 2002).   

  

PDK is exists as a dimer and has four tissue-specific isoforms namely PDK1, PDK2, PDK3                    

and PDK4. Moreover, these isoforms vary in their kinetic parameters, mode of regulation, and 

phosphorylation site specificity (Popov 1997; Sugden and Holness 2003). PDKs phosphorylate 

three serine residues (Ser264, Ser271, and Ser203) of human PDC E1α (Yeaman et al. 1978; 

Sale and Randle 1981; Kolobova et al. 2001). While, PDK1 can phosphorylate all three                        

serine residues, the other three isoenzymes can only act on sites 1 and 2 and do so at different 

rates (Wieland 1983; Dahl et al. 1987). Interestingly, phosphorylation at any single site                      

leads to complete inactivation of the rate-limiting E1 enzyme (Kolobova et al. 2001).     

 

PDK is activated by NADH and acetyl-CoA, providing an alternative means of PDC                       

inhibition by these two major end products of the reaction. PDK activation involves                        

interaction with E2p via changes in the oxidation and acetylation state of the lipoamide moiety 

induced by NADH and acetyl-CoA (Patel and Korotchkina 2001; Roche et al. 2003). Moreover, 

a limited number of PDK molecules (1-3) per complex are found to be adequate to inactivate 

PDC (Yeaman 1989). 
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Dephosphorylation of E1p by PDPs reactivate the enzyme (Huang et al. 1998). Two                    

tissue-specific PDP heterodimeric isoforms have been identified in mammalian tissues 

designated as PDP1 and PDP2 (Huang et al. 1998; Maj et al. 2006).  PDP1 is expressed 

predominantly in muscle tissue whereas PDP2 is found in adipose tissue, heart, kidney, and liver 

(Huang et al. 1998). Furthermore, dephosphorylation of E1p by PDPs is Mg
2+

 and Ca
2+

 

dependent. In addition, during starvation, while PDK concentrations increase PDP expression 

decreases leading to PDC inhibition in various tissues (Linn et al. 1969; Roche and Cate 1976; 

Damuni and Reed 1987; Huang et al. 1998; Huang et al. 2003). 

 

 

 

 

Figure 1.15: Regulatory mechanism of PDC 

The regulatory enzymes (PDK and PDP) mediating PDC conversion between its active (dephosphorylated) and 

inactive (phosphorylated) forms.  The Mg
2+ and Ca

2+ 
ions stimulate dephosphorylation of PDC. 
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 1.5   The 2-oxoacid dehydrogenase multienzyme 
complexes and disease 

PDC and OGDC deficiencies are associated with a wide range of genetic, metabolic and 

autoimmune disorders such as metabolic lactic acidosis, diabetes and primary biliary cirrhosis 

(PBC) (Fussey et al. 1988; Joplin and Gershwin 1997; Huang et al. 2003; Mayers et al. 2003; 

Patel et al. 2011) .  Furthermore, PDC and OGDC deficiencies have been widely implicated in 

the aetiology of the major neurodegenerative disorders including Alzheimer’s disease (AD) 

(Sheu et al. 1994; Blass 1999; Bubber et al. 2005; Shi et al. 2005). 

 

 

1.5.1   Oxidative stress and Alzheimer’s disease (AD)  

An imbalance in
 
the production and removal of redox-active species gives rise to oxidative 

stress. The main targets
 
of oxidative damage are the key macromolecules of the cell, namely 

proteins, lipids and nucleic acids that can contribute to tissue injury following irradiation and 

hyperoxia (Bellomo 1991; Nath et al. 1991). Oxidative stress arises owing to an enhanced 

production of reactive oxygen species (ROS) and/or the diminished/abolished ability of the 

biological system to detoxify the reactive intermediates or repair the resulting damage. However, 

disturbances in the normal redox state can result in the excess production of peroxides and free 

oxygen radicals that damage cell components and produce toxic effects (Hammond and Hess 

1985; Kirkinezos and Moraes 2001).  

 

 

http://en.wikipedia.org/wiki/Hyperoxia
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Oxidative stress is implicated as a causative factor in many diseases like atherosclerosis, heart 

failure, myocardial infarction, and neurodegenerative disorders (Floyd 1999; Finkel 2000). When 

the oxidation potential is not significantly increased, the cell has the ability to overcome these 

small perturbations and regain its original state (Gutteridge 1994).  However, moderate oxidative 

stress can lead to apoptosis, while severe stress can lead to necrosis (Lennon et al. 1991). 

 

There are three major ROS, superoxide anions (O2
.-
), hydrogen peroxide (H2O2) and hydroxyl 

radicals (
·
OH) (Turrens 1997; Cabiscol et al. 2000).  They are generated by all aerobic organisms

 

during normal cellular metabolism (Valko et al. 2005). When ROS levels are significantly             

high, organisms utilise a series of defence systems involving several antioxidant enzymes,                                

such as superoxide dismutase (SOD), catalase, glutathione peroxidase and the thioredoxin-

dependent peroxiredoxins (Prxs) (Fridovich 1995; Cao et al. 2005). 

 

Mammalian PDC and OGDC are major targets for oxidative stress as their components (E1, E2, 

and E3) contain several thiol groups involved in catalysis. Exposure of E2 (PDC and OGDC) 

from S. cerevisiae and E. coli to hydrogen peroxide and superoxide anions have established these 

complexes to be a major target of oxidative stress (Tamarit et al. 1998; Cabiscol et al. 2000).              

In many disorders linked to mitochondrial and cell damage, a high level of ROS has been 

observed. It has been demonstrated that in certain conditions e.g. accumulation of NADH, the 

OGDC itself can be a major source of ROS production in mitochondria in addition to electron 

leakage from complexes I and III of mitochondrial electron transport chain (Bunik and Sievers 

2002; Bunik 2003; Starkov et al. 2004). 
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Studies have shown that 5-15% of the world’s population over the age of 65 is affected by                      

AD (Katzman 1986). AD is a progressive neurodegenerative disorder characterized by the 

development of senile plaques and neurofibrillary tangles correlated with memory loss, cognition 

and communication defects (Waldemar et al. 2007).  Mitochondrial defects including diminished 

OGDC and PDC function are characteristic of many neurodegenerative diseases and could be 

responsible for increased oxidative brain damage in AD induced by oxidative stress (Gibson et 

al. 2000; Sims et al. 2000; Shi et al. 2005). 

 

The cause and progression of AD is not well understood. Studies have shown the activity of the 

PDC to be reduced by 50% in patients with AD (Gibson et al. 1998).  Furthermore, a link 

between reduced OGDC activity and the development and progression of AD has also been 

demonstrated (Hoyer 2000; Gibson et al. 2005; Shi et al. 2005). As stated previously, in brain 

tissue, OGDC inhibition can lead to accumulation of toxic amounts of glutamate that is normally 

catabolised by OGDC after its transamination to form 2-oxoglutarate (Shoffner 1997). Moreover, 

OGDC and PDC deficiency in brain tissues can affect cell viability due to energy shortages as a 

result of a lack of production of acetyl-CoA and succinyl-CoA (Klivenyi et al. 2004; Tretter and 

Adam-Vizi 2005; Szutowicz et al. 2006).  

 

The human DLST gene encoding E2o have been characterised and assigned to chromosome 14 

(Nakano et al. 1993; Patel and Harris 1995; Bunik and Fernie 2009). Interestingly, several 

neurodegenerative diseases including AD have been found to be linked to a locus on 

chromosome 14 (Schellenberg et al. 1992; Sheu et al. 1999b). Genotyping studies have 

demonstrated that AD risk is associated with polymorphism of  the DLST gene and possession of  
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the apolipoprotein E4 (APOE4) allele (Nakano et al. 1997; Sheu et al. 1999b).  APOE4 is a variant 

of apolipoprotein E that is essential for the normal catabolism of lipids. In contrast, conflicting 

reports have concluded that the there is no association between DLST gene and AD (Matsushita 

et al. 2001; Prince et al. 2001).  

 

 

1.5.2    Primary Biliary Cirrhosis (PBC) 

Primary biliary cirrhosis (PBC) is an autoimmune disease of the liver characterized by the 

accumulation of bile within the liver (cholestasis) owing to destruction of the small bile ducts 

leading to liver tissue damage, scarring, fibrosis and cirrhosis (Culp et al. 1982; Yeaman et al. 

2000). PBC is a disease that is typically found in middle-aged woman between 40-60 years of 

age. There is increasing evidence that a number of immune disease related genes are linked to 

the X chromosome (Zinn 2001; Long et al. 2002; Jones 2003).  

 

 

LDs and their lipoamide cofactors, in particular, are major self-antigens in primary biliary 

cirrhosis (PBC). Studies have shown that up to 95% of PBC patient produce autoantibodies 

against E2p (Fussey et al. 1988; Yeaman et al. 1988) and often produce antibodies against other 

lipoic acid containing proteins including E3BP (Palmer et al. 1999; Yeaman et al. 2000). 

Gershwin and colleagues (Gershwin et al. 1987) have also demonstrated that most patients with 

PBC possess anti-mitochondrial antibodies (AMAs) against E2p. Moreover, specific serum IgM 

AMA levels are commonly elevated (Nishio et al. 2001).   
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Recently, it has been reported that the X chromosome monosomy in white blood cells is 

increased in female PBC patients and increases with age (Invernizzi et al. 2004; Invernizzi et al. 

2005). 

 

Initially, assignment of the main M2"a" antigen (Mr ~ 68-80 kDa) in PBC patients was carried 

out by isolating a rat liver cDNA clone using patient AMA (Gershwin et al. 1987). Subsequently, 

the protein expressed was identified as E2p (Yeaman et al. 1988). In addition, E3BP was 

classified as the M2"c" antigen (Mr ~ 50-56 kDa) when purified bovine PDC was probed with 

the PBC patient sera (Yeaman et al. 1988). 

 

 According to Moteki and colleagues (Moteki et al. 1996); E2p is the major autoantigen of PBC, 

with sera from 80% - 90% PBC patients containing E2p specific AMA, while 60% of PBC 

patients are reactive to the E2b and 30% to 80% reactive to E2o.  Furthermore, autoantibodies 

have also been detected against E1α and E1β subunits of PDC (Fussey et al. 1989). However, 

AMA have been also detected against E2o, E2b and E3BP in some patients (Yeaman et al. 1988; 

Surh et al. 1989; Fussey et al. 1991). The exact mechanism of breakdown of self-tolerance 

towards these ubiquitous mitochondrial antigens remains unclear.  

  

As it is not within the remit of this thesis, the reader is referred to the following reviews               

dealing with recent theories to account for the aetiology of PBC (Yeaman et al. 2000; Lindor et 

al. 2009; Poupon 2010). 
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1.6   Project Aims 

Human 2-oxoacid dehydrogenase complexes (PDC, OGDC and BCOADC) are composed                     

of 3 distinct enzymes (E1, E2 and E3). In addition, mammalian PDC has a fourth accessory 

component, termed E3BP, which supports the overall reaction of the PDC by promoting the tight 

binding of E3 to the E2p core. Human OGDC differs significantly from PDC/BCOADC, as it 

does not contain any SBD for E1o or E3 and there is no equivalent to E3BP in this complex. 

Hence, human E2o has a unique structure comprising only two domains (LD and CTD), unlike 

the E2p and E2b.  Since human OGDC has unique subunit organisation and E3 is a common 

component of the 3 complexes, the principal area of research in this project relates to an 

investigation of interactions between human OGDC subunits (E1o, E2o and E3) in order to 

understand complex organisation, stability and assembly.  

 

Previous selective proteolysis and immunological analysis in our laboratory have suggested that 

the N-terminal region of mammalian E1o is important for maintaining the structural integrity of 

the entire complex and may be involved in interacting with both E2o and E3 (Rice et al. 1992; 

McCartney et al. 1998). Therefore, the objectives of this thesis were to determine initially if the               

N-terminal region of human E1o has the ability to interact with E3 and/or E2o and, if confirmed, 

to map the region of E1o involved in subunit binding and thereby establish its role in maintaining 

OGDC integrity.         

 

Initial research (chapter 3) was directed towards the cloning and expression of 9 short N-terminal 

human E1o constructs (60 a.a., 90 a.a. and 153 a.a.) in various forms (His-tag, MBP and GST 

fusion proteins) and cloning/expression of mature human E1o in an E. coli BL21 host system.  In 

addition, both His-tagged E2o and E3 were over-expressed and purified.  
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A crystallography study of E. coli E1o has indicated that it cannot be crystallized unless its                     

N-terminal region (77 a.a.), which appears to be highly-flexible and natively-disordered is 

removed (Frank et al. 2007).  In chapter 4, a preliminary structural characterization of the                      

N-terminal region of human E1o was performed using synthetic peptides, circular dichroism 

(CD) and a basic bio-informatics approach to determine if this region has a tendency to assume a 

stable 3-D conformation similar to the SBDs of E2p, E2b and E3BP. In addition, sequence 

comparison and alignment analysis of the main E1o isoforms was investigated.     

 

The main aim of chapter 4 was to investigate a potential interaction between N-terminal E1o                   

and E3.  To achieve this goal, a range of biochemical and biophysical approaches were applied 

including; peptide array analysis, ala-scanning, native-PAGE, ITC, gel filtration and GST 

affinity chromatography.  A similar series of experiments using N-terminal E1o constructs to test 

their ability to interact with E2o were described in chapter 5.  This chapter also includes a                  

co-expression and interaction study of N-terminal E1o and native E2o to check the possibility 

that the E1o N-terminus co-integrates with E2o in a similar fashion to the way in which E3BP is 

integrated with E2p during or immediately after synthesis. 

 

As a corollary to the main aims of the thesis, inhibition studies (chapter 6) on native bovine 

OGDC/PDC were conducted using N-terminal E1o constructs in order to establish the functional 

significance of the E1o N-terminus in tethering E3 to the native OGDC. A similar study was 

performed using the E3BP-SBD to determine if it had an inhibitory effect on PDC and OGDC 

activity by selective displacement of complex bound E3. 
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Materials and Methods  

 

2.1   Chemicals, enzymes and standard materials 

All routine materials, chemicals, reagents, cells, antibodies, and enzymes used in this study were 

purchased from different suppliers as listed in Table 2.1, Table 2.2 and Table 2.3. 

 

Chemicals / Reagents Supplier 
Bacto-tryptone, bacto-yeast extract, and bacto-agar Formedium Ltd, UK 

Sodium chloride, di-sodium hydrogen phosphate anhydrous, ethanol, 

potassium di-hydrogen phosphate, di-potassium hydrogen phosphate, 

sodium acetate anhydrous, imidazole, magnesium chloride, 

trichloroacetic acid (TCA), sodium dodecyl sulfate (SDS), and acetic 

acid 

VWR (BDH Ltd), UK 

Tris base, sodium hydroxide, EDTA, 40% (w/v) acrylamide, 

methanol, acetone, and sucrose 
Fisher chemicals, UK 

Lipoic acid, ethidium bromide, Tween
®

20, chloramphenicol, 

ampicillin, kanamycin, nicotinamide adenine dinucleotide (NAD
+
, 

oxidized form), nicotinamide adenine dinucleotide (NADH, reduced 

form), pyruvic acid, 2-oxoglutaric acid, Ponceau S dye, glycerol, 

rubidium chloride, Coenzyme A trilithium salt, calcium chloride,                  

3-(N-morpholino) propane sulfonic acid (MOPS), L-glutathione 

reduced, L-cysteine, thiamine diphosphate chloride (ThDP), Ficoll, 

potassium acetate, Coomassie Brilliant Blue G250, phenyl methane 

sulphonyl fluoride (PMSF), N, N, N’, N’-tetramethyl ethylene diamine 

(TEMED), maltose, hydrochloric acid, ammonium persulphate (APS), 

oligonucleotide primers, and bovine serum albumin (BSA)   

Sigma, UK 

Xylene cyanol FF, and sodium azide (NaN3) Fluka, UK 

20 MC metal chelate resin Amersham, USA 

Protease inhibitor EDTA-free, complete protease inhibitor Mini tablets, 

and agarose 
Roche, UK 

Bradford reagent BioRad, UK 

Dithiothreitol (DTT) and isopropyl-β-D-thiogalactopyranoside (IPTG) 
Melford Laboratories            

Ltd. UK 

Thrombin and low molecular mass SDS marker GE Healthcare, UK 

Table 2.1: Chemicals and reagents used in this study 
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Kits/ Columns Supplier 
HiPrep 16/60 Sephacryl S-300 High Resolution column 

Glutathione Sepharose 4B column 

MBP Trap HP column 

ECL western blotting detection kit 

HRP Conjugate kit 

GE Healthcare, UK 

Amicon ultra concentrators (membrane cutoffs of 10 kDa 

 and 30 kDa) 
Fisher chemicals, UK 

1KDa cutoff (2ml) tubes 

Nitrocellulose membrane (ECL Hybond) 
Amersham, USA 

QIAquick gel extraction kit, Blocking kit Qiagen, UK 

Quick Ligation Kit 
New England Biolabs 

(NEB), UK 

Wizard SV DNA Minipreps Kit, restriction enzymes,                       

Calf  intestinal alkaline phosphatase, Taq polymerase, dNTP  and 1kb 

DNA ladder 

Promega, USA 

Expand high fidelity PCR system kit Roche, UK 

Dialysis cassettes/dialysis tubing of various cut off sizes Pierce, USA 

TOPO/ TA kits Invitrogen, UK 

Table 2.2: Kits and columns used in this study 

 

 

Antibodies/Cells Supplier 
 

Anti- His tag antibody 

 

Qiagen, UK 

 

Anti-rabbit IgG secondary antibody 

 

Sigma, UK 

 

Anti-GST Antibody 

 

GE Healthcare, UK 

Polyclonal E3 and E1o antisera (rabbit anti-bovine sera). 
Animal-house, 

University of Glasgow. 

 

E. coli DH5  component cells 

 

Stratagene, USA 

 

E. coli  BL21 (DE3) pLysS strain  

E. coli  BL21 Star (DE3) pLysS strain 

E. coli  TOP10 competent cells 

 

Invitrogen, UK 

 

Table 2.3: Antibodies and cells used in this study 
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2.2     Molecular Biology  

 
2.2.1   Synthetic oligonucleotide primers  

Oligonucleotides for gene amplification by the Polymerase Chain Reaction (PCR) were designed 

in the laboratory to be compatible with the sequence to be inserted and the chosen vector.  All 

PCR primers were ordered from Sigma, UK on the 25 mmol scale (see chapter 3). The 3’ and 5’ 

termini of the primers were typically designed to start with a CG clamp to increase binding 

efficiency.  The CG composition, melting temperatures and secondary structures were checked 

before ordering.  

  

2.2.2    Plasmid vectors  

pET-14b: (4671bp) bacterial (E. coli) expression vector for the production of His-tagged 

recombinant fusion proteins. It contains the gene for ampicillin (Amp) resistance, the T7 

promoter and encodes a six histidine (His) sequence at its 5' terminus followed by a thrombin 

cleavage site, three cloning sites and T7 terminator. The vector was purchased from Novagen 

(Appendix 1). 

 

 

pET-28b: (5368bp) bacterial (E. coli) expression vector for the production of His-tagged 

recombinant fusion proteins. It contains the gene for kanamycin (KanA) resistance, the T7 

promoter, N-terminal histidine sequence, thrombin cleavage site, multiple cloning sites and T7 

terminator. The pET-28b vector housing the E2o construct was already available in the 

laboratory (Appendix 2). 
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pET-30a: (5422bp) bacterial (E. coli) expression vector for the production of His-tagged 

recombinant fusion proteins. It is ampicillin resistant, carries the T7 promoter, thrombin cleavage 

site, T7 terminator and N- and C-terminal poly histidine sequences. The maltose binding protein 

(MBP) cloned into the pET-30a vector was kindly gifted by Dr. Brian Smith, Glasgow 

University (Appendix 3). 

 

pGEX-2T: (4900bp) an E. coli expression vector (ampicillin resistant) for production of 

glutathione S-transferase recombinant fusion proteins containing the tac promoter. The                          

pGEX-2T vector was purchased from Pharmacia (Appendix 4). 

 

 

 

pCR
®
2.1 TOPO

®
: (3900bp): an E.coli expression vector supplied linearized with single                       

3’-thymidine (T) overhangs for TA Cloning with topoisomerase I covalently bound to the vector. 

The pCR®2.1 TOPO® vector was purchased from Invitrogen (Appendix 5). 

 

 

2.2.3     Plasmid propagation and purification 

Recombinant plasmid and vector DNA amplified in E. coli DH5 cells were purified using                

the Wizard
®
 Plus SV Minipreps DNA Purification System (Promega, USA) according to 

manufacturer’s instructions. Briefly, a single colony was picked using a sterile pipette tip,                

added to a 5ml LB overnight culture (see section 2.2.6) and grown with the appropriate       

antibiotic at 37
o
C for 16 h with shaking. The cultures were then centrifuged at 10,000xg for 10 

min. The pellets were re-suspended in Tris-based buffer (10mM EDTA, 100μg /ml RNAse A, 

http://www.gla.ac.uk:443/ibls/staff/staff.php?who=%7CPQQAd
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50mM Tris-HCl, pH 7.8). Cell lysis solution (0.2M NaOH) containing 1% (w/v) SDS was             

added and mixed well to lyse the cells. The mixture was incubated for 5 min in the presence of 

alkaline protease. Neutralising buffer (2.12M acetic acid, 4.09M GdmCl, 0.759M potassium 

acetate) was then added and mixed well to neutralise the solution. The mixture was centrifuged 

at 13,000xg for 10 min in a bench-top centrifuge to pellet out the insoluble material. The DNA 

containing supernatant was applied to a DNA binding column and centrifuged as before. The 

column was washed with 10mM Tris-HCl, pH 7.8, 60% (v/v) ethanol, 60mM potassium acetate 

to remove contaminants before the DNA was eluted using 100μl nuclease free water. Purified 

plasmid was stored at -20
o
C. The quality and quantity of the plasmids was analysed by agarose 

gel electrophoresis. Plasmids used in this study are listed in Table 2.4. 

  

Plasmid Name Vector Insert Source 

E3      His-14b pET-14b Human E3,    aa   1 - 509 A. Brown (2002) 

E2o    His-14b pET-14b Human E2o,  aa   1 - 407  A. Brown (2002) 

E2o    His-28b pET-28b Human E2o,  aa   1 - 407  G. Singh   (2008) 

E2p - GST - XSBD pGEX-2T Human E2p,  aa   166 - 230 A. Brown (2002) 

E1o - 60 - His  pET-14b Human E1o,  aa   11 - 70 A.  Al-Alawy 

E1o - 60 - GST  pGEX-2T Human E1o,  aa   11 - 70 A.  Al-Alawy 

E1o - 60 - MBP pET-30a  Human E1o,  aa   11 - 70 A.  Al-Alawy 

E1o - 90 - His  pET-14b Human E1o,  aa   1 - 90 A.  Al-Alawy 

E1o - 90 - GST  pGEX-2T Human E1o,  aa   1 - 90 A.  Al-Alawy 

E1o - 90 - MBP pET-30a  Human E1o,  aa   1 - 90 A.  Al-Alawy 

E1o - 153 - His  pET-14b Human E1o,  aa   1 - 153 A.  Al-Alawy 

E1o - 153 - GST  pGEX-2T Human E1o,  aa   1 - 153 A.  Al-Alawy 

E1o - 153 - MBP pET-30a  Human E1o,  aa   1 - 153 A.  Al-Alawy 

Full-length E1o  pET-14b Human E1o,  aa   1 - 962 A.  Al-Alawy 

 

Table 2.4: Plasmids used in this study 
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2.2.4     Agarose gel electrophoresis 

Plasmid DNA and PCR products were analysed by agarose gel electrophoresis as described by 

Maniatis and colleagues (Maniatis et al. 1987a). Typically, (0.8% - 2%) (w/v) agarose was 

dissolved in TAE buffer (1mM EDTA, 40mM glacial acetic acid, 40mM Tris-HCl, pH 7.5). The 

gel was placed in an electrophoresis tank. DNA fragment size was determined by use                           

of a DNA ladder (Promega, USA) run in parallel to the unknown sample. In general, 5l                       

DNA samples were diluted by adding 2l loading buffer (15% (w/v) Ficoll, 0.25% (w/v) 

bromophenol blue, 0.25% (v/v) Xylene Cyanol FF). Gel electrophoresis was run at 100 volts (V) 

and 250mA for 50 min to 1 h. Agarose gels were stained for 30 min with ethidium bromide 

(EtBr) in distilled water (1g/ml in dH2O).  DNA samples were visualised under 320nm UV 

light and photographed with a Polaroid DS34 direct screen-imaging camera. 

 

 

2.2.5    DNA extraction and purification from agarose 

Digested plasmid DNA and PCR products were subjected to gel electrophoresis (see section 

2.2.4), then the linear DNA fragments were excised from the gel using a scalpel under UV light 

and purified using a Qiagen gel extraction kit (QIAgen, UK) according to the manufacturer’s 

instructions. DNA was eluted in 50l of elution buffer (10mM Tris-HCl, pH 8.5) and its quality 

and quantity viewed by agarose gel electrophoresis before storing at -20C.  
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2.2.6   Polymerase chain reaction (PCR) 

A putative clone of human E1o cDNA (IMAGE ID 100004510-OCAA-22-D1) obtained from 

Source Bioscience Ltd, UK (100ng) was used as the PCR template to amplify and clone                          

the human full-length E1o DNA into pET-14b, and similarly to clone the 5' end of mature                   

human E1o (1-153 a.a) into pET-14b, pGEX-2T, and pET-30a respectively (see chapter 3).                               

The 5' region of human E1o (1-166 a.a), previously cloned in the laboratory into pET-14b by                    

G. Singh (2008), was used as a PCR template to produce 5' constructs of E1o encoding 60 a.a, 

and 90 a.a segments into pET-14b, pGEX-2T and pET-30a (see chapter 3).   

 

Amplification was carried out in a PTC-100
TM

 programmable thermo-cycler (Genetic Research 

Instrumentation), and the reactions were set up using the Expand High Fidelity PCR System 

(Roche, USA). Typically, PCR was carried out in a 50μL reaction volume containing 0.25mM 

dNTP (mix of dTTP, dCTP, dGTP, and dATP), 1.5-2.0mM MgCl2, 1x PCR buffer, template 

DNA, 2.0U Taq polymerase (Roche), sterile water and 0.2μM of each specific primer (forward 

and reverse). PCR was carried out under reaction conditions of activation, denaturation, 

annealing (temperature defined by the Tm of the primers), and extension at 72
o
C. The annealing 

temperature was calculated as 5
o
C lower than the lowest Tm of the primers used. Tm was 

calculated by the following; (Tm = 2(A + T) + 4(C +G) 
o
C). Typical annealing reactions were 

performed in the range 50 °C to 59 °C. (Details of the PCR cycle times and reaction amounts are 

described in chapter 3). The quality and quantity of PCR product was assessed by agarose              

gel electrophoresis (see section 2.2.4). PCR products were subjected to direct cloning or 

alternatively cloned via TOPO/TA kits (Invitrogen). 
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2.2.7     TOPO TA cloning 

TOPO TA cloning is an efficient one-step cloning strategy for insertion of Taq polymerase-

amplified PCR products into a plasmid vector. The PCR products were generated with a                      

single, 3'-A overhang to each end and ligated into a linearized cloning vector with single, 3'-T 

overhangs using the TOPO TA cloning kit from Invitrogen. The cloning was performed 

according to the manufacturer’s specifications using the pCR2.1-TOPO vector (see section 

2.2.2). 

 

Briefly, a cloning reaction (6μl) was set up in an eppendorf tube containing 2μl fresh PCR 

product, 2μl diluted salt solution (1.2M NaCl, 0.06M MgCl2), 1μl pCR2.1-TOPO vector and                    

1μl sterile H2O before mixing gently and incubating for 20 min at room temperature. It was then 

placed on ice followed by transformation into one shot chemically competent cells (TOP10) 

supplied in the kit (see section 2.3.4). The TOPO cloning vector system was used in the cloning 

of the N-terminal E1o-60 truncate (Ser11-Ala70), N-terminal E1o-90 truncate (Ser1-Val90), and                   

N-terminal E1o-153 truncate (Ser1-Phe153) into pGEX-2T respectively (see chapter 3).  

 

However, the N-terminal E1o-60 truncate (Ser11-Ala70), N-terminal E1o-90 truncate                          

(Ser1-Val90), and N-terminal E1o-153 truncate (Ser1-Phe153) were cloned directly into                       

pET-14b and pET-30a respectively. Mature human E1o cDNA (1-962 a.a) was cloned directly 

into pET-14b (see chapter 3). 
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2.2.8   Digestion of DNA with restriction enzymes and 
ligation 

Restriction digests of plasmids and PCR products were performed using restriction enzymes 

purchased from Promega in accordance with the manufacturer's instructions. The DNA was 

digested with appropriate restriction enzymes either as a step prior to cloning or for diagnostic 

purposes.  Plasmid DNA (40μl) was digested in a reaction containing 8μl of appropriate enzymes 

(10U/μl), and 8l of the appropriate buffer (10x) as provided by the manufacturer. The reaction 

volume was made up to 80μl with sterile dH2O. Digestion was performed in eppendorf tubes and 

carried out at 37C for 4 h.  

 

If a single restriction enzyme was used to digest the plasmid DNA, 2U of calf intestinal 

phosphatase (Promega, USA) was added to the total volume 1 h before the end of the reaction to 

promote dephosphorylation of 5’ termini and prevent re-ligation.  

 

PCR products (30μl) were digested in a total volume of 60μl with appropriate enzymes (10U/μl) 

as described above for 3 h at 37°C. Both digested plasmid and digested PCR products were run 

on a 1-2% (w/v) agarose gel and purified as described in section 2.2.5.  

 

 

 
2.2.9    Ligation 

Ligation reactions were set up using the T4 Quick Ligation Kit from New England Biolabs                   

(UK) according to the manufacturer’s instructions. T4 DNA ligase catalyses phosphodiester 

bond formation between the 5' phosphate and 3' hydroxyl termini of adjacent DNA molecules 
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(Sambrook and Russell 2001). Various ratios of linear plasmid and insert (1:1, 1:3 and 1:5) were 

ligated together including a sample containing the plasmid only as a negative control. The 

reaction was performed in a total volume of 10μl containing 1μl T4 DNA ligase, and 1μl reaction 

buffer (10x). The volume of the reaction was made up to 10μl with sterile dH2O. The reaction 

was incubated overnight at room temperature before transformation into an appropriate strain of 

competent E. coli, either DH5α or TOP10 (Invitrogen, UK), and grown overnight on LB plates 

containing the appropriate antibiotic (Amp) at 37
o
C (see section 2.3.4). Details of the restriction 

enzymes and ligation conditions used in this study are described in chapter 3. 

 

2.2.10  Confirmation of cloning by restriction digestion and 
sequencing 

The correct sequence and orientation of the constructs was confirmed by restriction digestion and 

sequencing. Diagnostic digestion was performed using restriction enzymes employed in          

plasmid construction (see section 2.2.8).  Digests were subsequently analysed by agarose gel 

electrophoresis.  If the inserted fragment was correct, bands would be seen at the appropriate size 

in the agarose gel as illustrated by the DNA ladder. Once recombinant clones were identified 

these were sent for DNA sequencing (University of Dundee) to confirm the exact coding 

sequence. The sequencing results were read and analysed with Chromas software (version; 2.01).  

 

In order to ensure the correct sequence of the full-length E1o construct (2886bp), the following 

sequencing primers were sent with the samples:    
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1
st
 Forward        5'-GATGCTGATCTGGACTCCTCC-3' 

1
st
 Reverse         5'- GGCTTCCCAGAGGACCAGGGC-3' 

 

2
nd

 Forward       5'-GGCATGTATCACCGCAGGATC-3' 

 

2
nd

 Reverse        5'-CTCATACTCAGGCTGGTTGAC-3' 

 
 

 

 
2.3     Bacterial strains 

E. coli DH5  (Stratagene, USA) was used for propagation of plasmid vectors and also carries 

the lac I gene used when performing blue/white screening. 

 

TOP10 Chemically competent cells: (Invitrogen, UK) were used for propagation of plasmid 

vectors and also carries the mcrA mutation that allows methylated DNA not to be recognized as 

foreign. It is a high transformation efficiency strain. 

 
 

E.coli BL21 (DE3) pLysS (Invitrogen, UK) was used for expression of toxic and non-toxic 

recombinant proteins. It contains the λ DE3 lysogen that encodes T7 RNA polymerase to induce 

high level T7 expression and also carries the pLysS plasmid that encodes T7 lysozyme.  

 

E.coli BL21 Star (DE3) pLysS: (Invitrogen, UK) was used for non-toxic recombinant protein 

over-expression. It carries the rne131 mutation resulting potentially in higher protein expression 

than BL21 (DE3) pLysS strains due to the increased stability of mRNA.   
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2.3.1    Bacterial media 

 

Luria Broth (LB): Prepared by dissolving 10g bacto tryptone, 10g NaCl and 5g bacto yeast 

extract per litre of distilled H2O, pH 7.0. The media were autoclaved before use. 

 

LB agar plates: As LB medium with 15g/l of Bacto Agar added before adjusting the pH and 

sterilization. 

 

Super optimal broth with catabolite repression (SOC) medium was prepared by dissolving 

20g bacto-tryptone, 5g bacto yeast extract, 8.6mM NaCl, 2.5mM KCl, and 20mM glucose per 

litre of distilled H2O, pH adjusted to 7.0. The medium was autoclaved before use.  

 

 

Modified-rich LB (Terrific broth)  was prepared by dissolving 1.2% (w/v) bacto tryptone, 

2.4% (w/v) bacto yeast extract, 0.5% (w/v) NaCl, 4.0% (v/v) glycerol, 0.72M K2HPO4 and 

0.17M KH2PO4 per litre of distilled H2O, pH adjusted to 7.0. The medium was autoclaved                  

before use.  

