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SUMMARY 

Hantaviruses, members of the Hantavirus genus, Bunyaviridae family, are enveloped, 

single-stranded, negative-sense RNA viruses, among which are the causative agents 

of hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. The 

virus genome consists of three segments, designated large (L), medium (M), and small 

(S), that are packed into helical nucleocapsids. These segments encode the RNA 

polymerase, glycoproteins Gland G2, and nucleocapsid (N) protein, respectively. 

Studies on the S genome segment products encoded by hantaviruses were undertaken 

using different molecular approaches. The initial aim of the project was to attempt a 

development of a reverse genetics system based on the systems established for other 

negative-strand RNA viruses. As a basis, the system successfully developed for 

Bunyamwera virus was chosen. 

To this end, recombinant Puumala (PUU) virus-like RNA transcripts containing the 

CAT reporter gene were designed and produced that would be recognised and 

transcribed by transiently expressed recombinant PUU virus proteins. Two modified 

cell lines, BHK T7-SIN and Vero T7, that stably expressed bacteriophage T7 

polymerase, were transfected with plasmids containing the reporter RNA or PUU 

protein sequences under control of the T7 promoter. 

Several reporter constructs were used. These contained an antisense sequence 

encoding the open reading frame of the chloramphenicol acetyl transferase (CAT) 

gene that replaced the coding region in a negative sense PUU virus S or L segment 

untranslated regions (UTR). The presence of the complete 3' and 5' UTRs was thought 

to be essential for the transcripts from the reporter construct to act as authentic viral 

RNAs. The exact 3' and 5' terminal sequences were also considered to be prerequisites 

important for successful recognition and transcription by the viral polymerase. These 

were achieved by cloning the reporter construct immediately downstream of different 

versions ofT7 promoter or cis-active hammerhead ribozyme sequence to generate the 

exact 5' termini, and by placing either a BbsI restriction enzyme site or hepatitis delta 

virus self-cleaving ribozyme immediately downstream of the 3' terminus to generate 



the exact terminal nucleotides. However, no evidence for recognition of the reporter 

construct was obtained in numerous experiments. 

As an alternative approach, the recently described polymerase I system was 

employed. This system utilizes cellular RNA polymerase I to produce transcripts with 

correct 3' ends thus avoiding the need for expressing run-off transcripts or the use of a 

self-cleaving hepatitis delta ribozyme and also ensures production of the exact 5' 

termini. The proteins in this system are expressed from a plasmid containing CMV 

promoter, the cellular RNA polymerase type II promoter. However, this approach was 

also unsuccessful. 

The mammalian two-hybrid system (M2HS), an in vivo assay to study protein-protein 

interactions, was employed to investigate the ability of the Puumala virus N protein to 

self-associate and to determine the domains on the protein responsible for the 

interaction. Not only was it shown that molecules were able to interact with one 

another but it was also revealed that the interaction occurs through the N- and C

terminal domains, confined to amino acids 1-105 and 385-432. Based on the results 

obtained via M2HS, a 'head-to-tail' model is proposed in which the association of the 

N proteins takes place through their terminal regions. The results of the M2HS were 

further confirmed using a co-immunoprecipitation assay. 

Possible interactions between N and different fragments of L protein were also 

studied using the M2HS, however, no conclusions could be made as to whether or not 

(and if yes then how) the two proteins interact. This may be because the L protein was 

expressed as separate fragments and any interaction domains could be disrupted. 

Finally, the expression of a putative second gene product (ORF 2) expressed from the 

S segment of hantaviruses was investigated. The results of immunoprecipitation and 

Western blot analyses with anti-ORF2 peptide antibodies indicated that the putative 

ORF2 protein could be detected from the plasmid pTMPUUS, that contains all the S 

gene sequence, and from pTMPUUORF2 containing only ORF2 coding sequence. 

The protein was also detected in Puumala virus infected cells by Western blot 

analysis. Although the results of this work are preliminary, they suggest that the PUU 

S segment does indeed express a protein in addition to N. 
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Introduction: Chapter 1 

CHAPTER 1: INTRODUCTION 

1.1. The problem of hantaviral fevers 

Hantaviral fevers are infectious diseases distributed throughout the world, the causative 

agents of which are members of the Hantavirus genus, family Bunyaviridae. Since the 

isolation in 1976 of the first hantavirus in South Korea from the striped field mouse, 

Apodemus agrarius, until the present time, in different regions of the world more than 

500 hantaviral strains have been isolated (Schmaljohn and Hjelle, 1997). Antigenic, 

biochemical and molecular-genetic studies allowed assignment of those strains to groups 

considered as serotypes of hantavirus. At present, the genus comprises 22 serotypes 

including those that cause hemorrhagic fever with renal syndrome, hantavirus pulmonary 

syndrome and viruses that are not pathogenic to humans. The natural reservoir and the 

major source of human infection are wild rodents. Transmission to humans appears 

mostly via inhalation of aerosolized infected rodent urine, saliva and excreta (Peters et 

al., 1999; Feldmann, 2000; Schmaljohn and Nichol, 2001). 

Hemorrhagic fever with renal syndrome (HFRS) is a severe human disease that 

comprises a variety of clinically similar illnesses such as Korean hemorrhagic fever, 

epidemic hemorrhagic fever, and nephropathia epidemica. At least four distinct 

hantaviruses are known to cause HFRS: Hantaan, Puumala, Seoul, and Dobrava viruses 

(Lee et al., 1985; Schmaljohn et al., 1985; Dantas et al., 1987; McKee et al., 1991; Xiao 

et al., 1994; Antoniadis et al., 1996). Approximately 150,000 to 200,000 cases ofHFRS 

involving hospitalization are reported each year throughout the world, with more than 

half of those in China. Hundreds to thousands of HFRS cases are reported by Russia and 

Korea, and most remaining cases (hundreds per year) are found in Japan, Finland, 

Sweden, Bulgaria, Greece, Hungary, and Yugoslavia. Depending on which hantavirus is 

responsible for the illness, HFRS can appear as a mild, moderate, or severe disease. 
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Death rates range from less than 0.1 % for HFRS caused by Puumala virus to 

approximately 10% to 15% for HFRS caused by Hantaan virus (Lee, 1996). Clinical 

manifestations of the disease include hemorrhage, proteinuria, myositis, conjunctival 

infection, eye pain and myopia. Therapy for HFRS generally consists of supportive care 

which may include renal or peritoneal dialysis. The drug ribavirin statistically improves 

HFRS disease outcome but is not always effective (Huggins et al., 1991). 

The term 'hantavirus pulmonary syndrome' (HPS) is used for a severe respiratory illness 

found in North and South America. Sin Nombre virus was identified as the etiologic 

agent of an outbreak of the disease in the south-western United States in the summer of 

1993 (Nichol et aI., 1993). At present, at least four more hantaviruses are known to cause 

HPS: Black Creek Canal, Bayou, New York, and Andes. Unlike HFRS, in HPS capillary 

leakage is localized exclusively in the lungs, and the kidneys are largely unaffected. As 

with HFRS, clinical differences can be observed among patients with HPS caused by 

different hantaviruses. The case fatality rate for this illness was reported to be greater 

than 50% (Schmaljohn et al., 1995; Hjelle et al., 1996; Khan et al., 1995; CDC, 2002). 

The worldwide distribution, high rates of human infection, significant frequency of 

severe forms of the disease leading to fatal outcome, lack of specific means of treatment 

and prevention demonstrate the high importance of the problem of hantaviral fevers. 

Because of the lack of specific means to prevent HFRS and HPS, the development of a 

vaccine against hantaviruses is one of the most important tasks connected with their 

study. However, vaccine development efforts have been hampered by the inability to 

propagate hantaviruses in many cell lines, the propensity of these viruses to cause 

persistent infections both in their rodent hosts and in cell culture, and their slow and low

titered replication in cell culture (Schmaljohn et al., 1990). This has hindered the study of 

the viruses in the laboratory; consequently, many questions remain concerning the 

potential genetic changes which may influence the ability of hantaviruses to replicate in 

permissive cell culture systems. 

For this reason, it is essential to get a deeper understanding of basic properties of the viral 

genome, to identify basic viral components reliable for eliciting the host immune 

2 
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response, and to consider constant spontaneous changes in hantaviral genomes (genome 

mutations and recombinations) caused by joint circulation in natural foci of the 

representatives of different rodent families - carriers of different hantaviral serotypes. 

1.2. Characteristics of the Bunyaviridae 

The Bunyaviridae is a large family that contains more than 350 mainly arthropod-borne 

viruses. They are distributed worldwide and share certain morphological, serological, 

biochemical and molecular-genetic characteristics. The family is divided into five genera: 

Orthobunyavirus, Nairovirus, Phlebovirus, Tospovirus, and Hantavirus (Elliott, 2001). 

The viruses are capable of infecting birds, mammals or plants, sometimes causing severe 

disease. Several members of the family are of human and veterinary importance. The 

human diseases include: several types of encephalitis (California group ofbunyaviruses) 

which may be rare or endemic depending on the virus; epidemic fevers (Simbu and 

Oropouche bunyaviruses, Rift Valley fever phlebovirus); endemic fevers (sand fly fever 

group of phleboviruses) or hemorrhagic fevers (hantaviruses and nairoviruses) (Table 

1.1) (Calisher, 1996). 

All viruses of the Bunyaviridae studied so far are enveloped, spherical particles, about 90 

to 120 nm in diameter. A single-stranded, tripartite, negative-sense or ambisense RNA 

genome is surrounded by the envelope which is composed of host derived lipid with 

glycoprotein spikes and is approximately 4 nm thick (Bishop, 1996). Based on the 

structure and its components, the overall chemical composition is calculated to be 1-2% 

RNA, 58% protein, 33% lipid, and 7% carbohydrate (Obijeski and Murphy, 1977). 

The three genomic RNA segments are designated S (small), M (medium) and L (large). 

Their lengths have been shown to vary considerably among viruses in different genera of 

the family: the L segment ranges from 6.4kb for Uukuniemi virus to 12.2kb for Dugbe 

virus, whereas the M segment ranges from 3.2kb for Uukuniemi virus to 4.9kb for 

Dugbe virus, and the S segment shows a difference in size from 0.9kb for Bunyamwera 
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Genus 

Orthobunyavirus 

Nairovirus 

Phlebovirus 

Hantavirus 

Tospovirus 

Viruses 

Bunyamwera 
Cache Valley 

California 
encephalitis 
Germiston 
La Crosse 
Snowshoe hare 
Tahyna 

Crimean Congo 
Haemorrhagic 
Fever 
Dugbe 
Nairobi sheep 
disease 

Sandfly Fever 

Rift Valley Fever 

Uukuniemi 
Toscana 
Punta Toro 

Hantaan 
Dobrava 
Puumala 
Seoul 
Sin Nombre 
Black Creek Canal 

Tomato spotted 
wilt virus 

Disease 

Human 
Sheep, 
cattle 
Human 

Human 
Human 
Human 
Human 

Human 

Human 
Sheep, 
Human 

Human 

Human, 
cattle 
Human 
Human 
Human 

Human 
Human 
Human 
Human 
Human 
Human 

Over 360 
plant 
specIes 

Vector 

Mosquitoes 
Mosquitoes 

Mosquitoes 

Mosquitoes 
Mosquitoes 
Mosquitoes 
Mosquitoes 

Ticks, culicoid flies 

Ticks 
Ticks, culicoid flies, 
mosquitoes 

Phlebotomine 
flies (also airborne) 
Mosquitoes 

Ticks 
Phlebotomine flies 
Phlebotomine flies 

rodents 
rodents 
rodents 
rodents 
rodents 
rodents 

Thrips 

Table 1.1. Some important pathogens in the family Bunyaviridae. 
Adapted from Calisher (1996). 
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virus to 2.9kb for tomato spotted wilt virus (Fig. 1. 1 ). However, the pattern of genome 

segment sizes is conserved within a genus. 

All viruses examined to date encode their nucleocapsid protein in the S segment and 

their envelope glycoproteins in the M segment. The L RNA segment encodes the viral 

polymerase. Orthobunyaviruses, tospoviruses and some phleboviruses also code for a 

non structural protein, NSm, in their M segment. The NSm of tospoviruses is encoded in 

ambisense orientation. The S segment of phleboviruses and tospoviruses also encodes a 

nonstructural protein NSs, however, unlike orthobunyaviruses that also code for NSs, the 

members of these two genera have been shown to utilize an ambisense coding strategy 

(Fig. 1. 1). 

The virus L protein (approximately 25 copies per virion) is associated with the N protein 

(approximately 2100 copies per virion), and with each of the three genomic RNA 

segments to form ribonucleoprotein (RNP) complexes termed nucleocapsids (Fig.l.2) 

(Obijeski et ai., 1976). The nucleocapsid is the template for mRNA synthesis and 

genome replication (Kolakofsky and Hacker, 1991). 

All three viral RNA species have highly conserved complementary terminal sequences 

specific for each genus. The mRNA transcripts have heterogeneous, nonviral 5' end 

sequences (8 to 15 nucleotides in length) that are acquired from host mRNA sequences 

for the purposes of priming viral mRNA. Another feature of these viral mRNAs is that 

they are truncated at the 3' end by approximately 50-110 nucleotides compared to the 

full-length cRNA (Patterson and Kolakofsky, 1984; Bouloy et ai., 1990; Jin and Elliott, 

1993b). These characteristics are shared with influenza virus mRNAs, however, unlike 

influenza virus, bunyavirus mRNAs do not appear to be polyadenylated (Krug, 1981). 

Viral replication occurs in the cytoplasm of infected cells. Virions mature by budding 

into smooth surface vesicles in or near the Golgi complex (Elliott, 1990; Schmaljohn and 

Pettersson, 1990). 
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Fig. 1.1. Coding strategies of members ofthe Bunyaviridae. Thin lines represent the viral genome RNA, arrows mRNA, and rectangles polypeptides. 
The caps on mRNAs are shown as diamonds. From Elliott (1996). 

5' .. 
5' 

... 

5' 

NSs 
32kDa 

5' 

• 
NSs 
52kDa 



N Gl 

L segment 

L 
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Fig 1.2. Schematic of the structure of members of the Bunyaviridae. The three 
RNA segments S, M, and L are encapsidated by the nucleocapsid protein N 
and associated with the viral polymerase L thus forming ribonucleoprotein 
(RNP) complexes. Lipid envelope, in which two glycoproteins Gland G2 are 
embedded, surrounds nucleocapsid. 
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1.3 . Genus H antavirus 

Hantaviruses share the common properties of other members of the family, however, 

three particular features distinguish them from the viruses in other genera: transmission 

by rodents, relatively simple coding strategies and a unique consensus 3' end sequence in 

the genomic RNAs compared to the members of other genera, namely AUCAUCAUC ... 

(Fig.I.3). These and other characteristics ofhantaviruses will be discussed in more details 

in the following sections. 

1.3.1. Transmission 

Unlike other members of the family Bunyaviridae, which require arthropod vectors, 

hantaviruses appear to be primarily associated with a specific rodent species, causing a 

persistent, asymptomatic, life-long infection in that species. They are thought to be 

transmitted via infectious aerosol generated by contaminated urine and feces, and 

possibly via saliva during bites. Most of the current data appears consistent with 

cospeciation of hantaviruses and their rodent hosts being the predominant pattern in the 

long-term evolution of this group of viruses (Antic et al., 1992b; Morzunov et al., 1995; 

Morzunov et aI., 1996; Plyusnin et al., 1994a, 1994b; Spiropoulou et al., 1994; Xiao et 

al., 1994). 

Well characterized Old World hantaviruses cause diseases collectively known as 

hemorrhagic fever with renal syndrome. They include Hantaan (HTN), Dobrava (DOB), 

Seoul (SEO), and Puumala (PUU) viruses that are transmitted by the striped field mouse, 

Apodemus agrarius, the yellow-necked field mouse, A.jlavicolis, the Norway rat, Rattus 

norvegicus, and the bank vole, Clethrionomys glareolus, respectively (Table 1.2) (Hjelle 

et al., 1995; Plyusnin et al., 1996). 

Sin Nombre (SN) virus was identified as the causative agent in an outbreak of severe 

pulmonary disease, hantavirus pulmonary syndrome, in the southwestern United States in 

1993 (Nichol et al., 1993; Chizhikov et al., 1995; Spiropoulou et al., 1994). The deer 
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Orthobunyavirus 3' -UCAUCACAUGA ....... .. ....... . .... UCGUGUGAUGA-5 ' 

Hantavirus 3'-AUCAUCAUCUG ............................ AUGAUGAU-5 ' 

Nairovirus 3'-AGAGUUUCU .................... ... .... ... AGAAACUCU-5' 

Phlebovirus 3'-UGUGUUUC ...... .... ........ .... ..... ..... ... GAAACACA-5 ' 

Tospovirus 3'-UCUCGUUAG .................... ........... CUAACGAGA-5 ' 

Fig.I.3. Consensus tenninal sequences of Bunyaviridae genome RNA 
segments. The tenninal sequences are complementary and conserved 
within each genus. 



S,Qecies Disease Princi,Qal Reservoir Distribution of virus 
Hantaan (HTN) HFRS Apodemus agrarius China, Russia 

(striped field Korea, Taiwan, 
mouse) China 

Dobrava-Belgrade HFRS Apodemus flavicolis Balkans 
(DOB) (yellow-neck 

mouse 

Seoul (SEO) HFRS Rattus norvegicus Worldwide 
Norway rat) 

Puumala (PUU) HFRS Clethrionomys Europe, Russia, 
glareolus Scandinavia 
(bank vole) 

Thailand (THAI) Nd Bandicota indica Thailand 
(bandicoot rat) 

Prospect Hill (PH) Nd Microtus U.S., Canada 
pennsylvanicus 
(meadow vole) 

Khabarovsk (KHB) Nd Microtus fortis Russia 
(reed vole) 

Thottapalayam Nd Suncus murinus India 

(TPM) (musk shrew) 

Tula (TUL) Nd Microtus arvalis Europe 
(European 
common vole) 

Sin Nombre (SN) HPS Peromyscus U.S., Canada 
maniculatus Mexico 
(deer mouse) 

New York (NY) HPS Peromyscus U.S. 
leucopus 
(white-footed 
mouse) 

Black Creek Canal HPS Sigmodon hispidus U.S. 

(BCC) (cotton rat) 



EI Moro Canyon Nd Reithrodontomys U.S., Mexico 
(ELMC) m ega lotis 

(western harvest 
mouse) 

Bayou (BAY) HPS Oryzomys palustris U.S. 
(rice rat) 

Topografov (TOP) Nd Lemmus sibiricus Russia 
(Siberian lemming) 

Andes (AND) HPS Oligoryzomys Argentina 
longicaudatus 
(long-tailed pygmy 
rice rat) 

Isla Vista (ISLA) Nd Microtus U.S. 
californicus 
(California vole) 

Laguna Negra (LN) HPS Calomys laucha Paraguay 
(vesper mouse) 

Bloodland Lake Nd Microtus U.S. 
(BLL) ochrogaster (prairie 

vole) 

Muleshoe (MUL) Nd Sigmodon hispidus U.S. 
(cotton rat) 

Rio Segundo Nd Reithrodontomys Costa Rica 
(RIOS) mexicanus (mexican 

harvest mouse) 

Rio Mamore Nd O/igoryzomys Bolivia 
(RIOM) microtis (small-

eared pygmy rice 
rat) 

Table 1.2 Members of the genus Hantavirus, family Bunyaviridae 
HFRS, hemorrhagic fever with renal syndrome, HPS, hantavirus pulmonary 
syndrome, Nd, not defined 
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mouse, Peromyscus maniculatus, an indigenous North American rodent of the subfamily 

Sigmodontinae, was quickly identified as the primary natural reservoir for SN virus. 

Subsequently, additional distinct hantaviruses associated with rodents of other 

Sigmodontinae genera were discovered in North and South America. The viruses named 

Bayou (BAY), Black Creek Canal (BCC), Andes (AND), and Laguna Negra (LN), 

associated with Oryzomys palustris, Sigmodon hispidus, Oligoryzomys longicaudatus, 

and Calomys laucha rodents, respectively, have already proven to be pathogenic for 

humans (Khan et al., 1995; Morzunov et al., 1995; Ravkov et al., 1995; Rollin et ai., 

1995; Torrez-Martinez and Hjelle, 1995; Lopez et al., 1996; Nichol et ai., 1996; Williams 

et al., 1997). EI Moro Canyon (ELMC) virus, transmitted by the harvest mouse, 

Reithrodontomys megalotis (Hjelle et al., 1994), and several hantaviruses from the 

Prospect Hill (PH) virus group (found in several different North American Microtus 

species) (Parrington et al., 1991; Song et al., 1995) have not been associated with human 

disease. 

1.3.2. Coding strategies 

The coding strategies of hantaviruses appear to be the simplest among those described 

for the L, M, and S segments of the members of the other four genera in the family. The 

genome of hantaviruses consists of three negative-strand RNA segments: large (L) (6.5-

6.6 kb), medim (M) (3.6-3.7 kb), and small (S) (1.7-2.1 kb). They were shown to encode 

in the virus complementary-sense only the structural proteins: the L segment encodes an 

RNA polymerase (~250 kDa), the M segment two glycoproteins (G 1 ~ 70 kDa and 

G2~50kDa, without glycans) and the S segment a nucleocapsid protein (~50kDa) 

(Schmaljohn, 1996). 

However, sequence data revealed that some hantaviruses such as Prospect Hill and Sin 

Nombre viruses may be able to encode a second protein in the S genome segment 

(Parrington and Kang, 1990; Stohwasser et al., 1990; Spiropoulou et ai., 1994). Further, 

statistical analysis of the third base substitution frequency in the region encoding 
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potential second ORF protein (ORF2) in these viruses showed greatly reduced level of 

third position base substitution in comparison to N ORF outside ORF2 (Bowen et at., 

1995; Spiropoulou et at., 1994). A lower third base substitution frequency in this region 

suggests that the second ORF codes for a functional protein. A similar statistical analysis 

predicted a functional overlapping ORF in the P gene of vesicular stomatitis virus (Bilsel 

et at., 1990) (discussed in more detail in Chapter 5). 

Despite this suggestive finding, the existence of a hantaviral nonstructural protein has not 

been demonstrated. Moreover, Hantaan virus, the prototype virus of the genus, has not 

even been shown to possess an ability to encode a protein similar to the one of 

orthobunyaviruses, phleboviruses, and tospoviruses that code for a nonstructural protein 

NSs in their S segment (Schmaljohn et at., 1986b). 

1.3.2.1. N protein 

The hantavirus nucleocapsid protein (N), which is in the range of 428 to 433 amino acids 

(-50kDa), is larger than those found in most other members of the family by 

approximately 160 to 200 amino acids, except for nairoviruses, which also have an N 

protein of approximately the same length (Spiropoulou et at., 1994; Ravkov et at., 1995; 

Bishop, 1996; Schmaljohn, 1996). N protein localizes at the perinuclear region in 

infected or N-expressing cells (Ravkov and Compans, 2001) and was shown to bind to 

filamentous actin similar to influenza virus N protein (Digard et at., 1999). 

N is the major antigenic protein, and a strong antibody response can be detected at an 

early phase of the disease in patient sera. The protein possesses immunodominant, linear, 

cross-reactive epitopes in the first 100 amino acids of the N terminus (Yamada et at., 

1995; Elgh et at., 1996; Gott et at., 1997). In addition, serotype-specific conformational 

epitopes have been detected between amino acids 155 and 429 of the N using serotype

specific monoclonal antibodies (MAbs) (Fig.1.4) (Ruo et at., 1991; Yoshimatsu et at., 

1996). 



N 100aa 200aa 

Linear epitopes Confonnation-dependent serotype-specific epitopes 

1. Perinuclear targetting signal (BCC) 
(aa 279-420) 

2. Nonspecific RNA binding region (HTN, PUU) 
(aa 327-420) 

c 

3. Region contributing to 
specificity of viral RNA 
recognition (aa 175-196) 

RNA binding region (HTN) 
(aa 197-218) 

4. Daxx binding site (PUU) 
(aa 363-420) 

5. Ubc9/SUMO-1 
binding region (HTN) 
(aa 101-238) 

6. Actin microfilaments 

binding region (BCC) ? ? 

Fig. 1A. A schematic representation of the functional domains in the N protein 
of hantaviruses. According to published reports, the functional domains (shown 
as blue bars) are as follows: 1. The perinuclear targeting signal; 2. The 
nonspecific RNA binding region; 3. The specific RNA binding region; 4. The 
Daxx binding site; 5. The Ubc9/SUMO-1 binding region. 6. The actin 
microfilament binding region. BCC - Black Creek Canal; HTN - Hantaan; 

PUU- Puumala viruses. 
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N protein encapsidates both viral genomIc (vRNA) and anti genomic (cRNA) RNA 

segments, but not mRNA, and only the genomic viral RNA is packaged into virions. 

Binding to vRNA is an essential property to N's role in encapsidation and 

ribonucleoprotein (RNP) complex formation and might have regulatory roles in the viral 

life cycle. It is likely that specific sequences or structures present in the vRNA molecules 

provide a point of nucleation for subsequent encapsidation of the entire vRNA or cRNA 

segments, but not the mRNA. 

Apart from the formation of the RNP, the hantavirus N protein has been suggested to be 

involved in the regulation of polymerase activity, as c- and vRNA (but not mRNA) 

synthesis depends on a supply of soluble (i.e., not bound to RNA) N protein. The ability 

to modulate the switch of virus RNA synthesis from transcription to replication was 

reported for analogous proteins in other negative-strand viruses, such as influenza virus 

(Patton et al., 1984; Beaton and Krug, 1986; Honda et al., 1988). 

Although motifs common to other RNA binding proteins (Siomi and Dreyfuss, 1997) 

have not been identified in hantavirus N protein, two groups reported their studies of N 

protein-RNA interactions. Severson et al (1999) studied interaction of the N protein with 

RNA by measurement of the binding affinity of bacterially expressed and purified N 

protein with vRNA and non-vRNA. The HTN N protein demonstrated a preference for its 

full-length vRNA S segment as compared to its binding with an RNA encoding the open 

reading frame on the S segment. Furthermore, a strong preference was noted for the S 

segment vRNA as compared to nonspecific RNA. Additional experiments found the 5' 

end of the S segment vRNA to be necessary and sufficient for the binding reaction 

(Severson et al., 2001). Preferential binding of the Bunyamwera virus N protein to the 5' 

end of the S segment vRNA has also been reported (Osborne and Elliott, 2000). In the 

second report, Xu et al (2002) showed that minimal RNA binding domain (RBD) is 

located between amino acid residues 175 and 217 that may extend into aa 217 to 249 by 

using a filter binding assay (Fig. 1.4 ). It is also possible that additional regions of the N 

protein contribute to the interaction with the vRNAs. As Xu et al. showed (2002) the 

region of the N protein corresponding to amino acids Pro-196 through Ser-218 as well as 

determinants in 175-195 were necessary for a functional RBD. In addition to the 
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evidence provided by deletion mapping, the ammo acids that follow 232 are highly 

nonconserved among HV sequences (aa 233-309). Studies with other RNA viruses have 

also reported that the nucleocapsid proteins bind vRNA through a localized, conserved 

domain, and that nonconserved regions are less likely to contain functional domains. For 

example, in the influenza virus nUcleoprotein, a highly conserved region among A-, B

and C-type viruses was mapped (Albo et al., 1995; Kobayashi et al., 1994). Also, a 

conserved region in the C terminus of the rabies virus N protein, aa 298 to 353, was 

shown to bind directly to the vRNA (Kouznetzoff et al., 1998). Similarly, RNA binding 

domain of the mouse hepatitis virus N protein was mapped to a central, conserved region, 

comprising amino acids 169 to 308 (Masters, 1992; Nelson and Stohlman, 1993). 

However, identification of common features of RBDs among the hantaviral nucleocapsid 

proteins may require elucidation of their three-dimensional structures. 

Severson et al (2001) proposed a two-step model for encapsidation of the viral genome 

and antigenome RNAs that entails both specific and nonspecific interactions with the N 

protein. Initially, a specific interaction occurs between the N protein and the sequences in 

the single-stranded region of the predicted stem loop (SL) structure comprising amino 

acids 1 to 39 in the 5' end of the nascent vRNA. Initial binding may be followed by N-N 

protein interaction, which could drive the nonspecific binding of the remaining vRNA 

template. 

The hantaviral nucleocapsid protein was also shown to interact with cellular proteins. 

Using a yeast two-hybrid screening system, Li et al (2002) found that the PUU N 

interacts with the Fas-mediated apoptosis enhancer, Daxx, at the C-terminal 57-aa 

residues in the N (Fig.l.4). They hypothesized that the interaction of the PUU N with 

Daxx regulated the localization of the N and was involved in the apoptotic process of the 

infected cells (Li et al., 2002). Maeda et al (2003) have recently reported the interaction 

between the HTN N and SUMO-l. SUMO-I, a small ubiquitin-like modifier-I, 

conjugating enzyme 9 (Ubc9) conjugates SUMO-l to target proteins and modulates 

cellular processes such as signal transduction, transcription regulation, and cell growth 

regulation. The results of their research showed that the aa 101-238 region in the N of 

HTN is necessary and sufficient for Ubc9-binding (Fig.l.4). Interestingly, Daxx interacts 
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with Ubc9 and is covalently conjugated with SUMO-I. This led the authors to suggest 

that it might be possible that the complex of N-Ubc9-SUMO-1-Daxx regulates the 

subcellular localization of the HTN N (Maeda et al., 2003). 

1.3.2.2. Gl and G2 glycoproteins 

The M genome segment ofhantaviruses encodes the glycoprotein precursor (GPC) that is 

posttranslationally cleaved into two integral membrane surface glycoproteins, Gland 

G2. The gene order of hantavirus M RNA with respect to messenger-sense RNA is 5'

G1-G2-3' (Schmaljohn et al., 1987). G1 and G2 form a heterodimer in the endoplasmic 

reticulum (ER) before they are targeted to the Golgi compartment (Antic et al., 1991, 

1992a; Pensiero and Hay, 1992; Ruusala et al., 1992). The G lIG2 heterodimers form the 

spikes on the virus particles which mediate receptor binding and fusion (Arikawa et al., 

1985, 1989; Dantas et al., 1986). 

Sequence determination revealed that the amino terminus of the mature G 1 starts at 

position 18 (threonine) and with the G2 at 649 (serine) (Schmaljohn et al., 1987). 

Hantaviruses apparently share the common Bunyaviridae property of a leader sequence 

before the first encoded glycoprotein, as has been observed for the phlebo- and 

orthobunyaviruses (Collett et al., 1985; Thara et al., 1985b; Eshita et al., 1984; Lees et aI., 

1986). The absence of a NSm coding region between the signal sequence and G 1 

distinguishes hantaviruses from the phleboviruses Punta Toro and Rift Valley fever 

viruses, which have long (30K and 16K, respectively) stretches of polypeptides prior to 

the amino-terminal sequences of their first mature glycoprotein (Collett et al., 1985; Thara 

et al., 1985b). 

Four hydrophobic domains are found on the GPC (Fig.1.5). Domain I extends from 

amino acid position 1 to 17 and most likely serves as a signal peptide. The hydrophobic 

domain II (position 441 to 515) is unusually long and the actual membrane spanning 

portion is unknown. Domain III extends from position 627 to 648 and ends with a highly 

conserved pentapeptide motif W AASA at the amino terminus of G2. Domains II and IV 
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Fig. l.5. Schematic illustration of the Hantaan virus glycoprotein precursor. The 
hydrophobic domains I (aa 1-17), II (aa 441-515), III (627-648), and IV (1097-1127) are 
shown in dark blue. Seven potential glycosylation sites (five in G 1 and two in G2) are 
indicated as triangles, five of which are likely to be glycosylated (shown in gray). The red 
arrow indicates the potential cleavage site between G 1 and G2 (highly conserved 
pentapeptide motif W AASA at the carboxyl-terminal end of domain III). 
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(position 1097 to 1127) are the transmembrane domains of G1 and G2, respectively. It 

was shown that pentapeptide W AASA in the termini of the domain III is found with all 

molecularly characterized hantaviral glycoproteins (Spiropoulou et al., 1994). 

Seven potential sites for the attachment of N-linked oligosaccharides are present on the 

GPC. Even after incorporation into the virus particle the N-linked glycans remain 

endoglycosidase H sensitive (Schmaljohn et al., 1987; Antic et a!., 1992a, 1992b). 

Until recently, the GPC has not been identified following hantavirus infection nor using 

recombinant expression from a plasmid containing the M segment ORF (Schmaljohn et 

aI., 1987; Pensiero and Hay, 1992; Schmaljohn, 1996). Previous evidence for the 

expression of such a precursor in the family Bunyaviridae had been obtained through in 

vitro translation experiments for Rift Valley fever virus of the genus Phlebovirus (Suzich 

and Collett, 1988). Recently, Lober et al. (2001) demonstrated the expression of HTN 

glycoprotein precursor in mammalian cells. The cleavage of the precursor GPC followed 

the rules for signal peptides, indicating that a signal peptidase complex is responsible for 

the processing into the glycoproteins G 1 and G2. Detection of the precursor GPC could 

only be achieved through complete or partial cleavage inhibition. Amino acid sequence 

comparison of bunyavirus glycoprotein precursors in this particular cleavage region 

(W AASA sequence in the end of domain III) indicated that similar concept for cleavage 

is employed not only by hantaviruses but also by many other members of the family 

Bunyaviridae (Lober et ai., 2001). 

The Goigi complex was thought to be the site of assembly for all hantaviruses (Plyusnin 

et ai., 1996) similar to the other viruses in the family Bunyaviridae data on which was 

obtained by electron microscopy, immunofluorescence analysis, and studies of the 

expression of viral glycoproteins (Anderson and Smith, 1987; Kuismanen et al., 1982; 

Matsuoka et ai., 1994). For example, the use of indirect immunofluorescence 

demonstrated that recombinant HTN G 1 and G2 could be colocalized with mannosidase 

II, a Golgi marker protein. Neither G 1 nor G2 could be detected at the plasma membrane 

when analyzed by surface immunofluorescence or by biotinylation (Lober et al., 2001). 
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Intracellular maturation of the VIrus particles in the Golgi cisternae has also been 

visualized by electron microscopy (Hung, 1988). 

However, recent studies with viruses designated as New World hantaviruses, challenge 

the idea that the intracellular mode of virus assembly is the only mechanism utilized by 

hantaviruses (Goldsmith et al., 1995; Ravkov et al., 1998). Electron microscopy of Vero 

E6 cells infected with Sin Nombre virus showed accumulation of the virus particles on 

the cell surface and their absence in the Golgi complex and other intracellular 

compartments (Goldsmith et al., 1995). Similar findings were obtained in studies with 

Black Creek Canal virus (BCC), another representative of the New World hantaviruses, 

in polarized epithelial cells using electron microscopy and immunofluorescence. It was 

shown that BCC assembly and release occur at the apical cell surface (Ravkov et al., 

1998). Therefore, there may be differences in the site of maturation between the New 

World and Old World hantaviruses. 

A number of studies indicate that III bunyaviruses the signal specifying Golgi 

localization resides in just one of the glycoproteins. For example, for Bunyamwera virus 

the targeting signal was mapped to the N-terminal glycoprotein of the precursor (G2) 

(Lappin et al., 1994), for Punta Toro phlebovirus it was mapped to the transmembrane 

domain and the first 10 amino acids of the cytoplasmic tail of the G 1 protein (Matsuoka 

et al., 1996), and for Uukuniemi virus, it was mapped to residues 10 to 40 of the G 1 

cytoplasmic tail (Andersson et al., 1997). At the same time, the results of studies on 

hantaviruses concerning the Golgi targeting of G 1 expressed separately from G2 were 

somewhat conflicting. When expressed individually, Gland G2 were retained in the ER, 

whereas when co expressed from separate plasmids, both proteins localized to the Golgi. 

Pensiero and Hay (1992) reported that G 1 reached the Golgi in the absence of G2, 

whereas Ruusala et al. (1992) showed that G1 alone was unable to leave the ER without 

coexpression of G2. Similar to the results obtained by Ruusala et al. (1992), Shi and 

Elliott (2002) demonstrated by using double-staining immunofluorescence and confocal 

microscopy with a series of truncated cDNA constructs that Golgi targeting and retention 

of the glycoproteins require the coexpression of Gland G2, and when separately 

expressed, both Gland G2 remained predominantly in the ER. The signal for Golgi 
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localization of the VIruS glycoproteins may depend on the conformation of the 

oligomerized G 1 and G2 complex rather than a primary amino acid sequence as is the 

case for other bunyaviruses. 

As reported for other members of the Bunyaviridae, and other enveloped vIruses, 

hantavirus envelope proteins possess haemagglutinating (HA) activity and induce pH

dependent cell fusion (Tsai et al., 1984; Arikawa et al., 1985; Okuno et al., 1986). These 

functions are thought to play important roles in virus attachment to susceptible cell 

surfaces and in the uncoating of virions during the initial stages of infection. 

Nine distinct overlapping antigenic sites, two on G 1 and seven on G2, were demonstrated 

for hantaviruses. Analysis of the antigenic sites by HA inhibition and plaque-reduction 

neutralization tests showed that all of the sites, except one on G 1 and two on G2, were 

related to viral HA. Only one of the G 1 antigenic sites and two of the G2 sites were 

involved in viral neutralization. The nine antigenic sites could be further divided into 13 

based upon the serological cross-reactivity of MAbs with viruses representative of each 

of the four major antigenic groups within the Hantavirus genus, i.e. Hantaan, Seoul, 

Puumala and Prospect Hill viruses (Arikawa et al., 1988). It is now well established that 

antibodies to G 1 and G2 neutralize the virus, distinguish viral serotypes, and protect 

animals from hantavirus infection (Arikawa et al., 1989; Arikawa et al., 1992; Chu et al., 

1995; Dantas et al., 1986; Lundkvist and Niklasson, 1992a, 1992b; Pensiero et al., 1988; 

Schmaljohn and Hjelle, 1997; Arikawa et al., 1989; Chu et al., 1995; Chu et al., 1994). 

Differences within G 1 and G2 neutralization determinants differentiate hantavirus 

serotypes and define functional relationships between pathogenic hantavirus strains 

(Schamljohn and Hjelle, 1997). Neutralizing antibodies to both G1 and G2 were 

demonstrated to passively protect animals from infection with HTN virus. Immunizing 

hamsters with expressed G 1 and G2 proteins in combination, but not separately, induced 

a protective immune response (Schmaljohn et al., 1990). Those results suggest that both 

G 1 and G2 are immunologically relevant. 

13 
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1.3.2.3. L protein 

The hantavirus 250 kDa L protein, the viral RNA-dependent RNA polymerase, is 

encoded by the L segment. The L protein possesses polymerase and endonuclease 

activities and is thought to be responsible for all steps of viral RNA transcription and 

replication. 

Alignment of amino acid sequences of the RNA-dependent polymerases of different 

segmented and nonsegmented negative-strand RNA viruses revealed six conserved 

regions, designated domains I-VI, separated by more variable regions. These domains 

were proposed to be important for the various enzymatic activities of the polymerase, 

while the more variable regions between the domains contribute to the overall 

conformation of the protein (Feldhaus and Lesnaw, 1988; Poch et al., 1990; Sidhu et al. , 

1993; Smallwood et al., 2002). Domains II and III have been proposed to represent the 

polymerase module. Domain II contains a region, designated pre-Motif A, with three 

invariant amino acids and one highly conserved charged residue. Domain III contains 

four regions designated motifs A, B, C, and D (Poch et al., 1990) that together contain 

four invariant amino acids and one highly conserved residue when compared to 23 RNA

dependent RNA or DNA polymerase, including enzymes from paramyxoviruses, 

rhabdoviruses, bunyaviruses, arenaviruses, influenza viruses, a filovirus , and HIV 

(Muller et al., 1994). Motif A is an acidic motif; motif B is the core motif for nucleotide 

binding; motif C is the core motif for catalytic function; and motif D is a basic motif 

(Poch et al. , 1990) (Fig.1 .6). 

