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Preface 

This thesis documents research work undertaken from October 2004 to April 2008 on 

characterising aspects of mirror suspensions for advanced gravitational wave detectors. 

In Chapter 1 gravitational waves are introduced and their nature is discussed, and 

potential sources are reviewed. Detection schemes are also discussed along with an 

introduction to a variety of limiting noise sources. Current interferometric detectors and 

their sensitivities are introduced, together with future upgrades that are envisaged. This 

chapter is based on published literature. 

Chapter 2 comprises a discussion of aspects of thermal noise, and how it can be 

quantified together with the way it affects gravitational wave detector sensitivity. 

Mechanical losses of suspension elements are linked to displacement noise within the 

detectors, and sources of dissipation are discussed. This chapter is based on published 

literature. 

The suspension technology envisaged for the future Advanced LIGO detector is the 

focus of Chapter 3. Comparison with current detector suspensions is given, together 

with the motivation for the Advanced LIGO suspension design using ribbon suspension 

fibres. Ribbons were produced using a CO2 laser pulling machine constructed by Dr. A. 

Heptonstall, Dr. M. Barton, Dr. G. Cagnoli, Dr C. Cantley and Mr R. Jones, with 

control programming written by the author, including laser stabilisation control by Dr. 

M. Barton. Construction of a ribbon/fibre dimensional characterisation machine and 
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authoring of the control software was conducted by the author with assistance from Mr. 

R. Jones, with initial advice from Dr. C. Cantley, Dr. D. Crooks, Dr. A. Heptonstall. 

Construction of the bounce test machine and proof load tester were carried out with 

assistance from Dr. W. Cunningham and Dr. C. Torrie. 

Chapter 4 presents finite element modelling of rectangular ribbon and circular cross 

section suspension fibres as characterised in chapter 3. Work was carried out jointly 

with Mr. R. Kumar, with analysis of the rectangular cross section ribbons being carried 

out by the author; with circular cross section fibres being studied by Mr. R. Kumar. 

Advice was provided by Dr. C. Torrie, Dr. W. Cunningham, Prof. J. Hough and Prof. 

S. Rowan. Work at the end of this chapter on the mechanical loss of tapered fibres was 

carried out in conjunction with Dr. A. Heptonstall. 

Chapter 5 contains measurements performed jointly by the author and Dr. P. Murray 

on test mass samples coated with doped tantalum pentoxide, silica and titania on their 

front faces.  Construction of the interferometric readout system was undertaken by the 

author with the assistance of Dr. P. Sneddon and the advice of Prof. J. Hough, Prof. S. 

Rowan, and Dr. S. Reid. Residual coating loss calculations were performed by Dr. P. 

Murray. 

In Chapter 6 measurements of the mechanical loss of thin disk samples with diffraction 

gratings in addition to optical coatings on their surfaces are presented. The 

measurements of the samples and analysis of the results were carried out by the author. 

Fabrication of the fibre suspensions was carried out by Dr. A. Heptonstall. Design and 

construction of the nodal support was undertaken by the author after consultation with 

Prof. J. Hough and Prof. V. Mitrofanov. Surface measurements in the SEM were 

undertaken by the author with instruction and assistance of Dr. W. Cunningham. 
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Advice was given throughout by Prof J. Hough, Prof. S. Rowan, Dr. A. Heptonstall, Dr. 

S. Reid and Dr. W. Cunningham. 

Appendix A gives the LabVIEW program code written by the author to control the 

laser pulling machine described in chapter 3. 

Appendix B gives the LabVIEW program code written by the author for measurement 

and control of the dimensional characterisation machine described in chapter 3 

Appendix C shows the ribbon/fibre characterisation equipment installed at the LIGO 

“LASTI” test facility in Boston. 

Appendix D gives the LabVIEW program code written by the author to generate 

command line script for use in the finite element analysis program ANSYS, as discussed 

in chapter 4. 

Appendix E gives the LabVIEW program code written by the author to generate an 

exponentially decaying voltage used in checking the functionality of the interferometer 

correction setup constructed in chapter 5. 

Appendix F gives the LabVIEW program code written by the author to record the 

ringdown data and calculate the mechanical loss of test mass samples, as described in 

chapter 5. 
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Summary 

Gravitational waves were first predicted by Albert Einstein’s Theory of General 

Relativity, published in 1916. These waves are perturbations in the curvature of space-

time. Indirect evidence of their existence has been obtained via observations of binary 

pulsar system inspirals by Hulse and Taylor. Research is now focussed on achieving 

direct detection of gravitational waves, giving a new way of observing astronomical 

events in the universe. 

Gravitational waves are quadrupole in nature, causing tidal strains in space. The weak 

nature of gravity means that the magnitude of these strains is very small. Only 

astronomical scale sources are likely to produce waves of sufficient amplitude to be 

detected on earth. In the frequency band of a few Hz to a few kHz, the expected strain 

amplitude for violent sources is of the order of 10-22. Detection is most likely to be 

achieved using long baseline interferometer detectors. 

Currently several such detectors are in operation worldwide, including the GEO600 

detector, built in a collaboration involving the Institute for Gravitational Research at 

the University of Glasgow, the Albert Einstein Institute (Hannover and Golm), and the 

University of Cardiff. In America the LIGO detector network has three large 

interferometric detectors - two of 4 km arm length and one with 2 km arms. In Italy a 

European collaboration has constructed the 3 km VIRGO detector. Currently GEO600 

and LIGO have undertaken 5 data taking science runs with the most recent year long 
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run, also involving VIRGO, concluding in November 2007. No detections have yet been 

confirmed, but analysis on the results of the most recent GEO600/LIGO/VIRGO run is 

ongoing.  

These detectors are now operating at, or close to their design sensitivities, so research is 

focussed on reduction of various noise sources by upgrading of the detectors. One 

important noise source is thermal noise (both Brownian and thermo-elastic) - a limiting 

factor at midband frequencies. Reduction of mechanical loss in mirrors and their 

suspensions will help lessen the impact of thermal noise in future detectors.  

The research detailed in this thesis was aimed at reducing thermal noise. In particular, 

it covers work undertaken to investigate the mechanical loss of suspension ribbons and 

fibres, test mass mirror coatings and also diffractive surfaces on test masses to evaluate 

their suitability for employment in future advanced gravitational wave detectors. 

Upgrade of LIGO to “Advanced LIGO” will aim to reduce thermal noise by 

implementing mirror suspension techniques pioneered in GEO600. Specifically, it was 

initially proposed that test masses be suspended from silica ribbon fibres, a key choice 

that will be re-evaluated in this thesis. Ribbons (or fibres) will be fabricated by a CO2 

laser pulling machine being developed in Glasgow, with control programming being 

undertaken by the author.  

Characterising the dimensions, strength and vertical bounce frequencies of the ribbons 

is important to confirm their suitability for use in detector mirror suspensions. A 

dimensional characterisation machine was constructed to measure the ribbon’s cross 

sectional dimensions, with emphasis being placed on achieving high resolution in the 

ribbon neck regions, where the most bending occurs. Also, a bounce testing machine 

was constructed to experimentally measure the ribbon’s vertical bounce frequency. 
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Finally a proof load test was constructed to verify that ribbons could support the 

required weight. Results showed that ribbons could be fabricated successfully with the 

required strength and bounce frequency, though shaping of the cross section still 

requires further research to achieve the optimum. 

In a pendulum system most of the energy is stored as gravitational potential energy 

rather than bending energy of the suspension fibres or ribbons. Thus the effective loss of 

the suspension fibres/ribbons is reduced or “diluted” and thermal noise is lower than 

may be naively expected. Dilution of the mechanical loss of the pendulum suspensions 

was investigated using finite element modelling. Methods for importing data from the 

dimensional characterisation machine were developed, and it was observed that the 

dilution resulting from ribbon suspensions was not as high as had been initially 

expected, with bending in the neck region of the ribbon being seen to significantly 

reduce dilution. It was observed that the rectangular ribbons had inferior dilution to 

equivalent cross section circular fibres for necks of the length typically being produced.  

A typical 7.5 mm necked ribbon was seen to have a dilution 1.5 times lower than an 

equivalent fibre, despite the ribbons having 3.3 times greater dilution with no necks. 

Ribbons were only seen to have this superior dilution for very short necks. Bending in 

the necks resulted in an increased amount of bending strain energy occurring which 

caused the lower dilution factors. Additionally, bending occurring in the ears that join 

the fibres or ribbons to the masses was seen to further reduce the dilution. In the light 

of low dilution factors, reduction (ideally nulling) of thermoelastic noise was studied. 

Reduction in thermal noise in this way is proposed through use of tapered fibres, which 

showed that a lower overall noise level than that from the baseline ribbons planned for 

Advanced LIGO can be achieved, despite lower dilution factors. In the light of this 

work tapered fibres have now been adopted as the baseline for Advanced LIGO. 
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Measurements of test mass mirror samples showed that the mechanical loss of mirror 

coatings can be significantly reduced by doping the high refractive index layer, with 

reduction of up to a factor of 2.5 in measured mechanical loss observed, when compared 

to equivalent undoped coatings. In order to perform these measurements an 

interferometric read out system was constructed. 

Future detectors will use higher laser powers which may cause thermal distortions in 

transmissive optical components. Use of all reflective components may be required to 

reduce this problem, possibly via diffractive mirrors. Measurements were undertaken on 

samples to discover if introducing a diffraction grating to an optic’s surface increased 

the mechanical loss. However, the grating was not seen to do this, and also did not 

increase the mechanical loss of an optical coating applied on top of its surface, which 

verified that diffractive optics are viable for use in future detectors. 
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Chapter 1  
 
Gravitational Wave Detection 

 
 

1.1 Introduction 

It is over 90 years since the existence of gravitational radiation was first postulated by 

Albert Einstein’s Theory of General Relativity [1]. His 1916 theory surmised that space 

time has some curvature caused by bodies with mass, and that any body moving in this 

regime would simply traverse space time on a path that was as straight as possible 

given the curvature – namely it would follow a trajectory along a geodesic of curved 

space time. Perturbations, or ‘ripples’, in this overall background curvature can be 

generated by localised changes in gravity.  

Despite Einstein’s belief in the integrity of his theory, he was sceptical of the likelihood 

that these ‘gravitational waves’ would actually ever be detected [2]. However, the 

prospect of uncovering new understanding of the physics behind some of the most 

violent astronomical events and relativistic physics in such extreme environments has 

proved tantalising for astrophysicists and experimental physicists. For the last 50 years 



CHAPTER 1 – GRAVITATIONAL WAVE DETECTION  

 
2

they have been endeavouring to rise to the challenge of achieving a direct detection of 

gravitational radiation. 

The first astronomically observed evidence for the existence of gravitational waves 

resulted from close observation of the binary pulsar system PSR 1913+16 by Hulse and 

Taylor [3] over many years, which showed the orbital period was decreasing with time, 

with this change increasing quadratically with time. This was consistent with 

inspiralling of the pulsar. Crucially, when the rate of this inspiral was compared with 

that predicted to arise from gravitational radiation emission by general relativity, the 

astronomical observation had a fractional accuracy of better than 0.4% [4] [5]. The most 

recent measurements have improved this, with an uncertainty of only 0.21% [6]. The 

importance of this first experimental evidence for the existence of gravitational waves 

was recognised with a Nobel Prize in physics in 1993. More recent observations of a 

different double pulsar system, J0737-3039, have also produced inspiral rate timing 

measurements that agree with General Relativity’s prediction to within 0.3% [7]. 

However, whilst such binary systems strongly imply the existence of waves, they do not 

directly observe the waves themselves. 

Prior to Hulse and Taylor’s discovery, research had started into methods to observe 

gravitational waves directly. Joseph Weber initiated the experimental search for 

gravitational waves by developing resonant bar detectors in the 1960’s [8]. There was 

initial excitement when two independent bar detectors recorded coincident events in the 

late 1960’s [9] indicating detection of passing gravitational waves. However, these 

detections were discounted soon afterwards [10] [11] and subsequent measurements by 

much more sensitive instruments yielded no similar detections. 

These null results prompted renewed interest in developing methods of detection other 

than room temperature resonant bars and one such type of instrument is the Michelson 
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interferometer. In the 1960s, large scale interferometers had already been used in laser 

ranging and monitoring of seismic events [12] [13]. Currently interferometric 

gravitational wave detectors are some of the most sensitive displacement measurement 

instruments on earth, though a first confirmed detection of a gravitational wave has 

proven elusive. Research continues with vigour to rise to the experimental challenge of 

increasing the sensitivity of interferometric detectors to permit the first detection. 

Direct detection of gravitational waves will allow a new form of astronomical 

observation, and is likely to enhance our understanding of bodies such as neutron stars, 

binary star systems and black holes, as well as giving insight into the gravitational 

collapse at the centre of supernovae. Gravitational waves from the very early universe 

may provide insight into inflation and the universe shortly after the Big Bang. 

This chapter will discuss the nature of gravitational waves, the astronomical sources 

expected to produce them and the proposed detection methods. The current status of 

operational detectors will also be reviewed. 

1.2 Properties and nature of Gravitational Waves 

Perturbations in the curvature of space time are predicted to be produced by 

acceleration of mass. This situation is analogous to the emission of electromagnetic 

waves, which results from the acceleration of electric charges. Conservation of charge in 

electromagnetic theory precludes the existence of monopole radiation, and similarly, 

energy conservation (and hence, mass conservation) means no gravitational monopole 

radiation exists either. Furthermore, the conservation of momentum also forbids the 

existence of dipolar gravitational radiation. This differs from electromagnetism, as 

charges can have one of two signs; whereas only one sign of mass exists. Hence, 

gravitational waves are only produced when masses are accelerated 

non-axisymmetrically [2]. So the lowest order of radiation must be quadrupole. 
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For quadrupole radiation detectable on Earth from distant sources, the wave will 

comprise a superposition of two independent polarisations, + and x. The effect of these 

wave polarisations on a ring of free test mass particles is shown in Figure 1.1, where the 

wave is incident perpendicular to the plane containing the ring of masses. 

Ripples in the curvature are sent out at the speed of light and these waves produce a 

time varying tidal strain in space.  

L L+ΔL L L+ΔL
+ polarisation

x polarisation

 

Figure 1.1 A loop of test mass particles, showing the effects of a gravitational wave which interacts with 
the loop at normal incidence. 

The distance between two diametrically opposed masses in the ring will increase by an 

amount ΔL, whilst reducing by the same amount in the orthogonal direction. 

The strain amplitude h of the gravitational wave is defined: 

 

L
Lh Δ

=
2

 (1.1)
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Naively, it may seem a trivial task to construct a source of gravitational waves in the 

laboratory, therefore demonstrating their existence. However, as gravity is the weakest 

of the four fundamental forces of nature, the resulting wave would be of such 

diminutive magnitude that detection by any of the current or projected gravitational 

wave detectors would prove impossible. Indeed, this was considered by Saulson in 

1994 [2] with an estimation of the amplitude of a wave produced from two 1 tonne 

masses held two metres apart and rotated at 1 kHz. The resulting wave amplitude is 

h = 9 x 10-39 at a distance of 1 wavelength from the source. As we will see later in this 

chapter, this is some 17 orders of magnitude lower than the best detectable wave 

amplitude using current instruments. Hence, we need to look to astronomical sources 

where the masses involved are exceedingly large. 

1.3 Gravitational Wave Sources 

Ground based detectors are limited by a number of noise sources which will be 

discussed later in this chapter, and analysis implies that the greatest sensitivity occurs 

in the frequency band of a few Hertz to a few thousand Hertz. Therefore it is worth 

considering the types of sources which produce radiation in this frequency band. 

1.3.1 Burst Sources 

Sources resulting in a sudden short timescale emission of gravitational radiation are 

known as burst sources, and the mechanisms for radiation emission are astronomical 

events such as supernovae or binary coalescence.  

1.3.1.1 Supernovae 

Supernovae are some of the most violent events in the Universe and were an early 

motivation for development of resonant bar detectors. Stars have a finite lifespan, and 

when this comes to an end the star can undergo several processes, which in some cases 

can result in the emission of a burst of gravitational waves.  
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When the supply of fusible elements within a star core is depleted the outward pressure 

supplied by fusion reactions in the core disappears and there is nothing to support the 

core structure. For low mass stars less than the “Chandrasekhar mass” of 1.4 solar 

masses [14], the core will undergo a catastrophic gravitational collapse until the 

degeneracy pressure of electrons halts the collapse; for larger mass stars the electron 

degeneracy pressure is not able to support the core and therefore collapse will continue 

until neutron degeneracy pressure halts it. This sudden stop causes a rebounding shock 

wave and an outward explosion of the outer stellar layers creating the brightest and 

most visible object in the universe. During this collapse electrons and protons are forced 

together to form neutrons and neutrinos. Stars with mass greater than 20 solar masses 

collapse to form black holes [15], since neutron degeneracy pressure is not sufficient to 

resist the large gravitational attraction resulting from these very large masses.  

If the core collapses in a totally symmetrical manner then no waves will be produced; 

but if the core has significant angular momentum the collapse can occur asymmetrically 

and a burst of gravitational waves is emitted [16]. 

The gravitational wave strain amplitude from such supernovae was predicted by Schutz 

[17] to be: 
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where E is the total energy emitted, MΘ is the mass of the sun, f is the frequency of 

gravitational wave emission, τ is the time taken for the collapse, and r is the distance of 

the source from the detector. Schutz [17] predicted that even if only 1% of gravitational 

collapse events produced gravitational wave bursts of amplitude 10-21, the event rate 

experienced in advanced interferometric detectors would be of the order of 1 per day. 
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However, more recent modelling of core collapse by Muller [18] suggests that the wave 

amplitude may be less than Schutz predicted. 

1.3.1.2 Coalescing Compact Binaries 

The majority of stars that exist occur in multiples orbiting a common centre of mass. 

When such a system contains two stars it is known as a binary star system. If the stars 

contained are large density bodies such as neutrons stars or black holes the binary 

system is referred to as a “compact binary”. 

Three such binary companion systems can exist: 

1. Neutron star / Neutron star (NS/NS) 

2. Neutron star / Black Hole (NS/BH) 

3. Black Hole / Black Hole (BH/BH) 

The system PSR1913+16 which resulted in the Nobel prize for Hulse and Taylor is an 

example of a NS/NS binary system. These systems inspiral with increasing orbital 

frequency, and the energy lost in this process is emitted as gravitational radiation. In 

the final few seconds prior to merging the stars emit waves at a frequency and 

amplitude that is expected to be detectable by ground based gravitational wave 

detectors. 

Schutz [19] predicted the amplitude of waves emitted in this way to be: 
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where ( )
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+
= , with M1 and M2 the masses of the two binary companions, f  is 

the frequency of gravitational wave emission and r is the distance of the detector from 

the source. 

Observation of these sources will permit information on the populations of neutron stars 

in distant galaxies to be gathered.  

1.3.2 Periodic Sources 

1.3.2.1 Pulsars 

Individual neutron stars can also emit gravitational waves if they spin non-

axisymmetrically. Such stars have been observed through the radio emission of 

characteristic periodic pulses This gives rise to this naming of this class of astronomical 

object as ‘Pulsars’. 

Non-axisymmetric rotation can occur due to irregularities in the surface of the star, or 

from accretion of material from a companion star. The pulsar rotation spins down over 

time with emission of electromagnetic waves. There is the possibility of gravitational 

radiation contributing to the spin down. The ellipticity, ε, of the star is a measure of 

the deviation from perfect spherical symmetry, and from this the expected gravitational 

wave amplitude is [20]:  
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where frot is the rotational frequency of the star and r is the distance of the detector 

from the source. Estimates of the crustal shear moduli and breaking strengths have 

predicted the ellipticity ε to have an upper limit of around 10-4 to 10-6 [20]. If the Crab 

Pulsar (PSR B0531+21) is taken as a candidate pulsar (with distance of 2 kpc, 
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expected emission frequency of 60 Hz, and ellipticity of 10-4) the expected amplitude of 

gravitational wave emission h ≈ 4 x 10-25 would be anticipated.  

1.3.2.2 Low-Mass X-Ray Binaries 

Neutron stars such as pulsars can also exist in binary systems with ordinary stars, and 

if the matter is pulled off the companion by the strong gravitational field of the 

compact neutron star the system is known as a low-mass X-ray binary. This process of 

accretion causes an increase of angular momentum of the neutron star, and the star can 

reach an instability point known as the Chandrasekhar-Friedman-Schutz point where 

the rotation becomes non-axisymmetric and gravitational radiation emission can occur. 

Such stars are known as Wagoner stars [21]. These sources are predicted to produce a 

strain amplitude of [21]: 
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where lγ is the time averaged X-ray flux, m is the mode number and f is the frequency 

of the gravitational wave. 

1.3.3 Stochastic Background Radiation 

One other source of gravitational waves which may be large enough to be detectable is 

the “stochastic background”, which results from superposition of signals from a variety 

of different sources. Such background sources may include primordial gravitational 

waves originating from the Big Bang, from phase transitions in the early Universe, or 

from cosmic strings in the early Universe.  
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1.4 Experimental Gravitational Wave Detectors 

Currently, there are two broad classes of ultra-sensitive gravitational wave detectors in 

use and under development. The first is the resonant bar detector, as initially conceived 

by Weber, and more recently large scale laser interferometers have been developed. 

1.4.1 Ground Based Resonant Bar Detectors 

Weber’s original 1960s detectors [22] [23] were ground based devices which relied on the 

concept of the passing gravitational wave causing tidal strains on large cylindrical metal 

bars. The bars where chosen such that they had longitudinal resonances in the region of 

1600 Hz where Weber expected a wide peak of gravitational radiation originating from 

stellar collapse. If such a wave was incident on a resonant bar the tidal strain exerted 

on it would cause the cylinder to vibrate. This vibration could then be measured using 

a piezoelectric crystal transducer and amplifier. Weber’s detectors comprised large 

1.5 ton, 66 cm diameter aluminium cylinders, and several were constructed to permit 

the correlation of any observed gravitational wave events. 

Such coincidences began to occur in observed detector events in bars located in 

Maryland and California in 1968 [24], and several instances were observed in the 

subsequent 2 years [9] [25]. However, similar resonant bar detectors constructed by 

other groups failed to confirm these claimed detections, and subsequently more sensitive 

detectors have also not detected similar events. Therefore the early Weber detections 

were discounted [10] [26] [11]. 

However, bar detectors have continued to be developed, and currently there are several 

groups worldwide developing or running such detectors. These include a 2.27 tonne 

cryogenically cooled aluminium bar detector, Explorer, located at CERN in 

Switzerland [27] cooled to 2.6 K [28] and Nautilus in Italy [29] cooled to 0.1 K to reduce 

the effects of thermal noise (a phenomenon which affects interferometers too, and will 
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be discussed in detail in Chapter 2). In the Netherlands, a spherical bar detector, 

MiniGRAIL [30] [31], is also under development. This will also be cryogenically cooled 

to milli-Kelvin temperatures [32] to aid thermal noise performance. Other detectors 

include AURIGA (similar to Nautilus) in Italy [33]. 

Currently there have been many data taking runs undertaken with these detectors [34] 

[27] [35], with typical strain sensitivity of 10-19 - 10-20 for 1 ms gravitational wave bursts  

[27] [36].  

Resonant bar detectors are however limited to detecting gravitational waves in at 

frequencies close to the bar resonance, so an extension of the concept of the bar detector 

has been proposed by Cerdonio [37] using dual bar detectors, one contained within 

another providing a gap which could be set up as a Fabry-Perot optical cavity for 

differential motion sensing. The outermost resonator would be resonant at a frequency 

two or three times less than the inner one. This permits the extending of the frequency 

band detectable and passage of a wave that has a frequency between that of the two 

resonators will cause an anti-phase excitation of the two resonators allowing 

enhancement of the observed signal. However, analysis of the noise sources of this 

system suggests that it may be difficult to achieve competitive sensitivities [38]. 

1.4.2 Laser Interferometry 

Use of interferometry as a method for detecting gravitational waves was first proposed 

by Gertsenshtein and Pustovoit in 1962 [39] [2] and experimentally investigated by 

Forward in 1970s [40]. In its most basic form, a Michelson interferometer can be seen to 

be an ideal detector as seen in Figure 1.2.  
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Figure 1.2 Schematic diagram of a basic Michelson interferometer 

The interferometer, first conceived by Michelson and Morley [41], works by splitting the 

input laser beam into two components, each component then traversing an orthogonal 

arm of the interferometer, being reflected back along the path it came by the arm end 

mirrors. The returning light is recombined at the beam splitter and the resulting 

interference pattern is observed at the interferometer output by a photodiode detector. 

Passage of a gravitational wave will result in the interferometer undergoing a 

differential change in arm length, as shown in Figure 1.3. This process changes the 

interference conditions when the light from the two arms is recombined, allowing a 

signal to be recorded at the output of the interferometer. Interferometric gravitational 

wave detectors generally run with the interferometer output held (“locked”), close to a 

dark fringe, which minimises laser noise, whilst maximising the signal. This 

interferometer locking is achieved by applying a force on the mirrors proportional to the 

output signal, and this feedback is often taken as the output signal for analysis. 
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Figure 1.3 Effect on a ring of free test mass particles of the passage of a singularly polarised (h+) 
gravitational wave of period T (travelling perpendicular to the plane containing the masses) (top) and a 
Michelson interferometer (bottom). If made free to move the interferometer’s end mirrors act like the 
particles in the ring, and cause a detectable differential arm length change. 

Choosing the appropriate arm length depends on the incoming wave frequency, as the 

maximum sensitivity of the interferometer is realised when the storage time of the light 

in the interferometer arms is half the period of the gravitational wave. In this situation 

the light in the interferometer takes one quarter of the wave period to travel from the 

beam splitter to the end mirrors, striking the end mirrors at a time where they are 

maximally displaced, as shown in Figure 1.3. For a wave of frequency 100 Hz, the 

required storage time is 5 x 10-3 s, meaning an optimal arm length is: 

 
km750

2
105 3

=
×

=
− cL  (1.6)

This distance is clearly larger than is physically feasible to construct on earth due to 

the cost and size of infrastructure that would be required. Indeed, since the laser beam 

travels in a straight line, the curvature of the earth places a limit on the length the 

interferometer can be constructed. Therefore, different methods have to be employed to 
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provide a longer storage time for the light travelling within the interferometer arms. 

This can be achieved via delay line interferometry, or Fabry-Perot interferometry. 

1.4.2.1 Delay Line Interferometry 

Two delay line interferometer schemes are shown in Figure 1.4. The delay line utilises 

additional mirrors located near to the beam splitter, to permit an increased length beam 

path increasing the light storage time. 

Beam 
splitter

Laser
Beam 
splitter

Folding mirrors

a. b. 

Gaps for 
entering and 

exiting beams

Laser

 
Figure 1.4 Delay line interferometers a. Delay line using folding mirrors b. Herriot delay line using input 
mirrors with small gaps for entering and exiting beams 

The first scheme, shown in Figure 1.4a, uses folding mirrors at the end of the initial 

arm path to effectively double the storage time of the light in the arms. The second 

scheme is the Herriott delay line [42], and is shown in Figure 1.4b. This configuration 

uses two curved mirrors to give multiple transits between the pairs of mirrors. The 

innermost mirrors of the arms have small gaps in them to permit the light to enter and 

exit the arms. 

1.4.2.2 Fabry-Perot Interferometry 

Increased storage time and optical paths of interferometers can be achieved by utilising 

Fabry-Perot cavities in the interferometer arms. These cavities use a pair of mirrors, 

one of which is partially transmitting, and the other is highly reflective. These cavities 
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are then operated at resonance, with the energy stored in the arms being maximised by 

feedback to either the laser wavelength or the position of the end arm mirrors. Maximal 

energy is contained when the arm lengths are an integral number of half wavelengths. 

Laser

Beam 
splitter

Fabry
Perot 

cavities

 
Figure 1.5 Interferometry using Fabry-Perot cavities in the interferometer arms 

This technique is employed on several of the current interferometric gravitational wave 

detectors that will be discussed in section 1.6. 

1.4.2.3 Power and Signal Recycling 

Other optical techniques can be employed to further boost the output signal from 

interferometers. Such techniques include power recycling and signal recycling.  

Power recycling [43] is a method of increasing the laser power circulating within the 

interferometer, without increasing the power of the laser itself. Increasing the power 

contained in the interferometer increases the observable signal. Since the interferometer 

is operated held close to a dark fringe, most of the light exits the interferometer toward 

the laser rather than the output port. Thus, power within the interferometer can be 

increased by reflecting this light back into the interferometer. This can be achieved by 

placing a partially reflective mirror at the interferometer input port to reflect light back 

into the instrument, as shown in Figure 1.6a.  
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Figure 1.6a. Michelson interferometer with Fabry-Perot arm cavities and power recycling mirror at the 
input of the interferometer b. Michelson interferometer with Fabry-Perot arm cavities and signal 
recycling mirror at the output of the interferometer 

This mirror and the interferometer act as a resonant cavity allowing an additional build 

up of power within the interferometer, allowing additional sensitivity to be gained. 

Signal recycling operates in a similar manner, by reflecting output light back into the 

interferometer using a partly reflecting mirror. Since the interferometer is typically run 

in a state of destructive interference, any passage of a wave results in light produced at 

the output. Signal recycling forms a cavity between the interferometer and the signal 

recycling mirror similar to power recycling. Altering the position of this mirror allows 

tuning of the frequency at which the interferometer is most sensitive [44] [45].    

1.5 Interferometric Detector Noise Sources 

Bounds are placed on the sensitivity of gravitational wave detectors by a variety of 

noise sources, each of which contributes to the total noise over the band of frequencies 

where sources are hoped to be observed, and contribute different relative amounts at 

different frequencies. The following section will discuss the nature of these noise 

contributors and how to restrict their impact on detector sensitivity. 
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1.5.1 Quantum Noise – Photon Shot Noise 

In order to detect a phase change in the output signal of an interferometer, and 

therefore detect a signal induced by passage of a gravitational wave, the interferometer 

must be held (‘locked’) at a particular interference condition, with any change in this 

condition giving an observed output signal. This condition, or ‘interference fringe 

pattern’ could be chosen at any point on the fringe, however it is desirable to choose a 

condition where any observed signal is maximised and noise minimised (namely a high 

signal to noise ratio is attained).  

The greatest signal is achieved by locking the interferometer to a point half way up a 

fringe, where the fringe gradient is steepest and therefore the signal change is greatest 

for a given differential arm length change. Locking is achieved by actively feeding back 

to transducers which adjust the position of one of the test mass mirrors, using the 

changing interferometer output signal as observed by a photodiode. Analysis of this 

feedback signal, which contains the information on deviation of test mass position is 

therefore used to search for incoming gravitational wave signals. 

However, the ideal condition for minimising the noise in this signal and achieving a 

maximal signal to noise ratio is at, or near to a dark fringe (where the output light is 

minimised and hence the noise is also minimised) [46].  