 

 

 

Selection media were prepared with addition of antibiotics (50μg/ml ampicillin, 34μg/ml 

chloramphenicol and 25μg/ml kanamycin) wherever necessary. 
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2.3.2    Preparation of competent cells 

Chemically competent cells were made using the calcium chloride protocol as described by 

Maniatis and colleagues (Maniatis et al. 1987b).  A single colony of the appropriate bacterial                 

E. coli strain was picked and cultured overnight in 5ml LB. This was subcultured into 100ml LB 

and grown at 37C with constant shaking until the optical density (OD600) was about 0.5.  The 

culture was then chilled on ice for 5 min before spinning in an Allegra
Tm

 6R centrifuge at 

3,000xg for 10 min at 4°C in a 50ml sterile Falcon tube. The pellet was gently suspended in 

20ml ice cold sterilized filtered buffer I (10mM CaCl2, 100mM RbCl, 50mM MnCl2, 15% (v/v) 

glycerol, 30mM CH3COOK, pH 5.8). The cells were re-spun as before and the supernatant 

discarded.  By gentle pipetting the pellet was finally re-suspended in 2ml of ice cold sterile 

buffer II (75mM CaCl2, 10mM RbCl, 15% (v/v) glycerol, 10mM MOPS buffer, pH 6.5). The 

solution was then chilled for 15 min on ice and separated into 50μl aliquots prior to storage                       

at -80C until required.   

 

 

 

2.3.3    Bacterial cell storage 

Bacterial strains may be stored for long term use at low temperatures (-80°C) in 30% to 40% 

(v/v) glycerol. Occasionally, the bacterial cells could be stored for short term storage (2-3 weeks) 

on LB plates at 4°C. To recover bacterial strains from -80°C glycerol stocks, a sterile toothpick 

was used to scrape some of the ice and the bacterial cells streaked out on the appropriate 

medium. 
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2.3.4    Bacterial transformation 

Frozen competent E. coli cells (50μl) were removed from the -80°C freezer and thawed on ice at 

room temperature. Plasmid DNA (1-2μl) was mixed with thawed cells and incubated on ice for 

15-30 min before being heat shocked at 42°C for 35s (TOPO10/BL21 star (DE3) pLysS) or 90s 

(DH5α/ BL21 (DE3) pLysS). The cells were then incubated on ice for a further 2 min before 

being mixed with 450μl of warm sterile LB medium or 900μl warm sterile SOC medium and 

incubated at 37°C with continuous shaking for 1 h. Aliquots (100-200μl) of the suspension were 

spread on LB agar plates with the appropriate antibiotics and incubated overnight at 37°C.  All 

steps were carried out under sterile conditions. 

 

 

 

2.4     Protein methods 

 

2.4.1   Protein over-expression 

For overnight cultures (16 h), 50ml LB medium supplemented with the appropriate antibiotic(s) 

(Table 2.5) was inoculated with a single bacterial colony containing the expression plasmid 

picked from a LB agar antibiotic plate and incubated at 37°C, with shaking at 200 rpm. 

  

A 10ml aliquot of the overnight culture was added to 500ml of LB supplemented with the 

appropriate antibiotic(s) and further incubated at 37°C with constant shaking. Protein over-

expression was induced by the addition of 1mM IPTG when the OD600 reached 0.5-0.8 and 

grown for 3-5 h at 30
o
C or overnight at 18

 o
C /15

o
C. For over-expression of E2o, 0.1mM lipoic 

acid was also added to the medium in order to maximise lipoylation. Details of various protein 
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induction temperatures and time intervals employed in this study are described in chapter 3. 

Bacterial cells were harvested in a JA14 rotor in a Beckman J2-21 by centrifugation at 4°C, 

10,000xg for 15min. Pellets were stored at -20°C until further use. In order to monitor bacterial 

growth and protein expression, samples (1ml) were taken before induction (t0) and after the 

induction periods t3, t4 and t16 before harvesting by centrifugation in a bench top microfuge at 

13,000xg for 10 min to pellet the cells. The pellet was re-suspended in Laemmli sample buffer 

(2% (w/v) SDS, 10% (w/v) sucrose, 62.5mM Tris-HCl, pH 6.8 and a small amount of Pyronin Y 

dye), adding 10l per 0.1 OD600 unit of the sample. Over-expression of the relevant protein was 

checked by SDS-PAGE (see section 2.4.3).  

  

Table 2.5: Antibiotics and selection conditions used in this study 

 
 
2.4.2    Protein solubility 

In order to check protein solubility, bacterial cells from small (50ml) cultures were harvested in a 

Beckman Allegra TM 6R centrifuge at 4°C, 3,000xg for 15 min and re-suspended in 3ml  

binding buffer (see chapter 3 for details). The bacterial extract was passed 4 times through                       

a French Pressure Cell (Thermo Electron Corporation, UK) at 950 psi to lyse the cells.                                  

The disrupted cells were then spun in a bench-top centrifuge at 4 °C, 13,000xg for 10 min.                           

The protein supernatant (soluble fraction) and pellet suspension (insoluble fraction) were                            

re-suspended in an equal volume of Laemmli sample buffer. The solubility of the recombinant 

protein was viewed by SDS-PAGE (see section 2.4.3).   

Antibiotic Plasmid Stock solution Selective conditions 

Ampicillin (Amp) pET-14b, pGEX-2T 50 mg/ml in dH2O 50 μg/ml 

Chloramphenicol (Chl) pLysS 34 mg/ml in ethanol 34 μg/ml 

Kanamycin (Kan) pET-28b, pET-30a 25 mg/ml in dH2O 25 μg/ml 
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2.4.3    Polyacrylamide gel electrophoresis (PAGE) 

Polyacrylamide gel electrophoresis (PAGE) techniques are used to separate components of a 

protein mixture based on their size and net charge. It provides high resolution of proteins or 

protein complexes under the appropriate conditions. 

 

 
2.4.3.1    Sodium dodecyl sulphate PAGE (SDS-PAGE) 

Sodium dodecyl sulphate PAGE (SDS-PAGE) was performed as described by Laemmli 

(Laemmli 1970). Proteins were separated under denaturing conditions in the presence of sodium 

dodecyl sulphate (SDS). Using 3% stacking and 10-18% resolving gels (depending on the 

molecular mass of the protein of interest) gels (9 cm x 9 cm x 1.5 mm) were prepared using the 

solutions listed in Table 2.6. 

 

Gels/Buffers Ingredients 

SDS resolving gel 

10-18%  (w/v) acrylamide  

0.1%   (w/v) SDS  

0.1%   (w/v) APS  

0.1%   TEMED 

0.5 M  Tris-HCl buffer, pH 8.8 

SDS stacking gel 

3.0%   (w/v) acrylamide 

0.06% (w/v) SDS 

0.1%   (w/v) APS 

0.1%   TEMED 

0.5 M  Tris-HCl buffer, pH 6.8 

10x SDS running buffer 

0.2M   glycine 

1%      (w/v) SDS 

0.49M Tris-HCl buffer, pH 8.3 

1x Laemmli sample buffer 

Trace of pyronin Y 

2%   (w/v) SDS 

10% (w/v) sucrose 

62.5mM  Tris-HCl buffer, pH 6.8 
 

Table 2.6: SDS-PAGE gel/buffers used in this study 
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Protein samples were resuspended in Laemmli sample buffer, DTT (150mM) and boiled for 5 

min at 100
o
C prior to separation on a 10-18% SDS-PAGE gel depending on the molecular mass 

of the relevant protein. Typically, 5-15μl sample was loaded per well. Protein samples were run 

alongside molecular mass markers to allow estimation of the protein's subunit Mr values.                    

SDS-PAGE was carried out at a constant voltage (400V) and 50mA/gel in 1x SDS running 

buffer (Laemmli 1970). Gels were stained for protein with 0.1% (w/v) Coomassie Brilliant Blue 

G250, 10% (v/v) acetic acid, 50% (v/v) methanol with shaking for 20-30 min at room 

temperature before being de-stained with 10% (v/v) glacial acetic acid, 10% (v/v) methanol 

overnight. 

 

Alternatively, and for superior resolution when necessary, samples were run on pre-cast                                

4-12% NUPAGE


Novex Bis-Tris gradient gels in an XCell SureLock


 Mini-Cell using the                       

2-(N-morpholino) ethane sulfonic acid (MES) buffer (0.1% SDS, 1mM EDTA, 50mM MES,  

50mM Tris-base, pH 7.3) supplied by Invitrogen.  Proteins were separated at 180-200V and 

120mA for 1 h.  The preparation of protein samples and staining/de-staining procedures were 

performed as described above. 

 

 

2.4.3.2    Non-denaturing gel (native PAGE) 

While in SDS-PAGE, protein separation depends mainly on molecular mass, in native PAGE the 

separation depends on both the protein's net charge and its size. Native PAGE was performed in 

a similar manner to SDS-PAGE without the presence of SDS in the gels, sample buffer or 

running buffer. The samples were not boiled prior to analysis. 
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Proteins were resolved under non-denaturing conditions using the method of Bollag and 

colleagues (Bollag et al. 1996a). Each gel comprised a 5% stacking gel and a 6-10% resolving 

gel depending on the protein of interest. Gels and buffers, prepared for making native PAGE gels 

are listed in Table 2.7.   

 

Gels/Buffers Ingredients 

4x Resolving gel 

6-10% (w/v) acrylamide  

0.1%   (w/v) APS  

0.1%   TEMED 

1.5 M  Tris-HCl buffer, pH 8.8 

4x Stacking gel 

5.0%   (w/v) acrylamide 

0.1%   (w/v) APS 

0.1%   TEMED 

0.5 M  Tris-HCl buffer, pH 6.8 

10x Running buffer 
192mM   glycine 

25mM     Tris-HCl buffer, pH 8.8 

5x Sample buffer 

0.05% (w/v) Bromophenol blue  

50% (v/v)  glycerol 

312.5mM  Tris-HCl buffer, pH 6.8 

 

Table 2.7: Native-PAGE gels/buffers used in this study 

 

 

Typically samples were re-suspended in 1x sample buffer with subsequent loading of samples 

onto the gel. Electrophoresis was carried out at constant voltage (100V) and 10mA/gel in 1x 

running buffer for 4-6 h. The gels were viewed after staining with Coomassie Brilliant Blue dye 

as described above (see section 2.4.3.1).   
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2.4.4       Protein purification 

Details of all buffers used during protein purification are described in chapter 3. 

 

2.4.4.1     Bacterial cell disruption 

The pelleted bacteria were re-suspended in appropriate binding buffer (see chapter 3) in the 

presence of complete EDTA-free protease inhibitors (Roche, UK). Cells were disrupted by 4 

passes through a French pressure cell at 950 psi (see section 2.4.2). The disrupted cells were then 

spun in a JA-17 rotor in a Beckman J2-MC centrifuge at 4
o
C, 10,000xg for 15 min to remove 

non-soluble material.  

 

2.4.4.2     Purification of His-tagged proteins 

Recombinant proteins over-expressed with His-tag were purified by metal chelate affinity 

chromatography on a BioCAD SPRINT
TM

 workstation (Applied Biosystems, USA) using a MC 

POROS 20 psi column (Applied Biosystems, USA; 7.8ml column volume (CV). The column 

was initially washed with 5 CV strip solution (50mM EDTA, 1M NaCl) to remove any 

remaining metal ions from a previous purification, followed by 5 CV dH2O.  The flow rate was 

kept constant at 10 ml/min.  Zinc ions (100mM ZnCl2) were loaded onto the column (30 CV) at 

pH 4.5 to minimize precipitation of metal hydroxide complexes. To remove excess zinc ions, the 

column was washed with 5 CV dH2O followed by 5 CV 0.5M NaCl. Prior to protein loading, the 

column was equilibrated with 5 CV elution buffer (100mM NaCl, 500mM imidazole, 50mM 

KH2PO4, pH 6.0) followed by 10 CV binding buffer (100mM NaCl, 10mM imidazole, 50mM 

KH2PO4, pH 8.0).  
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The cell lysates (20ml) (section 2.4.4.1) were then applied to the column in 5ml aliquots and                          

the column washed thoroughly in binding buffer. After the final injection the column was 

washed with 8 CV of binding buffer. The bound protein was eluted from the column in a                            

0-100% gradient of elution buffer (8 CV). Elution fractions (2ml) were collected and analysed by 

SDS-PAGE.  Peak fractions were then pooled and either subjected to dialysis or concentrated for 

further use.  The column was cleaned after use with 2 CV strip buffer (50mM EDTA, 1M NaCl) 

followed by 0.5M NaCl and dH20. The column was stored in 20% (v/v) ethanol at room 

temperature.  

 

 

 

 

2.4.4.2.1     Cleavage of His-tag 

Purified His-tagged proteins were dialysed against appropriate buffer and concentrated (see 

section 2.4.5). Cleavage of the His-tag was achieved by adding 10 U thrombin (GE Healthcare, 

UK; supplied as a powder) per mg of protein and incubated with gentle shaking either at room 

temperature overnight or at 37 °C for 2-16 h. The quality of cleaved protein was determined by 

SDS-PAGE analysis (see section 2.4.3.1). 

 

 

2.4.4.3      Purification of GST-tagged proteins 

The purification of GST fusion proteins was achieved by using a glutathione Sepharose                       

4B column with bed volume 5ml (GE Healthcare, UK), attached to a BioCAD 700E
TM

 

workstation (Applied Biosystems, USA). The column was initially washed with 5 CV dH2O and 

then equilibrated with PBS (140mM NaCl, 2.7mM KCl, 10mM Na2HPO4, and 1.8mM KH2PO4,                   
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pH 7.3) at 2.5ml/min.  Protein samples (20ml) (see section 2.4.4.1) were passed through the 

column followed by 5 CV of PBS at a rate of 1.5 ml/min. To minimise non-specific binding, the 

column was washed with 12 CV PBS until a zero baseline was achieved. Protein was eluted from 

the column using 5 CV elution buffer (20mM reduced glutathione, 50mM Tris-HCl, pH 8.0).  

Elution fractions (2ml) were collected, analysed by SDS-PAGE (see section 2.4.3.1) and 

dialysed for further experiments. 

 

 
2.4.4.3.1     Removal of GST 

GST was removed from GST fusion proteins by thrombin cleavage. Purified protein (see section 

2.4.4.3) was buffer exchanged into PBS buffer by concentration (see section 2.4.5). Thrombin 

was added at 10 U per mg protein and incubated at room temperature overnight. To confirm the 

cleavage, a number of samples were taken at various time intervals and viewed by SDS-PAGE 

(see section 2.4.3.1). 

 

 

2.4.4.4    Purification of maltose binding proteins (MBP) 

Maltose binding protein (MBP) affinity chromatography used to purify recombinant proteins 

tagged with MBP was carried out using a BioCAD 700E
TM

 Workstation (Applied Biosystems, 

USA).   A MBP Trap HP column (GE Healthcare, UK, bed volume, 5ml) was equilibrated with 6 

CV binding buffer (200mM NaCl, 1.0mM EDTA, 20mM Tris-HCl, pH 7.4) at 2.5ml/min. 

Samples (20ml) were loaded at a rate of 1.5ml/min. The column was then washed with 10 CV 

binding buffer until the baseline returned to zero. The bound protein was eluted by washing the 
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column with 5 CV elution buffer (15mM maltose, 200mM NaCl, 1mM EDTA, 20mM                    

Tris-HCl, pH 7.2) and fractions (2ml) were collected. The peak fractions were concentrated and 

visualised by SDS-PAGE after staining with Coomassie Brilliant Blue (see section 2.4.3.1).  

 

Column regeneration was achieved by stripping with 5 CV 0.5M NaOH followed by an extended 

wash with dH2O.  The column was stored in 20% (v/v) ethanol at 4
 o
C for further use. 

 

 

2.4.4.5      Gel filtration chromatography (GFC) 

Gel filtration chromatography (GFC) or size exclusion chromatography is based on the ability of 

the gel filtration media to separate molecules according to size.  A 120ml bed volume HiPrep 

16/60 Sephacryl S-300 High Resolution column (GE Healthcare, UK) attached to a BioCAD 

700E
TM

 workstation (Applied Biosystems, USA) was equilibrated at room temperature with                          

2 CV of appropriate buffer at a flow rate of 1ml/min (see chapter 3). Typically, 1ml concentrated 

sample (see section 2.4.5) was injected onto the column at a flow rate of 1ml/min. Peak fractions 

were collected as 1ml fractions in running buffer at a flow rate of 1ml/min and visualised by 

SDS-PAGE (see section 2.4.3.1).  

 

The column was cleaned after use with 0.1 CV 200mM NaOH followed by 2 CV dH20 and 

stored in 20% (v/v) ethanol at room temperature for longer periods. 
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2.4.4.6      Purification of PDC and OGDC from bovine heart 

PDC and OGDC from bovine heart were available in the laboratory (see chapter 6).  Both 

complexes were purified as described by Stanley and Perham (Stanley and Perham 1980) with 

some modifications (De Marcucci and Lindsay 1985a). Bovine PDC and OGDC were stored at 

concentration of 10mg/ml in 50% (v/v) glycerol at -20°C. 

 

 
2.4.5       Dialysis and protein concentration 

In order to match/exchange buffers for biophysical experiments, proteins were dialysed against 

4-5L of the buffer of choice overnight at 4°C with continual stirring on a magnetic stirrer and                      

a minimum of 3 buffer changes at 2 h time intervals. Dialysis was carried out using either 

dialysis tubing or dialysis cassettes (Pierce, USA) with an appropriate molecular mass cut off 

(10,000 MWCO) for the majority of experiments.  Dialysis cassettes were employed according 

to manufacturer’s instructions. Dialysis tubing membrane (size 9, diameter 1.125") was obtained 

from Pierce, USA and prepared as described by Bollag and colleagues (Bollag et al. 1996b). 

Alternatively, for low molecular mass proteins e.g. truncated N-terminal E1o (60 a.a.), 1KDa 

cutoff (2ml) tubes (supplied by Amersham, USA) were used according to the manufacturer’s 

instructions. 

 

Peak fractions following protein purification (see section 2.4.4) were pooled and concentrated 

using Amicon ultra concentrators with appropriate molecular mass cut offs (1KDa, 10kDa and 

30kDa) supplied by Fisher chemicals, UK.  Samples were centrifuged at 3,000xg in a Beckman 

Allegra 
Tm

 6R centrifuge at 4
o
C for 3-6 h until the desired volume was achieved. 
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2.4.5.1     Precipitation and concentration of protein by acetone 

Appropriate protein concentration is essential for obtaining good results in SDS-PAGE. Acetone 

precipitation was employed for rapid protein concentration on occasions. Three volumes of ice-

cold acetone were added to 200l sample protein and kept for 20 min on ice. The sample was 

centrifuged at 13,000xg, 4 
o
C for 6 min, the supernatant was discarded and the pellet air dried. 

For SDS-PAGE, the pellet was suspended in 20-50l Laemmli sample buffer. 

 

 

2.4.6      Determination of protein concentration 

Protein concentration was measured by absorbance of the protein at 280nm and its molar 

extinction coefficient (ε) (see section 2.4.6.2).  Alternatively, protein concentration was 

determined by the Bradford method (Bradford 1976) (see section 2.4.6.3).   

 

 

2.4.6.1     Spectrophotometric equipment 

Bacterial growth OD600 was measured using an Ultrospec 4300 pro UV/visible 

spectrophotometer in disposable plastic cuvettes. In addition, OGDC/PDC activity, inhibition 

assays (see chapter 6) and protein concentration on occasions were measured using a Shimadzu 

UV-2101 PC scanning spectro-photometer in UV quartz cuvettes (1ml, 10mm path-length, 

Jencons, USA). 
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2.4.6.2       Protein absorbance 

Routinely, an Ultrospec 4300 Pro UV/visible spectrophotometer was used to determine protein 

absorbance at 280nm. Since E3 contains FAD, its estimation was carried out using the FAD 

extinction coefficient at 450nm. The molar extinction coefficient (ε) of the majority of                         

protein constructs was determined by computing the protein sequence in the EXPASY suite 

(http://expasy.org/tools/protparam.html).  

 

The molar concentration of the protein was calculated by dividing the measured protein 

absorbance at 280nm or at 450nm (in the case of E3) by the extinction coefficient, whereas the 

protein concentration in (mg/ml) was calculated by multiplying the molar concentrations by the 

respective molecular mass of the protein. To check for DNA or RNA contamination, the 

A280:A260 ratio of the protein was monitored.  The molecular masses and extinction coefficients 

of proteins used in this study are listed in Table 2.8. 

 

 

 

 

 

 

 

 

 

 

http://expasy.org/tools/protparam.html
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Protein Plasmid vector 
Extinction coefficient 

 (M
-1

cm
-1

) 

Subunit                      

molecular mass (Da) 

E3    His-tag pET-14b 11,300 (FAD) 52,885 

E2o  His-tag pET-14b 11,585 43,585 

E2o  His-tag pET-28b 11,585 43,585 

E3BP-SBD   GST pGEX-2T 43,110 33,428 

E1o-60   His-tag pET-14b 15,470 9,021 

E1o-60   GST pGEX-2T 58,580 32,776 

E1o-60   MBP pET-30a 81,820 47,305 

E1o-90   His-tag pET14b 15,470 11,984 

E1o-90   GST pGEX-2T 58,580 35,944 

E1o-90   MBP pET-30a 81,820 50,474 

E1o-153  His-tag pET-14b 18,450 18,858 

E1o-153  GST pGEX-2T 61,560 42,856 

E1o-153  MBP pET-30a 84,800 57,372 

E1o   His-tag pET-14b 122,825 111,175 

wt  GST pGEX-2T 43,110 26,311 

wt  MBP pET-30a 66,350 40,838 

Cleaved E1o-60 -- 15,470 6,485 

Synthetic Pep.: 1 -- 8,480 2,847 

Synthetic Pep.: 2 -- 6,990 2,721 

Synthetic Pep.: 3 -- 15,470 7,041 

Table 2.8: Molecular mass and extinction coefficients of proteins used in this study 
wt, wild-type. 
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2.4.6.3       Bradford method 

The Bradford method (Bradford 1976) was also performed to determine protein concentration. 

Standard curves were plotted by using increasing concentrations of BSA (Sigma, UK). Unknown 

protein samples and standards were diluted in dH2O followed by adding 1ml Bradford reagent 

(BioRad, UK) (0.01% (w/v) Coomassie Blue G250, 5% (v/v) H3PO4 and 5% (v/v) ethanol) that 

complexes with the protein of interest.  Samples were incubated at room temperature for 10 min 

prior to detection at 595 nm using a Shimadzu UV-2101 PC scanning spectrophotometer. 

 

 

 

 

2.4.6.4       OGDC/PDC assays 

Assay of overall OGDC and PDC activity was performed according to the method of Brown and 

Perham (Brown and Perham 1976). Assays were carried out at 30 

C in plastic cuvettes. 

Typically, 10μg complex (OGDC or PDC) was added to the mixture containing 670μl solution A 

(3mM NAD
+
, 2mM MgCl2 , 0.2mM ThDP and 50mM potassium phosphate buffer, pH 7.6) and 

14μl solution B (130mM cysteine-HCl and 6.8mM CoASH). The assay was initiated by addition 

of 14μl solution C (100mM 2-oxoglutarate for OGDC assays or 100mM pyruvate for PDC 

assays) and mixed rapidly. The OGDC and PDC activities were measured by monitoring NADH 

formation at 340nm using a Shimadzu UV-2101 PC scanning spectrophotometer. Activities were 

expressed as U/ml, where one unit (U) of activity is defined as the amount of enzyme required to 

convert 1μmol of substrate to product per minute under the conditions of the assay. Details of all 

buffers used for inhibition of OGDC and PDC activities using N-terminal E1o and E3BP-SBD 

constructs are described in chapter 6. 
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2.4.7       Western blotting 

Proteins to be immunoblotted were resolved by SDS-PAGE and transferred electrophoretically 

onto nitrocellulose membrane (ECL Hybond, Amersham) in the presence of transfer buffer 

(192mM glycine, 20% (v/v) methanol, 25mM Tris-HCl, pH 7.3) at 30 V, 200mA for 2 h using 

Cell II™ blotting system supplied by Invitrogen. After transfer the nitrocellulose membrane was 

stained with Ponceau S dye (Sigma, UK) to allow the visualization of the transferred proteins. 

The nitrocellulose membrane was then washed with dH2O to remove stain prior to 

immunoblotting. At this step, the immunoblotting methodology differs slightly depending on the 

primary antibody as described below.   

 

 

 

2.4.7.1     Anti-His-tag antibody 

The nitrocellulose membrane was blocked overnight with Qiagen blocking buffer (0.1g blocking 

powder, 1ml blocking reagent buffer, 1% (v/v) Tween-20) at 4 °C with continuous shaking in 

order to prevent non-specific binding. The membrane was then washed 3 x 10 min in TBST 

buffer (150mM NaCl, 0.1% (v/v) Tween-20, 50mM Tris-HCl, pH 7.4). The wash buffer                      

was discarded and the membrane incubated with a 1:2000 dilution of the QIAexpress                  

Penta-His HRP conjugate antibody (Qiagen, UK) for 2 h with shaking at room temperature. 

QIAexpress Penta-His antibody was already conjugated with horseradish peroxidase; therefore 

no secondary antibody was required.  At this point, extensive washes with TBST were performed 

to remove any unbound antibody.   
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Detection was carried out using enhanced chemiluminescence (ECL western blotting detection 

kit) (GE Healthcare, UK) as per the manufacturer’s instructions. Chemiluminescence was then 

visualised using X-ray film (Kodak, UK). Exposure times were typically 1min. 

 
 

 

2.4.7.2       Anti-GST antibody 

Following protein transfer, membranes were blocked overnight with Qiagen blocking buffer                

at 4 °C with continuous shaking.  The membrane was then incubated with a 1:5000 dilution                           

of the anti-GST HRP conjugate antibody (GE Healthcare, UK) for 1 h with shaking at room 

temperature.  After that the membrane was washed three times in TBST buffer for 10 min each 

time to remove excess antibody. As anti-GST antibody has the secondary horseradish peroxidase 

(HRP) antibody attached to it, no secondary antibody is required.   Protein blots were developed 

using the ECL western blotting detection kit (GE Healthcare, UK) according to the 

manufacturer’s instructions and exposed on X-ray film (Kodak, UK). 

 

 

2.4.7.3       Other antibodies 

After transferring protein onto the nitrocellulose membrane, the membrane was incubated 

overnight with blocking buffer (15mM NaCl, 5% (w/v) non-fat dried milk, 0.25% (v/v)                            

Tween-20, 20mM Tris-HCl buffer, pH 7.2) at 4°C with continuous shaking. The nitrocellulose 

membrane was then washed 3 x 5 min in TBST buffer. Primary antibody (polyclonal anti-bovine 

E3 or E1o rabbit anti-bodies) and secondary antibody (anti-rabbit IgG) incubation was carried 

out in TBST buffer containing 5% (w/v) non-fat dried milk. Membrane was incubated with the 
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primary antibody for 1 h on a shaker at room temperature at a 1:1000-3000 dilution. The 

nitrocellulose membrane was then washed 3 x 5 min in TBST buffer in order to remove unbound 

primary antibody. The anti-rabbit IgG secondary antibody (Sigma, UK) was applied (1:20,000 

dilution) for 1 h at room temperature with continuous shaking. This was followed by 4 wash 

cycles of TBST buffer, each for 10 min time intervals. Protein blots were developed using the 

ECL western blotting detection kit (GE Healthcare, UK) according to the manufacturer’s 

instructions and exposed on the X-ray film (Kodak, UK). 

 

 

 

2.4.7.4       Stripping the nitrocellulose membrane 

Following detection of proteins by ECL, nitrocellulose membranes can be stripped of bound 

antibody and re-probed with a different antibody. The membrane was washed 3 x 10 min in 

TBST buffer at room temperature. The wash buffer was discarded and the membrane was 

incubated with the stripping buffer (0.1% (w/v) SDS, 1% (v/v) Tween-20, 200mM glycine,                    

pH 2.2) at room temperature with continuous shaking.  At this stage the membrane was 

incubated with PBS (130mM NaCl, 27mM KCl, 4.3mM Na2HPO4, 1.4mM KH2 PO4 , pH 7.4)                    

at room temperature with continuous shaking. The nitrocellulose membrane was then washed                   

3 x 5 min in TBST buffer in order to prepare the membrane for the next immunoblot. 
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2.4.8       Peptide Arrays 

Peptide libraries were produced by automatic SPOT synthesis and synthesised on continuous 

cellulose membrane supports on Whatman 50 cellulose membranes using Fmoc-chemistry                       

with the AutoSpot-Robot ASS 222 (University of Glasgow). Nitrocellulose membrane was 

equilibrated in absolute ethanol followed by shaking for 10 min and washing with TBST buffer 

(150mM NaCl, 0.1% (v/v) Tween-20, 50mM Tris-HCl, pH 7.4) at room temperature. Excess 

binding sites were blocked by immersing the nitrocellulose membrane in Qiagen blocking buffer 

(0.1g blocking powder, 1ml blocking reagent buffer, 1% (v/v) Tween-20) for 2 h at room 

temperature.  

 

Protein was added (10-15g/ml) with shaking overnight in the cold room. The membrane                    

was washed three times with TBST buffer, each for 15 min. After these washes, the membrane 

was incubated with a 1:2000 dilution of the QIAexpress Penta-His HRP conjugate antibody 

(Qiagen, UK) at room temperature for 2 h (in the case of anti-His tag antibody which is already 

conjugated with horseradish peroxidase, no secondary antibody is required). Excess antibody 

was removed by several changes of TBST buffer after incubation for 10 min at room temperature 

with shaking.   

 

Detection of immune complex was carried out according to the manufacturer’s instructions 

employing the ECL western blotting reagents kit (GE Healthcare, UK). 
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2.4.9      Synthetic Peptides 

Synthetic peptides used in this study corresponding to segments of the N-terminal region of E1o 

were obtained from Genscript, UK. Synthetic peptides were synthesized by GenScript's 

FlexPeptide
TM

 technology.  In addition, a 65-meric peptide corresponding to amino acids Ser11 

to Glu75 of the E1o N-terminal region was purchased from LifeTein LLC., USA.  Synthetic 

peptide purity (>90%) was confirmed by mass spectrometry and analytical HPLC. Stock 

concentrations (>10 mg/ml) of the peptides were prepared in the buffer of choice by vigorous 

pipetting, and the working concentrations prepared by further dilution. The synthetic peptides 

used in this study are listed in Table 2.9. 

 

 
 

 

Synthetic 

peptides 
Sequence 

Number of 

amino acids 

Molecular 

mass (Da) 
Purity  

Synthetic Pep. 1 
SGTSSNYVEEMYCAWLENPKSV

HKS 

25 2,847 95 % 

Synthetic Pep.  2 WDIFFRNTNAGAPPGTAYQSPLP

LS 

25 2,721 98% 

Synthetic Pep.  3 

SGTSSNYVEEMYCAWLENPKSV

HKSWDIFFRNTNAGAPPGTAYQ

SPLPLSRGSLAAVAHAQSLVE 

65 7,041 91% 

 
Table 2.9: Synthetic peptides used in this study 

 

 

 

 

 

 

http://www.genscript.com/peptide_tech.html
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2.5        Biophysical methods 

 

2.5.1      Circular dichroism (CD) 

Circular dichroism was used to perform secondary structural characterisation of peptides 

covering the N-terminal region of E1o. CD measures differences in the absorption of                         

left-handed polarized light versus right-handed polarized light which arise due to structural 

asymmetry.  Proteins were dialysed against 20mM KH2 PO4 buffer, pH 7.5 overnight at 4 °C and 

protein concentrations adjusted as required. CD experiments were performed at room 

temperature on a Jasco J-810 spectro-polarimeter scanning the spectra in the far and near UV 

regions at a scan speed of 50nm/min and a bandwidth of 1nm.  All CD experiments were 

performed and analysed in collaboration with Dr. S. Kelly, University of Glasgow.  

 

 

 

2.5.2     Isothermal titration calorimetry (ITC) 

 

Isothermal titration calorimetry (ITC) is a quantitative method for analyzing molecular 

interactions (affinity, thermodynamics and stoichiometry). ITC measures the heat absorbed or 

heat released due to the binding reaction between the molecules under investigation. This 

straightforward technique allows for direct determination of a complete thermodynamic profile 

comprising changes in enthalpy (ΔH
o
), entropy (ΔS

o
), and in Gibbs free energy (ΔG

o
), 

stoichiometry of binding (N) and association constant (Ka). The ΔG
o
 is calculated from the Gibbs 

equation ΔGo = –RTlnKa    or    ΔGo = ΔH
o
 – TΔS

o
. 
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Briefly, ITC experiments are performed using a method of titration where the ITC instrument 

consists of two cells (reference cell and sample cell) are contained within an adiabatic jacket and 

a syringe containing a ligand that is injected into a sample cell. A series of injections (approx. 28 

injections), 10μl each are performed at 3 min time-intervals.  Protein concentration in the syringe 

was 15-20 fold more concentrated than the cell sample protein. During the injection of the                                  

protein into the sample cell, heat is released or absorbed depending on whether the reaction is 

exothermic or endothermic and the heat signal will approach zero when the saturation is 

achieved. Titrations of protein into buffer as a control reaction were performed and subtracted 

from the integrated binding data. The peak of each injection is related to the heat change 

associated with the reaction. Fitting of the isotherm gives the complete thermodynamic profile 

parameters. 

  
 

ITC was used to determine the affinity and ratio of binding between E2o, E3 and/or N-terminal 

E1o constructs as described by Jung and colleagues (Jung et al. 2002). ITC experiments were 

carried out in a VP-ITC microcalorimeter (MicroCal Inc., USA).  

 

All proteins were dialysed overnight against the buffer of choice. Data were analysed using non-

linear regression in the MicroCal ORIGIN software package, assuming a simple binding model. 

ITC experiments and analyses were performed in collaboration with Mrs. Margaret Nutley, 

University of Glasgow. 
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2.5.3      Mass spectrometry 

Mass spectrometry is a useful tool for biochemical research. It is an analytical technique used to 

measure the mass-to-charge ratio of proteins. It gives accurate molecular mass measurements 

that help to confirm the purity of the samples. Mass spectroscopy analysis was carried out by the 

Astbury centre, University of Leeds, UK. Samples were prepared by dissolving protein                       

(50-100μM) in 20mM ammonium acetate, pH 7.5. 