Motifs preA AB C D E 

II III II I I 
Domains I II III IV V VI 

Fig. l .6. Schematic presenta tion of the domains and motifs on the polymerase protein. Domains II (pre
motif A) and III (motifs A, B, C, and D) have been proposed to represent the polymerase module. 
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Several of these previously identified motifs and premotifs common to all RNA

dependent polymerases are found in the hantavirus L protein and are shown in Fig. 1.7. 

(Piiparinen et al., 1997). Premotif A just upstream of motif A (Muller et al., 1994) and 

motifs A-D (Poch et al., 1990) were found in the most highly conserved amino-terminal 

half of the hantavirus L protein (from amino acids 860 to 1191) (Chizhikov et a!., 1995). 

Also observed are the two recently identified N-terminal conserved domains preceding 

premotif A and motif A found previously in bunyavirus and arenavirus L proteins 

(Muller et al., 1994). Between these two conserved stretches, a region (from amino acids 

178-604) variable among the different hantaviruses was found. Motif E (Muller et al., 

1994) just downstream of motif D containing the tetrapeptide E(FN)XS, also common to 

segmented negative-stranded RNA viruses, was found. In addition, regions of high 

conservation among the hantaviruses can also be seen in the carboxy-terminal half of the 

L protein, including one particularly acidic residue-rich domain close to the carboxy 

terminus of the protein. A similar acidic domain was previously noted in the L protein of 

tomato spotted wilt virus (de Haan et al., 1991). The carboxy-terminal part of the L 

protein was proposed to serve for specific interaction with host cell-encoded trans-acting 

transcriptional cofactors (Sidhu et al., 1993). The high conservation of these domains 

among hantavirus L proteins implies some important role in the L protein structural 

conformation or interaction with cellular factors necessary for L polymerase function. 

1.3.3. Stages of hantavirus replication 

Models for hantavirus replication at the cellular level have been based on direct 

experiments and by inference from work on other bunyaviruses, and the principal stages 

of the replication process can be summarised as follows (Bishop, 1996; Schmaljohn, 

1996): 

Attachment of virus is mediated by G 1 and G2 glycoproteins which are thought to take 

part in the recognition ofreceptor(s) on host cell surface. 
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Entry and uncoating of the virions are thought to occur via endocytosis and subsequent 

fusion of the viral membrane with the endosomal membrane. 

After entry, L protein-mediated primary transcription of three viral-complementary 

mRNAs occurs in the cytoplasm. The process involves cleavage of capped sequences 

from host cellular mRNAs by the viral polymerase to prime transcription of the S, M, and 

L mRNAs by L (Fig. 1.8). 

Translation yields N, L, and the glycoproteins. Free cellular ribosomes are utilised for 

translation of the Nand L proteins. In the case of the glycoproteins the ribosomes are 

bound to the membrane of the endoplasmic reticulum and the glycoproteins are processed 

in the Golgi apparatus where they are also glycosylated. 

Following mRNA translation, transcription shifts from mRNA to a full-length positive

sense intermediate antigenome (cRNA) by the viral polymerase, and ribonucleoprotein 

(RNP) structures are fonned (Schmaljohn and Dalrymple, 1983). This is subsequently 

copied back into the negative-sense genome, also by L protein. What mediates the switch 

from transcription to replication is unknown. 

Secondary transcription to generate the viral mRNAs can then take place and more 

viral proteins are synthesized, while replication is ongoing. 

Morphogenesis: evidence suggests that RNPs may use micro filaments for transport to 

virus assembly sites (Ravkov et al., 1998). Nucleocapsids accumulate under Golgi 

membranes and are packaged into virions by an undefined association with the 

glycoproteins Gl and G2. 

Virus release: the virions are transported to the plasma membrane in vesicles which fuse 

with the membrane and release virions. Virions that assemble at the plasma membrane 

bud directly into the extracellular space. 

A number of the principal stages will be discussed in detail further within the section. 
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1.3.3.1. Attachment and entry 

Hantaviruses have been demonstrated to undergo pH-dependent fusion (Tsai et a/., 1984; 

Arikawa et al., 1985; Okuno et al., 1986), presumably related to a change in the structure 

of the glycoproteins and fusion of the viral envelope with the membrane of the 

endosome, similar to other members of the Bunyaviridae (Gonzalez-Scarano, 1985). As 

was shown by Obijeski et al. (1976), levels of infectivity dropped significantly after LAC 

virions were sUbjected to proteolytic treatment to remove their glycoprotein spikes. This 

implied that the glycoproteins are necessary prerequisites for recognition of, attachment 

to and entry into the host cell. When only G 1 was subjected to proteolytic treatment, G2 

alone could not mediate infection of vertebrate cells, thus suggesting that G 1 is an 

attachment protein for vertebrate cells (Kingsford and Hill, 1983). 

To date, the mechanism by which hantaviruses attach to the host cell has not been 

elucidated. Despite growing interest in the putative receptor for this virus, the events that 

govern the initial attachment ofhantavirus remain poorly understood. 

According to Gavrilovskaya et al. (1998, 1999) the cellular entry of Sin Nombre and 

New York hantaviruses is mediated by an interaction of G1 and G2 glycoproteins with 

the cell surface receptors. B3 integrins have been identified as the receptors for 

recognition by these viruses. Transfection of a non-permissive cell line (CHO) with a B3 

integrin expressing plasmid increased infectivity whereas blocking the attachment by the 

B3 integrin ligand, vitronectin, or antibodies against the receptor reduced infectivity. 

Although virus infection was not completely inhibited by treatment with antibodies, the 

percentage of inhibition was within the range described for icosahedral viruses which 

have been previously shown to enter cells via integrins. No other receptors were found so 

far to be important for recognition by the other members of the genus, and there is no 

direct evidence that Hantaan virus, for example, also binds to B3 integrins on the cell 

surface. It is possible that additional interactions exist between the virus and the host 

cells. It is currently unclear whether B3 integrin is a virus-binding protein (or site) on 

cells or whether it is involved in the internalization of virus only. 
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1.3.3.2. Transcription 

The process of mRNA synthesis by hantaviruses is similar to the one described for other 

members of the Bunyaviridae and influenza virus. Upon entry into the cell, hantaviruses 

begin primary transcription, i.e. synthesis of mRNA which is then translated to generate 

the viral proteins required for subsequent transcription (Fig.1.8). Initial transcription 

produces positive-sense mRNA, which is truncated at the 3' termini by approximately 

50-110 nt relative to the antigenome RNA and possesses a non-templated capped 

sequence at the 5' end via an unusual process where capped RNA fragments are cleaved 

from host cell mRNAs to be used as primers for virus transcription (Patterson and 

Kolakofsky,1984; Jin and Elliott, 1993b; Li and Palese, 1994; Pritlove et ai., 1998; Elton 

et aI., 1999). As these mechanisms render viral mRNA inexact complements of their 

templates, they cannot serve in tum as substrates for synthesis of progeny vRNA. Instead, 

the infecting RNPs are secondarily transcribed via mechanism thought to use unprimed 

initiation to produce exact complements of the genome segments. The genome is then 

replicated via an antigenome intermediate prior to secondary transcription taking place, 

which generates the majority of viral mRNA in the cell (Bishop, 1996). Only 

encapsidated RNA that forms ribonucleoprotein complexes together with viral Nand L 

proteins can be used as a template for both transcription to generate mRNA and 

replication. Unlike genome and antigenome RNAs, mRNA is not encapsidated by N 

protein (Bouloy et ai., 1990), and is not polyadenylated as is the case for influenza virus 

(Lamb and Krug, 1996). 

Different kinetics for the hantaviral N, GPC, and L protein mRNA accumulation in Vero 

E6 cells have been demonstrated by Hutchinson et ai. (1996). Differential mRNA 

synthesis was shown in SN virus-infected Vero E6 cells, with the quantity of each mRNA 

(N mRNA~GPC mRNA ~L mRNA) correlating inversely with RNA length. The general 

pattern of mRNA expression resembles that seen in mosquito cells persistently infected 

with La Crosse (LAC) virus (Rossier et ai., 1988). 
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1.3.3.2.1. Untranslated regions 

The coding regions of each genome segment of hantaviruses do not extend to either 

terminus. Instead, they are flanked by an untranslated regions (UTR) from both termini. 

The lengths of the UTRs differ from 20nt to about 730nt, with the 3' UTR always being 

significantly longer than the corresponding 5' UTR of the genomic-sense RNA. 

While the genomic RNAs ofhantaviruses show relatively few differences in the length of 

the L and the M segment, the length of the S segment varies significantly, mainly in its 3' 

UTR which represents perhaps the most interesting part of the hantavirus genome. Within 

a certain hantavirus type the length and sometimes even the sequence of this region does 

not undergo dramatic changes suggesting that it has a functional role. In contrast, 

between different hantavirus types, the S segment 3' UTR varies widely both in length 

(from 229nt in PH to 728nt in SN) and in its nucleotide sequence, except for the terminal 

nucleotides forming the panhandle structures (Antic et al., 1992a, 1992b; Hjelle et al., 

1994; Plyusnin et al., 1994a; Spiropoulou et al., 1994; Morzunov et al., 1995; Ravkov et 

al., 1995). 

Most hantaviruses carry within this regIOn motifs that resemble the sequence 3' 

CCCCACCCAGUCA 5' found at the proposed mRNA termination site in HTN (Dobbs 

and Kang, 1994) and in the corresponding regions of other bunyaviruses (Dunn et a!., 

1994; Bowen et al., 1995; Vapalahti et al., 1996). Another motif, 3' GAUGGAGU 5', 

with a still unclear function, can be found in single or multiple copies in all hantaviruses 

close to the highly conserved 5' terminus of the S segment (Ravkov et al., 1995). 

Also, numerous precise and imprecise repeats with no overall similarity in their structure 

and pattern may be detected in the 3' UTR. The verified sequences of the 3' termini of all 

hantavirus S segments contain the second conserved sequence 3' UCGAUGAU5' from 

positions 21 to 28 and single conserved nucleotides at positions 16 and 18. However, the 

3' -terminal sequences of the M segments are less conserved, with conserved nucleotides 

at positions 15 to 17, 20, 24 to 27, 35, and 38. The hantavirus L segment was found to 
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possess the conserved sequences at positions 18, 20, 21, 24 to 26, and 33 to 35 

(Chizhikov et al., 1995). Supposing that the 3' UTR participates in such steps of viral 

reproduction as packaging, there could be at least two possible explanations for the 

above-mentioned differences in its primary structure: first, molecular mechanisms 

operating at these steps differ from one host to another; second, the secondary rather than 

the primary structure of the 3' UTR is crucial for its proper activity. 

The terminal 14 nucleotides of the S, M, and L genomic segments of each of the 

members of the different serotypes of the Hantavirus genus were found to be highly 

conserved, containing the sequence 3' AUCAUCAUCUGAGG 5' at the 3' termini and 5' 

UAGUAGUAU(G)CUCC 3' at the 5' termini. Panhandle structures at least 17 bp long 

potentially could be formed by complementary regions of the 5' and 3' termini of each 

segment (Fig.l.9). The complementarity of terminal sequences is also observed in other 

viruses. For example, with Sendai virus, a paramyxovirus, the terminal complementarity 

is 12 bases, with human parainfluenza virus type 3 (HPIV3), the extent of terminal 

complementarity is 17 bases (Hoffmann and BaneIjee, 2000), and with vesicular 

stomatitis virus, the prototypical rhabdovirus, it is only 8 bases (Pattnaik and Li, 1994). 

Analysis of some negative-strand RNA viruses has shown that 5' - and 3' -terminal 

nucleotide sequences, as well as putative panhandle-like structures formed by the 5' and 

3' termini of RNA molecules, are involved in the process of initiation and regulation of 

viral transcription, replication and encapsidation (Pattnaik and Li, 1994; Tiley et al., 

1994). For instance, bases 1-12 at the termini of the HPIV3 genome were critical for 

promoting replication, whereas bases 13-55 of the leader were of moderate importance in 

promoting replication (Hoffmann and BaneIjee, 2000). A similar picture is observed in 3' 

terminal regions of the vesicular stomatitis virus genome RNA where bases 1 to 12 were 

demonstrated to be involved in the encapsidation process, whereas bases 13 to 18 were 

not. In addition, bases 19 to 24 were shown to be involved in replication and virus 

assembly (Pattnaik and Li, 1994). 

Dunn et al (1995) developed a reverse genetics system for analysis of the cis-acting 

signals involved in BUN transcription by using a negative-sense chloramphenicol 
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acetyltransferase (CAT) RNA flanked by the negative-sense BUN tennini. It was 

determined that the 5' and 3' UTRs were sufficient for transcription and replication of the 

recombinant RNA template to take place in vivo. Hence, they were thought to contain the 

viral promoter and any encapsidation initiation signals necessary for encapsidation and 

transcription of the RNA. Further work using the reverse genetics system involved the 

use of termini truncated to the first 20nt of each tenninus, or 32nt of the 5' tenninus and 

33nt of the 3' terminus (Dunn, 2000). The recombinant RNA containing only the first 

20nt of each terminus was minimally active as a template, but the RNA containing 32nt 

of the 5' terminus and 33nt of the 3' terminus was active. Hence, it was detennined that 

the signals essential for transcription are present within the region of RNA from each end 

of the segment to a point within the first 20-32nt of the 5' tenninus, and 20-33nt of the 3' 

tenninus, and that this region must therefore include the viral promoter. When the 

complementarity of the termini was increased beyond the first eleven nucleotides to 

include the first 18nt, activity in the assay was restored. Hence, complementarity would 

appear to be an important feature in the UTRs for providing transcriptional regulatory 

signals. 

The complementarity of terminal sequences of hantaviruses is not always complete, and a 

mismatch at position 9 and a noncanonical U-G pair in position 10 have been reported by 

several groups (Kukkonen et ai., 1998; Sun et ai., 2001; Piiparinen et ai., 1995; Bowen et 

ai., 1995). The exception to this pattern, a single nucleotide difference, was found at 

position lOin the S segment 5' termini of Prospect Hill and Bayou viruses, where a G -A 

change leads to the restoration of complementarity (replacing a U-G pairing). The 

observation of incomplete complementarity of hantavirus RNA tennini is similar to the 

situation seen in other negative-strand RNA viruses. For instance, it was shown that the 

mismatch region in the panhandle structure fonned by genome segment tennini of 

influenza virus is the virus polymerase binding site, and conversion of the tennini to 

exact complementarity destroys polymerase binding (Tiley et ai., 1994). 

It is therefore possible to speculate, that the highly conserved bases 1 to 14 found at the 

3' tennini of hantavirus plus and minus RNA templates may be involved in initiation of 

encapsidation and lor binding virus RNA polymerase, whereas the nucleotide differences 
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in positions 20 to 28 between different RNA segments could detennine the differential 

rate of RNA segment transcription or replication. The highly conserved 

noncomplementary nucleotide pair at position 9 of the hantavirus RNA panhandle 

structure fonned between the 5' and 3' tennini of genome RNA may also serve an 

important role in polymerase binding and regulation of virus RNA transcription and 

replication (Chizhikov et al., 1995). 

1.3.3.2.2. Cap-snatching mechanism for initiation of mRNA synthesis 

Primary transcription of mRNA resembles that described for bunyaviruses and occurs in 

the cytoplasm by interaction of the virion-associated polymerase and the three genome 

templates. An endonuclease associated with the polymerase complex cleaves host 

mRNAs to generate capped fragments which act as primers, and the presence of a 

methylated 5' cap structure on the host mRNA is required for this cleavage to occur 

(Bishop et al., 1983; Schmaljohn, 1996; Simons and Pettersson, 1991; Garcin et aI., 

1995b). The 5' tenninal extensions of approximately 10 to 18 nucleotides that are 

heterogeneous in sequence and are not templated from genome RNA have been also 

found on the mRNAs of viruses in the Orthobunyavirus (Bishop et aI., 1983; Bouloy et 

al., 1990; Eshita et al., 1985; Jin and Elliott, 1993b; Pattersson and Kolakofsky, 1984), 

Phlebovirus (Collett, 1986; Thara et al., 1985a), Nairovirus (Jin and Elliott, 1993b), and 

Tospovirus (Konnelink et al., 1992) genera of the family. This cap-snatching mechanism 

was first described for influenza virus (Plotch et al., 1981; Krug, 1981; Patters son and 

Kolakofsky, 1984; Krug et al., 1989; Kolakofsky and Hacker, 1991), with the important 

difference that cap snatching occurs in the cytoplasm of Bunyaviridae-infected cells, as 

opposed to the nucleus in influenza virus-infected cells. This is due to the fact that 

Bunyaviridae members replicate exclusively in the cytoplasm, and, therefore, the viral 

endonuclease uses a pool of mature cellular mRNAs as substrates for primers. 

Despite heterologous sequence, the 5' tenninal extensions described for different viruses 

in the family show preferences for specific mono-, di-, and tri-nucleotides at the -1 to -3 

positions with respect to the 5' tenninus of the mRNA, although no infonnation is 
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available as to whether these bases are present in the cellular mRNA and specifically 

chosen for priming, or they are added by the viral polymerase using a slippage 

mechanism with 3' vRNA termini as a template. For example, it was demonstrated for 

eight out of eleven NSs mRNAs of Uukuniemi virus which had intact terminal sequence 

5'-AC AC--, that all had Cat -1, six of these also had A at -2, and five had C again at-3 

(Simons and Pettersson, 1991). Similar results were obtained by Jin and Elliott (1993) for 

Bunyamwera virus S mRNA. In twenty out of twenty one sequenced clones, a U residue 

was present at position -1 relative to the viral terminus which has the double triplet 5'

AGU AGU--. Ninety percent of the clones had G at position -2 and half had an A residue 

at -3. These results are in accordance with the findings reported for Germiston (Bouloy et 

at., 1990) and snowshoe hare viruses (Eshita et at., 1985). Hantaviruses display similar 

preferences and were shown to initiate mRNA with a G residue at position -1 relative to 

the viral terminus (Garcin et at., 1995b). 

1.3.3.2.3. Prime-and-realign model for the initiation of RNA synthesis 

Recent work on hantavirus RNAs (Garcin et at., 1995b) suggests the existence of the so

called prime-and-realign mechanism of chain initiation, in which mRNAs are initiated 

with a G-terminated host cell primer and genomes with GTP, not at the 3' end of the 

genome template but internally (opposite the template C at position +3), and after 

extension by one or a few nucleotides, the nascent sequence repeats, before processive 

elongation takes place (Fig. 1.10). For genome initiation, an endonuclease, perhaps that 

involved in cap snatching, is postulated to remove the 5' terminal extensions of the 

genome, leaving the 5' pU at position + 1. 

According to observations of Garcin and coworkers (l995b): 

• There is a strong preference for the viral endonuclease to cut the host mRNA after 

aG 
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3' AUCAUCAUCUGAGG ..• 

5' pppGUAGU 5' 

3.GTP removal and final elongation 

3' AUCAUCAUCUGAGG ... 

5' UAGUAGUAGUAGACUCC ... 

3' AUCAUCAUCUGAGG ••. 
5'pppGUAGU 

1 
3' AUCAUCAUCUGAGG •.• 

pppGUAGU5' 

3' AUCAUCAUCUGAGG ... 

5' UAGUAGUAGACUCC. .. 

The 5' of the antigenome templates the 3' ofa genome 

5' UAGUAGUAGUAGACUCC ... 5' UAGUAGUAGACUCC ... 

3' AUCAUCAUCAUCUGAGG ... 3' AUCAUCAUCUGAGG ... 

Extended 3' Normal 3' 

3' AUCAUCAUCUGAGG ••. 
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. . 

5' - - - UAGUAGACUCC ... 
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Truncated 3' 

Fig.l.IO. Hypothetical prime-and-realign mechanisms to explain extended and truncated 3' termini. Genome RNAs are in 
bold. Extra nucleotides are shown by underlining and missing nucleotides by dashes. Genome RNA is first used as a template 
in the synthesis of antigenome RNA. Normally the realignment of nascent RNA is suggested to occur 3 bases upstream of 
position 3 of the template (Garcin et aI., 1995) as shown in the middle. If the realignment step occurs 6 bases upstream, as 
shown on the left, anti genome RNA with extra nucleotides in the 5' terminus will be produced. When this, in tum, is used as a 
template in genome synthesis, a genome with extra nucleotides in the 3' terminus will result. A model in which no realignment 
takes place is shown on the right. This will result in genome RNAs that have truncated 3' termini. Truncated 3' termini could 
also result from the initial priming step occuring downstream of position 3 on the template or the realignment step occuring 
downstream of the normal site 
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• The 3' G of the resulting capped fragment aligns opposite the C at the position +3 

of the template 

• The primer is elongated for a few nucleotides until G +6 (capped primer -GVAG 

OR) but elongation by only a single nucleotide is sufficient and perhaps preferable 

• Before further elongation proceeds, the nascent chain realigns on the template 

such that the original 3' G of the primer is at position -1 and the following VAG is 

opposite positions +1 to +3, thus creating the nearly ubiquitious G at position -1. 

mRNAs that lack precisely the first VAG repeat could result when the original G of 

the capped primer first aligns opposite the template C +6 and, after elongation by a 

few nucleotides, realigns on the template such that this G is opposite position +3 

rather than position -1. This is equivalent to placing this G at position -1 and leaving 

a 3 nt gap (Garcin et at.,1995b). 

This prime-and-realign mechanism can explain similarity of the sequences at the 3' end 

of the host primer and the 5' end of the anti genome, as well as the precise deletion of a 

single trinucleotide repeat in a large fraction of the RTN mRNAs. 

The fact that a 5' residue of the Rantaan virus is a monophosphorylated V residue can 

also be explained by the slippage event by the viral RNA polymerase. It is possible that 

the 5' pV ends arose by endonuclease action on a longer chain. In contrast to mRNA 

initiation, the same polymerase-associated endonuclease would cleave the nascent chain 

in the same way (3' unpaired G), except that cleavage would occur after rather than 

during initiation, and the requirement for a cap group would be relieved. 

Arenaviruses are another family of segmented negative-strand RNA viruses in which a 

similar situation occurs. For Tacaribe virus (Franze-Fernandez et at., 1987; Garcin and 

Kolakofsky, 1990, 1992), the genome 3' ends are OR GC GV ... , whereas the 5' ends are 

pppG CG CA .... When genomes and antigenomes are annealed intermolecularly or their 

complementary ends are annealed intramolecularly, there is a single-base overhang at 

each 5' end which can be specifically removed with RNase I in a high salt concentration 

and which appears to be pppG (Garcin and Kolakofsky, 1990; Raju et at., 1990). Despite 
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the 3' tenninal G of the template, the available evidence suggests that the GTP which 

started the chain did so opposite the penultimate G (position +2). This pppG is thought to 

end up as a 5' overhang via a slippage mechanism by being extended to a pppGpC 

dinucleotide (opposite positions +2 and +3), the pppGpC is proposed to realign upstream 

on the template by two positions such that its cytidine is opposite the template 3' terminal 

G, and the 5' pppG overhang is locked in place when the replicase resumes RNA 

synthesis processively (Garcin and Kolakofsky, 1992). 

The feature of the prime-and-realign model, namely, its ability to repair damaged genome 

ends by restoring small terminal deletions and mutations, is important in maintaining 

virus infectivity when these ends undergo limited damage. Genomes which lack a few 

nucleotides at the 3' end can be repaired by simply extending this end on a intact 

complementary 5' end. However, genomes which lack a few nucleotides at the 5' end 

would require a different mechanism for repair, as conventional synthesis takes place 

only in the 5' to 3' direction. 

1.3.4. Apoptosis caused by hantaviruses 

Over the past few years, evidence has accumulated to suggest that a growing number of 

viruses induce cell death by apoptosis, an active and physiologically regulated process of 

cellular self-destruction (Shen and Shenk, 1995; Razvi and Welsh, 1995). The 

mechanisms underlying virus-induced cell death are important in understanding of the 

pathogenesis of viral infection, however, they are still not clear. Cells infected by various 

viruses may initiate death programs as a part of host defense. Conceivably, the ability of 

virus-infected cells to develop apoptosis would help hosts to restrict or slow the spread of 

VIruS. 

Unlike other members of the Bunyaviridae family that show acute cytopathic infections 

in permissive vertebrate cell cultures, hantaviruses routinely establish semipersistent and 

noncytolytic infections in cultured cells. Although some hantaviruses are highly 

pathogenic in human hosts, they cause chronic infections in rodents with no apparent 
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cytopathicity (Lee et al., 1981). In vitro, these vIruses are fastidious and can be 

propagated only in certain cell types (French et al., 1981; McConnick et al., 1982). Vero 

E6 cells, used for growth and production of a cell-free virus in high titer usually remain 

viable up to 3 weeks of HTN infection with little or no apparent cytopathic consequences 

(Schmaljohn et al., 1983). Fonnation of plaques in this cell line, however, suggests a 

transient and incomplete cytopathicity. Infection by HTN leads to a gradual loss of cell 

viability and eventually results in cell death. 

The experimental data obtained by Kang et al (1999) strongly suggests that apoptosis 

certainly plays a role in the process of cell death by hantavirus infection and that Vero E6 

cells infected by HTN undergo apoptosis through a general pathway leading to the 

degradation of chromosomal DNA. However, one noticeable difference in the HTN

induced apoptosis from the cases reported for other cytolytic viruses was the relatively 

slow progression of the apoptotic process: less than 30% of the cells died at 7 days 

postinfection with appearance of fragmented nuclear DNA. Infection by virus of higher 

titer did not affect the temporal pattern of apoptotic cell death. Adsorption of UV

inactivated virus did not induce apoptosis. The relative resistance ofVero E6 cells against 

apoptosis early in HTN infection suggested that cellular endonuclease activities required 

for apoptotic DNA cleavage were perhaps suppressed early in HTN infection and that a 

full-scale viral replication was pennitted before activation of these enzymes. 

At present, it is not clear how exactly HTN infection induces apoptosis. It has been 

suggested, as in poliovirus infection, that the cell death pathway may be activated by 

shutting off host protein synthesis (Tolskaya et al., 1995). According to this hypothesis, 

virus-infected cells apparently require ongoing synthesis of protective cellular proteins to 

avoid activation of the death pathway. One protein, the most frequently proposed for such 

a protective role, is the 26-kDa membrane -associated proto-oncogenic protein Bcl-2, 

known to prevent apoptosis induced by multiple agents in a variety of cells. One 

mechanism responsible for HTN-induced apoptosis could be the suppression of 

intracellular Bcl-2 protein which was shown to be down-regulated in HTN-infected cells 

(Zhong et al., 1993). 
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In addition, interesting results came from yeast two-hybrid screening with a HeLa eDNA 

library (Li et ai., 2002). They demonstrated that PUU N protein interacts with the protein 

Daxx, well known as a Fas death-domain adaptor protein, which transduces death signals 

through the Jun N-terminal kinase (JNK) pathway. It is possible therefore, that 

hantaviruses may interfere with the apoptotic pathway at the post-translational level and 

could use Daxx as a mediator. It was demonstrated that when Hela cells were 

cotransfected with both Daxx and N protein, they co-localized in nucleus. Recently, 

Ravkov and Compans (2001) showed that PUU N could be found at perinuclear 

membranes in infected Vero E6. It is possible to speculate that the interaction of PUU N 

with Daxx may be transient and takes place either in the cytoplasm or in the nuclei prior 

to nucleocapsid assembly and/or under stimulation of stress factors like apoptotic stimuli, 

Fas ligand or TNF-alpha. 

1.4. Reverse genetics systems for negative-sense RNA viruses 

1.4.1. Introduction 

Viruses with completely or predominantly negative-sense RNA genomes span seven viral 

families: the nonsegmented Bornaviridae, Rhabdoviridae, Paramyxoviridae, and 

Filoviridae, and the segmented Orthomyxoviridae (6-8 segments), Bunyaviridae (3 

segments), and Arenaviridae (2 segments). These virus families include a number of 

human and animal pathogens such as influenza A, B, and C viruses, Lassa virus, rabies 

virus, Ebola virus, Marburg virus, measles virus, canine distemper virus, respiratory 

syncytial virus, mumps virus, human parainfluenza virus types 1-4, and methods for 

engineering attenuated variants or recombinant viruses for vaccine purposes were needed. 
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In addition, many of these viruses serve as important models for basic research on all 

aspects of viral replication. Thus the recovery of complete negative-stranded RNA 

vIruses from cloned cDNAs was among the most important breakthroughs in RNA 

virology in the 1990s since it became the basis to directed engineering of the viral 

genomes and a detailed understanding of the function of the viral genes and their 

products. 

Reverse genetics, a technique used to engineer specific mutations into viral genomes, was 

first performed for DNA viruses, either by transfecting cells with plasmids encoding the 

viral genome or by heterologous recombination of plasmids bearing viral sequences with 

the virus genome (Panicali and Paoletti, 1982; Mackett et ai., 1982). They were followed 

by manipulations of positive-strand RNA genomes. Transfection of plasmids, or RNA 

transcribed from plasmids, containing the poliovirus genome, into susceptible cells led to 

recovery of infectious poliovirus (Racaniello and Baltimore, 1981; Kaplan et aI., 1985). 

However, the genomes of negative-strand RNA viruses were less amenable to artificial 

manipulations in comparison with the DNA and positive-strand RNA viruses. 

In contrast to positive-strand RNA viruses, the genome of which is also a functional 

mRNA, the naked genomic RNA of a negative-strand RNA virus is not able to initiate 

infection when expressed in or transfected into a permissive cell line. Their genomes are 

the complement of mRNA and therefore cannot be directly translated to give viral 

proteins without first being copied into complementary mRNA. The minimal infectious 

particle of this type of virus is the transcriptionally active ribonucleoprotein (RNP) 

complex. This complex is composed of the genomic viral RNA (vRNA) complexed with 

the viral nucleoprotein and the RNA-dependent RNA polymerase protein. The viral RNA 

polymerase is essential for transcribing both mRNA and complementary, positive-sense 

antigenome RNA template due to the fact that animal cells do not possess such an 

enzyme, and this function must be supplied preformed in the input virion. Hence, the 

deproteinized genomic RNA of negative-strand RNA viruses cannot initiate infection. 

Moreover, the mRNA is different to the positive complementary RNA intermediate 

which is used for replication in that it is 3' truncated (Fig. 1. 11 ). As a result, the mRNA 
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3 ' truncated. 



Introduction: Chapter 1 

does not contain all the viral specific information required for production of new 

genomes and can not serve as template for transcription. 

1.4.2. Different approaches to the development of 

reverse genetics systems 

The reconstitution ofribonucleocapsid (RNPs) using synthetic or purified vRNA became 

the basis for the genetic engineering of influenza virus. In the isolated RNPs, the 

polymerase complex and NP are associated with the vRNA. In order to generate 

genetically engineered viruses, synthetic RNA needs to be assembled into replication

competent RNPs. In vitro reconstitution of RNPs resulted in the transcription of a 

synthetic RNA template and, more important, of full-length vRNAs purified from virions 

(Plotch et al., 1981; Parvin et al., 1989; Honda et al., 1990). Honda et al. (1987) isolated 

RNPs, which catalyzed the synthesis of short RNA transcripts, from detergent-treated 

virions by glycerol gradient centrifugation. Furthermore, by differential centrifugation of 

isolated RNP cores through a discontinuous CsCI-glycerol gradient, they separated the 

RNA polymerase-RNA fraction from NP. The RNA polymerase-RNA complex could 

initiate RNA synthesis, but it was unable to synthesize full-length RNA unless NP was 

added to the reaction, indicating that the polymerase complex is sufficient to initiate RNA 

synthesis, whereas NP is needed for elongation of the RNA transcript. Incubation of 

influenza virus naked RNA, either transcribed from plasmids in vitro or purified by 

phenol extraction, with free NP/polymerase fractions, resulted in the formation of 

transcriptionally active complexes. The reconstituted RNP resembled native RNP in in 

vitro transcription reactions with regard to temperature and salt optima and kinetics of 

label incorporation (Honda et al., 1987). 

Reconstitution in vitro of RNPs containing a single negative-sense RNA segment 

(derived by in vitro transcription from a DNA clone), the nucleoprotein, and the three 

polymerase subunits resulted in recovery of the first recombinant influenza virus 
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incorporating an engineered RNA segment. Luytjez and coworkers (1989) devised the 

first system to modify influenza viruses by constructing a plasmid that contained the 

coding region for chloramphenicol acetyltransferase (CAT) in place of the NS gene in the 

antisense orientation flanked by the 3' and 5' noncoding regions of the vRNA of the 

influenza virus segment eight (Fig. 1. 12). This cassette was flanked by a T7 RNA 

polymerase promoter and a restriction enzyme site that allowed the production of in vitro 

transcripts containing an exact virus-like 3' end. In vitro transcription from the T7 

promoter resulted in a RNA molecule containing the terminal non-coding sequences, 

matching those found in influenza virus segment eight, flanking an antisense copy of the 

CAT gene. This RNA could not be translated to give active CAT protein unless it was 

first itself used as a template to make positive strand mRNA. Since eUkaryotic cells do 

not possess either RNA-dependent RNA polymerase or CAT activities, the new approach 

was a sensitive reporter system. RNA transcripts were mixed with purified NP and 

polymerase proteins to allow the formation of RNP complexes. Prior to or after their 

transfection with RNPs, the cells were infected with helper influenza virus to provide the 

viral proteins required for RNA amplification (Fig.1.13). CAT activity in lysates derived 

from transfected and infected cells indicated the transcription of vRNA-like CAT 

transcripts to give message-sense RNAs. The recombinant CAT RNA was not only 

transcribed and replicated, but also packaged into progeny virus particles as demonstrated 

by the ability of the media from transfection experiments to induce CAT activity in cells 

after serial passage even after RNase A treatment. These experiments demonstrated that 

the noncoding regions on influenza virus RNAs contain all the signals required for 

transcription, replication, and packaging of CAT -vRNA. 

This technique was subsequently refined to create influenza VIruS containing 

neuraminidase (NA) proteins derived from plasmid cDNAs (En ami et al., 1990). It relied 

on reconstitution of viral RNPs from in vitro-transcribed RNA and purified nucleocapsid 

proteins. The protein-RNA complex was transfected into cells, followed by infection with 

a helper influenza virus with a strong counter-selectable phenotype which was well 

characterized. Influenza virus AlWSN-HK is a reassortant containing seven segments 

from influenza AlWSN/33 and the neuraminidase gene segment from influenza virus 

AlHK/8/86. This reassortant virus can only form plaques in MDBK cells when the cell 
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T7 promoter NS 5'end CAT (antisense orientation) NS 3'end 

AGUAGAAACAAGGGUGUUUUUUCAGAUCuiuUACGCCCC. ...... . 

.. .... ...... VUUCUCCAUUAUGUCUUUGUCACCCUGCUUUUGCU 

Fig. l.12. Transcription cassette for the generation of transfectant influenza 
virus. The coding sequence for CAT (in the antisense orientation) is flanked by 
short linker sequences (introduced for cloning purposes), the 5' and 3' ends of 
vRNA, and a restriction site to generate vRNA-like 3' ends. In vitro 
transcription by T7 polymerase results in a synthetic vRNA that can be 
packaged into infectious influenza virus. vRNA sequences are shown in blue. 
The start and stop codons for CAT are doubly and singly underlined, 
respectively. The arrow indicated the orientation of the CAT reading frame. The 
linker sequence is shown in italics (Luytjes et al. , 1989) 
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Fig. 1.13. RNP transfection method for the rescue of transfectant influenza virus. 
Purified NP and polymerase proteins are assembled with in vitro synthesized 
vRNA to form RNP complexes. Following RNP transfection and helper virus 
infection, the transfectant virus, containing RNA derived from cloned cDNA is 
selected. The recombinant CAT RNA is not only transcribed and replicated, but 
also packaged into progeny virus particle as demonstrated by the ability of the 
media from transfection experiments to induce CAT activity in cells after serial 
passage (Luytjes et al., 1989). 
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culture media is supplemented with a protease, whereas the parent WSN/33 strain 

replicates and forms large plaques without the requirement for exogenous protease. WSN 

NA segment responsible for protease-independence was supplied in the form of a 

synthetic RNP. Selection of the virus containing the synthetic WSNINA segment from 

the helper virus could be achieved by excluding protease from the cell culture media. 

Constructs were made to verify the plasmid origin of the WSN segment by introducing 

five silent point mutations in the NA coding sequence. Incorporation of the synthetic 

RNP into influenza virus was proved by the presence of mutations in the viruses 

recovered in the absence of protease. 

Since its first report, the RNP transfection method has been improved or modified in 

several ways: by coupling in vitro transcription with RNP reconstitution (Enami and 

Palese, 1991), by using electroporation instead of DEAE transfection (Li et al., 1995a), 

by preparing the NP and polymerase proteins from infected cells rather than purified 

virus (Martin et al., 1992), and by adding native RNP cores instead of using helper 

influenza virus (Yamanaka et al., 1991). 

Concurrent with efforts to perform reverse genetics with influenza virus, techniques to 

manipulate the genomes of nonsegmented negative-strand RNA viruses were being 

developed. A major achievement was made by Pattnaik et al. (1992) who employed a 

method that enables rescue, without VSV helper virus, of virus like particles that 

originate entirely from cDNA. The cDNA corresponding to a DI genome was placed 

under control of bacteriophage T7 promoter such that transcription would initiate on the 

first DI-specific nucleotide. The 3' end of the T7 transcript was cleaved at the last DI 

nucleotide by placing hepatitis delta virus (HDV) antigenomic ribozyme downstream of 

the DI RNA. The ribozyme was positioned such that autocatalytic cleavage released DI 

genome RNA with the exact termini required. Plasmid derived RNA was successfully 

produced in vivo by transfecting this construct into cells previously infected with a 

recombinant vaccinia virus vTF7-3 as a source of T7 polymerase (Fuerst et aI., 1986). 

Co-transfection of further T7 constructs containing VSV genes enabled efficient 

encapsidation and replication of the DI RNA. In the presence of all VSV genes the DI 
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RNA could be packaged into VSV DI particles which budded from the cells (pattnaik et 

al., 1992). 

Similar approach was later used by Schnell and coworkers (Schnell et al., 1994) who 

successfully recovered recombinant rabies virus. These authors cotransfected vaccinia 

virus-infected cells with plasmids, encoding the viral nucleocapsid protein (N) and the 

polymerase proteins (L and P) under the control of T7 promoters, together with a plasmid 

encoding a full-length antigenomic viral RNA under the control ofT7 promoter at the 5' 

end and a self-cleaving ribozyme at the 3' end. After transcription of RNAs from the T7 

promoters and translation of the encoded proteins, nucleocapsid proteins assemble around 

the antigenomic RNAs, and polymerase proteins then replicate these RNPs to form RNPs 

containing genomic RNAs. After transcription of mRNA from the genomic RNP and 

translation, infectious virus is assembled. 

