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Abstract 

Animal trypanosomiasis is a major hinderance to the growth of livestock farming 

in sub-Saharan Africa. Chemotherapy using isometamidium, diminazene and 

ethidium bromide has been the main control method in the absence of a vaccine 

against this disease. The effectiveness of these few trypanocides is severely 

threatened by the widespread development of resistance. Therefore, an 

understanding of the mechanism(s) involved in the development of resistance 

will assist in the development of screening protocols for easy identification of 

resistant cases prior to treatment, and also in finding ways to reverse the 

resistance. We studied the mechanism of resistance to isometamidium in 

bloodstream forms of Trypanosoma brucei. Resistance to isometamidium in 

Trypanosoma brucei was found to be composed of a reduced uptake of the drug 

and the modification of the F1F0 ATPase complex; active drug efflux by ABC 

transporters was not involved in the resistance mechanism, although efflux of 

ISM could be observed in both wild-type and  resistant lines. Expression of the 

transporter gene TbAT1, as well as of TbAT-E and TbAT-A, in yeast, each 

resulted in increased ISM uptake. In addition, the Vmax for the LAPT1 drug 

transport activity (Low Affinity Pentamidine Transporter) in ISM-resistant 

trypanosomes (clone ISMR1) was significantly reduced (P<0.05; Student’s t-test) 

compared to the wild type control. Also, two point mutations, namely G37A and 

C851A were found in the ATP synthase gamma subunit of the F1F0 ATPase 

complex of isometamidium-resistant trypanosomes. The resistant clones also lost 

their mitochondrial DNA and mitochondrial membrane potential and displayed 

various levels of cross-resistance to ethidium, diminazene, pentamidine and 

oligomycin. The C851A mutation introduced a stop codon in the open reading 

frame of the ATP synthase gamma gene. This mutation, when introduced into 
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the wild type Tb427, produced resistance to isometamidium, and cross 

resistance to diminazene, ethidium, pentamidine and oligomycin. C851A-ATP 

synthase gamma proves to be a dominant mutation that allows the rapid loss of 

mitochondrial DNA after just three days exposure of the parasites to 20 nM ISM 

or ethidium bromide. Finally, following a recent genome-wide loss-of-function 

RNAi screen that linked TbAQP2 with pentamidine and melarsoprol cross 

resistance, we were able to demonstrate that TbAQP2 encodes the HAPT1 in T. 

brucei, thus leaving us with the LAPT1 as the only known T. b. brucei drug 

transporter of unknown genetic origin. We however identified specific inhibitors 

for this transporter (LAPT1) that will be of use in its further characterization. 
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1.1. African Trypanosomiasis 

African trypanosomiasis has been extensively studied and widely reported, 

and is actually a worldwide disease (Baral, 2010), which is caused by species of 

the Trypanosoma genus and is infectious to man as well as to domestic and wild 

animals (Osorio et al, 2008). Trypanosoma brucei gambiense (T. b. gambiense) 

and Trypanosoma brucei rhodesiense (T. b. rhodesiense) are responsible for the 

Human African trypanosomiasis (HAT) while Trypanosoma brucei brucei (T. b. 

brucei), Trypanosoma congolense (T. congolense) and Trypanosoma vivax (T. 

vivax) are responsible for the African animal trypanosomiasis (AAT) or nagana of 

cattle (Vanhamme & Pays, 2004). Trypanosoma evansi (T. evansi) causes surra in 

camels, Trypanosoma equiperdum (T. equiperdum) causes dura in horses 

(Vanhamme & Pays, 2004), while Trypanosoma simae (T. simae) is responsible 

for trypanosomiasis in pigs (Anene et al, 2001). In South America, Trypanosoma 

cruzi (T. cruzi) and Trypanosoma theileri (T. theileri) are both of medical and 

veterinary importance (Osorio et al, 2008), with T. cruzi causing Chagas’ 

disease, or American trypanosomiasis in man. T. theileri is a species that is 

considered non-pathogenic in cattle, though it could become pathogenic in the 

presence of other diseases (Seifi, 1995). Apart from T. evansi which is 

mechanically transmitted by biting flies of the genera Tabanus, Stomoxys, 

Atylotus and Lyperosia, (Lun et al, 1993;Anene et al, 2001) and by the South and 

Central American vampire bats, Desmodus rotundus (Brun et al, 1998), through 

milk or during coitus (Brun et al, 1998); most other members of the genus 

Trypanosoma are cyclically transmitted through the bite of infected tsetse flies 

of the genus Glossina (Mäser et al, 2003) with the exception of Trypanosoma 

cruzi which is transmitted by infected blood-sucking bugs of the species 

Triatoma infestans (Bargues et al, 2006). The only trypanosome that is 
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mechanically transmitted (through copulation) and not through the agency of 

any known invertebrate vector is T.  equiperdum (Claes et al, 2005;Brun et al, 

1998). Similarly, T. equiperdum is the only species of African trypanosomes that 

lives as a tissue parasite (Claes et al, 2005); all other species of develop in the 

blood and tissue fluids of mammals as free-living organisms that never enter the 

cells of the host (Pays, 2006). These trypanosomes multiply extracellularly 

throughout their lifecycle in the blood and tissue fluids of vertebrates and in the 

alimentary canal of the tsetse fly (Clayton & Michels, 1996). Figure 1 illustrates 

the relationship between the different species of trypanosomes. 

 

Figure 1.1 Classification of trypanosomes (Baral, 2010) 

Trypanosomes cause relatively mild infections in wild animals, but cause a 

severe, usually fatal disease in domestic animals, the symptoms of which include 

fever, listlessness, emaciation, hair loss, discharge from the eyes, oedema, 

anaemia, and ultimately paralysis (Steverding, 2008). On the other hand, the 

clinical signs of dura ‘or dourine’ which include fever, local oedema of the 

genitals and mammary glands, cutaneous eruptions, incoordination, facial 

paralysis, ocular lesions, anaemia and emaciation, are marked by periods of 
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exacerbation and relapse, which usually end in death or possible recovery (Claes 

et al, 2005). Similarly, surra, caused by T. evansi, is an acute disease which 

leads to the death of the animals within two to eight weeks of infection, and is 

symptomized by progressive emaciation, oedema and nervous symptoms as well 

as anaemia, monocytosis and haemorrhages of visceral organs (Lun et al, 1993). 

A greater number of trypanosome species infect livestock animals, with a similar 

higher frequency of transmission by a larger number of Glossina species; 

veterinary trypanosomiasis therefore has the greater epidemic status, with a 

greater economic impact than the Human form of the disease in Africa (Baral, 

2010). 

Finally, a division of this disease into Human and Veterinary 

trypanosomiasis is only theoretical, since it had been confirmed that T. b. 

rhodesiense, also infect most domestic and wild mammals; the contribution of 

these animal reservoirs to the maintenance of T. b. gambiense infections is 

however still theoretical (Welburn et al, 2001;Massussi et al, 2009). These 

animals act as reservoirs of infection from which the human population can be 

reinfected, especially by T. b. rhodesiense, which is an established zoonotic 

parasite (Fèvre et al, 2006;Massussi et al, 2009). Hence, any programme aimed 

at controlling or eradicating the human form of this disease can only be 

successful if the simultaneous mass treatment of the domestic reservoir is also 

implemented (Onyango et al, 1966). 