 

 

 

2.6       Bioinformatic methods 

 

2.6.1     Database screens 

NCBI (http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein), Prosite (http://prosite.expasy.org), 

Pfam (http://www.sanger.ac.uk) and SSDB (http://www.kegg.jp/kegg/ssdb/) databases were used 

for screening human proteins, isoforms and motifs and were sorted according to their species of 

origin. 

 

 

2.6.2      Blast searches 

In order to search for protein homology and sequence similarity, BLASTP online software with 

parameters (Human, database: non-Ref seq. protein, expect=0.001, filter: default, compare 

protein sequence) of the NCBI-BLAST suite (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used.   

    

 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein
http://prosite.expasy.org/
http://www.sanger.ac.uk/
http://www.kegg.jp/kegg/ssdb/
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2.6.3      Sequence alignments 

Sequence comparison and alignments between two sequences were computed using LALIGN 

(http://www.ch.embnet.org/software/LALIGN_form.html) with settings (Alignment method: 

local, number of reported sub-alignments:3, matrix: default, opening gap penalty: -14, extending 

gap penalty:-4). Alignment of multiple sequences was carried out using the ClustalW2                     

program (http://www.ebi.ac.uk/Tools/msa/clustalw2/) with default settings and sequences 

submitted in FASTA format.   

 

2.6.4      Protein structure predictions 

To predict the possible 3D structure of the E1o N-terminal region that has no apparent                                

sequence similarity to the SBDs of E2p, E2b and E3BP-PDC, on-line platforms                                     

for protein structure predictions I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/)                

and SWISS-MODEL (http://swissmodel.expasy.org) were employed.   

 

A 3D model structure was also built based on multiple-threading alignments by LOMETS 

(http://zhanglab.ccmb.med.umich.edu/LOMETS/). Amino acid sequences were supplied in 

FASTA format. Alignment of structures was carried out using the TM-align program 

(http://zhanglab.ccmb.med.umich.edu/TM-align/) and structures submitted in pdb format. 

 

 

 

http://www.ch.embnet.org/software/LALIGN_form.html
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://swissmodel.expasy.org/
http://zhanglab.ccmb.med.umich.edu/LOMETS/
http://zhanglab.ccmb.med.umich.edu/TM-align/
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2.7         Data analysis 

Statistical analysis of the data and graph production in chapter 6 were performed on a personal 

computer using the stat-graphics computer software EXCEL (ver. 2007 for Windows, Microsoft 

Office) to obtain the standard deviation (SD), standard error (SE), standard error of the mean 

(SEM) and student t-test.  Assays were carried out in triplicate. Student t-test values were 

represented as the significance of the difference between two groups of samples.  
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Cloning, protein over-expression and 
purification 

 
3.1    Introduction 

Recombinant DNA technology is a powerful approach in the study of molecular biology. It has 

proved to be an ideal biological tool for the production and investigation of specific proteins in 

biology or biomedical science and has many practical applications in medicine, industry and 

agriculture.  For example, a large number of medically- important proteins are now produced in 

this way and have replaced their animal equivalents in the treatment of human diseases e.g. 

human follicle-stimulating hormone (Loumaye et al. 1995), human growth hormone (Goeddel et 

al. 1979a), insulin (Goeddel et al. 1979b) and somatostatin (Itakura et al. 1977).  

 

To achieve stabilisation and/or facilitate purification of recombinant proteins in E. coli, several 

affinity tags have been produced including his-tags (His), glutathione S-transferase (GST), 

maltose binding protein (MBP) and calmodulin binding protein (CBP). Use of MBP is based on 

its affinity for amylose on chromatography resins. The pGEX-2T vector contains a GST tag                   

(26 kDa polypeptide) attached to the N- or C-terminus of the target protein and binds glutathione 

on affinity columns. MBP and GST tags have been employed routinely to increase the solubility 

of small proteins or individual domains expressed in E. coli. His tags are sequences of 6-10 

histidine residues attached to the N- or C-terminus that can bind metal ions  (Ni
2+

, Zn
2+

 or Co
2+

) 

exploiting the high affinity of imidazole for these ions (Lindner et al. 1992).  His tags have also 

been known to increase the overall solubility of the protein and improve protein folding. The 

pET-14b plasmid is a powerful system developed for expression of recombinant proteins in                   

http://en.wikipedia.org/wiki/Growth_hormone
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E. coli. It has a T7 promoter and encodes a six histidine (His) sequence at its 5' terminus 

followed by a thrombin cleavage site, three cloning sites and a T7 terminator. Recombinant 

protein expression is dependent on the cell strain and several conditions e.g. composition of the 

medium, temperature and the sequence of the protein under investigation. Bacterial strains 

demonstrate a higher degree of recombinant protein tolerance than mammalian cells. Expression 

at 30-37 
o
C often produces maximum yields of protein, although there is a greater tendency to 

form inclusion bodies caused by aggregation and improper protein folding.       

 

Human OGDC and PDC are major multi-enzyme assemblies that control vital committed steps 

in carbohydrate metabolism. The subunit organization of OGDC is the least studied and most 

poorly understood compared to PDC and BCOADC. Most previous studies have employed 

native complex purified from various organisms; however, the separation of individual 

components has proved difficult owing to the tight association of E1o with the E2o core. 

Moreover, the components of 2-oxoacid dehydrogenase complexes (OGDC, PDC, and 

BCOADC) are all encoded by the nuclear genome and transported post-translationally to 

mitochondria prior to assembly (Thekkumkara et al. 1988; Maas and Bisswanger 1990; Wang et 

al. 2002). To resolve difficulties in simulating and studying assembly using the native complex, 

access to recombinant proteins is increasingly able to resolve many of these challenges.  

 

For example, individual recombinant PDC enzymes have been successfully over-expressed                          

in E. coli  and subsequently purified and reconstituted to yield fully-active complex (unpublished 

data, G. Singh, 2008) with a similar specific activity to native human heart PDC (Palmer et al. 

1993). Previously, constituent components of PDC had been successfully produced by 
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recombinant DNA technology on several occasions (Leung et al. 1990; Quinn et al. 1993; Ciszak 

et al. 2001; Ciszak et al. 2003; Hiromasa et al. 2004; Smolle et al. 2006). However, a 

mammalian OGDC recombinant model has not yet been established owing to difficulties in 

producing active full-length E1o, although recombinant E2o from various organisms have been 

successfully over-expressed (Berg et al. 1995; Ricaud et al. 1996; Knapp et al. 1998; Jones et al. 

2000; Koike et al. 2000; Suzuki et al. 2002; Nakai et al. 2008). 

 

Human OGDC is built around a 24-meric E2o ‘core’ enzyme, to which multiple copies of E1o 

and E3 bind tightly but non-covalently. It differs significantly from PDC/BCOADC, as it does 

not contain any SBD for E1o or E3 and there is no equivalent to E3BP in this complex. Hence, 

human E2o has a unique structure comprising only two domains (LD and CTD), unlike E2p and 

E2b (Reed and Hackert 1990; Perham 1991; Wallis et al. 1996; Sanderson et al. 1996a; Knapp et 

al. 1998; Frank et al. 2005). Previous selective proteolysis and immunological analysis in our 

laboratory has suggested that the N-terminal region of mammalian E1o may be important for 

maintaining the structural integrity of the OGDC by interacting with both E2o and E3 (Rice et al. 

1992; McCartney et al. 1998). Therefore, the major objective of this thesis is to investigate the 

role of E1o N-terminal region in maintaining the structural integrity of the OGDC and to 

map/identify the precise region thought to be involved in maintaining
 
critical contacts with E3 

and possibly also E2o.  

 

The main purpose of this chapter is to describe the cloning, expression and purification                                     

of 9 short E1o N-terminal constructs based on peptide array data (chapter 4). Three are in                         

His-tag form (60, 90 and 153 a.a.s), three produced as GST-fusion proteins (60, 90 and 153 a.a.s) 
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and three as MBP-fusion proteins (60, 90 and 153 a.a.s) corresponding to the putative binding 

regions for E2o/E3 interaction in order to obtain a better understanding of the subunit 

organisation of this complex. Subsequently, the recombinant proteins purified in this                         

chapter were tested for their ability to bind to E2o and E3 both in vitro and in vivo (chapter 4 & 

chapter 5).  

 

Initial attempts were also made in this chapter to produce a recombinant active human OGDC by 

cloning and expression of mature human E1o and by expression and purification of human E2o 

and E3.   

 

 
3.2       Materials and Methods 

 

3.2.1      Cloning 

 

3.2.1.1  Cloning of N-terminal E1o constructs (E1o-60,                    
E1o- 90 and E1o-153) in pET-14b (His-tag form) 

N-terminal E1o-60 truncate (11-70 a.a), N-terminal E1o-90 truncate (1-90 a.a), and N-terminal 

E1o-153 truncate (1-153 a.a) were cloned directly into the pET-14b vector. Primers                                

were designed to the relevant 5’ and 3’ regions of human mitochondrial E1o cDNA (heart 

isoform; OGDH-H). All oligonucleotides were ordered from Sigma, UK on the 25 mmol scale. 

While the E1o-60 fragment was cloned into the BamHI restriction site for insertion into                      

pET-14b, the E1o-90 and E1o-153 fragments were engineered with NdeI and BamHI restriction 

sites at the 5’ and 3’ termini to permit directional cloning. To clone E1o-60 into pET-14b, an 
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extra base was incorporated before the start codon to confer the correct reading frame. The 

forward and reverse primers and restriction sites are shown in Figure 3.1. 

 

 
 

Figure 3.1: Primer sequences for the truncated N-terminal E1o constructs: E1o-60, E1o-90 

and E1o-153 (His-tag form) 
Restriction endo-nuclease recognition sites are underlined and coloured. Stop codons are indicated in red. 

 

 

 

The 5' region of human E1o (1-166 a.a), previously cloned in the laboratory into pET-14b by                    

G. Singh (2008), was used as a PCR template to produce 5' constructs of E1o encoding the 

fragments 60 a.a and 90 a.a into pET-14b. A putative E1o human cDNA clone obtained from 

Source Bioscience Ltd, UK was used as the PCR template to amplify and clone the 5' end of 

mature human E1o (1-153 a.a) into pET-14b. To minimise errors in base incorporation, the 
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reactions were set up using the Expand High Fidelity PCR System (Roche, USA). PCR was 

carried out in a 50μl reaction volume containing 200μM of each dNTP, 1.5 mM MgCl2, 1x PCR 

buffer, 80ng template DNA, 2.0U Taq polymerase (Roche), sterile water and 0.2μM of each 

primer.  Negative control reactions without DNA template were also set up and PCR was carried 

out as shown in Table 3.1. 

 

Step Temperature (
o
C) Time 

1 Initial denaturation 94 1 min 

2 Denaturation 94                 18 s 

3 Annealing 50                 30 s 

4 Extension 72                 50 s 

5 Repeat steps 2-4 for 25 cycles 

6 Extension 72 5 min 

7 Cooling 4 1-24 h 

 

Table 3.1: PCR cycle reactions: E1o-60, E1o-90 and E1o-153 (His-tag form) 
PCR programme using Expand High Fidelity DNA Polymerase. 

 

 

 

The quality and quantity of PCR products was assessed on a 1.5-2% (w/v) agarose gel alongside 

a 1kb DNA Step Ladder. The PCR product was excised from an agarose gel under UV light, 

using a sterile scalpel and purified using Qiagen gel extraction kit (see section 2.2.5). 
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The E1o-60 PCR product and pET-14b vector were digested with BamHI to generate cohesive 

ends. To prevent pET-14b self-ligation, 5’-phosphates were removed by adding 1 unit of calf 

intestinal alkaline phosphatase for 30 min subsequent to digestion. The E1o-90 and E1o-153 

PCR products were digested with NdeI and BamHI for directional insertion into the vector as 

described in section 2.2.8.  Both digested plasmid and digested PCR products were run on a                    

1.5-2% (w/v) agarose gel and purified as described in section 2.2.5.  

 

Ligation reactions were set up using the T4 Quick Ligation Kit from New England Biolabs (UK). 

Different ratios (1:1, 1:3 and 1:5) of linear plasmid and insert were ligated including a mixture 

containing the plasmid only as a negative control. The reaction was performed using 1μl T4 

DNA ligase, and 1μl reaction buffer (10x). The reaction was incubated overnight at room 

temperature before transformation into E. coli DH5. 

 

The correct sequence and orientation of the constructs was confirmed by restriction digestion and 

sequencing.  Diagnostic digestion was performed using BamHI (for the E1o-60 clone) or NdeI 

and BamHI (for the E1o-90 & E1o-153 clones) as described in section 2.2.8.  Digests were 

subsequently analysed by agarose gel electrophoresis.  The recombinant plasmids were sent for 

DNA sequencing (University of Dundee) to confirm the exact coding sequence.  
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3.2.1.2  Cloning of N-terminal E1o constructs (E1o-60,                    
E1o-90 and E1o-153) in pGEX-2T (GST-fusion 
proteins) 

 

Recombinant plasmid (pET-14b) encoding the human N-terminal E1o (1-166 a.a) (G. Singh, 

2008) and a putative E1o human cDNA clone (Source Bioscience Ltd, UK) served as templates 

to amplify the N-terminal E1o-60 truncate (11-70 a.a), N-terminal E1o-90 truncate (1-90 a.a), 

and the N-terminal E1o-153 truncate (1-153 a.a) respectively. Subsequently, PCR products were 

cloned into pGEX-2T via the TOPO TA cloning kit (Invitrogen). Primers (Sigma, UK) with 

appropriate restriction sites employed in the PCR reaction are shown in Figure 3.2. 

 

 
 

Figure 3.2: Primer sequences for the truncated N-terminal E1o constructs: E1o-60, E1o-90 

and E1o-153 (GST-fusion proteins) 
Restriction endo-nuclease recognition sites are underlined and coloured. Stop codons are indicated in red. 
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Amplification was carried out using the Expand High Fidelity PCR System (Roche, USA). 

Typically, PCR was carried out in a 50μl reaction volume containing 0.25mM dNTP, 2.0mM 

MgCl2, 1x PCR buffer, 100ng template DNA, 2.0U Taq polymerase (Roche), sterile water and 

0.2μM of each specific primer (forward and reverse) which were pre-heated to 95 
o
C for 5 min. 

Negative control reactions were also performed. Details of the PCR cycle times and reaction 

temperatures are listed in Table 3.2. 

 

Step Temperature (
o
C) Time 

1 Initial denaturation 95   2 min 

2 Denaturation 95 15 s 

3 Annealing 50 30 s 

4 Extension 72 45 s 

5 Repeat steps 2-4 for 24 cycles 

6 Extension 72  7 min 

7 Cooling 4   1-24 h 

 

Table 3.2: PCR cycle reactions: E1o-60, E1o-90 and E1o-153 (GST-fusion proteins) 
PCR programme using Expand High Fidelity DNA Polymerase. 

 

 

 

 

PCR samples were analysed by agarose gel electrophoresis on a 1.5-2% (w/v) agarose gel and 

the DNA extracted from the gel as described in section 2.2.5. The TOPO TA cloning vector 

system was used as described in section 2.2.7 to facilitate cloning of PCR products of N-terminal 

E1o-60 truncates (11-70 a.a), E1o-90 (1-90 a.a) and E1o-153 (1-153 a.a) into the pGEX-2T 

vector. The cloning was performed according to the manufacturer’s specifications via the 
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pCR2.1-TOPO vector (see section 2.2.2). TOPO cloning and pGEX-2T vectors were subjected to 

restriction digestion according to the clone of interest. The E1o-60 and E1o-153 PCR products 

from the TOPO cloning vector were digested with BamHI to generate cohesive ends. For                        

the single restriction digests, the digested pGEX-2T vector was treated with calf intestinal 

phosphatase for 1 h at 37 
o
C to remove phosphate groups in order to prevent self-ligation.  The 

E1o-90 PCR product from the TOPO cloning vector was digested with BamHI and EcoRI for 

cloning into the vector as described in sections 2.2.7 and 2.2.8. After digestion, PCR products 

from the TOPO cloning vector and pGEX-2T vector were run on a 1.5-2% (w/v) agarose gel and 

purified using the gel extraction kit. DNA was eluted in 30μl elution buffer as described in 

section 2.2.5. 

 

 

A series of ligation reactions were set up using the T4 Quick Ligation Kit with varying ratios                    

of insert:vector (1:1, 1:3 and 1:5) plus a control reaction without insert as described in                       

section 3.2.1.1. The ligation mixes were incubated overnight at room temperature and 

transformed into TOP10 chemically competent cells (Invitrogen, UK) the following day. The 

transformations were placed on LB-agar plates supplemented with 50μg/ml ampicillin                        

and incubated overnight at 37°C.  To confirm the presence of an insert of the correct size, 

diagnostic digests were performed on the purified recombinant plasmids using BamHI - EcoRI 

(for the E1o-90 clone) or BamHI (for the E1o-60 and E1o-153 clones) as described in section 

2.2.8. DNA was gel-purified and analysed on 1.5-2% (w/v) agarose gels alongside a 1kb DNA 

ladder. The recombinant plasmids were sent for DNA sequencing (University of Dundee) to 

confirm the exact coding sequence. 
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3.2.1.3    Cloning of N-terminal E1o constructs (E1o-60,   
E1o-90 and E1o-153) in pET-30a (MBP-fusion 
proteins) 

 

A putative clone of E1o human cDNA (Source Bioscience Ltd, UK) was used as the PCR 

template to amplify and clone the 5' end of mature human E1o-60 (11-70 a.a), E1o-90 (1-90 a.a) 

and E1o-153 (1-153 a.a) into pET-30a. The maltose binding protein (MBP) cloned into the                    

pET-30a vector was kindly gifted by Dr. Brian Smith, Glasgow University.  

 

Oligonucleotides (Sigma, UK) were designed to the 5’ and 3’ regions included BamHI and 

HindIII sites that were used for cloning all 3 constructs. The forward and reverse primers and 

restriction sites are shown in Figure 3.3. 

 

 
 

Figure 3.3: Primer sequences for the truncated N-terminal E1o constructs: E1o-60,                        

E1o-90 and E1o-153 (MBP-fusion proteins) 
Restriction endo-nuclease recognition sites are underlined and coloured. Stop codons are indicated in red. 

 

http://www.gla.ac.uk:443/ibls/staff/staff.php?who=%7CPQQAd
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PCR was performed using the Expand High Fidelity PCR System (Roche, USA) in the same 

manner as the PCR amplification for production of GST-fusion proteins as described above 

(section 3.2.1.2) with some modifications in conditions of activation, denaturation and annealing. 

The reaction cycles comprising 7 steps are shown in Table 3.3. 

Step Temperature (
o
C) Time 

1 Initial denaturation 94  2 min 

2 Denaturation 94 45 s 

3 Annealing 55 45 s 

4 Extension 72    1 min 

5 Repeat steps 2-4 for 26 cycles 

6 Extension 72     10 min 

7 Cooling 4     1-24 h 

 

Table 3.3: PCR cycle reactions: E1o-60, E1o-90 and E1o-153 (MBP-fusion proteins) 
PCR programme using Expand High Fidelity DNA Polymerase. 

 

 

Following PCR, samples were subjected to agarose gel electrophoresis on a 1.8% (w/v) gel and 

the DNA purified from the gel. The PCR product and pET-30a vector were digested with BamHI 

and HindIII for directional insertion into the vector as described in section 2.2.8. Purified 

digested PCR products for ligation into pET-30a was also performed by the same routine ligation 

protocol using the T4 Quick Ligation Kit with various ratios of insert:vector (1:1, 1:3 and 1:5) as 

described in section 3.2.1.1. Plasmids were then digested with BamHI and HindIII to confirm            

the presence of an insert of the correct size as described in section 2.2.8. DNA was sent for 

sequence confirmation as previously described. 
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3.2.1.4  Cloning of human full-length E1o in pET-14b                       
(His-tag form) 

A putative E1o human cDNA clone (IMAGE ID 100004510-OCAA-22-D1) obtained from 

Source Bioscience Ltd, UK was used as the PCR template to amplify and clone mature human 

E1o (2886bp) into pET-14b. Primers (Sigma, UK) were designed to the 5’ and 3’ regions of 

mature human E1o cDNA with the introduction of NdeI and XhoI restriction sites. Both ends                   

(5’ and 3’ termini) of the primer were typically designed with a CG clamp to increase binding 

efficiency.  Primers with appropriate restriction sites employed in the PCR reaction are shown                  

in Figure 3.4. 

 

 

 
 

Figure 3.4: Primer sequences for the full-length E1o construct (His-tag form)  
Restriction endo-nuclease recognition sites are underlined and coloured. Stop codons are indicated in red. 
 

 

 

 

PCR reactions were set up using the Expand High Fidelity PCR System (Roche, USA). A typical 

reaction mixture in a total volume of 50μl included 2mM MgCl2, 1μl dNTP mix (0.25mM each 

of dATP, dCTP, dGTP, and dTTP), 1μl pre-heated (95 °C) specific forward and reverse primers, 

50ng of DNA template, 5μl reaction buffer (10x) and 2.6 U of Expand polymerase prepared in a 
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total volume of 50μl with sterile dH2O. Negative control reactions without DNA template were 

also set up. PCR cycles are shown in Table 3.4. 

 

Step Temperature (
o
C) Time 

1 Initial denaturation 95   2 min 

2 Denaturation 95 15 s 

3 Annealing 50 30 s 

4 Extension 72      3.3 min 

5 Repeat steps 2-4 for 26 cycles 

6 Extension 72    7 min 

7 Cooling 4     1-24 h 

 

Table 3.4: PCR cycle reactions: human full-length E1o (His-tag form) 
PCR programme using Expand High Fidelity DNA Polymerase. 

 

 

 

 

PCR samples were analysed by gel electrophoresis on a 1% (w/v) agarose gel and the DNA 

extracted as described in section 2.2.5. The PCR product and plasmid were digested with NdeI 

and XhoI for directional insertion into the vector. Typically, digests were performed at 37°C in a 

total volume of 60μl containing 30μl DNA, NdeI (5U/μl) and XhoI (5U/μl) in appropriate 

reaction buffer for 3 h.  Both digested plasmid and PCR products were run on a 1% (w/v) 

agarose gel and purified as described in section 2.2.5. 
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PCR fragments containing the desired sticky ends were ligated directly into appropriately 

digested pET-14b. Ligation reactions were performed by the same routine ligation protocol 

described in section 2.2.9. However, the ligation was conducted at various ratios of vector                     

to insert (1:1, 1:3 and 1:5) in a total volume of 20μl. The resultant recombinant DNA was 

transformed into E. coli DH5α cells which were grown overnight at 37
o
C on LB plates 

containing 50μg/ml ampicillin (see section 2.3.4).  Individual colonies were then grown 

overnight at 37
o
C in 5ml aliquots of ampicillin-supplemented LB. Plasmid purification was 

carried out as described in section 2.2.3.  Diagnostic digestion was performed using NdeI and 

XhoI as described in section 2.2.8. Recombinant plasmids with appropriate sequencing primers 

were sent for DNA sequencing (University of Dundee) to confirm the exact coding sequence                    

(see section 2.2.10). 

 

 

 

3.2.2    Protein over-expression 

All His-tagged constructs encoding E1o, E2o and E3 were expressed in E. coli BL21 (DE3) 

pLysS whereas E1o-60, E1o-90 and E1o-153 were expressed in the E. coli BL21 Star (DE3) 

pLysS strain. GST and MBP constructs were also transformed into E. coli BL21 (DE3) pLysS. 

Protein over-expression of His-tag, MBP and GST fusion proteins was performed using a 

standard protocol as described in section 2.4.1.  Induction of protein expression was initiated by 

addition of 1mM IPTG. In the case of E2o, the culture was supplemented with lipoic acid                       

prior to induction. His-tagged constructs (E1o-60, E1o-90, E1o-153 and full-length E1o)                                 

over-expression was attempted at 18°C for overnight. Protein over-expression and solubility                               

was checked by SDS-PAGE and western blotting as described in sections 2.4.3 and 2.4.7.                            

The over-expression plasmids used in this study are listed in Table 3.5. 
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Protein 
Plasmid 

vector 
E.coli strain Antibiotic

R
 

Temp 

(
o
C) 

Time 

(h) 

E3      His-tag pET-14b BL21 (DE3) pLysS Amp, Chl 30 4 

E2o    His-tag pET-14b BL21 (DE3) pLysS Amp, Chl 30 4 

E1o-60   His-tag pET-14b BL21 Star (DE3) pLysS Amp, Chl 18 18 

E1o-90   His-tag pET-14b BL21 Star (DE3) pLysS Amp, Chl 18 18 

E1o-153 His-tag pET-14b BL21 Star (DE3) pLysS Amp, Chl 18 18 

E1o-60   GST pGEX-2T BL21 (DE3) pLysS Amp 30 4 

E1o-90   GST pGEX-2T BL21 (DE3) pLysS Amp 30 4 

E1o-153 GST pGEX-2T BL21 (DE3) pLysS Amp 30 4 

E1o-60   MBP pET-30a BL21 (DE3) pLysS Kan 30 4 

E1o-90   MBP pET-30a BL21 (DE3) pLysS Kan 30 4 

E1o-153 MBP pET-30a BL21 (DE3) pLysS Kan 30 4 

Full-length E1o pET-14b BL21 (DE3) pLysS Amp, Chl 18 18 

wt GST pGEX-2T BL21 (DE3) pLysS Amp 30 4 

wt MBP pET-30a BL21 (DE3) pLysS Kan 30 4 

 

Table 3.5: Over-expression plasmids and selection conditions used in this study 
The various antibiotics used namely, chloramphenicol (Chl), ampicillin (Amp) and kanamycin (Kan) are denoted. 

wt, wild-type. 

 

 

 

 

 

3.2.3     Protein purification 

Metal chelate chromatography was used to purify His-tagged proteins while GST fusion proteins 

were isolated by use of a glutathione Sepharose 4B column. His-tagged proteins (E2o and E3) 

and GST fusion proteins (E1o-60, E1o-90 and E1o-153) were enriched using two rounds of 

chromatographic purification to achieve high yields and purity. An MBP Trap HP column                       

was used to purify MBP-fusion proteins. Technical details of the protein purification are 

described in section 2.4.4.  Details of the purification buffers used during this project are listed          

in Table 3.6. 
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F
u
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Protein 

P
u

ri
fi

ca
ti

o
n

 

Binding buffer Elution buffer 

E
lu

ti
o
n

 

g
ra

d
ie

n
t 

H
is

-t
a
g
 

 

Full-length 

E1o 

MC 50mM KH2PO4, pH 8.0 

100mM NaCl, 10mM imidazole 

50mM KH2PO4, pH 6.0 

100mM NaCl, 500mM imidazole 

0-100% 

E2o 

MC 50mM KH2PO4, pH 8.0 

100mM NaCl, 10mM imidazole 
50mM KH2PO4, pH 6.0 

100mM NaCl, 500mM imidazole 0-100% 

GFC 50mM KH2PO4, pH 7.4                  

20mM NaCl, 2mM EDTA 
None None 

E3 

MC 50mM KH2PO4, pH 8.0 

100mM NaCl, 10mM imidazole 
50mM KH2PO4, pH 6.0 

100mM NaCl, 500mM imidazole 
0-100% 

GFC 50mM KH2PO4, pH 7.4                  

20mM NaCl, 2mM EDTA 
None None 

E1o-60 

MC 50mM KH2PO4, pH 8.0 

100mM NaCl, 10mM imidazole 
50mM KH2PO4, pH 6.0 

100mM NaCl, 500mM imidazole 
0-100% E1o-90 

E1o-153 

M
B

P
 

E1o-60 

M
B

P
 a

ff
in

it
y

 

20mM Tris-HCl, pH 7.4                   

200mM NaCl, 1mM EDTA                           

20mM Tris-HCl, pH 7.2 

15mM maltose, 

 200mM NaCl, 1mM EDTA   

5 CV E1o-90 

E1o-153 

G
S

T
 

E1o-60 

E1o-90 

E1o-153 

G
S

T
 

af
fi

n
it

y
 

PBS (140mM NaCl, 2.7mM KCl, 

10mM Na2HPO4, and 1.8mM 

KH2PO4, pH 7.3) 

20mM reduced glutathione, 

50mM Tris-HCl, pH 8.0 

5 CV 

GFC 50mM KH2PO4, pH 7.4                  

20mM NaCl, 2mM EDTA 
None None 

Table 3.6: Purification buffers used in this study 
CV is column volume while MC, GFC GST and MBP denote metal chelate, gel filtration chromatography, GST 

affinity chromatography, and MBP affinity chromatography, respectively. 
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3.3        Results and discussion 

 
3.3.1      Cloning 

 
3.3.1.1  Cloning of N-terminal E1o constructs (E1o-60,                  

E1o 90 and E1o-153) in pET-14b (His-tag forms) 

Three mature N-terminal E1o fragments were successfully cloned encoding 60 a.a. (11-70),                    

90 a.a. (1-90) and 153 a.a. (1-153) as His-tag fusion proteins. Amplification of the DNA 

sequences corresponding to residues 11-70, 1-90 and 1-153 was successful and yielded the 

expected 180bp, 270bp and 459bp PCR products respectively as shown in Figure 3.5. 

 

 

 
 

Figure 3.5: PCR amplification of N-terminal E1o segments (pET-14b)  
PCR mixtures (5μl) were resolved on 2% agarose gels and the DNA viewed under UV light after staining with 

ethidium bromide. Band sizes are indicated in bp. (A) PCR amplification of E1o-60 (11-70). A positive result was 

seen by the presence of a single band of expected size ~180 bp. (B) PCR amplification of E1o-90 (1-90).                             

A positive result was seen by the presence of a single band of expected size ~270 bp. (C) PCR amplification of       

E1o-153 (1-153). A positive result was seen by the presence of a single band of expected size ~460 bp. 

Lanes contain replicate samples from the PCR reactions. 
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Digested PCR products were then successfully cloned into the pET-14b vector. Ligation of 

digested inserts (E1o-60, E1o-90 and E1o-153) into pET-14b resulted in formation of 

recombinant plasmids E1o-60-pET14b, E1o-90-pET14b and E1o-153-pET14b.  

 

E1o-60-pET14b plasmid was then digested successfully with BamHI. Analysis of the digests on 

a 2% (w/v) agarose gel confirmed the presence of an insert of the correct size (approx. 180bp) as 

shown in Figure 3.6A.  Similarly, digestion of E1o-90-pET14b and E1o-153-pET14b plasmids 

with NdeI and BamHI indicated successful cloning, resulting in single bands of 270bp and 459bp 

respectively (Fig. 3.6B & 3.6C). The correct recombinant plasmid sequences were confirmed by 

DNA sequencing (see section 2.2.10). 

 

 

 
 

 

Figure 3.6: Restriction digestion of N-terminal E1o constructs (pET-14b) 
DNA samples were resolved on 2% agarose gels and then stained with ethidium bromide. Stained agarose gels were 

viewed under UV light. U & D denote undigested and digested pET-14b. Band sizes are indicated in bp. Restriction 

digestion of recombinant plasmids showing the presence of inserts of the expected sizes. (A) Diagnostic digest of 

cloned product E1o-60-pET14b showing ~ 180bp insert. (B) Diagnostic digest of cloned product E1o-90-pET14b 

showing ~ 270bp insert. (C) Diagnostic digest of cloned product E1o-153-pET14b showing ~ 460bp insert. 
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3.3.1.2     Cloning of N-terminal E1o constructs (E1o-60,        
E1o-90 and E1o-153) in pGEX-2T (GST fusion 
proteins) 

Mature N-terminal E1o fragments encoding 60 a.a. (11-70), 90 a.a. (1-90) and 153 a.a. (1-153) 

were also successfully cloned into pGEX-2T. Amplification of these DNA sequences was 

successful and yielded the expected 180bp, 270bp and 459bp PCR products respectively as 

shown in Figure 3.7.  

 

 
 

Figure 3.7: PCR amplification of N-terminal E1o constructs (pGEX-2T)  
PCR mixtures (5μl) were resolved on 2% agarose gels and the DNA viewed under UV light after staining with 

ethidium bromide. Band sizes are indicated in bp. (A) PCR amplification of E1o-60 (11-70).  A positive result was 

seen by the presence of a single band of expected size ~180 bp. (B) PCR amplification of E1o-90 (1-90).                        

A positive result was seen by the presence of a single band of expected size ~270 bp. (C) PCR amplification of        

E1o-153 (1-153). A positive result was seen by the presence of a single band of expected size ~460 bp. 

 
 

 

The PCR products were successfully cloned into the pCR2.1-TOPO vector (see section 2.2.7).  

Purified inserts E1o-60, E1o-90 and E1o-153 from the TOPO ligations were then digested along 

with wild-type pGEX-2T plasmid using BamHI and EcoRI.  
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Following ligation of digested inserts (E1o-60, E1o-90 and E1o-153) into the pGEX-2T vector, 

recombinant plasmids E1o-60-pGEX-2T, E1o-90-pGEX-2T and E1o-153-pGEX-2T were 

produced.  

 

E1o-60-pGEX-2T and E1o-153-pGEX-2T plasmids were digested successfully with BamHI. 

Analysis of the digests on a 2% (w/v) agarose gel confirmed the presence of inserts of the correct 

sizes, 180bp and 459bp, respectively as shown in Figure 3.6A & 3.6C.   

 

Similarly, digestion of E1o-90-pET14b recombinant plasmid with BamHI and EcoRI indicated 

successful cloning, resulting in single band of approx. 270bp (Fig. 3.6B). The correct 

recombinant plasmid sequences were confirmed by DNA sequencing (see section 2.2.10). 