This reverse genetics technique was adapted by laboratories studying other nonsegmented 

negative-strand RNA viruses, resulting in the rescue of vesicular stomatitis virus (Lawson 

et al., 1995; Whelan et al., 1995), measles virus (Radecke et al., 1995), respiratory 

syncytial virus (Collins et al., 1995), Sendai virus (Garcin et al., 1995a; Kato et al., 

1996), human parainfluenza virus 3 (Hoffman and Banerjee, 1997; Durbin et al., 1997a), 

and simian virus 5 (He et al., 1997). Some modifications to the original technique have 

been made, such as the use of stably transfected cell lines expressing the T7 RNA 

polymerase protein, or one or more of the viral proteins required for genome replication 

(Radecke et al., 1995). For example, Kato et al (1996) provided the second report of 

recovery of Sendai virus from cDNAs. In this report, virus was recovered from both 

negative and positive sense RNAs transcribed in vivo in the vaccinia T7 system, or 

transfected into the system after being transcribed in vitro. The efficiency of recoveries 

from anti genomic RNA constructs was much higher than reported by Garcin and 

coworkers (Garcin et al., 1995a). These results were achieved by: i) truncation of the T7 

promoter (by removing the guanosine triplet) thus providing a precise 5' end to the viral 

RNA transcripts; ii) optimization of the NP, P, and L plasmid ratios, and iii) inhibition of 

vaccinia cytopathic effect by incubating in the presence of both ara C and rifampicin 

(Kato et al., 1996). 
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In most of the methods, the positive sense antigenome RNA was used as opposed to the 

negative sense genome RNA. This is critical because of an antisense problem. If the 

negative sense genome is used instead, mRNAs encoding viral proteins can hybridize to 

the naked genomic RNA and prevent the critical assembly of the genome into the RNP, 

the template for transcription and replication (Roberts and Rose, 1998). As was already 

mentioned, the negative-strand viruses always keep their genome in RNP form, probably 

in part to avoid this antisense problem. When one starts with the positive-strand 

antigenome, this RNA can form RNP without any interference from the mRNAs. Once in 

RNP form, the positive strand can then be replicated to form full-length minus strand 

RNPs that are wrapped into RNPs as nascent RNA chains and thus immune to 

interference from mRNAs. 

U sing a reverse genetics approach, bunyavirus promoter elements and the viral proteins 

that are required for transcription and replication were studied. Dunn et al (1995) cloned 

the CAT gene in the negative-sense orientation between the 5' and 3' nontranslated 

regions of the Bunyamwera bunyavirus S RNA segment. As with influenza virus, the 

terminal sequences ofbunyavirus RNAs are complementary and highly conserved. It has 

therefore been assumed that these sequence elements define the bunyavirus promoter and 

are crucial for promoter activity. Cells were transfected with constructs expressing the 

proteins encoded by the L and S segments followed by transfection with in vitro 

transcribed RNA, which resulted in CAT activity. The bunyavirus S segment encodes 

two proteins, Nand NSs, in overlapping reading frames. To determine whether both of 

these proteins are required for transcription and replication, constructs expressing only N 

or NSs were tested. N protein expression, together with L protein expression, resulted in 

CAT activity from the reporter RNA, whereas no CAT activity was detected with the L 

and NSs expression constructs. Thus, it was concluded that the Land N proteins are 

sufficient for transcription and replication of a bunyavirus-like RNA. In addition, it was 

shown that deletion of five nucleotides at the 3' end of the viral RNA drastically reduced 

CAT expression. In contrast, addition of two nucleotides at the 5' end, or of 11 or 35 

nucleotides at the 3' end, did not abolish CAT expression. Therefore, like the influenza 

virus polymerase complex, the bunyavirus polymerase protein can apparently start 

transcription and lor replication internally (Dunn et al., 1995). 
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A year later, the first recovery of the Bunyamwera virus entirely from cloned DNAs was 

reported by Bridgen and Elliott (1996). In contrast to the influenza system, which 

required helper virus, a helper-free system was employed. Each anti genomic RNA 

construct was expressed from a T7 promoter and had the self-cleaving hepatitis delta 

virus ribozyme at the 3' end. Each anti genome transcript contained two extra nonviral 

guanosine residues at the 5' end (Fig. 1.14). Three plasmids were transfected expressing 

the three antigenomic viral segments (L, M, and S) along with three T7 -plasmids 

expressing the viral mRNAs encoding all the viral proteins (N, NSs, G 1, G2, NSm, and 

L) into HeLa T 4 cells infected with the recombinant vaccinia virus expressing T7 

polymerase. To increase the number of bunyavirus particles relative to the number of 

vaccinia virus particles, the authors took advantage of the ability of Bunyamwera virus to 

replicate in mosquito cells and introduced a passage step through Aedes albopictus C6/36 

cells. Therefore, extracts of the cells harvested after transfection were used to infect 

C6/36 cells, and after 1 week, supernatants from these cells were assayed for the presence 

of Bunyamwera virus by plaque formation on BHK cells. The rescue efficiency was 

about 10-100 plaques per 107 cells in the original transfection, and the transfectant 

viruses grew with the same kinetics and to the same titre as authentic Bunyamwera virus 

(Bridgen and Elliott, 1996). 

A similar approach to the one used by Dunn et al (1995) was subsequently utilized for 

Rift Valley fever phlebovirus which has an ambisense S RNA segment: the Nand NSs 

proteins are encoded in distinct ORFs, with the NSs ORF being in the vRNA sense. Both 

proteins are translated from specific sub genomic mRNAs. In the reverse genetics system 

developed for RVF virus (Lopez et ai., 1995; Prehaud et al., 1997), the antisense CAT 

reporter cDNA was also expressed using the T7-vaccinia virus system, while the L and N 

proteins were supplied from vaccinia virus recombinants. 

Development of a new approach for reverse genetics of influenza virus was reported by 

Neumann and colleagues (Neumann and Hobom, 1995; Neumann et al., 1994; Zobel et 

al., 1993) who pioneered the use of an RNA polymerase I (pol I)-based system. This 

approach eliminated the need for protein purification, in vitro transcription, and in vitro 

RNP reconstitution by taking advantage of the characteristics of RNA polymerase I 
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Fig.1.14. Plasmid map of the pT7ribo series. The upper part of the figure shows 
the sequence around the StuI and SmaI restriction sites that were used to insert 
blunt-ended DNA fragments. RNA transcripts produced by bacteriophage T7 
RNA polymerase would contain two G residues, derived from the cloning site, 
before the authentic bunyavirus 5' terminal sequence. The exact 3' end of the 
RNA is specified by self-cleavage of the nascent RNA by the hepatitis delta virus 
(Hep 8) anti genome ribozyme. The conserved 11 terminal bases of all three 
Bunyamwera virus genome segments are shown. T7, T7 promoter; T7term, T7 
transcription termination sequence (Bridgen and Elliott, 1996). 
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transcription. Unlike the mRNA transcripts produced by polymerase II (pol II), RNA 

polymerase I catalizes the synthesis of ribosomal RNA (rRNA), which lacks 5' cap and 

3' poly(A) structures. Therefore, artificial influenza virus RNA segments with precise 5' 

and 3' ends could be produced using pol-I driven transcription (Zobel et al., 1993). RNA 

polymerase I localizes to the nucleus, where influenza virus transcription and replication 

occur. Hence RNA polymerase I transcription systems can be used to generate vRNA

like transcripts intracellularly (Neumann and Hobom, 1995; Neumann et al., 1994). 

An RNA polymerase I-based system for reverse genetics of influenza viruses was 

established by cloning a cassette containing the coding region for CAT (in antisense 

orientation) flanked by the noncoding regions of HA between the mouse RNA 

polymerase I promoter and terminator sequences (Zobel et al., 1993). Helper influenza 

virus infection, followed by transfection of the RNA polymerase I-HA-CAT construct, 

resulted in CAT activity, demonstrating that the recombinant HA-CAT template was 

intracellularly transcribed by RNA polymerase (Fig.1.15) (Neumann et al., 1994). 

Moreover, the recombinant HA-CAT vRNA was packaged into progeny virions. 

Pleschka and coworkers (Pleschka et al., 1996) used this technique to replace the viral 

RNA segment encoding the NA glycoprotein with plasmid-based construct, showing that 

technique could substitute for RNP reconstitution in replacing single viral RNA 

segments. Expression of the RNA segment of interest was under the control of a 

truncated pol I promoter at the 5' end and pol I terminator at the 3' end. The RNP protein 

components (PB 1, PB2, P A and NP), shown previously to be the minimal proteins 

required to reconstitute influenza virus polymerase activity (Huang et al., 1990), were 

encoded on plasmids under the control of pol I promoters. These plasmids were 

transfected into cells and the RNPs assembled intracellularly. 

The system described by Neumann and coworkers (Neumann et ai., 1999) represents the 

conclusion of this work which resulted in the ability to manipulate every gene in the 

influenza virus genome. They have developed a system that utilizes the host cell for 

making the equivalent of newly released RNPs by contransfecting eight plasmids 

encoding each of the influenza virus genomic RNA segments under control of the RNA 
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pol I promoter and transcription terminator along with four plasmids encoding the 

polymerase complex proteins and nucleoprotein (NP) cDNAs under control of an RNA 

pol II promoter. The concept of cotransfecting multiple plasmids to reconstitute a 

biochemical activity was first used for studying herpes virus DNA replication (Challberg, 

1986). However, the scale oftransfection used for influenza virus, utilizing 12 plasmids, 

is very impressive. The lack of a helper influenza virus allows the virus from the initial 

transfection to be characterized immediately, thus limiting the chance of viruses 

containing reversions or second-site mutations from becoming significant contaminants. 

Flick and Pettersson (2001) turned to the RNA polymerase I (pol I) expression system to 

use it as an alternative approach for developing a reverse genetics system for 

Bunyaviridae. As it was described earlier for influenza virus, in the pol I system, cDNAs 

coding for viral RNA segments, or reporter genes flanked by viral sequences, are cloned 

between the RNA pol I promoter and terminator to generate transcripts that have correct 

5' and 3' ends without modifications such as a cap structure and a poly(A) tail (Flick and 

Hobom, 1999; Zobel et al., 1993). Flick and Pettersson (2001) used the pol I system to 

express reporter genes flanked by the 5' and 3' noncoding sequences of the M RNA 

segment of Uukuniemi (UUK) virus, a member of the Phlebovirus genus. They showed 

that the pol I system could be used to synthesize chimeric RNA templates, which, despite 

lacking a cap structure and poly(A) tail, are transported to the cytoplasm, where they are 

amplified and transcribed by the UUK virus replicase components supplied either by 

superinfection with UUK virus or by expression of viral proteins from separate plasmids. 

The L and N proteins were found to be necessary and sufficient for transcription and 

replication. One important question is whether the pol I transcript is amplified by 

replication. As was shown by Flick and Pettersson for UUK virus, although not directly 

quantifying RNA synthesis, they observed high expression level of CAT and GFP, that 

could not have been achieved unless replication had occurred. Based on their previous 

experience, the overall level of CAT activity was much higher than that obtained in the 

influenza virus up-regUlation mutant. Finally, the fact that extracellular medium from 

transfected and UUK virus-superinfected cells could be used to serially passage CAT 

activity strongly suggests that the pol I transcript must have been amplified and 

packaged. 
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The pol I system offers some advantages over the vaccinia virus-based reverse genetics 

systems. Vaccinia virus (VV) has been used either to direct the sythesis of the T7 RNA 

polymerase (Fuerst et ai., 1986), which then drives the expression of the reporter 

construct and the viral helper proteins (Baron and Barrett, 1997; Collins et ai., 1995; He 

et ai., 1997; Hoffmann and Banerjee, 1997; Lawson et ai., 1995; Lee et ai., 2000) or to 

express the viral helper proteins directly (Dunn et ai., 1995; Lopez et ai., 1995; Prehaud 

et ai., 1997). VV introduces into the cell a number of unwanted enzymatic activities, 

which are avoided by using the pol I system. In addition, there is no need to remove the 

VV, by physical or biochemical means (Lawson et ai., 1995; Schnell et ai., 1994; Whelan 

et ai., 1995), by passaging the virus through cells not pennissive to VV or by using a 

variant VV (MV A-T7) which does not replicate in mammalian cells (Sutter et ai., 1995). 

However, these problems can be avoided by using cell lines that stably express 

bacteriophage T7 polymerase. The pol I system also has the advantage of generating the 

exact 5' and 3' ends of the RNA transcripts, thus avoiding the need for expressing runoff 

transcripts from restriction enzyme-cleaved plasmids or the use of a ribozyme to produce 

the correct 3' end. However, unlike influenza virus, transcription of RNA by most 

negative strand viruses appears in cytoplasm whereas polymerase I produces RNA in 

nucleus. 

1.4.3. Application of reverse genetics 

RNP reconstitution in vivo and in vitro has allowed detailed analysis of the viral promoter 

and other cis-acting signals important for the regulation of transcription and replication 

(e.g., polyadenylation signals, cis-acting signals within the noncoding regions). Reverse 

genetics has also made it possible to study the functional importance of viral proteins 

during infection, structure-function relationships of viral gene products and molecular 

aspects of viral pathogenicity. Transfectant viruses generated by this technique can be 

used to address issues regarding virus-host cell interactions in transport and assembly 

processes of viral components. 
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The recent development of reverse genetics systems for the rhabdoviruses, 

paramyxoviruses and orthomyxoviruses has provided new tools to investigate in more 

detail the roles of the cis-acting RNA elements involved in replication and transcription. 

Applying the new approach, Roffman and BaneIjee (2000) demonstrated that nucleotides 

1-12 (from the terminus) of the leader promoter formed a domain critical for human 

parainfluenza virus type 3 replication. In addition, they showed that no mutations in 

these regions caused defects in transcription, however, mutations in the intergenic 

sequence and the gene start found at the leaderlN gene junction did disrupt transcription. 

The functional analysis of the influenza viral RNA promoter via reverse genetics has lead 

to the proposed 'corkscrew' model for the 5' and 3' vRNA terminal sections in their 

coordinate binding to viral RNA polymerase (Flick et al., 1996; Flick and Robom, 

1999). Although it was believed that the double-stranded panhandle formed by the 

termini of all influenza virus gene segments might be involved in polymerase 

recognition, application of this new approach allowed the conclusion that 3' terminal 

sequences alone could optimally function as a promoter (Parvin et al., 1989). In addition, 

it was shown that various base-pair exchanges according to that model have not only 

restored promoter function, but resulted in increased levels of promoter activity, in 

particular when positions 3 and 8 in the 3' branch or 3 and 8 in the 5' branch of the 

vRNA promoter structure were involved in such complementary double exchange. 

Construction of cRNA promoter variants through RNA polymerase I reverse genetics 

allowed determination of the RNA polymerase-associated, base-paired conformation in a 

reporter gene read-out system. It turned out to adhere to the 'corkscrew' model, similar, 

but slightly different in its binding interactions from the corresponding vRNA 

conformation. The observation of two transcription reactions, initiated in either direction 

from influenza vRNA and cRNA template molecules, allowed construction ofbicistronic, 

ambisense RNA molecules for simultaneous expression of two proteins from a single 

segment of viral RNA (Azzeh et al., 2001). 

Two other studies used the RNA polymerase I system to determine the function of 

influenza virus proteins. Neumann et al (2000) generated virus-like particles that entirely 

lacked or possessed mutations in the NS2 gene and examined the effect of these 
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modifications on vRNP nuclear export. This study confirmed a previous finding by 

O'Neill et al. (1998) that NS2 is critical for vRNP nuclear export, mediated by a nuclear 

export signal in the N-terminal region of NS2. Watanabe and coworkers (2001) studied 

the role of the M2 ion-channel protein. Viruses were generated that lacked or contained 

mutations in the M2 transmembrane domain, indicating that influenza A viruses can 

undergo multiple cycles of replication without M2 ion-channel activity in cell culture. 

However, viruses defective in M2 ion-channel activity did not efficiently replicate in 

mice, demonstrating that this activity is critical for the viral life cycle. Similar approaches 

can be employed to determine the functions of other influenza virus proteins or cellular 

events involving specific viral proteins (Watanabe et al., 2001). 

Viral attenuation as a result of reverse genetics through specific mutations has practical 

significance in vaccine development. Such attenuating mutations include those 

eliminating gene products that are nonessential for replication in tissue culture, those 

rearranging gene order, and those deleting the cytoplasmic tails of viral glycoproteins (Jin 

et al., 1996; Kato et al., 1997; Kurotani et al., 1998; Roberts et al., 1998; Wertz et al., 

1998). Deletion mutants generally cannot revert, thus permanent attenuation should be 

possible in such recombinants. 

Using reverse genetics approach it is possible, for example, to produce a master strain of 

influenza virus with multiple attenuating mutations in the genes encoding internal 

proteins. It can be used to produce a high-yield reassortant virus that possesses the HA 

and NA from a currently circulating strain. It could be exploited in the production of 

inactivated vaccines, which currently are generated by conventional genetic reassortment 

procedures. It can serve as a potentially useful vector for gene transfer into mammalian 

cells. Studies with helper virus-dependent reverse genetics systems have demonstrated 

that influenza virus can accommodate additional genetic material. For several short 

polypeptides, including the V3 loop of HIV-1 gp 120 protein (Li et al., 1993), a highly 

conserved epitope from the ectodomain ofHIV-1 gp41 (Muster et al., 1994), and a B-cell 

epitope from the outer membrane protein F of Pseudomonas aeruginosa (Gilleland et al., 

1997), insertion in the antigenic sites of HA resulted in immune responses against the 

foreign epitope (reviewed in Neumann and Kawaoka, 2001). 
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The applications of the reverse genetics system can also be well demonstrated using 

vesicular stomatitis virus (VSV) as an example. It was shown that genes encoding foreign 

membrane glycoproteins can either be incorporated as extra genes in VSV or can be 

incorporated in place of the VSV G gene (Schnell et al., 1996, 1997). Therefore, it is 

possible to obtain viruses containing the foreign proteins in their envelopes by swapping 

the endogenous VSV G gene for genes encoding foreign glycoproteins. These viruses 

lack the normally broad tropism conferred by VSV G and can be targeted to specific 

cells. For example, VSV recombinants expressing the HIV receptor and a coreceptor in 

place of G incorporate both foreign proteins and are targeted specifically to cells infected 

with HIV-1 which display the HIV-1 envelope proteins on their surface (Schnell et at., 

1997). 

Recombinant VSV s expressmg foreign antigens have a high potential in vaccme 

application and have been shown recently to elicit protective immunity in experimental 

animals. Vaccination of mice with a single dose of recombinant VSV expressing the 

influenza hemagglutinin provided complete protection from influenza challenge (Roberts 

et al., 1998). Other examples include expression and incorporation of the influenza A 

virus neurominidase (NA) proteins shown by Kretzschmar et al (1997), the HIV-1 

envelope protein (gp 160) with a VSV-G cytoplasmic tail by Johnson et al (1997), the 

MV fusion (F) and hemagglutinin (HA) proteins by Schnell et al (1996), the RSV 

glycoprotein (G) and fusion (F) protein and the cellular proteins CD4, CXCR4, and 

CCR5 by Schnell et al (1997). 

To summarize, reverse genetics approaches have now been described for representatives 

of most groups of negative-strand RNA viruses and gave an opportunity to study 

different aspects of viral replication, pathogenesis, interaction with vectors, and to 

develop genetically engineered vaccines. 
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1.5. Objectives of the project 

The initial aim of the project was to establish a reverse genetics system for hantavirus 

based on the systems developed for other negative-strand RNA viruses, including that of 

Bunyamwera virus. This would allow full application of recombinant DNA techniques to 

manipulate the genome of hantavirus with the particular goal of investigating the 

initiation of hantavirus antigenome RNA synthesis using expressed viral proteins and a 

recombinant RNA template. 

However, as all the attempts to develop the reverse genetics system for hantavirus failed, 

the investigation of the interactions of the hantavirus nucleocapsid protein was 

undertaken by means of the mammalian two-hybrid system. The major objective was to 

identify whether hantavirus N protein is capable of self-interaction, and if so, which 

domains on the protein are responsible for interaction. In addition, the possibility of 

interaction between Nand L proteins was examined. 

Although hantaviruses have never been shown to possess a nonstructural protein, there 

were some implications for the potential of an NSs-analogue in certain members of the 

genus. Therefore, as the last objective, it seemed interesting to determine whether the S 

segment ofPuumala virus encoded a second protein, ORF2 product. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1. Materials 

2.1.1. Enzymes 

Restriction endonuclease enzymes, T4 polynucleotide kinase and T4 DNA polymerase 

were purchased from New England Biolabs; T7 RNA polymerase and recombinant 

ribonuclease inhibitor rRNasin were purchased from Promega; calf intestinal 

phosphatase from Boehringer Mannheim; ribonuclease A from Sigma; Taq DNA 

polymerase was purchased from Qiagen and Pfu Turbo polymerase from Stratagene; T4 

DNA ligase was purchased from Gibco BRL. 

All enzymatic reactions were carried out according to the manufacturer's instructions. 

2.1.2. Radiochemicals 

Radiochemicals were supplied by Amersham at the following specific activities: 

35S-L-methionine 

14C chloramphenicol 

800 Ci/mmol (15 IlCi/IlI) 

58.5 mCi/mmol (0.1 IlCi/IlI) 
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2.1.3. Synthetic oligonucleotides 

Synthetic oligonucleotides were purchased from MWG Biotech. 

The sequences of generated oligonucleotides (with restriction sites contained in the 

oligonucleotides underlined) are as follows: 

PuuL SmaI 43+ 

PuuL SmaI 1200+ 

PuuL SmaI 2400+ 

PuuL SmaI 3600+ 

PuuL SmaI 4800+ 

PuuL SmaI 5800+ 

PuuL San 1260-

PuuL San 2412-

PuuL San 3660-

PuuL San 4860-

PuuL San 6505-

PuuL EcoRI 5' 

PuuL EcoRI 3' 

SeoNORF PstI

SeoNORFNcoI+ 

5'-GGCCCCCGGGGGAGAAATACAGAGAGATC (Sma D 

5'-GGCCCCCGGGGATATCCAAAGATTCAAAGAA (Sma I) 

5' -GGCCCCCGGGGGTGGTTGAACTTGCTGCTCAA (Sma D 
5'-GGCCCCCGGGGTTATTAGGTTCTTTATCAGA (Sma I) 

5'-GGCCCCCGGGGTGGCTAAAGACAATGTCCCT (Sma I) 

5'-GGCCCCCGGGGGATTTATTCATGTTTAACGA (Sma I) 

5' -GGCCGTCGACGTGCT ACATCT A TACT ATC (Sal D 
5' -GGCCGTCGACGAAGTTCAACCACCTCCTGGCA (Sal I) 

5' -GGCCGTCGACGT ACTCTGGGCTGCAGCAAG (Sal I) 

5' -GGCCGTCGACGTGCAGCT AAA TGTGTT AG (Sal D 
5' -GGCCGTCGACGTCTGTT AA T AAAAAGAA (Sal D 
5' -GGCCGAA TTCGAGAAA T ACAGAGAGATC (EcoR!) 

5' -CGGCGAA TTCT AACCCTCCTTGAT ACTT (EcoRI) 

5' -GCGCTGCAGTT AT AA TTTCATAGGTTCCTG (Pst D 
5' -GCGGAA TTCGCCATGGCAACTATGGAAGAAA TCCAG 

(Nco I) 

HtnNORF NcoI+ 5' -GCGGAA TTCGCCATGGCAACT ATGGAGGAA TT ACAG 

(Nco I) 

HtnNPstI - 5' -GCGCTGCAGTT AT AGTTTT AAAGGCTCTTGGTTGGA 

(PstD 

PuuORF2NcoI+ 5'- GCGGAA TTCGCCATGGGCAACAACTTGTTGTTGCCAGAC 

(Nco I) 
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PuuORF2PstIFLAG-

PuuORF2PstI -

PuuN PstI pktag5 

5' -GCGCTGCAG TCA CTTGTCATCGTCGTCCTTGTA GTC

CATCAAGGACATTTCCAT (Pst I, FLAG) 

5'- GCGCTGCAGCATCAAGGACATTTCCAT (Pst I) 

5'- GCGCTGCAGTCACGTAGAATCTAACCGCAACAGGGGATTGGGAAT

-GGGTTTA CCTGAT ATCTTT AAGGGTTCTTGGTTTGA (Pst 1, pktag} 

PuuN PstIFLAG-

5'- GCGCTGCAGTCACTTGTCATCGTCGTCCTTGTAGTCfATCTTTAA

GGGTTCTTGGTTTGA (Pstl, FLAG} 

PuuNNcoI 43+ 5' -GCGGAA TTCATGGACTTGACAGACATC (Nco I) 

PuuS EcoRI 5' 5' -GGCCGAA TTCGGTGACTTGACAGACATC (EcoRD 

PuuS BamHI 3' 5' -CGGCGGATCCATGTCATAACCAGATG (BamHI) 

PuuS EcoRI 43+ 5' -GGCCGAA TTCGGTGACTTGACAGACATCC (Eco RI) 

PuuS EcoRI 301+ 5'-GGCCGAATTCGATGATCATCTTCTCAAGGA (Eco RI) 

PuuS EcoRI 601+ 5' -GGCCGAA TTCACCATGAAAGCTGAAGA (Eco RI) 

PuuS EcoRI 906+ 5' -GGCCGAA TTCATTGACT ATGCTGCCTC (Eco RI) 

PuuS EcoRI 1201+ 5'-GGCCGAATTCCTGTACATGTTGGAATG (Eco RD 
PuuS Pst! 360- 5'-GGCCCTGCAGAGCATTCACATCAAGGACA (Pst I) 

PuuS PstI 660- 5'-GGCCCTGCAGGAATAAGCCACATACTA (Pst I) 

PuuS Pstl960- 5'-GGCCCTGCAGGATTCGATGTCATCAGGCG (Pst D 

PuuS Pst1270- 5'-GGCCCTGCAGGCTCAGGATCCATGTCA (Pst I) 

PuuSPstI1342-

5' -GGCCCTGCAGT ATCTTT AAGGGTTCTTGGTTTGAT ATCTCTTTT ACC (Pst D 

PuuS Pst1560-

PuuS Pst1780-

5' -GGCCCTGCAGAA TTCCCTGT ATT AAA TC (Pst I) 

5' -GGCCCTGCAGT AGT AGT AGACTCCTTGA (Pst I) 
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2.1.4. Expression vectors and plasmids. 

The plasmid pTMl containing bacteriophage T7 promoter and internal ribosome entry 

site (IRES) (Moss et al., 1990) was originally supplied by B Moss, Nlli, USA 

pEGFP-Nl expression vector that contains the immediate early promoter ofCMV and the 

EGFP coding sequences was purchased from Clontech. 

Plasmids for the mammalian two-hybrid system, pMl, pVP16 and pG5CAT 

(Mammalian Matchmaker Two-Hybrid Assay kit, Clontech) were supplied by A Easton, 

University of Warwick. pG5CAT is a reporter plasmid that contains the CAT gene 

downstream of 5 consensus GAL4 binding sites and the minimal promoter of the 

adenovirus Elb gene. pM contains the GAL4 DNA binding domain (BD). pVP16 

contains an activation domain (AD) derived from the VP16 protein of herpes simplex 

virus. Plasmid pM3VP16, a positive control, consists of the AD fused to the BD. 

2.1.5. Bacterial strains 

The usual host for the propagation of recombinant plasmids was E.coli strain DH5a: 

<D80d lacZ ~M15, recAl, endAl, gyrA96 , thi-l, hsdR17 (r K-, mK+), supE44, relAl, 

deoR, ~ (lacZYA-argF) Ua69. 

2.1.6. Bacterial culture media 

The following bacterial culture media were used: 

LB-Broth (LB) 109 NaCI, 109 Bactopeptone, l5g yeast extract per litre. 

LB-agar: LB-Broth plus 1.5% (w/v) agar 

2xYT broth: 5g NaCI, l6g Bactopeptone, 109 yeast extract per litre. 
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Ampicillin was added at 75 Jlg/ml to the medium where appropriate. 

Kanamycin was added at 50 Jlg/ml to the medium where appropriate 

2.1. 7. Cells and tissue culture media. 

BHK-21 cells, clone C-13, a continuous cell line derived from baby hamster kidneys 

(MacPherson and Stoker, 1962), were grown in Glasgow modified Eagle's medium 

supplemented with 10% new born calf serum (10% GMEM, Stoker and MacPherson, 

1961), 5mM L-glutamine, 14ml/400ml of 7.5% sodium bicarbonate, and 10% tryptose 

phosphate broth. 

293 cells, a human cell line transformed by DNA from human adenovirus type 5 

(Graham et al., 1977), were grown in Dulbecco's modified medium containing 10% 

foetal calf serum and 5mM L-glutamine. 

VeroE6 cells, a monkey kidney cell line, were grown in Dulbecco' s modified Eagles 

medium supplemented with 10% foetal calf serum and 5mM L-glutamine. 

HeLa cells, a human cell line, were grown in Dulbecco' s modified Eagles medium 

supplemented with 10% foetal calf serum and 5mM L-glutamine. 

Cells were grown at 37°C under 5% C02 in a humidified incubator. Routine maintenance 

and passage of cells was done every 3 days. 

2.1.8. Viruses 

Puumala virus strain cg18-20 was obtained from X Shi of this Institute. 

vTF7-3 a recombinant vaccinia virus which expresses T7 polymerase (Fuerst et ai., , 

1986) was originally supplied by B Moss, Nlli, USA 
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2.1.9. Commonly used reagents, chemicals and solutions 

All reagents and chemicals were purchased from BDH Chemicals Ltd or Sigma 

Chemicals Co except as noted. 

Acrylamidelbis-acrylamide stock solution: 30% (w/v) acrylamide, 0.8% (w/v) bis

acrylamide, final ratio 37.5: 1. Purchased 

from Roche Diagnostics and Scotlab. 

Agarose gel loading buffer: 

Ammonium persulphate: 

Blocking buffer (Western blotting): 

Gel fix: 

IP buffer: 

Lysis solution: 

Neutralisation solution: 

Pfu PCR buffer (lOx): 

PBS: 

Protein dissociation mix: 

0.25% bromphenol blue, 0.25% xylene 

cyanol, 30% glycerol. 

from Biorad. 

0.1 % Tween-20 in TE buffer with 

10% (w/v) non-fat milk 

50% (v/v) methanol, 10% (v/v) acetic acid, 

40% dH20 

150mM NaCI, 10mM Tris, pH 7.4, 

1 % sodium deoxycholate, 1% Triton X-I00, 

0.1% SDS, ImM PSF 

0.2M NaOH, 1 % SDS 

1.32M KOAc, pH 4.8 

200mM Tris-HCI, pH 8.8, 20mM MgS04, 

100mM KCI, 100mM (NH4)2S04, 1% 

Triton X-I00, Img/ml nuclease-free BSA. 

From Stratagene 

170mM NaCI, 3.4mM KCI, 10mM HP0 4, 

1.8mM KH2P04, pH 7.2, 6.8 mM CaCh, 

4.9mMMgCh 

100mM Tris-HCI, pH 6.8, 4% SDS, 

200mM ~-mercaptoethanol, 20% glycerol, 

0.2% bromophenol blue. 
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Protein sample buffer: 

Psi-broth: 

RIPA: 

SDS-P AGE running buffer: 

STET lysis solution: 

TAE: 

TBE: 

TFB1: 

TFB2: 

TE: 

TEMED: 

TEN: 

Transfer buffer: 

Trypsin solution: 

TSB: 

TSB-glucose: 

Versene solution: 

Materials and Methods: Chapter 2 

15% (w/v) SDS, 1.5% (w/v) bromophenol 

blue, 50% (v/v) glycerol 

250 ml LB medium, 4mM MgS04, 

10mMKCI 

10mM Tris-HCI, pH 7.4, 150mM NaCI, 

1 % Na deoxycholate, 1 % Triton X-100, 

0.1 % SDS, 1mM PMSF 

25mM Tris-base, 192mM glycine, 

0.1% SDS 

8% (w/v) sucrose, 5% Triton X-100, 

50mM EDTA, 50mM Tris-HCI, pH 8. 

40mM Tris-acetate, pH 8.0, 1mM EDTA 

90mM Tris-HCI, 90mM boric acid, 

1mM EDTA, pH 8. 

100mM RbCI, 50mM MnCh, 

30mM CH3COOK, 10mM CaChx2H20, 

15% (w/v) glycerol, pH adjusted to 5.8 

10mM MOPS, 10mM RbCI, 75mM CaCh, 

15% (w/v) glycerol, pH adjusted to 8.0 

10mM Tris-HCI, pH 8, 1mM EDTA. 

from Bio-Rad 

150mM NaCI, 40mM Tris-HCI, pH 7.5, 

1mM EDT A, pH 8.0. 

15mM Tris, 120mM glycine, 20% methanol. 

0.25% (w/v) Difco trypsin dissolved in Tris

saline solution plus 0.005% (w/v) phenol red 

10% PEG, 5% DMSO, 10mM MgCh, 

10mM MgS04 in 2x YT or LB broth. 

TSB supplied with 3.6mglml glucose 

PBS supplemented with 0.6mM EDT A and 

0.0015% (w/v) phenol red 
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Visualisation solution for ECL: from Amersham Life Sciences 

2.1.10. Miscellaneous materials. 

3MM blotting paper (Whatman) 

Disposable plastic reaction vials and pipette tips (Scotlab) 

Gene Clean DNA purification kit (Bio 101) 

Horizontal gel electrophoresis apparatus Horizon 58 (5.7x8.3xO.3cm) and H5 

(14xllxO.5cm, Gibco BRL) 

Hybond N nylon blotting membrane (Amersham) 

In vitro transcription kit (Promega) 

Lipofectamine transfection reagent (Gibco BRL) 

Nescofilm (Nip on, Bando Chemical Ind) 

Opti -MEM media (Gibco BRL) 

Pansorbin cells (Calbiochem -N ovabiochem) 

Plasmid maxi/midiprep kit (Qiagen) 

Plasmid miniprep kit (Qiagen) 

Polygram SIL G (0.25mm) TLC plates (Camlab) 

Protein A sepharose beads (Sigma) 

Qiaex DNA purification kit (Qiagen) 

Qiafilter maxiprep kit (Qiagen) 

Quick-spin columns (Ambion) 

SDS-PAGE standards broad range (Bio-Rad) 

Semi-dry electrophoresis apparatus (LKB Bromma) 

Tissue culture disposable plasticware (Nunc) 

TnT Coupled Transcription/Translation system (Promega) 

Wizard maxiprep kit (Promega) 

X-omat S film for autoradiography (Kodak Ltd.) 

49 



Materials and Methods: Chapter 2 

2.2. Methods 

2.2.1. DNA manipulation and cloning procedures. 

2.2.1.1. Plasmid preparation 

2.2.1.1.1. Small-scale plasmid preparation: boil-lysis method 

This method was used for diagnostic restriction digestion. Single colonies were picked 

from agar plates, inoculated into 3 ml aliquots of 2x YT broth, containing the appropriate 

antibiotic, and incubated overnight at 37°C in a shaking incubator. One and a half ml of 

bacterial culture was centrifuged at 13,000 rpm in a benchtop centrifuge for 30 seconds, 

the resultant pellet broken up by vortexing and incubated on ice for 5 minutes in 450 ~l 

STET lysis solution containing 200 ~g lysozyme. The solution was boiled for 40 seconds, 

centrifuged at 13,000 rpm for 20 minutes and the pelleted debris removed with a sterile 

toothpick. Four hundred and fifty ~l isopropanol was added to the supernatant, incubated 

at -20°C for 30 minutes and centrifuged at 13,000 rpm for 10 minutes. The pellet was 

washed with 70% ethanol, air-dried and resuspended in 40 ~l dHzO. 

2.2.1.1.2. Small-scale plasmid preparation: alkaline lysis method. 

Single colonies were picked from agar plates, inoculated into 3 ml of 2x YT broth, 

containing the appropriate antibiotic, and incubated overnight at 37°C in a shaking 

incubator. One and a half ml of bacterial culture containing the desired plasmid was 

centrifuged at 13,000 rpm in a benchtop centrifuge for 30 seconds and the resultant pellet 

resuspended in 1 00 ~l cell resuspension solution (Promega). Two hundred ~l fresh lysis 

solution was added to the bacteria, mixed by inversion and incubated on ice for 3 

minutes. One hundred and fifty ~l cold neutralization solution was added, mixed by 

inversion and incubated on ice for 5 minutes. The debris was pelleted at 13,000 rpm for 5 
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minutes and DNA precipitated from the supernatant by ethanol precipitation. The pellet 

was washed with 70% ethanol, air-dried and resuspended in 40 ~l dH20. 

2.2.1.1.3. Small-scale plasmid preparation: Qiagen plasmid miniprep kit 

The method was used to produce transfection-quality DNA. The procedure is based on 

alkaline lysis of bacterial cells followed by adsorption of DNA onto silica-gel-membrane 

in the presence of high salt. 

One and a halfml of bacterial culture grown overnight was pelleted at 13,000 rpm for 20 

seconds in a benchtop centrifuge. Pelleted bacterial cells were resuspended in 250 ~l 

buffer PI followed by lysis in 250 ~l buffer P2 by inverting the tube 6 times. The 

reaction was neutralized by adding 350 ~l buffer N3 and inverting the tube 6 times. 

Lysates were cleared by centrifugation at 13,000 rpm in a benchtop centrifuge for 10 

minutes and supernatants centrifuged for 30-60 seconds through the column to allow the 

DNA to adsorb onto membrane. This was then followed by two wash steps in 500 ~l 

buffer PB and 750 ~l buffer PE by centrifugation at 13,000 rpm for 30-60 seconds. To 

remove residual wash buffer, columns were centrifuged for an additional 1 minute. Forty 

~l pre-warmed dH20 was added onto silica-gel membrane and incubated for 3 minutes at 

a room temperature. The DNA was eluted from the column into a new tube by 

centrifugation at 13,000 rpm for 1 minute and stored at -20oe. 

2.2.1.1.4. Large scale preparation and purification of plasmid DNA: 

Promega 'Wizard' kit 

Promega 'Wizard' kit was used for bulk preparations of DNA according to the 

manufacturer's instructions. 

Single colonies of E.coli strain DH5a were picked from agar plates, inoculated into 10 

ml of 2x YT broth, containing the appropriate antibiotic, and incubated overnight at 37°e 
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in a shaking incubator. One ml overnight culture was inoculated into 300ml pre-warmed 

LB-broth in a 2 litre flask (containing 75 Jlg/ml of ampicillin or other antibiotics where 

appropriate) and shaken for 20 hours at 37°C. Following centrifugation of the cultures at 

3,000 rpm (Sorval GS3 rotor) for 10 minutes at 4°C, the bacterial pellet was resuspended 

it in 15ml resuspension buffer. Cells were lysed in 15 mllysis solution by inversion until 

the solution was clear. The reaction was neutralized by addition of neutralization 

solution to the mixture and mixing by inversion. The cell debris was pelleted by 

centrifugation at 3000 rpm for 10 minutes. The DNA was precipitated with the equal 

volume of isopropanol at -20°C for 10 minutes, pelleted by centrifugation at 2500 rpm in 

a swing-bucket rotor for 10 minutes and resuspended in 2 ml dHzO. Precipitated DNA 

was then mixed with 10 ml DNA purification resin and passed through a column under 

vacuum. The column was washed with 25 ml column wash solution and 5 ml 80% 

ethanol and dried by centrifugation at 2500 rpm in a swing-bucket rotor for 5 minutes 

followed by application of vacuum for 5 minutes. One and a half ml dHzO was added to 

the column and incubated at 65°C. The DNA was eluted by centrifugation at 2500 rpm 

in a swing-bucket rotor for 5 minutes and stored at -20°C. 

2.2.1.1.5. Large-scale plasmid preparation: Qiagen 'Qiafilter' 

The procedure is based on a modified alkaline lysis procedure, followed by binding of 

plasmid DNA to resin under appropriate low-salt and pH conditions, and allows 

production of transfection-quality DNA. 