Noise occurs due to statistical variations in the number of photons detected in a given 

time of observation. Assuming that the number of observed photons N in a time t 

follows Poisson counting statistics then the uncertainty in the number of photons will 

be N . The photon shot noise sensitivity limit can be given by [47] [2]: 
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where λ is the laser light wavelength, c is the speed of light, ħ is the reduced Planck’s 

constant ( π2
h ), L is the interferometer arm length, and Pin is the input laser power. For 

a simple Michelson interferometer arm length 4 km, the required input power to attain 

a strain sensitivity of 10-22, with laser wavelength of 1 μm, is some 31 kW.  

Achieving such power is a challenging experimental prospect with laser powers of 

several hundred watts currently being researched, however the effective input optical 

power can be significantly boosted by use of advanced techniques such as the 

Fabry-Perot arm cavities discussed in section 1.4.2.2 and power recycling described in 

section 1.4.2.3.  

1.5.2 Quantum Noise – Radiation Pressure 

Whilst shot noise can be successfully reduced by increasing the circulating laser power; 

another noise source known as ‘radiation pressure noise ’ is amplified by doing this. 

Radiation pressure can be considered to arise from fluctuations in the number of 

photons being reflected from the test mass mirrors. This reflection results in a force 

being applied to the test mass mirror that occurs since the photons impart momentum 

to the mirror, and if the number of photons striking the mirror fluctuates, so does the 

resulting force. The fluctuation can be considered to occur due to the statistical 

uncertainty in the way the beam splitter divides the input laser beam and therefore the 

statistical uncertainty in the number of photons in each arm of the interferometer [46]. 

However, a second more accurate explanation was given by Caves [48] in terms of the 

vacuum (zero-point) fluctuations in the electromagnetic field. Suppose some light enters 

the interferometer from the output port. If the light has the correct phase to increase 
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intensity in one arm it will decrease the intensity in the other arm, therefore giving 

anti-correlated variations in each arm. Whilst there is no actual source of light at the 

interferometer output, vacuum (zero-point) fluctuations from this direction cause such 

variations in the intensity in the arms, causing a fluctuating force on the mirrors. For a 

simple interferometer the radiation pressure noise can be expressed [2]: 
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where Pin is the input laser power, m is the mass of the mirror, L is the interferometer 

arm length, c is the speed of light and λ is the wavelength of the laser light.  

1.5.3 Standard Quantum Limit 

Photon shot noise and radiation pressure noise are both related to the quantum nature 

of light, but their statistics are independent, and therefore we can express their effects 

as one single ‘optical readout noise’ given by the quadrature sum: 

 ( ) ( ) ( )fhfhfh 2
rp

2
shoto.r.n. +=  (1.9)

Given that the both components of this depend on the value of the input laser power 

Pin with opposite scaling, the optimum laser power to use, Popt occurs when 

hshot(f )=hrp(f ) [2]. Equating expressions (1.7) and (1.8) gives: 

 2
opt mfcP λπ=  (1.10)

and in equation (1.9) this gives the ‘Standard Quantum Limit’: 

 
( )

2
1

1
SQL ⎟

⎠
⎞

⎜
⎝
⎛=
mfL

fh =
π

 (1.11)



CHAPTER 1 – GRAVITATIONAL WAVE DETECTION  

 
20

This sets a limit at to the minimum displacement that can be measured at a certain 

frequency using a simple interferometer. 

It is possible to reach the standard quantum limit over small frequency band by 

“squeezing the vacuum field” [49] [50], and it is possible to reduce the observed noise 

below the standard quantum limit in this way, as postulated by Braginsky [51] [52]. 

1.5.4 Seismic Noise 

Seismic noise results from ground vibrations in the vicinity, or far from the detector, 

which spuriously perturb the mirrors. This type of noise can originate from man made 

sources including vibrations from nearby traffic, railways or earthworks. Also, natural 

occurrences such as the effect of waves striking continental shelves also generate seismic 

noise in a detector. The specific seismic noise experienced in a detector depends on its 

location, and for seismically quiet locations on the earth’s surface, seismic noise in all 

three directions at a frequency f can approximately be given by 2
2 Hzm10
f

17 −−
 [2]. If the 

disturbance to a test mass is to be less than 2Hzm103×
120 −−  at 30 Hz then the 

reduction in horizontal seismic noise required is greater than a factor of 109 [53].  

Seismic isolation is therefore very important in reducing this noise source. Both vertical 

and horizontal motion must be attenuated as vertical motion can couple into horizontal 

motion and therefore interferometer noise. Horizontal isolation can be accomplished by 

hanging the mirror as a pendulum. The pendulum acts as a low pass filter, and the 

transfer function of a simple pendulum is given by [2]: 
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where xmass is the displacement of the mass at the end of the pendulum, xclamp is the 

displacement of the pendulum clamping point, fo is the resonant frequency of the 

pendulum and f is the frequency of the ground motion. It can be seen that for ground 

motions with  the attenuation is approximately: off >>
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At such frequencies the inertia of the mass means that the horizontal seismic motion 

transmitted to the mass is small in the time before the force changes direction. 

For frequencies  the transfer function approximates to: off <<
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In this case the frequency is low enough that the pendulum acts like a rigid system, 

transferring all the clamp motion to the mass. 

The transfer function for a 1 Hz pendulum is shown in Figure 1.7. The transfer function 

is bounded at the pendulum resonance fo by damping from internal friction, and 

internal friction will be discussed in chapter 2. 
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Figure 1.7 Transfer function of a 1 Hz pendulum 

The attenuation that a pendulum provides well above its resonant frequency can be 

further boosted by using a multiple pendulum system, with the transfer function of a 

multiple pendulum system of N pendulums being given by [2]: 
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Therefore to attenuate as much horizontal seismic motion as possible it is desirable to 

use multiple stage pendulums with low resonant frequencies to suspend gravitational 

wave detector mirrors. 

Additional vertical isolation is required as some coupling of vertical motion into 

horizontal motion does occur (of the order of 10-3 [54]) due to the way the pendulum 

must hang under gravity. So a laser beam can be passed between two mirrors over 

several kilometres, the mirrors cannot be orientated parallel to the local vertical (which 

will be discussed in section 2.8.2.4 of the following chapter of this thesis) – this occurs 
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due to the curvature of the earth which causes the local verticals at two separated 

locations to be non-parallel. This results in coupling of vertical motion to horizontal 

motion. Vertical isolation can be achieved using cantilever springs to hang the 

pendulums from [55]. 

1.5.5 Gravity Gradient Noise 

Random gravitational fluctuations in the vicinity of any ground based interferometric 

gravitational wave detector place limits on the sensitivity of detectors at low 

frequencies. This is known as gravity gradient noise [56] [57]. Fluctuations can occur 

due to changes in the distribution of matter in the proximity of the interferometer, and 

can also occur due to such instances as seismic waves in the ground near the test 

masses or vehicles passing close by. Seismic isolation cannot help in attenuating this 

source of noise. 

This source of noise will limit the sensitivity of future gravitational wave detectors 

below around 10 - 15 Hz. A possible route to reduction of this type of noise is to build 

the detector underground where gravitational fluctuations are reduced, or alternatively 

build a detector in space where gravity gradients are minimal. 

1.5.6 Thermal Noise 

1.5.6.1 Brownian Thermal Noise 

Thermal noise results from the thermally excited motion of the constituent atoms that 

make up the interferometer mirror suspensions. Equipartition of energy dictates that 

each degree of freedom of the atoms and molecules that make up the system has 1/2kBT 

of energy, where kB is Boltzmann’s constant, and T is the temperature. This random 

motion couples into excitation of resonant modes of the system, and this motion 

contributes to the displacement noise in the mirrors within the interferometer.  
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Thermal noise is one of the most important noise sources at low frequencies in current 

detectors, and research is focussed on reducing its effect. This thesis contains research 

on improving the thermal noise contribution of a number of components of the mirror 

suspensions, and as will be shown in detail in Chapter 2, the thermal noise can be 

reduced by use of low mechanical loss materials, and intelligent design to minimise its 

effects.  

1.5.6.2 Thermorefractive Noise and Thermoelastic Noise 

Bodies experience localised statistical temperature fluctuations throughout their volume, 

and this causes fluctuations in the refractive index of the material. This can affect both 

the mirror and beamsplitter substrates (of chosen materials that will be discussed in 

section 2.9) and mirror optical coatings (which will be discussed in Chapter 5). This 

fluctuation in the material properties (and hence the optical path length being changed) 

will result in a phase change in the light traversing or reflected from the beamsplitter 

and mirrors. This fluctuation in phase of the resulting signal is known as 

thermorefractive noise [58]. 

Braginsky showed in 2000 [58] that thermorefractive noise is a significant source of 

noise to be considered in advanced detectors that will seek very high sensitivities, and 

current gravitational wave detectors have thermorefractive noise that is typically of the 

order of 10-22 to 5 x 10-23 [59]. 

Thermoelastic noise is another form of noise that results from temperature fluctuations 

throughout a body. These variations in temperature result in mechanical displacement 

noise through the coefficient of thermal expansion of the material. Thermoelastic noise 

will be discussed further in Chapter 2.  
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1.5.7 Noise Spectra 

A typical theoretical sensitivity curve is shown in Figure 1.8, showing the contributions 

of the various noise sources within an interferometric detector [60]. 
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Figure 1.8 Theoretical sensitivity and noise sources for the GEO600 interferometric gravitational wave 
detector (described in the coming section), tuned to 250Hz, showing the contributions of the various noise 
sources. Noise sources marked “TN” are thermal noise sources, which will be discussed further in Chapter 
2. 

It can be seen that the best sensitivity can be achieved at mid-band frequencies, with 

seismic noise placing a steep limit at lower frequencies and photon shot noise reducing 

sensitivity at higher frequencies. 

1.6 Operational Interferometric Detectors 

Currently there are several ground based interferometric gravitational wave detectors 

operating around the world. The technology used in these instruments has been 

developed from early test prototypes which included a 3 m delay line prototype and a 

30 m instrument at the Max-Planck-Institute for Astrophysics in Germany [61] [62], a 
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10 m arm length interferometer with Fabry-Perot arm cavities in Glasgow [63], and a 

40 m prototype at Caltech [64]. 

1.6.1 LIGO Detector Network 

The LIGO (Laser Interferometer Gravitational-wave Observatory) detector network 

comprises 3 detectors at two independent widely separated sites. Two interferometers 

sharing the same infrastructure (one of 4 km arm length, the other of 2 km arm length) 

are located in Hanford, Washington; and a third 4 km detector is located in Livingston, 

Louisiana (Figure 1.9). 

  
Figure 1.9 LIGO 4km arm length detectors at Hanford, Washington (left) and Livingston, Louisiana 
(right). The Hanford instrument shares its infrastructure with a smaller with a 2km interferometer. 

The LIGO instruments use Fabry-Perot arm cavities, with end test mass mirrors 

suspended on single wire pendulums. The LIGO mirror suspensions will be further 

discussed in Chapter 3. 

The LIGO network has now undertaken 5 data taking science runs since 2002, with the 

most recent year long run being concluded in November 2007. These runs were 

undertaken in collaboration with the GEO600 detector, and the Japanese TAMA300 

detector joined in the third and fourth runs, to permit the confirmation of any signal 

received via coincident detections. Results of the fourth and fifth science runs are now 

being analysed. 
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With each run the interferometers have had their sensitivities improved as noise sources 

have been identified, and during the 5th run the LIGO sensitivity reached its design goal 

over most of the frequency band, as shown in Figure 1.10 [65]. 

 
Figure 1.10 Strain sensitivities of LIGO detectors at Hanford (LHO) and Livingston (LLO) during the 
first 5 data taking runs 

1.6.2 GEO600 

The GEO600 detector [66] has been developed in a collaborative effort between the UK 

and German groups. The detector is located in Ruthe, near Hannover and uses 600 m 

long arms with the interferometer configured as a delay line giving an effective arm 

length of 1.2 km. GEO600 employs more advanced techniques like power and signal 

recycling to increase interferometer sensitivity. Advanced low mechanical loss silica 

suspensions have been employed to reduce the effects of thermal noise. This technology 

will be discussed in Chapter 3. 
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Figure 1.11 Aerial view of the GEO600 detector with 600 m long perpendicular arms, at Ruthe, Germany 

GEO600 has also now completed 5 data taking runs in collaboration with the LIGO 

instruments [67], and similar to LIGO the sensitivity has progressively been improved 

as shown in Figure 1.12 [59].  
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Figure 1.12 Strain sensitivities of GEO600 detector during the first 5 data taking runs 
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1.6.3 VIRGO 

A more recent addition to the group of operational interferometers is the 3 km arm 

length European VIRGO detector located in Cascina, Italy [68] [69]. This instrument 

has been constructed as part of a joint collaboration between French and Italian groups. 

VIRGO is unique as it employs sophisticated 7 stage superattenuating pendulums to 

hang the test mass mirrors. This method aims to reduce the effects of seismic noise 

giving improved sensitivity down to 10 Hz [70]. 

 
 

Figure 1.13 VIRGO detector, Cascina, Italy 

VIRGO has completed commissioning [71] and has undertaken one data taking run, 

collaborating with the bar detectors AURIGA, Explorer and Nautilus [34]. This also 

overlapped the fifth LIGO/GEO600 science run. The sensitivity during this science run 

is shown in Figure 1.14 [72]. 
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Figure 1.14 Sensitivity of VIRGO during the first data taking run, October 2007. 

 

1.6.4 TAMA300 

TAMA300 [73] [74] [75] is a Japanese detector with short 300 m arm length, operational 

in Tokyo. TAMA uses Fabry Perot arm cavities similar to LIGO and also employs 

power recycling. The aim of the TAMA project is to develop advanced techniques that 

may be employed in future detectors. 

1.7 Second Generation interferometric gravitational wave detectors 

With many of the current detectors running close to their design sensitivities, research 

is now focussed on upgrades to improve sensitivity. These improvements should lead to 

a factor of 10 - 15 enhancement in sensitivity and thus will increase the number of 

potentially detectable sources observable by the current instruments. 
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1.7.1 Enhanced and Advanced LIGO 

With the LIGO detectors having now completed the fifth data taking science run, focus 

has moved to upgrades to the initial LIGO setup. These will take place in two stages, 

with the first upgrade called “Enhanced LIGO” now being undertaken. Changes that 

will be implemented in this upgrade will include increasing the laser power from 10 W 

to 35 W, which will give reduction in photon shot noise, and improved interferometer 

output sensing will be implemented together with reduction of noise from environment 

by placing all sensors in vacuum. 

This enhancement is scheduled for completion by the end of 2008, and will provide an 

initial testbed for some of the advanced technology to be utilised in the future upgrade 

commencing in 2010 - “Advanced LIGO”, a second generation detector network. 

Advanced LIGO will extend the modifications implemented in Enhanced LIGO, aiming 

to reduce noise by a factor of 10 - 15 over the initial LIGO interferometers (increasing 

the number of detectable sources by more than 1000). A further increase of laser power 

to 180 W [76] will be implemented, as well as employment of signal recycling as used in 

GEO600.  

Mirror and suspension thermal noise reduction will be achieved by advanced mirror 

suspension techniques pioneered in the GEO600 detector. Chapters 3 and 4 of this 

thesis detail research undertaken by the author in relation to suspensions for Advanced 

LIGO. Significant improvement is required in the seismic isolation of the mirror 

suspensions, with a reduction by over ten orders of magnitude to take advantage of 

reduced thermal noise [77]. 
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1.7.2 GEO-HF 

GEO600 will be used to maintain an “Astrowatch” vigil, remaining operational whilst 

the two 4 km LIGO instruments are upgraded to “Enhanced” status over the coming six 

months. The LIGO Hanford 2 km detector will also run in Astrowatch to complement 

GEO600 during the upgrade of the 4 km LIGO instruments. 

Upgrading GEO600 to give a sensitivity similar to that envisaged for Advanced LIGO 

is not feasible using the current arm lengths, and increasing the arm lengths is also not 

possible. Therefore, future upgrading of GEO600 will look to focus on improving and 

tuning for optimal sensitivity at higher frequencies to complement Advanced LIGO, in 

what is known as the GEO-HF project [78]. 

Improvements that may be implemented include increased input laser power, use of 

squeezed light, and use of lower thermal noise optical mirror coatings [78], as will be 

discussed in Chapter 5.  

1.7.3 Advanced VIRGO 

VIRGO will also undergo a two stage upgrade process, similar to LIGO. The first 

upgrade is VIRGO+ and this will adopt increased laser power. This upgrade may also 

look to change the main test mass mirror suspensions to monolithic fused silica 

suspensions as used in GEO600 and envisaged for Advanced LIGO. 

A second upgrade to “Advanced VIRGO” will follow afterwards, which will use 

monolithic suspensions, increased laser power, and lower thermal noise mirror coatings 

[79]. Advanced VIRGO aims to be operational on a similar timescale to Advanced 

LIGO [79]. 
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1.8 Third Generation Interferometric Gravitational Wave Detectors 

In the future even higher signal to noise ratios will be sought to allow more extensive 

determination of the astrophysical parameters associated with gravitational wave 

emission. However, further improvement of sensitivity will present even more 

experimentally challenging prospect. 

Continued reduction of mirror thermal noise by improving material properties may 

prove impossible, and cryogenically cooled mirrors may be required to allow 

improvement in this area. Increasing laser powers will reduce shot noise, but this will 

lead to increased mirror heating, and thermal distortions which may prove difficult to 

control. Use of non-transmissive optical components may prove necessary, and chapter 

6 of this thesis details work on the thermal noise that may occur from such components.  

A design study into one such detector called the “Einstein Telescope” is being funded by 

the European EC 7th Framework Programme award [80]. This aims to investigate the 

reduction of relevant noise sources by at least another order of magnitude.  

1.9 Space Based Detectors 

Gravity gradient noise places limits on the sensitivities attainable at very low 

frequencies, ruling out the possibility of observing sources such as massive black hole 

mergers or creation, which for objects of mass 103 - 104 MΘ will lie in the range of 10-4 to 

10-1 Hz. 

Flying an interferometer in space would allow escape from gravity gradient noise [81]. 

NASA/ESA are developing an interferometer system called LISA (Laser Interferometer 

Space Antenna) to do this [82] [83]. It will consist of 3 spacecraft located at the vertices 

of an equilateral triangle with side length 5 x 106 km. The spacecraft constellation will 
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fly in an orbit which would lag the Earth by approximately 20°, as shown in Figure 

1.15a. 

a.

Earth

20o

5 x 106km

Venus

Mercury

Sun

b.  
Figure 1.15a. Orbit of the three LISA spacecraft b. Artist’s impression of the three LISA spacecraft 

The spacecraft will each contain 2 freely floating test masses that will form the end 

mirrors of 3 interferometers of arm length 5 x 106 km. 

Currently launch of a technology demonstrator mission “LISA Pathfinder” is scheduled 

for 2010, with launch of the full mission being envisaged for 2018. 

1.10 Conclusions 

A variety of gravitational wave detectors are now operational around the world, with 

both bar detectors and long baseline interferometric detectors having undertaken 

several data taking science runs. Currently no signals have been observed, but analysis 

of the most recently acquired data is still ongoing.  

In order to guarantee the detection of gravitational wave signals, and open up the field 

of gravitational wave astronomy as a new way of looking at astronomical events, 

detectors of higher sensitivity are required. Suitably lowering of the various noise 

sources is however a significant experimental challenge. The remainder of this thesis 

focuses on the reduction of one aspect of the limiting noise – thermal noise, through 

monolithic suspension technology which will be discussed in Chapters 3 and 4, and 
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improved optical mirror coatings, detailed in Chapter 5. Chapter 6 will examine the 

thermal noise characteristics of non-transmissive optical components, which may be 

employed in third generation detectors to reduce the problems of thermal deformations 

of transmissive mirrors. 
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Chapter 2  
 
Thermal Displacement Noise 

 
 
 

2.1 Introduction 

One area of current research to improve the sensitivity of gravitational wave detectors 

is the reduction of thermal displacement noise. Thermal noise is a by-product of atomic 

vibrations in the lattice structure of the mirror suspensions, and the mirrors themselves 

– the suspensions have many resonant modes of oscillation, and the mirrors have many 

rigid body resonant modes. It is within these resonant modes in which the thermal 

vibration energy can reside.  

The resonant modes of the system can be modelled as classical harmonic oscillators, and 

hence the Equipartition Theorem decrees that each quadratic term, or degree of 

freedom that appears in the energy will have average energy of 1/2kBT. When 

considering harmonic oscillators, both kinetic and potential energies contain such 

quadratic terms, and hence the energy for each mode will be kBT. This is contained in 

thermal vibration energy of the atomic structure. In systems with multiple resonant 

modes, such as mirror suspensions, the energies for all modes will combine giving a net 

thermal motion of the front face of the mirror test masses. As will be shown, this 
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macroscopic motion of the mechanical system also leads to displacement noise at 

frequencies off resonance, and is therefore an important consideration over the entire 

range of detector frequencies. Its importance is paramount in the mid-band frequencies 

in the range 10 to 500 Hz, where it is currently a dominant noise source.  

It may seem intuitive that reduction in thermal displacement noise can be achieved by 

simply reducing the thermal energy contained in the interferometer mirrors and 

suspensions via temperature reduction. This is indeed possible, and the principle of 

reducing the thermal energy in this way has already been implemented in cryogenic 

resonant bar detectors like MiniGRAIL [32] [31]. However, cryogenics need considerable 

additional infrastructure that may give a potential increase in coupling of 

environmental noise into the interferometer. Also, the high circulating laser powers 

(necessary to reduce photon shot noise) would result in deposition of thermal energy in 

the mirrors, making cooling them a more technically demanding proposition. Therefore, 

research is currently focussed on lessening mirror suspension thermal noise by clever 

design, and we will see that use of materials with a low mechanical loss factor, φ, is 

important for the reduction of thermal noise across the detection frequency band. 

2.2 Brownian Motion 

“Brownian” motion derives its name from the botanist Robert Brown. In 1827 Brown 

observed random motion of pollen grains suspended in water, and also observed this 

motion in trajectories of non-organic dust and mineral particles [84]. Brown could not 

provide a clear explanation for the observed motion, but did infer that he believed it 

was linked to the particles themselves. Hindsight reveals that Brown was close to 

discovering a link to thermal energy and temperature – and viewed samples that had 

been heated, but were subsequently quenched prior to observation. Mathematical 

models that describe this motion, developed later, are the same as those that can be 
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used to describe the atomic thermal motion in solid bodies, and therefore thermal noise 

is also often known as “Brownian” thermal noise.  

True physical explanation of Brown’s discovery was not forthcoming until Einstein used 

the molecular-kinetic theory of heat to predict the motion that Brown (and 

subsequently others) had observed, showing that random Brownian motion resulted 

from fluctuation in the number of collisions experienced by the pollen grains with the 

thermally driven water molecules [85] [86]. 

2.3 Einstein and Dissipation 

Einstein’s also realised that the random thermal driving force that caused Brownian 

motion would also exert a resistive drag on any particle that was moved through the 

liquid. This results in energy dissipation by the particle. This was an early 

demonstration of what was later to be formalised as the “Fluctuation-dissipation 

theorem” [87] [88]. It states that for any linear system in thermal equilibrium there is a 

relationship between the fluctuation in the system and the dissipation.  

The theorem relates the power spectral density, SF(ω), of the thermal driving force, to 

the real part of the mechanical impedance (the dissipation) of the system: 

 ( ) ( ) ( )( )ωωω ZTkFS B ℜ== 4
2
thermalF

(2.1)

The mechanical impedance is defined: 

 

v
FZ =  (2.2)

where v is the velocity response of the system resulting from an applied force F. The 

power spectral density of the displacement is: 
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In the detector mirrors and suspensions, dissipation is seen as damping in the system. 

The fluctuation dissipation theorem is valuable in allowing us to relate the damping to 

the thermal driving force, and ultimately to the resulting displacement noise observed 

in a detector, and this will be demonstrated later in this chapter. 

It is informative to first consider some of the forms of damping that can exist in a 

detector suspension. 

2.4 Forms of Damping 

Damping in suspensions can be classified into two forms – external and internal. 

2.4.1 External Damping 

• Gas damping results where impacts of gas molecules with the suspension 

elements give rise to viscous damping. The impacts, similar to Brownian motion 

result in a frictional dissipation. 

• Thermal energy from the motion of the suspension elements can be dissipated as 

recoil energy into the structure that supports the suspension 

• Dissipation can arise from friction at the points where the suspension are 

clamped 

• Energy loss in eddy current or hysteresis damping 

2.4.2 Internal Damping 

With clever design and careful implementation, external damping sources can generally 

be lowered to a level which is no longer dominant, and hence internal damping becomes 
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the dominant means of dissipation. Internal friction is a result of the pendulum 

suspension materials not behaving elastically – namely they do not follow the ideal form 

of Hooke’s law: 

 kxF −=  (2.4)

where x is the resulting displacement of the system to an applied force F, with spring 

constant k. This implicitly implies that the application of a force will generate an 

instantaneous displacement. Any true material will, however demonstrate anelasticity, 

namely a delay in response to the application of any external force.  

One can imagine this if we model the system as an array of springs and a dashpot as 

shown in Figure 2.1.  

 

Spring 1 

Spring 2 

Dashpot 

Instantaneous force F 

Figure 2.1 Simple representation of an anelastic material, with a single relaxation process. 

If an instantaneous force F is applied, both springs will compress and the dashpot does 

not move. Over a certain period after the application of the force the second spring will 

relax moving the dashpot. In real materials this relaxation occurs due to the inability of 

the internal degrees of freedom to adjust instantaneously to a new state. The relaxation 

often follows the Arrhenius law with an exponential relaxation given by: 
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Tk
E

a
Be
Δ

−

= τττ  (2.5)

where ττ is the characteristic relaxation time, ΔE is the potential energy barrier that 

needs to be traversed to move to the new state and τa is the characteristic time between 

barrier crossing attempts [2]. 

To model anelastic materials we must include the phase lag of the system response, and 

this can be achieved by using Hooke’s law in complex form [89]: 

 ( ) ( )( )xikF ωφω +−= 1spring  (2.6)

where φ(ω) is the known as the mechanical loss of the material, and represents the 

phase angle in radians that the strain response lags behind the driving force. The 

mechanical loss can be considered as the degree of anelasticity of the spring, and is a 

very important property when considering thermal noise. For a thermal driving force 

Fthermal(ω) the differential equation of motion for a system with internal friction is: 

 ( ) ( )( )xikFxm ωφω +−= 1thermal�� (2.7)

Solutions take the form , meaning ti
oexx ω= xix ω=�  and . Therefore it can be 

shown that: 

xx 2ω−=��

  ( ) ( )( )ωφ
ω

ωω iFxmi ++= 1thermal� xik�
 

       ⇒    ( ) ( )( )ωφ
ω

ωω ixmiF +−= 1thermal � xik�
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The real part of this expression is: 

 ( )
( ) ( )( )222

1
ωφω

ωωφ

kkm
k

Z +−
=⎟

⎠
⎞

⎜
⎝
⎛ℜ (2.10)

which allows the fluctuation-dissipation theorem to be written: 
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with k=ωo
2m. This leads to an expression for the root mean square thermal 

displacement: 
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It is clear that the mechanical loss factor φ(ω) is very important in determining the 

displacement noise that will occur in a detector. However, direct measurement of 

displacement noise at arbitrary frequency is not easy as the magnitude of the noise is 

usually much smaller than any experimental noise floor, and therefore finding an 

experimental setup which has low enough noise is challenging. A less experimentally 

challenging method of determining the mechanical loss of a system is to measure the 

quality factor, Q, of resonances of the system.  

The quality factor is defined [90]: 
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Q can also be usefully defined by [90]: 

 
( )

b
mQ o

o
ωω =  (2.14)

where b is the damping coefficient of the system. This coefficient is the real 

(dissipative) part of the mechanical impedance, Z, which at resonant frequency is given 

by 
( )
oω
ok ωφ

 from equation (2.8). With k=ωo
2m it follows immediately that: 

 
( ) ( )ooQ

ωφ
ω 1

=  (2.15)

This is important, as measurement of Q can be more readily achieved in a laboratory 

setting.  

Equation (2.15) only describes the mechanical loss of a system at resonant frequencies 

of the system, and does not imply the behaviour of the mechanical loss off resonance, so 

therefore it is important to consider the form φ takes through the full frequency 

spectrum. 

2.5 Mechanical Loss Factor φ 

There are two possible forms that the mechanical loss factor can take – either frequency 

dependent or, frequency independent. 

Frictional dissipation is commonly modelled by a velocity proportional damping force: 

 xbF �−=friction  (2.16)

Damping in this manner is known as viscous damping. 



CHAPTER 2 – THERMAL DISPLACEMENT NOISE  

 
44

The imaginary part of equation (2.6) is the dissipative part, and this can be expressed 

as: 

 ⇒ ( )( ) ( ) xbFxikF �−==−=ℑ frictionspring ωφω  (2.17)

With xix ω=� , with and k
bA =  the mechanical loss can be seen to have a linear 

frequency dependence. 

 ( ) ωωφ A=  (2.18)

However, experimental evidence [91] suggests that this is not a realistic model for many 

materials, and that a frequency independent (“structural” damping) model is more often 

appropriate. In this model it is believed that each loss mechanism has its own resonant 

loss peak (“Debye peak”) at a frequency that characterises the particular loss 

mechanism and anelastic relaxation process. These loss peaks have a spread of 

frequencies separated by several orders of magnitude. When examining frequencies far 

from the loss peaks, the mechanical loss can be considered as effectively constant over 

the frequency range [92]. The detection band for gravitational waves lies in one of these 

regions between peaks, as in regions between the peaks the lower loss results in lower 

thermal noise, permitting increased sensitivity. Losses displaying this frequency 

invariance have been reported in a variety of solids by Kimball [93].   

2.6 Thermoelastic Noise 

Another source of dissipation is thermoelastic dissipation, which does show frequency 

dependence. This dissipation occurs when temperature variations occur in an object give 

rise to a heat flow. It can affect both thin beam-like objects, as studied by Zener [94], 

and Nowick and Berry [95], such as the mirror suspension fibres, as well as the test 

mass mirrors themselves. 
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2.6.1 Thermoelastic Noise in Suspension Fibres 

Consider a moving suspension wire or fibre. When this element bends back and forth 

one side will expand and the opposite side with compress. The expansion will result in 

cooling, whilst the consequence of compression is heating, governed by the material’s 

thermal expansion coefficient, dTl= dl1α . This results in a temperature gradient being 

introduced across the fibre, and the resulting heat flow that returns the material to 

thermal equilibrium is energy that is dissipated. This effect is thermoelastic dissipation. 

Consider now a wire or fibre at rest. If local temperature variations cause one side of 

the wire or fibre to be heated or cooled then expansion or contraction will occur, 

causing bending in the wire.  This results in a net displacement of the wire or fibre 

(which will deflect the test mass suspended on it) and is therefore a source of 

displacement noise within a detector – thermoelastic noise.  

The thermoelastic loss attributable to this process can be expressed as [95] [94]: 

 
( ) 22ticthermoelas 1 τω

ωτωφ
+

Δ=  (2.19)

with:  

 

C
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For rectangular cross 
section wire: 

κ
ρ
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For circular cross section 
wire: 

κ
ρ

π
τ Cd

32.4
1

=  (2.22)

where Y is the Young’s modulus of the material, T is its temperature, τ is the 

characteristic time for the heat to cross the wire, t is its thickness (if rectangular cross 
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section), d is the diameter (if circular cross section), C is the specific heat capacity of 

the material, κ is its thermal conductivity and ρ is its density. 