 
 

 
 
 

Figure 3.8: Restriction digestion of N-terminal E1o constructs (pGEX-2T)  
DNA samples were resolved on 2% agarose gels and then stained with ethidium bromide. Stained agarose gels were 

viewed under UV light. U & D denote undigested and digested pGEX-2T. Band sizes are indicated in bp. Restriction 

digestion of recombinant plasmids showing the presence of inserts of the expected sizes. (A) Diagnostic digest                     

of cloned product E1o-60-pGEX-2T showing ~ 180bp insert. (B) Diagnostic digest of cloned product E1o-90-

pGEX-2T showing ~270bp insert. (C) Diagnostic digest of cloned product E1o-153-pGEX-2T showing ~ 460bp 

insert. 
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3.3.1.3     Cloning of N-terminal E1o constructs (E1o-60,    
E1o-90 and E1o-153) in pET-30a (MBP fusion 
proteins) 

Short mature N-terminal E1o fragments encoding to the predicted binding region for                              

E2o/E3 (60 a.a, 90 a.a  and 153 a.a) were successfully cloned into pET-30a. The E1o-60, E1o-90 

and E1o-153 sequences corresponding to 11-70, 1-90 and 1-153 a.a., respectively were 

successfully amplified by PCR using Expand High Fidelity PCR System (Fig. 3.9).   BamHI and 

HindIII restriction sites were used for cloning all 3 constructs via the classical cloning approach.  

 

 

 
 
 

Figure 3.9: PCR amplification of N-terminal E1o constructs (pET-30a)  
PCR mixtures (5μl) were resolved on 2% agarose gels and the DNA viewed under UV light after staining with 

ethidium bromide. Band sizes are indicated in bp. (A) PCR amplification of the E1o-60 (11-70). A positive result 

was seen by the presence of a single band of expected size ~180 bp. (B) PCR amplification of the E1o-90 (1-90).       

A positive result was seen by the presence of a single band of expected size ~270 bp. (C) PCR amplification of the 

E1o-153 (1-153). A positive result was seen by the presence of a single band of expected size ~460 bp. 
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The PCR amplified inserts (E1o-60, E1o-90 and E1o-153) were digested with BamHI and 

HindIII and subsequently ligated into digested pET-30a resulting in the ligated products E1o-60-

pET30a, E1o-90-pET30a and E1o-153-pET30a, respectively.  

 

Successful cloning of E1o-60, E1o-90 and E1o-153 was confirmed via diagnostic digests with 

BamHI and HindIII that yielded the expected 180bp, 270bp and 459bp products respectively 

(Fig. 3.10). This was further confirmed by DNA sequencing (see section 2.2.10). 

 
 
 

 
 

 

Figure 3.10: Restriction digestion of N-terminal E1o constructs (pET-30a)  
DNA samples were resolved on 2% agarose gels and then stained with ethidium bromide. Stained agarose gels were 

viewed under UV light. U & D denote undigested and digested pET-30a. Band sizes are indicated in bp. Restriction 

digestion of recombinant plasmids showing the presence of inserts of the expected sizes. (A) Diagnostic digest of 

cloned product E1o-60-pET30a showing ~ 180bp insert. (B) Diagnostic digest of cloned product E1o-90-pET30a 

showing ~ 270bp insert.  (C) Diagnostic digest of cloned product E1o-153-pET30a showing ~ 460bp insert. 
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3.3.1.4   Cloning of human full-length E1o in pET-14b                     
(His-tag form) 

The mature, full-length, human E1o construct was successfully cloned with an N-terminal                    

His-tag sequence. Amplification of the DNA sequence corresponding to residues 1-962 was 

successful and yielded a major band of 2886bp consistent with the predicted size for E1o cDNA 

as shown in Figure 3.11. 

 

 

 

 
 

 

 

Figure 3.11: PCR amplification of human full-length E1o (pET-14b)  
PCR mixtures (5μl) were resolved on 1% agarose gels and the DNA viewed under UV light after staining with 

ethidium bromide. Band sizes are indicated in bp. PCR amplification of full-length E1o (1-962).  A positive result 

was seen by the presence of a single band of expected size ~2900 bp.  

Lanes contain replicate samples from the PCR reactions. 
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Using T4 DNA ligase with restriction enzymes NdeI and XhoI, the PCR product was 

successfully incorporated into pET-14b yielding a full-length, His-tagged copy of the mature 

human E1o cDNA sequence. 

 

 

The E1o-pET14b plasmid was then digested successfully with NdeI and XhoI. Analysis of the 

digests on a 1% (w/v) agarose gel confirmed the presence of an insert of the correct size (approx. 

2886bp) as shown in Figure 3.12. The correct sequence and reading frame were confirmed by 

DNA sequencing (see section 2.2.10). 

 

 

 
 

 

Figure 3.12: Restriction digestion of human full-length E1o construct (pET-14b)  
DNA samples were resolved on 1% agarose gels and then stained with ethidium bromide. Stained agarose gels were 

viewed under UV light. U & D denote undigested and digested pET-14b. Band sizes are indicated in bp. Restriction 

digestion of recombinant plasmids showing the presence of inserts of the expected sizes. Diagnostic digest of cloned 

E1o-pET14b showing ~ 2900bp insert.  
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3.3.2         Protein over-expression 

 
 

3.3.2.1      Over-expression of E1o-60, E1o-90 and E1o-153 
(His-tag forms) 

To produce His-tagged N-terminal E1o polypeptides, human N-terminal E1o constructs                 

(E1o-60, E1o-90 and E1o-153) in pET-14b were transformed individually into E. coli BL21 

(DE3) pLysS cells. Over-expression in LB media was induced at 30
o
C with 1mM IPTG for 4 h 

as described in Materials and Methods, section 2.4.1.   On SDS-PAGE analysis, it was found that 

the N-terminal fragments failed to over-express under these conditions (data not shown).  

Possibly owing to the small size of mRNA, the E. coli BL21 (DE3) pLysS cells did not prove a 

suitable vehicle for over-expression under these conditions. However, by adjusting various 

parameters, suitable conditions for His-tagged N-terminal E1o fragment expression were 

established to be low temperature and growth in a modified rich LB media (Terrific broth) after 

transforming into E. coli BL21 Star (DE3) pLysS. This strain carries the rne131 mutation 

resulting in potentially higher protein expression as a result of increased mRNA stability.   

 

However, even under optimal conditions, expression of human His-tagged, N-terminal E1o 

constructs (E1o-60, E1o-90 and E1o-153) at low temperature (18
o
C), 1mM IPTG for 18 h                     

still produced low yields of protein (Fig. 3.13). The induced proteins were of the correct 

expected sizes, approx. 8, 10 and 18 kDa respectively. The presence of small amounts of                        

His-tagged, N-terminal E1o fragments (E1o-60, E1o-90 and E1o-153) in these cell extracts                                         

was subsequently confirmed after purification by probing with an anti-His tag antibody                        

(Fig. 3.20B, 3.21B & 3.22B). 
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Figure 3.13: Expression of N-terminal E1o constructs: E1o-60, E1o-90 and E1o-153                    

(His-tag forms)  
N-terminal E1o constructs were expressed over 18 h at 18°C in E. coli BL21 Star (DE3) pLysS. Cells were grown in 

Terrific broth. Samples were taken at the time of induction (t0) and after 18 h (t18). Samples were denatured in the 

presence of 150mM DTT at 100°C for 5 min and resolved on an 18% SDS/polyacrylamide gel. Protein bands were 

visualised using Coomassie Brilliant Blue. Lane 1, molecular mass markers. The arrow on the right of the gel 

indicates over-expressed protein. (A) SDS-PAGE analysis of E1o-60 showing poor expression at the expected size, 

~ 8 kDa. (B) SDS-PAGE analysis of E1o-90 showing poor expression at the expected size, ~ 10 kDa. (C) SDS-

PAGE analysis of E1o-153 showing poor expression at the expected size, ~ 18 kDa.     

 
 
 

 

 

 
3.3.2.2      Over-expression of E1o-60, E1o-90 and E1o-153 

(GST fusion proteins) 

Human N-terminal E1o fragments (E1o-60, E1o-90 and E1o-153) were cloned individually into 

pGEX-2T to form the plasmids E1o-60-pGEX-2T, E1o-90-pGEX-2T and E1o-153 pGEX-2T. 

The plasmids were then transformed into the E. coli expression strain BL21 (DE3) pLysS.  

Recombinant protein over-expression was successfully carried out at 30°C for 4 h and induced 

by the addition of 1mM IPTG as described in Materials and Methods, section 2.4.1.    
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SDS-PAGE analysis of samples taken at the time of induction and after 4 h demonstrated the 

presence of over-expressed E1o-60, E1o-90 and E1o-153. Bands at 32, 36 and 43kDa were 

observed corresponding to the predicted subunit Mr values of the E1o-60, E1o-90 and E1o-153 

GST fusion proteins (Fig. 3.14). SDS-PAGE analysis revealed that the majority of the protein 

was soluble and reactive with anti-GST antibody as assessed by Western blotting (data not 

shown). 

 

 
 
 

 
 
 

Figure 3.14: Over-expression of N-terminal E1o constructs: E1o-60, E1o-90 and E1o-153 

(GST fusion proteins)  

N-terminal E1o constructs were expressed for 4 h at 30°C in E. coli  BL21 (DE3) pLysS. Cells were grown in LB 

media. Samples were taken at the time of induction (t0) and after 4 h (t4). Samples were denatured in the presence                            

of 150mM DTT at 100°C for 5 min and resolved on a 10% SDS/polyacrylamide gel.  Protein bands were visualised 

using Coomassie Brilliant Blue. Lane 1, molecular mass markers; lane 2, purified GST as control (~ 26 kDa).          

The arrow on the right of the gel indicates over-expressed protein. (A) SDS-PAGE analysis of E1o-60 over-

expression showing large yields of E1o-60 at the expected size (~ 32 kDa). (B) SDS-PAGE analysis of E1o-90      

over-expression showing large yields of E1o-90 at the expected size (~36 kDa). (C) SDS-PAGE analysis of E1o-153 

over-expression showing good yields of E1o-153 at the expected size (~ 43 kDa).     
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3.3.2.3      Over-expression of E1o-60, E1o-90 and E1o-153 
(MBP fusion proteins) 

Each of the N-terminal E1o constructs, E1o-60, E1o-90 and E1o-153 (pET-30a vector), were 

transformed individually into competent E. coli BL21 (DE3) pLysS cells for over-expression. 

The over-expression of all constructs was carried out successfully at 30°C for a 4 h induction 

period. Figure 3.15 shows the level of expression of E1o-60, E1-90 and E1o-153, respectively.  

 

The solubility of the over-expressed proteins was analysed by the standard protocol (see section 

2.4.2) and resolved by SDS-PAGE. All of the over-expressed protein was found in the soluble 

fraction (data not shown). 

 
 

 

Figure 3.15: Over-expression of N-terminal E1o constructs: E1o-60, E1o-90 and E1o-153 

(MBP fusion proteins)  

N-terminal E1o constructs were expressed for 4 h at 30°C in E. coli BL21 (DE3) pLysS. Cells were grown in LB 

media. Samples were taken at the time of induction (t0) and after 4 h (t4). Samples were denatured in the presence of 

150mM DTT at 100°C for 5 min and resolved on a 10% SDS/polyacrylamide gel. Protein bands were visualised 

using Coomassie Brilliant Blue. Lane 1, molecular mass markers. The arrow on the right of the gel indicates over-

expressed protein. (A) SDS-PAGE analysis of E1o-60 over-expression showing large yields (~ 48 kDa).                  

(B) SDS-PAGE analysis of E1o-90 over-expression showing large yields (~ 50 kDa). (C) SDS-PAGE analysis of 

E1o-153 over-expression showing good yields (~58 kDa).     
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3.3.2.4  Over-expression of human full-length E1o                            
(His-tag form) 

Human full-length E1o construct was cloned into pET-14b and transformed into competent                  

E. coli BL21 (DE3) pLysS cells for over-expression. Over-expression was attempted at 30 °C 

(data not shown) and 18 °C with 1mM IPTG. Conclusively, for the first time, human E1o 

(subunit Mr ~ 110 kDa) was successfully over-expressed in an E. coli cell system. Moreover, 

over-expression of human full-length E1o at a low temperature (18
o
C) for 18 h provided good 

yields of protein (Fig. 3.16A). The protein was of the correct size (~ 110 kDa).  The identity of                       

full-length E1o was also confirmed by Western blotting with anti-His tag antibody (Fig. 3.16B). 

 

 

 
 

Figure 3.16: Over-expression of human E1o (His-tag form) 
E1o was expressed over 18 h at 18°C in E. coli BL21 (DE3) pLysS. Cells were grown in LB media. Samples were 

taken at the time of induction (t0) and after 18 h (t18). Samples were denatured in the presence of 150mM DTT at 

100°C for 5 min and resolved on a 10% SDS/polyacrylamide gel. Protein bands were visualised using Coomassie 

Brilliant Blue. Lane 1, molecular mass markers. The arrow on the right of the gel indicates over-expressed protein. 

(A) SDS-PAGE analysis of full-length E1o over-expression showing good yields at the expected size (~ 110 kDa).                               

(B) Western blot analysis of full-length E1o. The presence of His-tagged full-length E1o was confirmed by Western 

blotting with anti-His tag antibody. 
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Solubility analysis of the over-expressed human full-length E1o at a low temperature (18
o
C) was 

performed as described in the Materials and Methods (see section 2.4.2).  The vast majority of 

the protein was found to be insoluble (Fig. 3.17).  

 

 
 

Figure 3.17: Solubility analysis of human E1o (His-tag form)  
E1o was expressed over 18 h at 18°C in the E. coli BL21 (DE3) pLysS. Cells were grown in LB media. Samples 

were taken after 18 h (t18). Samples were denatured in the presence of 150mM DTT at 100°C for 5 min and 

resolved on a 10% SDS/polyacrylamide gel. Protein bands were visualised using Coomassie Brilliant Blue. Lane 1, 

molecular mass markers. The arrow on the right of the gel indicates fusion protein. Following over-expression of 

full-length E1o, the bacterial cells were centrifuged at 4°C, 3,000xg for 15 min and re-suspended in 3ml binding 

buffer. The bacterial extract was passed 4 times through a French Pressure Cell at 950 psi. Disrupted cells (100μl) 

were then centrifuged at 4°C, 13,000xg for 10 min and the supernatant (90μl) resuspended in an equal volume of 

Laemmli sample buffer while the pellet was re-suspended and washed 3 times with PBS buffer. Finally, the washed 

pellet was resuspended in an equal volume of Laemmli sample buffer (100μl). An equal volume (10μl) of the 

protein supernatant (S) and pellet suspension (P) was loaded on SDS-PAGE to view the solubility. SDS-PAGE 

analysis shows full-length E1o was largely insoluble and present in the pellet fraction (P).  

 

 

 

E1o is a homodimer of two 110 kDa subunits (α2).  Typically, E. coli has not proved an effective 

host for expressing or promoting the correct folding of large proteins (> 70 kDa). In such cases 

the expressed protein is usually insoluble and accumulates as inclusion bodies.  
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Failure to produce soluble recombinant protein is often the result of improper protein folding 

during the protein expression.  Misfolding of expressed recombinant proteins in prokaryotic 

hosts often occurs as a result of rapid protein expression, high expression temperature, use of                       

a stronger promoter such as T7 and lack of suitable chaperones.  However, a number of 

approaches are available to improve expressed protein solubility including co-transformation of 

plasmids encoding the main E. coli chaperones (GroEL and GroES) (Zeilstra-Ryalls et al. 1991), 

decreasing the rate of protein synthesis by lowering the growth temperature (Zhang et al. 2003), 

choice of a suitable E. coli strain and use of a weaker promoter (e.g. T5). 

 

Previously, over-expression of soluble recombinant E1p proved difficult in our laboratory; 

however, cloning into the pQE-9 vector and transforming into E. coli M15 cells allowed 

successful low-level production of active, soluble E1p (Korotchkina et al. 1995; Singh 2008).  

The pQE-9 vector contains the T5 promoter, while, E. coli M15 cells contains the pREP4 

plasmid that encodes the lac repressor (Korotchkina et al. 1995).  

 

No successful cloning, expression and purification of active, recombinant mammalian E1o has 

been reported in the literature to date. Unfortunately, further attempts to obtain active, soluble 

E1o in this study were limited by time constraints. 
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3.3.2.5      Over-expression of human E2o (His-tag form) 

An E2o construct in pET-14b was already available in the laboratory.  The E2o construct                        

was transformed into E. coli BL21 (DE3) pLysS. Over-expression was successfully carried                           

out at 30°C for 4 h after induction with 1mM IPTG and supplementation with lipoic acid                           

(see section 2.4.1). SDS-PAGE analysis revealed large yields of over-expressed protein of the 

expected size (~ 48 kDa) (Fig. 3.18). The solubility of the expressed E2o was analysed by the 

standard protocol (see section 2.4.2) and found by SDS-PAGE to be present in the soluble 

fraction (data not shown). 

 

 

 
 
 

Figure 3.18: Over-expression of human E2o (His-tag form)  
E2o was expressed for 4 h at 30°C in E. coli BL21 (DE3) pLysS. Cells were grown in LB media. Samples were 

taken at the time of induction (t0) and after 4 h (t4). Samples were denatured in the presence of 150mM DTT at 

100°C for 5 min and resolved on a 10% SDS/polyacrylamide gel. Protein bands were visualised using Coomassie 

Brilliant Blue. Lane 1, molecular mass markers. The arrow on the right of the gel indicates over-expressed protein. 

SDS-PAGE analysis of E2o over-expression showing large yields at the expected size (~ 48 kDa).  
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3.3.2.6      Over-expression of human E3 (His-tag form) 

His-tagged E3 cloned into pET-14b (already available in the laboratory) was expressed at 30
o
C, 

1mM IPTG for 4 h. Levels of over-expression were analysed by SDS-PAGE, indicating high 

yields of protein at the expected size (~ 52 kDa) (Fig. 3.19). The solubility of the E3 was also 

confirmed (data not shown). 

 
 
 

 
 
 

Figure 3.19: Over-expression of human E3 (His-tag form)  
E3 was expressed over 4 h at 30°C in E. coli BL21 (DE3) pLysS. Cells were grown in LB media. Samples were 

taken at the time of induction (t0) and after 4 h (t4). Samples were denatured in the presence of 150mM DTT at 

100°C for 5 min and resolved on a 10% SDS/polyacrylamide gel. Protein bands were visualised using Coomassie 

Brilliant Blue. Lane 1, molecular mass markers. The arrow on the right of the gel indicates over-expressed protein. 

SDS-PAGE analysis of E3 over-expression showing large yields at the expected size (~ 52 kDa).  
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3.3.3       Protein purification 

 
 

3.3.3.1  Purification of E1o-60, E1o-90 and E1o-153                        
(His-tag form) 

Over-expression of human His-tagged N-terminal E1o constructs (E1o-60, E1o-90 and E1o-153) 

at low temperature (18
o
C), 1 mM IPTG for 18 h indicated poor yields of protein.  However,       

E1o-60, E1o-90 and E1o-153 were purified by metal chelate affinity chromatography                         

(Fig. 3.20A, 3.21A & 3.22A). Since the levels of protein were low, the identities of purified                

His-tagged N-terminal E1o fragments were confirmed by Western blotting using anti-His tag 

antibody (Fig. 3.20B, 3.21B & 3.22B). 

 

 

 
 

Figure 3.20: Purification of E1o-60 (His-tag form)  
(A) Metal chelate affinity chromatography of E1o-60 (pET-14b). Cell lysates (20ml) were applied to the column in 

5ml aliquots (see section 2.4.4). Bound protein was eluted from the column in a 0-100% gradient of elution buffer      

(8 CV) over the vol. 160-230 ml. The imidazole gradient (0-500 mM) used for elution is shown in green. 

Absorbance of eluted protein was measured at 280 nm (red line) and possible DNA/RNA contamination was 

monitored at 260 nm (blue line). Peak fractions were collected and analysed by Western blotting. (B) Western blot 

analysis of purified E1o-60 His-tag form. The presence of purified His-tagged E1o-60 was confirmed (lanes 1, 2 & 

3) by anti-His tag antibody (1 in 2000 dilution) (see section 2.4.7.1).  Molecular mass markers in kDa are shown. 

The arrow on the right of the blot indicates purified protein. 
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Figure 3.21: Purification of E1o-90 (His-tag form)  
(A) Metal chelate affinity chromatography of E1o-90 (pET-14b). Cell lysates (20ml) were applied to the column in 

5ml aliquots (see section 2.4.4). Bound protein was eluted from the column in a 0-100% gradient of elution buffer (8 

CV) over the vol. 160-250 ml. The imidazole gradient (0-500mM) used for elution is shown in green. Absorbance of 

eluted protein was measured at 280 nm (red line) and possible DNA/RNA contamination was monitored at 260 nm 

(blue line). Peak fractions were collected and analysed by Western blotting. (B) Western blot analysis of purified 

E1o-90 His-tag form. The presence of purified His-tagged E1o-90 was confirmed (lanes 1 & 2) by anti-His tag 

antibody (1 in 2000 dilution) (see section 2.4.7.1). Molecular mass markers in kDa are shown. The arrow on the 

right of the blot indicates purified protein.  

 

 

 
 

Figure 3.22: Purification of E1o-153 (His-tag form)  
(A) Metal chelate affinity chromatography of E1o-153 (pET-14b). Cell lysates (20ml) were applied to the column in 

5ml aliquots (see section 2.4.4). Bound protein was eluted from the column in a 0-100% gradient of elution buffer         

(8 CV) over the vol. 140-250 ml. The imidazole gradient (0-500mM) used for elution is shown in green. Absorbance 

of eluted protein was measured at 280 nm (red line) and possible DNA/RNA contamination was monitored at 260 

nm (blue line). Peak fractions were collected and analysed by Western blotting. (B) Western blot analysis of purified 

E1o-153 His-tag form. The presence of purified His-tagged E1o-153 was confirmed (lanes 1 & 2) by anti-His tag 

antibody (1 in 2000 dilution) (see section 2.4.7.1). Molecular mass markers in kDa are shown. The arrow on the 

right of the blot indicates purified protein.  
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A number of expression strategies and conditions were attempted including alterations in growth 

media, expression temperature (Zhang et al. 2003) and bacterial strain which all failed to 

produce high yields of recombinant protein. Owing to insufficient protein over-expression and 

unsatisfactory protein purification these constructs were not employed further in this project. 

 
 
 
 

3.3.3.2   Purification of E1o-60, E1o-90 and E1o-153                       
(GST fusion proteins) 

Purification of GST-tagged E1o-60, E1o-90 and E1o-153 required only a single purification step 

using a glutathione Sepharose 4B column (bed volume, 5ml). However, in order to obtain high 

purity samples for ITC experiments, gel filtration chromatography was also employed. Figures 

3.23 & 3.24 clearly show successful purification of E1o-60 and E1o-90 GST fusion proteins in 

high yield. 

 

GST-tagged E1o-153 was purified in the same manner as the E1o-60 and E1o-90 GST.                            

On SDS-PAGE analysis, this recombinant protein was found to be extremely susceptible to 

degradation (Fig. 3.25).  The initial purification was successful; however, rapid proteolysis 

occurred at 4
o
C over 24-48 h during which time significant amounts (>50%) of the intact fusion 

protein degraded and multiple bands were observed including free GST (~26 kDa). A variety of 

different approaches were tried in attempts to decrease protein degradation.  These included 

various types of inhibitor cocktails, treating samples with bovine serum albumin (BSA) prior to 

French press treatment and growing the cells at low temperature, all without success. 
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Figure 3.23: Purification of E1o-60 (GST fusion protein)  
(A) Glutathione affinity chromatography of E1o-60 (pGEX-2T). Cell lysates (20ml) were applied to the column in 

5ml aliquots (see section 2.4.4). Bound protein was eluted from the column using 5 CV elution buffer (20mM 

reduced glutathione, 50mM Tris-HCl, pH 8.0). The reduced glutathione buffer step used for elution is shown in 

green. Absorbance of eluted protein was measured at 280 nm (red line). Peak fractions were collected and analysed 

by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein peak. Lane 1, molecular mass markers; lanes 2-5, purified 

wt GST-protein as control; lanes 6-11, purified E1o-60 stained with Coomassie Brilliant Blue. The arrow on the 

right of the blot indicates purified protein. (C+D) Gel filtration profile of E1o-60 with eluted peak at ~ 69 ml. The 

purity of the final E1o-60 preparation was assessed by SDS-PAGE analysis and showed large yields of pure E1o-60 

corresponding to the main GFC peak. Lane 1, molecular mass markers. 
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Figure 3.24: Purification of E1o-90 (GST fusion protein)  
(A) Glutathione affinity chromatography of E1o-90 (pGEX-2T). Cell lysates (20ml) were applied to the column in 

5ml aliquots (see section 2.4.4). Bound protein was eluted from the column using 5 CV elution buffer (20mM 

reduced glutathione, 50mM Tris-HCl, pH 8.0). The reduced glutathione buffer step used for elution is shown in 

green. Absorbance of eluted protein was measured at 280 nm (red line). Peak fractions were collected and analysed 

by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein peak. Lane 1, molecular mass markers; lanes 2-6, purified 

E1o-90 stained with Coomassie Brilliant Blue. The arrow on the right of the blot indicates purified protein.                              

(C+D) Gel filtration profile of E1o-90 with eluted peak at ~ 63 ml. The purity of the final E1o-90 preparation was 

assessed by SDS-PAGE analysis and showed large yields of pure E1o-90 corresponding to the main GFC peak.                          

Lane 1, molecular mass markers. 
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Figure 3.25: Purification of E1o-153 (GST fusion protein)  
(A) Glutathione affinity chromatography of E1o-153 (pGEX-2T). Cell lysates (20ml) were applied to the column in 

5ml aliquots (see section 2.4.4). Bound protein was eluted from the column using 5 CV elution buffer (20mM 

reduced glutathione, 50mM Tris-HCl, pH 8.0). The reduced glutathione buffer step used for elution is shown in 

green. Absorbance of eluted protein was measured at 280 nm (red line). Peak fractions were collected and analysed 

by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein peak. Lane 1, molecular mass markers; lanes 2-6, purified 

E1o-153 stained with Coomassie Brilliant Blue. The arrow on the right of the blot indicates purified protein.                      

(C+D) Gel filtration profile of E1o-153 with eluted peak at ~ 60 ml. The purity of the final E1o-153 preparation was 

assessed by SDS-PAGE analysis and shows limited degradation of E1o-153 corresponding to the main GFC peak. 

Lane 1, molecular mass markers.  

 

 

 

 

 

 

 



Chapter 3                                                                                                                                 Results 

129 

 

3.3.3.3  Purification of E1o-60, E1o-90 and E1o-153                    
(MBP fusion proteins) 

MBP fusion proteins (E1o-60, E1o-90 and E1o-153) were purified using an MBP Trap HP 

column. Figures 3.26 & 3.27 show purification steps for E1o-60 and E1o-90 indicating 

significant degradation of both proteins. It is possible that extensive proteolytic degradation 

occurs during protein expression or during the purification process itself.  Many attempts were 

made to decrease the extent of protein degradation without success. Addition of BSA and more 

protease inhibitors prior to French press treatment, growth of cells at low temperatures and use of 

a rapid purification process did not improve protein stability. Owing to this problem neither of 

these constructs was employed for subsequent experiments in this study.  SDS-PAGE analysis of 

purified E1o-153 was also found to be sensitive to degradation although this was less 

problematic than the E1o-60 and E1o-90 MBP fusion proteins (Fig. 3.28).  

 

 

Figure 3.26: Purification of E1o-60 (MBP fusion protein)  
(A) Maltose binding protein (MBP) affinity chromatography of E1o-60. Cell lysates (20ml) were applied to the 

column in 5ml aliquots (see section 2.4.4). Bound protein was eluted from the column using 5 CV elution buffer 

step (15mM maltose, 200mM NaCl, 1mM EDTA, 20mM Tris-HCl,  pH 7.2). The maltose buffer step used for 

elution is shown in green. Absorbance of eluted protein was measured at 280 nm (grey line). Peak fractions were 

collected and analysed by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein peak. Lane 1, molecular mass 

markers; lanes 2-5, purified E1o-60 stained with Coomassie Brilliant Blue showing significant degradation. The 

arrow on the right of the blot indicates purified full-length protein.     

 



Chapter 3                                                                                                                                 Results 

130 

 

 

Figure 3.27: Purification of E1o-90 (MBP fusion protein)  
(A) Maltose binding protein (MBP) affinity chromatography of E1o-90. Cell lysates (20ml) were applied to the 

column in 5ml aliquots (see section 2.4.4). Bound protein was eluted from the column using 5 CV elution buffer 

(15mM maltose, 200mM NaCl, 1mM EDTA, 20mM Tris-HCl, pH 7.2). The maltose buffer step used for elution is 

shown in green. Absorbance of eluted protein was measured at 280 nm (grey line). Peak fractions were collected              

and analysed by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein peak. Lane 1, molecular mass markers; 

lanes 2-5, purified E1o-90 stained with Coomassie Brilliant Blue showing significant degradation. The arrow on the 

right of the blot indicates purified full-length protein.     

  

 

 

 

Figure 3.28: Purification of E1o-153 (MBP fusion protein)  
(A) Maltose binding protein (MBP) affinity chromatography of E1o-153. Cell lysates (20ml) were applied to the 

column in 5ml aliquots (see section 2.4.4). Bound protein was eluted from the column using 5 CV elution buffer 

(15mM maltose, 200mM NaCl, 1mM EDTA, 20mM Tris-HCl, pH 7.2). The maltose buffer step used for elution is 

shown in green. Absorbance of eluted protein was measured at 280 nm (grey line). Peak fractions were collected        

and analysed by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein peak. Lane 1, molecular mass markers; 

lanes 2-6, purified E1o-153 stained with Coomassie Brilliant Blue. The arrow on the right of the blot indicates 

purified full-length protein.     
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3.3.3.4       Purification of human E2o (His-tag form) 

His-tagged E2o was purified by metal chelate chromatography (Fig. 3.29A). Purified fractions 

were then gel filtered using GFC buffer (20mM NaCl, 2mM EDTA, 50 mM KH2PO4, pH 7.4) in 

order to remove all residual protein contaminants (Fig. 3.29C). SDS-PAGE revealed a high yield 

of pure protein (Fig. 3.29B & 3.29D). 

 

 

Figure 3.29: Purification of human E2o (His-tag form) 
(A) Metal chelate affinity chromatography of E2o. Cell lysates (20ml) were applied to the column in 5ml aliquots 

(see section 2.4.4). Bound protein was eluted from the column in a 0-100% gradient of elution buffer (8 CV)                         

over the vol. 145-200 ml. The imidazole gradient (0-500mM) used for elution is shown in green. Absorbance of 

eluted protein was measured at 280 nm (red line) and possible DNA/RNA contamination was monitored at 260 nm                      

(blue line). Peak fractions were collected and analysed by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein 

peak. Lane 1, molecular mass markers; lanes 2-10, purified E2o stained with Coomassie Brilliant Blue. The arrow 

on the right of the blot indicates purified protein. (C+D) Gel filtration profile of E2o being eluted at or near the void 

volume (~ 40ml). The purity of the final E2o preparation was assessed by SDS-PAGE analysis and showed large 

yields of pure E2o corresponding to the main GFC peak. Lane 1, molecular mass markers.  
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3.3.3.5       Purification of human E3 (His-tag form) 

Purification of E3 was very similar to the E2o purification, being achieved by a two step                         

process involving an initial metal chelate chromatography step (Fig. 3.30A) followed by gel 

filtration (Fig. 3.30C). The purified E3 was yellow in colour indicating the incorporation of the 

FAD cofactor. SDS-PAGE confirmed the high purity of the E3 preparation (Fig. 3.30B & 

3.30D).   

  

Figure 3.30: Purification of human E3 (His-tag form) 
(A) Metal chelate affinity chromatography of E3. Cell lysates (20ml) were applied to the column in 5ml aliquots 

(see section 2.4.4). Bound protein was eluted from the column in a 0-100% gradient of elution buffer (8 CV) over 

the vol. 145-200 ml. The imidazole gradient (0-500mM) used for elution is shown in green. Absorbance of eluted 

protein was measured at 280 nm (red line) and possible DNA/RNA contamination was monitored at 260 nm (blue 

line). Peak fractions were collected and analysed by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein peaks. 

Lane 1, molecular mass markers; lanes 2-11, purified E3 stained with Coomassie Brilliant Blue. The arrow on the 

right of the blot indicates purified protein. (C+D) Gel filtration profile of E3 being eluted at ~ 60 ml. The purity of 

the final E3 preparation was assessed by SDS-PAGE analysis and showed large yields of pure E3 corresponding to 

the main GFC peak. Lane 1, molecular mass markers.  
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3.4   Summary 

The main purpose of this chapter was to clone, express and purify a series of short human E1o                          

N-terminal constructs and the constituent mature E1o, E2o and E3 enzymes of the human 

OGDC. The solubility and yields achieved for all purified proteins are summarised in Table 3.7. 

The successfully purified proteins and N-terminal fragments were then used for a variety of 

experiments as described in subsequent chapters. 

 

Protein 
Plasmid 

vector 

Cloning 

and 

Expression 

Solubility 
Yields 

(mg/l) 
Degradation 

E3 pET-14b Successful Soluble 30-40 None 

E2o pET-14b Successful Soluble 40-50 None 

E1o-60 pET-14b Successful Soluble Poor N/A 

E1o-90 pET-14b Successful Soluble Poor N/A 

E1o-153 pET-14b Successful Soluble Poor N/A 

E1o-60 pGEX-2T Successful Soluble 30-40 None 

E1o-90 pGEX-2T Successful Soluble 25-35 None 

E1o-153 pGEX-2T Successful Soluble 25-35 Significant degradation 

E1o-60 pET-30a Successful Soluble 5-10 Significant degradation 

E1o-90 pET-30a Successful Soluble 10-15 Significant degradation 

E1o-153 pET-30a Successful Soluble 15-20 Minor degradation 

Full-length E1o pET-14b Successful In-soluble N/A N/A 

wt GST pGEX-2T N/A Soluble 30-40 None 

wt MBP pET-30a N/A Soluble 20-30 None 

 

Table 3.7: Summary of cloning and protein purification yields 
N/A, Not applicable; wt, wild-type. 
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Preliminary structural characterization 
of the N-terminal region of E1o and 
investigation of its interaction with E3  

 

 
4.1    Introduction 

2-oxoacid dehydrogenase complexes are large multimeric assemblies located in the 

mitochondrial matrix. These macromolecular structures serve as paradigms for understanding 

protein structure-function relationships, the biological significance of protein assemblies and 

protein-protein interactions in general.  