1.2. History and Epidemiology of 
Trypanosomiasis 

The first accounts of human trypanosomiasis in modern times were 

provided by medical officers who worked for slave-trade companies, and these 

accounts described only the symptoms of the disease; Thomas Winterbottom and 
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John Aktins described the symptoms of the early and late stages of the disease 

respectively (Cox, 2004). In 1852, David Livingstone found the link between 

nagana in cattle and the bite of tsetse fly (Steverding, 2008). Forty three years 

later in 1895, the Scottish Pathologist, David Bruce discovered the causative 

agent of nagana to be Trypanosoma brucei (Steverding, 2008). This was followed 

in 1902 by the identification of Trypanosoma brucei gambiense (known then as 

Trypanosoma gambiense) as the causative agent of Human African 

Trypanosomiasis by the English Physician Joseph Everett Dutton after they were 

initially thought to be worms by Robert Michael Forde (Steverding, 2008). David 

Bruce was able to prove scientifically in the following year that sleeping sickness 

is transmitted by tsetse fly, but he erroneously proposed that transmission was 

mechanical (Cox, 2004). He accepted his error, and went ahead to describe the 

full life cycle of the trypanosomes within their tsetse fly host, after his earlier 

proposal was disproved by the German surgeon Friedrich Karl Kleine in 1909 

(Cox, 2004). The two other causative agents of nagana, T. congolense and T. 

vivax were discovered in 1904 and 1905 by the Belgian physician Alphonse 

Broden and the German naval doctor Hans Ziemann (Steverding, 2008). T. b. 

rhodesiense, the other human trypanosome, was discovered in 1910 by 

parasitologists John William Watson Stephens and Harold Benjamin Fantham 

(Stephens & Fantham, 1910).  

Three major epidemics of the Human trypanosomiasis occurred in Africa 

in the 20th century (Steverding, 2008). The first occurred between 1806 and 

1906, mostly in Uganda and the Congo Basin (W.H.O., 2012), and resulted in the 

death of 300,000 and 500,000 people in the Congo Basin and the Busoga focus in 

Uganda and Kenya, respectively (Hide, 1999). The first set of trypanocides were 

arsenicals developed after the French physician Charles Louis Alphonse Laveran 
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and the French biologist Félix Mesnil found in 1902 that sodium arsenite was 

effective in infected laboratory animals (Cox, 2004). Hence the arsenical drug, 

atoxyl (aminophenyl arsonic acid), so named because it was initially thought to 

be non-toxic, was used to treat Human African Trypanosomiasis until the German 

physician Robert Koch found that it was in fact toxic to the optic nerve and led 

to blindness in 1.4% of the treated population (Steverding, 2008). Suramin 

(initially named Bayer 205 and then Germanin) was derived from the 

naphthalene urea compound, Afridol violet (fig. 2) by Wilhelm Roehl who tested 

more than 1000 colourless naphthalene urea derivatives while working for the 

German Bayer pharmaceutical company between 1905 and 1917 (Dressel, 1961). 

In 1919, tryparsamide was derived from atoxyl by American scientists, Walter 

Jacobs and Michael Heidelberger, and became the first drug for the second stage 

of Human trypanosomiasis since it was able to enter the central nervous system; 

however, it was still harmful to the optic nerve (Jacobs & Heidelberger, 1919). 

Both suramin and tryparsamide were employed to fight the second human 

epidemic of trypanosomiasis which occurred in many African countries between 

1920 and 1940 (W.H.O., 2012). Mobile teams were also used in the control of 

this epidemic, together with other vector control measures and game 

destruction (De Raadt, 2005). Pentamidine was developed in 1937 for the 

treatment of the early stage of T. b. gambiense sleeping sickness by the English 

chemist Arthur James Ewins while working for May and Baker (Bray et al, 2003). 

This was followed in 1949 by the development of the arsenical drug melarsoprol, 

for treatment of the late stage T. b. rhodesiense sleeping sickness, by the Swiss 

chemist and microbiologist Ernst Friedheim. A number of drugs also became 

available for the treatment of animal trypanosomiasis in the 1950s, including the 

phenanthridine derivatives ethidium bromide and isometamidium chloride, the 
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aminoquinaldine derivative quinapyramine and the aromatic diamidine 

diminazene aceturate (Kinabo, 1993). The employment of these methods of 

control led to the almost complete disappearance of the disease by the mid 

1960s. Surveillance was then relaxed, causing the reappearance of the disease 

and the most recent epidemic in 1970 (W.H.O., 2012). This epidemic of 1970 

affected mainly Angola, Congo, Southern Sudan and the West Nile area of 

Uganda (De Raadt, 2005). Very little improvement was achieved before 1990 

when eflornithine was introduced to replace melarsoprol  for treatment of late 

stage T. b. gambiense sleeping sickness (Steverding, 2008). During this period, 

prevalence reached 50% in many villages in the Democratic Republic of Congo, 

Angola and Southern Sudan; sleeping sickness overtook HIV/AIDS as the greatest 

cause of mortality in those communities (W.H.O., 2012). In 2000 and 2001 

respectively, WHO established public-private partnerships with Aventis Pharma 

(now sanofi-aventis) and Bayer HealthCare which enabled the creation of a WHO 

surveillance team, providing support to endemic countries in their control 

activities and the supply of drugs free of charge for the treatment of patients. 

Consequently, the total number of new cases of HAT reported per year in Africa 

has dropped from 37 991 in 1998 to 17 616 in 2004, with a further drop to 7139 

in 2010. The current estimated number of actual cases is 30 000 (W.H.O., 2012). 

More than 500 new cases of the disease were found only in the Democratic 

republic of Congo in 2010. Angola, Central African Republic, Chad, Sudan and 

Uganda declared between 100 and 500 new cases while countries such as, 

Cameroon, Congo, Côte d'Ivoire, Equatorial Guinea, Gabon, Guinea, Malawi, 

Nigeria, United Republic of Tanzania, Zambia and Zimbabwe reported fewer 

than 100 new cases. Others including Benin, Botswana, Burkina Faso, Burundi, 

Ethiopia, Gambia, Ghana, Guinea Bissau, Kenya, Liberia, Mali, Mozambique, 
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Namibia, Niger, Rwanda, Senegal, Sierra Leone, Swaziland and Togo have not 

reported any new cases for over a decade (W.H.O., 2012).  

 Conversely, AAT remains a major constraint to the development of 

livestock in sub-Saharan Africa (Geerts, 2011). Animals kept in areas of 

moderate risk of trypanosomiasis have lower calving rates, lower milk yields, 

higher rates of calf mortality, and require more frequent treatment with 

preventive and curative doses of trypanocidal drugs than animals kept in 

trypanosomiasis free areas (Swallow, 1999). AAT occurs in 37 sub-Saharan 

countries where about 50 million cattle are exposed to the disease and about 35 

million doses of trypanocides are used annually (Mattioli et al, 2004) in the 

prevention and treatment of the disease. The direct and indirect losses due to 

this disease are put at about US$ 4.5 billion (Hursey, 2001).  

