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ii. Abstract 
The field of proteomics and functional genomics has developed steadily since 

the completion of the human genome project.  The wealth of genomic 

information and the pace at which it was compiled was astounding.  

Proteomics, despite considerable effort, on the other hand has not seen quite 

the same pace of development.  The progress being considerably hindered by 

the lack of an amplification process and the relative complexity of the 

proteome in comparison to the genome.  These intrinsic difficulties have led to 

the sensitivity of proteomic techniques being pushed closer to physical limits.  

There is therefore a further need to re-evaluated techniques such as sample 

preparation and integrity, analytical methods and collaborative strategies to 

maximise the effectiveness and quality of data collected. 

The importance of tissue in scientific and clinical research is unequivocal.  

However, tissue is difficult to collect, store and work with due to issues with 

proteomic degradation and storage.  Good lab practices can minimise the effect 

of degradation but degradation of proteins can be rapid.  Strategies to minimise 

degradation include freezing, formalin fixing and microwave treatment which 

all have their relative advantages and disadvantages.  The importance of 

sample preparation as being the top of the workflow is often acknowledged but 

improvements are not well described in the literature.     

The main aim of this thesis is to present investigative studies into the 

mitigation of some of the limitations in tissue sample degradation, analytical 

approaches in differential in gel electrophoresis and accessing DiGE spot and 

tissue profile data.   Presented is the evaluation of the effectiveness of rapid 

and controlled heating of intact tissue to inactivate native enzymatic activity 

and to aid in the cessation of proteomic degradation.  A multifaceted analytical 

approach of differential in Gel electrophoresis spot data is assessed, giving 

proteomic profiles of mouse brain tissue.  Preliminary data is presented 

showing that the process of heat-treatment has had a predominantly beneficial 

effect on mouse brain tissue, with a higher percentage of spots stabilised in 

heat-treated samples compared to snap-frozen samples.  However, stabilisation 

did occur in snap-frozen samples for different protein spot so the 

appropriateness of using heat-treatment is as yet not fully determined and 

requires further analysis.   
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In addition, the variation in tissue profiles of WKY, SP.WKYGla.2a and 

SHRSP rat model for hypertension is investigated with the future prospect of 

providing that vital connection between genomic and proteomic data and link 

phenotype and genotype preliminarily investigated.  A number of putative 

markers were identified and quantified using DiGE analysis.  In order for these 

markers to be accepted as biomarkers, more downstream validation is required, 

however this study provides a good spring board as a proof of concept in using 

DiGE as an global putative biomarker discovery platform.  
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1 Introduction 
“Because technology provides the tools and biology the problems, the two should 
enjoy a happy marriage” 

(Fields, 2001): 10051 

In the evolution of scientific thinking, science has come from the advent of 

modern thought with the Greek philosophers to the highly rigorous 

experimental science of today. Human kind has amassed a staggering multitude 

of theories which have been pieced together over generations and ordered into 

our understanding of the world today.  One defining characteristic of human 

beings is their self-awareness and the extent to which they will endeavour to 

understand not only the environment in which they live but also their internal 

environment.      

In terms of achievement in the biological sciences, the human genome project 

could be considered one of the pinnacles of scientific discovery and a testament 

to collaboration.  Since the penultimate completion in 2001 (Venter, 2001., 

Mundy, 2001) and finally in 2003, around 50 years after the discovery of the 

double helix (Watson, 1953. ), we have seen the explosion of the post genomic 

era and Pandora’s box is deeper and broader than anybody could have 

imagined.  The information obtained has allowed us to see the coding 

sequences and the blue print for the functional entities; proteins.   The focus, 

therefore, has now shifted from the relatively simple genome, and 

characterising genotype, to the more complex proteome, and examining 

phenotype (displayed in Figure 1-1).  As the later stages of gene sequencing 

drew to a close, it became clear the once thought mantra of; one gene-one 

protein-one function was incorrect. Kolch et al has predicted that there could 

be anything up to 1,000,000+ functional entities at the protein level, compared 

to about 40,000 genes (Kolch, 2005).   

 

Figure 1-1:  Genome vs. Proteome. The Peacock butterfly (Inachis Io) emerges from the 
caterpillar.  Both have the same genome but have markedly different proteomes, 
highlighting the dynamic and complex interactions of proteins and changes in phenotype. 
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1.1 The study of proteomics 
We have now emerged from the post-genomic era which has spawned a 

collection of –omic fields.  One such -omic being proteomics and rather than 

genomics capturing all the limelight, the focus has expanded into decoding 

proteins and how they interact (Hochstrasser, 1998).  The term proteome was 

defined some 16 years ago by Marc Wilkins as “all proteins expressed by a 

genome or tissue.”(Wilkins et al., 1997) Thus proteomics is the study of 

proteins and their interactions within a cell, tissue, organ, system or organism. 

As there has been progression through history, man has developed more and 

more elaborate technologies, which have allowed us to delve deeper and reveal 

what makes us work.  The technological breakthrough enjoyed by genomics 

research after the development of polymerase chain reaction (PCR) by Kary 

Mullis (who was awarded the Nobel prize in 1993) (Saiki, 1985. ) has not been 

repeated in proteomics. This leaves the reality of having to work with the 

material that can be extracted from cells or tissue directly. 

This comparatively slow progression in proteomics compared to genomics is 

largely due to the relative complexity of the proteome.  Proteins, by their very 

nature, have a large dynamic range and engage in complex interactions, form, 

function and properties (Wu L, 2006, Garbis et al., 2005).  They also exhibit a 

number of post translational modifications, such as phosphorylation, 

glycosylation and ubiquitination (Spickett, 2006).  In addition, there are 

limitations regarding the bioinformatics analysis (Cristoni, 2004) required and 

the ever increasing need to combat and improve quantitation (Hamdan and 

Righetti, 2003) is palpable.  This makes proteins intrinsically more difficult to 

investigate and the issue of balancing high throughput with quality of data is 

imperative(Wilkins, 2009).   

However, with the increasing need to study protein interactions and 

phenotypical representation of the genome, there  has not been an accompanied 

progression in the advances in technology and methods at the rate required and 

therefore, in many respects, proteomics techniques all have their limitations 

(Beranova-Giorgianni, 2003, Garbis et al., 2005).  The problems and 

limitations are present at every point in a typical proteomics work flow (Figure 

1-2).  In sample preparation, often samples are of low quality or abundance 

with a high dynamic range (Garbis et al., 2005).  In the analysis of blood 

samples albumin is of high abundance and often masks any subtle changes in 
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other protein levels, often making biomarker discovery difficult where one or 

two proteins dominate.  Some proteins have very short life spans, complicating 

analysis even further (Bachmair, 1986).  This heterogeneity in samples makes 

separation essential.  The variety in solubility, pH and polarity of different 

proteins make standardization of methodology impractical.  The issues and 

challenges surrounding proteomics are reviewed in a number of articles 

(Kavallaris, 2005, Hong, 2006, Zhou, 2005). 

 

Figure 1-2:  Typical Proteomics Work flow.  The first stage is sample preparation.  Often 
samples must be desalted ready for protein separation and detection.  After the sample 
has been separated it is then taken through to identification and analysis. 

As outlined above, proteomics is a field of importance and limitations. 

Interestingly and importantly, the development of proteomics potentially would 

allow for the marrying of proteomic and genomic data, genotype to phenotype, 

and subsequently to pathology.  Importantly, proteomic analysis can give 

information about the level of protein expression as opposed to gauging the 

level of gene expression, which does not necessarily gain information about 

protein expression.    As proteins are the direct functional entities of a cell, 

distinct from DNA being the blue print, they give us a greater insight into what 

cellular processes are actually occurring and allow the study of an organism’s 

phenotype.  However, this huge explosion of complexity and heterogeneity 

presents major problems with regards to deconvolution of information.  

It is from the heterogeneity of proteins and their limitation that allows for the 

aims of this thesis to be explored. 
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1.2 Aim and overview of this thesis 
It is from the limitations outlined above that bare the need to reduce the impact 

of those impediments.  In this thesis two important areas in tissue proteomics 

are to be considered; degradation and biomarker discovery.  

1.2.1 Protein degradation in mouse brain tissue and DiGE.   
Perhaps the most important stage in the proteomics work flow is that of sample 

preparation.  The need for sample integrity from the beginning is vital to give a 

representative view of data downstream.  This is often an area that is 

overlooked.  A method for the reduction of protein degradation and stability of 

the proteome is considered in Chapter 3 and reviewed in section 3.3. 

1.2.2 Putative biomarker discovery in hypertension and moving 
towards linking genomic and proteomic data. 

1.2.3 Two areas of increasing interest are that of biomarker 
discover and also linking genomic and proteomic data. The 
impact of markers for diagnosis, tracking and treating disease 
is substantial and the ability to link phenotype and genotype is 
required for development, collaboration and pursuit.  
Biomarker discovery is reviewed in section 1.3, renal 
proteomics in 1.6 and Hypertension will be reviewed in 
Chapter 4.Overview of thesis 

Over the coming introduction chapter I will introduce the various areas and 

techniques that will be applicable to attaining the aims outlined in section 1.8 

and in my experimental chapters. 

Chapter 2 outlines the general methods and materials employed in carrying out 

the investigations in the experimental portion of this thesis.  Any methods 

which are particular to a chapter are further elaborated in the applicable section 

of the experimental chapter. 

There are two experimental chapters in this thesis 

Chapter 3:  Differential in gel electrophoresis analysis of wild type mouse brain 

tissue: A multi-faceted analytical approach to assessing the effect of heat 

treatment on the degradation of the proteome. 

This chapter investigates the use of heat treatment as a mode for the reduction 

or cessation of proteomic degradation in comparison to the widely used method 

of snap-freezing tissue samples.  The tissue used was wild type mouse brain.  
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In addition, a multi-faceted approached has been used to evaluate degradation 

and to try and develop a method for mining Differential in Gel Electrophoresis 

data.      

Chapter 4:  Accessing the proteomic profiles of kidney tissue in hypertension 

using a WKY, congenic and SHRSP rat model in the search for candidate 

markers. 

This chapter uses the multifaceted analytical approaches developed in the 

previous chapter to mine DiGE data for candidate makers for hypertension.  It 

is an investigation that has the potential to link genomic and proteomic data 

together at a later date. 
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1.3 Proteomics and biomarker discovery  
Biotechnology and proteomics has emerged from the post-genomic era and 

puristically has the goal of furthering the understanding of the complexities of 

the cellular world and the interactions and processes of life.  Practically, 

however, this understanding is largely required to inform clinicians about the 

presence or state of a disease.  A primary role of the clinician is to diagnose a 

patient’s symptoms.  Ideally this would be done quickly and as non-invasively 

as possible (Tyther et al., 2009, Petricoin et al., 2002, Calvo et al., 2005).  

Early diagnosis is important, so that a suitable treatment can be selected and 

the onset of a disease state can be halted. Depending on the type of disease, 

early detection can mean the differences between a successful or fatal outcome.  

According to CRUK (Cancer Research UK) the percentage survival rate for 

stage 1A non-small cell carcinoma is between 58-73% compared to 2-13% 

with stage 4.  This highlights the need for early and specific diagnoses.   

Since certain diseases are more treatable if diagnosed early, it is of great 

importance that new diagnostic methods are developed which are quick and 

easy to administer and time-effective to process, such efficiency and accuracy 

can be seen in a home pregnancy test. Therefore the clinicians would regard an 

ideal diagnostic test as one that could be administered simply with as little 

invasiveness as possible and that gives quick results without the need for 

further lab work, all performed at the bedside, with a high degree of specificity 

and accuracy (i.e. how good a test is at differentiating false positives)  

(Vblokeshwar and Soloway, 2001, Wu et al., 2002).   In order for this to 

become a reality, it is necessary to identify a molecule or collection of 

molecules which would be unique to a disease state or disease progression or 

otherwise so called biomarkers. 

A biomarker  can be defined as cellular, biochemical, molecular, or genetic 

alterations by which a normal, abnormal, or biologic process can be recognized 

or monitored. This could be a protein, peptide, protein fragment, post 

translational modification or combination of peptides, which indicate the onset 

or state of a disease (Wu, 2002) (Jones MB, 2002, Craven et al., 2013, Zhang 

et al., 2010, Matt et al., 2008).  In a state of disease a biomarker could give an 

indication of not only the presence of a certain disease but the stage of its 

progression or the therapeutic response to a treatment Thus allowing doctors to 

give better treatments faster with a greater ability to predict prognosis.  Ideally, 
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a biomarker would be present in a disease state and absent in a healthy patient.  

However, as cellular interactions are complicated, at best, this is rarely the 

case.  Due to the complex nature of cellular interaction coupled with 

degradative process, the biomarkers of a disease are likely to be equally 

complex in nature.  This could be in the form of multiple abundance changes 

both up and down regulation or a pattern of biomolecules rather than simply an 

absent or presence (Issaq et al., 2011, Veenstra, 2006).  Therefore, quantitation 

becomes essential with as high as specificity (how good a test is at 

differentiating false positives) and resolution as possible.   

The obvious place to start when looking for biomarkers is in fluids from 

around the body which includes; urine, saliva, blood plasma, blood, nipple 

aspirant fluid (NAF) and cerebral spinal fluid (CSF) (Huck, 2006, Plebani, 

2005).   Proteomics offers analytical solutions to these fluids due to the lack of 

a genomic element.  Body fluids are of course advantageous in nature due to 

their ease of extraction from the body (animal or human) and their plentiful 

supply.  Some body fluids are more complex in nature, although each has its 

own challenges; therefore different proteomics work flows are required.  The 

alternative to biofluids is the use of cell lysate or tissue samples, which have 

the advantage of having a closer proximity to the site of disease.   

Traditionally, biomarker studies have focused on those which are present in 

body fluids.   However the use of tissue is gaining significant ground due to the 

relatively slow progress of biofluid proteomics. Using tissue would allow for 

the tracking of biomarker evolution from source to fluid and help the 

understanding of how a disease evolves over time. 

In proceeding sections of this literature review the discovery of biomarkers in 

fluids and tissues will be examined, comparing the relative advantages, 

limitations and gaps in the literature.  Additionally, the biomarker discovery 

“pipeline” will be considered and whether or not biomarker discovery has 

progressed substantially since its inception.  Finally, the importance of 

biomarker discovery using differential in gel electrophoresis is assessed 

alongside other quantitation methods.   
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1.3.1 Biomarker discovery in fluids 
The concept of searching for biomolecules in fluids is far from new; glucose 

has been considered an indicator of diabetes for hundreds of years since 

diagnoses where attempted by “water tasters” in the efforts to detect sweetness 

(King and Rubin, 2003).  Thankfully, these days, diabetes can relatively easily 

be checked for by using a glucose tolerance test (Stern et al., 2002).  Due to 

their ease of collection and abundance, body fluids have long been an attractive 

prospect for gaining a “point of time” view of the state of the body’s health 

(Thomas et al., 2010, Afkarian et al., 2010, Kim et al., 2009, Veenstra et al., 

2005, Ploussard and De La Taille, 2010).  In terms of proteomic research, urine 

is appealing as it is less invasive to collect than blood, requires less skilled 

labour to collect and extract and is less complicated due to the much lower 

protein content that blood or CSF (Humpel, 2011, Huzarewich et al., 2010, 

Mischak and Schanstra, 2011).   Also, due to the direct relationship 

physiologically to the kidneys, urine is of prime interest to the research of 

kidney proteomics.  Of course the benefits of using urine are also paradoxically 

its limitation.  The simplicity and low number of proteins in the voided urine 

reduce the chances of seeing disease specific markers at all.  The kidneys act as 

a barrier by filtering out proteins and peptides reducing the likelihood of 

successfully “fishing” for markers.  Equally, a great deal of the proteolytic 

activity has already taken place in the bladder.  While this leads to a more 

stable sample, it also means that a lot of small peptide fragments are present 

which may be harder to disseminate in downstream analysis.  Additionally, due 

to the fluctuations of fluid intake, the concentrations of the proteins present 

varies meaning quantitation becomes less straight-forward.  This could be 

controlled for in laboratory animals, but not as easily in human studies and 

clinical samples.   Therefore, the robustness necessary for a “real world” 

environment may not be attainable.  Positively, from a procedural perspective, 

urine is a relatively stable fluid at room temperature making lab protocols 

easier for researchers and at less risk of changing the sample due to bad 

practice.  Some of the most successful biomarker discoveries are those of 

single proteins that identify a disease such as the prostate specific antigen 

(PSA) as an indicator for prostate cancer (Petricoin III et al., 2002, Partin et al., 

1996, Benson et al., 1992, Adam et al., 2002).  However, it should be noted 

that even this is not a definitive predicator of prostate cancer.  PSA is not a 
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highly specific biomarker of prostate cancer and often leads to unnecessary 

exploratory biopsies (Srinivas et al., 2002, Goo and Goodlett, 2010)     

Urine is commonly used as a sample substance in diseases associated with the 

renal system.  The use of urine as a biofluid for biomarker discovery in kidney 

disease is discussed in section 1.6.1.2.4, however urine is also used in the 

search of biomarkers in numerous other diseases, which are not directly 

associated with the kidney.   

A number of proteomic technologies are being applied to the field of ovarian 

cancer and using urine as the biofluid to look for specific markers.  2D-DiGE 

was employed and discovered afamin as a putative marker (Jackson et al., 

2007) and the use of SELDI-TOF-MS of urine uncovered the  up regulation of 

three markers; fibrinogen alpha fragment, collagen alpha 1 (III) fragment and 

fibrinogen beta NT fragment in human samples from ovarian cancer  sufferers 

(Petri et al., 2009).      

Although urine is the most easily accessible fluid, the most common body fluid 

used in proteomic experiments is plasma or serum.  It is often used in studies 

relating to cancer (Taguchi et al., 2011, Pan et al., 2011, Piersma et al., 2010, 

Anderson, 2010, Honda et al., 2005), the cardiovascular system (Whiteaker et 

al., 2011, Májek et al., 2011, Gerszten et al., 2011, Addona et al., 2011, Vaisar 

et al., 2010, Loo et al., 2010, Dardé et al., 2010) and along with CSF for 

neurological studies (Polman et al., 2011, McKhann et al., 2011, de Souza et 

al., 2011, Rinne et al., 2010, Cedazo-Minguez and Winblad, 2010, Blennow et 

al., 2010).  Plasma is more complex than serum due to its additional 

components, so a balance between simplicity and losing markers must be met.  

The majority of journal articles in this field cite the use of plasma, particularly 

for unguided proteomics, where gaining a wealth of data is considered of 

importance and analytical techniques can be used to mine down into the data.  

It should be noted that statistical techniques can be used to mine this data, but 

data sets of such high magnitude tend to present challenge and limitation, these 

are discussed in section 1.7.     

One major issue associated with using plasma in biomarker discovery is the 

presence of high abundance proteins, such as albumin.  This constitutes over 

half of the total blood proteins and consequently masks possible biomarkers 

which can often constitute small peptide fragments in low abundance 

(Diamandis and van der Merwe, 2005). This is indeed a universal problem with 
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regards to biomarker discover but is particularly the case for plasma.  In efforts 

to minimise this “masking” effect of these abundant proteins, it is possible to 

use a technique where these proteins are depleted using a depletion column 

connected to an LC (Plavina et al., 2006). This has spurred the necessity for 

various separation, depletion, enrichment, and quantitative efforts, which has 

seen some significant improvements but yet still remain one of the largest 

challenges in biomarker discovery, perhaps only second to dealing with 

massive data sets.  In addition to the high abundance and quantity of some 

plasma proteins, it also contains a great degree of dynamic range (estimated in 

the range of 1010)  (Jacobs et al., 2005). 

 

Figure 1-3:  The dynamic range of the plasmaome.  This graph demonstrates the massive 
dynamic range of the plasmaome, from 1010 down to 10-1 which presents a problem for 
proteomic analysis of biomarkers.  The blue area represents the most abundant plasma 
proteins such as albumin and various coagulation factors.  The green area represents 
tissue leakage products such as cytokeratin and gastrin. Finally, the purple section 
represents interleukins and cytokines, such as calcitonin and somatostatin.  Adapted from 
Schiess et al, 2008. 

This dynamic range means the use of one technique to picture all is unlikely to 

be achievable.  The dynamic range of plasma is illustrated in Figure 1-3 

The use of plasma over serum is a continuous discussion.  Serum is essentially 

plasma with clotting factors removed.  It is common practice to halt clotting of 

plasma at collection by using heparin which prevents the cleavage of 

fibrinogen. It has been shown that degradation can be problematic when using 

heparin as intrinsic coagulation can occur in its presence, up stream of 

thrombin in the coagulation process, causing the activation of proteases. 

(Koomen et al., 2005).  The problems with degradation has great potential to 
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hinder proteomics from successfully discovering biomarkers.  This is reviewed 

in section 3.3.   

Serum and plasma have also been employed in the search of ovarian cancer 

biomarker.  Scholler et al, 2008 used a combination of 2DE and LC-MS/MS  

to analyse serum and discovered the up regulation of catabolic fragments of 

complement factors, Von Willebrand factor, PEBP1 (RKIP) and EMILIN2 

(Scholler et al., 2008).  Serum biomarkers have been described in a number of 

studies in bladder cancer, breast cancer and pancreatic cancer to mention a few 

(Li et al., 2002b, Rosty et al., 2002, Zhang et al., 2004b).       

With regards to CSF as a viable biomarker biofluid.  The major drawback is 

concerned with attaining this fluid.  It requires a more invasive approach than 

the former urine and plasma, however, it is closely associated with the CNS 

and spinal cord which make the discovery of protein markers more associable 

with their origins, particularly due to the fact that CSF does not have protein 

infiltration from a variety of organs, unlike the blood and urine.  These 

advantages have yielded some success, all-be-it limited.  This was shown by 

the 14-3-3 brain protein found in CSF fluid being the first biomarkers which 

can aid in the diagnosis of a transmissible spongiform encephalopathies group 

of diseases such as Creutzfeldt–Jakob disease (Hsich et al., 1996, Lescuyer et 

al., 2007)  by aiding the development of a premortem immunoassay.  Other 

successes have been reported in Guillain‐Barré syndrome (Petzold et al., 2009) 

and Alzheimer’s disease (Mattsson et al., 2009). 

The study, which is undertaken in this thesis, was done in conjunction with a 

number of individuals in the laboratory, in order to try and use a multiple 

methods approach.  This investigation has focused on the use of tissue in 

biomarker discovery while others concentrated on biofluids and MS imaging of 

the tissue.  This was in an attempt to counter any limitations and analyse a 

broader set of the proteome.  The results of the biofluids analysis are described 

by Dr Heather Allingham in her thesis Development of proteomic techniques 

for biomarker discovery accepted published in 2012.  The MS imaging work 

was performed by Dr Richard Goodwin, Research Associate and has been 

published with part of this work in The Journal of Proteomics, titled “Stopping 

the clock on proteomic degradation by heat treatment at the point of tissue 

excision.”     
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It would appear that the closer the proximity of the fluid to the sight of disease 

the greater the probability of success with regards to discovery will be.  In 

recent years, therefore, there has been a switch from using biofluids to the use 

of cell and tissue in proteomics, perhaps in the hope of moving the field of 

biomarker discovery using proteomics on from a what has been suggested as a 

slow state of progression (Lescuyer et al., 2007) .  
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1.3.2 Biomarker discovery in tissue 
It is with the difficulties and relatively low successes of proteomics of biofluids 

that has led to researchers turning toward the use of tissue and cell lines 

(Lescuyer et al., 2007). Although body fluids are the ideal candidate from a 

diagnosis point of view as they are relatively easy to obtain, there is an 

argument that tissue has the greatest chance of harvesting results, at least in a 

non-targeted or unguided approach  (Phillips and Wellner, 2007, Chen et al., 

2005), due to the proximity of tissue with the diseased area. Although fluids 

are generally less complicated, they are often a long way from the site of 

disease.  Tissue taken from the point of origin has the potential to yield more 

biomarkers and in higher concentration that are more likely to be specific to 

that condition.  When sampling body fluids it is not always clear where those 

markers originate or whether another disease or process is occurring.  

Additionally, biomarkers may have gone through a number of degradative 

steps, with the exception of urine, which has been shown to be relatively stable, 

but does show variability depending on time of day and if the sample is taken 

mid-stream or not (Kentsis et al., 2009, Thongboonkerd, 2007, Schaub et al., 

2004, Papale et al., 2007).  By taking a biopsy from the site of pathology, it is 

possible with greater certainty to attribute markers to that condition (de Roos, 

2008).  This, of course, is not without difficulties, tissue is made up of many 

cell types and as such there will always be a lack of certainty in linking disease 

to specific cell types.   

Tissue proteomics in the search for biomarkers has largely concentrated on 

diseases which have a specific disease site such as cancer (Kondo, 2008b, 

Hwang et al., 2006, Zheng et al., 2003, Jones et al., 2002, Paweletz et al., 2001, 

Uhlén et al., 2005), stroke (Foerch et al., 2009, Sironi et al., 2004, Guerrini et 

al., 2002, Sironi et al., 2001, Rabek et al., 2009), or ischemic conditions (White 

et al., 2006, Fentz et al., 2004, Sawicki and Jugdutt, 2004), although, 

admittedly, these diseases are not exclusively researched using tissue.  In other 

conditions such as those that the area affected is not specific such as 

Alzheimer’s disease (Zellner et al., 2009, Puchades et al., 2003, Castaño et al., 

2006) and CVD (Abonnenc and Mayr, 2012, Blumenstein et al., 2009, Koenig 

et al., 2005, Berhane et al., 2005, Ridker et al., 2000, Rohrer et al., 2004)  there 

is more evidence of the use of biofluid.  However, the use of tissue in 

biomarker discovery is on the rise , even for diseases such as hypertension 

which is systemic in nature due to the limitations of biofluids previously 
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discussed. These specific sites of tissue growth, such as in cancer, or infarct, as 

in stroke, can be biopsied in human patients and dissected out in animals.  

Obviously this is a more costly, time dependent and an invasive procedure in 

the experiment workflow and thus is one of the major disadvantages of using 

tissue, whereas biofluid can be extracted relatively quickly and placed into 

storage.  The idiosyncrasies in tissue extraction via either biopsy or dissection 

between hospitals or laboratory, along with the time taken can have an effect 

on sample quality, potentially affecting downstream results.  It has been shown 

than the degradation of tissue can occur within 60 seconds of dissection.  

Therefore, there is a need for strict sample management and techniques to halt 

degradation. (Elliott and Peakman, 2008).  This is explored in Chapter 3: 

“Differential in gel electrophoresis analysis of wild type mouse brain tissue: A 

multi-faceted analytical approach to assessing the effect of heat treatment on 

the degradation of the proteome.”       

Similarly, as for biofluids, the use of tissue has had numerous applications 

within biomarker discovery.  Much of the work in renal cell carcinoma (RCC) 

has been done using tissue samples. In an interesting and large 2D-DiGE 

experiment, principal component analysis was used to determine between 

control and RCC patient groups.  520 spots were identified as being 

differentially expressed, while 121 of these were present in the majority of 

cases. The most significant of these were; annexin A2, peptidylprolyl cis–trans 

isomerase A (cyclophilin A), brain FABP and galectin-1 and these were further 

validated by western blotting (Raimondo et al., 2012a).  2D-DiGE on tissue 

samples has also been employed in Oesophageal cancer.  A comparison was 

made between primary oesophageal cancer tissue and tissue near the site of the 

cancer which was shown to be non-cancerous.  A protein called periplakin was 

identified as being significantly down-regulated in cancer samples and 

therefore is a putative marker for oesophageal cancer (Nishimori et al., 2006).  

A number of other cancers have been researched using tissue.  This is an 

advantage over biofluids, as cancers tend to have defined histological stages for 

direct comparison.     

Another advantage of using tissue is that you can preserve the spatial resolution 

of markers.  This may be achieved by dividing the sample into anatomically 

recognised areas, such as the medulla and cortex in the kidney or by using a 

technique which gives spatial resolution of tissues such as mass spectrometry 
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imaging (MSI).  In theory, this type of technique could be very powerful in 

detecting markers and then giving information about their location and 

evolution over time (Sanders et al., 2008, Goodwin et al., 2008a, Chaurand et 

al., 2008, Meistermann et al., 2006, Chaurand et al., 2006, Chaurand et al., 

2002, Reyzer and Caprioli, 2005). It is accepted however, that MSI has its 

limitations; this is reviewed in section 1.5.4.5.  Additionally, the dynamic range 

of protein concentrations is thought to be lower in comparison to biofluids 

which is both an advantage and limitation  (Jan Eriksson, 2007). 

One strategy for separating anatomically distinct tissues is laser micro 

dissection (LMD).  This has the potential to be used in the conjunction with 

proteomics technologies to get specific extraction from tissue slices.  A method 

has been described  in which LMD has been used to excise small amounts of 

tissue (and therefore protein) coupled with saturation labelling in DiGE (Sitek 

et al., 2005b)  .This technique is gaining interest and allowing the greater 

sensitivity (the ability to identify a positive result) of protein detection; so 

called small sample proteomics.  This has been used in the discovery of 

putative biomarkers in cancer (Coca, 2008) and Atherosclerotic Coronary 

Intima (de la Cuesta et al., 2011).  However, saturation labelling uses no more 

than 500µg of protein on each gel, causing problems with gaining 

identifications using mass spectrometry.  Meaning if this style of small sample 

proteomics is to be employed successfully, then more sensitive MS methods 

and efficient protein extraction methods will be required. The use of LMD is 

gaining pace in the search for biomarkers due to the targeted nature of this 

technique but does require more development (Kawamura et al., 2010, 

Romanuik et al., 2009, Sanders et al., 2008, Cheng et al., 2008, Kwapiszewska 

et al., 2004, Kondo et al., 2003, Li et al., 2004).     

One reason that the use of cell lines or tissues is so successful is because 

experiments are getting consistent richness of data within the 1000s of proteins, 

these increasing datasets obtained by such experiments is encouraging, 

however, it has left a large problem; how do we deal with large data sets?  

Currently there are statistical issues alongside problems with throughput and 

validation, holding back the tide of a biomarker discovery explosion 

(Nesvizhskii et al., 2007, Nesvizhskii and Aebersold, 2004, Cargile et al., 

2004, Hancock et al., 2002). 
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A strong reason for the increase in the amount of tissue proteomics for 

biomarkers is the development of methods in order to unlock a large bank of 

information stored in formalin fixed/paraffin embedded (FFPE) tissue.  There 

are many examples across the world of pathology which has been preserved 

using formalin.  If tissue proteomics could develop, then this bank of material 

could serve as a great repository of information to enhance the field of 

biomarker discovery.  Unfortunately, not only is there limitations in fresh 

tissue proteomics, there are additional challenges in regards to FFPE tissue.  

FFPE causes cross-linkages with proteins, which prevents degradation but 

make a lot of proteomic techniques difficult at best (Azimzadeh et al., 2010, 

Sprung et al., 2009, Lemaire et al., 2007, Palmer-Toy et al., 2005, Guo et al., 

2007).   

With a massive amount of data generated via both tissue and biofluids, how 

successful has proteomics been at producing biomarkers that can go from 

“bench to bedside?”  
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1.3.3 Biomarker discovery using proteomics: A success storey? 
Proteomics has now been employed in the detection of biomarkers for many 

years and across a multitude fields, but has it been successful?  There is no 

doubt that compared to 10 years ago there is a plethora of information 

regarding the association of biomolecules with a vast array of disease states.  

However, if the success is to be judged on the basis of using the discoveries of 

the research scientist to aid the clinician, a conclusion would have to be made 

that the reality has fallen short of the ideal.  The number of clinically 

applicable markers discovered by proteomic methodologies is virtually non-

existent.  One of the main issues is that the markers being discovered are not 

disease specific enough for use within a clinical setting (Rifai and Gerszten, 

2006). 

It could be argued that the problem lies not with proteomics, but with the cross 

disciplinary nature of research on top of an undefined route from bench to 

bedside.  With a more clearly defined “pipelines” there may be greater success 

in bringing these possible biomarkers to  the clinicians and used in diagnostics 

(Rifai et al., 2006a, Addona et al., 2011, Gerszten et al., 2011, Makawita and 

Diamandis, 2010, Paulovich et al., 2008, Whiteaker et al., 2011).  The pipeline 

needs to be a clear distinct pathway from discovery to clinical assay.  Rifai et 

al, 2006 describe "six essential process components—discovery, qualification, 

verification, research assay optimization, clinical validation and 

commercialization” In the last 10 years the proteomic community has produced 

countless putative biomarkers with only a few making it to clinical assay.  This 

connection of different fields with a dedicated pipeline might serve to bridge 

the gap between discovery and clinical application.   

However, paradoxically, one of the unforeseen products of searching for 

biomarkers in fluids and tissues is the necessity to push our current 

technologies, methods and analytical techniques. In this respect it could be 

claimed to be successful in furthering these technologies. It might be also 

argued that the technological developments just simply have not been enough.  

The dynamic range of proteins is simply vast.  Multiple techniques can be 

employed to investigate low, medium and high mass ranges but ultimately 

there is no complete cross over.  Also, biomarkers are literally the preverbal 

“needle in the haystack.”  In plasma 22 proteins make up the majority of the 

protein mass (Lescuyer et al., 2007). If markers from damaged tissue are 

leaked into the blood, they are masked and current proteomic technology lack 
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the sensitivity or resolution to detect them from the large abundant proteins 

(Ilyin et al., 2004)  

Therefore, if biomarker discovery is going to be more successful, the clinicians 

and proteomists need to consider focusing on clinical outcomes which can be 

validated after discovery.  Additionally, if biofluids and tissues are to be used, 

different methods need to be developed to either increase the sensitivity of 

detection or reduce the complexity of samples without removing potential 

markers.  Therefore, a focus in the coming years might be in reviewing each 

step in the proteomic workflow and work to optimisation.    

There are two main proteomic tactics in the search for biomarkers 

• A global, unbiased approach using high through-put methods (such as 

2DE, DiGE or SELDI) 

• Targeted approach, where targets are probed using antibody related 

methods such as ELISA. 

Although the quantitative methods used in proteomics and biomarker discovery 

are reviewed in section 1.4, these two different approaches are considered in 

section 1.3.4. 
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1.3.4 Proteomic work flow for biomarker discovery 
As is described in section 1.3, proteomics offers the potential to uncover 

numerous biomarkers in a number of different diseases.  The advantage of a 

proteomics approach as opposed to a genomic method is that the gene 

transcription level does not necessarily bare any resemblance to the protein 

levels and therefore phenotypical representation in the organism.  Additionally, 

proteomics can gain information regarding PTMs and protein-protein 

interactions (Fliser et al., 2007, Issaq et al., 2002).  

The proposed proteomic approach to biomarker discovery is summarised in 

Figure 1-4 and was described by Rifai et al, 2006. It was described as a 

pipeline and proposes the necessity to link proteomic discovery and validation 

to clinical assay development.  In many ways, the field has only started to 

embrace this paradigm, with the vast majority of biomarker investigation 

forcing on phase 1; the discovery.  The minority take this forward to validation 

and practically none have led to clinical assay development.  Figure 1-4 has 

also been constructed with additions shown in Thongboonkerd, 2009.  This has 

been further discussed in a number of papers and the idea is gaining credence 

(Addona et al., 2011, Gerszten et al., 2011, Makawita and Diamandis, 2010, 

Paulovich et al., 2008, Whiteaker et al., 2011).    

The first step is the discovery phase to identify candidate markers, usually this 

is an untargeted or unguided approach using technologies that can gain a snap-

shot of 1000s of proteins, and peptides at a single time point.  This might 

include technologies such as 2DE coupled to MALDI-TOF-MS or the use of 

SELDI-TOF-MS, or a number of quantitative technologies such as DiGE or 

isotopic labelling for use with MS (discussed in sections 1.4.1).  This step 

could be achieved using cell lines, animal models or human fluid or tissue 

samples.  This could also include steps to cause a simplification of the sample.  

This is often done by comparison of normal vs. disease states.  This process 

can yield lists of many differentially expressed proteins.  These lists can be 

100s of proteins or peptides long and will often contain many false positives.  

This is especially the case for lower-abundant sets of proteins, as these often 

are in the lower section of the MS dynamic range (Keshishian et al., 2007)    

After the initial discovery of putative markers, then there is a qualification 

phase.  This phase is used to confirm or deny any of the generated candidate 

markers from the initial list of discoveries.  It is suggested that this might be 
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achieved by using alternative technologies as a form of validation.  Also, at this 

point, it is necessary to try and gauge the sensitivity and specificity of the 

biomarkers to the described diseases.  That is usually expressed as a percentage 

measure that a diseased sample will test positive or a normal person will test 

negative.   This stage is still performed with relatively low sample numbers.   
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Figure 1-4:  The biomarker discovery pathway.  This displays a now often referenced approach to biomarker discovery and validation proposed by Rifai et al, 2006 called 
the biomarker pipeline.  This involves several steps from discovery to validation.  At the discovery phase of the pipeline, a more global approach is taken, in an attempt 
to examine 1000s of potential markers using small samples.  As the pipeline approaches the validation stage a more targeted approach is required, with few markers 
being scanned but with a greater number of samples included.    This was adapted from Rifai et al, 2006 and Thongboonkerd. 2009. 
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It is also suggested that the verification stage uses larger, usually human, 

samples to confirm the sensitivity and specificity from the qualification set. 

The final phase involved the development of an immunoassay to finally 

validate makers.  This assay then has the potential to be developed to meet any 

clinical requirements (Rifai et al., 2006a, Rifai and Gerszten, 2006). 

With this in mind, the typical theoretical work flow from proteomics to clinical 

application is summarised in Figure 1-5, where proteins are collected, 

fractionated, quantified and validated. 

From the literature it is clear that there is a top heavy approach to biomarker 

discovery with much research focused on the discovery as opposed to the 

validation of markers.  Rifai et al, 2006 makes a sensible suggested bridge 

between the clinical necessity and the proteomic discovery.  This is also 

highlighted by Mishak et al, 2007 in the need of a clearer definition of the field 

of clinical proteomics to bridge the gap between the scientists and the 

clinicians (Gerszten et al., 2008, Rifai et al., 2006a, Mischak et al., 2007). 

This work flow relies on a set of discovery methodologies.   In the application 

of these quantitative methods there are two broad approaches to biomarker 

discovery in proteomics; unguided global proteomics, which usually involves 

high through put methodologies to try and uncover a large number of putative 

markers or a more targeted approach, which drills down into a smaller number.  

This process is summed up in Figure 1-4.  
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Figure 1-5:  Schematic of the experimental stages in biomarker discovery in proteomics with the movement towards validation for clinical purposes.  Samples come with 
a huge dynamic range and mixture of various proteins and peptides.  These samples are them simplified by various possible methods of fractionation including; using 
liquid chromatography, depletion columns or antibody enrichment.  The proteomic methods of choice are picked and separation and quantitation performed.  Then the 
process of identification and validation can be executed.  This is followed by a variety of possible steps toward clinical assay development.    
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1.3.4.1 Global unguided proteomics and biomarker discovery 
Global assessment of a subset of proteins has become possible since the 

inception of proteomic separation and detection technologies such as; 2DE, 

HPLC coupled to various forms of chromographic separation columns and 

MALDI-TOF-MS, SELDI-TOF-MS and ESI-QUAD-TOF-MS to mention but 

a view (Veenstra, 2006).  One of the problems that used to be associated with 

biomarker discovery is the need of previous knowledge to guide the production 

of immunoassays.  This has slowed progression in the discovery of biomarkers.  

However, proteomics provides solutions to this issue with the ability to screen 

populations due to  high throughput approaches (Pan et al., 2005, Whiteaker et 

al., 2010).  These technologies, coupled with software and bioinformatics, are 

able to visualise 1000s of proteins at once, thus allowing for the analysis of 

protein maps and patterns to compare normal and disease samples.  The 

technologies employed in viewing whole proteomes all have their relative 

advantages and disadvantages, which will be described in 1.4.1 along with 

examples of how they have been utilised for biomarker discovery.  A 

schematic of a typical approach to biomarker discovery without any prior 

knowledge can be seen in Figure 1-6.  Most methods employed by proteomics 

are global methods for discovery and quantification and these are the primary 

focus of section 1.4.      

 

Figure 1-6:  Schematic of a Global proteomics work flow in biomarker discovery (Phase 1 
of Figure 1-4).    
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1.3.4.2 Targeted proteomics for biomarker validation 
The traditional targeted approach to biomarker validation is the use of 

antibodies.  Antibodies take a great deal of time and expense to produce and it 

is not inevitable that the antibody produced will have a high affinity and 

specificity.  In addition, antibody detection can have an issue with cross-

reactivity and batch production variation.  Currently, antibodies still prove to 

be a popular way to validate biomarkers; however there has been some 

considerable promise in using MS to validate novel makers.  In this section the 

more traditional validation methods are considered. In section 1.4.2.10 the 

targeted MS method of multiple reaction monitoring is explored (Veenstra, 

2006).    

1.3.4.2.1 Protein microarrays 
A protein microarray is a silicon chip containing a collection of immobilised 

protein spots.  The spots contain a set of capture molecules; this could be 

protein or peptide fragments or antibodies.  It allows for precise protein/protein 

signalling.  The chip is washed with either a labelled antibody or biofluid 

(plasma, cell lysate or tissue homogenate).  Normal and disease states can be 

compared.  The query molecules are tagged with fluorescent molecules and can 

be excited.  A picture is taken using the appropriate excitation wavelengths 

which indicates a positive or negative interaction.  They are useful in revealing 

protein-protein interactions. The main advantage is that large amounts of 

proteins can be validated simultaneously (Joos and Bachmann, 2009).  

However, protein chips have proved to be difficult to develop compared to 

their DNA counterparts. With a more diverse range of chemistries involving 

protein interactions on binding surfaces compared to DNA, researchers and 

industries have faced considerable problems in binding proteins and peptides to 

surfaces while maintaining their structures required for interactions.  Once 

again there is an issue with antibody production, cross-reactivity and non-

specific binding.          

1.3.4.2.2 Immunoassays 
Immunoassays measure the concentration of a solute of interest within a 

solution by using antigen-specific antibodies.  The concentration is determined 

via the reaction between the antigen and antibody.  The antibody can be 

labelled with a radioisotope, fluorescent marker or magnetic label.  Although 

they are easy to use, they are limited in the number of samples that can be 

scrutinised and therefore are not efficient for high throughput purposes.  
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Immunoassays were first described in the 1950s by Yalow, R and Berson, SA.  

Yarlow later accepted the Nobel Prize in 1997 (Berson et al., 1956).   These are 

a powerful and inexpensive clinical test for known biomarkers associated with 

a specific disease; however, if an antibody does not already exist for a potential 

biomarker, it can be a lengthy process to raise them with no guarantee of a 

specific antibody being produced.  This is also because biomarkers in a 

diseased state maybe little different from a normal state, perhaps only a PTM 

difference, although antibodies can be specific, it is not always the case.  This 

means that immunoassays need to be specifically developed for each potential 

new marker.  This is possibly one of the reasons a gap exists between the mass 

of discovery style biomarker research and the development of clinical assays, 

however the field has had some successes (Ray et al., 2005, Aston et al., 2002).  

Another issue with antibody based techniques is the chance of cross-reactivity.  

The smaller the biomolecule, the greater a problem this can be, resulting in 

either false positives or poor quantitation.  Also with regards to antibody 

production, consistent sources are not guaranteed as antibodies are specific to 

the serum of the animal they are raised in.  This is minimised by having serum 

pools that are well characterised but this does not eliminate the problem totally.  

Additionally, the specificity of immunoassay is limited by the non-specific 

binding of the reporter molecules (Fredriksson et al., 2007).            

1.3.4.2.2.1 ELISA: Enzyme-Linked Immunosorbent Assay 
ELISA is an extension of the technology described regarding immunoassay.  

There are many different kinds of ELISA, however, the general principle is the 

detection of a solubilised analyte.  The detection is done via a colour change 

which is quantifiable.  A molecule, such as an antigen or antibody, is usually 

bound to a solid phase (this could be a well in a 96-well plate). In the case of 

biomarker discovery, a biofluid is washed over an antibody which binds to a 

specific target.  The remainder of the fluid is washed away.  A primary 

antibody is then washed over it and binds to the analyte as a detection method.  

A secondary antibody raised against the primary antibody has the conjugated 

enzyme to it.  The enzyme reacts proportionally to an added dye.  This is 

known as a sandwich ELISA.  In an indirect ELISA an antigen or protein is 

adhered to the solid phase.  This allows for a sensitive technique compared to a 

straight immunoassay as the enzymes act to amplify an initial signal as even 

one bound conjugated enzyme antibody will cause many dye reactions.  The 

sandwich ELISA also has the benefit of not causing serum proteins to stick to 
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the well plate, as with indirect ELISAs.  Quantitation can be done using a 

standard curve. (Diamandis, 2004a, Rifai et al., 2006b)    

1.3.4.2.3 Immunohistochemistry 
First employed by Coons et al, 1941 immunohistochemistry is the detection of 

antigen by the use of antibodies which gives spatial resolution.  It is a useful 

method in the validation of biomarker discovery using MSI.  The antibodies 

are tagged with a fluorescent dye which can be excited to reveal the presence 

of detection.  In addition to fluorescent dyes, antibodies may be labelled with 

radioactive elements or enzymes.  This technique is not only employed in the 

validation of markers, but in a clinical setting to diagnose and monitor the 

progression of disease (Fitzgibbons and Cooper, 2009, Zhang et al., 2004c, 

Diamandis, 2004b).  

1.3.4.2.4 Western blots 
The process of western blotting is summarised in section 2.1.5.  Western 

blotting is a common technique for identifying (both qualitatively and 

quantitatively) the presence of a protein in a sample that has been separated on 

a gel.  Therefore this can be done in both one dimension and two dimensions.  

A membrane transfer step is used to allow the proteins to migrate from the gel 

to the membrane.  The membrane undergoes a series of washes with primary 

and secondary antibodies.  The antibodies are tagged with a fluorescent marker 

and after excesses have been washed off, an image is taken with the 

corresponding excitation wavelength and camera.  Quantitation can be 

achieved either relatively, against the total protein loaded across all samples, or 

absolutely, by using internal standard samples of known quantity.  

Similar to immunoassays, western blots can only be performed if a suitable 

antibody is available and the specificity is dependent on the quality of the 

antibody (Gravett et al., 2004, Nirmalan et al., 2009b) 
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1.3.5 Summary 
Despite proteomics generating countless data containing potential biomarkers, 

progress has been slower than expected.  The vast majority of the biomarkers 

discovered have not been employed in a clinical assay.  The reasons are varied.  

There is a lack of a definitive path for the development of discoveries to the 

lack of validation occurring.   

The movement away from biofluids to tissue proteomics is clear, any secreted 

biomarker near, in or surrounding the tissue will be in considerably higher in 

abundance compared to after travelling around the bodies in 1000s of miles of 

arteries, veins and capillaries.  Using tissue, all be it invasive, presents a more 

realistic prospect for biomarker discovery as a whole.  Meanwhile, sensitive 

technologies are required to be developed to then detect them in body fluids, if 

they actually exist in that form in biofluids. 

However, the hard truth is that biomarker discovery is complicated and 

involves many processes with different organisations and institution, which 

mean collaboration if anything meaningful is to be achieved at a faster rate.  A 

biomarker needs to be quantified with sufficient accuracy, in order to be 

deemed suitable for validation and clinical assay.  Therefore, in this next 

section the methodologies of quantitative proteomics are considered and their 

relative advantages and limitations. 
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1.4 Quantitative proteomic technologies used in biomarker 

discovery. 
In order to make best use of the identifications and make meaningful 

conclusions about the biological effect of the identified proteins it is essential 

to be able to quantitate changes between proteins or peptides.  There is a 

number of proteomic technologies employed in the discovery of biomarkers.  

In this section these technologies are reviewed.  Quantitation comes in two 

forms, absolute or relative.  Absolute involving the knowledge of quantities by 

comparing a signal to a known value (this could be a set of standards used to 

generate a standard curve), and relative meaning the comparison of the sample 

of interest to another sample (this could be an internal standard).    

There are a number of quantitative techniques in proteomic research which 

perform absolute or relative quantitation, some of which are mentioned in 

section 1.3.4.2.  With regards to other methods of quantitation, given below is a 

synopsis of Differential in Gel electrophoresis or DiGE, which is the main 

technique presented in this thesis.  In addition, there is a resume of quantitative 

methods used in conjunction with mass spectrometry in biomarker discovery 

with their relative advantages and disadvantages explored and applications.  

In order to employ quantitation in proteomics it is important to understand the 

strategies available when labelling a sample for quantitation.  Broadly speaking 

there are three methods of labelling for quantitation; metabolic labelling, 

protein labelling and peptide labelling.  This is summed up in Figure 1-7. 

Metabolic labelling affords the advantage of reducing variation to a minimum 

by introducing the label further up the proteomic workflow.  Metabolic 

labelling therefore is preferential to reduce variation and is performed in vivo 

with isotopically enriched elements.  These will be incorporated into proteins.  

This necessity to perform in vivo labelling places a limitation on type of 

experiments possible with metabolic labelling.  It is also relatively expensive in 

terms of money and time, having to raise cell lines or organisms on media or 

food containing enriched elements.  In vitro labelling in comparison is cheaper 

and experimentally more diverse in it applications as cells, tissue or organisms 

can be obtained from numerous sources without the need for prior planning.  

The labelling of proteins and peptides, therefore, is independent of planning 

and preparation but has a greater source of variation due to the induction of 

labels further down the proteomic workflow(Gouw et al., 2010, Beynon and 
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Pratt, 2005, Ong and Mann, 2005).  Additionally, there is a vast array of tissue 

already stored in tissue banks which would benefit from analysis.  Metabolic 

labelling of this tissue is not possible so despite the disadvantages of using 

chemical labels, their greater flexibility in different applications is of great 

advantage over metabolic labelling.      

 

 

Figure 1-7:  Diagram showing the strategies employed in a quantitative proteomics work 
flow.  It show where the introduction of labels and mixing occurs and illustrated the 
advantages of metabolic labelling reproduced from (Gouw et al., 2010). 
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1.4.1 Differential in Gel Electrophoresis (DiGE) 
Differential in Gel Electrophoresis is an adaptation of 2DE (discussed in 

1.5.3.1.1) and born out of the limitations associated with it.  It is a relative 

quantitative technique and harnesses the usefulness of 2DE, while combating 

the limitations and allows for multiplexed analysis.  It achieves this by using 

fluorescent markers and an internal standard.  DiGE was first described by 

ÜnlÜ in 1997 (Unlü et al., 1997) and then later developed by GE Healthcare 

(Marouga et al., 2005).  It allows for the detection of 1000s of protein or 

peptide spots while harnessing the quantitative and sensitive capabilities of 

fluorescence and thus gaining the ability to compare multiple gels with greater 

ease and less time in comparison to 2DE.  The workflow is identical to that of 

2DE (outlined in 1.5.3.1.1), except samples are labelled with different 

fluorescent markers before separation.  An internal standard, usually being a 

mixture of every sample, is labelled and loaded on each gel with the 

differentially labelled samples.  This internal standard allows for the 

comparison across gels and quantitation.  A schematic of the work flow can be 

seen in Figure 1-8.  
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Figure 1-8:  Schematic Work flow of a Minimal DiGE gel.  Sample from two or more 
different cell or tissue samples can be simultaneously compared.  A combination of all 
samples is mixed and labelled as a pool internal standard.  These are then missed and 
loaded into a standard 2DE work flow that includes isoelectric focusing and molecular 
separation on SDS-PAGE gels.  The gels are then scanned and analysed using GE 
Healthcare proprietarily software.  Figure was taken from DiGE manual produced by GE 
Healthcare, UK. 

The dyes employed in DiGE are cyanine dyes.  There are two forms of DiGE 

experiments.  DiGE using minimal labelling and DiGE using scarce sample 

labelling (saturation labelling).   The most common and practically easier is 

minimal labelling and GE Healthcare have made three commercially available 

minimal Cy dyes; Cy2, Cy3 and Cy5, although there are two dyes that have not 

been developed for proteomic applications.  They have distinct emission and 

absorption spectra.  The dyes are size and charges matched and are spectrally 

resolvable.  Therefore, the same protein or peptide labelled with either of the 

Cy dyes migrates practically to the same spot.  The dyes are linear in excitation 
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and have a wide dynamic range.  Minimal labelling occurs on 1-2% of 

available lysines in the sample and is bonded to the fluorescent marker at an 

NHS ester reactive group (see Figure 1-9).  The +1 charge of the lysine is 

replaced by the +1 charge of the Cy dye.  It has, however, been shown that 

there will possibly be a small proportion of unlabelled protein or peptide that 

will migrate and show up as a different spot (Tonge et al., 2001) and lead to 

extra analysis, time and expense in spot picking and identification (Wheelock 

AM, 2006).      

 

Figure 1-9:  A schematic of labelling reaction for DiGE minimal labelling.  The bond is 
created between a lysine and the NHS ester reactive group of the Cy dye forming an 
amide bond.  Figure was taken from the DiGE manual produced by GE Healthcare, UK. 

Saturation DiGE currently only has two available Cy dyes (Cy3 and Cy5) but 

allows for a far more sensitive approach.  It is even more sensitive than silver 

staining, needing as little as 0.025ng of protein.  Saturation labelling is 10x 

more sensitive than minimal labelling (needing only 5μg per a gel compared to 

50μg in minimal labelling) making it an exciting prospect for small sample 

tissue proteomics, using laser micro dissection (Sitek et al., 2005a) as shown 

by Helmet Meyer Lab in an impressive study into pancreatic ductal 

adenocarcinoma.  It was shown that saturation DiGE managed to resolve 2500 

proteins from the protein equivalent from 1000 cells.  However, there is still 

some way to go as in this study it was still required to laser micro dissect a 

significant amount more than 1000 cells in order to get the required level of 

protein.  This means that the investigation still suffered from limitation of an 

average effect which small sample proteomics is trying to get away from (see 

chapter 5, section 5.5).   

In comparison to minimal labelling, saturation labelling is technically more 

challenging.  The dye concentration must first be determined for the sample in 

question, meaning that more optimisation is required.  Saturation dyes are 

designed to bond to cysteine residues and all available cysteines must be 
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labelled.  The thiol group on the cysteines covalently bond with the maleimide 

group on the Cy dyes.  A schematic of the reaction can be seen in Figure 1-10.    

 

Figure 1-10:  Schematic of Saturation DiGE Labelling.  The disulphide bridges of the thiol 
groups on the Cysteines must be broken before Labelling can take place.  A one-hour 
incubation in tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) prevents the thiol 
forming the disulphide bridges.     

In a review on quantitation techniques it was stated, that DiGE is expensive in 

both time and money, however, depending on your sample size is no greater in 

expense than other labelling techniques such as iTRAQTM.  Equally it stated 

that:  

“This technique is probably more sensitive to protein degradation in the sample than are 

the techniques based on peptide detection, because truncated proteins would show up as 

separate spots on the 2D gel. Conversely, this technique is probably better at detecting 

isoforms than iTRAQTM or the other peptide-based techniques, because these would 

probably be reported as a single protein”(Elliott et al., 2009):1637  

This helps to confirm its use in chapter 3.  DiGE does not circumvent all the 

limitation of 2DE.  Gels still are not able to display very low abundance protein 

particularly well, low molecular weight proteins or peptides would simply run 

off the end of the gel and hydrophobic proteins may not enter the gel. 
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A rival to DiGE as a quantitation method is called ALIS (alexa molecule 

internal standard) and bypasses the need for labelling all the proteins in a 

sample by adding an internal standard, made up of a set of proteins labelled 

with the Alexa molecule.  It is added into the sample before the first dimension 

separation (Wheelock et al., 2006a). Therefore, meaning that there will be no 

migration shift of the sample proteins due to a labelling process.  This of 

course is assuming that all the proteins are absorbed into the IPG strip during 

the first dimension with equal efficiency. Once the gels have undergone the 

second dimension of separation, the gels are further stained with a 

spectroropically different fluorophore which labels proteins, such as Sypro 

Ruby.  The gels can then be normalised against the internal standard.  ALIS is 

cheaper in comparison to the propriety Cy dyes, however, it has not been 

conclusively shown whether AlexFluors are better at quantifying proteins in 

comparison to cyanine dyes.  It is known that AlexFluor labelled proteins 

migrate differently depending on the proteins and this is why a form of DiGE 

using these dyes must be done using it as an internal standard, not using a 

cyanine experimental design.  Therefore, doubling the amount of gels needed 

to be run for an equivalent cyanine dye labelled DiGE experiment (Ballard et 

al., 2007, Waggoner, 2006, Wheelock et al., 2006a, Wheelock et al., 2006b, 

Berlier et al., 2003).   

AlexFluors come in a variety of excitation wavelengths.  With regards to the 

comparison of Alexa and cyanine dyes, it is clear that there is controversy 

within the scientific community.  Some studies comparing Cy5 and the 

AlexaFluor647, state that Cy5 is brighter but the AlexaFlour647 is more photo-

stable.   This comparison was done in DNA microarray use.  A study was 

undertaken due to the problem of dye bias in cyanine dyes.  Cyanine dyes 3 

and 5 presented a significantly better signal than the AlexFluor counterparts 

(Ballard et al., 2007).  As a whole DiGE based research continues to use 

cyanine dyes as results with AlexFluor appear to be more variable (Attard et 

al., 2004).          

There are several advantages of using DiGE as a quantitative method.  Firstly 

DiGE can be used to simultaneously visualise and quantitate 1000s of proteins 

with a reasonable dynamic range and high sensitivity.  Also, gels display 

proteins with PTM, seen as a shift on the gel.  Furthermore, the proteins are 

being visualised intact and not as fragments in the MS, therefore they are in 
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there intact state.  MS can detect PTMs, however, when sample mixtures are 

complex (as with biomarker discovery in plasma), it becomes a challenge to 

gain enough spectral information to distinguish them.  Therefore the main 

advantage and differences to MS based quantitation is the visualisation of 

intact proteins which can reflect their biological significance.  DiGE does have 

its limitations. None of the proteomic technologies are truly global due to 

inherent limitation.  DiGE can only visualise proteins in a narrow range of pIs 

and in the middle molecular weight range (250KDa – 10KDa), as small 

proteins and peptide fragments run off the gel and large proteins do not enter.  

Whereas, many MS method offer greater sensitivity over a larger dynamic 

range.  Also, DiGE gels do not readily resolve hydrophobic proteins and 

membrane proteins very readily.  However, DiGE and MS are not in total 

competition - they can be used in synergy as comparative and complementary 

methods. DiGE is suited to biomarker discovery due to the advantage of 

visualising large amounts of proteins in their intact state (Fenselau, 2007, 

Lilley and Friedman, 2004, Martyniuk et al., 2011, Wu et al., 2006b) and MS 

can view the smaller mass range.  

1.4.1.1 DiGE and Biomarker discovery. 
The process of DiGE has been explained in section 1.4.1; however, it seems 

prudent to review how DiGE has been employed in biomarker discovery.  

DiGE has been employed in a large number of biomarker studies, in a number 

of different fields such as:  primary gastrointestinal stromal tumours using 

tissue, prostate cancer using tissue, bladder cancer using urine, lung cancer 

using saliva, breast cancer using serum, hepatic fibrosis in hepatitis C using 

serum and the use of material blood for biomarkers indicating down syndrome                           

as outlined below. 

DiGE has been used in the investigation of prostate cancer.  Currently PSA is a 

relatively low specificity marker for prostate cancer.  To avoid unnecessary 

biopsy operations, a more specific biomarker for prostate cancer would be 

preferable.  An approach with DiGE using protein patterning has been shown 

to distinguish malignant cancer from benign cancer tissue using a PCA 

analysis.  They showed 79 differentially expressed spots in the malignant 

cancer sample, compared to the benign cancer tissue.  The majority being heat 

shock proteins, signal transmitting proteins, metabolic enzymes, tumour 

associated proteins, cytoskeletal and oxidative stress controlling proteins which 

had previously been linked to cancer processes.  A specific example of PPAP 
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was found to be differentially expressed, which is a known prostate cancer 

marker.  Different classes of peroxiredoxins were also found.  Preliminary 

validation was done using western blots, but this study suffers from the lack of 

validation and therefore the gap between  bench-side to bed-side is still present 

(Ummanni et al., 2011). 

DiGE has also shown to be a useful technique in the monitoring of successful 

treatments.  In a study into primary gastrointestinal stromal tumours using GI 

tissue, pfetin was identified as a prognostic biomarker.  Those patients with 

pfetin showed positive results after treatment having a 5 year survival rate of 

93.6% compared to a negative reading showing only 36.3% (Kikuta et al., 

2010).  This was further validated using immunohistochemistry techniques and 

in subsequent studies at other hospitals (Kubota et al., 2011). 

DiGE has also been employed in investigating bladder cancer.  Current 

diagnosis of bladder cancer is costly in terms of clinical time and often 

uncomfortable for the patients.  DiGE has been used to identify a novel cancer 

biomarker of Gc-globulin from urine, for the detection of infiltrating urothelial 

carcinoma of bladder cancer.  This is of interest due to the ease of sample 

collection and speed of extraction.  In addition, other markers were also found 

to differentially express in bladder cancer patients and correlated with other 

studies (Li et al., 2012a).   

In breast cancer, DiGE has been used with success to identify 

proapolipoprotein A-I, transferrin, and haemoglobin being up-regulated and 

apolipoprotein A-I, apolipoprotein C-III, and haptoglobin α2 as down-

regulated in patients suffering from breast cancer.  Interestingly, from an 

immunochemical reaction used in validation, only one protein correlated well 

to the original DiGE expression results.  Two markers, apolipoprotein A-I and 

haptoglobin, did not get detected using the immunoassay, due to the lack of 

isoform specificity in the antibody.  A considerable advantage exhibited by 

DiGE over the use of antibodies (Huang et al., 2006a).  

Lung cancer is often fatal due to its asymptomatic nature in early stages.  Late 

stage detection represents a high mortality rate.  The need for an early detection 

mechanism would be beneficial.  DiGE has been employed in the search of 

biomarkers in human saliva.  In this study, DiGE analysis coupled with 

immunoassay methods revealed 16 candidate markers.  Two of these proteins 

were further validated using lung cancer cell lines. The proteins were; AZGP1 
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and human calprotectin.  Both had reasonably high specificity scores between 

cancer and non-cancer patients, however, these markers have also been 

described in association with smoking and smoking related illnesses.  

Something that a high percentage of lung cancer patients do (Xiao et al., 2012).   

A dual technique employing both DiGE and ITRAQTM was used to investigate 

hepatic fibrosis in hepatitis C patients using serum as a biofluid.  305 spots 

were identified using ITRAQTM, of which 66 were seen as being differentially 

expressed compared to 704 protein spots, of which only 66 were excised, 

identifying 135 proteins.  Two overlapping proteins were identified; 

complement C4-A and inter-alpha-trypsin inhibitor heavy chain H4, 

demonstrating the dual validation of two proteomic technologies (Yang et al., 

2011a).   

Heywood et al, 2011 employed DiGE to determine differential expression of 

maternal blood plasma proteins in fetal Down Syndrome.  This was to try and 

avoid the risky prenatal tests for Down Syndrome diagnosis. Plasma was 

depleted prior to isoelectric focusing.  A number of changes manifested in 

Down Syndrome samples taken in the second trimester: increased levels of 

ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4, complement 

proteins C1s subcomponent, C4-A, C5, and C9 and kininogen 1.  These have 

been described in previous studies. However, sample sizes were relatively low 

(Heywood et al., 2011).     

The use of DiGE to analyse the proteome of cell lysates and tissue proteomics 

in research and clinical samples is also well documented, with much of the 

biomarker discovery using DiGE being geared towards studies of biomarkers 

for cancer and cardiovascular markers (Nordon et al., 2010).   The combination 

of proteomic and genomic profiling, using DiGE, is also increasing (Hariharan 

et al., 2010).  As stated above, the use of DiGE in hypertension and proteomic 

degradation is addressed in chapter 3 and 4.   

The use of DiGE in the detection of candidate markers for renal diseases and 

hypertension in the kidney is not usually performed using kidney tissue but 

mostly urine; however there is a growing trend toward tissue as a sample 

source (Wang L, 2010, Varghese et al., 2010, Bañón-Maneus et al., 2010).  The 

use of biofluids has its advantages regarding ease of collection and cost 

effectiveness, however analysing the kidney tissue itself gives an upstream 

view of what is happening and has the greater prospect of finding biomarkers 
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in higher abundances due to the proximity of the site of disease.  It also has the 

possibility of isolating proteomic activity to a certain area of tissue.  This 

approach in using DiGE in conjunction with tissue, further separating the areas 

of tissue and qualitative trait loci, is therefore a novel approach in this study.  

Renal proteomics is reviewed in 1.6 including further examples of the 

application in DiGE.   
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1.4.2 Quantitation in mass spectrometry 
For many years the gold standard for separation has been in 2DE, however, 

disadvantages of high labour cost and time in using this technique, coupled 

with limitations in quantitation and software analysis, has led to the 

development of a range of different quantitative methods using mass 

spectrometry.   These are largely broken into labelled and non-labelled 

quantitation.  The majority of labelled methodologies for quantitation using 

mass spectrometry involved the use of stable isotope labelling (Carr and 

Anderson, 2008, Schulze and Usadel, 2010, Veenstra, 2006).  The concept 

being that a protein or peptide in normal and disease samples are labelled using 

two differently distinguishable isotope tags.  Therefore this known mass shift 

can be detected and used to quantitate relatively.  It is largely true that the 

majority of mass spectrometry quantitation is relative in nature, with the 

exception of selective reaction monitoring and iTRAQTM, which does both.  It 

is possible to combine a relative quantitation method such as Metal-coded tags 

(MeCAT) and use it in combination with inductively coupled plasma mass 

spectrometry (ICP-MS) to gain absolute quantitation (Ahrends et al., 2007, 

Bergmann et al., 2012, Schwarz et al., 2011)..  Below is a summary of the most 

common methods of quantitation using mass spectrometry. 

1.4.2.1 SILAC : Stable isotope labelling by amino acids in cell culture 
SILAC is a form of metabolic labelling and was first developed by Oda et al, 

1999 and first performed by Ong et al, 2002 (Oda et al., 1999, Ong et al., 

2002).  It is a process which introduces amino acids which carry a heavy stable 

isotope.  Cells are cultured in a media which usually has lysine and arginine 

with a heavy stable isotope labelled with heavy or light versions of carbon 

(heavy form being 13C) or nitrogen (heavy form being 15N).  This ensures that 

every peptide, except for the carboxyl-terminal peptide is labelled.  They are, 

of course, cultured separately, lysed and processed for enrichment, depletion or 

simplified in line with experimental design.  Then proteins are digested and all 

mixed together.  A modified version of SILAC is summarised in Figure 1-14.  

Labelled cell lines can thus be compared with non-labelled cells to compare a 

heavy and light version of the amino acids.  As the majority of amino acids are 

now labelled with a heavy version of the amino acid sequence coverage in the 

mass spectrometer is greatly increase.  As it has been developed in the 

following years there are light, medium and heavy versions of arginine and 

lysine.  The relative quantities can then be determined by mass spectrometry as 
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with ICAT.  Alternatively, there is also a method known as spike-in (Geiger et 

al., 2011),  where samples are cultured without the use of reagents and the 

SILAC tags are spiked into the sample later.  This reduces the cost of 

experiments using SILAC reagents. 

The major advantage is that all amino acids and therefore peptides are labelled 

so unlike ICAT there should be total sequence coverage.  SILAC has proven a 

popular method, however, it does have its limitation mainly with regards to 

cost, as heavy media is expensive.  This is to some extent combated by only 

labelling one sample whilst comparing a normal unlabelled version.  Also some 

cell lines do not grow well in SILAC media and therefore it is of limited uses 

in these cases.  It has been shown that in some cases in vitro conversion of 

labelled arginine to proline has occurred (Van Hoof et al., 2007). One of the 

major barriers to its use is the need to plan its use.  This is not a method that 

can be used if sample have been given or used in retrospective analysis.  

Outside of cells the use of SILAC has seen limited success in higher animals 

and plants with too little incorporated heavy amino acids or taking too much 

time and expense.  The inability to use SILAC in a large number of cases has 

been primarily the reason for the large number of chemical labelling alternative 

available .  

SILAC has been successfully employed in numerous biomarker discovery 

studies including; various forms of cancer using human cells (Zhao et al., 2009, 

Grønborg et al., 2006, Kulasingam and Diamandis, 2008),     
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Figure 1-11:  Schematic of quantitation using SILAC.  Cells are grown in the SILAC media 
which is incorporated into the cells as they grow.  Cells are lysed, solubilised, digested and 
then separated before MS/MS is performed.  The relative peak shifts in the light, middle 
and heavy chains allows quantitation to be performed.  Adapted from (Geiger et al., 2011) 

1.4.2.2 ICAT: Isotope Coded Affinity Tags  
ICAT was first utilised for use in proteomics by Aebersold et al, 1999.  It uses 

the relative difference between labelled cysteine containing peptides labelled 

with either light or heavy ICAT reagents.  These reagents are chemically 

identical.   Typically, a normal sample is labelled chemically with either the 

light or heavy chain or the disease with the other.   Once labelled, the samples 
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are combined and digested (usually trypically).   The excess ICAT reagent is 

removed using a cation exchange column.  An avidin column is subsequently 

used to isolate the ICAT labelled peptides.  Then they are introduced via LC to 

a mass spectrometer (Gygi et al., 1999, Kang et al., 2010a, Turtoi et al., 2010).  

This process is summed up in Figure 1-12.  

.  

Figure 1-12:  The process of ICAT.  A) Shows the ICAT Label with its three components. B) 
A flow schematic of a typical labelling process with the heavy and light ICAT reagent 
chains red and green indicate light and heavy chains respectively.  Normal and diseased 
samples are labelled with light and heavy chains respectively.  They are then trypically 
digested and analysed by mass spectrometry.  The mass shift is detected and samples can 
be relatively quantitated.   Combined and adapted from (Gygi et al., 1999). 



44 | P a g e  
 

The ICAT reagents consist of three distinct parts (see Figure 1-12 part A).  The 

ICAT reagents are made up of a reactive group, a linker and affinity tag.  The 

most common linker contains either a light chain with a (12C) section or  a 

heavy chain containing (13C) (Zhang et al., 2005).  These are commonly 

referred to as cICAT or just ICAT.  This causes a mass shift of 9 Da.  

Originally, hydrogen and deuterium was used to create the light and heavy 

chains respectively, but this led to issues with co-migration of paired peptides 

during separation.  The reactive group is a thiol which reacts and attaches to a 

cysteine.  The peptides can be relatively quantitated against each other by 

either peak height or more accurately comparing the peak areas.  Sequence 

information can be determined by further fragmentation and interrogated 

against databases. The shift in m/z ratio is due to the difference in mass 

between the light and the heavy chains. 

The most recent generation of ICAT reagents are modified versions called 

visible ICAT reagents (VICAT).  These replace the linker with 13C or 15N and 

allow for the photoclevage of the reagents to reduce the problems associated 

with fragmentation and co-elusion.  The visible tag can be monitored during 

separation (Bottari et al., 2003).  A further version using 14C and NBD 

fluorophore can be used to absolutely quantitate.         

ICAT labelling has been employed in a number of studies including those in 

the search for biomarker.  In one such study, biotinidase ICAT were utilised as 

a discovery tool and used to find a serological biomarker for breast cancer.  

This was performed using blood plasma from 6 patients suffering from breast 

cancer and 6 normal subjects.  After discovery of 155 proteins, 5 were chosen 

for follow up with immunoblot assay and a blind study using 21 breast cancer 

patients and controls.  Bioinidase was shown to be markedly down regulated in 

cancer sufferers (Kang et al., 2010a).  Another investigation using ICAT 

combined with tandem MS was in the screening of hepatocellular carcinoma 

(HCC).  In this study, they used cICAT to search for Alpha-1-acid glycoprotein 

combining AFP in patients with both liver cirrhosis and HCC patients, in order 

to diagnose HCC (Kang et al., 2010b).    