 

The PDC, OGDC and BCOADC are highly-ordered assemblies of 3 distinct enzymes, designated 

E1, E2 and E3, that jointly regulate critical steps in glucose metabolism and the degradation of 

the branched-chain amino acids. The catalytic reaction requires significant coupling between 

these three enzymes (Reed 1974; Yeaman 1986; Lindsay 1989; Perham 1991).  OGDC catalyses 

the rate-limiting step in the TCA cycle in many species. The importance of this complex is 

highlighted by its selective inactivation in the pathology of several neurodegenerative conditions, 

particularly those associated with oxidative stress disorders such as Alzheimer's disease. 

 

In mammalian PDC, E2p and an E2p-related subunit (E3BP) form the structural core to which 

E1p and E3 enzymes are bound via a specific E1p-SBD on E2p and an E3-SBD located on E3BP 

(Neagle and Lindsay 1991; Izard et al. 1999; Hiromasa et al. 2004). In BCOADC, a single SBD 
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located on E2b binds both E1b and E3 (Clarkson and Lindsay 1991; Kalia et al. 1993; Nakano et 

al. 1994). In contrast, E2o does not contain any obvious SBD for E1o or E3 and there is no 

equivalent to E3BP in this complex. Hence, human E2o has a unique structure comprising only 

two domains (LD and CTD) (Bradford et al. 1987; Wagenknecht et al. 1990; Nakano et al. 1994; 

Koike et al. 2000). In mammalian cells, E3 is an FAD containing flavoprotein that is common to 

all 3 multienzyme complexes (PDC, OGDC and BCOADC). 

 

E1o exists as a homodimer (α2) whereas E1p and E1b exist as heterotetramers (α2β2).                    

It is a ThDP-dependent enzyme that catalyses the oxidative decarboxylation step with transfer of 

a succinyl group to an E2o-linked lipoic acid moiety. A number of mammalian E1o isoforms 

have been identified. The major human E1o isoform is encoded by the OGDH gene (heart 

isoform, OGDH-H). Additionally there are two further isoforms; OGDH-L (brain isoform) and 

DHTKD1 mitochondrial hypothetical protein (Szabo et al. 1994; Koike 1998; Bunik and 

Degtyarev 2008a; Bunik and Fernie 2009). 

 

Previous research has established that the N-terminal region of E1o is involved in the overall 

maintenance of OGDC integrity and assembly. Selective proteolysis of E1o with trypsin at                     

a single site located near its N-terminus results in dissociation of E3 and a large, active E1' 

species from the core assembly with simultaneous loss of overall complex activity (Kresze et al. 

1981; Rice et al. 1992; McCartney et al. 1998).  Moreover, N-terminal sequence analysis of 

mammalian E1o indicates that sequences located in this region display limited  similarity to 

corresponding sequences in E3BP suggesting that the N-terminal region of E1o may be involved 

in interacting with E3 (Rice and Lindsay 1991; Rice et al. 1992). In addition, a previous 
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crystallography study of a bacterial E1o has indicated that it cannot be crystallized unless its                  

N-terminal region (77 a.a. in length) is removed (Frank et al. 2007).  These studies suggest that 

the N-terminal region of E1o may be natively-disordered and possibly involved in interacting 

with both E2o and E3.  

 

Initially, this chapter presents preliminary data for the structural characterization of the                      

N-terminal region of E1o using synthetic peptides and circular dichroism (CD).  In parallel                       

with these experiments, a basic bio-informatics approach was employed to determine if this                     

N-terminal region was predicted to form a stable 3-D structure similar to the SBDs of E2p, E2b 

and E3BP. In addition, sequence comparison and alignment of the main E1o isoforms was 

investigated.     

 

The main thrust of this chapter concerns an investigation into the ability of the E1o N-terminal 

region to associate with E3 and mapping of the E1o segment involved in subunit binding in order 

to understand more fully its role in maintaining OGDC integrity.         

 

To achieve these goals, a range of biochemical and biophysical approaches was applied 

including: (a) peptide array analysis to test the ability of N-terminal E1o segments to bind E3;  

(b) ala-scanning to identify key docking sites; (c) use of synthetic peptides to N-terminal E1o 

segments; (d) native polyacrylamide gel electrophoresis; (e) isothermal titration calorimetry;       

(f) gel filtration and (g) GST affinity chromatography.   
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4.2       Results and analysis  

 

 

4.2.1   Structural characterization of the N-terminal 
region of E1o 

To investigate the N-terminal region of E1o in more detail and to test the potential of this region 

to fold into an ordered 3-D conformation, two synthetic peptides N-terminal E1o 25 meric 

(Ser11 - Ser35) (SGTSSNYVEEMYCAWLENPKSVHKS, peptide 1) and E1o (Trp36 - Ser60) 

(WDIFFRNTNAGAPPGTAYQSPLPLS, peptide 2) were purchased from Genscript, UK (see 

Materials and Methods, section 2.4.9). These peptides were designed based on peptide array                                                       

data showing strong association with E3 (see section 4.2.3.1) and checked by SDS-PAGE                         

(Fig. 4.1).   

 

Moreover, a 65-meric peptide corresponding to amino acids Ser11 to Glu75 of the                        

N-terminal region of E1o (peptide 3) was also purchased from LifeTein LLC., USA. Owing to 

the hydrophobicity of peptide 3, it was necessary to dissolve it in organic solvents e.g. dimethyl 

sulfoxide (DMSO) or employ acidic conditions e.g. 0.1M acetic acid. 

 

A number of experiments were performed using peptide 3 including ITC and native-PAGE 

without success (data not shown). Moreover, it became apparent that extensive aggregation of 

peptide 3 and its limited solubility in physiological buffers made these experiments unfeasible.  
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Figure 4.1: SDS-PAGE analysis of synthetic peptides  
Samples were denatured in the presence of 150mM DTT at 100°C for 5min and resolved on an 18% 

SDS/polyacrylamide gel.  Protein bands were visualised by Coomassie Brilliant Blue staining. Lane 1, molecular 

mass markers. SDS-PAGE analysis of synthetic peptides showing peptide 1 (~ 3 kDa, lane 2) and peptide 2 ( ~ 2.8 

kDa, lane 3). 
 
 

 

 

 
 
Peptides 1 and 2 both dissolved readily in aqueous solutions at neutral pH.  The molecular 

masses and molar extinction coefficient (ε) of these peptides were determined by computing the 

protein sequences in the EXPASY suite (see section 2.4.6). Moreover, mass spectrophotometry 

was employed for confirmation of the exact molecular mass of both peptides. Analysis was 

carried out by the Astbury centre, University of Leeds. Samples were prepared by dissolving 

100μM peptide in 20mM ammonium acetate at pH 7.5 (see section 2.5.3).   
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It was found that the molecular mass of the peptides 1 and 2 were 2,847 Da and 2,721 Da, 

respectively (Fig. 4.2 & 4.3) within one Dalton of the predicted molecular masses as calculated 

from their amino acid sequences.  

 

 

 
 

Figure 4.2: Molecular mass spectrum of synthetic peptide 1  
MS analysis of synthetic 25-meric peptide (Ser11 to Ser35). The peptide is measured at 2846.2 Da which is within 

one Da of the expected calculated mass of 2847.1 Da.  

 

 

 

 

 

 

 

 



Chapter 4                                                                                                                                 Results 

141 

 

 
 

Figure 4.3: Molecular mass spectrum of synthetic peptide 2 
MS analysis of synthetic 25-meric peptide (Trp36 to Ser60). The peptide is measured at 2721.3 Da which is within 

one Da of the expected calculated mass of 2721.0 Da.  

 

 

 

 

 

Structural characterization of the E1o N-terminal peptides was initially performed using circular 

dichroism to determine their tendency to form characteristic secondary structures. CD measures 

differences in the absorption of left-handed polarized light versus right-handed polarized light 

that arise due to structural asymmetry, in particular α-helix and β-sheet formation. 

 

For CD studies, peptides 1 and 2 were dialysed against 20mM KH2 PO4 buffer at pH 7.5. 

Experiments were performed at room temperature on a Jasco J-810 spectro-polarimeter scanning 

the spectra in the far and near UV regions (see section 2.5.1).  
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Peptides 1 and 2 were titrated with increasing concentrations of 2,2,2, trifluoroethanol (TFE). 

Analysis of the data revealed that peptide 1 (25-meric, Ser11 to Ser35) comprised                           

47% α-helix, 8% β-strand, 14% turns and 31% random coil at 50% TFE (Fig. 4.4).                          

Peptide 2 (25-meric, Trp36 to Ser60) comprised 27% α-helix, 11% β-strands, 25% turns                      

and 37% random coil at 50% TFE (Fig. 4.5). Both peptides demonstrated an ability to                          

form α-helix in TFE as evidenced by the presence of double minima at approx. 208 and 220 nm. 

Peptide 2 showed less ability to adopt an α-helical conformation than peptide 1 which starts to 

fold at approx. 10% TFE.  All CD experiments were carried out and analysed in collaboration 

with Dr. S. Kelly, University of Glasgow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Circular dichroism spectra of synthetic peptide 1  
Far UV CD spectra (185-260nm) of peptide 1 (25-meric, Ser11 to Ser35) in the absence of 2,2,2, trifluoro-ethanol 

(TFE) (blue) and increasing concentrations of TFE. Peptide 1 starts folding at ~ 10% TFE.   
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Figure 4.5: Circular dichroism spectra of synthetic peptide 2 
Far UV CD spectra of peptide 2 (25-meric, Trp36 to Ser60) in the absence of TFE (blue) and increasing 

concentrations of TFE. Peptide 2 showed less ability to fold into an α-helical conformation starting to fold                                   

at ~ 30% TFE. 

 

 

 

 

Secondary structure analysis of these 2 N-terminal E1o peptides covering the putative E3 

binding domain revealed that they can adopt an α-helical conformation under appropriate 

conditions.  To extend these analyses, structure prediction was carried out on the E1o N-terminal 

region. In general, the aim of protein structure prediction is to compute the likely 3-D 

conformation of the protein or polypeptide of interest based on their primary amino acid 

sequence. Both, I-TASSER and Swiss-model servers were employed to predict the 3-D structure 

of the E1o N-terminal region (see Materials and Methods, section 2.6.4).  
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I-TASSER (Zhang 2008) and Swiss-model (Guex and Peitsch 1997; Schwede et al. 2003; 

Arnold et al. 2006) online systems depend on searching for sequences of similar overall 

character by protein threading (I-TASSER) or significant sequence homology (Swiss-model) to 

polypeptides of known 3-D structure in the Protein Data Bank (PDB).  Once one or more of 

these polypeptide sequences are selected, they are then used as templates to predict the 3-D 

structure of the target protein.  I-TASSER predicts the 3-D structure of the E1o N-terminal 

region generating 5 possible models. These models are selected based on the best C-score that 

represents the degree of similarity to the templates. Typically, C-scores are scaled in the range                    

(-5 to 2) where positive values reflect a high quality model.        

 

Figures 4.6 shows the 3-D structure prediction for the human N-terminal region of E1o                          

(1-77 a.a.) that has been generated by I-TASSER. The N-terminal E1o-77 (Ser1-Gln77) 

sequence was provided in FASTA format to http://zhanglab.ccmb.med.umich.edu/I-TASSER/, 

generating 5 models with C-scores; -1.43, -2.91, -3.47, -3.57 and -3.89 respectively. 

Interestingly, a 3-D structure prediction of E1o-77 (1-77 a.a.) using Swiss-model failed to 

generate any models suggesting that no homologous sequences exist in the database.  

 

 

 

 

  

 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
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Figure 4.6: 3-D structure predication of human N-terminal E1o-77 
Prediction of 3-D structure for human N-terminal E1o-77 (Ser1-Gln77). The 3-D structure was predicted by                       

I-TASSER (Zhang 2008) and generated 5 models based on C-score. Model 1 has highest C-score (-1.43).                               

Human N-terminal E1o-77 is coloured according to secondary structure as follows: α-helix (pink) and β-sheet 

(yellow).  
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4.2.2   Structural prediction for human E1o and 
sequence alignment of main E1o isoforms 

In order to obtain a structural model for full-length human E1o (OGDH-H), the crystal structure 

obtained for the  E. coli E1o was used as a template by I-TASSER (Frank et al. 2007). The two 

sequences display 38.8% identity in a 957 a.a. overlap (Fig. 4.7).  Structural predictions for 

human E1o are shown in Figure 4.8.  The 5 models generated had C-scores of 0.69, -1.89, -2.04,                    

-2.12 and -2.12, respectively.   

 

In addition,  Figure 4.9 shows a ThDP binding site prediction for human E1o (OGDH-H) 

generated by I-TASSER using the crystal structure of the SucA domain of Mycobacterium 

smegmatis alpha-ketoglutarate decarboxylase complexed with ThDP as a template (Wagner et al. 

2011). The predicted binding site residues in the human E1o model are Glu378, Ala379, Ala380, 

Asp381, Gly407, Gly410, Asp411, Ala412, Ala413, Glu422, Val442, Asn443, Asn444 and 

His473.  Interestingly, the human E1o model clearly indicates that the E1o N-terminal region is 

exposed on the surface of the homodimer (Fig. 4.8).  As both subunits in the E1o homodimer 

associate in a ‘head-to-head’ fashion, it is apparent that both exposed E1o N-terminal domains 

are likely to be located in close proximity at one end of the molecule (Frank et al. 2007).  
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Figure 4.7: Sequence alignment of human E1o and E. coli E1o 
The amino acid sequence of human E1o (OGDH-H) and E. coli E1o (Frank et al. 2007) were aligned.                                   

An asterisk (*) indicates positions that have a fully conserved residue. A colon (:) indicates conservation between 

residues with strongly similar properties. A period (.) indicates conservation between residues with weakly similar 

properties. Hydrophobic residues are shown in red. Acidic and basic residues are shown in blue and magenta 

respectively. Residues with hydroxyl, sulfhydryl or amine groups are depicted in green. 
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Figure 4.8: 3-D structure predication of human E1o  
Prediction of 3-D structures for human E1o (OGDH-H, 1-962 a.a.) (monomer).  The 3-D structure was predicted by 

I-TASSER (Zhang 2008) and generated 5 models based on C-score.  Model 1 had the highest C-score (0.69). 

Human E1o is coloured according to secondary structure in pink (α-helix) and yellow (β-sheet). The N-terminal 

region of human E1o is indicated.  

 

 

 

Figure 4.9: ThDP binding site prediction for human E1o  
ThDP binding site prediction of human E1o (OGDH-H, 1-962 a.a.) (monomer) was generated by I-TASSER (Zhang 

2008).  N-terminal sequence of the predicted 3-D model is indicated. The predicted binding site residues are Glu378, 

Ala379, Ala380, Asp381, Gly407, Gly410, Asp411, Ala412, Ala413, Glu422, Val442, Asn443, Asn444 and His473.  
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Different isoforms of human E1o have been reported and these may have different modes of 

regulation. These isoforms appear to be produced in a tissue-specific manner and a number of 

transcript variants have been detected originating from different human chromosomes (Szabo et 

al. 1994; Koike 1995; Koike 1998; Bunik and Degtyarev 2008a; Bunik and Fernie 2009).  

 

Three main human E1o and/or E1o-like isoforms (isoforms 1, 2 and 3) have been identified and 

characterised in the NCBI database. Sequence alignment of the human E1o isoforms was 

performed using ClustalW2 (see section 2.6.3) under default parameters (Fig. 4.10). Isoform 1 

(GenBank Reference Sequence: BAA06836.1) represents the main so-called heart isoform 

(OGDH-H, 962 a.a.). It is encoded by the OGDH gene that is localised on chromosome                                

7 p14-p13. Multiple sequence alignment (Fig. 4.10) shows that this isoform contains all the 

essential residues and domains including a ThDP binding domain, catalytic domain and three 

putative Ca
2+

-binding sites.  

 

Isoform 2 or the so-called brain E1o isoform (OGDH-L) (NCBI Reference Sequence: NP-

060715.2) was isolated from human brain tissue (Bunik and Fernie 2009). The OGDH-L gene is 

located on the chromosome 10 q11.23. Figure 4.10 shows that isoform 2 (OGDH-L) conserves 

all the main structural features and domain organization of human E1o (OGDH-H). It has a high 

degree of the sequence similarity (81.3% identity in an 898 a.a. overlap), although the highest 

similarity is observed within their catalytic domains. Moreover, sequence alignment of the                     

N-terminal region (1-167 a.a.) of E1o isoform 2 shows 75.2% identity in a 149 a.a. overlap with 

E1o (OGDH-H).  
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Human E1o isoform 3 (NCBI Reference Sequence: NP-061176.3), also referred to as 

mitochondrial hypothetical protein (DHTKD1), is encoded by the DHTKD1 gene that is also 

located on chromosome 10 (Nagase et al. 2001; Collins et al 2002). 

 

Isoform 3 (919 a.a.) represents an additional putative 2-oxoglutarate dehydrogenase-like protein. 

Its cDNA has been isolated from human uterus, kidney, and brain.  Multiple sequence alignment     

(Fig. 4.10) shows that the N-terminal region of E1o isoform 3 (DHTKD1), is poorly conserved 

and is about 60 amino acid shorter than the corresponding N-terminal region of E1o (OGDH-H). 

Sequence comparison of isoform 3 with E1o (OGDH-H) predicts only 40.1% identity in an 836 

a.a. overlap. Despite the lower identity of isoform 3, it still retains a putative ThDP binding 

domain and catalytic domain. 
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Figure 4.10: Multiple sequence alignment of the human E1o isoforms 
The amino acid sequence of human E1o (isoform 1, OGDH-H, 1-962 a.a.), human E1o isoform 2                  

(OGDH-L, NCBI Ref. Seq.: NP-060715.2) and human E1o isoform 3 (DHTKD1, NCBI Ref. Seq.: NP-061176.3) 

were aligned. An asterisk (*) indicates positions that have a fully conserved residue. A colon (:) indicates 

conservation between residues with strongly similar properties. A period (.) indicates conservation between residues 

with weakly similar properties. Hydrophobic residues are shown in red. Acidic and basic residues are shown in blue 

and magenta respectively. Residues with hydroxyl, sulfhydryl or amine groups are depicted in green. The signal 

peptide sequences are marked in gray. The putative Ca
2+

-binding sites (boxed in yellow) and ThDP binding domains 

(boxed in light green) are shown.    
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4.2.3    Investigation of the interaction between the  
N-terminal region of E1o and E3 

The main purpose of this section was to test the ability of the E1o N-terminal region to interact 

with E3 as a first step to explain the role of this segment in maintaining the integrity of the 

OGDC. 

 

4.2.3.1      Peptide array analysis 

Peptide array analysis was employed to define the key N-terminal regions of E1o involved in E3 

binding. N-terminal E1o segments were analysed by peptide array technology as shown in Figure 

4.11.  

 

 
 

Figure 4.11: Amino acid sequence of the human E1o precursor 
The N-terminal region of mature E1o (OGDH-H) thought to be involved in E3 binding is shown in red. Its 40 a.a. 

mitochondrial targeting sequence is shown in blue. The human E1o isoform (OGDH-H) sequence was taken from 

the GenBank database (GenBank Ref. Seq.: BAA06836.1).   



Chapter 4                                                                                                                                 Results 

154 

 

Recombinant pET-14b plasmid housing the coding sequence of mature human E3 was 

transformed into E. coli DH5, and then successfully over-expressed in E. coli BL21 (DE3) 

pLysS as a His-tagged fusion protein at 30C after induction with IPTG (see section 3.3.2.6).  E3 

was purified by zinc chelate chromatography as described in Materials and Methods, section 

2.4.4.2. After the initial isolation, E3 was further purified by gel filtration in GFC buffer 

(150mM NaCl, 50mM KH2PO4, pH 7.5) using a Sephacryl HiPrep S-300 High Resolution 

column attached to a BioCAD 700E workstation (see section 3.3.3.5).  

 

To define a possible interaction between the E1o N-terminal region (Fig. 4.11) and E3, 

immobilised peptide spots of overlapping 25-meric peptides, each shifted by five amino acids 

(Fig. 4.12C) covering the entire N-terminal region of mature E1o were probed for interaction 

with E3 (Fig. 4.12B) or HRP-Ab alone as control (Fig. 4.12A) as described in Materials and 

Methods, section 2.4.8.  Peptide array analysis shows a strong reaction with peptides 3, 5, 6, 7, 8, 

9 and 10 incorporating amino acids extending from Ser11 to Ala70 suggesting this E1o segment 

is pivotal in promoting E3 binding.  In addition, peptides 2, 4 and 12 showed a weak interaction 

with E3. The experiment was performed in triplicate using fresh peptide arrays and E3.  

Equivalent results were obtained on each occasion.     
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Figure 4.12: Probing an E1o N-terminal peptide library with E3  
Immobilised peptide spots of overlapping 25-meric peptides, each shifted by five amino acids covering the entire                   

N-terminal region of E1o were probed for interaction with either E3, or HRP-Ab alone as control. Samples were 

probed with His-tag Ab (HRP-Ab) and detected by ECL. (A) E1o N-terminal peptide array overlayed with HRP-Ab 

alone as control shows no reactive binding with all peptides (1-14). (B) Peptide array analysis of E3 binding with    

N-terminal E1o segments in TBST buffer (150mM NaCl, 0.1% (v/v) Tween-20, 50mM Tris-HCl, pH 7.4) shows 

reactive binding with peptides 3, 5, 6,7,8,9 and 10.  Weak reactive binding with peptides 2, 4 and 12 was also 

evident. (C) E1o N-terminal overlapping peptide array (peptides 1-14). 
 

 

 

 

In order to define key amino acids that are implicated in E3 binding within this suite of 25-meric 

peptides, alanine scanning was carried out on peptides 3-10 in which each amino acid within 

individual peptides was substituted in turn by alanine (or aspartic acid) as shown in Table 4.1. 
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POS. PEPTIDE NO. 3 POS. PEPTIDE NO. 4 

A23 SGTSSNYVEEMYCAWLENPKSVHKS B20 NYVEEMYCAWLENPKSVHKSWDIFF 
A24 AGTSSNYVEEMYCAWLENPKSVHKS B21 AYVEEMYCAWLENPKSVHKSWDIFF 

A25 SATSSNYVEEMYCAWLENPKSVHKS B22 NAVEEMYCAWLENPKSVHKSWDIFF 

A26 SGASSNYVEEMYCAWLENPKSVHKS B23 NYAEEMYCAWLENPKSVHKSWDIFF 
A27 SGTASNYVEEMYCAWLENPKSVHKS B24 NYVAEMYCAWLENPKSVHKSWDIFF 

A28 SGTSANYVEEMYCAWLENPKSVHKS B25 NYVEAMYCAWLENPKSVHKSWDIFF 

A29 SGTSSAYVEEMYCAWLENPKSVHKS B26 NYVEEAYCAWLENPKSVHKSWDIFF 
A30 SGTSSNAVEEMYCAWLENPKSVHKS B27 NYVEEMACAWLENPKSVHKSWDIFF 

B01 SGTSSNYAEEMYCAWLENPKSVHKS B28 NYVEEMYAAWLENPKSVHKSWDIFF 

B02 SGTSSNYVAEMYCAWLENPKSVHKS B29 NYVEEMYCDWLENPKSVHKSWDIFF 
B03 SGTSSNYVEAMYCAWLENPKSVHKS B30 NYVEEMYCAALENPKSVHKSWDIFF 

B04 SGTSSNYVEEAYCAWLENPKSVHKS C01 NYVEEMYCAWAENPKSVHKSWDIFF 

B05 SGTSSNYVEEMACAWLENPKSVHKS C02 NYVEEMYCAWLANPKSVHKSWDIFF 
B06 SGTSSNYVEEMYAAWLENPKSVHKS C03 NYVEEMYCAWLEAPKSVHKSWDIFF 

B07 SGTSSNYVEEMYCDWLENPKSVHKS C04 NYVEEMYCAWLENAKSVHKSWDIFF 

B08 SGTSSNYVEEMYCAALENPKSVHKS C05 NYVEEMYCAWLENPASVHKSWDIFF 
B09 SGTSSNYVEEMYCAWAENPKSVHKS C06 NYVEEMYCAWLENPKAVHKSWDIFF 

B10 SGTSSNYVEEMYCAWLANPKSVHKS C07 NYVEEMYCAWLENPKSAHKSWDIFF 

B11 SGTSSNYVEEMYCAWLEAPKSVHKS C08 NYVEEMYCAWLENPKSVAKSWDIFF 
B12 SGTSSNYVEEMYCAWLENAKSVHKS C09 NYVEEMYCAWLENPKSVHASWDIFF 

B13 SGTSSNYVEEMYCAWLENPASVHKS C10 NYVEEMYCAWLENPKSVHKAWDIFF 

B14 SGTSSNYVEEMYCAWLENPKAVHKS C11 NYVEEMYCAWLENPKSVHKSADIFF 
B15 SGTSSNYVEEMYCAWLENPKSAHKS C12 NYVEEMYCAWLENPKSVHKSWAIFF 

B16 SGTSSNYVEEMYCAWLENPKSVAKS C13 NYVEEMYCAWLENPKSVHKSWDAFF 

B17 SGTSSNYVEEMYCAWLENPKSVHAS C14 NYVEEMYCAWLENPKSVHKSWDIAF 
B18 SGTSSNYVEEMYCAWLENPKSVHKA C15 NYVEEMYCAWLENPKSVHKSWDIFA 

  

POS. PEPTIDE NO. 5 POS. PEPTIDE NO. 6 

C17 MYCAWLENPKSVHKSWDIFFRNTNA D14 LENPKSVHKSWDIFFRNTNAGAPPG 
C18 AYCAWLENPKSVHKSWDIFFRNTNA D15 AENPKSVHKSWDIFFRNTNAGAPPG 

C19 MACAWLENPKSVHKSWDIFFRNTNA D16 LANPKSVHKSWDIFFRNTNAGAPPG 
C20 MYAAWLENPKSVHKSWDIFFRNTNA D17 LEAPKSVHKSWDIFFRNTNAGAPPG 

C21 MYCDWLENPKSVHKSWDIFFRNTNA D18 LENAKSVHKSWDIFFRNTNAGAPPG 

C22 MYCAALENPKSVHKSWDIFFRNTNA D19 LENPASVHKSWDIFFRNTNAGAPPG 
C23 MYCAWAENPKSVHKSWDIFFRNTNA D20 LENPKAVHKSWDIFFRNTNAGAPPG 

C24 MYCAWLANPKSVHKSWDIFFRNTNA D21 LENPKSAHKSWDIFFRNTNAGAPPG 

C25 MYCAWLEAPKSVHKSWDIFFRNTNA D22 LENPKSVAKSWDIFFRNTNAGAPPG 
C26 MYCAWLENAKSVHKSWDIFFRNTNA D23 LENPKSVHASWDIFFRNTNAGAPPG 

C27 MYCAWLENPASVHKSWDIFFRNTNA D24 LENPKSVHKAWDIFFRNTNAGAPPG 

C28 MYCAWLENPKAVHKSWDIFFRNTNA D25 LENPKSVHKSADIFFRNTNAGAPPG 
C29 MYCAWLENPKSAHKSWDIFFRNTNA D26 LENPKSVHKSWAIFFRNTNAGAPPG 

C30 MYCAWLENPKSVAKSWDIFFRNTNA D27 LENPKSVHKSWDAFFRNTNAGAPPG 

D01 MYCAWLENPKSVHASWDIFFRNTNA D28 LENPKSVHKSWDIAFRNTNAGAPPG 
D02 MYCAWLENPKSVHKAWDIFFRNTNA D29 LENPKSVHKSWDIFARNTNAGAPPG 

D03 MYCAWLENPKSVHKSADIFFRNTNA D30 LENPKSVHKSWDIFFANTNAGAPPG 

D04 MYCAWLENPKSVHKSWAIFFRNTNA E01 LENPKSVHKSWDIFFRATNAGAPPG 
D05 MYCAWLENPKSVHKSWDAFFRNTNA E02 LENPKSVHKSWDIFFRNANAGAPPG 

D06 MYCAWLENPKSVHKSWDIAFRNTNA E03 LENPKSVHKSWDIFFRNTAAGAPPG 

D07 MYCAWLENPKSVHKSWDIFARNTNA E04 LENPKSVHKSWDIFFRNTNDGAPPG 
D08 MYCAWLENPKSVHKSWDIFFANTNA E05 LENPKSVHKSWDIFFRNTNAAAPPG 

D09 MYCAWLENPKSVHKSWDIFFRATNA E06 LENPKSVHKSWDIFFRNTNAGDPPG 

D10 MYCAWLENPKSVHKSWDIFFRNANA E07 LENPKSVHKSWDIFFRNTNAGAAPG 
D11 MYCAWLENPKSVHKSWDIFFRNTAA E08 LENPKSVHKSWDIFFRNTNAGAPAG 

D12 MYCAWLENPKSVHKSWDIFFRNTND E09 LENPKSVHKSWDIFFRNTNAGAPPA 
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POS. PEPTIDE NO. 7 POS. PEPTIDE NO. 8 

E12 SVHKSWDIFFRNTNAGAPPGTAYQS F09 WDIFFRNTNAGAPPGTAYQSPLPLS 
E13 AVHKSWDIFFRNTNAGAPPGTAYQS F10 ADIFFRNTNAGAPPGTAYQSPLPLS 

E14 SAHKSWDIFFRNTNAGAPPGTAYQS F11 WAIFFRNTNAGAPPGTAYQSPLPLS 
E15 SVAKSWDIFFRNTNAGAPPGTAYQS F12 WDAFFRNTNAGAPPGTAYQSPLPLS 

E16 SVHASWDIFFRNTNAGAPPGTAYQS F13 WDIAFRNTNAGAPPGTAYQSPLPLS 

E17 SVHKAWDIFFRNTNAGAPPGTAYQS F14 WDIFARNTNAGAPPGTAYQSPLPLS 
E18 SVHKSADIFFRNTNAGAPPGTAYQS F15 WDIFFANTNAGAPPGTAYQSPLPLS 

E19 SVHKSWAIFFRNTNAGAPPGTAYQS F16 WDIFFRATNAGAPPGTAYQSPLPLS 

E20 SVHKSWDAFFRNTNAGAPPGTAYQS F17 WDIFFRNANAGAPPGTAYQSPLPLS 
E21 SVHKSWDIAFRNTNAGAPPGTAYQS F18 WDIFFRNTAAGAPPGTAYQSPLPLS 

E22 SVHKSWDIFARNTNAGAPPGTAYQS F19 WDIFFRNTNDGAPPGTAYQSPLPLS 

E23 SVHKSWDIFFANTNAGAPPGTAYQS F20 WDIFFRNTNAAAPPGTAYQSPLPLS 
E24 SVHKSWDIFFRATNAGAPPGTAYQS F21 WDIFFRNTNAGDPPGTAYQSPLPLS 

E25 SVHKSWDIFFRNANAGAPPGTAYQS F22 WDIFFRNTNAGAAPGTAYQSPLPLS 

E26 SVHKSWDIFFRNTAAGAPPGTAYQS F23 WDIFFRNTNAGAPAGTAYQSPLPLS 
E27 SVHKSWDIFFRNTNDGAPPGTAYQS F24 WDIFFRNTNAGAPPATAYQSPLPLS 

E28 SVHKSWDIFFRNTNAAAPPGTAYQS F25 WDIFFRNTNAGAPPGAAYQSPLPLS 

E29 SVHKSWDIFFRNTNAGDPPGTAYQS F26 WDIFFRNTNAGAPPGTDYQSPLPLS 
E30 SVHKSWDIFFRNTNAGAAPGTAYQS F27 WDIFFRNTNAGAPPGTAAQSPLPLS 

F01 SVHKSWDIFFRNTNAGAPAGTAYQS F28 WDIFFRNTNAGAPPGTAYASPLPLS 

F02 SVHKSWDIFFRNTNAGAPPATAYQS F29 WDIFFRNTNAGAPPGTAYQAPLPLS 
F03 SVHKSWDIFFRNTNAGAPPGAAYQS F30 WDIFFRNTNAGAPPGTAYQSALPLS 

F04 SVHKSWDIFFRNTNAGAPPGTDYQS G01 WDIFFRNTNAGAPPGTAYQSPAPLS 

F05 SVHKSWDIFFRNTNAGAPPGTAAQS G02 WDIFFRNTNAGAPPGTAYQSPLALS 
F06 SVHKSWDIFFRNTNAGAPPGTAYAS G03 WDIFFRNTNAGAPPGTAYQSPLPAS 

F07 SVHKSWDIFFRNTNAGAPPGTAYQA G04 WDIFFRNTNAGAPPGTAYQSPLPLA 

 

POS. PEPTIDE NO. 9 POS. PEPTIDE NO. 10 

G06 RNTNAGAPPGTAYQSPLPLSRGSLA H03 GAPPGTAYQSPLPLSRGSLAAVAHA 
G07 ANTNAGAPPGTAYQSPLPLSRGSLA H04 ADPPGTAYQSPLPLSRGSLAAVAHA 

G08 RATNAGAPPGTAYQSPLPLSRGSLA H05 GAAPGTAYQSPLPLSRGSLAAVAHA 
G09 RNANAGAPPGTAYQSPLPLSRGSLA H06 GAPAGTAYQSPLPLSRGSLAAVAHA 

G10 RNTAAGAPPGTAYQSPLPLSRGSLA H07 GAPPATAYQSPLPLSRGSLAAVAHA 

G11 RNTNDGAPPGTAYQSPLPLSRGSLA H08 GAPPGAAYQSPLPLSRGSLAAVAHA 
G12 RNTNAAAPPGTAYQSPLPLSRGSLA H09 GAPPGTDYQSPLPLSRGSLAAVAHA 

G13 RNTNAGDPPGTAYQSPLPLSRGSLA H10 GAPPGTAAQSPLPLSRGSLAAVAHA 

G14 RNTNAGAAPGTAYQSPLPLSRGSLA H11 GAPPGTAYASPLPLSRGSLAAVAHA 
G15 RNTNAGAPAGTAYQSPLPLSRGSLA H12 GAPPGTAYQAPLPLSRGSLAAVAHA 

G16 RNTNAGAPPATAYQSPLPLSRGSLA H13 GAPPGTAYQSALPLSRGSLAAVAHA 

G17 RNTNAGAPPGAAYQSPLPLSRGSLA H14 GAPPGTAYQSPAPLSRGSLAAVAHA 
G18 RNTNAGAPPGTDYQSPLPLSRGSLA H15 GAPPGTAYQSPLALSRGSLAAVAHA 

G19 RNTNAGAPPGTAAQSPLPLSRGSLA H16 GAPPGTAYQSPLPASRGSLAAVAHA 

G20 RNTNAGAPPGTAYASPLPLSRGSLA H17 GAPPGTAYQSPLPLARGSLAAVAHA 

G21 RNTNAGAPPGTAYQAPLPLSRGSLA H18 GAPPGTAYQSPLPLSAGSLAAVAHA 

G22 RNTNAGAPPGTAYQSALPLSRGSLA H19 GAPPGTAYQSPLPLSRASLAAVAHA 

G23 RNTNAGAPPGTAYQSPAPLSRGSLA H20 GAPPGTAYQSPLPLSRGALAAVAHA 
G24 RNTNAGAPPGTAYQSPLALSRGSLA H21 GAPPGTAYQSPLPLSRGSAAAVAHA 

G25 RNTNAGAPPGTAYQSPLPASRGSLA H22 GAPPGTAYQSPLPLSRGSLDAVAHA 

G26 RNTNAGAPPGTAYQSPLPLARGSLA H23 GAPPGTAYQSPLPLSRGSLADVAHA 
G27 RNTNAGAPPGTAYQSPLPLSAGSLA H24 GAPPGTAYQSPLPLSRGSLAAAAHA 

G28 RNTNAGAPPGTAYQSPLPLSRASLA H25 GAPPGTAYQSPLPLSRGSLAAVDHA 

G29 RNTNAGAPPGTAYQSPLPLSRGALA H26 GAPPGTAYQSPLPLSRGSLAAVAAA 
G30 RNTNAGAPPGTAYQSPLPLSRGSAA H27 GAPPGTAYQSPLPLSRGSLAAVAHD 

H01 RNTNAGAPPGTAYQSPLPLSRGSLD   

 

Table 4.1: Alanine substitution array for peptides 3-10  
Individual amino acids within each 25-meric peptide (peptides 3-10) were substituted by alanine (A) as shown 

above. Alanine residues present originally were substituted by aspartic acid (D). The position (Pos.) of the 

corresponding peptide within the original nitrocellulose membrane peptide array is shown by letter and number (e.g. 