The fight to eradicate trypanosomiasis in Africa is being coordinated by 

two key players: the Programme against African Trypanosomiasis (PAAT) and the 

Pan-African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). PAAT 

was set up in 1997 and is a joint programme of the FAO, WHO, OIE and the Inter-

African Bureau for Agriculture (IBAR) of the African Union (Geerts, 2011). The 

PAAT approach is to link tsetse and trypanosome intervention to overall public 

health policies and to sustainable Agriculture and Rural Development (Mattioli et 

al, 2004). PATTEC however is a project of the AU-IBAR, launched in 2000, and its 

strategy is to apply area-wide principles to eliminate each pocket of tsetse 

infestation at a time; thus, creating a series of tsetse-free zones that can 

eventually be linked over a much larger area (Geerts, 2011). 
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1.3. Life cycle of trypanosomes 

Trypanosomes arrive in the bloodstream of the mammalian host during a 

blood meal by an infected tsetse fly (Wang, 1995). The fly injects the metacyclic 

trypomastigote form of the parasite in its saliva before taking its blood meal 

(figure 1.2). Initially, the trypanosomes multiply locally at the site of the bite 

for a few days before entering the lymphatic system and the bloodstream, 

through which they reach other tissues and organs including the central nervous 

system (Chappuis et al, 2005). The metacyclic form of the parasite that was in 

the salivary gland of the fly is hence introduced into a mammal such as man, 

cattle, lions, antelopes, buffaloes, etc, where it differentiates into the long, 

slender, actively-dividing bloodstream form (Pays et al, 2006). 

 

Figure 1.2 The life cycle of Trypanosoma brucei. Copyright Alexander J. da Silva and Melanie 

Moser, Centre for Disease Control Public Health Image Library. Reproduced from the CDC 

website: http://www.dpd.cdc.gov/dpdx/HTML/TrypanosomiasisAfrican.htm  

http://www.dpd.cdc.gov/dpdx/HTML/TrypanosomiasisAfrican.htm
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This slender form is predominant in the blood and tissue fluids of the host 

during the period of increased parasitaemia that follows (Vassella et al, 1997). 

As the parasitaemia reaches its peak, the long, slender form differentiates into 

the short, stumpy non-dividing form of the parasite whose future is dependent 

on ingestion by tsetse fly. This differentiation from the long, slender form to the 

short, stumpy form is induced by a quorum-sensing signal, which is released by 

the parasite and characterized as the stumpy induction factor, SIF (Vassella et 

al, 1997). The finding that a lipophilic cAMP analog, 8-(4-chlorophenylthio)-cAMP 

(pCPTcAMP), was able to induce cell cycle arrest of bloodstream forms and 

slender to stumpy differentiation with high efficiency was considered an 

indication that endogenous production of cAMP by adenylate cyclases is 

sufficient to induce differentiation (Vassella et al, 1997).  Stumpy formation in 

vitro was also induced by chemical treatments such as hydrolysable cAMP or the 

actual products of cAMP hydrolysis (Laxman et al, 2006) and troglitazone, a 

thiazolidinedione (Denninger et al, 2007). The short-stumpy form of the parasite 

is ingested by the tsetse fly and differentiates into the procyclic stage in the 

midgut lumen, while any long, slender form taken up alongside dies or 

differentiates into the stumpy form in the anterior midgut (Vickerman, 1985).  

Trypanosomes exist only as trypomastigotes in the mammalian host, 

whereas the epimastigote form occurs during the development phase in the 

tsetse fly (Chappuis et al, 2005). A shift in growth temperature from 37 oC to 27 

oC with simultaneous addition of cis-aconitase is believed to induce the 

differentiation to the procyclic form (Czichos et al, 1986). The procyclic form of 

the parasite divides rapidly in the midgut (Priest & Hajduk, 1994), then 

differentiates into the proventricular mesocyclic form which migrates to the 

tsetse salivary gland where it developes into the epimastigote, the form from 
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which the infective, non-dividing metacyclic form emerges via two intermediary 

stages (Vickerman, 1985). The metacyclic form can again be transferred to a 

mammalian host for the start of another round of the cycle. 

1.4. Cell Biology of the trypanosomes 

The African trypanosome has a long slender shape with a single flagellum 

(Vaughan & Gull, 2008) that exits the flagellar pocket at the posterior end of the 

cell (figure 1.3) and is attached to the cell body along its length (Vaughan & 

Gull, 2003). This flagellum originates from a basal body that is linked through 

the mitochondrial membrane to the mitochondrial genome, which is composed 

of a mass of catenated DNA called the kinetoplast (Matthews, 2005). 

 

Figure 1.3 Sub cellular structure of the bloodstream form African trypanosome. The arrow shows 

the direction of travel of the parasite. Taken from ILRAD website: 

http://www.ilri.org/InfoServ/Webpub/fulldocs/ILRADre1989v7n1/endocytosis.htm  

The characteristic cell body shape is defined by a highly stable, highly 

cross-linked subpellicular microtubule cytoskeleton that lies under the cell 

membrane (Angelopoulos, 1970). The single-copy organelles (the flagellar 

pocket, flagellum, kinetoplast, mitochondrion and nucleus) are positioned 

http://www.ilri.org/InfoServ/Webpub/fulldocs/ILRADre1989v7n1/endocytosis.htm
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specifically within the cytoskeletal corset and are concentrated between the 

posterior and the centre of the cell (Matthews, 2005). The most posterior 

organelle is the mouth of the flagellar pocket, which serves as the only site of 

endo- and exocytosis (Overath & Engstler, 2004). The mitochondrion is a single 

elongated organelle that extends from the posterior to the anterior of the cell 

(Matthews, 2005). The procyclic form of T. brucei generates ATP from the amino 

acids that are abundant in their surroundings through mitochondrial-based 

pathways, and so can thrive in the absence of glucose or loss of glycolysis (ter 

Kuile, 1997). The bloodstream form on the other hand depends solely on the 

glycolysis of host glucose for ATP synthesis, hence the reduced mitochondrial 

function in this life cycle stage (Coley et al, 2011). The mitochondrial function 

of ATP generation is therefore performed in the bloodstream form by a different 

organelle: the glycosome. 

1.4.1. The Glycosomes 

Glycosomes are single-membrane organelles that compartmentalize the 

first seven enzymes of glycolysis and two enzymes of glycerol metabolism 

(Opperdoes & Borst, 1977) in addition to other pathways such as β-oxidation, 

ether lipid biosynthesis, sterol and isoprenoid biosynthesis, pyrimidine 

biosynthesis, purine salvage, the pentose phosphate pathway and 

gluconeogenesis (Parsons, 2004;Michels et al, 2000). 
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Figure 1.4 Glycolysis and glycosomes in the bloodstream and procyclic forms of the African 

trypanosome, taken from (Tielens & van Hellemond, 1998). Aerobic metabolism is shown in red 

and, when present, the anaerobic fermentation pathways are shown in blue. End-products are 

shown in boxes and dashed lines indicate relatively minor pathways. The enzyme complexes 

involved in electron transport are indicated by green and blue squares and the 

ubiquinone/ubiquinol pools are indicated by yellow ellipses. Abbreviations: AcCoA, acetyl-CoA; 

Citr, citrate; DHAP, dihydroxyacetone phosphate; FBP, fructose 2,6-bisphosphate; F6P, fructose 

6-phosphate; GAP, glyceraldehyde 3-phosphate; G-3-P, glycerol 3-phosphate; G6P, glucose 6-

phosphate; MAL, malate; Oxac, oxaloacetate; PEP, phosphoenolpyruvate; Pyr, pyruvate; Succ, 

succinate; SuccCoA, succinyl-CoA; 1,3BPGA, 1,3-bisphosphoglycerate; 2-PGA, 2-

phosphoglycerate; 3-PGA, 3-phosphoglycerate. 