Single colonies of E. coli strain DH5a were picked from agar plates, inoculated into 10 

ml ali quotes of 2x YT broth, containing the appropriate antibiotic, and incubated for 8 hrs 

at 37°C in a shaking incubator. One ml of this culture was inoculated into 100 (250) ml 

2x YT broth and incubated overnight. A 100 ml (high-copy) or 250 ml (low-copy) 

bacterial culture containing the desired plasmid was centrifuged at 3000 rpm for 15 

minutes in a swing-bucket rotor at 4°C and the bacterial pellet was resuspended in 10 ml 

buffer Pl. Ten ml buffer P2 was added, mixed thoroughly and the solution was incubated 

for 5 minutes at a room temperature to allow cell lysis. The solution was neutralised by 
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adding 10 ml chilled buffer P3, inverting the tube 6 times and incubating on ice for 20 

minutes. A tip was equilibrated by applying 10 ml buffer QBT and the column emptied 

by gravity flow. The bacterial lysate was cleared by being passed through the filter of the 

syringe into the tip and entered the resin by gravity flow. The tip was washed twice with 

30 ml buffer QC and the DNA eluted with 15 ml buffer QF, then precipitated with 10 ml 

isopropanol and pelleted by centrifugation at 2500 rpm for 3 hours in a swing-bucket 

rotor at 4°C. The pellet was washed with 70% ethanol, air-dried, resuspended in 1 ml 

dH20 and stored at -20°C. 

2.2.1.2. Phenol:chloroform extraction and ethanol precipitation 

An equal volume of 50% phenol, 49% chloroform and 1 % isoamyl alcohol was added to 

100 or 150 ~l of the solution, mixed carefully by vortexing and centrifuged at 13,000 rpm 

in a benchtop centrifuge for 5 minutes. The upper phase was retained, mixed with an 

equal volume of chloroform and centrifuged as before. The upper phase was retained, 

mixed with an equal volume of chloroform and centrifuged as before. The upper phase 

was retained and 1110 of the volume of 3M sodium acetate, pH 5.2, and 3 volumes of 

100% ethanol were added. The solution was incubated either on dry ice for 20 minutes or 

at -20°C for 1 hour. The DNA was pelleted by centrifugation at 13,000 rpm for 20 

minutes. The pellet was washed with 50 ~l 70% ethanol, air-dried and resuspended in 

dH20. 

2.2.1.3. Restriction enzyme digestion of DNA 

Appropriate restriction enzymes were used at 1 unit per ~g DNA in buffers supplied by 

the manufacturers. Restriction digest analysis of small-scale DNA preparations used 2 ~l 

of DNA, digested in a 20 ~l reaction volume. 
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Typical digestion reaction contained: 

DNA 2 III 

Restriction enzyme 1 Ox buffer 2 III 

Restriction enzyme 2U 

BSA, acetylated (Img/ml) 2 III 

dH20 lil!l 

20111 

Digestions were for 1-4 hours at an appropriate temperature specific for different 

enzymes. DNA fragments were separated by electrophoresis on agarose gels. 

For the preparation of DNA to be used in sub cloning, 5 to 10 Ilg DNA were digested in a 

20 to 50 III reaction volume as above, with 2 units restriction endonuclease per Ilg DNA, 

and incubated 2 to 4 hours. 

2.2.1.4. End-repair of DNA with the Klenow fragment of E.coli 

polymerase I 

Cohesive ends of plasmid DNA were blunt-ended using the Klenow fragment of E.coli 

polymerase I, which lacks the 3' to 5' exonuclease activity of E.coli polymerase 1. 

Reaction consisted of 1 III each of 0.5M dATP, dGTP, dCTP, dTTP and 1-5U Klenow 

fragment added to a 20111 restriction digestion mixture. The reaction was incubated at 

37°C for 15 minutes and the DNA purified by phenol:chloroform extraction. 

2.2.1.5. Agarose gel electrophoresis of DNA. 

Electrophoresis of DNA was performed on horizontal slab gels (5.7x8.3xO.3 cm, BRL 

gel electrophoresis apparatus Horizon 58). 1 % (w/v) agarose in 1 xTBE or 1 xTAE 
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containing 0.5 Jlg/ml ethidium bromide was used. DNA samples were loaded on the gel 

in a loading dye. Electrophoresis was carried out at 50-100V in 1 xTBE or 1 xT AE 

buffers, and the DNA bands were visualized using short or long wave UV illumination. 

2.2.1.6. Polymerase chain reaction (peR) amplification of DNA. 

peR primers were typically 15-30 nucleotides long. 10-50 picomoles of each primer 

were used in reaction volumes ranging from 10 JlI to 50 Jll. When plasmid DNA was 

used at template, triplicate reactions were set up containing 10, 1 and O.lng of template. 

Further replicates allowed reactions to be halted after different numbers of cycles to 

minimize the number of copying steps and so reduce the possibility of accumulating 

point mutations. PCR was performed using either Taq DNA polymerase or Pfu Turbo 

DNA polymerase. In each case the reaction was carried out in the buffer supplied and 

under the conditions recommended by the manufacturer. Reactions were performed in a 

thin-walled 0.5 ml reaction tube using a Techne thermal cycler that does not require the 

reaction to be overlaid with oil. 

Standard reaction using Taq DNA polymerase contained: 

10xTaq buffer 3 JlI 

25mMMgCh 1.2JlI 

25mM dNTPs 0.24JlI 

template DNA, 100ng/JlI 1 JlI 

primer 1, 16pmol/JlI 0.75JlI 

primer 2, 16pmollJlI 0.75JlI 

Taq DNA polymerase, 5 D/JlI 0.2JlI 

dHzO 22.86!l1 

30JlI 
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Standard reaction using Pfu Turbo polymerase: 

10xPfu buffer 5 JlI 

25mM dNTPs O.4JlI 

template DNA, 100nglJlI 1 JlI 

primer 1, 16pmollJlI 

primer 2, 16pmollJlI 

Pfu Turbo DNA polymerase, 2.5 U/JlI 

dH20 

Thermal cycling parameters: 

segment 1 (duplex melting) 

segment 2 (primer annealing) 

segment 3 (primer elongation) 

1.25JlI 

1.25JlI 

0.5JlI 

40.6g1 

50JlI 

30 seconds, 

1 minute 

3 minutes 

These conditions were altered empirically where improvement was required. 

Reactions were cycled for 30 PCR rounds, including a final extension step at 72°C for 8 

minutes. PCR products were run on 1 xT AE agarose gel and purified. 

2.2.1.7. Purification of amplification products from PCR using the 
High Pure PCR Product Purification kit 

(Boehringer Mannheim) 

A gel slice containing the desired DNA was excised from the gel. It was then melted at 

55°C for about 5-10 minutes in 900 JlI binding buffer. Four hundred and fifty JlI 

isopropanol was added, mixed thoroughly and the mixture was divided into 2 spin 

columns followed by centrifugation at 13,000 rpm in a benchtop centrifuge for 30 

seconds. The column was washed twice with 200 JlI wash buffer by centrifuging as 

described before. The column was centrifuged for an additional 1 minute to ensure 

optimal purity and the complete removal of residual wash buffer from the glass fibre 
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fleece. The DNA was then eluted with 40 J.ll pre-wanned dH20 by centrifuging at 13,000 

rpm for 30 seconds 

2.2.1.8. DNA purification from agarose gels by silica matrix adsorption. 

DNA fragments produced by restriction enzyme digestion were separated by 

electrophoresis through 1 % agarose TAB gels containing 0.5J.lg/ml ethidium bromide. 

Long wave UV illumination allowed visualization of the DNA bands. A commercial kit, 

Geneclean (BIO 101 Inc, La Jolla, CA), containing a silica matrix that binds DNA in the 

presence of high concentrations of sodium iodide, was used for retrieval of DNA from 

agarose blocks excised from the gels (Vogelstein and Gillespie, 1979). Gel slices 

containing the required DNA fragments were excised from 1 xT AB agarose gels and 

mixed with 3 volumes of saturated NaI solution and incubated for 10 minutes at 55°C 

until the agarose had completely melted. Silica matrix ('glassmilk') was added (5 J.ll for 

up to 5J.lg of DNA) and the mixture incubated for 5 minutes on ice to allow the DNA to 

bind to the matrix. Following a 5 second centrifugation at 13,000 rpm, the pellet 

(containing DNA bound to silica particles) was washed with three times with 'NEW' 

wash (a Tris-buffered mixture of NaCl, ethanol and water) by repeated 

resuspension/centrifugation cycles. The DNA was eluted from the silica matrix by 

resuspending the pellet in 20 J.ll dH20, incubating for 5 minutes at 55°C and 

centrifugation for 5 seconds at 13,000 rpm. The DNA was stored at -20°C. 

2.2.1.9. DNA ligation. 

DNA fragments (100-500ng) and vector DNA (100ng), which had been digested 

previously with the appropriate restriction enzyme(s) and purified, were ligated together 

in a 20J.ll mixture. Ligation reactions were set at three molar rations (1: 1, 1:3 and 1 :5) of 

linearized vector to insert DNA. 
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The mixture contained: 

Vector DNA 

Insert DNA 

T4 DNA ligase 

5xligation buffer 

dH20 

100 ng 

100-500 ng 

2U 

4 J.!l 

to a total volume 20 Jll 

Materials and Methods: Chapter 2 

Ligation reaction was incubated for 16 to 24 hours at room temperature. 

2.2.2. Protein analysis 

2.2.2.1. SDS polyacrylamide gel electrophoresis (SDS PAGE) of proteins 

Denatured proteins were fractionated by electrophoresis through medium-sized 

polyacrylamide gels containing SDS, using a discontinuous buffer system (Laemmli 

1970). The resolving gel contained 10-20% polyacrylamide in which the acrylamide was 

crosslinked with N,N' -methylene bisacrylamide in a ratio of 37.5: 1 (w/w) in resolving gel 

buffer. 

Composition of the resolving gel was as follows: 

12% 15% 20% 

Acrylamide 14.4 18.0 24.0 ml 

1M Tris, pH8.8 16.8 16.8 16.8ml 

dH20 12.9 9.3 3.3ml 

10%SDS 0.45 0.45 0.45ml 

10%APS 0.45 0.45 0.45ml 

TEMED 50JlI 50Jll 50Jll 
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Ammonium persulphate and TEMED were added immediately prior to pouring the gel 

into glass plates assembled according to the manufacturer's instructions. The gel was 

overlaid with isopropanol to leave a smooth interface after polymerisation. The 

isopropanol was removed when the gel had polymerised by pouring it off. The stacking 

gel (3.8% polyacrylamide, 62.5mM Tris-HCI pH 6.8, 0.1% SDS, 0.1% ammonium 

persulphate and TEMED) was layered on top of the resolving gel and the required comb 

inserted to form wells. The stacking gel was allowed to polymerise for about 30 minutes 

before assembling the gel apparatus with glass plates and running buffer placed in the 

reservoirs (53mM Tris, 53mM glycine, 0.1 %SDS). Samples in protein dissociation mix 

were heated at 100°C for 5 minutes prior to loading to the gel. Electrophoresis was 

carried out at 40 rnA until the bromophemol blue reached the bottom of the resolving gel. 

The gel was carefully removed from the glass plates after electrophoresis, fixed in gel fix 

solution for 1 hour to overnight, enhanced for 30 minutes, washed with water three times 

for 15 minutes each wash, dried under vacuum for 1.5 hour at 80°C and placed in contact 

with Kodak X-Omat S film for autoradiography. 

2.2.2.2. In vitro Transcription/Translation of proteins 

TnT Coupled Transcription/Translation kit (Promega) was used for in vitro translation of 

the proteins and was performed according to the manufacturer's conditions. 

The reaction mixture was composed of: 

Rabbit reticulocyte lysate 25111 

Reaction buffer 2 III 

T7 RNA polymerase 1 III 

Aminoacid mixture minus methionine, 1mM 1 III 

35S-methionine (l,OOOCi/mmol) at 10mCi/ml 4111 

Rnasin ribonuclease inhibitor, 40U/1l1 1 III 

DNA template 11lg 

Nuclease-free H20 to final volume 50111 
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The reaction mixture was incubated at 30°C for 1.5 hours, 50~1 protein dissociation 

buffer was added and the mixture stored at -20°C. 

2.2.2.3. Metabolic labelling of intracellular proteins 

Monolayers of cells in 35 mm dishes were radiolabelled with 35S-methionine in 1 ml of 

methionine free MEM (30~Ci/ml) for 2 hours at 37°C. The radioactive solution was then 

removed, the cell mono layers washed with 0.5ml PBS and the cells lysed in 200 ~l of 

protein dissociation mix. Cell lysates were heated at 100°C for 5 minutes before loading 

onto polyacrylamide gel containing SDS. 

2.2.2.4. Western blotting 

Proteins to be SUbjected to Western blotting were run on SDS-PAGE as described above. 

Hybond N nitrocellulose membrane, 4 sheets of 3MM paper and the gel were equilibrated 

in transfer buffer for 10 minutes. The surface of the blotting apparatus was wet with 

transfer buffer, and a gel stack was assembled containing (from the bottom) 2 sheets of 

pre-wet 3MM paper, the nitrocellulose membrane, the gel, and two more sheets 3MM 

paper. The gel stack was then subjected to a current of 40mA for minigel for 1 hour after 

which the nitrocellulose membrane was incubated in blocking buffer for 16 hours. The 

membrane was then incubated with primary antibody in blocking buffer for 1 hour with 

agitation and washed three times with PBS(A)/O.l % Tween-20. The membrane was then 

incubated with secondary antibody and washed as before, then subjected to enhanced 

chemiluminescence by incubating it in freshly-mixed visualisation solution for 3 minutes. 

Membrane, wrapped in mellotex film, was exposed to an autoradiograph film for 1 

second to 10 minutes. 
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2.2.2.5. Immunoprecipitation (IP) of radiolabelled proteins. 

Cell mono layers were radiolabelled with 35S-methionine (30J..lCi/ml) in 1 ml methionine 

free minimal essential medium for 2 to 5 hours. The cells were washed with 0.5ml PBS 

and 300J..lI RIP A buffer containing protease inhibitor was added to each dish to lyse the 

cells. The dishes were incubated on ice for 30 minutes and the solution transferred to 

microcentrifuge tubes. Nuclei and cellular debris were removed by centrifugation for 5 

minutes at 13,000 rpm and the cleared supernatant was then reacted with 50 J..lI 

Staphylococcus aureus (Pansorbin, Calbiochem-Novabiochem) for 2 hours at 4°C on a 

rotating wheel to preadsorb proteins. Pansorbin was pelleted by centrifugation for 30 

seconds at 13,000 rpm, 10J..lI antibody added to the supernatant and the mixture 

incubated overnight at 4°C on a rotating wheel. Sixty J..lI beads suspension was added to 

each IP reaction and the mixture rotated for 1 hour at 4°C. Centrifugation at 13,000 rpm 

for 30 seconds allowed the beads to be pelleted followed by 3 washes with 300J..lI RIP A 

buffer. Beads were resuspended in 60J..lI protein dissociation mix, stored at -20°C and 

boiled for 5 minutes prior to electrophoresis on SDS-polyacrylamide gels. 

2.2.3. Transfection of mammalian cells 

2.2.3.1. Preparation of cationic liposomes 

The method is based on the one described by Rose et al (1991). Dimethyldioactadecyl 

ammonium bromide (DDAB) was diluted to 4 mg/ml in chloroform and 1 ml was mixed 

with 1 ml dioleoyl L-a-phosphatidyl ethanolamine (DOPE, 10 mg/ml in chloroform) and 

the chloroform evaporated with a stream of nitrogen for approximately 5 minutes. The 

remaining mixture was lyophilised overnight in a freeze drier and the dried lipids were 

resuspended in 10 ml sterile distilled water by sonication in an ultrasonic bath followed 

by a sonication probe on ice (constant duty cycle, power 5, 2-3 minutes intervals) until 
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almost clear. The final suspension had a 1 :2.5 ratio by weight of DDAB to DOPE and 

could be stored at 4°C for up to one month. 

2.2.3.2. Liposome mediated transfection with 'in-house' -made 
liposomes 

Confluent mono I ayers of cells were washed once with OptiMEM (Gibco) low serum 

medium prior to application of the transfection mix. The DNA to be transfected (0.5-5 

J.lg) was diluted in 2501-11 of OptiMEM and combined with separately diluted liposomes 

(15J.lI in 250J.lI OptiMEM). The mixture was incubated at room temperature for 15 

minutes before addition to the cell monolayers. After 3 hours incubation at 37°C in a 

humidified incubator, the transfection mix was removed, cells were washed twice with 

0.5ml OptiMEM and 2ml DMEM containing 5% serum was added. Incubation continued 

for a further 20-48 hours before harvesting the cells for analysis. 

2.2.3.3. Liposome-mediated transfection with Lipofectamine 

Confluent monolayers of cells were washed once with Iml OptiMEM (Gibco) low serum 

medium prior to application of the transfection mix. The DNA to be transfected (0.5-5 

J.lg) was diluted in 100J.lI OptiMEM and combined with separately diluted Lipofectamine 

(5J.lI in 1001-11 OptiMEM). The mixture was incubated at room temperature for 45 

minutes, mixed with 800J.lI OptiMEM and added to the cell mono layers washed with 

OptiMEM (0.5 ml per 35mm dish). After 3 to 5 hours of incubation at 37°C in a 

humidified incubator, the cells were washed twice with OptiMEM and 2ml DMEM was 

added. Incubation continued for a further 20-48 hours. 

2.2.4. Chloramphenicol acetyl transferase (CAT) assays. 

CAT assays were adapted from Gorman et al (1982). Cell mono layers were harvested by 

scraping the monolayer off the dish with thin-wall tubing (1 mm bore) and pelleted by 

62 



Materials and Methods: Chapter 2 

centrifugation at 13,000 rpm for 1 minute in a benchtop centrifuge. The cell pellet was 

resuspended in 400 /-ll TEN buffer and centrifuged as before. The supernatant was 

removed by aspirating and the cells were resuspended in 75 /-ll 250mM Tris, pH 7.5, by 

vortexing. Three freeze-thaw cycles were performed (dry ice/ethanol bath- 37°C water 

bath) to disrupt the cells. The cell debris was removed by centrifugation at 13,000 rpm 

for 5 minutes and the supernatant, containing the CAT enzyme, was then heated to 60°C 

for 10 minutes to inactivate any deacetylase enzymes present. Extracts were then stored 

at -20°C or assayed immediately. 

The CAT assays were performed for between 2 to 20 hours at 37°C in a total volume of 

up to 75/-l1 depending on the amount of cell extract used. The reaction contained up to 

50/-l1 cell extract (equivalent to approximately half a cell monolayer from a 35mm dish), 2 

/-ll of 50mM acetyl coenzyme A and 1/-l1 of 14C chloramphenicol (0.1 /-lCi//-lI; 58.5 

mCi/mmole) in 250mM Tris-HCI, pH 7.5. 

After incubation, the reactions were mixed with 250/-l1 ethyl acetate, vortexed for 15 

seconds and incubated for 2 minutes at a room temperature. Following centrifugation at 

13,000 rpm for 5 minutes in a microfuge, the upper organic phase was removed and dried 

under vacuum on a Speed-Vac centrifuge to ensure the complete removal of traces of 

ethyl acetate. The residue of chloramphenicol was redissolved in 25/-l1 ethyl acetate and 

applied as a spot near the base of a thin layer chromatography plate. Ascending 

chromatography was performed using 95% chloroforml5% methanol until the solvent 

front had reached the top of the plate. The chromatographs were then removed from the 

tank, dried in a fume hood for 5 minutes and placed directly against Kodak X-omat S 

film for exposure (12 hours to 5 days). 

2.2.5. Preparation of competent bacterial cells and transformation. 

A colony of E.cali strain DH5a was picked from the plate, inoculated in 10 ml 2xYT 

broth and incubated in a shaker at 37°C overnight. One ml of an overnight bacterial 

culture was diluted into 100ml pre-warmed 2x YT broth in a 250ml flask and shaken for 
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approximately 2 hours at 37°C. The culture was cooled on ice for 5 minutes and the 

bacterial cells were harvested by centrifugation at 3,000 rpm for 10 minutes at 4°C, the 

pellet was gently resuspended in 30 ml cold TFBI buffer and placed on ice for an 

additional 90 minutes. The suspension was centrifuged at 3,000 rpm for 5 minutes and 

the pellet resuspended in 4 ml ice cold TFB2 buffer. The resulting competent bacterial 

cells were either used directly for transformation or quick freezed in dry-ice/ethanol and 

stored at -70°C. 

One hundred /-ll of competent cells were incubated with the ligation reaction (20/-ll) for 20 

minutes on ice, followed by a 90 second heat shock at 42°C to allow uptake of the ligated 

DNA by the E.coli cells. The reaction tube was returned to the ice, 600 /-ll Psi-broth 

added and the cells incubated for a further 90 minutes at 37°C in a shaker. Fifty /-ll of 

cells was then plated onto LB agar plate, containing appropriate antibiotics, and 

incubated overnight at 37°C to allow single colonies to form. 

2.2.6. Growth and titration of vaccinia virus. 

Large flasks (150 cm2) containing almost confluent mono layers of Vero E6 cells were 

infected with vTF7-3 virus stock at 0.05 pfulcell in DMEM-I0%FCS and the cells were 

incubated at 37°C for 1 hour with gentle agitation every 15 minutes. After virus 

adsorption for 1 hour, DMEM containing 5% foetal calf serum was added and the flasks 

incubated at 37°C for 48 hours. The infected cells were then scraped into the tissue 

culture medium and pelleted by centrifugation at 3,000 rpm for 5 minutes (Sorval SS34 

rotor). The pellet was resuspended in 10mM Tris-HCl, pH 9, at a rate of 2ml per large 

flask. The cell associated virus was released by three cycles of freeze/thawing and the 

nuclei removed by centrifugation at 1,000 rpm for 5 minutes. The supernatants were 

titrated by plaque assay on Vero E6 cell monolayers and stored at -20°C for use as 

working stocks of vaccinia virus. 
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2.2.7. Infection with vaccinia virus vTF7-3 

Recombinant vaccinia virus vTF7-3 (Fuerst et al.,1986) was used as a source of T7 

polymerase in cells. A confluent cell monolayer was washed with OptiMEM and vaccinia 

virus added as Sxl06 pfu/3Smm dish in SOO Jll OptiMEM. The cells were incubated at 

37°C for 1 hour, washed once with OptiMEM and transfected as described above. 
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Results and Discussion: Chapter 3 

ATTEMPTS TO DEVELOP A REVERSE 

GENETICS SYSTEM FOR HANTA VIRUSES 

3.1. Introduction 

The procedures developed during the 1990s to genetically manipulate the genomes of 

negative-strand RNA viruses, commonly referred to as reverse genetics, have enhanced 

the potential of investigation of viral gene expression and the dissection of cis-acting 

regulatory sequences important for replication and transcription. These new methods 

have facilitated studies of viruses that are present only in low titers in infected cells or 

whose isolation is problematic. They have provided important information in the study of 

the genetic expression and replication of RNA viruses by the use of mutagenesis, 

deletions, insertions and by complementation experiments, but also in the study of natural 

or induced RNA recombination, and mechanisms generating defective-interfering RNAs. 

Although reverse genetics systems for nonsegmented negative-strand RNA viruses such 

as vesicular stomatitis virus (Pattnaik et al., 1990), Sendai virus (Park et al., 1991) and 

respiratory syncytial virus (Collins et ai., 1991) have long been developed, the 

development of similar protocols for manipulating the genomes of segmented negative

strand RNA viruses have appeared to be more difficult. Despite this, over the past years, 

a number of mini genome systems to analyze the transcription and replication processes of 

segmented negative-strand RNA viruses has been described for the members of the 

families Orthomyxoviridae (Parvin et ai., 1989; Luytjes et al., 1989; Zobel et ai., 1993; 

Neumann et al., 1994; Enami et al., 1990; Hoffinann et al., 2000), Bunyaviridae (Dunn 

et ai., 1995; Lopez et al., 1995; Prehaud et al., 1997; Flick and Pettersson, 2001) and 

Arenaviridae (Lee et ai., 2000). 

Minigenome systems for negative-strand RNA viruses are based on intracytoplasmic 

reconstitution of the RNP complex, which represents the template for the viral 

polymerase, and is the prerequisite needed to start an infectious cycle. A common feature 
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of these vanous systems is that the template RNA is derived from a cDNA clone 

containing authentic viral terminal sequences. However, there are certain variations in the 

developed approaches based on the delivery of the template, the source of viral proteins, 

the type of promoter to drive the transcription and expression, and the sequences present 

in the template. Transcription of the template RNA requires viral proteins that can be 

supplied either by recombinant sources (Dunn et ai., 1995; Lopez et ai., 1995; Collins et 

ai., 1995; He et ai., 1997; Hoffmann and Banerjee, 1997) or by helper virus infection 

(Luytjes et ai., 1989; Park et ai., 1991). The template can be transcribed within the cell 

(Flick and Pettersson, 2001) or delivered into the cell either as a transfected naked RNA 

(Dunn et ai., 1995; Park et ai., 1991; Collins et ai., 1995) or ribonucleoprotein complex 

(Luytjes et ai., 1989). To direct transcription of the template and expression of viral 

proteins, various types of promoters have been utilized. These included the bacteriophage 

T7 promoter (Dunn et ai., 1995; Park et ai., 1991; Collins et ai., 1991; Luytjes et ai., 

1989; Lee et ai., 2000; Lopez et ai., 1995), RNA polymerase type I (pol I) promoters 

(Flick and Pettersson, 2001; Neumann et ai., 1994) and RNA polymerase type II (pol II) 

promoters (Flick and Pettersson, 2001; Neumann et ai., 1997). The sequences present in 

the template also may differ and contain either authentic viral transcripts or defective

interfering RNA sequences or reporter genes or mutated RNAs (Collins et ai., 1991; Park 

et ai., 1991; Dunn et ai., 1995; Pattnaik et ai., 1992; Lopez et ai., 1995). 

To date, methods to study the role of cis-acting sequences at the 5' and 3' termini of viral 

RNA (vRNA) segments of members of the family Bunyaviridae have been developed for 

Bunyamwera (BUN) virus (Orthobunyavirus genus) (Dunn et ai., 1995), Rift Valley 

fever (RVF) virus (Lopez et ai., 1995; Prehaud et ai., 1997) and Uukuniemi virus (UUK) 

(both Phiebovirus genus) (Flick and Pettersson, 2001). The methods for Bunyamwera 

and Rift Valley fever viruses were based on the now classical T7 -vaccinia virus system 

(Fuerst et ai, 1986) to express a chloramphenicol acetyItransferase (CAT) reporter cDNA 

flanked by 5' and 3' vRNA untranslated regions (UTRs). The reverse genetics system for 

UUK virus was developed using RNA pol I-mediated transcription of the chimeric viral 

RNAs also containing CAT reporter gene. In contrast to the vaccinia virus system, the 

chimeric cDNA (pol I expression cassette) was placed between the murine pol I promoter 

and terminator. 
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In this chapter, different strategies that were investigated in an attempt to develop the 

reverse genetics system for Puumala virus will be described. They were initially based on 

the system for Bunyamwera virus successfully developed in our laboratory by Dunn et al. 

(1995). Certain modifications had to be introduced to address some special features of 

hantaviruses, e.g., slow replication, inhibition of hantavirus replication by coinfecting 

vaccinia virus, and differences in the virus terminal sequences from those of 

Bunyamwera virus. 

Unfortunately, none of the approaches was successful though the results presented may 

help in designing new strategies in the future. 

3.2. Reverse genetics system for Bunyamwera virus 

An important step towards development of the reverse genetics system for Bunyamwera 

virus (BUN), a member of the Orthobunyavirus genus, was made by Dunn et al (1995). 

Initially, a methodology similar to the one described for influenza virus (Luytjes et al., 

1989) was adopted to study transcription of a BUN-like RNA containing a reporter gene. 

First, they chose to use hybrid vaccinia virus- T7 RNA polymerase system that was 

developed earlier for the expression of cloned foreign genes in mammalian cells. In its 

simplest, most versatile and widely used format, cells are infected with recombinant 

vaccinia virus expressing the bacteriophage T7 RNA polymerase, noted for its high 

transcriptase activity, stringent promoter specificity, and single subunit structure, and 

then transfected with one or multiple plasmids that contain the target gene of interest 

preceded by a T7 promoter. 

Second, they had to consider sequences at the 5'- and 3' - termini of viral RNAs. 

Bunyamwera virus is a segmented virus that contains RNA molecules with negative

sense polarity. During the replication cycle, recognition of the 5' - and 3' -structures of the 
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three vRNA segments by the viral RNA-dependent RNA polymerase results in the 

replication and transcription of the BUN virus genes. The fact that the tenninal sequence 

elements are highly conserved and complementary indicated that these sequences are 

important for recognition by the viral polymerase and encapsidation by N protein 

(Kolakofsky and Hacker, 1991). The development of influenza virus (Luytjes et a/., 

1989), respiratory syncytial virus (Collins et al., 1991) and vesicular stomatitis virus 

(Moyer et al., 1991; Smallwood and Moyer, 1993) reverse genetics systems suggested 

that only the terminal regions of the viral RNA are required for nucleocapsid fonnation. 

Therefore, a transcribed artificial RNA should have sequences that are the same as those 

of the 5' and 3' ends. 

In the mini genome system, the RNA template was transcribed from a plasmid comprising 

a negative-sense reporter gene (chloramphenicol acetyltransferase or CAT) flanked by 

the exact 5' and 3' untranslated regions of the BUN S RNA segment. A unique 

downstream restriction enzyme site Bbsl allowed run-off transcripts to be made with 

defined 3' ends. The promoter was truncated (lacked three tenninal guanosine residues) 

so that transcription by polymerase would initiate on the first viral nucleotide (A) of the 

BUN sequence (Fig. 3.1). Cells infected with recombinant vaccinia virus vTF7-3, which 

synthesises T7 RNA polymerase, were transfected with chimeric RNA and plasmids 

expressing BUN Land N proteins under control of a T7 promoter. The transfection of all 

plasmids into cells resulted in the expression of CAT protein, as measured by its 

enzymatic activity. This indicated that a negative-sense RNA synthesized from the CAT 

reporter plasmid was reconstituted intracellularly into functional RNPs. These RNPs 

were then transcribed by the viral RNA polymerase into mRNA, which was translated 

into CAT protein (Fig. 3.2). 

Dunn and coworkers also showed that transcripts containing 11 (cleaved at the Xbal site) 

or 35 (cleaved at the HindlII site) extra nucleotides at the 3' end (Fig.3.1) were still 

recognised by the viral polymerase. However, deletion of the tenninal 5 nucleotides at 

the 3' end, using the Hgal site within the BUN sequence, reduced CAT activity by at 

least 99.5%. 
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bsI 

BUN 3'UTR 

T7 promoter + 1 
.. . TAATACGACTCACTATA AGTAGTGTA ... 
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Fig.3.l. Plasmid map of pBUNSCAT (Dunn et al. , 1995). The truncated T7 
promoter initiates transcription on the first base (A) of the BUN sequence. 
Runoff transcripts are produced by linearizing the DNA at the indicated 
restriction sites. The recognition sequences are underlined, and the digestion 
sites for BbsI are shown by blue arrows and those for HgaI by green arrows. T7, 

bacteriophage T7 promoter. 
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Fig. 3.2. Recognition of the bunyavirus template. 
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The transfection of all plasmids into cells results in the expression of CAT 
protein, as measured by its enzymatic activity. A negative-sense RNA is 
synthesized from the CAT reporter plasmid. It is then reconstituted 
intracellularly with N protein (supplied by expression plasmid) into 
functional RNPs. These RNPs are then transcribed by the viral RNA 
polymerase (L protein also supplied by expression plasmid) into mRNA 
which is translated into CAT protein. Expression of CAT protein is measured 
by its enzymatic activity. 
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3.3. T7 RNA polymerase system for Puumala virus 

3.3.1. Cell lines BHK T7-SIN and Vero T7 stably 

expressing T7 RNA polymerase 

Most of reverse genetics systems described to date utilize recombinant vaccinia virus as a 

source of bacteriophage T7 RNA polymerase (Dunn et at., 1995; Lopez et at., 1995; 

Prehaud et at., 1997; He et at., 1997; Hoffmann and BaneIjee, 1997). Although vaccinia 

helper virus has many advantages such as cytoplasmic capping activity and high levels of 

expression, it has several drawbacks including the shut-off of nuclear transcription and 

cytopathic effects. 

A modification of the initial Bunyamwera minireplicon system was introduced by 

replacing vaccinia virus with two cell lines, BHK T7-SIN and VeroT7, that stably 

express T7 RNA polymerase. Noncytopathic Sindbis virus replicons (SINrep 19 T7) that 

allow long-term expression of T7 RNA polymerase in BHK-21 cells have been 

developed by Agapov et at (1998) and kindly provided by Charles M. Rice, Washington 

University School of Medicine, St.Louis, MO. These replicons contain the gene for 

puromycin resistance under control of the Sindbis subgenomic RNA promoter. 

Transfection of in vitro transcribed RNA of the SINrep19 T7 into BHK-21 cells 

produces a population of puromycin-resistant cells due to constitutive replication and 

transcription of the noncytopathic replicon. Long-term expression of an additional 

foreign gene has been achieved in cells transformed with replicons that contain a second 

sUbgenomic RNA promoter. Cells that carry a replicon that expresses T7 RNA 

polymerase can transcribe genes under the control of the T7 promoter following 

transfection of that DNA. The cell line BHK T7-SIN established based on this approach 

was used in the following experiments. 

Another cell line, Vero T7, which stably expresses the T7 RNA polymerase, was supplied 

by Dr. X. Shi. It was established by transfecting VeroE6 cells, that support hantavirus 

replication, with the pAM8-1 vector (Zhang et at., 1999), which contains chicken beta-
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actin promoter followed by T7 RNA polymerase gene and Rous sarcoma virus promoter 

followed by the puromycin resistance gene in two reversely arranged expression units 

(Fig. 3.3). 

3.3.2. Protein-expressing plasmids 

Two protein-expressing plasmids, pTMPUUS and pTMPUUL, were supplied by Dr. X. 

Shi. 

pTMPUUS plasmid for expression of Puumala virus N protein. Puumala virus S 

segment cDNA (nt 43-1340) was cloned under control of a T7 promoter into an internal 

ribosome entry site (IRES)-containing cloning vector pTMl allowing translation in a cap

independent manner (Moss et al., 1990) between Nco I and Pst! sites. 

pTMPUUL plasmid for expression of Puumala virus L protein. The consensus 

Puumala L segment cDNA (6550nt) was assembled from different individual L clones 

and cloned between Nco I and XhoI sites of pTMl cloning vector under control of T7 

promoter and IRES. 

3.3.2.1. Expression of the N protein from pTMPUUS 

Metabolic labelling of Vero E6 cells infected with recombinant vaccinia virus vTF7-3 

and transfected with pTMPUUS plasmid before (Fig. 3.4, A) and after (Fig. 3.4, B) 

immunoprecipitation with anti-PUU N antibody was performed to determine if the 

nucleocapsid protein of the correct size could be expressed from pTMPUUS. 

The T7 vaccinia virus system was chosen as a simple approach to test the expression of 

the protein from T7 promoter-containing plasmid as it is known to give high levels of 

protein expression. In this system, the recombinant vaccinia virus vTF7-3 expresses T7 

RNA polymerase. Infection with the virus prior to plasmid transfection results in 
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Fig.3.3. Plasmid map of a pAM8-1 vector (Zhang et al., 1999) used to produce 
Vero T7 cells that stably express bacteriophage T7 polymerase. The plasmid 
contains chicken beta-actin promoter followed by T7 RNA polymerase gene and 
Raus sarcoma virus promoter followed by the puromycin resistance gene in two 
reversely arranged expression units. Transfection of the vector into Vero E6 
cells and selection with puromycin produces a population of puromycin-resistant 
cells that stably express bacteriophage T7 polymerase 
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Fig. 3.4. Expression ofPUU N protein from pTMPUUS. 
A. Vero E6 cells were infected with vTF7-3 at 5 pfulcell and transfected with 1 /-lg 
pTMPUUS (lane 3). 24 hrs postinfection, the cells were labelled with 50/-lCi 35S 
methionine for 2 hours. Proteins were analysed by 16% SDS-PAGE and 
autoradiography. The band corresponding to the protein of 50kDa in size is clearly 
seen on the gel (lane 3) which demonstrates that PUU N protein of a correct size is 
indeed produced from pTMPUUS expression plasmid. No band corresponing to N 
protein is seen in lysates from vTF7-3 infected (lane 2) or mock infected cells (lanes 
1 ). 
B. Immunoprecipitation ofPUU N protein with anti-PUU N antibody. N protein was 
expressed from pTMPUUS either in Vero E6 cells infected with vTF7-3 as a source of 
T7 RNA polymerase (lane 3) or in VeroT7 cells stably expressing T7 polymerase 
(lane 4). Bands of the appropriate size corresponding to N protein are marked with a 
blue arrow. Cell lysates from mock (lane 1) and vvTF7-3 (lane 2) infected were 
immunoprecipitated with anti-N antibody to demonstrate the specificity of the IP 
procedure. No bands corresponding to N protein were observed. 
Prestained molecular weight standards were run on the gels and their positions 
indicated at the left. 
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expression of T7 RNA polymerase in the cytoplasm of infected cells. The T7 RNA 

polymerase drives the transcription of mRNA from the plasmid that contains S gene 

under control of the T7 promoter. 

Confluent Vero E6 monolayers were infected with the recombinant vTF7 -3 virus at a 

MOl of 5 pfu/cell and transfected with 1 J..lg of pTMPUUS 1 hour later. After incubation 

for 24 hours, the cells were labelled for 2 hrs in the presence of 35S methionine and lysed. 

Protein expression from transfected plasmid was analyzed by 16% SDS-polyacrylamide 

gel electrophoresis and autoradiography. As seen on the gel, a band corresponding to the 

protein of 50 kDa can be clearly identified (lane 3) which confirms that the PUU N 

protein of the correct size is indeed expressed from pTMPUUS plasmid. No equivalent 

bands of a similar size can be observed either in mock-infected (lane 1) or vaccinia virus 

infected (lane 2) cells that were run as negative controls. 

In addition to the direct labelling of the nucleocapsid protein transiently expressed in 

vaccinia virus system, immunoprecipitation of PUU N expressed from pTMPUUS 

plasmid (Fig.3.4, B) either in Vero E6 cells infected with vTF7-3 (lane 3) or in Vero T7 

cells stably expressing T7 RNA polymerase (lane 4) was performed. Proteins 

radiolabelled as described before were immunoprecipitated with anti-PUU N antibody 

(see Methods) and the immunoprecipitates were analysed by 16% SDS-PAGE. 

Bands corresponding to the protein of 50 kDa were clearly detected (lane 3 and 4) 

indicating that PUU N protein of the correct size was successfully expressed both in 

vaccinia virus system and in Vero T7 cells expressing T7 polymerase. As negative 

controls, lysates from mock (lane 1) and vaccinia virus infected cells (lane 2) were 

immune-precipitated using anti-PUU N antibodies. No bands of the corresponding to the 

N protein size were detected. 

This experiment demonstrated that Puumala virus N protein of the correct size (50 kDa) 

is indeed expressed from pTMPUUS construct using both T7 vaccinia virus system and 

also Vero T7 cells as alternative sources of the bacteriophage T7 polymerase. 
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3.3.3. 'Transcription' pJasmids pPUUSCAT and 

pT7riboPUUSCAT 

In the first step toward the establishment of a reverse genetics system, a reporter gene is 

usually used to demonstrate functionality of the system. High conservation and 

complementarity of the terminal sequences of Puumala virus genome segments indicated 

that they are essential for recognition by the viral polymerase (see Chapter 1). Similar 

requirements were demonstrated by mini genome systems developed for Bunyamwera 

virus (Dunn et al., 1995), influenza virus (Luytjes et al., 1989), respiratory syncytial virus 

(Collins et al., 1991) and Rift Valley fever virus (Lopez et al., 1995). 