A23). The first row of each table (shown in bold) represents wild-type (wt) peptide. 
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The alanine substitution array was probed with E3 in TBST buffer (150mM NaCl, 0.1% (v/v) 

Tween-20, 50mM Tris-HCl, pH 7.4) as described previously.  N-terminal E1o amino acid 

substitutions that resulted in a marked loss of binding capacity were considered to be important 

for E3 interaction.  It was found that amino acid substitutions at positions A29, A30, B01, B02, 

B05, B08, D08, F15, F16, G23, G25, G27, H04, H09, H18, H22, H23, H25 and H27 markedly 

reduce the ability of the relevant peptides to bind E3. These correspond to Asn16, Tyr17, Val18, 

Glu19, Tyr22, Trp25, Arg41, Asn42, Gly46, Ala47, Ala52, Leu57, Leu59, Arg61, Leu64, Ala65, 

Ala66, Ala68 and Ala70 (Figure 4.13). 

  

 

Figure 4.13: Alanine substitution array for peptides 3-10 from the E1o N-terminal region 

probed with E3   
Immobilised peptide spots were probed for their interaction with E3. Samples were treated with His-tag Ab                  

(HRP-Ab) and detected by ECL. Dark spots signify positive binding. The amino acid residues of human E1o                        

(N-terminal) thought to be important in binding between the E1o N-terminus and E3 by using alanine substitution 

are shown in blue.  
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Peptide array data on the interaction of N-terminal E1o with E3 described above (Fig. 4.12 & 

4.13) were obtained in the presence of 150mM NaCl to minimize non-specific binding. In view 

of the well-established salt sensitivity of the E3 interaction with intact OGDC, the N-terminal 

E1o peptides were probed with E3 in the presence of increasing NaCl concentrations (up to 

500mM) (Fig. 4.14). E3 binding was markedly reduced at higher NaCl concentrations 

confirming the salt sensitivity of these interactions. The effect of NaCl concentration in this 

range on overall bovine OGDC activity was also investigated in chapter 6.  

 

Figure 4.14: Peptide array analysis: effect of increasing salt 
Immobilised peptide spots were probed for their interaction with E3. Samples were treated with His-tag Ab                  

(HRP-Ab) and detected by ECL. (A), (B), and (C) alanine substitution array of E3 binding with N-terminal E1o 

peptides at different salt concentrations (150mM NaCl, 300mM NaCl, and 500mM NaCl respectively). Dark spots 

signify positive binds. A general reduction in E3 binding to all peptides was observed with elevated salt treatment. 

Peptide 6 (highlighted in red) showing the most resistance to increasing ionic strength. 
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4.2.3.2   Investigation of the interaction between N-terminal 
E1o peptides and E3 by isothermal titration 
calorimetry (ITC)  

Based on peptide array analysis, two synthetic E1o peptides (Ser11 to Ser35) and E1o                         

(Trp36 to Ser60) were purchased from Genscript, UK (see section 2.4.9).  ITC is one of the                    

most quantitative methods for analyzing molecular interactions.  The N-terminal E1o peptide 

(Trp36 to Ser60) and E3 were dialysed overnight against 150mM NaCl, 50mM KH2 PO4, pH 7.4 

(see section 2.4.5). The E1o peptide (710μM) was injected in 10μl aliquots into the reaction cell 

containing 16.5μM E3 at 25°C. 

 

By measuring the heats of interaction of E1o with E3, complex formation was found to be 

exothermic as evidenced by negative peaks in the ITC output. The data confirmed binding                     

of E1o to E3 (Kd = 35.7µM;  Ka = 2.79 x 10
4
 M

-1
). Binding was also characterised by a 

favourable enthalpy change (ΔH = -7309 kcal/mol) and entropy change (ΔS = -4.170 kcal/mol).  

The stoichiometry of binding suggests that two molecules of E1o can bind to one E3 homodimer 

(Fig. 4.15).  Examination of a possible interaction between the E1o N-terminal peptide                     

(Ser11 to Ser35) and E3 was also performed in same manner.  However, no significant binding 

was observed with this peptide (data not shown).    

 

The data indicated that the 25-meric peptide covering Trp36 to Ser60 interacted more                         

strongly with E3 than an equivalent peptide covering the segment Ser11 to Ser35. Interestingly,                        

Trp36 to Ser60 also represented the region that displayed the strongest interaction with E3 and 

was also most resistant to high salt treatment in peptide array studies (Fig. 4.14) confirming its 

central importance of this sequence in E3 binding.  
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Figure 4.15: ITC of N-terminal E1o 25-meric peptide (Trp36 to Ser60) and E3 
(A)  Raw data obtained from a series of 10 μl injections of E1 into E3 at 25°C and plotted as heat change versus 

time. (B) Plotting the areas under the peaks in (A) against the molar ratio of E1 injected as calculated by the 

ORIGIN software package. The best fit shown was obtained by least-squares fitting using a simple binding model 

(see section 2.5.2). The stoichiometry of binding (N) suggests that two molecules of E1o are bound per molecule of 

E3. The calculated values for stoichiometry, affinity constant (K), enthalpy change (ΔH) and entropy change (ΔS) 

are shown in the insert. ITC experiments and analyses were performed in collaboration with Mrs. Margaret Nutley, 

University of Glasgow.  
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4.2.3.3   Investigation of the interaction between the                      
N-terminal E1o-60 (Ser11-Ala70) and E3  

In order to investigate the interaction of an extended E1o N-terminal segment with E3, the 

human E1o N-terminal 60-meric truncate (Ser11-Ala70) was successfully cloned into the    

pGEX-2T vector via the TOPO TA cloning Kit (see section 3.3.1.2). E1o-60 was subsequently 

over-expressed and purified as a GST fusion protein (see section 3.3.2.2 & 3.3.3.2).  Moreover, 

two alternative E1o-60 (Ser11-Ala70) constructs were also successfully cloned into pET-14b 

(His-tagged E1o-60) and pET-30a (MBP E1o-60), respectively (see sections 3.3.11 & 3.3.1.3).  

Owing to poor yields of E1o-60 His-tag fusion protein (see section 3.3.3.1) and extensive 

degradation of E1o-60 MBP (see section 3.3.3.3), neither construct was employed for E3 binding 

studies.    

 

 

 

4.2.3.3.1     Investigation of the interaction between the E1o-60 GST 
fusion protein and E3 using glutathione Sepharose 4B 
chromatography 

To establish more clearly evidence for a direct interaction between E1o and E3 in native OGDC, 

an E1o-60 GST fusion protein (Ser11-Ala70) and E3 were over-expressed individually at 30 ºC                      

for 4-5 h. E3 contained an N-terminal His-tag (see section 3.3.2.6), whereas E1o-60 was                          

produced as a C-terminal GST fusion protein. Purified samples were dialysed against PBS                       

(see section 2.4.5), the two proteins were incubated in a 1:1 molar ratio for 5 min at room 

temperature and applied to a glutathione Sepharose 4B column attached to a BioCAD 700E 

workstation. Two separate peaks of eluted protein were observed (Fig. 4.16A). On SDS-PAGE 

analysis of the individual peaks, it was found that the first peak (flow through) contained E3 and 
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traces of unbound E1o-60 GST, whereas the second peak (eluted with glutathione) contained 

only E1o-60 GST (Fig. 4.16B). This result was also verified by Western blotting using                          

anti-GST-Ab (data not shown). Thus no stable association between E3 and the E1o N-terminal 

fragment (60 a.a.) could be detected under these conditions. However, it was possible that steric 

hindrance effects owing to the presence of the large GST fusion protein could prevent access of 

the small E1o peptide to its E3 partner. 

 

In the same manner, E1o-60 GST and E3 were also pre-incubated with a molar excess of                        

E1o-60 GST (1:2) and similar results were obtained (data not shown).   

 

  

 

Figure 4.16: Lack of interaction between E1o-60 GST and E3 
(A)  E1o-60 GST and E3 were pre-incubated for 5 min at room temperature followed by separation on a glutathione 

Sepharose column. E1o-60 GST and E3 were physically mixed in a 1:1 molar ratio. The purified proteins (2ml) 

were applied to a glutathione Sepharose 4B column in a 2ml aliquot. Bound protein was eluted from the column 

using 5 CV elution buffer (20mM reduced glutathione, 50mM Tris-HCl, pH 8.0). The reduced glutathione buffer 

step used for elution is shown in green. Absorbance of eluted protein was measured at 280 nm (red line). Peak 

fractions (2ml) were collected and analysed by SDS-PAGE. (B) SDS-PAGE (10%) analysis of eluted protein peaks 

stained with Coomassie Brilliant Blue. Lane 1, molecular mass markers; lane 2, purified E3 as control; lane 3, GST 

as control; lane 4, purified E1o-60 GST as control; lane 5, mixture of E1o-60 GST/E3; lanes 6-8, flow through and 

lanes 10-12, elution fractions. No E3 band was detected in the elution fractions. 
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4.2.3.3.2   Investigation of a potential interaction between E1o-60 GST 
and E3 using ITC 

E1o-60 GST and E3 were dialysed overnight against 50mM NaCl, 50mM KH2 PO4, pH 7.4                   

and concentrated (see section 2.4.5). E1o-60 GST at a concentration of 680μM was injected                       

in 10μl aliquots into the reaction cell containing 45μM E3 at 25°C (Fig. 4.17) and at 15°C (data 

not shown). Data were analysed using non-linear regression with the MicroCal ORIGIN software 

package, assuming a simple binding model.  Titrations of E1o-60 GST into E3 were identical to 

the titrations of E1o-60 GST into buffer indicating that the small changes observed are caused by 

heats of dilution. As stated previously, GST is a dimeric protein of 50 kDa and its presence 

might prevent binding to its small E1o partner owing to steric hindrance effects.  

 

Figure 4.17: ITC of N-terminal E1o-60 GST and E3 
(A) Raw data obtained from a series of 10μl injections of E1o-60 GST into E3 at 25°C and plotted as heat change 

versus time. (B) Plotting the areas under the peaks in (A) against the molar ratio of E1o-60 GST injected                              

as calculated by the ORIGIN software package. The best fit shown was obtained by least-squares fitting                               

using a simple binding model (see section 2.5.2). ITC experiments and analyses were performed in collaboration 

with Mrs. Margaret Nutley, University of Glasgow.   
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4.2.3.3.3   Investigation of a possible interaction between the E1o-60 
GST and E3 using native PAGE 

E1o-60 GST and E3 were over-expressed and purified individually as described previously                       

(see sections 3.3.2 & 3.3.3). Subsequently, both proteins were dialysed simultaneously against 

PBS buffer, pH 7.5 (see section 2.4.5). Samples were concentrated and their concentration 

measured as described in section 2.4.6. Native PAGE was performed under standard conditions 

(for more details, refer to section 2.4.3.2).       

 

E1o-60 GST and E3 were physically mixed in various molar ratios, keeping the amount of E3 

constant at 5µg. Samples were incubated at 25 
o
C for 15 min in PBS buffer, pH 7.5.  Protein 

samples were loaded onto Tris-glycine gels (5% stacking, 8% resolving gel) and subjected to 

native PAGE (Fig. 4.18).  

 

 

Figure 4.18: Native PAGE of E1o-60 GST and E3 at various stoichiometries 
Native PAGE (8%) analysis of stoichiometric mixtures of E1o-60 GST and E3. Samples were pre-incubated at 25°C 

for 15 min prior to suspending in sample buffer. Electrophoresis was carried out at constant voltage (100V) and 

10mA/gel in 1x running buffer for 6 h. Samples were viewed after staining with Coomassie Brilliant Blue. The 

arrows on the right of the blot indicate E3 and E1o-60 GST proteins respectively. Lane 1, E3 (5µg) as control;                    

lane 2, E1o-60 GST (30µg) as control. As the amount of E1o-60 GST was increased (5-40µg), no E3 bandshift 

corresponding to formation of an E1o-60 GST/E3 sub-complex could be detected (lanes 3,4,5,6 and 7). 
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E1o-60 GST was seen to migrate as a diffuse band on native gels.  Moreover, no E3 bandshift 

was observed even on addition of a large molar excess of E1o-60 GST, again indicating that 

there was no stable association between these two species.    

 

To rule out possible steric hindrance effects, the GST-tag was removed from the E1o-60                         

fusion protein by thrombin cleavage. Purified GST-tagged E1o-60 was dialysed against PBS,            

pH 7.5. Approximately 10 U of thrombin were added per mg of protein and incubated at room 

temperature overnight. Cleavage of the GST-tag was viewed by SDS-PAGE (Fig. 4.19). 

 

 

Figure 4.19: Cleavage of the E1o-60 GST fusion protein  
SDS-PAGE (16%) analysis of cleavage of E1o-60 GST by thrombin visualised by staining with Coomassie          

Brilliant Blue. Lane 1, molecular mass markers; lanes 2-5, GST controls; lanes 6-8, E1o-60 GST fusion                          

protein; lanes 9-12, E1o-60 GST digested with thrombin. Samples were digested with 10 U of thrombin                                            

per mg of protein overnight at 25°C. The arrow on the right of the blot indicates the E1o-60 fragment at the expected 

size (~ 7 kDa).   
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Figure 4.19 shows that 80-90% of E1o-60 GST was cleaved in this case. Temperature, 

incubation time and amount of thrombin added were optimized by monitoring digestion at 

various times (30 min, 1h, 2h, 4h and overnight) prior analyses by SDS-PAGE (data not shown).                       

To avoid proteolysis caused by excess thrombin, minimal amounts of thrombin were used                              

in this study.  

 

Unexpectedly, following cleavage of E1o-60 GST and glutathione Sepharose 4B 

chromatography to remove free GST, it was found that the vast majority of cleaved E1o-60 

remained associated with its GST fusion partner indicating tight non-specific binding (data not 

shown). This unanticipated observation provided additional evidence to account for the lack of 

success in detecting a direct association between this E1o-GST construct and native E3.      

 

 

4.2.3.4   Investigation of the interaction between the                    
N-terminal E1o-90 (Ser1-Val90) and E3  

The cDNA sequence encoding E1o-90 (Ser1-Val90) was successfully cloned into the                                  

pGEX-2T vector via the TOPO TA cloning Kit (see section 3.3.1.2) and the corresponding 

peptide subsequently over-expressed and purified (see section 3.3.2.2 & 3.3.3.2).  In addition,                 

the same construct was also successfully sub-cloned into pET-14b and pET-30a (see sections 

3.3.11 & 3.3.1.3).  However, owing to the poor yields of the E1o-90 His-tag protein (pET-14b, 

see section 3.3.3.1) and extensive degradation of the E1o-90 MBP fusion protein (pET-30a, see 

section 3.3.3.3), neither construct was employed in ITC binding experiments as these require                        

5-30mg of pure intact protein in most cases.        
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4.2.3.4.1   Investigation of a possible interaction between the E1o-90 
GST fusion protein and E3 using glutathione Sepharose 4B 
chromatography 

E1o-90 GST and E3 were expressed separately in E. coli (DE3) pLysS cells at 30 ºC for 3-5 h. 

After individual expression, bacterial pellets were disrupted by French press treatment and 

purified using GST affinity and zinc chelate chromatography, respectively. Purified samples 

were dialysed simultaneously against PBS, pH 7.4. The two proteins were incubated in                                   

a 1:1 molar ratio for 5 min at room temperature and passed through a glutathione Sepharose 4B 

column attached to a BioCAD 700E workstation. Two separate peaks of eluted protein were 

observed (Fig. 4.20A).  On SDS-PAGE analysis of the individual peaks, it was found that the 

first peak (flow through) contained E3 and traces of unbound E1o-90 GST, while, the second 

eluted peak contained bound E1o-90 GST and E3 (Fig. 4.20B).  The presence of a band of the 

predicted size for E3 in the E1o-90 GST elution peak confirmed a possible association of E3 

with this E1o-90 GST construct.  

 

To minimise the possibility of non-specific binding, the column was extensively washed with                     

12 CV PBS (150mM NaCl, 2.7mM KCl, 10mM Na2HPO4 and 1.8mM KH2PO4, pH 7.4) until                        

a zero baseline was achieved.  In addition, the last two tubes at zero baseline prior to elution                         

were collected and analysed by SDS-PAGE (Fig. 4.20C) and Western blotting (data not                                 

shown). Specific binding between E1o-90 GST and E3 was again observed on elution with                               

glutathione whereas no E3 band was evident in the last two tubes of the washing stage                              

(Fig. 4.20B & 4.20C).   
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These results were also verified by Western blotting using an anti-His tag antibody (penta-His 

HRP conjugate antibody) and anti-GST HRP conjugate antibody (Fig. 4.20D). Western blotting 

revealed conclusively that E1o-90 GST (Ser1-Val90) was able to associate with E3, supporting 

the peptide array results (Fig. 4.12 & 4.13). In contrast, no stable association between E3 and 

E1o-60 (Ser11-Ala70) could be detected under similar conditions.   

  

In an analogous manner, N-terminal E1o-153 GST (Ser1-Phe153) was also examined for its 

ability to interact with E3 using glutathione Sepharose 4B chromatography to detect complex 

formation. Similar to E1o-90 GST, it was found that E1o-153 GST was able to promote E3 

binding in a post-translational fashion (data not shown). Moreover, the presence of E3 in the 

E1o-153 GST/E3 elution peak was further confirmed using Western blotting despite extensive 

degradation of the purified E1o-153 GST.  
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Figure 4.20: Association of E1o-90 GST and E3  
(A) E1o-90 GST and E3 were pre-incubated in a 1:1 molar ratio for 5 min at room temperature. The purified 

proteins (2ml) were applied to a glutathione Sepharose 4B column in a 2ml aliquot. The bound protein was                     

eluted from the column using 5 CV elution buffer (20mM reduced glutathione, 50mM Tris-HCl, pH 8.0). The 

reduced glutathione buffer step used for elution is shown in green. Absorbance of eluted protein was measured                        

at 280 nm (red line). Peak fractions (2ml) were collected and analysed by either SDS-PAGE or Western blotting.                                  

(B) SDS-PAGE (10%) analysis of eluted protein peaks stained with Coomassie Brilliant Blue. Lane 1, molecular 

mass markers; lane 2, purified E3 as control; lane 3, purified E1o-90 GST as control; lane 4, mixture of                                      

E1o-90 GST/E3 prior to column addition; lanes 5-7, flow through and lanes 8-10, elution peak. E3 was detected in 

the elution peak. The arrows on the right of the blot indicate E3 and E1o-90 GST proteins, respectively.                                     

(C) SDS-PAGE (10%) analysis of the last two tubes at zero baseline of the extended wash stage prior to elution. 

Lane 1, molecular mass markers; lane 2, purified E3 as control; lanes 3-4, last two tubes at zero baseline of wash 

stage prior to elution; lane 5 (elution peak), confirming the presence of E3. (D) Western blot analysis of elution 

peak. Lane 2, purified E3 as control; lane 6, purified E1o-90 GST as control. The presence of E3 in the elution peak 

was confirmed (lanes 3, 4 & 5) with anti-His tag antibody (1 in 2000 dilution) (see section 2.4.7.1), while, the 

presence of E1o-90 GST was also confirmed (lanes 7, 8 & 9) with anti-GST HRP conjugate antibody (1 in 5000 

dilution) (see section 2.4.7.2).  
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4.2.3.4.2    Investigation of the interaction between the E1o-90 GST 
and E3 using ITC 

The N-terminal construct (E1o-90 GST) (Ser1-Val90) and E3 were purified, dialysed                    

overnight against 50mM NaCl, 50mM KH2PO4, pH 7.4 and concentrated (see section 2.4.5).                             

E1o-90 GST at a concentration of 410μM was injected in 10μl aliquots into the reaction cell 

containing 20μM E3 at 25°C (Fig. 4.21). Data were analysed using non-linear regression in the 

MicroCal ORIGIN software package, assuming a simple binding model.  

 

Measuring the heats of interaction of E1o-90 GST with E3, complex formation was found to be 

endothermic (positive peaks in the ITC input). The data confirmed the binding of E1o-90 GST to 

E3 (Kd = 15.3μM;  Ka = 6.46 x 10
4
 M

-1
). Binding was characterised by a favourable enthalpy 

change (ΔH = -8587 kcal/mol) and entropy change (ΔS= -6.793 kcal/mol). The stoichiometry of 

binding was estimated to be one mole of E1o-90 GST per mole of E3. The altered 1:1 

stoichiometry was anticipated as both E1o-90 GST and E3 are homodimers. In contrast, the 

observed binding stoichiometry of the Trp36-Ser60 peptide monomer with E3 was 2:1 

suggesting the presence of 2 accessible binding sites on dimeric E3 (Fig. 4.15). Positive evidence 

for an interaction between E1o-90 GST and E3 as opposed to the negative results obtained for 

the shorter E1o-60 GST construct are consistent with the idea that steric hindrance by the GST 

fusion partner may be an important contributory factor in the latter case.   
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Figure 4.21: ITC analysis of N-terminal E1o-90 GST (Ser1-Val90) interaction with E3 
(A) Raw data obtained from a series of 10μl injections of E1o-90 GST into E3 at 25°C and plotted as heat changes 

versus time. (B) Plotting the areas under the peaks in (A) (E1o-90 GST injections into E3) against the                      

molar ratio of E1o-90 GST injected as calculated by the ORIGIN software package. The best fit shown was obtained 

by least-squares fitting using a simple binding model (see section 2.5.2). The stoichiometry of binding (N) is                                

one E1o-90 GST homodimer per E3 homodimer.  The calculated values for stoichiometry, affinity constant (K), 

enthalpy change (ΔH) and entropy change (ΔS) are shown in the insert. ITC experiments and analyses were 

performed in collaboration with Mrs. Margaret Nutley, University of Glasgow.  

 

 



Chapter 4                                                                                                                                 Results 

173 

 

4.2.3.5   Investigation of the interaction between E1o-153 
MBP (Ser1-Phe153) and E3 by ITC  

The cDNA sequence encoding the human N-terminal E1o truncate (Ser1-Phe153) was 

successfully cloned into pET-30a (see section 3.3.1.3) and subsequently over-expressed                              

and purified (see section 3.3.2.3 & 3.3.3.3). Preliminary studies suggested that E1o-153                           

MBP construct was less susceptible to rapid proteolysis than the corresponding GST                                      

fusion protein.  

 

E1o-153 MBP and E3 were dialysed overnight against PBS (50mM NaCl, 2.7mM KCl, 10mM 

Na2HPO4 and 1.8mM KH2PO4, pH 7.4) and concentrated (see section 2.4.5). E3 (400μM) was 

injected in 10μl aliquots into the reaction cell containing 60μM E1o-153 MBP at 30°C                      

(Fig. 4.22). Data were analysed using non-linear regression in the MicroCal ORIGIN software 

package, assuming a simple binding model.   

 

On measuring heats of interaction of E1o-153 MBP with E3, complex formation was found                                 

to be endothermic (positive peaks in the ITC input). The data showed evidence of strong                           

binding between E1o-153 MBP and E3 (Kd = 1.1μM;  Ka = 8.64 x 10
5
 M

-1
).  Binding was 

characterised by a favourable enthalpy change (ΔH = -348.8 kcal/mol) and entropy change                        

(ΔS= 26.01 kcal/mol).  However, a low N value of 0.171 was recorded. The experiment was 

repeated 3 times at various protein concentrations and temperatures (10°C and 25°C) with 

similar results (data not shown). The reduction in N value and small ΔH changes observed 

probably reflected aggregation and/or degradation of E1o-153 MBP in the reaction cell or                             

lack of correct folding. In addition, partial precipitation of E1o-153 MBP was apparent at                                



Chapter 4                                                                                                                                 Results 

174 

 

the end of the ITC experiments. Thus, while a positive interaction was observed between                           

this extended E1o-153 MBP construct and E3, any quantitative evaluation of the affinity, 

thermodynamics and stoichiometry of this interaction must be treated with considerable                       

caution.    

 

 
 

Figure 4.22: ITC analysis of E1o-153 MBP (Ser1-Phe153) interaction with E3 
(A) Raw data obtained from a series of 10μl injections of E3 into E1o-153 MBP at 30°C were plotted as heat versus 

time. (B) Plotting the areas under the peaks in (A) (E3 injections into E1o-153 MBP) against the molar ratio of E3 

injected as calculated by the ORIGIN software package. The best fit shown was obtained by least-squares fitting 

using a simple binding model (see section 2.5.3). The best values for stoichiometry (N), affinity constant (K), 

enthalpy change (ΔH) and entropy change (ΔS) are shown in the insert. ITC experiments and analyses were 

performed in collaboration with Mrs. Margaret Nutley, University of Glasgow.  
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4.3    Discussion 

Human E2o lacks an equivalent SBD for E1o and E3 to those identified in bacterial E2o and                    

in the E2s or E3BPs of its companion mammalian complexes, PDC and BCOADC (Bradford et 

al. 1987; Packman and Perham 1987; Wagenknecht et al. 1990; Nakano et al. 1994). Thus the 

overall organisation and modes of interaction of the three constituent enzymes (E1o, E2o and 

E3) in native, mammalian OGDC have not yet been elucidated partly owing to its large 

molecular mass and distinctive domain structure of its E2o core. In addition, separation of                        

active E1o from the intact E2o assembly under non-denaturing conditions has proved difficult                        

as has the ability to produce soluble recombinant native E1o. Thus to date, most OGDC 

dissociation/association studies have been limited to analysis of native complexes purified from 

various sources.  

 

The data presented in this chapter demonstrate that the N-terminal region of human E1o                

interacts directly with E3 highlighting its key role in maintaining the structural integrity of the 

complex. Direct evidence confirming this novel function for the E1o N-terminal region, in 

particular a.a 10-90, was obtained using peptide array technology (Fig. 4.12 & 4.13), isothermal 

titration calorimetry (Fig. 4.15, 4.21 & 4.22) and direct biochemical binding studies using 

affinity chromatography (Fig. 4.20).    

 

In this chapter, the first aim was to perform a preliminary structural characterization of the E1o 

N-terminal region in order to test its tendency to attain an ordered 3-D structure or remain in a 

dynamic (natively-disordered) state. In general, protein-protein interactions mediated by specific 

non-covalent interactions depend on the presence of highly organised, well-structured binding 
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sites. Secondary or tertiary structural elements contribute to formation of complementary 

hydrophilic/hydrophobic surfaces that promote specific interactions with its cognate partner 

protein. The tendency of the E1o N-terminal region to form α-helix or β-pleated sheet                          

was determined by CD. Short segments of this region did have the ability to adopt an                    

α-helical structure that was evident at increasing TFE concentrations (Fig. 4.4 & 4.5). Moreover, 

the 3-D structure prediction of human E1o N-terminal region (Fig. 4.6) and full-length E1o                   

(Fig. 4.8 & 4.9) highlighted the potential presence of 2 short α-helical segments while the 

remainder of the domain was largely ‘random coil’. Structure prediction of full-length human 

E1o also indicated that the two N-terminal regions were highly accessible on the surface of                         

the protein and may be in close proximity at one end of the homodimer. In summary, all these 

findings suggest that the E1o N-terminal domain is highly dynamic although perhaps containing         

2 short stretches of α-helix.  Interestingly, supporting the role of this region in promoting E3 

binding, the overall structural characteristics of the human E1o N-terminus appear similar in 

character to the E3BP-SBD, a topic that is investigated in more detail in chapter 7.   

 

As stated above, our data confirm a role for the E1o N-terminal region in E3 binding. These 

findings are in agreement with previous biochemical and immunological studies on mammalian 

OGDC. Rice and colleagues (1992) showed that specific proteolysis of bovine E1o with trypsin 

at a single site (Arg77) located near the E1o N-terminus resulted in loss of overall complex 

activity. Loss of activity was caused by dissociation of a large catalytically-active E1' fragment 

and E3 from the E2o core assembly highlighting the critical role of this region in ensuring 

overall complex stability. This enhanced susceptibility to proteolysis suggested that the E1o                     

N-terminus is highly accessible and dynamic, an observation also suggested by its highly 
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immunogenic character (McCartney et al. 1998). Interestingly, immunological analysis has 

shown that the N-terminal sequence of E1o has limited structural/sequence similarity with 

human E3BP as E1o-antiserum cross-reacts weakly with E3BP while anti-E3BP-specific serum 

was also able to recognize E1o (Rice et al. 1992; McCartney et al. 1998). The data presented in 

this chapter are also consistent with a recent crystallographic study of a bacterial E1o as 

described by Frank and colleagues (2007). These authors found that E. coli E1o proved 

intractable to crystallisation prior to removal of a 77 a.a. N-terminal fragment.  Difficulties in 

protein crystallisation are often limited by the presence of flexible, dynamic and native 

disordered regions.   

 

 

Amino acid sequence comparison of E1o from different sources including yeast, gram negative 

bacteria (E. coli.), porcine and human tissue employed by Koike and colleagues (Koike et al. 

1992; Koike 1998) have indicated that human E1o has 37% and 40% sequence identity with the 

E. coli E1o and yeast E1o respectively. Furthermore, this study revealed that human E1o has 

high sequence identity (93%) with porcine E1o.  

 

Importantly, distinct isoforms of mammalian E1o have been identified recently. The human 

OGDH gene located on chromosome 7 encoding E1o is known as the heart isoform (OGDH-H) 

(Szabo et al. 1994; Koike 1995; Koike 1998). There are two additional, well-characterised 

isoforms; human brain E1o isoform (OGDH-L) (Bunik and Fernie 2009) and a mitochondrial 

hypothetical protein (DHTKD1) (Bunik and Degtyarev 2008a). Sequence comparison of                        

the 3 main human E1o or E1o-like isoforms; OGDH-H, OGDH-L and DHTKD1 termed 

isoforms 1, 2 and 3, respectively reveals that the N-terminal region of OGDH-H (1-167 a.a.) is 

highly conserved in OGDH-L (Fig. 4.10).  Moreover, OGDH-L (1-1010 a.a.) shows 81.3% 
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identity in a 898 a.a. overlap with OGDH-H.  In contrast, the N-terminal region of human E1o 

isoform 3 (DHTKD1) is about 60 amino acid shorter than the corresponding N-terminal region 

of OGDH-H.  Sequence comparison of isoform 3 with E1o OGDH-H reveals only a 40.1% 

identity in a 836 a.a. overlap. Despite the distinctive nature of isoform 3, it still retains a putative 

ThDP binding domain and catalytic domain.  

 

 A recent report has established that the disease 2-oxoadipic aciduria occurs as a result of a 

defect in the DHTKD1 gene that is characterised by elevated levels of 2-oxoaminoadipate and                    

2-oxoadipate leading to ataxia, muscular hypotonia and epilepsy (Danhauser et al. 2012). This 

recent study has established that the DHTKD1 isoform is a bona fide gene product involved in 

lysine and tryptophan catabolism; however, it is unclear at this stage whether it functions as an 

individual enzyme or as a component of a multimeric complex.    
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4.3    Summary 

This chapter has described the structural and binding characteristics of the N-terminal region of 

E1o, in particular its ability to interact with E3. The data presented in this chapter can be 

summarized as follows: 

 

 Two short segments of N-terminal region of human E1o have the potential ability to 

adopt an α-helical conformation. 