There are certain issues that using ICAT presents.  The largest restriction for 

this technique is that only proteins containing cysteines are quantifiable and 

only two samples can be compared at once.  Cysteine is a relatively rare amino 

acid, so this presents a large problem.  This can, however, be circumvented by 
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incorporating a sulfhydryl group onto an N-terminus of the cleaved amino acid.  

Additionally, there are problems with peptide co-eluting effecting quantitation.  

Also, the ionization process can cause different charge states for paired ions 

which need correction in the software. The advantages of quantifying proteins 

using ICAT are multiple.  Firstly, any variability in ionization is eliminated as 

the peptides labelled with both the heavy and light ICAT reagents are ionized 

simultaneously (at least in theory, although it has be shown that due to the 

mass difference the peptides can elute from the LC at slightly different 

retention times, thus causing issues with correct quantitation.  This can be 

minimized but at the expense of sequencing).  Another benefit is that 

secondary variation in sample processing is reduced in the majority of ICAT 

protocols, as the mixture of the standards is early in the sample processing.  

Consequently, due to these limitations, an alternative method using isobaric 

tags for relative and absolute quantitation was developed, to minimize these 

limitations.   

1.4.2.3 Tandem mass tags (TMT) 
Tandem mass tags (TMT) are a form of isobaric labelling used in conjunction 

with tandem mass spectrometry, which give an alternative to traditional 

proteomic gel based strategies. They help to minimise the disadvantages which 

are coupled with performing ICAT.   Independent of the enzyme used to digest 

the protein sample of choice, the TMT allow the amine-reactive, NHS-ester-

activated compounds to covalently attach the amino terminus of the peptide or 

the free amino termini of lysine residues. This allows the labelling of all 

peptides in a sample.  Due to the matched mass and structural properties of the 

TMT’s co-elution occurs from the LC meaning that there will be fewer missed 

peptides when performing MS/MS.  The advantages of the TMT is that they 

produce unique reporter ions in the MS when fragmented to allow sample 

quantitation.  This is realised by comparing the relative intensities of the 

reporter ions in the tandem MS spectra.  The tag itself is constructed of 

different groups which allow co-migration and co-elusion.  A reactive group 

and mass reporter group.  In order to balance the overall masses a third group is 

added as a mass normalisation group.  This identical mass provides a great 

advantage over the ICAT reagents and overcomes many of the issues 

associated with ICAT.  Additionally, a greater overall proportion of peptides 

become labelled meaning quantitation is more accurate and higher sensitivity 

can be achieved due to the fact MS signals are  not separated in two peaks.  
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Finally the charge states are the same with TMT, unlike ICAT, meaning there 

is no need for any adjustments for differently charged peptides.  Currently, the 

most developed tags contain a set of six isobaric tags allowing multiplexing in 

the mass spectrometer (Bantscheff et al., 2007, Han et al., 2001, Thompson et 

al., 2003).    

1.4.2.4 iTRAQTM:  Isobaric tags for relative and absolute quantitation and 
tandem mass tagging  

One of the limitations in ICAT is the exclusion of peptides or proteins without 

a cysteine amino acid.  To counteract this, a method using isobaric reagents, 

which are reactive to amine groups and alter the peptides at the N-terminus 

therefore tagging all peptides, was developed (Ross et al., 2004).   These 

isobaric tags have identical masses and therefore do not separate during LC 

elution. A popular method employed using isobaric tagging is the use of 

tandem mass tags TMTs (described in sections 1.4.2.3) or ITRAQTM.  As with 

ICAT, this employs the concept of heavy and light chains.  Once run through 

an LC, the heavy and light versions co-elute at the same time will undergo 

tandem MS in order to be quantitated.  In addition, iTRAQTM can also be 

multiplexed for up to 8 samples (named 113-119 and 121 due to their m/z 

ratio). The iTRAQTM reagents are made from 3 elements; a reporter group, 

balance group and a peptide reactive group.  The process is summarised in 

Figure 1-13.  Quantitation is performed by comparing the peak areas in the 

MS-MS reporter ion spectra.  
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Figure 1-13:  A schematic of the process of quantitation using iTRAQTM. After collection 
and solubilisation samples are trypically digested and labelled with one of the eight 
iTRAQTM reagents.  After separation, samples are introduced into the mass spectrometer 
and identified.  Identified proteins labelled with the various iTRAQTM reagents can them 
be quantified.   Adapted from Applied Bioscience Inc. 

The reporter portion has a unique mass and structure which makes it 

discernable.  The balance group is a mass normaliser and varies, depending on 

the reporter group, these two groups are collectively known as the isobaric tag, 

which has an identical mass across all the tags.  When fragmentation occurs 
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during MS/MS, the reporter ion fragments off the rest of the molecule and its 

intensity allows for quantitation.  The iTRAQTM protocol is relatively straight 

forward to follow.  The control and test samples are denatured with SDS,  

reduced with tris-(2-carboxyethyl) phosphine (TCEP), the cysteines are 

blocked with thiols and digested with an enzyme of choice separately.  

Following digestion, each sample is labelled with a different iTRAQTM reagent.  

Currently up to 8 different samples.  These are then combined into one sample 

mixture ready for introduction to the mass spectrometer.  Fractionation is 

performed using LC.  The fractionated mixture has tandem MS performed on 

it.  This allows for the reporter ion to be fragmented off the isobaric tag and 

quantified.       

There are considerable advantages to iTRAQTM including the labelling of all 

tryptic peptides, the multiplexing of up to 8 samples, the ability to analyse post 

translational modifications and improved MS/MS fragmentation, which allows 

for a greater confidence in the identification of peptides (Shen et al., 2008).  

However, iTRAQTM still has a number of limitations.  There are an increased 

number of peptides being generated, so this is expensive in terms of 

operational time on the mass spectrometer.  Also the process of labelling is a 

time consuming and intricate one, which requires strict adherence to protocols.  

A non-isobaric alternative to iTRAQTM is mTRAQ (DeSouza et al., 2010).  As 

with iTRAQTM, mTRAQ reagents are chemically identical and give labelled 

peptides identical retention time on the LC and the same ionisation 

characteristics on the MS, but contrary to iTRAQTM have different masses.  

The produced sequence specific ions can then be used with MRM (see section 

1.4.2.10) quantitation (DeSouza et al., 2010) to give a higher specificity than 

with iTRAQTM.  However, it has been shown that the iTRAQTM protocol has 

quantified significantly more phosphopeptides (3X) and proteins (2X) than 

mTRAQ labelling (Mertins et al., 2012).  Both iTRAQTM and mTRAQ have 

been employed in biomarker discovery.  iTRAQTM has been used to analyse 

urine for biomarkers in bladder cancer (Chen et al., 2010b), in plasma for 

diabetic nephropathy (Overgaard et al., 2010) and in prostate cancer cells (Glen 

et al., 2010) to highlight a few examples. Finally, a major consideration for any 

laboratory is expense, and iTRAQTM reagents are proprietary and therefore 

expensive, a major downside.ICenS: Isotope Coded N-terminal Sulphonation 
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This method of quantitation uses 13C-labelled 4- sulphophenyl isothiocyanate 

(13C-SPITC) and unlabelled 4-sulphophenyl isothiocyanate (12C-SPITC) as the 

labelling tags.  This method is said to yield a promising combination of 

simultaneous de novo sequencing and quantitation (Lee et al., 2004).  In this 

technique two samples of choice are labelled independently and mixed back 

together in a similar fashion as described in ICAT and iTRAQTM.  After 

running LC-MS/MS, isotopically labelled peptides should exhibit a mass shift 

of 6 Da.  This technique has the advantage of quantitating on the basis of 

comparing the N-terminal sulfonated peptides and unlabelled peptides in 

addition to the N-terminal fragments and C-terminal fragments by comparing 

the fragmentation ions of the isotopic pairs.  The disadvantage is of course that 

you cannot multiplex in the same fashion as iTRAQTM labelling.  Therefore 

there is a trade-off between the accuracy in identification, multiplexing and 

quantitation.  Additionally, ICenS also co-elutes at almost identical retention 

times which surpass the ICAT labelling using hydrogen and deuterium 

labelling.           

1.4.2.5 O-18 labelling 
Labelling with 18O is a relative quantitation method which allows paired 

protein/peptide comparison from a variety of sample sources (Yao et al., 2003, 

Heller et al., 2003, Staes et al., 2004, Bantscheff et al., 2004).  Samples are 

prepared beforehand and are trypically digested prior to labelling. The 

advantage of this being (sample dependant) that identification runs can be done 

prior to labelling to try and pre-search for prospective precursor ions.  

Therefore the sample can be split and labelled after another separation method 

such as 2DE.   Two atoms of 18O are introduced causing a mass shift of 4 Da.  

These atoms label the carboxylic acid of every cleaved peptide.  These can be 

subsequently mixed with 10O for peak comparison.  This is a great advantage, 

as serine proteases catalyse the reaction therefore trypsin aids the labelling 

process, as do other common enzymes used in mass spectrometry.  The 

reaction which is caused by disruption of a water molecule with 18O is shown 

in Figure 1-14.  This continues until equilibrium is reached.   
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Figure 1-14:  Schematic of O-18 Labelling by reversible binding.   Taken from (Fenselau, 
2007) 

There are considerable advantages to using this quantitative method.  Every 

peptide is labelled meaning global inclusion.  The labelling of the carboxyl 

terminal increases the presence of y ions in tandem MS spectra.  The sensitivity 

is increased due to the secondary production of water rather than a chemical 

component which causes adulteration.  Also, this method can be used in 

conjunction with affinity tags for peptide fractionation. This method is limited 

by the need for high resolution MS to detect the 4 Da shift in mass. 

The use of this form of quantitation has been demonstrated to be effected by 

testing healthy plasma samples with lipopolysaccharide (LPS) administration 

(LPS-treated) and no plasma depletion.  LPS is known to be a bacterial 

endotoxin to induce inflammatory responses.  In this study the 18O labelling 

technique was combined with accurate mass and time tags (AMT).  Using this 

technique, it was shown that it was possible to precisely quantitate across the 

global proteome in a high throughput manner, which showed great promise for 

biomarker discovery (Qian et al., 2005).  This study also claims to eliminate 

the problem of back exchange by destroying the trypsin by boiling it.  This 

does, however, raise some questions regarding sample disruption caused by 

heat.     

1.4.2.6 Dimethyl labelling 
A popular alternative to O-18 labelling is dimethyl labelling.  Samples are first 

digested as normal and then labelled with a isotopomeric dimethyl labels.  This 

labelling occurs due to a reaction with the primary amines of the peptide.  

formaldehyde is used to make a Schriff base.  The labelling reaction occurs at 

the N-terminus of peptides and the epsilon amino group of lysine’s residues.  A 

reduction of the Schriff base occurs when cyanoborohydride is added to form a 

secondary amine.  The greater reactivity of the secondary amine causes a 

reaction with an additional formaldehyde which is reduced to form a 

dimethylamino group.  The reaction takes a sort period of time and is complete 

in five minutes.  It is suitable for global proteomic quantitation and the ionic 
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state of the peptides remains unchanged which affords a considerable 

advantage.  The molecular increases are 28 Da or 32 Da depending for the H-

labelling and D-labelling respectively, creating a mass difference of 4 Da for 

each labelled lysine.  This is a competitive choice of labelling compared to 

other expensive methods.  The materials utilised are relatively cheap, it is a fast 

process, the ionisation efficiency is conserved due to the conservation of 

charge state and globally labels peptides at the N-terminus (Hsu et al., 2003).  

Initially, only two samples could be labelled but over the last 10 years this 

labelling procedure has been developed to triplex and then multiplex version of 

labelling (Boersema et al., 2008, Boersema et al., 2009, Huang et al., 2006b).  

This has been achieved by using different isotopomers of formaldehyde to 

increase the number of available labels.     

1.4.2.7 MeCAT: Metal coded affinity tags 
In this method of quantitation, the concept is similar to those already described, 

in how the method is employed.  However, instead of chemically labelling an 

isotope to the peptides of interest, different lanthanide ions are utilised.  This is 

coupled with inductively coupled plasma (ICP) MS to gain absolutely 

quantitative data.  Protein identification can be then obtained via more 

proteomic traditional tandem MS (via any number of MS instruments).  

MeCAT can be used to quantitate both relatively and absolutely, and although 

the idea was present for a number of years, it was first described in 2007 in 

relation to proteomics (Ahrends et al., 2007).  ICP-MS has been used for a 

number of years to identify metals; however it is not until recently that a 

strategy of labelling proteins with metal affinity tags has been employed.  

Peptides can be quantified down to the attomol range with the potential to go to 

the zeptomol range.  This method has the advantage of multiplex analysis, by 

using different lanthanoids within the chelate complex or by using DOTA 

(1,4,7,10-tetraazcyclododecane-N,NI,NII,NIII–tetraactetic acid) metal 

complexes.  The original MeCATs contained a maleinimide reactivity for 

labelling thiol groups of cysteines, however, there are now MeCAT-IA which 

use iodoaceteamide, allowing for better labelling efficiency and the elimination 

of a diasteromer forming (Schwarz et al., 2011, Bergmann et al., 2012).  The 

MeCAT reagents consist of a metal portion (DOTA macrocyle), a spacer and a 

maleimido group for thiol reactivity.  Additionally, they also can contain a 

biotin group to allow for purification.   
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1.4.2.8 AQUA peptides and QconCAT. 
If researchers are to compare results across laboratories, then an absolute 

quantitative method is required.  A strategy for absolute quantitation in the 

validation of biomarkers using MS is the use of an internal standard to generate 

a standard curve.  These internal standards come in the form of synthetic 

peptides.  There are now a variety available, however, two common versions 

are AQUA (absolute quantitation) peptides (Gerber et al., 2003), chemically 

synthesised peptides and QCAT/QconCAT (quantitation using concatenation 

of tryptic peptides) (Beynon et al., 2005), concatamers of tryptic peptides in an 

artificial protein which are labelled with stable isotope-precursors.  The 

chemically synthesised AQUA peptides are labelled with a heavy isotope.  

AQUA peptides are more expensive than QconCAT, particularly if required for 

large studies, in larger experiments as QconCAT can be produced in batches 

more cheaply.  Also, AQUA peptides need to be quantitated individually, 

taking considerable time (Pratt et al., 2006). However, the quantitation between 

AQUA and QconCAT has been shown to be comparable (Mirzaei et al., 2008). 

  

1.4.2.9 Label free quantitation 
Most quantitation in proteomics is performed using a label, often a fluorescent 

or stable isotope labelling, as discussed.  As an alternative to labelling samples 

with a stable isotope, which is expensive and requires meticulous planning, a 

technique of label free quantitation is simple, safe and cost effective (at least 

during the initial stages).  This form of quantitation uses mass spectrometry 

coupled to a LC or CE system, to quantitate either peptide intensities (matching 

LC and MS retention times) or a total spectral count is used to quantitate 

against (Lundgren et al., 2010, Schulze WX, 2010, Wienkoop S, 2006).  

Normalisation is applied to minimise errors but spectral counting has been 

shown to have good intra-experimental reliability and reproducibility.  Using 

peak area measurements, however, has fewer errors when measuring protein 

peak ratios.  Using this method is advantageous when labelling is not possible 

but quantitation using other methods is more sensitive.  Just as with stable 

isotope labelling, it is important to have reproducible retention times with LC 

elution if quantitation is to be accurate (Turtoi et al., 2010).  The label free 

method is likely to be popular, due to the reduction in sample processing and 

the unlimited number of samples that can be analysed, therefore it is likely to 

interest biomarker discovery researchers looking at global proteome expression 
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differences.  This is shown by the number of publications in different fields 

using label free quantitation (Yang et al., 2011b, Beer et al., 2011b, Beer et al., 

2011a, Wang et al., 2010, Mouton-Barbosa et al., 2010, Washburn et al., 2009, 

Ishihara et al., 2011).      

This approach is starting to gain favour as it has application for shotgun 

proteomics.  It does, however, have its disadvantages.  Although the initial 

stages are relatively simple, due to lack of labelling protocols, the post 

experimental analytical work is time consuming.  Additionally, the software is 

still at the relatively early stages of development.  This is being tackled and 

currently one of the best packages available mimics the DeCyder Software and 

is called DeCyder MS, GE Healthcare.  This has a very familiar interface in 

comparison to the DiGE software.   

Despite being in its relatively infancy, it is still being applied to the issue of 

searching for biomarkers in clinical samples for  cancer (Washburn AL, 2009, 

Washburn et al., 2010) amongst others. 

The use of label free quantitation has been investigated in our laboratory in 

parallel to this project in an attempt to integrate data down-stream.  This 

method has been applied to the proteomic degradation and hypertension studies 

(Allingham, 2012).   

1.4.2.9.1 Methods in label free quantitation 
There are three main label free quantitation methods available.  Absolute 

protein expression profiling (APEX), Exponentially modified protein 

abundance index (emPAI), intensity based absolute quantitation (iBAQ) and 

T3PQ.  Although at present the label free quantitation methods are less 

accurate than their isotopically labelled counterparts, it does afford and more 

straightforward, quicker and cheaper alternative.  Label free strategies are split 

into two different ways.  Either the precursor ions current area is measured 

such as in iBAQ or those based on tandem MS data like APEX of emPAI.  

Standards can be employed but if omitted the assumption is made that each 

protein identified contributes to the total protein pool. Traditional methods 

such as 2D-gel electrophoresis have been compared to various label free 

methods and showed a reasonable correlation but suffered when proteins were 

in large abundance (Grossmann et al., 2010, Kuntumalla et al., 2009).   

APEX, a spectral counting method, was described by Lu et al, 2007 to estimate 

the relative contributions of transcriptional factors (Lu et al., 2006).  APEX 
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works by proportionating the fraction of peptides expected and observed from 

a given identified protein.  Proteins are analysed by introducing tryptically 

digested proteins from the sample of interest.  Once digested they are 

fractionated and introduced to the MS and further fragmented by performing 

MS/MS.  The steps to introduce and perform MS/MS itself introduces a bias 

which affects the overall probability of observing each peptide, this is corrected 

using and training a classifier to estimate the expected number of peptides.  

This can be used to correct the final estimate.  This has been shown to provide 

a high throughput, cost effective and quick methods for obtaining absolute 

quantitation (Vogel and Marcotte, 2008).  An advantage of this method, as well 

as emPAI is that it can be applied to existing data.  However using APEX has 

been simplified by the APEX Quantitative Proteomics Tool which is used to 

perform the calculation (Arike et al., 2012).  emPAI is a spectral counting 

method and was described by Ishihama et al, 2005 for estimation of absolute 

protein amount in proteomics by the number of sequenced peptides per protein 

(Ishihama et al., 2005).  This is a modified version of a protein abundance 

index PAI.  It is a relatively accurate quantitation tool as it takes into account 

that larger proteins will proportionally produce a greater number of observed 

peptides.  PAI was used as a relative quantitative strategies but the modified 

version allows absolute quantitation.  The emPAI uses a fraction of the 

molecular weight of the interested protein to allow absolute quantitation.   

An alternative to APEX and emPAI is iBAQ which employs a method based 

on using intensity data from MS.  The sum of peak intensities of all peptides 

matching to a specific protein are taken and divided by the number of 

theoretically observable peptides, this value provides an accurate estimate for 

the amount of protein.  This has been shown to give accurate protein 

quantitation over four orders of magnitude (Schwanhäusser et al., 2011).  A 

study showing parallel processing of protein and mRNA expression should 

high levels of correlation between mRNA and protein expression using this 

method(Schwanhäusser et al., 2011).  The iBAQ algorithm is integrated within 

the MaxQuant software, used for SILAC analysis and therefore direct 

comparison can be made between absolute and relative quantitation data.  In 

another studies assessing the three methods iBAQ turned out to have the 

greatest level of correlation  between biological replicate compared to APEX 

and emPAI, as well as normalised distribution among protein abundances and 

lowest variation in ribosomal protein abundance (Kuntumalla et al., 2009).     
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1.4.2.10 Selective and multiple reaction monitoring  
The use of MS in validation of biomarkers is performed using either selective 

reaction monitoring (SRM) or multiple reaction monitoring (MRM).  This can 

be used when no antibody is available for immuno-validative techniques. 

These methods are often used in conjunction with stable isotope labelling to 

determine quantitation.  A sample is traditionally separated using LC, however, 

other methods may be employed.  If a LC is used, the molecules elution time 

should be known from the biomarker discovery or verification phase, therefore 

at the time of interest the instrument isolates the m/z ratio of concern in the 

first quadrupole and it is fragmented by the second quadrupole, usually by 

collision induced dissociation or CID.  These fragments are then scanned to 

calculate their specificity and sensitivity.  The technique of SRM is summed up 

in Figure 1-15.   SRMs are performed using a triple-quad-MS. In Q1 only a 

specific peptide is selected and allowed to enter the collision cell at Q2, when 

CID is performed the peptide fragments, which is dependent on the amino acid 

sequence of the precursor.  One of these fragments, at a time, is selected to pass 

through into the Q3 and hit the detector.  This process has been extended by 

allowing a repeated cycling through a list of ion pairs, which are associated 

with a certain retention time.  This allows the targeting of multiple peptides in 

one experiment (Monica et al., 2009).   

 

Figure 1-15: The method of selective reaction monitoring (SRM).  The sample is 
introduced into the mass spectrometer.  A specific m/z is selected in Q1 (quadropole 1) 
and fragment in Q2.  The fragments are then selected as a transition ion and collided with 
the detector. Adapted from (Veenstra, 2006). 

This is called multiple reaction monitoring or MRM.  This has the advantage of 

targeting certain peptides in a complex mixture, which is ideal for validation or 

possibly even diagnostic purposes.  In order to quantitate, this process is used 
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in conjunction with a stable isotope labelled protocol as described above.  This 

can give relative quantitation if used in conjunction with ICAT or it can return 

absolute quantitation if used with AQUA peptides.  This is a particularly 

sensitive way of monitoring ions, as much of the noise is reduced.  MRMs and 

SRMs have been used for a number of years, but are a more recent focus in 

proteomics.  The MRM methodology has been employed to create an assay.  

The methodology of this is summarised in Figure 1-16.  The use of SRMs and 

MRMs in biomarker discovery is often as a verification step in the biomarker 

work flow as opposed to the discovery phase.  Additionally, as biomarker 

verification demands high throughput methodology’s MRM has been 

developed to make it, which has been dubbed, ultrahigh throughput (Yao et al., 

2010).  
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Figure 1-16:  MRM experimental design logic flow chart.  A particular protein is targeted.  
This is done by targeting specific known ions after tryptic digest and scanning for them 
within a given mass tolerance.  Taken from (Kuzyk et al., 2009) 

Due to this kind of high throughput and verification use, there have been the 

use of the phrase MRM assay as they are seen to be rapid, specific and 

sensitive as demonstrated with plasma samples (Kuzyk et al., 2009, Addona et 

al., 2009) and protein phosphorylation-mediated signalling networks (Wolf-

Yadlin et al., 2007) .  MRM and SRM are by their nature a targeted approach 
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and therefore used for verification, so a limitation is that prior knowledge is 

required and a shotgun approach cannot be used for them.  Due to the selection 

of transition pairs, the MRM method produces results that are sensitive and 

selective detection of the peptides, however, there is a limit to the number of 

transition that can be run as the greater the number of transition chosen, the 

less sensitive and accurate the quantitation becomes due to the trade-off 

between dwell time and cycle time (Lange et al., 2008).        

1.4.2.11 PSAQ:  Protein standard absolute quantification 
Protein standard absolute quantification was first described by Brun et al, 2007.  

It is a strategy to quantify absolutely trace amounts of protein in complex 

mixtures (Brun et al., 2007).  PSAQ works by using a full length isotopically 

labelled proteins which can be analogues of proteins that intend to be assayed.  

These can be used to quantitate against after tandem MS. They come in two 

forms; proteins uniformly labelled with 15N or a set of standards labelled on an 

amino acids (Picard et al., 2012).  Variations exist such as absolute silac and 

FLEXQuant method.  One advantage of using an analogues protein as a 

standard is that it can be introduced early in the proteomic work flow.  

Therefore should any of the samples protein me lost the PSAQ used will also 

be long, therefore a greater accuracy of quantitation occurs, this circumvents 

having to assess the efficiency of tryptic digestion that is necessary when using 

AQUA or QconCAT (Van Oudenhove and Devreese, 2013).  This was shown 

in the assessment of staphylococcal toxins when comparing three method of 

quantitation of PSAQ, AQUA and QconCAT.  PSAQ strategy was shown to be 

considerably better at quantifying these toxins.  This is partly down to PSAQ 

compatibility with pre-fractionation techniques.  This is down to the fact that 

the natural proteins behaviour at each point in the work flow is mimicked by 

the recombinant standard.  It appears to work with a number of varied 

downstream techniques including SDS-PAGE and immunocapture (Brun et al., 

2009).  Additionally, it also offers the largest sequence coverage of the three 

methods and thus isoforms and variants can be seen.  However limitations 

prevail regarding the cost of production and in order to use the correct PSAQ 

standard you need to have a protein of interest to target.  Making this less 

suitable for exploratory investigations. 
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1.5 Other proteomics techniques 
In order to overcome the limitations and issues associated with the complexity 

and heterogeneity of proteomic samples, a number of techniques have been 

developed.  Within the proteomics work flow there is a necessity to maintain 

sample integrity, reduce sample complexity using separation technologies and 

to identify proteins.  The means of separation and identification are reviewed 

below.  The issue of sample integrity will be discussed in section 3.3.  

However, it is prudent to briefly review sample collection and fractionation 

here. 

1.5.1 The importance of sample collection and storage 
Sample collection and storage is of vast importance to a proteomics workflow. 

As highlighted above, biomarker discovery within proteomics has many issues 

to overcome if a greater and more promising throughput of biomarkers is to be 

discovered.  The sample integrity is of central priority if valid results are to be 

obtained.  It has been demonstrated that biofluids such as urine (Zhou et al., 

2006), plasma (Fiskerstrand et al., 1993) and CSF (Andreasen et al., 1999) 

have a greater degree of stability when it comes to proteolytic degradation than 

tissues.  It has been shown using mass spectrometry imaging (MSI) that 

markers in mouse brain that had been allowed to warm between 30 seconds 

and 3 hours varied considerable across the time period, with some of the 

biomarkers varying from as little as 30 seconds (Goodwin et al., 2008b) and 

supported in (Ahmed and Gardiner, 2011, Grassl et al., 2009, Kultima et al., 

2011, Sköld et al., 2007a, Svensson et al., 2007) .  

The greater synchrony in how a sample is handled the greater the comparability 

of results is going to be; both inter and intra-comparability with laboratories.   

This is why HUPO are arguing for standardisations to be made in dealing with 

plasma samples (Rai et al., 2005).  This lack of standardisation makes 

comparing and validating studies problematic and therefore another “bump in 

the road” in bringing biomarkers to a clinical setting.  Although it has been 

shown in plasma and serum samples that the storage has little effect on 

proteomic characteristics even during long term storage.  However, the 

handling, such as freeze thawing, container and laboratory practices, has had an 

effect in both tissue and biofluids (Arakawa et al., 2001) (Flower et al., 2000, 

Arakawa et al., 2001, Holten-Andersen et al., 2003, Schwartz et al., 2003, Rai 

et al., 2005, West-Nielsen et al., 2005).   
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This discussion for the need of standardisation contradicts the findings of 

Hsieh et al, who have shown that the effect of sample handling might actually 

be reasonably negligible, or at least of less importance than other technical 

processes (Hsieh et al., 2006).   

With regards to proteomic degradation, the research into sample integrity, 

degradation and preservation is largely under-researched and therefore 

relatively small amounts of literature are available.  With regards to gel based 

research, a strategy of 2DE and DiGE has been employed for neuropeptides 

analysis (Sköld et al., 2007b) but the use of DiGE to gauge the global 

proteomic profiles is novel.      

Further the need for the development of analytical technique and methodology 

with regards to tissue is apparent, due to the importance of tissue as a mode of 

pathological information. Subsequently there is now a drive to regain 

information from fixed tissue (Nirmalan et al., 2009a).    

Therefore, if specific clinically relevant biomarkers are to be discovered, then 

an important problem to overcome is sample stability and degradation.  This is 

considered and reviewed in Chapter 3. 

1.5.2   Sample fractionation and preparation    
The dynamic range and complexity of biological samples postures a great deal 

of issues in the proteomic work flow in biomarker discovery.  In order to 

simplify biological samples and analyse a particular subset of the proteome, 

there are a variety of techniques to fractionate samples prior to running 

analysis.  This can be beneficial, particularly in phase I of biomarker discovery 

as it allows the simplification of sample analysis.  There are a number of ways 

to simplify samples such as; centrifugation, precipitation, protein enrichments, 

protein depletion and filtration/isolation.  The technique required depends on 

the biological question of the study.  The start of fractionation usually requires 

the solubilisation of the sample of choice. This is achieved by disrupting the 

cell membranes using both physical (e.g. pestle and mortar for tissue or freeze 

thawing and chemical means (detergents) to solubilise proteins, nucleic acids 

and cellular components.  This creates a homogenate which can later be 

applied to the fractionation method of choice.  

For instance, centrifugation is used to separate blood samples into plasma and 

other subcellular fractions, to separate organelles(Brunet et al., 2003, Huber et 

al., 2003) or to concentrate cellular matter from the liquid fractions, such as 
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exosomes from urine (Hoorn et al., 2005, Moon et al., 2011)..  However, total 

purity is not guaranteed and cross contamination is likely.  Protein 

precipitations are a common technique for maximising protein content in a 

solution.  There are a number of chemicals and protocols, but using organic 

solvents such as TCA or acetone is common place (Klose, 1999, Pasquali et al., 

1999, Janini and Veenstra, 2002, Jiang et al., 2004a, Jiang et al., 2004b, Stasyk 

and Huber, 2004, Cox and Emili, 2006, Cañas et al., 2007, Rappsilber et al., 

2007).  This causes the increased attraction between positive and negative 

charges leading to the precipitation in solution.  This is not a discriminatory 

process so cannot be used to pull down selective proteins and reproducibility is 

often questionable.   

A more advanced method of fractionation is the use of depletion columns 

(Echan et al., 2005, Tu et al., 2010).  These are commonly used when working 

with plasma samples.  These deplete the higher abundance proteins in an 

attempt to enrich low, abundant proteins which are more likely to be the 

fraction biomarkers are present in. These depletion technologies can be in the 

form of columns that work under gravity, or more commonly those that use 

centrifugation to drive the low abundant smaller sized proteins through a 

membrane that traps the higher molecular weight proteins.  This will trap 

higher molecular weight proteins such as albumin, reducing its masking effects 

in any down-stream analysis.  However, important high molecular weight 

proteins may also be lost as well as protein-protein interactions.  In addition, 

there is also antibody affinity removal and chromographic systems (Zhang et 

al., 2007b, Romig et al., 1999) and the use of magnetic beads (Li et al., 2002a, 

Zhang et al., 2004a) All of these systems allow the simplification of the sample 

in order to improve identification and detection of less abundant proteins.  

However, there are always trade-offs, with the potential of losing important 

information and interactions.    

1.5.3 Separation in proteomics 
Traditionally separation techniques have been limited to strategies involving 

filtrations, evaporation of liquids and precipitation and distillation.  However, 

for the molecular scientist there are a number of chemical and physical 

properties which allow for the separation of proteins or molecules in a sample.  

Many of the proteomic technologies utilise either one or more of; Molecular 

size, charge, polarity and shape or varying solubility or volatility.  



62 | P a g e  
 

The need for simplifying complex mixtures by separation is crucial if we are to 

analyse with any degree of accuracy a particular analyte molecule.  One of the 

main modes for separation in biology has been the use of gels.  Gels have been 

used to separate analytes for many years in DNA work and are also an essential 

technique employed in proteomics work.  The use of gel technology is 

essentially a form of filtration using molecular size, filtered through a colloid  

and electrophoretic mobility to move sample through the gel.  Ever since the 

advent of sodium dodecyl sulphate (SDS) in gels in 1969 (Weber and Osborn, 

1969)  the use of SDS-PAGE gels has been cited in countless articles. The 

most successful incarnation being that of the 2-Dimensional-gel electrophoresis 

(O'Farrell, 1975) and more recently DiGE (see section 1.4.1) (Unlü et al., 

1997).  Other commonly used forms of separation include Liquid 

Chromatography (see section 1.5.3.2) and Capillary Electrophoresis (Kuhr and 

Monnig, 1992) which also have their advantages and limitations. 

1.5.3.1 Gel Electrophoresis theory 
One of the major used strategies for separation in the biosciences is the use of 

Electrophoresis and gels.  A gel is a colloid like a micro sponge with regular 

sized holes.  These holes act as a filtration device, allowing for the 

discrimination of analytes on the basis of size.  By using a detergent such as 

SDS, this unravels the proteins and gives an overall negative charge.  Those gel 

pores act as a molecular size filter.  If a charge is applied, the proteins or 

peptides will then migrate towards the negative electrode (cathode). Equation 1 

shows the magnitude of the force (F) on the charged ion (q) in an applied 

electric field (E).  This force drives the sample through the gel and the proteins 

will migrate faster (and therefore further) the smaller they are. 

F = qE  (Equation 1)  

1.5.3.1.1 2 Dimensional Gel Electrophoresis (2DE) 
First described by O’Farrel in 1975, the use of 2-dimensional gel 

electrophoresis (O'Farrell, 1975) has proved an important part in the 

proteomists arsenal for the separation of large numbers of proteins.  Described 

in literally 1000s of journal articles (Gorg, 2004, Oh-Ishi and Maeda, 2007, 

Oh-Ishi and Maeda, 2002), alongside other methods such as liquid 

chromatography (discussed in section 1.5.3.2).        

2-dimensional gel electrophoresis is commonly used to try and map the 

proteomes of whole cells or tissue.  As the name eludes, it has two dimensions 
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of separation.  The first stage after protein extraction is isoelectric focusing, 

separating proteins on the basis of the isoelectric point.  An immobilized pH 

gradient (IPG) strip is used.  A protein will migrate in an electric field until the 

charge of the protein is neutral.  The pI is the pH at which the protein has an 

overall charge of 0.  Where this occurs is different for a given protein.  A 

proteins pI generally falls in the range of 3-12 with most between 4-7.  The pH 

gradient is created by ampholytes, these are molecules with a set pK.  The 

strips immobilize the ampholytes using acrylamide molecules, which are cast 

into gels.  The voltage is increased in steps to improve the focusing of the 

proteins. The next stage is to run the 1D separation.  The staining may be 

Coomassie, Sypro ruby or even radio/UV labelling and placed in an image 

reader.  The image can be placed into a software package to pick out the spots 

ready for automated cutting, digestion and then Mass Spectrometry(O'Farrell, 

1975).   

2DE was once the most commonly used form of proteomic separation and was 

seen as a good approach for separating proteins in the thousands range, now 

with increased applications and methodologies developed in MS 2DE has lost 

favour.  If a protein is to be viewed using a 2D gel, it should be within an 

average pH range and not have long stretches of hydrophobic polypeptides.  

2DE can often yield in excess of 3000 protein spots (O'Farrell, 1975), however 

it often falls short of this.  It also maintains information regarding PTM 

(Rodriguez-Pineiro, 2006) and is “unsurpassed if one wants a global view of 

cellular activity” (Fey, 2001).   

However, ever since the inception of 2DE there have been a number of 

limitations repeatedly referred to in the literature.  Although it is a good way of 

gaining a global snap shot, 2DE does not have the ability to resolve all proteins 

in a particular sample.  Highly basic or acidic proteins are lost at the fringes of 

the gel and membrane proteins are notoriously difficult to solubilise and 

therefore not readily resolvable on a 2DE gel, however, advances are being 

made here (Molloy, 2000, Wenge et al., 2008). Also, proteins that have a low 

molecular mass could be lost off the end of the gel.  Equally, gels often get 

over-crowded with spots merging. There are attempts to resolve issues with 

narrow range gels where software can overlap the gel images (Wildgruber R, 

2000).  This can resolve up to 10000 spots, however, it is obviously a time 

costly activity on an already time consuming lab procedure.    
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There is also an issue of reproducibility both inter and intra lab.  The 

reproducibility gets worse for the less abundant species of proteins (Garbis et 

al., 2005).  There is significant variation of success in the isoelectric focusing 

stage, as not all protein enter the IPG strips.  Whereas procedures can more 

easily be standardised within a lab, more variation occurs between different 

labs. In addition, comparison between labs has limited usefulness as 2DE gels 

show the proteome at a particular point in time, showing data only as good as 

the upstream preparation.  A 2DE-gel map cannot always be compared directly 

as patient heterogeneity would need to be taken into account.   

Quantitation has been a major issue regarding 2DGE, with artefacts and 

interlab difference casting doubt in the ability to quantitate effectively.  

Software and careful operator spot detection is necessary, but with the advent 

of DiGE the issues surrounding comparability are less potent (discussed in 

1.4.1). 

In 2DE only the abundant proteins are well-resolved and visualised, in addition 

downstream detection of low-abundance proteins using MS is not likely and 

therefore would not be able to be looked at (Fey, 2001).  Additionally, 

hydrophobic proteins are not kept easily in solutions, strong ionic detergent can 

keep them in solution but cannot be used in IEF, and they tend to be lost in the 

exchange of detergents.   

Throughput is also a big issue in 2DE-gels, as a run can take up to 3 days in 

large format.  The gels are fragile and easily broken when moving onto staining 

and subsequent steps.   

With all these limitations present, there has been a need for replacement or 

complementary separation technologies.  One such technique is the other 

standard of proteomic separation of liquid chromatography. 

1.5.3.2 Liquid chromatography 
Most school child in the UK will have heard the term “Chromatography” with 

regards to paper chromatography, separation of black ink into its respective 

colours or “chroma”.  Chromatography has advanced far beyond this realm.  

Separation in proteomics using a chromatographically method is common 

place but, as with 2DE, has its relative advantages and disadvantages for which 

solutions are being continually developed (Fröhlich and Arnold, 2006).  The 

field itself is wide and deep and is beyond the scope of this introduction; 

however a brief synopsis is given below.   
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 (LC) as a more familiar incarnation to the bimolecular laboratory was first 

developed by Михаи́л Семёнович Цвет (Mikhail Semyonovich Tsvet) and 

published in 1905 on this work in the separation of plant pigments (Tswett, 

1905).  Now many methods and strategies are used in proteomics for the 

implementation of different LC methods.  It works by separating the analyte 

molecules on the basis of their physical and chemical properties.  A liquid, or 

mobile phase (soluble sample) is passed through a column or stationary phase.  

Different stationary phases are available, depending on the properties the 

operator wishes to select for.  Reverse phase separates samples on the basis of 

hydrophobicity and ion exchange columns on the analytes’ charge (Liu, 2002, 

Scott, 1992, Zhang X, 2010, Jungbauer and Hahn, 2009).   

The most commonly employed use of LC in the proteomics work flow is 

arguably shot gun reverse phase high performance (or pressure) liquid 

chromatography HPLC (2D and 1D).  Protein samples are digested by a 

proteolytic enzyme such as trypsin and are separated on the basis of 

hydrophobicity (1D) and on charge if a cation exchange column is used as well 

(2D).  In 1D reverse phase LC, a digested sample is solubilised and run via a 

mobile phase usually starting with an aqueous solution and run through a 

gradient to a non-polar solvent (usually acetonitrile as this compatible with 

mass spectrometry).  The sample is first loaded onto the column and 

subsequently analytes with greater hydrophobicity are eluted off as the non-

polar solvent concentration increases.  The rate of passage depends on the 

hydrophobicity of the analyte, which will increase with the introduction of 

organic solvent (Vailaya, 2005).  Often reverse phase LC is used after some 

other form of separation.  In this investigation RPLC was employed to gain 

further identification using an ESI-QUAD-TOF-MS in addition to MALDI-

TOF-TOF-MS.       

The principles of how chromatography works lie principally with two theories; 

plate theory (Martin, 1941) and rate theory (van Deemter, 1959). 

LC is often coupled with the mass spectrometer particular in use with RPLC as 

a compatible organic solvent can be used in tandem with removing 

contaminants using a trapping column prior to separation.     
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1.5.3.3 SELDI-MS:  Surface enhanced laser desorption ionisation mass 
spectrometry 

The use of protein profiling has increased in popularity recently, particularly 

with biomarker discovery (Issaq et al., 2002, Caffrey, 2010, Fung, 2010, Goo 

and Goodlett, 2010).  These profiles are obtained by comparing mass spectra 

across a variety of normal and diseased replicates.  The idea simply being that 

diseased fluids or tissue will have a different mass spectra signature and thus 

can be differentiated.  One such technology used in these profiling experiments 

is SELDI-TOF-MS.  This is a particularly popular method for examining 

biofluids in biomarker discovery; however, tissue homogenates can also be 

employed.   SELDI is an extension of the popular MALDI but instead of just a 

using a standard plate, SELDI target plate have bound chemical and 

biochemical substances which causes proteins or peptides from the samples to 

bind to them depending on different chemical properties.  A schematic of the 

workflow is given in Figure 1-17.  Attached probes that can be used can be for 

example; hydrophobic, ion exchange, metal binding, antibody based, DNA 

fragments, enzymes or receptor molecules.  Once the samples are washed over 

the probes, any unbound sample is washed off and the plate is spotted with 

matrix and ran in the same manner as in MALDI-MS.  This, coupled with 

bioinformatics pattern recognition, can be used to differentiate healthy and 

diseased samples, meaning this can be used for high throughput clinical 

diagnosis or biomarker discovery. It is recognised that bioinformatics 

patterning seems to work well  within labs but lab-lab reproducibility has not 

been demonstrated  (Veenstra, 2006, Zhou, 2005).  SELDI-TOF-MS has been 

utilised in a number of studies with regards to biomarkers.  In one such study it 

played a central role in the development of an assay called the OVA1 Test for 

ovarian cancer, by profiling hundreds of samples and profiling potential marker 

patterns (Fung, 2010).  SELDI does however have issues with dynamic range, 

which is particularly important when using biofluids like plasma.   
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Figure 1-17:  A schematic of the SELDI-TOF-MS strategy for profiling samples.  The samples of interest are washed over SELDI target plates.  These plates are effectively 
modified MALDI plates which can have various surface chemistries.  This causes certain peptides to adhere and others to wash off.  The sample is introduced into the 
mass spectrometer for identification and can be compared against each other.    
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There are methods to help minimise this limitation.  The main method is to 

reduce the complexity of the sample.  This does however produce run-to-run 

variation.  There are many different kits available for protein enrichment and 

depletion.  One such kit has seen some good results regarding reliability when 

used with SELDI-TOF-MS.  The ProteoMiner™ Protein Enrichment Kit which 

proved to provide reproducible results on whole serum (Fröbel et al., 2010).    

1.5.3.4 CE-MS:  Capillary electrophoresis coupled to mass spectrometry 
Capillary electrophoresis is another technique which is currently being utilised 

in biomarker discovery. Capillary electrophoresis is a high-resolution 

separation technique used to separate molecules on the basis of their 

electrophoretic mobility in a capillary.  At its simplest a CE system consists of 

a narrow bore (in the order of 20-200µm ID) fused silica capillary, typically 

50-90 cm long, filled with a buffer solution.  The choice and pH of the buffer 

depends on the molecules being separated and as CE has developed the range 

of buffers and techniques used has become more elaborate (Altria, 1999).  The 

filled capillary is placed in reservoirs at either end or coupled at one end to a 

Mass Spectrometer for online analysis.  A schematic of a typical set up is 

shown in Figure 1-18. 

 

Figure 1-18:  Typical setup of a Capillary Electrophoresis system.   A buffer filled silica 
fused capillary is immersed in an Electrolyte Buffer Reservoir at either end.  Applied across 
the two reservoirs is a high voltage.  As the electrolytes move along the capillary they pass 
the detector window where the trace data is sent to a PC.  The detector is usually a UV 
detector but others are available such as fluorescence.  Diagram reproduced from 
introduction to CE volume 1 Beckman Coulter, High Wycombe. 

The sample of interest is injected at one end usually by a pressure injection.  

The capillary immersed in the buffer reservoirs effectively completes a circuit 
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and when a high voltage is applied to the reservoirs, and current is conducted 

along the length of the buffer solution.  This drives the electrophoretic 

separation.  Cations migrate towards the cathode, anions to the anode and the 

neutral ions are not attracted to either.  This separation occurs on the basis of 

the mass / charge of the ion.  The surface chemistry of the capillary plays a 

major role in CE.  When liquid flows through a pressure driven micro-tube, as 

in LC, the flow of the liquid is governed by laminar flow or parabolic flow.  

This is due to the frictional forces at the interface of the tube.  This results in a 

substantial pressure drop, resulting in the flow velocity in the middle of the 

tube being the highest and near zero at the walls.  This causes band broadening 

and loss of resolution.  Laminar flow is shown below in Figure 1-19. 

 

Figure 1-19:  Laminar flow profile. Cross section of a capillary showing the profile of a fluid 
within a micro tube.   

Capillary electrophoresis, however, is governed primarily by electro-osmotic 

flow (EOF).  EOF is the consequence of the ionisable silanol groups of the 

fused silica capillary.  The degree of this ionization is dependent on the pH of 

the buffer.  The negative charge silanol groups attract positively charged ions 

to form an electrical double layer; the bottom layer, or Stern layer, is strongly 

adhered to the capillary wall but the top, or diffuse layer, is not.  This is shown 

in Figure 1-20 and Figure 1-21 shows the silanol chemistry: 
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Figure 1-20:  Electro-osmotic flow and its double layer.  S- Stern layer and D- Double layer.  
This dual layer of ions causes the characteristic of electro-osmotic flow. 

 

 

Figure 1-21:  The chemistry of the silanol group in a high ph.   

When a potential difference is applied to the capillary, the cations in the diffuse 

layer migrate toward the cathode.  At neutral to high pH this causes a net flow 

of buffer towards the cathode carrying along with it the neutral followed by the 

positive ions (only if the flow is greater than the migration to cathode. 

A further benefit of EOF is that flow is no longer governed by laminar flow, 

due to the reduced frictional forces as the forces from the voltage are uniformly 
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distributed across the capillary and mean that there is velocity is uniform 

(except very close to the walls) and the resolution is increased due to the flow 

profile created.  Figure 1-22 shows the flow profile of an electro-osmotically 

driven system: 

 

Figure 1-22:  Electro-osmotic flow profile.  Cross-section of a capillary showing the profile 
of a fluid within a fused silica capillary.   

Run at high-voltage, CE is a technique that is quick and has high resolution 

with small samples sizes and low cost makes it a desirable separation 

technology. 

Detection of the migrated analytes is commonly done with a UV-visible 

absorbance, however, recently CE has employed the use of laser induced 

fluorescence which use native fluorescence from aromatic components of 

amino acid which can also be a mode for quantitation (Szökő and Tábi, 2010, 

Albrecht et al., 2010). 

Due to the high resolution of CE as a separation method, it has become popular 

in biomarker experiments.  Including in diabetic nephropathy (Mischak and 

Rossing, 2010), Paediatric renal disease (Decramer et al., 2006), polycystic 

kidney disease (Kistler et al., 2009) and acute kidney disease (Metzger et al., 

2010)     
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1.5.4 Mass Spectrometry 

1.5.4.1 Introduction to Mass spectrometry 
Arguably, the most important technological impact in proteomics is that of the 

mass spectrometer. Since the inception of MS with Thomson’s work on 

cathode rays (Thomson, 1897) and Aston’s work on the mass spectra of 

elements (Aston, 1919) it has evolved into a powerful tool in the field of 

Proteomics with the addition of Tanaka and Fenn’s work  (Tanaka, 1988a).  

The basic principle of a mass spectrometer is that ion movement is dependent 

on the mass to charge ratio of a particular ion and can be measured as such, the 

work flow for proteomics and the mass spectrometer is summarised in Figure 

1-23 below.   

 

Figure 1-23:  Schematic of the workflow of mass spectrometry.  Introduction of a sample 
is followed by it ionisation using a technique such as MALDI, and then by the injection of 
the ions into a mass analyser.  The ion is subsequently detected and analysed. 

This, coupled with the development of informatics, has proven a powerful tool 

to identify proteins.  Soft ionisation has had an important impact in proteomics, 

allowing for the ionisation of organic molecules without their obliteration.  The 

development of soft ionisation techniques; which was pioneered by Fenn and 

Tanaka in 1988 (Tanaka, 1988a) with the development of electrospray 

ionisation (ESI) and matrix assisted desorption ionisation (MALDI) (John Fenn 

Receiving the Nobel Prize in 2002 for ESI and Tanaka for work his work on 

MALDI) (Dole, 1968) has been essential (see 1.5.4.3) for the investigation of 

biological macromolecules using MS.  Ionization plays an essential role is 

mass spectrometry as an analytes mass is measured as a mass to charge ratio 

(m/z), in essence no ionization, no mass detection.  There are several different 

kinds of mass spectrometers, which work in different ways, however, all of 

them need a source of ionization.   

1.5.4.2 Protein identification 
Before the theory of mass spectrometry is discussed, it is prudent to look at 

protein identification.  After all, without the identification of proteins, the 

information provided by the MS would be limited.  It is one thing measuring 
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the m/z ratio in a mass spectrometer but how is a particular protein, ion or 

biomolecule identified?  The principal method for doing this is to generate a 

peptide mass fingerprint (PMF) (Pappin, 1993).  This is achieved by using a 

known proteolytic enzyme such as trypsin, which predictably cleaves at amino 

acids arginines and lysines.  The resultant spectra obtained from each digested 

peptide is compared against a theoretical digest (in-silico digest), a statistical 

relationship or closeness is determined from a bioinformatics database for 

example Mascot (Perkins, 1999).  This method does have issues; the presence 

of any form of contaminants in the sample, PTMs and the completeness of the 

database being searched against.  Further the scoring of the particular algorithm 

and its ability to distinguish hits and false positive/true positives also limit the 

accuracy and interpretation of PMF.  Mascot uses a MOWSE score to give a 

statistical identification by comparing the protein databases (such as NCBI or 

Swissprot) with the identified peptide fragments.   

Another form of identification, which provides statistically more robust data, is 

tandem mass spectrometry (MS/MS).  This uses the principle of fragmentation 

of the parent peptide ion.  There are a number of fragmentation techniques - the 

most common of which is collision induced dissociation (CID) (Johnson, 

1987).  Different methods of fragmentation have predictable outcomes, but 

fragmentation is not completely predictable.  The fragments cause a series of 

ions.  Named respectively depend on whether the fragmentation occurs at the 

C-terminus (x, y and z ions) or the N-terminus (a, b and c ions). 

When proteins or peptide undergo fragmentation of one or several bonds we 

can retrieve structural information from this. The fragments can be labelled 

depending on the cleavage site. There are two possible scenarios: A cleavage 

of one or more bonds in the peptide chain or amino acid lateral chain. In a 

peptide chain the cleavage can occur at Cα-C, C-N or N-Cα giving an, bn and 

cn fragments if the positive charge is on the N-terminus and xn, yn and zn 

when the positive is on the C-terminus (the n giving the number of amino acids 

in the chain). Figure 1-24 below gives the possible fragment products. 
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Figure 1-24:  Main fragmentation paths of peptides.  This figure adapted from (Hoffman) 

The mass difference between successive fragments allows the deduction of the 

peptide sequence, except for leucine and isoleucine which are isomers and 

Glutamine and Lysine which are isobars. Other situations to keep in mind are 

the presence of post translation modifications, internal fragments, ammonium 

ions and the loss of water molecules, thus making interpretation of mass 

spectra difficult. 

1.5.4.3 Ionisation techniques 

1.5.4.3.1 Matrix Assisted laser desorption ionisation. 
Matrix Assisted Laser Desorption ionization (MALDI) is a form of soft 

ionisation which has proved invaluable in the field of biomolecules and along 

with ESI has allowed the use of the mass spectrometer into the field of 

biomolecules and proteomics(Tanaka, 1988a). 

 

Figure 1-25:  Illustration of Matrix Assisted laser desorption ionisation MALDI.  A sample is 
place in a vacuum and positioned to receive a laser pulse.  The laser is fired and ablates 
the crystals, which have co-crystallised with the sample.  The energy is transferred and 
proton exchanged.  A potential difference is applied and the ions are accelerated into the 
mass analyser. 

MALDI utilizes co-crystallisation of a matrix with an analyte. A schematic of 

the process is shown in Figure 1-25.  The matrix must have the properties of 

being able to co-crystallise with the sample and have an absorption wavelength 
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corresponding to that of the laser in order to transfer protons to the sample.  

The sample and matrix are spotted onto a metal plate, or in IMS a glass slide 

coated with indium tin oxide (ITO). The matrix and sample are spotted 

together in a soluble form; the matrix, commonly sinapinic acid for molecules 

greater than 4Kda and α-Cyano-4-hydroxycinnamic acid for less than 4KDa, is 

placed in a mixture of deionised water and organic solute such as acetonitrile 

(ACN).  The ACN allows the hydrophobic molecules to dissolve into solution 

and the water solubilises the hydrophilic portion.  Also in the matrix mix will 

be acid (about 0.1%) commonly trifluoroacetic acid, this gives an excess of 

free H+ for the protonation of the analyte.    The crystals are then ablated with 

the laser, the matrix absorbing the energy and transferring a proton to the 

analytes.  There is a subsequent vaporised collection of the analyte which can 

then be accelerated by a potential difference in to mass analyser (Hoffman, 

Chang, 2007).  MALDI has its advantages and disadvantage over electrospray.  

Electrospray is a real time event with a continuous plume into the mass 

analyser, whereas MALDI allows the operator to optimise setting for that 

particular sample and then select the precursor of interest.  In relation to tissue 

proteomics it is possible to maintain morphological information by placing a 

slice of tissue directly on the MALDI target.  This gives the operator the ability 

to profile or image and not lose morphological information.  This has its own 

issues discussed in section 1.5.4.5.       

1.5.4.3.2  Electrospray ionisation 
This form of ionisation is caused by the introduction of the sample to the mass 

analyser via a micro fluidic needle with a high voltage applied.  The theory of 

vaporisation dates back to Lord Rayleigh (Rayleigh, 1882).  The ion 

evaporation model suggests that the evaporation of the charged solvent and 

analytes (helped by the heat created by the high voltage) would cause repulsion 

between the droplets.  This repulsion referred to as coulombs repulsion causes 

the droplets to disperse into ever decreasing size as it overcomes the surface 

tension of the drop, until it reaches a point where the surface tension and 

coulombs repulsion are balanced forces.  On splitting, the droplets lose a small 

percentage of their size (around 2%) (Fenn, 2002, Kebarle, 2009, Iribarne and 

Thomson, 1976).  
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Figure 1-26:  Schematic of electrospray ionisation.  Sample is introduced through an 
electrospray needle, usually from the HPLC.  The high voltage applied accelerated the ions 
and solvent.  This caused a plume of solvent and ions.  Solvent evaporation causes the 
destabilisation causing droplets.  The ever decreasing size of the drops coupled with 
Coulombs repulsion causes an ever decreasing droplet size.    

1.5.4.4 Mass analysers 
Once ionisation has taken place, the ions are introduced to the mass analyser.  

This is part of the mass spectrometer that allows for the filtering and selection 

of precursor ions based on the ions mass.  The mass spectrometers used in this 

thesis contained time of flight and quadropole mass analysers.  These are 

described below.   

1.5.4.4.1 Time of flight 
Time of flight was first described by Stephens, in 1946, but under the title 

“Pulsed Mass Spectrometer with time dispersion” (Stephens, 1946). 

Once the analyte is ionised, it is then accelerated into the mass analyser by a 

potential difference, giving it a given kinetic energy.  In time of flight (TOF) 

the analyte is allowed to fly in a field free tube under vacuum, which removes 

any interactions with any gas molecules.    In a TOF analyser the mass to 

charge ratio is obtained by measuring the time that the ion takes to move 

through this field-free region between the source and a detector plate.  The 

lower the mass of the ion the faster it will travel and hit the detector (Figure 

1-27).   
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Figure 1-27:  Illustration showing the time it takes for ions of different molecular mass to 
reach the detector plate and thus the m/z can be measured.  Taken from (Chaurand, 
2005) 

TOF analysers have a high sensitivity but low mass resolution.  Lengthening 

the TOF tube can increase mass resolution, which is done in reflector mode, as 

opposed to linear mode.  If the mass spectrometer is used in reflector mode, the 

ions are refocused and this minimises the aberrations that occur due to any 

kinetic energy variations of the ions but these also act to increase the length of 

the flight tube and increase mass resolution (see Figure 1-28 for a schematic of 

the time of flight tube).  As the ions travel further, a greater resolution is 

achieved, but as the distance increases the ion undergoes drifting.  To correct 

this drifting the use of a reflector was developed in 1973 (Mamyrin, 1973) 

allowing the refocusing of the ions.  The m/z can then be worked out using the 

equation 2 shown in Figure 1-28 (Hoffman, Goudsmit, 1948).   
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M/z =e 2eEs(t/d)2
 (Equation 2)  

m/z  is mass-to-charge ratio of the ion 
E  is the extraction pulse potential 
s  is the length of flight tube over which E is applied 
d  is the length of field free drift zone 
t  is the measured time-of-flight of the ion  

Figure 1-28:  Schematic illustration of a Time of Flight tube.  The ion is accelerated over 
region s by a given potential difference and enters from the source into a field free region 
marked d.  The mass analyser may be set in linear or reflector mode.  It is then detected 
by the detector plate.  The equation denoting how this is calculated is shown in equation 
1.   

1.5.4.4.2 Quadrupole 
A quadrupole consists of 4 poles opposite and adjacent in position to each 

other.  The ions are introduced through the aperture and held in the mass 

analyser by the use of an opposing RF frequency and DC voltages.  As the ions 

are introduced, only ions of certain m/z will remain stable to reach the detector, 

this allows the operator to select the given precursor masses.  Any other ions 

will be destabilised and collide with the rods before reaching the detector.  The 

mass filter window can be widened or narrowed by reducing the DC voltage 

(widen) or by increasing the voltage (narrow).   A schematic can be seen in 

Figure 1-29 below (Sleno and Volmer, 2004).      
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Figure 1-29:  Schematic of a typical quadrupole mass analyser.  Two opposing DC voltages 
are applied adjacent to each set of poles.  An opposing RF voltage is applied to paired rods 
to cause stability or instability of ions with a particular m/z adapted from (Hoffman).   

Now that the general proteomic work flow has been considered, it is time to 

look at how quantitation is performed in proteomics and how DiGE compares 

to other methods of quantitation. 

1.5.4.5 MALDI-Imaging  
As this project was collaborative in nature, it is prudent to briefly overview the 

two main techniques employed by the proteomic collaborators involved. 

1.5.4.5.1 MALDI-Imaging and Biomarker discovery 
One of the most recent applications using MALDI and is gaining momentum is 

the use of MALDI-TOF-MS to image tissue directly for biomolecules and 

profiling of tissue.  MALDI imaging was first described in 1997 by Caprioli 

(Caprioli, 1997, Stoeckli, 2001.) and has been demonstrated as a powerful 

potential tool in the detection of biomarkers by imaging or profiling tissue 

sections, defining particular regions. It is proving to have great potential in 

mapping change in tissue and showing morphological relationships.  Imaging 

mass spectrometry is a relatively new technology and improvements in areas 

such as sample preparation; matrix application, data collection and analysis are 

needed.  Improvement of certain instrument parameters would also benefit 

including spot-to-spot sample repositioning and data processing, however even 

though a run takes up 7 hours, the amount of data retrieved is large.  A widely 

studied tissue in imaging is brain tissue (Pierson, 2004, Stoeckli et al., 2002, 

Rohner et al., 2005, Ceuppens et al., 2007, Binz, 1999, Altelaar, 2006) as it is 

ideally suited to the imaging methodology due to its well-defined structures 

and bilateral symmetry, which can provide an automatic control, however, 

other tissues have been imaged including kidney (Zoriy et al., 2007) and soft 

tissue and cancer biopsies(Cornett, 2006).  
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The ability to view the spatial distribution of biomolecules in tissue sections is 

exciting, as it has great applications in the field of biomarker discovery due to 

the fact of not needing any prior information about the biomarkers involved, 

before being able to start investigating a tissue, and thus it can be used to 

characterise normal and disease tissue in tissue specific disease such as various 

forms of cancers or Parkinson’s (Cantuti-Castelvetri and al, 2002).  This ability 

to go “fishing” for biomolecules is a major advantage over other imaging 

technologies such as immuno-fluorescence, which requires antibodies (Coons, 

1961).  IMS has great potential as a biomarker discovery platform, but it is not 

a replacement for other technologies, it must be used in synergy with other 

technologies, such as 2 dimensional gel electrophoresis (2DGE), in order to 

move discovery to identification (Lescuyer et al., 2004).  
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1.6 Renal proteomics 
With the inception of the Human Urine and Kidney Proteome Project within 

HUPO (Yamamoto et al., 2008) and the establishment of EUROKUP: 

European kidney and urine proteomics (Vlahou et al., 2009), it is clear kidney 

proteomics has a high profile within the Proteomics community. This has been 

spurred in part by the increasing number of people suffering from some form 

of renal disease and the limitation of current diagnostic and therapeutic 

treatments (Coresh et al., 2003). Therefore, renal proteomics is one field filling 

the gap and a fast growing and emerging subset of the proteomics field 

(Schaub et al., 2005, Knepper, 2002).  In this section of the literature review 

the applications of proteomics within renal research is explored, analysing the 

various aspects of biomarker discovery and the use in various renal biology 

such as; nephrology, physiology and biomarker discovery in various forms of 

renal disease.    

1.6.1 Application of proteomics in renal research. 
Currently, there are two fundamental areas in renal research with regards to the 

involvement of proteomics. Scientists are either engaged in studying the 

physiology or pathophysiology of the kidney or they are involved in the search 

for biomarkers. There are also some more juvenile areas of growing interest; 

the uses of proteomics in the development of therapeutic targets and 

personalised medicine.  This is summarised in Figure 1-30:  This shows the 4 

major areas of kidney proteomics. 
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Figure 1-30:  This shows the 4 major areas of kidney proteomics.  The sizes of the circles 
are relative to the size of the field to which proteomics is currently applied.  The greatest 
area of proteomic involvement in renal research is discovery of biomarkers.   

The use of proteomics is a relatively new field, so renal proteomics is also 

relatively in its infancy; however it has had some success in mapping and 

understanding the physiology and pathophysiology of the kidney (Craven et al., 

2013, Thongboonkerd and Malasit, 2005, Janech et al., 2007, Thongboonkerd, 

2010).  Proteomics has also discovered numerous candidate markers, 

principally in the analysis of urine, but has had no real success in defining 

novel biomarkers that could be used or taken into a clinical setting.  There is 

some work in the development of new therapeutic targets but has not yet been 

fruitful (Han et al., 2008, Schaub et al., 2008, Thongboonkerd and Malasit, 

2005).  Also, the literature makes mention of using proteomics for personalized 

medicine in kidney disease, however, there is little evidence to suggest this will 

be occurring any time soon  (Susztak and Böttinger, 2006, Jain, 2004).  

1.6.1.1 Nephrology:  Physiology and pathophysiology. 
One of the first investigations using proteomics in nephrology is thought to 

originate by Witzmann et al, 1995 (Witzmann et al., 1995).   Witzmann et al 

compared heat shock proteins (stress factors) by using normal and stress tissue 

in the kidney and liver, with the possibilities of being used in toxicological 

screening.  Since then a PubMed search of kidney and proteomics returns over 

1000 papers, in approximately 15 years. 

Current 
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A great deal of work in proteomics and molecular techniques has be conducted 

in understanding the role of aquaporin and vasopressin (Knepper, 2002, 

Knepper and Masilamani, 2001, Nielsen et al., 2002a, Pisitkun et al., 2004, 

Pisitkun et al., 2006, Terris et al., 1996, Terris et al., 1995, Knepper, 1994, 

Knepper, 1997, Terris et al., 1997, Marples et al., 1995, Schnermann et al., 

1998, Nielsen et al., 2002b, Masilamani et al., 1999, Kim et al., 1999, Nielsen 

et al., 1993a, Nielsen et al., 1995).  This work into aquaporins and vasopressin 

solved a long standing mystery into how water crosses the membranes and how 

the kidneys maintain an osmoregulatory balance in the body.  Aquaporins are 

situated at intervals along the kidney nephron.  Different aquaporin isoforms 

are situated at various abundances along different parts of the nephron.  The 

interaction of AQP2 (aquaporin 2) and vasopressin (otherwise known as ADH) 

is crucial in the reabsorption of water in the collecting duct.  This key 

discovery in the physiological role of the aquaporins in water control has 

allowed the description and characterisation of a number of water balance 

disorders such as nephrogenic diabetes insipidus and the effects of non-kidney 

related disease that with associated water balance defects like congestive heart 

failure.  These proteins are of extreme importance and are relatively abundant.  

AQP1 is present in 1%  of the total membrane proteins in the cortex of the 

kidney (Nielsen et al., 1993b).  Much of these discoveries surround the 

function of aquaporins were made using a technique called immunoblotting; a 

targeted proteomics approach, with purification of samples this method is 

powerful and can be specific.  With relatively low protein populations 

immunoblotting can be used to quantitate or semi quantitate multiple samples 

and has been used to characterise much of the transporter in the regulation of 

aldosterone and salt transporters.  It is known that aldosterone causes the 

stimulation of sodium transport in the collecting duct via the interaction with 

epithelial sodium channel (ENaC).  Using an immunoblot technique it was 

found that aldosterone caused a change in the molecular weight of gENaC from 

85 kDa to 70 kDa.  This is a subunit of ENaC.  Additionally, the alpha subunit 

show a marked increase in the presence of aldosterone with the consistencies of 

the beta and gamma subunits (Masilamani et al., 1999).     

In order to better understand the physiology of the kidney, proteomics has been 

performed on whole kidney homogenate.  Additionally, regions of kidney have 

also been described and  we now have a number of 2DE reference gels for 

future comparison it both whole kidney, kidney cortex and medulla regions 
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(Arthur et al., 2002, Xu et al., 2005a, Yoshida et al., 2005).  Arthur et al 

described the differential expression of these regions (Arthur et al., 2002).  

These studies centre on using rat or murine kidney.  These maps coupled to the 

identification of proteins will provide a useful reference for future studies.  

Proteomic mapping of normal sample is not limited to tissue but also to urine.  

Adachi et al used LTQ-FT MS to evaluate over 1500 proteins of the urinary 

proteome.  Examples of how using this global proteomic approach to mapping 

kidney physiology includes; (Knepper and Brooks, 2001, Weissinger et al., 

2004, Hoorn et al., 2006)  

Proteomics has been successfully used to study the physiological effects that 

toxins have on the kidney.  The change in the proteome can be used to 

determine the underlying mechanism of toxins on the protein expression of the 

kidney.  One such study looked at the gentamicin treatment on renal cortical 

protein expression using a 2DE approach (Charlwood et al., 2002a).  This 

study gave a useful insight into the role of mitochondrial proteins and those 

involved in production of ATP.  In addition, these changes in protein 

expression could be used as toxicity markers to identify causes of poisoning.  

Clinically identifying a toxin is difficult and often a crucial, time dependent 

step in the application of suitable treatments.  Toxicity markers could be 

extremely important in this regard.  Other proteomic studies into toxicity 

include lead (Witzmann FA and LS, 1999) , fluoride (Xu et al., 2005b) uremic 

toxins (Kaiser et al., 2003) among others. 

This information on the whole proteome has limited uses due to averaging 

effects and the high amount of cell types in the renal structures.  Due to the 

issues associated with gaining enough sample for proteomics experiments, 

there are more limited numbers of studies addressing specific areas of the 

kidney such as parts of the nephron.  Proteome mapping has taken place on the 

human glomeruli (Musante et al., 2002, Potthoff et al., 2008), brush border 

membrane vesicles (Cutillas et al., 2004b), the ascending and descending loop 

of Henle (Dihazi et al., 2005) and collection ducts (Hoffert et al., 2007) 

amongst others.  By isolating certain proteins thought to be important for 

various processes, a proteomic analysis could be performed on any associate 

proteins with their extraction.  Further to this, MS or western blot analysis can 

be used to identify these proteins.  For instance, denzins association with 
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nephron was determined using this approach and MALDI-TOF-MS (Ahola et 

al., 2003).  

Much of medicine has its basis in discovering the pathological nature of tissue 

and proteomics has been used to investigate this in an attempt to characterise 

the pathophysiological nature of certain diseases.  Information has been 

gathered regarding; diabetic nephropathy (Thongboonkerd et al., 2004, Susztak 

and Böttinger, 2006, Alkhalaf et al., 2010, Randa et al., 2010, Overgaard et al., 

2010, Isabel Padrão et al., 2012), glomerular disease (Ahola et al., 2003, 

Nabity et al., 2011), urological and hepatocellular cancers(Adam et al., 2001, 

Poon et al., 2003, Kommu et al., 2004, Ren et al., 2010), 

With regards to studying glomerular disease, the glomeruli are isolated using a 

sieving technique.  Currently, there is a glomerular data base linking 

identification to 2D gel images.  This “normal” reference map can be used to 

compare against when studying the pathology of the glomerulus.  Proteomics 

has been largely responsible for the uncovering of the pathophysiological 

mechanism in proteinuria in glomerular disease.  Focal segmental 

glomerulosclerosis (FSGS)  factors suspected in causing the damage to the 

glomerular barrier were confirmed using multidimensional LC and 

electrophoretic approach identifying 6 key proteins which maintain strong 

permeability activity to albumin and albumin fragments (Musante et al., 2002).   

There has also been an increase in understanding regarding the 

pathophysiology and mechanism underlying diabetic nephropathy.  

Thongboonkered et al, 2004 described over 30 proteins which were 

differentially expressed in the diseased kidney of type 1 diabetic patients, a 

range of roles were proposed with novel discovery of  elastase inhibitor 

expression was shown to increase with the corresponding decrease in elastase. 

Elastin is thus controlled within a pathway involving an elastase enzyme and 

inhibitor.  Elastin maintain integrity of the glomerulus.  Therefore this 

discovery gives important information about the mechanism of this disease 

state. This takes treatments a step closer. 

There is also currently discussion regarding proteomics in the role of 

diagnostic pathology, and using it to monitor the progression of diseases, 

particularly using processes such as MALDI-IMS; (Stoeckli, 2001, Goodwin et 

al., 2008a), There have been some interesting investigations with this regard 

into the diagnostic and prognostic assessments of cancers.  MALDI-TOF-MSI 
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was used to sub classify tumours and also place a prediction of prognoses to 

different classifications of lung cancer (Yanagisawa et al., 2003). It is also 

possible to map the progression and treatment characteristics of cancer as 

shown in mice (Kasper et al., 1998).   

1.6.1.2 Biomarker discovery in renal research  
The field of renal proteomics is heavily biased towards the discovery of 

biomarkers, with the vast majority of citations regarding kidney and 

proteomics involving the search for biomarkers.   The largest source for this is 

the use of urine as a biofluid to explore for markers in kidney disease.  This is 

due to the obvious association with the kidney.  Biomarkers have been 

described in renal disease, cancer (see section 1.3.1), renal injury and 

hypertension and cardiovascular disease, along with others. 

1.6.1.2.1 Acute kidney Injury Biomarkers 
Acute kidney injury (AKI) or acute renal failure is a collective name given to 

processes surrounding the failure of the renal system leading to death.  This 

occurs within 48 hours (Bellomo et al., 2004).  AKI has a number of causes, 

including but not limited to low blood volume, possibly due to dehydration, 

trauma, restructured blood flow, obstruction of the urinary tract and other 

intrinsic causes (Han and Bonventre, 2004, Chertow et al., 2005a, Varghese et 

al., 2010, Siew et al., 2011).  It is therefore a broad class of disease. It is known 

that AKI is associated with a change in the serum creatinine level in the blood 

stream (Addis et al., 1947, Perrone et al., 1992, Han and Bonventre, 2004, 

Siew et al., 2011, Mårtensson et al., 2012).  This is all despite a multifaceted 

nature to this disease.  However, the current use of serum creatinine as a 

diagnostic measure is hindered by limitations in diagnostic techniques.  

Proteomics has driven an insurgence to look into new biomarkers associated 

with AKI.  Small rises in the serum creatinine have been associated with 

patients increased chances of death (Chertow et al., 2005b, Xue et al., 2006).  