To apply the reporter system to Puumala virus, assuming that the transcription and 

translation signals lie in the non-coding regions (untranslated regions, UTRs) of viral 

segments, it was decided to base two reporter constructs, pPUUSCAT and 

pT7riboPUUSCAT, on the most highly expressed segment (the S segment) to increase 

the levels of reporter gene expression. In hantavirus infected cells, the quantity of each 

mRNA transcripts correlates inversely with the length of the transcripts. This is also the 

case for bunyaviruses. However, the results of the reverse genetics system for 

Bunyamwera virus (Dunn, 2000) have shown that the efficiency of expression of the 

reporter gene in the context of each of the BUN segments, was in the order ofL {taken as 

100%»M (60-70%»»S (3-10%), a complete inversion of the ratios of mRNA 

transcripts found in BUN virus infected cells. This suggests that the conditions of the 

reporter system differ from infected cells and additional factors must influence the 

transcript levels in the context of the infected cells. Therefore, it was decided to base one 

construct (pT7riboPUULCAT) on the L segment 3' and 5' UTRs. These reporter gene 

containing constructs, kindly supplied by Dr. X.Shi, employed T7 RNA-polymerase 

promoter and contained CAT gene in antisense orientation flanked by viral 5' and 3' 

UTRs. It was expected that transcripts from the reporter constructs would behave as 

authentic viral RNAs. 
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The tenninal sequences are strictly conserved among different hantaviruses. Therefore, in 

developing a reverse genetics system for Puumala virus, the precise 3' and 5' tenninal 

sequences were assumed to be essential for recognition by the viral polymerase and 

transcription. To achieve the exact 5' tenninus, the viral 5' UTR was placed immediately 

downstream of the truncated T7 RNA promoter. In bacteriophage T7, RNA polymerase 

usually initiates on a guanosine residue immediately downstream of the conserved 17bp 

promoter (Fig.3.5, A). The next two transcribed nucleotides are also guanosines. In the 

systems developed for Bunyamwera virus (Dunn et al., 1995) and influenza virus 

(Luytjes et al., 1989), a truncated version of the T7 promoter lacking the last three 

guanosine (G) residues was used. The required sequences were therefore expected to be 

obtainable by replacing the usual G triplet with viral sequence. 

Influenza virus and bunyavirus cRNA transcripts were successfully generated 

demonstrating that T7 RNA polymerase was able to initiate transcription starting with an 

adenine (Fig. 3.5, B). It was decided to use a similar approach for construction of reporter 

constructs for Puumala virus: the 5' UTR was cloned immediately downstream of a 

truncated T7 promoter lacking three G residues. 

To ensure that the transcribed RNA would have 3' tennini authentic to the viral 

sequence, the constructs contained either BbsI restriction site immediately downstream of 

PUU 3' UTR to produce run-off transcripts (plasmid pPUUSCAT) or self-cleaving 

hepatitis delta virus ribozyme sequence, HDV (plasmid pT7riboPUUSCAT) (Fig.3.6). 

The plasmid pPUUSCAT directs the synthesis of a PUU virus-like RNA containing the 

coding region of the chloramphenicol acetyltransferase (CAT) gene. The antisense CAT 

coding sequence was cloned in place of the PUU S segment coding region in a negative

sense cDNA under control of a T7 promoter. A BbsI restriction site was engineered 

downstream of the PUU sequence to allow run-off transcription to tenninate exactly at 

the 3' nucleotide of the PUU sequence therefore giving the precise 3' end. The complete 

untranslated regions of the PUU S segment were included since these were presumed to 

contain all the transcriptional control signals. Thus T7 transcripts derived from 

pPUUSCAT would have the authentic tennini of PUU S segment RNA and would 
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BUN .... TAATACGACTCACTATA AGTAG TGT ... AGUAGUGU ... 

INFL .... TAATACGACTCACTATA AGTAGAAA ... AGUAGAAA ... 

RVF .... TAATACGACTCACTATA ACACAAAG... ACACAAAG ... 

HTV .... TAATACGACTCACTATA TAGTAGTAG ... UAGUAGUAG ... 

Fig. 3.5. T7 promoter initiation and requirements for RNA transcription 
by Bunyamwera virus, Rift Valley fever virus, influenza virus and 
hantavirus. A. The 17nt core promoter is written 5'-3' top strand. The 
optimum initiation nuc1eotides - three G residues, as found in 
bacteriophage T7 (Hamm et ai., 1990). B. DNA sequences transcribed 
into RNA are shown in bold with the first transcript base shown labelled 
+ 1. The alternative bases required for transcription ofbunyavirus (BUN), 
influenza virus (INFL) , Rift Valley fever virus (RVF) or hantavirus 
(HTV)-like transcripts. Except for hantavirus, the three viruses initiate 
transcription with an A residue (shown in red) and their transcripts were 
successfully generated. However, in the case of hantavirus, T7 
polymerase would have to start transcription with a U residue (shown in 
blue). 
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Fig. 3.6. Plasmid maps of reporter constructs pPUUSCAT (A) and 
pT7riboPUUSCAT (B). In both constructs, the coding sequence for CAT gene 
(in the antisense orientation) is flanked by the 5' and 3' UTRs of PUU virus S 
segment. Truncated T7 promoter (without three terminal G residues) defines 
exact viral 5' terminal sequence. The authentic 3' end of the RNA is specified 
by restriction digestion with BbsI (A) or by self-cleavage of the nascent RNA by 
the hepatitis delta virus (HDV) anti genome ribozyme (B). 
The conserved 9 terminal bases of Puumala virus S genome segment are shown 
in blue. T7, T7 promoter; T7term, T7 transcription termination sequence; HDV, 
hepatitis delta virus ribozyme sequence. 
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contain (in 5' to 3' order) the 442-nucleotide (nt) 5' noncoding region ofPUU S segment, 

the entire CAT ORF in negative polarity, and the 43-nt PUU S segment 3' noncoding 

region (Fig. 3.6, A). After transfection of linearized plasmid into cells expressing PUU 

virus Land N proteins CAT activity would only be detected if the RNA were recognized 

and transcribed into message-sense RNA by the virus polymerase. 

The plasmid pT7riboPUUSCAT contains a T7 promoter, hepatitis delta virus (HDV) 

antigenome ribozyme (Perrotta and Been, 1991) and T7 terminator sequence (Fig. 3.6, 

B). The transcript generated intracellularly by T7 RNA polymerase contained the 

genomic polarity of HDV ribozyme which provided autolytic cleavage at the 5' of the 

HDV ribozyme sequence, generating a 3' end of the upstream RNA that corresponded to 

the authentic PUU S RNA 3' terminus. A similar approach has been used successfully 

with a variety of negative-strand RNA viruses (Dunn et aI., 1995; De and Banerjee, 1993; 

He et al., 1997; Neumann et al., 1999; Lee et al., 2000). 

In addition to the two plasmids based on the 3' and 5' UTRs of the Puumala S segment, 

the third reporter construct, based on the L segment 3' and 5' UTRs, was used. The 

plasmid pT7riboPUULCAT was constructed in analogous manner as pT7riboPUUSCAT, 

only S segment UTRs were substituted with the L segment UTRs. 

3.3.4. Transfection and optimization of conditions 

As was shown for Bunyamwera virus (BUN), transcription of the BUN-like RNA 

containing an antisense CAT gene was dependent on expression of the gene products of 

the BUN L and S segments and the level of CAT activity produced following 

transfection of the chimeric RNA was also dependent on the amount and ratio of these 

proteins synthesized in the cells (Dunn et al., 1995). 

The ability of Puumala virus Land N proteins expressed by transfected plasmids to 

transcribe the chimeric RNA template was investigated by transfection method using 

'home-made' liposomes and then measuring CAT activity (see Methods). 
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Vero T7 and BHK T7 -SIN cells were transfected with the mixture comprising two 

protein-expressing plasmids pTMPUUS, pTMPUUL and one of the reporter constructs: 

either pT7riboPUUSCAT or T7riboPUULCAT or pPUUSCAT. When plasmid 

pPUUSCAT was used, it was linearized by digestion with BbsI restriction enzyme and 

the cells were transfected with the linearized plasmid (see Methods for details). After 

incubation for 3 to 5 hours at 37°C, growth medium was added (10% DMEM) and 

incubation continued for 16 to 96 hours. 

To optimize the conditions, different ratios and amounts of reporter construct and 

expression plasmids were used. The amount ofpTMPUUL was in the range from 1 to 10 

ng, 10 to 100 ng, 100 ng to 1 /-lg , and 1 to 5 /-lg, while reporter plasmid and pTMPUUS 

were taken in equal or different amounts in the range from 0.5 to 2.5 /-lg. 

Different times of incubation were also tested and continued for up to 96 hours. When the 

cells were incubated for more than 48 hours, the transfection mix together with growth 

medium were replaced with maintenance medium (2% DMEM) and incubation 

continued. 

Positive and negative controls were included in each experiment. Reporter construct 

alone was used as a negative control (Fig.3.7, lane 1). Without plasmids expressing PUU 

proteins no CAT activity would be possible. It would only be detected if the RNA were 

recognized and transcribed into message-sense RNA by the Puumala virus Land N 

proteins. The positive control was plasmid pMXCAT (lane 2) that contained CAT gene 

under control of T7 promoter. Upon transfection into the cells, it would be transcribed by 

T7 polymerase expressed intracellularly. Expression of CAT gene would result in 

measurable CAT activity. Each experiment was repeated at least twice, however none of 

the experiments gave positive results. 

To make sure that the negative results were due to specific Puumala virus requirements 

and not to the requirements of the system, e.g. inactive liposomes, contamination, the 

reverse genetics system developed in our laboratory for Bunyamwera virus was tested. 

The original reconstituted system developed by Dunn et al (1995) and based on vaccinia 
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Fig. 3.7. Reporter gene expression from pT7riboPUUSCAT by recombinant Puumala virus proteins. 
Vero T7 cells (expressing bacteriophage T7 polymerase) were transfected with pTMPUUL (PUU L 
gene under control of T7 promoter), pTMPUUS (PUU N gene under control of T7 promoter) and a 
reporter construct pT7riboPUUSCAT (lanes 3-12). Cell extracts were prepared 72 hours 
posttransfection and assayed for CAT activity. Varying amounts of plasmids are indicated above. 
Lane 1, negative control: pT7riboPUUSCAT; lane 2, positive control: pMXCAT (CAT reporter gene 
under T7 promoter control) 
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helper virus, vTF7-3, was subsequently modified to express a BUN minireplicon in T7-

expressing cells (Weber et ai., 2001). 

BHK T7 -SIN cells were transfected with 0.5 !-lg of a reporter construct 

pT7riboBUNSCAT and 1 !-lg of protein-expression plasmids pTMBUNL (encoding BUN 

L protein) and either pTMBUNN (encoding BUN N) (Fig.3.8, lane 3) or pTMBUNS 

(encoding both BUN Nand NSs) (lane 4). The cells were incubated at 37°C for 3 hours. 

The transfection mixture was then removed and replaced with growth medium. After 

incubation for 24 hours, the cells were lysed and cell lysates subjected to CAT assay. 

Strong CAT signal comparable to that of the positive control was obtained when BUN 

minireplicon system was tested (compare lanes 2, 3 and 4). This indicated that the failed 

attempts to reconstitute Puumala virus RNPs intracellularly, of which expression of the 

CAT gene would be indicative, were due to specific Puumala virus requirements. 

3.3.5. Reporter constructs pT7GGriboPUUSCAT and 

pT7GGriboPUULCA T 

As described before, the 5' end of pT7riboPUUSCAT mini genome was defined by the 

adjacent promoter for T7 polymerase which was truncated so as not to have an extension 

of three nonviral G residues to the 5' end of the encoded minigenome. A similar approach 

was shown to be successful for three other viruses, influenza virus (Luytjes et ai., 1989), 

Bunyamwera virus (Dunn et ai., 1995) and Rift Valley fever virus (Lopez et ai., 1995). 

Influenza virus and bunyavirus have the same first five 5' nucleotides: the terminal 

nucleotide is an adenine residue which is followed by guanosine and then uri dine (Fig. 

3.5). The cRNA transcripts of these viruses were successfully generated demonstrating 

that T7 RNA polymerase was able to initiate transcription starting with an adenine 

residue. However, the hantavirus 5' sequence, unlike genome segments of these viruses, 

starts with a uri dine followed by adenine and then guanosine. 
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Fig. 3.8. Reporter gene expression from pT7riboBUNSCAT. BHK T7-SIN cells 
(expressing bacteriophage T7 polymerase) were transfected with 0.5 ~g reporter 
construct pT7riboBUNSCAT, 1 ~g pTMBUNL (encoding BUN polymerase) and 
either 1 ~g pTMBUNN (encoding BUN N protein) (lane 3) or pTMBUNS (encoding 
both BUN Nand NSs proteins) (lane 4). Cell extracts were prepared 24 hours 
posttransfection and assayed for CAT activity. Lane 1, negative control: 
pT7riboBUNSCAT; lane 2, positive control: pMXCAT (CAT reporter gene under 
control of a T7 promoter) 



Results and Discussion: Chapter 3 

Dunn and Studier (1983) have shown that T7 RNA polymerase can initiate transcription 

of its own viral genes with a purine, either a guanosine or adenine, as the first encoded 

nucleotide. It has also been reported that, depending on the sequence downstream of the 

T7 promoter, the T7 RNA polymerase run-off transcripts demonstrate a degree of 

heterogeneity of the 5' termini (Pleiss et al., 1998). This could explain the findings by 

Chapmann and Burgess (1987) who presented evidence that T7 RNA polymerase may be 

able to initiate transcription with a pyrimidine. These authors showed that the construct 

that contained a G to T substitution at nucleotide position + 1 within full length T7 

promoter (therefore expected to initiate transcription from uridine at +1) gave 

approximately 80% transcription activity compared to the authentic T7 promoter 

sequence. However, this was a quantitative study of the transcripts produced rather than 

qualitative and no attempt was made to determine the actual viral 5' nucleotides 

produced. It is therefore possible that transcription from the position +1 was in fact 

initiated from the purine (guanosine) at position +2 as described by Pleiss et al (1998). 

Another attempt to clarify this matter was made in our laboratory by making a reporter 

construct pBUNSCAT 5'(-2) that contained deletion of the first two BUN 5' nucleotides 

(AG) (Dunn, 2000). Initiation of transcription by T7 polymerase would therefore be 

expected to start from a U. However, the results were not conclusive. It was assumed that 

transcription from this clone could be initiated with a purine (A) at position +2 and not a 

pyrimidine (U) at position + I with respect to the T7 RNA promoter. An attempt was also 

made to determine the nature of the nucleotides at the 5' terminus of transcripts by using 

RNA ligation of the resulting run-off transcripts followed by reverse transcription and 

PCR with appropriate primer, however, it was unsuccessful. 

Taking into account the fact that the question of transcription initiation with a uridine is 

still unresolved in the literature, it seemed possible that it would be more difficult for T7 

polymerase to give transcription that starts with uridine. This could explain the failure of 

the previous experiments that employed constructs that had the viral sequence placed 

immediately downstream of a T7 promoter lacking G residues. Therefore, in the new 

reporter constructs, pT7GGribo PUUSCAT and pT7GGriboPUULCAT, it was decided to 

use a truncated version of the T7 promoter sequence containing two G residues (Fig. 3.9, 

A). 
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Fig.3.9. Plasmid map of the pT7GGriboPUUSCAT reporter construct. (A). The 
coding sequence for CAT gene (in the antisense orientation) is flanked by the 5' 
and 3' UTRs of Puumala virus S segment. RNA transcripts produced by 
bacteriophage T7 RNA polymerase would contain two G residues, derived from 
T7 promoter, before the authentic Puumala virus 5' terminal sequence. The 
exact 3' end of the RNA is specified by self-cleavage of the nascent RNA by the 
hepatitis delta virus (HDV) anti genome ribozyme. The conserved 9 terminal 
bases of Puumala virus S genome segment (shown in blue) contain a mismatch 
in position 9 (shown in pink). T7, T7 promoter; T7term, T7 transcription 
termination sequence. (B). 5' -end sequence analysis using 
pT7GGriboPUUSCAT as a template and T7 promoter primer. Partial sequence 
of T7 promoter is shown in black, two additional G residues in red, and 9 viral 
5' terminal nucleotides with a mismatch in position 9 (T instead of G) are shown 

in blue. 
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The presence of additional G residues adjacent to the nontranscribed core of the T7 

promoter was shown to improve its transcriptional efficiency and the presence of two G 

residues in particular was demonstrated to provide the highest levels of activity in the 

reconstituted system for different viruses, for example human parainfluenza virus type 3 

(Durbin et at., 1997). It was assumed that these Gs would be lost during intracellular 

PUU-mediated RNA replication, as was shown for vesicular stomatitis virus (Pattnaik et 

at., 1992) and Sendai virus (Pelet et at., 1996). The effect of two additional G residues at 

the 5' end before the conserved terminal Bunyamwera virus sequence was investigated 

by Dunn et at (1995) and the results demonstrated that the presence of two Gs still 

allowed recognition by the Bunyamwera transcriptase complex. 

It is of note that the sequence present at the 5' end of the panhandle structure is very 

important for the recognition of the RNA by the viral polymerase (Chapter 1), as it was 

shown for other negative-strand RNA viruses. For instance, Dunn et at (1995) showed 

that disruption of the double-stranded structure by a mismatch at position 12 in the 5' 

terminus of the Bunyamwera virus template led to the loss of transcription activity. 

Influenza virus can serve as another example. The mismatch region in the panhandle 

structure formed by genome segment termini has been shown to be the virus polymerase 

binding site. Conversion of the termini to exact complementarity destroys polymerase 

binding (Tiley et at., 1994). Also, the balance between transcription and replication of 

vesicular stomatitis virus has been shown to be influenced by the extent of 

complementarity of virus RNA termini (Wertz et at., 1994). 

However, the data on precise 5' terminal hantaviral sequences is somewhat inconsistent: 

some 5' and 3' termini are reported to be entirely complementary (Yao et at, 2000; Sun et 

aI., 2000; Plyusnin et at., 1994b; Plyusnin et at., 1995; Kariwa et aI., 1999) while others 

have a mismatch in position 9 (Kukkonen et at., 1998; Sun et at, 2001; Piiparinen et at., 

1995; Huang et at., 1996; Bowen et at., 1995). If the authentic hantaviral sequence 

indeed has a mismatch at position 9 then restoration of complementarity could drastically 

affect recognition by the viral polymerase. That is why in the new version of the reporter 

constructs, in addition to two nonviral G residues at the 5' termini, it was decided to use a 
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sequence that would produce a mismatch in position 9, e.g., being TAGTAGTAT instead 

of TAG TAG TAG (Fig. 3.9, A, B). 

Using new reporter constructs pT7GGriboPUUSCAT and pT7GGriboPUULCAT, a 

number of experiments were performed based on transfection conditions and different 

amounts and ratios of plasmids similar to the ones described before. Briefly, Vero T7 and 

BHK T7 -SIN cells were transfected with mixture comprising two protein-expression 

plasmids pTMPUUS and pTMPUUL, and either pT7GGriboPUUSCAT or 

pT7GGriboPUULCAT reporter construct. Reporter plasmid and pTMPUUS were taken 

in equal or different amounts in the range from 0.5 to 2.5 J.lg. The amount of L protein 

expressing plasmid varied from 1 to lOng, 10 to 100 ng, 100 to 1 J.lg, and 1 to 5 J.lg. The 

cells were incubated for 3 hours at 37°C after which the transfection mixture was 

replaced by growth medium and incubation continued for additional 48 hours. Each 

experiment was repeated twice, however, none resulted in CAT expression. 

3.3.6. Reporter construct pHH&HDVriboPUULCAT 

In another attempt to produce precise 5' viral termini, a new construct was used. In this 

minigenome reporter construct, a cDNA copy of a cis-active hammerhead ribozyme 

sequence (Birikh et ai., 1997) was cloned between the T7 RNA polymerase promoter and 

the L segment 5' UTR in pT7riboPUULCAT reporter construct (kindly supplied by Dr. 

X.Shi). Therefore, the exact 5' end would be produced by self-cleavage by a hammerhead 

ribozyme, while authentic 3' viral termini would be produced by self-cleavage by 

hepatitis delta virus ribozyme sequence (Fig. 3.10). 

The same transfection conditions were applied as before and sets of experiments carried 

out. Briefly, Vero T7 and BHK T7-SIN cells were transfected with a mixture comprising 

protein-expression plasmids, pTMPUUS and pTMPUUL, and a reporter construct 

pHH&HDVriboPUULCAT. The reporter construct and N protein expressing plasmid 

were taken in the range from 0.5 to 2.5 J.lg, while the amount ofpTMPUUL varied in the 

range from 100 ng to 5 J.lg. The cells were incubated for 3 hours and the transfection 
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Fig. 3.10. Plasmid map of the reporter construct pT7HH&HDVriboPUULCAT. (A) The 
coding sequence for CAT gene (in the antisense orientation) is flanked by the 5' and 3' 
UTRs of PUU virus L segment. Exact viral 5' terminal sequence is defined by 
hammerhead ribozyme attached to the 5' UTR of Puumala L segment. The authentic 3' 
end of the RNA is specified by self-cleavage of the nascent RNA by the hepatitis delta 
virus (HDV) antigenome ribozyme. The conserved 9 terminal bases of Puumala virus S 
genome segment are shown in blue. (B). Secondary structure of the hammerhead 
ribozyme attached to the 5' end of the Puumala virus L segment. Core residues of the 
ribozyme are shown in bold; Puumala virus sequence is in blue. Numbering refers to the 
first Puumala virus nucleotide as 1. T7, T7 promoter; T7term, T7 transcription 
termination sequence; HH, hammerhead ribozyme; HDV, hepatitis delta virus ribozyme 
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mixture was replaced with growth medium. The incubation continued for additional 48 

hours after which the cells were lysed and assayed for CAT activity. Each experiment 

was repeated twice, however, none resulted in CAT activity. 

3.4. Expression of the proteins from polymerase II type promoter 

To look for an alternative approach, I turned to the pol II (CMV) protein expression 

system. In this system, cDNAs coding for the viral RNA segments are cloned between 

the human cytomegalovirus (CMV) promoter and terminator to generate transcripts 

utilizing cellular RNA polymerase instead of bacteriophage T7 polymerase. A similar 

approach was used by Flick and Pettersson (2001) to express Uukuniemi virus Land N 

proteins. 

3.4.1. Construction of pCMV PUUS and pCMV PUUL 

expression plasmids 

pCMVPUUS 

pEGFP-N1 cloning vector, containing human cytomegalovirus (CMV) promoter and a 

gene coding for EGFP protein was cleaved with XmaI / NotI restriction enzymes to cut 

out EGFP gene to form ~EGFP vector (Fig.3.11). Puumala S segment (nt 43-1340) was 

PCR amplified using pTMPUUS as a template with primers incorporating Sad and PstI 

restriction enzyme sites. It was then digested with the same enzymes and cloned into 

~EGFP that was cleaved with the same enzymes. The resultant construct pCMVPUUS 

contained S gene coding for N protein under control of CMV promoter 
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Fig. 3.11. Construction of pCMVPUUS plasmid expressing Puumala virus N protein 
under control of CMV promoter. pEGFP-Nl cloning vector, containing human 
cytomegalovirus (CMV) promoter and a gene coding for EGFP protein was cleaved 
with XmaI / Not! restriction enzymes to cut out EGFP gene to form ~EGFP vector. 
Complete Puumala S segment was PCR amplified using pTMPUUS as a template with 
primers incorporating Sac! and Pst! restriction enzyme sites. It was then digested with 
the same enzymes and cloned into ~EGFP that was cleaved with the same enzymes. 
The resultant construct pCMVPUUS contained S segment under control of CMV 

promoter. 
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pCMVPUUL 

The plasmid pCMVPUUL was constructed in several steps (Fig.3.12). Although 

pTzPUUL plasmid could be used for cloning purposes as it had appropriate restriction 

enzyme sites also present in pEGFP-N1 cloning vector, the sequence coding for the L 

protein was found to contain mutations. Therefore, the appropriate fragment of L gene in 

pTMPUUL plasmid was used to substitute for the fragment of L in pTzPUUL that 

contained mutations. A section of the L segment (nt 1170-6550) was isolated as a 

BamHII Sail restriction fragment from pTMPUUL and cloned into pTzPUUL that had 

been digested with the same enzymes to form L1pTzPUUL. The L gene (nt 37-6550) was 

then cleaved using restriction enzymes Sad and SaIT, and ligated into L1pEGFP cloning 

vector digested with the same restriction enzymes, to form pCMVPUUL. The resultant 

construct, pCMVPUUL, contained Puumala virus L gene under control of CMV 

promoter and lacked EGFP gene. 

3.4.1.1. Expression of the N protein from pCMVPUUS 

To verify that the Puumala virus N protein could be expressed from pCMVPUUS 

plasmid utilizing cellular RNA polymerase II, 293 cells, known for their high transfection 

efficiency, were transfected with 1 Jlg of this plasmid. The cells were incubated for 3 

hours at 37°C after which the transfection mixture was replaced with growth medium and 

incubation continued for additional 24 hours. The cells were then labelled with 50 JlCi 

per dish of 35S methionine for 2 hours and the protein immunoprecipitated with an anti

Puumala N antibody. The results of immunoprecipitation are presented in Fig.3.13. As 

seen on the gel, the band corresponding to the protein of 50 kDa in size can be clearly 

identified (lane 2). As negative control, lysate from mock cells (lane 1) was 

immunoprecipitated using anti-PUU N antibodies. No bands of the corresponding to the 
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Fig. 3.12. Construction of pCMVPUUL plasmid expressing Puumala virus L protein 
under control of CMV promoter. A section of L segment (ntl170-6550) was isolated as 
a BamHVSalI restriction fragment from pTMPUUL and ligated into the same sites of 
pTzPUUL to substitute for the same fragment of L containing mutations. The L 
segment was then cleaved from ~pTzPUUL using restriction enzymes Sac! and SalI, 
and ligated into ~pEGFP NI cloning vector that was digested with the same restriction 
enzymes to form pCMV PUUL. 
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Fig.3.13. Expression ofPuumala N protein from pCMVPUUS plasmid. 
293 cells were transfected with pCMV PUUS plasmid (lane 2) and PUU N 
protein was expected to be expressed by the cellular polymerase II. The cells 
were labelled with 50 /-lCi 35S methinone for 2 hours. N protein was 
immunoprecipitated using anti-PUU N antibodies and analysed by 16% SDS
P AGE and autoradiography. Band of the appropriate size corresponding to N 
protein is marked with blue arrow. No band corresponding to N protein was 
observed in mock cell lysates used to demonstrate the specificity of the IP 
orocedure (lane 1), 
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N protein size can be detected. This experiment demonstrates that Puumala N protein is 

indeed expressed from pCMVPUUS construct. 

3.4.2. Transfection conditions 

To test if the pol II approach would work for Puumala virus, BHK T7-SIN and VeroT7 

cells were transfected with expression plasmids pCMVPUUL and pCMVPUUS, and a T7 

reporter construct. Both proteins would be expressed by the cellular RNA polymerase 

while the chimeric RNA would be transcribed by bacteriophage T7 RNA polymerase 

expressed by the cells. One of the following reporter constructs was used in the 

experiments: pT7riboPUUSCAT, pT7riboPUULCAT, pT7GGriboPUUSCAT or 

pT7GGriboPUULCAT. 

The same conditions as ones described before were used and different ratios and amounts 

of plasmids tested. Briefly, the cells were transfected with the mixture containing all 

three plasmids, were incubated at 37°C for 3 hours after which the transfection mixture 

was replaced by the growth medium and incubation continued for additional 48 hours. 

The cells were lysed and assayed for CAT activity. The amount ofpCMVPUUL was in 

the range from lOng to 5 /-lg, while pCMVPUUS and a reporter construct were in the 

range from 0.5 to 2.5/-lg. Each experiment was repeated twice, however, none gave 

positive results. 

3.5. Polymerase I system 

To look for an alternative approach for developing a reverse genetics system for 

hantaviruses, it was decided to use the RNA polymerase I (pol I) expression system. This 

system, originally developed by Hobom and coworkers (Zobel et al., 1993; Neumann et 

al., 1994) has been used to study cis-acting sequences important for transcription and 

replication of influenza virus (Flick et al., 1996). In the pol I system, cDNA coding for 

83 



Results and Discussion: Chapter 3 

reporter gene flanked by viral sequences, is cloned between the RNA pol I promoter and 

terminator. The chimeric RNA is produced by using cellular RNA polymerase I, which is 

among the most abundantly expressed enzymes in growing cells. Based on the results 

from the influenza system, pol I-driven transcription of the reporter RNAs will initiate 

and terminate exactly at the 5' and 3' ends of the inserted cDNAs, thus giving rise to 

transcripts with the correct vRNA or cRNA ends (Flick and Hobom, 1999; Zobel et al., 

1993). In the case of influenza virus, these pol I transcripts are then replicated and 

transcribed in the nucleus by the necessary viral proteins. 

RNA pol I-catalyzed expression of chimeric viral RNAs was also successfully used for 

Uukuniemi virus (UUK), a member of the Phlebovirus genus, family Bunyaviridae (Flick 

and Pettersson, 2001). In this system, the chimeric cDNA (that contains the CAT gene 

flanked by the 5' - and 3' -terminal untranslated regions of the UUK virus sense or 

complementary RNA derived from the medium RNA segment) was cloned between the 

murine pol I promoter and terminator. After transfection into different eukaryotic cell 

lines, the resulting construct was transcribed by RNA pol I generating transcripts without 

any additional nucleotides or with modification at the 5' or 3' end (e.g., cap structure or 

poly (A) tail). 

The possibility of application of the pol I system for Puumala virus was also investigated. 

The use of the human pol I promoter and highly transfectable human embryonic kidney 

cells (293T) (Hoffmann et al., 2000; Neumann et al., 1999; Neumann et al., 2000) as 

opposed to the murine pol I promoter employed for expression ofUUK chimeric RNA by 

Flick and Pettersson (2001) was expected to result in high efficiency of the reporter 

expreSSIOn. 

To generate the RNA polymerase I construct, the CAT reporter gene flanked by the 3' 

and 5' UTRs of the L segment was cloned into pHH21 cloning vector (Neumann et al., 

1999) between the human RNA polymerase I promoter and mouse RNA polymerase I 

terminator (kindly supplied by Dr. X.Shi) (Fig.3.14). In analogy to influenza virus 

protocol, the chimeric RNA was expressed from the pol I promoter while the necessary 

proteins were expressed from plasmids using the CMV promoter (pCMVPUUL and 
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Fig. 3.14. Plasmid map of reporter construct pHH21 PUULCAT (supplied by Dr. Shi). 
The cassette that contains coding sequence for CAT gene (in the antisense orientation) 
flanked by the 5' and 3' UTRs of PUU virus L segment was placed between human pol I 
promoter and mouse pol I terminator of the pHH21 cloning vector (Neumann et ai., 
1999). Transcription by the ribosomal RNA polymerase results in production of 
transcripts that have exact viral 5' and 3' terminal sequence. The conserved 9 terminal 
bases of Puumala virus S genome segment are shown in blue. Pol I, human pol I 
promoter; pol I teml, mouse pol [ transcription temlinator. 
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pCMVPUUS). Following transport to the cytoplasm, these pol I transcripts would be 

transcribed and replicated by the necessary viral proteins expressed from plasmids 

encoding Land N proteins. 

Similar transfection conditions as described before were applied, however, instead of 

Vero T7 and BHK T7 SIN cells, human cell line 293 was used for expression of the 

reporter construct under control of a human pol I promoter. Briefly, 293 cells were 

transfected with two expression plasmids pCMVPUUS and pCMVPUUL and a reporter 

construct pHH21PUULCAT. All plasmids were taken in equal or different amounts in 

the range from 0.5 to 2.5Jlg. After incubation for 3 hours at 37°C, the transfection 

mixture was replaced with growth medium and incubation continued for 48 hours. The 

cells were lysed and assayed for CAT activity. Each experiment was repeated twice, 

however, none resulted in measurable CAT activity showing that this approach too failed. 

3.6. Discussion 

Reverse genetics systems for negative-strand RNA viruses are based on intracytoplasmic 

reconstitution of the RNP complex, which represents the template for the viral 

polymerase, and is the prerequisite needed to start an infectious cycle. The expression 

systems most widely used depend on infection of cells with recombinant vaccinia virus 

(vTF7-3 or MVA) (reviewed by Palese et al., 1996; Conzelmann, 1998), providing T7 

RNA polymerase needed for expression of RNA and proteins from transfected plasmids. 

Reverse genetics systems for segmented negative-strand RNA viruses based on the T7 

vaccinia virus expression system were developed for Bunyamwera virus (Dunn et al., 

1995), Rift Valley fever virus (Lopez et al., 1995; Prehaud et al., 1997) (both members of 

the Bunyaviridae family) and for lymphocytic choriomeningitis virus (a member of the 

Arenaviridae family) (Lee et al., 2000). However, vaccinia virus introduces into the cell a 
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number of unwanted enzymatic activities. Therefore, a modification to an initial BUN 

minireplicon system was made by using cell lines BHK T7-SIN and Vero T7, stably 

expressing T7 RNA polymerase, which has proven to be suited for recombinant bovine 

respiratory syncytial virus mutants (Buchholz et at., 1999) and was also used in a 

modified reconstituted BUN system (Weber et at., 2001). 

Minigenome systems developed for influenza virus (Luytjes et at., 1989), Bunyamwera 

virus (Dunn et at., 1995) and Rift Valley fever virus (Lopez et at., 1995) used the 

antisense CAT reporter cDNA that is expressed by the T7 -vaccinia virus system, while 

the Land N proteins are supplied either from vaccinia virus recombinants (BUN) or by 

T7 vaccinia expression system (RVF and also BUN) or in vitro reconstituted RNP 

(influenza virus). In the bacteriophage T7 promoter, a 17bp core is followed by three 

guanosine residues. Therefore, T7 RNA polymerase would normally start transcription 

from the first G residue. However, for these viruses it was important not to have any 

additional nonviral nucleotides as it would effect recognition and initiation of 

transcription by the viral polymerase. Therefore, a truncated version of the T7 promoter 

that lacked last three guanosine residues was employed. Transcription by T7 RNA 

polymerase would start from the first viral nucleotide. It is important to note, that the 5' 

terminal sequences of all three viruses start with an adenine residue. This did not seem to 

present a problem and RNA transcripts were successfully produced which indicated that 

T7 RNA polymerase was able to start transcription with an adenine. However, in the case 

of hantavirus it is a uri dine residue, and it was thought to be unlikely that T7 RNA 

polymerase would give transcripts which start with uridine, as was described earlier in 

the chapter. Still, two different sets of constructs were used in experiments: those that 

contained a truncated T7 promoter with no G residues (pPUUSCAT, pT7riboPUUSCAT, 

pT7riboPUULCAT) and those containing two G residues preceding the viral sequence 

(pT7GGriboPUUSCAT and pT7GGriboPUULCAT). The rationale for the latter 

approach was that transcripts would start with a G, and not U corresponding to the viral 

sequence, and these Gs would be 'lost' after transcription thus giving authentic viral 

terminal sequence. In these constructs, the 3' viral termini was defined either by a BbsI 

restriction site to give run-off transcripts or by a self-cleaving hepatitis delta virus 

ribozyme placed immediately downstream of the viral 3' UTR. 
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Another reporter construct containing hammerhead ribozyme sequence upstream of the 

5' UTR was used in order to overcome the complications we might have had with 

previous constructs. Self-cleavage by the hammerhead ribozyme would produce the exact 

viral 5' termini. This approach was demonstrated to increase efficiency of poliovirus 

rescue (Herold and Andino, 2000). 

Vero T7 and BHK T7 -SIN cells stably expressing T7 polymerase were transfected with 

one of the reporter constructs and two expression plasmids, pTMPUUS and pTMPUUL 

that contain genes coding for Puumala Nand L proteins, respectively, under the control 

of a T7 RNA polymerase. Different conditions were explored in an attempt to find the 

optimum ratios and amounts of reporter construct and expression plasmids. Various times 

of incubation during and after transfection were also tested. The positive outcome would 

be determined based on CAT enzyme expression. However, none of the approaches gave 

detectable CAT activity and thus was negative. 

To look for an alternative approach, it was decided to express the proteins usmg 

polymerase type II (pol II) promoter as opposed to T7 driven expression. The protein

expressing plasmids were constructed by cloning Puumala Sand L genome segments into 

pEGFP-N1 cloning vector under control of a human cytomegalovirus promoter (CMV), 

a polymerase II type promoter, in which case the viral proteins would be transcribed by 

the cellular polymerase instead of bacteriophage T7 polymerase. However, transfection 

of these expression plasmids together with one of the reporter constructs used before, did 

not result in measurable CAT activity. 

The pol I reverse genetics system was applied as yet another alternative. It has the 

advantage of generating the exact 5' and 3' ends of the RNA transcripts, thus avoiding 

the need for expressing run-off transcripts from restriction enzyme-cleaved plasmids or 

the use of a hepatitis delta ribozyme to produce the correct 3' end. The use of a pol I 

promoter to generate transcriptionally competent influenza virus model RNAs has been 

previously reported by Neumann and co-workers (Neumann et at., 1994; Neumann and 

Hobom, 1995). They used mouse pol I promoter and terminator sequences to ensure the 

correct formation of the 5' and 3' ends of model RNAs (Zobel et at., 1993). Similar 
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results were achieved by using human pol I promoter and hepatitis delta virus genomic 

ribozyme sequences (Pleschka et al., 1996). However, the main difference between the 

two pol I promoter-based systems was the source of the Nand P proteins required for the 

replication and transcription of the vRNA. The use of pol II promoter-based plasmids 

instead of infectious influenza viruses to drive the expression of the Nand P proteins was 

shown to result in approximately 100-times-higher levels of CAT expression. 

The fact that pol I reporter transcripts are noncapped and nonpolyadenylated raised the 

concern that these RNAs would not be efficiently transported out of the nucleus. In the 

case of influenza virus, the pol I transcripts do not have to exit the nucleus, since 

transcription and replication ofvRNAs take place in the nucleus. In contrast, hantaviruses 

replicate in the cytoplasm and the pol I transcripts therefore have to be exported from the 

nucleus. 

However, as it was shown later by the results of Flick and Pettersson (2001) who applied 

similar approach for Uukuniemi (UUK) virus, a member of the Bunyaviridae, these 

concerns were unfounded. They suggested that newly synthesized nuclear RNA species 

rapidly associate with a set of proteins to form RNP structures. Some of these proteins 

contain an export signal and serve as export factors that guide the RNPs to and through 

the nuclear pore complex (Nakielny and Dreyfuss, 1999). They speculated that such an 

export factor(s) binds to the chimeric reporter RNA and facilitates its export to the 

cytoplasm (Flick and Pettersson, 2001). 

To apply the pol I system for Puumala virus, the cells were transfected with reporter 

construct under control of a human pol I promoter and protein-expessing plasmids under 

control of CMV promoter. Again, different transfection conditions were explored and 

similar to the previous experiments they did not give any positive results. 

Several different approaches were tested and although similar expression systems have 

been used for Bunyamwera virus, Rift Valley fever virus, Uukuniemi virus and negative

strand RNA viruses of other families such as Sendai virus, rabies virus, vesicular 

stomatitis virus, human parainfluenza virus and influenza virus, none of them was 
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efficient for Puumala virus. The possible explanation for this could be that Puumala L 

protein was not functional. 

Successful development of the mlmgenome system depends on having biologically 

functional cDNAs of each gene. It was not possible to detect expression of the L protein 

either after in vitro transcription-translation in a reticulocyte lysate or after transfection of 

the plasmid pTMPUUL into cells either infected with the recombinant vaccinia virus 

expressing T7 RNA polymerase or cell lines stably expressing T7 RNA polymerase, 

because of the naturally low level of expression of this viral protein and the lack of 

specific antibodies. 

The only information available was the identity of nucleotide sequence of the L segment 

cDNA to the published sequences. However, these sequences were never proven to 

reflect the authentic functional hantavirus RNA polymerase protein. 