 

 The majority of the N-terminal region is predicted to be highly dynamic and accessible 

on the surface of the E1o homodimer. 

 

 

 

 The N-terminal region of human E1o has similar overall 3-D structural characteristics to 

E3BP-SBD.  

 

 Direct evidence has been obtained by a variety of techniques highlighting the key 

importance of the N-terminal region of human E1o in mediating E3 binding in 

mammalian OGDC. 
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Investigation of a possible interaction 
between the N-terminal region of E1o and 
E2o  

 

 
5.1    Introduction 

The basic organisation of the OGDC is defined by the self-assembly of its central E2o enzyme to 

form a 24-meric cube to which multiple copies of E1o and E3 are attached non-covalently.  In 

PDC and BCOADC, E2 also forms the structural cores of these complexes. They are assembled 

from multiple identical subunits to form a 24-meric cube or 60-meric pentagonal dodecahedron 

to which E1 and E3 enzymes are bound via a specific SBD located on E2b in BCOADC or E2p 

and E3BP (an E2-related subunit) in PDC.  Previous studies have shown that the sequence of 

human E2o is unusual in lacking an obvious E3 binding or E1o binding domain (Spencer et al. 

1984; Bradford et al. 1987; Packman and Perham 1987; Wagenknecht et al. 1990; Westphal and 

de Kok 1990; Nakano et al. 1994). 

 

As discussed previously, the N-terminal region of E1o has been identified as a key region 

involved in maintenance of overall complex integrity, specifically via its interaction with E3 

(Kresze et al. 1981; Rice et al. 1992; McCartney et al. 1998). 
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Interestingly, however, cleavage of E1o in this N-terminal region (a.a. 77 in bovine OGDC)                     

also leads to dissociation of a large active E1' homodimeric species from the central core 

implicating this region in mediating E1o-E2o interactions. Full-length E1o is highly unstable as a 

free enzyme and can only be removed from the native E2o core by stringent treatments e.g. 3M 

MgCl2 that cause partial core disassembly (Rice et al. 1992). These observations raise the 

possibility that E1o is tightly integrated into the E2o core in a manner similar to E3BP in the E2p 

core. Importantly, E3BP has been shown recently (a) to be incorporated into the E2p core                               

in a co-translational fashion and (b) partly replace E2p within the E2p:E3BP assembly 

(Vijayakrishnan et al. 2010). 

  

The main purpose of this chapter was to investigate the ability of the N-terminal region of                        

E1o to interact with the E2o either post-translationally in vitro or co-translationally in vivo.  

Initially, the hypothesis that E2o and E3 were incapable of interacting directly as anticipated 

from the apparent absence of an E3-SBD on E2o was tested by gel filtration chromatography            

and ITC.    

 

As a corollary, this chapter also provides new insights into the steps required for generating a 

recombinant model of OGDC for future genetic and biomedical studies on naturally-occurring 

and mutant forms of the complex.   
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5.2       Results and analysis  

 

 
5.2.1     Investigation of a possible interaction between E2o 

and E3 

A possible direct interaction between E2o and E3 was investigated using GFC and ITC.  Both 

enzymes (E2o and E3) were individually over-expressed and purified as described previously 

(see section 3.3.2 & 3.3.3).    

 

 

 
5.2.1.1    Investigation of a possible E2o:E3 interaction using gel 

filtration chromatography  

In this study, E2o and E3 were expressed separately in E. coli (DE3) pLysS cells at 30 ºC for 5 h. 

After individual expression, bacterial pellets were disrupted by French press treatment and 

purified using zinc chelate chromatography.  Purified enzymes were dialysed simultaneously 

against 20mM NaCl and 20mM potassium phosphate, pH 7.5.  The two enzymes were mixed in 

a 1:1 molar ratio and passed through a HiPrep 16/60 Sephacryl S-300 high resolution column 

attached to a BioCAD 700E workstation. Two separate peaks of eluted protein were observed 

(Fig. 5.1A). On SDS-PAGE analysis of the individual peaks (Fig. 5.1B), it was found that the 

first peak eluting at or near the void volume (~ 40ml) contained only E2o whereas the second 

peak contained E3 indicating that on mixing the two subunits did not associate post-

translationally. These results were also confirmed by Western blotting using anti-E3 polyclonal 

antibody (Fig. 5.1C).  
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Figure 5.1: Investigation of a possible interaction between E2o and E3 using GFC 
(A) Post-translational mixing of E2o and E3 followed by gel filtration on a HiPrep 16/60 Sephacryl S-300 high 

resolution column.  E2o and E3 were mixed in a 1:1 molar ratio. The purified proteins were applied to the column in 

a 1ml aliquot and eluted using 1 CV GFC buffer (20mM NaCl, 2mM EDTA, 20mM KH2PO4, pH 7.4,). Two eluted 

peaks were observed, E2o being eluted at ~40 ml, while, E3 eluted at ~ 60 ml. Absorbance of eluted proteins was 

measured at 280 nm (red line) and possible DNA/RNA contamination was monitored at 260 nm (blue line). Peak 

fractions were collected and analysed by SDS-PAGE. (B) SDS-PAGE (16%) analysis of protein peaks stained with 

Coomassie Brilliant Blue. Lane 1, molecular mass markers; lane 2, purified E2o as control; lanes 3 & 4, first peak 

(E2o) elution fractions at expected size; lane 5, purified E3 as control and lanes 6-7, second peak (E3) elution 

fractions at expected size. (C) Western blot analysis of eluted peaks. Lane 1, molecular mass markers; lane 2, 

purified E3 as control; lanes 3 & 4, first elution peak; lanes 5 & 6, second elution peak. The presence of E3 in 

second elution peak was confirmed with anti-E3 antibody (1 in 1000 dilution) (see section 2.4.7.3). No E3 band was 

detected in the first elution peak (E2o). Thus, no stable association between E2o and E3 was observed under these 

conditions.   
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5.2.1.2    Investigation of a possible E2o:E3 interaction using ITC 

E2o and E3 were dialysed overnight against 30mM KH2 PO4, pH 7.4, 30mM NaCl and 

concentrated (see section 2.4.5). E3 (198μM) was injected in 10μl aliquots into the reaction cell 

containing 35μM E2o at 25 ºC (Fig. 5.2). Data were analysed using non-linear regression in the 

MicroCal ORIGIN software package, assuming a simple binding model.  Titrations of E3 with 

E2o were similar to the dilution of the E3 into the buffer.  

  

 

Figure 5.2: ITC analysis of a possible E2o and E3 interaction 
(A) Raw data obtained from a series of 10μl injections of E3 into E2o at 25°C and plotted as heat versus time.                     

(B) Plotting the areas under the peaks in (A) against the molar ratio of E3 injected as calculated by the ORIGIN 

software package. The best fit shown was obtained by least-squares fitting using a simple binding model (see section 

2.5.3). No binding was detected as no heat exchange was observed.  ITC experiments and analyses were performed 

in collaboration with Mrs. Margaret Nutley, University of Glasgow.   
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5.2.2   Investigation of a possible post-translational 
interaction between N-terminal E1o constructs 
and E2o  

A possible post-translational interaction between human N-terminal E1o GST fusion proteins 

(E1o-60, E1o-90 and E1o-153) and E2o was investigated using affinity chromatography and 

GFC. Owing to the high molecular mass of human E2o (Mr ~ 1.0 million), native-PAGE was not 

employed in this case.  In addition, investigation of a potential, post-translational interaction 

between N-terminal E1o constructs (E1o-60, E1o-90 and E1o-153 GST fusion proteins) and E2o 

using ITC was not performed as a result of time constraints.  

 

In this section, the N-terminal E1o GST truncates (E1o-60, E1o-90 & E1o-153) and E2o were 

individually over-expressed and purified as described previously (see section 3.3.2 & 3.3.3).    

 

 

 
5.2.2.1      Investigation of a possible interaction between E1o-90 GST 

and E2o using glutathione Sepharose 4B chromatography 

In this experiment, E1o-90 GST and E2o were expressed individually in E. coli (DE3) pLysS 

cells at 30 ºC for 3-5 h. After individual expression, bacterial pellets were disrupted by French 

press treatment and purified using GST affinity chromatography and zinc chelate 

chromatography respectively. Purified enzymes were dialysed simultaneously against PBS,                       

pH 7.4. The two enzymes were mixed post-translationally (1:1 molar ratio) and passed through a 

glutathione Sepharose 4B column attached to a BioCAD 700E workstation. Two separate peaks 

of eluted protein were observed (Fig. 5.3A).  On SDS-PAGE analysis of the individual peaks, it 

was found that the first peak (flow through) contained E2o and traces of unbound E1o-90 GST, 
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while, the second eluted peak contained only E1o-90 GST (Fig. 5.3B) and no clear band                     

of E2o was observed.  Thus no stable association between E2o and N-terminal E1o-90 could                     

be detected under these conditions. This result was verified by Western blotting using an                         

anti-His tag antibody (penta-His HRP conjugate antibody) and anti-GST HRP conjugate 

antibody (data not shown). 

 

N-terminal GST fusion constructs; E1o-60 and E1o-153 were also examined for their ability to 

interact with E2o using glutathione affinity chromatography and showed similar results (data not 

shown).  

 

 
 

Figure 5.3: Investigation of a possible interaction between E1o-90 GST and E2o using 

glutathione affinity chromatography  
(A) Post-translational mixing of E1o-90 GST and E2o followed by glutathione Sepharose chromatography. E1o-90 

GST and E2o were mixed in a 1:1 molar ratio. Purified proteins were applied to the column in a 2ml aliquot. Bound 

protein was eluted from the column using 5 CV elution buffer (20mM reduced glutathione, 50mM Tris-HCl, pH 

8.0). The reduced glutathione buffer step used for elution is shown in green. Absorbance of eluted protein was 

measured at 280 nm (red line). Peak fractions were collected and analysed by SDS-PAGE. (B) SDS-PAGE (10%) 

analysis of eluted protein peaks stained with Coomassie Brilliant Blue. Lane 1, molecular mass markers; lane 2, 

purified E2o as control; lane 3, purified E1o-90 GST as control; lane 4, mixture of E1o-90 GST/E2o prior to 

chromatography; lanes 5-7, flow through and lanes 8-10, elution fraction. No E2o band was detected in elution 

fractions (lanes 8, 9 and 10). The arrows on the right of the blot indicate E2o and E1o-90 GST proteins respectively.  
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5.2.2.2    Investigation of a possible interaction between E1o-90 GST 
and E2o using GFC 

In this experiment, E2o and E1o-90 GST were expressed separately in E. coli (DE3) pLysS                           

cells at 30 ºC for 4-5 h. After individual expression, bacterial pellets were disrupted by                         

French press treatment and purified using zinc chelate chromatography (in case of E2o) and 

glutathione affinity chromatography (in case of E1o-90 GST).  Purified enzymes were dialysed 

simultaneously against 20mM NaCl, 20mM potassium phosphate, pH 7.5. The two enzymes 

were mixed in a 1:1 (molar ratio) and passed through a HiPrep 16/60 Sephacryl S-300 high 

resolution column attached to a BioCAD 700E workstation. Two separate peaks of eluted protein 

were observed (Fig. 5.4A). On SDS-PAGE analysis of the individual peaks (Fig. 5.4B), it was 

found that the first peak eluting at or near the void volume (~ 40ml) contained only E2o whereas 

the second peak contained E1o-90 GST confirming that on mixing the two purified proteins did 

not associate post-translationally. 

 

Figure 5.4: Investigation of a possible interaction between E2o and E1o-90 GST by GFC  
(A) Post-translational mixing of E2o and E1o-90 GST followed by gel filtration chromatography on a HiPrep 16/60 

Sephacryl S-300 high resolution column.  E2o and E1o-90 GST were mixed in a 1:1 (molar ratio). Purified proteins 

were applied to the column in a 1ml aliquot.  Proteins were eluted from the column using 1 CV GFC buffer (20mM 

NaCl, 2mM EDTA, 20mM KH2PO4, pH 7.4). Two eluted peaks were observed, E2o being eluted at ~ 40 ml, while, 

E1o-90 GST eluted at ~ 63 ml. Absorbance of eluted proteins was measured at 280 nm (red line) and possible 

DNA/RNA contamination was monitored at 260 nm (blue line). Peak fractions were collected and analysed by SDS-

PAGE. (B) SDS-PAGE (10%) analysis of eluted protein peaks stained with Coomassie Brilliant Blue. Lane 1, 

molecular mass markers; lane 2, purified E2o as control; lanes 3 & 4, first peak (E2o) elution fractions at correct 

expected size; lane 5,  purified E1o-90 GST as control and lanes 6 & 7, second peak (E1o-90 GST) elution fractions 

at correct expected size. No stable association between E2o and E1o-90 GST was observed under these conditions. 
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The purified N-terminal E1o-60 and E1o-153 GST fusion proteins were also examined for their 

ability to interact with E2o using GFC and showed similar results (data not shown).  

 

5.2.3  Investigation of a potential co-translational 
interaction between N-terminal E1o and E2o  

Previous experiments (section 5.2.2) demonstrated conclusively that the N-terminal region of 

E1o was unable to form a stable complex with E2o as judged by either glutathione affinity 

chromatography or GFC. In this section, a role for the E1o N-terminus in mediating a possible 

interaction with E2o in a co-translation fashion was investigated.    

 

 

 

 

 

5.2.3.1     Investigation of a potential co-translational interaction 
between E1o-60 and E2o  

Initially, the cDNA encoding His-tagged E2o was housed in pET-28b (kanamycin resistant) 

whereas the N-terminal E1o-60 (Ser11-Ala70) was housed in pGEX-2T (ampicillin resistant).                           

These two plasmids were successfully co-transformed into E. coli BL21 (DE3) pLysS cells by 

dual antibiotic selection and over-expressed at 30 °C for 4 h (Fig. 5.5).  The pellet (500 ml 

culture) was divided into two and separately disrupted by French press treatment. Two tablets                    

of protease inhibitors (EDTA free) were added prior to disruption. The soluble supernatant 

fractions were purified by zinc chelate chromatography and glutathione Sepharose 4B affinity 

chromatography, respectively (Fig. 5.6A & 5.6C).  
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Figure 5.5: Co-expression of the N-terminal E1o-60 GST fusion protein and His-tagged E2o 
Human N-terminal E1o-60 GST and E2o were co-transformed into E. coli BL21 (DE3) pLysS cells and                       

over-expressed at 30 °C for 4 h. Cells were grown in LB media. Samples were taken at the time of induction (t0) and          

after 4 h (t4). Samples were denatured in the presence of 150mM DTT at 100°C for 5min and resolved on                        

a 10% SDS/polyacrylamide gel.  Protein bands were visualised using Coomassie Brilliant Blue. Lane 1, molecular 

mass markers; lane 2, E1o-60 GST over-expression as control; lane 3, E2o over-expression as control; co-expression 

of E2o and E1o-60 GST fusion protein at (t0) and (t4). The arrows on the right of the gel indicate over-expressed 

protein at correct expected sizes. 
 

 

SDS-PAGE analysis of the purified fractions by zinc chelate chromatography or glutathione 

affinity chromatography (Fig. 5.6B & 5.6D) showed no evidence for the formation of an                      

E1o-60:E2o sub-complex.  No band of E1o-60 GST was apparent in the His-tagged E2o peak 

purified by zinc chelate chromatography (Fig. 5.6B). Conversely, no E2o could be detected in 

the E1o-60 GST peak purified by glutathione affinity chromatography (Fig. 5.6D). This result 

was also confirmed by Western blotting using anti-GST tag antibody and anti-His tag antibody 

(data not shown).  
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Figure 5.6: Purification of co-expressed E1o-60 GST and E2o  
Human N-terminal E1o-60 GST and E2o were co-transformed into E. coli BL21 (DE3) pLysS cells and                        

over-expressed at 30 °C for 4 h. Cells were grown in LB media. (A) Metal chelate affinity chromatography of                             

co-expressed E1o-60 GST and E2o. The cell lysates were applied to the column in 5ml aliquots (see section 2.4.4). 

Bound protein was eluted from the column in a 0-100% gradient of elution buffer (8 CV). The imidazole gradient 

(0-500mM) used for elution is shown in green.  Absorbance of eluted protein was measured at 280 nm (red line) and 

possible DNA/RNA contamination was monitored at 260 nm (blue line). Peak fractions (2ml) were collected and 

analysed by SDS-PAGE. (B) SDS-PAGE (10%) analysis of eluted protein peak stained with Coomassie Brilliant 

Blue.  Lane 1, molecular mass markers; lane 2, over-expression of E1o-60 GST as control; lane 3, over-expression 

of E2o as control; lanes 4-8, purified co-expressed E1o-60 GST and E2o; lane 9, unbound protein.  The arrow on           

the right of the blot indicates purified protein. No E1o-60 GST band was observed in elution fractions.                        

(C) Glutathione affinity chromatography of co-expressed E1o-60 GST and E2o. The cell lysates were applied to the 

column in 5ml aliquots (see section 2.4.4). Bound protein was eluted from the column using 5 CV elution buffer 

(20mM reduced glutathione, 50mM Tris-HCl, pH 8.0). The reduced glutathione buffer step used for elution is 

shown in green. Absorbance of eluted protein was measured at 280 nm (red line). Peak fractions (2ml) were 

collected and analysed by SDS-PAGE. (D) SDS-PAGE (10%) analysis of eluted protein peak stained with 

Coomassie Brilliant Blue. Lane 1, molecular mass markers; lane 2, over-expression of E1o-60 GST as control;                 

lane 3, over-expression of E2o as control; lanes 4 & 5, co-expression of E1o-60 GST and E2o (t4) as control;                            

lanes 6-8, purified co-expressed E1o-60 GST and E2o. The arrow on the right of the blot indicates purified protein. 

No E2o band was observed in elution fractions.                           
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5.2.3.2     Investigation of a potential co-translational interaction 
between E1o-90 and E2o 

A kanamycin resistant plasmid encoding His-tagged E2o (pET-28b) and an ampicillin resistant 

plasmid encoding E1o-90 GST (Ser1-Val90) were successfully co-transformed into E. coli BL21 

(DE3) pLysS cells and over-expressed at 30 °C for 4 h (Fig. 5.7).  The pellet (500 ml culture) 

was divided in two and disrupted separately using French press treatment. Two tablets of 

protease inhibitors (EDTA free) were added prior to disruption. The soluble supernatant              

fractions were purified by zinc chelate chromatography and glutathione Sepharose 4B affinity 

chromatography, respectively (Fig. 5.8A & 5.9A).  

 

 
 

Figure 5.7: Co-expression of the N-terminal E1-90 GST fusion protein and His-tagged E2o 
Human N-terminal E1o-90 GST and E2o were co-transformed into E. coli BL21 (DE3) pLysS cells and over-

expressed at 30 °C for 4 h. Samples were taken at the time of induction (t0) and after 4 h (t4). Samples were 

denatured in the presence of 150mM DTT at 100°C for 5min and resolved on a 10% SDS/polyacrylamide gel. 

Protein bands were visualised using Coomassie Brilliant Blue. Lane 1, molecular mass markers; lane 2, E1o-90 GST 

over-expression as control; lane 3, E2o over-expression as control; co-expression of E2o and E1o-90 GST fusion 

protein at (t0) and (t4). The arrows on the right of the gel indicate over-expressed proteins at correct expected sizes. 
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SDS-PAGE analysis of the His-tagged E2o fractions purified by zinc chelate chromatography 

showed the presence of an additional band of the predicted size for E1o-90 GST suggesting a 

possible integration of E2o with the E1o fragment (Fig. 5.8B). The identity of N-terminal E1o-90 

GST present in the purified His-tagged E2o peak was confirmed by Western blotting using                    

anti-GST tag antibody (Fig. 5.8C).  

 

Figure 5.8: Purification of co-expressed E1o-90 GST and E2o by metal chelate 

chromatography  
Human N-terminal E1o-90 GST and E2o plasmids were co-transformed into E. coli BL21 (DE3) pLysS cells and                        

over-expressed at 30 °C for 4 h. (A) Metal chelate affinity chromatography of co-expressed E1o-90 GST and E2o. 

The cell lysate was applied to the column in 5ml aliquots (see section 2.4.4). Bound protein was eluted from the 

column in a 0-100% gradient of elution buffer (8 CV). The imidazole gradient (0-500 mM) used for elution is shown 

in green. Absorbance of eluted protein was measured at 280 nm (red line) and possible DNA/RNA contamination 

was monitored at 260 nm (blue line). Peak fractions (2ml) were collected and analysed by SDS-PAGE and Western 

blotting. (B) SDS-PAGE (12%) analysis of eluted protein peak stained with Coomassie Brilliant Blue. Lane 1, 

molecular mass markers; lane 2, over-expression of E1o-90 GST as control; lane 3, over-expression of E2o as 

control; lanes 4-9, purified co-expressed E1o-90 GST and E2o; lane 10, unbound protein.  The arrows on the right 

of the blot indicate purified proteins. The E1o-90 GST band was observed in elution fractions indicating that the 

E1o-90 GST integrated specifically with E2o. (C)  Western blot analysis of elution peak. Lane 1, molecular mass 

markers; lane 2, purified E2o as control; lane 3, purified E1o-90 GST as control. The presence of E1o-90 GST in the 

combined elution peak was confirmed (lane 4) with anti-GST HRP conjugate antibody (1 in 5000 dilution) (see 

section 2.4.7.2).  
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Conversely, when co-expressed E1o-90 GST and E2o were purified by glutathione Sepharose 4B 

chromatography (Fig. 5.9A), SDS-PAGE analysis of the peak fractions showed the presence of a 

band of the predicted size for E2o again indicating integration of E2o with the E1o fragment 

(Fig. 5.9B). The identity of His-tagged E2o present in the purified E1o-90 GST peak was 

confirmed by Western blotting using anti-His tag antibody (Fig. 5.9C).  

                         

Human N-terminal E1o-153 GST (Ser1-Phe153) was also successfully co-expressed with E2o in 

the same manner as E1o-90 GST/E2o co-expression. The soluble supernatants derived from                 

E. coli pLysS cells co-expressing E1o-153 GST and E2o were purified using zinc chelate 

chromatography and glutathione Sepharose 4B affinity chromatography as described previously 

(data not shown). The purified proteins on elution were resolved by SDS-PAGE (Fig. 5.10A) and 

their identities confirmed by Western blotting (Fig. 5.10B), although extensive degradation of 

E1o-153 was again evident.  These results provide further support for the hypothesis that the                   

N-terminal region of E1o co-integrates with E2o as nascent polypeptides during folding and 

assembly. 

 

Importantly, the E1o-60 GST construct (Fig. 5.5 & 5.6) and free wild-type GST run as a further 

control (data not shown) showed no evidence for stable complex formation with E2o, while the 

longer E1o-90 and E1o-153 constructs (Fig. 5.8, 5.9 & 5.10) were able to integrate with E2o 

during their simultaneous expression.   
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Figure 5.9: Purification of co-expressed E1o-90 GST and E2o by glutathione affinity 

chromatography  
Human N-terminal E1o-90 GST and E2o plasmids were co-transformed into E. coli BL21 (DE3) pLysS cells and                        

over-expressed at 30 °C for 4 h. (A) Glutathione affinity chromatography of co-expressed E1o-90 GST and E2o. 

The cell lysate was applied to the column in 5ml aliquots (see section 2.4.4). Bound protein was eluted using 5 CV 

elution buffer (20mM reduced glutathione, 50mM Tris-HCl, pH 8.0). The reduced glutathione buffer step used for 

elution is shown in green. Absorbance of eluted protein was measured at 280 nm (red line). Peak fractions (2ml) 

were collected and analysed by SDS-PAGE and Western blotting. (B) SDS-PAGE (10%) analysis of eluted protein 

peak stained with Coomassie Brilliant Blue. Lane 1, molecular mass markers; lane 2, over-expression of E1o-90 

GST as control; lane 3, over-expression of E2o as control; lanes 4 & 5, co-expression of E1o-90 GST and E2o (t4) 

as control; lanes 6-8, purified co-expressed E1o-90 GST and E2o. The arrows on the right of the blot indicate 

purified proteins. The E2o band was observed in elution fractions indicating that the E1o-90 GST integrated 

specifically with E2o. (C) Western blot analysis of elution peak. Lane 1, molecular mass markers; lane 2, purified 

E1o-90 GST as control; lane 3, purified E2o as control. The presence of E2o in the combined elution peak was 

confirmed (lane 4) with anti-His tag antibody (1 in 2000 dilution) (see section 2.4.7.1).  
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Figure 5.10: Purification of co-expressed E1o-153 GST and E2o  
Human N-terminal E1o-153 GST and E2o plasmids were co-transformed into E. coli BL21 (DE3) pLysS cells and                        

over-expressed at 30 °C for 4 h. (A) SDS-PAGE (10%) analysis of  eluted protein peaks stained with Coomassie 

Brilliant Blue. Lane 1, molecular mass markers; lane 2, over-expression of E1o-153 GST as control; lane 3, over-

expression of E2o as control; lanes 4 & 5, elution peak of co-expressed E1o-153 GST and E2o using metal chelate 

affinity chromatography; lane 6, elution peak of co-expressed E1o-153 GST and E2o using glutathione affinity 

chromatography. The arrows on the right of the blot indicate purified proteins. E2o was observed in elution peak 

after glutathione affinity chromatography indicating that the E1o-153 GST integrated specifically with E2o.                   

SDS-PAGE analysis also shows extensive degradation. (C) Western blot analysis of elution peaks. Lane 1, 

molecular mass markers; lane 2, purified E2o as control; lane 3, purified E1o-153 GST as control. The presence of 

E2o in glutathione elution peak was confirmed (lane 4) with anti-His tag antibody (1 in 2000 dilution) (see section 

2.4.7.1). The presence of E1o-153 GST in metal chelate elution peak was confirmed (lane 5) with anti-GST HRP 

conjugate antibody (1 in 5000 dilution) (see section 2.4.7.2).  SDS-PAGE and Western blot analysis also shows 

extensive degradation of co-expressed E1o-153GST/E2o.  

 

 

To check E1o-90GST/E2o sub-complex stability in high salt, a feature of the intact E1o-E2o 

core in the native OGDC, co-expressed E1o-90 GST and E2o were purified by zinc chelate 

affinity chromatography and dialysed overnight against high salt GFC buffer (500mM NaCl, 

2mM EDTA, 50mM KH2PO4, pH 7.4) prior to gel filtration column in high salt (500mM NaCl) 

GFC buffer.  A single peak at or near the void volume (~ 40ml) was observed (Fig. 5.11A).                    

SDS-PAGE analysis of the eluted peak showed the presence of two bands corresponding to                
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E1o-90 GST and E2o confirming the stability of the E1o/E2o sub-complex to high salt treatment 

(Fig. 5.11B). The E1o/E2o sub-complex eluted at or near the void volume (~ 40ml) whereas the 

E1o-90 GST homodimer (Mr 72,000 Da) eluted at a much later stage (~ 63ml) in the elution 

profile (Fig. 3.24C).   

 

In combination, these experiments provide strong support for the existence of a stable E1o/E2o 

sub-complex that is resistance to high salt treatment and is exclusively assembled from nascent 

chains during synthesis.  

  

 

Figure 5.11: Gel filtration of co-expressed E1o-90 GST and E2o in high salt  
Human N-terminal E1o-90 GST and E2o were co-expressed at 30 °C for 4 h. The soluble supernatant was purified 

by metal chelate chromatography. The purified protein peak was pooled and dialysed overnight against high salt 

GFC buffer (500mM NaCl, 2mM EDTA, 50mM KH2PO4, pH 7.4,). The purified protein (1ml) was gel filtered 

through a Sephacryl HiPrep 16/60 Sephacryl S-300 High Resolution column (GE Healthcare, UK) attached to a 

BioCAD 700E workstation (see section 2.4.4.5). The protein was eluted from the column using 1 CV GFC buffer 

(500mM NaCl, 2mM EDTA, 20mM KH2PO4, pH 7.4). (A) Gel filtration profile of co-expressed E1o-90 GST and 

E2o. A single elution peak was observed. E1o-90GST/E2o sub-complex being eluted at or near the void volume                      

(~ 40ml). Absorbance of eluted proteins was measured at 280 nm (red line) and possible DNA/RNA contamination 

was monitored at 260 nm (blue line). (B) SDS-PAGE (10%) analysis of eluted protein peak stained with Coomassie 

Brilliant Blue. Lane 1, molecular mass markers; lane 2, over-expression of E1o-90 GST as control; lane 3,                        

over-expression of E2o as control; lanes 4-6, E1o/E2o sub-complex corresponding to the single GFC peak.                            

The presence of E1o-90 GST and E2o at high salt concentration (500mM NaCl) indicates formation of a stable and                     

high Mr E1o/E2o sub-complex.    
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5.2.4   Investigation of a direct interaction between the        
E1o-90 GST/E2o sub-complex and E3  

This section provides a plausible approach to generating a recombinant model of OGDC 

highlighting the central role of the E1o N-terminal region in the integration process. However, 

active, recombinant, full-length mammalian E1o has not been produced to date. In this section, 

the co-integrated E1o-90 GST/E2o sub-complex was tested for its ability to form a stable high 

Mr complex with E3 as judged by GFC.           

 

Co-integrated E1o-90 GST/E2o sub-complex was assembled in E. coli (DE3) pLysS cells                        

at 30 ºC for 5 h.  Simultaneously, E3 was expressed in E. coli (DE3) pLysS cells at 30 ºC for 3 h.  

After expression, bacterial pellets were disrupted by French press treatment and individual                        

E1o-90 GST/E2o sub-complex and E3 components purified using zinc chelate chromatography.                   

Purified proteins were dialysed overnight at 4 
o
C against 20mM NaCl, 20mM potassium 

phosphate, pH 7.5.  E1o-90 GST/E2o sub-complex and E3 were mixed in a 1:2 (molar ratio) and 

passed through a HiPrep 16/60 Sephacryl S-300 high resolution column attached to a BioCAD 

700E workstation. Two separate peaks of eluted protein were observed. The E1o-90 GST/E2o 

sub-complex was eluted at or near the void volume (~ 38 ml), while, free E3 homodimer was 

eluted at ~ 60 ml (Fig. 5.12A) consistent with its Mr of 105,000 Da.  On SDS-PAGE analysis of 

the individual peaks (Fig. 5.12B), it was found that the first peak eluting at or near the void 

volume contained primarily E1o-90 GST/E2o sub-complex whereas the second peak contained 

E3. It was difficult to detect the presence of E3 in the E1o-90 GST/E2o sub-complex by 

Coomassie Brilliant Blue staining as the recombinant version has a similar subunit Mr to                       

E2o. However, the presence of E3 in the first peak was confirmed by Western blotting using 
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anti-E3 antibody (1 in 1000 dilution) (see section 2.4.7.3). The presence of a band of the 

predicted size for E3 in the first elution peak confirmed a post-translational interaction of E3 

with the E1o/E2o sub-complex (Fig. 5.12C) in contrast to the previous lack of evidence for a 

direct E2o:E3 interaction (Fig. 5.1).   

 

Figure 5.12: Post-translational association of E3 with the E1o-90 GST/E2o sub-complex  
 (A) Post-translational mixing of E1o-90 GST/E2o sub-complex and E3 followed by gel filtration on a HiPrep        

16/60 Sephacryl S-300 high resolution column. E1o-90 GST: E2o sub-complex and E3 were mixed in a 1:2                          

molar ratio. Purified proteins were applied to the column in a 1ml aliquot. Proteins were eluted using 1 CV GFC 

buffer (20mM NaCl, 2mM EDTA, 20mM KH2PO4, pH 7.4). Two eluted peaks were observed, E1o-90 GST:E2o 

sub-complex being eluted at ~38 ml, while unbound E3 eluted at ~ 60 ml. Absorbance of eluted proteins was 

measured at 280 nm (red line) and possible DNA/RNA contamination was monitored at 260 nm (blue line). Peak 

fractions (1ml) were collected and analysed by SDS-PAGE and Western blotting. (B) SDS-PAGE (10%) analysis of 

eluted peaks stained with Coomassie Brilliant Blue. Lane 1, molecular mass markers; lane 2, over-expression of 

E1o-90 GST as control; lane 3, over-expression of E2o as control; lane 4; over-expression of E3 as control; lane 5, 

purified co-integrated E1o-90 GST/E2o sub-complex as control; lanes 6-8, first peak fractions showing E1o-90 

GST/E2o sub-complex and lanes 9 & 10, second peak fractions showing E3. Owing to band E2o /E3 overlap when 

resolved by 10% SDS-PAGE, the presence of E3 in the first peak was confirmed by Western blotting. (C) Western 

blot analysis of eluted peaks. Lane 1, molecular mass markers; lane 2, purified E1o-90 GST as control; lane 3, 

purified E3 as control. The presence of E3 in first elution peak (E1o-90 GST/E2o sub-complex peak) was confirmed 

(lanes 4, 5 & 6) with anti-E3 antibody (1 in 1000 dilution) (see section 2.4.7.3). 
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5.3    Discussion 

The general organisation of OGDC resembles that of its companion complexes PDC, and 

BCOADC, with 24 E2o subunits forming a central cubic core displaying octahedral symmetry in 

this instance. Mammalian E2o differs significantly from E2s of other complexes as it does not 

contain an analogous E3-binding and/or E1-binding domain as judged by cDNA sequence 

comparison. Hence, human E2o has a unique structure comprising only two domains, a single              

N-terminal lipoyl domain and a large C-terminal catalytic domain (CTD) that also mediates core 

self-assembly (Lawlis and Roche 1981).   

 

The 60-meric mammalian E2-PDC central core houses an additional component termed                          

E3-binding protein (E3BP), also referred to as protein X, that is responsible for high affinity               

E3 binding. A small discrete E1-SBD on E2p similarly directs the integration of the E1p 

heterotetramer. In prokaryotic OGDC, 12 copies of the E1o homodimer are reported to bind                       

non-covalently to the E2o core while 6 copies of E3 interact with its six faces at maximal 

occupancy (Perham 2000). In mammalian PDC, the E2p/E3BP core binds 20-30 copies of E1p 

and 6-12 copies of E3 (Oliver and Reed 1982; Wagenknecht et al. 1990; Perham 2000; 

Vijayakrishnan et al. 2010). 