Thermoelastic loss in wires and fibres will be further discussed in Chapter 3. 

2.6.2 Thermoelastic Noise in Test Mass Mirrors 

Statistical temperature variations throughout a body like a test mass can also result in 

thermoelastic dissipation – this is relevant for the crystalline materials sapphire and 

silicon, which are candidate materials for future detector suspensions (these materials 

will be discussed in section 2.9). Braginsky [96] derived the expression: 

 

( ) ( )
2322

222

ticthermoelas
2

18
ωρπ
σκα

ω
o

B

rC
Tk

x
+

= (2.23)

for the displacement due to thermoelastic noise, where ρ is the material density, σ is 

Poisson’s ratio, κ is the thermal conductivity, ro is the radius at which the incident 

laser beam intensity has fallen to e
1  of its maximum value.  

quency: 

This is derived for an infinite sized test mass, and a correction factor has been 

determined for finite sized test masses by Liu and Thorne [97]. 

2.7 Noise Spectra as a Function of Mechanical Loss 

Equation (2.12) shows that the level of thermal displacement noise of the system is 

dependent on the mechanical loss factor, and the thermal noise also depends on the 

frequency being considered.  

2.7.1 Single Resonance Systems 

There are three possible frequency cases that can be considered, when ωo is the 

resonant fre
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• ω << ωo 

• ω = ωo 

• ω >> ωo 

Consider equation (2.12) for the r.m.s. thermal displacement in a single resonance 

system with ω << ωo : 
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For very low mechanical loss materials φ(ω) << 1 this reduces to: 
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For ω >> ωo : 
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which reduces for φ(ω) << 1 to: 
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It is therefore clear that to reduce off resonance thermal noise at frequencies both above 

and below resonance, we must reduce the mechanical loss of the system. Since energy in 

the system is conserved, and the equipartition theorem decrees that a harmonic system 

must have kBT of energy per mode, then if the loss is reduced off resonance (and hence 

the displacement noise is also reduced), more energy must be contained at resonance – 

namely the resonant motion will be increased. 

Setting ω = ωo in equation (2.12): 
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Therefore, if the mechanical loss factor is reduced to a very low level of φ(ω) << 1 then 

it is clear that the motion on resonance is greatly increased. 

These are significant results, as they reveal that reduction of the mechanical loss of the 

system changes the thermal energy distribution, with more of the energy contained in 

resonant motion of the system. Generally the frequencies of this motion are outwith the 

gravitational wave detection frequency band of 10 Hz to 500 Hz. Hence, a reduction in 

mechanical loss of the system will also yield a reduction in thermal displacement noise 

in the detection band – this noise reduction allows greater sensitivity. 

Therefore, detector mirror suspensions use low loss or high Q (as shown by equation 

(2.15)) materials and suspension systems to achieve a reduction in noise. 
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2.7.2 Multi-Resonance Systems 

Real mirror suspensions are not limited to having single resonances, and therefore the 

contribution from all the resonances must be considered. Assuming that the resonant 

frequencies lie above the band of detection, then equation (2.24) can be used in a 

generalised form for a system with n resonant modes: 
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(where φ i ω) is the mechanical loss associated with the ith mode, α im is the effective 

mass of the thi  mode, with α i as an empirical coefficient which characterises the mode 

coupling into the interferometer, which is dependent on the laser spot diameter [98]. 

This is an idealistic method however, as it assumes the masses have homogeneous 

mechanical loss distribution. Additionally, it assumes no correlation of resonant motion 

between different modes. These issues were addressed by Levin [99], who applied the 

fluctuation dissipation theorem directly to give the thermal displacement of the front 

face of a test mass as: 
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where WDiss is the power dissipated when applying an oscillatory force, magnitude Fo on 

the front face of the test mass. 

2.8 Mirror Suspension Modes 

With the concept of minimising off resonance noise by containing as much energy as 

possible at resonance, it is worth studying the different types of resonant mode that can 

exist in a detector mirror suspension. Modes exist as both internal modes of the actual 
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test mass, and also modes of the suspension elements used to support the mass. The 

motion of the suspension elements can couple into motion of the mass which will 

contribute to the detector noise. 

2.8.1 Internal Modes of the Test Mass 

Internal modes of the test mass mirror occur when the centre of mass of the mirror 

remains stationary, but the mass oscillates in shape. It is intuitively clear that any 

change of shape that causes deformation of the front face of the test mass will lead to 

noise in the detector. Some modes therefore contribute more thermal noise than others, 

dependent on the internal mode shape.  

Typical mode shapes of an Initial LIGO fused silica test mass are shown in figure and 

similar modes are observed in the test mass samples studied in Chapter 5.  

       
Figure 2.2 Typical Mode shapes of an Initial LIGO 10.7 kg test mass. 

Actual frequencies of the resonances do not encroach into the detection frequency band, 

as they are typically > 10 kHz, though their off resonance noise contribution is still 

important. 

2.8.2 Modes of Suspension Elements 

2.8.2.1 Pendulum Modes 

Whilst much is gained by the reduction of seismic noise by suspending the mirror as a 

pendulum, there are thermal noise considerations with this kind of suspension. The 
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longitudinal pendulum mode with motion along the axis of the interferometer arm will 

couple directly into the detector noise. Usually the mirror pendulums are designed such 

that this resonant frequency is below the detection band. Use of a pendulum also 

permits reduction of thermal noise as will now be demonstrated.  

2.8.2.2 Mechanical Loss of a Pendulum Suspension 

Consider an idealistic single pendulum, comprising a mass m suspended as a simple 

pendulum by suspension wire of length l from an infinitely rigid ideal clamping 

structure (namely, there are no external mechanisms of energy dissipation). 

When laterally displaced, the pendulum experiences both a gravitational restoring force, 

and another provided by the elasticity of the tensioned suspension wire. For a simple 

pendulum, the restoring force is governed by Hooke’s law, with spring constant [100]: 

 

l
mgk =gravity  (2.28)

The elastic spring constant for the wire is [89]: 

 

2wire 2l
TYIk =  (2.29)

where T is the wire tension, Y is the Young’s modulus of the wire material, and I is the 

second area moment of the suspending wire. This value is computed from: 

4

4rI π
=  for circular cross section fibres 

12

3baI =  for rectangular cross section fibres 
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where r is the fibre radius, a is the thickness of the fibre in the direction of bending, and 

b is the thickness in direction perpendicular to this. 

These spring constants can then be used to calculate the mechanical loss in the 

pendulum. Returning to the definition of mechanical loss given by equation (2.13): 

( )
stored

cycleperlost

2 Eπ
ωφ =

E
 

The potential energy stored in the wire is:  

 2
wirewireinstored 2

1 xkE =  (2.30)

Dissipation of energy in the form of internal friction will occur in the bending of the 

wire, resulting in the dissipation of some fraction α of the potential energy stored in the 

wire, meaning the energy lost per cycle is: 

 2
wirecycleperlost 2

1 xkE α=  (2.31)

The mechanical loss of the material of the suspension wire follows: 
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The gravitational field is conservative, so no dissipation of the gravitational energy 

occurs, meaning the energy stored is given by: 

2
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The mechanical loss of this complete pendulum system is then: 
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Clearly kwire< kwire+ kgravity and therefore it can be seen that the mechanical loss of the 

pendulum is less than that of the material of the supporting suspension wire, 

demonstrating an advantage of using pendulums to support mirrors in gravitational 

wave detectors. 

Typically, the suspension wires are very thin, meaning the value kwire<< kgravity . Taking 

this, we can express the mechanical loss of the pendulum more simply as: 
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The ratio of gravitational and wire spring constants is known as the pendulum dilution 

factor, D, and with the aid of equations (2.28) and (2.29) can be expressed: 

 

mgl
TYI

k
k

D l
mg
l
TYI

2
1 22

gravity

wire ==≈  (2.34)

The dilution factor can be considered as the factor by which the mechanical loss of the 

pendulum is reduced over the mechanical loss of the wire. Care must be exercised when 

considering dilution in pendulums with more than one suspension fibre, like those used 

in mirror suspensions. Use of n identical wires will result in bending, and therefore 

dissipation, in all wires. Therefore, dilution must be multiplied by the number of wires. 

Furthermore, dilution also depends on the pendulum mode considered. Double wire 

suspensions will have one pendulum mode where bending occurs at the top of the wires 

only, and one pendulum mode where bending happens at both the top and bottom of 

the wires, as shown in Figure 2.3. In this case the number of dissipative points in the 

wire is doubled. Therefore a general expression for the dilution factor is: 
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where n is the number of wires, and β takes the value of unity if the wires bend only at 

the top, and the value 2 if they bend both top and bottom.  

a. b. c.

Pendulum mode 
with wire bending 
top and bottom

Pendulum mode 
with wire bending at 

top only

Wires bend 
top and 
bottom

Wires 
bend at 
top only

 
Figure 2.3 a. Pendulum modes for 2 wire pendulum b. Bending occurring at top only c. Bending 
occurring both top and bottom 

Clearly, as we have seen, if the mechanical loss at the pendulum resonant frequency has 

been reduced from that of the wire material by dilution, then less thermal energy is 

contained off resonance meaning that there is less off resonance thermal noise. 

Therefore, the use of a pendulum is advantageous for both seismic and thermal noise 

reasons. 

2.8.2.3 Violin Modes 

The thin suspending wires that hold the mirror also have transverse modes of vibration. 

The test mass experiences a very small recoil due to this motion. These modes are 

universally known as “violin modes”. If we imagine the motion of the mass resulting 

from these modes as very small then the violin modes can be approximately modelled as 

transverse modes on a vibrating string clamped at both ends. It can therefore be shown 

that the frequency of the nth harmonic violin mode is then [100]: 
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where L is the length of the suspension wire, T is the tension in the wire, μ is the wire’s 

mass per unit length. It is clear therefore that the frequency of the violin modes can be 

altered by changing the length of the wire suspension, or by changing the tension in the 

wire (namely changing the suspended mass when considering a mirror suspension). 

Additionally, varying the length or tension can also change the separation in frequencies 

between harmonics, which can be seen when considering the rate of change of frequency 

with respect to mode number: 
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Shorter suspensions will therefore have greater frequency separation between adjacent 

modes. 

It can be shown that [101]: 

 ( ) ( )ωφωφ pendulumviolin 2=  (2.38)

Since the mechanical loss of the suspension wires or fibres is very low, the thermal 

motion due to the violin modes is concentrated in narrow regions around the resonant 

violin mode frequencies, meaning that only those resonant frequencies significantly 

contribute to the thermal noise. These can be filtered out of data using notch filtering, 

since they have very narrow peaks in the frequency spectrum. 
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2.8.2.4 Bounce, Pitch, Yaw and Roll Modes 

Other modes that exist in a mirror suspension include the vertical bounce mode, pitch, 

yaw and roll modes of the test mass, and these are schematically illustrated in Figure 

2.4.  

 

Suspension 
fibres 

Test 
mass 

Yaw 
mode 

Pitch 
mode

Vertical 
Bounce 
mode

Roll 
Mode

At 
rest 

Figure 2.4 Bounce, roll, yaw and pitch modes of a test mass suspension 

Keeping the laser beam as close to the centre of the mass as possible will minimise the 

noise contribution from the pitch and yaw modes. Design of suspension is important to 

keep the vertical bounce frequency in a certain frequency band, as energy can couple 

into horizontal motion which will then be a noise source. This coupling can occur if the 

interferometer arms are long enough such that the test mass does not hang parallel to 

the beam splitter or inner test mass of the Fabry Perot cavity due to the curvature of 

the earth. This occurs as the test masses have to be orientated parallel to each other so 

that the laser beam is returned along the path it came. However, this is not parallel to 

the local gravitational acceleration, and therefore coupling into arm length change from 

the bounce results as shown in Figure 2.5. 
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Figure 2.5 Vertical bounce mode coupling into arm length change (and hence displacement thermal noise) 
of a long interferometer arm. 

Suspension bounce frequencies will be discussed further in Chapter 3. Pitch, roll and 

yaw modes are damped to reduce their resonant motion via coils acting on magnets 

attached to the test mass as in LIGO [102] or via control of the uppermost mass in the 

main test mass suspension of GEO600 [67]. 

2.9 Low Loss Suspension Materials 

Currently, all first generation interferometric gravitational wave detectors use fused 

silica as mirror substrate material, with GEO600 using this material for the suspension 

fibres also. Fused silica combines suitable optical properties [103] with ultra low 

mechanical losses, and is therefore an appropriate suspension material. 

2.9.1 Empirical Models of Mechanical Loss of Fused Silica 

Recent studies by Penn et al have shown that many of the previously measured 

mechanical loss values for fused silica can be seen to fit a semi-empirical model [104], 

and that this could potentially be used to predict the mechanical loss of any given silica 

sample.  

In this model the mechanical loss is made up from the sum of several components 

comprising internal friction from the substrate material, dissipation at the material 

surface and material thermoelastic loss. 

By this method, the mechanical loss of fused silica can be represented: 
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where represents the mechanical loss of the substrate (“bulk loss”), 3
2

CfC
V
SC1  

represents the contribution of the material surface (“surface loss”), and th4φC  represents 

the contribution of thermoelastic damping. 

Work is ongoing to refine this model and some measurements of certain types of fused 

silica have shown mechanical loss values lower than Penn’s model currently predicts 

[105] [106]. 

The research detailed in this thesis is focussed on suspensions constructed from fused 

silica, although detectors may employ other materials when they reach their third 

generation. 

2.9.2 Other Suitable Materials 

2.9.2.1 Sapphire 

Fused silica is not the only candidate material for use in gravitational wave detectors. 

Studies of various materials have identified sapphire as another low mechanical loss 

material [107] [108] [105]. Sapphire has the additional benefit that it is more thermally 

conductive than fused silica, which would permit sapphire mirrors to support a higher 

incident laser power before thermal deformation of the mirror becomes large enough to 

contribute significant excess noise from scatter. 

However, it has been noted that thermoelastic noise may be more dominant than 

thermal noise for sapphire, and for this reason, fused silica continues to be the material 

used in detector mirror suspensions.  
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2.9.2.2 Silicon 

Future detectors may choose to manage the level of thermal noise by cooling the mirror 

suspensions to cryogenic levels. Care must be exercised when considering what materials 

are suitable for cryogenic use, due to changing material properties over the temperature 

range. Fused silica is not suitable as a cryogenic suspension material as it exhibits a 

broad peak in mechanical loss at around 40 K [109] [110]. 

Sapphire does not exhibit this loss peak [111], so is more suitable for cryogenic use, 

however it only exhibits significant performance gains at temperatures below 30 K [112]. 

With transmissive interferometer optical configurations absorption of the laser light by 

both the reflective mirror coatings and the sapphire substrate itself results in heating 

that would make cooling to sub-30K difficult to achieve. 

However, interferometers containing no transmissive components are possible. Such 

topologies can be attained by use of diffractive coupling mirrors [113]. These topologies 

permit the use of opaque suspension materials. Studies have shown that silicon has 

many valuable properties that give advantages over sapphire. Measurements by Reid 

et al [114] [105] [115], have shown that mechanical loss decreases with temperature for 

silicon, meaning a reduction in thermal noise. Additionally, silicon has nulls in its 

thermal expansion coefficient at 18 K and 120 K, implying that thermoelastic noise is 

reduced to zero at these temperatures. Silicon has been seen to exhibit loss peaks at 

13 K and 115 K. These peaks are not well understood, and it is unknown whether they 

are linked to the nearby nulls in thermal expansion coefficient. If the peaks can be 

reduced or moved to different temperatures, use of silicon in a cryogenic detector 

running at 18 K or 120 K is a potentially viable method of attaining improved 

sensitivities for cryogenic gravitational wave detectors. 
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2.10 Conclusions 

Thermal noise reduction is one of the biggest challenges facing the next generation of 

gravitational wave detectors. It has been shown that the fluctuation dissipation theorem 

can be used to relate the thermal displacement motion to the mechanical loss factor of a 

system. We have seen that reduction of mechanical loss factors for the materials used in 

detector suspensions is a viable method by which off resonance thermal noise can be 

reduced.  

Measurement of the mechanical loss of a system has been shown to be attainable by 

measurement of the quality factor of the system’s resonances. Dilution of mechanical 

loss of pendulum suspension has been demonstrated as an effective method of reduction 

of the thermal noise associated with a pendulum suspension. 

Finally, material choices for current and future detectors have been considered, with 

demonstration of the desirability of using fused silica for current interferometric 

detectors. The remainder of this thesis will study aspects of fused silica suspensions for 

second and third generation gravitational wave detectors, with the aim of reduction of 

thermal noise in both the suspensions and the mirrors themselves. 
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Chapter 3  
 
Characterisation of mirror suspension 
fibres 

3.1 Introduction 

With the first generation interferometric gravitational wave detectors having recently 

completed their fifth data taking run at, or close to, their design sensitivities [116] [67] 

[117], research is now focussed on implementing further increases to sensitivity. 

Improvements such as “Enhanced LIGO” [118] will extend the capabilities of the first 

generation detectors, with large scale upgrades taking them into their second generation 

following thereafter.  One such upgrade will be “Advanced LIGO”. An area of focus for 

sensitivity improvement in Advanced LIGO is reduction in thermal noise by 

improvement of the interferometer mirror suspensions [54] [55]. This chapter details 

research carried out on characterising suspension elements proposed for use in the 

Advanced LIGO test mass mirror suspensions.  

The first generation detectors have utilised different approaches in suspending the 

interferometer end mirrors. It is therefore useful to first consider the suspension 

techniques employed in two of the current gravitational detectors together with their 

advantages and drawbacks. 
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3.2 First Generation Detector Suspensions 

3.2.1 Initial LIGO Mirror Suspensions 

The three initial LIGO interferometers use a comparatively simple single mass stage 

with a 10.7 kg fused silica mass in a sling suspension using a loop of 310 μm diameter 

steel piano wire to give a single pendulum, as shown in Figure 3.1 [119].  

a.    b.  
Test mass 

Clamp 

Suspension 
wire 

Figure 3.1 a. Initial LIGO test mass suspension and frame b. Cutaway drawing showing suspension wire 
loop and clamp 

Control of the suspension is gained by use of magnets attached to the rear face of the 

mass, with coils acting on them. 

This type of suspension experiences a relatively high mechanical loss due to the use of 

steel wire as a suspension material – the typical mechanical loss has been seen to be of 

the order of 10-4 [120] compared to 10-6 and below for the fused silica of the mass [91] 

[121]. Additionally, the Young’s modulus of steel (200 GPa) is nearly triple that of 

fused silica (72 GPa) meaning that the dilution factor of steel suspensions is a factor of 

3 less than silica suspensions, from equation (2.35) (with all variables apart from 

Young’s modulus held constant). Another source of dissipation in this type of 
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suspension results from frictional damping that occurs at clamps and break off points – 

these being the points in the suspension loop where the wire loses contact with the 

mass.  

3.2.2 GEO600 Mirror Suspensions 

The UK-German GEO600 detector operates with an arm length of 600 m, with delay 

line interferometry employed allowing effective arm length of 1.2 km. This is smaller 

than the 4 km arms of the LIGO interferometers meaning that advanced techniques are 

required to ensure GEO600 can attain a similar level of sensitivity to LIGO. 

One area where sensitivity gains are made in GEO600 is through the advanced mirror 

suspension technology that has been employed. GEO600 uses a triple stage pendulum. 

Two stages of cantilever blade springs are used – one to support the triple suspension, 

and a second within the top mass, providing additional vertical isolation to the lower 

two masses. This is important as vertical motion can couple into horizontal motion of 

the test mass as was shown in section 2.8.2.4. 

The lower two masses are both fused silica. Thermal noise is reduced by utilising fused 

silica fibres of 280 μm diameter to hang the lower test mass – these have lower 

mechanical loss than the steel wires of LIGO [122], and lower Young’s Modulus, 

allowing improvement of the dilution factor of the longitudinal pendulum mode of 

suspension, and also reducing the mechanical loss of other suspension modes (such as 

violin modes). Wire break offs are also eliminated from the lower test mass. The fibres 

are welded to fused silica “ears” which are silicate bonded to flats on the sides of the 

masses [54] [123], forming a quasi-monolithic lower stage. 
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a.  b.  
Figure 3.2a. GEO600 test mass triple suspension b. GEO600 reaction chain, showing electrostatic drive 

 

a.  b.  
Figure 3.3a. GEO600 monolithic stage under construction b. Fused silica ears and fibres on GEO600 test 
mass. 
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Pitch and yaw of the test mass is controlled (“local” control) by application of feedback 

to the uppermost of the 3 masses, with the lower pendulum stages helping to filter out 

any electrical noise introduced in this process. Additionally, the test mass is positioned 

relative to the other mirrors in the interferometer (“globally” controlled) by use of a 

“reaction chain” of masses held behind the main suspension, as shown in Figure 3.2b. 

This control is achieved electrostatically via electrodes on the faces of the lowermost 

reaction mass, with the force acting on the rear of the test mass [67].  

These methods of control avoid using magnets recessed into the rear of the mass as in 

LIGO, and remove any direct contact between higher mechanical loss materials (that 

the magnets and attaching adhesive are made from) and the GEO600 test mass. This 

again should aid the thermal noise performance. 

3.3 Suspension Design Requirements for Advanced LIGO 

Advanced LIGO aims to significantly increase sensitivity over the frequency band from 

10 Hz and above. At higher frequencies (greater than around 100 Hz) the dominant 

noise source is photon shot noise [124]. In the 10 Hz to 100 Hz frequency band 

suspension thermal noise becomes an important consideration, and to reduce noise in 

this band Advanced LIGO will employ an extension of the GEO600 quasi-monolithic 

suspensions.  

Requirements governing the Advanced LIGO suspension design are [125] [126] [55]: 

- Vertical bounce mode of the suspension to be less than 12 Hz 

- Lowest violin mode frequency to be greater than 400 Hz, and this combined with 

the 12 Hz bounce mode requirement maximises the detection band in which no 

resonances occur 
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- Horizontal thermal noise has a specified requirement of Hzm/10 19−  at 10 Hz 

The Advanced LIGO mirror suspensions will use a quadruple pendulum with four 

individual masses hung from cantilever blade springs. The upper two masses will be 

22 kg metal masses, and also contain blade springs for further isolation.  

The baseline design of the final silica stage as shown in Figure 3.4 comprises two 40 kg 

masses, the lower test mass suspended by rectangular cross section fused silica “ribbon” 

fibres welded to individual ears. The ends of the ribbons have a “neck” region where the 

ribbon tapers up in dimension to a larger cross section block which permits the ribbon 

to be reliably welded to the ears. The ears are bonded to the sides of the mass, in a 

similar manner to the GEO600 suspensions. A fallback solution of using circular fibres 

as in GEO600 is also possible for the Advanced LIGO suspension, using 400 μm 

diameter fibres. 

Silica ear 
bonded to 

flat on mass 

Wire loops 
to upper 

stage 

Break off 
prism 

Fused silica 
ribbon, 

welded to 
ear 

Weld region 
5 x 0.5mm 

Neck 
region

Ribbon 
region 
1.13 x 

0.113mm 
 

Figure 3.4 Advanced LIGO monolithic suspension (left, showing one of the two metal masses and the 
fused silica lower stage). Insets show detail of the ears and ribbon fibres. 
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Global control will again be achieved by use of a reaction chain suspension held behind 

the main test mass chain (not shown in Figure 3.4 for clarity), with local control 

achieved through feedback applied to the uppermost 40 kg mass. 

Use of a quadruple pendulum will help to further attenuate vertical seismic motion over 

the triple pendulum system of GEO600, and permit reduction of noise that is input into 

the system from the feedback for orientation control on the upper mass [55]. 

The choice of rectangular cross section ribbons was deliberate as this geometry 

appeared to have a number of potential advantages over the circular GEO600 fibres. 

The cross section was chosen to be 1.13 x 0.113 mm based on the forecast breaking 

stress achievable at the time of choice [127], with the ratio of width to thickness chosen 

at 10:1 for ease of manufacture [128] [129] [130].  

The advantages cited for employing such ribbons will now be discussed. Chapter 3 and 

4 of this thesis will re-examine the properties and resulting mechanical loss of the 

rectangular ribbons and circular fibres using the characterisation equipment presented 

in this chapter together with finite element modelling of ribbons that will be detailed in 

chapter 4. 

3.4 Ribbon Suspension Fibres 

Use of rectangular cross section ribbons instead of circular fibres appeared to offer 

several potential reductions in suspension mechanical loss.  

Intuitively, use of ribbon geometry will permit the pendulum to be more compliant to 

motion along the axis of the incoming laser beam. With the ribbons orientated as shown 

in Figure 3.4 more energy can be stored in the non-dissipative gravitational field in the 

pendulum mode. With the thickness of dissipative silica reduced, the pendulum dilution 
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will increase, as governed by equation (2.35). Comparison of the ratio of the theoretical 

dilution factors of these ribbons and fibres yields: 

 

4

3

fibre

ribbon

2

2

ribbon

fibre

3fibre

ribbon

r
ba

I
I

D
D

mgl
TYIn
mgl
TYIn

πβ

β

=== (3.1)

Consider a ribbon with cross sectional dimensions 1.130 mm x 0.113 mm. This has cross 

sectional area of 0.128 mm2 – a circular fibre would require the same cross section to 

achieve an equal breaking strength, so therefore would require a radius of 202 μm. 

Using these values the ratio of dilution 
ribbonD
fibreD = 0.325. This means that the theoretical 

mechanical loss of a pendulum held with ribbons is 3.07 times lower than that of a 

similar fibre pendulum. 

This is, however, a simplified interpretation of the effects of dilution and assumes that 

the ribbon or fibre has constant dimensions along its entire length. Actual ribbons and 

fibres in real suspensions have tapered neck sections, meaning the thickness in the 

bending region is likely to be larger so therefore the actual dilution experienced will be 

different – in the light of this, dilution will be considered more rigorously in Chapter 4. 

Reduction of the thickness of the material experiencing the flexing pushes up the 

frequency at which the maximum thermoelastic loss occurs, allowing the noise to be 

reduced in the 10 Hz to 100 Hz region. This was another important reason for choosing 

ribbons. A comparison of thermoelastic loss as a function of frequency is shown in 

Figure 3.5.  
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Figure 3.5 Frequency dependence of thermoelastic loss in ribbon and fibre, showing different locations of 
the thermoelastic peak. 

It can be seen that circular fibres have a sharp peak at 11.0 Hz, whereas the equivalent 

ribbon’s peak is an order of magnitude higher in frequency, and further from the 10 Hz 

region. 

However, subsequently another thermoelastic effect has been discovered. It was noted 

by Cagnoli and Willems [131] that Young’s modulus, Y, is also a function of 

temperature. For a simple case where there is no static stress in the ribbon (i.e. there is 

no suspended mass), changes in Young’s modulus with temperature do not result in 

displacement of the ribbon. However, when a static stress σo is applied, then there is a 

length change dl, and strain l
dl  resulting from Y. Hence, any change in Young’s 

modulus, dY, due to a temperature change dT will result in a change in dl. The 

fractional change in Y, is: 
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Y
dYX =  (3.2)

Therefore, the fractional change per unit temperature is: 
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Hence a parameter β can be introduced: 

 

dT
dY

Y
1

=β  (3.4)

this being the “thermal elastic” coefficient – the fractional change in Y per unit 

temperature. 

The change per unit length, per unit temperature in dl due to the change in Y is 

therefore: 

 

l
dlβα =′  (3.5)

Applying the definition of Young’s modulus Y, it is immediate that: 

 

Yo
βσα =′  (3.6)

This parameter is the fractional change in length, per unit length, per unit temperature, 

and is therefore directly analogous to the thermal expansion coefficient, α.  

In the definition of thermoelastic loss: 

 

( )2th 1 ωτ
ωτφ

+
Δ=  (3.7)
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With: 

 

C
TY

ρ
α 2

=Δ  (3.8)

Since the thermal elastic coefficient acts in a similar way to the thermal expansion 

coefficient, an effective thermal expansion governed by αeffective where: 

 

Yo
βσαααα −=′−=effective  (3.9)

Hence, the true thermoelastic loss experienced in a loaded ribbon is: 

 

( )

2

2th 1
⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

YC
YT

o
βσα

ρωτ
ωτφ (3.10)

For many materials the value of β is negative, and this would be seen to increase the 

level of thermoelastic loss experienced if a large positive (tensile) stress is experienced 

by the material. However, fused silica has a β value which is positive, meaning that 

thermoelastic loss can be reduced by application of an appropriate static stress, and 

nulled entirely where α = α’, namely when:  

 

β
ασ Y

o =  (3.11)

Thermoelastic loss as a function of static stress at 10 Hz is shown in Figure 3.6. 
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Figure 3.6 Thermoelastic noise at 10 Hz, when nonlinear effects are taken into account 

In Advanced LIGO, changing the static stress in the ribbons can only be achieved by 

altering their cross sectional area. Using equation (3.11) the area required to null the 

thermoelastic loss is: 

 

Y
FA
α
β

=null  (3.12)

where F is the tension in a single ribbon fibre. The required stress to null the 

thermoelastic loss in a single fibre (1.85 x 108 Pa) is much lower than the static working 

load of Advanced LIGO: 

 
8

33 1068.7
10113.010130.1

81.910
×=

×××
×

=
−−A

mg
Pa (3.13)

Therefore to null the thermoelastic loss in Advanced LIGO would require a ribbon 

2.30 mm x 0.23 mm, which would reduce the theoretical pendulum dilution factor from 

2048 to 458. 

Thermoelastic 

Advanced LIGO 
working load 
7.68x108 Pa 

null at stress of 
1.85x108 Pa 
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Additionally, this would also adversely affect the vertical bounce frequency of the final 

stage, pushing it from 6.23 Hz to 12.68 Hz, which therefore encroaches into the crucial 

10 - 100 Hz region. 

In the light of the discovery that thermoelastic loss can be reduced, the baseline ribbon 

design required more detailed re-evaluation. Also, analysis of real ribbons with their 

changing cross section was necessary to give a more realistic estimate of the anticipated 

thermal noise performance prior to full installation in the operating detectors. 

Fabrication and characterisation of Advanced LIGO ribbons is detailed in the 

remainder of this chapter. 

3.5 CO2 Laser Production of Ribbon Fibres 

Circular fibres for GEO600 were produced using a hydrogen-oxygen flame to heat and 

melt a silica rod, with a thin 280 μm fibre being pulled from this softened silica melt 

[132]. The pull was accomplished using the semi-automated machine shown in Figure 

3.7a. The silica rod is clamped between two pulling arms and its centre heated strongly 

to melting point by four gas flame nozzles (Figure 3.7b). Gas to the burner is then cut 

and the fibre is pulled quickly from the melt by the pulling arms, which move apart 

with equal speed.  
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a.  

b. 