This presented a problem, as it was reported that completely conserved residues are 

essential for the full biological activity of polymerase proteins of such viruses as 

Bunyamwera virus (Jin and Elliott, 1992; Dunn et al., 1995), Sendai virus (Chandrika et 

ai.,1995) and vesicular stomatitis virus (Sleat and BaneIjee, 1993). For example, it was 

shown that even single mutation in the conserved sequence can drastically affect 

recognition of the template by Bunyamwera virus proteins. It was demonstrated that 

certain mutations in the putative polymerase motifs, which are conserved among all 

RNA-dependent RNA polymerases abolished the RNA synthesis capability of L protein, 

whereas mutations in unconserved sites still gave rise to functional L protein. Mutation of 

the conserved Asp at position 1037 in motif A, Asn at position 1119 in motif B, or Asp at 

position 1165 in motif C resulted in nonfunctional L protein (Poch et al., 1989, Jin and 

Elliott, 1992; Dunn et al., 1995). Similar to the results obtained for bunyavirus L protein, 

Chandrika et al (1995) showed that completely conserved residues are essential for the 

full biological activity of L protein of Sendai virus. In two other studies mutational 

analysis of conserved domain III of the L protein showed this region was important for 

viral RNA synthesis. S1eat and BaneIjee (1993) found overall similar results by mutation 

of the GDNQ sequence in the vesicular stomatitis virus L protein in domain III, where 
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changes in conserved amino acids usually yielded proteins inactive in transcription in 

vitro, while substitutions in the three amino acids downstream of this site retained some 

activity. 

To date, it still remains unknown whether Puumala virus L protein was functional as one 

of the ways to demonstrate this would be to intracellularly reconstitute viral RNPs 

containing reporter CAT gene, expression of which would result in measurable CAT 

activity. 

Another possibility to check the authenticity of the recombinant L protein would be to 

assay it for the RNA-dependent RNA polymerase activity. Jin and Elliott (1991, 1993) 

have described a method to assay the polymerase activity of Bunyamwera virus 

recombinant L protein. The method relies on the fact that viral RNPs purified on CsCI 

gradients are inactive for transcriptase activity, probably because the L protein is 

dissociated or inactivated by high salt concentrations. These authors demonstrated that 

transcription was restored when these RNPs were transfected into cells expressing 

recombinant L protein. 

It is also possible to test different Puumala virus L clones in the mini genome system 

employing one of the approaches described in the chapter. Assuming that the 

unsuccessful attempts to develop the reverse genetics system for Puumala virus were due 

to L protein not being functional, by testing different L clones it would be possible to 

identify the one which would work. 
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CHAPTER 4: ANALYSIS OF PUUMALA VIRUS 

PROTEIN INTERACTIONS 

4.1. Interaction between Puumala virus N proteins 

4.1.1. Introduction 

Hantavirus N protein seems to be expressed in excess in infected cells and has 

been reported to form large granular to filamentous inclusion bodies in the cytoplasm 

(Hung, 1988; Vapalahti et al., 1995; Ravkov et al., 1998; Ravkov and Compans, 2001). 

N protein coding regions have been sequenced from a number of hantavirus strains and 

are well conserved. N is a major antigenic protein. The N proteins of Puumala virus 

strains vary by up to 5% at the N amino acid level with few effects on their antigenic 

properties (Plyusnin et al., 1994; Plyusnin et al., 1995). 

Hantavirus N proteins are central to the process of virus assembly. Each genomic 

vRNA associates with the N protein and viral polymerase to create three distinct 

ribonucleoprotein complexes (RNPs) (Schmaljohn et al., 1983). The N protein has been 

shown to bind viral RNAs (vRNA) in vitro - this function is essential to its role in 

encapsidation and RNP complex formation, and might have a regulatory role in the viral 

life cycle (Gott et al., 1993; Severson et al., 1999; Severson et al., 2001). The protein is 

also likely candidate to bind to the viral glycoproteins during virus assembly or budding. 

Apart from the role it plays in the formation of the RNP, the hantavirus N protein has 

been suggested to playa functional role in replication and transcription. In particular, the 

N protein may modulate the switch of virus RNA synthesis from transcription to 

replication, as reported for analogous proteins in other negative-strand viruses (Patton et 

al., 1984; Beaton and Krug, 1986; Honda et al., 1988). It was also shown to interact with 

Daxx, a protein identified as a Fas-mediated apoptosis enhancer (Li et al., 2002). 
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To summarize, hantavirus nucleocapsid protein is not only a structural RNA

binding protein that encapsidates the virus genome for the purposes of RNA 

transcription, replication and packaging, but it also functions as a key adapter molecule 

between virus and host cell processes through its ability to interact with a wide variety of 

viral and cellular macromolecules, including RNA, itself, L protein, and cellular 

polypeptides including actin. 

However, the main feature of the protein remains its ability to interact with 

molecules of one another as homotypic interaction and multimerization are necessary 

prerequisites of N for packaging and protecting the viral genome. The fact that N 

aggregates in the cytoplasm of infected cells, forming filamentous structures, also 

suggests that it is able to self-interact. 

To obtain direct evidence of homologous interaction between Puumala VIruS 

nucleocapsid proteins and to map the domains of the protein involved in interaction, the 

mammalian two-hybrid assay system (M2HS) was used (Fields and Stemglanz, 1994). 

The M2HS is based on the yeast two-hybrid system (Y2HS) developed earlier (Fields and 

Song, 1989), which provided a genetic approach to identify proteins that interact 

physically in vivo. In addition, the system helps to define contacts among the subunits of 

multiprotein complexes, as well as to map specific domains within proteins that are 

responsible for interaction. However, the Y2HS has significant limitations. The host 

yeast, although a eukaryote, is far removed from human, other mammalian, or higher 

eukaryotic organisms. Due to the fact that mammalian proteins are likely to retain their 

native conformation in a mammalian host, and the results would probably represent 

biologically significant interactions, the use of the M2HS to study protein-protein 

interactions is therefore more appropriate than the use of the yeast system (Dang et al., 

1991). 

The mammalian system is similar to the one developed in yeast. Variations for 

use in mammalian cells were introduced by Vasavada et al. (1991) and Takacs et at. 

(1993). It exploits the modular nature of a transcriptional activator that contains two 

domains, a DNA-binding domain (BD) and a transcription-activation domain (AD). 

Neither domain alone can activate transcription, and only their reconstruction in trans 

restores activity. This objective is achieved by making two fusion proteins. The first 

92 



Results and Discussion: Chapter 4 

fusion is between the BD and a bait protein, and the second fusion is between AD and a 

prey or target protein. Both fusions are expressed in the presence of a reporter gene. The 

fusion proteins are transported to the nucleus where the DNA-BD binds to a specific 

promoter sequence, GAL4 binding sites, upstream of a reporter gene on a reporter 

plasmid, and the AD directs the RNA Polymerase II complex to transcribe the 

downstream reporter gene. The interaction of these two fused proteins restores activation 

of the transcriptional activator, and turning on the reporter gene allows the cells to be 

identified (Fig 4.1). The reporter gene used is the chloramphenicol acetyltransferase 

(CAT) which is detected by the ability of its product to acetylate chloramphenicol in the 

presence of acetyl CoA. 

I used a commercial system, the Mammalian Matchmaker Two-Hybrid 

assay kit (Clontech). The reporter plasmid, pG5CAT, contains the CAT gene downstream 

of 5 consensus GAL4 binding sites and the minimal promoter of the adenovirus E 1 b 

gene. The minimal E 1 b promoter does not drive expression of significant levels of the 

CAT gene, so background should be low in the absence of activation from the GAL4 

sites. The pM cloning vector is used to generate fusions of the bait protein to the GAL4 

DNA-BD. Similarly, pVP16 is used to construct fusions of the target protein to an AD 

derived from the VP16 protein of herpes simplex virus. Plasmid pM3VPI6, consisting of 

the AD fused to the BD and thus being a transactivator by itself, is used as a positive 

control. 

4.1.2. Optimisation of conditions 

A number of different cell lines and two DNA transfection techniques were used 

to optimise the M2HS. Two positive controls were used to test the system. The first one 

was the Mammalian Matchmaker Two-Hybrid Assay kit plasmid pM3VP16 (Clontech), 

consisting of the AD fused to the BD and thus being a transactivator by itself. The second 

positive control included bait and target proteins known to interact and give a positive 

signal in the M2HS. These included plasmids pAASN and pSGN encoding Bunyamwera 

virus (BUN) N protein (Osborne, 2001). Three different cell lines, HeLa, 293, and BHK-
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Fig. 4.1 The mammalian two-hybrid system. The DNA-binding domain 
(BD) binds to a specific promoter sequence, Gal4 binding sites, upstream of a 
reporter gene on a reporter plasmid pG5CAT, and the AD directs the RNA 
Polymerase II complex to transcribe the downstream CAT reporter gene. This 
is possible only when two proteins, one fused as the bait to BD and the other as 
the target fused to AD, interact, which restores activity of the transcriptional 
activator resulting in CAT expression (A). If the proteins do not interact the 
CAT gene remains inactive (B). 
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21, were tested for their ability to support the M2HS and optimize the results (Fig 4.2). 

For transfection procedures, either 'in-house'- made liposomes (Rose et at., 1991) or the 

commercially available Lipofectamine (Gibco BRL) were used. The preparation of 

liposomes and transfection conditions are described in Methods. Previously, 'home

made' liposomes were successfully used to transfect various cell lines (data not shown). 

However, in the M2HS, transfection procedure using these liposomes failed to produce 

significant levels of CAT signal as compared to the commercial Lipofectamine. Low 

levels of CAT activity were observed in BHK cells (Fig.4.2, A) using both liposomes and 

Lipofectamine when only the commercial positive control pM3VP16 was used (lanes 1 

and 3), but not for BUN N positive control (lanes 2 and 4). Since BHK cells did not yield 

reproducible and reliable results, they were not used further. Similar results were 

achieved when the 293 cell line, known to be highly efficient in transfections, was used 

(B). In this case, transfection using both techniques resulted in strong CAT signal for 

transactivation with pM3VP16 (lanes 1 and 3). No interaction was observed between 

positive control BUN N proteins (lanes 2 and 4). HeLa cells (C) showed strong CAT 

activity not only for commercial positive control, plasmid pM3VP16 (lanes 1 and 3), but 

also for BUN N proteins (lanes 2 and 4), when the cells were transfected at 30-50% 

confluency. Therefore, it was decided to carry out the following experiments on 

identification of protein-protein interaction in hantavirus using HeLa cells and the 

commercial transfection reagent Lipofectamine. 1 I-lg of each plasmid was used unless 

otherwise stated as this amount was sufficient to produce a strong CAT signal. 

Subsequent experiments were done in duplicate, and three independent 

transfections were performed. To eliminate false positive interactions negative controls 

were included in each experiment. A plasmid encoding the protein fused to AD was 

cotransfected with an empty pM vector to ensure that the target protein did not function 

autonomously as a DNA-BD or bind directly to the DNA-BD encoded by pM vector. A 

plasmid encoding the protein fused to BD was cotransfected with an empty pVP16 vector 

to determine whether or not the bait protein functions autonomously as a transactivator. 

In addition all the constructs used in work were tested for their ability to activate CAT , 

expression by interaction with an 'empty' BD or AD vector. 
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Fig. 4.2. Optimisation of the mammalian -two-hybrid system. The cell lines 
HeLa, 293, and BHK-21 were tested for their ability to support the M2HS using 
pM3VP16 (lanes 1 and 3) and pAASN and pSGN (lanes 2 and 4) as positive 
controls. Transfection with 'home-made' liposomes and Lipofectamine were used 
in each case. A poor signal was obtained with BHK cells using both methods (A). 
293 cells (B) gave only strong signal for commercial positive control but not for 
proteins known to interact. At a low confluency (50%) HeLa cells provided strong 
signal for both (C). 1 /-lg of each plasmid was used for transfections. 



Results and Discussion: Chapter 4 

4.1.3. Construction of M2HS vectors expressing N 

Two vectors, pM and p VP 16, are used in the system to generate fusion proteins 

with the GAL4 DNA-BD and the AD derived from the VP16 protein of herpes simplex 

virus. The orientation and reading frame of both fusions must be correct for hybrid 

proteins to be expressed. The fusion gene could be generated using compatible restriction 

sites or by PCR with restriction sites incorporated into primers. 

Cloning of the 1.79kb S segment, encoding PUU N protein, into pM and p VP 16 

vectors was performed in two steps (Fig 4.3). The first step involved cloning the fragment 

comprising nucleotides 1250-1790 using naturally occuring restriction enzyme sites. The 

plasmid pTMPuuS, containing Puumala virus S segment under control of T7 promoter, 

was digested with BamHI and SalI restriction enzymes, and the fragment was cloned into 

the vectors digested with these two enzymes. In the second step, the plasmid pTMPuuS 

was used as a template to amplify by PCR the fragment of the gene comprising 

nucleotides 43-1250 with primers incorporating EcoR! (primer PuuS EcoR! 43+) and 

BamHI sites (PuuS BamHI 1250-) (see Materials). This fragment was then cloned into 

the previously generated vectors digested with BamHI and EcoR! restriction enzymes. 

The sequence was checked for PCR-induced errors but none were found. The resulting 

constructs contained the sequence encoding N protein with a BD (designated pMPuuN) 

or AD (designated pVPPuuN) fusion tag at the N-terminus. 

4.1.4. Homologous N-N interactions in the M2HS 

Once plasmids pMPuuN and p VPPuuN were constructed, they were used to 

investigate possible homologous interaction between PUU N proteins. The relative 

amounts of each plasmid were titrated against one another to maximise CAT signal 

(Fig.4.4). The level of CAT activity was not affected by the increase in the amount of 

plasmid pMPuuN against constant amount of p VPPuuN (lanes 5-8, and 9-12). However, 

when both plasmids were taken in equal increasing amounts, the level of CAT activity 

95 



EeoRl 

43 
.•.•.. ......... ..•••....... ...•..•• .•. , 

T7 

BamHI 
1250 

....................... ...... 

.. ... .. .... ... .. ....... .... ... . ...... . ........ ......... ... .... .. .... 
pTMPuuS 

peR 

BamHI 

EcoRI 

pM MCS 

EcoRI BamHI 

PVP16 

EcoRI BamBI 

pM PuuN 

EcoRI BamBI 

Ii:. AD 

pVP PuuN 

I 

SalI 
1790 

SaIl 

~ 

Sal! 

SaIl 

Sal! 

Sal! 

Fig. 4.3. Construction of M2HS vectors expressing Puumala virus N protein. 
Plasmids p VPPuuN and pM PuuN, containing PUU N sequence were generated in 
two steps. The first step was to clone a fragment of the gene of 1.2 kb into pM! 
pVP16 vectors after restriction enzyme digestion ofpTMPuuS plasmid with SaIl and 
BamHI. The second step was to PCR-amplify the fragment of the gene encoding the 
N- tenninal part of the protein with primers incorporating EcoRl and BamHI sites 
using pTMPuuS plasmid as a template. The amplified fragment was subcloned into 
the vectors generated in the first step. 



Fig. 4.4. Homologous interaction between Puumala virus N proteins monitored using the M2HS. Lanes 1 
and 2 - negative controls: lane 1, pMPuuN +p VP; lane 2, p VPPuuN+pM. Lane 3, positive BUN control 
pSGN +pAASN, lane 4, commercial positive control pM3VPI6. Strong interaction was observed between 
N proteins fused to AD and BD. The level of CAT activity was not affected by the increasing amounts of 
pMPuuN (shown in bold) when either 0.5 J.lg of the reporter plasmid (lanes 5-8) or 1 J.lg was used (lanes 
9-12). Each plasmid was taken in the amounts stated above. 
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decreased (Fig. 4.5, lanes 4-6). This effect was further investigated by titration of 

increasing amounts ofpVPPuuN against constant amount ofpMPuuN, and as can be seen 

from results, the level of CAT activity was decreasing with the increase of the amount of 

p VPPuuN (lanes 7-9). This suggested that p VPPuuN or its product could be the limiting 

factor affecting the system. It could be that the AD fusion tag interfered with the 

functions of the protein or the protein was poorly expressed. 

Negative controls, including those testing each plasmid against an empty vector in 

the presence of the reporter plasmid (lanes 1 and 2), showed no CAT activity, thus 

proving that all three plasmids had to be present for a reporter gene expression to take 

place. 

Overall, strong interaction was observed between the full-length PUU N protein 

fused to the GAL4 DNA-BD and PUU N fused to the GAL4 AD, suggesting homotypic 

interaction between Puumala virus nucleocapsid proteins. 

4.1.5. Co-immunoprecipitation assays 

In order to support the results obtained in the mammalian two-hybrid system, it 

was necessary to confirm that positive interaction between N proteins was not caused by 

the presence of an RNA. The reason for this is that nucleocapsid proteins possess RNA 

binding properties, therefore, they may bind RNA which may result in a reporter gene 

activation by the AD brought into close proximity by this same RNA acting as a bridge. 

To eliminate this possibility, a co-immunoprecipitation assay (co-IP) was used, as 

this involves stages at which it is possible to remove RNA by nuclease digestion before 

the immune complex is detected. Co-IP involves co-expression of the proteins of interest, 

one with an epitope exclusive to that protein, and detecting formation of the immune 

complex by antibodies against this epitope. If two proteins interact, their molecules are 

'pulled-down' in the precipitation, and both epitope-tagged and native protein can be 

detected. Two independent experiments were performed - co-IP of the proteins expressed 

in vivo using recombinant vaccinia virus vTF7-3 as a source ofT7 polymerase, and co-IP 
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Fig.4.5 . Homologous interaction between Puumala virus N proteins. Titration of 

pVPPuuN. Lanes 1 and 2 - negative control: lane 1, pMPuuN+pVP; lane 2, 

pVPPuuN+pM. Lane 3, positive control pM3VP16; lanes 4 to 9, pVPPuuN + pMPuuN 

taken in amounts stated above. The level of CAT activity decreases with an increase in 

the amount of plasmids (lanes 4-6). Increase in the amount of plasmid p VPPuuN 

against constant amount of pMPuuN causes decrease in CAT expression (lanes 7-9). 
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of the proteins expressed in vitro using Coupled Transcription/Translation assay 'TnT' 

(Promega). 

For this purpose, it was necessary to generate an N protein with an epitope tag 

which could be recognized by a specific antibody and was big enough for the tagged 

protein to be distinguishable on SDS-PAGE. The epitope of choice was the FLAG-tag as 

it met the necessary requirements of size and immunogenicity. A plasmid expressing a 

native version of the N protein, pTMPuuS, under control of the T7 promoter, was 

supplied by Dr X Shi. The tagged version of the protein was constructed by 

amplification of the N ORF by PCR from start codon 43 to stop codon 432 with primers 

incorporating Neal and Pstl sites (PuuNNeol 43+ and PuuNPstIFLAG) (see Materials). 

Expression ofN protein thus starts with the initial N-terminal amino acid as the Neal site 

of the vector incorporates the ATG translation start signal. The FLAG epitope was 

encoded in the reverse primer. The amplified N ORF was cloned into Neol-Pstl digested 

pTMl. The resultant construct was checked for PCR-induced errors but none was found. 

The new construct containing the N ORF and FLAG tag was designated 

pTMPuuNFLAG. 

pTMPuuS and pTMPuuNFLAG were co-transfected into subconfluent HeLa cells 

infected one hour previously with recombinant vaccinia virus vTF7-3 (moi 5) as a source 

of T7 RNA polymerase. The cells were incubated for 20 hours and then labelled with 35S_ 

methionine for 2 hours followed by immediate lysis. Anti-FLAG antibody was used for 

co-IP of the lysate. The antibody was precipitated with protein A Sepharose beads and 

washed with 0.5ml LiCl. Before separation on SDS-P AGE, proteins were dissociated by 

boiling in protein dissociation buffer. Two distinguishable bands were seen on the gel -

one of the native N protein, and the other, slower migrating band, of the FLAG-tagged N 

protein (FigA.6, lane 4). The presence of the two bands on the gel indicated interaction 

between Puumala virus N proteins detected by anti-FLAG antibodies. FLAG-tagged N 

was also detected by anti-FLAG antibody when expressed on its own (lane 2) while no 

band was observed on the gel when the native N was immunoprecipitated with the same 

antibody (lane 3). 
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FigA.6. Co-immunoprecipitation of N with FLAG-tagged N using anti
FLAG peptide antibody. N and FLAG-tagged were co-expressed in HeLa 
cells and radiolabelled cells lysates were immunoprecipitated using the anti
FLAG antibody and protein A-Sepharose beads. The products were separated 
on a 16% SDS-PAGE. Lane 1, mock; lane 2, FLAG-tagged N; lane 3, native 
N; lane 4, native N and FLAG-tagged N 'pulled down' together as a result of 
Co-IP; lane 5, native N and FLAG-tagged N expressed in a TnT reaction, 
incubated with 5mg/ml RNase A and immunoprecipitated with anti-FLAG 
antibody. 1 ).lg of each plasmid was used in each reaction 
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To further confinn these results and show that RNA does not affect interaction 

between N proteins, Nand NFLAG proteins were produced by the coupled 

transcription/translation reaction (TnT) that allows in vitro expression of the proteins 

under control of T7 polymerase supplied in reaction. The proteins were treated with 

RNase A immediately after incubation of the reaction. To ensure complete digestion of 

RNA, RNase A was used in 5000-fold excess (5mglml) over the amount of RNase 

sufficient to digest the RNA in in vitro assembled RNA-N complexes (Osborne, 2001). 

The reactions were then used in co-immunoprecipitation with anti-FLAG antibody in the 

manner described above. The FLAG-tagged N protein was still able to pull down native 

N protein as seen on the gel (lane 5). These results indicate that interaction between 

Puumala virus N proteins, shown previously by the mammalian two-hybrid system, is not 

mediated by the RNA bridge. 

4.2. Mapping Puumala virus N interaction domains 

After interaction between the full-lengths proteins was shown, the next step was 

to investigate which domains on the nucleocapsid protein are responsible for the 

interaction. This was perfonned by testing possible interactions between full-length N 

protein and various fragments ofN. 

Alignment of the deduced amino acid sequences of the nucleocapsid protein of 

different hantaviruses reveals both regions of high homology and regions of little 

homology. Two highly conserved regions are located in the N-tenninal 150aa and the C

tenninal half of the protein, with a highly variable region located between aa 210-310 

(Antic et al., 1992). The presence of the regions of high homology among different 

hantaviruses is indicative of their importance and suggests that protein molecules should 

possess at least two domains responsible for interaction. 

As a first step, interaction between the full-length N protein and its different 

fragments was investigated. Then, the ability of different fragments of N to interact with 

each other was tested in order to identify the domains that are involved in interaction 

between Puumala virus nucleocapsid proteins. 
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4.2.1. Generation of constructs expressing truncated N proteins 

Fragments encoding different regions of N protein were generated using PCR 

with the appropriate 5' and 3' primers incorporating EcoRI and Pst! restriction sites (see 

Materials). Amplified products were then digested with the restriction enzymes EcoRI 

and Pst! and subcloned into BD and AD vectors to yield a set of plasmids for use in the 

M2HS. The presence of an insert was verified by restriction enzyme digestion with these 

two enzymes, and sequences of the constructs were checked for PCR-induced errors but 

none were found. 

As a result, twenty constructs encoding various fragments of N protein fused to 

either AD or BD were generated (Fig 4.7). 

4.2.2. Interaction between N-terminal and C-terminal 

truncated N proteins 

Different truncated proteins were tested for their ability to interact with the full

length N. Very strong interaction was observed between the full-length N and its C

terminal fragments N385-432 and N288-432 (Fig.4.8, lanes 4 and 5, respectively) and to 

a lesser extent with N185-432 (lane 6) and N85-432 (lane 7). The strength of the signal 

decreased as the size of the fragment increased (compare lanes 4 to 7). This could 

indicate that this domain of the protein is buried by additional sequences that 'hide' the 

interaction domain. Besides, dividing the protein into fragments changes its native 

conformation that also can affect the results. A weaker interaction compared to N385-432 

was observed between the full-length N and the N-terminal 105 aa (lane 8). No 

interaction was observed between the full-length N and its internal fragments consisting 

of amino acids 85-205, 185-305, and 288-389 (lanes 9,10 and 11) thus indicating that the 

internal region of the molecule is not important for interaction. Deletion of 43 aa at the C 

terminus of the N protein completely abolished the interaction with the full-length protein 

(lane 12), showing that interaction between two proteins indeed requires C-terminal 
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N 1-105 contains amino acids 1 through 105. Numbers of amino acid residues are 

indicated 
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FigA.8. Interaction between full-length N protein and various fragments of N. Lanes 1 
and 2 - negative control: lane 1, pVPPuuN + pM; lane 2, pMPuuN + pVP. Lane 3, 
positive control pM3VPI6. Strong interaction was observed between full-length N 
protein and N 385-432 (lane 4), N 288-432 (lane 5), and Nl-l 05 (lane 8), and to a lesser 
extent with N 185-432 (lane 6) and N 85-432 (lane 7). No interaction was observed 
between full-length N and its internal fragments N 85-205 (lanes 9), N 185-305 (lane 
10) and N 288-389 (lane 11). Deletion of 40aa at the C terminus completely abolished 
interaction (lane 12). 1 /J.g of each plasmid was used for transfection. 
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region. On the other hand, deletion of N-tenninal 85 aa did not abolish the interaction 

with the N protein (lane 7). 

These results are summarised In Fig.4.9 and suggest that two independent 

domains are involved in homotypic N protein interaction: one is located in the N-tenninal 

region and consists of at least 105 aa that are known to be highly conserved among 

hantaviruses, and the other occupies the C-tenninal half, also a region of high homology, 

with the tenninal 46 amino acids being the most important for nucleocapsid protein 

interaction. 

4.2.3. Interaction between different fragments of 

Puumala virus N protein 

After it was shown that the full-length N protein interacted with fragments 

containing the two tenninal domains and not with internal fragments, possible 

interactions between various fragments of N protein were tested. Knowing which 

domains are involved in interaction would be the basis for analysis of how precisely 

interaction involving these two domains occurs. For this purpose, all possible interactions 

between the fragments of the protein were tested. It was observed that interaction of N

tenninal fragments resulted in weak CAT activity (Fig.4.1 0, lane 4). The strength of the 

signal for C-tenninal fragments increased as the size of the fragment decreased analogous 

to the results obtained for interaction with the full-length N protein (lanes 5, 6 and 7). The 

strongest CAT signal was observed when two fragments of N protein comprising the N

and C-tenninal domains were tested against one another (lane 8), thus indicating that this 

type of interaction is the most important for assembly of N protein multimers. No 

interaction was observed between homologous internal fragments N 85-205 (lane 9), N 

185-305 (lane 10) and N 288-389 (lane 11). These results are summarized schematically 

in Fig.4.11. 
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Fig 4.9. Diagram summarizing interaction between full-length N protein and various 
fragments ofN. Numbers of amino acid residues are indicated. Numbers of 
fragments correspond to the lanes in FigA.8. - and + indicate the strength of CAT 

signal as a result of interaction. 
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Fig. 4.10. Interaction between various fragments ofPuumala virus N protein. Lanes 1 and 2 - negative control: lane 1, 
pVPPuuN + pM; lane 2, pMPuuN + pVP. Lane 3, positive control pM3VP16. Interaction was observed between 
homologous terminal fragments N 1-105 (lane 4), N 185-432 (lane 5), N 288-432 (lane 6) and N 385-432 (lane 7). 
Interaction between N-terminal 105 aa (N 1-105) and C-terminal 46 aa (N 385-432) resulted in strongest CAT signal 
(lane 8). No interaction was observed between internal fragments of the N protein (lanes 9-11). 1 ~g of each plasmid 
was used for each transfection. 
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4.3. Interaction between nucleocapsid proteins of different 

hantaviral serotypes 

It is well known that viruses of three hantaviral serotypes, Puumala, Seoul, and 

Hantaan, are closely related, and it seemed interesting not only to show homologous 

interaction between their nucleocapsid proteins but also to investigate the possibility of 

interaction between N proteins of different serotypes. Despite low similarity of the full

length N proteins (HTN-PUU -60%, and SEO-PUU -62%), their terminal regions are 

highly conserved - 85% for the C-terminal 100 aa, and 82% for the N-terminal 200 aa 

(Antic et al., 1992b). 

Clones of Hantaan (pAC HTNS) and Seoul (pCRIIL99S) virus N proteins were 

obtained from Dr X Shi. They were used to make fusions to AD and BD of the 

Matchmaker vectors. The N protein gene of Seoul virus serotype was cloned into AD and 

BD vectors by restriction digestion of the plasmid pCRIIL99S with Eco RI and correct 

orientation checked by restriction digestion and sequence analysis. Constructs containing 

Hantaan virus N protein were made by cloning HTN N ORF from pAC HTNS digested 

with PstI and the correct orientation checked by restriction digestion and sequence 

analysis. 

As the results of the mammalian two-hybrid system show, strong interaction was 

observed between N proteins of each serotype (Fig.4.12, lanes 4,7,8) further supporting 

the idea that hantavirus nucleocapsid proteins are able to interact. Interaction was also 

observed between N proteins of different serotypes: strong between SE~ and PUU (lane 

9), and to a lesser extent between HTN and PUU (lane 5), and HTN and SE~ (lane 6). 

An interaction between full-length N protein of Seoul virus and N- and C-terminal 

fragments of Puumala virus N protein was also tested. It resulted in strong CAT signal 

indicating interaction (FigA.13, lanes 8-10). 
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Fig 4.12. Interaction between N proteins of serotypes Seoul, Puumala and Hantaan and 
between N proteins of different serotypes. Lanes 1 and 2 represent negative controls 
with empty AD and BD vectors : lane 1, pVPSeoN + pM, lane 2, pMPuuN + pVP; lane 
3 - positive control pM3VP16. Strong interaction was observed between N proteins of 
serotypes Hantaan (lane 7) and Seoul (lane 8). Interaction between N proteins of PUU 
and HTN (lane 5), SE~ and HTN (lane 6) and PUU and SE~ (lane 9) also resulted in 
CAT activity. Plasmids used in the M2HS are indicated above. 1 ~g of each plasmid 
was taken for each transfection. 
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FigA.l3 . Interaction between Seoul and Puumala virus N proteins, and full-length 
SE~ N protein and N- and C-terminal fragments of PUU N. Lanes 1, 2, 3, 4 -
negative controls with empty BD and AD vectors; lane 5, positive control pM3VP16. 
Strong CAT signal (lanes 8, 9, 10) indicates interaction between full-length SE~ N 
and terminal fragments of PUU N. 1 I-lg of each plasmid was used for each 
transfection. 
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4.4. Interaction between Puumala virus N protein and different 

fragments of L protein 

The hantaviral L protein, which is the RNA-dependent RNA polymerase, carries 

out both transcription and replication of the genome. The L protein is associated with the 

N protein and with each of the three genomic RNA segments to form ribonucleoprotein 

complexes - nucleocapsids. RNP is the template for mRNA synthesis and genome 

replication. 

Involvement of Nand L in viral transcription and replication means that they 

should be able to interact with each other. Therefore, it could be possible to show the 

interaction between the two proteins, the nucleocapsid protein and the RNA-dependent 

RNA polymerase, and to identify the domains of the proteins responsible for interaction 

by the means of the M2HS. 

The plasmid pTMPuuL that contains sequence encoding L protein under control 

of the T7 promoter was obtained from Dr X Shi. It was used as a template for 

amplification of different fragments of the protein as it would not have been possible to 

use the full-length L protein in the M2HS due to its large size. Several fusions were 

amplified by PCR with primers incorporating SmaI and SaIl sites (see Materials) and 

subsequently cloned into p VP 16 vector digested with these two enzymes. The sequences 

were checked for PCR-induced errors but none were found. As a result, five constructs 

were used in the M2HS: p VPPuu L 1-400, P VPPuuL 400-800, P VPPuuL 800-1200, 

pVPPuuL 1200-1600, and pVPPuuL 1600-2000. 

However, no interaction could be detected between full-length N protein and 

different fragments of L protein in the M2HS (FigA.14, lanes 5-9). 
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Fig. 4.14. Screen for N-L protein interactions using the M2HS. Lanes 1 and 2 represent 
negative control: lane 1, P VPPuuN + pM, lane 2, pMPuuN + p VP; lanes 3 and 4 -
positive controls: lane 3, commercial control pM3VP16, lane 4, pVPPuuN + pMPuuN. 
No interaction was observed between N protein and various fragments of L protein 
(lanes 5-9): lane 5, L 1-400, lane 6, L 400-800, lane 7, L 800-1200, lane 8, L 1200-1600, 
lane 9, L 1600-2000. Numbers correspond to amino acid residues of the fragments used 
for screening. 1 f.lg of each plasmid was used for each transfection. 
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4.5. DISCUSSION 

4.5.1. Interaction between hantavirus proteins studied in the M2HS 

The N protein of hantaviruses constitutes the main part of the nucleocapsid, the 

infectious subviral particle, which contains the viral genomic RNA and a few copies of 

an RNA-dependent RNA polymerase, L protein. Mainly from data on capsid proteins of 

other enveloped viruses, an important role in the structural organization of the viral life 

cycle can be ascribed to the Puumala virus N protein. The primary function of viral core 

proteins, based on their RNA-binding capability, is assumed to provide protection for the 

viral genome inside. A nonspecific ssRNA binding capacity of the PUU N protein has 

been demonstrated recently (Severson et at., 2001). Furthermore, a direct interaction with 

the viral RNA polymerase can be postulated to facilitate its association to the 

nucleocapsid and possibly mediate transcription and replication. The nucleocapsid 

protein could also possess a regulatory function during the early events of hantavirus 

transcription and replication. In a similar context Dunn et at (1995) have demonstrated 

that the N protein of Bunyamwera virus is indispensable for the activity of the viral 

RNA-dependent RNA polymerase. Similar results have been achieved by Lopez et at 

(1995) for Rift Valley fever virus, a phlebovirus within the Bunyaviridae. A necessary 

prerequisite to fulfil these functions is a capability of the N protein to take part in 

multiple protein-protein interactions. 

In this chapter, evidence for homotypic interaction between N proteins of 

hantaviruses is presented. The study ofPuumala virus N protein interactions was initiated 

by using the mammalian two-hybrid system in which self-association of Puumala virus N 

protein was observed. This was additionally supported by the results of co

immunoprecipitation of the proteins expressed both in vitro and in vivo. 

The observation agrees with the data on dimerization and oligomerization 

capacity of nucleocapsid proteins of two other serotypes within the genus Hantavirus, Sin 

Nombre and Tula viruses (Alfadhli et at., 2001; Kaukinen et at., 2001). It is further 

supported by the studies on nucleocapsid proteins of a wide range of negative-sense 
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vIruses that include bovine respiratory syncytial VIruS (BRSV) (Krishnamurthy and 

Samal, 1998), Marburg virus (Becker et al., 1998) and Sendai virus (Horikami et al., 

1992; Myers et al., 1997). 

The homomultimerization at the molecular level was dissected by analyzing 

fragments of the protein. The studies on interaction between the full-length N protein and 

various fragments of N make it possible to suggest that Puumala virus N protein 

possesses two independent domains involved in homologous interaction of the protein. 

These results were obtained in the M2HS where the full-length N protein was shown to 

interact with its N-terminal 105 aa and minimum 46 aa at the C-termini but not with , 

internal fragments. Although interactions between homologous N- and C-terminal 

fragments resulted in some CAT activity, experiments showed that interaction between 

N- and C-terminal fragments, rather than the homologous interaction between fragments, 

yielded the strongest CAT signal. The results described above suggest that sequences 

involved in self-interaction of the N protein are confined to its N-terminal 105 aa and C

terminal 46 aa and that this type of interaction is the most important for assembly of N 

protein multimers. The fact that deletion of these two domains abolishes the ability to 

form homodimers in the mammalian two-hybrid system suggests that there are no other 

interacting domains. 

From these results, a 'head-to-tail' organization of the homotypic interaction of 

the hantavirus N protein can be postulated, involving an N-terminal region (amino acids 

1-105) and a C-terminal region (amino acids 385-432) of the protein. This fits the general 

idea that multimerization requires at least two distinct binding regions and happens in a 

manner similar to that described for tospovirus N protein (Richmond et al., 1998). 

The strength of the interaction between the fragments and the wild-type N protein 

as shown by CAT signal was apparently stronger than the homotypic interaction of the 

wild-type N protein. Since it is not likely that both the C-terminal and the N-terminal 

regions of the N protein perturb the interaction, these results might indicate a limitation 

of the M2HS in monitoring homotypic interactions. An interaction can be impaired when 

a fusion protein is folded improperly or inherently unstable, when its expression is poor 

or when the fused BD or AD partly occludes the site of interaction. It is also possible that 

optimization of amount of plasmids used in the M2HS could resolve this problem. 
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Furthennore, an attempt was made to show the ability of nUcleocapsid proteins of 

different hantaviral serotypes to interact with each other. Not only was it shown that N 

proteins of Seoul and Hantaan virus serotypes interact with each other, but also that 

Puumala virus N protein interacted with Seoul and Hantaan virus N proteins in the 

M2HS. Interaction between PUU and HTN N proteins was somewhat surprising since 

HTN is more distant from PUU than is SE~. These results suggest that interactions 

between the hantavirus N protein molecules might occur via either highly conserved 

stretches of amino acid residues or conserved domains of secondary or tertiary structure, 

despite low homology of the complete sequence. This observation is supported by the 

data on sequence similarity of the proteins. Despite low similarity of the whole sequence 

(HTN-PUU - 60%, and SEO-PUU - 62%), alignment of the deduced amino acid 

sequences of the nucleocapsid proteins of these viruses reveals also regions of high 

homology: their C tenninal 100 aa are 85% identical, and N-tenninal 200 aa are 82% 

identical (Antic et al., 1992b). The N-tenninal 100 aa are mainly hydrophilic and highly 

antigenic. The middle part of the protein, residues 210-310, is a mainly hydrophilic 

region that is highly variable between different hantaviruses (Jenison et al., 1994; 

Vapalahti et al., 1995; Elgh et al., 1996; Lundkvist et al., 1995). The C terminus of the 

protein is highly conserved and has been shown to bind RNA, preferentially to double

stranded RNA (Gott et al., 1993). 

To demonstrate that interaction between N proteins of different hantavirus 

serotypes indeed occurs via highly conserved regions of amino acids at the N- and C

termini, further experiments were carried out. The results indicate that the full-length N 

protein of Seoul serotype is indeed capable of interacting with N- and C-terminal 

domains of the Puumala virus N protein. 

During the course of this work, two studies on hantavirus N protein interactions 

were published. Alfadhli et al. (2001) used the yeast two-hybrid system, sucrose gradient 

centrifugation and chemical cross-linking technique to study N protein assembly of Sin 

Nombre virus (SN). By using the yeast two-hybrid system the SN N protein homotypic 

interacting domains were mapped to the N-tenninal 40aa and to the C-terminal half of the 

N protein. Furthennore, the SN N protein was found to associate as dimers, trimers and 

large multimers. Kaukinen et al. (2001) investigated the capacity of Tula virus 
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nucleoprotein molecules to interact with each other and showed the formation of dimers , 
trimers and further higher molecular mass products, with trimers being the preferential 

assembly intermediates. Similar to the previous study, this was achieved using the yeast 

two-hybrid system and confirmed by chemical cross-linking and immunoblotting. These 

data are in agreement with my findings about Puumala virus N protein interaction 

obtained via the mammalian two-hybrid system, suggesting that the interacting domains 

ofPuumala virus N protein are located within the first 105 aa of the N protein and at least 

46 aa of the C-terminal part. 