There is a need for more specific biomarkers as serum creatinine is not a 

reliable marker due to variations occurring, due to factors like body weight or 

gender (Coca et al., 2007).  Due to these limitations, it has been deemed a high 

priority in nephrology research (Mehta et al., 2007). 

Seeing as AKI is of increasing occurrences in the population, a biomarker 

specific to acute events is necessary.  Currently there is not a specific 

biomarker indicating an “acute vs. chronic” kidney condition.  As well as a 
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marker that can differentiate between other kidney based conditions such as 

urinary tract infections and the effects of toxins.  A number of markers have 

been discovered using a transcriptomics approach with associated proteomics 

downstream such as; NGAL neutrophil gelatinase-associated lipocalin 

(Supavekin et al., 2003, Mishra et al., 2003, Mishra et al., 2004),  Although 

NGAL seems to have great prospects as a predictive biomarker, studies thus far 

have had small samples and uncomplicated populations.  With regards to 

biofluid analysis SELDI-TOF-MS is the most prominent proteomic technique 

in the search for biomarkers, with the advantages of a high throughput and the 

ability to detect those low molecular weight biomarkers which gel-based 

technologies lack. Most studies concerning NGAL are performed using cardiac 

patients post-surgery due to the increased risk of AKI.  Nguyen et al, 2005 

employed this strategy and showed pattern analysis differences in AKI patients 

between normal and affected a patients (Nguyen et al., 2005).  In addition to 

these markers, Interleukin (IL)-18 has also been identified as a putative 

biomarkers.  After renal injury this marker is secreted into the urine prior to the 

occurrence of any renal dysfunction (Parikh et al., 2006).  Kidney injury 

molecule 1 (KIM-1) is expressed in the proximal renal tubular cells in response 

to injury discovered in the up regulation in the rat model (Ichimura et al., 

2008).   

The causes of AKI are vast in nature.  One such cause is nephrotoxicity.  Zhou 

et al, 2006 investigated the urinary exosomes for this case.  Using 2D-DiGE 

and subsequent MS identification they discovered 74 differentially expressed 

proteins.  The two most promising of which, confirmed by western blotting, 

were Fetuin-A, which increased with AKI and annexin V, which decreased.  

An extremely promising biomarker for AKI is α1-microglobulin and cystatin C 

which both were found to be a predictive indicator of AKI in urine.   On top of 

which cystaitin C is stable in the blood and not affected by age, sex or weight.  

It therefore has many characteristic, that are seen as ideal in a biomarker 

(Koyner et al., 2008).  However, NGAL has been shown to be detected 

significantly earlier post-surgery than cystatin C.      

Currently, proteomics has produced 20+ “quality” candidature biomarkers for 

AKI (Siew et al., 2011) using a variety of techniques including ELISA, 2DE 

and LC-MS.  The challenge still remains in the validation of these to a 

sensitive and selective standard for clinical diagnosis and prognostic purposes.    
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1.6.1.2.2 Chronic kidney disease Biomarkers 
Chronic kidney disease (CKD) is the collective name given to a variety of 

diseases that amounts to the progressive decline in kidney function due to the 

rise in glomerular filtration rate of greater than or equal to 90mL/min, 

persistent for greater than 90 days (Vassalotti et al., 2007).  Proteinuria is also a 

consistent symptom of CKD.  The vast majority of forms of CKD are fatal 

seeing patients progress to renal failure, fortunately this is in the minority of 

cases.  One major concern is that those who do progress to end stage renal 

failure, the diagnosis is late and often the renal disease is advanced by the time 

patients experience symptoms.  This makes the need for specific biomarkers 

palpable.  Biomarker discovery of a class of disease such as CKD is difficult at 

best due to the multifactorial nature of the underlying pathophysiology (Coresh 

et al., 2003, Vassalotti et al., 2007, Jantos-Siwy et al., 2008, Iwanaga and 

Miyazaki, 2010).  CKD patients also have greater incidents of other 

cardiovascular incidents.  (Stenvinkel et al., 2008).  Biomarkers of CKD have 

been identified, some have more specific properties than others.  serum 

creatinine is used but it is non-specific and presents itself across a number of 

kidney problems.  One of the most promising set of biomarkers discoveries 

using a proteomics methodology is that of multiple profiles of collagen files to 

distinguish between two classes of CKD and diabetes.  Diabetes, diabetic 

nephropathy, and non-diabetic proteinuric renal diseases.  A strategy of 

multiple markers was employed for the distinction between the different types. 

It total 40 markers differentiated diabetic patients and healthy controls, 65 

markers differentiated that diabetic patients have nephropathy with 97% 

sensitivity and specificity.  The collagen type 1 fragments showed a reduced 

presence in urine, giving the prospect of a proteomic diagnostic method 

(Rossing et al., 2008, Jantos-Siwy et al., 2008).   

Renal diseases are heavily associated with CVD and hypertension, due to the 

kidney’s osmoregulatory function and interaction with vasopressin.  In the next 

section biomarkers in hypertension and CVD are considered.    
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1.6.1.2.3 Hypertension and cardiovascular disease 
Hypertension and cardiovascular diseases are a leading cause of death in 

western and developed countries.  These classification of diseases are 

multifactorial in nature, with associations with both environmental factors such 

as; socio-economic status, diet and obesity and geographical locations as well 

as genetic factors (Burt et al., 1995, Carretero and Oparil, 2000).  Hypertension 

has been clinically defined by the World Health Organisation, amongst others, 

as sustained raised blood pressure of ≥ 140/90 mm Hg.  Hypertension is one of 

the main symptoms and causes of cardiovascular disease which has been 

defined as the largest cause of death in the world.  Correlations between 

hypertension and other diseases such as coronary heart disease, stroke, 

cerebrovascular disease, peripheral vascular diseases, type 2 diabetes and renal 

disease.  Seeing as the prevention and treatment of hypertension may have 

wide implications in reducing the impact of these diseases, the requirement for 

diagnostic and therapeutic markers along with understanding the 

pathophysiology of these processes would be extremely beneficial.  Proteomics 

and integration of the –omics has a significant part to play in the future of CVD 

and hypertension research (Thongboonkerd, 2005, Abdul-Salam et al., 2006, 

Elliott, 2007, Kuklinska et al., 2009, Delles et al., 2012).   The topic of 

hypertension will be considered in greater detail in section 4.3.  However,   in 

the majority of patients suffering from hypertension there is no single cause.  

Therefore this multifactorial problem of “essential hypertension” lends itself 

towards a global unbiased approach which is offered by a great deal of 

proteomic techniques, as opposed to the traditional hypothesis driven 

techniques used in kidney and hypertension research.   Whereas the genome of 

an individual will give an indication of “risk” associated with different 

conditions. The proteome and transcriptome will change dynamically with the 

stages of CVD and hypertension and any levied treatments.  This gives the 

potential for a systems biology approach combining data for transcriptomics 

and proteomics to map changes and progression of diseases and treatments.  

However, this is posing a challenge in terms of marrying the data and mining 

the difference between “real” and false positive changes.   This is compounded 

by the inconsistencies of similar studies within proteomics and transcriptomics 

before even trying to compare the datasets.   

Increasingly, there has been greater attempt to profile multiple markers to 

identify risk potentials, however, these have had varying success.  This varying 
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success is indicative of the lack of reproducibility and relatively small scale of 

studies undertaken.  There is also a limited benefit to most studies as validation 

of markers is done so infrequently.    

The pathophysiology of rare forms of hypertension is relatively well described 

in the literature due to the single gene mutation cause.  However, essential 

hypertension poses a multitude of problems for both genomic and proteomic 

studies. It is a relatively simple process of diagnosing hypertension and 

comparing hypertensive patients with those not suffering is a straight forward 

prospect.  However, due to the fact hypertension is considered a risk factor of 

an underlying CVD, gaining samples of known etiologic is difficult.  The best 

approach using proteomics is to examine the global proteome by using an 

animal models of known genetic background.  This will be discussed in greater 

detail in 4.3, however it is expedient to consider some of the discoveries of 

biomarkers in hypertension here.       

There have been a number of studies that have identified markers in various 

forms of hypertension.  One of the most accepted biomarkers of essential 

hypertension is the inflammatory marker C-reactive protein (Sesso et al., 2003, 

Wang et al., 2005).  This is present in serum aldosterone, however, is not 

always present in all patients and therefore is not necessarily specific enough.  

This is especially the case when it comes to incident hypertension where the 

patient did not previously know.   To overcome this limitation, Wang et al, 

2007 used a multiple biomarker approach using “C-reactive protein 

(inflammation); fibrinogen (inflammation and thrombosis); plasminogen 

activator inhibitor-1 (fibrinolytic potential); aldosterone, renin, B-type 

natriuretic peptide, and N-terminal proatrial natriuretic peptide (neurohormonal 

activity); homocysteine (renal function and oxidant stress); and urinary 

albumin/creatinine ratio (glomerular endothelial function)”  to investigate 

incident hypertension and if a pattern of biomarkers can be used to determine 

its presence (Wang et al., 2007).   

Another set of prospective markers was investigated by Kuklinska et al, 2009 

on the basis that hypertension causes endothelial damage.  This damage is 

associated with the decrease in nitric oxide, prostacyclin, oxidised-LDL and 

peroxide.  A relatively small scale study of 62 patients was undertaken.  

Although all prospective markers showed a significant degree in the 
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hypertensive patients compared to the healthy subjects, prostacyclin and 

oxidised-LDL had the best prognostic value (Kuklinska et al., 2009).   

With regards to pulmonary hypertension, which is a rarer form of progressive 

hypertension, suffers are subjected to an increasing vascular resistance in the 

pulmonary circulation.  The diagnosis is often relatively late, thus reducing the 

effectiveness of prospective treatments.  Diagnosis is often delayed and it 

would therefore benefit by biomarkers detection in biofluids.  There has been  a 

number of possible markers found including; Natriuretic peptides, Endothelin-

1, Troponin T, Nitric oxide, Uric acid, Asymmetric dimethylarginine,and 

cGMP among others (Warwick et al., 2008) .   However, many of these 

markers are seen in numerous forms of hypertension and CVD.  Thus the 

clinician would not readily be able to differentially diagnose a patient using 

these biomarkers alone. 

Many of the current clinically accepted biomarkers for hypertension have not 

been generated using proteomic methodologies at all and although there has 

been some considerable success in obtaining biomarkers for hypertension, it is 

clear that a greater wealth of information and prospective candidates are 

needed to be taken onto validation.  Therefore in this investigation in Chapter 4 

biomarkers for hypertension are investigated via an unguided global proteomic 

analysis.  This is in conjunction with other studies using complementary 

proteomic approaches, in order to overcome some of the limitations described 

in the literature.  It is hoped, that by using an unguided approach, new novel 

biomarkers may be discovered and also that the methods developed may be 

employed in numerous different disease states. 

One of the main current strategies in proteomics when investigating 

cardiovascular diseases is to compare patients with confirmed disease with 

normal tissue.  Coronary artery disease or CAD is relatively easy to confirm 

with angiography. These patients can then be compared against patients 

without CAD.  This is considered a good model due to the link between 

cardiovascular health and CAD (Zimmerli et al., 2008a).  This study involving 

88 patients revealed a set of biomarkers indicating the possibility of CAD.  

Healthy controls showed significantly lower high-density lipoprotein levels 

than CAD suffers.  Additionally, C-reactive protein was also lower.  However 

these are indicators of a number CVDs.   This study was performed using CE-

LC-MS to generate urine profiles and identifications. 47 patients carried onto 
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the blind assessment study.  A strength of this study is that centre specific bias 

was ruled out by using two control groups from geographically different 

locations.  CE time based traces were used to generate a polypeptide signature 

which was successfully used to distinguish between healthy and control 

patients.  Interestingly, those sufferers who exercised more showed a healthier 

profile of peptides. It was noted that, when using drugs, patients exhibited a 

more variable profile and therefore this could present a significant barrier to 

more general clinical use. The polypeptide patterns found where predominantly 

fragments of collagen (Zimmerli et al., 2008b, Danesh et al., 2004).   

Cardiovascular disease or CVD is a huge area of study, but they are closely 

related to diseases of the kidney and hypertension. Patients who have CKD 

have a predisposition to various forms of CVD such as stroke and peripheral 

vascular disease.  Biomarkers are necessary as studies have shown that current 

treatment strategies do not increase the mortality of patients suffering from a 

combination of CKD and CVD (Stenvinkel et al., 2008).   Other similar studies 

are described in numerous journal articles (Anderson, 2005, Ridker et al., 2000, 

Mayr et al., 2006, Blumenstein et al., 2009). 

Despite this wealth of new information regarding candidate markers, there is a 

notable lack of markers that have been validated as novel and moved onto 

assay development.  This is a severe barrier and a bridge that needs to be built 

between candidate biomarker discovery and clinical assay development.  
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1.6.1.2.4 Urinary proteome and biomarkers in renal proteomics 
Urinary proteomics has been occurring for more time than the term proteomics 

has existed, however, recently there has been a massive interest in searching 

for biomarkers in urine.  Therefore urinary proteomics within renal proteomics 

is wide and deep in nature, covering the physiology and pathophysiology of 

disease and the search for markers in such areas as; Renal cancer, acute kidney 

injury, chronic kidney injury, diabetic nephrology, urological cancer, 

glomerular disease, IgA nephropathy and membranous glomerulonephritis to 

mention but a few.  In addition, there is urinary analysis in a number of 

different types of cardiovascular disease. Therefore, it would be superfluous to 

mention every possible area where urinary proteomics has been employed, as it 

is vast; however in this section some of the more recent applications will be 

considered.  Within proteomics, urine analysis has been performed using 2DE 

and DiGE (Sharma et al., 2005), CE-MS (Coon et al., 2008) and numerous 

quantitative methods including SELDI-TOF-MS (Cadieux et al., 2004) , iCAT, 

iTRAQTM and label free (Yang et al., 2011b). 

The Holy Grail for clinical diagnostic is to examine a non-invasive sample 

such as urine, to determine a specific diagnosis.  This has driven the 

requirement to examine urine as the principle biofluid in renal proteomic and 

where the greatest number of biomarker studies concentrates on.  Urine can be 

prepared in a number of ways for a proteomic analysis.  This might be as a 

liquid form, desalted, or in a pellet form containing the urinary exosomes.  

Urine, however, does present difficulties regarding the stability of protein 

content which can depend on voiding time of day, gender, diet and exercising.  

This presents a serious problem in gaining reproducibility (Kentsis, 2011).      

The first proteomic based experiment on human urine was performed in 1979 

(before the coining of the phrase proteomics).  It was the first in a number of 

2DE mapping experiments (Anderson et al., 1979).  Since then there has been 

1000s of articles on the urinary proteome. 

One area proteomics has been employed in is the biomarker discovery of renal 

cancer markers in urine.  This area is very important, as renal cancer is 

relatively unresponsive to more traditional cancer treatments such as 

chemotherapy and radiotherapy.  However, currently there are no renal 

biomarkers for cancer of the kidney in clinical use.  This is due to the lack of 

specificity and complexity of the disease.  The most common form of renal 
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cancer is renal cell carcinoma (RCC) (Craven et al., 2013).  There has been 

some success, however, compared to other aspects of oncoproteomics, RCC 

remain a challenging area.  A combination of fragments of uromodulin were 

found to be present in human urine and distinguished between control and 

diseased patients, both in urine and serum. It was also shown that malignant 

and benign masses have the prospect of being differentiated (Bosso et al., 

2008).  Additionally, it was also demonstrated that RCC sufferers showed the 

expression of two forms of Mn-superoxide dismutase (SOD), compared to only 

one variant in healthy controls (Raimondo et al., 2012b, Sarto et al., 2001).  

This is in contrast to other forms of urological cancers which have seen some 

greater success.  In bladder squamous cell carcinoma (SCC), a protein called 

psoriasin was seen to be expressed in only patients suffering from bladder SCC 

(Rasmussen et al., 1996).  Another investigation in bladder cancer using 

iTRAQTM has been performed by Chen et al, 2010.  Three bladder cancer 

subgroups were compared to control samples.  A total of 638 proteins were 

identified.  Out of the proteins identified, apolipoprotein A-I (APOA1), 

apolipoprotein A-II, heparin cofactor 2 precursor and peroxiredoxin-2 were 

identified as being significantly elevated in the bladder cancer group.  Further, 

APOA1 was confirmed using ELISA (Chen et al., 2010b).   

In addition to iTRAQTM, capillary electrophoresis coupled to mass 

spectrometry (CE-MS) is a method that has seen considerable success in the 

area of urinary proteomics.  A study comparing 230 patients with chronic renal 

disease and 379 controls, resulted in over 634 peptide being identified as 

differentially expressed between the two groups.  Approximately a third of 

these markers were sequenced and 144 validated.  A large proportion being 

down-regulated collagen fragments(Good et al., 2010).  

Another area of considerable interest is that of diabetic nephropathy.  Diabetic 

nephropathy is the biggest contributor to end stage renal disease, which is 

usually fatal.  As with other types of kidney disease, diabetic nephropathy 

(DN) is characterised by an increased presence of protein in the urine (Alkhalaf 

et al., 2010).  The current clinically accepted marker of DN is the occurrence of 

microalbuminuria (MA).  It is however still an unspecific marker and can only 

be seen in about 40% of type two diabetic patients.  Although a number of 

studies have been undertaken, a review from Ameur et al, 2010 highlights the 

need for validation steps, as less than half the studies observed did any kind of 
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validation (Randa et al., 2010).  Diseases like DN pose another issue.  As DN 

is a collection of diseases, finding a specific biomarker is not necessarily likely.  

This is prevalent throughout biomarker research.  As more information is 

discovered about disease, the classification get more and more differential, thus 

meaning more specific markers are needed, however, some attainment is 

occurring in this area.  A study from Papale et al, 2010 described differential 

markers for a form of DN called glomerulosclerosis.  They managed to identify 

and validate ubiquitin and 2-microglobulin as specific markers.   It should be 

noted however, that proteins like ubiquitin, are by their nature likely to occur in 

many other disease states (Papale et al., 2010).  There has already been 

considerable interest in DN (Alkhalaf et al., 2010, Isabel Padrão et al., 2012, 

Mischak and Rossing, 2010, Rossing et al., 2008, Zürbig et al., 2009), as this is 

expect to rise due to the continuing rise in diabetes (particularly type 2) in 

westernised countries.  In addition to biomarker discovery in DN, it is also 

looking more likely that proteomic methodologies may be used directly in a 

clinical setting.  This is due to the fact there is evidence to suggest processes 

such as CE-MS of urine can differentiate patients using peptide profiles 

(Alkhalaf et al., 2010). 

Urinary proteomics is also engaging in examining the exosomes within urine.  

An exosomes is a membrane bound vesicle which originates from the epithelial 

lining of the collecting ducts and urinary tract.  They are obtained by 

differential centrifugation of urine.  A number of applications are described in 

the literature (Zhou et al., 2006, Hoorn et al., 2005, Moon et al., 2011, Pisitkun 

et al., 2004).  The exosomes can contain nucleic acids which can be used as 

biomarkers (Miranda et al., 2010) or protein and peptide fragments.   This 

isolation of these exosomes allows for the reduction in complexity and 

increased stability of the protein content in the excretion when compared to 

urine, making it an excellent candidate for superseding urine as a sample of 

choice. 

Proteomic techniques have also been employed in renal disease, which are 

associated with other ailments. Systemic lupus erythematosus (SLE), for 

example, is known to cause nephritis.  In particular Glomerulonephritis, which 

is the most common manifestation in SLE, has a diminished 5 and 10 year 

survival rate.  Current diagnostic techniques and therapies are unsatisfactory, 

therefore, finding diagnostic and therapeutic biomarkers would be 
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advantageous.  Monocyte chemoattractant protein-1 (MCP-1) has been shown 

to indicate glomerular inflammation in mice (Hasegawa et al., 2003), which is 

higher in those with active renal damage, however, as it is also a marker for 

intestinal inflammation, it does not provided an absolutely definitive diagnoses 

of renal dysfunction.  Elevated levels have also been shown in humans (Kiani 

et al., 2009). Another disease that causes serious renal problems is Fabry 

disease.  Elevated levels of globotriaosylceramide (Gb3) have been identified 

as being present in patients with Fabry disease as glomerular permeability is 

thought to increase.  However, the source of this biomarker is in question and 

has not as yet been linked to specific renal problem (Schiffmann et al., 2010). 

As can be seen the range of areas that urinary proteomics is involved in is vast. 

However, using tissue in renal research is a growing area.  In this next section 

tissue proteomics is examined within the context of renal research 

1.6.1.3 The use of tissue in renal proteomics 
Within kidney proteomics, the majority of citations focus on urine as the 

primary source of material for investigation.  There is, however, a slow but 

significant change in this trend.  Over several decades of clinical investigation 

tissue has proven useful in viewing pathological changes.  It gives spatial 

awareness of markers and many discoveries have been made using 

immunohistochemistry and histological staining.  Proteomics, until recently, 

did not have a technique to keep this spatial resolution, but with imaging mass 

spectrometry coupled to the traditional techniques, the use of tissue as a 

material is gaining ground in proteomic nephrology. 

Naturally, the topics of interest for tissue and cellular proteomics are those 

similar to proteomic analysis of urine such as; urological cancers (Craven et al., 

2006), problems associated with; diabetes (Bugger et al., 2009), AKI (Reeves 

et al., 2008), nephrotoxicity (Lei et al., 2008), cancer (Castronovo et al., 2006) 

and CKD (Perco et al., 2006) .  

With regards to whole kidney expression proteomics, there are considerable 

advantages to using a proteomic approach as opposed to a hypothesis driven 

approach.  The main being that it allows for an unknown hypothesis to be 

discovered.  This is particularly the case when a certain disease is not yet 

linked to causative region of the body.  Thongbookerd et al, 2002 described 

how alterations in the Renal Kallikrein Pathway during Hypoxia caused by 

sleep apnoea induced hypertension (Thongboonkerd et al., 2002).  This was 
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investigated using a rat model.  Using a similar approach using a murine model 

Thongbookerd et al, 2004 also demonstrated the increased deposition of elastin 

in diabetic nephropathy (Thongboonkerd et al., 2004). 

One severe limitation in using tissue is the multitude of cell types.   In the 

kidney this is broadly defined into two regions; the medulla and cortex.  

Homogenisation of whole kidney may not lead to the most successful 

biomarker discovery investigation, as up or down regulation could be 

considerably masked my homogenisation of multiple cell types.  As yet, the 

most common solution is to separate the kidney into the two stated gross 

anatomical regions, however as proteomic technologies get more sensitive the 

future is almost certainly leading to the isolation of individual cell types from 

tissue.  This of course has advantages but currently the limits of technology 

make this approach too challenging.  Therefore in Chapter 4 macro dissection 

was performed to separate the kidney in the medulla and cortex to allow 

comparison with other studies in the literature.   

Xu et al, 2005 reported a study utilising a 2DE approach to profiling normal 

kidney proteome expression, that highlights the need for tissue type 

segregation.  The kidney was separated into three distinct regions; the cortex, 

medulla and glomerulus. They showed substantial differences in the three cell 

types with around 50% of the spots detected in each structure being 

differentially expressed.  Separating the cortex and medulla is relatively 

straightforward, due to their anatomical distinct regions, however, separating 

the glomerulus increased the complicity of this study, increasing wash and 

filtration steps, thus risking the loss of any solubilise proteins. Therefore, for 

this study it was decided to only separate into the medulla and cortex regions 

(Xu et al., 2005a).  A preceding study supported Xu et al, 2005 findings but 

found fewer differentially expressed proteins between the cortex and medulla 

regions (Arthur et al., 2002).  In future, techniques which employ separation of 

cell types with more precise and less destructive methodology than washing 

protocols are needed.  One success technique that is often underutilised, 

therefore underdeveloped, in laser micro-dissection.  Although it has been used 

for a number of years now, there is limitation regarding loss of sample due to 

eppendorf static, preventing tissue collection.  Dealing with such small pieces 

of tissue is exceptionally challenging.  However, it does show great potential to 

be used in conjunction with sensitive techniques such as DiGE saturation 
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labelling (Banks et al., 1999, Sitek et al., 2005b). There is a gradual movement 

toward the macro dissection and LMD of tissue in proteomics research to 

prevent the averaging effects of homogenisation.  This is no less true in renal 

proteomics. 

Another benefit emerging from the development of methods using tissue as the 

main source of investigative material is the unlocking of a fixed tissue banks.  

There has been some small success with respect to this but it is an emerging 

field with huge potential (Nirmalan et al., 2008) both in understanding the 

kidney proteome and in biomarker discovery (Nirmalan et al., 2010)      

There is a lack of exploration of the kidney proteome using renal tissue 

connected to transcriptomic and genomic studies.  This spawn the necessity in 

this study to look into biomarker discovery using kidney tissue in Chapter 4 

“Biomarker discovery and the assessment of variation in the proteomic profiles 

of kidney tissue in hypertension using a WKY, congenic and SHRSP rat 

model.”  

1.6.1.4 Therapeutic targets in renal proteomics 
In addition to biomarker discovery, an area under development is the search for 

therapeutic targets.  These are cellular elements, such as extracellular 

membrane proteins, which can lead to a therapeutics effect.  However, 

currently within proteomics this is an emerging field and as such has reported 

some limited success (Thongboonkerd, 2004).  Such as using elastin in the 

renal elastin–elastase system and the use of collagen fibre fragments in diabetic 

caused CKD (Thongboonkerd et al., 2004, Rossing et al., 2008). However 

currently there is a lack of specificity. 

At present the majority of the stronger potential therapeutic candidates come 

from genomic studies.  Wang et al, 2004 describes the overexpression of 

spermidine/spermine N-1-acetyl-transferase (SSAT) in cultured kidney cells 

which has the detrimental effect of decreasing cell growth and increases the 

occurrence of kidney ischemia-reperfusion injury.  The knowledge of this gene 

target could potentially lead to drug development of the SSAT gene as a 

therapeutic target (Wang et al., 2004).   The integration of this genomic data 

with proteomic data remain sizeable (Stojnev et al., 2009) . 

It is clear though, that this will be of greater importance when the proteomic 

technologies and techniques are more refined, along with the integration of the 

–omics data-sets.    
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There has been promise shown in this field by using quantitative multiplexed 

strategies, by combing gel-assisted digestion with iTRAQTM in the 

characterisation of membrane proteins.  Han et al, 2008 reported considerable 

success in using this relatively high throughput quantitative methodology to 

improve the coverage of the proteome viewed. A number of membrane 

proteins were quantified, which could be used as therapeutic targets for 

autosomal dominant polycystic kidney disease. Although it should be noted 

this was using HeLa cells, not kidney tissue.  

Another promising study illustrated the connection between biomarker 

discovery and the detection of therapeutic targets.  Holy et al, 2006 used a 

DiGE methodology to quantitate and discover biomarkers in sepsis induced 

ARF (now known as AKI).  Sepsis is a big problem in hospitals, particularly 

post-surgery, with renal failure being a common complication of sepsis.  Holy 

et al, 2004 used a rat model to discovery urinary biomarkers and the possible 

therapeutic drug targets of albumin, enzymes in the brush border in particular 

meprin-1-alpha and serine protease inhibitors. The meprin-1-alpha inhibitor 

actinonin prevented ARF in the older mice. Also it showed that serum 

creatinine levels varied across animals and only 24% of those rats that suffered 

ARF had an elevated serum creatinine level (Holly et al., 2006). 
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1.6.2 Challenges for proteomics in studying the kidney proteome 
The challenges that face renal proteomics are similar to those that confront any 

proteomic investigation.   They can be broken down into technological, 

biological, statistical and practical issues.   

Many of the technological considerations have been covered in section 1.4.  

Currently, there are a large number of renal studies in proteomics that rely on a 

gel based methodology.  Therefore, many of the practical and technological 

considerations are similar to other studies.  With gel based approaches being 

relatively labour intensive, there has been a move towards using more 

automated online approaches with mass spectrometry such as SELDI-TOF-MS 

and other quantitative methods (Janech et al., 2007).  In addition, it is likely 

that in the near future there will be more functionally based proteomic 

experiments to characterise protein-protein interactions, complexes and PTM.  

However, as yet, the expression proteomic approach is currently one that 

predominates. Gel-based analysis has a wealth of information available for 

comparison and is still likely to be an integral way of imaging the proteome, 

particularly with the powerful technique of DiGE, but “real” high throughput 

proteomics using gels is in need of greater software automation and more 

powerful statistical applications to minimise the limitations of the statistical 

analyses (see section 1.7). There is currently a real change of “over fitting” the 

data to the experiments.  

There is also an argument for the need for a more defined availability of tissue.  

Often experiments are performed using tissue or biofluids of patients, which 

have a late stage of disease.  This is useful; however, a proposal of sample 

banking has been suggested in order to track the progression of disease from 

high risk patient through to when some of these patients develop the disease.  

This could provide powerful data on how the proteome changes over time.  

There are ethical barriers to this kind of approach, not to mention financial 

implications for the collection and storage of massive tissue and biofluid banks 

from possibly healthy patients.     

Biologically, the kidney is made up of several cell types and has nephron 

structures which bridge the cortex and the medulla.  Therefore, there is debate 

on how useful whole tissue experiments are.  The challenge of extracting 

specific cell types is going to be paramount in gaining higher quality proteomic 

information. 
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On top of sampling challenges, there are also technological limitations.  In the 

use of mass spectrometry to gain identifications, there are fundamental limits to 

the cycle time of 10Hz, this is combated by running multiple runs of the same 

sample.  However, this is expensive in time and is biased towards abundant 

proteins.  The use of exclusion list is therefore often done, but this requires 

prior knowledge and is not really appropriate for an unguided approach.  Other 

challenges include; selection bias in the sample selection, dynamic range of the 

proteins in the sample and statistical issue in multidimensional data (Kentsis, 

2011).   

Renal proteomics has come a long way since its inception, however there is a 

need to explore and develop proteomic methodologies and to elicit biologically 

significant marker in hypertension.   This process of biomarker discovery is 

explored in Chapter 4 “Biomarker discovery and the assessment of variation in 

the proteomic profiles of kidney tissue in hypertension using a WKY, congenic 

and SHRSP rat model.”   
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1.7 Statistical Analysis 
The field of statistics is, of course, of central importance to the conclusions 

which can be drawn from scientific experiments.  However, due to the 

enormity of the field it is beyond the scope of this introduction to cover every 

aspect, as such an overview is given of the main techniques employed in this 

investigation, all of which are well described and accepted in the field.  Despite 

the central importance to the sciences, statistics are often misused, 

misinterpreted or simply the limitations ignored.  In this section some of the 

limitations of the techniques employed in this study are explored.  Some of 

these limitations are inherent in the statistical model, some are due to 

experimental design. 

1.7.1 Types of error 
Statistical significance tests whether something has or has not occurred by 

chance alone.  Errors by chance manifest in one of two ways; type I errors or 

type II errors.  Type I errors are known as false positives.  That is to say a 

result which is given as statically significant within the statistical test of choice, 

when it is by chance alone.  Type II errors are known as false negatives.  These 

are not given as a significant test result but are in fact biologically significant. 

Chance errors like these can be minimised by increasing sample sizes to reduce 

the chance of error.  It is also known that running statistical tests multiple times 

results in a greater chance of false positives.  This can be demonstrated with a 

simple example. If you have 10 balls in a lottery (number 1-10) what is the 

chance of getting a number 1?  It is of course 1/10 or 10%.  However, what is 

the chance of getting a number one if you do the same draw 20 times 

(replacing the ball each time)?   It works out at 88% (= (1-0.092)*100).  This is 

why running tests multiple times, such as Student’s t-test, increases the number 

of false positive results. The multiple testing problem is discussed in section 

1.7.2.    

Another danger to the validity of an experiment is external validity.  This needs 

to be considered when trying to transfer results into wider applications.  

Biomarker discovery is susceptible to this as discovery of putative biomarkers 

in say animal models or certain conditions are not necessarily applicable to 

wider applications in human models.  Equally, certain diseases have a high 

association with other factors.  For example lung cancer patients often are 

smokers and therefore biomarkers discovered may be associated with smokers 
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as opposed to lung cancer sufferers.  Another particular problem in biomarker 

discovery platforms (such as DeCyder) is the over fitting of data due to 

multivariate techniques like PCA or many forms of the hierarchical analysis.   

Another form of error which can occur is bias.  Bias can be experimentally 

based or analytically based.  Experimental biased is difficult to eliminate and 

minimise, often because experimenters are unaware of doing it.  To minimise 

it, researchers need to be rigorous in following protocols and treating samples 

to same and randomisation when running samples is important (Chich et al., 

2007).  In DiGE experiments, bias can occur due to technical reasons such as 

differential labelling.  Therefore bias can be minimised in this case by 

performing a dye switch, therefore it is important to be aware of inherent bias 

within techniques as well.  Bias can occur in all sorts of ways including; 

analytical bias by round up or down or choosing to use the mean or the median 

values, observer bias, positive or negative results bias from literature and 

broadly experimenter bias.   

1.7.2 The Multiple testing problem and false discovery rate. 
Although univariate testing is relatively easy to use, a problem exists in 

practice when 1000s of hypotheses are being tested simultaneously.  This 

problem is known as the multiple testing problems.  When performing 

hypothesis testing 1000s of times, the chances of discovering false positives 

increases.  This problem arises due to the interdependence of proteins in the in 

vivo state, whereas the statistical test assumes independence.  A correction can 

be made for this, but is often ignored in the proteomics fields.  In genomics, 

due to the high use of microarray experiments, this problem has been given a 

great deal of consideration.  If the most is to be gathered from proteomic data 

in the future, along with increasing the validity of conclusion, more 

consideration is necessary in order to reduce the number of false positive 

discovered.  Thankfully this idea is gaining significant ground with proteomic 

researchers performing DiGE experiments.  It is possible with unadjusted P-

values and α=0.05 significance levels that 1 in 20 tests are expected to give 

false positive results and as the number of tests increases, the number of false 

positives increases.  One method of dealing with this is to use the Bonferroni 

correction (a form of FWER – Familywise error rate), this has been considered 

to be somewhat conservative in its approach and has lost favour with many 

researchers.  To consider why this correction method is conservative, an 
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example is prudent.   The reduced significance level using Bonferronni’s 

adjusted formula of (1-α)1/n is 1.71x10-5 (where you have n=3000 protein spots 

and α is given as the chance of type I errors or 0.05).  This is a reduced 

significant level which could reduce data sets to a situation with no significant 

results.  Also with decreasing type I errors, it is likely that type II errors will 

increase.      

A method which is generally considered more favourable and practical, is a 

false discovery rate (FDR).  The FDR approach allows for a trade-off between 

power and errors.  The FDR allows for a declaration of the false positives 

expected as part of the p-value, thus when performed it adjusts the p-value for 

every test run.   This has been performed for a number of years on microarray 

data and is making head way into proteomics, which is now dealing with 

increased size of data sets, once only seen in genomics.  DeCyder 2D, GE 

Healthcare now has an option built in to run an FDR which adjusts the p-

values.  The algorithm used was described by Benjamini and Hochberg, 2000.  

Although it was first described by Benjamini and Hochberg, 1995 (Benjamini 

and Hochberg, 1995, Benjamini and Hochberg, 2000, Karp et al., 2007).It has 

been paid relatively little attention as a whole in the proteomics community but 

is going to become of increasing importance as the size of data sets increase.   

This has been an issue for genomics and the use of microarrays for some time 

and has been discussed in microarray literature.  This proves to be a rich source 

of information for the proteomic community to take advantage (Karp et al., 

2007, Liu and Hwang, 2007, Allison et al., 2006, Pawitan et al., 2005a, Nadon 

and Shoemaker, 2002, Pawitan et al., 2005b) 

1.7.3 Statistical Analysis in Proteomics and DiGE 
With regards to the statistical analysis of 2D gels or DiGE the most commonly 

used analytical software is produced by GE Healthcare and is called DeCyder 

2D (version 7.0).  However, there are a number of alternatives.  This 

application has different modules for different analytical tasks, depending on 

experimental design; this is discussed in section 2.1.2.7 (Fodor et al., 2005) 

This software allows the assessment by univariate or multivariate analysis of 

DiGE data.  However, the statistical tests available tend to be of the standard 

parametric tests such as t-tests and ANOVA.  These have been commonly 

applied to many scientific fields and proteomics is no exception.  In order for 

parametric tests to be run an assumption of normal distribution and 



105 | P a g e  
 

homogeneity of variance is necessary.  The majority of 2DE and DiGE studies 

make little attempt to assess their particular data for these assumptions (Dautel 

et al., 2010).  Additionally, many studies look for fold (typically 1.5 or 2x) 

change as an indicator of significance, however, this is not necessarily a robust 

measure of change.  There have, however, been some researchers who have 

investigated the use of statistic in DiGE.  This is especially since proteomics is 

encountering some of the same issues as DNA microarray data analysts have 

been dealing with for some time.   Namely issues such as multiple testing and 

normalisation (as discussed in 1.7.2 ) (Fodor and Nelson, 2005, Kreil et al., 

2004, Chich et al., 2007, Taylor et al., 2003)   

One such study that assessed some of these important assumptions for which 

most studies simply assume, was performed by Karp et al, 2005.  In this study 

it was found that the assumption of normality held as approximately 5% or less 

spots fell under the normality threshold.  The assumption of homogeneity was 

also found to be a robust one.   Equally, this study also suggests technical 

replicates are independent of sample and variance, due to the technique is 

minimal.  Karp et al, 2005 suggests many DiGE experiments are therefore a 

cost vs. significantly balance.  This is backed up in general across biomarker 

discovery, as the discovery phase is generally the cheapest compared to 

validation, giving credence to the top heavy nature in favour of discovery 

research compared to clinical assay development. The paper provides a 

powerful frame work for DiGE users to show greater validity in there results 

by extending data analysis and prove the use of correct statistics.  This is 

important, as currently there is no availability in the DeCyder 2D 7.0 platform 

to perform non-parametric tests (Karp and Lilley, 2005) in the BVA module at 

least.  It would be suggested to do this for every new sample type to make sure 

that the correct statistical test is employed and therefore minimising false 

positive results. This approach, or those similar, is starting to make its way into 

the work flow of the standard DiGE gels, however, the vast majority still do 

not engage with the data much more than superficially and still rely on using an 

arbitrary fold change result as a cut for DiGE or 2DE data.   

Certainly the use of internal standards in DiGE has increased the 

reproducibility.  The use of standards and therefore the need for normalisation 

raises issues about now to normalise data. Keeping et al, 2010 investigated 

various normalisation techniques and their ability to reduce background noise.  
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They discovered that the use of an internal standard was the best way to 

influence noise in a DiGE experiment, equally variance was maximally 

reduced by using an internal standard and performing any type of 

normalisation method (as opposed to none).  The recommendation of the 

authors were to use various methods before deciding on the chosen method, 

however this is likely to lead to a far larger analysis time.  This is particularly 

true in the proprietary analysis software such as DeCyder 2D, GE Healthcare, 

as analysts would be required to engage a complication process of 

normalisation and match using different programs.  Thus it could be argued, 

that the benefits would be outweighed by time and costs, coupled with the risk 

of user error (Keeping and Collins, 2010).   Despite these questions that arise, 

the use of an internal standard has improved quantitation using 2DE and has 

been shown to reduce technical variation immensely, particularly in 

comparison to biological variation (Zech et al., 2011) supported by Karp et al, 

2005. It was further argued that by dropping technical replicates and replacing 

them with biological replication, the statistical power of the experiment can be 

increased (Engelen et al., 2010).  However,  Karp et al, 2009 further 

investigated the idea of biological variation reduction by using a strategy of sub 

pooling and thus show that this technique does not lead to systemic bias, but 

the balance of technical and biological variance is dependent on tissue type and 

the specific experiment (Karp and Lilley, 2009) .  Therefore running technical 

replicate may still be an important step in the DiGE workflow.   

An alternative to assessing normalisation and homogeneity or heterogeneity of 

variance has been proposed by Anderson et al, 2006 in the search for 

biomarkers.  They use a strategy called relative expression reversal (RER).  

This is a set of machine learning algorithms which can assess relative protein 

expression levels.  The algorithm has a classifier that accounts for monotonic 

expression variability which eliminates the need for normalisation and dye 

swapping, a considerable advantage in the reduction of experimental bias.  A 

process of learning occurs via a set of validative standards and normal and 

disease samples, which returned a generalisation score of zero.  They managed 

to discover that tropomyosin isoforms 3 and 4 and a-enolase as the best method 

for discriminating between normal and cancer samples.  This method has been 

applied to microarray data with similar success (Fodor et al., 2005).    Some of 

these issues highlighted are not just of concern to DiGE experiments.  Any 

proteomics method that attempts large numbers of protein quantitation is 
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vulnerable to multiple testing.  Also the assumption of normality and 

homogeneity of variance are often also taken for granted by many 

experimenters.        

So using the recommendation of  Biron  et al, 2006, this study has assessed the 

normality of the DiGE spot data, the homogeneity of variance and applied a 

correction of multiple testing using a false discovery rate  in order to validate 

the use of t-test and ANOVA tests (Biron et al., 2006).   

1.7.4 Univariate Analysis 

1.7.4.1 Student’s t-test 
The Student’s t-test is one of the most commonly applied tests in science.  It 

was first described in Biometrika in 1908 anonymously (Student, 1908) with 

the author A Student hence the acquired name.  The principal of the Student’s 

t-test is to show any significance between sample means.  The Student's t-tests 

employed in this study were calculated within the DeCyder 2D software 

developed by GE Healthcare.  The form of t-test employed depends on what is 

being tested.  In this investigation, an independent t-test was used to compare 

two separate sample population means from each other.  The assumption for 

using the t-test is that the data is normally distributed with homogeneous 

variance. This was calculated and results shown in chapter 3 and 4.    

The Student’s t-test calculated in DeCyder 2D, GE healthcare was a two-tailed 

test in which the program calculated the p-value.  The formula for the Student’s  

t-test and degrees of freedom is given in Equation 3 and Equation 4.  In 

Equation 3 the term µa-µb is the two sample means and the δa-b is the 
deviation term.  The degrees of freedom are given by the sum to the two 

samples – 2.      

t = µa-µb/δa-b  (Equation 1) 

df = Na + Nb – 2  (Equation 2) 

1.7.4.2 Analysis of variance (ANOVA) 
The use of a t-test is useful but limited in the number of populations that can be 

compared.  This was overcome by using a technique first described in 1918 by 

Fisher, “The Correlation Between Relatives on the Supposition of Mendelian 

Inheritance” (Fisher, 1918).  This has evolved and is collectively termed 

analysis of variance, although there are different forms.  It employs much of 
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the theory of Student’s t-tests but allows the inclusion of, at least in theory, any 

number of populations compared to each other.   Once again the analysis of 

variance (one-way and two-way) was performed using the DeCyder Software 

developed by GE Healthcare.  The DeCyder  ANOVA algorithms are 

implemented using multiple linear regression analysis to handle unbalanced 

data sets.  The null hypothesis for the ANOVA is that there is no difference 

between the group means of proteins spot data. It should be noted that it 

indicates a difference in means between groups but does not give information 

of which groups are different.  The ANOVA is performed by calculating the F-

ratio.  This F-ratio is the difference ratio of between group variability and 

within group variability.  This F-ratio is given by the formula: 

                               (Equation 5) 

The 𝑌i denoted the sample mean within the ith group and ni gives the number 

of observations in the ith group.  K signifies the total number of groups and 𝑌 

describes the overall mean.  If this F-ratio is above a critical value then the null 

hypothesis is rejected.  The F-value can be converted into the p-value by 

integrating the area of the F-distribution curve to the right of the f-ratio value.  

This conversion to a p-value allows comparison to a given alpha value (e.g. 

0.05).Once again this p-value can be adjusted using a FDR. 

1.7.4.3 Normality Testing 
One of the assumptions that the Student’s t-test and ANOVA make is that the 

data is normally distributed.  Therefore, in order to use these tests it is 

important to assess the data for normality.   There are a number of ways of 

doing this, however, in this thesis the Shapiro-Wilk goodness to fit test was 

employed.   This method uses the calculation of a W statistic that tests whether 

a sample come from a normally distributed set.  Therefore, it tests the null 

hypothesis that the samples, 𝑥1,  𝑥2…𝑥n, come from a normally distributed 

population.  The W statistic is calculated with the formula; 

                                             (Equation 6) 
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The 𝑥i denotes the ordered sample value, ai is a constant calculated from the 

means, variances and covariance’s of the order samples.  The term𝑥 , is 

calculated by the formula  (𝑥1+𝑥2….𝑥𝑛 )
𝑛

 , which gives the sample means, where n 

is the sample size.  From this, SPSS, IBM (Version 17.0.1) converts the W 

statistic into the more commonly understood p-value (Shapiro and Wilk, 1965).  

If the returned p-value is lower that the assigned alpha level (often 0.05), then 

we reject the null hypothesis of normality.    

1.7.4.4 Homogeneity of variance testing 
Another assumption that needs to be tested before running parametric tests is 

homogeneity of variance.  This is important, as if means are to be compared 

there needs to be a similar degree of variance between samples.  The method 

employed in this thesis to assess homogeneity of variance is the Levene’s test.  

The Levene’s test tests the null hypothesis that the population variances are 

equal and uses the sample variances to do this.  If the returned p-value falls 

below the set alpha level, then the null hypothesis of normality is rejected.   

Once again a W statistic is calculated with the formula; 

                                (Equation 7) 

The Ni denotes the total number of samples in the ith group, N is the total 

number of samples and K is the total number of groups that the samples below 

to.  Yij is the value of the jth sample within the ith group.  The Zij term is the 

difference between Yij and the mean of the ith group.  Z.. is given by the mean 

of all Zij and Zi is the mean of Zij for the ith group.  From this, SPSS, IBM 

(Version 17.0.1) converts the W statistic into the more commonly understood 

p-value by running a quartile of an F-test distribution using the degrees of 

freedom and alpha level.    

1.7.5 Multivariate Analysis performed in the extended data analysis 
module 

1.7.5.1 Principal Component Analysis (PCA) 
Principal components analysis (PCA) is a technique that has been used in 

genomics research, when searching for candidate genes and expression of 

genes (Kawano et al., 2010, Tanaka, 2009, Shimada Y, 2009 ) .  It has also 

been employed in proteomic analysis with regards to LC (Cserháti, 2010, 

Stasiak J, 2010)  It has now been developed into the DeCyder Software, 
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developed by GE Healthcare for the use with spot detection and analysis for 

DiGE experiments.  It is part of the extended data analysis module (EDA), with 

the prospect of clustering groups of proteins or peptides for biomarker 

discovery and group validation.  Therefore it is with the use of this module that 

PCA will be employed in this investigation. 

PCA was developed by Karl Pearson in 1901 (Pearson, 1901), and is an 

exploratory statistical method for mining data to display relationships between 

groups.  It is known as an orthogonal linear transformation.  This means that it 

splits the relationship of data into principal components.  The first component 

has the greatest degree of variance between groups.  Therefore groups that lie 

closer together have less variance from each other.  Each component thereafter 

shows lesser variance between groups (Jolliffe, 1986, Werner Dubitzky, 2007).  

The PCA generated in this thesis was performed using the EDA module 

software from GE Healthcare.  It is known as an orthogonal linear 

transformation which causes a transformation in coordinates to simplify the 

visualisation of large data sets.  This can be defined mathematically.   The idea 

is to reduce a higher order dimensional space, ʀp to ʀq, for a given set of data 

points, 𝑥1,  𝑥2…𝑥n, we reconstruct the data using; 

                                                           (Equation 8) 

This is where ƒ (λ) is the new dimensional space of ʀq, µ is the mean of the 

dimensional space ʀp , ʋq is a pxq matrix with q orthogonal unit vectors and λ is 

low dimensional data point that is being projected.  Choosing µ, ʋq and λ can be 

done in a number of ways depending if you want to limit error or maximise 

variance.     

1.7.6 The problem of missing values 
Two-dimensional gel electrophoresis and DiGE can experience a high 

insistence of missing spot data, which is a problem across other proteomic 

methodologies too. There are multiple strategies for dealing with this situation, 

but in much of proteomic analyses it is simply ignored.   One strategy to deal 

with this could be to concentrate on a limited number of instances where all the 

data is available across all the gels replicates and condition.  This has the 

advantage of maintaining a complete set of replicates and make statistical 

analysis easier.  However, it also means that you reduce significantly the 

number of spots that you include in an analysis, and is seen as a conservative 
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method for dealing with missing values, which is likely to mean missing spots 

with significant expression changes.  Equally, there is a high likelihood that 

even complete data is due to the presence of mismatches in the software or 

variants in abundances or even an absence of protein, so false positives cannot 

be eliminated this way.  This conservative approach also may not be 

appropriate for “fishing style” experiments, where missing markers may be 

considered more detrimental than a gain in false positives.   Dealing with 

mismatches globally is front with difficulties and requires spot by spot 

inspection.  This possesses practical difficulty in gel data, which could contain 

1000s of spots on each gel.  This makes it very labour intensive.  Other 

alternatives exist.   Fortunately, a complete set of data is not necessary to 

perform differential analysis.  Some scientists propose replacing missing values 

with zero, but this assumes a lack of protein.  Additionally, others decide to use 

the nearest neighbour approach.  A statistical approach is to use a simulation; 

for example a combination of the lowest median values and the variance.  

However, caution is necessary depending on the extent of the missing data as 

this may produce bias in any results (Herbert, 2001). A number of methods for 

dealing with missing values in DiGE have been assessed before multivariate 

analysis including; nonlinear estimation by iterative partial least squares 

(NIPALS) algorithm or imputing them by using either k-nearest neighbour or 

Bayesian principal component analysis (BPCA) (Pedreschi et al., 2008b).  

BPCA turned out to be the most successful method in replacing missing values, 

however, the scientific and statistical community is yet to decide on the best 

strategy for this.  It is, however, recognised that this question will become of 

more importance seeing as there is greater and greater sized data sets being 

generated (Chich et al., 2007).  I common mode for replacing missing values is 

to use the algorithm K-Nearest Neighbour (KNN).  This can be used in pattern 

recognition and therefore employed in replacing missing values.  It is used to 

classify cases based on their similarities to other cases.  A K value is set which 

is the number of neighbours you wish the algorithm to use.  In this study the K 

number is set to automatic as the number of nearest neighbours is likely to 

change for each stop.  KNN uses a weighted average of all neighbours assigned 

to estimate the missing values.  One of the advantages of using KNN to replace 

values is that it can estimate both quantitative and qualitative attributes.  KNN 

is a popular method of missing value estimation in DNA micro-array 

experiments (Aittokallio, 2010, Kim et al., 2005, Pan and Li, 2010, Valafar, 
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2002).  The method selects missing spot values for a given proteins and find K 

other spots which have a value most similar to the missing spot value from 

other gels.  A weighted average depending on the relative distances calculated 

is then applied, which is done by the similarity in the spots expression values 

(Troyanskaya et al., 2001).    
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1.8 Summary 
The field of quantitation and biomarker discovery in proteomics is gathering 

pace.  With new technologies such as imaging mass spectrometry and label 

free quantitation to back up the more traditional and well established 

techniques such as 2DE.  DiGE, on the other hand, still remains a powerful 

technique for harnessing the advantages of 2DE and whilst gaining reliable 

quantitation and multiplexing across gels.  The level of data gained from DiGE 

is large and has potential for biomarker discovery.  Developing analytical 

approaches would therefore benefit many different applications of DiGE and 

could be used in prospective data mining when searching for biomarkers.  

In this thesis the DiGE technique was applied to investigating how the 

application of  heat treatment applied to tissue compares to the traditional 

technique of snap-freezing.  This was used to generate a list of potential 

markers that could occur during tissue degradation.  Additionally, the DiGE 

technique was also applied to investigating potential biomarkers of 

hypertension by studying the difference between a WKY, congenic strains and 

SHRSP rat model.  The specific aims are given in the relevant chapters; 

however the general aims of this thesis are summarized: 

• To employ and develop the quantitative method of DiGE to look at tissue 

profiles. 

• To develop analytical strategies to mine quantitative proteomic data from 

tissue samples gained using DiGE.  

• To access the proportion of change in proteomic degradation in heat-

treated and snap-frozen wild type mouse brain tissue. 

• To find candidate examples of proteins or markers of degradation of wild 

type mouse brain tissue. 

• To find putative examples of biomarkers in hypertension.  
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2 Material and Methods 
2.1 Proteomic Methods 

2.1.1 DiGE: Differential in Gel Electrophoresis 

2.1.1.1 Tissue collection and extraction 
All tissue harvested for experimentation in this thesis was collected in line with 

the U.K. Animals (Scientific Procedures) Act, 1986 and local ethical guidelines 

of Glasgow University.  Specific details of tissue collection can be seen in the 

methods sections of the experimental chapters.  All animals (mice and rats) 

were euthanatized by cervical dislocation and dissection was performed 

immediately.  Any material that was taken for experimental purposes was snap-

frozen in liquid nitrogen immediately after dissection (unless where specified 

in chapter 3) and then stored at -80oC.   

Sectioning was performed using a cryostat microtome (Leica Microsystems 

CM 1900UV, UK). Typically, tissue was mounted using an embedding 

medium supplied by Leica (Leica Microsystems CM 1900UV, UK 

cat#14020108926).  Any tissue in direct contact with this embedding medium 

was not used for experimental purposes, in order to limit contamination of 

upstream processes.  Sectioning was typically at 14µl thickness unless 

otherwise stated. 

After sectioning of tissue samples was performed, either a small pre-chilled 

brush was placed in 1.5ml eppendorf tubes, or sections were thaw mounted 

onto slides.  The eppendorf tubes used were pre-chilled and an antistatic gun 

was used to prevented loss of sample due to repulsion.    

2.1.1.2 Sample clean-up, desalting and precipitation 
After tissue samples were solubilised in sample lysis buffer, they were taken 

into a clean-up process to minimise salts, which may affect first dimension 

separation (isoelectric focusing).  A 2D clean up and preparation kit was used 

to achieve desalting and precipitation of proteins (GE Healthcare, UK cat#80-

6484-51). The 50µl of solubilised sample and lysis buffer was taken and placed 

in a 1.5ml eppendorf tube in preparation for micro centrifugation.  Then 300µl 

of precipitant solution was added and mixed by vortexing.  The mixture was 

then rested on ice for 15 minutes.  After resting a 300µl of co-precipitant was 

added and mixed by vortexing.   The samples were then centrifuged for 5 

minutes at 12000 x g or until a white pellet was clearly visible.  The tubes were 
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carefully placed with the hinges on the outside of the circumference.   The 

supernatant was removed by carefully pipetting using a Gilson pipette.  If the 

pellet was disturbed centrifugation was repeated.  The tubes were placed back 

in the same orientation and spun for 1 minute at 12000 x g to bring out any 

more supernatant.  Any remaining supernatant was removed, using a pipette as 

before. Co-precipitant of 40µl was added to the top of the pellet and the tubes 

were left on ice for a minimum of 5 minutes and not longer than 8 minutes.  

The tubes were centrifuged for a further 5 minutes at 12000 x g in the same 

orientation.  The supernatant was removed as before.  Once the supernatant 

was discarded 25µl of ddH2O was placed on top.  The tubes were then vortexed 

until the pellet was dispersed.  If the vortexing took longer than 30 seconds, 

another wash step with co-precipitant was repeated.  Once the pellet was 

dispersed 1ml of pre-chilled wash-buffer and 5µl of additive was placed on top 

of the pellet and placed at -20oC for at least one hour, but usually overnight.  

The tubes were vortexed every 10 minutes for 1 hour.  After that, the tubes 

were taken and centrifuged for 5 minutes at 12000 x g.  The supernatant was 

removed and discarded.  The pellet was air dried for approximately two 

minutes.  The pellet could then be stored at -80oC or re-suspended in DiGE 

lysis buffer (section 2.2.7).                 

2.1.1.3 Protein concentration Determination 

2.1.1.3.1 Bradford Assay 
The main mode for determining the protein concentration of samples in this 

thesis was the use of a Bradford Assay.  The Bradford Assay has a linear range 

over 0.125–1.5 mg/ml or 0.125-1.5µg/µl.    If necessary, the sample was 

diluted into this range for accurate analysis.  The bovine serum albumin (BSA) 

standards used were obtained from Biorad, UK (catalogue #500-0207) with 7 

pre-diluted standards of 0.125, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0 mg/ml.  A standard 

curve was prepared in triplicate, and needed to have an R2 value of 0.95 or 

more in order to be used for quantitation of protein concentration.  Samples 

were diluted to the same volume of 100µl using water.  Then 100µl of 

Bradford Assay Reagent (Biorad, UK) was used to cause the colour change.  A 

Tecan Genios (Tecan, UK) plate reader was used and wave length set to 

595nm.  Standard and sample were all performed in triplicate.         
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2.1.1.3.2 Bioanalyser Chip 
In the movement towards small sample proteomics, an initial attempt was made 

to access the validity of using Agilents, UK 2100 Bioanlyser chip technology 

for use with DiGE to move into using saturation labelling with small protein 

tissue samples.  The findings are discussed in the discussion in section 5.5.2.  

Wild type OCR 21 weeks mouse brain tissue was sectioned and solubilised in 

Phosphate Buffered Saline (PBS), DiGE saturation labelling lysis buffer (see 

Figure 5-4) full and half concentration, 6M urea in PBS and 30mM tris in PBS 

.  The solutions and lab-on-a-chip, called Agilent Protein 230 Kit came from 

Agilent, UK cat# 5067-1517.  This kit can be used to quantify a number of 

proteins between 14-230KDa in molecular weight.  

Firstly, a gel dye mix and destaining solution must be made.  The dye 

concentrate and gel matrix from the kit were allowed to rise to room 

temperature for 30 minutes.  The dye concentrate was vortexed and centrifuged 

briefly then 25µl was pipetted into the gel matrix solution.  This was stored on 

ice in the dark. This mixture was vortexed and centrifuged for 15 seconds. This 

has created the working stock of gel/dye mix, this was placed into a spin filter.  

The destaining solution was prepared by transferring 650µl of gel matrix into a 

spin filter.  When required, these spin filters were centrifuged at 2500 x g for 

15 minutes.  They can then be stored at -20oC until required.    

When the chip was run, all solutions were allowed to thaw and warm to room 

temperature for 10 minutes.  The denaturing solution was prepared by placing 

200µl of sample buffer into a vial (supplied) and adding 7 μl of 1 M 

Dithiothreitol (DTT) solution and Vortex for 5 seconds.  The samples are 

prepared by placing 4µl of sample and 2µl of denaturing solution into a vial 

and centrifuging this for 15 seconds.  For the protein ladder, 6µl should be 

added in place of the sample.  All samples and ladder were heated for 5 

minutes at 100oC in a heating block.  Samples and ladder were allowed to cool 

and then briefly centrifuged.  Finally add 84µl of ddH2O was added and 

vortexed.   

Once all solutions were complete, the samples were loaded onto a chip. The 

chip was placed ready in the chip priming station. To load the chip, first 12µl 

of gel/dye solution was loaded into the section marked G and closed the 

priming station at the 1ml mark. 60 seconds were allowed and then the plunger 

was released.  After waiting a further 5 seconds, the plunger was pulled back 

and any excess solution was removed.  This process was repeated for the 4 
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wells marked with G.  Then 12µl of destaining solution was pipetted into well 

DS.  Now the samples were loaded into wells labelled 1 to 10 using 6 µl as 

prepared above.  Wells 1-6 were BSA standards used in section 2.1.1.3.1, 7-10 

were mouse brain tissue.  Then the ladder was placed in the well marker with a 

ladder.  The chip was inserted into the bioanalyser chip reader and the 

programme was started by File>electrophoresis>start.  A standard curve can be 

produced by the separation and unknown samples quantified.                        

2.1.1.4  Glass plate preparation 
Prior to gel casting, the glass plates were cleaned using 10% v/v De-con 

solution and thoroughly rinsed in very hot water and allowed to dry by 

evaporation.  Gel plates used for preparative gels were taken and the 

long/backing plate wiped with approximately 4 ml/plate of bind saline solution 

(section 2.2.3).  This made sure the gel adhered to the plate for spot picking 

when the front plate was removed.  There was no need to prepare analytical gel 

plates with bind silane, as the removal of the front plate was unnecessary.   In 

addition to using bind silane, two fluorescent reference markers (GE 

Healthcare, UK) were placed onto the gel side of the long/backing plate as 

shown in Figure 2-1.  Positioning of the markers was not made too centrally to 

avoid any interference with protein spots.  The markers were used to provide 

coordinates for the spot handling work station in order to pick any selected 

protein spots.  It was crucial to place them correctly and in line with each other 

in order for camera recognition to take place.   

 

Figure 2-1:  Position of gel reference markers.  The fluorescent reference markers are 
used to position the plate and ensure accurate spot picking. 
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2.1.1.5 Polyacrylamide Gel Solution preparation and gel casting assembly 
A 12.5% Sodium Dodecyl Sulphate -Polyacrylamide Gel Solution was 

prepared using the proportions of the relevant solutions described in section 

2.2.9.  The solution was filtered using a stericup and vacuum pump (Millipore, 

UK).  The filter pore size was 0.22 µm and filtered out any contaminants that 

may impede the path of proteins.      

An Ettan Dalt II gel caster was used for gel plate assembly and pouring of 

SDS-PAGE gels.  The gel caster is a large plastic casing that allows for the 

casting of up to 12 gels at once.  This required 900ml of solution.  When more 

than 12 gels were needed, a second caster was employed but enough solution 

was made to fill both casters to maintain consistency in the gels.  The caster 

was assembled before the addition of the TEMED and Ammonium persulphate 

(APS). The TEMED APS was added just before pouring to avoid the gel 

setting in the bottle.   

The caster was assembled by the alternation of a thick acetate sheet, a back 

plate (with rubber spacers of ~1-2mm), short front plate and then another 

acetate sheet.  The first acetate prevents the glass plate adhering to the caster, 

while the other acetate sheets stop adhering of glass gel plate to gel plate.  Any 

gap was filled using further acetates or a blank plastic gel plate.  To allow for a 

small amount of expansion, a gap must be left at the front of about 1mm.  The 

front of the caster is screwed into place maintaining the gasket into the pre-

machined groove, which maintains the seal and prevents the gel solution 

leaking.   

Once assembly was complete, the TEMED and APS was added and mixed 

thoroughly by vortexing.  A funnel was inserted into a grommet at the top of 

the gel caster and the gel solution was poured at a steady rate. As the caster 

fills from the bottom, the gel rises.  At this point it was important to minimise 

the air that was allowed to enter the gel caster.  The caster was tapped 

occasionally, to encourage the solution to rise and to displace the odd air 

bubble.  When the rising gel line reached approximately 15mm from the top 

(but not at the top) about 50-100mls of displacing solution (section 2.2.4) was 

added to the funnel which brought the gel line up with about 5-7mm to spare 

ready to accept the IPG strip from the first dimension.  Once the gel line had 

stopped, a water saturated iso-propanol solution was gently poured or pipetted 

over the top of the gel plates.  This allowed for a straight gel line, which is 
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important to enable transfer of all the protein from the first to second 

dimension.  The top was covered to prevent evaporation of the water saturated 

iso-propanol and to prevent dehydration.  The gels were then allowed to 

polymerise for a minimum of 4 hours, but usually overnight.  At this point the 

gels were removed from the caster and stored after cleaning with dH2O.  For 

storage, dH2O was pipetted into the 7mm gap and gels were then wrapped and 

stored at 4oC.  The gels were always used within 1 week of manufacture.  All 

polyacrylamide waste from the gel caster was stored for appropriate disposal.                             

2.1.1.6 Labelling and preparation of Dyes 
All supplies for DiGE were obtained by GE Healthcare, UK.  For DiGE using 

minimal labelling a kit was purchased containing all three Cy dyes required 

(cat# 25-8010-65).   The DiGE process uses fluorescent Cyanine dyes.  The 

process of minimal labelling is covered in the introduction of this thesis 

(section 1.5.3.1.1).   

There are 3 spectrally resolvable Cy dyes for minimal labelling.  In the 

experiments outlined in this thesis Cy 2 was employed to label the internal 

standard and Cy 3 and 5 were used to label experiment samples.  The 

employment of Cy 2 for the internal standard is usual practice in the literature 

reviewed.  The internal standards comprise of a combination of all samples 

used in the experiments described in chapters 3 and 4.  For example in chapter 

3 in the pilot investigation (see section 3.4.4.1) for 9 analytical gels a total of 

450µg is required (50µg per a gel).  In order to achieve this, 150µg must be 

taken from the each of the 3 sample groups and pooled for the internal 

standard.  In addition a further 500µg is required for preparation gels to pick 

spots for MS identification.   

2.1.1.7 Reconstitution of Minimal Cy dyes 
The labelling procedure follows closely the protocol outlined in the product 

booklet entitled “Amersham Cy dye DIGE Fluors (minimal dyes) for Ettan 

DIGE” produced by GE Healthcare, UK.  The first process in minimal 

labelling is the reconstitution of the Cy dyes using anhydrous 

dimethylformamide (DMF).  This must be of the highest quality and no older 

than 3 month due to the risk of contamination with water from the atmosphere.  

The Cy dyes were removed from storage at -20oC and thawed for 5 minutes at 

room temperature.  After thawing, 25µl of DMF is added to each vial of Cy 2, 

Cy3 and Cy5 dyes.  This gives a working dye concentration of 0.4nM.  The 
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tube was then vortexed for 30 seconds. Subsequently, to avoid continuous 

thawing the Cy dyes were divided into 1µl aliquots using 0.5ml eppendorfs.  

1µl of working dye solution was sufficient to label 50µg of protein sample.  

When ready to label, the 0.5ml eppendorfs were centrifuged briefly to ensure 

all working dye solution was in the bottom of the tube, ready for pipetting. 

2.1.1.8 Reconstitution of Saturation Cy dyes 
The procedure for the reconstitution of saturation Cy dyes is similar to that for 

minimal Cy dyes.  The reconstitution of saturation dyes also used anhydrous 

DMF.  The Cy dyes were removed from storage at -20oC and thawed for 5 

minutes at room temperature.  After thawing, 50µl of DMF was added to each 

vial of Cy3 and Cy5 dyes giving a working concentration of 100nmol.  The 

tube was then vortexed for 30 seconds. Subsequently, to avoid continuous 

thawing, the Cy dyes were divided into 1µl aliquots using 0.5ml eppendorfs.  

1µl of working dye solution was sufficient to label 5µg of protein sample 

2.1.1.9 Minimal labelling 
The minimal labelling protocol requires a concentration of protein to be 

between 1µg/µl and 20µg/µl.  All experimental samples used in this 

investigation had a protein concentration in this range.  Minimal labelling was 

performed for samples in chapters 3 and 4.  Experimental groups were 

prepared by placing a total protein content of 50µg of each sample into a 1.5ml 

eppendorf for each of the specified Cy dyes (see experimental design in 

chapters 3 and 4 for corresponding sample groups).  The total volume needs to 

be made up to 10µl using the addition of an appropriate volume of DiGE lysis 

buffer (section 2.2.7).  One 1µl of the aliquoted Cy dye was added to the 

respective samples.  The dye and sample were vortexed and centrifuged briefly 

and incubated on ice for 30 minutes in the dark.  After incubation 1µl of 10mM 

lysine was added to stop the reaction by binding to any excess dye.  It was 

mixed by pipetting and briefly centrifuging.  It is left for a further 10 minutes 

on ice in the dark.  Samples were always taken straight into first dimension in 

this investigation.  However, it is possible to store samples in the dark at -70oC 

for up to 3 months.                            

2.1.2 Saturation/scarce sample labelling. 
Saturation was performed in this investigation only at the end in order to start 

the optimisation for future work (see chapter 5).  Labelling using saturation 
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dyes is slightly more time consuming and complicated in comparison to 

minimal labelling.   

A 5µg sample was added to the required 1µl of working dye solution from the 

reconstituted dyes aliquots (as described in section 2.1.1.8).  The volume was 

made up to 9µl using DiGE lysis buffer (section 2.2.8).  At this point a certain 

volume of TCEP was added.  The amount of TCEP added depended on the gel 

in the Dye optimisation experiment (see section 2.1.2.1).  A 2mM TCEP 

solution (Sigma Aldrich, UK) was prepared by dissolving 2.8mg of TCEP in 

5ml of  ddH2O.  The respective volumes were added to create different 

concentrations of dye for each gel of 2nmol, 4nmol and 8nmol.               

2.1.2.1 Saturation Dye concentration determination 
For the dye optimisation experiment OCR male 21 week old mouse brain tissue 

was used.  TCEP is used to reduce the formation of disulphide bridges, 

therefore samples with a high Cysteine content require more TCEP.  The ratio 

of dye to TCEP should always be at 2:1, therefore dye concentration needs to 

be optimised.  Figure 2-2 shows the relative amounts of TCEP and dye used in 

the dye optimisation experiment.  The concentrations of 2nmol, 4nmol and 

8nmol concentration were tested.     

 

Gel 2mM TCEP (µl) TCEP (nmol) 2nM Dye (µl) 
Dye 
(nmol) 

1 0.5 1 1 2 

2 1 2 2 4 

3 2 4 4 8 

         

Figure 2-2:  Table showing relative concentration used in saturation dye optimisation 
experiment.  ”   

2.1.2.2 1st Dimension and rehydration loading 
After labelling the three respective Cy dyes 2, 3 and 5 for 1 gel were mixed by 

vortexing and centrifugation.  At this point 440µl of rehydration buffer (section 

2.2.10), Dithiothreitol (DTT) and IPG buffer were added fresh to stocks) was 

added to the mixed Cy dye and protein sample giving a total volume of 452µl.  

The first dimension separates the sample on the basis of their charge using 

isoelectric focusing.  The process was performed using GE Healthcare, UK; 
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Amersham’s Ettan IPGphor system.  450µl of the sample, Cy dye and 

rehydration buffer for 1 gel was loaded onto an immobilised pH gradient dry 

strip gel.  The gradient used in the minimal labelling experiments of chapter 3 

and 4 was pH 4-7.  The strip used in the saturation dye concentration 

determination experiment had gradient of pH3-10 (see chapter 5).  The IPG 

strips were 24cm in length.  In order to perform isoelectric focusing the 450µl 

sample mixture was placed in a ceramic strip holder by slowly pipetting an 

even amount along the length of the holder, the IPG strips were removed from 

the cover exposing the gel face.  The gel face was laid down onto the sample, 

with the positive end of the strip to the pointed end of the ceramic strip holder.  

Care was taken not to introduce air bubbles.  Any air bubbles were then 

expelled using a syringe needle.  After all bubbles were expelled, 1.5ml of 

mineral oil (Amersham Bioscience, UK) was laid on top of the strips and 

sample to prevent evaporation.  The positive end was placed on the anode of 

the IPGphor machine and the negative tail onto the cathode.  There were up to 

12 ceramic strip holders run at any one time.  The programme used for IEF was 

done in steps.  First, the strip was stepped to 30 volts and held for 14 hours, 

then stepped and held at 500 volts for 1 hour, and then to 1000 volts for 1 hour.  

After, the voltage was ramped up in a gradient to 8000 volts over 1 hour and 

then held for 10 hours.  Strips were allowed to accumulate a minimum of 

75000 volt hours and never taken off with less than this.  Strips were typically 

only stored for 1-2 days at -20oC if not immediately taken into the 2nd 

dimension.            

2.1.2.3 IPG strip equilibration 
Before the second dimension IPG strips must be equilibrated.  IPG strips were 

placed in plastic tubes following isoelectric focusing.  Strips were then either 

frozen and stored, or taken straight into IPG strip equilibration buffer (SEB) in 

preparation for the 2nd dimension.   SEB was poured into the plastic storage 

tubes (frozen or non-frozen) and placed on a slow speed shaker at 

approximately 30 Cycles/min.  Equilibration was split into two steps.  First, 

strips were equilibrated in 10mls of SEB with 10mg/ml of dithiothreitol (DTT) 

for 15 minutes.  Secondly, strips were equilibrated in 10mls of SEB with 

25mg/ml of iodoacetamide for 15minutes.  Intermittently between 

equilibration, strips were washed using 1x running buffer.  The first stage of 

equilibrium with the addition of the reduction agent DTT causes the reduction 

of the thiol groups causing the disulphide bridges to break.  This occurs by two 
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sequential thiol-disulfide exchange reactions resulting in DTT becoming a six-

member ring structure as shown in  

 

Figure 2-3:  Reduction of a disulphide bridge.  