Heated silica rod 

Gas nozzles 

Figure 3.7a. Flame pulling machine, as used to produced fibres for GEO600 mirror suspensions b. Flame 
heating of silica 

There are several aspects to this type of manufacture which are not ideal. Flame pulling 

allows only limited control of the shape of the fibres produced as the heating is stopped 

just prior to the fibre being pulled – this means that the fibre has to be pulled rapidly 

from the melt before the silica has time to cool enough to solidify again. Only minimal 

shape control during the pulling phase of the process is therefore possible and length 

repeatability was within 5 mm [133]. This is particularly true in the neck region of the 

fibre – this type of pulling does not permit fine control of either neck shape or length.  

Because the control was limited in this manner many fibres had to be produced, and 

their properties characterised, with the best matching fibres selected for use in the 

detector suspensions. 

Additionally, heating by flame provides the risk of contamination being introduced onto 

the fibre surface, either from dirt from the burners, or from absorbed water which is 
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produced in the hydrogen/oxygen combustion. Such contamination risks causing micro-

cracks on the surface of the silica, which can potentially compromise the strength [134] 

[135]. 

Ribbon production for Advanced LIGO has therefore been approached in a different 

manner, with heating by CO2 gas laser, delivering infra-red radiation at wavelength of 

10.6 μm. This offers several advantages over the flame technology: 

1. Heating is applied throughout the pull process rather than only at the start, 

allowing more control of the ribbon shape at any time during the pull. 

2. Heating can be applied in a quantifiable and controlled manner. 

3. The risk of contamination of the surface of the ribbon is reduced as the heating 

is produced by IR radiation, removing the risk of pollution from water produced 

in the flame process. 

4. Increased reproducibility of ribbons with identical heating and pull for 

successive ribbons, using automated machine. 

These advantages have been encapsulated in a laser pulling machine constructed in 

Glasgow. 

3.5.1 CO2 Laser Pulling Machine 

The machine is based around a 120 W CO2 laser, producing 10.6 μm wavelength 

radiation for heating the silica. 

The machine uses a metre tall double leadscrew tower, on which 2 carriages run, as 

shown in Figure 3.8a. Each carriage is driven independently by a DC servo motor with 

brake and reduction gearbox. The fused silica slide to be pulled is clamped between 
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both carriages. The laser beam is dithered horizontally to provide even heating across 

the slide, using a gold mirror galvanometer. Instead of running in opposite directions as 

the flame pulling setup did, the carriages run in the same direction. This is necessary as 

the laser beam heating area is only around 5 mm in diameter, meaning that it does not 

heat the entire volume of material that will be required to complete the pull at once. 

Instead, the machine employs a “feed-pull’ method where the upper carriage pulls the 

ribbon from the molten material, and the lower carriage slowly moving upwards to feed 

additional fresh material into the path of the beam for heating. The flame machine did 

not require this, as the volume of material heated was much greater, and sufficient for 

the whole pull - therefore no heating of additional material during the pull process was 

required to successfully fabricate a ribbon or fibre. 

 
Figure 3.8a. Drawing of CO2 laser pulling machine b. Close up of laser beam delivery point and 
motorised carriage arrangement. 
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Position sensing of the carriage locations is achieved by a linear position encoder 

running on the rear of the carriage. Protection against carriages running into the ends 

of the leadscrew unit or running together is provided by microswitches that are 

monitored by the computer control program. 

The laser requires safety precautions since the infra-red beam is invisible, powerful and 

highly coherent. Therefore, the optics bench is protected with a motorised carbon beam 

dump. Between this and the laser, there is a Brewster window which picks off a small 

fraction of the laser power for monitoring and active feedback control of the stability of 

the laser power. 

120 W CO2 
gas laser 

Motorised 
beam dump 

Brewster window 
contained within 
circular carbon 

shield

Beam path 

Beam allowed to 
enter remainder 
of bench when 
beam dump is 

open 

 
Figure 3.9 Laser bench showing motorised beam dump and power monitoring 

3.5.2 Pulling Machine Control 

The pulling machine is controlled via an automatic National Instruments LabVIEW 

control program, written by the author, with feedback control for laser stabilisation by 

Dr. Mark Barton also incorporated. 
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The control program employs a ‘state machine’ structure which is detailed together with 

the program code in Appendix A. A schematic of the program process is shown in 

Figure 3.10. 
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Figure 3.10 Schematic diagram of laser pulling machine control program. 

The control program steps involved in a pull are as follows: 

• When the program is initially started several initiation steps are taken. All 

voltages to motors are zeroed (to ensure program begins without risk of voltages 

being applied to the motors). Laser stabilisation log files are setup automatically 

(to record the requested and achieved output laser power), and the voltage 

output hardware is enabled. 

• The program will then sit in an idle state, awaiting command to begin the pull. 

Whilst idle, a pre-written voltage dataset can be selected, and the user specified 

desired “Time to wait before pull” input – this is the time for which the silica 

slide is heated from its initial room temperature to melting before the pulling 

commences. 
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• When “Begin Pull” is selected the program will begin monitoring the status of 

the motorised beam dump. During this period the laser is powered up and 

allowed to stabilise using the stabilisation aspect. When the user is satisfied with 

the laser stability, the motorised beam dump is opened.  The user defined 

“heating time” is then counted down. During this countdown the laser beam is 

free to circulate around the optics bench and heat the silica slide.  

• On completion of the countdown the motor brakes are released. 

• The pull will then commence, with the program reading the first line of the 

voltage dataset file, and applying the voltages to the respective motors. Each 

increment of the linear position encoder initiates the reading of the next line of 

the voltage dataset file. 

• The pull will end when either the last line of the dataset file has been read, or 

the top carriage triggers the microswitch at the top of the leadscrew tower (this 

ensures that if a dataset that is of incorrect length is used there is no risk of the 

carriage overrunning. 

• The beam dump is then closed (at this point the laser can either be powered 

down manually by the user, or left running to maintain a stable power for 

another pull). 

• The motor voltages are zeroed and the brakes applied to lock the carriages in 

their end positions. 

• The user is then issued with an alert that the pull has been completed. At this 

point the ribbon clamps are formed into a cartridge which is then removed from 
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the pulling machine, and taken for characterisation (as will be discussed in 

section 3.6). 

• The carriages are then reset to their starting positions by user command, with 

the lower carriage being run back down the leadscrew tower first, and the upper 

then being run down afterwards, and being stopped by a microswitch on the 

lower carriage. 

• The program will then return to the idle state awaiting command to pull again. 

At this point the user can continue with the same voltage dataset file and 

waiting time, or select alternatives.  

A typical voltage dataset for a ribbon neck is shown in Appendix A, section A.4. The 

ability to supply such voltage profiles to dictate the shapes of the resulting ribbons 

gives the machine much greater capability of producing the required shaped ribbons for 

Advanced LIGO.  

3.6 Ribbon Characterisation 

Once fabricated, ribbons undergo a range of tests to ensure their properties meet those 

required for Advanced LIGO. The tests include measurement of the thick and thin cross 

sectional dimensions of the ribbon (“dimensional characterisation” / ”profiling”); an 

overload strength test of the ribbon with a 12.5 kg load; measurement of the vertical 

bounce frequency of a loaded ribbon. The order of the procedures is shown in Figure 

3.11. 
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Figure 3.11 Characterisation procedures for Advanced LIGO ribbons. 

Additional analysis was done on Finite Element Analysis (FEA) models of the ribbons, 

using the FEA program ANSYS, and this work will be explored in depth in Chapter 4. 

3.6.1 Dimensional Characterisation of Laser Pulled Fibres 

Knowledge of the cross sectional dimensions of the ribbons, together with detailed 

profiles of the neck regions was important for initial development of ribbons, and will be 

required as a check that ribbons installed in detector suspensions have accurately 

matched bending points and therefore correctly positioning the ears on the masses [136]. 

The dimensional characterisation, or “profiling” measurements also provide data to 

construct a finite element (FE) model of the ribbon in ANSYS. This allowed checking 

of bounce frequencies, calculation of the ribbon flexure points, the dilution factor of a 

pendulum constructed with such a ribbon and ultimately the total mechanical loss of 

ribbons to be evaluated. 

The profiling measurements are required to be non-contact, as any contact risks 

introducing cracks into the ribbon surface, compromising its strength. 
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3.6.1.1 Characterising Fibres for GEO600 

The dimensions of the fibres produced for GEO600 suspension were measured using a 

monochrome CCTV camera attached to a microscope. The fibre was then observed on a 

TV screen. The fibre diameter was obtained by measuring the size of the image on the 

TV screen. Primarily, checking and matching was achieved in GEO600 by comparison 

of vertical bounce frequencies. It was later discovered that the bending points of the 

fibres used were in a different location in the fibre from what had been expected [137] 

[138] [139]. 

It was clear that whilst this method had proved adequate for dimensional measurements 

on fibres used in GEO600, it was limited in its ability to provide accurate 

measurements for many reasons. In particular: 

• Positioning along the length of the ribbon was not easy or accurately quantified 

by this system, meaning significant error in the position at which the ribbon 

dimension was measured  

• Image quality - sharpness were not always consistent and reproducible 

introducing reading errors into the measurement 

• Process of taking measurements along the length of a full fibre was very time 

consuming and labour intensive 

• It was also not possible to obtain any accurate quantified neck shape data for 

the fibres, and this became apparent when the positions of the flexure points of 

the fibres installed GEO600 were found to be different than anticipated 

Therefore, for Advanced LIGO more stringent profiling was seen as necessary, allowing 

accurate measurement of the ribbon shapes along their full length, permitting realistic 
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prediction of their performance when installed in the final detector suspension. A 

profiling machine was built by the author to meet this requirement. 

3.6.1.2 Preliminary Concepts 

Several concepts were evaluated to discover the best methods for performing 

dimensional measurements on ribbons. 

3.6.1.3 Scanner 

The first concept was optical scanning of the ribbon. Tests were conducted using a 

standard PC flatbed scanner as an imaging device. The ribbon was held in a metal 

frame (“cartridge”) just above the glass window of the scanner. This used two lengths of 

angle section to brace between the pulling machine slide clamps, allowing these to be 

removed from the pulling machine complete with the pulled ribbon as one single unit. 

This setup permitted the ribbon to be kept lightly tensioned, and eased handling. The 

cartridge also protected the ribbon and did not allow it to contact the surface of the 

scanner. This setup allowed the full ribbon to imaged at once, quickly using one pass of 

the scanner. A typical scan of a very early development ribbon neck is shown in Figure 

3.13. 
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Figure 3.12 Construction of early prototype ribbon cartridge.The ribbon was pulled on the pulling 
machine in the clamps shown, and the L-shaped stiffening bars were attached to the clamps in-situ. The 
complete rigid cartridge was then removed from the pulling machine as a single unit. 

 

 
Figure 3.13 Image of early laser pulled ribbon neck section made using flatbed scanner. Ribbon shows 
very thin section after the initial neck, which was due to initial pulling problems with laser machine 

A LabVIEW program was written to make an edge detection measurement on the 

image. This measured in from the image edges, and from the pixel count the dimension 

of the ribbon could be calculated. Figure 3.14 shows the image with this measurement 

being undertaken. 
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Figure 3.14 Measurement by LabVIEW edge detection program 

This scanning technique had several distinct drawbacks, the most important of which is 

the resolution that could be obtained. Initially a scanner with 300 x 300 dpi resolution, 

which provided a maximum resolution of 85 μm per pixel was used. Latterly a higher 

resolution scanner of 3200 x 1600 dpi was used, yielding a theoretical maximum 

resolution of 8 μm per pixel. This would be satisfactory for the larger ribbon dimension, 

but too coarse for the thin dimension, as this would leave an 8% uncertainty in a 

measurement of a 100 μm thick ribbon.  

Additionally, this assumes a perfect focus, which was found to be difficult to obtain – 

this would add an additional error onto the measurement. By its construction, the 

scanner’s optimal focus position is on the glass bed; but the ribbon could not be allowed 

to touch this (as this would risk damage to the ribbon surface), instead being held 

around 1 cm above the scanner bed in the metal cartridge frame which also offered 
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protection. Holding the ribbon horizontally on the scanner bed also meant that gravity 

would cause it to sag toward the scanner bed, meaning that the focus would be 

fractionally different along the ribbon length.  

Furthermore, image file size using the higher resolution scanner was large enough that 

post-processing a full ribbon image could not be efficiently achieved, due to the amount 

of PC memory required to view large high resolution images. This meant significant 

post-processing would be required to divide the image up into manageable sized chunks. 

3.6.1.4 Imaging by Web-camera – 1st Prototype 

In order to address some of the issues that arose when imaging using the flatbed 

scanner, an alternative imaging system was devised by the author.   

This used a Firewire webcamera, which is supplied on a 5 cm square circuit board, as 

shown in Figure 3.15. The camera used was Unibrain Fire-i Digital Board Camera [140] 

with CCD sensor resolution of 640 x 480 pixels. This camera was chosen due to the 

small dimensions of the circuit board allowing for easy mounting. Other cameras that 

were examined were considerably bulkier [141]. 

 

5 cm 
square 

Figure 3.15 Firewire web camera used for imaging 
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The camera was mounted on a motorised leadscrew unit to allow it to travel along the 

length of the ribbon, as shown in Figure 3.16. The ribbon was held in the same 

cartridge as used with the scanner, and this was clamped on a second tower. Focus 

adjustability was provided by mounting the camera on a linear translation stage. It was 

also mounted on a tilt base to allow any twisting along the length of the ribbon to be 

accommodated.  

Use of the motorised carriage system was analogous to the mobility provided by the 

flatbed scanner’s imaging head, although it was found that the carriage had to be 

halted in order to take an image. This proved advantageous however, as it permitted 

the focus to be checked and adjusted if necessary. 

Drive 
motor & 
gearbox 

Cartridge 
tower 

L  

 
Figure 3.16 Proof-of-concept web-camera based dimensional characterisation setup. a. view of camera and 
ribbon cartridge b. Complete setup from different angle showing mobility of imaging head. 
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suitable ribbon/lens and lens/CCD distances. This also permitted appropriate 
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resolutions to be obtained easily by choice of lenses, with greater magnification for 

thinner/smaller ribbons.  

Initially the ambient lighting in the room was found to provide adequate image 

contrast, as shown in Figure 3.16b, although later a variety of lighting sources were 

tested, as the ambient light tended to vary, affecting the image contrast. These 

included a fluorescent tube and LEDs. It was found that consistently good quality 

images could be obtained when using high intensity 4 W ‘Lumiled’ LEDs [142].  

This machine was found to be capable of obtaining clear images at a higher resolution 

than the scanner, with resolution dependent on the magnification from the different 

lenses. A typical image and measurement obtained using this system is shown in Figure 

3.17. 

 
Figure 3.17 LabVIEW imaging and measurement showing ribbon as imaged by firewire web-cam. The 
contrast change visible toward the bottom of the image was later attributed to a lens misalignment. 
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It was decided to proceed with an improved machine design of this type, capable of 

measuring both dimensions of ribbon simultaneously. 

3.6.1.5 Imaging by Web-camera – 2nd Prototype - Dual Camera System 

It was ultimately desirable to be able to measure both thick and thin dimensions at 

once. However, with the first single camera prototype, the ribbon would need to be 

rotated through 90° and lens magnification changed for each measurement; or the 

ribbon would first have to have one of its dimensions measured, and then have the 

process repeated for the second dimension. It was clear that the former would be labour 

intensive, and the latter would risk that the width and thickness were not accurately 

related to each other. 

It was therefore decided to mount two independent cameras orthogonally, with 

Lumileds providing the background lighting source.  This revised setup is shown in 

Figure 3.18. 
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Figure 3.18 Profiler under development, showing initial test upgrade to use dual cameras. Ribbon was not 
contained in the cartridge for these tests, as the cartridge design precluded the use of both cameras 
simultaneously 

The low magnification camera was mounted on the bed of the carriage, and the higher 

magnification camera perpendicular to this. The LED backlights were mounted on the 

carriage too, with one hinged to allow access to the ribbon. The ribbon was held from a 

second tower. The travel along the ribbon was measured using a linear position encoder 

mounted to the rear of the carriage. 

Testing of this setup showed that a two camera system worked efficiently permitting 

simultaneous measurements of ribbon width and thickness using a revised LabVIEW 

program. 
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Some problems were encountered with this setup, the most notable being that twists in 

the ribbon often led to difficulty in focussing the high magnification camera. This was 

due to the small depth of field this camera had. Also, holding the ribbon freely (without 

the light tensioning supplied by the cartridge) from the second tower meant that it was 

susceptible to violin mode vibrations, making measurement difficult since the ribbon 

moved on screen.  

These issues were addressed in the final version of the machine, updated to a 

configuration that would ultimately be suitable for duplicate installation at detector 

sites. 

3.6.1.6 Profiler Final Development 

Use of two perpendicular webcams prohibited use of the ribbon cartridge shown in 

Figure 3.12, since the stiffening bars would obscure the ribbon in one of the directions. 

Therefore a revised clamp cartridge was designed to interface with both the pulling 

machine and the profiler. This revised cartridge is shown in Figure 3.19.  
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Figure 3.19 a. Construction of revised ribbon cartridge, showing the ribbon held in “fuse” holsters, and 
stiffening bars relocated to the corners of the revised clamps. b. Ribbon removal from the clamps to allow 
proof and bounce testing after profiling. 

The cartridge had the stiffening bars relocated to the corners of square block clamps. 

The ribbon is held in two small clamps (“fuse ends”) which are used in all parts of the 

pulling and characterisation process (pull, profile, bounce and proof tests). The ribbon 

is attached with Araldite 2012 epoxy resin adhesive into slots in these, and this 

assembly locates into the clamps for pulling and profiling. The clamps also have circular 

cutouts in their bases which locate into loose clamps on the profiler. 

The final profiling setup is shown in Figure 3.20. The profiler cartridge locates into a 

loose clamp at the base, and at the top a circular bearing is then moved down to locate 

into the cut-out in the cartridge. The lower clamp contains a rotational stage which 

allows the complete cartridge to be rotated by small angles when the profiler 

measurement is being undertaken. This allows compensation for twists in the ribbon 

along its length. Use of the cartridge allows the ribbon to be kept in light tension, 

reducing the tendency for large violin mode vibrations. 
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Figure 3.20 Finalised ribbon profiling machine, showing cartridge with ribbon installed in top and bottom 
loose clamp holders, which have coarse alignment and rotation adjustability built in. Fine adjustment 
and focus is achieved with the cameras as is shown. 



CHAPTER 3 – CHARACTERISATION OF MIRROR SUSPENSION FIBRES  

 
94

The clamping fixtures at the top and bottom also had adjustability built in to allow 

coarse positioning of the cartridge relative to the cameras. Fine positioning and focus of 

the cameras was accomplished using translation stages mounted to the cameras 

themselves.  

Additional depth of field was also gained on the high magnification camera by reducing 

the aperture size to approximately 0.75 mm, giving f-number of 7.10
f . Further reduction 

of the aperture resulted in excess noise which would have interfered with the software 

edge detection. 

A revised LabVIEW program (see Appendix B for the final program code) was written 

to ease the use of the machine, with two modes of operation. The first mode is used for 

the neck regions where an edge detection measurement is taken on every row of pixels 

of the image. These measurements are then automatically joined with any overlap taken 

into account, and give both the width and thickness together with a dimensioned shape 

profile of the ribbon. This mode of operation enables very high resolution scans of the 

ribbon necks to be achieved, and these were subsequently used in the FEA modelling 

which will be detailed in the next chapter.  

Along the central thin section of the ribbon measurements are not required at this 

resolution (indeed this would provide too much data to process), so measurements are 

taken at user defined intervals along the ribbon length, typically every 5 to 10 mm. 

These are averaged over a user defined number of pixels, typically ∼20. 

A duplicate of this machine has recently been installed at the LIGO test facility at 

M.I.T. Boston in readiness for the thermal noise quad suspension prototype which will 

be constructed in late summer 2008, and pictures of this setup are shown in Appendix 

C. 
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3.6.1.7 Machine Capabilities and Testing 

The resolutions attained by the two cameras (and used in the measurements in the 

remainder of this chapter) were 9.61 μm for the low magnification (ribbon width) 

measurement, and 1.62 μm for the high magnification (ribbon thickness) measurement. 

In order to test the repeatability of the system, several tests were undertaken. The first 

comprised simply repeating the measurement at a given point on a test ribbon, without 

adjusting the focus between repetitions. The second test added refocusing of the system 

between each repetition. Both measurements are shown in Table 3.1. 

 Repeatability test 1 – no 
refocus between repetitions 

Repeatability test 2 – with 
refocus between repetitions 

 
Measured 

Ribbon width 
(um) 

Measured 
Ribbon 

thickness (um)

Measured 
Ribbon width 

(um) 

Measured 
Ribbon 

thickness (um)
 1067 181 1067 181 
 1068 181 1066 175 
 1067 180 1062 178 
 1066 181 1064 181 
 1067 181 1067 179 
 1071 180 1068 180 
 1068 180 1065 179 
 1069 181 1067 178 
 1067 180 1070 179 
 1068 181 1071 181 

Average 1067.8 180.6 1066.7 179.1 
Standard error 1.4 0.5 2.7 1.9 

% error 0.13% 0.28% 0.25% 1.06% 

Table 3.1 Repeatability tests of profiler measurement system – test 1 repeated the measurement with no 
change made to a good focus, test 2 refocussed the image for each repetition. 

It can be seen that the spread in measured values due to the measurement itself (test 1) 

is small, being less than 0.3% (small motions of the ribbon will mean that each observed 

image will be slightly different, resulting in this small spread of measurements). When 

refocusing was undertaken the spread of measurements increased. This was expected as 

determining if the image is at best focus relies on an amount of user discretion. 
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However, the level of error is still suitably low, and would only result in a negligible 

cumulative error in any cross sectional area calculation. 

Repeatability was also tested by repeating the measurement over the full length of the 

ribbon neck and a small part of the thin section (to cover both types of measurement 

undertaken by the program). These measurements for ribbon width and thickness are 

shown in Figure 3.21 and Figure 3.22 respectively. 
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Figure 3.21 Repeatability of width of test ribbon neck and segment of thin section 
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Figure 3.22 Repeatability of thickness of test ribbon neck and segment of thin section  

Both width and thickness show an offset between repeated measurements – this is due 

to slightly different starting positions for the cameras relative to the ribbons – this was 

deliberate to add clarity. Some variation is also seen, most notably in the thickness 

measurement – this is due to the resolution of the linear encoder being more coarse 

than was desirable meaning that the precision of the position of the cameras along the 

length of the ribbon had up to 0.4 mm error. This issue will be addressed in the 

machines to be installed at the LIGO sites by fitting higher resolution rotational 

encoders to the drive motor itself, which take advantage of the 50:1 reduction gearbox 

to increase the actual resolution also. The measurements undertaken in the remainder 

of this chapter did not utilise this as its installation was not completed by the time 

measurements were required to feed back into the pulling machine development. 
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3.6.2 Proof Load Testing of Laser Pulled Ribbons 

The second stage of characterising a ribbon checks that it will support the required load 

prior to installation in a detector suspension. This helps remove weak ribbons from the 

system prior to the expenditure of effort welding them into a full suspension.   

A simple “proof load” test was therefore constructed to permit controlled hanging of 10 

kg, or 12.5 kg masses. The machine is shown in Figure 3.23.  

 

Support 
frame with 

Lexan 
windows 

Ribbon 
clamps 

Proof load mass 

Hydraulic plunger for 
raising/lowering the mass 

Camera to 
observe 

stretching of 
ribbon a. b. 

Figure 3.23 a. Proof test machine b. Close up of hydraulic mass lifter 

The test is conducted in a support frame with Lexan windows and hinged door, so that 

the user is protected against silica shards should the ribbon break during the process. 

The ribbon is clamped between the top of the frame and the mass. The weight of the 
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mass is gently transferred onto the ribbon by means of a hydraulic plunger. This 

permitted controlled lowering of the mass, with the mass itself pushing the plunger 

down slowly when released – the plunger then being lowered further by hand to let the 

mass hang freely on the ribbon alone. 

Stretching of the ribbon during this process was monitored by observing the position of 

the top edge of the mass relative to a ruler, and also photographed by a camera. 

3.6.3 Vertical Bounce Frequency of Laser Pulled ribbons 

3.6.3.1 Experimental Bounce Testing 

The final characterisation test is a vertical bounce frequency measurement. The ribbon’s 

width and thickness will not be entirely constant along its length meaning only an 

approximate bounce frequency could be calculated from an averaged ribbon 

width/thickness value. Therefore, to ensure the frequency is known accurately, a 

measurement will be performed on each ribbon before installation into a suspension. 

The apparatus for this measurement is shown in Figure 3.24. 
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Figure 3.24 a. Ribbon bounce tester b. Close up of mass, detector and exciter 

The ribbon is hung similar to the proof test in a lexan box with a universal joint used 

at the top attachment to ensure that the ribbon hangs freely under gravity. A small 1.1 

kg mass is used and the measured bounce frequency is then scaled by the mass, to give 

the bounce frequency in a 10 kg load mirror suspension situation. The mass has a small 

bar extending from its side acting as a flag to a split photodiode detector which senses 

the motion of the bouncing mass. The mode is excited by use of a coil acting on a 

magnet attached to the bottom of the mass. The coil is driven over a range of 

frequencies until it coincides with the bounce frequency, where large displacement is 

then observed via the photodiode detector. 

3.6.3.2 Calibration 

Theoretical bounce frequencies assume that the supporting structure and clamping is 

completely stiff and rigid, and therefore makes no contribution to the vertical 

frequency. In reality, no support structure is totally stiff, and therefore the structure 
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will contribute to a difference in the observed frequency from that predicted by theory. 

It is necessary to calibrate this out to allow the true bounce frequency of the ribbon to 

be determined, and compared to the Advanced LIGO requirement. 

A circular constant cross section steel suspension wire of 193 μm diameter was tested to 

calibrate the machine. This was chosen as it was easily compared to theory – ribbons do 

not have a perfectly rectangular cross section (corners round off due to surface tension 

and if the CO2 laser beam is dithered incorrectly the ribbon can thin across the centre 

of a cross section), meaning their cross sectional area was not easily compared to a 

theoretical rectangular ribbon. The wire was initially held in rigid pin vice clamps, with 

the universal joint and actual fuse end clamps and Araldited “fuse end” attachments 

introduced individually. The resulting measured frequencies are shown in Table 3.2. 

Configuration Theoretical Bounce 
frequency (Hz) 

Measured Bounce 
frequency (Hz) 

1. Using rigid pin vice clamps 16.3 15.9 ± 0.1 

2. Including universal joint 16.3 15.8 ± 0.1 

3. Including universal joint, fuse ends 
and glue (wire shortened by 10 mm) 16.5 16.1 ± 0.1 

Table 3.2 Bounce testing of steel suspension wire 

These measurements showed that the structure and clamping resulted in a smaller 

bounce frequency measurement than would be expected from theory – this is since the 

clamping components aren’t completely rigid. The observed difference for the third 

measurement of 2.5% was taken as the calibration, with this taken into account for 

subsequent bounce frequency measurements. 
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3.7 Characterisation of Typical Advanced LIGO Suspension Ribbons 

Three individual ribbons were used for analysis in the characterisation equipment. The 

first was of a larger cross sectional area than that chosen for Advanced LIGO, as an 

example of a ribbon that would have a wide safety margin in terms of strength. The 

second ribbon had a closer cross section to that envisaged, and the third contained the 

shortest neck that it had been possible to pull. 

3.7.1 Profiling 

Dimension measurements obtained on the profiler are shown in Figure 3.25 and Figure 

3.26. 
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Figure 3.25 Ribbon profile of oversize Advanced LIGO ribbon. Average dimensions do not include the 
neck regions. 
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Figure 3.26 Ribbon profile of Advanced LIGO ribbon with approximately correct cross section. Average 
dimensions do not include the neck regions. 
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It can be seen that both ribbons show a number of variations in thickness along their 

length. Both exhibit a thin section at the end of the first neck, and this was an artefact 

of the pulling and heating process, which would require a refined pulling dataset to 

correct, and research into removing this is currently ongoing. 

All the necks showed a bulging in the thickness and a corresponding reduction in width 

– this was a result of the initial heating to melt the silica slide – surface tension tending 

to pull the rectangular ribbon more circular. This is an indication that the slide was 

heated for a little too long before the pull commenced. 

The second ribbon also shows significant deviation from the desired 0.113 mm x 

1.13 mm dimensions – this was deemed to have arisen from variations in heating during 

the pull (as laser power stabilisation had yet to be implemented) and also the slight 

overheating that resulted in the tendency to pull the rectangular ribbon more circular 

would also result in a thicker ribbon with lower width, as seen here. 

The third ribbon characterised was only a neck section as a demonstration of the 

shortest that had been neck pulled, and the profile of this neck is shown in Figure 3.27. 
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Figure 3.27 Neck profile of the shortest neck achieved.. Inset shows photograph of the actual ribbon 
width.  

This neck shows no bulging and necks down to the thin ribbon quickly. This seems the 

most desirable neck as its short length will mean that less bending is likely to occur in 

the neck and therefore alter the dilution factor. 

3.7.2 Proof Load Testing 

Both oversize and accurate cross sectioned ribbons were also proof load tested to 

12.5 kg and were seen to successfully hold this load for several minutes before the load 

was removed. Stretch was seen to be between 6 – 8 mm, as expected from theory. The 

mass hanging on a ribbon is shown in Figure 3.28. 
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a.     b.  
Figure 3.28a 12.5 kg mass in proof tester. b. mass hanging on loaded ribbon showing stretch of ribbon 
(mass is seen hanging lower than in the first picture due to stretching) 

3.7.3 Bounce Frequencies 

The measured bounce frequencies for the ribbons are shown in Table 3.3. 

Ribbon 

Theoretical 
bounce 

frequency (Hz), 
using average 
cross sectional 

area 

Measured 
Bounce 

frequency 
(Hz) 

Measured 
bounce 

frequency after 
calibration 

correction (Hz) 

Predicted 
bounce 

frequency 
hanging 
10 kg 

Predicted 
Advanced 

LIGO 
bounce 

frequency 

Oversize 22.9 21.7 22.2 7.4 10.5 

Correct 18.9 17.3 17.7 5.9 8.3 

Table 3.3 Vertical bounce frequency measurements for Advanced LIGO ribbons 

The measured frequencies were scaled by the calibration, and then by the mass to 

arrive at the anticipated bounce frequency using 10 kg. In order to calculate the 
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predicted Advanced LIGO bounce frequency, this must then be multiplied by a factor 

of 2  to compensate for the fact that the upper mass in the detector suspension will be 

free to move also (whereas the bounce test here are with the ribbons attached to a rigid 

structure) [55] [143].  

It is clear that the predicted bounce frequencies both lie below the required level of 

12 Hz, and hence both ribbons would meet the design requirements for Advanced 

LIGO. The correctly cross sectioned ribbon has a lower frequency, and this is more 

desirable as the bounce frequency is held further from the detection band (10 Hz and 

above). 

3.8 Conclusions 

Currently more research and development into shaping ribbons correctly is ongoing, and 

it is clear from the results of the shortest neck characterised that good neck shapes with 

no bulging or deformation can be made using that additional control permitted by the 

laser pulling machine and its LabVIEW control program.  