Under aerobic conditions, the glycolytic enzymes convert glucose to 3-

phosphoglycerate, which is then further metabolized to pyruvate with the 

resultant production of ATP by the cytosolic pyruvate kinase (Figure 1.4). The 

pyruvate is then secreted from the cell. Production and consumption of either 

ATP or NADH are balanced within the glycosomes (Coley et al, 2011). ATP is used 

up by the activity of the T. brucei hexokinase 1 and 2 (TbHKs) and 

phosphofructokinase (PFK), while it is regenerated by the activity of the 

glycosomal phosphoglycerate kinase (gPGK). Similarly, NADH production by 
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glyceraldehyde-3-phosphate dehydrogenase is balanced by NADH oxidation when 

glycerol 3-phosphate dehydrogenase (GPDH) metabolizes dihydroxyacetone 

phosphate (DHAP) to glycerol 3-phosphate (Gly-3-p). The resulting Gly-3-p is 

shuttled from the glycosome to the mitochondria where electrons are ultimately 

transferred to water through the activity of a glycerol 3-phosphate oxidase 

complex (consisting of a mitochondrial glycerol 3-phosphate dehydrogenase, 

ubiquinone, and trypanosomal alternative oxidase). The resultant DHAP is 

shuttled back to the glycosome to maintain its redox balance (Coley et al, 2011). 

Hence, the glycosome is not involved in net ATP synthesis. ATP synthesis occurs 

in the cytosol during the conversion of 2-phosphoglycerate to pyruvate (figure 

1.4), giving a net production of  two ATP molecules per molecule of glucose in 

the bloodstream form (Chaudhuri et al, 2006). The compartmentation of 

glycolysis in the glycosomes functions to regulate the pathway rather than to 

concentrate enzymes and metabolites of the pathway for an increased flux 

(Haanstra et al, 2008). 

Under anaerobic conditions, or when the mitochondrial glycerol 3-

phosphate oxidase is inhibited by salicyl hydroxamic acid (SHAM), glucose is 

metabolized at the same rate as under aerobic conditions, forming equal 

amounts of pyruvate and glycerol (Fairlamb et al, 1977). ATP production is 

reduced to half and the glycosomal NAD+/NADH balance is maintained by the 

conversion of glycerol-3-phosphate to glycerol by glycerol kinase, which is a 

kinetically unfavourable reaction under normal conditions (Chaudhuri et al, 

2006). Hence, bloodstream forms of T. brucei do not survive for long under 

anaerobic conditions. It has been demonstrated that SHAM alone kills in vitro 

culture of the bloodstream form within 24 hours, and that a reduction in the 
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trypanosome alternative oxidase level by RNAi is harmful to the parasites 

(Helfert et al, 2001). 

In contrast, the glycosomes in the procyclic T. b. brucei contain 

additional enzymes and parts of pathways while the glycolytic pathway is down-

regulated (Herman et al, 2008). Also, phosphoglycerate kinase is located mainly 

in the cytosol, hence 1,3-bisphosphoglycerate is not converted into 3-

phosphoglycerate inside the glycosome (as in long slender forms) but in the 

cytosol (Tielens & van Hellemond, 1998). Most of the phosphoenolpyruvate 

produced in the cytosol from the glycosomal 1,3-bisphosphoglycerate re-enters 

the glycosome and is converted to malate which is shuttled out of the glycosome 

(figure 1.4) for oxidation to pyruvate which enters the mitochondrial Krebs cycle 

(Schnaufer et al, 2002). This shuttle ensures the maintenance of both redox  and 

ATP/ADP balance within the procyclic glycosomes (Tielens & van Hellemond, 

1998).  

1.4.2. The mitochondion 

The mitochondrion of the early bloodstream form of T. brucei is tubular 

with hardly any cristae. The cytochromes, electron transport chain and most of 

the Krebs cycle enzymes are absent at this stage (Brown et al, 2006). It contains 

the glycerol 3-phosphate oxidase whose subunit, the trypanosome alternative 

oxidase is responsible for the oxidation of glycerol 3-phosphate from the 

glycosomes using oxygen as the electron acceptor (Clarkson et al, 1989). This 

electron flow to oxygen is not coupled to oxidative phosphorylation of ADP and 

does not generate a membrane potential (Bienen & Shaw, 1991). The 

mitochondrial membrane potential is however generated by the oligomycin-

sensitive F1F0-ATPase which acts in reverse as an ATP hydrolase, pumping 

protons from the matrix to the inter-membrane space at the expense of ATP 
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derived from substrate level phosphorylation (Nolan & Voorheis, 1992;Schnaufer 

et al, 2005). This potential is used for the import of nuclear-encoded 

mitochondrial proteins across the inner mitochondrial membrane (Bertrand & 

Hajduk, 2000). 

The stumpy form of the parasite that follows is characterized by an 

increased specific activity of the F1F0-ATPase (Bienen & Shaw, 1991), the 

development of tubular mitochondrial cristae and the synthesis of both proline 

and α-ketoglutarate oxidases in preparation for a switch to an amino acid-based 

energy metabolism (Vickerman, 1985). Therefore the procyclic form is able to 

oxidize proline and threonine for energy; more importantly, pyruvate instead of 

being excreted is rather metabolized to acetate in the mitochondrion, in which 

six out of the eight enzymes of the citric acid cycle have been shown to be 

active (van Hellemond et al, 2005). A fully functional electron transport chain is 

present and is coupled to oxidative phosphorylation of ADP to produce ATP by 

the mitochondrial ATP synthase (Williams, 1994;Brown et al, 2006). Studies in 

which ATP levels in procyclic trypanosomes were not lowered in the presence of 

10 times excess of oligomycin were used to demonstrate that substrate level 

phosphorylation and the mitochondrial electron transport chain, but not the 

oxidative phosphorylation are essential to this life cycle stage (Coustou et al, 

2003a). A more recent study uses the RNAi technique to demonstrate that the 

F1F0-ATPase, and hence the oxidative phosphorylation, was still vital to the 

survival of the procyclics (Zikova et al, 2009). They have also been found to 

express all the enzymes for gluconeogenesis at this stage (van Hellemond et al, 

2005). The epimastigotes of T. cruzi were found to resemble T. brucei procyclics 

in the use of proline as an important substrate, and in the incomplete 

catabolism of glucose to CO2 and organic acids such as alanine and succinate 
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(Clayton & Michels, 1996). The transformation to the metacyclic form is believed 

to be accompanied by the repression of mitochondrial activity in preparation for 

infection of the mammalian host (Priest & Hajduk, 1994), since it was found that 

the metacyclic mitochondrion has the unbranched noncristate appearance of the 

bloodstream form mitochondrion (Vickerman, 1985). 

1.4.3. The variable surface glycoprotein. 

In order to survive the attack of the host antibody response during the 

bloodstream stage, the trypanosomal cell membrane is covered by a thick dense 

surface coat consisting of a monolayer of about 107 molecules of a single 

glycoprotein known as the variant surface glycoprotein (VSG) (Vanhamme & 

Pays, 2004;Pays, 2006;Pays et al, 2006). However, the VSG is highly 

immunogenic and can hence activate the host immune response; the parasite 

escapes this response by continuous antigenic variation achieved by repeated 

changing of the VSG loops which carry the trypanosomal antigenic determinants 

(Pays et al, 2006). According to Pays (2006), the reduction in the parasite 

population caused by the interaction of the parasite antigenic variation with the 

host immune response helps the parasite to prolong its infection by keeping the 

host alive, since the host must be alive for transmission by tsetse flies to occur 

(Pays, 2006). 