The second wash with iodoacetamide (which is an alkylating sulfhydryl 

reagent) prevents the reformation of disulphide bridges by binding covalently 

to free sulphides during the second wash during equilibrium.  Absence of this 

step leads to gel distortion and an aberrant gel image (Herbert, 2001).  The 

bromophenol blue contained in the SEB allowed for the dye front to be tracked 

when the gel was run in the 2nd dimension.        

2.1.2.4 2nd Dimension 
The second dimension separates proteins on the basis of their molecular 

weight.  After equilibration strips were rinsed and placed horizontal across the 

top of 24 cm (large format) gels, which had to cast prior to running strip 

equilibration.  The top of the gels were filled with 1x running buffer (section 

2.2.1) to aid the insertion of the IPG strips.  IPG strips were rinsed in 1 x 

running buffer to take off any of the equilibration buffer from the previous 

step.  Using a pair of tweezers, the strips were carefully placed onto the top of 

the SDS-PAGE gel, being careful to allow any bubbles to rise above the strip.  

The acidic end was placed to the left hand side with the gel side facing out.  

Finally, the strips were held in place with 2ml of Agarose sealing solution.  The 

gel tank was supplied by GE Healthcare, UK; Ettan Dalt II system.  The slots 

of the gel tank were lubricated with 1x running buffer to allow smooth entry of 

the glass plates and to prevent damage to the seals and electrodes.  Before the 

gels were placed into the gel tank, 1x running buffer was poured into the 

bottom half of the tank (approximately 8 litres) and then the gels were slotted 

into position.  The tank was then topped up with 2x running buffer in the top 

half.  When the lid was secured the gels were ran at 1-2 Watts per gel overnight 

or until the dye front reached the bottom of the gel.  The gel tank was covered 

to avoid dye degradation for the period of running.      
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2.1.2.5   DiGE gel scanning  
Gel scanning was performed using Typhoon 9400 variable mode imager (GE 

Healthcare, UK).  Glass plates were cleaned and rinsed, in order to discard any 

residue of running buffer before placing the glass plates onto the scanner.  A 

metal frame is placed on the scanner’s glass platen to hold the glass plates in 

place.  Plates were placed long/backing plate down on the glass platen with 

acidic end of the strip in the top left hand corner.  Scanning for analytical gels 

was performed immediately after 2nd dimension in order to minimise protein 

spot diffusion and bleaching of fluorescent signal.  Despite this, subsequent 

scans up to 4 days later showed very little diffusion and strong signal providing 

they had been stored out of the light.  Scanning of preparative gels took place 

directly after Sypro Orange staining.  Initially, when scanning either analytical 

or preparative gels, a low resolution “pre-scan” of 1000 microns was used for 

each DiGE channel or Sypro orange.  This was done to assess the optimal PMT 

voltage to use.  Gels were subsequently saved in a DiGE format as .gel file.  

For analytical gels the three channels for Cy2, 3 and 5 (or just Cy3 and 5 for 

saturation labelling) were also saved as a data set file or .ds.  For the analytical 

gels as part of the pre-scan PMT voltage was also balanced between the three 

Cy channels.  In order to perform accurate quantitation analysis, gel channels 

must be on average no more than 15% different from the corresponding spots 

within that gel, this allows accurate normalisation downstream in the analytical 

software DeCyder.  This task was performed in Image Quant software (version 

5.2, Amersham Bioscience, UK).  Spots with a greater maximum intensity 

value than 100,000 were classed as saturated and are not quantifiable.  The 

number of spots that had an intensity value of 100,000 was minimised.  Once 

the PMT voltages were determined for all channels, all the gels were then 

scanned at those specific voltages at 100 micron resolution.  The different 

CyDyes need scanning using different wave lengths.  Cy2, 3 and 5 are scanned 

at 488,532 and 633nm using a blue, green and red laser respectively.  

Analytical gels were then stored in the dark in anticipation of any need to 

rescan. Preparative gels were stored in 7.5% acetic acid solution, before 

proceeding to picking on the Spot handling work station.     

2.1.2.6   Preparation gel staining with Sypro orange 
On completion of the second dimension, preparative gels were placed into 

approximately 500ml of fixative solution (10% methanol and 7.5% acetic acid) 

for a minimum of 2hrs.  If stored overnight a 1hr wash in 500ml of 0.05% SDS 



125 | P a g e  
 

solution was preformed, as Sypro orange binds to SDS.  Staining was 

performed using Sypro Orange (Molecular Probes, UK) at a dilution of 

1/10000 in 7.5% acetic acid for 2hrs before being washed in ddH2O removing 

excess stain from the surface.  Afterwards, washing gels were scanned, in order 

to visualise protein spots to allow for matching and picking downstream.  

Staining and storage of gels was performed in a clean polyethylene try to avoid 

bleaching from light.  Scan of preparative gels was performed at 580nm using 

the green laser, once again scanning at a 1000 microns to determine a PMT 

voltage and then at the higher resolution of 100 microns. 

2.1.2.7   Software Analysis: DeCyderDeCyder 
The software used for matching, image analysis and statistical analysis was 

Decyder2D version 7 upgraded after using Decyder5 (GE Healthcare, UK).  

The software is made up of several modules; Image loader, Batch processor, 

differential in gel analysis (DIA), biological variance analysis (BVA) and 

extended data analysis (EDA).  A summary of the work slow is illustrated by 

the home screen of the DeCyder Software shown in Figure 2-4.   

 

Figure 2-4:  Home screen of DeCyder 2D software version 7.  The home screen illustrates 
the sequence of workflow. 

Before analysis using DeCyder, the gels’ images where cropped after image 

acquisition using ImageQuant tools (molecular Dynamics, UK), this removed 

any unusable regions of the gels such as the extremities, which may affect spot 

detection.   An analysis in the DeCyder software is started by using the image 

loader to input the .gel / .ds files from image acquisition.  The batch processor 

was employed to open and save DIA module files.  This process involved 

invoking the algorithm (algorithm detection version 6.0) for spot detection by 
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search for the maximum 10,000 spots, which improves the algorithms capacity 

for detection.  Additional spots less than 29000 volume were excluded as dust 

particles.  This batch processing saved a great deal of time, compared to 

manually inputting up to 18 gel images into the DIA.  Additionally, as the DIA 

is used solely for the comparison of two gels/channels, only limited amount of 

time was spent using this module, however, files must be saved in .DIA format 

prior to exporting into the BVA module.  DeCyder version 7 is more powerful 

than version 5, with an updated algorithm and better automated warping and 

spot detection.  Although a small amount of analysis on the pilot study of 

chapter 3 was analysis using DeCyder 5, the rest of the experiment work for 

chapter 3 and 4 was done using DeCyder 7.  The batch processor also allowed 

for the creation of .BVA files that can be entered into the next part of the 

DeCyder workflow.       

2.1.2.8   Biological Variance Analysis (BVA) module 
After batch processing and the creation of .BVA files, they were then opened 

using the BVA module.  The DIA modules algorithm allowed for the 

identification of spots on a particular gel, however, the BVA module is used 

for analysis and matching.  Matching is a semi-automated process in reality.  

The BVA module in the most part is successful in matching spots across gels, 

by using the internal standard.  However, in practice, a great deal of time is 

spent disassociating poorly matched spots and re-associating them with the 

correct spots across all channels.  With up to 18 gels and a preparation gel this 

could be 55 different images.  This took about 1-2 weeks of constant matching 

and checking.  Once again DeCyder 7 performed matching better than 

DeCyder 5. The matching process starts by assigning some reference spots 

manually, the more chosen the greater the matching efficiency, about 50 spots 

from each channel was initially matched manually.  This was performed by 

defining a master Cy2 image and matching all the other internal standards to 

this.  The master image was picked on the basis of visually being the best, with 

well defined, numerous spots and the least streaking.  The automated process 

could then be initiated and then manually checked for correct associations.   

Once matching was complete, the analysis could start.  The type of analysis 

performed in this thesis is discussed in sections 3.4.5 and 4.4.4.2 of chapter 3 

and 4 respectively.  A pick list was then generated from spots of interest (see 

section 2.1.2.10).     
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2.1.2.9   Extended Data Analysis (EDA) module 
The EDA accepts BVA files and works on the basis of defining a working base 

set.  A number of filter options are available and groups can be redefined from 

the original BVA files.  The only analysis performed in the EDA module 

(which was newly acquired towards the end of this investigation) was the 

performance of principal component analysis.  The processes using the EDA 

are relatively automated.  Once the base set is defined, a number of statistical 

operations and comparisons can be made, from differential analysis (which 

could be performed in the BVA) to looking at k-means and hierarchical 

relationships.  The PCA analysis was performed by selecting the required 

display and clicking calculate.     

2.1.2.10 Pick list generation and spot picking 
Pick list generation for spots of interest was done using DeCyder Software (GE 

Healthcare, UK).  Pick list provided coordinates in relation to the place 

fluorescence reference markers, which were either automatically or manually 

selected in the software.  The pick list can then be exported to the spot handling 

work station. 

The Ettan Spot Handling Workstation is a fully automated system for handling, 

picking, digesting and ultimately spotting digested protein samples on MALDI 

target plates or into a 96 well plate for LC-ESI-MS from 2D or DiGE gels.  

The gels are placed in definable positions in the unit, and all identification is 

done by barcodes.  The preparative gels are placed into a gel holder which is 

barcoded with the short plate removed.  The gel was covered with water to 

prevent dehydration.  The reference markers need to be placed between two 

parallel lines for camera recognition.  All setup needed to take place before 

starting the work flow.  All preparative gels needed for picking were placed in 

the designated places and barcodes scanned.  The appropriate number of 

barcoded 96 well plates are placed in the designated position and scanned.  The 

96 well plates are needed for placing picked gel pieces, performing digestion 

drying and subsequent spotting. Therefore, for every 96 spots picked, two 96 

well plates are required, one for the picked gel piece and one for the final 

protein solution.  In addition a 192 MALDI plate was inserted into the designed 

barcode holder, placed in the relevant slot in the unit and scanned.  All 

solutions were topped up (section 2.2.11).  When the sequence started, the 

work station confirmed all the scan elements by rescanning all the barcode 

(thus linking that object to that position).  The gel was then moved ready for 
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spot picking.  The camera confirms the reference markers and spot picking 

begins using the 1.4mm picking needle, going through the assign pick list.  The 

plugs were incubated in 300µl of 50mM Ammonium bicarbonate in 50% 

methanol for 30 minutes, followed by a drying phase for 30 minutes.  The 

digestion phase followed by adding 20mM ammonium bicarbonate followed 

by trypsin (Promega, UK) 1:100, by weight. in 25 mM ammonium bicarbonate.  

The gel plug and trypsin were then incubated at 37oC for 4 hours to cause the 

digestion of protein to peptide allow their extraction from the gel.  To wash the 

peptides out 125µl of 50% ACN/0.1 trifluoroacetic acid (TFA) was placed with 

the gel plug and incubated for 30 minutes.  This solution was then removed and 

placed into the second 96 well plate and dried.  The spotting took place (when 

required) by the addition of 3µl of 50% ACN/0.2%TFA.  A small fraction of 

this (0.5µl) was drawn up and spot with 0.5µl of matrix α-Cyano-4-

hydroxycinnamic acid and spotted onto 192 4700 target plates.  The target 

plates were not left for longer than 1 hour before placing into the MS and into 

vacuum.          
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2.1.3 Protein identification using Mass Spectrometry 
Two types of mass spectrometer were employed in the identification of protein 

samples during this investigation.  Firstly, gel spots excised and digested by the 

spot handling workstation were spotted onto 192 target plate for MS analysis 

using 4700 Proteomics Analyser (Applied Biosystems, UK).  This is a 

MALDI-TOF-TOF-MS with automated plate cassette.  This was an excellent 

start in protein identification of a large amount of spots.  1000 spots could be 

analysed in about 4 days, compared to 100 using an LC-ESI-MS.  Any spot of 

importance undetected were further analysed using QStar Pulsar i (Applied 

Biosystems, UK).  This was a ESI-QUAD-TOF-MS.  The mass spectrometer 

was coupled to a LC Packings, NL LC system with FAMOS auto-sampler and 

injector.  The column used was a 15cm, 75 μm C18 3 μm particle size, 100Å 

pore size PepMap (Dionex, UK).  The column was stored at 37 ºC in an oven.  

There were two solvents used to form a gradient for elusion.  Solvent A was a 

2 % acetonitrile, 0.1 % formic acid solution and solvent B was an 80 % 

acetonitrile, 0.1 % formic acid solution.  The samples were first loaded onto a 

trapping column, for 5 minutes and washed to protect the more expensive C18 

column and to hold the sample for valve switching.  The loading solution for 

the trapping column was 2 % acetonitrile, 0.5 % tri-fluoroacetic acid solution.  

The follow rate for loading onto the trap was set at 200µl/min and the follow 

through the column was 0.3 µl/min.  Solvent A and B were introduced, using 

the following gradient.  The ratio of solvents was 95 % solvent A and 5% 

solvent B for the first 10 minutes, this ratio ramped up to 80% solvent B and 

20% solvent A over 30 minutes.      

2.1.3.1 Matrix-assisted laser desorption ionisation time of flight mass 
spectrometric analysis 

Analysis was carried out using the 4700 Proteomics Analyser (Applied 

Biosystems, UK).  The MS was operated in positive reflector mode using a 

relative laser intensity of around 2500-4500 depending on the signal observed. 

The MS and MS/MS data was generated using the following methods: 
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2.1.3.2 MS Acquisition method: 
For the acquisition of spectra the following settings were used; 

• Mass range (Da): 800 to 4000 

• Focus mass (Da): 1700 

• Matrix: alpha-Cyano-4-hydroxycinnamic acid 

• Total Spectrum: 2000 shots (100 shots/sub spectrum) accepting every sub 

spectra discard the first 50 

• Automatic control:  Random with centre bias at fixed laser intensity of 5250  

• Final detector voltage: 1916 

2.1.3.3 Processing Method: 
For the calibration and processing of the collected spectra the following 

settings were used; 

• Calibration performed internally using common trypsin peaks e.g.. 842.510, 

1045.564, 2211.105 

• Mass tolerance: +/- 1 m/z 

• Max outlier error: 20ppm 

2.1.3.4 MS/MS Interpretation and Acquisition method: 
For the collection and interpretation criteria for MS/MS to be performed on 

precursor ions the following settings were used; 

• Exclusion list:  All common/known trypsin peaks. 

• First 10 precursor masses selected on the basis of highest intensity first. 

• Fragmentation: Collision Induced Dissociation 

• Mass range (Da):  10-1361.535 

• Focus mass (Da): 1296 

• Matrix: alpha-Cyano-4-hydroxycinnamic acid 



131 | P a g e  
 

• Total Spectrum: 5000 shots (250 shots/sub spectrum) accepting every sub 

spectra discard the first 10 

• Automatic control:  Random with centre bias at automatic laser intensity 

adjustment to maximum of 6000 

• Final detector voltage: 1916 

2.1.3.5 LC-ESI-QUAD-TOF Mass Spectrometry 
If identification was not achieved using 4700 Proteomics Analyser, then an 

Electrospray ionisation MS was performed using the QStar Pulsar i (Applied 

Biosystems, UK) which is an ESI-QUAD-TOF-MS.  The 96 well digested 

sample plates created by the spot handling workstation were used and the 

peptides solubilised and injected into the MS via an LC system (described in 

section 2.1.3).  The methods used to generate the MS and MS/MS data is 

shown below.    

The method is made up of 1 TOF MS+ scan and 4 Product Ion scans. 

• MS+ scan 

• accumulation time: 3.000069seconds 

• polarity: positive 

• Cycle time: 14.9959 

• Cycles: 136 

• Delay time: 0 

• tof masses:  400amu to 1500 

• Transmission window:  380amu at 100% 
 

2.1.3.6 Switch Criteria  
The switch criteria were as follows: 

• with charge state:  2 to 4 

• which exceeds: 15 counts 
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• exclude former target ion: 180 seconds 

• mass tolerance of: 300mmu  

• 4x Product ion scans 

• Product of: 1 

• accumulation time 3.000069 seconds 

• polarity: positive 

• Cycle time: 14.9959 

• Cycles: 136 

• Delay time: 0 

• tof masses: 50amu to 2000 

2.1.3.7 Advanced MS  
The advanced MS criteria and transmission window were as follows; 

• 30 amu 16.7% 

• 75amu 16.7% 

• 150amu 16.7% 

• 300 amu 16.7% 

• 600amu 16.7% 

• 1200amu 16.7% 

2.1.3.8 Identification using Mascot database searching. 
The data for the MALDI-TOF-TOF was submitted to mascot database 

searching version 2.1 using Applied Biosystems GPS explorer version 

3.5(build321) and for ESI-QUAD-TOF instrument Mascot Daemon version 

2.2.0 using the following settings: 

• Taxonomy:  Mus./ Rattus 
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• Database:  NCBInr 

• Enzyme:  Trypsin 

• Missed cleavages: 1 

• Fixed Modifications:  Carbamidomethyl(C) 

• Variable Modifications:  Oxidation(M) 

• Precursor tolerance:  100ppm and MS/MS Fragment tol. 0.8 Da 
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2.1.4 Laser micro dissection 
Once again, in order to move towards small sample proteomics, a reliable 

method of small sample tissue collection was trialled and discussed in chapter 

5 section 5.5.  A Leica LMD6000 (Leica, UK) was used to perform tissue 

collection of wild type OCR 21 Weeks mouse brain tissue.  In order to assess 

the compatibility of the Polyethylene terephthalate (PET) membrane LMD 

slides with MALDI-MS.  Tissue was sectioned in 14µm slices using a cryostat 

microtome (Leica Microsystems CM 1900UV, UK).  The sections were then 

thaw mounted onto the LMD slides, often with considerable difficulty.  The 

slides were then placed under the LMD objective.  Circular discs with 600µm 

diameter were cut and allowed to drop on ITO MALDI glass target slides and 

immediately spotted with sinapinic acid matrix at 5mg/ml and 20mg/ml in 

50/50 and 70/30 ACN and water.  These slides were taken on for MS analysis.  

A sub-section of the disc was mechanically disturbed with a pipette tip.          

2.1.5 Western blotting 
The steps involved in western blotting are described below.  The samples used 

were taken from the prepared sample used in DiGE before the labelling 

protocol was performed.    The western blot performed was repeated 3x. 

2.1.5.1 1D gel electrophoresis 
1D electrophoresis was performed using Invitrogens NuPAGE Novex 4-12% 

Bis-Tris Gel 1.0 mm, 12 well pre-cast gels (Invitrogen, UK, cat#NP0322BOX) 

in conjunction with diluted NuPAGE MOPS SDS Running Buffer (20X) 

cat#NP0001 in water and Invitrogen gel tanks.  The sample was prepared by 

using an appropriate volume of 6x Laemmli loading dye  (50 glycerol, 10% 

SDS, 0.375 M Tris pH6.8, 10% β-mercaptoethanol and a trace of bromphenol 

blue dye).  A ColorPlus™ Prestained Protein Marker (BioRad, UK) with a 

range of protein molecular weights was included into the first lane of every gel 

used with a range of 6.5-175KDa. Samples were heated on a block at 95oC for 

5 minutes to denature the proteins and allow SDS access along the length of the 

proteins.  A total volume of 10µl was loaded into each well and the gels were 

ran at 200 volts for 30 minutes or until the dye front had reached the bottom.      

2.1.5.2 Protein-membrane transfer 
After electrophoresis the gels were removed and trimmed appropriately.  3mm 

chromatography paper was cut to size (Whatman, UK) and soaked in transfer 

buffer Nitrocellulose membrane 0.45µm (Milipore, UK. Product 
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#HATF00010) was also cut to size and soaked in methanol and then water until 

it did not float on the surface.  Then the membrane was moved to soak in 

transfer buffer (0.025M Tris at pH10.5, 0.2M Glycine, 0.1% SDS, 20% 

methanol).  The membrane and gel stack was prepared in the order shown in 

Figure 2-5 and performed using Pierce Fast Western System (Thermo, UK), 

which is a dry membrane transfer system.  The Semiphor set up requires the 

use of 27 mA of current, per gel, for 1 hour. 

 

Figure 2-5:  Order of membrane and gel stacking for western blot membrane protein 
transfer to nitrocellulose membranes.  The proteins will migrate towards the anode 
transversely from the SDS-PAGE Gel onto the nitrocellulose membrane.     

2.1.5.3 Antibody probing and Chemiluminescence 
Following protein-membrane transfer, the membranes were placed into Tris-

Buffered Saline Tween (TBST)(0.025M Tris at pH7.5, 0.0028 M KCl, 0.14 M 

NaCl, 0.1% Tween, 5% (w/v) Marvel dried milk) for blocking (approximately 

10ml) on a shaker at 60 oscillation/minute for at least 1 hour.   

The membrane was then moved for primary antibody incubation.  The primary 

antibody used was an anti-peroxiredoxin 6 raised in rabbit (monoclonal) 

(Abcam, UK.  Product # EPR3755) to a dilution of 1:1000.   Primary antibody 

exposure was performed using approximately 10ml of TBST and 5% Marvel.  

This was placed with the membranes into a falcon tube and placed back on the 

shaker for a minimum of 3 hour, usually overnight 

The membranes were then washed with 20ml TBST and 5% marvel in 10 x 2.5 

minute washes.  A horse-radish peroxidise conjugated with a secondary 

antibody targeted to rabbit raised in goat (Abcam, UK.  Product # ab97200) 

was used to attach to the primary antibody.  The membrane was washed for 1 

hour minimum with 10ml of TBST with a 1:2000 dilution secondary antibody.  
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The secondary antibody solution was then removed and the membranes were 

then washed with 20ml TBST and 5% marvel in 10 x 2.5 minute washes again. 

2.1.5.4 Gel dock image acquisition 
Image acquisition was performed using G:Box (Syngene, UK) gel 

documentation system.  Each membrane was then incubated in Pierce 

enhanced chemiluminescence (ECL) reagent for 2 minutes.  This is used to 

detect the binding of the HRP-conjugated secondary antibody.  Membranes 

were then carefully dried and placed into the G:Box.  The membranes were 

exposed for a 2 minute exposure to give good exposure.   
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2.2 Chemicals, Consumables and Solutions 
Below is a set of tables showing the main solution used throughout 

experimental work. 

2.2.1 Tris/Glycine Electrophoresis Running Buffer 
  Concentration Quantity Supplier 

Tris-Cl (1.5M pH8.8) 25mM 30.25g Sigma, UK 

Glycine 192mM 144g Sigma, UK 

SDS 0.1% (w/v) 10g GE Healthcare UK 

* Made up to 5L with ddH20 at 10X 

This solution was diluted for 1x and 2x Running buffer as required 

2.2.2 Agarose Sealing Solution 
  Concentration Quantity Supplier 

SDS Buffer   100ml GE Healthcare UK 

Agarose 0.5% 0.5g Sigma, UK 

Bromophenol blue trace trace 
Fisher Scientific, 
UK 

 

2.2.3 Bind Silane Solution 

  Concentration Quantity Supplier 

Ethanol 80% 8ml 
Fisher 
Scientific, UK 

Acetic Acid 1.9% 200µl Sigma, UK 

ddH20 17.6% 10µl LAB 

Bind Saline   0.50% 5µl to 1ml 
GE Healthcare 
UK 
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2.2.4 Displacing Solution 
  Concentration Quantity Supplier 

SDS Buffer   100ml GE Healthcare UK 

Agarose 0.5% 0.5g Sigma, UK 

Bromophenol blue trace trace 
Fisher Scientific, 
UK 

 

2.2.5 Equilibration Buffer 
  Concentration Quantity Supplier 

Urea 6M 72.07g 
GE Healthcare 
UK 

Tris-Cl (1.5M pH8.8) 50mM% 6.7ml 
GE Healthcare 
UK 

Glycerol 30% 69ml Sigma, UK 

SDS 2% 4g 
GE Healthcare 
UK 

Bromophenol Blue trace trace 
Fisher 
Scientific, UK 

DTT* 10mg/ml 100mg in 10ml Sigma, UK 

Iodoacetamide* 25mg/ml% 250mg in 10ml 
GE Healthcare 
UK 

 

2.2.6 Fixing Solution 
  Concentration Quantity Supplier 

Methanol  10% 100ml Fisher Scientific, UK 

Acetic Acid 7.50% 75ml Sigma, UK 
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2.2.7 Lysis buffer for minimal labelling 
  Concentration Quantity/10ml Supplier 

Urea 7M 4.20g GE Healthcare, UK 

Thiourea 2M 1.52g GE Healthcare, UK 

CHAPS 4% (w/v) 0.4g GE Healthcare, UK 

Tris 30mM 0.06g GE Healthcare, UK 

Acetate - check 5mM 1.2mg GE Healthcare, UK 

    Adjust to pH 8.5 with dilute HCl 

   

2.2.8 Lysis buffer for saturation labelling 
  Concentration Quantity/10mls Supplier 

Urea 7M 4.20g 
GE Healthcare, 
UK 

Thiourea 2M 1.52g 
GE Healthcare, 
UK 

CHAPS 4% (w/v) 0.4g 
GE Healthcare, 
UK 

Tris 30mM 0.06g 
GE Healthcare, 
UK 

Acetate - 
check 5mM 1.2mg 

GE Healthcare, 
UK 

    Adjust to pH 8.0 with dilute HCl 
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2.2.9 Polyacrylamide Gel Solution (12.5%) 
  Quantity Supplier 

Acrylamide-Bis(37.5:1) 375ml Bio-Rad 

Tris-Cl (1.5M pH8.8) 225ml Sigma, UK 

ddH20 281ml Lab 

10% SDS 9ml GE Healthcare UK 

10% APS 9ml GE Healthcare UK 

10% TEMED   1.25ml GE Healthcare UK 

*Made up to 1L or amount required 

2.2.10  Rehydration Buffer 
  Concentration Quantity/10mls Supplier 

Urea 8M 4.85g 
GE Healthcare 
UK 

CHAPS 2% 0.2g 
GE Healthcare 
UK 

Bromophenol Blue trace trace Sigma, UK 

DTT 2mg/ml 2mg/ml Sigma, UK 

IPG buffer 0.50% 5µl to 1ml 
GE Healthcare 
UK 
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2.2.11   Spot handling workstation solutions 
  Concentration Quantity Supplier 

AmBic/Methanol 50mM in 50% As required 

Sigma, UK and 
Fisher 
Scientific, UK 

AmBic  20mM As required 
GE Healthcare 
UK 

ACN/TFA 50% in 0.1% As required Sigma, UK 

ACN/TFA 50% in 0.5% As required Sigma, UK 

Trypsin 1ml AmBic in 1 vial As required Promega, UK 

CHCA 20mg/ml  As required Sigma, UK 

Spotter  
 59%ACN with 
0.5%TFA As required Sigma, UK 

 

2.2.12   Sypro Orange Staining Solution 
  Concentration Quantity Supplier 

Sypro Orange Staining 1/10000 100µl Molecular Probes, UK 

Acetic Acid 7.50% 75ml Sigma, UK 

 

2.2.13   Other stock solutions for DiGE 
• 10% Ammonium persulphate. 

• 10% Sodium DodeCyl Sulphate 

• 10% Tetramethylethylenediamine 
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3 Differential in gel electrophoresis analysis of 
wild type mouse brain tissue: A multi-faceted 
analytical approach to assessing the effect of 
heat treatment on the degradation of the 
proteome. 

3.1 Aims 

The aims of this investigation were to assess the use and effectiveness 

of heat treatment as a mode of preventing proteomic degradation of 

wild type mouse brain tissue.  A comparison of the traditional method 

of snap-freezing in liquid nitrogen and the concept of heat-treating 

tissue are considered. 

In addition, a review and assessment of the effectiveness of different 

analytical approaches using Differential in Gel Electrophoresis (DiGE) 

data and the effectiveness and limitation in deconvolution of spot 

map and intensity data in respect to proteomic degradation of wild 

type mouse brain tissue were investigated.   

The use of DiGE to assess the effectiveness of heat treatment is novel.  

The approach employed was split into two.  A pilot study with 4 

technical replicates for each condition was used to validate the use of 

DiGE for this application and to guide the main investigation using 6 

biological replicates of each condition.  DiGE is a well-documented 

and effective strategy to look at the wide dynamic range of the 

proteome at a given point.  In order to assess the effectiveness of a 

technique in reducing degradation it seems pertinent to attempt to 

evaluate across a high number of proteins with a technique, which 

covers a large proportion of the proteome.   

Specifically the aims of the experiments detailed in this chapter are: 

o To evaluate heat treatment as a method in the reduction or cessation of 

protein degradation of brain tissue in comparison with snap freezing. 

o To determine the proportion of change in proteomic degradation in heat-

treated and snap frozen samples. 
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o To determine the effect on the proteome of heat-treatment of wild type 

mouse brain tissue samples. 

o To find candidate examples of proteins or markers of degradation of wild 

type mouse brain tissue. 

o To provide a strategy for future studies in proteomic degradation. 

o To determine the validity of different methods for analysing and 

representing DiGE data.  So this can be employed in a wide range of DiGE 

applications in the future.  
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3.2 Structure of the Chapter 
Due to the complexity and size of the work undertaken, it is prudent to lay out 

a structure to help with the clarity of the chapter.  This chapter has been broken 

up form one large chapter to 5 sub chapters.  The following allows for a point 

of reference to aid the reading of this investigation. 

3.5 Rationale of Analysis 

This outlines the methods taken to analyse the data giving an overview of what 

has guided the approach to analysing the DiGE gels, how and why profile 

analysis was undertaken and the logic used to construct the targeted profiles. 

3.6  Results and Discussion 

The results section is split into 3 subsections:     

3.6.3  Pilot Study 

The results of the pilot study help to inform and guide the strategy for the main 

investigation. 

3.6.4 Main Investigation 

This section extends the investigation from the pilot study.  It looks more 

deeply into the use of profile analysis, Venn analysis and the benefit of the 

additional time point. 

3.6.6  Validative results 

The validative section corroborates the results discussed in the main 

investigation and pilot study. 

  3.7 Summary and Conclusions 
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3.3 Introduction 
In the last 100 years there has been an exponential explosion in technologies in 

everyday life and in scientific research.  Proteomics is not an exception.  Ever 

since the development of techniques such as the soft ionisation technique of 

MALDI (Tanaka, 1988b), the dye had been cast for technological and 

methodological developments.  This rapid growth includes the increased 

sensitivity and resolution of the mass spectrometer, reverse phase 

HPLC(Anderson and Murphy, 1976, Eschelbach and Jorgenson, 2006),   2-

dimensional gel electrophoresis (O'Farrell, 1975)  and other quantitative 

separation techniques such as DiGE (Ünlü et al., 1997) among others.  Sadly, 

this rush in the development of technology has not been matched in 

downstream laboratory processes such as sample preparation which can be a 

severe limiting factor for obtaining good quality proteomics data (Kikuchi, 

2007, Fountoulakis, 2001, Palmer, 1988).  In addition there is an ever 

increasing interest in tissue as being a biochemical vault for proteomic, 

genomic, biomarker and clinical diagnostic studies.   As a consequence, in 

order to capitalise on these technological advances, there is now a higher 

demand than ever for maintaining stringent sample integrity to match.  This is 

particularly true in areas such as biomarker discovery which has a requirement 

for an ever increasing level of specificity, sensitivity and reproducibility 

(Kikuchi, 2007, Lemaire, 2007). 

3.3.1 Sample preparation and protein degradation 
An exigent area of particular challenge is in maintaining sample integrity of 

fresh tissue samples where proteomic degradation can be rapid and variable 

(Sköld et al., 2007a, Richard, 2008).  The deviation and complexity of the 

average tissue sample or cell lysate makes assessing degradation a very 

demanding prospect.  Whereas technology and methodologies can be assessed 

relatively easily with calibration standards and known samples, the complexity 

and inconsistency of endogenous proteolytic enzymes coupled with sample 

handling, short and long term storage and post processing can cause the 

fluctuation of sample constitution making it too erratic for any meaningful 

quantitative proteomic analysis.  Understanding how tissue degrades and 

markers of it occurring, could lead to strategies for limiting such degradation of 

the newly named degradome (Scholz et al., 2010b).  The importance of sample 

preparation is unequivocal but up until recent years has been neglected.  
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However, there is a new trend for research in this field due to the potential 

impact on most areas of biochemistry and molecular biology.  Neuro-tissue 

remains the most characterised area but studies regarding other tissues are 

starting to emerge (Che, 2005, Sköld et al., 2007a, Scholz et al., 2010b, 

Svensson, 2003).    

Tissue integrity compromises can occur at the point of collection to the point of 

analysis (Fountoulakis, 2001, Palmer, 1988).  The development of a treatment 

applied to samples at the early stages of handling after collection would 

provide the best solution to limit proteome variability.  Freeze-thawing and 

tissue sectioning causes an untargeted and non-reproducible cell fracture.  

Processing can lead to micro and macro heat fluctuations.  In addition, 

processing methods such as freeze thawing multiple times has been shown to 

enhance certain degradative products in some studies, as does long term 

storage (Gao et al., 2007), although for completeness some markers are robust 

for a limited number of cycles (Bao and Zuo, 2009).  A number of strategies 

have been used to process tissue in various ways including but not exclusively; 

fixing and embedding, freezing, microwave treatment, snap-freezing, freeze 

drying and protease inhibition (Troiano et al., 2009, Ruijter ET, 1997, Mizuhira 

V, 1996, Login and Dvorak, 1988).  However proteolytic enzyme activity can 

be rapid (Sköld et al., 2007a) and cause a detrimental effect on further analysis.  

Another strategy which has received limited attention, is the use of heat 

treatment.  For heat treatment to be successful, it would need to be rapid and 

evenly applied.  Previously described approaches including microwave 

treatment have had problems regarding selective heat dispersion leading to “hot 

and cold spots”.   

The progression of tissue degradation and the proteolytic pathways post-

mortem would be useful.  Recently, post-mortem changes have been shown to 

display a high variability, some occurring up to the 6 hour time frame.  

Whereas degradation within 6 hours is generally expected, the period 

surrounding the onset of death has also been shown to have major influences 

on the preservation and degradation of the sample (Sköld et al., 2007a, 

Richard, 2008). The presence of a marker to quantify the condition of post-

mortem tissue would be most useful   

An alternative technology to prevent proteomic degradation and allow stable 

storage has been developed and warrants further investigation.  A proteomic 
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stabilisation system call Stabilzor T1 denaturing device (Denator AB, 

Gothenburg, Sweden) rapidly and homogeneously raises tissue to a 

temperature of 95oC under a high pressure vacuum in order to try and curb 

endogenous proteolytic and other enzyme activity, such as phosphatases.  The 

inactivation of phosphatases would inhibit the cleavage of phosphate groups, 

thus leaving a greater degree of proteins with this PTM.  This could lead to 

large amount of additional spots on the gels that might otherwise not be seen.  

A phosphate has a molecular mass of 94.97 Da.  This would cause a shift up 

the gel compared to the protein without the PTM.  It may also affect the pI and 

therefore the horizontal position on the gel.  

On the inception of this study the concept of heat stabilization of tissue was a 

relatively new idea.  Since the publication of the paper by our group in 2010: 

“Stopping the clock on proteomic degradation by heat treatment at the point of 

tissue excision” (Goodwin et al, 2010), there has been an increase in the 

number of publications, both accessing and using the Denator Stabilzor T1, 

from approximately 16 to 29, showing that this idea is gaining ground 

(Spellman et al., 2013, Zhang et al., 2012, Ye et al., 2012b, Ye et al., 2012a, 

Lundby et al., 2012b, Lundby et al., 2012a, Goodwin et al., 2012, Ahmed et al., 

2012, Smejkal et al., 2011, Scholz et al., 2011, Kultima et al., 2011, Kokkat et 

al., 2011, Kennedy et al., 2011, Finoulst et al., 2011, Colgrave et al., 2011, 

Ahmed and Gardiner, 2011, Scholz et al., 2010a, Rountree et al., 2010, Lull et 

al., 2010, Goodwin et al., 2010, Chughtai and Heeren, 2010, Svensson et al., 

2009b, Robinson et al., 2009, Kultima et al., 2009, Kaletaş et al., 2009, Grassl 

et al., 2009, Goodwin et al., 2008c, Sköld et al., 2007a, Svensson et al., 2007).   

The stabilizing effect of the denator system on proteomic degradation was 

assessed using murine brain and heart tissue.  Samples were either snap-frozen 

and stored at -80oC, heat-treated and stored at -80oC or both heat-treated and 

snap-frozen stored at -80oC. They were then compared using a 2DE approach 

by Robinson et al, 2009.  Interestingly, in the heart tissue the snap-freezing and 

heat treatment were found to be both beneficial but with no real advantage at 

using the heat treatment over the traditional method of snap freezing.   

However, in murine brain, there were a significantly greater number of 

differences between the three methods.  They found that brain responded far 

better to the heat-treatment by reducing the protein fragmentation and 

preserving the amount of higher weight proteins.  This validates the use of 
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murine brain as a tissue type in the following study (Robinson et al., 2009).  

Also DiGE suffers from fewer technical limitations compare to 2DE and 

therefore is a good technique to help validate the finding of this study.  

This positive effect in brain tissue has implication to neurological clinical 

studies and neuroproteomic studies.  The stabilising device has been employed 

in neuroproteomic studies in the search for neuropeptides which can be elusive.  

Zhang et al, 2012 managed to identify 500 endogenous peptides from mouse 

hypothalamus and whole brain samples which is 3 times higher than other 

reported studies.  However, the stabilisation of tissue cannot necessarily be 

attributed to this increase in success, as an array of new extraction protocols 

was also being employed.  As a positive note for the system, it was explained 

that some of the peptides discovered are those that are often lost to post-

mortem changes (Zhang et al., 2012).  It has also been shown to preserve the 

phosphorylation’s of neuropeptides (Ahmed and Gardiner, 2011, Lundby et al., 

2012b).  Much of the work conducted with the stabilisation device has been 

done in brain tissue using a variety of methods including MS imaging, 2DE, 

DiGE and LC-MS (Lull et al., 2010, Smejkal et al., 2011, Goodwin et al., 

2010, Sköld et al., 2007a, Goodwin et al., 2008c, Ye et al., 2012b, Svensson et 

al., 2007, Scholz et al., 2010a). 

Despite the heavy emphasis on neuroproteomics, the system has also been 

employed in liver and pancreas tissue in examining the so called degradome.  

Scholz et al, 2011 compared the snap-freezing of liver and pancreas tissue to 

heat-treatment using the denator stabilisation device using DiGE and label free 

MS.  They found that snap-freezing produces a degradome with a greater 

amount of degradative products when compared to heat treatment.  They also 

showed that subsequently heat treating a previously snap frozen sample has an 

effect of lowering degradative products in both the peptidome and proteome. 

They used a similar approach as described in the DiGE portion of our 

published work and the work further described in this thesis chapter (Scholz et 

al., 2011).       

The system does also have some notable limitations.  By causing the 

inactivation of enzymatic activity any studies which use enzyme activity are 

obviously not going to work.  Also, anything that involved needing structural 

information of the protein or investigation protein-protein interaction is not 

possible.  However, the unfolding of protein structures is used in a lot of 
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proteomic techniques already.  Additionally, the extraction of organelles from 

treated tissue has not been achieved as yet.  Also the use of the stabilisation 

device also has had detrimental effects of RNA extraction, so any studies 

which hope to link genomic, transcriptomic and proteomic data is not possible.  

Finally, as a relatively young idea, it would be necessary to evaluate the 

technical and experimental limitations in various tissue types in order to state 

the potential benefits and limitations of this technique in various areas of 

clinical and proteomic research (Kultima et al., 2011).            

An ideal proteomic strategy to assess degradation would allow for the 

assessment of the global proteome, while at the same time looking for a 

specific marker to characterise degradation.   This is due to the fact that 

degradation is a systemic, as well as localised problem. There are many 

possible proteomic strategies for evaluation of this system, but a quantitative 

approach using 2D-PAGE like Differential in gel electrophoresis allows scope 

for a broad investigation, while allowing and giving the ability to investigate 

specific proteins or markers.  In order to assess proteomic degradation a 

strategy using DiGE was initiated, comparing heat-treatment with a more 

traditional alternative of snap-freezing in liquid nitrogen.  DiGE is a well-

established technique for gauging proteomic expression differences in different 

samples (see section 1.4.1).  Traditionally, DiGE is used in multiplexed time 

course or disease versus control experiment, however, it equally lends itself 

towards accessing protein profile changes.  However, with a process such as 

degradation, having a plethora of contributing factors a single approach will 

also struggle.  DiGE and traditional 2DE are essentially limited to the mid-high 

mass region and therefore a more dynamic approach is desirable.  In addition, 

with any homogenisation approach to proteomics, there is a loss of the low 

abundant signals, localised signals and an average effect occurs.   Therefore 

this investigation has been collaborative which has allowed for a multi-faceted 

approach involving DiGE, Mass Spectrometry Imaging (MSI) and label free 

quantitation using LC-ESI-MS.  MSI is useful as it maintains spatial resolution 

meaning you can track markers across the tissue and time states.  Whereas LC 

and gel based approaches lose this information, MSI also retains localised 

variation that would otherwise be lost.  It is a relatively new technique that has 

been pioneered by Caprioli et al.  Once again, as a standalone technique it has 

its own limitations regarding a low mass range of up to 30KDa and gaining 
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identifications.  The low mass range and spatial resolution is complementary to 

a DiGE approach.  

Although 2DE and DiGE has its limitation, it is still recognised as an effective 

technique and one of the few proteomic methodologies for visualising 1000’s 

of proteins and/or peptides in a single experiment.  Ironically, the very 

limitation of DiGE may afford an advantage when studying degradation.  

Degradation has been shown to rapidly produce many protein and peptide 

fragments which masked an attempt to detect neuropeptides in a recent study 

(Scholz et al., 2010a), in DiGE this complexity will be reduced as they would 

simply not appear on the gel.  Although there is always a concern when losing 

information, it can be also beneficial to start viewing a problem from a more 

simplified perspective.  LC-MS allows for the inclusion of these smaller 

molecules.     

Traditionally, DiGE analysis consists of looking for intensity differences 

between groups but degradation is more complex, with protein or peptide spots 

appearing, disappearing and relative changes being difficult to visualise, all 

make degradation a greater challenge, therefore the development of a specific 

set of analysis would further target the way degradation can be visualised and 

broaden DiGEs remit in terms of its application.    

3.3.2 Targeted tissue. 
Brain tissue is intrinsically of interest with a multitude of studies involving 

diseases and disorders with complex aetiology which are poorly understood 

and preserving tissue integrity is of increasing importance (Richard, 2008, Che, 

2005, Svensson, 2003, Fountoulakis, 2001). There is further pressure with the 

regarding post-mortem time of collection of tissue, where regulation governing 

autopsy is required.  Prediction of such changes would be useful in determining 

protein stability within different tissue types, along with enzymes patterns 

within different structures.  Predicting such patterns is nearly impossible with 

careful sample preparation, let alone in tissue collection.   Any changes that 

could be mapped would be of interest to anybody involved in sample 

preparation of tissue in addition to more specially the Neuropathologist. 
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3.4 Methods 
A detailed account of general methodology is outlined in Chapter 2 of this 

thesis.  Methodology specific to this chapter is given below.   

3.4.1 Sample collection, extraction and processing 
In line with the U.K. Animals (Scientific Procedures) Act, 1986 and local 

ethical guidelines male ICR mice (6-8 weeks) were euthanatized by cervical 

dislocation and dissection of the brain was rapidly performed.  The brain was 

removed and bisected into the two hemispheres.  One whole hemisphere was 

taken to be “treated” with focused, rapid and homogeneous heating under 

pressure using a Stabilzor T1 denaturing device (Denator ABDenatorTM, 

Sweden), whilst the other was immersed in liquid nitrogen and snap-frozen.  

The device is preheated at 95oC in preparation for the tissue.  Upon dissection 

of the tissue, tissue for heat treatment was placed onto the maintainer tissue 

cards.  These cards have a plastic film for maintaining vacuum.  The cards are 

then placed into the slot of the Stabilzor T1 denaturing device.    The device 

rapidly engages a pump to cause a vacuum seal around the tissue.  The device 

has a reactive heating algorithm which heats the tissue rapidly, but in a 

controlled manner as not to overheat and destroy the tissue.  This occurs within 

30 seconds from the time the card is placed in the device.  This process can be 

performed on fresh tissue (as was the case in this study) or frozen tissue.  The 

device is a bench top device and reasonably portable.  This can be seen in 

Figure 3-1   

 

Figure 3-1:  A) Stabilzor T1 denaturing device (Denator ABDenatorTM, Sweden) used to 
rapidly apply heat treatment to tissue samples and B) maintainer cards, used to place the 
tissue into vacuum and for each storage.  Taken from http://www.denator.com.   

Subsequent to treatment, the treated hemisphere was also immersed in liquid 

nitrogen.  Sacrifice, dissection and treatment was accomplished in less than 60 

seconds.   Samples were then stored at -80oC in anticipation of use 

http://www.denator.com/
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downstream.  Samples were always handled with care to prevent external 

factors affecting the possibility of degradation.  Consequently protease and 

phosphatase inhibitor (Phosphatase Inhibitor Cocktail 1, Sigma Aldrich, UK 

and Protease Inhibitor Cocktail for use with mammalian cell and tissue 

extracts, DMSO solution , Sigma Aldrich, UK.  Both are in tablet form and half 

a tablet dissolved in 10ml of lysis buffer) were added at the earliest possible 

time point and all work was carried out on dry ice to minimize any effect 

external heat may have had.   

Sectioning was performed using a cryostat microtome (Leica Microsystems 

CM 1900UV, UK). Multiple sections were taken and divided up between 

eppendorfs and MALDI ITO coated glass slides.  Tissue sections were cut at a 

thickness of 14µm in a pre-chilled chamber of -20oC and a sample stage 

temperature of -19oC. Eppendorfs used for storage were kept and allowed to 

pre-chill in the chamber as well, before being transferred to dry ice.  Sections 

used in MALDI-Mass Spectrometry Imaging (MSI), were thaw mounted and 

stored on dry ice further to long term storage at -80oC.  Sections were taken 

from the mid-brain section between ¼ and ½ the coronal depth of the brain.  It 

is at this point half were raised to room temperature for 10 minutes, in pilot 

investigation (Table 3-1) and for 10 and 20 minutes, in the main investigation 

(Table 3-2).  Processing at this point was separated and all samples were 

treated individually to allow replicates to be performed.  Four experimental 

replicates for pilot investigation (n=4) and 6 experimental replicates for the 

main investigation (n=6).   Protein lysis and extraction was performed 

immediately after treatment in a DiGE compatible lysis buffer with the 

addition of protease inhibitor and DNase 7 M Urea, 2 M thioruea, 4% CHAPS 

[w/v], 30 mM Tris base.   Following addition of lysis buffer, the samples were 

subject to 3 Cycles of snap freezing, thawing and 4 x 5 minute cycles in an iced 

sonication bath with 1 minute cooling on ice between sonication.  

Extractions were followed by protein precipitation and clean-up using EttanTM 

2D Clean-up Kit (GE Healthcare, Bucks, UK cat #80-8484-51). Minimal 

labelling reactions were performed with Cyanine dyes 2, 3 and 5 using protocol 

specified in the product booklet (GE Healthcare, Bucks, UK #25-8009-83/84.) 

and in the general methods.  In short 50μg of protein was used for analytical 

gels and 500μg for preparative gels which were stained using Sypro Orange 

(Sigma Aldrich, Dorset, UK, cat #S5692-500UL). The reaction was performed 
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at pH 8.5, using 400 pmol of CyDye incubated on ice for 30 minutes in the 

dark. The reaction was stopped using the addition of 1 mM lysine. They were 

loaded (as shown in Table 3-1 and Table 3-2) for 1st dimension separation 

which was carried out using IEF on 24 cm IPG strips of pH 4-7 [GE 

Healthcare, Bucks, UK cat # 17-6002-46]) with a minimum of 75000 Volt 

hours at 20oC with a program of 30 V step and hold for 12 hours, 300 volts 

step and hold for 2 hours, 1000 volts gradient for 2 hours, 8000 volt gradient 

for 5 hours, 8000 volts step and hold for 8 hours and 1000 volts step and hold 

for up to 24 hours to avoid strip diffusion prior to next step. Prior to 2nd 

dimension separation by SDS-PAGE, an equilibration was performed using 

SDS equilibration buffer (50 mM Tris-HCL, pH 8.8, 6 M urea, 30% glycerol 

[w/v] 2% SDS [w/v] and 0.002% BPB [w/v]) with 10 mL/gel followed by 

reaction with DTT (10 mg/mL) for 15 minutes then with iodoacetamide (25 

mg/mL) for 15 minutes to prevent reduction/alkylation. 2nd dimension 

separation was performed at 1-2 watts per gel for approximately 12 – 15 hours 

or until the dye front reached the bottom of the gel. Gels were imaged using 

GE Healthcare Typhoon 9400 Series Variable Imager at 100μm resolution after 

optimization of photomultiplier voltages using a pre-scan at a resolution of 

1000μm.  Gels were then loaded, (see chapter 2) matched and analysed, 

(DeCyder Version 5.01.01, GE Healthcare, Bucks, UK), and spots selected for 

picking using EttanTM Gel Handling Work Station and MS identification.    The 

methodology of this analysis is given in 3.5.2.    A schematic of the workflow 

can be seen in Figure 3-2.  

3.4.2 Identification of proteins from gel spots 
Spots were picked, tryptically digested and spotted with a-Cyano-4-

hydroxycinnamic acid in 50% acetonitrile/0.5% trifluoroacetic acid using a GE 

Healthcare Ettan Spot Handling Work Station and then analysed on 4700 

Proteomics Analyser (Applied Biosystems, Cheshire, UK) MALDI-ToF-ToF-

MS using standard settings.  MS/MS was performed on the top 10 precursor 

ions in each spot.  Any unidentified spots of particular interest were further 

analysed by LC-MS/MS on a Dionex Ultimate+ LC system coupled to a QStar 

Pulsar I (Applied Biosystems, Cheshire, UK).  GPS Explorer and MACOT 

Daemon Software was used to automated submission of collected data to 

MASCOT database searching software for searching with fixed modification 

of carbamidomethyl (C) and variable modification of oxidation (M), peptide 

and MS/MS +/- tolerances of 0.8 Da searching NCBI database on Mus 
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musculus taxonomy with 1 missed cleavage allowed.  Spots identified as 

keratins were excluded. 

3.4.3 Western Blot analysis   
To aid validation western blot analysis was performed on treated and snap-

frozen samples 0, 10 and 20 minutes.   A detailed protocol for western blotting 

can be seen in section 2.1.5 of the general methods in chapter 2. 

 

Figure 3-2: Schematic of experimental work flow.  Brain tissue hemispheres were bisected 
and either heat treated and snap-frozen or just snap-frozen.  Samples were then stored at 
-80oC. They were then taken onto DiGE analysis.  MALDI-MSI was performed separately by 
Dr R. J. A. Goodwin, Research Associate, University of Glasgow and LC-MS using label free 
quantitation was performed by Miss H. Allingham, Ph.D student, University of Glasgow.  
All experiments were performed in parallel.  The larger proteins considered using DiGE 
and the smaller markers considered using MALDI-MSI and LC-MS. 
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3.4.4 Experimental design 
The investigation was effectively broken up into two sections.  A pilot 

investigation to help develop the laboratory and analytical techniques and then 

the main investigation which eliminates and minimises any of the difficulties 

experienced in the pilot investigation.  It is noted that the experimental design 

in this chapter does not have a dye switch applied and therefore the design may 

have introduced a greater level of experimental bias that would be ideal.  This 

was the first set of DiGE experiments undertaken and therefore the 

experimenter was not aware of the issues with differential labelling until the 

experiment.  This will of course be reflected in the conclusions that can be 

drawn.   

The experimental design used for the DiGE gels in the pilot investigations were 

as follows: 

3.4.4.1  Pilot investigation:  Time points Treated/Snap-frozen = 0, 10 minutes.  
  Cy5 Cy3  Cy2 

gel 1 Treated at 10 minutes Treated at 0 minutes internal standard 

gel 2 Treated at 10 minutes Treated at 0 minutes internal standard 

gel 3 Treated at 10 minutes Treated at 0 minutes internal standard 

gel 4 Treated at 10 minutes Treated at 0 minutes internal standard 

gel 5 Snap-frozen at 10 minutes Snap-frozen at 20 minutes internal standard 

gel 6 Snap-frozen at 10 minutes Snap-frozen at 20 minutes internal standard 

gel 7 Snap-frozen at 10 minutes Snap-frozen at 20 minutes internal standard 

gel 8 Snap-frozen at 10 minutes Snap-frozen at 20 minutes internal standard 

gel 9 Snap-frozen at 10 minutes Snap-frozen at 20 minutes internal standard 

      n=4 

Table 3-1:  Experimental design of gels ran for pilot investigation:  Time points 
Treated/Snap-frozen = 0, 10 minutes. 

Additionally, the experimental design used for the DiGE gels in the main 

investigation was as follows: 
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3.4.4.2   Main investigation:  Time points Treated/Snap-frozen = 0, 10, 20 
minutes.   

  Cy5 Cy3  Cy2 

gel 1 Treated at 20 minutes Treated at 0 minutes internal standard 

gel 2 Treated at 20 minutes Treated at 0 minutes internal standard 

gel 3 Treated at 20 minutes Treated at 0 minutes internal standard 

gel 4 Treated at 0 minutes Treated at 10 minutes internal standard 

gel 5 Treated at 0 minutes Treated at 10 minutes internal standard 

gel 6 Treated at 0 minutes Treated at 10 minutes internal standard 

gel 7 Treated at 10 minutes Treated at 20 minutes internal standard 

gel 8 Treated at 10 minutes Treated at 20 minutes internal standard 

gel 9 Treated at 10 minutes Treated at 20 minutes internal standard 

gel 10 Snap-frozen at 20 minutes Snap-frozen at 0 minutes internal standard 

gel 11 Snap-frozen at 20 minutes Snap-frozen at 0 minutes internal standard 

gel 12 Snap-frozen at 20 minutes Snap-frozen at 0 minutes internal standard 

gel 13 Snap-frozen at 0 minutes Snap-frozen at 10 minutes internal standard 

gel 14 Snap-frozen at 0 minutes Snap-frozen at 10 minutes internal standard 

gel 15 Snap-frozen at 0 minutes Snap-frozen at 10 minutes internal standard 

gel 16 Snap-frozen at 10 minutes Snap-frozen at 20 minutes internal standard 

gel 17 Snap-frozen at 10 minutes Snap-frozen at 20 minutes internal standard 

gel 18 Snap-frozen at 10 minutes Snap-frozen at 20 minutes internal standard 

      n=6 

Table 3-2:  Experimental design of gels ran for the main investigation:  Time points 
Treated/Snap-frozen = 0, 10 minutes. 
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3.4.5 Statistical methods  
In order to assess the validity of using the parametric tests of Student’s  t-test 

and ANOVA, it is important to evaluate the assumptions of these tests.  As 

discussion in section 1.7 it would be erroneous to assume that data follows the 

rules of assumed normality and homogeneity of variance.  If the data does not 

follow these assumptions, the validity of conclusions made is compromised 

and then the numbers of false positives are likely to increase.  All statistical 

calculations have been performed in either the DeCyder 2D 7.0, GE Healthcare 

software directly with further statistical analysis done using SPSS (Statistical 

Package for the Social Sciences) version 17.0.1 (2008).   

In order to perform statistical operation in SPSS, the data was exported via xml 

exporter module from the DeCyder work space.  The results are exported in the 

format of normalised spot volume ratios between the cy3/cy2 and cy5/cy2 

channels which is equivalent to log standardised abundances (log10SA).  This 

was confirmed by GE Healthcare.  All data was exported for matched gel 

spots.  This data was then converted, using an Excel macro from GE 

Healthcare, to convert this into standardised abundances (SA).  Normality 

testing was then performed in SPSS 17.0.1 on log10SA using the Shapiro-Wilk 

statistical test.  This is an accepted robust test and has been employed in other 

studies concerning DiGE (Karp and Lilley, 2005).  A spot was considered of 

non-normal distribution if a p-value was returned of 0.05 or less.  This was 

performed on spots that had a full set of repeats across all gels, those that had a 

full set of repeats across all gels and an ANOVA score of 0.05 or less and those 

that had an ANOVA score of 0.05 or less which has missing values replaced 

using k-Nearest Neighbour (KNN) algorithm in SPSS 17.0.1 to replace values.  

The attribute k was set to automatic.  This is a method of machine learning also 

used in other DiGE studies and is considered a good way of replacing missing 

values (Pedreschi et al., 2008a).   

To assess the homogeneity of variance (an assumption of equal sample 

variance must hold if the parametric t-test and ANOVA can be used) the SA 

and log10SA data across all groups was analysed using the Levene’s test for 

homogeneity.  This was performed on spots that had a full set of repeats in 

every group for each master spot.  A spot was considered not to have 

homogeneity of variance when it has a p-value of 0.01 or less.  Additionally 

graphs were produced to assess visually the spread of data.  
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The ANOVA calculation and student t-test was performed within DeCyder 2D 

7.0, GE Healthcare in the BVA module. In addition to testing these 

assumptions, the issue of multiple testing of data has been addressed by 

applying a p-value correction.  This has been applied directly in DeCyder via 

the BVA module option for the application of a false discovery rate.  The FDR 

in DeCyder is an adaptive approach to recalculate all p-values to reflect a FDR 

but maintains a selectable threshold of 0.05.  Thus meaning the FDR is set to 

the equivalence of 5% for all results shown.  The FDR algorithm applied is 

described in detail in Benjamini and Hochberg, 2000.  In the bulk of the 

analysis no adjustments have been made for missing values as the DeCyder 

software does not cater for this.   
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3.5 Rationale of Analysis 

3.5.1 Introduction 
Due to the complexity of this investigation and to aid the deconvolution of the 

aims outlined in section 3.1 on page 142 (the biological study of degradation 

and the review of analytical options using DiGE); it is prudent to delineate the 

approach to analysis.  

3.5.2 Methodology of DiGE analysis 

3.5.2.1   DiGE Pilot investigation:  Time points Treated/Snap-frozen = 0, 10 
minutes 

Principally, the basis for analysis for the pilot investigation is outlined in 

Figure 3-3.   In order to consider if treatment has been successful, any protein 

or peptide spots that are present and used in analysis should show no difference 

between treated, snap-frozen = 0 minutes and treated = 10 minutes would be 

expected to have no statistically significant difference.  This can be visualised 

and mined for using different methods.  Profile analysis allows for a visual 

validation by seeing the relationship graphically.  The Venn analysis allows for 

statistical differences or no differences to be seen and compared with the 

profile matches.  Principal Component Analysis (PCA) can then be used as a 

second statistical validation tool to look for differences between groups.   
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Figure 3-3:  Schematic of Analysis work flow.  If spots are to be considered stabilised by 
the treatment, then treated, snap-frozen = 0 minutes and treated = 10 minutes would be 
expected to have no statistically significant difference.  The bulk of analysis was 
performed in DeCyder software.  The analysis was split into three main areas; Profile, 
Venn and principal component analysis.   

Once experimental work has been completed, the gel files are uploaded onto 

the DeCyder software database.  Initially, profile analysis is performed.  The 

various Cy channels are sorted into corresponding experimental groups; 

Treated = 0 minutes, Treated = 10 minutes, Snap-frozen = 0 minutes and Snap-

frozen = 10 minutes.  One-way ANOVA is performed across groups, giving a 

p-score/value for each spot across all groups.  This allows the protein spots to 
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be sorted in the spot table on the basis of their ANOVA score.  A cut-off score 

of p</=0.05 was used.  At this stage, only protein spots with a significant 

ANOVA cut-off p-value are considered.   Experimentally obtained spot 

profiles are manually compared and checked against predicted spot profiles, 

the key profile is shown in Figure 3-5.  Stabilisation was surmised to have 

occurred when a marker’s intensity distribution profile of a particular spot 

across groups matched these predicted profiles.  It should be noted profiles are 

deemed inclusive on the basis of relative intensity not absolute intensity.  

Profiles identified as being stabilised (in either treated or snap-frozen) were 

selected for picking and MS identification.  The proportions of spots found for 

each profile was noted.   

Additionally Principal Component Analysis (PCA) was performed using 

DeCyder Extended Data Analysis module (EDA).  PCA was simply used for 

discerning whether the different groups were distinguishable from each other 

globally.  Following profile analysis, an approach using Venn diagrams was 

performed.  This required performing numerous t-tests and exporting and 

sorting data in excel.  This is discussed in section 3.5.2.4.        

3.5.2.2 Predicted mechanisms of degradation. 
In order to consider the expected DiGE analysis profiles it is necessary to 

appraise how degradation may affect the distribution of spots on a 2D gel map.   

Degradation occurs when endogenous proteolytic enzymes cleaves a protein or 

peptide chain at a particular site.  Broadly, there are three possible modes for 

this to occur, exoprotease and endoprotease activity, or both.   Exoproteases 

cleave at one of the end termini and endoprotease cleaving in-between.  The 

effects on 2D spot maps are summarised in Figure 3-4.  Exoprotease activity on 

the spot map would be characterised by the appearance of the large fragment 

spot close to the site of the original protein and the small fragment spot further 

down or even off the bottom of the gel.  The spots may have shifted 

horizontally due to a change in their isoelectric focusing point.  With 

endoproteases the production of two fragments may be expected, smaller than 

the parent protein but more even in size giving rise to two spots further down 

the gel, possibly in close proximity to each other.  However, with various 

different kinds of proteases it is far more feasible that a combination of events 

is happening, giving rise to multiple spots from a single parent protein, this is 

one of the reasons accessing degradation globally is difficult.     
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Figure 3-4:  Schematic of the possible effect of degradation on protein spots on a 2D gel 
map. Degradation occurs either at the terminus or in-between or both in a protein chain.  
This has a consequential effect on how they appear on a gel spot map, and the detected 
intensity for that gel spot.  

 



163 | P a g e  
 

3.5.2.3   Predicted profiles for pilot investigation. 
Experimental profiles were manually compared against predicted profiles.  

Broad categories have been defined however, within each of these 

classifications several different profiles were considered but these 4 categories 

were assigned; treated stabilisation, snap-frozen stabilisation, no change and 

unclassified. These can be seen in Figure 3-5 

 

Figure 3-5:  Predicted profiles of spot intensities.  Treatment stabilisation would expect to 
be characterised by no change between T= 0, T =10 and S=0 minutes and a change in S = 
10.  Snap-frozen stabilisation is characterised by a change in T = 10.  Red=treated and 
Blue=snap frozen.  
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3.5.2.4  Venn analysis for pilot investigation. 
The Venn analysis was performed by compiling all t-test comparisons, 

including both significant score (p<=0.05) and non-significant score (p>=0.05) 

in order not to exclude spot data. 

 

Figure 3-6:  Example of three way Venn diagram.  This particular Venn diagram is targeting 
treated stabilisation by using t-tests to focus on candidate spots.  
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3.5.2.5   DiGE Main investigation:  Time points Treated/Snap-frozen = 0, 10, 20 
minutes 

Principally the basis for analysis is outlined in Figure 3-7 

 

Figure 3-7:  Schematic of Analysis work flow.  If spots are to be considered for stabilised 
by the treatment, then treated = 0, 10, 20 and snap-frozen = 0 minutes would be 
expected to have no statistically significant difference.  The bulk of analysis was 
performed in DeCyder software.  The analysis was split into three main areas; Profile, 
Venn and principal component analysis.   

Initially, profile analysis is performed (following profiles in section 3.5.2.6).  

The various Cy channels are sorted into corresponding experimental groups; 

Treated = 0 minutes, Treated = 10 minutes, Treated = 20 minutes Snap-frozen 

= 0 minutes, Snap-frozen = 10 minutes and Snap-frozen = 10 minutes.  In 

addition, to pilot investigation, they are assigned conditions to allow them to be 
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sorted graphically and statistically by two-way ANOVA.  The Conditions 

system in DeCyder allows the separation and analysis between time points and 

treatment.  First One-way ANOVA is performed across groups, giving a p-

score/value for each spot across all groups.   A cut-off score of p</=0.05 was 

used.  Further to pilot investigation a two-way ANOVA was performed and A 

cut-off score of p</=0.05 was used.   The data was first sorted by one-way 

ANOVA and the experimentally obtained spot profiles are manually compared 

and checked against predicted spot profiles.  This process was repeated using 

two-way ANOVA.  The predicted profiles are given in Figure 3-8, Figure 3-9 

and Figure 3-10 and in comparison to pilot investigation is more diverse in 

categories.   

There are three options when using two-way ANOVA.  All three options 

operate between all experimental groups, but this can be further applied to 

either; condition 1 (treated vs. snap-frozen), condition 2 (0 vs. 10 vs. 20) or 

interaction (condition 1 vs. condition 2). 

As with pilot investigation, stabilisation was surmised to have occurred when a 

marker’s intensity distribution profile of a particular spot across groups 

matched these predicted profiles.  It should be noted that profiles are deemed 

inclusive on the basis of relative intensity, not absolute intensity.  Profiles 

identified as being stabilised (in either treated or snap-frozen) were selected for 

picking and MS identification.  The proportions of spots found for each profile 

was noted.   

Principal Component Analysis (PCA) was performed using DeCyder Extended 

Data Analysis module (EDA).  PCA was simply used for discerning whether 

the different groups were distinguishable from each other globally. 

Following profile analysis, an approach using Venn diagrams was performed.  

This required performing numerous Student’s t-test and exporting and sorting 

data in excel.  This is discussed in section 3.5.2.7. 

3.5.2.6  Profile analysis for the main investigation. 
Experimental profiles were manually compared against predicted profiles.  As 

with pilot investigation broad categories have been defined but in contrast with 

experiment a degree of the complexity has been retained in order to gain 

greater information.   Therefore a greater number of profile categories have 

been defined in Figure 3-8, Figure 3-9 and Figure 3-10.  
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Figure 3-8: Predicted profiles on spot intensities.  Showing treated and snap-frozen 
stabilisation.  Red=treated and Blue=snap frozen. 
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Figure 3-9: Predicted profiles on spot intensities.  This figure displays the different 
possible profiles exhibited by spots on the DiGE gels.  Showing delayed degradation in 
treated and snap-frozen and stabilisation in treated and snap-frozen with immediate 
degradation displayed respectively.  Red=treated and Blue=snap frozen. 
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Figure 3-10: Predicted profiles on spot intensities.  Showing profiles of no change and 
treated and snap-frozen stabilised with other respectively unclassified.  Red=treated and 
Blue=snap frozen. 
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3.5.2.7 Venn analysis of the main investigation. 
The Venn analysis was performed by compiling all t-test comparisons, 

including both significant score (p<=0.05) and non-significant score (p>=0.05) 

in order not to exclude spot data.  Both 3 and 4 way Venn analysis was used in 

the main investigation to target specific profiles. 

 

 

Figure 3-11:  Example of three way and four Venn diagrams.  The 3-way Venn here is an 
example of targeting treated stabilisation by using t-tests to focus on candidate spots.  
The 4-way Venn allows multiple profiles to be targeted simultaneously.   
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3.5.2.8   Predicted profiles for analysis of presence vs. absence spots in the 
pilot and main investigation. 

As degradation occurs over time, the original protein spot intensity falls, whilst 

others increase.  Expected profiles are given in Figure 3-12.   In order to target 

such spots a method of combining group was used.  T=0, T=10 and T=20 were 

combined and Student’s t-test performed against S=0, S=10 and S=20.  Data 

was then sorted using 2-way ANOVA with significance score of p<=0.05.  In 

addition, this was cross referenced with those spots without an average ratio, to 

reveal statistically significant spots which appear in just the experimental group 

set (i.e. just snap frozen or treated).   

 

Figure 3-12:  Shows the possible evolution of protein spots when degradation occurs.  As 
degradation occurs over time the original protein spot intensity falls, whilst other 
increase.  If this occurs solely in one experimental group expected profiles are found as 
above.  
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3.5.2.9 Gel locations of multiply identified marker spots for pilot investigation 
and main investigation. 

Another expected characteristic of degradation, where the principal was 

demonstrated in section 3.5.2.2, is the movement of markers to different 

locations on the gel map.  If the molecular weight or pI changes due to 

proteolytic activity this directly affects the position of the spot.  Multiply 

identified proteins from different locations on a gel map would give an 

indication of possible degradation.  This is demonstrated in a schematic in 

Figure 3-13.  

 

Figure 3-13:  Schematic showing the effect of changes in molecular weight and pI may 
have on the location of protein/marker spots on a DiGE gel map.  These changes may be 
due to proteolytic enzymes performing digestion leading to degradation as outlined in 
section 3.5.2.2. 

Examples of multiply detected marker spots are given below in Figure 3-40, 

Figure 3-41, Figure 3-42, Figure 3-43, Figure 3-44, and Figure 3-45 for DiGE 

pilot investigation.  Horizontal shifts denote a change in pI and therefore 

isoelectric point.  This can be caused by degradative processes, particularly 

exoprotease but shifts in pI are not exclusive to degradation and likely to be 

PTMs.  Vertical shifts in the gel are equally indicative of degradation and 

effectively denote a shift in molecular weight (directly affects size), large shifts 

would be symptomatic of endoprotease activity considerable reducing an 

amino acid chain.  Circumspection is important when drawing conclusion, as 

many commonly identified proteins have many homologous sections of 

sequence and therefore identifications often are correct in broad classes but 
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would not always identify accurately the correct isoforms.  Furthermore many 

of the examples shown are identified but differently expressed markers display 

a variety of intensity profiles and whereas in the predications in section 3.5.2.2 

we have the luxury of following the parent protein, this is not necessarily the 

case in experimentally obtained spot data.  
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3.6 Results and Discussion 

3.6.1 Introduction to Results  
The use of DiGE to investigate non-specific and global proteomic degradation 

of mouse brain tissue samples treated with rapid heat-treatment is a novel 

approach.  Although similar techniques have been described in the heat 

stabilisation of peptides and neuro-peptides (Svensson et al., 2009a) using the 

same system and the stabilisation using microwaves (Che, 2005).  However, 

degradation research in general, perhaps due to its intrinsically non-specific 

and complex nature, is poorly reported.  Despite being a novel approach, the 

techniques and technologies used are well established.  DiGE has in excess of 

1000 publications, with 2DE, a standard in proteomic techniques, having many 

more.  In addition the collaborative work involving the use of other proteomic 

techniques (MSI and label-free quantitation) gives this study a more 

comprehensive approach to a multifarious problem.  In a collaborative process, 

technological limitations are minimised allowing a larger dynamic range of 

protein masses to be included.  The larger proteins abundances monitored using 

DiGE, affording information regarding quantitative changes probably resulting 

from proteolytic activity and PTMs.  Whilst MSI has allowed the inclusion of 

lower protein masses (<30KDa) and maintained spatial resolution for at least 

the low mass range.  In addition, label free-quantitation has allowed the gain of 

quantitation in addition to gaining MS level resolution and sensitivity without 

the complexity of labelling peptides.  All three techniques provide an innate 

possibility for cross over validation that using a number of versatile approaches 

affords.  

3.6.2 Profile Classification 
The idea of scrutinising profiles in DiGE is not new.  In DiGE analysis it is 

reasonably common to look for a pattern using the graphical display.  