Owing the fact that nothing is known about the mechanism of how the Puumala 

virus N protein assembles into nUcleocapsid structure, the experimental proof of N 

protein self-interaction might provide a basis for a better understanding of nucleocapsid 

formation and the role of the N protein in transcription and replication, since the latter is 

thought to be regulated by the monomeric/multimeric state of the N protein. One could 

further speculate that the multimeric state of PUU N protein may be of significance for 

the specific recognition and correct binding of the viral RNA. This in tum may be 

obligatory to mediate the accessibility of the RNA for the RNA-dependent RNA 

polymerase. 

As it was shown in this chapter, no interaction was found between Puumala virus 

N protein and various fragments of the L protein. This is somewhat surprising since it is 

known that the L protein is associated with the N protein and with each of the three 

genomic RNA segments to form nucleocapsids. Both L protein and N protein carry out 

transcription and replication of the genome. The N protein was also suggested to 

modulate the switch of virus RNA synthesis from transcription to replication, as reported 

for analogous proteins in other negative-strand viruses. The fact that these two viral 

proteins are involved in the viral transcription and replication suggests that they should 

be able to interact with each other. 

The negative results on L-N protein interaction are perhaps attributable to the 

binding sites having been destroyed by expressing L as separate segments. Hence, the 

intermolecular interactions might take place in infected cells and could be identified in 

the future by other methods, for example, co-immunoprecipitation assay. Besides, false 

negative results from two-hybrid system are not without precedent, as failure to identify 
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other known protein-protein interactions has been reported (Fields and Stemglanz, 1994; 

Golemis et al., 1997; Cuconati et a1., 1998; Van Aelst et al., 1993). 

4.5.2. Proposed model for RNP formation 

In order to form the helical nucleocapsid characteristic of many negative strand 

RNA viruses like influenza virus (Portela and Digard, 2002) and vesicular stomatitis 

virus (Green et al., 2000), individual molecules of the N protein have to interact. Cross

linking studies by Alfadhli et al (2001) demonstrated that the N protein in mature 

nucleocapsids, isolated from viruses, existed as dimers and trimers. In the light of the 

results described in this chapter and studies on Tula and Sin Nombre virus nucleoprotein 

oligomerization capacity, it seems possible to propose a model for Puumala virus RNP 

formation. In this model, the association of the N proteins appears through their C and N 

termini, a so-called 'head-to-tail' mechanism, similar to the one described for tospovirus 

(Richmond et al., 1998) and Tula virus (Kaukinen et al., 2001). The hypothesis is that 

two molecules of the N protein come together forming a dimer which then associates 

with the third molecule available in a monomeric form. The trimer then attaches to the 

RNA. These trimers then form longer multimers gradually assembling around the RNA 

(Fig.4.1S). Interactions with the viral RNA might assist in correctly orienting the N 

protein molecules. Divalent cation(s) induce proper folding of the N protein molecules 

thus facilitating their interactions. When 3 complexes become associated with the RNA, 

a disc-like oligomer, which is consistent with one tum of the RNP helix is formed - a 

mechanism similar to the one described for vesicular stomatitis virus and Sendai virus 

RNP formation (Egelman et al., 1989; Green et al., 2000). A key component in this 

assembly process should be the RNA which plays a major role in stability of the N 

protein oligomer. Upon finishing the first tum of the RNP helix, monomer 1 and 

monomer 10 of the oligomer come into contact to form the disk, a state similar to that 

seen for tobacco mosaic virus (Durham et ai, 1971). However, unlike the tobacco mosaic 

virus disk, the Puumala virus disk is bound to RNA. Additional N-N and C-C-terminal 
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Fig. 4.15. Proposed model of hantavirus RNP formation. The association of the 
N proteins appears through their C and N termini, a so-called 'head-to-tail' 
mechanism. Two molecules of the N protein come together forming a dimer 
which then associates with the third molecule available in a monomeric form. 
Trimer then attaches to the RNA. These trimers then gradually assemble around 
RNA forming longer multimers. Interactions with the viral RNA might assist in 
correctly orienting the N protein molecules. When 3 complexes become 
associated with the RNA, a disc-like oligomer, which is consistent with one tum 
of the RNP helix is formed. Monomer 1 and monomer 10 of the oligomer come 
into contact to form the disk where additional N-N, and C-C terminal 
interactions may take place to stabilize the structure. 
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interactions may take place in order to stabilize the helical structure of the complex that 

explains interaction between homologous terminal fragments in the M2HS. 
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CHAPTER 5. POTENTIAL SECOND ORF (ORF2) IN THE 

S SEGMENT THAT MAY ENCODE AN NSs 

NONSTRUCTURAL PROTEIN 

5.1. Nonstructural NSs proteins encoded by members 

of the Bunyaviridae 

Orthobunyaviruses, phleboviruses, and tospoviruses code for two nonstructural proteins, 

tenned NSs and NSm, in their Sand M segments, respectively. Little is known about the 

NSs proteins encoded by different members of the Bunyaviridae. Not only does the 

strategy of expression vary between genera but also the primary amino acid sequence of 

this protein is poorly conserved among different members within a genus. 

Orthobunyaviruses possess a non structural protein which is smaller than the NSs protein 

of phleboviruses and tospoviruses. The S segment RNAs of the snowshoe hare, La 

Crosse, and Bunyamwera viruses are approximately 900 nucleotides long with two 

overlapping reading frames in the messenger-sense RNA and encode the N protein (19 to 

26 kDa) and a NSs polypeptide of 10 kDa to 11 kDa. For phleboviruses and tospoviruses, 

the NSs proteins which are expressed in an ambisense orientation, are larger than those of 

orthobunyaviruses. Phleboviruses like Punta Toro and sandfly fever Sicilian viruses have 

1.7- and 1.9-kb S segment RNAs, respectively, encoding 25- and 27-kDa N polypeptides 

at the 5' ends of the messenger-sense RNAs and 29- and 30-kDa NSs proteins at the 5' 

ends of the genomic sense RNAs. Another member of the Phlebovirus genus, Uukuniemi 

virus, has a nonstructural protein of 32 kDa. An even bigger nonstructural protein of 52 

kDa in size is encoded on the S segment of tomato-spotted wilt virus, a member of 

Tospovirus genus (Elliott, 1985; Elliott, 1990; illara et al., 1984; Parker et al., 1984; 

Marriott et aI., 1989; Bishop, 1996; Bouloy, 1991). 

In addition to the variety in coding strategies and size, it is possible that there may be no 

functional equivalence between the NSs proteins in different genera and the proteins ha\'e 
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adopted different or only partially overlapping functions with respect to the viral 

replication cycle. For example, within the Phtebovirus genus, NSs appears to vary with 

different representatives: in Punta Toro virus-infected cells, it localizes in the cytoplasm 

and is present in minute amounts in purified particles (Overton et at., 1987), in 

Uukuniemi virus-infected cells, it is associated with the 40S ribosomal subunit (Simons 

et at., 1992), in Karimabad virus-infected cells, it was found exclusively in the cytoplasm 

(Smith and Pifat, 1982), and for Rift Valley fever virus, NSs has been shown to be 

phosphorylated and to form filamentous structures in the infected cell nuclei (Struthers 

and Swanepoel, 1982; Struthers et at., 1984; Kohl et at., 1999). Further, it was shown that 

the carboxy-terminal acidic domain of Rift Valley fever virus NSs protein is essential for 

the formation of filamentous structures but not for the nuclear localization of the protein 

(Yadani et at., 1999). Studies on a naturally occuring mutant of RVF virus which had a 

large internal in-frame deletion in the NSs gene, have shown that it replicates normally in 

some cell lines while establishing abortive infections in others, and is avirulent in mice 

and hamsters (Muller et at., 1995). It was shown using an in vitro transcription

replication system, that NSs of RVF virus had neither a stimulatory nor an inhibitory 

effect on transcription (Lopez et at., 1995; Prehaud et at., 1997) and also plays a role in 

antagonism of the interferon (IFN) response (Haller et at., 2000). 

The function of the NSs protein of the Bunyamwera (BUN) virus, a member of the 

Orthobunyavirus genus, has been studied more extensively. Weber et al. (2001) showed 

that BUN NSs protein is mainly confined to the cytoplasm but can also enter the nucleus. 

Using a reverse genetics approach it was demonstrated that transcription and replication 

of the RNA required only the Nand L proteins (Dunn et at., 1995), though the possibility 

of a regulatory role for NSs was not discounted. Recent results by Weber et at. (2001) 

demonstrated that, unlike the NSs protein of the RVF virus, BUN NSs down-regulates 

the viral polymerase in a minireplicon system that reconstitutes nucleocapsids from 

transfected cDNAs. The generation of viruses lacking the NSs gene (Bridgen et at., 2001) 

showed that although not essential for replication in either tissue culture or in mice, the 

NSs protein of Bunyamwera virus has several functions in the virus life cycle that 

contribute to viral pathogenesis. The lack of NSs caused impaired capacity to shut off 

host cell protein synthesis. It also played an important role in controlling IFN induction 
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after infection by the virus (Bridgen et al., 2001). BUN NSs is in this sense similar to the 

NSs protein of the Rift Valley fever virus that is also an antagonist of the interferon 

response (Haller et al., 2000) and the multifunctional NS 1 gene product of influenza A 

virus, which enables the virus to inhibit host cell gene expression and stimulate its own 

protein synthesis (En ami et al., 1994; Fortes et al., 1994; Lu et al., 1994), but it also is an 

IFN antagonist (Garcia-Sastre et al., 1998). 

5.2. Potential ORF2 in Hantaviruses 

Unlike members of the Phlebovirus, Tospovirus and Orthobunyavirus genera, 

hantaviruses have not been shown to possess any nonstructural proteins. The S segment 

RNA of Hantaan virus (HTN), the prototype virus of the genus, though similar in size to 

those of the phleboviruses, apparently encodes exclusively the 50-kDa nucleocapsid 

protein. A small ORF, which could code for a 6 kDa polypeptide, is present in the same 

reading frame on the S segment as N ORF, immediately following the termination codon 

of HTN N, but a protein of this size has not been detected in HTN virus-infected cells 

(Schmaljohn et al., 1986b). Moreover, this ORF is not conserved in the S genome 

segments of the viruses of other serotypes such as Seoul (SEO) (Arikawa et al., 1990), 

Puumala (PUU) (Xiao et al., 1993), Prospect Hill (PH) (Parrington and Kang, 1990), or 

Sin Nombre (SN) (Spiropoulou et al., 1994). For these viruses, the sequence data 

revealed the presence of an overlapping reading frame with a potential to encode for a 

protein of 6 to 12 kDa in size. However, the existence of nonstructural proteins in these 

hantaviruses has not been demonstrated by analysis of viral polypeptides in infected cells 

nor by in vitro translation of S segment-specific RNA generated by SP6 transcription of S 

segment cDNA clones with subsequent immune precipitation (Schmaljohn et al., 1986b; 

Parrington and Kang, 1990; Stohwasser et al., 1990; Spiropoulou et al., 1994; Stohwasser 

et al., 1989; Arikawa et al., 1990). Hence, it remained to be determined if these ORFs 

have any significance. 

111 



Results and Discussion: Chapter 5 

5.2.1. Comparison of S segment sequences of different hantaviruses 

As a first step, the FRAMES programme of the GCG software was used to analyse 

sequences of S segments of different hantaviruses from the database to look at possible 

second ORFs. Then, alignments of the potential ORF2 sequences were performed using 

BESTFIT, GAP, PILEUP, LINEUP and PRETTY programmes of the GCG software 

packages. 

S segment sequences of the following hantaviruses from the database (GenBank 

accession numbers are shown in brackets) were used for comparison and later divided 

into three groups according to their capacity to encode a second protein based on the 

results of the FRAMES programme: 

1. Puumala (M32750, X61035, AF324902, AF442613, AJ277030, AJ277033, 

AJ277034, AJ277075, AJ277076, U14137, Z30708, AB010730, AB010731), 

Prospect Hill (M34011), Khabarovsk (U35255), and Isla Vista (U31535) 

2. Sin Nombre (L25784, L37904), Rio Mammore (U52136), Bayou (L36929), 

Lechiguan (AF482714), Pergamio (AF482717), Marciel (AF482716), Muleshoe 

(U54575) 

3. Seoul (AF288655, AF288295, M34881), Hantaan (AF329390), Dobrava (AJ410619) 

Results of the FRAMES programme are shown in Fig.5.1. One representative of each 

group, Puumala virus (Fig.5.1, A), Sin Nombre virus (B) and Seoul virus (C), is used as 

an example. 

An ORF for a potential second protein (6-12 kDa) was found in all hantaviruses except 

for Hantaan (HTN), Seoul (SEO) and Dobrava (DOB) viruses as shown in Fig. 5.2, a 

schematic summary of the results. A similar potential overlapping second ORF was 

shown to be present in the S segment of Puumala (PUU) , Isla Vista (IV), Prospect Hill 
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A. 
43 

PUU J .. 
IV, PH I 3 'UT~ N protein 

KHAB 83 353 
IS'UTR .. 

90 aa, ~12 kDa 

B. 

SN 43 
RM 

~ 

IS 'UTR BAY 3'UTR N protein 

LECH 122 313 
MSH ~ 

PERG 63 aa, ~8 kDa 
MARC 

C. 
43 

SE~ 

HTN 3'UTR 

DOB 
N protein 

(HTN) 60 aa, ~8 kDa 

Fig. 5.2. Coding strategy of the S segment of different hantaviruses. Sequences 
corresponding to the S segment of hantaviruses were analyzed by the FRAMES 
programme of the GCG software and the results are presented schematically. (A). 
Puumala (PUU), Isla Vista (IV), Khabarovsk (KHAB) and Prospect Hill (PH) 
viruses contain second ORF, overlapping that of N protein, with start codon at 
position 83 and stop codon at position 353 with a potential to encode a protein of 
90 amino acids in length. (B). Sin Nombre (SN), Rio Mammore (RM), Bayou 
(BAY), Lechiguan (LECH), Pergamio (PERG) and Marciel (MARC) viruses 
contain second ORF with start codon at position 122 and stop codon at position 
313 with a potential to encode a protein of 63 amino acids. (C). No second ORF 
similar to the one encoded by the above hantaviruses was found on the S segment 
of Seoul (SEO), Hantaan (HTN) and Dobrava (DOB) viruses. However, a small 
ORF, which could code for a 6 kD polypeptide, is present in the same reading 
frame on the S segment as N ORF, immediately following the termination codon 
of HTNN. 
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(PH) and Khabarovsk (KHAB) hantaviruses (Fig.5.2, A), with initiation codon at position 

83 (40 bases downstream from the N initiation codon, in the + 1 ORF with respect to N 

ORF) (Fig.5.3) and a stop codon at TAA at 353 . The ORF has the potential to encode a 

protein 90 amino acids in length with a predicted molecular weight of about 12 kDa. 

70 83 

• GAGATAACCCGCCATGAGCAACAACTTGTTGTTGCCAGAC 

E I T R H F Q Q 

M s N N L L L p D 

Fig. 5.3. Nucleotide sequences from bases 70 to 109 of PUU S segment 

showing the putative ORF2 protein start codon. Amino acid translations 

are given below the nucleotide sequences, with ORF2 sequence in blue 

color. 

Sin Nombre (SN), Rio Mammore (RM), Bayou (BAY), Lechiguan (LECH), Pergamio 

(PERG), Marciel (MARC), and Muleshoe (MSH) viruses were shown to possess a 

smaller ORF, overlapping that encoding N, with initiation codon at position 122 (76 

bases downstream from the N initiation codon) and stop codon T AA at position 313, and 

with a potential to encode a protein 63 amino acids in lengths (about 8 kDa) (Fig.5.2, B). 

According to sequence analysis, RM and MSH hantaviruses have an ATG in position 83 , 

and SN, PERG, MARC and BAY viruses have an ACG in this position. Although the 

ATG codon could have been lost over time and substituted by ACG, the 83-353 region of 

the sequence is not 'open' as there is a stop codon 12 nucleotides downstream in the 

sequences of all hantaviruses of the group (Fig.5A). 
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83 • 132 
RM atgaacagca gcttgtagct gctcgtcaaa aacttaagga tgccgagaag 

BAY acgaacaaca actcgtgact gccaggcaga agctcaaaga tgcagaaaga 
SN acgaacaaca actcgtgact gccaggcaga agctcaaaga tgcagaaaga 

PERG acgaacaaca tctcgtgact gccaggcaga aacttaaaga tgccgagaag 
MARC acgaacaaca actcgtgact gccaggcaga agctgaaaga tgcagaaaaa 
MSH atgagcagca gctggtgaca gctaaacaaa agctcaaaga tgccgaacga 

PUU AB010730 atgaacaaca acttgttgtt gcccggcaaa agcttagaga tgcagagaaa 
PUU AB010731 atgaacaaca acttgttgtt gcccggcaaa agcttagaga tgcagagaaa 
PUU AJ277030 atgaacaaca acttgttgtt gccagacaga aactcaagga tgcagaaaag 
PUU AJ277033 atgaacaaca acttgttgtt gccagacaga aactcaagga tgcagaaaag 
PUU AJ277034 atgaacaaca acttgttgtt gccagacaga aactcaagga tgcagaaaag 
PUU AJ277075 atgaacaaca acttgttgtt gccagacaga aactcaagga tgcagaaaag 
PUU AJ277076 atgaacaaca acttgttgtt gccagacaga aactcaagga tgcagaaaag 

Fig.SA. Alignment of partial nucleotide sequences of different h~ntaviruses using 
PRETTY programme of the GCG software. Rio Mammore (RM), SIll Nombre .(SN), 
Pergamio (PERG), Marciel (MARC), Muleshoe (MSH) and Bayou (BAY) ~antavlruses 
have a start codon for the putative ORF2 protein at position 122 (shown III blue and 
arrow). At position 83, a start codon for hantaviruses Puumala, Isla Vista and Prospect 
Hill the viruses RM and MSH also contain an ATG and viruses SN, PERG, MARC and 
BAY have an ACG (shown in blue) indicating that an ATG could be lost over tim,e. 
However, there is also a stop codon in all of these hantaviruses at position 98 (shown III 

red). 
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Hantaan, Seoul and Dobrava hantaviruses were not shown to possess a coding capacity 

for a protein similar to the ORF2 protein of other hantaviruses of the genus (Fig.5.1, C 

and 5.2, C). Sequence analysis of viruses Seoul and Hantaaan presented in Fig. 5.5, A 

and B, respectively, reveals the presence of several stop codons in the 83-355 region. 

Analogous or similar ORFs were described for PUU strains CG 18-20 and Sotkamo 

(Stohwasser et ai., 1990; Vapalahti et ai., 1992), and PH (Parrington and Kang, 1990), 

Tula (Plyusnin et ai., 1994a) and Sin Nombre hantaviruses (Spiropoulou et ai., 1994) but 

not for HTN or SE~ viruses (Arikawa et ai., 1990; Giebel et ai., 1991; Schmaljohn et ai., 

1986b). 

The sequences corresponding to the second open reading frame of different hantaviruses 

can be readily aligned using BESTFIT programme with a percent identity from 77 to 100. 

As an example, the results of sequence alignment of two viruses encoding 90aa protein 

(Prospect Hill and Puumala) and 63aa protein (Pergamio and Rio Mammore) are 

presented in Fig. 5.6, A and B, respectively. 

Additional evidence that the ORF2 encodes a protein is the presence of conserved motifs 

amongst the putative ORF2 proteins of the studied hantaviruses. Within all putative 

hantavirus ORF2 proteins, whether they are the 90aa form found in PUU, PH, IV, KHAB 

viruses or the 63 aa version found in SN, BAY, RM, LECH, MSH, PERG, MARC S 

RNA sequences, there are 8 conserved residues and 4 conserved positions that contain 

either lysine or arginine. Ten additional conserved amino acids plus two lysine/arginine 

positions are present when only the 90aa proteins are examined. The results of amino 

acid sequence comparison of several hantaviruses, performed using PileUp programme, 

are presented in Fig. 5.7. 

5.2.2. Implications for the functionality of the ORF2 protein 

Spiropoulou et al. (1994) and Bowen et ai. (1995) examined the nucleotide substitution 

frequency distribution within the N ORF of different hantaviruses. If the second ORF 
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A 

1 
60 

tagtagtaga ctccctaaag agctactaca ctaacaagaa aaatggcaac t atggaagaa 

61 ~ 120 
atccagagag aaatcagtgc tcacgagggg cagcttgtga tagcacgcca gaaagt c aag 

1~ 1 8 0 
gatgcagaaa agcagtatga aaaggatcct g atgact taa acaagagggc actgcatgat 

181 240 

cgggagagtg tcgcagcttc aatacaatca aaaattgatg aat tgaagcg ccaacttgcc 

241 300 

gacaggattg cagcagggaa gaatattggg caagaccggg atcctacagg ggtagagccg 

B 

1 60 
tagtagtaga ctccctaaag agctactata gcaacgatgg caactatgga ggaattacag 

61 83 1 2 0 

agggaaatca atgcccatga ggg~agctg g tgatagcca ggcagaaggt gagggatgca 

1~ 180 
gaaaaacagt atgaaaagga tccagatgaa c tgaacaaaa gaacat taac agacagagaa 

181 24 0 

ggggttgcag catctatcca ggctaagatt g atgaat tga aaagacagtt ggcagatagg 

241 300 

attgcaactg gaaagaacct tggaaaggaa caggacccaa ctggggttga acctggagac 

Fig. 5.5. Partial sequences of the S segment of hantaviruses Seoul (strain r22, GenBank Acc N 
AF288295) (A) and Hantaan (strain A9, GenBank Acc N AF329390) (B). Potential start codon.s are 
shown in blue and stop co dons in red. Start codon for N protein is shown in bold and underlIned. 
Arrows indicate positions of start codons for the ORF2 proteins encoded by other hantaviruses 
(either 83 or 122) . 



A 

83 atgagCagcagcttgtcattgCccggcagaagctcaagg~agctgaacg~ 
" I I II II 11111 11111 I 11111 11111111 II III I 

83 atgaaCaacaacttgttgttgCcagacagaaactcaaggatgCagaaaag 

132 

132 

133 acggtggaggtggacccagatgacgttaacaaaagtaca~tgcaaagca~ 
11111111 111111111111111111111111 III 11111 II 

gcggtggagatggaCccagatgacgttaacaaaaacacattgcaagcaag 

182 

133 
182 

183 gcggtcagcagtgtcaacattggaggaCaaattggCaga~ttcaagagg~ 232 

II 11111111 II 11111111111 I 11111 111111 I I 
183 gcaaCagacagtgtcagcactggaggaCaaacttgcagacttcaagcgac 232 

233 agcttgcagatgtcatctcacgtcagaagatggatgaga~acctgtgga~ 282 

II I 1111111 I II I I II 111111 111111 II 
233 agatggcagatgctgtgtccaggaaaaaaatggatactaaacctactgac 282 

283 ccaactggtattgagcttgacgaccatcttaaggagaggtcaagcctcca 332 

II 11111 1111111 III 11111111 111111 I 111111111 
283 ccgactgggattgagcctgatgaccatctcaaggagcgatcaagcctcag 332 

333 atatggaaatgtccttgatgtga 355 

111111 11111111111111 I 
333 atatgggaatgtccttgatgtaa 355 

B 

122 atgccgagaagaccgtggaagtggacccagatgaagtcaacaagagcaca 171 

11111111111 I 11111111111111111111 II 111111111111 
122 atgccgagaaggcagtggaagtggacccagatgacgttaacaagagcaca 171 

172 ttacaaagtagacgggcggctgtgtctacattggagaccaaacttggaga 221 

11111111 11111111 1111111111111111111 11111 I III 
172 ttacaaagcagacgggcagctgtgtctacattggagaataaactcgcaga 221 

222 gctcaagaggcagcttgcagatttggtggcagctcaaaagctggctgcaa 271 

11111111 11111 11111111111111111111111 111111 III 
222 actcaagagacagctggcagatttggtggcagctcaaaaactggcttcaa 271 

272 agccagttgatccaacagggcttgagcctgatgaccatctga 313 

I 111111111111111111111111111111111111 I I 
272 aaccagttgatccaacagggcttgagcctgatgaccatttaa 313 

Fig. 5.6. Sequence comparison ofhantaviruses encoding ORF2 proteins of 90 amino acids (A) and 
63 amino acids (B) performed using BESTFIT programme of the GCG software. A. Sequence 
comparison of Prospect Hill (GenBank Acc. N M34011) and Puumala (GenBank Acc. N 
AJ277034) viruses. Percent identity 76.923. B. Sequence comparison ofPergamio (GeneBank Ace. 
N AF482717) and Rio Mammore (GenBank Acc. N U52136) viruses. Percent identity 90.625. 



PUU M32750 -----MSNNLL LPDKNSRMQR EQWKWTRMTL TRAHYKQDNK QCQHWRI NSQ 
PUU AF442613 -----MSNNLL LPDKNSRMQR EQWKWTRMTL TRTHYKQGNK QCQHWRI NSQ 
PUU AJ277033 -----MNNNLL LPDRNSRMQK RRWRWTQMTL TKTHCKQGNR QCQHWRTNLQ 
PUU AJ277034 -----MNNNLL LPDRNSRMQK RRWRWTQMTL TKTHCKQGNR QCQHWRTNLQ 
PUU AJ277075 -----MNNNLL LPDRNSRMQK RRWRWTQMTL TKTHCKQGNR QCQHWRTNLQ 
PUU AJ277076 ----- MNNNLL LPDRNSRMQK RRWRWTQMTL TKTHCKQGNR QCQHWRTNLQ 
PUU ABOI0730 -----MNNNLL LPGKSLEMQR KQWKWTQMTL TRTHCKHGNK QCQHWRI NLP 
MSH U54575 -----MSSSWW QLNKSSKMPN EQWKWTPMML TKAHYRADGQ LCLHWRPNLV 
PH M34011 -----MSSSLS LPGRSSRKLN GRWRWTQMTL TKVHCKAGGQ QCQHWRTNWQ 
IV U31535 -----MSSSWL LQGKNLKMPK KQWRWTRMMS TRVHSKADGR QCQHWRI NLP 
SN L25784 ----------- -------MQK ERWNWTPMML TKAHYRADGQ LCLHWRPNSE 
SN L37904 ------ - ---- -------MQK ERWNWTPMML TKAHYRADGQ LCLHWRPNSE 
RM U52136 ----------- -------MPR RQWKWTQMTL TRAHYKADGQ LCLHWR I NSQ 
LECH AF482714 ----------- -------MPK RRWRWTRMRL TRAHYKVDGQ LCLHWRPNSG 
MARC AF482716 ----------- -------MQK KPWTWTQMRL TRVHYKVDGQ LCQHWRPNLE 
KHAB U35255 MRSLVTSSSSS LLDRNSGILR RRWRRTPMML TKI HYRQDGR LCQHWRTNLQ 

PUU M32750 TTREEWQMLC PGRKWILNLL TRLGLNLMII SRRDQALDME MSLM*-
PUU AF442613 TTREE WQMLC PGRKWILNLL TRLGLNLMII SRRDQALDME MSLM*-
PUU AJ277033 TSSDRWQMLC PGKKWILNLL TRLGLSLMTI SRSDQASDMG MSLM*-
PUU AJ277034 TSSDRWQMLC PGKKWILNLL TRLGLSLMTI SRSDQASDMG MSLM*-
PUU AJ277075 TSSDKWQMLC PGKKWILNLL TRLGLSLMTI SRSDQASDME MSLM*-
PUU AJ277076 TSSDKWQMLC PGKKWILNLL TRLGLSLMTI SRSDRASDME MSLM*-
PUU ABOI0730 TSSEEWQMLC PGKRWILSLL TRLGLNLMTT SRRDLASDMG MSLM*-
MSH U54575 NSRDNWQILL QLRNWLQNLL I QQGLSLMTI *--------- ------
PH M34011 SSRGSLQMSS HVRRWMRNLW I QLVLSLTTI LRRDQASNME MSLM * 
IV U31535 TLRDNWQMLY RARRWMIS LL TLLGWNQMTT SKRDQASGME MSLM * 
SN L25784 NLSGNWLILL QLRNWLQNLL I QQGLNLMTI *--------- ------
SN L37904 NLSGNWLILL QLRNWLQNLL I QQGLNLMTI *--------- ------
RM U52136 NSRDSWQIWW QLKNWLQNQL I QQGLSLMTI *--------- ------
LECH AF482714 NSRDNLQIWW QLKNWLQNQL I QQGLSLMII *--------- ------
MARC AF482716 SSRDSLLTWW QLKNWLQNQL I QQGLSLMTI *--------- ----- -
KHAB U35255 TSRGSSRIMF LVRRWMRG LL IRLGLSQMII SRRDQASGME MSLM * 

Fig. 5.7 Comparison of amino acid sequences encoding putative ORF2 protein by different hantaviruses. Amino acid sequences of hantaviruses Puumala (PUU 
M32750, AF442613 , AJ277033 , AJ277034, AJ277075, AJ277030), Muleshoe (MSH U54575), Prospect Hill (PH M34011), Isla Vista (IV U31535), Sin Nombre 
(SN L25784 and SN L37904), Rio Mamrnore (RM U52136), Lechiguan (LECH AF482714), Marciel (MARC AF482716) and Khabarovsk (KHAB U35255) were 
aligned using PileUp programme of the GCG software. Amino acids (aa) shown in blue are conserved among 90aa ORF2 proteins, amino acids shown in violet are 
conserved among 63aa version of ORF2 protein, and amino acids shown in red are conserved among all putative hantavirus ORF2 proteins. 
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were functional then the evolutionary constraint to maintain amino acid sequence in both 

frames would be expected to lower the third base substitution frequency in this region. 

Therefore, determination of whether the third base substitution frequency in the region of 

the N ORF that overlaps the ORF 2 is constrained would suggest that the ORF2 was 

functional. According to the results of statistical analysis, the third position base 

substitutions were found to predominate in the N ORF, and the average third position 

base substitution rate for the region of the N ORF outside ORF2 was higher than the rate 

for the entire N ORF. Within the overlap region of the N ORF and ORF 2, however, the 

third position base substitution rate was greatly reduced, dropping to less than 0.5 

substitution per position from approximately 1.0 substitution per position in the region of 

the N ORF that lies outside the ORF 2. This reduction in third base substitution frequency 

in the overlapping region was statistically significant when compared with either the third 

base substitution frequency in the non-overlapping region of the N ORF (P<O.OOOOI, 

X2=203.42, df=l) or the entire N ORF (P<O.OOOOI, X 2 =96.4, df=I), thus suggesting that 

the putative ORF2 is functional (Spiropoulou et ai., 1994). 

As seen with previously analysed viruses, a lower third-base substitution frequency in 

this region provides theoretical evidence that this second ORF codes for a functional 

protein in hantaviruses. A similar statistical analysis was employed in the case of 

vesicular stomatitis virus and did successfully predict a functional overlapping ORF in 

the P gene (Bilsel et ai, 1990). The NSs proteins of other members of the Bunyaviridae 

exhibit similar constraints on third base substitution frequency in the region of N ORF 

that overlaps the NSs ORF. 

If this NSs protein prediction is correct, then only the Hantaan, Seoul and Dobrava 

hantaviruses and probably members of the Nairovirus genus are lacking such a protein 

predicted on the S RNA segment of other members of the Bunyaviridae family in either 

an overlapping ORF or in an ambisense orientation. 
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5.3. Attempts to identify ORF2 protein in Puumala 

virus infected cells 

So far, the ORF2 protein has not been reported in virus infected cells (Schmaljohn et at., 

1986b; Parrington and Kang, 1990; Stohwasser et at., 1990; Spiropoulou et at., 1994; 

Stohwasser et at., 1989; Arikawa et at., 1990). Therefore, an attempt was made to 

identify the putative ORF2 protein in Vero E6 cells infected with Puumala virus. 

Briefly, sub confluent monolayers of Vero E6 cells were infected with Puumala virus at a 

MOllO pfu/cell. The cells were incubated for 24 hours at 37°C, then the growth media 

was substituted by maintenance media (2% DMEM) and cells incubated for additional 96 

hours. Before labelling, the cells were starved in methionine-free media for 1 hour and 

then labelled with 35S-methionine at 50llCi per dish for 4 hours. Cells were harvested and 

lysed. The cell extracts were analysed by 20% SDSIP AGE as described in Methods 

followed by autoradiography. Protein profiles of mock- and Puumala virus infected cells 

are shown in Fig.5.8, lanes 1 and 2, respectively. No distinctive band corresponding to 

the protein of the expected size of 12 kDa was observed in virus-infected cells compared 

to mock-infected cells. 

Unlike orthobunyaviruses, hantaviruses do not cause host cell synthesis shut off. 

Therefore, identification of the viral proteins on the gel is problematic. This could explain 

why no distinctive band of close to ORF2 size was identified by autoradiography of 

radiolabelled Puumala infected VeroE6 cell extracts. 

5.4. Construction of pTMPUUORF2, pTMPUUORF2FLAG, 
pTMHTNN and pTMSEON 

Four plasmids were constructed for the following work. Open reading frames for Hantaan 

and Seoul virus N proteins were cloned into pTMI cloning vector that contains a 

bacteriophage T7 promoter and an internal ribosome entry site (IRES). This would allow 
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Fig. 5.8. Infection of VeroE6 cells with Puumala virus. Subconfluent 
mono layers of Vero E6 cells were infected with Puumala virus at MOr 10 
~fu/cell. The cells were incubated for 96 hours and then labelled with 50/-lCi 

5S methionine for 4 hours. Cells were harvested and lysed. Cell lysates 
were analysed by 20% SDS PAGE followed by autoradiography. 
Hantaviruses do not cause host cells synthesis shut off. No distinctive band 
corresponding to the protein of the expected size of about 12 kDa was 
observed in virus-infected cells. Lane 1, mock infected; lane 2, Puumala 
infected. 
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expreSSIOn of the protein by T7 polymerase using coupled transcription/translation 

system in rabbit reticulocyte lysates (TnT) and would be used for comparison with 

Puumala virus. Also, sequences encoding either PUU ORF2 protein or a FLAG-tagged 

version of ORF2 protein were cloned into pTMl cloning vector under control of a T7 

promoter and IRES. These constructs would be used for transient expression of ORF2 

protein uSIng the vaCCIma T7 system followed by metabolic labelling, 

immunoprecipitation and Western blot analysis with either anti-FLAG or anti-ORF2 

peptide antibodies in an attempt to identify ORF2 protein. 

The DNA fragment corresponding to amino acids 83 to 353 and representing the open 

reading frame coding for the putative ORF2 protein was generated by PCR (Fig.5.9). 

Plasmid pTMPUUS containing the S gene coding for both Nand ORF2 proteins was 

used as a template. The upstream primer PuuORF2Neol+ contained an Neol restriction 

enzyme site and the downstream primer PuuORF2Pstl- contained a Pstl restriction 

enzyme site (see Materials). The amplified DNA fragment was digested with Neol and 

Pstl restriction enzymes for cloning into NcoIlPstI - cleaved pTMl vector. The resultant 

construct pTMPUUORF2 contained the coding sequence for the putative ORF2 protein 

under control of a T7 promoter and IRES. The cloning procedure was confirmed by 

restriction enzyme analysis and nucleotide sequencing. 

Plasmid pTMPUUORF2FLAG was constructed in a similar manner to pTMPUUORF2, 

except the primer PuuORF2PstlFLAG-, incorporating Pstl restriction enzyme site, also 

contained a sequence encoding the FLAG peptide (see Materials). The resultant construct 

contained the sequence encoding ORF2 protein with FLAG peptide epitope (Hopp, 1988) 

fused to the C terminus under control of a bacteriophage T7 promoter and IRES. 

For cloning the N ORF of Hantaan virus (HTN) into pTMl cloning vector, plasmid 

pACHTNS supplied by Dr X Shi was used as a template. The DNA fragment 

representing the open reading frame coding for the N protein was generated by PCR 

using primers incorporating restriction enzymes Neol (primer HtnNORFNeol+) and Pstl 

(primer HtnNORFPstl-) (see Materials). The amplified fragment was then digested with 

these enzymes and cloned into a Neol/Pstl -cleaved pTMl cloning vector (Fig. 5.10, A). 
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Fig. 5.9. Construction of pTMPUUORF2 expressing putative ORF2 protein. 
pTMPUUS plasmid was used as a template to PCR amplify second ORF on 
PUU S segment encoding a putative ORF2 protein with initiation codon at 
position 83 and stop codon at position 353 . The primers contained restriction 
enzyme sites Ncol and Pst!. After restriction digestion with these enzymes, the 
PCR product was cloned into pTMl cloning vector cleaved with Ncol and Pst! 
restriction enzymes. The resultant construct pTMPUUORF2 contained ORF2 
under control of bacteriophage T7 promoter and IRES 
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Fig. 5.10. Construction of pTMHTNN and pTMSEON plasmids containing N 
ORF of Hantaan (HTN) and Seoul (SEO) viruses under control of the 
bacteriophage T7 promoter. 
(A) Hantaan virus N ORF was PCR amplified using pACHTNS plasmid as a 
template, with primers incorporating NcoI and Pst I restriction sites. PCR 
product was digested with these enzymes and cloned into NcoIlPstI-cleaved 
pTMl cloning vector, that contains the bacteriophage T7 promoter and 
terminator. 
(B) Seoul virus N ORF was amplified by PCR with primers incorporating Ncol 
and PstI restriction sites. Plasmid pCRIlL99 was used as a template. After 
digestion with Ncol and PstI restriction enzymes, SE~ N ORF was cloned into 
pTMl cleaved with these enzymes. The resultant construct pTMSEON 
contained SE~ N ORF under control of bacteriophage T7 promoter and EMCV 

IRES . 
T7, T7 promoter; T7term, T7 terminator. 
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The presence of the N ORF was confinned by restriction enzyme digestion and 

nucleotide sequence analysis. The resultant construct, pTMHTNN contained a gene 

encoding HTN N protein under control of a bacteriophage T7 promoter and IRES. 

The same procedure was employed to clone N ORF of Seoul virus (SEO) into pTMI 

cloning vector (Fig. 5.10, B). As a template, pCRIIL99 plasmid (supplied by Dr X Shi) 

containing S segment sequence of SE~ virus was used. Primers SeoNORFNcoI+ and 

SeoNORFPstI- were used in PCR (see Materials). The resultant construct, continned by 

restriction enzyme digestion and sequencing, contained SE~ N ORF under control of a 

T7 promoter and IRES. 

5.5. In vitro expression of the putative ORF2 protein 

In addition to the plasmids pTMHTNN and pTMSEON, construction of which was 

described previously, two other plasmids, pTzPUUS and pGEMSotkamoS (provided by 

Dr X Shi), containing S segment of Puumala virus strains Vranica and Sotkarno, 

respectively, under control of a T7 promoter, were used in in vitro coupled 

transcription/translation system (TnT kit, Promega) for expression of the ORF2 protein 

and comparison to pTMPUUS (containing S segment ofPuumala virus strain cgI820). 

As expected, no equivalents of ORF2 protein were observed following in vitro 

transcription/translation of eDNA clones of the Hantaan (plasmid pTMHTNN) and Seoul 

(plasmid pTMSEON) virus S segment. These were previously demonstrated by sequence 

analysis to lack second ORF. As seen on the gel, only N proteins, that migrate slower 

than Puumala virus N protein, were expressed (Fig.5.11, lanes I and 2). 