Human serum, as well as sera from a few other related primates, is able 

to lyse the trypanosomes; only two subspecies of Trypanosoma brucei, namely T. 

b. gambiense and T. b. rhodesiense are able to resist this lysis by the human 

serum and hence are able to cause human infections (Pays, 2006). Human serum 

contains the trypanosome lytic factor, TLF which has been identified as the 

apolipoprotein L-1 of the HDL3 (Pays, 2006) and has been found to kill 

trypanosomes by creating a channel in the lysosomal membrane for the inflow of 
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chloride ions into the lysosome, a process that causes osmotic uptake of water 

and uncontrolled swelling of the lysosome until the parasite is ultimately lysed 

(Pays et al, 2006). The uptake of TLF by trypanosomes is mediated by the 

interaction of the HDL3-bound  haptoglobin-related protein (Hpr) with a specific 

surface receptor on the parasite’s cell surface, followed by endocytosis and 

fusion with the lysosome (Pays, 2006). 

1.5. Molecular Biology of the Parasite 

Trypanosomes have a two-unit genome, a nuclear genome and an unusual 

mitochondrial genome the kinetoplast, which holds about 20% of the total DNA 

of the organism (Hertz-Fowler et al, 2007). Possession of processes such as RNA 

editing, switching of the expression of alleles that code for the variable surface 

glycoprotein and the presence of an unusual mitochondrial DNA architecture are 

the unusual features that set the molecular biology of the trypanosomes apart 

(Preusser et al, 2012).  

1.5.1. Organisation and expression of the 
nuclear genome. 

Trypanosomes are diploid organisms.  The genome contains 11 pairs of 

megabase-sized chromosomes (Palenchar & Bellofatto, 2006) in which the 

housekeeping genes (genes involved in the basic functions of the organism) are 

arranged in long polycistronic transcription units of up to 100 open reading 

frames (Preusser et al, 2012). There are also, in addition, about 5 intermediate-

size chromosomes, sized between 200 and 900 kb, and about 100 

minichromosomes (ranging in size from 50 to 150 kb) per trypanosome genome 

(Hertz-Fowler et al, 2007). The nuclear chromosomes are all linear and end in 

tandem repeats of the telomeric sequences [TTAGGG]n (Hertz-Fowler et al, 
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2007), though some circular nuclear extrachromosomal DNA may be present 

(Alsford et al, 2003). 

The trypanosomes possess three RNA polymerases: I, II and III. The RNA 

pol I transcribes mRNA for the variable surface glycoprotein as well as those for 

the procyclin in addition to its universal function of transcribing rRNA genes 

(Gunzl et al, 2003). All the remaining protein-coding genes are transcribed by 

the RNA pol II (Gunzl et al, 2007) while the tRNA and all the U-rich snRNA genes 

are transcribed by the RNA pol III (Palenchar & Bellofatto, 2006). The lack of 

specialized transcription factors associated with the RNA pol II suggests a lack of 

regulation of gene expression at the transcription initiation step; regulation of 

gene expression in trypanosomes occurs during transcript elongation, RNA 

processing and export, mRNA turn-over, translation and protein stability 

(Clayton, 2002). The protein-coding genes in trypanosomes are devoid of introns 

but trans-splicing and polyadenylation of the primary transcripts are required to 

generate mature mRNAs (Vanhamme & Pays, 1995). The Spliced Leader RNA acts 

as a splicing substrate during trans-splicing, cutting off mRNA from the primary 

transcript; it also attaches the m7G cap structure, derived from the Spliced 

Leader RNA, to each protein-coding mRNA during this process (Preusser et al, 

2012).  

1.5.2. The kinetoplast and its DNA 

The kinetoplast DNA is made up of a few dozen maxicircles (23 kb each) 

and several thousand minicircles (1 kb each) (Roy Chowdhury et al, 2010). 

Maxicircles encode rRNAs, some mitochondrial proteins such as subunits of 

respiratory chain complexes, which include NADH dehydrogenase, cytochrome 

oxidase complexes I, II and III, cytochrome b (Melville et al, 2004) and the A6 

subunit of the F1F0-ATPase (Schnaufer et al, 2005), and two guide RNAs 
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(Koslowsky, 2009). These subunits are however produced initially as precursor 

mRNAs which needs to be edited by insertion or deletion of uridine nucleotides 

at specific sites. The guide RNAs that act as templates in the editing process are 

encoded by the minicircles (Stuart et al, 2005).  

The replication of the trypanosome kinetoplast involves the participation 

of two topoisomerases, a topoisomerase II (Wang & Englund, 2001) and a 

topoisomerase 1A (Scocca & Shapiro, 2008); the trypanosome genome was found 

to encode about five different topoisomerases (Klingbeil et al, 2007). The 

topoisomerases are responsible for releasing the individual minicircles before 

replication, so that they could be copied as free circular molecules. Other 

enzymes that take part in the replication of the kinetoplast DNA are DNA 

polymerases, DNA ligases and helicases; at least six DNA polymerases and two 

DNA ligases were found in the trypanosome mitochondrion, while the 

trypanosome genome encodes about eight helicases (Klingbeil et al, 2007) out of 

which six are mitochondrial (Liu et al, 2009).  

Partial [dyskinetoplastidy (Dk)] or total [akinetoplastidy (Ak)] loss of kDNA 

keeps the trypanosome fixed in the bloodstream form; the tsetse fly is therefore 

eliminated from the life cycle and transmission between individual hosts 

becomes mechanical, allowing the parasite to spread outside the African tsetse 

belt (Lai et al, 2008). T. equiperdum  and T. evansi  differ only in that T. 

equiperdum  contains  fragments of kDNA maxicircles and is therefore 

dyskinetoplastid while T. evansi  is akinetoplastid; hence both must have 

evolved from T. brucei after losing the ability to faithfully replicate their 

kinetoplast DNA (Lai et al, 2008). It was found that kDNA-deficient T. brucei and 

several strains of T. equiperdum and T. evansi need a mutation in the nuclear 

gene encoding the γ-subunit of the F1 portion of the F1F0-ATPase to survive the 
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loss of their kinetoplast (Lai et al, 2008). The loss of proton-pumping membrane 

component (Fo) of the ATP synthase in the Dk/Ak trypanosomes leads to a 

release of the soluble, catalytically active domain of the synthase (F1) into the 

matrix. ATP hydrolysis by F1 produces ADP, and the exchange of the ADP−3 for 

cytosolic ATP−4 via the inner-membrane ADP–ATP carrier, re-establishes the 

mitochonrial membrane potential, Δψ (Jensen et al, 2008) 

 

Figure 1.5 Mitochondrial inner-membrane potential in trypanosomes. Taken from Jensen et al, 

2008. The ATP synthase is composed of F0, which is embedded in the inner membrane (IM) and 

translocates protons, and F1, which can either synthesize or hydrolyze ATP. The ATP–ADP carrier 

(AAC) mediates the exchange of ATP and ADP across the IM. (a) In the PCF, the electron 

transport machinery (only complex III and IV are shown) generates Δψ, which is used to drive ATP 

synthesis, in addition to protein import and metabolite transport (not shown). (b) In the BSF, the 

ATP synthase runs backwards and uses ATP hydrolysis to pump protons across the IM to generate 

Δψ. (c) In Dk or Ak trypanosomes, the F0 portion of the ATP synthase is missing (e.g. owing to a 

lack of the kDNA-encoded subunit, A6), but the F1 portion hydrolyzes ATP to ADP in the matrix. 