However, the desired pattern is usually a positive or negative correlation 

between two points or a time course of treated sample which reviews a general 

trend.  The use of profile classifications in this thesis is a novel approach and 

tries to utilise many of the possible permutations to make sense of what is 

happening regarding the degradation of proteins.  As can be seen in section 

3.4.5 on page 157 the use of profiles is complex and confusing.  As such it is 

useful to consider the reasoning behind the selection of profiles at this junction 

before going on to discuss the findings of the pilot and main investigations. 
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The initial consideration came from how a change in a protein or peptide 

marker may affect its position on a 2D gel.  As can be seen in Figure 3-13 there 

are two clear results of a change in a marker protein or peptide.  Either a shift 

in the point of IEF, or a change in molecular weight (or a combination of the 

two, or indeed any fragments just run-off the end of the gel).  This will lead to 

the numerous permutation outlined in Figure 3-8Figure 3-9Figure 3-10Figure 

3-12.  What makes this essentially more challenging is the possibility of spots 

disappearing and reappearing.  Often in the DeCyder software, this will affect 

statistical significance as the algorithm does not notice the absence as a severe 

reduction in intensity, but as a spot of no importance (because it is not there) 

and considers it in the statistics.  Therefore, looking for these present and 

absent spots in degradation becomes difficult once the spots have been sorted 

by ANOVA score alone.  This problem remains somewhat unresolved.   

It was decided, that for degradation studies, limiting profile classifications to 

positive or negative correlation was not a valid approach and would limit the 

usefulness of information that might be obtainable from a data rich DiGE 

experiment.  To look at each profile class an increasing amount of information 

can be gained in order to make conclusions about how degradation in wild type 

mouse brain tissue may take place.   

To consider the initial value and validity to this approach, the pilot study was 

engaged first.    
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3.6.3 Pilot Investigation 
Firstly, a pilot investigation was performed in order to ascertain if heat-treating 

tissue lead to any noticeable change in the proteome in comparison to snap-

freezing in liquid nitrogen as well as determining whether two time-points 

were required in the main investigation.  Technical repeats were used in the 

pilot investigation to ascertain if DiGE was a suitable, valid and reliable 

method for investigation in tissue degradation.      

3.6.3.1 Typical Gels: Pilot investigation. 
Gels for the pilot investigation were run as described in methods using pH 4-7 

IPG strips from EttanTM (GE Healthcare, Bucks, UK) for isoelectric focusing.  

Cropping of gels was performed prior to importing into DeCyder software in 

order to minimise errors in the spot matching and allow the algorithm to 

function optimally.  To gain maximum sensitivity, the algorithm was told to 

estimate 10,000 spots and filter out spot volume <=29,999, as dust falls into 

this range.       

 

 



177 | P a g e  
 

 

Figure 3-14:  Set of typical DiGE gels showing A) Fluorescent image with Cy2,3 and 5 for 
gels treated = 0, 10 and Snap-frozen = 0,10 respectively from pilot investigation, B) Cy2 
Internal standard C) 3 Cy channels; Cy2 (blue) internal standard, Cy3 (green) 0 minutes 
and Cy5 (red) 10 minutes.  Acidic to basic left to right. 

Typical gels for the pilot investigation are presented in Figure 3-14.  As can be 

seen, the gel maps show clear and well resolved protein spots with little to no 

smearing, particularly in the middle portion of the gel, indicative of using a 

pH4-7 strip.  As expected, a small amount of precipitation and smear has 

occurred at the extreme fringes.  Internal standard channels compare well to 

each other, and average protein intensity spots (relative value of 80,000) fall 

within 15% of each other between all channels and across gels allowing for 

accurate quantitation.  Some small areas of the gel, corresponding to known 

areas of structural proteins, have saturated portions so quantitation will not be 

accurate for those regions.  This is normal for DiGE gels as a compromise must 

be made between being able to visualise low intensity stop without losing more 

abundant spots.      

The overlay of colours for the different channels allows for an initial view of 

the spread of change over the proteome.  It can be seen in Figure 3-14 that 
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certain spots appear and disappear showing an initial difference between the 

different channels and shows the need for deeper analysis using DeCyder 

software to look for the intensity differences.  The gels were then taken 

forward for quantitative analysis.  The data obtainable from well-run DiGE 

gels, such as those above, is considerable, regarding the ability to multiplex 

and quantitate.  About 3000 spots across all the gels are quantifiable, a 

significant number in a proteomic workflow.   
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3.6.3.2 Data set to be analysed  
As with traditional analysed DiGE experiments, the data was sorted for profile 

analysis.  For pilot investigation 5920 spots where detected and remained after 

filtering and profile analysis was performed on 1072 (18.11%) after 1-way 

ANOVA sorting on the basis of p=<0.05.  A schematic is shown below in 

Figure 3-15. 

 

Figure 3-15:  Showing total amount of spots detected in pilot investigation and total spots 
included in profile analysis using 1-way ANOVA as a sorting methods. 
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3.6.3.3 Statistical Results 

3.6.3.3.1 Normality testing 
Within DeCyder 2D version 7.0, GE Healthcare BVA module, there is no 

alternative to running parametric tests in the form of an ANOVA or Student’s  

t-tests.  Therefore, it is essential to show normality and homogeneity of 

variance, if false positives are to be minimised and useful conclusion drawn.  

Table 3-3 shows the percentage of protein spots that were out with the Shapiro-

Wilk p-value of 0.05 or less.  As can be seen, scores range from 7.10 - 2.52%, 

the average being 5.58%.  Therefore it was found that the assumption of 

normality is true.  This is because with a p value of 0.05 it would be expected 

that 5% of spots would fail due to random sampling alone, therefore a result of 

5.58% is within an acceptable tolerance.     

Dataset 
Number of 
Proteins spots 
tested 

Data type  
Percentage spot 
significance 
score <0.05 

Snap-frozen = 0 291 log10SA * 6.19 
Snap-frozen = 0 1637 log10SA ** 6.17 
Snap-frozen = 0 1072 log10SA *** 3.17 
Snap-frozen = 10 291 log10SA * 6.87 
Snap-frozen = 10 1637 log10SA ** 7.09 
Snap-frozen = 10 1072 log10SA *** 4.20 
Denator = 0 225 log10SA * 6.67 
Denator = 0 1296 log10SA ** 7.10 
Denator = 0 1072 log10SA *** 2.52 
Denator = 10 225 log10SA * 7.11 
Denator = 11 1296 log10SA ** 5.86 
Denator = 10 1072 log10SA *** 4.01 

    *Spots included had log10SA for all 4 repeats and an 1-way ANOVA score of <0.05 
or better  
**Spots included had log10SA for all 4 
repeats 

  *** Spots included had log10SA for all 4 repeats and an 1-way ANOVA score of 
<0.05 or better with missing values replaced 
Assessing normality of the log10SA using the Shapiro-Wilk goodness-of-fit 
test 
  

 
    Table 3-3:  Assessing normality of log10SA using the statistical test Shapiro-Wilk, results for 

denator pilot study.  These statistical test was performed with n=4 
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3.6.3.3.2 Homogeneity of Variance 
The second assumption of parametric testing is that samples have an equal (or 

approximately equal) variance.  DeCyder transforms standardised abundance 

values into log10SA in order to stabilise variance and statistical analysis in 

DeCyder is performed only on the log10SA. A number of other methods are 

available for variance stabilisation and are employed in DNA micro array work 

and are beginning to be employed within data analysis in proteomics due to the 

issues discussed in section 1.7.  In order to assess data homogeneity, i.e. how 

equal variances between groups are, the Levene’s statistical test was employed 

using SPSS 17.0.1.  The variance of data can be thought of in two ways either 

how homogenous the data is (that is how equal it is) or how heterogeneous the 

data is (how different it is).  The Levene’s statistic tests the null hypothesis that 

the population or sample variances are equal.  This was performed across all 

groups with a full set of repeats. It was then subsequently performed with data 

with missing values replaced using k-nearest neighbour (KNN). Table 3-4 

displays the results of the Levene’s test.  The threshold for rejecting the null 

hypothesis and concluding that the data is not homogeneous was 0.05 or less.  

Only 2.34% or 3.09% of the spots across all groups were not considered to 

have homogeneous variation.  Therefore it was found that the assumption of 

homogeneity is true.  This is because with a p-value of 0.05 it would be 

expected that 5% of spots would fail due to random sampling alone, therefore a 

result of 2.34% is within an acceptable tolerance.  This also showed that the 

process of taking the logarithm to the base 10 of the standardised abundance 

considerably aided the stabilization of data by increasing the homogeneity of 

the data from 7.45-2.34% or 8.89-3.09%.    
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Data Set Data type 
Number of 
Spots 
included 

% of spots 
with p value 
<0.05 

Denator Pilot Investigation SA 685 7.45 

  log10SA 685 2.34 

Denator Pilot investigation 
with missing values replaced SA 1072 8.96 

 log10SA 1072 3.09 

    Spots included had complete set of repeats  

  The P-Value was generated using Levene’s test across groups with each master spot 

Table 3-4:  Homogeneity of variance Levene’s statistical test results for denator pilot 
study.  This statistical test was performed with n=4.   

The variance was also visually assessed using a graphical representation.  An 

example can be seen in Figure 3-16, although graphs have been generated for 

all time points and treatments.  The average variance was calculated for each 

spot and plotted on the x-axis. It was plotted against arbitrarily points on the y-

axis in order to differentiate points on the graph.  This allowed the visualisation 

of how much the variance has spread. 

 

Figure 3-16:  Example of the graphical representation of variance.   For the denator group 
time point 0, for the standardised abundance using 683 different spots and n=4.  This is a 
typical distribution of variance generated across all treatments and time points.  This 
shows how the variance s clustered close to zero with few outliers.     
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In addition to what is shown by using the Levene’s test, the graphical 

representation shows tight clustering with the majority of data below the upper 

quartile close to zero.   The outlier showing greater variance are thought to be a 

result of preferential labelling between Cy3 and Cy5 (Karp and Lilley, 2005).  

This helps to confirm the results seen using the Levene’s test.    
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3.6.3.4 Profile analysis of pilot investigation and the distribution of global 
proteome. 

After sorting on the basis of 1-way ANOVA, each of the 1072 significant spots 

was compared visually and manually against predicted profiles in Figure 3-5.  

This is essential, as a 1-way ANOVA is additionally complex compared to the 

universally used Student’s t-test.  Whereas the Student’s t-test allows the user 

to search for differences between two different conditions, the 1-way ANOVA 

measures the difference between means in all experimental groups but not 

specifying which groups are different, making further classification necessary. 

 

Figure 3-17:  A) Shows the distribution of spots manually matched experimental profiles 
with predicted profiles shown in Figure 3-5 placed in the relevant categories following 
profile analysis of pilot investigation.  A total of 1072 spots were included.  B)  Shows the 
positions of identified spots of examples given in Figure 3-18  

 

Profiles were assigned to their relevant category and the distribution of spots 

can be seen in Figure 3-17 (A).  The number of spots classified as treated 

stabilised (heat-treated) was over a third of the 1072 spots analysed at ∼37%, 

with snap-frozen stabilisation accounting for just ∼6%.  A further ∼20% of 

spots were classified as having profiles with no significant change with the 

remaining ∼37% having intensity profiles showing very variable and 

unclassifiable profile behaviours within the representative profile groups.  Thus 

from the initial profile analysis the heat-treatment appears to have a positive 

effect on protein degradation in comparison to snap-freezing on its own.          



185 | P a g e  
 

 

Figure 3-18:  Example profiles for pilot investigation.  Ai, ii and iii), Bi, ii and iii) and Ci, ii 
and iii) match predicted profiles given Figure 3-5.  The positions on the spot map are given 
in Figure 3-17-B.  All x-axis denoted time points (heat treated=0 min, 10 mins and snap-
frozen=0 min, 10min respectively).  A)  Gives example profiles of heat-treated stabilised.  
B) Gives examples of snap-frozen stabilized and C) Gives examples of both stabilised or 
both changed. 

A number of examples of experimentally obtained intensity profiles are given 

in Figure 3-18, with their position on the gel indicated in Figure 3-17. 

Intensity profile Figure 3-18 (A) show examples of treated stabilisation, at 

position (Ai) and was identified as vacuolar H+ATPase 2B showing (t-test 

between snap-frozen=0 and 10 yielded a p-value=0.0002 and no significant p-

value between T0 and T10, a required pattern for this profile to exhibit ), Fig. 

A(ii),  cardiotrophin like Cytokinase  factor 1 (t-test  with p-value=0.0011 for 

S0 and S10 and no significant p-value between T0 and T10), A(iii) and T-

complex protein, (t-test between snap-frozen=0 and 10 yielded a p-value=0.024 

and no significant p-value between T0 and T10, it is also worth noting on this 

occasion there was a p value=7.8E-6 for treated = 0 snap-frozen =0 and there is 

not quite a significant t-tests of snap-frozen = 0 and 10 (p-value=0.064).  This 

is a suspected case of rapid degradation, before the point of snap freezing but 
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not prior to heat treatment.  In this last example the variance in intensity in the 

snap-frozen set is seen to be much greater than for the heat-treated samples, 

this kind of event is investigated more thoroughly in the main investigation. 

The contrary result is shown is Figure 3-18 (Bi-iii), where snap-frozen exhibit 

stabilisation (this could equally, and importantly, be viewed as treatment 

affected).  (Bii-iii) are unidentified; B (i) has been included as an example but 

warrants further explanation.  It has been identified as Beta tubulin 2C, this is 

notable on a number of grounds.  Firstly, this is an abundant and homologous 

set of proteins (i.e. the MS identification could easily be a number of different 

isoforms and validation would need to be performed to ascertain which) with 

structural function and therefore is notably in the saturated portion of the gel, 

so not too much attention is warranted regarding absolute quantitation but 

relatively the profile can be considered.  Secondly, it is also notable that the 

black line in (Bi) denoting the average intensity masks the high level of 

variation less noticeable but snap-frozen for this profile has a substantial 

variation in comparison to treated.  (Bii-iii) shows stabilisation with little 

variation between spots, with p-value = 1.6 E-8, 0.00017 and 0.00015 

respectively for t-test Treated = 0 and treated = 10 but showing no significant 

change between Snap-frozen = 0 and Snap-frozen = 10.  These proteins are 

currently not identified.  For intensity profiles in Figure 3-18 (Ci-iii), no 

change or difference is displayed, due to the treatment process, and the marker 

has not been affected over time.  In (Ci and iii) marker intensities have 

increased in both experimental groups indicating that stabilisation has not 

occurred in either treated or snap-frozen samples, the slight difference in level 

of change in (Ci and iii) may in indicate an effect of treatment.  Peroxiredoxin 

6 has been identified as (Ci) this is interesting as in Figure 3-41 Peroxiredoxin 

6 was identified in another location exhibiting an intensity profile suggesting 

treated stabilisation, with substantial differences presented between snap-

frozen = 0 and 10 Figure 3-41 (2).  The fact that there are multiple locations 

suggests the possibility of degradation, and one profile matches.  

Circumspection is still necessary as Peroxiredoxin 6 is also homologous and is 

part of a set of proteins with many isoforms, meaning identification could be 

one of these variants.  

C(ii), identified as lactate dehydrogenase B,  at both time = 0 and time = 10 is 

greater in the snap-frozen processed samples indicates that the degradation is 
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not as predictable or consistent without heat-treatment, even though the 

averaged intensity profiles appear similar between the two treatment processes.  

As a whole, the DiGE pilot investigation alludes towards that for significant 

spots (ANOVA score p value < 0.05) that were classified, heat-treatment does 

appear to beneficially stabilize the proteome (stabilising 37%) not affecting a 

further 37%, with little adverse effect exhibited in around 6%.  A summary of 

the P-values obtained and Mass Spectrometry data are displayed below in 

Table 3-5 and Table 3-6.   

3.6.3.5 Identifications of examples used in pilot investigation. 
Below is a summary of the statistical and MS data obtained for the example 

markers discovered in the pilot investigation. 
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Spot 
master 
Number

Label on fig Group Protein name t-test p value 1-ANOVA 
score

Average log 
standard 
abundance

Standard 
Deviation of 
log standard 
abundance

Number of 
experimental 

replicates

Degrees 
of 
Freedom

3149 Ai T0 -0.083 0.071 4 3
3149 Ai T10 -0.130 0.104 4 3
3149 Ai S0 -0.330 0.136 4 3
3149 Ai S10 0.293 0.078 4 3
2829 Aii T0 -0.140 0.150 4 3
2829 Aii T10 -0.038 0.061 4 3
2829 Aii S0 -0.155 0.106 4 3
2829 Aii S10 -0.158 0.139 4 3
2911 Aiii T0 0.018 0.015 4 3
2911 Aiii T10 0.015 0.006 4 3
2911 Aiii S0 -0.155 0.015 4 3
2911 Aiii S10 -0.235 0.070 4 3
4568 Bi T0 -0.163 0.013 4 3
4568 Bi T10 0.178 0.013 4 3
4568 Bi S0 0.048 0.050 4 3
4568 Bi S10 0.060 0.074 4 3
4580 Bii T0 -0.038 0.052 4 3
4580 Bii T10 0.213 0.028 4 3
4580 Bii S0 -0.003 0.028 4 3
4580 Bii S10 -0.040 0.008 4 3
4564 Biii T0 -0.130 0.013 4 3
4564 Biii T10 0.225 0.013 4 3
4564 Biii S0 -0.043 0.050 4 3
4564 Biii S10 0.148 0.074 4 3
5430 Ci T0 -0.213 0.022 4 3
5430 Ci S0 -0.158 0.026 4 3
5430 Ci T10 -0.080 0.008 4 3
5430 Ci S10 -0.093 0.013 4 3
3703 Cii T0 -0.068 0.013 4 3
3703 Cii S0 -0.050 0.123 4 3
3703 Cii T10 0.013 0.005 4 3
3703 Cii S10 -0.025 0.087 4 3
5290 Ciii T0 -0.230 0.123 4 3
5290 Ciii S0 -0.230 0.215 4 3
5290 Ciii T10 -0.125 0.091 4 3
5290 Ciii S10 -0.195 0.078 4 3

Unidentified at this time
0.06

0.76

0.024

7.40E-07

0.48

0.21

0.39

0.026

Unidentified at this time

Unidentified at this time

2.40E-06

0.00017
4.80E-06

0.00015
7.90E-07

0.8

0.6

0.06

0.96

0.00064

5.50E-07T-Complex Protein

Peroxiredoxin 6

L-Lactate dehydrogenase B

4.00E-06

0.064

Unidentified at this time
1.60E-08

Vacuolar H+ATPase 2B
0.0002

0.5
1.40E-05

0.78Cardiotrophin like Cytokinase 
factor 1

0.0011

 

Table 3-5:  Table of p-values and standard deviations obtained for identified spots shown in Figure 3-17.  The p-values given are from the Student’s t-tests between the 
shown time points.  This confirms the validity of the profile analysis by showing no significant differences between the treated = 0 and 10 minutes but showing 
difference between the snap-frozen = 0 and 10 minutes 
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Spot 
master 
Number

Label on fig Group Protein name MOWSE 
Score

Score MS 
(PMF)

Machine 
identified 
on 

P Value Peptides 
MS/MS

Charge 
State

Peptides 
for PMF

Percentage 
coverage

1186 Ai T0
1186 Ai T10
1186 Ai T20
1186 Ai S0
1186 Ai S10
1186 Ai S20
1286 Aii T0
1286 Aii T10
1286 Aii T20
1286 Aii S0
1286 Aii S10
1286 Aii S20
1554 Bi T0
1554 Bi T10
1554 Bi T20
1554 Bi S0
1554 Bi S10
1554 Bi S20
3068 Ci T0
3068 Ci T10
3068 Ci T20
3068 Ci S0
3068 Ci S10
3068 Ci S20
1852 Cii T0
1852 Cii T10
1852 Cii T20
1852 Cii S0
1852 Cii S10
1852 Cii S20

Tpr [Mus musculus] N/A 63 4700 0.05 N/A 1+ 26 83

4
  nebulin-related anchoring 

protein isoform C [Mus 
musculus]

78 q star 0.01 2+ N/A 72

Unidentified at this time N/A

Unidentified at this time N/A

N/A

2+ N/A 15-hydroxytryptamine (serotonin) 
receptor 2C [Mus musculus] 43 N/A q star 0.05 1

 

Table 3-6:    Table of identifications using Mass Spectrometry shown in Figure 3-17.  Table gives details of the returned MS identification, p-value and percentage 
coverage of the identifications  
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3.6.3.6 Venn analysis for pilot investigation. 
Venn analysis allows a more holistic approach, allowing the inclusion of a 

greater number of spots and a more targeted and specific approach than sorting 

on the basis of 1-way ANOVA as all spots are included.  

 
Figure 3-19:  Venn analysis for pilot investigation:  A) and B) give two independent but 
comparative strategies for matching profiles in c) searching for predicted profiles in sector 
G focusing on treated stabilisation.  D) and E) give two independent but comparative 
strategies for matching profiles in F) searching for predicted profiles in sector G focusing 
on snap-frozen stabilisation. Profile shown in C) and F) are those shown in Figure 3-5.  Red 
spots = heat treated and blue spots = snap-frozen.   
 

In Figure 3-19 (A and B) show two different possible strategies form targeting 

treated stabilised profiles.  (A) Shows an inclusive strategy.  If a t-test p-value 

is >=0.05 (not significant) between treated = 0 and 10, then this denotes no 

difference which is expected if stabilisation has taken place, for those spots that 

cross over between this group and treated = 10 and snap-frozen 0 with p-value 

>=0.05, and a significant p-value for snap-frozen = 0 and treated = 10 (i.e. 

significant difference) sector G should rule out intensity profiles in the no 

changes category while maintaining profiles showing differences between 

treated and snap-frozen with stability in the treated.  In (B) a less inclusive 

strategy is employed, displayed by the reduction in spots considered, look for 

significant differences (p<=0.05) in the different experiment groups.  In (A) 

this has allowed more focused attention of the data from 1072 (20% of total 
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number of spots) spots considered and manually checked using 1-way ANOVA 

to sort compared to 4412 spots narrowed to 305 of interest (6.9% of included 

spots and 5.15% of total spots to be manually checked), the manual work has 

been severally reduced whilst including more spots in total.  In (B) using the 

more direct strategy a total number of spots included was 1227 narrowing to 54 

for manual consideration (4.4% of included spots and 1% of total spots).  This 

method still allows a greater number of included spots but limits manual 

checking to 54.  For (D) and (E) which are targeting snap-frozen stabilisation 

(F) (or treated affected), 1830 and 540 total spots respectively, showing less are 

considered with respect to treated showing less spots meet the designated 

criteria for inclusion.    

Comparing (A and B) and (C and D) we can see that the ratio of treated 

stabilised is 305/180 = 1.69 and 54/29 = 1.86 respectively.  Both ratios are 

comparable and treatment appears to have a positive impact of the global 

degradative proteome. Venn analysis is shown in Figure 3-32 to Figure 3-27 to 

be successful in identifying targeted groups.  In the pilot investigation shown in 

(A) and (B), this allows the user to reduce the amount of manual checking and 

lead therefore to more attention being given to particular spots while also 

maintaining a perspective on the overall global degradative proteome.            

This Venn analysis allows a more inclusive approach and allows for a more 

objective angle using statistics, rather than a vast amount of manual checking.  

The strategy employed in Venn diagram A) is more likely to show false spots 

as it rules spots in on the basis of no difference.  This means there may be no 

difference because there is nothing present in both tests.  However, using the 

Venn process allows these to be ruled out and therefore reduces the complexity 

of the analysis from over 3000 down to about 300 spots which is more 

manageable manually.  Then of course the spot can be checked and validated 

using profiles analysis. 

Finally, it can be seen from this analysis that treatment seems to be twice as 

effective at stabilising degradation compared to snap-freezing alone.   
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3.6.3.7 Summary and conclusions of the pilot investigation 
Initial evidence from the pilot investigation results suggest that heat-treating 

wild type mouse brain tissue samples immediately post excision has a positive 

effect in halting nonspecific proteomic degradation of protein or peptides 

markers; in comparison to traditional snap freezing alone.  This has the 

prospect of increasing validity, particularly to quantitative studies.  The 

possible inactivation of proteolytic enzymes could allow for the increased 

potential handling of tissue at room temperature without affecting proteomic 

profiles.  This is particularly important where procedures such as dissection or 

preparation of tissue are required.  The possibility of detrimental effects was 

not covered in the pilot study but will be further reviewed in the main 

investigation and validation sections.  One barrier to the use of heat-treatment 

would be trying to compare the considerable wealth of data already obtained 

from tissue which has been snap-frozen.  Any further investigation would need 

to take comparative differences into account.     

Of course, having two time-points has proved limiting and does not allow for 

any conclusions to be drawn regarding the evolution of a marker.  This is to be 

considered further.  This is important as degradative processes may be delayed 

as shown in section 3.6.6.1 on page 237.  Therefore it is useful to extend the 

time period for warming to tract how markers can change over the course of an 

extended time period.  This is considered in the main investigation 

 



193 | P a g e  
 

3.6.4 Main Investigation 
From the pilot study it was clear (see Figure 3-17 (A)) that the heat-treatment 

had changed the profile of the proteome in comparison to snap-freezing alone 

and had led to an increased number of stabilised proteins or peptides.  It was 

also apparent that in order to see if the proteome had reached equilibrium or 

whether it would continue to change, another time-point would be 

advantageous.  This was further considered in the main investigation.   

3.6.4.1 Typical Gel in the Main investigation. 
Gels for the main investigation where ran as described in methods using pH 4-

7 IPG strips from EttanTM (GE Healthcare, Bucks, UK) for isoelectric 

focussing.  Cropping of gels was performed prior to importing into DeCyder 

software in order to minimise errors in the spot matching.  The algorithm was 

told to estimate 10,000 spots and filter out spot volume <=29,999, as dust falls 

into this range.       

 

Figure 3-20: Set of typical DiGE gels showing A) Fluorescent image with Cy2,3 and 5 for 
gels treated = 0, 20 and treated = 0,10 respectively from the main investigation, B) Cy2 
Internal standard C) 3 Cy channels; Cy2 (blue) internal standard, Cy3 (green) 0 minutes 
and Cy5 (red) 10 and 20 minutes respectively.  Acidic to basic left to right.   
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Figure 3-21:  Set of typical DiGE gels showing A) Fluorescent image with Cy2, 3 and 5 for 
gels treated = 10, 20 and snap-frozen= 0, 20 respectively from the main investigation, B) 
Cy2 Internal standard C) 3 Cy channels; Cy2 (blue) internal standard, Cy3 (green) treated = 
10 minutes and snap-frozen = 0 minutes respectively and Cy5 (red) treated and snap-
frozen 20 minutes respectively.  Acidic to basic left to right.   
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Figure 3-22: Set of typical DiGE gels showing A) Fluorescent image with Cy2,3 and 5 for 
gels snap-frozen = 0, 10 and snap-frozen= 20,10 respectively from the main investigation, 
B) Cy2 Internal standard C) 3 Cy channels; Cy2 (blue) internal standard, Cy3 (green) snap-
frozen = 0 and 20 minutes respectively and Cy5 (red) treated and snap-frozen 10 minutes 
respectively. Acidic to basic left to right.   

 

Typical gels for the main investigation are presented in Figure 3-20, Figure 

3-21 and Figure 3-22.  As can be seen, the gel maps have generally ran well 

showing clear and well resolved protein spots with, little to no smearing 

particularly in the treated samples and in the middle portion of the gel.  Internal 

standard channels compare well across gel maps.  The gels with snap-frozen 

samples are acceptable, but lack the same degree of resolution found in the 

treated gels.  As before the average protein intensity spots (relative value of 

80,000) fall within 15% of each other between all channels and across gels 

allowing for accurate quantitation and care must be taken when considering 

saturated areas. 
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3.6.4.2 Data Set considered for the main investigation 
Following the schematic in Figure 3-23, data was sorted for profile analysis 

using both 1-way ANOVA (including 623 spots (20.0%)) and 2-way ANOVA 

(including 573 spots (18.4%)).  The total number of detected spots was lower 

than in pilot investigation at 3110, but the proportion of spots with a significant 

ANOVA score is similar.  This may be accounted for by the increased number 

of replicate gels for the main investigation and the slightly reduced resolution 

in some of the snap-frozen gel maps. 

 

Figure 3-23:  Showing total amount of spots detected in the main investigation and Total 
spots included in profile analysis using 1-way and 2-way ANOVA as a sorting method 
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3.6.4.3 Statistical results 

3.6.4.3.1 Normality testing 
As described in the pilot investigation, normality testing was performed and 

Table 3-7 shows the percentage of protein spots that where out width the 

Shapiro-Wilk p-value of 0.05 or less.  As can be seen, scores range from 7.87 - 

2.09%, the average being 4.40%.  Therefore it was found that the assumption 

of normality is true.   

Dataset 
Number of 
Proteins 
spots tested 

Data type  

Percentage 
spot 
significance 
score <0.05 

Snap-frozen = 0 151 log10SA * 3.31 
Snap-frozen = 0 556 log10SA ** 3.42 
Snap-frozen = 0 623 log10SA ***   2.25 
Snap-frozen = 10 89 log10SA * 7.87 
Snap-frozen = 10 320 log10SA ** 6.56 
Snap-frozen = 10 623 log10SA ***   5.46 
Snap-frozen = 20 94 log10SA * 6.38 
Snap-frozen = 20 322 log10SA ** 4.04 
Snap-frozen = 20 623 log10SA ***   4.01 
Denator = 0 94 log10SA * 4.26 
Denator = 0 363 log10SA ** 3.86 
Denator = 0 623 log10SA ***   3.37 
Denator = 10 73 log10SA * 6.85 
Denator = 10 283 log10SA ** 4.59 
Denator = 10 623 log10SA *** 2.09 
Denator = 20 103 log10SA * 4.85 
Denator = 20 392 log10SA **   3.32 

Denator = 20 623 log10SA *** 2.73 

    *Spots included had log10SA for all 6 repeats and an 1-way ANOVA score of <0.05 or better  

**Spots included had log10SA for all 6 repeats 
  *** Spots included had log10SA for all 6 repeats and an 1-way ANOVA score of <0.05 or better 

with missing values replaced 

Assessing normality of the log10SA using the Shapiro-Wilk 
 goodness-of-fit test 

     

Table 3-7: Assessing normality of log10SA using the statistical test Shapiro-Wilk, results for 
the denator main study. 
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3.6.4.3.2 Homogeneity of Variance 
As described in the pilot investigation, the Levene’s test was used to assess the 

homogeneity of variance.  This was performed across all groups with a full set 

of repeats. It was then subsequently performed on all matched spot data with 

missing values replaced using k-nearest neighbour (KNN). Table 3-8 displays 

the results of the Levene’s test.  Only 4.78% or 4.98% respectively of the spots 

across all groups were not considered to have homogeneous variation.  

Therefore it was found that the assumption of homogeneity is true.  This also 

showed that the process of taking the logarithm to the base 10 of the 

standardised abundance considerably aided the stabilization of data by 

increasing the homogeneity of the data from 14.52-4.78% or 18.94-4.98%.   

Example graphs visually depicting the distribution of variance can be seen in 

Figure 3-24, as also described in the pilot investigation.  This allowed the 

visualisation of how much the variance has spread. 

     

Data Set Data type 
Number of 
Spots 
included 

% of spots 
with p value 
<0.05 

Denator Main Investigation SA 62 14.52 

  log10SA 62 4.78 

Denator Main Investigation 
with missing values 
replaced SA 623 18.94 

 log10SA 623 4.98 

  

   Spots included had complete set of repeats  

  The P-Value was generated using Levene’s test across groups with each master spot 

Table 3-8:  Homogeneity of variance Levene’s statistical test results, for denator main 
study. 
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Figure 3-24:  Graphical representation of variance for the denator group time point 0, for 
the standardised abundance using 62 different spots and n=6.  This is a typical distribution 
of variance generated across all treatments and time points.  This shows how the variance 
s clustered close to zero with few outliers.         

.     
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3.6.4.4 Profile analysis of the main investigation 
In completion of analysis in pilot investigation, limitations were apparent in 

using just two time point of 0 and 10 minutes of warming shown in section 

3.6.6.1 on page 237.   To visualise the evolution of markers an extended time 

course was performed.   

The profile analysis was performed similarly to pilot investigation, but there 

were some noticeable differences.  The categories of the predicted profiles 

were extended for completeness (as shown in Figure 3-8 to Figure 3-10).  This 

was necessary as the addition of an extra time point considerably increased the 

permutations of possible profile, thus increasing the amount of data obtainable.  

The data was also assigned conditions allowing the clearer visualisation of 

changes using profile and the use of 2-way ANOVA sorting as well as 1-way 

ANOVA sorting.  Having an extra time point increases the amount of Venn 

analysis that could be considered.   

3.6.4.5 One-way ANOVA as sorting method. 
The data was first sorted as in pilot investigation by 1-way ANOVA and 

revealed a subset of 623/3110 (20%, the same proportion as in pilot 

investigation), which showed a significant difference. 
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Figure 3-25:  A) Profile distribution for the main investigation using 1-way ANOVA as a sorting method of categories shown in Figure 3-8, Figure 3-9 and Figure 3-10.  A) 
Shows the proportions of various experimental group categories considered in the predicted profiles then further broken down into proportions assigned to individual 
profiles.  B) The proportion of all stabilised groups compiled for both treated and snap-frozen.  This gives an overview of relevant category amalgamation.  As can be 
seen, the treated stabilised proportion is the greatest at 57% while the snap-frozen stabilisation is only 7%.  623 spot were included in total.  
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In the pilot investigation in Figure 3-17, the proportion shown to be treated 

stabilized was ∼37%, this amount has increased to ∼57% in Figure 3-25(B), in 

actual number terms (398 spots to 355 in pilot investigation and main 

investigation respectively) the spots are comparable between the two 

experiments.  For snap-frozen stabilized (treated affected), proportions are 

similar at 6% and 7% but actual numbers have therefore increased.  In Figure 

3-8 in treated stabilized the highest proportions were seen in profiles (iv, v, vi) 

making up about 88%, showing the predicted appearance or accumulation of a 

degradation product in snap-frozen tissues.  30%/57% of treated stabilization 

was exhibited in Figure 3-9, showing the predicted profiles of immediate 

degradation in snap-frozen while stabilization in treated.  This alludes to 

degradation being rapid after animal sacrifice but in excess of 60 seconds or 

occurring during storage at -80oC, this is in stark contrast in comparison to 

immediate degradation in treated tissues making up only 1% of included spots.  

With snap-frozen stabilisation (treated affected) accounting for 7% in total.  In 

the main investigation, it appears treated samples have a lower proportion of 

spots delayed from degradation (1%) in comparison to snap-frozen (8%), 

alluding to treatment leading to stabilisation totally or not at all but having very 

small effect on delaying degradation; in contrast snap-freezing was more 

successful at this.   

What has equally become apparent is, by running the additional time point 

delayed degradation could be visualised by viewing the profiles in parallel 

rather than serial, as in pilot investigation shown in section 3.6.6.1 on page 

237.  Therefore, a notable caveat is that profiles in pilot investigation being 

viewed serially, with one time point less, would be seen as treated stabilized 

(when it could possibly be snap-frozen delayed degradation) and vice versa, 

skewing results in pilot investigation towards treatment stabilisation. 

 The increase of stabilised protein or peptide markers in comparison to the pilot 

study shows that in the snap-frozen samples not all degradation is rapid and can 

continue to occur up to the 20 minutes time point. 

3.6.4.6 Two-way ANOVA (condition 1) as sorting method 
Profile analysis was further carried out using 2-way ANOVA as sorting 

method.  This was seen to be a reasonable strategy as the assigned condition 1 

was targeted between treated and non-treated groups.    
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Figure 3-26:  A) Profile distribution for the main investigation using 2-way ANOVA as a sorting method of categories shown in Figure 3-8, Figure 3-9 and Figure 3-10.  A) 
Shows the proportions of various experimental group categories considered in the predicted profiles then further broken down into proportions assigned to individual 
profiles.    B) The proportion of all stabilised groups compiled for both treated and snap-frozen.  This gives an overview of relevant category amalgamation.  As can be 
seen, the treated stabilised proportion is the greatest at 61% while the snap-frozen stabilisation is only 4%.  573 spot were included in total.    
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The proportions compared to 1-way ANOVA analysis in experiment two have 

changed slightly, but do not show massive deviation.   With a 4% increase seen 

in treated stabilized and 3% reduction in snap-frozen stabilized.  It seems using 

2-way ANOVA for condition 1 (treated/snap-frozen) leads to a slight biased 

approach to illuminate a higher proportion of snap-frozen stabilisation spots in 

comparison with 1-way ANOVA.  Other proportion follows a similar pattern, 

within the different intensity profile classes in the majority of cases, between 

the two methods of sorting.  Therefore it would appear acceptable to use either 

method compared to one another.    

3.6.4.7 Summary of profile analysis 
Whilst being aware of the limitation of the profile analysis discussed the DiGE 

pilot investigation and main investigation profile analysis as a whole was 

successful, alluding towards: 

• For protein/maker spots sorted on the basis of significance scores, 

treatment using the Stabilzor T1 denaturing device (Denator AB, 

Gothenburg, Sweden), has a positive effect on the majority of spots.  

Treated spots showed proportions of 37% and 57% (of stabilised 

markers) for pilot investigation and main investigation respectively, 

which is a considerably higher portion in comparison to the snap-frozen 

(or treated affected) quotient. 

• Not all degradation can be considered rapid as protein markers have 

been seen to rise after 10 minutes, exhibiting the need for careful 

sample procedures. 

• Deconvolution and manual check of data is comparatively easier when 

using 2-way ANOVA to sort due to the smaller subset of markers 

considered.  However, a more inclusive approach is to use 1-way 

ANOVA as a sorting method.     

3.6.4.8 Caveat  
There are always limitations and assumptions present when trying to view 

proteomic data globally and simplification is generally necessary in order to 

make conclusions.  Indeed, at its core, proteomics is a field of research which 

required separation of samples in an attempt to deconvolute data to a more 

comprehendible level.  Specific examples of proteomic stabilization have 

equally been presented within the framework of a global view.  It is understood 

that specific examples require more validation work in the future, but is beyond 
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what this study was trying to achieve and would be presented for future 

attention.    

3.6.4.9 Example intensity profiles for the main investigation 
In choosing specific profile example to include, all 623 and 573 spots included 

in both 1-way and 2-way ANOVA sorting were to be used (total inclusion of 

932 spots with 264 spots in common as shown in 4-way Venn diagram in 

Figure 3-27). As before, each of these spots were divided into the relevant 

categories by manual visualisation against predicted profiles in Figure 3-8 and 

Figure 3-10.  The innate nature of ANOVA makes visual comparison essential.   

In addition, it is important to be aware that sorting by different forms of 

ANOVA may drastically change results as the Venn in Figure 3-27 shows by 

viewing the global proportions of spots.  It allows the display of crossover of 

various ANOVA sorting of significant spots with p-values<=0.05.  It displays 

considerable crossover out of 1049 spots only 40 actually appear in all 4 

possible ways to that ANOVA can be performed in DeCyder Software.     

 

Figure 3-27:  4-Venn analysis for the main investigation:   Shows cross-over of various 
ANOVA methods used to sort data.  The low proportion of spots in common between all 4 
methods of sorting is significant as data will be lost if only one is considered.  

The conclusion from this dictates that one form of analysis will always leave a 

gap where possible markers might be missed.  It is therefore essential to have 

multiple and complementary analytical methods to allow for comparison to 
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avoid missed data.  It is therefore important to consider which analytical 

approach is most appropriate for the data and conclusion that wish to be drawn. 

This helps to validate the use of multiple forms of sorting methods and the use 

of a number of profiles to find examples of markers.  Below are some 

examples of markers found for the various profiles considered.    
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3.6.4.10 Treated Stabilisation. 
First, to be considered, are examples of treated stabilised intensity profiles, as 

outlined in Figure 3-8 (i-vi) and their positions on the gel map.  

 

Figure 3-28:  Example profiles from the main investigation matching predicted profiles 
given in Figure 3-8 for treated stabilised Ai-vi). Example profiles of actual spots and their 
location on the gel map below.  Blue lines denote snap-frozen and red heat-treated 
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Intensity profiles in Figure 3-28 (Ai-vi) show examples of identified spots, 

exhibiting treated stabilisation and make up 13% of markers indicated through 

1-way ANOVA profile analysis.  Intensity profiles like (Ai) make up 8% of the 

treated stabilised group and has been identified as Sfi1 homolog; spindle 

assembly associated (yeast) [Mus musculus] showing t-test between 

treated/snap-frozen= 20 of p-value=0.035 and t-test of treated = (0, 10) and 20 

of p-value = 0.13 and treated and snap-frozen = 0 of p=0.32 (no significant 

difference as a required pattern for this profile).  The validation of profiles like 

this is essential, as a first glance at the pattern looks identical between the two 

groups but it is important to consider treated is at a log standardised abundance 

of 0.  In (ii, iii and v) PREDICTED: similar to pORF2 [Mus musculus] has 

been identified.  Multiple identifications are covered in greater detail in 

sections 3.5.2.9 on page 172.  Both (ii and iii) follow similar intensity profile 

patterns showing t-test between treated/snap-frozen= 20 of p-value= 0.005, 

0.0076 and 0.007 respectively and being no significantly different between 

treated = (0, 10) and 20 having p-value = 0.72, 0.69 and 0.31 respectively.  

Heat shock protein 9 [Mus musculus] or mortalin mot-1=hsp70 homolog 

Cytosolic form was identified as (iv) showing t-test between treated/snap-

frozen= 20 of p-value=0.00017 and of treated = (0, 10) and 20 of p-value = 

0.70  (vi) making up 37% of the treated stabilised group is an example where 

degradation may have occurred within the 10 minute time frame and has 

reached a plateau after that and has been identified as Albumin.  It shows a t-

test between treated/snap-frozen= 20 of p-value=0.00020 and of treated = (0, 

10) and 20 of p-value = 0.56.  It is interesting to note that many of the 

examples, and indeed a high proportion of these in general, would be 

miscategorised in an experiment.  All the data is summarised in Table 3-9, 

Table 3-10 and Table 3-11. 

As can be seen in Table 3-10, using profiles as a way to pull out valid data is 

robust, the exception being only one of the examples which is highlighted.  

This shows that collating the profile analysis with individual statistics is a good 

method and showed that a cross validative approach was required.  This helps 

to show the validation of using a Venn analysis (which uses statistics) to help 

confirm valid protein/peptide marker spots.  The exception shown in Table 

3-10 is the highlighted cell.  They show that the starting points at time point = 

0 minutes differ.  This could indicate that degradation may have occurred 
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between treatment (heating or snap freezing) or the heat-treatment itself.  This 

requires further investigation.  This trend is replicated in Table 3-13.      

 

Table 3-9: Table of average log abundance and standard deviations obtained for identified 
spots shown in Figure 3-28.  Highlighted cell indicated only 2 readings present and 
therefore a standard deviation cannot be performed. 
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Spot master 
Number Label on fig P-value 

criteria pvalue 1wayanova 2wayanova

Does the 
p-value 

meet the 
criteria 

Number of 
experimental 

replicates

Degrees 
of 
Freedom

694 Ai T0 vs T20 p=>0.05 0.22 true 6 5
694 Ai T0 vs S0 p=>0.05 0.32 true 6 5
694 Ai T20 vs S20 p=<0.05 0.035 true 6 5
581 Aii T0 vs T20 p=>0.05 0.96 true 6 5
581 Aii T0 vs S0 p=>0.05 0.69 true 6 5
581 Aii T20 vs S20 p=<0.05 0.005 true 6 5
1316 Aiii T0 vs T20 p=>0.05 0.56 true 6 5
1316 Aiii T0 vs S0 p=>0.05 0.2 true 6 5
1316 Aiii T20 vs S20 p=<0.05 0.03 true 6 5
527 Aiv T0 vs T20 p=>0.05 0.94 true 6 5
527 Aiv T0 vs S0 p=>0.05 0.068 true 6 5
527 Aiv T20 vs S20 p=<0.05 0.00017 true 6 5
577 Av T0 vs T20 p=>0.05 0.91 true 6 5
577 Av T0 vs S0 p=>0.05 0.012 false 6 5
577 Av T20 vs S20 p=<0.05 0.0076 true 6 5
535 Avi T0 vs T20 p=>0.05 0.6 true 6 5
535 Avi T0 vs S0 p=>0.05 0.27 true 6 5
535 Avi T20 vs S20 p=<0.05 0.00026 true 6 5

Group

3.60E-05 2.70E-06

0.00078 0.00028

0.00017 0.000013

9.40E-10 1.20E-11

0.00028 0.00056

0.0042 0.00097

 

Table 3-10:  Table of average log abundance and standard deviations obtained for identified spots shown in Figure 3-28.  The p-values given are from the shown 
Student’s t-tests.  This confirms the validity of the profile analysis by showing no significant differences between the treated = 0 and 10 minutes but showing difference 
between the snap-frozen = 0 and 10 minutes.  With the exception of the highlighted cell. 
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Spot master 
Number Label on fig Group Protein name MOWSE 

Score
Score MS 
(PMF)

Machine 
identified on p-value Peptides 

MS/MS Charge State Peptides for 
PMF

Percentage 
coverage

694 Ai T0
694 Ai T10
694 Ai T20
694 Ai S0
694 Ai S10
694 Ai S20
581 Aii T0
581 Aii T10
581 Aii T20
581 Aii S0
581 Aii S10
581 Aii S20

1316 Aiii T0
1316 Aiii T10
1316 Aiii T20
1316 Aiii S0
1316 Aiii S10
1316 Aiii S20

527 Aiv T0

527 Aiv T10

527 Aiv T20

527 Aiv S0

527 Aiv S10

527 Aiv S20
577 Av T0
577 Av T10
577 Av T20
577 Av S0
577 Av S10
577 Av S20
535 Avi T0
535 Avi T10
535 Avi T20
535 Avi S0
535 Avi S10
535 Avi S20

9 26

2+ 12 30

2+ 14 22

PREDICTED: similar to pORF2 
[Mus musculus]

  ORF2 [Mus musculus 
domesticus]

heat shock protein 9 [Mus 
musculus]                                           

OR                                                       
mortalin mot-1=hsp70 homolog 
cytosolic form [mice, CD1-ICR 
embryonic fibroblasts, MEF, 

Peptide, 679 aa]

PREDICTED: similar to pORF2 
[Mus musculus]

3

N/A q star 0.01 3

130

albumin [Mus musculus]

68 4700 0.05

87 N/A q star 0.05

74

Sfi1 homolog, spindle assembly 
associated (yeast) [Mus 

musculus]
1+ 6 72N/A N/A

82 q star q star 0.05 FIND

N/A q star 0.05 4 2+

6

16 5

13

2+

86 N/A q star 0.05 4 2+

 

Table 3-11: Table of identifications using Mass Spectrometry shown in Figure 3-28.  Table gives details of the return MS identification and, p-value and percentage 
coverage of the identifications. 
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3.6.4.11 Treated Stabilised with immediate degradation and unclassified 
in snap-frozen 

Secondly, to be considered, examples of treated stabilised profiles exhibiting 

and immediate degradation and unclassified response in snap-frozen intensity 

profiles, as outlined in Figure 3-9 and Figure 3-10 and their positions on the gel 

map. 

  

Figure 3-29:  Example profiles from the main investigation matching predicted profiles 
given in Figure 3-9 and Figure 3-10 for treated stabilised Ai-iv)  Example profiles of actual 
spots and their location on the gel map of treated stabilised with snap-frozen showing 
immediate degradation. Bi-ii) Example profiles of actual spots and their location on the gel 
map of treated stabilised with snap-frozen unclassified.  Blue lines denote snap-frozen 
and red heat-treated.    
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Intensity profile in Figure 1-26 (Ai-iv) show examples of identified spots 

exhibiting treated stabilisation, whilst in snap-frozen displaying a predicted 

degradate effect prior to the warming time course. Additionally, intensity 

profile in Figure 1-26 (Bi-ii) shows treated stabilisation whilst in snap-frozen, 

displaying an unclassified response. (Ai) has been identified RIKEN cDNA 

1810014F10; isoform CRA_i [Mus musculus] showing t-test between 

treated/snap-frozen = 20 of p-value=0.00045 and t-test of treated = 0 and 10 of 

p-value = 0.15 and treated and snap-frozen = 0 p-value=4.2E-6, showing 

complete separation of experimental groups treated and snap-frozen at the 

outset, suggestion degradation in the snap-frozen prior to warming or in 

storage. These profile classification make up a large proportion of treated 

stabilisation (30%/57% and 30%/64% in 1-way and 2-way ANOVAs 

respectively). (ii, iii and iv) show similar profiles to (i) and have been 

identified as; (ii) mKIAA1735 protein [Mus musculus]/Ccd1BbetaL [Mus 

musculus]/PREDICTED: similar to pORF2 [Mus musculus], (iii) Atp5b 

protein [Mus musculus]/mitochondrial ATP synthase beta subunit [Mus 

musculus] and (iv) 5-hydroxytryptamine (serotonin) receptor 2C [Mus 

musculus]. With corresponding p-values = 0.00019, 0.0035 and 0.00018 for 

treated/snap-frozen= 20. (Bi-ii) gives examples of snap-frozen tissue exhibits 

unclassified behaviour with treated being stabilised. These examples are as yet 

unidentified.   

As is shown in Table 3-13 the statistical criteria for all except one has been 

satisfied, showing that those markers can be placed in these categories and 

helps to validate the use of profile analysis.  
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Table 3-12:  Table of average log abundance and standard deviations obtained for 
identified spots shown in Figure 3-29. 

 

 

 

Spot master 
Number

Label on fig Group Protein name
Average log 
standard 
abundance

Standard 
Deviation of 
log standard 
abundance

2208 Ai T0 -0.045 -0.048
2208 Ai T10 -0.115 -0.100
2208 Ai T20 -0.152 0.100
2208 Ai S0 -0.642 0.128
2208 Ai S10 -0.438 0.175
2208 Ai S20 -0.532 0.150
868 Aii T0 -0.063 0.036
868 Aii T10 -0.068 0.039
868 Aii T20 -0.107 0.059
868 Aii S0 -0.580 0.190
868 Aii S10 -0.460 0.130
868 Aii S20 -0.433 0.126

1043 Aiii T0 -0.133 0.082
1043 Aiii T10 -0.085 0.070
1043 Aiii T20 -0.123 0.025
1043 Aiii S0 -0.497 0.090
1043 Aiii S10 -0.400 0.127
1043 Aiii S20 -0.445 0.154
2231 Aiv T0 -0.007 0.037
2231 Aiv T10 -0.025 0.042
2231 Aiv T20 -0.123 0.150
2231 Aiv S0 -0.680 0.128
2231 Aiv S10 -0.468 0.154
2231 Aiv S20 -0.617 5.000
857 Bi T0 -0.030 -0.015
857 Bi T10 0.020 0.013
857 Bi T20 -0.062 0.053
857 Bi S0 -0.308 -0.228
857 Bi S10 -0.158 -0.200
857 Bi S20 -0.490 0.395

1721 Bii T0 -0.063 -0.055
1721 Bii T10 -0.055 -0.018
1721 Bii T20 -0.053 0.113
1721 Bii S0 -0.330 0.115
1721 Bii S10 -0.180 -0.145
1721 Bii S20 -0.370 -0.335

RIKEN cDNA 1810014F10; 
isoform CRA_i [Mus musculus]

5-hydroxytryptamine (serotonin) 
receptor 2C [Mus musculus]

alpha-internexin [Mus musculus

Unidentified at this time

mKIAA1735 protein [Mus 
musculus]

Atp5b protein [Mus musculus]
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Spot master 
Number Label on fig P-value 

criteria pvalue 1wayanova 2wayanova

Does the 
p-value 

meet the 
criteria 

Number of 
experimental 

replicates

Degrees 
of 
Freedom

2208 Ai T0 vs T20 p=>0.05 0.047 false 6 5
2208 Ai T0 vs S0 p=<0.05 4.2E-06 true 6 5
2208 Ai T20 vs S20 p=<0.05 4.50E-04 true 6 5
868 Aii T0 vs T20 p=>0.05 0.16 true 6 5
868 Aii T0 vs S0 p=<0.05 0.000065 true 6 5
868 Aii T20 vs S20 p=<0.05 1.90E-04 true 6 5
1043 Aiii T0 vs T20 p=>0.05 0.79 true 6 5
1043 Aiii T0 vs S0 p=<0.05 0.000029 true 6 5
1043 Aiii T20 vs S20 p=<0.05 3.50E-03 true 6 5
2231 Aiv T0 vs T20 p=>0.05 0.096 true 6 5
2231 Aiv T0 vs S0 p=<0.05 2.3E-07 true 6 5
2231 Aiv T20 vs S20 p=<0.05 1.80E-04 true 6 5
857 Bi T0 vs T20 p=>0.05 0.69 true 6 5
857 Bi T0 vs S0 p=<0.05 0.00018 true 6 5
857 Bi T20 vs S20 p=<0.05 0.0097 true 6 5
1721 Bii T0 vs T20 p=>0.05 0.95 true 6 5
1721 Bii T0 vs S0 p=<0.05 0.0025 true 6 5
1721 Bii T20 vs S20 p=<0.05 0.0042 true 6 5

3.30E-07 3.20E-09

3.90E-12 3.80E-14

0.023 0.0015

1.80E-05 1.90E-06

Group

3.30E-09 4.00E-11

5.30E-10 4.30E-12

 

Table 3-13:  Table of average log abundance and standard deviations obtained for identified spots shown in Figure 3-29.  The p-values given are from the shown 
Student’s t-tests.  This confirms the validity of the profile analysis by showing no significant differences between the treated = 0 and 10 minutes but showing difference 
between the snap-frozen = 0 and 10 minutes.  With the exception of the highlighted cell. 
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Spot 
master 
Number

Label on 
fig Group Protein name MOWSE 

Score
Score 
MS(PMF)

Machine 
identified 
on 

p-value Peptides 
MS/MS

Charge 
State

Peptides 
for PMF

Percentage 
coverage

2208 Ai T0
2208 Ai T10
2208 Ai T20
2208 Ai S0
2208 Ai S10
2208 Ai S20
868 Aii T0
868 Aii T10
868 Aii T20
868 Aii S0
868 Aii S10
868 Aii S20

1043 Aiii T0
1043 Aiii T10
1043 Aiii T20
1043 Aiii S0
1043 Aiii S10
1043 Aiii S20
2231 Aiv T0
2231 Aiv T10
2231 Aiv T20
2231 Aiv S0
2231 Aiv S10
2231 Aiv S20
857 Bi T0
857 Bi T10
857 Bi T20
857 Bi S0
857 Bi S10
857 Bi S20

1721 Bii T0
1721 Bii T10
1721 Bii T20
1721 Bii S0
1721 Bii S10
1721 Bii S20

1+ N/A 7

RIKEN cDNA 
1810014F10; isoform 

CRA_i [Mus musculus]

82 N/A 4700 0.05 4

1+ 7 83

mKIAA1735 protein [Mus 
musculus] N/A 67 4700 0.05 N/A 1+

N/A

N/AAtp5b protein [Mus 
musculus] N/A 4700 0.05 8 1+

Unidentified at this time

alpha-internexin [Mus 
musculus

17

5-hydroxytryptamine 
(serotonin) receptor 2C 

[Mus musculus]
43 N/A q star 0.05 1 2+

65 4700 0.05 N/A

411

N/A

N/A 1

13 23

 

Table 3-14:  Table of identifications using Mass Spectrometry shown in Figure 3-29.  Table gives details of the return MS identification and, p-value and percentage 
coverage of the identifications. 
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3.6.4.12 Snap-frozen Stabilisation, Snap-frozen stabilisation in immediate 
degradation and unclassified in treated 

Thirdly, to be considered, examples of snap-frozen stabilised, snap- frozen 

stabilised with immediate degradation in treated and unclassified in treated 

intensity profiles, as outlined in Figure 3-9 and Figure 3-10 and their positions 

on the gel map.  

 

Figure 3-30:  Example profiles from the main investigation matching predicted profiles 
given in Figure 3-8, Figure 3-9 and Figure 3-10 for snap-frozen stabilised Ai-ii)  Example 
profiles of actual spots and their location on the gel map.  Bi) Example profiles of actual 
spots and their location on the gel map of treated stabilised with treated showing 
immediate degradation.  Ci-ii) Example profiles of actual spots and their location on the 
gel map of snap-frozen stabilised with treated unclassified. Blue line denotes snap-frozen 
and red heat treated.       
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Intensity profile in Figure 3-30(Ai-ii) show examples of spots exhibiting snap-

frozen stabilisation intensity profiles identified as; (i) Tpr [Mus musculus] and 

(ii) nebulin-related anchoring protein isoform C [Mus musculus].  Validation 

using t-test p-value was used with p-value = 0.021 and 0.00031 respectively for 

t-test treated/snap-frozen = 20 showing significant difference between 

treated/snap-frozen = 20 minutes.  Additionally, t-test for snap-frozen = (0, 10) 

and 20 have p-value = 0.24 for both (i and ii).  Displayed in section (Bi) an 

example of an unidentified marker showing an intensity profile matching 

stabilisation in snap-frozen associated with immediate degradation in treated.  

(Ci-ii) are typical examples of profile intensity examples of snap-frozen 

stabilised linked with unclassified treated intensity profiles.  This is an unusual 

profile, with an explanation of technical and biological variation causing the 

averaging of a low abundance for the 10 minute time point. (Ci) as yet is 

unidentified, however, (Cii) has been identified as 5-hydroxytryptamine 

(serotonin) receptor 2C [Mus musculus], which has also been identified in 

other spots at various locations on the gel including exhibiting behaviour seen 

in Figure 3-28 (Aiv) which is treated stabilised, homology issues need to be 

considered here and could lead to an explanation to multiple location 

demonstrating different profile intensities.  Once again the need for cross-

validation is required, as in this case the statistical criteria shown in Table 3-16 

shows more contradictions.  
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Table 3-15:  Table of average log abundance and standard deviations obtained for 
identified spots shown in Figure 3-30. Highlighted cell indicated only 2 readings present 
and therefore a standard deviation cannot be performed. 

 

 

 

 

 

 

 

 

 

 

 

Spot master 
Number

Label on fig Group Protein name
Average log 
standard 
abundance

Standard 
Deviation of 
log standard 
abundance

1186 Ai T0 -0.288 -0.223
1186 Ai T10 0.028 0.048
1186 Ai T20 -0.045 0.072
1186 Ai S0 -0.648 -0.513
1186 Ai S10 -0.598 -0.478
1186 Ai S20 -0.37 0.284
1286 Aii T0 -0.840 -0.670
1286 Aii T10 0.050 0.150
1286 Aii T20 -0.103 -0.083
1286 Aii S0 -0.952 0.117
1286 Aii S10 -0.687 0.238
1286 Aii S20 -0.683 0.226
1554 Bi T0 -0.07
1554 Bi T10 0.030 0.460
1554 Bi T20 0.16
1554 Bi S0 0.345 0.163
1554 Bi S10 0.323 0.191
1554 Bi S20 0.213 0.000
3068 Ci T0 -0.27
3068 Ci T10 -0.373 0.156
3068 Ci T20 0.05
3068 Ci S0 0.183 0.268
3068 Ci S10 0.207 0.368
3068 Ci S20 0.345 0.468
1852 Cii T0 -0.160 0.154
1852 Cii T10 -0.255 0.197
1852 Cii T20 -0.035 0.017
1852 Cii S0 -0.035 0.037
1852 Cii S10 0.223 0.047
1852 Cii S20 0.093 0.117

Tpr [Mus musculus]

Unidentified at this time

5-hydroxytryptamine (serotonin) 
receptor 2C [Mus musculus]

  nebulin-related anchoring 
protein isoform C [Mus 

musculus]

Unidentified at this time
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Spot master 
Number Label on fig P-value 

criteria pvalue 1wayanova 2wayanova

Does the 
p-value 

meet the 
criteria 

Number of 
experimental 

replicates

Degrees 
of 
Freedom

1186 Ai S0 vs S20 p=>0.05 0.29 true 6 5
1186 Ai S0 vs T0 p=>0.05 0.005 false 6 5
1186 Ai S20 vs T20 p=<0.05 0.021 true 6 5
1286 Aii S0 vs S20 p=>0.05 0.028 false 6 5
1286 Aii S0 vs T0 p=>0.05 0.016 false 6 5
1286 Aii S20 vs T20 p=<0.05 3.10E-04 true 6 5
1554 Bi S0 vs S20 p=>0.05 0.88 true 6 5
1554 Bi S0 vs T0 p=<0.05 6 5
1554 Bi T20 vs S20 p=<0.05 6 5
3068 Ci S0 vs S20 p=>0.05 0.57 true 6 5
3068 Ci S0 vs T0 p=>0.05 6 5
3068 Ci T10 vs S10 p=<0.05 0.01 true 6 5
1852 Cii S0 vs S20 p=>0.05 0.087 true 6 5
1852 Cii S0 vs T0 p=>0.05 0.16 true 6 5
1852 Cii T10 vs S10 p=<0.05 0.093 false 6 5

0.38 N/A

0.088 N/A

0.00081 0.00061

Group

2.90E-05 1.20E-06

7.30E-09 7.40E-09

 

Table 3-16:  Table of average log abundance and standard deviations obtained for identified spots shown in Figure 3-30.  The p-values given are from the shown 
Student’s t-tests.  This confirms the validity of the profile analysis by showing no significant differences between the treated = 0 and 10 minutes but showing difference 
between the snap-frozen = 0 and 10 minutes.  With the exception of the highlighted cell.  Missing values are shown where a t-test was not able to be performed due to 
lack of data.  Contractions are shown by a false result. 

 

 



223 | P a g e  
 

Spot 
master 
Number

Label on fig Group Protein name MOWSE 
Score

Score MS 
(PMF)

Machine 
identified 
on 

P Value Peptides 
MS/MS

Charge 
State

Peptides 
for PMF

Percentage 
coverage

1186 Ai T0
1186 Ai T10
1186 Ai T20
1186 Ai S0
1186 Ai S10
1186 Ai S20
1286 Aii T0
1286 Aii T10
1286 Aii T20
1286 Aii S0
1286 Aii S10
1286 Aii S20
1554 Bi T0
1554 Bi T10
1554 Bi T20
1554 Bi S0
1554 Bi S10
1554 Bi S20
3068 Ci T0
3068 Ci T10
3068 Ci T20
3068 Ci S0
3068 Ci S10
3068 Ci S20
1852 Cii T0
1852 Cii T10
1852 Cii T20
1852 Cii S0
1852 Cii S10
1852 Cii S20

Tpr [Mus musculus] N/A 63 4700 0.05 N/A 1+ 26 83

4
  nebulin-related anchoring 

protein isoform C [Mus 
musculus]

78 q star 0.01 2+ N/A 72

Unidentified at this time N/A

Unidentified at this time N/A

N/A

2+ N/A 15-hydroxytryptamine (serotonin) 
receptor 2C [Mus musculus] 43 N/A q star 0.05 1

 

Table 3-17:  Table of identifications using Mass Spectrometry shown in Figure 3-30.  Table gives details of the return MS identification and, p-value and percentage 
coverage of the identifications. 
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3.6.4.13 Delayed degradation in treated and snap-frozen, No changes and 
others. 

Finally, to be considered, examples of delayed degradation in treated and snap-

frozen samples and no change intensity profiles, as outlined in Figure 3-9 and 

Figure 3-10 and their positions on the gel map.  

 

Figure 3-31: Example profiles from the main investigation matching predicted profiles 
given in Figure 3-8, Figure 3-9 and Figure 3-10 for delayed degradation and no changes Ai)  
Example profiles of actual spots and their location on the gel map for delayed degradation 
in treated.  Bi-ii) Example profiles of actual spots and their location on the gel map of 
delayed degradation in snap-frozen.  Ci-ii) Example profiles of actual spots and their 
locations on the gel map of spots classified as not changing or have no difference.  Blue 
lines denote snap-frozen and red heat-treated 
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Intensity profiles in Figure 3-31 (A and B) show some typical example of how 

sample-frozen and treated samples have possibly delayed the degradation of 

that marker.  (Bi-ii) demonstrated profiles, where degradation is delayed in 

snap-frozen exhibited in 9% of spot profile when using 1-way ANOVA to sort 

this is in comparison to 1% for treated samples exhibiting profiles typically 

represented by unidentified marker in (Ai).  The chain of protein spots that runs 

in line with Ai) do not all exhibit the same profile.  In comparison between 

heat-treated and snap-frozen, heat treated spots exhibit high intensities over all 

for this train of spots, also shown by Robinson et al, 2009.  Although 

identifications were not obtained for this chain they are likely to be 

phosphoryled as this gives a train of proteins at various pIs.  It is unlikely to be 

caused by glycosylations, as they often appear as a small mass shift or slight 

smear of the gel, with little change in pI.  There are stains available and 

enzyme based approaches, however, characterising PTM on gels, although 

possible, can be practically difficult (Nelson et al., 2008).   (Bi) has been 

identified as Rho GDP dissociation inhibitor (GDI) alpha [Mus musculus].  

The profile possibly illustrated the degradation of treated tissue before the 

warming time course was performed,  showing no change across time points in 

contrast to the evolution the snap frozen markers intensity falling at time point 

= 20 minutes.  A further example is given in (Bii) mCG9572; isoform CRA_a 

[Mus musculus] demonstrating similar behaviour.  In 26% (with 1-way 

ANOVA sorting) of the markers profiles similar to the examples in (ci and ii) 

occurs in either no change (19%) or other (7%).  (Ci) has been identified as 

protein kinase [Mus musculus]/budding uninhibited by benzimidazoles 1 

isoform 2 [Mus musculus] and displays at first glance a profile where snap-

frozen looks to be changing with respect to treated by examining the variance 

across replicate gels reveals no change between each of the experimental 

groups.  Interestingly (Cii) shows mirror profiles and is identified as 5-

hydroxytryptamine (serotonin) receptor 2C [Mus musculus], one of the 

multiply identified markers exhibiting a number of different intensity profiles.  

The position on the spot map relative to other instances of this identification 

can be seen in section 3.5.2.9.         
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Table 3-18:  Table of average log abundance and standard deviations obtained for 
identified spots shown in Figure 3-31. 

 

 

 

 

Spot 
master 
Number

Label on 
fig Group Protein name

Average log 
standard 
abundance

Standard 
Deviation of 
log 
standard 
abundance

612 Ai T0 -0.448 -0.363
612 Ai T10 -0.375 -0.298
612 Ai T20 -0.107 0.096
612 Ai S0 -0.153 0.221
612 Ai S10 -0.095 0.347
612 Ai S20 -0.06 0.298

1892 Bi T0 -0.027 0.040
1892 Bi T10 -0.050 0.087
1892 Bi T20 -0.045 0.127
1892 Bi S0 -0.333 0.068
1892 Bi S10 -0.197 0.148
1892 Bi S20 -0.207 0.363
1645 Bii T0 -0.015 0.021
1645 Bii T10 -0.055 0.021
1645 Bii T20 -0.0125 -0.005
1645 Bii S0 -0.618 -0.515
1645 Bii S10 -0.265 -0.230
1645 Bii S20 -0.186 -0.185
827 Ci T0 -0.15
827 Ci T10 0.060 0.033
827 Ci T20 0.08
827 Ci S0 0.340 0.055
827 Ci S10 0.130 0.088
827 Ci S20 0.250 0.200

1852 Cii T0 -0.160 -0.200
1852 Cii T10 -0.255 -0.200
1852 Cii T20 0.045 0.028
1852 Cii S0 -0.035 -0.020
1852 Cii S10 0.223 0.047
1852 Cii S20 0.093 0.117

Unidentified at this time

protein kinase [Mus 
musculus]                                 

OR                                
budding uninhibited by 

benzimidazoles 1 isoform 2 
[Mus musculus]

5-hydroxytryptamine 
(serotonin) receptor 2C [Mus 

musculus]

Rho GDP dissociation 
inhibitor (GDI) alpha [Mus 

musculus]

mCG9572, isoform CRA_a 
[Mus musculus]
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Table 3-19:  Table of average log abundance and standard deviations obtained for identified spots shown in Figure 3-31.  The p-values given are from the shown 
Student’s t-tests.  This confirms the validity of the profile analysis by showing no significant differences between the treated = 0 and 10 minutes but showing difference 
between the snap-frozen = 0 and 10 minutes.  With the exception of the highlighted cell. 

Spot 
master 
Number

Label on 
fig

p-value 
criteria p-value 1wayanova 2wayanova

 p-value  
criteria 
check 

Number of 
experime

ntal 
replicates

Degrees 
of 
Freedom

612 Ai S0 vs S20 p=>0.05 0.56 true 6 5
612 Ai S0 vs T0 p=>0.05 0.083 true 6 5
612 Ai S20 vs T20 p=<0.05 0.71 false 6 5

1892 Bi T0 vs T20 p=>0.05 0.84 true 6 5
1892 Bi S20 vs T20 p=>0.05 0.43 true 6 5
1892 Bi S0 vs T0 p=<0.05 0.0026 true 6 5
1645 Bii T0 vs T20 p=>0.05 0.72 true 6 5
1645 Bii S20 vs T20 p=>0.05 0.21 true 6 5
1645 Bii S0 vs T0 p=<0.05 1.20E-05 true 6 5
827 Ci S0 vs T0 p=>0.05 0.02 false 6 5
827 Ci S20 vs T20 p=>0.05 0.00021 false 6 5
827 Ci T10 vs S10 p=<0.05 true 6 5

1852 Cii S0 vs T0 p=>0.05 0.16 true 6 5
1852 Cii S20 vs T20 p=>0.05 0.46 true 6 5
1852 Cii true 6 5

0.00081 0.00061

Group

0.19 0.055

5.00E-05 8.20E-06

0.19 0.015

0.001 0.55



228 | P a g e  
 

Spot 
master 
Number

Label on fig Group Protein name Score 
MS/MS

Score 
MS(PMF)

Machine 
identified 
on 

P score Peptides 
MS/MS

Charge 
State

Peptides 
for PMF

Percentag
e 
coverage

612 Ai T0
612 Ai T10
612 Ai T20
612 Ai S0
612 Ai S10
612 Ai S20

1892 Bi T0
1892 Bi T10
1892 Bi T20
1892 Bi S0
1892 Bi S10
1892 Bi S20
1645 Bii T0
1645 Bii T10
1645 Bii T20
1645 Bii S0
1645 Bii S10
1645 Bii S20
827 Ci T0
827 Ci T10
827 Ci T20
827 Ci S0
827 Ci S10
827 Ci S20

1852 Cii T0
1852 Cii T10
1852 Cii T20
1852 Cii S0
1852 Cii S10
1852 Cii S20

20

Unidentified at this time

5-hydroxytryptamine (serotonin) 
receptor 2C [Mus musculus] 43 N/A q star 0.05

1

N/A

N/A

Rho GDP dissociation inhibitor 
(GDI) alpha [Mus musculus] 226 4700 0.05 5 1+

protein kinase [Mus musculus]                                 
OR                                budding 
uninhibited by benzimidazoles 1 

isoform 2 [Mus musculus]

N/A 36 4700 0.05 1

mCG9572, isoform CRA_a [Mus 
musculus] 4700 0.05 1+ 15 20

1 2+ N/A

N/A

64 N/A

N/A 33

1+ N/A

 

Table 3-20:  Table of identifications using Mass Spectrometry shown in Figure 3-31.  Table gives details of the return MS identification and, p-value and percentage 
coverage of the identifications. 
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3.6.4.14 Venn analysis from the main investigation. 
As with the pilot investigation, Venn analysis was performed allowing for a 

validative comparison against profile analysis.  In order to target treated and 

snap-frozen stabilisation, a variety of strategies were employed shown in 

Figure 3-32 to Figure 3-27.   

In Figure 3-32 an inclusive strategy is utilised, including a total number of 

1701 spots in contrast to 623 and 573 using the ANOVAs.  The inclusion was 

achieved by using a 3-way Venn diagram using t-tests as a basis for selection.  