 

The aim of this chapter was to investigate the ability of N-terminal region of human E1o to 

interact with E2o post-translationally or co-translationally. The evidence presented in this section 

strongly supports the idea that the human E1o N-terminal region is capable of co-integrating                            

with E2o in a similar fashion to E3BP integration with E2p in PDC. In the case of E3BP, an                       

E2-related polypeptide, is tightly integrated into the E2p core during assembly via its C-terminal 
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region where it supports the overall reaction of the complex by promoting the high affinity E3 

binding (Hiromasa et al. 2004; Smolle et al. 2006). 

 

In chapter 4 the role of the E1o N-terminal region in promoting E3 binding in a post-translation 

manner was confirmed by peptide array technology (Fig. 4.12 & 4.13), isothermal titration 

calorimetry (Fig. 4.15, 4.21 & 4.22) and direct biochemical binding studies using affinity 

chromatography (Fig. 4.20).  In contrast, as shown in this chapter, the N-terminal region of E1o 

is incapable of interacting with E2o post-translationally (Fig. 5.3 & 5.4). In addition, binding 

studies between the recombinant E2o core and E3 using gel filtration and ITC showed that these 

two enzymes did not associate post-translationally (Fig. 5.1 & 5.2).        

 

The mode of organisation and integration of the constituent enzymes of mammalian OGDC has 

been a matter of debate and speculation since sequence analyses of human E2o cDNA indicated 

the absence of any obvious E3 and/or E1o binding domain (Lawlis and Roche 1981; Bradford et 

al. 1987; Koike et al. 2000).  Initially, selective proteolysis studies identified the N-terminal 

region of E1o to be important for maintaining the structural integrity of the complex. 

Immunological analysis has shown also that E1o has limited sequence and/or structural similarity 

with human E3BP as anti-E1o serum recognized antigenic epitopes on E3BP while anti-E3BP-

specific serum was also able to recognize E1o (Rice et al. 1992; McCartney et al. 1998).  

 

These observations and recent reports, demonstrating that E3BP forms integral part of the E2p 

core that can only be incorporated during its assembly suggest that E1o and its N-terminal region 

in particular, may play a similar pivotal role. 
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In this context, it has been established in this chapter that the N-terminal regions of human E1o 

(Ser1-Val90) and (Ser1-Phe153) can co-integrate with E2o and consequently form a stable                   

sub-complex as shown in Figures 5.8, 5.9 and 5.10. These results were validated by Western 

blotting and gel filtration (Fig. 5.8C, 5.9C, 5.10B and 5.11).  Moreover, co-integrated E1o/E2o 

complex was found to be stable at elevated salt concentrations as would be the case for the                     

intact E1o/E2o core structure (Fig. 5.11). Importantly, the N-terminal E1o-60 (Ser11-Ala70)                                          

GST fusion failed to interact with E2o either post-translationally (see section 5.2.2.1) or                            

co-translationally (Fig. 5.6) suggesting, either that the first 10 a.a. of the E1o N-terminus                       

plays a central role in protein folding and integration or that steric hindrance prevents this short 

peptide from forming a complex with either E2o or E3. However, the N-terminal E1o-60 GST 

fragment can be considered as a reliable and effective negative control ruling out the possibility 

of non-specific binding.  Additionally, free GST as further negative control also failed to interact 

with E2o supporting and confirming previous data.  

 

In summary, our current findings provide the first direct evidence that the N-terminal region of                        

human E1o has a dual role in coordinating OGDC assembly and organisation, namely mediating 

the co-translationally directed integration of E1o and E2o while also being responsible for the 

post-translational tethering of E3. These data are also consistent with earlier studies in 

mammalian OGDC suggesting that E1o binds more tightly to the E2o core than its E3 

counterpart and can only be released under denaturing conditions (Reed and Hackert 1990). 

Additionally, and in agreement with our data, previous cryo-electron microscopy of  E. coli 

OGDC has demonstrated that the linker gap in E2o-E3 sub-complexes was more apparent than     
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in E2o-E1o sub-complexes suggesting that the bridge between the E2o-E1o sub-complexes 

contains more mass than the E2o-E3 bridges (Wagenknecht et al. 1990). 

 

A functional recombinant version of human OGDC has not yet been produced, largely owing to 

difficulties in generating active, recombinant full-length E1o. In this study, mature human E1o 

was successfully cloned and over-expressed in E. coli although it failed to produce soluble 

recombinant protein (see sections 3.3.1.4 & 3.3.2.4). As an alternative, in this chapter, the 

potential for post-translation interaction between an N-terminal E1o/E2o sub-complex and E3 

was assessed using gel filtration. The E1o-90 GST/E2o sub-complex purified either by metal 

chelate or glutathione affinity chromatography (Fig. 5.8 & 5.9) was mixed in a 1:2 stoichiometry 

with E3.  On gel filtration it was possible to detect complex formation between E1o-90 GST/E2o 

and E3 (Fig. 5.12). Unfortunately, only a small amount (1-2mg) of E1o-90 GST/E2 sub-complex                    

could be generated by this approach, making it difficult to conduct ITC analysis of                                       

this interaction.  

 

Further experiments will be necessary to substantiate these results. In particular, it will be of 

great interest to produce soluble, recombinant full-length E1o. One possibility would be to use a 

low level E. coli expression system such as the pQE-9 vector and E. coli M15 strain that has 

proved successful in the production of α2 β2 heterotetrameric E1p (Korotchkina et al. 1995; 

Singh 2008). Moreover, further experiments using biophysical techniques including AUC, 

SAXS, and SANS are required to obtain more conclusive structural data on the morphology, 

organisation and stoichiometry of the E1o/E2o sub-complex including the possibility that it 

could partially replace E2o within the native core assembly. 
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5.4    Summary 

This chapter has focused on investigating potential interactions between the N-terminal region of 

human E1o and E2, both post-translationally and co-translationally. The data presented in this 

chapter can be summarized as follows: 

 

 The N-terminal region of human E1o failed to interact with the E2o post-translationally 

as monitored by gel filtration or affinity chromatography. 

 

 E2o and E3 do not associate post-translationally. 

 

    

 The N-terminal region of human E1o has the ability to co-integrate with E2o forming                 

a stable complex. 

 

 The E1o N-terminus is pivotal for mediating formation of a stable OGDC multienzyme 

assembly by directing self-integration with the E2o core and subsequently promoting 

high affinity E3 binding. 
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Inhibition of OGDC and PDC activity using 
N-terminal E1o constructs 

 

 
6.1    Introduction 

Most pioneering studies of the 2-oxoacid dehydrogenase complexes have relied on native 

complexes derived from natural sources to investigate their structure, organisation and intrinsic   

properties. For example, OGDC has been purified to homogeneity from E. coli (Pettit et al. 

1973), bovine heart (Stanley and Perham 1980), bovine kidney (Reed and Oliver 1968) and pig 

heart (Koike and Koike 1976) while PDC has also been isolated from many sources e.g. E. coli 

(Danson et al. 1979), B. stearothermophilus (Henderson and Perham 1980), pig liver (Roche and 

Cate 1977), bovine kidney (Linn et al. 1972) and bovine heart (Stanley and Perham 1980).   

 

The complex-specific E2 components of 2-oxoacid dehydrogenase complexes form a large 

oligomeric core comprising 60 or 24 E2 copies assembled via their C-terminal domains                          

and arranged with icosahedral or octahedral symmetry to which the E1 and E3 components are 

bound tightly but non-covalently. The N-terminus of E2 consists of one to three homologous 

lipoyl domains (each of about 80 a.a.s) according to the type of the complex and source of the 

organism. These are joined in tandem array by extended linker sequences (~ 20-30 a.a.s) rich in 

alanine and proline.  
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These domains are followed by a SBD about 50 amino acids in length (mammalian OGDC                        

has no obvious SBD). The primary purpose of the SBD is to tether E1 or E3 to the E2 core                              

and is linked in turn to a large C-terminal catalytic domain (Bradford et al. 1987; Packman and 

Perham 1987; Wagenknecht et al. 1990; Nakano et al. 1994). Mammalian PDC requires                                    

a fourth protein, dihydrolipoamide dehydrogenase-binding protein (E3BP), which is tightly 

associated with the E2p core.  The E2p core binds 12 copies of E3BP (Sanderson et al. 1996a; 

Vijayakrishnan et al. 2010). Extensive characterization of E3BP has revealed close structural, 

functional and organizational similarities to E2p. It is composed of three domains (LD,                                  

SBD and CTD). However, E3BP contains a single lipoyl domain and is exclusively                          

involved in mediating the stable integration of the E3 enzyme. Its C-terminal region                            

promotes binding to the oligomeric E2p core and has no obvious enzymatic activity 

(Rahmatullah et al. 1989). 

 

 

To confirm the functional importance of the N-terminal region of E1o of OGDC in securing                   

E3 in particular, a series of E1o N-terminal constructs were tested for their ability to inhibit 

OGDC/PDC activity as it was predicted that they should selectively displace complex-bound          

E3. Initially, the effect of NaCl concentration on overall complex activity was also                       

monitored as increasing ionic strength is well established to promote E3 dissociation in                            

the range 0-0.5 M. These salt concentrations have only minimal effects on the individual                      

constituent enzymes (J G. Lindsay, personal communication).      
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6.2     Results and analysis  

 

 
6.2.1   Purification of OGDC and PDC from bovine heart 

OGDC and PDC were purified from bovine heart tissue by selective polyethylene glycol                    

(PEG-6000) precipitation essentially as described by Stanley and Perham (Stanley and Perham 

1980) with some modifications (De Marcucci and Lindsay 1985a). The final Sepharose CL-2B 

gel filtration step was omitted so OGDC and PDC preparations were 80-90% pure at this stage 

with a small amount of cross-contamination.  

 

OGDC and PDC activity assays were conducted by monitoring NADH production at 340 nm                    

as described in section 2.4.6.4.  The subunit profiles of OGDC and PDC can be visualised                     

using SDS-PAGE as shown in Figure 6.1. OGDC displays the expected subunit profile                              

with Mr values 110 kDa, 54 kDa and 49 kDa corresponding to E1o, E2o and E3 respectively.                      

In addition, faint bands corresponding to PDC E1α and E1β subunits are apparent                               

confirming minor contamination with PDC. Purified PDC also had the anticipated five                        

subunit profile as follows: E2p, 74 kDa; E3, 54 kDa; E1α, 42 kDa; and E1β, 38 kDa plus                              

E3BP at ~ 52 kDa. 
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Figure 6.1: SDS-PAGE of purified bovine OGDC and PDC 
SDS-PAGE (10%) analysis of purified OGDC and PDC. Samples were stained with Coomassie Brilliant Blue.                     

Lane 1, molecular mass markers; lane 2, purified bovine PDC, five major bands are visible which correspond                      

to subunits E2p, E3, E3BP, E1α and E1β; lane 3, purified bovine OGDC. E1o, E2o and E3 are visualised. 

 
 

 

6.2.2     Effect of NaCl on OGDC/PDC activity 

In both OGDC and PDC, E1 binds tightly to the core primarily via hydrophobic forces whereas 

E3 is more loosely-associated via hydrophilic interactions.  The aim of this section was to 

investigate the effect of high ionic strength on OGDC/PDC activity using increasing NaCl 

concentrations to determine the ease of E3 displacement from the core assemblies.     

 

Purified bovine OGDC (see section 6.2.1) was added to incubations that contained solutions                        

A and B, pH 7.8 (see Materials and Methods, section 2.4.6.4) and NaCl at concentrations                       

from 0-1M. Incubations were maintained at 30 
o
C for 3 min.  At the end of 3 min, substrate 

(solution C) was added to the assay cuvette and NADH production measured at 340 nm. Enzyme 
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activity was measured over the linear part of each curve (Fig. 6.2).  In the same manner, bovine 

PDC (see section 6.2.1) was incubated at 30
o
C in solutions A and B containing NaCl in                            

the concentration range from 0 - 1.0 M for 3 min prior to initiation of the assay with substrate 

(solution C). PDC activity was measured at 340nm (Fig. 6.2). Assays were carried out in 

triplicate.  Increasing NaCl levels resulted in a parallel decline in OGDC and PDC activity with 

0.5M NaCl causing 85-95% inhibition in both cases (Fig. 6.2). 

 

 
 

Figure 6.2: Effect of NaCl on bovine OGDC/PDC activity 
Bovine OGDC and PDC were diluted in potassium phosphate buffer (KPi buffer) containing solution A & B,                 

pH 7.8 (see Materials and Methods section 2.4.6.4) and varying concentrations of NaCl at 30 
o
C for 3 min prior                      

to initiation of the assays with substrate (solution C). Samples at each NaCl concentration were assayed                                     

for OGDC/PDC activity. All values shown represent the mean of triplicate assays. The loss of activity with 

increasing NaCl concentration was plotted as the % OGDC activity (dark green line) or % PDC activity (black line) 

in the absence of NaCl.  Single samples of OGDC (#) and PDC (#), pre-treated with 1.0 M NaCl were also diluted 

to reduce the NaCl concentration to ≤ 30mM prior to assay to check for reversibility. 
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The decline in OGDC and PDC activity at increasing NaCl concentrations is the result of E3 

dissociation from the native OGDC and PDC assemblies.  In agreement with this idea, loss of 

OGDC and PDC activity after incubation in 1.0 M NaCl was completely reversible. Ionic strength              

is known to have minimal effects on the activities of the individual constituent enzymes in the                     

range 0 - 0.5 M NaCl. 

 

 

6.2.3  Inhibition study of OGDC/PDC activity using                     
N-terminal E1o fragments 

To investigate the effect of adding increasing amounts of N-terminal E1o GST constructs as 

potential inhibitors of OGDC and PDC activity, both complexes and N-terminal E1o (E1o-60,                      

E1o-90 and E1o-153) GST fusion proteins were dialysed overnight against 50mM KPi buffer 

(KH2PO4/K2HPO4), pH 7.4 (see section 2.4.5). 

 

E1o-60 (Ser11-Ala70), E1o-90 (Ser1-Val90) and E1o-153 (Ser1-Phe153) GST fusion proteins at 

concentrations of 91μM and 182μM, 84μM and 167μM and 89μM and 178μM, respectively, were 

incubated with 10μg OGDC or 10μg PDC at 30°C for 5 min. The activities of OGDC and PDC were 

determined as described in Materials and Methods, section 2.4.6.4. 

 

Addition of the E1o-60 GST constructs produced negligible inhibitory effects (5-10%) on OGDC 

activity.  In contrast, significant inhibition (50-70%) was observed with the E1o-90 GST 

constructs while wild-type GST had little or no effect (Fig. 6.3).  
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Surprisingly, addition of the E1o-153 GST constructs induced only minor inhibition (~20-30%) 

compared to the wild-type GST control. The low levels of inhibition observed with E1o-153 

GST (Ser1-Phe153) may relate to its ease of degradation or state of aggregation as discussed 

previously (see section 3.3.3.2). 

        

 

Figure 6.3: Inhibition of bovine OGDC activity using N-terminal E1o constructs 
Histogram shows activity of bovine OGDC with the following: E1o-60 GST, 91μM and182μM, (blue bars).                           

E1o-90 GST, 84μM and 167μM, (green bars). E1o-153 GST, 89μM and 178μM, (pink bars). The gray bars                        

represent wild-type GST as control (110μM and 222μM). The orange bar represents OGDC as 100% activity 

(control). Samples were assayed in triplicate and error bars indicate extent of variation between triplicates.                       

* P < 0.05 versus wt-GST (110 μM).  ** P < 0.001 versus wt-GST (222 μM).   
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In the same manner, bovine PDC treated with N-terminal E1o GST constructs (E1o-60 and                    

E1o-153) retained 80-95% of wild-type GST control activity (Fig. 6.4). Significant inhibition                      

(20-35%) was observed with the E1o-90 GST constructs compared to the wild-type GST            

control.   

 

 

Figure 6.4: Inhibition of bovine PDC activity  using N-terminal E1o constructs 
Histogram shows activity of bovine PDC with the following:  E1o- 60 GST, 91μM and 182μM, (blue bars).                             

E1o-90 GST, 84μM and 167μM, (green bars). E1o-153 GST, 89μM and 178μM, (pink bars). The gray bars                           

represent wild-type GST as control (110μM and 222μM). The orange bar represents PDC as 100% activity (control). 

Samples were assayed in triplicate and error bars indicate extent of variation between triplicates.                                                             

* P < 0.05 versus wt-GST (110 μM). ** P < 0.005 versus wt-GST (222 μM).   
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Previous chapters (chapter 4 & 5) have shown that the E1o N-terminal region is important for 

maintaining the structural integrity of the OGDC. An interaction study on intact OGDC/PDC 

using N-terminal E1o fragments (60, 90 & 153 a.a.s.) as potential inhibitors has shown that 

overall OGDC activity significantly decreased by adding N-terminal E1o-90 (Ser1-Val90), 

presumably due to displacement of the E3 enzyme as consequence of binding between                          

N-terminal E1o-90 and E3. Interestingly, the N-terminal E1o-90 fragment induced less inhibition 

of PDC activity suggesting that either the mode of E3 interaction with OGDC is distinct from its 

mechanism of binding to PDC or that E3 is more tightly associated with PDC.  

 

 

6.2.4   Inhibition study of PDC/OGDC activity using          
E3BP-SBD 

The aim of this section was to investigate the inhibitory effects of the E3BP-SBD on                             

the PDC/OGDC activity, and to determine if the E3BP-SBD had a selective inhibitory effect on 

PDC activity. E3BP-SBD (GST fusion protein) was over-expressed and purified as described in 

section 6.2.4.1.    

 

 

6.2.4.1     E3BP-SBD over-expression and purification  

A human E3BP-SBD construct housed in pGEX-2T was already available in the laboratory 

(Smolle et al. 2006).  The SBD of human E3BP comprised 65 residues (166-230 a.a. of E3BP).   

The plasmid was transformed into E.coli BL21 (DE3) pLysS. Over-expression was successfully 
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carried out at 30°C for 4 h and induced by the addition of 1mM IPTG as described in Materials 

and Methods, section 2.4.1.   

 

SDS-PAGE analysis of samples taken at the time of induction and after 4 h demonstrated the 

presence of over-expressed E3BP-SBD.  A major band at approx. 35 kDa was observed 

corresponding to the predicted Mr value of the E3BP-SBD GST fusion protein (Fig. 6.5).                         

The solubility of the expressed protein was analysed by the standard protocol (section 2.4.2) and 

resolved by SDS-PAGE indicating the E3BP-SBD was present in the soluble fraction (data not 

shown). 

 

 
 

Figure 6.5: Over-expression of human E3BP-SBD (GST fusion protein)  
E3BP-SBD was expressed over 4 h at 30°C in E. coli BL21 (DE3) pLysS. Cells were grown in LB media. Samples 

were taken at the time of induction (t0) and after 4 h (t4) and denatured in the presence of 150mM DTT at 100°C for 

5min prior to resolution on a 10% SDS/polyacrylamide gel. Protein bands were visualised with Coomassie Brilliant 

Blue. Lane 1, molecular mass markers. The arrow on the right of the gel indicates over-expressed protein. 
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Purification of GST-tagged N-terminal E3BP-SBD required only a single purification step using 

a glutathione Sepharose 4B column (bed volume, 5ml).  Figure 6.6 shows successful purification 

of E3BP-SBD producing high yields of pure protein (approx. 20-30 mg/l of culture).  

 

 

 

 
 

 

Figure 6.6: Purification of E3BP-SBD (GST fusion protein)  
(A) Glutathione affinity chromatography of E3BP-SBD. Cell lysates (20ml) were applied to the column in 5ml 

aliquots (see section 2.4.4). Bound protein was eluted from the column using 5 CV elution buffer (20mM reduced 

glutathione, 50mM Tris-HCl, pH 8.0). The reduced glutathione buffer step used for elution is shown in green. 

Absorbance of eluted protein was measured at 280 nm (red line). Peak fractions (2ml) were collected and analysed 

by SDS-PAGE. (B) SDS-PAGE analysis of eluted protein fractions. Lane 1, molecular mass markers; lanes 2-5, 

purified E3BP-SBD elution fractions stained with Coomassie Brilliant Blue. The arrow on the right of the blot 

indicates purified protein. 
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6.2.4.2    Inhibitory effects of E3BP-SBD on PDC/OGDC activity 

To investigate the effect of adding increasing amounts of E3BP-SBD (GST fusion protein) on 

PDC/OGDC activity, both complexes and E3BP-SBD were dialysed overnight against 50mM 

KPi buffer (KH2PO4/K2HPO4),  pH 7.4 (see section 2.4.5).  E3BP-SBD (GST fusion protein) at a 

concentrations of 124μM and 213μM were pre-incubated with 10μg PDC or 10μg OGDC                     

at 30°C for 5 min. Enzymatic activity of PDC/OGDC was determined as described in Materials                               

and Methods, section 2.4.6.4. Addition of the E3BP-SBD GST constructs induced a                             

significant inhibitory effect (60-80%) on PDC activity compared to the control (120μM and 

230μM, wild-type GST) that had little or no effect (Fig. 6.7).  

  

 
 

Figure 6.7: Inhibition of bovine PDC activity using E3BP-SBD construct  
Histogram shows activity of bovine PDC with the following:  E3BP-SBD (124μM and 213μM) purple bars.                    

The gray bars represent wild-type GST as control (120μM and 230μM). The orange bar represents PDC as 100% 

activity (control). Samples were assayed in triplicate and error bars indicate extent of variation between triplicates.           

* P < 0.05 versus wt-GST (120 μM). ** P < 0.01 versus wt-GST (230 μM).                             
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In the same manner, bovine OGDC incubated with the E3BP-SBD GST construct at 

concentrations of 124μM and 213μM retained 40-60% of control activity (Fig. 6.8).  

 

 
 

Figure 6.8: Inhibition of bovine OGDC activity using E3BP-SBD construct  
Histogram shows activity of bovine OGDC with the following:  E3BP-SBD (124μM and 213μM) purple bars. The 

gray bars represent wild-type GST as control (120μM and 230μM). The orange bar represents OGDC as 100% 

activity (control). Samples were assayed in triplicate and error bars indicate extent of variation between triplicates.          

* P < 0.05 versus wt-GST (120 μM). ** P < 0.01 versus wt-GST (230 μM).                          

 

 
These interaction studies on PDC/OGDC activity using E3BP-SBD as competitive inhibitors has 

shown that overall PDC activity was significantly decreased by adding excess E3BP-SBD, 

presumably due to displacement of the E3 enzyme as a consequence of specific binding 

occurring between free E3BP-SBD and E3. Interestingly, in this case, E3BP-SBD showed less 

inhibitory effect on OGDC than PDC suggesting that the mode of E3 interaction with PDC is 

distinct from its mode of binding to OGDC.  
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6.3    Discussion      

The aim of this chapter was to test the hypothesis that N-terminal E1o constructs and E3BP-SBD 

could act as inhibitors of OGDC/PDC activity and to determine if they have a selective 

inhibitory action. In addition, the effect of NaCl on bovine OGDC/PDC activity was investigated 

as high ionic strength is well established to promote specific E3 dissociation leading to complex 

inactivation.     

   

Treatment of bovine OGDC/PDC with NaCl in the range 0-1.0 M led to a gradual loss of activity 

that could be recovered by diluting out the salt as anticipated (Fig. 6.2). Approx. 85-95% 

inhibition was achieved with 0.5M NaCl for both complexes i.e. in the range required to promote 

E3 dissociation.  These data are in agreement with our previous peptide array studies (Fig. 4.14) 

indicating that E3 binding is markedly reduced at elevated (300-500mM) NaCl levels.  It is also 

apparent that the effects of NaCl treatment on bovine OGDC and PDC activity are readily 

reversible suggesting that E3 can re-attach to the core assembly in a kinetically-competent 

fashion.  

 

Previous chapters (chapter 4 & 5) have shown that N-terminal region of E1o was important                     

for maintaining the structural integrity of the OGDC. Here, the functional significance of                        

its interaction with E3 was explored by using a series of N-terminal E1o fragments and                        

E3BP-SBD, all produced as GST fusion proteins to act as competitive inhibitors of E3 binding          

to intact OGDC and PDC. Maximal inhibition of OGDC (50-70%) was achieved with the                        

E1o-90 constructs (Ser1-Val90) whereas the E1o-60 fragment (Ser11-Ala70) was non-inhibitory                      

(Fig. 6.3) in agreement with its previously observed inability to interact with E3 (see sections, 
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4.2.3.3 & 4.2.3.4).  The longer E1o-153 fragment (Ser1-Phe153) produced only minor inhibition 

(Fig. 6.3) although it may bind to E3 with higher affinity as judged by ITC (Fig. 4.22). However, 

as discussed previously, this extended segment is highly susceptible to aggregation/proteolysis. 

Thus, the minimal inhibition observed may relate to the fact that intact monomeric E1o-153 

(Ser1-Phe153) represents only a small percentage of the total population. A similar inhibition 

profile was observed with PDC although the E1o-90 construct was markedly less effective in this 

case indicating a degree of selectivity in the inhibition (Fig. 6.4). 

 

A parallel study employing E3BP-SBD GST as a competitive inhibitor of E3 binding                      

revealed that it could induce 40-60% and 60-80% inhibition of OGDC and PDC, respectively 

(Fig. 6.7 & 6.8) over a similar concentration range to those employed with the E1o N-terminal 

constructs. In this case, the E3BP-SBD displayed a small selective inhibitory effect on PDC 

again suggesting differences in the mode of E3 binding between OGDC and PDC. 

 

In all cases, controls were performed with recombinant GST present at similar concentrations. 

No inhibitory effects were observed demonstrating that no non-specific inhibition was occurring 

owing the presence of high protein concentrations.    
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6.4    Summary 

In this chapter, N-terminal E1o fragments and the E3BP-SBD were studied as potential inhibitors 

of native bovine OGDC/PDC activity. The effect of increasing ionic strength on bovine 

OGDC/PDC activity was also investigated. All treatments were expected to displace the E3 

enzyme from its normal binding site on the relevant core assemblies. The data presented in this 

chapter can be summarized as follows: 

 

 Increasing NaCl concentrations had a parallel inhibitory effect on both OGDC and PDC 

with 85-95% inhibition occurring by 0.5 M NaCl. The effect of NaCl treatment on 

OGDC/PDC activity was readily reversible. 

 

 

 N-terminal E1o constructs had a preferential inhibitory effect on bovine OGDC as 

compared to PDC presumably via displacement of E3 from its normal binding site on the 

intact complex. These results confirmed the predicted functional role for the N-terminal 

E1o segment in mediating E3 binding. 

 

 Conversely, the E3BP-SBD was slightly more effective at inhibiting PDC than OGDC 

suggesting that the mode of E3 binding differed significantly between the two complexes.    
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General conclusions 

The family of 2-oxoacid dehydrogenase complexes are multi-enzyme arrays composed of 

multiple protein subunits that assemble non-covalently in a highly-ordered fashion. Moreover, 

OGDC, PDC and BCOADC all have multiple copies of three separate enzymes: E1, E2 and E3. 

The E3 enzyme is common to PDC, OGDC and BCOADC. In addition, mammalian PDC has a 

fourth E2-related subunit termed E3BP that can partially replace E2.  

 

Each of these complexes has a distinctive overall general morphology dictated by the presence of 

a 24-meric cubic or 60-meric icosahedral E2 core. In mammalian PDC, E1p binds to the E2p 

core via a specific SBD located on E2p, while E3BP mediates E3 binding to the core via a 

similar SBD. In mammalian BCOADC, both E1b and E3 are tethering to the E2b core by a 

single E2b-SBD. Mammalian OGDC differs in its overall design as E2o does not appear to 

provide the central scaffold responsible for E1o and E3 docking as it does not contain any an         

E3- or E1-SBD.  

 

The principal area of research in this project related to defining the interactions between the 

human OGDC enzymes (E1o, E2o and E3) in order to understand complex organisation and 

mode of assembly. Our evidence implicates a pivotal role for the N-terminal region of E1o that is 

required for both co-translational integration with E2o and subsequent post-translational E3 

binding, leading to formation of a stable complex.         
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Initial research was directed towards the cloning and expression of 9 short recombinant                       

N-terminal human E1o constructs in various forms (His-tag, MBP and GST fusion proteins) and 

cloning/expression of mature human E1o in an E. coli BL21 host system. In addition, both                

His-tagged E2o and E3 were over-expressed and purified as described in chapter 3.  The ability 

to purify large amounts of pure protein, in particular GST fusion proteins, enabled us to test the 

ability of this region to interact with E2o and E3 using a variety of biochemical and biophysical 

techniques.  Unfortunately, although full-length E1o was successfully cloned and over-expressed 

in E. coli, it failed to produce soluble recombinant protein. 

 

Detailed structural characterisation and a basic bio-informatics approach employing a diverse 

range of biochemical and biophysical techniques was conducted on the human E1o N-terminal 

region (chapter 4). These studies demonstrated that two short segments of the N-terminal region 

of human E1o have the ability to form α-helices whereas the majority of the N-terminal region is 

predicted to be highly dynamic and disordered.  Interestingly, the N-terminal region of E1o 

showed a degree of structural similarity to E3BP-SBD as judged using the structural alignment 

software (TM-align).  Both domains contain two parallel α-helices and two irregular loops as the 

most prominent structural features.   

 

TM-align (Zhang and Skolnick 2005) is a structural alignment software program for                            

identifying the best structural alignment between two proteins. Template modeling score                   

or TM-score is a measure of similarity between two protein structures with different                     

tertiary structures. Typically, TM-scores are scaled in the range (0 - 1) where values less than                                 

0.2 indicates that there is no similarity between two structures and values more than 0.5                          
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reflect the structures share the same fold. Figure 7.1 shows structural alignment of                            

human N-terminal region of E1o (Ser1-Gln77) and crystal structure of human E3BP-SBD 

(Brautigam et al. 2006) that has been analysed by TM-align. The N-terminal E1o-77 and                         

E3BP-SBD were provided in pdb format to http://zhanglab.ccmb.med.umich.edu/TM-align/, 

resulting in a TM-score of 0.44 suggesting that the both proteins share the same fold over 43 

residues in aligned length.  

 

 

 

Figure 7.1: Structure alignment of human N-terminal E1o and E3BP-SBD 
The structure alignment was carried out using the TM-align program (Zhang and Skolnick 2005). The 3-D structure 

for human N-terminal E1o-77 (blue) was predicted by I-TASSER (Zhang 2008). A crystal structure of human 

E3BP-SBD (Brautigam et al. 2006) was used (red). Human N-terminal E1o-77 showed structural similarity to 

human E3BP-SBD. 
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The main aim of chapter 4 was to investigate a potential interaction between N-terminal E1o and  

E3. This chapter provided direct evidence highlighting an important role of the N-terminal region 

of human E1o in promoting E3 binding in mammalian OGDC as judged by peptide array 

analysis, ala-scanning, ITC and affinity chromatography.  

 

Chapter 5 focused on investigation of a possible interaction between the N-terminal region                       

of human E1o and E2o, both post-translationally and co-translationally. The N-terminal                         

region of human E1o failed to interact with E2o post-translationally as monitored by gel 

filtration or affinity chromatography. However, this region proved capable of integrating with 

E2o and forming a stable complex when the 2 polypeptides were co-expressed in the same 

bacterial cell.  

 

In addition, no stable post-translation association was detected between E2o and E3.  However, 

in co-translational binding studies, it was found that the E1o N-terminus is pivotal for mediating 

formation of a stable OGDC multienzyme assembly by directing self-integration with the                

E2o core and subsequently promoting high affinity E3 binding. A post-translation interaction   

between the E1o/E2o sub-complex and E3 was established using gel filtration where it                        

was possible to detect complex formation between E1o-90 GST/E2o and E3.  In summary,                 

our current findings provide direct evidence that the N-terminal region of human E1o has                      

a dual role in promoting stable OGDC organisation, namely mediating the co-translationally                  

directed integration of E1o and E2o while also being responsible for the post-translational 

tethering of E3.   
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As a corollary to the previous results, parallel inhibition studies (chapter 6) on native bovine 

OGDC/PDC were conducted using N-terminal E1o and E3BP-SBD constructs showing that the 

N-terminal E1o constructs were functional and had a selective inhibitory effect on bovine OGDC 

presumably via displacement of E3 from its normal binding sites on the intact complex. 

Moreover, E3BP-SBD was slightly more effective at inhibiting PDC than OGDC suggesting that 

the mode of E3 binding differed significantly between the two complexes.    

 

Further experiments are necessary to substantiate these results. In particular, it will be of                       

great interest to produces soluble, recombinant full-length E1o. One possibility would be to use                 

a low level E. coli expression system such as the pQE-9 vector and E. coli M15 strain that                          

has proved successful in the production of the α2β2 E1p heterotetramer. Moreover, further 

experiments using biophysical techniques including AUC, SAXS, and SANS are required                              

to obtain more conclusive structural data on the morphology, organisation and stoichiometry                      

of the E1o/E2o sub-complex. 

 

Interestingly, Bunik and Degtyarev (2008a) have described 2 possible Ca
2+

 binding motifs 

(ExDxDx and DxDxDx) within the N-terminal region of E1o. It will be of great interest to                   

assess the functionality of these putative Ca
2+

-binding sites in our E1o-153 fragment e.g. using 

ITC since Ca
2+

-binding sites in proteins play a wide range of roles including stabilizing protein                         

structures or acting as cofactors in catalytic and regulatory processes. 
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Appendix 1:    Plasmid map of the pET-14b cloning/expression vector 

 

 

 



                                                                                                                                          Appendices 

230 

 

 

 
 

Appendix 2:    Plasmid map of the pET-28b cloning/expression vector 
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Appendix 3:    Plasmid map of the pET-30a cloning/expression vector 
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Appendix 4:     Map of the glutathione S-transferase fusion vector pGEX-2T 
 

 

 
 

Appendix 5:    Map of the pCR 2.1-TOPO cloning vector 
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