The exchange of ADP−3 with ATP−4 from the cytosol establishes Δψ. 

 

 

1.6. Diagnosis of the disease 

Identification of trypanosomes was originally based on microscopic 

observation of morphology, morphometry and motility of the parasites in host 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2725760_nihms128639f1.jpg
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tissues. The recent development of molecular techniques such as restriction 

enzymes, sequencing, DNA probing and polymerase chain reaction (PCR) has 

made significant input into trypanosome identification, characterisation and 

diagnostic accuracy at various taxonomic levels (Desquesnes & Davila, 2002). 

The level of accuracy that a system of diagnosis demands may depend on the 

purpose in view. For instance, the simple presence of pathogenic trypanosome 

can be sufficient for a decision on the treatment for AAT but not for HAT; hence 

identification of the trypanosome species, sub-species, type or even isolate can 

be necessary for medical, sanitary, taxonomic, epidemiological or research 

purposes (Desquesnes & Davila, 2002). The first methods of DNA identification 

were DNA sequencing techniques and synthesis of DNA probes, followed by PCR, 

and a combination of both methods (Majiwa et al, 1994). 

Genetic characterisation of trypanosomes was based initially on 

isoenzyme electrophoresis (Godfrey et al, 1987) and Restriction Fragment Length 

Polymorphism analysis, RFLP (Kanmogne et al, 1996a). These methods though 

successful, are limited by the requirement of a substantial amount of parasite 

material. The PCR-based DNA finger-printing techniques have overcome this 

limitation (Simo et al, 2008), and include the Random Amplification of 

Polymorphic DNA, RAPD (Kanmogne et al, 1996b), minisatellites and 

microsatellites DNA amplification techniques (MacLeod et al, 2000;Biteau et al, 

2000) and Mobile Genetic Element PCR, MGE-PCR (Tilley et al, 2003). These 

methods are used to study the genetic diversity of trypanosomes, and have 

generated important epidemiological information on the relationship between 

trypanosome strains and their potential role in the heterogeneity of disease foci, 

and also in the generation and maintenance of HAT foci (Tilley et al, 2003). 
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1.7. Control methods 

Trypanosomiasis can be controlled by either checking the spread of the 

vector or by controlling the parasites, or a combination of both methods 

(Delespaux et al, 2008). Vector control methods include the use of insecticides 

(sprayed as aerosol into the atmosphere or sprayed on the animals on which 

tsetse feed), the use of baits and (or) traps, and the use of the sterile insect 

technique (SIT) (Simarro et al, 2008). Traps are not usually employed as a means 

of eradication of flies from an infested area, but to reduce populations of tsetse 

to levels that reduce the challenge or risks to humans and animals, and to 

forestall the re-invasion of flies from a previously cleared area (Grant, 2001). 

Their efficiency can however be improved by the addition of strips of 

insecticide-treated material or chemical attractants, and by arranging in a 

straight line in riverine areas; these traps are a cheap means to very impressive 

reduction of tsetse populations, without any unwanted side effects (Grant, 

2001). 

Aerial and ground spraying of organochlorine insecticides, such as 

dichlorodiphenyltrichloroethane and dieldrin, as practiced in Africa between the 

1940s and the 1980s has been stopped because organochlorines persist for many 

years in the environment and so induce Cytochrome P450 activities which cause 

trypanocidal resistance in the exposed animals (Boibessot et al, 2006). 

Indiscriminate spraying of all vegetations (whether they are resting sites for 

tsetse or not) caused heavy mortality of reptiles, small mammals, fish, birds and 

insects in the Southern African savannah (Grant, 2001). Besides, the aerosol 

technique is rather expensive, with a high infrastructural-support requirement; 

SIT is similarly a costly technique whose feasibility can be drastically reduced in 

areas infested by multiple species of tsetse flies (Simarro et al, 2008). The 
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possibility of vaccine development for the control of the parasite is ruled out by 

the expression of antigenic variation by the blood stream forms of trypanosome 

(Wilkes et al, 1997); hence, the control of trypanosomiasis relies principally on 

treatment and prophylaxis (Anene et al, 2001). 

1.8. Treatments for Human and Veterinary 
trypanosomiasis. 

Four drugs are currently approved for the treatment of HAT, depending on 

the causative trypanosome subspecies and on the stage of the disease (Fairlamb, 

2003). Drugs for the treatment of late stage trypanosomiasis are those that are 

able to cross the blood-brain barrier to kill the parasites in the cerebrospinal 

fluid and brain parenchyma (Fèvre et al, 2006), and they include melarsoprol 

(effective against both T. b. rhodesiense and T. b. gambiense) and eflornithine 

(effective only against T. b. gambiense) while pentamidine and suramin are for 

the treatment of the early stage disease (Barrett & Gilbert, 2006). Nifurtimox 

has been used in the past for patients suffering from eflornithine- or 

melarsoprol-resistant trypanosomiasis (Fairlamb, 2003) but was never licensed as 

mono-therapy for HAT due to the severity of its side-effects. The action of the 

above-mentioned clinically-approved drugs is marred by a range of severe side-

effects that are sometimes life-threatening. Recently, nifurtimox-eflornithine 

combination treatment (NECT) was compared to eflornithine monotherapy in the 

treatment of second-stage T. gambiense infection, and was found to be as 

efficacious as the eflonithine monotherapy (Priotto et al, 2009). In addition, 

NECT was found to be safer since it proved to be half as toxic as the standard 

eflornithine monotherapy, cured HAT in a shorter period of administration than 

the monotherapy, and has a lower propensity for resistance by trypanosomes 

(Priotto et al, 2009). 



Anthonius Anayochukwu Eze, 2013   Chapter 1. 25 
 
a. Early-stage trypanosomiasis.   b. Late-stage trypanosomiasis 

 

 

 

 

 

Figure 1.6 Structures of drugs for (a) early stage and (b) late stage HAT. 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Structures of the most common trypanocides used in chemotherapy and 

chemoprophylaxis of livestock trypanosomiasis. 
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diamidine; homidium, a phenanthridine; and isometamidium, a phenanthridine-

aromatic amidine (Leach & Roberts, 1981;Wilkes et al, 1995). Isometamidium is 

essentially a fusion compound of homidium and part of the diminazene molecule 

(Delespaux & de Koning, 2007).  Delespaux and his colleagues (2008) were of the 

opinion that homidium should be removed from the drug market because of its 

toxic mutagenic properties. They argued that removal of this drug from the 

market would not affect the treatment of AAT adversely, since diminazene 

aceturate can replace it for chemotherapy while isometamidium becomes the 

sole chemoprophylactic agent. Similarly, treatment and prophylaxis of 

trypanosomiasis caused by T. evansi rely on quinapyramine, suramin and 

melarsen oxide cysteamine (cymelarsan) (Leach & Roberts, 1981). 