Treated stabilisation and snap-frozen stabilisation shown in (B), the red boxes, 

denote treated/snap frozen stabilisation for predicted profiles in Figure 3-8 

(i,iii,iv,vi) and the green treated/snap- frozen stabilisation for Figure 3-8 (ii and 

v). In both experimental groups for these profiles treated/snap-frozen should 

show no difference, so a non-significant p-value of <=0.05 is considered 

crossing over with treated/snap-frozen = 10 minutes and treated/snap-frozen = 

20 minutes.  Sector G in Venn diagram (A) is indicative of target profiles in the 

red box, while sector E considered profiles from the green box.  In sector G, all 

of the 38 spots showed treated stabilisation split into the proportions shown in 

(Cii).  In sector E out of 107 spots, 83% showed treated stabilisation intensity 

profiles with the remaining 17% showing snap-frozen stabilisation intensity 

profiles.  Similar proportions were seen in Figure 3-34, using 4-way Venn 

analysis, targeting sectors O and L.  This Venn had the addition of 2-way 

ANOVA of condition 1.  Sector O being a close equivalence to sector G in 

Figure 3-32, and L to sector E.  The cross-over of spots using the 4-way Venn 

and 3-way Venn is substantial.    
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Figure 3-32:  Venn analysis for the main investigation.  A)  Shows Venn analysis corresponding to red and green boxed profiles in B).  Ci-ii-Di-iii) Show profile distribution 
of protein spots taken from areas G and E of the Venn diagram. The pie charts show how starting particular areas on the Venn diagram allow for the quick discovery of 
particular profile types.  The one targeted here being treatment stabilised spots.  This can significantly reduce manually sorting through profiles.  
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Figure 3-33:  4-Venn analysis for the main investigation:  A) Red and Green boxes isolate profiles targeted in Sectors in B) relating to the profile distributions shown via 
pie chart in C) and  D). Both Venn diagrams in Figure 3-32 and Figure 3-33 are successful at finding the predicted profiles indicated. The pie charts show how starting 
particular areas on the Venn diagram allow for the quick discovery of particular profile types.  The one targeted here being treatment stabilised spots.  This can 
significantly reduce manually sorting through profiles.    
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A combination of two strategies searching for treated frozen stabilisation is 

seen in Figure 3-34 and Figure 3-35.  The cross-over between the two sector Gs 

of the Venn diagrams in (A and B) is performed and successfully identifies 

94% treated stabilisation and 3% snap-frozen stabilisation in accordance with 

the profiles in (C).    

A similar approach is used to find snap-frozen stabilisation in Figure 3-35.  

However, no cross over was found as can be seen in (D) despite in (A and B) 

the sector Gs have a higher number of identified spots in comparison to Figure 

3-34. 
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Figure 3-34:  Venn analysis for the main investigation.  A and B)  give two independent but comparative strategies for matching profiles in C) searching for predicted 
profiles in sector G focusing on treated stabilisation.  D)  Gives crossover of the two G sectors. Ei-ii) Show profile distribution of protein spots taken from areas G Venn 
diagram. 
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Figure 3-35: Venn analysis for the main investigation.  A) and B) give two independent but comparative strategies for matching profiles in C), searching for predicted 
profiles in sector G focusing on snap-frozen stabilisation.  D)  Gives crossover of the two G sectors 
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3.6.5 Summary of Venn analysis for the main investigation 

Overall, the analysis performed using Venn diagrams correlates well with the 

profile analysis, with similar proportions identified in the various experimental 

groups.  Even using 2-way Venn diagrams analysis can be performed more 

inclusively by including more spots than using ANOVA sorting whilst 

reducing the number of profiles required to be viewed manually.  This is 

displayed in Figure 3-36, where the number of spots included in (A-C) exceeds 

the ANOVA sorting performed of 623 and 573, but effectively reduced manual 

work substantially, with number of 158, 200, and 98 respectively.  

 

 
Figure 3-36:  Venn analysis for the main investigation. Comparison of spot distribution 
between A), B) and C)  
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3.6.5.1 Summary of the main investigation 
The main findings are summarised as follows: 

• Not all degradation is rapid of onset and the use of a further time point shows 

how the stabilisation of markers as a percentage has increased in comparison to 

the pilot study.  This shows that heat-treatment does aid stabilisation.  It shows 

how the amount of time tissue can be handled at room temperature can be 

increased, if wild type mouse brain tissues are heat-treated.  It also highlights 

the importance of keeping tissue chilled when preparing samples, particularly 

for non-heat-treated samples.  

• The choice of sorting method is crucial.  If one method is considered over 

another, valuable data could be lost.  Shown in Figure 3-27.  Only a small 

proportion of spot data is present in 4 different possible sorting methods.  The 

necessity to deconvolute data, and be inclusive is hard to balance and should be 

considered on an individual basis for the study under consideration.   

• The need for cross validation is critical.  It is clear from the analysis that one 

method on its own is insufficient to draw conclusions on data.  Using profile 

analysis alone would lead to false positive data as can be seen by comparing it 

to the highlighted cells in the tables above, showing contradictions with some of 

the statistical test which would not come out with ANOVA sorting.   

• ANOVA sorting and profile analysis is a good method for scanning for 

prospective marker spots but should be validated with the correct statistical 

tests.  Cross-validation with Venn diagrams are also useful.    

• Venn analysis allows for a more inclusive strategy and eliminating some of the 

time issue associated with manual checking by using statistical tests.  Therefore 

Venn analysis is an excellent strategy for visualising data relatively quickly and 

objectively.     
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3.6.6 Validative results 
This section discusses the pertinent findings that reinforce the main findings of 

both the pilot and main investigation results outlined above.   

3.6.6.1 Validation for including time point= 20 minutes. 
With the addition of a further time point, it became apparent that data from the 

pilot investigation would be skewed for markers which degradate very rapidly 

within the first 10 minutes and not over an extended period.  With retrospect 

analysis, it was observed that the addition of the further time point in the main 

investigation in comparison to the pilot investigation was validated.   This is 

shown below in Figure 3-37, comparing spot maps from the pilot investigation 

and the main investigation.  Markers that would be included in the no change 

category of pilot investigation are now shown to be included in treated 

stabilisation profiles for the main investigation. This is an interesting 

development and could possibly explain the increase in the percentage of 

degradation between snap-frozen and treated samples. 

 
Figure 3-37:  Spot maps A) main investigation and B) pilot investigation indicating two 
example spots that have been defined in pilot investigation as no change and in the main 
investigation as treated stabilised.  The graphs have an x-axis have times point 0, 10 and 
20 minutes and the blue lines show snap-frozen whilst red displays heat treated samples.  
The y-axis has the scale of log standardised abundance. 

3.6.6.2 Analysis of presence vs. absence spots pilot investigation and main 
investigation. 

An expected characteristic of degradation, if treatment had been successful, 

would be the appearance of different marker spots which appear on their own, 

without the treated group featuring them.  Using traditional sorting methods for 

DiGE would not discriminate very accurately for such markers as so a different 

strategy was employed, as outline in section 3.5.2.8.   
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Figure 3-38:  Examples and positions of gel map of protein appearing in 1 experimental 
group only (pilot investigation).  Pie chart shows the distribution of these profiles with 
total number of 39 found.  All were in snap-frozen = 0 min and 10 group.  The blue lines 
denote snap-frozen samples.  

In the pilot investigation this strategy discriminated very well and found 39 

profiles in total with no average ratio but significant p-value<=0.05, where 

markers were seen to be appearing or disappearing for one experimental group 

only.  As summarised in Figure 3-38 in this case 100% were intensity profiles 

of snap-frozen only, not containing any treated.  85% of which showed markers 

disappearing and 15% showing markers appearing over the time points from 0-

10 in.  This further validation in the main investigation summarised in Figure 

3-39, where only snap-frozen markers were found too.  In this case only 6 in 

total had no average ratio and had a significant 1-way ANOVA score.  As can 

be seen by the spot maps in both Figure 3-38 and Figure 3-39, of the examples 

they were found high in the gel.  Correlating the position and low numbers 

found there is a suggestion that most degradative markers are small and have 

simply run off the end of the gel.  This is a limitation of DiGE in the small 

molecular mass area.  The only identified spot from Figure 3-39 (1) is 5-

hydroxytryptamine (serotonin) receptor 2C [Mus musculus].         
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Figure 3-39:  Examples and positions of gel map of protein appearing in 1 experimental 
group only in main investigation.  Pie chart shows the distribution of these profiles with 
total number of 6 found.  All were in snap-frozen = 0, 10 and 20 group.  Profile number 1 
has been identified as 5-hydroxytryptamine (serotonin) receptor 2C [Mus musculus].   The 
blue lines denoted snap-frozen samples.   
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3.6.6.3  Multiple identifications pilot investigation 
 

 
Figure 3-40:  Gel map showing multiple identifications and spots shifts in pilot 
investigation of Dihydropyrimidinase-like 2 [Mus musculus] with the corresponding 
profiles.  The x-axis has time points treated 0 and 10 minutes and snap-frozen 1 and 10 
minutes respectively.  

 

In Figure 3-40 where Dihydropyrimidinase-like 2 [Mus musculus] has been 

identified, it can be seen in the intensity profile (1) and (3) opposing profiles 

and in profile (2) no change.  This would be suggestive of a degradation 

process, where there is a disappearing snap-frozen marker in (3), appearing and 

increasing markers in (1) and another site of no change (2).  All locations of the 

gels are relatively close showing the marker is not necessarily changing in 

sequence.   

In Figure 3-41 peroxiredoxin 6 has been identified, which is one of a family of 

many peroxiredoxin proteins.  It is also exhibiting different intensity profiles 

(1) showing no change and (2) showing treated stabilisation.  
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Figure 3-41:  Gel map showing multiple identifications and spots shifts in pilot 
investigation of Peroxiredoxin 6 [Mus musculus] with the corresponding profiles.  The x-
axis has time points treated 0 and 10 minutes and snap-frozen 1 and 10 minutes 
respectively. 

In Figure 3-42 a brain creatine kinase has been identified.  From the gel map it 

can be seen that there has been only a small shift between positions (1 and 2). 

This potentially is showing the presence of small amounts of proteolytic 

activity or the modification of the markers sequence with PTMs.  This is 

consistent with the intensity profiles (1 and 2).   
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Figure 3-42:  Gel map showing multiple identifications and spots shifts in pilot 
investigation of creatine kinase, brain [Mus musculus] with the corresponding profiles. 
The x-axis has time points treated 0 and 10 minutes and snap-frozen 1 and 10 minutes 
respectively. 

 

 
Figure 3-43:  Gel map showing multiple identifications and spots shifts in pilot 
investigation of gamma-actin [Mus musculus] with the corresponding profiles. The x-axis 
has time points treated 0 and 10 minutes and snap-frozen 1 and 10 minutes respectively. 
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In Figure 3-43 four locations can be seen where gamma-actin has been 

identified.  Gamma actin is a structural protein, which forms substantial 

elements of the cytoskeleton of a cell and is conserved in eukaryotes.  It comes 

in many different isoforms, so is difficult to make too many inferences about it 

(Hennessey et al., 1993), this is equally true of a protein like tubulin, which has 

been identified in two different forms in multiple locations on the gel, shown in 

Figure 3-44 and Figure 3-45.  Additionally, it has been identified in a portion 

of the gel known to contain high amounts of tubulin, it therefore again must be 

treated with trepidation, particularly as it is contained in a saturated portion of 

the gel.   

 

 
Figure 3-44:  Gel map showing multiple identifications and spots shifts in pilot 
investigation of alpha-tubulin isotype M-alpha-2 [Mus musculus] with the corresponding 
profiles. The x-axis has time points treated 0 and 10 minutes and snap-frozen 1 and 10 
minutes respectively. 
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Figure 3-45:  Gel map showing multiple identifications and spots shifts in pilot 
investigation of tubulin, beta [Mus musculus] with the corresponding profiles. The x-axis 
has time points treated 0 and 10 minutes and snap-frozen 1 and 10 minutes respectively. 

3.6.6.4 Multiple identifications main investigation. 
Further multiply identified markers have been discovered in the main 

investigation as shown in Figure 3-46, Figure 3-47 and Figure 3-48.  In Figure 

3-46 an identification of a protein predicted: similar to pORF2 at six different 

locations on the gel map.  Vertical and horizontal shifts are present.  Intensity 

profiles (1, 2, 3, 4 and 6) matching profiles which indicate treated stabilisation.  

Further examples are given in Figure 3-47.     

 

Figure 3-46:  Gel map showing multiple identifications and spots shifts in the main 
investigation of PREDICTED: similar to pORF2 [Mus musculus], with the corresponding 
profiles.  Red line is heat-treated samples and blue line is snap-frozen samples. .  The 
graphs have an x-axis have times point 0, 10 and 20 minutes and the blue lines show snap-
frozen whilst red displays heat treated samples.  The y-axis has the scale of log 
standardised abundance 
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Figure 3-47:  Gel map showing multiple identifications and spots shifts in the main 
investigation of ATP5b protein or Mitochodrial ATP synthase beta subunit [Mus musculus] 
with the corresponding profiles.  Red line is heat-treated samples and blue line is snap-
frozen samples. .  The graphs have an x-axis have times point 0, 10 and 20 minutes and 
the blue lines show snap-frozen whilst red displays heat treated samples.  The y-axis has 
the scale of log standardised abundance 

Figure 3-48 demonstrates large vertical shifts indicting large size change in the 

identified marker, particularly between (1, 4, 3 and 2) interesting (4) appears in 

just the snap-frozen. 

 

Figure 3-48:  Gel map showing multiple identifications and spots shifts in the main 
investigation of 5-hydroxytryptamine (serotonin) receptor 2C [Mus musculus] with the 
corresponding profiles. Red line is heat-treated samples and blue line is snap-frozen 
samples. .  The graphs have an x-axis have times point 0, 10 and 20 minutes and the blue 
lines show snap-frozen whilst red displays heat treated samples.  The y-axis has the scale 
of log standardised abundance 
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3.6.6.5 Summary 
The presence of multiple identification could be indicative of a degradative 

process.  However, circumspection must be maintained, particularly when 

dealing with a homologous group of proteins. A further limitation of DiGE 

when trying to track degradation is with regard to mass.  It could easily be the 

case that protein fragments are just running off the end of the gel.  Thus it is 

important to have complementary methodologies such as the use of LC-MS 

and MSI to look at those markers in the smaller mass range.  The search for 

spots of presence vs. absence was a time consuming process.  However, the 

presence and absence of spots from treated and snap-frozen samples is strong 

evidence of degradative processes having taken place.  Degradation studies 

would benefit from further development of this type of analysis. 
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3.6.6.6 Principal components analysis using EDA module for pilot 
investigation. 

Principal component analysis is a robust statistical method which is useful for 

validating data by reducing the variables of a multidimensional space into a 

smaller number of dimensions, by correlating and grouping similarities.  The 

validation is obtained by statistical analysis being performed without initially 

assigning groups until the data is displayed. The further apart experimental 

groups are, the larger the difference between those groups, with PC1 being the 

1st principal component and therefore contains the largest differences followed 

by PC2.  The PCA plots displayed in this thesis are called score plots. These 

show an overview of the spot maps and show similarities between groups. 

Another kind of plot, called a loading plot, can be used to visualise the 

difference between variables.  The score plots of the spot maps are most useful 

in this case as it allows the visualisation of all groups compared to each other.  

This means, at a glance, it can be seen if the gels have run well and the extent 

of variation between groups.   The closer the groups are together the more 

“alike” they are.  PCA on pilot investigation is shown Figure 3-49.  For both 

(A) and (B) all experimental groups can be clearly distinguished separately, 

meaning generally (all spot data complied) there is differences between all 

groups.  The greatest differences are seen in PC1, meaning that the treated 

groups and snap-frozen groups have the greatest differences between them.  

This is equally true for PC2, were treated groups having close vertical 

proximity compared to the snap-frozen groups.        
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Figure 3-49:  PCA score plots.  A) Shows score plots including all detected spots for pilot 
investigation and B) Shows score plots including only 1-way ANOVA spots included 

This reassures the relationship between treated groups being more closely 

related to each other than snap-frozen groups in both PC1 and PC2.  This 

relationship is indicative of an association with treatment having a positive 

effect of degradative processes.  As there is no discernable difference between 

the diagrams including all spots, Figure 3-49(A), in the PC analysis and just 

spots with 1-way ANOVA of p<=0.05 (B) it seems that in this case sorting the 

data by 1-way ANOVA does not have an adverse effect on the data set, but will 

however reduce the complexity of analysis by reducing the number of spots 

and moreover increasing the quality of spots data and the chance of seeing 

differences.      
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3.6.6.7 Principal components analysis using EDA module for the main 
investigation. 

PCA on pilot investigation shown Figure 3-49, displayed reassuring validation 

regarding the separation of experimental groups as they were clearly 

distinguished.  This is further validated for the main investigation displayed in 

Figure 3-50.  The close relationship of the heat treated groups and snap-frozen 

group shows that the groups can be clearly defined from each other.  Also, the 

denator group shows tight clustering, while the snap-frozen samples have a 

greater degree of separation from each other.   This, very speculatively, is 

showing a greater difference between time points in the snap-frozen samples 

compared to heat-treated samples.  Therefore, suggesting greater changes in the 

snap-frozen samples.   
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Figure 3-50:  PCA score plots for the main investigation A) PCA score plots  including all 
spots matched B) PCA score plots sorted by One-way ANOVA C) PCA score plots  sorted by 
two-way ANOVA.  As can be seen the different experimental groups can be clearly 
defined, with a greater variation in the snap-frozen samples.  
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PCA was performed on all spots, 1-way ANOVA and 2-way ANOVA 

respectively.  All PC diagrams show consistent separation between 

experimental groups with treated groups showing definitive clustering whilst 

snap-frozen generally showing large degrees of separation.  With the exception 

of snap-frozen = 10 and 20 minutes, in (B) and (C).  There is therefore a 

suggestion that experimental groups snap-frozen = 10 and 20 minutes a more 

closely related, but interesting snap-frozen = 0 is distinctly separated from all 

other experimental group showing a similar relationship to snap-frozen = 10 

and 20 minutes in PCA but a large divergence in PC2.  When sorting the data 

using ANOVAs in (B) and (C), compared to including all spots in (A) it has 

little effect on the treated experimental groups but brings the relationship of 

snap-frozen = 10 and 20 minutes closer together, alluding to the fact that 

sorting the data using the statistical methods of 1-way and 2-way ANOVA 

shows you have a less varied and more reproducible set of data.  This could be 

explained by the fact that, by using spots that have had a significant ANOVA it 

generally is removing any spots which are mismatched or outliers (i.e. using a 

more robust data set).    
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3.6.6.8 Western blot analysis  
Western blotting was performed on whole tissue lysate preparation that had 

been used for the DiGE main investigation.  The antibody used was anti-anti-

peroxiredoxin 6 which was one of the multiply identified spots in the pilot 

investigations.  The western blot would also have been performed on the 

samples from the pilot investigation, however, there was insufficient sample 

remaining.  This was performed 3 times.  

 

Figure 3-51: An example of one of the three repeats of 1-D Coomassie stain gel and 
western blot of heat-treated and snap-frozen samples blotted for peroxiredoxin 6.  As can 
be seen heat-treated 0, 10 and 20 minutes and snap-frozen 0 minutes show the presence 
of a strong band at approximately between 24-32.5KDa and snap-frozen 10 and 20 
minutes the band is absent.  Note:  the PM labels refer only to the Coomassie stain gel. 

As can be seen in Figure 3-51, peroxiredoxin 6 has shown up in the western 

blot in treated = 0, 10 and 20 minutes and snap-frozen = 0 minutes.  This is 

strong evidence when correlated with the predicted profiles of what is likely to 

occur in degradative process and that treatment has halted proteomic 

degradation in the case of peroxiredoxin 6 for the treated samples.  

Additionally, due to the high amount of homogeneity in the peroxiredoxin 

family, the antibody selected was a monoclonal antibody, so it is specific to 

only one epitope of peroxiredoxin 6.  This allowed for only the intact version 

of the protein to be revealed and the fragments would run off the end of the gel.  

It should be pointed out that 1D western blot analysis gives no information 

regarding the different isoforms that exist of a protein.  This is because 

isoforms of a protein do not vary greatly in molecular weight (as opposed to 
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slice variants), however can have different pIs and therefore they are revealed 

using 2D analysis.   

A densitometry analysis was performed using Image J 1.46r software, National 

Institute of Health, USA.  A set area was drawn around each band and 

including a portion of background.  A curve was plotting using Image Js gel 

plot function.  The area under the curves were found and averages taken as a 

relative comparison of the bands fold change by dividing the results by the first 

lane (i.e. giving a relative value compared to the denator=0 and snap frozen=0 

lane).  The results are shown in  

Table 3-21 and Figure 3-52. 
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Sample (n=3) 
Mean fold 

change 
relative to time 

point zero 

integrated area 
under curve 
(repeat 1) 

integrated area 
under curve 
(repeat 2) 

integrated area 
under curve 
(repeat 3) 

Mean 
integrated area 
under curve 

Standard 
deviation  

Standard 
deviation of 
fold change 

Denator = 0 1.0 7816 7709 7789 7771 56 0.01 

Denator = 10 1.7 12789 12981 12908 12893 97 0.01 

Denator = 20 1.3 10087 10123 10001 10070 63 0.01 

Snap-frozen = 0 1.0 6309 6259 6498 6355 126 0.02 

Snap-frozen = 10 0.0 0 0 0 0 0 0.00 

Snap-frozen =20 0.0 0 0 0 0 0 0.00 
 

Table 3-21:  The mean relative intensities of western blot for Peroxiredoxin 6.  Integrated area is in arbitrary units.  The fold change was relatively ascertained by 
indexing again time point 0 min for both the denator heat treated samples and snap-frozen samples. n=3.    
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Figure 3-52: Graph displaying relative fold change of Peroxiredoxin 6 generated from 
Table 3-21.  The error bars show +/- 1 standard deviation.  n=3. 

The spots showing the Peroxiredoxin 6 identification on the 2D-DiGE gel are 

shown in Figure 3-53.    

 

Figure 3-53:  A repeat of Figure 3-54:  Gel map showing multiple identifications and spots 
shifts in pilot investigation of Peroxiredoxin 6 [Mus musculus] with the corresponding 
profiles. The x-axis has time points treated 0 and 10 minutes and snap-frozen 1 and 10 
minutes respectively. 

As can be seen from both the 1D and 2D gels the molecular weights 

approximately match the quoted molecular weight of Peroxiredoxin 6 of 

24,871Da (http://www.uniprot.org/uniprot/O08709).   The protein spot labelled 

2 can be seen to be heat-treated stabilized from the profile in comparison to the 

snap-frozen tissue. 
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3.6.7 LC-MS with Label free quantitation  

A complementary quantitative strategy for looking at degradation is the use of 

label-free quantitation using Mass Spectrometry.  This work was performed by 

Dr Heather Allingham, (a Ph.D Student at Glasgow University at the time).  

The project was in collaboration with her and the same samples were used. 

 

Figure 3-55:  LC-MS using label free quantitation: performed by Miss H. Allingham, Ph.D 
Student’s, University of Glasgow.   A)  Show the average number of identified features 
from intact sample results in T=0, 10 and 20 minutes and S=0, 10 and 20 minutes.  The 
number of features across both groups is comparable.  B)  Give the percentage of features 
showing a significant change. Ci-ii) shows a profile consistent with the profiles observed in 
the two DiGE experiments in sections 3.6.3 and 3.6.4.       
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Figure 3-56:  LC-MS using label free quantitation: performed by Miss H. Allingham, Ph.D 
student, University of Glasgow.   A)  Show the average number of identified features from 
digested sample results in T=0, 10 and 20 minutes and S=0, 10 and 20 minutes.  The 
number of features across both groups is comparable.  B)  Give the percentage of features 
showing a significant change. Ci-ii) Shows a profile consistent with the profiles observed in 
the two DiGE experiments in sections 3.6.3 and 3.6.4.   

Figure 3-55 and Figure 3-56 show intact and digested treated and snap-frozen 

samples.  As can be seen in both MS experiments a similar number of features 

were detected in all groups.  A collaboration of analytical techniques were 

employed regarding the use of profile analysis.  The profile changes observed 

in sections Ci and Cii of both figures are similar to those seen in the pilot 

investigation and helps as a quid pro quo validation of the concept.  

Interestingly Dr Allingham discovered that in the lower sub 10KDa fraction the 

heat treatment only had an effect of stabilisation of about 1% of total identified 

feature a contrast to the larger intact proteins of the DiGE investigation.   
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3.6.8 Mass Spectrometry Imaging 
Following treatment with the Stabilzor T1 denaturing device (Denator AB, 

Gothenburg, Sweden) mouse brain tissue maintained its overall integrity with 

some small noticeable morphological changes in terms of slight darkening and 

rigid texture of the tissue, but commonly noticeable structures are still 

apparent.  This can be seen in Figure 3-58(F).  Consequentially, with a rigid 

texture sectioning was made easier with a reduced level of cracking, but the 

appearance of small holes and increased hindrance in thaw mounting was 

apparent and noted (by Dr R. J. A. Goodwin).  These structural changes had an 

adverse effect on the amount of MS data attainable. 

 

Figure 3-57:  MSI experiment, Performed by Dr R. J. A. Goodwin, Research Assistant, 
University of Glasgow.  A)  Treated (heat-treated) and snap-frozen (non-heat-treated) 
sections at 0 minutes for an example marker.  B) Treated (heat-treated) and snap-frozen 
(non-heat-treated) sections at 20 and 10 minutes respectively for the same example 
marker in (A).  C) Shows time course series of sections warmed consecutively from 0-5 
minutes for treated and D) Snap-frozen tissue have been duplicated.  Difficulties in cutting 
treated samples precluded duplicates.  

Despite the reduction in the amount of MS data obtained, it has yielded some 

very intriguing data.  A strategy to determine the effectiveness rapid heat-

treatment was to watch the evolution of markers accumulate over a time course 

of treated and snap-frozen tissue.  Consecutive slices were allowed to warm at 

1 minutes intervals for 5 minutes this can be seen in Figure 3-57 (C) and (D).  

Difficulties in sectioning treated tissue precluding duplicate sections (Figure 



259 | P a g e  
 

3-57 (C)) but was performed in snap-frozen tissue samples (Figure 3-57 (D)).  

Figure 3-57 (A) shows a spatial distribution of marker for 6723.5 m/z across 

both the treated and snap-frozen at 0 minutes (i.e. not warmed to room 

temperature).  Furthermore, the same marker is seen from different biological 

replicates with a similar distribution, in treated and = 10 and 20 minutes 

suggesting little to no degradation (Figure 3-57 (B)).  This marker’s evolution 

was tracked in Figure 3-57C and D over a 5 minute time course and can been 

seen to disappear rapidly in the snap-frozen samples (Figure 3-57 (D)) but 

maintained in the treated samples (Figure 3-57 (C)) suggesting degradation has 

been abated or even prevented. 

Gaining information off-tissue is increased by performing tryptic digestion on-

tissue to increase the number of fragments that fall into the effective dynamic 

mass range (=<30KDa) of MSI.  In Figure 3-58 treated and snap-frozen (non-

treated) tissue has been sprayed with a trypsin solution of 50% methanol in 20 

mM ammonium bicarbonate, using a standard TLC sprayer and on-tissue 

digestion performed to assess the quantity of data obtainable from the different 

experimental groups.  A blank solution containing no trypsin was used on the 

snap-frozen and treated samples.  This allowed a comparison of auto digestion 

caused by degradation and on-tissue tryptic digestion to be assessed.  In Figure 

3-58 (A-G) marker displays a variety of activity.  At this point is important to 

be aware that by wetting tissue to apply trypsin or indeed the blank, this can 

cause the reactivation or reconstitution of any native enzyme action This makes 

on-tissue digestion and MSI particularly difficult, particularly in fresh tissue as 

opposed to formalin fixed which suffer less of such problems, although it is 

unlikely to eclipse the signal from tryptically digested proteins.  Figure 3-58 

(G) where all 4 sections have been sprayed with trypsin, demonstrates the need 

for circumspect on these grounds.  There is a marker 842.5m/z, a known auto-

digested tryptic peak.  It has been detected in the treated section but not in the 

snap-frozen section, where an alternative process has occurred.  An 

identification of the tryptic peak 842.5m/z was obtained by MS/MS and the 

spectra are shown in (H). 
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Figure 3-58:  MSI experiment, Performed by Dr R. J. A. Goodwin, Research Assistant, and 
University of Glasgow. A-G) Shows snap frozen and treated sections trypically digested 
and non-digested for different marker masses.  F) Shows the optical images of those slices 

In Figure 3-58 (A) the marker is not showing signs of tryptic activity in either 

of the experimental groups.  In (B) expression of this particular marker is 

intense in the snap-frozen section and therefore possibly stabilised in the 

treated section where intensity is extremely low. There is also the suggestion of 

endogenous enzyme activity as the marker is not detected in the tryptically 

digested slice.  This is in contrast to (C) where enzyme activity has not been 

prevented in the treated sections and therefore there appears to be no 

association with tryptic activity.  In (D) the marker displays an unusual pattern 

as it appears to be associated both with snap-frozen and tryptic digestion.  A 

possible explanation comes from a combination of endogenous enzyme activity 

occurring in the snap-frozen section and the tryptic activity occurring in the 

products, leaving the treated sections unaffected.  An example of tryptic 

activity is associated with (E), where both the sections that were sprayed are 

affected, but the non-sprayed sections are not, and nor has any auto-digestion 

been prevented.     
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It is clear that MSI has demonstrated that degradation can be rapid and 

significant within a 5 minute time interval with markers degrading within as 

little as 2-3minutes.  Meaning the need for a process to slow or halt degradation 

would be valuable alongside good rigorous lab practice.  The treatment using 

the Stabilzor T1 denaturing device (Denator AB, Gothenburg, Sweden) has a 

significant effect at reducing proteomic degradation of several markers, and 

still gives spatial information for which MSI is known to provide.  Further to 

this, enzymatic digestion can and does increase the level of markers obtainable 

and exponentially increase the usefulness of the information by providing the 

possibility of gaining off-tissue identifications.  However, it should not be 

forgotten that treatment has a negative effect on the quality of tissue and the 

degree of information that was obtainable from it, further enzyme treatment 

can be used to reduce this effect and increase the number of detectable features. 
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3.7 Summary and Conclusions   

In this chapter two broad areas where considered: 

• The effect of rapid heat treatment on proteomic degradation in wild type 

mouse in comparison to snap-freezing alone 

• The use of a multifaceted approach to using DiGE data in the assessment 

of proteomic degradation.  

It has been shown that heat treatment using the Stabilzor T1 denaturing device 

immediately post excision does appear to reduce the percentage of nonspecific 

degradation of the proteome of wild type mouse brain tissue and therefore has 

the potential of being used to help in the sample handling and preservation of 

tissue for quantitative proteomic analysis.  This preservation would allow for 

procedures at room temperature to be performed without the need for cooling.  

This would have significant impact in the laboratory for performing procedure 

which cannot be cooled, or where cooling hinders the operator’s performance 

and progression, such as dissection.  From the results it can be seen that both 

rapid degradation occurs post excision which is consistent to literature 

(Fountoulakis, 2001), but it was also seen how markers can continue to degrade 

over time, when exposed to warming to room temperature.   

The usefulness of data could be significant in obtaining higher quality, closer to 

life information, however it is also noted that snap-freezing has been the 

standard choice for much of the tissue work in research and therefore holds a 

wealth of information that could not be used as a direct comparison if heat-

treatment was performed.  The MALDIMSI help to validate and added to the 

DiGE finding that degradation was rapid and occurred during a 5 minute time 

course.  It is however also noted that the heat-treatment also had a detrimental 

effect of the visual appearance of the tissue.  This morphological effect has not 

been assessed, however, with form and function of central importance in vivo it 

is unlikely a visual change is not associated with a biological change.  Having 

said that, the MSI should show an increased amount of spectral data collected 

in comparison to snap-freezing alone. 

In terms of the analytical method used:  Just as in a proteomic workflow there 

is no “silver bullet” to tackle all issues arising; the analytical strategy is not 
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different.  The use of multiple and complementary analytical methods to mine 

data and to view the range of data was as a whole successful.  Using profile 

analysis combined with Venn analysis allowed for cross-validation and finding 

spots otherwise missed by using ANOVA sorting alone.  Venn analysis also 

reduced the need for manual checking, which plagues DiGE operators and take 

inordinate amounts of time, despite a well-developed and thought out standard 

workflow.  It is, of course, essential to still use manual checking and statistical 

significance to support any markers found as profile analysis alone does allow 

some false positives to occur.  The use of the EDA module and PCA analysis is 

a useful statistical validative process, however if biochemical significance is to 

be proven then western blots are required.  Using this form of analysis however 

can reduce the amount of costly and time consuming western blot experiments 

to a necessary minimum.   
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4 Biomarker discovery and the assessment of 
variation in the proteomic profiles of kidney tissue in 
hypertension using a WKY, congenic and SHRSP rat 
model.  
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4.1 Aims 

To assess and investigate the variation of proteomic profile changes which 

occur in kidney tissue in hypertension using a Wistar Kyoto rat  (WKY), 

congenic and spontaneously hypertensive rat-stroke prone model (SHRSP) 

with a view for future work as a strategy of quantitative trait loci. Specifically 

the aims of the experiments detailed in this chapter are: 

o To assess proteomic changes in  

• Salt stressed and non-salt stressed rat kidney tissue between WKY, 

Congenic and SHRSP rats. 

• Cortex and Medulla regions of kidney tissue between WKY, Congenic 

and SHRSP rats. 

o To assess macro dissection methods as a means of separating cortex and 

medulla regions.  

To find potential examples of candidate proteins, peptide or biomarkers in 

hypertension potentially related to the region of chromosome 2 using 

proteomic data.  Some of the approaches used in chapter 3 will be employed. 
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4.2 Structure of the chapter 
Once again it is prudent to lay out a structure to help with the clarity of the 

chapter.  This chapter has been broken up form one large chapter to 5 sub 

chapters.  The following allows for a point of reference to aid the reading of 

this investigation. 

4.5 Rationale of analysis 

This outlines the methods taken to analyse the data giving an overview of what 

has guided the approach to analysing the DiGE gels, the profile analysis which 

was undertaken and the logic used to construct the targeted profiles. 

4.6 Results and discussion 

The results section is split into 3 subsections:     

4.6.1 Pilot study 

The results of the pilot study help to inform and guide the strategies used for 

the main investigation. 

4.6.2 Main investigation 

This section extends the investigation from the pilot study.  It looks more 

deeply into the use of profile analysis, Venn analysis and the benefit of the 

additional time point. 

4.6.3Validative results 

The validative section corroborates the results discussed in the main 

investigation and pilot study. 

4.7 Summary and conclusion 
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4.3 Introduction 
The maintenance and supply of blood to the heart, brain and major organs in 

the body is essential in order to deliver oxygen, nutrients and hormones at the 

required levels and rates.  Therefore, systemic blood pressure is of great 

importance and central to the maintenance of the crucial life process of 

respiration.  The control of systemic blood pressure therefore is crucial.  In 

order to achieve this, there is a set of complex physiological mechanisms that 

are fundamental to the control of mean arterial blood pressure in both the long 

and short term.  As with many areas in biology, our understanding of normative 

processes comes from looking at pathological problems.  Understanding these 

mechanisms in hypertension and identifying possible markers would aid 

understanding of the control mechanism and give possible diagnostic or even 

therapeutic targets for further research to study.     

4.3.1 Epidemiology of hypertension and control of blood pressure 
Systemic hypertension is of ever increasing interest, particularly in western 

society, due to the large and increasing numbers of affected people (Burt et al., 

1995, Ostchega et al., 2007, Berglund et al., 1976).  This increase in the 

number of affected people creates a substantial burden on healthcare services 

worldwide (Monica et al., 2009).  Hypertension affects 1/6th of the world 

population and 25% of adults (Kearney et al., 2005, Cheung et al., 2006) and is 

a major risk factor in a number of cardiovascular diseases from heart disease 

and atherosclerosis, Type II diabetes (Whelton, 2009), renal disease and stroke, 

to mention but a few (Kannel, 1996).  It is therefore of intrinsic interest to 

understand the factors and mechanisms that affect the control of hypertension 

and identify and indicate biomarkers for early intervention.  The issue of 

hypertension is predicted to be on the increase and cardiovascular disease is 

predicted to be the most common cause of death in the developed world by 

2025 with hypertension being a common cause and symptom (Kearney et al., 

2005).     

Systemic hypertension is a quantifiable phenotype with a continuous range 

throughout populations but it has been clinically defined by a number of 

sources including the world health organisation as a systolic pressure in excess 

of 140mmHg and/or a diastolic pressure of over 90mmHg.  With a normal 

acceptable range of between >90-119/60-790mmHg (Chobanian et al., 2003a, 

Elliott, 2007, Mancia, 2007).   
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In recent years there has been an increasing understanding of the risk factors 

that are associated with hypertension and cardiovascular disease.  However, 

receiving a diagnosis of systemic hypertension does not exactly pinpoint the 

epidemiology and explain what physiological processes have been affected 

meaning treatments are difficult to administer.  This has been characterised by 

the fact that 95% of hypertension is idiopathic or essential hypertension 

(Carretero and Oparil, 2000), with only 5% defined as secondary hypertension 

caused by various  issues such as vascular, hormonal or known genetic 

diseases.  Factors that influence essential hypertension have been studied and 

reviewed from numerous sources and include both environmental and genetic 

causes and risk factors such as; diet (Lee et al., 2008) and weight (Goodwin, 

2010), age (Fischer and O'Hare, 2010, Kosugi et al., 2009) and sodium (Kyrou 

et al., 2006) intake, stress, smoking, alcohol consumption and obesity (Wofford 

and Hall, 2004) which is often linked to socio-economic class (Wenge et al., 

2008, Monica et al., 2009, Kannel, 2000).  The current most effective strategy 

for reducing hypertension is to control diet and sodium intake and reduce other 

risk factors including alcohol consumption (Annest, 1983, Annest, 1979)  

however the estimated effect of environmental to genetic is between 1:1.5 to 

1:3 in terms of systolic blood pressure variance.  The idiopathic nature of 

hypertension is indicative of the complex control of blood pressure and as such 

has led to the focus of preventions rather than cure, by looking at risk factors 

(Chobanian et al., 2003b).          

In the short term blood pressure is controlled by a complex interplay between 

nervous and endocrine control and in the long term there is an osmotic control 

performed by the kidneys.  Due to this complex interplay understanding, these 

mechanisms are a difficult undertaking.  Despite the complex nature of its 

control, blood pressure is dictated by only two factors and simple physics.  

Blood Pressure = Cardiac Output X Vascular resistance, with the vascular 

resistance being determined by the bore of the blood vessels and the continuity 

of the internal surface.  Therefore much of the body’s control focuses on the 

cardiac output and changing the internal diameter of the arterioles and this is 

closely regulated (Lifton et al., 2001 ).  This control of the peripheral arterioles 

is essential for evening out fluctuation caused by the beating heart.    

The organ with greatest responsibility in the control of long term blood 

pressure is the kidney (Guyton, 1991), achieving this by controlling the 
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osmotic balance using the re-absorption of water by controlling the level of 

salts in the blood.  It achieves this by using hormones such as Anti-diuretic 

hormone (ADH) and pathways such as the rennin-Angiotensin aldosterone 

system (Laragh and al, 1972) in conjunction with systemic controls of arteriole 

diameter from arterial baroreceptor reflex (Drummond et al., 2001, Heymans 

and Neil, 1958, Ling et al., 1998, Lohmeier et al., 2005), chemoreceptors, 

kidney kinin-kallikrein (Sharma et al., 1994) and sympathetic nervous control 

(Janssen and Smits, 2002).  The importance of the RAAS in the control of 

blood pressure and in the treatment of blood pressure through angiotensin-

converting enzyme (ACE) inhibitors has been shown.  A summary of the 

RAAS and the use of inhibitor are shown in Figure 4-1 below (Brewster and 

Perazella, 2004). 

 

Figure 4-1:  Summary of the Renin Angiotensin Aldosterone System and the use of ACE 
inhibitors.  The system allows for control of blood pressure by measuring increase and 
decrease glomerular blood flow.  This is one of the main mechanisms for controlling blood 
pressure in mammalians.  This figure was reproduced from (Brewster and Perazella, 
2004).   

The importance of the kidney in hypertension has been shown by a number of 

studies (Lohmeier et al., 2005, Blaustein et al., 2006), however it was 

beautifully illustrated by the transplantation of normotensive rat kidneys into 

hypertensive and vice versa (Bianchi, 1974).  Originally, normotensive rats, 

which had the transplanted kidneys, were shown to develop hypertension.  

Equally, the hypertensive rats’ blood pressure normalised.  This has also been 

demonstrated in human transplantations (Guidi et al., 1996, Rettig R, 2005, 

Kopf et al., 1993, Opelz et al., 1998 ).     
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4.3.2 Genetic factors:  Monogenic          
The causes of hypertension are undoubtedly multi-factorial in nature, with 

factors such as obesity and diet playing at least some role, however, there is a 

growing bank of genetic evidence connected with hypertension.  The majority 

of work looking at understanding the genetics of hypertension involves studies 

to find the causes of monogenic forms of the disease.  Monogenic forms of 

hypertension are caused by very rare mutations, however, identification of 

these genes could provide candidates for essential hypertension and give a 

wealth of information regarding blood pressure control for the identity of drug 

targets.  Most of the monogenic causes affect the function of the kidney in 

handling salt and water, underlying the importance of the kidney in 

homeostatic control of water and salt.  This kind of research has been fruitful at 

identifying genes that cause both hypertension and hypotension.  Lifton et al, 

1993 reported 10 genes responsible for hypertension and 7 for hypotension.  

Monogenic causes tend to affect the kidney’s ability to keep osmotic control. 

Often affecting the Na+ channels in some form, preventing the kidneys ability 

to control the osmotic balance of the blood. There are several different kinds of 

monogenic forms of hypertension that have been identified.  To go into detail 

is out with the scope of this introduction, however briefly; 

• Liddle Syndrome:  Caused by a deletion or missense of the Cytoplasmic 

C-terminal domain of the ENaC β or γ subunits.  This causes a reduced 

capacity for clearing of ENaC from the tubules membrane.  This leads 

to an increase in the levels of salt and leads to hypertension and 

hypokalaemic alkalosis (Palmer and Alpern, 1999, Shimkets, 1997).  

• Pseudohypoaldosteronism type II:  This is an autosomal dominant 

disorder where serine-threonine kinases are affected by the lack of a 

conserved lysine (K).  The genes affected are WNK1 and WNK 4.  

Sufferers present with a number of phenotypes including hypertension, 

hyperkalaemia and hyperchloraemia.  The deletions and missense of 

WNK1 and WNK4 lead to over expression.  Once again this leads to an 

outcome of salt retention and loss of osmotic control by affecting 

sodium and potassium levels (Wilson, 2001, Wilson, 2003).  

• Glucocorticoid-Remediable Aldosteronism:  This disorder causes the 

sufferers to present with hypertension from a young age due to an 

autosomal dominant disorder which affects the rennin-Angiotensin 
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aldosterone system by causing an imbalance in aldosterone levels and 

affecting the activity of rennin.  The disease is caused by unequal 

crossover between two genes (CYP11B1 and CYP11B2), which lead to 

aldosterone synthase activity being controlled by adrenocorticotrophic 

hormone rather than angiotensin II.  Increased activity of ENaC 

subsequently causes the increased retention and reabsorption of Na+ 

increasing plasma volume, leading to hypertension.  Fortunately, this 

type of disorder can be treated with glucocorticoids to restore normal 

blood pressure (Comiter et al., 1995, Diuhy and Lifton, 1995, Lifton 

and Dluhy, 1993). 

• Other monogenic disorders include; Apparent Mineralocorticoid Excess 

(Stowasser, 2006, Stewart, 1999), Hypertension with Brachydactyly, 

mutations of Peroxisome proliferator-activated receptor gamma and 

Mineralocorticoid Receptor mutations and hypertension in pregnancy.  

Most of which affect the regulation of salts in the nephron of the kidney 

leading to hypertension and a variety of other phenotypes (Lifton et al., 

2001, Burke et al., 2005).  This is of interest in hypertension as 

exacerbation during pregnancy called preeclampsia, which occurs in 

approximately 5-6% of pregnancies and can be fatal.  A number of 

studies have investigated predictive markers for this disease (Kenny et 

al., 2005, Carty et al., 2008).        

The biomarkers associated with hypertension have been covered in section 

1.6.1.2.3.  

4.3.3 Rat models of human hypertension:  The use of stroke-prone 
spontaneously hypertensive Rat (SHRSP) 

In this investigation, the effect of salt is initially evaluated and the changes in 

proteomic profiles with tissue types (medulla and cortex) are considered.  It is 

hoped that in future studies the data obtained may be used to help link genomic 

and proteomic data.  In order to link the proteomic and genomic data at a later 

date, the animals that have been selected are SHRSP (as discussed below), 

SP.WKYGla.2a and WKY.  These are well characterised by the Cardiovascular 

Research Unit at Glasgow University (BHF Glasgow Cardiovascular Research 

Centre, University of Glasgow, Glasgow, G12 8TA).  The strategy in place 

being that for using Quantitative Trait Loci (QTL), congenic and sub-congenic 

strains in order to tally genes and proteins together (Graham D, 2007b). 
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Rattus Rattus has been an essential tool in the study of many diseases including 

hypertension, on both a physiological and genetic level.  They allow relatively 

large scale breeding experiments, with the capacity to control different 

experimental factors including medication, diet, simulation and exercise.  The 

laboratory at Glasgow maintains a number of different strains of hypertensive 

rats and genetic variants.  These include stroke-prone spontaneously 

hypertensive SHRSP, inbred normotensive Wistar Kyoto (WKY) rats.  The 

SHRSP rats are selectively bred, on the basis of displaying higher blood 

pressure than the spontaneous hypertensive rats (SHR).  The SHRSP are, 

however, predisposed to cerebrovascular accidents (Yamori, 1994).  The 

SHRSP and the link to salt intake has been well characterised in a number of 

studies and shows hypersensitivity to salt, left ventricular hypertrophy and 

endothelial dysfunction (Clark et al., 1996; , Kerr et al., 1999, Koga et al., 

2008) and show a contrasting phenotypical response to salt treatment in 

comparison to WKY.  This was shown when SHRSP had backcrosses 

performed to generate populations with increasing SHRSP genetic 

compositions.  When salt treated the increasing genetic composition showed a 

positive correlation with the increased instance of stroke recorded in each 

group (Nagaoka, 1976).  There are a number of studies implicating increased 

levels of salt (or more accurately sodium from NaCl), with a higher instance of 

hypertension (De Wardener and Macgregor, 2002, Fountoulakis, 2001, Koga et 

al., 2008, Meneton et al., 2005).  In the case of excess salt causing the renal 

capacity to be reduced, the reduced renal function may lead to hypertension 

caused by an increase plasma volume retention (Hamlyn and Blaustein, 1986). 

As part of work done previously, by the cardiovascular research unit, QTL 

have been identified in this rat model at chromosome 2 (Jeffs et al., 2000) and 

validated using congenic and sub-congenic mapping with candidate genes 

identified and micro array analysis (McBride et al., 2003).  The congenic gene 

map can be seen in  Figure 4-2 below taken from (Graham D, 2007a) 
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Figure 4-2: Chromosome 2 genetic map in SP.WKYGla2a, SP.WKYGla2k, and SP.WKYGla2c* 
strains.  This shows the genetic makeup of the congenic strains in relation to Wky and 
SHRSP.  Showing the congenic strain SP.WKYGla2k employed in this study, has a largely 
SHRSP genetic makeup.  Taken from (Graham D, 2007a).  

         = WKY homozygosity.                

         = SHRSP homozygosity           

        = recombination/hetrozygosity  

Various congenic strains and sub-strains are kept by Glasgow University.  

Congenic strains are used as a mode of mining down into the relatively 

complex QTL.  In QTLs normotensive and hypertensive rats are crossbred to 

create heterozygous first generation progeny.  Sibling mating follows to 

generate F2 animals, which are then genotyped and phenotyped for continuous 

traits.  Trait probability is then calculated using polymorphic markers across 

the genome and linked with phenotype across the genome.  Congenic strains 

allow for a QTL of importance to be studied by selecting a region of the 

chromosome and replacing one strain (normotensive) with another strain 

(hypertensive).  If a phenotypical change is noticed then that phenotype can be 

linked with that QTL.  Congenic strain take time to develop, due to a series of 

backcrosses being necessary to ensure the donor’s genetic background is fully 

replaced.   
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The samples used in this study are congenic strains which have been created 

using speed congenic breeding by repeating screening for a polymorphic maker 

locus, allowing for specific selection of the donor rat.  A rat fast gestation 

period is one advantage of using rat models.  Although some work has just 

started in assessing the candidate genes from human clinical samples, most 

information held pertains to a rat model.  Clinical samples tend to have a high 

heterogeneity, leading to larger sample variance and are more complicated to 

analyse in comparison to a rat model.  Additionally, human studies take longer 

time and it is difficult to control all variables.  It is recognised that increasing 

sample size will reduce type I and type II errors when looking for candidate 

markers, genes or proteins, but this needs to be balanced with expense and 

logistics.  

4.3.4 Proteomics and Hypertension 
With the wealth of information provided by the completion of the human 

genome project, the focus is now linking functional information regarding 

proteins to the genomic information.  By identifying proteins and peptide 

markers for hypertension, it is possible to gain structural information for 

diagnostic markers for early detection and eventually therapeutic targets for 

treatments.   

Differential in Gel electrophoresis in theory is an ideal mode for revealing 

possible biomarkers for disease.  A biomarker is a biological molecule such as 

a protein or peptide, which might be used to classify, diagnose or monitor a 

disease and would ideally be present in sufferers and absent in healthy patients.  

However, in reality, it may be a collection of biomolecules which may be 

subtle quantitative changes in expression.  DiGE is ideally placed to look for 

changes in patterns of abundance of proteins with a relatively wide dynamic 

range.  In addition DiGE can also look at 1000s of proteins at one time, which 

out performs most other proteomic techniques.  However proteomic techniques 

are somewhat under developed in comparison to their genomic counterparts 

and require substantial work (Jones MB, 2002, Listgarten and Emili, 2005, 

Hilario et al., 2004, Zhou, 2005).  This is often due to the intrinsically complex 

nature of proteins and the lack of amplification technology such as PCR that 

revolutionised genomic research.  In addition, the deconvolution of data 

possesses a massive issue.  DiGE can give abundance information for 1000s of 
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proteins in one experiment, this poses issues of operator time and data mining, 

particularly if spots are to be identified and validated.   

The use of DiGE to discover biomarkers is reasonably well represented in the 

literature as either a main method or complementary to other proteomic 

techniques. Most of these utilise a body fluid rather than tissue directly.  

Biomarker studies in proteomics are wide spread and well described, but often 

look for markers in urine (Pisitkun et al., 2006, Gozal et al., 2009, Vivanco et 

al., 2005). Often studies are relatively focused on one pathway, rather than a 

global approach undertaken in this investigation.  It is recognised that each 

strategy has its relatively advantages and disadvantages.  DiGE analysis allows 

for a greater degree of an “unguided” approach, where no previous information 

is necessarily required about a given set of markers and therefore it acts like a 

“fishing expedition”.  Therefore, being that DiGE can map 1000s of proteins at 

a time, this strategy is ideally placed to search for biomarkers.  The 

disadvantage of going into the study blindly is that vital information can be 

missed.  However, by using a well characterised rat model it is hoped that this 

disadvantage can be minimised and any candidate markers can be further 

investigated by tying in genomic and proteomic data at a later date. 

This investigation attempts to address some strategies for deconvolution and 

data mining, while at the same time presenting some possible candidate protein 

markers to be further investigated with respect to hypertension in SHRSP rat 

model.     
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4.4 Methods 

A detailed account of general methodology is outlined in General material and 

methods chapter of this thesis.  Methodology specific to this chapter is given 

below.   

It was decided that using the Denator Stabilisation instrument in this study was 

not appropriate for a number of reasons; 

• The tissue tested in the first study was mouse brain due to the original 

intention of investigating biomarkers in stoke using mouse brain.  

Unfortunately, due to logistical problems with the supply of stroke 

mouse brain tissue in this project was suspended. 

• It has been shown that using the Denator instrument causes detrimental 

effects on RNA levels. It can lead to its break up or increase and 

decrease in expression (Kultima et al., 2011). 

• The animals harvested were being utilised in a number of different 

studies, so it was decided that the same upstream treatment needed to 

be applied across all tissue types, if fair comparisons are to be made 

later. 

• The kidney was chosen as opposed to brain, as it has a closer 

association to the disease of hypertension than brain and the model 

animal being employed was a rat not mouse as in the previous study. 

• The Denator instrument has been heavily studied using brain tissue and 

there is evidence from a number of sources that it has a beneficial 

effect on stabilising brain tissue.  In the previous chapter it was decided 

to try and validate this using a different method (DiGE).  Also some 

other tissue types have been shown to have either no effect so there it is 

something that needs greater investigation across a multitude of tissue 

types. 

• Finally, the instrument was on loan for a limited period of time and 

was not available for this study. 
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4.4.1 Sample collection, extraction and processing 
Tissue for this study was provided by the Cardiovascular Research Group at 

Glasgow University.  Animals were euthanized Inline with the U.K. Animals 

(Scientific Procedures) Act, 1986 and local ethical guidelines.   Male WKY 

(Wistar Kyoto Rat), SP.WKYGla2a (congenic strain) and SHRSP 

(Spontaneously Hypertensive Rat Stroke Prone) rats were euthanatized (21 

weeks) by cervical dislocation and dissection of the brain, heart, kidney and 

liver were rapidly performed.  During the 21 weeks plasma and urine samples 

were taken.    Tissue was snap frozen in liquid nitrogen following dissection.  

Heat treatment using the Denator heat stabilisation process was ruled out in 

order to maintain cross group compatibility when comparing any proteomic 

and genomic data between genomic and proteomic groups.  The genomic group 

had been using traditional snap-freezing methods for the duration of the 

project, so it seemed expedient to maintain this status quo.  Samples were then 

stored at -80oC in anticipation of use for downstream processing.  Samples 

were always handled with care and never above 4oC, as all processing was 

performed on ice.  In addition, protease inhibitors were added at the earliest 

possible time point.  Blood pressure measurements were taken at regular 

intervals throughout growth and plasma and urine samples taken.  A salt 

treatment was applied to half of the cohorts with inception at 18 weeks using a 

1% NaCl solution as drinking water.  Blood pressure was measured using 

Dataquest IV telemetry system.  The genetic models used for this study are 

given in Figure 4-3 and the phenotypical blood pressure readings are given in 

Figure 4-4, which distinguish the three types of rats.  The SHRSP rats have a 

higher average systemic blood pressure compared to the Wky and congenic 

strains.  Also the SHRSP are particularly prone to sudden cerebral infarct 

events.  They are raised in very low light environments as the sudden shock can 

induce stroke.  Wky have the lowest phenotypical blood pressure as being in a 

normal range for rats.  The congenic rats have an intermediate phenotype 

between the SHRSP and Wky rats.  Therefore, the samples used in this study 

are from three distinct versions of disease states; normal, intermediate and 

diseased.  It should be noted that the intermediate disease state may therefore 

hold certain characteristics closer to one group or the other.  The blood 

pressure of the congenic animals is closer to the SHRSP animals that the Wky.  

Therefore it is of value to see the pattern of how the agents of phenotype (the 

proteins) compare across the three strains.  
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Figure 4-3:  Schematic of genetic model employed.  A congenic strain has been developed 
with a SHRSP background with sections of Chromosome 2 from WKY.  Figure provided by 
Dr Martin McBride, Cardiovascular research unit. 

 

Figure 4-4:  Systolic blood pressure phenotyping using radiotelemetry.  Systolic blood 
pressure was significantly increased in the salt-loaded SHRSP compared to salt-loaded 
SP.WKYGla2a and WKY rats.  Figure provided by Dr Martin McBride, Cardiovascular 
research unit. 

The study was divided into a pilot investigation and main investigation.  The 

pilot study used 3 samples from the same animal for each condition.  The main 

investigation had sample n=3 (three separate animals).  It is recognized that 

sample size is low but these animals are expensive to raise and material is 
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limited.  A summary schematic of the two experiments is given in Figure 4-5 

and Figure 4-6. 

 

Figure 4-5:  Sample work flow for the pilot investigation replicates.  Showing that both 
cortex and medulla tissue was used in addition to salt and non-salt treatment. 

 

Figure 4-6:  Sample workflow for main investigation.  Showing that only salt treatment 
samples were used but tissue segregation into cortex and medulla regions was still 
employed.  

Sectioning of kidney tissue was performed using a cryostat microtome (Leica 

Microsystems CM 1900UV, UK). Multiple sections were taken and divided up 

between eppendorfs and MALDI ITO coated glass slides for this study and 

collaborators.  Tissue sections were cut at a thickness of 14µm in a pre-chilled 

chamber of -20oC and a sample stage temperature of -19oC. Eppendorfs used 

Kidney 
Tissue 

• Cortex 
• Medulla 

Treatment • Salt  
• Non-Salt 

Rat Strain 
• Wky – Wild Type 
• SP.WKY.Gla2K – 

Congenic 
• SHRSP - Disease 

Kidney 
Tissue 

• Cortex 
• Medulla 

Treatment • Salt  

Rat Strain 
• Wky – Wild Type 
• SP.WKY.Gla2K – 

Congenic 
• SHRSP - Disease 
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for storage were kept and allowed to pre-chill in the chamber as well, before 

being transferred to dry ice.   

Sections used in MALDI-Mass Spectrometry Imaging (MSI), were thaw 

mounted onto ITO slides and stored on dry ice further to long term storage at -

80oC.  Sections were taken from between ¼ and ¾ the coronal depth of the 

kidney.  Sections for DiGE minimal labelling were placed onto glass slides in 

order for macro dissection to take place. The sequence of slices was kept strict 

and regular, in order to minimize aberration downstream and allow 

collaborators to compare data at a later date; the order of slicing can be seen in 

Figure 4-7.   

 

Figure 4-7:  Schematic of section sequence.  Kidney tissue was mounted (A) after 
measurements of the dimensions were taken (B and C).  Sections were taken at regular 
intervals.  (D)  Blue: ITO slides for MSI (collaborator), Green: Glass slides for macro 
dissecting for DiGE minimal labelling, Red: Glass slides for Saturation labelling, Laser Micro 
dissection slides and Glass slices for IHC (future validation of MSI). The first 100 slices 
taken into Eppendorfs, 6 for MSI then up to 200 slices into Eppendorfs (¼ depth).  Then 6 
sections for MSI, 74 sections for DiGE, LMD and IHC.  Up to 300th section into Eppendorfs.  
Following this pattern till ½ depth.  Then a further 40 sections for DiGE.     

Sections for collaborators were stored at -80oC.  Sections on glass slides for 

DiGE minimal labelling were taken through for macro-dissection.  Sections 

were placed and illuminated on a light box to allow definition of defined 

structures to be seen.  A scalpel blade was used to remove the cortex regions of 
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the kidneys into an Eppendorf, which had been prepared by using an anti-static 

gun to avoid loss of sample.  In order to obtain enough tissue, 50 slices where 

used from each kidney.  Following macro-dissection of the cortex, the 

remaining medulla region was then scraped and pooled.  The regions of the 

kidney have been defined but it is recognized that such definitions are complex 

and convoluted so the definition of cortex and medulla (corresponding to 

macro-dissected regions), for the purpose of this study are given visually in 

Figure 4-8.  It is recognized the undulations and convolutions mean regions are 

difficult to assign when viewed histologically, while the definition visually is 

distinct which allowed for accurate dissection between the two.      

 

Figure 4-8:  Optical image of kidney section defining regions of macro-dissection.  The 
region within the red dotted line gives the “medulla” and blue dotted line “cortex.”  It is 
recognised the undulations and convolutions mean regions are difficult to assign, while 
the definition visually is distinct.    
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Figure 4-9:  Visible regions of the kidney with the eye: These regions of the kidney are 
noticeable as having a colour difference and show the dynamic and complex tissue of the 
kidney organ.  This is only as eye level and the complexity deepen when using light 
microscopes.  Therefore there intrinsically and intuitively is a need to try and separate 
tissue types in order to fully understand their functional significance. 

Protein lysis and extraction was performed immediately after treatment in a 

DiGE compatible lysis buffer, with the addition of protease inhibitor and 

DNase; 7M Urea, 2 M thioruea, 4% CHAPS [w/v], 30 mM Tris base (solution 

in section 2.2.7).   Following the addition of lysis buffer, the samples were 

subject to 3 Cycles of snap freezing, thawing and 4 x 5 minute Cycles in an 

iced sonication bath with 1 minute cooling on ice between sonication.  

Extractions were followed by protein precipitation and clean-up using EttanTM 

2D Clean-up Kit (GE Healthcare, Bucks, UK cat #80-8484-51). Minimal 

labelling reactions were performed with Cyanine dyes 2, 3 and 5 using protocol 

specified in the product booklet (GE Healthcare, Bucks, UK #25-8009-83/84.) 

and is in the general methods.  In short, 50μg of protein was used for analytical 

gels and 500μg for preparative gels, which were stained using Sypro Orange 

(Sigma Aldrich, Dorset, UK, cat #S5692-500UL). The reaction was performed 

at pH 8.5, using 400 pmol of CyDye incubated on ice for 30 minutes in the 

dark. The reaction was stopped using the addition of 10 mM lysine. They were 

loaded (as shown in Table 3-1 and Table 3-2) for 1st dimension separation 

which was carried out using IEF on 24 cm IPG strips of pH 4-7 [GE 

Healthcare, Bucks, UK cat # 17-6002-46]) with a minimum of 75000 Volt 
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hours at 20oC with a program of 30 V step and hold for 12 hours, 300 volts step 

and hold for 2 hours, 1000 volts gradient for 2 hours, 8000 volt gradient for 5 

hours, 8000 volts step and hold for 8 hours and 1000 volts step and hold for up 

to 24 hours to avoid strip diffusion prior to next step. Prior to 2nd dimension 

separation by SDS-PAGE, an equilibration was performed using SDS 

equilibration buffer (50 mM Tris-HCL, pH 8.8, 6 M urea, 30% glycerol [w/v] 

2% SDS [w/v] and 0.002% BPB [w/v]) with 10 mL/gel followed by reaction 

with DTT (10 mg/mL) for 15 minutes, then with iodoacetamide (25 mg/mL) 

for 15 minutes to prevent reduction/alkylation. 2nd dimension separation was 

performed at 1-2 watts per gel for approximately 12 – 15 hours or until the dye 

front reached the bottom of the gel. Gels were imaged using GE Healthcare 

Typhoon 9400 Series Variable Imager at 100μm resolution after optimization 

of photomultiplier voltages, using a pre-scan at a resolution of 1000μm.  Gels 

were then loaded, (see chapter 2) matched and analysed, (DeCyder Version 

5.01.01, GE Healthcare, Bucks, UK), and spots selected for picking using 

EttanTM Gel Handling Work Station and MS identification.    A schematic of 

the workflow can be seen in Figure 3-2.  
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Figure 4-10: Schematic of experimental work flow.  Kidney tissue was processed for DiGE 
analysis.  MALDI-MSI was performed separately by Dr R. J. A. Goodwin, Research 
Associate, University of Glasgow.  The larger proteins considered using DiGE and the 
smaller markers considered using MALDI-MSI. 

 

 

 



285 | P a g e  
 

4.4.2 Identification of proteins from gel spots 
Spots were picked and tryptically digested, as describe in the general materials 

and methods and spotted with a-Cyano-4-hydroxycinnamic acid in 50% 

acetonitrile/0.5% trifluoroacetic TFA using a GE Healthcares Ettan Spot 

Handling Work Station and then analysed on 4700 Proteomics Analyser 

(Applied Biosystems, Cheshire, UK) MALDI-ToF-ToF-MS using standard 

settings (outlined in chapter 2).  MS/MS was performed on the top 10 precursor 

ions in each spot.  Any unidentified spots of particular interest were further 

analysed by LC-MS/MS on a Dionex Ultimate+ LC system coupled to a QStar 

Pulsar I (Applied Biosystems, Cheshire, UK).  GPS Explorer and MACOT 

Daemon Software was used to automate submission of collected data to 

MASCOT database searching software for searching with fixed modification of 

carbamidomethyl (C) and variable modification of oxidation (M), peptide and 

MS/MS +/- tolerances of 0.8 Da searching NCBI database on Mus musculus 

taxonomy with 1 missed cleavage allowed.  Spots identified as keratins were 

excluded.   
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4.4.3 Macro-dissection of kidney tissue 
Macro dissection was used as a method to segregate medulla and cortex of 

kidney tissue.  In order to assess the validity of macro dissection as a mode for 

the segregation of the Kidney, a validation of the technique was performed 

using Wild type OCR male rats scarified at 16 weeks.  The kidney tissue was 

sliced and either thaw mounted onto glass slides, or placed in 1.5mm eppendorf 

tubes in accordance with methods above and Figure 4-7, after which the 6 

slices were dissected as described separating medulla and cortex, 6 slices were 

scraped as a whole and 6 slices were used straight from the tube for protein 

concentration analysis using a Bradford assay.  Results can be seen in section 

4.6.4.1.  As consecutive slices were used, an assessment of average area was 

performed using 20 slices.  A schematic of the experiment can be seen below in 

Figure 4-11. 

 

Figure 4-11: Schematic for the assessment of macro dissection.  Kidney tissue was sliced 
and placed in eppendorfs and on glass slides.  The area of the tissue was calculated using 
image j.  An assessment of protein per unit area was made using a Bradford assay with a 
BSA standard curve of whole slices from eppendorfs, whole dissection from a glass slide 
and macro dissection of medulla and cortex from a glass slide.  Results are shown in 
4.6.4.1 on page 346. 
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4.4.4 Experimental Design 
The experimental design used for DiGE gels were as follows: 

4.4.4.1 Pilot investigation:  Experimental replicates of salt treated and non-
salt-treated WKY, congenic and SHRSP.  Cortex and medulla.  

  Cy5 Cy3  Cy2 

gel 1 Cortex WKY salt Medulla WKY salt internal standard 

gel 2 Cortex WKY non-salt Medulla WKY non-salt internal standard 

gel 3 Cortex Congenic salt Medulla Congenic salt internal standard 

gel 4 Cortex Congenic non-salt Medulla Congenic non-salt internal standard 

gel 5 Cortex SHRSP salt Medulla SHRSP salt internal standard 

gel 6 Cortex SHRSP non-salt Medulla SHRSP non-salt internal standard 

gel 7 Medulla WKY salt Cortex WKY salt internal standard 

gel 8 Medulla WKY non-salt Cortex WKY non-salt internal standard 

gel 9 Medulla Congenic salt Cortex Congenic salt internal standard 

gel 10 Medulla Congenic non-salt Cortex Congenic non-salt internal standard 

gel 11 Medulla SHRSP salt Cortex SHRSP salt internal standard 

gel 12 Medulla SHRSP non-salt Cortex SHRSP non-salt internal standard 

gel 13 Cortex WKY salt Medulla WKY salt internal standard 

gel 14 Cortex WKY non-salt Medulla WKY non-salt internal standard 

gel 15 Cortex Congenic salt Medulla Congenic salt internal standard 

gel 16 Cortex Congenic non-salt Medulla Congenic non-salt internal standard 

gel 17 Cortex SHRSP salt Medulla SHRSP salt internal standard 

gel 18 Cortex SHRSP non-salt Medulla SHRSP non-salt internal standard 

      n=3 

Table 4-1:  Experimental design of gels ran for experiment 1:  Experimental replicates for 

pilot investigation of salt treated and non-salt-treated WKY, congenic and SHRSP.  Cortex 

and medulla. 
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4.4.4.2 Main Investigation:  Biological  replicates of salt treated WKY, congenic 
and SHRSP.  Cortex and medulla.   

  Cy5 Cy3  Cy2 

gel 1 Cortex WKY Salt (A4642) Medulla WKY Salt (A4642) internal standard 

gel 2 Cortex SHRSP Salt (C5850) Cortex WKY Salt (A4631) internal standard 

gel 3 Cortex WKY Salt (A4737) Cortex Congenic Salt (N6718) internal standard 

gel 4 Medulla WKY Salt (A4631) Medulla SHRSP Salt (C992) internal standard 

gel 5 Medulla WKY Salt (A4737) Medulla Congenic Salt (N6718) internal standard 

gel 6 Cortex Congenic Salt (N6841) Cortex SHRSP Salt (C5847) internal standard 

gel 7 Cortex Congenic Salt (N6842) Medulla Congenic Salt (N6841) internal standard 

gel 8 Medulla Congenic Salt (N6842) Medulla SHRSP Salt (C5847) internal standard 

gel 9 Cortex SHRSP Salt (C5992) Medulla SHRSP Salt (C5850) internal standard 

      n=3 

Table 4-2:  Experimental design of gels ran for experiment 2:  Biological  replicates of main 
investigation of Salt treated WKY, congenic and SHRSP.  Cortex and medulla.   
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4.4.6 Statistical Methods 
As in section 3.4.5, all statistical calculations have been performed in either the 

DeCyder 2D 7.0, GE Healthcare software directly with further statistical 

analysis done using SPSS (Statistical Package for the Social Sciences) version 

17.0.1 (2008).   

In summary, the data was exported from the DeCyder work space.  Normality 

testing was then performed in SPSS 17.0.1 on log10SA using the Shapiro-Wilk 

statistical test.  A spot was considered of non-normal distribution if a p-value 

was returned of 0.05 or less.  This was performed on spots that had a full set of 

repeats across all gels, those that had a full set of repeats across all gels and an 

ANOVA score of 0.05 or less and those that had an ANOVA score of 0.05. 

Missing values replaced using k-Nearest Neighbour (KNN) algorithm in SPSS 

17.0.1 to replace values.   

To assess the homogeneity of variance, the SA and log10SA data across all 

groups was analysed using the Levene’s test for homogeneity.  This was 

performed on spots that had a full set of repeats in every group for each master 

spot and those with replaced values.  A spot was considered not to have 

homogeneity of variance when it has a p-value of 0.01 or less.  Additionally 

graphs were produced to assess visually the spread of data.            

The ANOVA calculation and Student’s  t-test was performed within DeCyder 

2D 7.0, GE Healthcare in the BVA module. In addition to testing these 

assumptions, the issue of multiple testing of data has been addressed by 

applying a p-value correction.  This has been applied directly in DeCyder via 

the BVA module option for the application of a false discovery rate.    
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4.5 Rationale for Analysis 
In this section the rationale behind the analytical approaches is laid out and 

discussed.   

In order to assess the proteomic expression of kidney tissue in hypertension 

using a WKY, congenic and SHRSP rat model and the search for candidate 

markers towards the assessment of chromosome 2, it is important first to build 

a complete profile of hypertension proteomic expression using the following 

criteria: 

• Differences and similarities between strains 

• Differences and similarities across tissues 

• Differences and similarities due to treatment. 

All three of these will be considered and addressed in the pilot investigation.  

In the main investigation the difference in treatments has been omitted.  This is 

discussed in section 4.6 and 4.7. 

The three main strategies for assessing the proteomic data are: 

• Profile analysis, as piloted in Chapter 3. 

• Coupling targeted Venn and profile analysis 

• Validation using gel map data and principal component analysis.   

The strategies employed to discuss these three key areas are outlined below. 

4.5.1 Pilot investigation and Main investigation 
The first part of the study to be summarised is the pilot investigation.  The 

three areas to be looked at, mentioned above, are outlined below. 

4.5.1.1  Differences and similarities between strains. 
As outlined in section 4.3.3) the use of QTL and congenic strains is a useful 

means for comparing gene information and phenotype.  The use of proteomic 

technique can be employed to view the proteomic expression and therefore 

phenotype.  In using profile analysis, the relationship between protein 

expressions in the different strains can be viewed easily and be related to 

possible biomarkers within each strain.  Eventually proteomic and genomic 

data could be pooled and combined to assess the similarities and differences in 
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expression at the genomic and proteomic level.  Further pathway analysis can 

be employed to try and map the path from gene to protein. 

This study places it limits within this work flow by mining DiGE data for 

possible proteomic biomarkers that maybe of interest in future genomic studies, 

those of which are being undertaken by Dr Martin McBride in the 

Cardiovascular Research Unit at Glasgow University. 

Profile analysis for differences and similarities between strains  
The pattern of the profile therefore gives information about how the three 

strains exhibit different or similar phenotypes (protein expression) and DiGE is 

perfectly placed to view this profile pattern.   