This chapter has also shown the development of the profiler, proof and bounce test 

machines. The profiler is capable of characterising the dimensions of the ribbons with 

high resolution and the resulting dimensional data permits valuable feedback to refine 

the pulling process and future fabrication tolerances.  

The data was also useful for construction of FEA models of the ribbons which allowed 

the re-analysis of thermal noise. 
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Chapter 4  
 
FE Analysis of Advanced LIGO 
pendulum suspensions 

In order to accurately predict the dynamics and thermal noise performance of fused 

silica suspensions fabricated by CO2 laser pulling, methods were developed to take 

ribbon dimension data from the profiler machine, and import it into the finite element 

analysis program ANSYS. This would allow finite element models of the ribbons, and 

ultimately the full mirror suspensions using such ribbon technology to be simulated. 

Two critical factors that were to be quantified using these simulations were the bending 

points of the ribbons, and pendulum suspension dilution factors, the analysis of which 

will be detailed in this chapter. These results were combined with a re-evaluation of the 

thermoelastic loss in ribbons to give a re-appraisal of ribbons compared to circular 

fibres. 

This work was carried out in parallel to that undertaken by Rahul Kumar [144], whose 

focus was on modelling circular cross section fibres, with the author conducting analysis 

of the rectangular ribbons detailed in this chapter. Work on tapered fibres at the end of 

this chapter was carried out in conjunction with Dr. Alastair Heptonstall. 
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4.1 FEA Modelling Techniques in ANSYS 

The finite element analysis program ANSYS uses numerical analysis to evaluate the 

dynamics (such as displacement, stress, energy) of a mechanical system under chosen 

constraint and/or load conditions. As will be discussed in Section 4.1.1, the system is 

physically modelled in ANSYS by use of keypoints, lines, areas and volumes. These 

entities are then laced with a lattice of points (nodes) in a process known as “meshing”. 

These nodes define both the geometry of the model and its properties under any given 

constraints or loads. 

“Elements” are formed from units of these nodes, and the partial differential equations 

that define properties such as displacement of the nodes are solved by ANSYS (by 

approximating to ordinary differential equations) to predict the performance of the 

system under given constraints or loads.  

4.1.1 Creating Masses and Ribbons in ANSYS 

Figure 4.1 shows the method for creating a model of a simple solid block in ANSYS. 

Points at vertices of the solid being modelled are created in the Cartesian plane – these 

are “keypoints”. These points are joined by lines to form a ‘wireframe’ of the solid, 

which in turn creates areas and volumes that make up the solid. Meshing this solid 

produces a 3-dimensional array of nodes. ‘Solid’ elements are formed from nodes at the 

vertices of cubes or tetrahedra - for example 8 nodes at the vertices of a cube would 

define that cube as a single finite element such as that shown Figure 4.1. Accuracy can 

be gained by use of additional nodes between element vertices – this permits the 

solution of the analysis to show more representative deformation of the element shape.  
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Keypoints Lines Volumes Nodes ‘Solid’ Elements 
 

Figure 4.1 Steps taken in building a solid element model in ANSYS. Keypoints define vertices of the 
block, lines joining keypoints define the edges allowing a volume to be created. Nodes mesh this volume, 
with (in this case) each node being located at the vertex of an element. 

The process of constructing entities that use solid elements can be speeded by creation 

of the solid that is required in a CAD program such as Solidworks [145]. ANSYS 

permits such solids to be imported, and this method was used to create the masses used 

in the pendulum models that will be discussed in this chapter. Once imported, the 

solids are meshed to give the finite element model. 

This method can also be used to construct and mesh the ribbons/fibres. However, in 

order to define accurately the shapes of the necks and variation along the lengths, a 

great many nodes are required, which can result in very long computation times when 

solving the models. In some cases the number of equations that ANSYS would be 

required to solve was too memory intensive for a solution to be derived by a typical 

desktop PC. 

Therefore, a different type of meshing was employed making the models far more 

efficient - this method of using “beam” elements is shown in Figure 4.2. Keypoints run 

along the central axis of the ribbon/fibre, and are joined by lines. Nodes are then 

generated along the lines only, without any additional nodes forming the body of the 

ribbon. 
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Figure 4.2 Steps used in building a beam element ribbon in ANSYS. Keypoints are defined along the 
ribbon length, these being linked by lines. Meshing these lines gives an array of nodes along the ribbon 
length, and cross sections are defined to give the ribbon its shape. 

Instead, cross sections are defined centred at the keypoints. It is these sections that 

define the element shapes. If the cross section at one keypoint is different to that of an 

adjacent keypoint, a linear taper is created. By choosing a suitable resolution of 

keypoints, these linear tapers will approximate the real curved profiles (such as the 

ribbon/fibre necks). 

This removes the need for a large number of nodes to define the volume of the ribbon, 

and hence the solving time is significantly reduced. This method can be used as the 

cross section through a bending beam is always perpendicular to the tangent along the 

axis at that point. This means that only the positions of the points along the central 

axis need to be explicitly defined. 

Because of this, beam elements do not model shear stresses. However, the analysis 

undertaken in this chapter is concerned with the bending of the ribbon, and beam 
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elements are specifically designed to accurately model bending. Checks were undertaken 

for a bending beam model to ensure that the energies and stresses measured in beam 

element models and the resulting energies were seen to come within 2% of each other, 

despite the solid element version containing shear. Since bending in the ribbons/fibres 

would be of this type, it was concluded that the shear stresses and resulting strain 

energies are insignificant compared to the energy contained in bending. 

4.1.2 Importing Ribbon Dimension Data into ANSYS 

Initially models were simple enough that ribbons could be constructed individually for 

each model. However, constructing more complicated ribbons, in particular neck 

profiles that used real ribbon data from the dimensional characterisation machine, was 

found to be very difficult due to the large number of individual cross sections required 

to define the ribbon dimensions (in excess of 200).  

ANSYS builds models using command line code that executes the procedures required 

to construct the FEA model. By reverse engineering the command line code for 

producing a simple ribbon in ANSYS, it was possible to isolate the required commands 

that define the cross sections of the beam elements. From this a program was written 

by the author in LabVIEW to generate the appropriate ANSYS command line code to 

produce a model using dimensional data from the profiler to define the beam element 

cross sections. This therefore allowed a real ribbon to be profiled and inserted into 

ANSYS, giving an accurate FEA representation of a real ribbon shape. The LabVIEW 

program is detailed in Appendix D. 

A resulting ANSYS model for a ribbon, compared to the actual real ribbon and its 

profile, is shown in Figure 4.3.  After characterising the ribbon, the results refined to 

use smaller number of points to reduce the number of sections required for the ANSYS 
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model. The LabVIEW program then converts the data into the appropriate command 

line code to generate the ribbon profile in ANSYS. 
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Figure 4.3 Schematic showing process of producing a neck model of a real ribbon.. Ribbon (left) is 
characterised in the profiler giving data shown in blue curve (only width data shown for clarity). Red 
data points are those chosen to create cross sections in ANSYS. Image on right shows the resulting 
ribbon model in ANSYS. 

4.1.3 Extracting the Bending Point 

Once a ribbon/fibre model is constructed in ANSYS there are several parameters that 

can be investigated. An important consideration for the Advanced LIGO suspensions is 

the position of the ‘bending’, or ‘dynamic flexure’ point of the ribbons used to suspend 

the test masses [138]. The bending point is defined by extrapolating a straight line back 

along the pendulum back from the mass. The point at which this straight line meets 

the vertical through the point of suspension is the bending point, as shown in Figure 

4.4. The top of the ribbon is constrained in displacement and rotation, with the cross 

section at this point always normal to the attachment surface. All models were 

constrained in this manner, except the model studied in section 4.4.4 (boundary 

conditions for this model are discussed on p145). 



CHAPTER 4 – FE ANALYSIS OF ADVANCED LIGO PENDULUM SUSPENSIONS

 

115

 
Figure 4.4 Schematic showing bending length and bending points of a pendulum fibre. 

Knowledge of the precise location of the bending point is important for the dynamics of 

the suspension, and the chosen length between bending points of 600 mm also gives the 

desired bounce and violin modes with suitably dimensioned ribbons. The bending 

points of the ribbon are chosen to be 1 mm above the plane through the centre of mass 

of the test mass in Advanced LIGO - this is important for stability of the masses when 

hanging as pendulums [136]. This in turn influences the position at which the ears are 

bonded to the masses. 

The bending point is calculated in ANSYS by considering a simple ‘static’ analysis of 

the ribbon/fibre in question. The static analysis first applies the load and constraint 

conditions to evaluate the static displacement and stresses in the system. To calculate 

the bending point the mass is applied and the end of the ribbon/fibre displaced 

horizontally by 3 cm to induce bending. The resulting bending of the ribbon/fibre will 

take the general form shown in Figure 4.5a, with the bending confined at the top of the 

ribbon/fibre and the rest of the ribbon/fibre lying on a straight line. This permits the 

bending point of the ribbon/fibre to be calculated by evaluation of the equation of the 

straight line through two nodes chosen along the straight section of the ribbon/fibre. 
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These are chosen such that they have a reasonable separation and are far from the 

upper bend in the ribbon/fibre. Typically the lowermost node and the node at the 

centre of the ribbon/fibre were chosen. The point where the line through these nodes 

intersects the vertical is the bending point. 

 
Figure 4.5a. Schematic diagram of pendulum bending (in red) and method of extracting the bending 
point b. Example of bending in a 15mm long taper neck in ANSYS  

4.2 Calculating the dilution factor 

High dilution factors were one of the main reasons for choosing rectangular cross 

section ribbons for use in Advanced LIGO, with high dilution giving a reduction in the 

mechanical loss of the pendulum suspension. ANSYS can be used to calculate the 

dilution factor of the pendulum system, as introduced in section 2.8.2.2. Recall the 

definition of dilution from equation (2.34): 
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Additionally, from equation (2.30) the energy stored in the suspending wire (or 

ribbon/fibre) of a pendulum is: 

2
wirewireinstored 2
xkE =

1
 

Similarly, the energy stored in the gravitational field is: 

2
gravityfieldnalgravitatioinstored 2

xkE =
1

 

Rearranging these it is immediate that: 
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Extracting these energies from a modal analysis in ANSYS is comparatively simple. 

The energy stored in the gravitational field is simply the gravitational potential energy, 

. Since this energy is conserved, it is equal to the kinetic energy 

of the pendulum at its lowest point (namely the maximum kinetic energy of the 

pendulum). 

ymgE Δ=potentialnalgravitatio

Energy stored in the wire results from the additional potential energy gained in 

bending of the wire (primarily at the top as discussed in section 4.1.3). This manifests 

itself as bending strain in the wire, and therefore as bending strain energy along the 

length over which bending occurs.  

These energies can be extracted in ANSYS by way of running a static analysis followed 

by a ‘modal’ analysis. The resonant modes of the system are extracted within the 

modal analysis, with the constraints and loading from the static analysis also applied. 

The modal analysis also permits calculation of strain energies contained in each element 
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for a given resonant mode, as well as the total maximum kinetic energy contained in 

the resonant motion of the system. From this the strain energy in the elements that 

experience bending can be calculated, and the pendulum dilution evaluated. Since 

bending will occur all along the ribbon/fibre length (albeit only a very small amount 

occurring along the majority of the ribbon/fibre length, and most occurring in the first 

few multiples of the bending length) the dilution calculation considered the strain 

energy in the full ribbon/fibre length. 

4.2.1 Verifying the Technique  

A simple model was constructed to use as a direct comparison of this technique against 

theoretical values calculated using equation (2.35). The model used is illustrated in 

Figure 4.6, and comprised a 600 mm long ribbon, of cross section 1.1 x 0.11 mm, 

suspending a 10 kg solid mass. A circular fibre with the same cross sectional area, and 

radius 200 μm was modelled by R. Kumar. 10 kg was chosen as this mimicked the 

loading that the ribbon will experience in Advanced LIGO. A large element density of 

10000 elements was chosen to ensure that the solution was well converged (checks of 

convergence follow in section 4.2.2). 
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Fixed 
translational 

and rotational 
constraint

 
Figure 4.6 Single ribbon FEA ANSYS model, suspending mass of 10kg, with ideal ribbon containing no 
end necks. Insets to the right show the equivalent circular fibre as modelled by R. Kumar 

The longitudinal pendulum mode was considered for the ribbon models – this is the 

mode in which the ribbon bending occurs in the thinner of the dimensions, as shown in 

Figure 4.7.  
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 a. b. 

Bending 
occurs in this 

direction 

Figure 4.7 a. Longitudinal pendulum mode considered in the ribbon pendulum analysis, showing bending 
occurring in thin dimension. Wireframe shows pendulum equilibrium position b. Side view of longitudinal 
pendulum mode. 

The theoretical dilution value is calculated taking the pendulum length as the length 

from the clamping point to the centre of the suspended mass - this accounts for the 

theoretical value’s simplistic assumption that the mass is all contained at a point 

located at the end of the ribbon. The dilution results are shown in Table 4.1. 
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Case 

Theoretical 
dilution value 
(for 600 mm 
long ribbon) 

Theorerical 
dilution value 
(for 600 mm 
long ribbon, 

plus length to 
centre of 
suspended 

mass) 

Dilution from 
ANSYS (using 
strain energy in 
bending at top) 

Dilution from 
ANSYS (using 

total strain 
energy in 
ribbon) 

Rectangular 
ribbon 4096 4511 4484 4478 

Circular fibre 1250 1405 1399 1396 

Table 4.1 Dilution results for simple single ribbon/fibre holding 10 kg, showing 

Two dilution values were calculated in ANSYS – the first with only the energy in the 

bending at the top considered; the second using the total strain energy contained in the 

ribbon. It was seen that both values calculated using ANSYS come very close to the 

theoretical value, with less than 1% difference when considering the pendulum length 

as the ribbon length plus the distance to the centre of the mass. Results of similar 

accuracy were attained for the circular fibre case. 

The large difference seen in dilution between ribbon and fibre can be explained by the 

strain energy distribution in the top of the ribbon/fibre, as shown in Figure 4.8. The 

top of the circular fibre can be seen to contain significantly more strain energy than the 

equivalent ribbon. This is because the ribbon is thinner and therefore more compliant 

to bending. The bending point was calculated to occur 0.46 mm from the top of the 

ribbon; whereas the bending point of the circular fibre occurs 0.96 mm from its top. 

This also confirms that the bending occurs for a greater length down the circular fibre 

compared to the ribbon. 
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Figure 4.8 Strain energy distribution for top 3 mm of ribbon and fibre with no necks 

No significant energy is seen along length of either the ribbon or fibre, and this is 

consistent with there being no significant bending occurring in this region 

The difference between the two values calculated in ANSYS can be accounted for in a 

small amount of bending that occurs at the point where the ribbon/fibre joins to the 

mass (namely the bottom end of the ribbon/fibre). This can be seen in the strain 

energy distribution as shown in Figure 4.9. 
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Figure 4.9 Strain energy distribution for bottom 3 mm of ribbon and fibre with no necks 
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It can be seen that bending occurs in a similar manner to that at the top of the 

ribbon/fibre. This bending occurs due to the inertia of the mass during the swinging of 

the pendulum. When the pendulum reaches the end of the swing, it will pitch slightly 

due to its inertia, as shown in Figure 4.10. 

Point Mass 

Additional bending 
occurs at bottom 
due to inertia of 
mass causing 

pitch 

b.
Mass pitching 

a.  
Figure 4.10 a. Theoretical system b. System as modelled in ANSYS, showing additional bending 
(exaggerated for clarity) and pitching of the finite sized mass. 

However, the amount of strain energy that occurs due in this bend is around 600 times 

less than that occurring at the top. Therefore, inclusion of this strain energy in the 

dilution calculation will have little significant effect – as demonstrated in Table 4.1. 

However, this energy should be included as the effect is real – it is simply not 

accounted for in the theoretical calculation. 

4.2.2 Checking Solution Convergence 

The number of elements used in this first simple model was relatively large, and in 

order to check whether this was necessary the models were re-constructed using many 
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fewer elements, to see which element density was required to ensure accurately 

converged solutions. 

Dilution values were sought from models with 2, 4, 6, 8, 10, 25, 50, 100, 250 elements. 

Models using masses with beam elements and models using solid element mass were 

considered (since it was envisaged that more complex masses would not be able to be 

constructed from simple beam elements). 

The resulting convergence of the dilution solutions are shown in Figure 4.11 and Figure 

4.12.  
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igure 4.11 Convergence of dilution using a 10 kg mass constructed from beam elements 
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Figure 4.12 Convergence of dilution using a 10 kg mass constructed from solid elements 

Both solutions were seen to be well converged to within 1% of the theoretical value 

once they were made up of 50 elements or greater, corresponding to an element every 

12 mm along the ribbon or fibre. This convergence is the result of the strain energy in 

the bending converging – the kinetic energy was seen to converge much sooner. This is 

understandable as the kinetic energy relied primarily on the mass, and this was not 

changed between models. 

For all subsequent models the element density for both rectangular ribbon and circular 

fibre models was standardised to one element every 0.5 mm for the first and last 3 cm 

of ribbon/fibre (equivalent to one node every 0.25 mm since additional nodes are 

located at the midpoints of beam elements), and one element every 5 mm in the centre 

of the ribbon/fibre (equivalent to one node every 2.5 mm). This was chosen to give a 

good resolution in the neck areas to allow different shaped necks to be applied to the 

ribbons/fibres with an acceptable resolution of elements to define the given neck. The 
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central region of the ribbon/fibre did not require such a resolution, so a node every 2.5 

mm was deemed satisfactory. A model using this element density was also tested and 

found to be well converged to the same solution. 

4.3 Single Ribbon/Fibre Models 

4.3.1 Single Ribbon/Fibre with No Neck  

The most trivial case of a single ribbon/fibre supporting a 10 kg mass was addressed in 

testing of the methods in section 4.2.1, and shown to agree closely to theoretical 

calculations.  

4.3.2 Single Ribbon/Fibre with Linear Taper Neck of 7.5mm Length 

In real detector suspensions the ribbons and fibres cannot be accurately portrayed by a 

simple model with no representation of the ribbon/fibre neck, as bending occurs in or 

around the neck region. Therefore this region is important to consider when evaluating 

pendulum dilution, as will be shown. 

A typically short ribbon neck was chosen for analysis, being of length 7.5 mm (the 

shortest pulled ribbon neck had been around 7 mm, such as the profile shown in Figure 

4.3). Two versions of this were studied, as shown in Figure 4.13 – the first with 

starting dimensions 8.4 mm x 0.84 mm, and the second with starting dimensions 

5 mm x 0.5 mm. The former had exactly equivalent cross section to the circular fibre 

modelled by R. Kumar (Figure 4.13c). The 5 mm x 0.5 mm ribbon matched the actual 

start dimensions that are currently proposed for fabricating the ribbons for Advanced 

LIGO. The circular fibre was chosen to be of starting dimensions that would be 

suitable for use in Advanced LIGO – such a fibre would typically be pulled from a 

3 mm diameter rod [146], necking down to a 0.4 mm diameter fibre. 
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0.84mm

8.4mm

0.5mm

5mm

7.5mm
7.5mm

3mm

7.5mm

 
Figure 4.13 a. Linear taper neck used in FE models, with cross sectional area identical to circular fibre. b. 
Linear taper neck with actual start dimension of 5 x 0.5 mm. c. Comparison circular fibre, as modelled by 
R. Kumar. b. and c. have identical cross sectional area throughout. 

The remainder of the model was identical to that studied in section 4.2.1. The resulting 

dilution factors and bending points are shown in Table 4.2. 

Circular fibre Rectangular Ribbon 

Case 

Bending 
point 

(distance 
from neck 

start) 

Theoretical 
Dilution 
(using 

bending 
thickness)

ANSYS 
Dilution

Case 
Bending point 
(distance from 

neck start) 

Theoretical 
Dilution 
(using 

bending 
thickness)

ANSYS 
Dilution

7.5 mm 
neck, 8.4 x 
0.84 mm 

5.82 mm 721 720 7.5 mm 
Linear 
taper 
neck 

8.02 mm 1405 872 
7.5 mm 

neck, 5 x 
0.5 mm 

3.77 mm 588 590 

Table 4.2 Dilution factors for 7.5 mm taper necked fibres and ribbons 

It is clear that addition of necks to both ribbon and fibre reduces the resulting dilution 

over that observed in the simple no-necked case. More notably, it can be seen that for 

both ribbons the dilution is actually lower than that observed for the equivalent 

circular fibre. Theoretical dilution factors were also calculated for comparison, with the 

second area moment of the ribbon/fibre cross sectional dimensions at the bending point 

used in the calculation. As demonstrated in Table 4.2 the theoretical dilution and the 
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dilution derived from ANSYS agree closely, whilst the theoretical dilution for the 

circular fibre is the same as for the non-necked case studied in section 4.2.1. 

Explanation for these phenomena is forthcoming when the stress distribution (Figure 

4.14) and strain energy distribution within the neck region are analysed. 

b. c.a. 

Minimum Stress    Maximum Stress 
 

Figure 4.14 a. Stress distribution in 8.4 x 0.84 mm start dimension ribbon neck showing 3D and side 
views. MX denotes the position of maximum stress b. Stress distribution in 5 x 0.5 mm start dimension 
ribbon neck showing 3D and side views c. Stress distribution in circular fibre. Inset shows that the stress 
is more localised at the end of the neck 

It is evident that the points of maximum stress occur in different positions for ribbons 

and circular fibres. In the case of the circular fibre, the maximum stress occurs at the 

end of the neck. For the ribbon of equivalent cross sectional area, the maximum stress 

occurs above this point, and this is indicative of the majority of the bending occurring 

within the neck region. This happens because the fibre is more resistant to bending 

within the neck, as the start and end diameters are greater than the start and end 

thicknesses of the ribbon of equivalent cross sectional area.  

These observations are re-enforced by the observed strain energy distribution as shown 

in Figure 4.15. The circular fibre experiences the most bending outwith the neck, and 
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therefore has the most bending strain energy contained beyond the end of the neck. By 

contrast, both ribbon cases demonstrate significantly more bending strain energy in the 

neck region, and therefore the total strain energy due to bending is greater in the 

ribbons, with the 5 x 0.5 mm ribbon displaying the most bending strain energy, and 

consequently the lowest pendulum dilution.  

Bending strain energy distribution, 7.5mm linear tapered necked ribbon/fibre
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Figure 4.15 Bending strain energy discribution in 7.5 mm linear taper necks 

It was therefore clear that necked ribbons and fibres required additional investigation. 

Given that the chosen neck length of 7.5 mm was seen to be around the shortest 

produced in real life, analysis of a neck double the length was undertaken to investigate 

the impact that this longer neck would have on dilution. 

4.3.3 Single Ribbon/Fibre with Linear Taper Neck of 15 mm Length 

The 15 mm linear taper necks modelled in ANSYS are shown in Figure 4.16, using the 

same element density as before. Again, the pendulum model was identical to the simple 

case in section 4.2.1, with the only change being the addition of the necks to the 

ribbon/fibre. 
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0.5mm

15mm
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Figure 4.16 a. Linear tapered ribbon neck of 15mm b. Comparison neck as modelled by R. Kumar 

The resulting dilution factors and bending points are shown in Table 4.3. 

Circular fibre Rectangular Ribbon 

Case 

Bending 
point 

(distance 
from neck 

start) 

Theoretical 
Dilution (using 

bending 
thickness) 

ANSYS 
Dilution 

Bending 
point 

(distance 
from neck 

start) 

Theoretical 
Dilution (using 

bending 
thickness) 

ANSYS 
Dilution 

15 mm 
linear 
taper 
neck 

13.47 mm 453 401 4.89 mm 390 381 

Table 4.3 Dilution factors for 15 mm taper necked fibres and ribbons 

Again, it was observed that the circular fibre had a higher dilution than the ribbon. 

Plotting the stress distribution (Figure 4.17) shows that the ribbon experiences the 

most stress at the very start of the neck. The fibre shows that its maximum stress is 

still located at the end of the taper neck section, although a greater amount of stress is 

visible within the neck section as compared to the 7.5 mm necked model (Figure 

4.14c.). 
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a. b. c. 

Minimum Stress Maximum Stress 
Figure 4.17 a. Stress concentration in 15 mm long linear taper ribbon neck. b. Ribbon viewed from side, 
showing stress concentration through its thickness. c. Comparison circular fibre, showing a more localised 
stress concentration, with maximum located at the end of the neck section. 

The bending strain energy distribution (Figure 4.18) confirms that the longer necked 

fibres experience more bending in the fibre neck; whilst all the bending strain energy of 

the ribbon is contained within the neck. The total strain energy due to bending in the 

ribbon case is slightly greater resulting in the slightly lower observed dilution. The 

amount of strain energy contained in the circular fibre is also increased over the 

7.5 mm necked case, due to increased bending occurring within the neck (evidenced 

from the bending point of 13.47 mm, which lies within the 15 mm neck). 
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Figure 4.18 Bending strain energy discribution in 15 mm linear taper necks 

4.3.4 Discussion 

A summary of the dilution values determined for the simple no-neck and the linear 

taper necked ribbons/fibres are shown in Table 4.4.  

 Circular fibre Rectangular Ribbon 

Case ANSYS 
Theory (using 

bending 
thickness) 

ANSYS 
Theory (using 

bending 
thickness) 

No Neck 1396 1405 4478 4511 

7.5 mm Linear 
taper neck 872 1405 590 588 

15 mm Linear 
taper neck 

401 1130 381 390 

Table 4.4 Summary of dilution factors for non-necked and taper necked ribbons and fibres 

For both the necked cases studied, the dilution factor for the ribbon was actually lower 

than that for the corresponding fibre – a result which was not anticipated given the 

fact that for a no-necked model the ribbon gave far superior dilution. Additionally, 

Willems [147] had demonstrated that simple necked circular fibres showed a decrease of 
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around a factor of 2 from the no necked cases – the results shown here concur with 

this. The ribbons here were seen to undergo a much greater decrease in dilution than 

the equivalent fibres. 

It was clear from the analysis of the stress and strain energy distributions that the 

reason for this is that for the simple non-necked case the ribbon is much more 

compliant to bending (as it is almost four times thinner than the fibre diameter). 

However, when necks are introduced this additional compliance actually penalises the 

performance of the ribbon, as it experiences much greater bending within the neck 

region, allowing more bending strain energy to reside there. In contrast, the circular 

fibre’s greater diameter counters this effect by increasing the stiffness through the neck 

and reducing the bending that occurs there. Thus, the strain energy that resides in the 

neck is reduced. 

An important question that immediately arises from this analysis is “for what neck 

length do ribbons have a superior dilution to the fibre?”. This was addressed in the 

following section. 

4.3.5 Dilution as a Function of Taper Length 

Further models were constructed to evaluate the dilution for 2.5, 5, 10, 12.5 mm long 

linear taper necks. Additionally, for the ribbon case 0.5 mm and 1 mm long neck cases 

were studied to give a better indication of the trend near the ideal no-necked case. This 

was analysed for the cases where the ribbon had equal cross sectional area to the fibre 

(with ribbon neck starting dimensions 8.4 x 0.84 mm), and the more realistic case 

where the starting dimensions were 5 x 0.5 mm. The results are shown in Figure 4.19 

and Figure 4.20 respectively. 
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Dilution as a function of neck taper length for ribbon of start 
dimensions 8.4x0.84mm (cross sectional area identical to fibre)
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Figure 4.19 Graph showing dilution as a function of linear taper neck length for both ribbon and fibre, 
where cross sectional areas are identical through the taper. 

 

Dilution as a function of neck taper length for ribbon with start 
dimensions 5 x 0.5mm
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Figure 4.20 Graph showing dilution as a function of linear taper neck length for both ribbon and fibre 
where the start dimension of the ribbon is taken as the real life 5 x 0.5 mm. 
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These results show that the ribbon dilution falls sharply as the neck length increases 

from zero, and falls below that of the equivalent fibre for necks longer that 

approximately 5.5 mm in the first case and 3.5 mm in the second case. By contrast, the 

dilution of the fibre falls close to linearly throughout the range studied. As the necks 

become much longer the difference between the ribbon and fibre becomes less 

pronounced, as in both cases bending occurs mostly in the neck region. 

This result is significant as it shows that while ribbons only have a superior dilution 

when necks are small. If the ribbons currently proposed for use in Advanced LIGO 

have necks that are too long, they will likely have inferior noise performance to the 

equivalent fibre. This is a result of an increased amount of bending strain energy being 

contained in the ribbons since the bending points are further up the necks that the 

equivalent fibres. 

Since the geometry of the necks clearly has significant influence on the expected level of 

dilution, the final set of models investigated a more realistic Advanced LIGO 

suspension scenario, bringing in the real experimental ribbon profiles presented in 

section 3.7.1. 

4.4 Advanced LIGO Models 

Real suspensions are more complicated than the simple single ribbon/fibre models 

examined so far. Therefore the models were extended to use 4 fibres, using the correct 

Advanced LIGO masses, and ultimately including accurate finite element models of the 

ears on the sides of the test masses onto which the ribbons/fibres are welded (for detail 

of ears and suspension see Figure 3.4). 

4.4.1 No Necks, Simple Ears 

The first batch of 4 ribbon/fibre models were used to again confirm that the modelling 

technique performed as expected, the most simple case possible was analysed, with no 
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necked ribbons/fibres and the mass ears represented by simple blocks, as shown in 

Figure 4.21. 

 
Figure 4.21 Simple model of Advanced LIGO suspensions, using simplified ears, and ideal no-necked 
ribbons/fibres. 

The longitudinal pendulum mode was considered, since this couples directly into the 

horizontal displacement thermal noise in the interferometer, and this is shown in Figure 

4.22.  
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Beam path in 
interferometer – the 

tudinal pendu
de couples direct

into detector noise 

Figure 4.22 a. 3D view of longitudinal pendulum mode for Advanced LIGO b. side view of longitudinal 
pendulum mode showing mass ramaining horizontal due to its inertia 

Two dilution numbers were extracted for this model, one using the total strain energy 

contained, the other using only that contained in the bending of the ribbons. The 

results are shown in Table 4.5. 

Theoretical dilution 
(including bending top and 

bottom) 

Dilution as calculated in 
ANSYS using total strain 

energy 

Dilution as calculated in 
ANSYS using strain energy 

in bending 

2048 1927 2040 

Table 4.5 Dilution comparison for Advanced LIGO longitudinal pendulum mode 

The theoretical values differ from that of the single fibre models studied as bending 

occurs both at the top and the bottom of the ribbon (halving the dilution) due to the 

inertia of the moving mass against pitch. The dilution is also further reduced as the 

length to the centre of mass is 60 cm. The single ribbon/fibre models used a 60 cm 

fibre with an additional 7.5 cm to the centre of the mass, as discussed in section 4.2.1.  

b. 

longi lum 
mo ly 

a. 
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Additional strain energy is contained in the ears at the join point for the ribbons and 

the join point to the mass, this being due to the 40 kg load mass. This is seen when the 

total strain energy in the model is considered to calculate the dilution. This additional 

energy is not an accurate bending strain energy (since the ears were simple 

representations) so was not considered for dilution calculations. When only the bending 

strain energy is used in the ANSYS calculation, the calculated dilution deviates from 

the theoretical value by 0.4%. 