1.9. Uptake of trypanocides by the parasite 

Uptake of drugs, an important factor in the determination of the efficacy 

of every anti-parasitic drug, may be by passive diffusion, endocytosis, receptor-

facilitated uptake or transporter-facilitated uptake (de Koning, 2001a). Each 

mode of uptake has its specific implication when considering drug action, 

selectivity and the development of resistance; hence, lipophilic drugs can cross 

membranes by simple diffusion and will enter all cells while hydrophilic drugs 

need help to cross bio-membranes (de Koning, 2001a). Generally, uptake that is 

facilitated by either receptors or membrane transporters can be a basis for 

selective chemotherapeutic action against the parasite, if the cells of the host 

do not express a homologous protein or if the transporter (or receptor) 

expressed by the host has a much lower affinity (or rate of uptake) for the drug 

(de Koning, 2001a). However, the disadvantage of selective uptake is that the 

parasite may develop resistance to the drug when the receptor or membrane 

transporter is lost or mutated (de Koning, 2001a). 
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1.9.1. Uptake of Eflornithine 

Uptake of eflornithine in bloodstream forms of T. b. brucei was found to 

be non-saturable, up to 10 mM concentration, and was therefore attributed to 

passive diffusion (Bitonti et al, 1986). A similar conclusion was drawn from 

eflornithine uptake studies in bloodstream forms of T. b. gambiense and T. b. 

rhodesiense (Iten et al, 1997). But since this proposed mode of uptake for 

eflornithine could not explain reduced rate of uptake observed in resistant cells 

(and in the absence of any identified extrusion mechanism or metabolism of 

eflornithine by the parasite), it was suggested that a combination of passive and 

facilitated diffusion be considered (de Koning, 2001a). The transporter 

responsible for this facilitated diffusion component has been identified as the 

amino acid transporter expressed by the TbAAT6 gene (Vincent et al, 2010). 

Deletion of this gene in the resistant line and the RNAi knockdown of its 

expression both resulted in about 40 fold resistance to eflornithine compared to 

the wild type trypanosomes; in addition, ectopic expression of this gene in the 

resistant line restored wild type sensitivity to eflornithine (Vincent et al, 2010).   

1.9.2. Uptake of the diamidines 

Pentamidine and diminazene aceturate are diamidines used for the 

treatment of early-stage human African trypanosomiasis caused by T. b. 

gambiense and for African animal trypanosomiasis, respectively (de Koning, 

2008). Pentamidine uptake in the procyclic form is mediated by a single high-

affinity proton-driven symporter, PPT1 (procyclic pentamidine transporter) (de 

Koning, 2001b), while both pentamidine (de Koning, 2001b) and diminazene 

(Barrett et al, 1995) seem to be transported by the P2 aminopurine transporter 

in the bloodstream form of T. brucei brucei. However, only 50 to 70% of the 

pentamidine transport in the bloodstream form was mediated by P2 while the 
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remaining 30 to 50% of the transport was carried out by a low-capacity high 

affinity pentamidine transporter (HAPT1) and a high-capacity low affinity 

pentamidine transporter (LAPT1) (de Koning, 2001b). The genes that encode the 

HAPT1 and the LAPT1 are not currently known, but have been speculated to be 

closely related to TbAT1 that codes for P2 (de Koning et al, 2005). This 

phylogenetic relationship is shown in figure 1.8. 

 

 

 

Figure 1.8 Phylogenetic relationship between TbAT1, other AT-like genes (group I) and other 

nucleoside transporter genes (group II and IV). Reproduced from (de Koning et al, 2005)  

 



Anthonius Anayochukwu Eze, 2013   Chapter 1. 29 
 

In contrast, uptake of diminazene aceturate was shown to be principally 

mediated by P2 (de Koning et al, 2004). These observations seem to be in 

agreement with the occurrence of resistance to diminazene but not to 

pentamidine in the field because a change or mutation in the gene TbAT1 that 

codes for P2 (Mäser et al, 1999), would almost entirely prevent the uptake of 

diminazene by trypanosomes (de Koning, 2008). Since pentamidine can be taken 

up by three different transporters, as stated above, it was suggested that it 

would take at least the simultaneous loss of the P2 and HAPT activities to cause 

a high level pentamidine resistance (de Koning, 2008). 

 Recently, a set of genome-wide, loss-of-function RNA interference (RNAi) 

library screens in T. brucei was used to demonstrate that two closely related 

aquaglyceroporins, AQP2 and AQP3, play a major role in pentamidine and 

melarsoprol cross-resistance (Alsford et al, 2012). This role was finally assigned 

specifically to AQP2, and it was demonstrated that from its function, AQP2 may 

correspond to HAPT1 but for the fact that it is restricted to the flagellar pocket 

(Baker et al, 2012). 

1.9.3. Uptake of arsenical-based trypanocides 

Of the available melaminophenyl arsenicals, which include melarsoprol, 

cymelarsan, trimelarsan and melarsen oxide, melarsoprol is the only arsenical 

licensed for the treatment of human African trypanosomiasis (late stage), while 

cymelarsan is licensed for the treatment of trypanosomiasis in camels (de 

Koning, 2001a). Melarsoprol is amphipatic, and will diffuse through cell 

membranes (Barrett & Gilbert, 2006). However, melarsoprol is very quickly 

metabolized to the more hydrophilic melarsen oxide in plasma (96% clearance 

within an hour) (Burri et al, 1993). Uptake of melarsoprol (melarsen oxide) by T. 

brucei was found to be mediated by P2 (Mäser et al, 1999;Delespaux & de 
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Koning, 2007). This finding is supported by these observations: P2 is inhibited 

with high affinity by melaminophenyl arsenicals (de Koning & Jarvis, 1999); 

expression of TbAT1 gene in yeast makes the yeast sensitive to arsenicals (Mäser 

et al, 1999); TbAT1 (P2) is mutated or altered in some melarsoprol resistant 

clones (Carter & Fairlamb, 1993;Stewart et al, 2010). Nevertheless, the finding 

that the in vitro effect of melarsen oxide on Δtbat1 T. b. brucei could be 

counteracted by pentamidine was the basis for the prediction that P2-

independent uptake of melarsen oxide was mediated by HAPT (Matovu et al, 

2003;Bridges et al, 2007). Hence, it is highly possible that the concomitant loss 

of P2 and HAPT results in high levels of resistance to both diamidines and 

melaminophenyl arsenicals, while the loss of P2 alone leads to only moderate 

loss of sensitivity for melarsoprol and some diamidines but high levels of 

resistance for other diamidines, including diminazene (de Koning, 2008). Finally, 

studies in which L. major, L. infantum and L. tarentolae all became 

hypersensitive to both arsenic and antimony after transfection with LmAQP1 

suggest that these metalloid drugs are taken up via the aquaporins (Gourbal et 

al, 2004). 

1.9.4. Uptake of suramin 

When the charge and size of suramin is considered (the molecule contains 

six negative charges at physiological pH), it becomes unlikely that the drug could 

be taken up by a specific transporter (de Koning, 2001a). Also the quantity of 

charge carried by the molecule rules out the possibility of passive diffusion of 

suramin into the trypanosomes (Vansterkenburg et al, 1993).  Suramin binds 

strongly to low density lipoproteins and other serum proteins, including 

transferrin, for which trypanosomes express receptors; these complexes could 

therefore be taken up through receptor-mediated endocytosis; hence, it was 
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proposed that suramin is probably taken up by trypanosomes while bound to LDL 

(Vansterkenburg et al, 1993). This view has been changed by the outcome of the 

genome-wide tetracycline-inducible RNA interference (RNAi) library screens 

which identified a bloodstream stage-specific invariant surface glycoprotein 

(ISG75) family as being responsible for suramin uptake (Alsford et al, 2012). 