The predicted profile patterns considered for searching for similarities and 

differences are shown in Figure 4-12.  Of particular interest with respect to 

relating hypertensive biomarkers to chromosome 2 are A), B) and C) but all 

possible patterns potentially hold information that may inform research 

scientists looking for genetic and phenotypical links with these strains. 
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Figure 4-12:  Predicted Profiles of spot intensities.  Shows the predicted relationship 
between WKY, congenic and SHRSP strains. A i-ii) Shows possible intermediate effect in 
the congenic strain compared to WKY and SHRSP (Intermediate effect i-ii).  B i-ii)  No 
change between the WKY and Congenic strains (WKY maintained i-ii).  C i-ii)  No change 
between the congenic and SHRSP strains (SHRSP maintained i-ii).  D i-ii)  Congenic strains 
presenting possible different spot intensity in comparison to WKY and SHRSP strains (no 
change in terms of WKY and SHRSP).  Profiles can be overlaid to compare two different 
tissue types or salt treatment.   
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4.5.1.2 Targeted Venn analysis using the predicted profiles for differences in 
strains 

An example of how the Venn diagrams are used to target and mine the data is 

shown below in Figure 4-13.  This will be extended for all three sections of 

stains, tissues and salt and no-salt for the pilot investigation and just strains and 

tissues for the main investigation. 

 

Figure 4-13: Targeted Venn analysis.  Different crossover regions of the Venn diagram can 
be used to mine data by correlating them with predicted profiles.  Additionally, statistical 
tests have already been run and cross checking is not required. 

4.5.1.3 Differences and similarities across tissues using Venn analysis with 
profile validation 

In order to explore the significant differences and similarities across tissue 

types, an approach of Venn analysis and profile analysis will be employed.  An 

example of the Venn strategy is shown in Figure 4-14.     

 

 

Figure 4-14:  Example of targeted Venn analysis to illicit profiles showing differences and 
similarities in tissue types.  C shows the changes which cortex and medulla have in 
common. 
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4.5.1.4  Differences and similarities due to treatment using Venn Analysis with 
profile validation (pilot investigation only). 

To explore the significant differences and similarities across salt and non-salt 

treated tissues, once again, a combination of Venn and profile analysis is 

employed to search for possible candidate markers.  An example of the Venn 

diagram used can be seen below in Figure 4-15. 

 

Figure 4-15:  Example of targeted Venn analysis to illicit profiles showing differences and 
similarities between treatment with salt and no salt treatment.  C) Shows any similarities 
between treatment of salt and non-salt. 
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4.6 Results and discussion 
The integration of genomic and proteomic data is and will become increasingly 

more essential, if genotype and phenotype are to be tied together.  By bringing 

both pieces of biological information together, it will increasingly become 

possible to understand biological processes and pathways at a more detailed 

level.  Unfortunately, due to the speedy evolution of genomics and the 

comparative slow progression in proteomics, researchers have tended to be 

focused in one particular area and integrative approaches have not been as 

speedy as they might have been  (Thongboonkerd, 2005).  On the positive side, 

scientific collaboration is greater than ever and the two fields are starting to be 

knitted together.  The use of DiGE as a mode for looking for candidate markers 

is not novel but will not suffice on its own, an integrative approach where 

multiple methods are employed is essential.  In order for the research to 

become robust collaboration and translation between the genome and proteome 

is essential.   

Hypertension itself is reasonably well described (see section 4.3) but the use of 

DiGE with the prospect of matching up genomic data in hypertension is novel.  

2DE and DiGE are well described in proteomic research and as such this forms 

a solid foundation for use with genomic data. In addition, with DiGEs ability to 

quantify and display 1000s of proteins, the chances of being able to match data 

with RNA micro array data (available through Cardiovascular Research Lab, 

Glasgow University) is improved in comparison with many other proteomic 

techniques.  It is of course recognised that a lot more work is required in order 

to marry both sets of data, much of which is outside the scope of this thesis.  

However, it is intended for this thesis to be a starting block for any future 

research.  

It is the hope that the following results allow for a starting point by giving 

candidate markers and a set of analytical methods using DiGE to sort and mine 

data.  In addition, it is hoped that these methods might be extended by moving 

towards small sample proteomics, to gain better resolution to help reduce the 

averaging disadvantages that arise in much of tissue proteomics research, due 

to the homogenising of tissue.    
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4.6.1 Pilot investigations 
Firstly, a pilot investigation was undertaken in order to assess whether a salt 

treated strain or not was to be used and also if separation into medulla and 

cortex was to be investigated. As importantly, a pilot study was prudent in 

order not to euthanise animals unnecessarily before embarking on the main 

study. 

4.6.1.1 Typical gels 
Gels for pilot investigation were ran as described in section 4.4 using pH 4-7 

IPG strips from EttanTM (GE Healthcare, Bucks, UK) for isoelectric focusing.  

Cropping of gels was performed prior to importing into DeCyder software in 

order to minimise errors in the spot matching and allow the algorithm to 

function optimally.  To gain maximum sensitivity, the algorithm was told to 

estimate 10,000 spots and filter out spot volume <=29,999, as dust falls into 

this range. 

Typical gels for pilot investigation are presented in Figure 3-22.  As can be 

seen the gel maps show clear and well resolved protein spots, with little to no 

smearing particularly in the middle portion of the gel, indicative of using a 

pH4-7 strip.  As expected, a small amount of precipitation and smear has 

occurred at the extreme fringes.  Internal standard channels compare well to 

each other, and average protein intensity spots (relative value of 80,000) fall 

within 15% of each other between all channels and across gels allowing for 

accurate quantitation.  Some small areas of the gel, corresponding to known 

areas of structural proteins, have saturated portions so quantitation will not be 

accurate for those regions.  This is normal for DiGE gels as a compromise must 

be made between being able to visualise low intensity stops without losing 

more abundant spots.      

The overlay of colours for the different channels allows for an initial view of 

the spread of change over the proteome.  The gels were then taken forward for 

quantitative analysis.  The data obtainable from well-run DiGE gels, such as 

those above, is considerable, regarding the ability to multiplex and quantitate.  

About 3000-5000 spots across all the gels are quantifiable, a significant 

number in a proteomic workflow.   
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Figure 4-16: Set of typical DiGE gels showing. This particular gel shows A) Fluorescent 
image with Cy2,3 and 5 for gels Cortex WKY Salt treated and Medulla WKY Salt treated 
respectively from the pilot investigation B) Cy2 Internal standard C) 3 Cy channels; Cy2 
(blue) internal standard, Cy3 (green) Cortex WKY Salt treated (red) Medulla WKY Salt 
treated. Acidic to basic left to right.   
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4.6.1.2 Statistical results 

4.6.1.2.1 Normality testing 
As described in section 3.6.3.3, Table 4-3 shows the percentage of protein 

spots that where out width the Shapiro-Wilk p-value of 0.05 or less.  As can be 

seen, scores range from 7.86 - 2.99%, the average being 5.06%.  Therefore it 

was found that the assumption of normality is true.  This is because with a p-

value of 0.05 it would be expected that 5% of spots would fail due to random 

sampling alone, therefore a result of 5.06% is within an acceptable tolerance.   

Dataset 
Number of 
Proteins spots 
tested 

Data type  

Percentage 
spot 
significance 
score <0.05 

Cortex Wky Salt 233 log10SA * 4.72 

Cortex Wky Salt 1117 log10SA ** 6.00 

Cortex Wky Salt 806 log10SA *** 3.35 

Medulla Wky Salt 233 log10SA * 5.15 

Medulla Wky Salt 1117 log10SA ** 5.82 

Medulla Wky Salt 806 log10SA *** 4.96 

Cortex Wky Non-salt 278 log10SA * 5.04 

Cortex Wky Non-salt 1236 log10SA ** 4.53 

Cortex Wky Non-salt 806 log10SA *** 4.09 

Medulla Wky Non-salt 278 log10SA * 6.12 

Medulla Wky Non-salt 1236 log10SA ** 6.31 

Medulla Wky Non-salt 806 log10SA *** 4.47 

Cortex Cn Salt 201 log10SA * 4.48 

Cortex Cn Salt 986 log10SA ** 4.46 

Cortex Cn Salt 806 log10SA *** 3.72 

Medulla Cn Salt 201 log10SA * 2.99 

Medulla Cn Salt 986 log10SA ** 3.45 

Medulla Cn Salt 806 log10SA *** 3.97 

Cortex Cn Non-salt 324 log10SA * 7.41 

Cortex Cn Non-salt 1333 log10SA ** 6.53 

Cortex Cn Non-salt 806 log10SA *** 5.58 

Medulla Cn Non-salt 324 log10SA * 4.01 

Medulla Cn Non-salt 1333 log10SA ** 5.25 
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Medulla Cn Non-salt 806 log10SA *** 4.59 

Cortex SHRSP Salt 465 log10SA * 4.30 

Cortex SHRSP Salt 2040 log10SA ** 6.03 

Cortex SHRSP Salt 806 log10SA *** 5.33 

Medulla SHRSP Salt 465 log10SA * 3.01 

Medulla SHRSP Salt 2040 log10SA ** 5.15 

Medulla SHRSP Salt 806 log10SA *** 4.22 

Cortex SHRSP Non-salt 219 log10SA * 5.48 

Cortex SHRSP Non-salt 1247 log10SA ** 7.86 

Cortex SHRSP Non-salt 806 log10SA *** 5.58 

Medulla SHRSP Non-salt 219 log10SA * 6.85 

Medulla SHRSP Non-salt 1247 log10SA ** 6.26 

Medulla SHRSP Non-salt 806 log10SA *** 5.21 

     *Spots included had log10SA for all 3 repeats and an 1-way ANOVA score of <0.05 or 
better  

 
**Spots included had log10SA for all 3 repeats 

   *** Spots included had log10SA for all 3 repeats and an 1-way ANOVA score of <0.05 or better With 
missing values replaced 

Assessing normality of the log10SA using the Shapiro-Wilk 
  

goodness-of-fit test 
    Table 4-3 Assessing normality of log10SA using the statistical test Shapiro-Wilk results for the hypertension 

pilot study 
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4.6.1.2.2 Homogeneity of Variance 
As described in section 3.6.3.3, the Levene’s statistical test was employed 

using SPSS 17.0.1.  This tested the null hypothesis that the sample variances 

are equal.  This was performed across all groups with a full set of repeats. It 

was then subsequently performed with missing values replaced using k-nearest 

neighbour (KNN). Table 4-4 displays the results of the Levene’s test.  The 

threshold for rejecting the null hypothesis and concluding that the data is not 

homogeneous was 0.05 or less.  Only 5.97% or 3.97% respectively, of the spots 

across all groups were not considered to have homogeneous variation.  Graphs 

visually depicting the distribution of variance can be seen in Figure 4-17.      

Data Set 
Data 
type 

Number 
of Spots 
included 

% of spots 
with p 
value <0.05 

Hypertension Pilot Investigation SA 67 14.93 

  log10SA 67 5.97 

Hypertension Pilot Investigation 
with missing values replaced. SA 806 16.00 

 log10SA 806 3.97 

    Spots included had complete set of repeats  

   The P-Value was generated using Levene’s test across groups with each master spot 

Table 4-4: Showing the percentage of spots which failed the homogeneity of variance 
Levene’s test, for the pilot investigation.   
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Figure 4-17:  Graphical representation of variance for the Congenic Cortex non-salt 
treated group, for the standardised abundance using 67 different spots and n=3.  This is a 
typical distribution of variance generated across all treatments and time points.  This 
shows how the variance s clustered close to zero with few outliers.     
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4.6.1.3   Profile, pie chart and Venn analysis 
In order to ascertain the effect of tissues and salt treatment across the three 

different strains, the profile analysis was divided up into, tissue type and 

treatment.          

4.6.1.3.1 Candidate markers and profile analysis  
The first to be considered is the distribution of profiles for cortex non-salt 

treated.  The results can be seen in Figure 4-18 below.  The profiles were 

assigned to their relevant category as per Figure 4-12.  The spots were sorted 

on the basis of significant ANOVA with p-value <=0.05.  This gave 355 spots 

to be checked manually.  Firstly, approximately 36% of spots showed an 

intermediate effect, relative to the congenic strain possibly alluding to the 

WKY part of the congenic interval compensating for any hypertensive effect 

that the SHRSP section of the congenic’s genome may be having, giving it the 

intermediate phenotype.  Secondly, approximately 38% of detected spots show 

maintenance of the WKY feature in the congenic strain and 7% show 

maintenance of the SHRSP in the congenic strain.  It should be noted that, 

although there is a percentage of 7% for the maintenance of SHRSP phenotype 

in the congenics, the WKY sections of the genome is significantly smaller in 

the congenic strain in comparison to the SHRSP section of the genome.  

Therefore this does allude to the fact that the section of WKY genome in the 

congenic strain is having an impact on the phenotype of the congenic animal.  

Whether or not this particular complement of markers is specifically linked to 

hypertension is not apparent from this data alone, however the 48% of the spots 

shown show some tentative links between WKY and Congenic strain, which 

may lead towards a link to hypertension.  Equally the other 19%, that elicits 

towards the section of genes that originated from SHRSP gives information of 

a profile pattern that could be used to help compared to other treatment of 

tissue type.  It is also interesting to note that 13/19% shows an exaggeration in 

the congenic phenotype in comparison to both the WKY and SHRSP strains.    

The identified examples of the profiles given in Figure 4-18 are shown below 

the pie chart and their positions on the gels are given in Figure 4-19 and the 

identifications are given in the table in Table 4-5. 
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Figure 4-18:  Shows profile analysis for Cortex tissue and non-salt treated.  The pie chart 
shows the distribution of spots manually matched experimental profiles with predicted 
profiles shown in Figure 4-12, placed in the relevant categories following profile analysis 
of pilot investigation.  A total of 355 spots were included on the basis of a significant 1 
way ANOVA score.  Example profiles are given under the pie chart.   
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Figure 4-19:  Gel map of example spot given in Figure 4-18 for Cortex non-salt treated. 

The mitochondrial subunit 5A of Cytochrome C oxidase was identified.  This 

enzyme is part of a large family of enzymes which is located in the inner 

membrane of the mitochondrion and is crucial in donating electrons to 

Cytochrome oxidase, which plays a vital role as the terminal oxidase in the 

electron transport chain in the mitochondria.  Deficiency has been shown to 

affect a number of tissues (Glerum, 2006), including the heart and is linked to 

cardiomyopathy (Antonicka, 2003).    
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Table 4-5:  Identifications for example spots given in Figure 4-18 and Figure 4-19 and there 
corresponding mascot scores (MOWSE score).  All scores have a p-value < 0.05. 

The next profile pattern to be considered is in cortex tissue with salt treatment.  

The percentage distribution of the profile analysis and example profiles are 

shown in Figure 4-20, the position of the examples on the gel map are given in 

Figure 4-21 and the identification found for this set of examples are shown in 

Table 4-6.  As can be seen, the salt treatment has led to a change in the profile 

distribution.  The spots were sorted on the basis of significant ANOVA with p-

value <=0.05.  A similar number of spots were included (359 compared to 355 

in the cortex non-salt treated), however, the percentages in the salt treated 

cortex are somewhat different compared to non-salt treated.  Only 8% showed 

an intermediate effect in the congenic (compared 36% in non-salt treated).  In 
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addition, salt treatment has had the effect of exaggerating the congenic strains 

phenotype in 37% of those markers where the WKY and SHRSP have the same 

phenotypical response.  Compared to the non-salt treatment that is a 3 fold 

increase.  The maintenance of the WKY phenotype holds a similar percentage 

compared to non-salt treated at 34%, possibly indicating that WKY phenotype 

is being maintained in a 1/3 of significant markers in the congenic strain.  This 

maintenance of phenotype is interesting, as it has the potential to be mapped 

back towards the characterised section of genes in the congenic strain. Also, at 

a similar percentage to the non-salt treatment is the maintenance of phenotype 

with the SHRSP and congenic strain with 11%.  The decision to use salt 

treatment or non-salt treatment for the main investigation is discussed in 

section 4.6.1.7.      
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Figure 4-20:  Shows profile analysis for Cortex tissue and salt treated.  The pie chart shows 
the distribution of spots manually matched experimental profiles with predicted profiles 
shown in Figure 4-12.  Figure 3-5 placed in the relevant categories following profile 
analysis of pilot investigation.  A total of 359 spots were included on the basis of a 
significant 1 way ANOVA score.  Example profiles are given under the pie chart.   

 



 

308 | P a g e  
 

 

Figure 4-21:  Gel map of example spot given in Figure 4-20 for Cortex salt treated. 
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Table 4-6:  Identifications for example spots given in Figure 4-20 and Figure 4-21 and there 
corresponding mascot scores (MOWSE score).  All scores have a p-value < 0.05. 

The next profile distribution to be considered is medulla tissue with non-salt 

treatment.    The percentage distribution of the profile analysis and example 

profiles are shown in Figure 4-22, the position of the examples on the gel map 

are given in Figure 4-23 and the identification found for this set of examples 

are shown in Table 4-7.  Once again the data was sorted on the basis of 

significant ANOVA with p-value <=0.05.  This time approximately 1/3 fewer 

spots were included for manual profile analysis with only 238 spots satisfying 

the criteria for selection.  In comparison to the salt treatment in the medulla 

tissue (discussed below), the percentages are somewhat different.  

Additionally, they also are different in comparison to the cortex tissue 

equivalent of non-salt treatment.  The intermediate effect, maintenance of 

Congenic with WKY, maintenance of SHRSP and congenic and exaggeration 

of congenic are evenly spread with 22%, 20%, 26% and 26% respectively.  

This is different to both medulla salt treated and cortex non-salt treated, 

however, it is closer present by cortex non-salt treated than the other groups.  It 

therefore appears that the profile distribution of the strains gets more affected 

by salt treatment than that of tissue type.    
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Figure 4-22: Shows profile analysis for medulla tissue and non-salt treated.  The pie chart 
shows the distribution of spots manually matched experimental profiles with predicted 
profiles shown in Figure 4-12. Figure 3-5 placed in the relevant categories following profile 
analysis of pilot investigation.  A total of 238 spots were included on the basis of a 
significant 1 way ANOVA score.  Example profiles are given under the pie chart.   
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Figure 4-23:  Gel map of example spot given in Figure 4-22  for medulla non-salt treated 
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Table 4-7:  Identifications for example spots given in Figure 4-22 and Figure 4-23 and there 
corresponding mascot scores (MOWSE score).  All scores have a p-value < 0.05. 

The next profile distribution to be considered is medulla tissue with salt 

treatment.    The percentage distribution of the profile analysis and example 

profiles are shown in Figure 4-24, the position of the examples on the gel map 

are given in Figure 4-25 and the identification found for this set of examples 

are shown in Table 4-8.  Once again the data was sorted on the basis of 

significant ANOVA with p-value <=0.05.  This meant 219 spots were included 

in a similar number to medulla non-salt above.  Only 8% showed an 

intermediate effect in the congenic this is consistent with the cortex salt treated 

result of 8%.  In fact, except for the total number of spots included, the 

percentage profile distribution is very similar to the cortex salt treated profile 

distribution.      

The maintenance of the congenic phenotype with the WKY phenotype is 31% 

compared with 34%, indicating that medulla and cortex behave similarly in this 

respect. Also, at a similar percentage is the maintenance of phenotype with the 

SHRSP and congenic strain being 7% compared with 11%.  The exaggeration 
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of the congenic feature is even higher at 47%.  The similarities in percentage 

express the possibility of a similar process occurring in the two tissue types 

described.   

 

Figure 4-24:  Shows profile analysis for medulla tissue and salt treated.  The pie chart 
shows the distribution of spots manually matched experimental profiles with predicted 
profiles shown in Figure 4-12. Figure 3-5 placed in the relevant categories following profile 
analysis of pilot investigation.  A total of 219 spots were included on the basis of a 
significant 1 way ANOVA score.  Example profiles are given under the pie chart.   
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Figure 4-25:  Gel map of example spot given in Figure 4-24 for medulla salt treated. 
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Table 4-8:  Identifications for example spots given in Figure 4-24 and Figure 4-25 and there 
corresponding mascot scores (MOWSE score).  All scores have a p-value < 0.05. 

To summarise, it appears that the profile distributions are more affected by salt 

treatment, in comparison to tissue type as the profile percentage distribution 

changes when salt treatment applies and has a greater effect on those 

percentages as tissue types do not maintain the same pattern within the cortex 

and medulla groups.  Additionally, it appears that within the cortex, an area 

that contains the major components and the majority of the functional unit, the 

nephron, the WKY portion in the congenic interval is causing the maintenance 

of the WKY phenotype more predominantly than the SHRSP phenotypes.  
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4.6.1.4 Pie chart analysis 
Pie chats have been used to visualise the proportion and direction of changes 

occurring between tissue type and treatment of salt or non-salt. 

 

Figure 4-26:  Comparison of salt and non-salt treatment in both cortex and medulla within 
the same strain.  Pie charts show the direction of change.         

Shown in Figure 4-26 is a pie chart analysis of the Student’s t-tests run to show 

significant differences between salt and non-salt treatment.  First spots were 

sorted using 1-way ANOVA with p-value = 0.05 as a criteria.  This included a 

total of 806 spots for analysis.  Considering cortex tissue type first, it can be 
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seen that a higher proportion of markers in salt treatment caused a higher 

standardised abundance in salt compared to no salt in both WKY and Congenic 

strain but the vice versa in SHRSP.  This means that the treatment of salt 

caused higher abundance of markers in WKY and Congenic.  Although it 

cannot be said that these markers are connected to hypertension, the increase in 

abundance of these possible markers is consistent and in line with other studies 

finding into the effect of salt on hypertension (Koga et al., 2008, Fountoulakis, 

2001, Meneton et al., 2005, Graham et al., 2007, Blaustein et al., 2006).  It is 

interesting, possibly even counterintuitive, that the majority of the significant 

difference is abundance of markers in SHRSP strains actually are lower in salt 

compared to non-salt.  In regards to medulla tissue type, the proportions do not 

exactly follow the same pattern as in cortex.  WKY strain follows the same 

pattern in medulla and cortex, but is opposite with regards to congenic.  This is 

a possible indication that completely different phenotypical processes in 

common with WKY are occurring in the different tissue types.  Seeing as the 

congenic strain is made up from sections of WKY and SHRSP, it would 

tentatively appear the genes in common with WKY are being more activated in 

the cortex region of the kidney.  

A similar approach was used to look at the difference between cortex and 

medulla tissue types.  This is shown in Figure 4-27.  Salt and non-salt will be 

considered separately.  In the salt treatment there appears to be no real pattern 

between strains for differences in tissue.   Both WKY and Congenic have 

similar proportions, with the significant changes occurring in opposite 

directions, with congenics showing a higher standardised abundance in cortex 

tissue as opposed to medulla.  It is notable that the number of significant 

changes is higher between tissues than between treatments, this is contradictory 

to what was noted in the profile analysis.  This shows how important a multi-

faceted approach to analysis is in order to try and build a clear picture of 

relationships.  Looking at changes in tissue type in non-salt treatment, the 

changes seem to be having an approximately similar spread between all strains 

with higher/lower abundance changes being roughly equal in all three strains.     
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Figure 4-27:  Comparison of tissue types in both salt and non-salt treatment within the 
same strain.  Pie charts show the proportion and direction of change.    

Now that the proportion changes have been considered it would be useful to 

scrutinise what changes the tissue types and the treatments have in common.  

Venn analysis can be performed to achieve this.  
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4.6.1.5 Venn analysis 
Venn analysis has been performed to look at the crossover for the presented 

statistical t-tests.  Venn analysis will be further elaborated in the main 

investigation as a mode for looking for further candidate markers. 

 

Figure 4-28:  Venn analysis showing spots in common between salt/non-salt treatment 
across tissue within strains.  The proportion and direction of the change is shown by pie 
charts.  It can be seen that the crossover of markers between tissue types is small.   

In Figure 4-28 it is clearly apparent that there is little cross over, showing that 

the changes in the abundances in the markers due to salt-treatment are different 

in the two different tissues.  This is extremely interesting as if the markers are 

different they must be being transcribed from different genes.  Of course the 

gene may come from the same chromosome but the gene must be different in 

 

Cortex  
wky salt v non-salt treated  

T-test p-value <=0.05 

Medulla 
 wky salt v non-salt treated 

T-test p-value <=0.05  

Looking for Significant Changes in Common with salt/no-salt between tissue types: 

  
50% 50% 

  
C(2) B (44) A (93) 

Cortex  
Cnsalt v non-salt treated  

T-test p-value <=0.05 

Medulla 

Cnsalt v non-salt treated 

T-test p-value <=0.05  

  
C(4) B (94) A (151) 

  

25% 

50%  

25% 

Changes in the same direction: Lower Standardised 
abundance in salt compared to non-salt 

Changes in the same direction: Higher 
Standardised abundance in salt compared to non-
salt 

Changes in the opposite direction: Higher 
Standardised abundance in salt compared to non-
salt 

PIE CHART KEY 

Cortex  
SPsalt v non-salt treated  

T-test p-value <=0.05 

Medulla 
 SP salt v non-salt treated 

T-test p-value <=0.05  

  
C(12) B (283) A (63) 

  

42% 

50%  

8% 

1.5% 

1.6% 

3.5% 



 

320 | P a g e  
 

all the different markers except those that appear in the cross over.  This helps 

to show that the medulla and cortex are quite distinctly different in their tissue 

type and therefore function.  Perhaps even more interesting is that the greatest 

degree of cross over occurs in the SHRSP strain, with over double the amount 

of cross over at 3.5%. 

The differences between the tissues are further displayed in Figure 4-29.  This 

is shown by the lack of markers in the cross-over section of both three way 

Venn diagrams.  Intriguingly, there seems to be more cross-over in the non-salt 

treated Venn diagram than the salt treated.  The greatest cross-over in both 

(region F) represents the profiles showing the maintenance of WKY phenotype 

in the congenic strain.  This shows, that in the main investigation, there may be 

candidate markers of interest with regards to using this congenic model to map 

genomic and proteomic data.   
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Figure 4-29:  Venn analysis comparing cortex and medulla when p-value =<0.05.  The 
proportion of change in each sector is shown by pie charts.  Salt and non-salt are 
compared separately.     

4.6.1.6 Identification in the pilot study 
Due to the nature of the pilot study, the analysis lacks the depth shown in the 

main investigation, as it is simply being used to inform the main study.  

However, the table given in Table 7-1, in the appendix, is a complete list of all 

the identifications made in the pilot study.  Not all the identifications are linked 

to the different profiles discussed above, but they have been included as a 

reference for any future work. 
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4.6.1.7 Validating the use of salt treatment only in the main investigation 
One of the main purposes of the pilot study was to ascertain whether to 

investigate further salt or non-salt treated samples.  It was thought that it might 

be advantageous in terms of maximising the hypertensive effect and therefore 

increase the number of markers present that it may be expedient to choose salt 

treatment over non-salt treatment.  Upon data mining, it started to become 

apparent that the salt treatment was starting to change and exaggerate the 

profiles seen.  Identified examples of these exaggerations can be seen below in 

Figure 4-30.   
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Figure 4-30:  Example markers from the pilot study where salt treatments lead to a change 
in profile shape.  A)-C) show how profiles have been changed due to salt treatment Blue 
line shows non-salt treated samples and red line shows salt treated samples.  1, 2 and 3 
on the x-axis are WKY, congenic and SHRSP respectively.   
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The profile shown in A) has been identified at a subunit of mitochondrial H-

ATP synthase.  As can be seen, the non-salt treated profile shows that WKY 

and congenic strains are exhibiting profiles that may show a possible 

connection to chromosome 2, as the congenic is displaying the same 

phenotypical response as WKY.  This indicates that it may be linked to the 

same region of genetic code that has been selected for in the congenic strain.  

Without any further validation, it is noted that this assertion is speculative.  A 

subunit of mitochondrial H-ATP synthase has been implicated in a number of 

disease processes, including neurotoxicity in the brain and Alzheimer’s disease 

(Sergeant et al., 2003) , and renal cell carcinomas (Yusenko et al., 2010).  It 

can also be seen from Figure 4-30 A) that the effect of salt treatment has been 

to exaggerate the phenotype and bring it closer to a SHRSP response in 

comparison to WKY and therefore the congenic interval is not maintaining the 

WKY phenotypical feature.  This would not have become apparent, had salt 

treatment not been performed.  A similar situation occurs in B) which was 

identified (spot 524) at Peroxiredoxin 3.  Peroxiredoxin three has also been 

linked to a number of conditions and knock out of the gene has been shown to 

render the heart venerable to reperfusion injuries as peroxiredoxins are proteins 

which help control the level of hydrogen peroxide and hydroperoxides which 

are produced in reperfusion injuries (Nagy et al., 2006).  Once again, the 

exaggeration of the salt treatment reveals the change in relationship between 

WKY, congenic and SHRSP strains.  The case presented in C) is somewhat 

different.  The profile maintains its shape and therefore relationship. However, 

once again shows the exaggeration that salt treatment has caused, identified as 

part of the Aldo-Ketoreducase family.  This class of protein has been shown to 

play a role in vascular dysfunction and the oxidation and reduction of other 

enzymes (Hwang et al., 2002).          

The decision was therefore made, in order to increase the number of markers 

available and to see the profile in as close to hypertensive phenotype as 

possible, to use salt-treated animals in the main investigation.  

 

 

  



 

325 | P a g e  
 

4.6.3 Main investigation 
The main investigation is going to focus on the following: 

• Looking for candidate markers in hypertension using true biological replicates. 

• Look at the differences found in medulla and cortex in hypertension. 

• Use multifaceted analytical approach. 

4.6.3.1 Typical gels 
As with the pilot investigation Gels, the main investigation gels where ran as 

described in methods using pH 4-7 IPG strips from EttanTM (GE Healthcare, 

Bucks, UK) for isoelectric focusing.  Cropping of gels was performed prior to 

importing into DeCyder software, in order to minimise errors in the spot 

matching and allow the algorithm to function optimally.  To gain maximum 

sensitivity, the algorithm was told to estimate 10,000 spots and filter out spot 

volume <=29,999, as dust falls into this range. 

Typical gels for pilot investigation are presented in Figure 4-31.  As can be 

seen the gel maps show clear and well resolved protein spots with little to no 

smearing, particularly in the middle portion of the gel, indicative of using a 

pH4-7 strip.  As expected, a small amount of precipitation and smear has 

occurred at the extreme fringes.  Internal standard channels compare well to 

each other, and average protein intensity spots (relative value of 80,000) fall 

within 15% of each other between all channels and across gels allowing for 

accurate quantitation.  Some small areas of the gel, corresponding to known 

areas of structural proteins, have saturated portions so quantitation will not be 

accurate for those regions.  This is normal for DiGE gels as a compromise must 

be made between being able to visualise low intensity stop without losing more 

abundant spots.      
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Figure 4-31: Set of typical DiGE gels showing. This particular gel shows A) Fluorescent 
image with Cy2,3 and 5 for gels Cortex SHRSP Salt treated and Medulla SHRSP Salt treated 
respectively from the Main investigation B) Cy2 Internal standard C) 3 Cy channels; Cy2 
(blue) internal standard, Cy3 (green) Cortex SHRSP Non-Salt treated (red) Medulla SHRSP 
Non-Salt treated. Acidic to basic left to right.   
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4.6.3.2 Statistical methods 

4.6.3.2.1 Normality Testing 
As described in section 3.6.3.3, Table 4-9 shows the percentage of protein 

spots that where out width the Shapiro-Wilk p-value of 0.05 or less.  As can be 

seen scores range from 6.19 - 2.11%, the average being 4.07%.  Therefore it 

was found that the assumption of normality is true.  This is because with a p-

value of 0.05 it would be expected that 5% of spots would fail due to random 

sampling alone, therefore a result of 4.07% is within an acceptable tolerance. 

Dataset 

Number 
of 
Proteins 
spots 
tested 

Data type  
Percentage spot 
significance 
score <0.05 

Cortex Wky Salt 99 log10SA * 5.05 
Cortex Wky Salt 1576 log10SA ** 3.11 
Cortex Wky Salt 190 log10SA *** 3.68 
Medulla Wky Salt 113 log10SA * 6.19 
Medulla Wky Salt 1609 log10SA ** 2.67 
Medulla Wky Salt 190 log10SA *** 2.11 
Cortex Cn Salt 76 log10SA * 5.26 
Cortex Cn Salt 1149 log10SA ** 4.44 
Cortex Cn Salt 190 log10SA *** 3.16 
Medulla Cn Salt 84 log10SA * 3.57 
Medulla Cn Salt 1150 log10SA ** 3.39 
Medulla Cn Salt 190 log10SA *** 4.21 
Cortex SHRSP Salt 84 log10SA * 5.95 
Cortex SHRSP Salt 1345 log10SA ** 4.54 
Cortex SHRSP Salt 190 log10SA *** 3.16 
Medulla SHRSP Salt 98 log10SA * 4.08 
Medulla SHRSP Salt 1431 log10SA ** 4.96 
Medulla SHRSP Salt 190 log10SA *** 3.68 

    *Spots included had log10SA for all 3 repeats and an 1-way ANOVA score of 
<0.05 or better  
**Spots included had log10SA for all 3 
repeats 

  *** Spots included had log10SA for all 3 repeats and an 1-way ANOVA score of 
<0.05 or better With missing values replaced 
Assessing normality of the log10SA using the Shapiro-Wilk 
goodness-of-fit test 

 
    Table 4-9:  Normality statistical test results, for main investigation Assessing normality of 

the log10SA using the Shapiro-Wilk statistical test.  
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4.6.3.2.2 Homogeneity of variance 
As described in section 3.6.3.3, The Levene’s statistical test was employed 

using SPSS 17.0.1.  This was performed across all groups with a full set of 

repeats. It was then subsequently performed with data with missing values 

replaced using k-nearest neighbour (KNN).  Table 4-10 displays the results of 

the Levene’s test.  The threshold for rejecting the null hypothesis and 

concluding that the data is not homogeneous was 0.05 or less.  Only 3.07% or 

4.21% respectively of the spots across all groups were not considered to have 

homogeneous variation.  This also showed that the process of taking the 

logarithm to the base 10 of the standardised abundance considerably aided the 

stabilization of data by increasing the homogeneity of the data from 13.41-

3.07% or 14.21-4.21%.   An example of the graphical visualisation employed 

in depicting the distribution of variance can be seen in Error! Reference 

source not found..      

 

Data Set 
Data 
type 

Number 
of Spots 
included 

% of spots 
with p value 
<0.05 

Hypertension Main Investigation SA 522 13.41 

  log10SA 522 3.07 

Hypertension Main Investigation 
with missing values replaced SA 190 14.21 

 log10SA 190 4.21 

    Spots included had complete set of repeats  

   The P-Value was generated using Levene’s test across groups with each master spot 

Table 4-10:  Showing the percentage of spots which failed the homogeneity of variance 
Levene’s test, for main study. 
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Figure 4-32:   Graphical representation of variance for the Congenic medulla salt treated 
group, for the standardised abundance using 522 different spots and n=3.  This is a typical 
distribution of variance generated across all treatments and time points.  This shows how 
the variance s clustered close to zero with few outliers. 
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4.6.3.3 Profile and Candidate analysis 
As with the pilot investigation, the first area to be considered was to review the 

profile distribution and display some example markers found when manually 

checking through the 1-way ANOVA sorted data.  A total of 100 spots were 

included in the profile classifications.  This is somewhat lower than the pilot 

study using technical replicates; however biological replicates often show 

greater variation.  The results for cortex tissue salt treated are shown in Figure 

4-33.  As can be seen, 35% of markers showed an intermediate effect between 

strains from WKY, Congenic and SHRSP respectively.  42% of markers 

exhibit maintenance of WKY features in the congenic strains, the majority of 

which show a fall in expression in the SHRSP strain (35%).  Only 15% of the 

markers show maintenance of the SHRSP features in the congenic strain about 

3 fold less than for WKY, despite the majority of the congenic strains genome 

being of origin.  This profile distribution pattern does not match that of the 

pilot investigation (cortex salt treated).  It is recognised that further replicate 

will be required in any future work in order to validate patterns.  A further 8% 

of markers showed an exaggeration in the congenic strains response.     
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Figure 4-33: Shows profile analysis for cortex tissue and salt treated.  The pie chart shows 
the distribution of spots manually matched experimental profiles with predicted profiles 
shown in Figure 4-12 placed in the relevant categories following profile analysis of main 
investigation.  A total of 100 spots were included on the basis of a significant 1 way 
ANOVA score.  Example profiles are given under the pie chart.   
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Figure 4-34: Gel map of example spot given in Figure 4-33 for cortex salt treated.  Proteins 
identified are; 1550.  rCG25777, isoforms CRA_a / aminoaCylase 1.  2058.  Regucalcin.  
2187.  Mercaptopyruvate sulfurtransferase and 2620.  Isoamyl acetate-hydrolyzing 
esterase 1 homolog. 

The next profile pattern to be considered is medulla salt treated.  Once again 

spots were sorted using 1-way ANOVA and a criteria of p-value = 0.05.  174 

spots fell within this criterion.  This is a greater number of spots compared to 

cortex salted treated above and is the opposite of the pilot study. Where the 

medulla tissue had lower number of markers in comparison to cortex tissue 

type.  The results are shown in Figure 4-35.  A similar pattern is displayed in 

medulla compared to cortex tissue type.  39% (compared to 35%) showed an 

intermediate effect in the congenics, 54% (compared to 42%) showed 

maintenance of WKY phenotype in the congenic strain (with the majority of 

markers also of lower abundance in the SHRSP strain) and 3% (compared to 

15%) for the maintenance of the SHRSP phenotype in the congenic strain.  

This is where the major difference in the pattern is.  Finally only 4% showed an 

exaggerated effect in the congenic strain.  
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Figure 4-35:  Shows profile analysis for medulla tissue and salt treated.  The pie chart 
shows the distribution of spots manually matched experimental profiles with predicted 
profiles shown in Figure 4-12. Figure 3-5placed in the relevant categories following profile 
analysis of main investigation.  A total of 174 spots were included on the basis of a 
significant 1 way ANOVA score.  Example profiles are given under the pie chart.   
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Figure 4-36: Gel map of example spot given in Figure 4-35 for medulla salt treated.  
Identification of spots are; 644.  dnaK-type molecular chaperone hsp72-ps1 / Heat shock 
protein 8.  2709.  14-3-3 zeta isoform / typtohan 5-monooxygenase activation protein.  
3169.  Mitochondrial ribosomal protein L51. 
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4.6.3.4 Pie chart analysis 
A pie chart analysis was performed to look for the proportion and direction of 

changes occurring between cortex and medulla tissue types. 

 

Figure 4-37:  Comparison of tissue types within the same strain.  Pie charts show both the 
proportion of the direction of change.   

Shown in Figure 4-37 is a pie chart analysis of the Student’s t-tests run to show 

significant differences between salt and non-salt treatment.  First spots were 

sorted using 1-way ANOVA with p-value = 0.05 as a criteria.  This included a 

total of 190 spots for analysis.  This shows that the direction in standardised 

abundance between the two tissues was reasonable, even in the markers with 
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336 | P a g e  
 

significant differences.  It is interesting to note that the number of markers with 

a significant difference is higher in the SHRSP strain (approximately 2x) than 

that of the WKY and Congenic strains.  

4.6.3.5 Venn analysis and candidate markers 
The Venn diagrams can be used to mine down into the data and to see where 

any differences between tissues cross over in relation to strains.  In Figure 4-38 

a three way Venn looks at the cross over of differences between the tissue 

types in the salt treated samples. 

 

Figure 4-38: Venn analysis comparing cortex and medulla and shown strains when p-value 
=<0.05.  The proportion of change in each sector is shown by pie charts.   

As can be seen, the main investigation displays a similar cross-over to the 

equivalent diagram in the pilot study.  This Venn diagram analysis is extended 

in Figure 4-39 to show an example of identified markers.  In region (F) of 

Figure 4-38 it is shown that the markers are common between the medulla and 

cortex and that all are WKY and Congenic strains are higher in abundance in 

comparison to SHRSP.  This is consistent with the Profile analysis above.  It 

appears that the SHRSP causes the drop off in abundance in a number of 

markers in comparison to the WKY and Congenic strains and therefore the 

WKY phenotype is maintained in the congenic strains.  This would allude to 

the fact that those markers are possibly linked to a section of the genome that 
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could be involved in hypertension.   One of the markers has been identified as; 

Predicted: Similar to Actin Cytoplasmic 2 (gamma Actin).  This protein comes 

from a family with many different isoforms and therefore has some highly 

homologous sections of amino acid coding, therefore identification would need 

to be validated to find exactly which variant it is.  However, Gamma actin has 

been identified as a possible marker for pulmonary artery remodelling and 

hypertension (Thakker-Varia et al., 1999).  The shape of the profile confirms 

the statistics and the Venn diagram cross-over as the profile is identical in 

shape and abundance for both tissue types.   
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Figure 4-39: Combination of Venn and profile analysis in mining down of data between 
tissue type.  Example and of candidate marker profile is given for sector F that match 
predicted profile in Figure 4-12. Gel map shows the position and id of possible marker.  
Identified candidate marker is Predicted: Similar to Actin Cytoplasmic 2 (gamma Actin).  

The Venn analysis continues in Figure 4-40.  This shows the markers in 

common between the Student’s t-test performed between each strain in cortex 

tissue type.  Possible example markers are given from the cross-over points 

which have been linked to the profiles given in Figure 4-12.  Unfortunately, 
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none of the markers where identified in this case.  It is interesting to note that 

most of the expression profiles shown for cortex (in the example graphs) do not 

usually match that for medulla, which confirms much of the cross-over analysis 

between tissue types. 
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Figure 4-40:  Combination of Venn and profile analysis in mining down of data.  Example 
and candidate marker profiles are given for each sector that matches predicted profiles in 
Figure 4-12.  Venn analysis is with cortex tissue however medulla tissue profiles have been 
overlaid for comparison. 



 

341 | P a g e  
 

 

Figure 4-41:  Gel map of example candidate markers given in Figure 4-40. 

This shows that those markers are possibly playing significantly different roles 

within each of the tissues types.  The positions of the markers are given on the 

gel spot map in Figure 4-41 shown below. 

Looking at the equivalent three-way Venn diagram with medulla tissue in 

Figure 4-42, there is some success with the identification of the possible 

markers.  Starting with sector (G), spot 2635 was identified as Uracil-DNA 

Glycosylase, isoforms CRA_a, this proteins function is to eliminate non-

required uracil from DNA molecules by cleaving the N-glycosylic bond and 

initiating the base-excision repair (Haug et al., 1994, Haug et al., 1997), this 

marker is showing an intermediate effect in the congenic strain between that of 

WKY and SHRSP.  This suggests a polygenic relationship (where the 

combination of several genes lead to a given phenotype), where the WKY 

phenotypes is suppressing the effects of the SHRSP genes expression in the 

congenic strain.  The other identification from the markers found using this 

Venn analysis was spot 2698 Hypothetical Protein LOC619574.  This marker 

is shown to preserve the SHRSP traits in the congenic strain.  As can also be 

seen, the cortex and medulla tissue for this marker hold the opposite profile 

pattern and therefore are likely to have different functions within the different 

tissue types.    
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Figure 4-42:  Combination of Venn and profile analysis in mining down of data.  Example and candidate marker profiles are given for each sector that matches predicted 
profiles in Figure 4-12.  Venn analysis is with medulla tissue, however cortex tissue profiles have been overlaid for comparison. 
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Figure 4-43: Gel map of example candidate markers given in Figure 4-42.  The two 
identified markers are; 2635. Uracil-DNA Glycosylase, isoforms CRA_a and 2698. 
Hypothetical Protein LOC619574  
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With regards to the identified spots in the main investigation, there was no 

cross-over between tissue types found.  This is shown in Figure 4-44 below.  

This goes to further validate the need for smaller sample proteomic discussed 

in section 5.5 regarding future work.  If the two tissues had just been 

homogenised then this morphological information would be lost.  This was also 

demonstrated by MALDI-MS imagining shown in section 4.6.5. 

 

 

Figure 4-44: Venn analysis for identified spots only.  As can be seen there is little crossover 
of identified candidate markers between tissue types as the master spot numbers are 
different (with the exception of one).  This helps to indicate the need for segregation of 
tissue types.    
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Figure 4-45:  Venn diagrams comparing strains using an alternative strategy.  An 
assumption of no significant difference is used between WKY and Congenic strains in 
order to target Sector (G) as being the intensity profile shown.  A) Cortex and B) medulla.   
A possible strategy for increasing the number of candidate markers discovered  

An alternative possibility to increase the number of possible candidate markers 

discovered is to use the strategy employed in Chapter 3, by using an approach 

to target the specific profile in sector G.  This could be used if the number of 

markers is very low.  As seen in Figure 4-45, the number of markers in sector 

G is 20, the equivalent to 0 in Figure 4-40 and 2 compared to 0 in Figure 4-41.      

All of the markers identified during the course of the main investigation are 

given in Table 7-2, in the appendix.   

 

  

 

A) B) 
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4.6.4 Validation 
The following section includes results which help to confirm and validate that 

which has been discussed in the sections above. 

4.6.4.1 The effectiveness of Macro-dissection 
In order to validate if macro-dissection was a valid way to divide tissue into the 

medulla and cortex, an assessment of total protein content in a given area was 

performed.   

 

 

Figure 4-46:  Validation of macro-dissection A) shows average protein content per 14um 
slice of tissue from a WKY rat. n=6 by comparing macro dissection cortex and medulla 
(green), a whole slice macro dissected (red) and a slice placed directly into lysis buffer 
from an eppendorf tube B)  Shows the protein content per given area from a WKY rat.  
Error bars in both A) and B) are of two standard errors. n=6 for both A) and B).  
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As can be seen in Figure 4-46, the protein content was compared in two 

different ways.  Firstly, by comparing protein content (using a Bradford essay) 

per a slice and secondly, photographing the slice and comparing the protein 

content per given area.  In both cases, the variation within two standard error 

crosses over for each method of dissection/lysis, showing that macro-dissected 

medulla and cortex gives a comparable amount of tissue per a given slice or 

area in comparison to a whole slice, or whole macro-dissected slice.  The use 

of Laser Micro-dissection was considered, as an accurate and precise means of 

selecting regions of tissue.  However LMD presented a number of logistical 

difficulties.  Firstly the protein recovered from a LMD excised disc was 

extremely variable from disc to disc, as can be seen in Figure 4-47.   

 

Figure 4-47:  Variation of protein concentration from Kidney tissue from LMD tissue discs.  
As can be seen the variation is considerable but still overlapping.  The error bars displayed 
are two standard errors.  There were 6 slices in total and they are compared against each 
other individually and not averaged.     

 

Also using LMD meant there were two options for quantifying the protein 

content.  One method employed by Meyer et al 2005 was to pool samples from 

multiple slices to get enough material for Bradford assaying and then to use 

saturation labelled DiGE for analysis.  This method does not really get around 

any disadvantage of averaging samples.  The second option was to use a 

bioanlayser chip (often used in DNA work) to quantify the concentration of 

protein.  This was considered and the results are shown in Figure 5-3.    
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Additionally, even with the use of an anti-static gun, LMD was an extremely 

time consuming activity, where sample was frequently lost as it did not always 

enter the eppendorfs.  It was considered due to the limited and expensive nature 

of the kidney tissue not to perform this experiment using LMD. 

4.6.4.2  Principal components analysis of groups in the pilot investigation. 
PCA is an effective way of validating experimental groups.  The validation is 

obtained by statistical analysis being performed without initially assigning 

groups until the data is displayed. The further apart experimental groups are, 

the larger the difference between those groups, with PC1 being the 1st principal 

component and therefore contains the largest differences followed by PC2.  In 

this section the PCA for the different tissue types in the pilot investigation are 

considered.  In Figure 4-48 all spots are considered so may contain anomalous 

spots.  

 

Figure 4-48:  PCA score plot containing all 5777 protein spot in the pilot investigation for 
Cortex Tissue 

As can be seen SHRSP salt and non-salt are clustered together, as are WKY 

and congenic non-salt.  This suggests a close relationship to each other. 

The WKY Salt and congenic salt are furthest in both PC1 and PC2 suggesting 

salt treatment has caused the experimental group to diverge from each other.  

This is consistent with the idea that salt treatment causes a more pronounced 
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phenotypical response (hypertensive) as has been confirmed in a number of 

studies already mentioned (Koga et al., 2008, Fountoulakis, 2001, Meneton et 

al., 2005, Blaustein et al., 2006).  Therefore it is possible that the salt treatment 

has caused a divergent response from non-salt treated WKY/ 

Congenic in comparison to the salt treated WKY/Congenic.  Equally 

interesting is that salt treatment has cause WKY strain to be more closely 

related to SHRSP strain.  

This pattern continues in a similar vein in Figure 4-49, where the spots are 

sorted into significant 1-way ANOVA scores (p-value <= 0.05).  By doing this, 

a significant number of spots have been eliminated.  SHRSP still have a 

reasonably close relationship (in the PC1 dimension, which has the greatest 

effect).  As do Congenic and WKY strains for non-salt treatment, while once 

again congenic and WKY salt treatment exhibits the greatest difference 

between groups.      

 

 

Figure 4-49:  PCA score plot of all one way anova spots 802 protein spot in the pilot 
investigation for Cortex Tissue 

With regards to medulla tissue type in the pilot investigation, the PCA analysis 

can be seen in a Figure 4-50 and Figure 4-51.  Once again Figure 4-50 contains 

all spots detected on the gel map.  In contrast to cortex tissue, medulla tissue 
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shows different relationships.  All strains (both salt treated and non-salt 

treated), with the exception of Congenic salt treated, reveal a very close 

relationship with each other.  This could suggest that cortex tissue is the tissue 

type that is predominantly affected when it comes to hypertension, as cortex 

tissue seems to exhibit greater differences according to PCA analysis.  This is 

of course a very speculative assertion, however, the PCA analysis is showing 

very little differences between strains in the medulla tissue type.  Relating this 

to the structure of the kidney, most salt and water control occurs in the cortex, 

as this is where the majority of the function unit, the nephron, is situated.  It is 

still very intriguing that the congenic salt treated strain has been distinguished 

significantly from the other strains.  It appears that salt treatment has a 

significant effect on the congenic strain in the medulla region of the kidney.       

 

Figure 4-50:  PCA score plot of all 5777 protein spot in the pilot investigation for Medulla 
Tissue 
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Figure 4-51:  PCA score plot all one way anova spots 802 protein spot in the pilot 
investigation for Medulla Tissue.   

 

The pattern does however change slightly with regards to spots sorted by 1-

way ANOVA, as can be seen in Figure 4-51.  The difference between the main 

group and the congenic salt treated is not as significantly pronounced.  

Additionally the SHRSP non-salt treated group is now discernable from the 

main cluster.  This is an interesting shift and not readily explainable.     

4.6.4.3 Principal components analysis of groups in the main investigation. 
PCA analysis was further conducted for the main investigation. In the main 

experiment the variation will be, more greatly, down to biological differences 

than technical variance.  This time both medulla and cortex have been included 

into the same analysis as only salt treated samples were used. 

A similar strategy using PCA has been employed by performing it both on the 

whole data set, Figure 4-52, and then by reducing the data to contain only spots 

with a 1-way ANOVA score of p-value<=0.05 as can be seen in Figure 4-53.   

Starting with the whole data set shown in Figure 4-52, it can be seen that in 

both tissue types the WKY and Congenic seem to have a closer relationship in 

comparison to the SHRSP strains.  Equally, the relationship between tissues 

appears to be stronger than the relationship between strains, as the cortex spots 
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are more closely related to each other than that of the same strains.  This is 

intrinsically reasonable as tissue type by its nature is visually and structurally 

different, while WKY and Congenic strains differ by only a few sections of 

their genome.  What is interesting, however is that the SHRSP strains are 

significantly different as they are further from the WKY and Congenic strains 

and equally intriguing is that they are responsibly far apart from each other too.  

 

Figure 4-52:  PCA score plot of the main investigation.  All 3174 spots included  

The pattern is closely matched in Figure 4-53.     
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Figure 4-53:  PCA score plot of main investigation.  Only spots with one-way anova 
p=<0.05 considered.  No of spots = 189. 

4.6.4.4 Example of genomic and proteomic integration 
The intention was that the markers found during this investigation could be 

linked to genomic data and eventually mapped back to the correct portion of 

the rat genome in order to further our understanding of hypertensive pathways.  

The cardiovascular research unit has performed a number of analyses using 

microarray technology allowing for the measurement of thousands of mRNA in 

the kidney tissue, the strains studied in this investigation.  The microarray 

technology allows for parental strains to be compared to congenic strains for 

gene mapping.  Difference in gene expression can then be tallied with known 

gene function and further correlated to identified proteins from proteomic work 

flow to be compared with direction of expression and further pathway analysis 

using software such as Ingenuity Systems Pathway Analysis software.  Work 

from Jeff et al (2000) and further extended by McBride et al (2003) (Jeffs et al., 

2000, McBride et al., 2003) has used subcongenic breeding and microarray 

expression techniques.  The congenic strains investigation (including 

SP.WKYGla.2a) showed a significant reduction in baseline blood pressure in 

comparison to the SHRSP parental strain.  Comparison of the 3 strain using the 

Pathway analysis software was performed by Dr Martin McBride of the 

Cardiovascular Research Unit.  A full pathway analysis of the correlation 

between the proteomic data from this investigation and the genomic data is 
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beyond the scope of this investigation, but is there for use in future work.  An 

example of how this data is integrated is shown in Figure 4-54.  The 

proteomics data from the identified possible markers were tabulated including 

only those with t-test p-values of <=0.05.  The t-test performed was salt treated 

from the main experiment congenic vs. SHRSP strains.  Only identified 

proteins were considered to compare against the mRNA expression data.  The 

genomic data was analysed on the same basis (Congenic vs. SHRSP strains 

with p-value of <=0.05).  It should be noted that the microarray expression 

analysis was not done separately for tissue types.           

 

Figure 4-54:  figure showing matches between micro array data and proteomic data.  Red 
indicates upward expression in SHRSP compared to congenic and grey indicates 
downward expression.  The highlight number is the fold change in expression.  

The genomic data shows the increase in expression of the mRNA for ACY1 

(AminoaCylase 1) and RGN (regucalcin) of 1.684 and 3.189 respectively and a 

downward expression of the mRNA for UQCRC1 (ubiquinol-Cytochrome c 

reductase core protein I) and ATP5B (ATP synthase, H+ transporting, 

mitochondrial F1 complex, beta polypeptide, isoform CRA_a).  The genes and 

corresponding proteins were searched using ingenuity systems pathway 

analysis software and the rat genome database.  This software and database 

give information on gene ontology, sequence data and associated diseases.  

ACY1 is associated with chromosome 8 in rats and is associated with a number 

of liver conditions including cancer of the bile ducts and hepatocellular 

carcinoma.  It forms a zinc binding enzyme, which is homodimeric and 

functions in the Cytosol and catalyses the hydrolysis of acylated L-amino acids 

to L-amino acids and is postulated to salvage aCylated amino acids.  Its 

expression has been shown to be non-existent in certain kinds of lung cancer 
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but has yet not been affiliated with hypertension or kidney tissue.  Regucalcin 

holds an apoptotic role in cells but as yet has been assigned to the X 

chromosome location.  It is a conserved calcium binding protein that is 

expressed in the liver and kidney and is thought to hold an important role in 

calcium regulation and homeostasis.  Although no association to hypertension 

has been made it has been shown to be down regulated in aging rats.  ATP5B 

has been located on chromosome 7 in the rat and catalyses the synthesis of 

ATP in the mitochondria.  It does, however, have homologous and conserved 

regions present in many ATPases.   UQCRC1 is also associated with 

chromosome 8 and its function in humans is to catalyse the transfer of electrons 

from a coenzyme called QH2 in ferriCytochrome C in the electron transport 

chain of mitochondria.         

If this is compared to the proteomic data shown in Figure 4-55 to Figure 4-57 

and Table 4-11 and Table 4-12, all the candidate markers show reduced 

proteomic expression; this is consistent to mRNA expression in both UQCRC1 

and ATP5B but opposite to RGN and ACY1.  This opposition requires further 

analysis to determine the cause.  The only marker, from both the genomic and 

proteomic data sets, with a common proteomic profile across both tissue types, 

is Regucalcin as shown in the validative Venn diagram in Figure 4-57.           
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Figure 4-55:  Profiles of spot intensities in the main investigation, which match with RNA 
micro array data from cardiovascular research unit. 

  

 

Figure 4-56:  Gel map giving position for possible candidate markers from Figure 4-55. 
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master 
spot 
no 

name  
MOWSWE 
Score 

gi number 

t-test 
p-
value 
for 
Cnvsp 

fold change 
(from 

average 
ratio) of 
CnvSP 

1177 
Chain B, Rat Liver F1-
Atpase 122 gi|6729935 0.0018 -2.51 

1177 

mitochondrial ATP 
synthase beta subunit 
[Rattus norvegicus] 122 gi|54792127  0.0018 -2.51 

1177 

 ATP synthase, H+ 
transporting, 
mitochondrial F1 complex, 
beta polypeptide, isoform 
CRA_a [Rattus norvegicus]  122 gi|54792127  0.0018 -2.51 

1374 

ubiquinol-Cytochrome c 
reductase core protein I 
[Rattus norvegicus] 73 gi|51948476 0.04 -1.43 

2058 
regucalcin [Rattus 
norvegicus] 77 gi|408807  0.043 -1.5 

1578 
rCG25777, isoform CRA_a 
[Rattus norvegicus] 121 gi|149018671    0.044 -1.44 

1578 
aminoaCylase 1 [Rattus 
norvegicus 105 gi|52851387 0.044 -1.44 

Table 4-11:  Identified markers from Figure 4-55 and Figure 4-56 present in cortex tissue.  
Table gives information, the MOWSE score from the mascot database search, p-value and 
fold change for congenic vs SHRSP (CnvSP).   

 

master 
spot 
no 

name  
MOWSWE 
Score 

gi number 

t-test 
p-
value 
for 
Cnvsp 

fold change 
(from 

average 
ratio) of 
CnvSP 

2058 
regucalcin [Rattus 
norvegicus] 77 gi|408807  0.009 -1.66 

Table 4-12:  Identified markers from Figure 4-55 and Figure 4-56 present in medulla tissue.  
Table gives information, the MOWSE score from the mascot database search, p-value and 
fold change for congenic vs SHRSP (CnvSP).   
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Figure 4-57:  Comparison of tissue types and matches with microarray expression data.   

4.6.5 Mass spectrometry Imaging 
MADLI Mass spectrometry imaging was also performed to help gain more 

spatial and morphological information and to try and compensate for some of 

the issues with DiGE.  This work is currently still underway and was 

performed by Dr Richard Goodwin, Research Associate at Glasgow University.     

MSI was performed on both salt treated and non-salt treated kidneys from the 

same WKY, Congenic and SHRSP strains as above (not the same animals).   

The results are shown in Figure 4-58.  It was shown that there was a 

considerable number of markers across the three strains with no difference, 

however it was also shown that there was evidence of varying morphological 

expression differences for a number of different mass filters.  An example is 

shown in (C) for protein identified as Histone H1 at mass filter 2039 m/z.  For 

this particular marker the cortex region is the main region affected.  Using 

imaging affords a great advantage of being able to tract these morphological 

changes through the organ and also over time.  This change in cortex region 

reflects result described in section 4.6.4.2.    
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Figure 4-58:  MALDI-mass spectrometry imaging (MSI) in non-salt and salt treated WKY 
(WT), Congenic (Con) and SHRSP strains.  A)  This is composite images showing all the 
mass filters giving an overview of the distribution of markers across the three strains.  B) 
Mass filter of (2007 m/z) with heat-map display showing regions of highest intensity.   
Mass distribution is even across all kidneys.  C) Mass filter of (2039 m/z) Mass seen to vary 
significantly between the SHRSP kidney and that of wild type and congenic Salt treatment 
affects the intensities across the kidneys.  D)  ms/ms identification of Histone H1 direct 
from tissue for 2039 m/z.  Figure provided by Dr Richard Goodwin, Research Associate, 
Glasgow University.   

4.6.6 Label free quantitation using LC-MS of rat plasma 
In addition to the work performed in this investigation, a complementary 

methodology of label free quantitation was performed by Heather Allingham 

investigating plasma samples taken from the three strains of rats used in my 

investigation.  Once again, this investigation helps to try and compensate for 

any disadvantage in other proteomic technique and if fortunate, could lead to 

cross validation of techniques.  Although it did not lead to any matched 

identifications as hoped, it does demonstrate that the analysis technique can be 

applied for biomarker discovery across different technologies.   

A strategy of searching for profiles using Venn analysis was employed.  Two 

examples, also validated using western blot exhibit, similarly predicted profiles 

from both the label free quantitation and the western blot analysis.  The 

example profiles are shown in Figure 4-60, Figure 4-61 and Figure 4-61.     
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Figure 4-59:  This figure was taken from the Thesis of Dr Heather Allingham, Glasgow 
University. Show the average number of identified features from intact sample results 
across all groups  

 

Figure 4-60:  This figure was taken from the Thesis of Dr Heather Allingham, Glasgow 
University. Expression profile from quantitative western blot for Fibrinogen matching 
profiles from the label free quantitation LC-MS. 

 



 

361 | P a g e  
 

 

Figure 4-61:  This figure was taken from the Thesis of Dr Heather Allingham, Glasgow 
University.  Expression profile from quantitative western blot for Hemopexi matching 
profiles from the label free quantitation LC-MS.  
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4.6.7 Biological significance of potential biomarkers discovered  
A number of putative markers were discovered during this study.  It is accepted 

that they are putative in nature and therefore they need further validation, but 

could be a focus for future studies.  In this section, an account of their known 

biological role in both humans and animal studies is reviewed and whether 

there are any known associations to hypertension or cardiovascular disease.  

The initial source for information in the search for biological function is the 

curated database UniProtKB/Swissatp-Prot (http://www.uniprot.org/).  This 

examination was then followed up with a search of the literature for 

publications associated with the protein identification.      

Below is a summary of some of the most robust identifications in the main and 

pilot investigation and their biological roles. 

• Peroxiredoxin 3 or thioredoxin-dependent peroxide reductase, 

mitochondrial is a unique class of peroxiredoxins, as it is the only one 

isolated in the mitochondria.  The peroxiredoxins are a class of 

antioxidant enzymes that control the cytokine-induced peroxide levels 

and therefore are involved in signal transduction pathways.  

Peroxiredoxin 3 is a protein which responds to situations of oxidative 

stress by dealing with excesses in hydrogen peroxide and protects 

against oxidative stress (Zhang et al., 2007a, Cox et al., 2009).  From 

Figure 4-30 it can be seen that salt-treatment has no effect on 

peroxiredoxin 3 levels in both the Wky and congenic strains of rat, but 

it is considerably higher in the SHRSP stains.  This tentatively suggests 

that SHRSP rat strain produce lower levels of peroxiredoxin 3 and this 

would leave them more open to damage via oxidative stress.  It has 

been shown, in mice, that increases in the levels of peroxiredoxin (by 

causing overexpression) can prevent left ventricular remodelling after 

myocardial infarction due to their anti-oxidative function (Matsushima 

et al., 2006).   The thioredoxin research in the literature has a strong 

link in both hypertension and cardiovascular processes (Ebrahimian and 

Touyz, 2008).  It has also been shown that thioredoxin expression is 

increased in cardiac fibroblasts (Lijnen et al., 2012).  It also has been 

shown to protect neuronal cells (Cox et al., 2009).   Additionally, 

overexpression has been shown to protect cancer cells by prevention of 

hydrogen peroxide induced apoptosis (Nonn et al., 2003, Li et al., 

2012b, Newick et al., 2012).  It isthought to have a protective 

http://www.uniprot.org/
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characteristic in neurological disorders (Zhu et al., 2012).  With its 

association to a number of different disease processes it is unlikely that 

peroxiredoxin 3 is going to be a specific enough biomarker for 

hypertensive processes.       

• Regucalcin or otherwise known as gluconolactonase or senescence 

marker protein 30 is a protein found in many different cell types and 

plays a key role in intracellular Ca2+ homeostasis by binding to and 

activating Ca2+ pumps on various membranes, including the plasma 

membrane.  It also has an inhibitory effect on protein kinase and 

phosphatase activity.  It has been shown to play a role in transcriptional 

regulation, when it migrates to the nucleus, thus it can have a large 

influence on phenotype by controlling transcription (Yamaguchi, 2005).  

In this study, in cortex, the regucalcin is mostly expressed in the Wky 

strain and has the lowest expression in the SHRSP strain with an 

intermediate expression in the congenic.  The presence of regucalcin aid 

the resistance of renal tubules against injury in the presence of high 

Ca2+ (Inoue et al., 1999) but it has been described as being at its highest 

abundance in liver tissue and is suspected to play a role in liver 

regeneration (Yamaguchi, 2000).   A combination of hypertension and a 

high salt intake is known to aggravate the loss of Ca2+ from the renal 

tubules causing damage (Cappuccio et al., 2000, Timio et al., 2003).  In 

healthy individuals this is mediated by regucalcin. Within this putative 

assumption, the reduction in regucalcin in congenic and SHRSP rat 

strains could be partly playing a role in the hypertensive symptoms, due 

to loss of Ca2+ and renal tubule damage.  The preliminary nature of this 

proposition is acknowledged.        

• AminoaCylase 1 (ACY1) is an enzyme which is known to be expressed 

at high levels in the kidney (Uttamsingh et al., 2000).  It catalyses 

deacylation of N-acyl-L-amino acids to give fatty acids and amino acids 

as products.  It has been thought to be linked to degradation, antioxidant 

defence and redox sensitive reactions in the kidney.  An investigation, 

using a spontaneous hypertensive rat model, showed that a number of 

metabolic enzymes among the carbonylated proteins had increased 

levels of carbonylations compared to the Wky rat strain.  Among these 

enzymes was ACY1.  These changes in expression has been shown to 
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be associated with oxidative stress (Tyther et al., 2009). They found 

that there were more changes between SHR strains compared to Wky 

strains of ACY1 (and others) in medulla compared to cortex.  In this 

thesis, in cortex tissue, the ACY1 protein was expressed most highly in 

the Wky and congenic strain and was lowest in SHRSP strain.  It was 

identified in a number of spots; these are shown in Figure 4-62 with 

varying profile characteristics.          

 

Figure 4-62: Positions and profiles of multiple identifications of protein AminoaCylase 1, 
from the main investigation.  .  The x-axis represents the rat strain in the order of 
Standard, Wky medulla, Wky cortex, congenic medulla, congenic cortex, SHRSP medulla 
and SHRSP cortex.  The y-axis displays log standardised abundance. 

 

• Enolase 1 (Eno1) protein or α-enolase is a 434 amino acid long and 

47,128 Da glycolytic enzyme, which is abundant in the majority of 

tissues and cells.  In addition, to its role in glycolysis it has been shown 

to have an effect in growth control, hypoxia (hypoxia induces the 

transcription of eno1) and severe allergies including severe asthma 

(Semenza, 2001, Rey and Semenza, 2010, Gracey et al., 2001).  It was 

also one of the differentially expressed proteins described by Tyther et 

al, 2009 associated with oxidative stress and hypertension in SPR, 

showing an increase in carbonylation.  Eno1 is present in most cells in 

the kidney and is particularly prevalent in the cortex.  It has been found 
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to be differentially expressed in nephrotoxicity, including antibiotic 

toxicity.  Thus, nephrotoxicity causes eno1 to be down regulated 

affecting glycolysis in the kidney (Charlwood et al., 2002b).  The renal 

medulla is the area where interstitial concentration gradients are 

maintained and it plays an important part in water balance in the body 

and therefore hypertension.  It is also known to be under greater 

oxidative and hypoxic stress.  Hypoxia in the kidney is exacerbated in 

hypertension sufferers and this is equally true of SHR, which have been 

shown to have increased carbonylation of eno1 protein in the medulla 

and to a lesser extend cortex (Johns et al., 2010).  It has also been 

shown to be integral in the pathways involved in alanine-glyoxylate 

aminotransferase gene (AGXT) knockout mice, which is a model for 

hyperoxaluria type I.  Along with other proteins, it was substantially 

down regulated in these animals (Hernández-Fernaud and Salido, 

2010).  It has also been associated with diabetic rat kidney (Chougale et 

al., 2012), neuroblastoma and Wilms' tumour (Odelstad et al., 1982) 

and other kidney tumours (Kuroda et al., 2000) therefore, it is unlikely 

to act as a specific biomarker for hypertension due to its associations 

with multiple diseases at different sites around the body.  In this study it 

is down regulated in SHRSP but in Wky and congenic strains, the level 

is maintained.  This can be seen in the profiles in Figure 4-63.   

 

Figure 4-63:  Positions and profiles of multiple identifications of protein Eno1, from the 
main investigation.  The x-axis represents the rat strain in the order of Standard, Wky 
medulla, Wky cortex, congenic medulla, congenic cortex, SHRSP medulla and SHRSP 
cortex.  The y-axis displays log standardised abundance. 

. 
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• Aldo-Keto reductase family 1, member A1:  The aldo-keto reductases 

are a set of enzyme superfamilies’ which contain 14 different families.  

They perform oxidoreduction on a wide variety of substances in the 

body.  The Aldo-Keto reductase family 1 is the largest of the family 

groups and contains aldose reductases, the aldehyde reductases, the 

hydroxysteroid dehydrogenases and steroid 5b-reductases (Hyndman et 

al., 2003b).  The A1 member identified in this study, is part of the 

group commonly referred to as alcohol dehydrogenase or aldehyde 

reductase (EC 1.1.1.2) (Hyndman et al., 2003a).  This enzyme is 

expressed in the highest quantities in the liver but is expressed in 

numerous tissues to eliminate toxins.  A member of this family ALDH2 

has been found to protect cardiac tissue from oxidative stress and it has 

been linked to a possible treatment and protection against cardiac 

disease (Chen et al., 2010a).  Although the increase in ALDH2 and 

other forms of ALDH may help to protect tissue against oxidative 

stress, such as the ingestion of alcohol, the consumption of alcohol and 

other toxin has been associated with increased hypertension, 

(paradoxically a little alcohol reduces the risk of many CVDs) (Eapen 

et al., 2011).  The association is not completely understood and is likely 

to be complex with ALDH group playing a role.  However, as yet, no 

direct link between hypertension and any of the AKR family has been 

stated in the literature.  Although, they are synthesisers, along with 

prostaglandin F2α (PGF2α) synthases, for molecules such as NADPH-

dependent reduction of PGH2Aldolase, which have been shown to be 

linked with essential hypertension and high salt intake (Nagata et al., 

2011, Weber, 1980).  Aldo-Keto reductase family 1 member A1 was 

found to have differential expression between Wky and SHRSP strains 

in both the pilot and main study.  The main investigation showed one 

identification for this protein, with a down regulation in SHRSP strains 

compared to Wky and maintained in the congenic strain.      

• ATP synthase, H+ transporting, mitochondrial F1 complex, beta 

polypeptide (ATPB5), is a part of the mitochondrial ATP synthase F1 

cataylic core, from the enzyme, which catalyzes ATP synthesis.  This 

was identified in this investigation multiple times in both the main and 

pilot investigation.  This is an abundance polypeptide as it is required in 

every cell in the process of ATP production (Runswick and Walker, 
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1983, Zhou et al., 2006).  It was identified at three positions on the gel 

given in Figure 4-64.  They are all at the same level indicating a pI 

change, as opposed to a molecular weight change.  Spot 1177 is 

particularly interesting due to the rise in just the medulla congenic 

strain.  In the other spots there is a down expression given in the cortex 

and medulla SHRSP strain as compared to the others.  From the 

literature it appears that there is no known association with 

hypertension.      

 

Figure 4-64: Positions and profiles of multiple identifications of ATP synthase, H+ 
transporting, mitochondrial F1 complex, beta polypeptide from the main investigation.  
The x-axis represents the rat strain in the order of Standard, Wky medulla, Wky cortex, 
congenic medulla, congenic cortex, SHRSP medulla and SHRSP cortex.  The y-axis displays 
log standardised abundance. 