It was therefore seen that these results tie up closely with the theoretical values, and 

the dilution values extracted from the remaining Advanced LIGO models considered 

the strain energy in the ribbons due to bending only. 

4.4.2 Linear Tapered Necks 

The second pair of Advanced LIGO models considered used the same 7.5 mm and 

15 mm linear taper necks as considered in sections 4.3.2 and 4.3.3. These models are 

shown in Figure 4.23 and Figure 4.24 respectively. The 7.5 mm long tapered neck with 

starting dimensions 8.4 x 0.84 mm (from section 4.3.2) was not considered, as these 

starting dimensions were not representative of those that are currently envisaged for 

the Advanced LIGO ribbons. 
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a. b.
 

Figure 4.23 a. Advanced LIGO model with 7.5 mm linear taper necks b. equivalent circular fibre model 

 

a. b.  
Figure 4.24 a. Advanced LIGO model with 15 mm linear taper necks b. equivalent circular fibre model 
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The resulting dilution values, calculated by considering the strain energy in the 

ribbons/fibres only, are shown in Table 4.6. 

Case Theoretical Dilution (using 
bending thickness) Dilution from ANSYS 

Rectangular Ribbon, 
7.5 mm long neck 262 273 

Circular Fibre, 7.5 mm 
long neck 625 396 

Rectangular Ribbon, 15 
mm long neck 

174 174 

Circular Fibre, 15 mm long 
neck 226 185 

Table 4.6 Dilution values for linear tapered neck ribbons and fibres. 

It is clear once again that the ribbons show lower dilution than the equivalent circular 

fibres, similar to the trend that was seen in sections 4.3.2 and 4.3.3.  Also, the 

theoretical dilution values for the ribbons again come close to that predicted by theory 

when the width and thickness at the bending point is utilised in the calculation.  

The circular fibres with 7.5 mm long necks again have the bending point occurring 

beyond the neck, with some neck bending causing the reduction in dilution as 

compared to the theoretical value. For the longer 15 mm neck much more bending 

occurs in the neck causing a greater reduction in dilution to a value comparable with 

the 15 mm necked ribbon. This again follows the same trend that was demonstrated in 

sections 4.3.2 and 4.3.3. 

Bending strain energy distributions for the 7.5 mm neck and 15 mm necked 

ribbons/fibres are shown in Figure 4.25 and Figure 4.26 respectively. 
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Strain energy in Advanced LIGO model for 7.5mm linear taper necked ribbons/fibres

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

1.00E-03

0.
5

1.
5

2.
5

3.
5

4.
5

5.
5

6.
5

7.
5

8.
5

9.
5

10
.5

11
.5

16
.5

17
.5

18
.5

19
.5

58
0

58
1

58
2

58
3

58
4

58
5

58
6

58
7

58
8

58
9

59
0

59
1

59
2

59
3

59
4

59
5

59
6

59
7

59
8

59
9

60
0

Distance along ribbon/fibre (mm)

St
ra

in
 e

ne
rg

y 
(a

rb
itr

ar
y 

un
its

)
Rectangular Ribbon
Circular Fibre

12
.5

13
.5

14
.5

15
.5

 
Figure 4.25 Strain energy distribution for a single ribbon/fibre in Advanced LIGO 4 ribbon/fibre model, 
with ribbon/fibre having 7.5 mm long linear tapered necks. 

 

 

Strain energy in Advanced LIGO model for 15mm linear taper necked ribbons/fibres
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Figure 4.26 Strain energy distribution for a single ribbon/fibre in Advanced LIGO 4 ribbon/fibre model, 
with ribbon/fibre having 15 mm long linear tapered necks. 

These strain energy distributions show similar structure for each neck as those for the 

single fibre models (Figure 4.15 and Figure 4.18) as would be expected since the mass 

loading is the same, and therefore the bending will also occur in the same manner. 
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It is therefore apparent that the effects of the necks also cause significant reduction in 

the dilution factor of the proposed Advanced LIGO suspensions.  

4.4.3 Real Necks 

Real ribbon necks have a more complex profile, as demonstrated in Chapter 3. In order 

to gauge the performance of a suspension using real ribbons, the profile data was 

imported into ANSYS using the LabVIEW program described in section 4.1.2. The 

resulting ANSYS models are shown in Figure 4.27. 

a. b.

 
Figure 4.27 Advanced LIGO models using real ribbon profiles. a. shows the oversized ribbon, b. shows the 
thinner ribbon 

Dilution values and energy distributions are shown in Table 4.7 and Figure 4.28 

respectively. 
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Case Dilution from ANSYS 

Ribbon - oversize 146 

Ribbon – correct 135 

Table 4.7 Dilution values for real ribbons characterised in Chapter 3 

 
Strain energy distribution, Real ribbon profiles
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Figure 4.28 Strain energy distributions for the real ribbons characterised in Chapter 3 

Again, dilution values can be seen to be lower than for an ideal non-necked ribbon, and 

the relatively long necks resulted in most of the bending strain energy being contained 

in the thicker neck region. This gave the lowest dilution values observed, and is 

therefore less desirable from a thermal noise point of view in Advanced LIGO 

suspensions. 

The best neck profile (as profiled in section 3.7.1) was therefore modelled as shown in 

Figure 4.29. 
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Figure 4.29 Advanced LIGO model for real short neck characterised in section 3.7.1, (see Figure 3.27). 

 

The observed dilution was higher at 493, which was a result of the shortened neck 

(consistent with the results from section 4.3.5) and the resulting reduction in strain 

energy. The strain energy distribution also shows this, with strain energy occurring 

over a lesser neck length, as shown in Figure 4.30. 
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Strain energy distribution, Real short necked ribbon
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Figure 4.30 Strain energy distribution for Advanced LIGO model for real short neck characterised in 
section 3.7.1, (see Figure 3.27). 

4.4.4 Real Necks, Real Ears 

The final 4 ribbon model studied looked at the effect of adding accurate models of the 

ears proposed for use in Advanced LIGO. The upper intermediate mass was included, 

to allow the ears that join to the top of the ribbons to be modelled. Figure 4.31 shows 

the resulting FE model.  

In this model, the upper mass was constrained in displacement and rotation at its four 

uppermost vertices to allow the ears and that tops of the fibres to bend freely as in a 

real detector suspension.  
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Model 
constrained at 

the four vertices 
of mass flats

 
Figure 4.31 Advanced LIGO model using accurate models of the real ears, and also the best ribbon neck 
profile obtained from the data from section 3.7.1. 

The dilution was considered in this case with the inclusion of the strain energy 

contained in the ears. The resulting values are shown in Table 4.8. 

ANSYS (strain 
energy in ribbons 

and ears) 

ANSYS 
(previous model 
with stiff ears)

Theory (no neck, 
ideally stiff ears) 

277 493 2048 

Table 4.8 Comparison of dilution when bending strain energy in ears is introduced. 

Introducing the energy contained in the ears can be seen to cause another decrease in 

the pendulum dilution. Close observation of a modal animation showed that the weld 

region of the ear experienced a small amount of bending indicating that some strain 

energy would be residing in the ears also. 
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4.4.5 Discussion 

A summary of all the dilution values for the 4 ribbon Advanced LIGO suspensions 

considered is shown in Table 4.9. 

Ribbon model Dilution from ANSYS 

Ideal case, no necks (section 4.4.1) 2040 

7.5 mm linear taper necked ribbons 
(section  4.4.2) 396 

15 mm linear taper necked ribbons 
(section 4.4.2) 174 

Real ribbon - oversized (section 4.4.3) 146 

Real ribbon – thinner ribbon (section 
4.4.3) 

135 

Real ribbon – short neck (section 4.4.3) 493 

Real ribbon – short neck + ears (section 
4.4.4) 

277 

Table 4.9 Summary of ribbon dilution factors for Advanced LIGO models 

It is clear once again that the introduction of ribbon and fibre necks reduced the 

dilution value observed in the pendulum, and this was expected after the results of 

sections 4.3.2 to 4.3.5. However, it is notable that both the real ribbons and real fibres 

give the lowest dilution factors, underlining that neck shape and length are very 

important, and production of such necks is not a trivial undertaking. 

4.5 Improving Thermal Noise Performance 

4.5.1 Tapered Fibres 

Since high dilution factors were originally cited as a reason for use of ribbon geometries, 

the discovery that the ribbon necks significantly reduced the dilution prompted a re-

evaluation of the noise sources in the ribbons and fibres. In particular, the nulling of 

thermoelastic noise as detailed in section 3.4 had been demonstrated to yield potential 

reductions in mechanical loss by Cagnoli and Willems [131] in 2002, but was discovered 
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after the ribbon choice had been made for Advanced LIGO. In this paper, it is shown 

that the nulling of thermoelastic loss for ribbons can be achieved by use of a 0.2 x 

2.0 mm cross section ribbon. However, nulling can also be achieved with circular fibres, 

and since these are simple to manufacture, their dynamics were analysed here, as a 

possible alternative to the current baseline ribbons. 

In order to achieve a minimisation of the thermoelastic loss, the bending of the fibre 

top and bottom must occur in a region where it is 805 μm diameter (from Equation 

(3.12)). Therefore a fibre was proposed [148] which would have thicker ends to permit 

bending to occur in an 805 μm diameter region, and this is shown in Figure 4.32a. A 

transition to 400 μm diameter is required as this ensures that the vertical bounce 

frequency of the loaded fibre is below the 12 Hz Advanced LIGO requirement. 

Minimum Stress Maximum Stress

100mm 
long, 
805μm 
diameter

10mm long taper

400μm diameter thin fibre

Most stress 
and bending 
occurs within 
the 805μm 
diameter 
section of the 
fibre

Only a very 
small bend 
occurs at the 
transition to the 
thin 400μm 
fibre

a. b.

 
Figure 4.32a. Tapered fibre ANSYS model b.Stress in bending of tapered fibre showing bending contained 
in thicker 805 μm diameter section of fibre 
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The FEA model of this fibre preformed as expected, with almost all of the bending 

occurring in the thicker 805 μm diameter region, with only a small additional bend at 

the transition to thinner 400 μm. The strain energy distribution is shown in Figure 

4.33. 

Strain energy distribution, tapered fibre
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Figure 4.33 Strain energy distribution for tapered fibre. Inset shows the small peak in strain energy 
observed due to a small additional bend occurring at the transition to 400 μm diameter 

The energy distribution shows that only a small fraction (0.27%) of the total strain 

energy is contained at the 805 μm to 400 μm transition, and therefore would be 

insignificantly detrimental to the expected dilution. This was confirmed from a single 

fibre model with a 10 kg mass, which yielded a dilution value of 371, with the 

theoretical dilution of 360. 

4.5.2 Tapered Fibre with Ear Representation 

In order to represent a tapered fibre welded to an ear, the model was extended as 

shown in Figure 4.34a. The end of an “ear” was represented by a circular section, 3 mm 

diameter, with a 1 mm long taper section representing the weld of the fibre to the ear. 

This basic representation of the end of an ear was used as using a circular rod as this is 

Strain energy distribution, tapered fibre, neck
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a more likely welding scenario if circular fibres were used (this is the method that was 

used in the GEO600 suspensions). 3 mm diameter was chosen as the 2 mm thickness of 

the ears used in the model of the full suspension (section 4.4.4) resulted in a significant 

amount of bending in the ears. 

Minimum Stress Maximum Stress

10mm 
long, 
805μm 
diameter

1mm long taper “weld”

400μm diameter thin fibre

Most stress 
and bending 
occurs within 
the 805μm 
diameter 
section of the 
fibre

a. b.

1mm long taper

5mm long taper 3mm 
diameter “ear”

 
Figure 4.34a. Tapered fibre model with ear representation b. Some stress occurs in the weld region. 

Figure 4.34b shows that some bending stress is pushed into the weld taper region, and 

the strain energy distribution (Figure 4.35) also shows that 6.2% of the total strain 

energy is contained in the weld section. 
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Strain energy distribution for tapered fibre with ear representation
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Figure 4.35 Strain energy distribution for tapered fibre and ear representation. 

Dilution was 360 for this fibre (for a single fibre with a 10 kg mass model with bending 

only at the top), but since the weld may possibly have a greater mechanical loss than 

the fibre itself, it is desirable to have the weld further away from the bending region in 

order that less energy is stored here. Therefore welding a fibre in this manner is 

unlikely to be used in an Advanced LIGO scenario [148].  

Instead, welding a thicker 3 mm section at the end of the tapered fibre is more feasible 

as this would move the weld away from the region of maximal bending. In order to 

analyse the strain energy in a fibre with a 3 mm section tapering to an 805 μm 

diameter section and then down to 400 μm, a real fibre was produced to model in 

ANSYS. 

4.5.3 Real Tapered Fibre 

The fibre that was produced, the profile and its resulting ANSYS model is shown in 

Figure 4.36. 
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Profile of real tapered fibre neck end
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Figure 4.36 Real tapered fibre (top), ANSYS model (centre) and profile (plotted). 

During the pull the fibre necked down lower than was desired at first, with the section 

required to be 805 μm dropping as low as 550 μm. The dilution resulting for this fibre 

was 385 (for a single fibre with a 10 kg mass model) and 160 in an Advanced LIGO 

scenario. 

The strain energy distribution for the first 20 mm of the fibre is shown in Figure 4.37. 
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Strain energy distribution for real tapered fibre
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Figure 4.37 Strain energy distribution for real tapered fibre 

It is clear that the bending occurs mostly at the end of the transition between the 

3 mm starting diameter and the 805 μm diameter section. Insignificant energy was 

contained further down the fibre. 

4.6 Evaluation of all Mechanical Loss Mechanisms in Real Ribbons/Fibres 

Tapered fibres clearly give lower dilution values than ideal ribbons. However, the 

mechanical loss of a suspension constructed with such a fibre would also depend on the 

level of thermoelastic loss in the bending region and the surface loss of the fibre. 

Thermoelastic loss in particular is an important consideration as the aim of the tapered 

fibre was to minimise this. Surface loss is also important as the surface to volume ratio 

for these fibres is high when compared to the test mass itself. A method of calculating 

the mechanical loss for real fibres was therefore developed in order to give a clear 

indication of the factors that contribute to the thermal noise resulting from the fibre.  

In order to evaluate the mechanical loss of such a fibre, with appropriate comparisons 

to ribbons, a Maple [149] program was written by Dr. Alastair Heptonstall together 

with the author, to use the ribbon or fibre profiled dimensions together with ANSYS 
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modelling strain energy results to calculate the total mechanical loss in the ribbon or 

fibre. 

The mechanical loss in a uniform fibre can be represented: 

 
oncontributiticthermoelasoncontributibulkoncontributisurfacematerialfibre φφφφ ++=  (4.2)

where φsurface contribution is the mechanical loss due to the ribbon/fibre surface, φbulk contribution 

is the mechanical loss of the material making up the ribbon/fibre and φthermoelastic contribution 

is the thermoelastic loss of the ribbon/fibre. 

The surface loss can be modelled as shown by Gretarsson [150] and Heptonstall [151] 

as: 

 

V
Sh sφμφ =oncontributisurface  (4.3)

where μ is a coefficient dependent on the ribbon or fibre geometry, hφs is the product 

of the mechanical loss of the material surface, φs  , and the depth, h, over which surface 

loss mechanisms are believed to occur. hφs was taken from Gretarsson as 6.15x10-12 m 

[150]. V
S  is the ratio of surface area to volume. For ribbons of width x and thickness y 

the surface contribution is [150]: 

 ( )
xy
yxh

a
a

s
+

+
+

=
2

1
3

ribbononcontributisurface φφ (4.4)

where a is the ratio of width to thickness. For circular fibres diameter d the surface 

contribution is [150]:  

 

d
h sφφ

53.8
fibreoncontributisurface = (4.5)



CHAPTER 4 – FE ANALYSIS OF ADVANCED LIGO PENDULUM SUSPENSIONS

 

155

The thermoelastic loss is calculated using equation (3.10): 

( )
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2ticthermoelas 1
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This calculation was then performed for segments of the fibre all along its length. So, 

the mechanical loss of the ith section of a circular fibre is: 
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where di is the diameter of the fibre in the ith section, τ i is the characteristic heat flow 

time over the diameter di , and σ i is the static stress in the ith section. The bulk loss 

was taken to be 4.1 x 10-10 [152]. 

In order to calculate the loss in this manner, the fibre is approximated as shown in 

Figure 4.38, with each element in the ANSYS model of the fibre being approximated to 

an average constant diameter. The diameters are then used to calculate the mechanical 

loss contribution, φ i, of each element using equation (4.6). The highest data resolution 

that ANSYS could solve was chosen, with one element every 0.1 mm along the fibre 

length to give the most accurate resulting loss values. 
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Diameter of 
element i, 

Strain energy 
in element i, 
and dilution 
calculated in 

ANSYS 

Model 
 

approximated to 

Used to calculate 
surface and 

thermoelastic loss 
(using Maple 

model

Mechanical 
loss of fibre 

Figure 4.38 Schematic ANSYS model of fibre (side view of fibre), showing approximation of elements to 
constant diameter sections 

To obtain the true mechanical loss these losses are scaled by the bending strain energy 

contained within the section (obtained from the ANSYS strain energy distributions), 

summed and multiplied by the dilution factor D to arrive at the total loss of the fibre 

in a suspension:  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++= n

n

E
E

E
E

E
E

D
φφφφ

total
2

total

2
1

total

1
total

1 …  (4.7)

The distribution of mechanical loss along the tapered fibre is shown in Figure 4.39, 

shown with the surface and thermoelastic components calculated separately, then 

scaled by the bending strain energy distribution. 
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Figure 4.39 Mechanical loss contribution of surface and thermoelastic loss for real circular tapered fibre 

The losses are weighted by the ANSYS bending strain energy distribution (Figure 4.37) 

to give the actual weighted loss contribution. The form of the surface loss is the same 

as the strain energy distribution, whilst the thermoelastic loss drops to zero at the 

point where the diameter of the fibre passes through the 805 μm – this being the 

diameter required to null thermoelastic loss. Bulk loss is not shown on this graph as its 

contribution was negligible by comparison. 

The total loss φtotal was then calculated over a range of frequencies to show the 

mechanical loss of the ribbon/fibre at the low frequency end of the detection band. 

This was done for three ribbons/fibres: 

1. “Baseline” ribbon – 1.13 x 0.113 mm ideal ribbon with no necks 

2. “Real” ribbon with short neck as studied in section 4.4.3. 

3. “Real” tapered cylindrical fibre as studied in section 4.5.3. 
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The resulting mechanical loss spectra from 0 to 30 Hz are shown in Figure 4.40. 
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Figure 4.40 Mechanical loss spectra of real ribbon, real tapered fibre and baseline ribbon 

It is clear that both the real ribbon and real tapered fibre have lower loss than the 

baseline ribbon at frequencies greater that around 8 Hz. The baseline ribbon 

experiences a peak in loss at 99 Hz (as was shown in Figure 3.5) due to the 

thermoelastic contribution. By contrast the peak frequency for the real ribbon is much 

lower (at around 10 Hz) and the real tapered fibre peak is lower still, at around 1 Hz. 

This lowering of the peak frequency results from the bending occurring in a thicker 

region of the ribbon or fibre. Pushing this peak thermoelastic frequency below 10 Hz is 

desirable as below this frequency the dominant noise source is seismic noise and 

therefore suspension thermal noise is less important in this region. 

The thermoelastic loss is also reduced when bending occurs in the thicker region as the 

cross sectional dimensions are closer to those required to null the thermoelastic loss, 

and despite the lower dilution, the total mechanical loss is still reduced. 
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This is encouraging for improving the suspension thermal noise, as real ribbons or fibres 

have lower mechanical loss than the baseline requirement for Advanced LIGO, as was 

discussed in section 3.3. The proposed tapered fibre has the lowest mechanical loss of 

the three and is also likely to be the most straightforward to manufacture from a 

practical point of view. Indeed, in the light of the re-evaluation of the mechanical loss 

and dilution of such ribbons and fibres, a proposal has now been tabled for changing 

the Advanced LIGO suspension system to use tapered fibres [153]. 

4.7 Conclusions 

The characterisation of ribbons and fibres using FEA modelling has given a clear 

indication that the necks on both rectangular ribbons and circular fibres reduce the 

resulting pendulum dilution factors. The high dilution of the ideal non-necked ribbon 

drops more rapidly that an equivalent circular fibre as the length of the neck is 

increased, since the bending occurs further up the ribbon. Only very short necks give 

an improvement over the equivalent circular fibre. 

However, study of the different sources of mechanical loss in the ribbons and fibres 

revealed than minimising the thermoelastic loss can give greater total mechanical loss 

reductions than can be achieved solely through high dilution. It was seen that whilst 

the necked ribbons experience poorer dilution, the thermoelastic loss is significantly 

reduced where bending occurs in thicker parts of the ribbon which are nearer to the 

thickness where thermoelastic loss can be nulled.  

The best mechanical loss performance in the 10 Hz region was observed in the tapered 

circular fibres, providing an alternative to the more difficult to manufacture ribbon 

geometry. Indeed, changing to such fibres has now been proposed as an improvement to 

the original Advanced LIGO baseline design, and if such a change is implemented it 

could permit additional gains in noise performance in the 10 Hz detection region.   
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Chapter 5  
 
Test Mass Mirror Coatings 

 
 

5.1 Test Mass Mirror Coatings 

In order to obtain a mirror from a fused silica test mass, the surface must have a 

coating which is highly reflective to the 1064 nm wavelength laser light typically used 

in detectors [154]. It is possible to achieve this by applying thin layers of a pair of 

dielectric materials to the surface. Coatings in all the current first generation 

interferometric gravitational wave detectors use alternate layers of low refractive index 

silica, SiO2, and high refractive index tantalum pentoxide ( “tantala” ), Ta2O5 with 

typically 30 such layers being used. Each coating layer is λ/4 in optical thickness, and 

physical thickness n4h λ= , where n is the refractive index of the material and λ is the 

laser wavelength. 

Whilst the fused silica used for the mirror substrate has been demonstrated as having 

very low mechanical loss [155] [156] [157] [104], the optical coating has been seen to 

introduce an additional source of mechanical dissipation [158] [159] [160] [161] and 

hence detector thermal noise. The capability of producing ultra low loss mirror 

suspension systems as shown in previous chapters means that thermal noise associated 
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with the mirror coating is likely to be a dominating noise source for advanced 

gravitational wave detectors beyond Advanced LIGO at midband frequencies (typically 

between 50 Hz and 500 Hz).  

An area of great interest in current research is therefore understanding and reducing the 

mechanical loss of these coatings, in order to maximise midrange sensitivity. 

Investigations are focussed on possible reductions in loss obtained by doping the high 

refractive index tantala with materials like silica SiO2 , and titania TiO2. Such samples 

have previously been seen to offer potential reductions in the mechanical loss of 

coatings [154]. Samples doped in this manner are the subject of study of this chapter, 

and the measurements were taken jointly with Peter Murray [162]. 

5.2 Measuring Mechanical Loss of Test Mass Samples 

As previously explored in Chapter 2, the mechanical loss of a system or sample can be 

determined by measuring the quality factor, Q(ωo), of resonant modes ωo of the system 

where ( ) ( )ooQ ω ωφ
1= .  

Measurement of the quality factor can be achieved by observation of the decay of an 

excited internal resonant mode of the test mass sample. The mode will exhibit damped 

harmonic motion, and therefore the amplitude of the envelope of the decay of the 

resonant motion can be represented by: 

 

( ) ( )o
o

Q
t

oeAtA ω
ω

2
−

=  
(5.1)

for resonant mode frequency π
ω
2
o

of =  and initial amplitude Ao at time t = 0 [90].  This 

exponential amplitude decay of resonant motion over time is often referred to as a 

“ringdown envelope”, or “ringdown”. By recording A(t) during the ringdown it is possible 
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to use an exponential fit to determine the coefficient, ( )oQ ω2
oω , and hence the quality 

factor for a given resonant mode. Alternatively, it can be advantageous to rearrange 

equation (5.1) giving: 

 
( )( ) ( )oo At

Q
tA log

2
log +−=

ω

 

(5.2)

Thus, from this linear expression, the quality factor Q value can be evaluated from the 

gradient of a logarithmic plot of A(t) data where: 

 

( ) ( )
gradient2

1
×

== o
o

o

Q
ω

ω
ωφ

 (5.3)

All measurements carried out in this chapter were calculated using these methods, and 

are expressed in terms of mechanical loss, φ(ωo). 

5.3 Experimental Measurement of the Mechanical Loss of a Mirror 
Coating 

5.3.1 Samples  

To measure the mechanical loss of the coating, small cylindrical test mass samples of 

silica are used, typically of dimensions 76.2 mm (3”) diameter by 25.4 mm (1”) thick. 

For this experiment three such silica samples of these dimensions were used with 30 

alternating layers of silica and tantala ion beam sputtered on the masses, by the 

Australian science agency CSIRO (Commonwealth Scientific and Industrial Research 

Organisation) [163]. The samples were then annealed at 500°C for 24 hours, to help 

ensure there were minimal oxygen deficiencies in the coating structure. 
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Figure 5.1 Coated test mass sample, with coating on top face. 

Each mass had a different level of doping material contained in the high refractive 

index tantala layer. The composition of the three samples tested was as shown in Table 

5.1, with details supplied by CSIRO [164] [165]. 

Coating sample High index layer composition 

1 35% Titania (TiO2), 65% Silica (SiO2) 

2 85% Tantala (Ta2O5), 15% Titania (TiO2)

3 65% Tantala (Ta2O5), 35% Silica (SiO2) 

Table 5.1 Composition of high index layers of three CSIRO coated samples. 

The first sample was chosen to allow the investigation of the use of a doped titania high 

index layer coating with a low amount of this material used. The second sample was 

nominally identical to a sample previously tested which showed a reduction in 

mechanical loss over an undoped coating [154]. However, this previously investigated 

sample was made by a different coating vendor - Laboratoire des Materiaux Avances 

(LMA), France [166]. The CSIRO sample was therefore used to compare nominally 

identical coatings from different vendors. The third sample was chosen to investigate 

reduction of loss of the tantala layers by doping with silica which is known to have 

lower loss than tantala [167] [162]. 
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No uncoated control mass was supplied, so one which was annealed to the closest 

temperature of 450°C was used instead, this being annealed in a batch by LMA. 

5.3.2 Experimental Mechanical Loss Measurement Setup 

The measurement system was based on the type used previously by Rowan [107], 

Sneddon [108], Murray [162], but with improvements to increase the flexibility and 

accuracy of the measurements undertaken. 

5.3.2.1 Test Mass Suspension 

The test mass samples must have freedom to move in accordance with their resonant 

motion. Any external sources of resistance to resonant motion will introduce excess 

damping to the system, meaning the measured losses will be higher than the actual loss 

of the sample alone. Additionally, the mass sample must be very well isolated from its 

surroundings to ensure that the energy is contained in the excited resonant mode, and 

minimal energy is lost to mechanisms other than internal friction. For these reasons, 

pendulum suspensions are again employed to provide isolation. The mass is held by a 

single loop of silk thread - this suspension material can allow low mechanical losses to 

be measured, as shown by Braginsky [168]. Loss of energy to the swinging pendulum 

modes of this suspension is minimal due to the large separation in frequency of the 

internal modes of the sample (typically 20 kHz and above) and the modes of the 

pendulum (typically around 1 Hz). Loss of energy to violin modes is minimised by use 

of short suspensions, and the suspension length is also varied to alter the potential for 

energy to couple into violin modes.  

The silk loops around the centre of the barrel of the test mass, and is clamped by a 

metal clamping block, as shown in Figure 5.2. Energy loss at the clamp was minimised 

by hollowing out the faces of the clamp to ensure that clamping did not occur higher up 

between clamp surfaces, which would introduce the risk of the thread rubbing within 
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the clamp. This would also occur if the clamping block and clamp bar had lower faces 

at different heights - guide prongs ensure that these faces are flush. 

Clamping block 

Clamp with hollowed out 
faces 

Guide prongs 

Silk suspension 
thread 

Electrostatic 
drive plate 

Mass sample 

Catcher 

 

Figure 5.2 Side view of test mass sling suspension, showing clamping block, clamp with hollowed faces, 
mass, drive plate and catcher. 

The sample’s resonant modes are excited electrostatically by means of an actuator drive 

plate as shown in Figure 5.2. This plate is held 1 - 2 mm behind the rear face of the 

test mass. A DC voltage of 750 V is applied to this to polarise the material, together 

with an AC voltage of up to 1500 V peak to peak at frequency equal to that of the 

resonant mode being examined, which provides the driving force to the polarised 

material. 

The sample, clamping structure and drive plate are placed in a vacuum tank which is 

pumped out to a pressure of approximately 10-6 to 10-7 millibars which ensures that the 
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resonant motion of the mass is not dominated by gas damping [89] at the level of loss 

measured here. 

5.3.2.2 Detection System 

Resonant motion of the front face of the mass is sensed using a small Michelson 

interferometer. The interferometer read-out system is detailed in Figure 5.3. One arm 

(the “internal” arm) of the interferometer is formed by reflecting laser light from the 

front surface of the test mass. The second (“external”) arm is folded, with 3 mirrors 

attached to two types of actuator – one piezoelectric transducer, and two small 

loudspeakers. These actuators act to compensate for large amplitude low frequency 

motion (with displacement > 1 wavelength) of the test mass. The actuators are 

controlled by a low frequency feedback system driving the piezo, and via an additional 

low pass filter to the loudspeakers. This system adjusts the mirror’s position, and hence 

the external arm length, to cancel out internal arm length changes caused by the low 

frequency pendulum motion. Multiple actuators were found necessary to compensate for 

large motions of thin disc samples whose measurements will be detailed in Chapter 6. 

The interferometer locks half way up an interference fringe, so that changes in arm 

length could give both positive and negative feedback signals to the actuators.  

 
Figure 5.3 Experimental setup for measurement of mechanical loss of test mass samples. 
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Figure 5.4 Photo of interferometer showing the beam paths around the optical bench of the 
interferometer. Beam exiting to the right incidents the front face of the test mass within the vacuum 
tank. 

Figure 5.5 shows the typical recorded ringdown data, and shows the ringdown envelope 

of the decay which is used in the calculation of the quality factor Q of the resonance. 
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Figure 5.5 Plot showing raw ringdown data (red), and the exponential ringdown envelope from which the 
Q-factor of the resonance is calculated. The data shows a sinusoidal variation in amplitude, of the type 
that is discussed below. 

Initial testing of the interferometer displayed several problems that led to the recording 

of inaccurate and erratic data. These problems included:  

• Fluctuation of laser power – since the photodiode detector measures light 

intensity any variation in laser power will result in a variation in the intensity 

observed at the photodiode  

• Long period drift of the interferometer from the state of maximal interference 

fringe amplitude. This deterioration in lock can occur for several reasons – 

thermal expansion/contraction of the optical bench and its components could 

cause deterioration of the alignment of beams due to expansion or contraction of 

the optical mounts for the actuators. Also, if the mass should move slightly in its 

suspension the beam alignment can be changed. It was observed that a mass 

pitch or yaw angle of around 0.05° was enough to cause a fringe amplitude drop 

that knocked the interferometer out of a locked state. 