In vitro translation of pTMPUUS, containing S segment sequence (therefore coding for 

both N and presumably ORF2 proteins) under control of a bacteriophage T7 promoter 

and IRES, in the rabbit reticulocyte lysate using TnT kit yielded three major polypeptides 

(lane 5). Electrophoretic mobilities of two of them were consistent with the predicted 

molecular weights of the N protein (50kDa) and ORF2 protein (12.5 kDa). 
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Fig. 5.11. In vitro transcription/translation in rabbit reticulocyte lysates 
using TnT kit (Promega). Proteins encoded on the S segment of Hantaan 
and Seoul viruses, and three Puumala virus S clones, were expressed in 
vitro using TnT kit and analyzed by autoradiography on a 20% SDS
PAGE. Expression of pTMHTNN and pTMSEON plasmids that contain 
sequences coding for Hantaan and Seoul virus N proteins, respectively, 
and lacking the capacity to encode a non structural protein gave only bands 
corresponding to N protein (lanes 1 and 2, respectively). Translation of 
three Puumala virus S clones from plasmids containing sequences coding 
for Nand ORF2 proteins, pTzPUUS (lane 3), pGEMSotkamoS (lane 4) 
and pTMPUUS (lane 5) resulted in production of three proteins: N (50 
kDa), ORF2 (12 kDa) and a third protein (~45 kDa) generated by a leaky 
scanning mechanism from a downstream AUG codon. The third protein 
was similar in size to the one expressed from pTMPUUORF2 plasmid 
(lane 6). Markers (in kilodaltons) are shown on the left. 
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The third band (about 45 kDa) which is clearly identified on the gel was assumed to 

correspond to protein initiated by a leaky scanning mechanism from a downstream AUG 

initiation codon. The sequence context around the AUG start or secondary AUGs in the 

sequence were shown to have profound effects on initiation fidelity and translation 

efficiency in reticulocyte systems (Kozak, 1990). Examination of the sequence revealed 

two AUG codons with the predicted N ORF, at position 43 and at position 235, to UGA 

at position 1344. The second AUG is preceded by the sequence shown to be important for 

successful initiation of transcription where a purine (preferably A) at the -3 position and 

a G residue at the +4 position (the A of the AUG is designated + 1) are the most important 

determinants (Kozak, 1981) (Fig.5.12, A). No AUG codon is present downstream of the 

Seoul virus S segment sequence (B) and although there is an AUG codon at the 319 

position in Hantaan virus S segment, the consensus sequence is not optimal for a 

successful initiation of transcription (C). 

Expression of two other Puumala virus S clones gave similar results. The translation 

products in the rabbit reticulocyte lysate from plasmids pTzPUUS and pGEMSotkamoS 

are shown in lanes 3 and 4 (Fig.5.11), respectively. The Nand ORF2 can be identified as 

bands corresponding to the protein sizes of 50 and 12.5 kDa, as can protein of a smaller 

than N size generated by a leaky scanning mechanism from the second AUG codon. 

To determine if the PUU ORF2 protein could be expressed from pTMPUUORF2 

plasmid, in vitro coupled transcription/translation system (TnT kit, Promega) in a rabbit 

reticulocyte lysate was used. Translation of pTMPUUORF2 gave a protein of 12.5 kDa 

(Fig. 5.11, lane 6) which was similar in size to the ORF2 protein expressed from 

pTMPuuS (compare lanes 5 and 6, respectively). 

The results of the in vitro transcription/translation system using rabbit reticulosyte lysate 

demonstrate that ORF2 protein, shown by sequence analysis to be encoded on Puumala 

virus S segment in an open reading frame overlapping that of the N protein, can be 

expressed from pTMPUUORF2 containing only the sequence coding for ORF2 protein 

and pTMPUUS containing S gene coding for both N and ORF2 proteins. 
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A PUU 

CTCCTTGAAA AGCTACTACG AGAACAACfG 1 TAGTAGTAGA GMTG~GTGA • 50kDA N 
- 3 +1 +4 51 CTTGACAGAC ATCCAAGAGG AGATAACC1G CCATGAfCAA CAACTTGTTG • 12kDaORF2 

101 TTGCCAGACA AAAACTCAAG GATGCAGAGA GAGCAGTGGA AGTGGACCCG 

151 GATGACGTTA ACAAGAGCAC ATTACAAGCA AGACAACAAA CAGTGTCAGC 
<. ..... 1 .J-Ll 

201 ACTGGAGGAT AAACTCGCAG ACTACAAGAG JGAATGG¢A GATGCTGTGT • 4 5kDa LlN 

251 CCCGGAAGAA AATGGATACT AAACCTACTG ACCCGACTGG GATTGAACCT 

B SE~ 

-<. :J ..... 4 
1 TAGTAGTAGA CTCCCTAAAG CTAACAAG.fJ\ AMTGG FAAC • AGCTACTACA SE~ N 

51 TATGGAAGAA ATCCAGAGAG AAATCAGTGC TCACGAGGGG CAGCTTGTGA 

10 1 TAGCACGCCA GAAAGTCAAG GATGCAGAAA AGCAGTATGA AAAGGATCCT 

151 GATGACTTAA ACAAGAGGGC ACTGCATGAT CGGGAGAGTG TCGCAGCTTC 

201 AATACAATCA AAAATTGATG AATTGAAGCG CCAACTTGCC GACAGGATTG 

251 CAGCAGGGAA GAATATTGGG CAAGACCGGG ATCCTACAGG GGTAGAGCCG 

301 GGTGATCATC TCAAAGAGAG ATCAGCACTA AGCTATGGGA ATACACTGGA 

C HTN 
- 3 +1 +4 

1 TAGTAGTAGA CTCCCTAAAG AGCTACTATA GCfACGATGG ICAACTATGGA • HTN N 

51 GGAATTACAG AGGGAAATCA ATGCCCATGA GGGCCAGCTG GTGATAGCCA 

101 GGCAGAAGGT GAGGGATGCA GAAAAACAGT AT GAAAAGGA TCCAGATGAA 

151 CTGAACAAAA GAACATTAAC AGACAGAGAA GGGGTTGCAG CATCTATCCA 

2 01 GGCTAAGATT GATGAATTGA AAAGACAGTT GGCAGATAGG ATTGCAACTG 

2 51 GAAAGAACCT TGGAAAGGAA CAGGACCCAA CTGGGGTTGA ACCTGGAGAC 
-3 +1 +4 

301 CATCTTAAGG AGAGATCAAT GCTTAGCTAT GGCAATGTGC TGGATTTAAA 

351 CCATCTGGAT ATTGATGAGC CTACAGGGCA GACAGCAGAC TGGCTAAGTA 

Fig.5. 12. Partial sequences of S segments of viruses Puumala (A), Seoul (B) and Hantaan (C). Potential start codons are 
shown in blue. The optimal consensus is 5' A/G CCAUGG with a purine (preferably A) at the -3 position and a G 
res idue at the +4 position (the A of the AUG is designated +1) being important determinants (Kozak, 1981 ) Three 
major AUG-initiated ORFs are present in the S segment of Puumala virus with third AUG being in optimal sequence 
context. The res idues that are very important for efficient initation are shown in red, the residues that substitute them 
are shown in pink. 
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5.6. Metabolic labelling of transiently expressed proteins 

Metabolic labelling was performed to further investigate the expression of the ORF2 

protein from the plasmid pTMPUUS containing S segment sequence coding for both N 

and ORF2 proteins. This would demonstrate that the putative ORF2 protein could be 

expressed in vivo as well as in vitro. 

Recombinant vaccinia virus (vTF7-3) system was used to transiently express protein 

from transfected plasmid as this vaccinia helper virus is known to express high levels of 

T7 polymerase. Briefly, Vero E6 cells were infected with recombinant vaccinia virus 

vTF7-3 at a multiplicity of infection 5 pfu/cell. The cells were transfected with protein

expression plasmid pTMPUUS, and 24 hrs posttransfection the cells were labelled for 2 

hours with 50 !-lCi of 35S methionine. Cells were harvested and lysed. The cell extracts 

were analyzed by 20% SDS/P AGE as described in Methods followed by autoradiography 

(Fig. 5.13). 

Protein profiles of mock- and vaccinia virus-infected cells are shown in lanes 1 and 2. N 

protein, expressed from pTMPUUS, can be clearly identified (lane 3), however, no 

distinctive band, corresponding to the putative ORF2 protein, can be seen. When 

compared to ORF2 protein expressed in vitro by TnT and used as a positive control (lane 

5), it is noted that vaccinia virus protein, similar in size, could be comigrating with the 

putative ORF2 protein (compare lanes 2, 3 and 5). At the same time, the FLAG-tagged 

version of the ORF2, expressed from pTMPUUORF2FLAG, can be easily identified on 

the gel (lane 4). 

It is also of note that only a single form of N protein of 50 kDa expressed from 

pTMPUUS in vivo can be detected on the gel (lane 3), therefore, a protein of a smaller 

size generated by a leaky scanning mechanism from secondary downstream AUG codon 

was indeed an artifact generated by in vitro reticulocyte lysate system. 
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Fig. 5.13. Metabolic labelling of transiently expressed Nand ORF2 proteins in 
vaccinia virus infected Vero E6 cells. Confluent mono layers of Vero E6 cells 
were infected with recombinant vaccinia virus vvTF7-3 at MOl 5 pfu/cell (lane 
2) or mock infected (lane 1) and transfected with pTMPUUS (lane 3) and 
pTMPUUORF2FLAG (lane 4) plasmids. At 24 hours postinfection, the cells 
were labelled with 50 J.lCi of 35S methionine per dish for 2 hrs. The proteins 
were analyzed by electrophoresis in 20% SDS-PAGE and autoradiography. 
The positions of the Nand ORF2FLAG proteins and the molecular mass 
markers (in kilodaltons) are shown on the left and right, respectively. Lane 1 -
mock infected, lane 2, vvTF7-3 infected, lane 3, pTMPUUS, lane 4, 
pTMPUUORF2FLAG, lane 5, in vitro transcribed ORF2 protein from 
pTMPUUORF2 
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It was difficult to conclude whether or not the ORF2 protein was expressed in vivo from 

pTMPUUS plasmid (containing the gene coding for N protein and therefore containing 

overlapping ORF2 encoding a putative ORF2 protein) because of a comigrating vaccinia 

virus protein of a similar size. Therefore, to prove the presence of the ORF2 protein, 

other methods had to be employed, such as immunoprecipitation and Western blot 

analysis with anti-ORF2 peptide antibodies. 

5.7. Immunoprecipitation with anti-FLAG antibody 

As no anti-ORF2 antibodies were available at the initial stages of the work, a construct 

pTMPUUORF2FLAG containing a coding sequence for a C-terminal FLAG peptide 

fused to the ORF2 eDNA sequence was used. Expression of the FLAG-tagged ORF2 

protein was previously demonstrated by direct labelling approach (section 5.6, Fig.5.l3, 

lane 4). Additionally, detection of the ORF2 protein by immunoprecipitation with an anti

FLAG antibody would become the basis for further experiments once anti-ORF2 peptide 

antibodies were available. 

The FLAG-tagged ORF2 protein was transiently expressed by using a T7 vaccinia virus 

system (described in section 5.6), radiolabelled with 50J.lCi of 35S methionine, 

immunoprecipitated with anti-FLAG antibody, and the immunoprecipitates were 

analysed by 16% SDS-PAGE (see Methods). 

Initial experiments (data not shown) demonstrated that a FLAG-tagged ORF2 protein 

was seen as a smeared band of a bigger than expected size. It was assumed that the 

apparent 'smearing' of the band could be the result of the protein degradation by cellular 

protease as is the case with the non structural protein of the Rift Valley fever (R VF) 

virus, which was shown to be susceptible to the action of cellular protease. 

To overcome the degradation of the protein, the cells were treated with protease inhibitor 

before immunoprecipitation in all of the following experiments. Briefly, cells were 

labelled as described previously and washed with PBS. 300 J.lI RIPA buffer containing 12 
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JlI protease inhibitor (l :25 dilution of protease inhibitor was used per dish) was added 

onto the cells. The cells were incubated on ice for 30 minutes and immunoprecipitation 

continued as described in Methods. In contrast to the previous experiment, treatment with 

protease inhibitor resulted in FLAG-tagged ORF2 protein appearing as a band of about 

15 kDa in size (Fig.5.14). Mock (lane 1) and vaccinia virus infected cells (lane 2) were 

used as negative control. In addition, Puumala N protein was expressed from pTMPUUS 

plasmid and immunoprecipitated with anti-PUU N antibody. As expected, only one band 

corresponding to PUU N protein could be detected on the gel (lane 3). 

5.8. Immunoprecipitation with five anti-ORF2 peptide antibodies 

During the late stages of my work, antibodies were obtained from Dr 0 Vapalahti, 

University of Helsinki. Rabbit antibodies were raised against five different PUU ORF2 

sequence peptides which are shown in Fig. 5.15. 

Expression of the ORF2 protein was analyzed after infection of confluent Vero E6 

mono layers with the recombinant vTF7-3 virus at a MOl of 5 PFU per cell. Mock

infected and vaccinia virus infected cells were run as controls (Fig. 5.16, lanes 1 and 2, 

respectively). After incubation for 24 hours, the cells were labelled for 2 hrs in the 

presence of 35S methionine and lysed. The proteins were analyzed by 20% SDS

polyacrylamide gel electrophoresis and autoradiography after immunoprecipitation with 

anti-ORF2 polypeptide antibodies. 

The recombinant ORF2 protein expressed from pTMPUUORF2 plasmid was detected by 

all five antibodies (lanes 4, 6, 8, 10, 12 ). The antibodies also precipitated PUU N protein 

expressed from pTMPUUS, however, no protein of a similar to the ORF2 size was 

detected by any of the antibodies (lanes 3, 5, 7, 9,11). Although similar amounts of the 

protein were expressed and used for immunoprecipitation with each antibody, different 

intensities were observed on the gel. Moreover, the intensity of the ORF2 expression was 
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Fig. 5.14. Immunoprecipitation of transiently expressed ORF2FLAG 
with anti-FLAG peptide antibody. Confluent monolayers of Vero E6 
cells were infected with recombinant vaccinia virus vvTF7-3 at MOl 5 
pfu/cell (lane 2) or mock infected (lane 1) and transfected with plasmids 
pTMPUUS (containing the gene encoding for Nand ORF2 proteins) and 
pTMPUUORF2FLAG (containing C-terminal FLAG sequence fused to 
the gene encoding ORF2 protein). At 24 hours postinfection, the cells 
were labelled with 50 J.lCi of 35S methionine per dish for 2 hrs. N protein 
was immunoprecipitated with anti-N antibody (lane 3), ORF2 FLAG
tagged protein - with anti-FLAG peptide antibody after treatment with 
protease inhibitor (lane 4). The immune complexes were analyzed by 
electrophoresis on 16% SDS-PAGE and autoradiography. The positions 
of the Nand ORF2 proteins and the molecular mass markers (in 
kilodaltons) are shown on the right and left, respectively. Lane 1, mock 
infected, lane 2, vvTF7-3, lane 3, pTMPUUS, lane 4, 
pTMPUUORF2FLAG 
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Fig. 5.15. Five anti-ORF2 peptide antibodies used in immunoprecipitation and Western blot 
analysis. The antibodies were numbered 46 to 50. The regions of the ORF2 peptide used to 
raise each of the five antibodies are shown in different colors 
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Fig. 5.16. lmmunoprecipitation of transiently expressed ORF2 protein with five 
anti-ORF2 antibodies. Confluent mono layers of Vero E6 cells were infected 
with recombinant vaccinia virus vvTF7-3 at MOl 5 pfu/cell or mock infected 
and transfected separately with pTMPUUS containing the gene coding for Nand 
ORF2 proteins (lanes 3, 5, 7, 9, 11) and pTMPUUORF2 plasmid containing 
gene coding for only ORF2 protein (lanes 4, 6, 8, 10, 12). At 24 hours 
postinfection, the cells were labelled with 50 /-lCi of 35S methionine per dish for 
2 hrs. Cells were lysed and the proteins were immunoprecipitated with five anti
ORF2 peptide antibodies, numbered 46 to 50. The immune complexes were 
analyzed by electrophoresis in 20% SDS-PAGE and autoradiography. Mock 
infected (lane I) and vTF7 -3 vaccinia virus infected cells (lanes 2) were used as 
negative controls. The positions of the Nand ORF2 proteins and the molecular 
mass markers (in kilodaltons) are shown on the left and right, respectively. 
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in inverse proportion to N expression as detected by antibodies N46 (lanes 3 and 4) and 

N47 (lanes 5 and 6). 

5.9. Western blot analysis with five anti-ORF2 peptide antibodies 

5.9.1. Detection of the ORF2 protein transiently expressed 

from pTMPUUS and pTMPUUORF2 plasmids 

To further investigate expreSSIon of the ORF2 protein from pTMPUUS and 

pTMPUUORF2 plasmids, Western blot analysis with the five anti-ORF2 peptide 

antibodies was used. As before, Vero E6 cells were infected with vaccinia virus vTF7-3 

at a multiplicity of infection 5 PFU/cell. After 1 hour of adsorption, the cells were 

transfected with 1 Jlg of pTMPUUORF2 and pTMPUUS plasmids. 24 hours 

posttransfection the cells were lysed and cell extracts subjected to a 20% SDS

polyacrylamide gel electrophoresis and analysed by Western blot (see Methods) with five 

antibodies. Fig.5.l7, A shows whole blot as an example. ORF2 protein expressed from 

pTMPUUORF2 (Fig.5.l7, B) was detected by two antibodies, N46 (lane 3) and 49 (lane 

6). Mock infected (lanes 1 and 4) and vaccinia infected (lanes 2 and 5) cells were used as 

negative controls. As no protein was detected by antibodies N 47, 48, and 50, the 

corresponding blots are not shown. 

Results of expression of the ORF2 protein from pTMPUUS are presented in Fig. 5.17, C. 

Similar to ORF2 protein expressed from pTMPUUORF2, the ORF2 expressed from 

pTMPUUS was detected by antibodies N46 (C, lane 1) and 49 (lane 4). No protein was 

detected by antibodies N 47 (lane 2),48 (lane 3), and 50 (lane 5). 

To summarize, ORF2 protein expressed from both pTMPUUORF2 and pTMPUUS was 

detected by antibodies N 46 (B, lane 3, C, lane 1) and 49 (B, lane 6, C, lane 4). 
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Fig. 5. 17.Western blot analysis using five anti-ORF2 antibodies. Vero E6 cells, infected with 
vTF7-3 vaccinia virus, were transfected with pTMPUUORF2 plasmid (B) containing gene 
coding for putative ORF2 protein and pTMPUUS (C) containing S gene coding for both Nand 
ORF2 proteins. Cell extracts were separated by 20% SDS-PAGE and subjected to Western blot 
analysis using anti-ORF2 peptide antibodies (numbered 46 to 50). Mock infected (A, lane 1; B, 
lanes 1, 4) and vTF7-3 infected (A, lane 2; B, lanes 2, 5) cells were used as negative controls. 
ORF2 protein expressed from pTMPUUORF2 plasmid was detected by antibodies N 46 (B, lane 
3) and 49 (B, lane 6) . As no protein was detected by antibodies 47, 48, and 50, the corresponding 
blots are not shown. ORF2 protein expressed from pTMPUUS plasmid was detected by 
antibodies 46 (C, lane 1) and 49 (C, lane 4). Antibodies used are shown in bold. 
(D). Western blot analysis of Puumala virus infected cells. Vero E6 cells were infected with 
Puumala virus and cell extracts from day 2 (lane 2), 4 (lane 3), 6 (lane 4) postinfection or mock 
infected (lane 1) were separated by 20% SDS-PAGE and analyzed by Western blot with N 49 
anti-ORF2 peptide antibody. 
Whole blot (A) (fragment of which is presented in section B) is shown as an example 
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5.9.2. Detection of the ORF2 protein in Puumala virus infected cells 

After expression of the ORF2 protein from pTMPUUS and pTMPUUORF2 plasmids was 

detected by the two antibodies, a further attempt to identify the protein in Puumala virus 

infected Vero E6 cells was made. Subconfluent VeroE6 cell mono layers were infected 

with Puumala virus at a MOllO pfu/cell. The cells were incubated for 24 hours at 370C, 

then the growth media was substituted by maintenance media (2% DMEM) and 

incubation continued for 24 to 120 hours. The cells were lysed at days 2, 4 and 6 

postinfection. The extracts of mock infected (Fig.5 .17, D, lane 1) or Puumala virus 

infected cells at days 2 (lane 2), 4 (lane 3), and 6 (lane 4) were subjected to 20% SDS

PAGE and Western blot analysis (see Methods) with antibody N 49. As the results show, 

the ORF2 protein was detected by antibody N49 at days 2 to 6. No protein similar to the 

ORF2 protein could be detected in mock infected cells. No other antibodies were used to 

detect putative ORF2 protein in Puumala virus infected cells by Western blot analysis 

due to the lack of time and it still remains to be investigated whether or not the ORF2 

protein can be detected using antibodies 46, 47, 48 and 50. 

5.10. DISCUSSION 

Examination of the S segment sequences of different hantavirus serotypes from the 

database, including those of several Puumala virus strains and also Khabarovsk, Isla 

Vista, Sin Nombre, Prospect Hill, Rio Mammore, Bayou, Lechiguan, Pergamio, Marciel, 

Muleshoe, Seoul, Hantaan, and Dobrava viruses revealed that all viruses, except for 

Hantaan, Seoul and Dobrava viruses, possessed a second open reading frame (ORF2) 

overlapping that of the N protein. This ORF2 varies in size and codes for proteins of 6 to 

12 kDa in different viruses. The arrangement of the N and putative ORF2 proteins in the 

Puumala virus S RNA, encoded in overlapping reading frames, is similar to other 

orthobunyavirus S RNAs. Sequence alignment demonstrated that the sequences could be 

readily aligned and contained several conserved residues (Fig.5.4, 5.6, 5.7). 
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Using in vitro transcription/translation system in rabbit reticulocyte lysates (TnT kit), the 

protein encoded on the second ORF was expressed from two plasmids, pTMPUUS, 

containing S gene (and therefore coding for both Nand ORF2 proteins), and 

pTMPUUORF2, containing only sequence coding for a putative ORF2 protein, to yield 

the protein of about 12.5 kDa in size. 

The fact that the two proteins were efficiently produced in reticulocyte lysates 

demonstrates that with regard to the Nand ORF2 proteins the same mRNA species can 

be translated to give these products and thus the synthesis of Nand ORF2 is most likely 

the result of alternative translation initiation. The nucleotide sequence context of an AUG 

codon in eukaryotic mRNAs is important for efficient initiation. The optimal consensus is 

5' AlG CCAUGG with a purine (preferably A) at the -3 position and a G residue at the 

+4 position (the A of the AUG is designated + 1) being the most important determinants 

(Kozak, 1981). The leaky scanning model (Kozak, 1986) has been proposed to deal with 

the situation of bicistronic mRNAs, whereby some ribosome preinitiation complexes 

bypass the 5' proximal AUG which is in a suboptimal sequence context and initiate at a 

downstream AUG. This could also explain why, in addition to N and ORF2 proteins, the 

third product of about 45 kDa was expressed when the in vitro reticulocyte system was 

used (Fig.5.12). As no such protein was expressed in vivo from pTMPUUS using 

vaccinia virus as a source of T7 polymerase, it therefore remains to be an artifact of the in 

vitro system as the sequence context around the AUG start or secondary AUGs in the 

sequence were shown to have profound effects on initiation fidelity and translation 

efficiency in reticulocyte systems (Kozak, 1990). 

Despite the successful translation of the ORF2 protein in vitro, I failed to detect the 

protein of a similar size in either Puumala virus-infected cells or expressed from 

pTMPUUS plasmid in vaccinia virus system using a direct labelling approach. The 

inability to identify the non structural protein in vivo in Puumala virus infected cells may 

be accounted for by the fact that hantaviruses, unlike orthobunyaviruses, do not cause 

shut-off of the host cell synthesis and a host protein of a similar size could be comigrating 

with the putative ORF2 protein. Although vaccinia virus shuts off the host cell synthesis, 
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the inability to detect ORF2 protein expressed from pTMPUUS using vTF7-3 system can 

be explained by comigrating vaccinia virus protein of a similar to ORF2 protein size. 

Five specific anti-ORF2 peptide antibodies were used in attempt to identify the putative 

ORF2 protein transiently expressed in recombinant vaccinia virus system from both 

pTMPUUS and pTMPUUORF2 plasmids using immunoprecipitation and Western blot 

analysis. The results of immunoprecipitation with five anti-ORF2 antibodies revealed that 

the protein expressed from pTMPUUORF2 plasmid could form immune complexes with 

all five antibodies. The ORF2 protein could also be detected by antibodies N 46 and 49 

using Western blot analysis. Although no antibodies could detect ORF2 protein by 

immunoprecipitation when pTMPUUS plasmid (that contains S gene encoding both N 

and ORF2 proteins) was used, two antibodies, N 46 and 49, detected the ORF2 protein 

expressed from this same plasmid when Western blot analysis was used. When antibody 

N 49 was used to detect the ORF2 protein in Puumala virus infected cells, the results of 

the Western blot analysis show its presence on days 2, 4, and 6 postinfection. 

Although the results of the experiments described above show that the ORF2 protein can 

be detected from both plasmids expressed in vaccinia virus system and also in Puumala 

infected cells using immunoprecipitation and Western blot analysis, additional 

experiments are needed to be carried out to make the final conclusion of the existence of 

the ORF2 protein. Further identification of the ORF2 protein in Puumala virus infected 

cells at different days postinfection using both immunoprecipitation and Western blot 

analysis with all five antibodies needs to be explored. Immunofluorescence analysis of 

the ORF2 protein with different antibodies would reveal in which cellular compartments 

it can be found. It would also be interesting to explore the possibility of phosphorylation 

of the ORF2 protein as is the case with the Rift Valley fever virus NSs protein. 

Interestingly, the Puumala ORF2 protein has 12 potential phosphorylation sites, five of 

which are serine residues, and it was shown for the Rift Valley Fever virus that two 

serine residues 252 and 256 were the major phosphorylation sites (Kohl et at., 1999). It 

would also be interesting to perform a differential labelling with different amino acid 

precursors based on amino acid composition of the Puumala virus ORF2 protein. 
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CHAPTER 6. CONCLUSIONS 

6.1. Attempts to develop reverse genetics system for Puumala virus 

A first objective of the project was to attempt to develop a reverse genetics system for 

Puumala virus (PUU) based on a reporter construct and two viral proteins, N and L, 

necessary for reconstitution of a transcriptionally active RNP structure. 

In this system, it was planned that a recombinant PUU virus-like RNA transcript 

containing a reporter gene would be recognised and transcribed by transiently expressed 

recombinant PUU virus proteins. 

Two viral proteins, nUcleocapsid (N) and viral RNA-dependent RNA polymerase (L), 

were supplied by transient expression from two plasmids, pTMPUUS and pTMPUUL, 

using bacteriophage T7 RNA polymerase stably expressed by BHK T7-SIN and Vero T7 

cell lines. The reporter plasmid contained an antisense sequence encoding the open 

reading frame of the chloramphenicol acetyl transferase (CAT) gene. The antisense CAT 

gene replaced the coding region in a negative sense PUU virus S or L segment cDNA, so 

that it was flanked by the complete 3' and 5' PUU S or L segment untranslated regions 

(UTRs). It was expected that transcripts from the reporter construct would behave as 

authentic viral RNAs since the complete 3' and 5' UTRs of the Puumala virus genome 

segments are thought to contain the necessary signals for encapsidation, transcription and 

replication of the RNA transcript. 

Differential mRNA synthesis was shown in hantavirus-infected cells, similar to 

Bunyamwera virus infection, with the quantity of each mRNA (N mRNA ~ GPC mRNA 

~ L mRNA) correlating inversely with RNA length (Rossier et aI., 1988). Therefore, 

some of the reporter constructs were based on the most expressed viral S segment. 

However, the results of the reverse genetics system for Bunyamwera virus (Dunn, 2000) 

have shown that the efficiency of expression of the reporter gene in the context of each of 
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the BUN segments, was in the order ofL (taken as 100%»M (60-70%»»S (3-10%), a 

complete inversion of the ratios of rnRNA transcripts found in BUN virus infected cells. 

This suggests that the conditions of the reporter system differ from infected cells and 

additional factors must influence the transcript levels in the context of the infected cells. 

It is possible that the full length of each genomic segment and coding sequence itself may 

play a role in control of replication and transcription of the specific segment. For 

example, the small size of the S segment in comparison with two other segments may 

suggest that it would be replicated, transcribed and encapsidated by viral proteins at a 

more efficient rate than L segment. In addition, the N ORF itself could also influence the 

increased levels of expression. 

Therefore, in addition to constructs based on the S segment, which is most expressed in 

virus infected cells, constructs based on the L segment, most expressed in reporter 

system, were also used. 

It was thought to be important that the reporter RNA transcripts should have the exact 3' 

and 5' termini of the PUU genome segments since these sequences are highly conserved 

among different hantaviruses. In order to achieve the exact 3' terminus, the constructs 

contained either BbsI restriction enzyme site placed immediately downstream of the 3' 

terminal viral sequence (pPUUSCAT) or hepatitis delta VIruS ribozyme 

(pT7riboPUUSCAT, pT7riboPUULCAT). The exact termini was expected to be 

generated either by run-off transcription from BbsI-digested plasmid or by self-cleavage 

by the ribozyme. 

To achieve the exact 5' termini, the reporter construct was cloned immediately 

downstream of a truncated T7 RNA promoter so that transcription would initiate at the 5' 

nucleotide of the PUU sequence (reporter constructs pPUUSCAT, pT7riboPUUSCAT, 

pT7riboPUULCAT). However, T7 polymerase would have to initiate transcription with a 

uri dine in position + 1 and this could be problematic (discussed in section 3.2.5). In order 

to overcome the possible problem, another set of reporter constructs contained a viral 5' 

UTR cloned downstream of a truncated T7 promoter that contains two G residues 

(constructs pT7GGriboPUUSCAT, pT7GGriboPUULCAT). In this case, the T7 
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polymerase would start transcription with Gs followed by the viral nucleotides, and 

additional G residues were expected to be lost after transcription giving authentic viral 5' 

end. As yet another alternative, construct pT7HH&HDVriboPUULCAT was also used in 

which a cDNA copy of a cis-active hammerhead ribozyme sequence (Birikh et al., 1997) 

was cloned between the T7 RNA polymerase promoter and the L segment 5' UTR. Self

cleavage by the hammerhead ribozyme would give the exact 5' viral termini. 

However, none of these approaches was successful, and it was decided to employ pol I 

system successfully used for influenza virus (Neumann et al., 1994) and Uukuniemi virus 

(Flick and Pettersson, 2001). This method utilizes cellular RNA polymerase I, which is 

among the most abundantly expressed enzymes in growing cells, to produce the chimeric 

RNA transcript. It avoids the need for expressing run-off transcripts from restriction 

enzyme-cleaved plasmids or the use of a hepatitis delta ribozyme to produce the correct 

3' end, and also ensures generation of the exact 5' ends of the RNA transcripts 

independently of nucleotides present at the viral 5' termini (purines or pyrimidines), as 

was the case with bacteriophage T7 polymerase. The proteins required for reconstitution 

of the transcriptionally active RNP complex are expressed from pol II promoter plasmids 

(in the case of Puumala virus, human cytomegalovirus promoter, CMV), thus using 

cellular RNA polymerase II. However, this system too failed to produce positive results. 

The results described in Chapter 3 may help in designing new strategies in the future. 

One of the possible explanations for the problems with development of the reverse 

genetics system could be that viral polymerase was not functional. Different L clones 

could be tested using one of the reporter systems described. Once the functional clone is 

identified, it would be possible to develop reverse genetics system based on one of the 

many approaches used. 

Development of the reporter system would allow investigation of Puumala virus RNA 

synthesis and the proteins involved in transcription and replication. For example, the 

effect of additional or deleted nucleotides from the extreme ends of the RNA termini 

could be studied. The importance and function of the conserved sequences found at the 

PUU 3' and 5' termini could also be determined. 
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6.2. Analysis of Puumala virus protein interactions 

A second objective was to identify the ability of the Puumala virus N protein to 

self-associate, and if so, to determine the domains responsible for interaction. 

The study of Puumala virus N protein interactions was undertaken by using the 

mammalian two-hybrid system (M2HS) in which self-association of the N was observed. 

The evidence for homotypic interaction between N proteins was additionally supported 

by the results of co-immunoprecipitation of the proteins expressed both in vitro and in 

vivo. 

Analysis of different fragments of the N allowed dissection of the 

homomultimerization at the molecular level. The results of the M2HS suggest that 

sequences involved in self-interaction of the N protein are confined to its N-terminal 105 

amino acids and C-terminal 46 amino acids and that this type of interaction is the most 

important for assembly of N protein multimers. This became apparent after it was 

demonstrated that the full-length N protein could interact with both N- and C-terminal 

fragments, but not with the internal fragments. Moreover, only interaction between 

heterologous N- and C-terminal fragments and not homologous terminal fragments (C-C 

or N-N) or terminal fragments with internal fragments, resulted in the strongest CAT 

signal. 

Based on these results, a 'head-to-tail' model is proposed in which the association 

of the N proteins appears through their C-terminal region comprising amino acids 385-

432 and N terminal region comprising amino acids 1-105. A similar mechanism was 

described for tospovirus (Richmond et ai., 1998) and Tula virus (Kaukinen et ai., 2001). 

It is possible to hypothesize that the two molecules of the N protein come together 

forming a dimer. Association with the third molecule available in a monomeric fonn 

results in formation of a trimer. 
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The results are in agreement with the data on dimerization and oligomerization 

capacity of nucleocapsid proteins of Sin Nombre and Tula hantaviruses. Using yeast two

hybrid system and a chemical cross-linking studies, it was demonstrated that Sin Nombre 

virus (Alfadhli et aI., 2001) and Tula virus (Kaukinen et ai., 2001) N proteins were 

capable of oligomerization and existed as dimers, trimers and higher molecular mass 

products, with dimers being a preferential state. Further, the interaction domains of Sin 

Nombre virus were mapped to the N-terminal 40 amino acids and to the C-terminal half 

of the proteins. 

The ability of Bunyamwera virus N protein to self-associate was also shown using 

the M2HS and co-immunoprecipitation assays (Osborne, 2001). However, neither half of 

BUN N was found to be capable of association independently and there was no evidence 

that the interaction in BUN was mediated by head-to-tail binding as observed with 

Puumala virus and tospovirus N (Richmond et ai., 1998). Therefore, the mechanism of 

BUN N multimerization differs from that of Puumala, Sin Nombre, Tula viruses and 

possibly tospoviruses. 

Furthermore, the ability for interaction of nUcleocapsid proteins of different 

hantaviral serotypes was also investigated. For this purpose, N proteins of serotypes 

Puumala, Seoul and Hantaan were tested against each other in the M2HS. Not only was 

the homologous interaction between N proteins of viruses Hantaan and Seoul shown, but 

also that proteins of different serotypes could interact as well. The fact that Puumala and 

Hantaan virus N proteins were able to associate suggests that interactions between 

molecules of N protein occur via highly conserved stretches of amino acid residues. 

Despite low similarity of the entire sequence (60%), the proteins share regions of high 

homology, with their C terminal 100 amino acids being 85% identical, and N-terminal 

200 amino acids being 82% identical. 

Interaction between N and different fragments of L protein was also studied using 

the M2HS. However, no interaction was demonstrated using the approach taken. The 

negative results are perhaps attributable to the fact that L protein was expressed as 

separate fragments, therefore, the binding sites could be destroyed. 
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The experimental proof of N protein self-association may provide a basis for a 

better understanding of nUcleocapsid formation. The analysis of the molecular basis of 

the homotypic interaction and of other interactions with N protein will be the starting 

point for elucidation the mechanisms of transcription, replication, and assembly of 

Puumala virus. Proteins of such viruses as vesicular stomatitis virus HIV Sendai VI'ruS " , 
and some other viruses were shown to possess overlapping binding domains involved in 

multimerization, RNA binding, or contact to other viral or host proteins (Takacs et al., 

1993; Lutzke and Plasterik, 1998; Myers et al., 1997). Hence, there is reason to assume 

that the mutual influences or interdependence of different or overlapping binding regions 

may be a fundamental means to regulate various steps of the viral life cycle. Recent 

findings that there are multiple RNA-binding domains (Gott et al., 1993; Severson et al., 

1999; Severson et al., 2001), which overlap the two domains responsible for homotypic 

interaction, support the idea of an interdependence of these two properties of the N 

protein. Further investigation of the structural basis for both, the RNA binding and the 

various protein-protein interactions of the Puumala virus N protein, is needed to better 

understand the mechanisms of nucleocapsid formation, assembly, and regulation of 

transcription and replication ofPuumala virus. 

6.3. Potential second ORF (ORF2) in the S segment that may 

encode an NSs nonstructural protein 

Examination of the S segment sequences of different hantavirus serotypes revealed that 

viruses Puumala, Khabarovsk, Isla Vista, Sin Nombre, Prospect Hill, Rio Mammore, 

Bayou, Lechiguan, Pergamio, Marciel, Muleshoe, Seoul, Hantaan, and Dobrava possess a 

second open reading frame (ORF2) overlapping that of the N protein. This ORF varies in 

size and potentially codes for proteins of 6 to 12 kDa. 
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In vitro transcription/translation using reticulocyte lysate (TnT kit, Promega) 

programmed with either pTMPUUORF2 plasmid (containing the gene coding for ORF2 

protein only) or pTMPUUS (containing S gene coding for both Nand ORF2 proteins) 

produced protein of about 12.5 kDa in size. It demonstrates that the synthesis of Nand 

ORF2 is most likely the result of alternative translation initiation and the same mRNA 

species can be translated to give these products. 

It was not possible to identify directly the ORF2 protein either expressed in T7 vaccinia 

virus system or in Puumala virus infected cells. As hantaviruses do not cause host cell 

synthesis shut off, the host protein could be comigrating with the putative ORF2 protein. 

This was also the case with vaccinia virus infection where no protein could be identified 

following transfection of the plasmid, however, the band corresponding to the vaccinia 

virus protein of a size similar to ORF2 protein was clearly observed. 

The ORF2 protein could be detected, however, from both plasmids expressed in vaccinia 

virus system and also in Puumala infected cells using immunoprecipitation and Western 

blot analysis with anti-ORF2 peptide antibodies. The protein expressed from 

pTMPUUORF2 plasmid was detected by all five antibodies in immunoprecipitation 

assay. Two out of the five antibodies were able to detect the ORF2 protein expressed 

from pTMPUUORF2 and pTMPUUS as demonstrated by the results of Western blot 

analysis. The ORF2 protein was also detected in Puumala virus infected cells using 

Western blot analysis. 

Although the results are preliminary, they serve as a starting point for the studies on the 

ORF2 protein encoded on the S segment of Puumala virus. Additional experiments will 

help to elucidate the functions of the protein. It would be interesting to investigate the 

ability of the ORF2 protein to interact with itself in order to form multimers and with 

other viral proteins and cellular structures as these interactions might be the key in 

understanding the role of the ORF2 protein. For this purpose, two vectors, pMPUUORF2 

and p VPPUUORF2, expressing the ORF2 protein have already been constructed for the 

use in the mammalian two-hybrid system. As the M2HS constructs expressing Nand 

various fragments of L protein are already available, it would also be possible to 
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investigate N-ORF2 and L-ORF2 interactions if they exist. In addition, localisation of the 

protein in cellular compartments could be identified by means of immunofluorescence 

analysis with different anti-ORF2 peptide antibodies. Two-dimensional gel 

electrophoresis and mass spectroscopy could help identify the exact molecular mass of 

the protein. It would also be interesting to perform a differential labelling with different 

amino acid precursors based on amino acid composition of the proteins, e.g. the Puumala 

ORF2 protein is rich in leucine, serine, agrinine and glutamine, and poor in cysteine, 

glycine and proline. The possibility of phosphorylation of the ORF2 protein, similar to 

the one described for RVF virus (Kohl et al., 1999), could also be explored as the protein 

has 12 potential phosphorylation sites, five of which are serine residues. Phosphorylation 

is known to regulate several protein-protein interactions and the degree of 

phosphorylation may regulate transcription and replication of the genome and also the 

intracellular localization of the protein. 
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