• Ubiquinol-Cytochrome c reductase core protein I is a component of the 

ubiquinol-cytochrome c reductase complex (complex III or cytochrome 

b-c1 complex). Its function is part of the respiratory transport chain and 

therefore is important in ATP production.  It has been shown to be 

differentially express in a number of CVDs (Rai et al., 2005, Hsieh et 

al., 2006, Kondo, 2008a).  Including, in brain ischemia and 

hypertensive stroke in a SHR rat model being treated with PZH, a 

Chinese herb.  This down regulation was associated with 12 other 

proteins and an improved prognosis.  It was proposed that these down 

regulations reduced the number of reactive oxygen species (Goodwin et 

al., 2008b).  Within this study the expression showed a down regulation 

between the Wky and the SHRSP strains with an intermediate 

expression in the congenic strain.   



 

368 | P a g e  
 

• Heat shock proteins: A number of heat shock proteins were discovered 

during this investigation.  These are a ubiquitous family of proteins, 

which aids the folding and unfolding of proteins around the cell.  They 

are also known to be up regulated during oxidative stress.  

Hypertension increases the stress on vessels and tissues throughout the 

body and therefore heat shock proteins would be expected to increase in 

the SHRSP strain as they protect against conformational change (Sitek 

et al., 2005b).  Examining the profiles in Figure 4-65 shows, heat shock 

proteins both up and down regulated.  Due to their ubiquitous nature it 

is unlikely that the heat shock proteins are going to make very good 

biomarkers.  However, due to the multiple varieties, it is possible that a 

pattern could be generated with a greater number of identifications.  

Heat shock proteins have been described in a number of disease states; 

Cardiomyopathy (Jan Eriksson, 2007), hypertension (Knepper, 2002, 

Wu et al., 2006a), brain and spinal cord ischemia (Brownridge et al., 

2011) and atherosclerosis (Delles et al., 2012)   

     

Figure 4-65: Positions and profiles of 3 identified heat shock proteins, from the main 
investigation.  The x-axis represents the rat strain in the order of Standard, Wky medulla, 
Wky cortex, congenic medulla, congenic cortex, SHRSP medulla and SHRSP cortex.  The y-
axis displays log standardised abundance. 

• Actin, Cytoplasmic 2 otherwise known as Gamma-actin is a 

ubiquitously expressed protein in eukaryotic cells involved in various 

processes in motility and forms cytoskeletal structures (Thongboonkerd 

and Malasit, 2005).   They also can have numerous PTM attached to 

them, which makes them appear on multiple positions on a 2D gel.  
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They tend to form in a heavy band and due to their abundance are 

distinct.  They are important in maintaining cell and muscle mass and 

therefore, deficiencies have been associated with myopathy (Nielsen et 

al., 2002a).  Although there is no strong evidence in the literature that 

directly links gamma-actin to hypertension it has been linked to defects 

in nephrogenesis in the kidney, which leads to the restriction of 

glomeruli and leads to increased blood pressure (Pisitkun et al., 2004).  

A predicted protein similar to cytoplasmic 2 was discovered in multiple 

spots (suspected due to PTMs) with one interesting spot in particular 

that was only expressed in congenic medulla.           

• Serum albumin is an abundant protein in blood plasma.  It has a number 

of functions in the blood, including controlling osmotic pressure, 

carriage of hormones and transport of ions (Siew et al., 2011, Pesce et 

al., 2013, Cutillas et al., 2004a).  Albumin has long been a marker for 

hypertension by its presence in urine (Fliser et al., 2007) and reduces in 

abundance upon treatment with antihypertensive drugs  (Janech et al., 

2007).  Also, albumin overload has been associated in the activation of 

intrarenal renin–angiotensin system through protein kinase C and 

NADPH oxidase-dependent pathway, thus has an important role to play 

in hypertension (Xu et al., 2005a).  In this thesis it was shown that 

albumin exhibited various profiles in multiple spots.  A very high 

expression in comparison to Wky and congenic was displayed in spot 

682 in medulla SHRSP tissue and also up regulation in another two 

spots in cortex SHRSP tissue.  However, it is unlikely to be a specific 

marker, due to its abundant nature.  It may be possible, with validation, 

to show a pattern of regulation of various albumin isoforms to act as a 

marker, but this would require a great deal of future work. 

• Fructose-1,6-bisphosphatase 1 is an enzyme involved in 

gluconeogenesis and the calvin cycle by converting fructose-1,6-

bisphosphate to fructose 6-phosphate (Kirtley and McKay, 1977, 

Marcus et al., 1982, Gottschalk et al., 1982). As a protein involved in 

these key processes, it is present in all cells and the kidney is no 

exemption.  It has shown to be affected by toxin treatment on kidney 

cortex by the antibiotic Gentamicin, which can cause renal toxicity.  It 

was shown to be down-regulated in high dose samples but up regulated 
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in low dose samples, the reasons behind this remain unclear 

(Charlwood et al., 2002b). In this study it was down regulated in 

SHRSP strains compared to Wky and congenic strains in cortex tissue.  

This is compared to medulla tissue, where the putative marker was 

down regulated in congenic by the greatest amount.  

• Haemoglobins:  Various chain of haemoglobin was discovered in the 

pilot investigations.  This is not surprising, due to the biological 

relationship of kidney tissue with the blood.  The relatively high 

vascularisation of the kidney tissue is likely to have led to varied blood 

contamination across different slices.  It is cautiously noted that  most 

of the haemoglobin fragments identified were expressed more in the 

SHRSP strains, speculatively, consistent with blood proteins being 

forced through glomerular filtration into the nephron.  They also were 

positioned at various spots around the gel, this may have skewed 

analysis by masking other proteins during identification in the mass 

spectrometer.   

It is unlikely that these identifications alone will be specific biomarkers for 

hypertension.  This is because many of these biomarkers are proteins, which 

show oxidative stress and are abundant and present in many tissue types.  
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4.7 Conclusion and Summary 
It is clear that understanding and treating hypertension is of great importance in 

the western world.  The complexity of its idiopathic aetiology means 

investigating causes is difficult as best.  In this investigation the need for 

segregation of tissue types is highlighted and demonstrated by the profile 

differences exhibited between the cortex and medulla tissue profiles.  It appears 

that much of the changes shown from the pilot study indicated that the cortex 

was exhibiting a great deal of the WKY maintenance in the congenic interval 

causing the maintained phenotype, with greater regularity than the SHRSP. In 

addition, DiGE analysis has confirmed that salt treatment appears to exaggerate 

phenotypical response and profile changes.  An aid in validation was shown in 

the MSI and label free quantitation.    

One major issue and limitation in this investigation was gaining identification 

for the required spots.  In addition, Data mining is obviously essential to pull 

out the highest quality and quantity of possible markers, but without 

identification the marker becomes just another spot on a gel map.  Therefore a 

major limitation of this proteomic work flow was the ability to gain 

identification of the required spots.  Therefore future attention needs to be paid 

to improving and developing the downstream method protocol for gaining 

identification back from large format DiGE gels.  Positively, this study 

revealed a number of putative biomarkers for hypertension and has highlighted 

a number of analytical approaches to DiGE data, including the usefulness of 

Venn diagrams to efficiency visualise data. 
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5 General Conclusions. 
5.1 Introduction to general discussion 

The main aim of this thesis was to investigate the use of DiGE in examining 

two areas of tissue proteomics; protein degradation of mouse brain tissue and 

biomarker discovery in kidney tissue in hypertension. 

• To employ and develop the quantitative method of DiGE to look at tissue 

profiles. 

• To develop analytical strategies to visualise quantitative proteomic data 

from tissue samples gained from DiGE.  

• To assess the proportion of change in proteomic degradation in heat-treated 

and snap frozen samples. 

• To find candidate examples of proteins or markers of degradation of wild 

type mouse brain tissue. 

• To find putative biomarkers in hypertension from kidney tissue 

It was hoped that investigating global degradation might have wider 

implications for not just brain tissue, but start to raise questions about what is a 

less than glamorous research topic.  Initially, from the protein degradation 

investigation, an expectation of gaining an insight into how degradation may be 

halted using heat-treatment would be gained, however like many experiments, 

it conjured more questions, specifically relating to data visualisation and 

handling.  The project thus evolved into the use of a multi-faceted approach to 

looking at DiGE data.  This proved a useful optimisation step for the 

subsequent investigation into hypertension.  In some respects this investigation 

has surpassed the original scope of the investigation regarding just degradation 

and yielded some interesting approach to examining DiGE data.  Indeed, the 

large amount of data gained is necessary to make such experiments economical 

due to their considerable expense.  One such experiment costs in the region of 

£1000s so the most needs to be gained from such an investment.  It is 

acknowledged that the data is wide in nature but shallow and needs a more 
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focused approach in order to be validated.  However, the aim was to assess 

global degradation and to this extent this study has been relatively successful.  

The investigation into hypertension and kidney tissue profiles also yielded 

some interesting preliminary results regarding putative biomarkers discovered.  

It also allowed, as a proof of concept, the start of bridging a gap and correlating 

genomic and proteomic data and making a connection between kidney tissue 

and hypertension.   It also has provided a list of a number of proteins that may 

have an association with hypertension.  This may prove useful in future studies 

in hypertension, as a starting point for a more targeted approach.       

5.2 Major findings 
The major findings that are presented in this thesis are as follows; 

5.2.1 Proteomic degradation in mouse brain tissue 
• There is some evidence, via the use of profiles analysis, that the use of rapid 

heat treatment on wild type homogenised OCR male mouse brain tissue halts 

non-specific proteomic degradation for a number of protein spots.  Therefore, 

this could prove useful for some proteins but detrimental for others, where 

snap-freezing showed stabilisation.  However, a greater proportion of spots 

were stabilised in the heat-treated samples compared to snap-freezing. 

• The use of a multi-faceted approach helps in the confirmation that rapid heat-

treatment halts global proteomic degradation in wild type homogenised OCR 

male mouse brain tissue. 

• Multi-faceted approaches to analysis would allow for the more targeted 

approach and more efficient data visualisation required to reduce some of the 

limitations of DiGE analysis   

• Additionally, a complementary proteomic technique (performed and analysed 

by Dr R.J.A.Goodwin, Research Associate, Glasgow University) supports these 

conclusions, by showing that heat-treatment halted global proteomic 

degradation when viewed with MS imaging.  The parallel study performed by 



 

374 | P a g e  
 

Dr Heather Allingham showed that heat-treatment had little effect on the sub 10 

kDa fraction of the OCR Male mouse proteome, although some features 

showed stabilisation with heat-treatment (Allingham, 2012).   

• The use of this system is not universally recommended for a number of 

reasons:   

o The stabilisation is not universal across all spots, so the usefulness of 

this system depends on what specific proteins of interestto be examined.   

o It was also found that the morphological quality of tissue sections in 

MALDI imaging limiting its applicability across all proteomic 

methodologies. 

o In the sub 10 KDa fraction analysis by Allingham, 2012 it was shown 

that only 1% of features showed any difference between snap-frozen 

and heat-treated samples.  

• However, it was shown that more features, in the post 10KDa region, where 

stabilised using the system in comparison to the traditional method of snap 

freezing in OCR mice brain tissue. Therefore, it warrants further 

investigation in both brain tissue (to confirm the results here) and in other 

tissues to extend its application.   

5.2.1.1 Proteomic degradation in mouse brain tissue 
The use of tissue in research, particularly with clinical samples and biopsies, is 

an increasing field and the need for improvements to sample integrity and 

upstream processing is paramount to the quality of data downstream.  

Therefore, the assessment of this technique for the prevention of protein 

degradation in mouse brain tissue is of importance, particularly to clinical 

neuroscience.  In addition, to fresh tissue extracted from animals, there is a 

multitude of tissue samples preserved in freezers that may benefit from the use 

of heat-treatment.  This technique is also applicable and complementary to the 

increasing number of researchers who are now looking into how to reverse the 
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process of fixation of tissue.  If this is to be successful, there will be a need for 

preservation of this tissue.  It is however recognized, that heat treating tissue 

itself may have long lasting effects that were not tested in this investigation and 

with much of the proteomic and genomic information to current date obtained 

from tissue that is preserved by freezing there may be a valid reluctance to 

break from this tradition.  Indeed, it may not be applicable to break from this 

tradition, as comparison may be extremely difficult.  This investigation, 

however, has opened this avenue for other scientific researchers to have 

another alternative to freezing or fixing tissue. 

In addition to assessing the degradation, by using a multi-faceted approach to 

the DiGE analysis, it is hoped that some of the methods and ideas pursued in 

this investigation may be of use in various and wide ranging fields in 

proteomics, when using DiGE gels.  The findings of this study have been 

echoed in other investigations to study the degradation and heat treatment of 

neuroproteins and peptides (Smejkal et al., 2011, Scholz et al., 2011, Kultima 

et al., 2011, Kokkat et al., 2011, Svensson et al., 2009b, Robinson et al., 2009).  

An interesting consideration for researchers considering this as an alternative to 

snap-freezing, is that it was shown by Robinson et al, 2009, that although heat 

treatment stabilised a significant subset of proteins in mouse brain, it showed 

no significant differences for the treatment of mouse heart tissue.  This shows 

that heat treatment will not necessarily be of benefit to every tissue.  

Additionally, Robinson et al, 2009 showed that within the heat treated mouse 

brain that the proteins preserved often showed higher abundances and 

maintained PTM such as phosphylations.  They also concluded that this may be 

of more interest in certain disease states.  Therefore, at best, this is likely to be 

a complementary technique to be used in conjunction with traditional methods 

of storage and stabilisation (Robinson et al., 2009).  It is clear that a great deal 

more research is required in degradative processes, in order to improve sample 

stability and gain maximum accuracy and impact from tissue samples.  

5.2.2 Proteomic Profiling of Kidney tissue  
The proteomic profiles of Kidney tissue in WKY, congenic and SHRSP rat 

model were accessed and allude to; 

• Medulla and cortex, whilst having markers in common and similarities, 

possesses a different proteomic profile, validating the need for segregation. 
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In future experiments, in order to gain the most detailed information 

needed for biomarker discovery.   

• Genomic and proteomic linkage of data, segregation is required. 

• The use of salt-treatment appears to exaggerate the effect on proteomic 

expression or phenotype.  This is validated by the phenotypical response 

given by spot profiles and the measured raised blood pressure from the 

animal strains. 

• Presented in chapter 4 are some candidate markers which may be of 

interest in a future investigation and some of these have had prior 

biological association with hypertension and numerous other diseases. 

•  The potential to marry proteomic and genomic data is preliminarily 

displayed and with careful collaboration and experimental design, 

genotype and phenotype can be linked using DiGE and genomic data.  

5.2.2.1 Proteomic Profiling of Kidney tissue  
The use of this approach in the analysis of kidney tissue had several 

advantages.  This study further demonstrated the need for segregation of tissue 

types and   that indeed homogenisation of tissue does not allow for an accurate 

and targeted approach.  In need of further investigation, is the requirement for 

assessing where the boundary of tissue types may be.  A large degree of effort, 

therefore, needs to be placed into mining down into smaller and smaller 

samples, as proteomics lacks this crucial amplification process that benefits 

genomics.   

Additionally, by using a recognized model with micro array data associated 

with the strains of rat used, it was hoped that there would be the possibility of 

future studies, particularly in respect to associating genomic and proteomic 

data which would start to fill any gaps between genotype and phenotypes. 

Once again, the analytical approach could be used for any number of studies of 

different diseases and tissue types and therefore it was felt that this impact is 

wide and large. 
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5.2.2.1.1 Biological significance of the putative biomarkers 
There have been a number of identifications made in this investigation, which 

have associated biologically significant processes and links to hypertension.  

Some of the most significant and abundant proteins have been discussed in 

section 4.6.7.  

It is unlikely that any of the identified putative markers would be specific 

markers for hypertension, as they are abundant proteins linked with numerous 

other states of pathology.  Additionally, they would require validation with 

techniques such as those described in 1.3.4.2 with antibodies specific to those 

markers.  After this sort of validation, it may be possible to compile a list of 

markers associated with hypertension and use an approach where multiple 

markers could be used in a more specific diagnosis.  A biomarker profile, if 

you will.  In order that further research can be done, a relative profile of 

putative markers has been created from the identified proteins in this study in 

Figure 5-1 and Figure 5-2 in section 5.2.2.1.1.1.       

5.2.2.1.1.1 Putative biomarker quantitative profile pattern 
In order to provide a  way that future researcher may compare the gel  spot 

identifications and aid the validation of these putative markers, the quantitative 

values have been displayed graphically by applying the log standardised 

abundance as a ratio against Wky readings.  Wky therefore is always 

represented by 1.00 (=Wky/Wky) and then an up or down regulation in 

congenic or SHRSP (=Congenic/Wky or =SHRSP/Wky).  This allows the 

visualisation of all the identifications given in Table 7-2 and their relative 

expression in comparison to Wky.  They are shown for cortex tissue in the 

graphs in Figure 5-1 and medulla in Figure 5-2.  This, in conjunction with the 

gel spot images, allows for a comparison for any future investigations using a 

similar model or checking it for similarities in clinical samples. 
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Figure 5-1:  Set of graphs showing the relative expression of Wky, Congenic and SHRSP strains.  Columns are an expression of the ratio of themselves against Wky stain.  
It is proposed that these identifications might serve to aid future work into looking for a profile pattern from 2D-DiGE gels. These are for Cortex tissue. 
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Figure 5-2: Set of graphs showing the relative expression of Wky, Congenic and SHRSP strains.  Columns are an expression of the ratio of themselves against Wky stain.  
It is proposed that these identifications might serve to aid future work into looking for a profile pattern from 2D-DiGE gels. These are for medulla tissue. 
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5.3 Limitations of DiGE 

Any scientific investigation has limitations.  Although DiGE itself manages to 

surpass the standard 2DE in its ease of multiplexing gels and getting meaningful 

quantitation, it is somewhat shadowed by the expense of experiments.  Running 

large format gels is a relatively time and labour intensive process, coupled with 

the expense of the proprietary Cydyes.  This expense means optimisation is also 

costly and many labs shy away from performing DiGE.   Additionally, due to the 

number of protocol steps, DiGE is a skilled process with many stages which can 

go wrong.  However, it can be argued in the long term, that these costs fade in the 

substantial information gained in return.   The cost can equally be mitigated by 

careful experimental design and multiplexing thus gaining high quality 

quantifiable and robust data.   

The quantity of data makes analysis difficult, hence much of this investigation 

was spent trying to sort and optimise an approach to deal with the enormous 

quantities of data.   

The next problem encountered in DiGE is gaining identification.  After a lot of 

time, effort and money has been expended, gaining identifications can be 

somewhat “hit and miss” with difficulties in spots picking (if done by hand very 

time consuming and there are technical issues with automation) and mass 

spectrometry.   

However, DiGE itself should never be expected to be a magic bullet due to its 

limitations in resolving hydrophobic proteins or difficulties with the low 

molecular weight or low abundant proteins.   Many of these limitations, however, 

are an intrinsic product of the dynamic field of proteins and require a large jump 

in theory or technology to breach these difficulties.  Small steps are the likely 

immediate future, hence the requirement for close collaboration and 

complementary methodologies.   
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5.4 DiGE as a biomarker discovery platform 
It is clear that DiGE can provide a vast amount of quantitative information with 

regards to biomarker discovery, depicting a snap shot in time for proteomic 

analysis on a global scale. However, it is labour intensive to run such gels and 

more so to analyze the results. Therefore, the use of DiGE in biomarker discovery 

is a very time intensive prospect.  At one time, 2DE and DiGE were the gold 

standard for proteomic analysis.  Even with their limitations, there was nothing 

that could revival the range and magnitude of data.  This is almost certainly no 

longer the case.  Recent developments in mass spectrometry, coupled with liquid 

chromatography mean a new era of high dynamic range and quantitative 

techniques, to analyse high numbers of proteins and peptides, in a more 

automated manner.  Isotopic labelling has brought mass spectrometry into the 

realms of quantitation, once reserved for DiGE.  Biomarker discovery and the 

complexity and dynamic range of samples requires high throughput, high 

resolution and high sensitivity in order gain the specificity that clinicians and 

mass spectrometry has the potential to deliver this.  However, DiGE still has a 

place for biomarker discovery as a complementary technique in order to cross 

validate biomarkers from MS, visualise isoforms and PTMs.   

The major barrier to biomarker discovery is the integration of researchers and 

clinicians.  According to Rifai et al, 2006 the way to increase the number of 

clinically relevant biomarkers is to have a predefined “pipeline” to make a 

coherent connection between discovery and clinical assay.  This is certainly 

necessary, as there is a high degree of proteomics focused on biomarker 

discovery but very little focus on validation, with even fewer in direct 

collaboration with clinicians in the development of assays for clinical use.  This is 

partly a collaboration issue and the pipeline would help, however, I believe it is 

also an issue with expense (discovery is less expensive as fewer samples are 

utilised), dynamic complexity and technical limitations.  In many respects it is 

acknowledged that, although this study has made impact in the areas discussed, it 

is a biomarker discovery based investigation (chapter 4) and has not bridged the 

gap between discovery – validation – clinical applications.  However, the future is 

hopeful, as when this biomarker pipeline is coherent and there will be a huge 

bank of data from proteomic discovery experiments.  In addition, there is a 
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prospect in the future where mass spectrometry could be directly used in clinical 

diagnosis by the building of biomarker MS profiles data banks to compare 

clinical samples.  There is no real possibility that DiGE will be employed in this 

fashion.        
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5.5 Future Investigation 
The original vision of the project was to work towards small sample proteomics 

but the data visualising element of DiGE proved vast, complicated and time 

expensive.  However, some of the future work, which I believe is required for 

mining down into the high information, was started. 

The need for going smaller and more sensitive comes from the limitations of 

proteomics compared to genomics.  Genomics is a field of study that is not 

plagued with the same issues that surrounds Proteomics.  With the inception of 

Polymerase Chain Reaction (PCR) problems with sensitivity were banished 

overnight.  Proteomics on the other hand suffers greatly by not having a means of 

amplification and therefore there is a major need and requirement to increase the 

levels of sensitivity and detection required.  With the lack of an amplification 

method, it is often necessary to pool samples to get enough material to work with.  

However, this leads to a lot of issues and loosing information in background noise 

and signals.  This is particularly the case in tissue proteomics, where by 

homogenising tissue causes an averaging effect across what might be very 

different types of cells.  As noted earlier; what exactly is “medulla” and “cortex” 

and is there something inbetween?  Whilst doing this investigation, the next step 

in the proteomics work flow was considered:  Small sample proteomics.  Below is 

an outline of some work that was started to help the move towards getting to a 

small sample work flow, and would benefit many different investigations in 

proteomics, particularly with regards to working with tissue. 

5.5.1  Saturation labelling of kidney tissue 
In order to work towards a small sample work flow, more sensitive techniques are 

required.  One such technique is saturation labelling.  Unlike minimal labelling, it 

is essential to determine the correct concentration of dye to use, as under labelling 

and multiple labelling becomes an issue.  In working towards a small sample 

work flow in this investigation, a dye determination experiment was conducted to 

ascertain the correct concentration of dye for brain tissue.  The results are shown 

in   Figure 5-3.  All scanner settings were kept constant and performed 

consecutively.  Most tissue types require 2nM- 4nM concentration.  Those tissues 

with a large amount of Cysteines   sometime require additional dye.  For kidney 

tissue it is shown that 4nM is sufficient for efficient labelling with little smearing 
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and a dye concentration of up 8nM can be performed without over labelling 

occurring.   

 

Figure 5-3:  Figure showing Dye concentration determination for DiGE saturation labelling 
(labelling for scares samples).  All images where scanned using GE Healthcare Typhoon 
Scanner at the same scan settings.  Fluorescent and traditional gel displays are shown.  
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5.5.2 Determination of Protein concentration 
If proteins are to be accurately quantified using DiGE, then a protein 

concentration must be obtained in order to load the correct amounts on the DiGE 

gels.  This becomes increasingly difficult as sample size gets smaller, meaning 

that a high percentage of samples might be used in order to gain the required 

measurement for protein concentration.  The standard methods of protein 

concentration determination are to construct a standard curve, using an assay such 

as a Bradford assay or BSA.  However, in order to miniaturise, the possibility of 

using Amersham’s, Bioanlayers Chip reader was investigated.  It is 

predominantly used for DNA quantitation but is increasingly being used to run 

small proteomic samples.  The chip is effectively 10 small micro fluidic capillary 

and it acts like a miniature capillary electrophoresis machine, separating the 

sample.  A standard curve can be built from the separation and protein 

concentration of samples can be determined.  Initial investigation was promising, 

but as can be seen in Figure 5-4, the lysis buffer used in DiGE contains chaps 

which reduces the ability of the chip reader to resolve the signal and therefore is 

not compatible with a DiGE application.      
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Figure 5-4: Figure showing gel representation of the effect of DiGE lysis buffer on the 
resolution of Amershams Bioscience, Bioanalyser Chip reader.  If true miniaturisation and 
quantitation is to be achieved a reliable form of protein concentration determination is 
required for small samples.  The lysis Buffer used in DiGE labelling contains a number of 
components and is not compatible with the Bioanalyser Chip reader, as the concentration of 
Chaps rises the resolution is lost making calibration curves too inaccurate for protein 
concentration determination.  Lane 1. Protein marker, 2-7 is BSA standard in water. 8-10 wild 
type mouse brain samples in solution labelled above.   

 

5.5.3 Laser Micro-dissection of tissue and Mass spectrometry     
The logistical difficulties of obtaining small samples are high.  One well 

documented strategy is to use laser micro-dissection.  The compatibility of LMD 

with MALDI-MS was assessed.  Wild type OCR 21 week rat brain tissue of 

14um thick was sliced using a Lieca Cryostat and the thaw mounted onto Lieca 

LMD slides.  The slide is made from polyethylene.  LMD was performed by 

cutting out relatively large discs of 1mm in diameter onto an ITO slide ready to 

be tested on a Bruker Ultraflex III MALDI-TOF-MS.  The tissue Discs were 

immediately spotted with 5µl of sinapinic acid (matrix) in acetanitrile (ACN) 

solution as shown in Figure 5-5.  Initially, MS signal was poorly resolved.  It was 

thought that the polyethylene was acting as a barrier and was preventing co-

crystalisation with the matrix solution.  It was discovered necessary to disturb the 

tissue discs in order to get resolved signal from the tissue.  An example spectrum 

is shown in Figure 5-5.          
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Figure 5-5:  Laser Micro-Dissection.  The effect of LMD slide plastic on downstream mass 
spectrometry.  A)  Discs of Tissue adhered to LMD slide Polyethylene film, and spotted in 
various concentrations of matrix on an ITO slide ready for MALDI-MS.  50/50 ACN Solution B) 
Mass spectra at various laser intensities.  As can be seen resolution is very poor.  C)  Mass 
spectra of tissue after it was disturbed using Sterile Gilson tip.      

 

 

A) 

B) 

C) 
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5.6 Summary 
This investigation into DiGE and tissue proteomic profiling has been successful 

in some aspects.  The investigation has had some preliminary impact in two main 

areas; 

Specific impact; 

• That using rapid heat can lead to the halting of proteomic degradation, probably 

due to the inactivation of proteolytic enzymes, thus maintaining the integrity and 

state of the given tissue (mouse brain). 

• Profiling of kidney tissue in a WKY, congenic and SHRSP rat model has led to 

the discovery of candidate markers for hypertension. 

Wider implications; 

• Shows a number of different methods for the analysis of DiGE data that may be 

applicable to numerous applications. 

• It displays a number of candidate markers that could be used in proteomic 

degradation research. 

• It displays a number of candidate makers that may be linked to hypertension ready 

for future investigation and validation 

• Shows methods for data visualisation in DiGE experiments for proteomic 

profiling of tissues. 

• Shows that the marrying of proteomic and genomic data has potential in bridging 

the genotypical and phenotypical gap. 

• Additionally, some general optimisation work regarding small sample proteomics 

and saturation labelling is displayed and is presented as future aspects to this 

thesis. 
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7 Appendices 
7.1 Tables of Identifications 

7.1.1 Hypertension pilot study identifications  
Spot 
Master 
Number 

Protein name score coverage % matched 
ions 

67 hemoglobin alpha 1 or 2 chain [Rattus 
norvegicus] 158 43 4 

130 alpha-globin [Rattus sp.] 77 34 2 

130 rCG34342, isoform CRA_b [Rattus 
norvegicus] 77 21 2 

130 hemoglobin alpha 1 chain [Rattus 
norvegicus] 77 21 2 

130 hemoglobin alpha 2 chain [Rattus 
norvegicus] 77 21 2 

137 hemoglobin alpha 1 chain [Rattus 
norvegicus] 277 37 3 

137 hemoglobin alpha 2 chain [Rattus 
norvegicus] 277 37 3 

142 hemoglobin alpha 1 chain [Rattus 
norvegicus] 208 37 3 

142 hemoglobin alpha 2 chain [Rattus 
norvegicus] 208 37 3 

143 
hemoglobin alpha 1 chain [Rattus 
norvegicus] 246 37 3 

143 hemoglobin alpha 2 chain [Rattus 
norvegicus] 246 37 3 

146 hemoglobin alpha 1 chain [Rattus 
norvegicus] 206 26 2 

146 hemoglobin alpha 2 chain [Rattus 
norvegicus] 206 26 2 

146 

RecName: Full=Ribonuclease UK114; 
AltName: Full=14.5 kDa translational 
inhibitor protein; AltName: Full=Perchloric 
acid soluble protein 120 18 2 

146 
heat-responsive protein 12 [Rattus 

120 18 2 
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norvegicus 

146 
Chain A, Crystal Structure Of Perchloric 
Acid Soluble Protein-A Translational 
Inhibitor 120 18 2 

146 hemoglobin alpha 1 chain [Rattus 
norvegicus] 244 37 3 

146 hemoglobin alpha 2 chain [Rattus 
norvegicus] 244 37 3 

149 alpha-globin [Rattus sp.] 109 34 2 

149 rCG34342, isoform CRA_b [Rattus 
norvegicus] 109 21 2 

149 hemoglobin alpha 1 chain [Rattus 
norvegicus] 109 21 2 

149 hemoglobin alpha 2 chain [Rattus 
norvegicus] 109 21 2 

154 hemoglobin alpha 1 chain [Rattus 
norvegicus] 264 37 3 

154 hemoglobin alpha 2 chain [Rattus 
norvegicus] 264 37 3 

188 alpha-globin [Rattus sp.] 134 34 2 

188 
rCG34342, isoform CRA_b [Rattus 
norvegicus] 134 21 2 

188 hemoglobin alpha 1 chain [Rattus 
norvegicus] 134 21 2 

188 hemoglobin alpha 2 chain [Rattus 
norvegicus] 134 21 2 

188 

RecName: Full=Ribonuclease UK114; 
AltName: Full=14.5 kDa translational 
inhibitor protein; AltName: Full=Perchloric 
acid soluble protein 125 40 4 

188 
heat-responsive protein 12 [Rattus 
norvegicus 125 40 4 

188 
Chain A, Crystal Structure Of Perchloric 
Acid Soluble Protein-A Translational 
Inhibitor 125 40 4 

188 
RecName: Full=Ribonuclease UK114; 
AltName: Full=14.5 kDa translational 
inhibitor protein; AltName: Full=Perchloric 

223 59 5 
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acid soluble protein 

188 
Chain A, Crystal Structure Of Perchloric 
Acid Soluble Protein-A Translational 
Inhibitor 223 59 5 

201 

RecName: Full=Ribonuclease UK114; 
AltName: Full=14.5 kDa translational 
inhibitor protein; AltName: Full=Perchloric 
acid soluble protein 143 40 2 

201 heat-responsive protein 12 [Rattus 
norvegicus 143 40 2 

201 
Chain A, Crystal Structure Of Perchloric 
Acid Soluble Protein-A Translational 
Inhibitor 143 40 2 

212 

RecName: Full=Ribonuclease UK114; 
AltName: Full=14.5 kDa translational 
inhibitor protein; AltName: Full=Perchloric 
acid soluble protein 47 18 2 

212 heat-responsive protein 12 [Rattus 
norvegicus 47 18 2 

212 
Chain A, Crystal Structure Of Perchloric 
Acid Soluble Protein-A Translational 
Inhibitor 47 18 2 

228 hemoglobin alpha 1 chain [Rattus 
norvegicus] 135 37 3 

228 hemoglobin alpha 2 chain [Rattus 
norvegicus] 135 37 3 

234 D-dopachrome tautomerase [Rattus 
norvegicus] 51 35 3 

234 D-dopachrome tautomerase, isoform 
CRA_b [Rattus norvegicus] 51 35 3 

236 alpha-globin [Rattus sp.] 97 34 2 

236 rCG34342, isoform CRA_b [Rattus 
norvegicus] 97 21 2 

236 hemoglobin alpha 1 chain [Rattus 
norvegicus] 97 21 2 

236 
hemoglobin alpha 2 chain [Rattus 
norvegicus] 97 21 2 

243 hemoglobin alpha 1 chain [Rattus 
norvegicus] 152 37 3 
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243 hemoglobin alpha 2 chain [Rattus 
norvegicus] 152 37 3 

244 hemoglobin alpha 1 chain [Rattus 
norvegicus] 128 37 3 

244 hemoglobin alpha 2 chain [Rattus 
norvegicus] 128 37 3 

245 hemoglobin alpha 1 chain [Rattus 
norvegicus] 139 37 3 

245 hemoglobin alpha 2 chain [Rattus 
norvegicus] 139 37 3 

246   major beta-hemoglobin 100 34 4 

246   beta 1 globin [rats, Sprague-Dawley, 
Peptide, 146 aa] 100 34 4 

246   beta-globin [Rattus norvegicus] 100 34 4 

246   hemoglobin beta chain complex [Rattus 
norvegicus] 100 34 4 

246   rCG39881, isoform CRA_a [Rattus 
norvegicus] 100 34 4 

248 beta 1 globin [rats, Sprague-Dawley, 
Peptide, 146 aa] 134 43 5 

248 beta-globin [Rattus norvegicus] 134 42 5 

250 alpha-globin [Rattus sp.] 156 34 2 

250 rCG34342, isoform CRA_b [Rattus 
norvegicus] 156 21 2 

250 hemoglobin alpha 1 chain [Rattus 
norvegicus] 156 21 2 

250 hemoglobin alpha 2 chain [Rattus 
norvegicus] 156 21 2 

258 alpha-globin [Rattus sp.] 104 34 2 

258 rCG34342, isoform CRA_b [Rattus 
norvegicus] 104 21 2 

258 hemoglobin alpha 1 chain [Rattus 
norvegicus] 104 21 2 

258 hemoglobin alpha 2 chain [Rattus 
norvegicus] 104 21 2 

267   major beta-hemoglobin 117 34 4 
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267   beta 1 globin [rats, Sprague-Dawley, 
Peptide, 146 aa] 117 34 4 

267   beta-globin [Rattus norvegicus] 117 34 4 

267   hemoglobin beta chain complex [Rattus 
norvegicus] 117 34 4 

267 
  rCG39881, isoform CRA_a [Rattus 
norvegicus] 117 34 4 

278 alpha-globin [Rattus sp.] 102 34 2 

278 rCG34342, isoform CRA_b [Rattus 
norvegicus] 102 21 2 

278 hemoglobin alpha 1 chain [Rattus 
norvegicus] 102 21 2 

278 hemoglobin alpha 2 chain [Rattus 
norvegicus] 102 21 2 

279 alpha-globin [Rattus sp.] 60 34 2 

279 
rCG34342, isoform CRA_b [Rattus 
norvegicus] 60 21 2 

279 hemoglobin alpha 1 chain [Rattus 
norvegicus] 60 21 2 

279 hemoglobin alpha 2 chain [Rattus 
norvegicus] 60 21 2 

283 histidine triad nucleotide binding protein 1 
[Mus musculus] 110 35 3 

283 

PREDICTED: similar to Histidine triad 
nucleotide-binding protein 1 (Adenosine 5-
monophosphoramidase) (Protein kinase C 
inhibitor 1) (Protein kinase C-interacting 
protein 1) (PKCI-1) [Rattus norvegicus] 110 23 3 

295   major beta-hemoglobin 111 44 6 

295   beta 1 globin [rats, Sprague-Dawley, 
Peptide, 146 aa] 111 44 6 

295   beta-globin [Rattus norvegicus] 111 44 6 

295   hemoglobin beta chain complex [Rattus 
norvegicus] 111 44 6 

295   rCG39881, isoform CRA_a [Rattus 
norvegicus] 111 44 6 
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296   major beta-hemoglobin 130 34 4 

296   beta 1 globin [rats, Sprague-Dawley, 
Peptide, 146 aa] 130 34 4 

296   beta-globin [Rattus norvegicus] 130 34 4 

296   hemoglobin beta chain complex [Rattus 
norvegicus] 130 34 4 

296   rCG39881, isoform CRA_a [Rattus 
norvegicus] 130 34 4 

302 alpha-globin [Rattus sp.] 87 34 2 

302 rCG34342, isoform CRA_b [Rattus 
norvegicus] 87 21 2 

302 hemoglobin alpha 1 chain [Rattus 
norvegicus] 87 21 2 

302 hemoglobin alpha 2 chain [Rattus 
norvegicus] 87 21 2 

303   major beta-hemoglobin 116 34 4 

303   beta 1 globin [rats, Sprague-Dawley, 
Peptide, 146 aa] 130 34 4 

303   beta-globin [Rattus norvegicus] 130 34 4 

303   hemoglobin beta chain complex [Rattus 
norvegicus] 130 34 4 

303   rCG39881, isoform CRA_a [Rattus 
norvegicus] 130 34 4 

315 alpha-globin [Rattus sp.] 93 34 2 

315 rCG34342, isoform CRA_b [Rattus 
norvegicus] 93 21 2 

315 hemoglobin alpha 1 chain [Rattus 
norvegicus] 93 21 2 

315 hemoglobin alpha 2 chain [Rattus 
norvegicus] 93 21 2 

319 PREDICTED: similar to germinal histone H4 
gene [Rattus norvegicus] 66 28 3 

324 alpha-globin [Rattus sp.] 140 34 2 

324 rCG34342, isoform CRA_b [Rattus 
norvegicus] 140 21 2 
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324 hemoglobin alpha 1 chain [Rattus 
norvegicus] 140 21 2 

324 hemoglobin alpha 2 chain [Rattus 
norvegicus] 140 21 2 

325 alpha-globin [Rattus sp.] 148 34 2 

325 
rCG34342, isoform CRA_b [Rattus 
norvegicus] 148 21 2 

325 hemoglobin alpha 1 chain [Rattus 
norvegicus] 148 21 2 

325 hemoglobin alpha 2 chain [Rattus 
norvegicus] 148 21 2 

335 alpha-globin [Rattus sp.] 37 34 2 

335 rCG34342, isoform CRA_b [Rattus 
norvegicus] 37 21 2 

335 hemoglobin alpha 1 chain [Rattus 
norvegicus] 37 21 2 

335 hemoglobin alpha 2 chain [Rattus 
norvegicus] 37 21 2 

337 hemoglobin alpha 1 chain [Rattus 
norvegicus] 47 37 3 

337 
hemoglobin alpha 2 chain [Rattus 
norvegicus] 47 37 3 

342 alpha-globin [Rattus sp.] 66 34 2 

342 rCG34342, isoform CRA_b [Rattus 
norvegicus] 66 21 2 

342 hemoglobin alpha 1 chain [Rattus 
norvegicus] 66 21 2 

342 hemoglobin alpha 2 chain [Rattus 
norvegicus] 66 21 2 

352 

PREDICTED: similar to Histidine triad 
nucleotide-binding protein 1 (Adenosine 5-
monophosphoramidase) (Protein kinase C 
inhibitor 1) (Protein kinase C-interacting 
protein 1) (PKCI-1) [Rattus norvegicus] 77 10 2 

355 hemoglobin alpha 1 chain [Rattus 
norvegicus] 56 37 3 

355 
hemoglobin alpha 2 chain [Rattus 

56 37 3 
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norvegicus] 

395 alpha-globin [Rattus sp.] 55 34 2 

395 rCG34342, isoform CRA_b [Rattus 
norvegicus] 55 21 2 

395 hemoglobin alpha 1 chain [Rattus 
norvegicus] 55 21 2 

395 hemoglobin alpha 2 chain [Rattus 
norvegicus] 55 21 2 

396 alpha-globin [Rattus sp.] 45 34 2 

396 rCG34342, isoform CRA_b [Rattus 
norvegicus] 45 21 2 

396 hemoglobin alpha 1 chain [Rattus 
norvegicus] 45 21 2 

396 hemoglobin alpha 2 chain [Rattus 
norvegicus] 45 21 2 

397 

PREDICTED: similar to Histidine triad 
nucleotide-binding protein 1 (Adenosine 5-
monophosphoramidase) (Protein kinase C 
inhibitor 1) (Protein kinase C-interacting 
protein 1) (PKCI-1) [Rattus norvegicus] 63 28 4 

403   major beta-hemoglobin 91 43 5 

403   beta 1 globin [rats, Sprague-Dawley, 
Peptide, 146 aa] 91 43 5 

403   beta-globin [Rattus norvegicus] 91 43 5 

403   hemoglobin beta chain complex [Rattus 
norvegicus] 91 43 5 

403   rCG39881, isoform CRA_a [Rattus 
norvegicus] 91 43 5 

404 alpha-globin [Rattus sp.] 78 44 3 

404 rCG34342, isoform CRA_b [Rattus 
norvegicus] 78 28 3 

404 hemoglobin alpha 1 chain [Rattus 
norvegicus] 78 28 3 

404 hemoglobin alpha 2 chain [Rattus 
norvegicus] 78 28 3 

432 RecName: Full=Ribonuclease UK114; 
AltName: Full=14.5 kDa translational 

109 18 2 
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inhibitor protein; AltName: Full=Perchloric 
acid soluble protein 

432 heat-responsive protein 12 [Rattus 
norvegicus 109 18 2 

432 
Chain A, Crystal Structure Of Perchloric 
Acid Soluble Protein-A Translational 
Inhibitor 109 18 2 

433 

RecName: Full=Ribonuclease UK114; 
AltName: Full=14.5 kDa translational 
inhibitor protein; AltName: Full=Perchloric 
acid soluble protein 47 18 2 

433 heat-responsive protein 12 [Rattus 
norvegicus 47 18 2 

433 
Chain A, Crystal Structure Of Perchloric 
Acid Soluble Protein-A Translational 
Inhibitor 47 18 2 

473 alpha-globin [Rattus sp.] 60 34 2 

473 rCG34342, isoform CRA_b [Rattus 
norvegicus] 60 21 2 

473 hemoglobin alpha 1 chain [Rattus 
norvegicus] 60 21 2 

473 hemoglobin alpha 2 chain [Rattus 
norvegicus] 60 21 2 

486 
RecName: Full=Transthyretin; AltName: 
Full=Prealbumin; AltName: Full=TBPA; 
Flags: Precursor 47 18 1 

486 Chain A, Rat Transthyretin 47 18 1 

486 transthyretin [Rattus norvegicus] 47 18 1 

486 Chain A, Rat Transthyretin Complex With 
Thyroxine (T4) 68 18 1 

510 fatty acid binding protein 3, muscle and 
heart [Rattus norvegicus] 64 60 14 

515 
PREDICTED: similar to SH3 domain-binding 
glutamic acid-rich-like protein [Rattus 
norvegicus] 46 2 1 

515 
SH3-binding domain glutamic acid-rich 
protein like (predicted), isoform CRA_a 
[Rattus norvegicus] 46 2 1 
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515 Cytochrome c oxidase, subunit Va [Rattus 
norvegicus] 45 17 3 

524 Cytochrome c oxidase, subunit Va [Rattus 
norvegicus] 38 17 3 

627         

627 
aldolase 3, C isoform, isoform CRA_e [Mus 
musculus] 64 68 20 

726 Cu/Zn-superoxide dismutase 78 8 1 

727 myosin, light polypeptide 6, alkali, smooth 
muscle and non-muscle [Mus musculus] 56 20 3 

731 mCG140959, isoform CRA_g [Mus 
musculus] 63 48 15 

739 Cu/Zn-superoxide dismutase 110 8 15 

752 myosin, light polypeptide 6, alkali, smooth 
muscle and non-muscle [Mus musculus] 57 20 3 

759 
peroxisomal membrane protein 20 [Mus 
musculus] 55 8 1 

1618 peroxiredoxin 1 [Mus musculus 59 10 2 

1600 superoxide dismutase 2 [Rattus norvegicus] 60 6 1 

1621 subunit d of mitochondrial H-ATP synthase 
[Rattus norvegicus] 42 15 2 

1621 
ATP synthase, H+ transporting, 
mitochondrial F0 complex, subunit d [Rattus 
norvegicus 42 15 2 

1621 rCG33654, isoform CRA_b [Rattus 
norvegicus] 42 15 2 

1832 subunit d of mitochondrial H-ATP synthase 
[Rattus norvegicus] 128 24 3 

1832 
ATP synthase, H+ transporting, 
mitochondrial F0 complex, subunit d [Rattus 
norvegicus 128 24 3 

1637 subunit d of mitochondrial H-ATP synthase 
[Rattus norvegicus] 99 55 13 

1637 
ATP synthase, H+ transporting, 
mitochondrial F0 complex, subunit d [Rattus 
norvegicus] 93 55 12 
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1647 adenine phosphoribosyl transferase [Rattus 
norvegicus] 56 28 4 

1647 
adenine phosphoribosyl transferase 
(predicted), isoform CRA_a [Rattus 
norvegicus] 56 28 4 

1649 phosphatidylethanolamine binding protein 
[Rattus norvegicus] 69 18 2 

1649 phosphatidylethanolamine binding protein 1, 
isoform CRA_b [Rattus norvegicus] 69 18 2 

1649 

Chain A, Rat Phosphatidylethanolamine-
Binding Protein Containing The S153e 
Mutation In The Complex With O-
Phosphorylethanolamine 69 18 2 

1649 Chain A, Rat Phosphatidylethanolamine-
Binding Protein 69 18 2 

1650 NADH dehydrogenase (ubiquinone) Fe-S 
protein 8 [Rattus norvegicus] 36 17 3 

1721 catechol-O-methyltransferase [Rattus 
norvegicus] 67 35 13 

1776 plasma glutathione peroxidase precursor 
[Rattus norvegicus] 41 11 2 

1776 glutathione peroxidase 3 precursor [Rattus 
norvegicus] 41 11 2 

1734 

PREDICTED: similar to Glutathione S-
transferase alpha-4 (Glutathione S-
transferase Yk) (GST Yk) (GST 8-8) (GST 
K) (GST A4-4) [Rattus norvegicus 49 12 3 

1734 rCG25753, isoform CRA_b [Rattus 
norvegicus] 49 12 3 

1734 glutathione S-transferase A4 [Rattus 
norvegicus] 49 12 3 

1754 

PREDICTED: similar to Glutathione S-
transferase alpha-4 (Glutathione S-
transferase Yk) (GST Yk) (GST 8-8) (GST 
K) (GST A4-4) [Rattus norvegicus 63 9 2 

1754 rCG25753, isoform CRA_b [Rattus 
norvegicus] 63 9 2 

1754 glutathione S-transferase A4 [Rattus 
norvegicus] 63 9 2 
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1811 methionine sulfoxide reductase A [Rattus 
norvegicus] 51 18 3 

1811 methionine sulfoxide reductase A splice 
variant 2a [Rattus norvegicus] 51 18 3 

1839 peroxiredoxin 3 [Rattus norvegicus] 40 14 3 

1839 

RecName: Full=Thioredoxin-dependent 
peroxide reductase, mitochondrial; AltName: 
Full=Peroxiredoxin-3; Short=PRX-3; 
AltName: Full=PRx III; Flags: Precursor 40 14 3 

1839 peroxiredoxin 3 [Rattus norvegicus] 40 14 3 

1849 
rCG42432, isoform CRA_d [Rattus 
norvegicus] 62 42 21 

1884 glutathione S-transferase A2  55 8 2 

          

2049 rCG23467, isoform CRA_a [Rattus 
norvegicus] 60 22 52 

2052 rCG23467, isoform CRA_a [Rattus 
norvegicus] 63 22 53 

2054 rCG23467, isoform CRA_a [Rattus 
norvegicus] 61 22 53 

2055 
rCG23467, isoform CRA_a [Rattus 
norvegicus] 66 22 47 

2057 rCG23467, isoform CRA_a [Rattus 
norvegicus] 76 25 48 

2060 rCG23467, isoform CRA_a [Rattus 
norvegicus] 83 26 56 

2072 phosphoglycerate mutase 1 [Mus musculus 79 22 4 

2080 rCG23467, isoform CRA_a [Rattus 
norvegicus] 65 24 51 

2093 rCG23467, isoform CRA_a [Rattus 
norvegicus] 64 22 52 

2106 electron-transfer-flavoprotein, beta 
polypeptide [Rattus norvegicus] 30 22 4 

2118 Rho GDP dissociation inhibitor (GDI) alpha 
[Mus musculus] 51 33 5 

2120 carbonic anhydrase 1 [Rattus norvegicus] 82 67 15 
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2126 glutathione S-transferase A5 [Rattus 
norvegicus] 64 20 11 

2137 Rho GDP dissociation inhibitor (GDI) alpha 
[Mus musculus] 46 19 3 

2156 rCG23467, isoform CRA_a [Rattus 
norvegicus] 67 24 53 

2164 
tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, gamma 
polypeptide [Rattus norvegicus] 70 9 2 

2168 glutathione S-transferase A5 [Rattus 
norvegicus] 63 17 4 

2174 glutathione S-transferase omega 1 [Rattus 
norvegicus] 63 12 3 

2216 
PREDICTED: similar to ATP-binding 
cassette, sub-family A, member 12 isoform 
a [Rattus norvegicus] 38 0 1 

2216 rCG25036 [Rattus norvegicus] 38 0 1 

2226 cathepsin A [Rattus norvegicus] 69 2 1 

2226 rCG32401, isoform CRA_a [Rattus 
norvegicus 69 2 1 

2226 rCG32401, isoform CRA_a [Rattus 
norvegicus 69 2 1 

2241 
tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein [Rattus 
norvegicus] 39 11 3 

2251 rCG23467, isoform CRA_a [Rattus 
norvegicus] 66 24 54 

2252 
PREDICTED: similar to ATP-binding 
cassette, sub-family A, member 12 isoform 
a [Rattus norvegicus] 38 0 1 

2252 rCG25036 [Rattus norvegicus] 38 0 1 

2254 rCG23467, isoform CRA_a [Rattus 
norvegicus] 67 25 51 

2262 rCG23467, isoform CRA_a [Rattus 
norvegicus] 71 23 52 

2298 
glutamate Cysteine ligase, modifier subunit 
[Rattus norvegicus] 82 9 2 
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2303 rCG23467, isoform CRA_a [Rattus 
norvegicus] 63 24 51 

2307 rCG23467, isoform CRA_a [Rattus 
norvegicus] 67 23 54 

2309 rCG23467, isoform CRA_a [Rattus 
norvegicus] 63 21 52 

2374 rCG23467, isoform CRA_a [Rattus 
norvegicus] 63 21 53 

2404 rCG23467, isoform CRA_a [Rattus 
norvegicus] 67 24 52 

2407 
3-hydroxyanthranilate 3,4-dioxygenase 
[Rattus norvegicus] 43 12 2 

2423 3-hydroxyanthranilate 3,4-dioxygenase, 
isoform CRA_b [Rattus norvegicus] 104 58 25 

2444 3-hydroxyanthranilate 3,4-dioxygenase, 
isoform CRA_b [Rattus norvegicus] 74 49 22 

2472 3-mercaptopyruvate sulfurtransferase 
[Rattus norvegicus] 182 19 5 

2475 rCG23467, isoform CRA_a [Rattus 
norvegicus] 66 24 50 

2502 3-hydroxyanthranilate 3,4-dioxygenase 
[Rattus norvegicus] 45 12 2 

2685 
aldo-keto reductase family 7, member A2 
(aflatoxin aldehyde reductase) [Rattus 
norvegicus] 86 16 4 

2685 aldehyde reductase AFAR2 subunit [Rattus 
norvegicus] 86 16 4 

2685 aflatoxin B1 aldehyde reductase [Rattus 
norvegicus] 86 16 4 

2690 crystallin, zeta [Rattus norvegicus] 65 13 3 

2709 crystallin, zeta [Rattus norvegicus] 43 13 3 

2710 hypothetical protein LOC293949 [Rattus 
norvegicus] 42 4 1 

2715 regucalcin [Rattus norvegicus] 62 15 3 

2730 aldo-keto reductase family 1, member A1 
(aldehyde reductase) [Rattus norvegicus] 252 32 9 
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2734 L-lactate dehydrogenase B [Rattus 
norvegicus] 34 16 5 

2742 L-lactate dehydrogenase B [Rattus 
norvegicus] 55 12 4 

2746 crystallin, zeta [Rattus norvegicus] 82 13 3 

2751 
rCG23467, isoform CRA_a [Rattus 
norvegicus] 62 22 47 

2796 dimethylarginine dimethylaminohydrolase 1 
[Rattus norvegicus] 69 56 22 

2772 glyceraldehyde-3-phosphate 
dehydrogenase [Rattus norvegicus] 157 20 5 

2779 glyceraldehyde-3-phosphate 
dehydrogenase [Rattus norvegicus] 116 12 3 

2781 glyceraldehyde-3-phosphate 
dehydrogenase [Rattus norvegicus] 64 12 3 

2788 glyceraldehyde-3-phosphate 
dehydrogenase [Rattus norvegicus] 41 12 3 

2789 hydroxyacid oxidase 3 (medium-chain) 
[Rattus norvegicus] 96 25 8 

2806 aldo-keto reductase family 1, member A1 
(aldehyde reductase) [Rattus norvegicus] 194 12 4 

2813 
Chain A, Crystal Structure Analysis Of 
Recombinant Rat Kidney Long- Chain 
Hydroxy Acid Oxidase 64 29 13 

2815 aldo-keto reductase family 1, member A1 
(aldehyde reductase) [Rattus norvegicus] 68 12 25 

2816 hydroxyacid oxidase 3 (medium-chain) 
[Rattus norvegicus] 44 15 4 

2824 PREDICTED: hypothetical protein [Rattus 
norvegicus] 62 76 9 

2841 
hydroxyacid oxidase 3 (medium-chain) 
[Rattus norvegicus] 68 15 4 

2948 aldolase A 52 6 2 

2954 PREDICTED: similar to Actin, Cytoplasmic 2 
(Gamma-actin) [Rattus norvegicus] 109 12 5 

2958 aldolase A 68 6 2 
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2962 aldolase B [Rattus norvegicus 105 42 23 

2967 PREDICTED: similar to Actin, Cytoplasmic 2 
(Gamma-actin) [Rattus norvegicus] 147 18 7 

2974 rCG25777, isoform CRA_a [Rattus 
norvegicus] 56 19 6 

2986 
PREDICTED: similar to Actin, Cytoplasmic 2 
(Gamma-actin) [Rattus norvegicus] 89 10 4 

2992 aldolase A 86 35 16 

3002 aminoaCylase 1 [Rattus norvegicus] 45 14 5 

3009 

RecName: Full=AminoaCylase-1A; 
AltName: Full=N-aCyl-L-amino-acid 
amidohydrolase; AltName: Full=ACY-1A; 
AltName: Full=ACY IA 122 47 24 

3191 Enolase 1, alpha non-neuron [Rattus 
norvegicus] 41 13 4 

3191 

PREDICTED: similar to Alpha-enolase (2-
phospho-D-glycerate hydro-lyase) (Non-
neural enolase) (NNE) (Enolase 1) [Rattus 
norvegicus] 41 13 4 

3191 enolase 1, (alpha) [Rattus norvegicus] 41 13 4 

3191 Eno1 protein [Rattus norvegicus] 41 13 4 

3195 L-arginine:glycine amidinotransferase 
[Rattus norvegicus] 64 32 23 

3213 Eno1 protein [Rattus norvegicus] 50 12 4 

3213 Enolase 1, alpha non-neuron [Rattus 
norvegicus] 50 12 4 

3213 

PREDICTED: similar to Alpha-enolase (2-
phospho-D-glycerate hydro-lyase) (Non-
neural enolase) (NNE) (Enolase 1) [Rattus 
norvegicus] 50 12 4 

3213 enolase 1, (alpha) [Rattus norvegicus] 50 12 4 

3214 mitochondrial aldehyde dehydrogenase 
[Rattus norvegicus] 75 28 17 

3222 PREDICTED: similar to sarcoma antigen 
NY-SAR-41 [Rattus norvegicus] 64 27 43 

3231 ATP synthase beta subunit 249 53 35 
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3240 ATP synthase beta subunit 188 53 10 

3258 mitochondrial aldehyde dehydrogenase 2 
[Rattus norvegicus] 52 2 1 

3259 Enolase 1, alpha non-neuron [Rattus 
norvegicus] 42 4 1 

3261 
mitochondrial aldehyde dehydrogenase 2 
[Rattus norvegicus] 65 31 17 

3262 Eno1 protein [Rattus norvegicus] 55 3 1 

3315 ERM-binding phosphoprotein [Rattus 
norvegicus] 82 64 21 

3319 vacuolar H+ATPase B2 [Rattus norvegicus] 52 7 3 

3333 ATP synthase beta subunit 188 22 9 

3341 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_d [Rattus 
norvegicus] 53 8 4 

3343 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_d [Rattus 
norvegicus] 74 36 31 

3353 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_d [Rattus 
norvegicus] 74 36 31 

3356 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_d [Rattus 
norvegicus] 52 8 3 

3360 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_d [Rattus 
norvegicus] 74 36 31 

3361 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_d [Rattus 
norvegicus] 87 33 25 

3365 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_g [Rattus 
norvegicus] 64 11 2 
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3367 liver annexin-like protein [Rattus norvegicus] 59 2 1 

3367 plasma glutamate carboxypeptidase [Rattus 
norvegicus] 59 2 1 

3371 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_g [Rattus 
norvegicus] 71 11 2 

3372 selenium binding protein 1 [Rattus 
norvegicus] 113 37 23 

3383 aldehyde dehydrogenase family 6, 
subfamily A1 [Rattus norvegicus] 50 3 1 

3424 ATP synthase beta subunit 86 12 4 

3426 tubulin, alpha 1C [Rattus norvegicus] 82 14 19 

3433 glucose-6-phosphate dehydrogenase 
[Rattus norvegicus] 52 8 4 

3437 tubulin, alpha 1C [Rattus norvegicus] 94 14 4 

3440 tubulin T beta15 57 9 4 

3453 tubulin, alpha 1C [Rattus norvegicus] 56 13 4 

3459 heat shock protein (hsp60) precursor 
[Rattus norvegicus] 45 6 2 

3461 heat shock protein (hsp60) precursor 
[Rattus norvegicus] 45 6 2 

3470 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit, 
isoform 1, isoform CRA_f [Rattus 
norvegicus] 65 41 27 

4908 
PREDICTED: similar to IQ motif containing 
GTPase activating protein 3 [Rattus 
norvegicus] 65 15 27 

Table 7-1:  Complete table of identification made for the pilot investigation. 
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7.1.2 Hypertension main study identifications  
master 
spot no name  score gi number 

531 grp75 36 gi|1000439  

        

        

566 heat shock protein 5 [Rattus norvegicus] 59 gi|25742763  

566 

RecName: Full=78 kDa glucose-regulated protein; 
AltName: Full=GRP 78; AltName: Full=Heat shock 70 
kDa protein 5; AltName: Full=Immunoglobulin heavy 
chain-binding protein; Short=BiP; Flags: Precursor 59 gi|25742763  

566 BiP [Mus musculus] 59 gi|25742763  

        

629 dnaK-type molecular chaperone hsp72-ps1 - rat 81 gi|347019 

629 heat shock protein 8 [Rattus norvegicus] 81 gi|13242237 

        

637 albumin, isoform CRA_a [Rattus norvegicus] 148 gi|149033753 

637 albumin [Rattus norvegicus] 146 
  
gi|158138568  

637 leucine rich repeat containing 7 [Rattus norvegicus] 33 gi|16924000  

        

644 dnaK-type molecular chaperone hsp72-ps1 - rat 67 gi|347019 

644 heat shock protein 8 [Rattus norvegicus] 67 gi|13242237 

        

649 albumin, isoform CRA_a [Rattus norvegicus] 198 gi|149033753 

649 albumin [Rattus norvegicus] 198 
  
gi|158138568  

        

682 albumin, isoform CRA_a [Rattus norvegicus] 252 gi|149033753 
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682 albumin [Rattus norvegicus] 252 
  
gi|158138568  

        

901 
heat shock protein (hsp60) precursor [Rattus 
norvegicus] 56   gi|56383  

        

731 Hspd1 protein [Mus musculus 84 gi|76779273 

        

        

        

956 
heat shock protein (hsp60) precursor [Rattus 
norvegicus] 83 gi|56383 

        

        

        

227 aspartyl-tRNA synthetase [Rattus norvegicus] 86 gi|16758642 

        

566 plate 1 1st run 103 gi|25742763 

        

956 
heat shock protein (hsp60) precursor [Rattus 
norvegicus] 40 gi|56383  

        

458 
procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 
isoform 1 [Rattus norvegicus] 60 gi|218931161  

        

560 heat shock protein 5 [Rattus norvegicus] 102 gi|25742763 

        

682 albumin [Rattus norvegicus] 84 gi|158138568  
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1060 Tubulin, alpha 1A [Rattus norvegicus] 43 gi|38328248 

1060 tubulin, alpha 1C [Rattus norvegicus]   gi|58865558  

1060 rCG50513, isoform CRA_a [Rattus norvegicus]   gi|149032103  

1060 rCG50513, isoform CRA_b [Rattus norvegicus]   gi|149032104 

        

1122 CNDP dipeptidase 2 [Rattus norvegicus] 71 gi|58219062  

        

1157 

ATP synthase, H+ transporting, mitochondrial F1 
complex, alpha subunit, isoform 1, isoform CRA_d 
[Rattus norvegicus] 62 gi|149029483 

1157 Chain A, Rat Liver F1-Atpase 61  gi|6729934 

        

1161 
mitochondrial aldehyde dehydrogenase [Rattus 
norvegicus] 69 gi|25990263 

        

1172 
mitochondrial aldehyde dehydrogenase 2 [Rattus 
norvegicus] 34 gi|14192933  

        

1177 Chain B, Rat Liver F1-Atpase 122 gi|6729935 

1177 
mitochondrial ATP synthase beta subunit [Rattus 
norvegicus] 122 gi|54792127  

1177 

 ATP synthase, H+ transporting, mitochondrial F1 
complex, beta polypeptide, isoform CRA_a [Rattus 
norvegicus]    gi|54792127  

        

1178 Chain B, Rat Liver F1-Atpase 122 gi|6729935 

1178 
mitochondrial ATP synthase beta subunit [Rattus 
norvegicus] 122 gi|54792127  

1178 
 ATP synthase, H+ transporting, mitochondrial F1 

  gi|54792127  
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complex, beta polypeptide, isoform CRA_a [Rattus 
norvegicus]  

        

1179 aldehyde dehydrogenase 9A1 [Rattus norvegicus] 62 gi|75905479 

        

1189 Chain B, Rat Liver F1-Atpase 122 gi|6729935 

1189 
mitochondrial ATP synthase beta subunit [Rattus 
norvegicus] 122 gi|54792127  

1189 

 ATP synthase, H+ transporting, mitochondrial F1 
complex, beta polypeptide, isoform CRA_a [Rattus 
norvegicus]    gi|54792127  

        

1243 
IMP3, U3 small nucleolar ribonucleoprotein, 
homolog [Rattus norvegicus] 66 

 
gi|157822893 

        

1272 Eno1 protein [Rattus norvegicus] 63 gi|38649320   

1272 

PREDICTED: similar to Alpha-enolase (2-phospho-D-
glycerate hydro-lyase) (Non-neural enolase) (NNE) 
(Enolase 1) [Rattus norvegicus] 63 gi|109468300  

1272 enolase 1, (alpha) isoform 1 [Rattus norvegicus] 63 gi|158186649 

        

1274 Eno1 protein [Rattus norvegicus] 68 gi|38649320   

1274 

PREDICTED: similar to Alpha-enolase (2-phospho-D-
glycerate hydro-lyase) (Non-neural enolase) (NNE) 
(Enolase 1) [Rattus norvegicus] 68 gi|109468300  

1274 enolase 1, (alpha) isoform 1 [Rattus norvegicus] 68 gi|158186649 

        

1290 Eno1 protein [Rattus norvegicus] 60 gi|38649320   

1290 

PREDICTED: similar to Alpha-enolase (2-phospho-D-
glycerate hydro-lyase) (Non-neural enolase) (NNE) 
(Enolase 1) [Rattus norvegicus] 60 gi|109468300  
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1290 enolase 1, (alpha) isoform 1 [Rattus norvegicus] 60 gi|158186649 

        

1313 enolase 1, (alpha) isoform 1 [Rattus norvegicus] 138 gi|158186649 

        

1523 PREDICTED: hypothetical protein [Rattus norvegicus] 63 gi|109457572 

        

1548 actin, gamma 1 propeptide [Homo sapiens] 62 gi|4501887 

        

1550 rCG25777, isoform CRA_a [Rattus norvegicus] 267 gi|149018671    

1550 aminoaCylase 1 [Rattus norvegicus 238 gi|52851387 

        

1561 aminoaCylase 1 [Rattus norvegicus] 31 gi|52851387 

1561 rCG25777, isoform CRA_a [Rattus norvegicus] 265 gi|149018671    

1561 aminoaCylase 1 [Rattus norvegicus 245 gi|52851387 

        

1576 
 PREDICTED: similar to Actin, Cytoplasmic 2 
(Gamma-actin) [Rattus norvegicus]  77 gi|109492380  

        

1578 rCG25777, isoform CRA_a [Rattus norvegicus] 121 gi|149018671    

1578 aminoaCylase 1 [Rattus norvegicus 105 gi|52851387 

        

1590 beta-actin FE-3 [Rattus norvegicus] 61 gi|13516471  

        

1591 
PREDICTED: similar to Actin, Cytoplasmic 2 (Gamma-
actin) [Rattus norvegicus] 122 gi|109492380 

1591 actin, beta-like 2 [Rattus norvegicus] 86 gi|157823033 
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1599 
REDICTED: similar to Actin, Cytoplasmic 2 (Gamma-
actin) [Rattus norvegicus] 60 gi|109492380  

1599 actin, beta-like 2 [Rattus norvegicus] 59 gi|157823033  

        

1603 
PREDICTED: similar to Actin, Cytoplasmic 2 (Gamma-
actin) [Rattus norvegicus] 72 gi|109492380 

        

1604 
REDICTED: similar to Actin, Cytoplasmic 2 (Gamma-
actin) [Rattus norvegicus] 105 gi|109492380  

1604 actin, beta-like 2 [Rattus norvegicus] 60 gi|157823033  

        

1613 
REDICTED: similar to Actin, Cytoplasmic 2 (Gamma-
actin) [Rattus norvegicus] 132 gi|109492380  

1613 actin, beta-like 2 [Rattus norvegicus] 70 gi|157823033  

        

1627 
REDICTED: similar to Actin, Cytoplasmic 2 (Gamma-
actin) [Rattus norvegicus] 60 gi|109492380  

        

1670  fructose-1,6-bisphosphatase 1 [Rattus norvegicus]  132 gi|51036635 

        

1893 
dimethylarginine dimethylaminohydrolase 1 [Rattus 
norvegicus] 110 gi|11560131 

1893 
dimethylarginine dimethylaminohydrolase 1, 
isoform CRA_b [Rattus norvegicus] 93 gi|149026166 

        

1346 mCG6336 [Mus musculus] 63 gi|148706088    

        

1444 
aldo-keto reductase family 1, member D1 [Mus 
musculus 65 gi|21703734    
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1265 Eno1 protein [Rattus norvegicus] 79 gi|38649320   

1265 

PREDICTED: similar to Alpha-enolase (2-phospho-D-
glycerate hydro-lyase) (Non-neural enolase) (NNE) 
(Enolase 1) [Rattus norvegicus] 79 gi|109468300  

1265 enolase 1, (alpha) isoform 1 [Rattus norvegicus] 79 gi|158186649 

        

1374 
ubiquinol-Cytochrome c reductase core protein I 
[Rattus norvegicus] 73 gi|51948476 

        

1487 
uracil-DNA glycosylase, isoform CRA_a [Rattus 
norvegicus] 61 gi|149063625 

        

1518 beta-actin FE-3 [Rattus norvegicus] 33 gi|13516471  

        

3049 PREDICTED: hypothetical protein [Rattus norvegicus] 64 gi|109457572    

        

3169 
mitochondrial ribosomal protein L51 [Rattus 
norvegicus] 60 gi|157820005 

        

2058 regucalcin [Rattus norvegicus] 77 gi|408807  

      gi|13928740  

        

2068 aspartoaCylase 3 [Rattus norvegicus] 72 gi|57526957  

        

2187 
3-mercaptopyruvate sulfurtransferase [Rattus 
norvegicus] 97 gi|20304123  

        

2197 
3-hydroxyanthranilate 3,4-dioxygenase [Rattus 
norvegicus] 36 gi|4433351 
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2316 lipocortin V [Rattus norvegicus] 80 gi|2981437 

2316 Annexin A5 [Rattus norvegicus] 80 gi|51858950 

2316 Chain A, Structure Of A Mutant Of Rat Annexin A5 80 gi|150261262 

2316 
Chain A, Recombinant Rat Annexin V, W185a 
Mutant 80 gi|157830216   

2316 
  Chain A, Recombinant Rat Annexin V, Quadruple 
Mutant (T72k, S144k, S228k, S303k) 80 gi|157830217     

2316 
  Chain A, Recombinant Rat Annexin V, Triple Mutant 
(T72k, S144k, S228k) 80 gi|157830218     

2316   Chain A, Recombinant Rat Annexin V, T72a Mutant 80 gi|157830229     

2316   Chain A, Recombinant Rat Annexin V, T72k Mutant 80 
 
gi|157830231     

2316   Chain A, Recombinant Rat Annexin V, T72s Mutant 80 gi|157830232     

2316 
  Chain A, Rat Annexin V Crystal Structure: Ca2+-
Induced Conformational Changes 80 

 
gi|157836327     

        

2322 
  Chain A, Rat Annexin V Crystal Structure: Ca2+-
Induced Conformational Changes 210 

 
gi|157836327     

2322 lipocortin V [Rattus norvegicus] 209 gi|2981437 

        

2405 tropomyosin 4 [Rattus norvegicus] 64 gi|6981672 

        

2465 

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein [Rattus 
norvegicus] 43 gi|13928824   

        

2544 chloride intracellular channel 1 [Rattus norvegicus] 107 gi|50657380  

        

2565 
mitochondrial ribosomal protein L51 [Rattus 

75 gi|157820005 
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norvegicus] 

        

2442 RecName: Full=Uracil-DNA glycosylase; Short=UDG 62 gi|45593577  

        

2491 
glutamate Cysteine ligase, modifier subunit [Rattus 
norvegicus] 65 gi|8393446 

        

2506 
mitochondrial ribosomal protein L51 [Rattus 
norvegicus] 63 gi|157820005    

        

2039 PREDICTED: hypothetical protein [Rattus norvegicus] 61 gi|109496540 

        

2612 
Rho GDP dissociation inhibitor (GDI) alpha [Mus 
musculus] 70 gi|31982030  

        

2709 14-3-3 zeta isoform 40 gi|1051270 

2709 

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta polypeptide 
[Mus musculus] 40 gi|6756041  

        

2898 synaptonemal complex protein 2 [Rattus norvegicus] 57 gi|18543333 

2898 
regulating synaptic membrane exoCytosis 3 [Rattus 
norvegicus] 57 gi|12621090 

        

2961 
gamma-glutamyl Cyclotransferase [Rattus 
norvegicus] 72 gi|157820337 
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2620 
isoamyl acetate-hydrolyzing esterase 1 homolog 
[Rattus norvegicus] 62 gi|198278545    

        

2635 
uracil-DNA glycosylase, isoform CRA_a [Rattus 
norvegicus] 62 gi|149063625    

        

2657 
uracil-DNA glycosylase, isoform CRA_a [Rattus 
norvegicus] 60 gi|149063625 

        

2980 hypothetical protein LOC619574 [Rattus norvegicus] 62 gi|77993361 

Table 7-2:  Table of all identified spots in main experiment 
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