CHAPTER 5 – TEST MASS MIRROR COATINGS

 
169

As well as causing loss of lock, both of these occurrences can result in fluctuations in 

the output fringe amplitude. This introduces variations into the amplitude of the 

recorded signal. Since the amplitude of the resonant oscillation of the sample is the 

quantity being observed, it is clear that any large variation in the fringe amplitude over 

the time span of the measurement will result in an incorrect exponential decay envelope 

being recorded. 

The laser intensity was monitored using a pick off beam splitter and second photodiode. 

A typical resulting intensity profile from switch on (at time = 0) is shown in Figure 5.6.  

This shows that laser power builds rapidly to a peak when switched on, then decays 

with an oscillation in amplitude. This oscillation exhibited a steadily increasing period 

until dropping into a more steady state at around 10000 seconds (2 3/4 hours) after cold 

switch on. This phenomenon seemed intrinsic to this particular laser model, as two 

identical model lasers1 were tested and found to perform similarly. For times longer 

than 10000 s the laser was more stable, but still exhibited some larger fluctuations in 

amplitude, and ring downs recorded when the laser was acting in this manner also 

contained similar fluctuations. 

 

                                                 
1 Melles Griot 25-LHP-691-230, class 3B He-Ne laser, 633nm. 
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Figure 5.6 Laser intensity variation as a function of time for He-Ne laser used in interferometric loss 
measurements 

This intensity change was observable in the ring down data as shown in Figure 5.7. The 

periodic beat of the intensity change showed a clear correlation with amplitude beating 

of the exponential ringdown envelope of a mass sample recorded at the same time, as 

shown in Figure 5.7.  
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 Time (s) 

Figure 5.7 Variation in amplitude of a recorder ringdown as compared to the variation in intensity of 
laser power over the same period of 750 seconds. 

It was clear that some form of compensation would be required to ensure that the most 

accurate exponential fit to the ringdown envelope could be attained. 

5.3.2.3 Interferometer Signal Correction Apparatus 

There was no way of directly stabilising the laser output for the simple He-Ne laser 

used – recovering the true ringdown envelope required an alternative method. Since the 

amplitude of the light in both interferometer arms is affected by any laser intensity 

change, the external arm can be used to correct for the discrepancies introduced into 

the ring down. One of the loudspeakers is used to inject a constant amplitude 10 kHz 

signal into the interferometer. This frequency was chosen as it was well outside the 

range of the low frequency feedback, but below that of the typical resonant modes of 

the sample. If the laser intensity and optical alignment remained constant, then the 

amplitude of the 10 kHz peak seen at the output of the interferometer must also be 

constant. Any variation due to laser intensity or change in alignment will be echoed in 

both the 10 kHz signal, and the ringdown itself, and hence normalising the ringdown 
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envelope amplitude with the amplitude of the 10 kHz signal restores the true ringdown 

envelope. The additional recorded 10 kHz signal ideally requires an additional lock-in 

amplifier (Figure 5.3) to beat the signal down to 5 Hz for ease of recording similar to 

the ring down. 

Use of real test mass samples to check the ability of this system was not desirable, as 

the mechanical loss of the silica samples is of course the subject of the measurement, so 

not known accurately. Testing was therefore carried out using an additional loudspeaker 

mounted mirror attached in place of the sample. This was driven using a LabVIEW 

program (see Appendix E for program code) at 18 kHz with a predetermined 

exponential decay envelope, to mimic the decay of a resonance in a test mass sample. 

The 18 kHz signal was chosen as the highest frequency that can could reliably be 

output from the speaker, and is close in frequency to typical modes of test mass samples 

(20 kHz and above). 

A mock ring down generated in this way and recorded using the interferometer is shown 

in Figure 5.8. 
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Figure 5.8 Recording and correcting of a ringdown envelope. a. Recorded ringdown envelope showing 
fluctuation in both ring down (green) and the recording of the constant amplitude 10kHz signal (grey). b. 
Ringdown envelope after normalisation by 10 kHz signal (black) is a much closer fit to the injected signal 
(red). The fit line for the black data is not shown for clarity. 

The exponential fit to the ringdown envelope as recorded in Figure 5.8a is clearly poor, 

with larger fluctuation evident. After normalisation by the 10 kHz correction signal the 

recorded ringdown envelope has recovered its exponential form. The difference in the 

exponential coefficients is less than 1%, meaning the error introduced into the measured 
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Q by the exponential fitting is small. This coefficient is used to calculate the mechanical 

loss from equation (5.1), and therefore the correction system can be seen to have 

reduced the error in the measured mechanical loss. 

Some typical datasets from real ringdowns showing fluctuations and capability of 

recovery by the correction signal are shown in Figure 5.9 and Figure 5.10. 
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Figure 5.9a. Typical poor dataset showing a fluctuation and peak in the ringdown envelope after 40s, 
likely caused by a varying alignment in the interferometer. b. The corrected data shows near perfect 
exponential form. 
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Figure 5.10a. Very poor dataset from a ringdown taken when significant vibration in laboratory. b. After 
correction, the corrected dataset is still very usable. 

5.3.2.4 Data acquisition 

The ringdown dataset was acquired using a LabVIEW data acquisition program written 

by the author, which allowed file structure of dataset files to be created automatically, 

plotted the pre- and post-correction of the measured data for the current ring down, 

and also calculated the mechanical loss automatically on ringdown completion. Code for 

this program is detailed in Appendix F. 
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5.3.3 Calculation of Coating Loss 

The total measured mechanical loss of a coated test mass sample can be expressed as: 

 ( ) ( ) ( )CoatingSubstrateSampleMass ooo ωφωφωφ += (5.4)

where φ(ωo)Substrate is the intrinsic mechanical loss associated with the substrate, and 

φ(ωo)Coating is the any additional mechanical loss introduced by the coating on the front 

face. From equation (2.13) mechanical loss can be defined: 

( )
Stored

Dissipated

2 E
E

o π
ωφ =  

Therefore equation (5.4) can be expressed: 

 

( )
coatingandSubstrate

CoatingSubstrate

Stored

DissipatedDissipated

SampleMass 2 E

EE
o π

ωφ
+

=  (5.5)

Also, the components of equation (5.4) can be expressed: 
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Dissipated
Substrate 2 E
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o π

ωφ =  (5.6)

 

( )
coating

Coating
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Coating 2 E

E
o π

ωφ =  (5.7)

So equation (5.5) can be re-expressed as: 

 

( ) ( ) ( )Coating
Stored

Stored

Substrate
Stored

Stored
SampleMass

coatingandSubstrate

Coating

coatingandSubstrate

Substrate
ooo E

E

E
E

ωφωφωφ +=  (5.8)

Since the coatings on the test mass samples are very thin compared to the thickness of 

the substrate, the energy stored in the coating is very small, and therefore: 
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CoatingandSubstrateSubstrate StoredStored EE ≈  (5.9)

Hence: 

 

( ) ( ) ( )Coating
Stored

Stored

SubstrateSampleMass
Substrate

Coating

ooo E

E
ωφωφωφ +=  (5.10)

which yields:  

 

( ) ( ) ( )( )SubstrateSampleMass
Stored

Stored
Coating

coating

Substrate
ooo E

E
ωφωφωφ −=  (5.11)

φ(ωo)Masss Sample is obtained from the measured mechanical loss of the coated test mass 

sample, and φ(ωo)Substrate from measurements of an identical uncoated sample. 
coating

Substrate

Stored

Stored

E
E

 

is the ratio of the total elastic energy in both substrate and coating to the elastic energy 

contained in the coating itself. This factor is dependant on the particular resonant mode 

in question, and therefore must be calculated for each mode that has been measured. 

The coating loss can be subdivided into further components – namely a thermoelastic 

loss contribution and a contribution due to Brownian thermal noise: 

 ( ) ( ) ( )
BrownianticThermoelas CoatingCoatingCoating ooo ωφωφωφ +=  (5.12)

The coating loss can be further expressed as [169] [161]: 

 

( ) ( ) ( ) ticThermoelas
Coating

Coating

residualCoating
Total

changeVolume

ooo E

E
ωφωφωφ +=  (5.13)

where φ(ωo)residual is the level of loss associated with Brownian thermal noise and 

φ(ωo)Thermoelastic is the loss associated with thermoelastic noise in the coating, which 
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occurs as the coating layers and substrate mass have different thermal and mechanical 

properties.  is the energy associated with the change in volume of the 

coating that occurs due to resonant motion. With no volume change there will be no 

thermoelastic loss, however this does not occur and thermoelastic loss is believed to 

contribute to the overall loss [169].  This ratio was calculated for each resonant mode 

by D. Crooks [159]. The ratio of energy stored in the coating to that stored in the 

substrate, used in equation 

changeVolumeCoatingE

(5.11) can be calculated using ANSYS finite element 

modelling of the test mass sample and its coating. 

The residual loss is important to consider as it shows the intrinsic Brownian thermal 

noise component of the mechanical loss of the coating. Analysis of this is hoped to 

identify the mechanisms for dissipation within the coating layer, and therefore find 

methods to reduce the dissipation. 

5.3.4 Extracting Energy Ratios from ANSYS 

The energy ratio can be calculated in ANSYS by modelling the coated test mass sample 

as shown in Figure 5.11. 
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Figure 5.11 Application of a coating surface to a FEA model of the test mass sample in ANSYS. 

The mass is modelled in solid elements and the mesh on one face is copied to form a 

second surface which represents the coating. This is given the appropriate thickness and 

the energy contained within the coating can thus be evaluated using ANSYS for each 

individual resonant mode of the sample. 

The coating is treated as one composite material, with composite material properties 

used to represent the coating in ANSYS [159]. 

5.3.5 Composite Material Properties 

The effective Young’s modulus, Yeff [170], Poisson’s ratio, νeff [170] and density ρeff  

[161] for a composite material are calculated using: 
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where YL, hL, νL, ρL are the Young’s modulus, thickness, Poisson’s ratio and density of 

the low refractive index material; and YH, hH, νH, ρH are the Young’s modulus, 

thickness, Poisson’s ratio and density of the high refractive index material. 

For the individual doped high refractive index layers of the coating, composite material 

properties must also be calculated. The composition is specified in a fraction t of 

material, and the composite material properties for the high index doped layers are 

calculated by [170] : 
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The properties of the coating component materials are shown in Table 5.2. 

Material Young’s modulus, 
Y (GPa) Poisson’s ratio, ν Density, ρ (kgm-3) 

Silica (SiO2) 72 0.17 2202 

Tantala (Ta2O5) 140 0.23 6850 

Titania (TiO2) 290 0.28 4260 

Table 5.2 Properties of individual constituent materials of the coating samples 

The calculated composite material properties for the high refractive index layers are 

shown in Table 5.3. 
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Coating Young’s modulus, 
YH (GPa) 

Poisson s ratio, 

ν
’
H

Density, ρH (kgm-3)

35% Titania (TiO2), 
65% Silica (SiO2) 

98 0.24 2921 

85% Tantala (Ta2O5), 
15% Titania (TiO2) 

152 0.24 6462 

65% Tantala (Ta2O5), 
35% Silica (SiO2) 

105 0.22 5223 

Table 5.3 Composite material properties of high refractive index layers of doped coatings 

Thicknesses of the coating layers are shown in Table 5.4, and were obtained from 

CSIRO [171]. 

Coating 
Thickness of high 

index layer hH 
(nm) 

Thickness of low 
index layer hL 

(nm) 

Total thickness of 
30 layer coating 

(μm) 
35% Titania (TiO2), 
65% Silica (SiO2) / 

Silica 
191 129 4.80 

85% Tantala (Ta2O5), 
15% Titania (TiO2) / 

Silica 
127 187 4.70 

65% Tantala (Ta2O5), 
35% Silica (SiO2) / 

Silica 
145 174 4.78 

Table 5.4 Thicknesses of the individual high and low index layers, and of complete coating 

Use of equations (5.14)…(5.19) yielded the final composite material properties for the 

full 30 layer coatings, shown in Table 5.5. These values were used in the ANSYS models 

when extracting elastic energy ratios.  

Coating Young’s modulus, 
Yeff (GPa) 

Poisson’s ratio, 

νeff

Density, ρeff (kgm-3)

35% Titania (TiO2), 
65% Silica (SiO2) / 

Silica 
87 0.21 2631 

85% Tantala (Ta2O5), 
15% Titania (TiO2) / 

Silica 
104 0.21 3922 

65% Tantala (Ta2O5), 
35% Silica (SiO2) / 

Silica 
87 0.19 3572 

Table 5.5 Effective material properties of 30 layer doped coatings. 
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5.3.6 Mode Shapes and Frequencies 

ANSYS was also used to determine which modes are suitable for measurement, and to 

find the mode frequencies. This was done using an unconstrained modal analysis, and 

the measured modes of the samples tested are shown in Figure 5.12. 

Minimum Displacement Maximum Displacement

20046Hz 28366Hz

47341Hz 73094Hz

 
Figure 5.12 ANSYS derived mode shapes for 76.2 mm (3”) diameter and 25.4 mm (1”) thick test mass 

sample. Relative displacement vector sums 
222 zyxU ++= are shown in dimensionless units. 

These modes were chosen for measurement of losses as they exhibit motion on the front 

face of the mass, and only modes with significant displacement on the front face of the 

test mass can be sensed using an interferometric read out. 
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5.4 Mechanical Loss of Doped Tantala Coatings 

The measured mechanical losses of the three silica samples with doped coatings are 

shown in Figure 5.13. Also shown for reference are measurements by Murray [162] of a 

sample with a tantala / silica coating where no doping had been performed on the 

tantala component. 
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Figure 5.13 Measured mechanical losses of different 30 layer coatinged silica test mass samples 
manufactured by CSIRO 

The ratios of elastic energies calculated using ANSYS are shown in Table 5.6. 
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Coating Mode frequency Elastic energy ratio x 10-4
 

1 – 35% Titania, 65%  20047 5.89 
      Silica / Silica 28369 6.38 
 47341 2.21 
 73092 4.47 
2 – 85% Tantala, 15% 20047 6.90 
      Titania / Silica 28367 7.47 
 47340 2.38 
 73089 5.23 

3 – 65% Tantala, 35% 20047 5.95 
      Silica / Silica 28368 6.23 
 47339 2.15 
 73117 4.39 

Table 5.6 Ratios of the elastic energy contained in the coating to the total elastic energy in both 
substrate and coating for the three doped mass samples. Convergence of the solutions was found to be 
similar to the convergence of the models studied in Chapter 4 

The resulting coating losses (which include thermoelastic contribution as shown in 

equation (5.11) ) are shown in Table 5.7. 

Coating Coating loss x 10-4
 

Tantala (Undoped) / Silica 4.28±0.19 
1 - 35% Titania, 65% Silica / Silica 2.06±0.03 
2 - 85% Tantala, 15% Titania / Silica 2.49±0.06 
3 - 65% Tantala, 35% Silica / Silica 2.70±0.21 

Table 5.7 Coating losses for doped coatings, with undoped tantala / silica coating loss also shown.  

 

Residual coating losses (which show the Brownian thermal noise contribution only) 

were calculated by Peter Murray and are presented in Table 5.8. 

Coating Residual loss x 10-4
 

Tantala (Undoped) / Silica  4.19±0.13 
1 - 35% Titania, 65% Silica / Silica 1.70±0.40 
2 - 85% Tantala, 15% Titania / Silica 2.42±0.11 
3 - 65% Tantala, 35% Silica / Silica 2.69±0.24 

Table 5.8 Residual coating losses for doped coatings, with undoped tantala / silica residual coating loss 
also shown. 
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It is clear that both the coating losses and the residual coating losses for all the doped 

samples are significantly lower than those for an undoped coating. 

The first sample showed the greatest change in loss, with a reduction of around a factor 

of 2.5 over an undoped tantala / silica coating. This is an encouraging result for 

thermal noise reduction. 

However, the two doped tantala coatings (coatings 2 and 3) also exhibit a reduction in 

loss of around a factor of 2 over the undoped coating sample. Doping tantala with 

titania also increases the refractive index of the doped layers, meaning that potentially 

fewer layers may be required to obtain a suitably reflective mirror; whereas the silica 

doped titania coating (coating 1) has a lower refractive index meaning that the number 

of layers could not be reduced as much [172]. Use of fewer layers therefore may be 

another method of reducing the overall mechanical loss of the coating. 

The titania doped tantala sample gave a residual loss that was consistent with that 

measured previously on the nominally identical LMA sample whose residual loss also 

showed a similar drop to (2.0 ± 0.2) x 10-4. The LMA sample had slightly lower loss, 

and it is apparent that the CSIRO coating has some property that is causing this 

difference. Currently the reason for this difference is unknown and requires further 

investigation. 

5.5 Conclusions 

It is clear that significant reductions in mechanical loss associated with tantala / silica 

multilayer high reflective mirrors can be achieved by doping of the high index tantala 

layer with small quantities of other materials. 

The samples studied in this chapter have demonstrated that use of silica or titania as a 

dopant can result in a reduction in mechanical loss of around a factor of 2 for the 
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multilayer coating. Doping with titania also may offer an additional benefit of allowing 

a reduction in the number of coating layers required, which would also reduce the 

mechanical loss of the coating. 

Work is ongoing by Martin et al [173], investigating the mechanisms for loss within the 

tantala coating layer which, when the mechanisms have been identified, may provide 

pointers to ways in which the coating mechanical loss could be further reduced. 

Ongoing research will significantly benefit future gravitational wave detectors where a 

reduction in thermal noise at the most sensitive frequency regime will result in directly 

increasing the instrument sensitivity and astronomical reach. 
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Chapter 6  
 
Mechanical Loss of Diffractive 
Mirrors 

6.1 Interferometry Using Diffractive Optics 

6.1.1 Introduction 

Reduction of photon-shot noise in third generation interferometric gravitational wave 

detectors will necessitate use of much higher circulating laser powers, using power 

recycling. Advanced LIGO will have up to 830 kW of arm cavity laser power [125]. 

Future detectors are likely to increase this further permitting the circulation of 

megawatts of laser power in the arm cavities. Current interferometer topologies are not 

ideal for the use of such high powers, due to the use of transmissive optical components 

- namely the beamsplitters, and the inner test masses that make up the Fabry-Perot 

cavities. These components experience heating (of both their substrate material and the 

dielectric coatings) when a high laser power is applied [174]. This in turn can result in 

thermal deformation of the surface of the optic, which cause wavefront distortions in 

the laser beam [175]. In addition to the geometric deformations, the heating will result 

in a temperature gradient through a transmissive optical component producing lensing 

effects that place a limit on sensitivity [176] [177] [178]. Therefore, to mitigate these 

effects, use of all-reflective optical components may ultimately be desirable. This can be 
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achieved by employing mirrors with diffraction gratings on their surfaces, as proposed 

by Drever in 1996 [113]. 

6.1.2 Diffractive Interferometer Configurations 

Consider a diffraction grating illuminated with a beam incident at angle θ in relative to 

normal on the grating. Angles of diffracted beams are governed by the grating equation: 

 

d
m

m
λθθ =+ insinsin  (6.1)

where d is the pitch of the diffraction grating, θm is the angle of the diffracted beam of 

mth order and λ is the wavelength. An all reflective Michelson interferometer (Figure 

6.1b) can be constructed by placing reflective mirrors to intercept the beam reflected 

from the grating (m = 0 order case) and the m = 1 diffracted beam. The output beam 

from arm 1 comprises the m = 1 order diffracted beam resulting from the beam 

returning from mirror 1. The output beam from arm 2 comprises the m = 0 order 

diffracted beam resulting from the beam returning from mirror 2.   

 
Figure 6.1 Typical grating configurations  a. Diffraction from grating surface showing reflected beam 
m=0, and first order m=1 diffracted beam b. All reflective Michelson interferometer c. Fabry-Perot 
cavity formed with grating in 1st order Littrow configuration d. Fabry-Perot cavity formed with grating 
in 2nd order Littrow configuration 

A grating is said to be in first order Littrow configuration when the incident angle θ in 

and angle of first order diffraction θ1 are equal. Placement of a mirror to intercept the 

reflected beam enables a simple Fabry-Perot cavity to be formed, as the returning beam 
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from the mirror also strikes the grating in first order Littrow configuration. This allows 

a build up of laser power in the cavity, with the finesse of the cavity being limited by 

diffraction efficiency of the grating in first order. Cavities formed in such a manner have 

been demonstrated by Sun [179]. 

In second order Littrow configuration (θ in = θ2) the first order diffracted beam is 

6.1.3 Advantages of Diffractive Interferometry 

one of many advantages of use of 

Additionally, use of all reflective optics will permit the use of alternate ultra low 

always normal to the grating surface, therefore a Fabry-Perot cavity can also be formed 

by placing a mirror parallel to the surface of the grating as shown in Figure 6.1. Such 

cavities have been experimentally demonstrated by Bunkowski [180]. 

Elimination of transmissive optical components is 

diffractively coupled interferometers. Reduction of mirror heating has additional 

benefits for third generation detectors. The quest to reduce thermal noise may 

ultimately lead to cryogenically cooled detectors and therefore a reduction in mirror 

heating will permit easier cooling of the mirrors in such detectors. 

mechanical loss materials as mirror substrates. Materials that have already been 

demonstrated [107] [115] as having suitably low mechanical loss include single crystal 

sapphire, and silicon. Silicon in particular has several desirable thermal properties 

including being highly thermally conductive compared to fused silica, which would 

again aid the cooling of test masses in cryogenic detectors. Additionally, at 18 K and 

120 K silicon has a null in thermal expansion coefficient meaning there is no 

thermoelastic dissipation at these temperatures, which could allow a further reduction 

in thermal noise for cryogenic detectors. 
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The advantages of all reflective optical components have made the characterisation of 

the properties of the diffraction gratings an important research area [179] [181] [182]. In 

particular, since the surface of the substrate material is altered by the placement of a 

grating, it is important to examine if this has a detrimental affect on the mechanical 

loss of the substrate. Any increase in mechanical loss will result in an increase in 

thermal noise in the mirror. Additionally, since dielectric mirror coatings will be a 

limiting factor at mid-range frequencies in second generation detectors, it is important 

to determine if the mechanical loss of the coating layer is modified by placing it on top 

of a grating surface. The remainder of this chapter details mechanical loss 

measurements carried out on disk samples with diffraction gratings on their surfaces. 

These used fused silica as the substrate. This preliminary work on fused silica will be 

extended to other materials in the future. 

6.1.4 Diffractive Samples 

The samples utilised were 75 mm diameter by 1.7 mm thick ‘Suprasil 311’ fused silica 

disks, manufactured by Heraeus Quarzglass, with disks from 2 separate production 

batches used in the experiments.  

Diffraction gratings were placed on two disks from the first batch. The gratings were 

manufactured by the University of Jena, using ion beam etching [183]. In this process, a 

thin layer of an ultraviolet reactive polymer is deposited on the surface of the disk. The 

grating structure was written into this polymer layer by laser. This polymer masks the 

areas of the disk surface which are to remain un-etched. The sample is then placed in a 

vacuum and exposed to an ion beam, which erodes the silica in the areas where the 

mask was removed by the laser. This etching process forms structure on the surface of 

the substrate. A portion of the resulting grating was observed under a VEECO optical 
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profiler [184] and the profiles are shown in Figure 6.2. The period of the diffraction 

grating grooves was approximately 1.4 μm, as shown in Figure 6.2c.  

 
Figure 6.2 a. 2-D Optical profiles of diffraction grating on silica disk substrate, used in the experiments 
detailed in this chapter b. 3D image of same region c. Surface profile along dashed line 

After initial measurements were conducted on the samples a standard high reflective 

silica doped tantala optical coating in a 30 layer stack was laid down on top of the 

grating. This was applied by ion beam sputtering, by LMA2. The coatings, the same as 

those studied in chapter 5 serve to enhance the reflectivity of the silica substrate and 

                                                 
2 Laboratoire des Matériaux Avancés, University Claude Bernard Lyon I, France. 
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smooth the grating profile allowing softening of sharp edges and rough areas. A typical 

coating stack as applied to one of the samples is shown in Figure 6.3, showing the 

smoothing of the edges of the grating. 

 
Substrate 

Vacuum 

Coating 
direction 

Figure 6.3 S.E.M. image of cross section of diffractive substrate with 30 layer silica-tantala coating stack 
(only 28 layers visible).  

6.2 Mechanical Loss Measurements of Diffractive Samples by Fibre 

Suspension         

The mechanical loss of the samples was determined using the same methods detailed in 

Chapter 5, by measurement of quality factor of excited resonant internal modes of the 

sample. Sample motion was sensed by the Michelson interferometer whose construction 

was detailed in Chapter 5.  

6.2.1 FEA Modelling of the Substrates 

Prior to commencing measurements of the samples, a FEA model of the substrate was 

made to observe the types of internal resonant modes of the sample, and also the 

approximate frequencies at which to search for them.  

Pitch, 2.5-3.1μm 

Coating 
thickness 

4.6μm 



CHAPTER 6 – MECHANICAL LOSS OF DIFFRACTIVE MIRRORS

 

193

Minimum Motion    Maximum Motion 
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Clover Multiple 
drum 

 
Figure 6.4 ANSYS FEA model mode shapes of silica disks. Relative displacement vector sums 

222 zyxU ++= are shown in dimensionless units. 

Three broad types of mode were seen to exist – “clover” where multiple lobes of large 

motion are observed around the disk edge, “Asymmetric drum” with maximal motion at 

disk centre, these are rotationally symmetric, and ”multi-drum” modes which can be 

seen to be a combination of clover and asymmetric drum modes, with points of maximal 

motion on both edges and at points across the surface of the disk. 

The modes measured throughout this chapter comprised 4 to 12 lobe clover modes, the 

first two asymmetric drum modes and the first four multi-drum modes.  

6.2.2 Sample Suspensions Used in Measurement 

Support of the sample proved to be the most difficult aspect of the experiment. Initial 

measurements were performed with the disk suspended from silica fibres in a semi-
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monolithic suspension. Seven suspensions of the sample were tried, with details as 

shown in Table 6.1 and Figure 6.5. 

Suspension number Description 
 
1 

Disk held at two points from 2 170 μm diameter, 175 mm long 
suspension fibres welded to crossbar and isolation mass. 

Isolation mass held from 330 μm diameter tungsten wire and 
blade springs 

 
2 

Disk held at single point from 2 170 μm diameter, 17.5 cm 
long suspension fibres welded to crossbar and isolation mass. 
Upper stage as suspension 1 

 
3 

Disk held at single point from 2 170 μm 8.3 cm long 
suspension fibres welded to crossbar and isolation mass. Upper 
stage as suspension 1 

 
4 

Disk held at single point from a single 170 μm 7.5 cm long 
suspension fibre welded directly to isolation mass. Upper stage 
as suspension 1 

 
5 

Disk held at single point from a single 170 μm 3 cm long 
suspension fibre welded directly to isolation mass. Upper stage 
as suspension 1, but minus cantilever blades 

 
6 

Disk held at single point from a single 170 μm 3 cm long 
suspension fibre welded directly to isolation mass. Upper stage 
held from thread 

 
7 

Disk held at single point from a single 170 μm 3 cm long 
suspension fibre welded directly to isolation mass, with 
isolation mass axis orientated vertically. Second fibre held 
mass from silica ear 

Table 6.1 Details of the seven disc suspensions used in measurements. 

 

Silica 
disk

Isolation 
mass

170μm 
suspension 

fibres

Suspension 
wires 

1. 2. 4.3. 5. 6. 7.

Suspension 
threads

 
Figure 6.5 Seven silica suspensions used to investigate mechanical loss of silica disk 

Initially, the disk was held by two silica fibres (suspension 1). This configuration was 

chosen to try and reduce the potential for the disk to rotate in the horizontal plane. 

Additional background isolation was employed in the form of a penultimate mass held 
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from cantilever blade springs, and this helped reduced motion of the suspension from 

seismic sources and the vacuum pumps as shown in Figure 6.6. 

 
Figure 6.6 Suspension of silica disk, showing blade spring isolation and intermediate isolation mass 

The second and third suspensions also utilised two suspension fibres, but welded to a 

single suspension point on this disk. Several modes were observed to have significant 

motion around the disk edges in the FE analysis, and reducing the number of 

suspension points was an attempt to minimise the potential for energy contained in an 

excited internal mode of the disk to be coupled into other, more dissipative, elements of 

the suspension. Also, two different lengths of suspension fibre were used to check 

whether there was coupling of energy to violin modes of the suspension fibres. 

Suspensions 4 and 5 used a single fibre between the isolation mass and the disk – this 

made measurement more difficult with notable rotation of the disk due to twisting of 

the suspension fibre along its axis, however measurement was possible when great care 

Cantilever Support 
legs blades 

Isolation 

Disk 

mass 
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was taken to reduce external vibrations near the vacuum tank. Additionally a lens was 

used to reduce the motion observed at the detector. Again, two suspensions with 

different fibre lengths were considered. Cantilever blades were removed as a better 

isolated vacuum tank was used. 

Suspension 6 swapped the tungsten wires holding the top stage for thread, which was 

known to be suitable for suspending test masses as in Chapter 5 [107]. 

The final suspension tried was similar to that used by Harry [185] in measurements of 

similarly sized samples. The suspension was fully monolithic with the isolation mass 

axis orientated vertically with a single fibre welded top and bottom, one to the disk and 

one to a small silica ear which was then clamped (Figure 6.8). 

a.  b.  

Clamp Clamping 
block 

Isolation 
mass 

Electrostatic 
drive Double 

thread loops 
Disk 

Lens 

Figure 6.7 a. Suspension 6 with disk held from a single 3 cm fibre, and upper isolation mass held from 
thread. b. close up of clamping and double thread loop. 
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a.  b.  

Silica 
fibre 

Clamp 

Ear Isolation 
mass 

Catcher 

Disk 

Figure 6.8 a. Suspension 7 with disk held in monolithic suspension. b. Isolation mass held by fibre from 
clamped ear. 

6.2.3 Measured Losses 

Mechanical losses were measured for the first eight modes with frequencies ranging from 

1.8 – 19 kHz. Results for all seven suspensions are shown in Figure 6.9. 

Very little difference in measured loss was observed for the first four suspensions and 

measured losses were clustered to within a maximum of 10% spread, with the exception 

of the 11095 Hz ten lobe clover mode which showed a much higher measured loss on the 

first suspension, indicating significant coupling at this frequency between the motion of 

the disk and the remainder of the suspension. 

Losses were seen to improve with suspensions 5 and 6, which used a very short 

suspension fibre, which would further decouple violin mode frequencies of the 

suspension fibres.  



CHAPTER 6 – MECHANICAL LOSS OF DIFFRACTIVE MIRRORS

 

198

Mechanical loss of blank silica disk on fibre suspensions
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Figure 6.9 Measured mechanical loss using fibre suspensions 

The final monolithic suspension gave the lowest measured losses for all modes. This 

indicated that the previous suspensions (nos. 1 - 6) did have energy contained in upper 

parts of the suspension, with dissipation into the clamping structure occurring. 

However, despite this final suspension being a similar configuration to that used by 

Harry [185] [186] for similar type samples by and, the measured losses were significantly 

higher for all modes. Also, the measured losses were greater than those observed on 

other Suprasil 311 samples measured by Numata [157], by around an order of 

magnitude. It seemed possible that the explanation for this was the quality of the welds 

that joined the components of the suspension. 

Welding one or more fibres to the disk sample was seen to cause deformation to the 

area surrounding the weld, and silica vapour deposition, as shown in Figure 6.10. The 

loss measurements showed evidence of the shapes of the resonant modes being altered 
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by this deformation, as many separate modes were observed clustered around the 

resonant frequencies, despite FE modelling of the sample showing only single or double 

modes are possible at the given frequency. There was also concern about the 

repeatability of such suspensions. By its nature, this method of suspension construction 

makes it very difficult to obtain suspensions that are identical each time – each 

repeated weld to a different disk will result in different deformation and silica vapour 

deposition. Repeated welding to the same disk will result in deformation and vapour 

being further accentuated. Furthermore, the quality of the weld is not easily 

controllable, and it is possible that some welds will have greater mechanical loss than 

others. This was particularly true for the thin-fibre to disk weld shown in Figure 6.10. 

Ensuring an identical comparison is particularly important when doing measurements 

to compare two similar disks, so that any measurable difference in loss between samples 

can be attributed to sample properties; and not to suspension variables. Therefore, a 

different form of support was considered, that did not use welding to attach to the disk, 

in an attempt to mitigate some of these problems. 

 
Figure 6.10 Close up of disk weld point showing deformation near the weld and vapour deposition around 
the weld point. 
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6.3 Measurements by Nodal Support 

For some years it has been known that it possible to measure very low mechanical loss 

by direct contact clamping of the silica samples at points of minimum resonant motion 

(“nodes”). Experiments by Numata [155] [157] [187] have demonstrated successful use of 

this ‘nodal’ support technique for thicker samples, such as the test mass samples used in 

Chapter 5. A nodal support was therefore developed as an alternate method of holding 

the disks, to see if superior clamping could yield lower measured losses. 

6.3.1 Design 

Previous supports built by Numata, and a similar example being developed at Glasgow 

[188], both employ the same basic concept. These supports are designed such that the 

samples are held at points on the centre of the faces, on a line through the centre of 

mass. This permits measurement of modes with nodes only at face centres – clover type 

modes – without risk of excess loss being introduced, in the form of frictional grinding 

against the clamp. It seemed desirable to be able to measure resonant modes that also 

had motion at their face centres. Holding at the edges was seen to be the only way of 

achieving this, and therefore it was decided to try and design a support based on this 

concept. It was realised that thin samples could be held at their edges between thin 

tensioned threads. This had the advantage of maintaining only a small contact area. 

This is important as contact with the node should be reduced as much as possible to 

minimise the potential for energy to be lost at the clamping point. 

The initial design concept for a suitable support used three threads clamped in tension 

between two clamping blocks, as shown in Figure 6.11. The clamping blocks were 

identical to those used when suspending masses in Chapter 5. These, together with 

thread, were chosen for suspension since they had already been proven to allow 

measurement of low losses for test mass sling suspensions as used in Chapter 5. 
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Resonant modes were again excited by means of an electrostatic drive plate held a few 

millimetres behind one face of the sample (Figure 6.12b) 

 

Laser beam from 
interferometer 

Thread  

Clamping 
block 

Figure 6.11 Design concept for nodal support using tensioned thread to support thin disks 

 

  
Figure 6.12a. First test nodal suspension using 3 threads b. electrostatic drive plate held behind sample 

6.3.2 Nodal Support Initial Testing and Development 

Using three threads was quickly abandoned in favour of four, since there were few 

modes with points of minimum motion at 120° separation around the disk edges.  

It could be seen by eye that when tensioned the thread would spread out fractionally at 

the contact point on the disk, therefore increasing the surface area of contact. The 

thread could be split into three strands, reducing its thickness and this tendency to 

spread. Tests confirmed this, showing that improvements in the mechanical loss were 

gained by reduction of the thickness of the thread from full thickness to 1 strand (1/3 

original thickness), as shown in Figure 6.13. The best losses were achieved when the 
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disk was supported on 50 μm thick polished tungsten wire. This is almost certainly due 

to the wire being much more robust against deformation such as that shown in Figure 

6.14, and therefore having a reduced contact surface area. Tungsten was previously used 

successfully in low loss sling suspensions of test masses by Rowan [107]. 

 
Comparison test of different suspension materials
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Figure 6.13 Comparison of different suspension materials and configurations 

 
 

Thread spreads on 
surface increasing contact 

surface area 

Wire does not deform 
meaning contact area 

is less 

 
Figure 6.14 Cross section of thread/wire at contact point. 

It was soon found that the optimal configuration used only 2 threads contacting at 

points across a diameter of the disk as shown in Figure 6.15. This minimised the 
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contact surface area, and therefore the potential for grinding of the sample against the 

suspension threads.  

Additionally, improved isolation from background vibrations (particularly those from 

the vacuum pumps) was gained by seating the support on rubber o-rings. This helped 

reduce pitching vibrations of the disk caused by vibrations of the wires, which in turn 

made it difficult to keep the interferometer locked for long periods. 

It was noted that particularly varied losses were measured for the 18839 Hz multi drum 

mode – a gradual improvement in measured loss was obtained by placement of 

successive lead blocks each weighing 5 kg on the structure – this idea was prompted by 

observation that the structure could potentially vibrate on its mounts. The blocks were 

placed toward the rear of the support where space was available, with the upper ones 

located closer to the centre, as in Figure 6.15.  

 

Lead blocks 
Support leg 

Rubber o-ring 

Tungsten 
support wire 

Disc sample Electrostatic 
drive plate 

Figure 6.15 Revised nodal support with rubber damping o-rings between legs and base, and lead blocks 

The improvement in measured loss (Figure 6.16) indicated energy was being coupled 

into a resonance of the clamp structure at frequency close to the 18839 Hz mode. The 

disc was not removed from the suspension during this test. Additional damping was 
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also tried with a second set of rubber o-rings placed under the legs of the support. 

Three to four lead blocks were seen to give the best loss measurements without the 

second set of o-ring dampers, as shown by Figure 6.16, so all further measurements were 

conducted in this manner. 

 

Mechanical loss as a function of clamp structure
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Figure 6.16 Mechanical loss changes when lead blocks added on top of clamping structure 

6.4 Sample Surface Quality 

A notable observation came when collating the lowest measured losses from the two 

different production batches of disks. It was observed that the best measured losses 

from disks from the two batches did not agree closely as would be expected for 

nominally identical samples, as shown in Figure 6.17. The disks from the first batch had 

significantly lower measured loss than those from the second batch, over all resonant 

modes, with the second batch disks having a factor of between 1.45 and 2.88 times 

greater loss than the first batch disks. 
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Batch 2 lowest losses versus Batch 1 lowest losses
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Figure 6.17 Comparison of lowest measured losses for different production batches of disks. 

This observation indicated the existence of a difference in properties between the two 

(supposedly identical) production batches of disk. It seemed likely that this related to 

the surface finish of the edges of the disks, which were to a rougher ground finish; 

unlike the faces of the disks which were mechanically polished.  

There was also concern about the possibility of frictional grinding between the 

suspension support wire and the rougher disk edge. To check for grinding between the 

wires and disk required a change in the frictional properties of one or other. The 

suspension wire is supplied in a polished state, and tests with further polishing using 

diamond paste made no measurable difference to the observed losses. Therefore a small 

area (approximately 5 mm) of the disk edge was polished by hydrogen-oxygen flame, in 

an attempt to reduce contact friction between the disk and the wire at the suspension 

point. Flame polishing heats the surface briefly to melting point, with it then being 

allowed to cool naturally.  



CHAPTER 6 – MECHANICAL LOSS OF DIFFRACTIVE MIRRORS

 

206

Comparison of measured loss showed small improvement for some of the modes. In 

particular, it was noted that the ‘clover’ type modes (1872, 4260, 7378 Hz) all showed 

an improvement – this initially appears consistent with the reduction of grinding 

between the wire and the disk.  
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Figure 6.18 Comparison of measured losses with points where suspension wires contact flame polished. 

However, it was noted that the second order asymmetric drum mode at 12133 Hz 

showed an increase in loss, which was unforeseen. This mode has edge motion predicted 

by ANSYS FEA modelling (see Figure 6.4), so expectation was that the measured loss 

would decrease significantly when flame polishing contact points, as there would be less 

friction at those points. Instead the loss increased by approximately 25%.  

Furthermore, the greatest improvement was seen in the 18839 Hz mode; yet this had 

the largest areas of minimum motion, so intuitively should be least affected by grinding. 

All these observations gave the indication that grinding at the clamp was not the 
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mechanism that was causing these changes in measured loss. However, these results did 

indicate that changing the disk’s ground surface was influencing the loss. 

Therefore, it was decided to flame polish the entire edge of a disk to investigate the role 

played by the ground surface edge. The process of flame polishing is shown in Figure 

6.19. 

Flame 
polished 

edge 

Ground 
edge 

 
Figure 6.19 Flame polishing of disk edge Inset: Close up of heating of edge showing area heated and 
proximity and angle of gas torch. 

Care is required when polishing the disk as excessive heating can produce silica vapour 

which can end up being deposited on the surface of the sample. It was found that 

directing the flame across the ground edge surface at an angle as shown in Figure 6.19 

allowed the action of the flame to blow any vapour away from the disk faces. 

The measured losses for this sample once polished exhibited a very large reduction, as 

shown in Figure 6.20. The measurements showed a change in loss ranging from a factor 

of 7 improvement for the highest frequency mode and a factor of 119 improvement for 
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the 7.3 kHz mode. This confirmed that the structure of the ground edges of the disk 

gave a very large dissipation of energy, despite only accounting for 4% of the disk total 

surface area. The results also follow more closely the trend predicted by the Penn 

empirical model, although the losses do not reach that magnitude that Penn predicts. 

This is likely due to other surface effects which including the mechanically polished 

faces of the discs. The measured losses were however very low and comparable to those 

measured on similarly dimensioned samples by Harry [185] and larger Suprasil 311 

samples by Numata [157].  

Mechanical loss with fully flame polished edges, compared to ground 
edges
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Figure 6.20 Mechanical losses for disk with and without flame polished edges. 

In order to confirm that this was indeed an edge effect, the FEA model of the disk was 

reanalysed, this time focussing on the ratio of the total strain energy in the disk to the 

strain energy in an annulus around the disk edge. Two annuli were considered, one 

comprising the outermost 2.5 mm of the disk, the other using the outermost 270 μm. 

Comparison of the measured mechanical loss and this ANSYS energy ratio (Figure 6.22) 

showed a very close correlation between the amount of energy contained in the disk 
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edge and the measured loss. Those modes that had a higher concentration of energy at 

the edge were seen to have higher measured mechanical loss. This was noted for both 

size of annulus, further confirming that the measured loss was dominated by the effect 

of the ground edges. 

 
Figure 6.21 Comparison of ratio of energy in disk edge to measured mechanical loss for outermost 2.5 mm 
of disk edge. 
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Figure 6.22 Comparison of ratio of energy in disk edge to measured mechanical loss for outermost 270 μm 
of disk edge. 

This finish was clearly a dominant factor in the measured loss, and the prominent loss 

mechanism for such a surface seems likely to be frictional grinding of material in the 

microcracks and gaps between grains in the surface [189]. Images across the edge of 

disks from both production batches were taken using a scanning electron microscope 

(Figure 6.23 and Figure 6.24) to observe the nature of the surface structure. In both 

instances much surface structure is observable. The edges appeared smoother at one 

side of each image – this was due to an edge chamfer on each of the disks. A third 

image was taken of a disk whose edge was flame polished, and is shown in Figure 6.25. 
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Edge chamfer 

 
Figure 6.23 SEM image of 1.7 mm cross section of batch 1 disk, showing rough surface. 

 
 

 
Figure 6.24 SEM image of 1.7 mm cross section of a production batch 2 disk, showing rough surface with 
more features compared to batch 1 disks. 

 

 

Edge chamfer 

Surface 
roughened 
by scribe 

line 

Figure 6.25 SEM image of 1.7 mm cross section of production batch 1 disk, with edge flame polished. The 
rough surface at top of image is a scribe line, used to verify that image was correctly focussed. The small 
circular feature visible at the centre bottom of the image is a small chip in the disk edge that left a 
depression after flame polishing 
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A spatial Fourier transform was applied to these images, to gauge the frequency of 

occurrence of different sized features.  The transform was applied to individual rows of 

pixels through the image, with the resulting spectra averaged over the rows. The image 

of the flame polished disk (Figure 6.25) had the scribe line area cropped out so the 

transform was applied only to the flame polished section. The resulting Fourier 

spectrum is shown in Figure 6.26.  
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Figure 6.26 FFT analysis of disk edge images. 

It is apparent that the flame polished disk has much less structure, which is clear too 

from the image comparison. Notably, the highest loss batch 2 disk (green curve) had 

higher amplitude over most of the spectrum, particularly at higher frequency (smaller 

feature size), with approximately 2.5 times the occurrence of features with spatial 

frequencies > 250000 m-1. This trend is in broad agreement with the measured losses for 

the two batches, which have difference which ranges from 1.45 times (18 kHz multiple 

drum mode) and 2.88 times (6.4 kHz multiple drum mode). It seems likely that this 

increased occurrence of small scale grained features is the contributor to the difference 

in measured losses between the two batches of disks.  
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It should be noted that the flame polished disk image Fourier transform was averaged 

over fewer pixels, and hence the random noise ( averagesofNumber ) is greater. This 

explains the apparently increased roughness of the flame polished sample at spatial 

frequencies greater than 250000 m-1. At such dimensions and smaller, detail cannot be 

resolved and hence the noise floor of the measured image has been reached. 

Comparison of the RMS deviation from the average brightness (namely the deviation in 

structure height from a mean value) for the 3 image subsections shown in Figure 6.27 

was also calculated.  

             
Figure 6.27 Images used in RMS deviation calculation, Batch 1 disk, Batch 2 disk, flame polished disk 

The RMS values calculated are shown in Table 6.2. 

 RMS about mean 
Flame Polished Disk 8.19 ± 0.35 

Batch 1 disk 26.35 ± 0.79 
Batch 2 disk 29.38 ± 1.32 

Table 6.2 RMS about mean of the average brightness values (structure height) for three different disk 
edge images 

It is clear again that the flame polished disk has smoother surface, but there is less 

distinction between the other two disks. This is possibly due to the inability of the SEM 

image to resolve the small scale cracks between small surface features. However, the 

batch 2 disk does shows highest RMS deviation from mean, again in broad agreement 

with the measured losses being highest for this sample. 
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These findings made it clear that use of samples with ground edges is not good for ultra 

low loss measurements, as friction on these ground surfaces becomes the dominant 

source of dissipation. Therefore, all subsequent measurements were carried out on disks 

which had flame polished edges. 

 

6.5 Mechanical Loss of Sample With Diffractive Surface 

With low mechanical losses now being consistently measured, studies were undertaken 

on the disk with the diffraction grating etched on it. Two blank disks were measured as 

control samples – one had pristine finish, the other had significant silica vapour 

deposition on its surface – this resulted from heating the edges of the disk for too long.  

The diffractive disk was seen to have a slightly higher loss than the pristine disk, but 

lower loss than the poorer quality disk, for all but one mode, as shown in Figure 6.28. 

The diffractive disk was also seen to have a small amount of vapour deposition, which 

was a likely contributory factor in its increasing its measured loss. This provided a 

useful indicator, as the measured loss for this disk was seen to be higher than that of 

the pristine one, implying that the surface quality of the disk faces was now a limiting 

factor. 
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Figure 6.28 Comparison of measured losses of blank disk with vapour deposits, pristine blank disk, and 
diffractive disk. 

 

It is therefore apparent that the grating does not significantly detrimentally affect the 

measured mechanical loss at the level being measured. This concurs with similar 

measurements performed by Nawrodt [190], which showed no change in the measured 

loss of samples with diffraction gratings; albeit with those samples being test mass 

samples with a smaller surface to volume ratio which would contain less energy in the 

material surface.  

6.6 Mechanical Loss of Diffractive Optics with Reflective Optical Coating 

To simulate the manner in which diffractive mirrors would be used in real 

interferometers, it was necessary to introduce a reflective coating, similar to those 

studied in Chapter 5. In order to analyse the mechanical loss of the coatings when 

applied to a surface that had been altered by the addition of a grating, the three disks 

whose losses were measured in section 6.5 (one from the first production batch; one 
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from the second batch, and the third sample with the diffraction grating) were coated 

with a 30 alternating layer coating silica / tantala coating by LMA, with a high index 

layer of tantala doped with 14.5% titania. 

The mechanical losses were then re-measured, again using the nodal suspension. The 

resulting measured mechanical losses are shown in Figure 6.29.  

The measured losses for the three coated disk show similar trends of mechanical losses 

for the different modes of the samples, with the greatest spread being 13% for the 

11240 Hz mode.  
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Figure 6.29 Measured coating loss values for three silica disks from two different production batches, with 
one diffractive sample. 
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The coating mechanical losses were calculated as in chapter 5 using equation (5.11), and 

are presented in Table 6.3. 

Sample Coating loss x 10-4
 

Disk A – Batch 1 2.08±0.23 

Disk E – Batch 2 2.07±0.27 

Disk C – Batch 1, diffractive 2.01±0.23 

Table 6.3 Measured coating losses for silica disks (Note, disks B and D were blank samples, not involved 
in the coating process). 

These results show that the application of a diffractive surface to a substrate surface 

does significantly change the measured coating loss. This is an encouraging result as it 

shows that at the level of loss being measured, the benefits of using diffractive mirrors 

can be exploited with no significant increase in thermal noise from either the diffractive 

surface or the surface coating.  

In addition, use of substrates from different production batches did not result in a 

different coating loss being measured – this would be expected as the measured loss of 

the coated samples is over an order of magnitude greater than the equivalent samples 

when uncoated (compare Figure 6.28 and Figure 6.29), and therefore the effects of the 

coating dominate. 

6.7 Conclusions and Future Work 

Samples with surface diffraction gratings have been shown to have insignificant 

detrimental effect to the mechanical loss of the sample, and introduction of such 

gratings to test masses would not significantly increase thermal noise. 

However, throughout the course of the measurements it became clear that the surface 

quality of the samples is very important, with the ground edges of the disk samples 

significantly increasing the measured mechanical loss, even when the ground surface 

comprised only a small percentage of the total. It became apparent that different 
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production batches of sample could have different ground edge surface quality, and 

different resultant mechanical losses.  

In the process of conducting the measurements a revised suspension technique was 

developed, holding the samples at nodes of the resonant modes, which proved capable of 

measuring low mechanical losses, comparable with those measured by other methods. 

Finally, it was observed that a surface coating layer’s mechanical loss was not adversely 

increased at the level of loss measured by also having a diffraction grating on the 

surface. This means that if such surfaces were applied to future gravitational wave 

detector mirrors, thermal noise would be dominated by that in the reflective coating, 

and not the grating. 

With these results demonstrated for fused silica substrates, future extension of the work 

contained in this chapter may include repeating with silicon or sapphire substrates, to 

investigate if different materials perform similarly. If so, use of diffractive interferometry 

may prove lucrative for gravitational wave detectors beyond Advanced LIGO and 

Advanced VIRGO, permitting the reach of such ground based detectors to be yet 

further extended deeper into the expanse of the Universe. 
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Chapter 7  
 
Conclusions 

Current interferometric gravitational wave detectors are now operating at sensitivities 

close to their original design goals. The possibility of obtaining a first direct detection of 

a signal resulting from an astronomical source is now more likely than ever; but still 

proves elusive. Further increase in sensitivity will require the reduction of many 

different noise sources, and at mid band frequencies thermal noise is one of the most 

significant of these.  

This thesis aimed to study various aspects of thermal noise that will limit the 

sensitivity of advanced gravitational wave detectors at mid-band frequencies, and 

investigate ways of reducing this noise source. 

Use of monolithic fused silica suspensions in GEO600 helped reduce the mirror 

suspension thermal noise, and Advanced LIGO will use and extend this technology 

further. Crucial parts of the design are the fused silica suspension ribbons. The work 

presented in chapter 3 of this thesis explored the manufacture and characterisation of 

these suspension ribbons. The laser pulling machine program was written to permit the 

capability of producing the desired shape of ribbon.  

Characterisation equipment was constructed to measure the dimensions and vertical 

bounce frequency of the ribbons, and also check their ability to hold the required mass 
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in Advanced LIGO. The profiler was constructed to be capable of measurements with 

resolutions in the order of microns, and output data on both the dimensions and shape 

of the ribbons, in particular their neck regions. The bounce test machine was 

characterised to ensure that bounce frequency measurements would accurately 

determine the frequency without systematic error.  

Typical ribbons produced with both oversize and approximately correct cross sectional 

area were seen to have sufficient strength to hold 12.5 kg, meaning they would easily 

hold the 10 kg that each will be required to hold in Advanced LIGO. The measured 

vertical bounce frequencies for both oversized and approximately correct cross section 

ribbons were measured to be below the required upper limit for Advanced LIGO, at 

10.5 Hz and 8.3 Hz respectively. 

Methods of producing finite element models of ribbons fibres and mirror suspensions 

were presented in chapter 4. Analysis of the ribbon fibres showed that for simple necked 

ribbons, the pendulum dilution factor was lower than that for the simple non-necked 

ribbon, with more bending strain energy occurring in the thicker necked portion. The 

ribbons were seen to have lower dilution than equivalent cross section fibres for necks 

longer than around 5.5 mm, and around 3.5 mm for the ribbons proposed for use in 

Advanced LIGO. The results from chapter 3 had shown that typical necks lengths being 

produced were of the order of 7.5 mm long or greater. The dilution was seen to also 

decrease when accurate models of the ears were introduced, with additional bending 

occurring within the ears, causing an increase in bending strain energy. 

The discovery of low pendulum dilution factors when using ribbons with necks 

prompted a reanalysis of the various mechanical loss contributions within ribbons and 

fibres, with tapered fibres analysed in detail, to assess their suitability for replacing the 

ribbons in Advanced LIGO. Tapered fibres aimed to reduce noise primarily through 
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reduction of thermoelastic noise rather than via high dilution factors. Reduction in 

mechanical loss of nearly an order of magnitude at 30 Hz was observed for a real 

tapered fibre when compared to the ideal baseline ribbon, and this work has now 

prompted the Advanced LIGO design to be changed to use tapered fibres to help 

further reduce thermal noise. 

Measurement of mechanical losses of mirror test mass coatings in chapter 5 showed that 

doping of the high refractive index layer reduced the measured loss. Reduction in 

mechanical loss of around a factor of 2.5 was observed when comparing a standard 

tantala / silica coating to a titania doped tantala / silica coating whose residual coating 

loss was the lowest of those measured at 1.7 x 10-4. Doping tantala with both titania 

and silica also gave reductions in mechanical loss when compared to a standard tantala 

/ silica coating.  

The mechanical loss of silica substrates with surface diffraction gratings, as may be 

employed in future gravitational wave detectors, was studied in chapter 6. Methods for 

holding the thin disk samples were investigated, with a wire nodal support being 

constructed for the measurements. Initially, mechanical losses no lower than 1.9 x 10-7 

were measured, and this was significantly higher than measurements conducted on 

similar samples at other institutions. Investigation showed that the ground finish of the 

edges of the disks was introducing excess mechanical loss, and when the edges were 

smoothed by flame polishing the measured mechanical losses were reduced by as much 

as a factor of 119, with the lowest resulting measured loss being 4.38 x 10-8. Differences 

in mechanical loss were also consistently observed between disks fabricated in different 

production batches, with disks of higher mechanical loss having rougher ground edges 

that displayed more small scale structure. 
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Introduction of the diffraction grating to the surface did not notably increase the 

measured mechanical loss, with the measurements lying between those of two control 

samples of slightly superior and slightly inferior surface quality. Mirror optical coatings 

were also applied to the disk samples, and the resulting measured coating losses were all 

around 2 x 10-4. This showed that the use of a diffraction grating on the substrate 

surface did not noticeably increase the coating loss at the level of loss being measured.  

The experimental work carried out in this thesis has assisted in the production of ultra 

low loss mirror suspensions for Advanced LIGO, and builds on previous work 

undertaken in the gravitational wave field carried out on mirror coatings. The use of 

diffraction gratings has also been shown to be viable for detectors beyond Advanced 

LIGO. This research is pushing the detector technology to new levels, which will hasten 

the first direct detection of gravitational waves, and usher in the dawn of a new method 

of astronomical observation – gravitational wave astronomy. 
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Appendix A  
CO  Laser Pulling Machine LabVIEW 

Control Program 

 

A.1 CO2 Laser Machine Control 

r ved using National Instruments LabVIEW 

The “front panel” is the program user interface with which the user interacts during the 

running of the program. The block diagram  is the program code, laid out graphically 

with program subvi s  linked by lines wires  in the same way an electrical circuit is. 

The subvi s are individual sub-programs with an individual purpose, for example a 

2

2

Lase pulling machine control was achie

versions 6, 7.1 and 8. The pulling machine program was written for LabVIEW 7.1. 

LabVIEW is a C++ programming language with a graphical interface [191].   

“ ”

“ ’ ” “ ”

’

mathematical subvi would be addition. The CO  laser machine control program is 

written in a “state machine” format, where the program will cycle through a number of 

program states. Different operations are performed in each state. The choice of the next 

state run is determined at the end of the operation of the current state. This type of 

programming is versatile in allowing code that would be necessarily repeated in a 

sequentially run program can be removed and replaced with one single state which is 

called when required. 
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The program front panel and code is detailed below. 

A.2 Front Panel 

 

A
D

V
A

N
C

E
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O
TO
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A.3 Block Diagram 

A.3.1 Main Diagram and Idle State 

Block diagram for this state is split over the next 3 pages.  
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Laser stabilisation vi by Dr. 
M Barton 



APPENDIX A 
 

228

 

 



APPENDIX A 
 

229
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A.3.2 Startup Zero State 
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A.3.3 Stabilise State 
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A.3.4 Open Shutter State 
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A.3.5 Enable Enables State 
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A.3.6 Pull State 
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A.3.7 Close Shutter State 
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A.3.8 Zero Voltages and Stop State 
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A.3.9 Disable Enables State 
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A.3.10 Alert and Prompt State 
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A.3.11 End Pull Overrun State 
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A.3.12 Reset State 
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A.3.13 Reset 2 State 
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A.3.14 Exit State 

 

A.4 Input Voltage Dataset 

Below is a typical input voltage dataset for the starting neck of a ribbon. The laser 

power column is zeroed out as this had not been implemented, but has been used as a 

placeholder for future program versions. 

Feed Motor Pull Motor Laser power 

0.0306 0.0306 0 

0.0306 0.0306 0 
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0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.0306 0 

0.0306 0.045 0 

0.0306 0.0594 0 

0.0306 0.0738 0 

0.0306 0.0882 0 

0.0306 0.1026 0 

0.0306 0.117 0 

0.0306 0.1314 0 

0.0306 0.1458 0 

0.0306 0.1602 0 

0.0306 0.1746 0 

0.0306 0.189 0 

0.0306 0.2034 0 

0.0306 0.2178 0 

0.0306 0.2322 0 

0.0306 0.2466 0 

0.0306 0.261 0 

0.0306 0.2754 0 

0.0306 0.2898 0 

0.0306 0.3042 0 

0.0306 0.3186 0 

0.0306 0.333 0 

0.0306 0.3474 0 

0.0306 0.3618 0 

0.0306 0.3762 0 

0.0306 0.3906 0 

0.0306 0.405 0 

0.0306 0.4194 0 

0.0306 0.4338 0 

0.0306 0.4482 0 

0.0306 0.4626 0 

0.0306 0.477 0 

0.0306 0.4914 0 

0.0306 0.5058 0 

0.0306 0.5202 0 

0.0306 0.54 0 



APPENDIX A 
 

244

0.0306 0.5598 0 

0.0306 0.5796 0 

0.0306 0.5994 0 

0.0306 0.6192 0 

0.0306 0.639 0 

0.0306 0.6588 0 

0.0306 0.6786 0 

0.0306 0.6984 0 

0.0306 0.7182 0 

0.0306 0.738 0 

0.0306 0.7578 0 

0.0306 0.774 0 

0.0306 0.774 0 

0.0306 0.774 0 

0.0306 0.774 0 

0.0306 0.774 0 

0.0306 0.774 0 

0.0306 0.774 0 

0.0306 0.774 0 

0.0306 0.774 0 
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Appendix B  
Dimensional Characterisation Machine 

LabVIEW Measurement and Control 

Program 

 

B.1 Program Front Panel 

p used to perform dimensional measurements and The rogram detailed below was 

control the profiler. Program is again of state machine structure. Due to large size of 

front panel (3200 x 1600 pixels) it is split over the next 
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B.2 Block Diagram 

B.2.1 Main Diagram and Measurement State 

Block diagram for this state is split over the next 4 pages. 

 



APPENDIX B 
 

250

 



APPENDIX B 
 

251



APPENDIX B 
 

252
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B.2.2 Motor Off State 
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B.2.3 Motor On, Counting Distance State 
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B.2.4 Motor On State 
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B.2.5 Reset Message State 
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B.2.6 Idle State 
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B.2.7 File Setup State 
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B.2.8 Snap for Neck Scan State 
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B.2.9 Neck Scan Top State 

Block diagram for this state is split over the next two pages. 
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B.2.10 Initial Count State 

This large state’ block diagram is split over the next 4 pages. 
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B.2.11 Reset State 

Block diagram for this state is split over the next two pages. 
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B.2.12 Exit state 
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B.2.13 Live Video State 

Block diagram for this state is split over the next two pages. 
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B.2.14 Next State 
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B.2.15 Record Data State 
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B.2.16 Graph State 
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Appendix C  
Installation of Ribbon Characterisation 

Equipment at LASTI, LIGO Test 

Facility 

Below is photo of characterisation equipment installed at LASTI lab, Boston. 
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Appendix D  
LabVIEW Program for Producing 

Command Line ANSYS Code 

D.1 Front Panel 

 

D.2 Block Diagram 

 next two pages. Block diagram is split over the
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Appendix E  
LabVIEW Exponential Voltage Decay 

Program 

E.1 Exponential Decay Drive of Function Generator 

r

E.1.1 Front Panel 

Prog am uses a while loop structure. 

 

E.1.2 Block Diagram 
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Appendix F  
LabVIEW Data Acquisition and 

Mechanical Loss Calculation Program 

F.1 Front Panel 

 

F.2 Block Diagram 

 and Idle State F.2.1 Main Diagram 
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Block iagram for this state is split over next d two pages. 
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F.2.2 Start State 
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F.2.3 Data Acquisition State 

State was adapted from original program written by Jenifer Lotz [108]. 
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F.2.4 Calculation of Q Value / Mechanical Loss State 
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F.2.5 Iteration Mark State 
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F.2.6 Recording of Ringdown State 
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F.2.7 Start2 State 
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F.2.8 Exit State 
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