ISG75 was found to be responsible specifically for suramin binding, and the drug 

was found to be accumulated in the trypanosomal lysosome (Alsford et al, 2012). 

Suramin-ISG75 complex is then degraded by proteases to release suramin which 

is subsequently transported into the cytoplasm by MFST, a putative major 

facilitator superfamily transporter (Fairlamb, 2012). 

1.9.5. Uptake of the nitroheterocyclic 
trypanocides 

Nifurtimox and benznidazole are the main nitroheterocycles used to treat 

Chagas disease (Wilkinson and Kelly, 2009). Megazol is efficacious against both 

T. cruzi (Filardi & Brener, 1982) and T. brucei (Enanga et al, 1998), while 

nifurtimox is used to treat infections by T. cruzi (Docampo et al, 1981). Megazol 

was found to inhibit the uptake of adenosine by P2, with a display of high 

affinity for this transporter; this was to be expected since the drug has the 

structural motif recognised by P2 (Barrett et al, 2000). Nevertheless, arsenical-

resistant parasites deficient in P2 were found to remain sensitive to megazol, 

suggesting that in spite of its ability to interact with P2, the drug seems to also 

be taken up across the membrane by passive diffusion (Barrett et al, 2000). 

Similarly, the uptake of nifurtimox into T. cruzi was found to be by passive 

diffusion across the cell membrane (Tsuhako et al, 1991), while studies on the 

route of uptake into T. brucei is yet to be done (Barrett & Gilbert, 2006). 
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1.9.6. Uptake of Isometamidium (ISM) 

Uptake of ISM involves the permeation of both the plasma and the 

mitochondrial membranes, since it has been demonstrated that ISM is 

accumulated in the kinetoplast of both T. congolense (Wilkes et al, 1995) and T. 

brucei (Boibessot et al, 2002). The transport was found to be energy-dependent, 

as it was very sensitive to the metabolic inhibitor SHAM/glycerol (Sutherland et 

al, 1992); it was inhibited by ethidium, but not by either diminazene, 

melarsoprol or quinapyramine (de Koning, 2001a). And since resistance to ISM 

was found to always be associated with cross-resistance to ethidium (Peregrine 

et al, 1997), it was suggested that  ISM and the structurally related ethidium 

might share the same route of uptake (de Koning, 2001a). 

The P2 transporter may be responsible for part of the ISM uptake in T. 

brucei brucei, as evidenced by the inhibition of P2-mediated uptake of 

adenosine by ISM (de Koning, 2001a), but the low level of cross resistance 

between diminazene and ISM suggests that this mode of uptake may not be 

significant (Delespaux & de Koning, 2007). In summary therefore, ISM may be 

carried across the trypanosomal cell membrane by facilitated diffusion, and then 

later actively sequestered in the mitochondria, using the energy of the 

mitochondrial potential (de Koning, 2001a). This correlates with the observation 

that ISM diffuses out of resistant trypanosomes, with low mitochondrial 

potential, when placed in ISM-free medium (de Koning, 2001a). 

1.10. Mechanism of action of trypanocides 

Pentamidine, diminazene aceturate, isometamidium chloride and 

ethidium bromide were found to promote the cleavage of T. equiperdum 

minicircle DNA at therapeutically relevant concentrations; the cleavage sites 
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map to distinct positions in the minicircle sequence, and each drug has a 

different cleavage pattern (Shapiro & Englund, 1990). This effect was attributed 

to possible inhibition of a mitochondrial type II topoisomerase by these 

trypanocides. A more recent study however states that point mutations in the 

topoisomerase II gene are not involved in isometamidium resistance (Delespaux 

et al, 2007). Another study that compared the distribution and metabolism of 

isometamidium and ethidium bromide in the trypanosomes found that 

trypanosomes take up isometamidium faster than ethidium bromide; and 

whereas isometamidium accumulated in the kinetoplast and remained 

unmetabolized, ethidium bromide was more widely distributed throughout the 

trypanosome, and was found to have undergone hydroxylation and methylation 

reactions (Boibessot et al, 2002). A recent study has shown that ethidium 

bromide kills trypanosomes by blocking the initiation of minicircle replication 

(Roy Chowdhury et al, 2010). According to the study, ethidium bromide is 

transported into the mitochondrial matrix by the mitochondrial membrane 

potential. The killing of dyskinetoplastic trypanosomes by ethidium bromide was 

explained by a possible inhibition of nuclear DNA replication, and this 

mechanism was also proposed for isometamidium based on the similarity in the 

structure of these two trypanocides. 

Melarsoprol, a melaminophenyl-based arsenical known for its toxic side 

effects, is taken up into the trypanosomes through the P2 aminopurine 

transporter (Carter & Fairlamb, 1993). It inhibits trypanosome pyruvate kinase, 

phosphofructokinase, and fructose-2,6-bisphosphatase,hence blocking glycolysis 

(Wang, 1995). An alternative mechanism is the formation of melarsen–

trypanothionine adduct (Mel T)  which inhibits trypanothione reductase 

(Fairlamb et al, 1989). The formation of Mel T was however the mechanism that 
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was recently confirmed using the high-throughput technology that gave results 

suggesting that this adduct was toxic to trypanosomes (Alsford et al, 2012).  

 Most proteins involved in the mechanism of action of suramin reside in 

the lysosomes of the trypanosomes and include the AP1 adaptin complex, 

lysosomal proteases and major lysosomal transmembrane protein, N-

acetylglucosamine biosynthetic enzymes as well as ornithine decarboxylase 

(ODC) and about three other enzymes involved in  spermidine biosynthesis 

(Alsford et al, 2012). Most of the lysosomal proteins were found to act through 

the agency of the bloodstream-stage-specific invariant surface glycoprotein 

ISG75 (Alsford et al, 2012). 

Eflornithine acts as an irreversible suicide inhibitor of ornithine 

decarboxylase; hence, inhibiting the synthesis of polyamines in trypanosomes as 

well as in mammalian cells (Van, I & Haemers, 1989;Bellofatto et al, 1987). But 

trypanosomes are more sensitive to eflornithine than mammalian cells 

(Bellofatto et al, 1987). Inhibition of ornithine decarboxylase leads to a decrease 

in the levels of putrescine, spermidine and trypanothione, which causes a 

general decrease in the biosynthesis of DNA, RNA and proteins (including the 

variant surface glycoprotein) (Fairlamb, 2003). This decrease in the synthesis of 

the variant surface glycoprotein reduces parasitic antigenic variation, thus 

increasing the efficiency of the host immune response (Van, I & Haemers, 1989). 

Eflornithine is therefore more of a cytostatic than a cytotoxic drug (Fairlamb et 

al, 1987)  

Nitroheterocyclic compounds such as nifurtimox and benznidazole are 

both pro-drugs that must be activated within the trypanosome by the action of a 

NADH-dependent, mitochondrially localized, bacterial-like, type I nitroreductase 

(NTR) (Wilkinson et al, 2008).This enzyme is expressed by the parasite but not 
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by the host, and is the basis for the selectivity of this class of drugs as well as 

for the development of two new classes of anti-trypanosomal agents, 

nitrobenzylphosphoramide mustards and aziridinyl nitrobenzamides (Wilkinson et 

al, 2011). 

 

1.11. Biochemical targets for the development 
of new trypanocides. 

The ideal drug against trypanosomiasis would need to meet the following 

criteria: it should cross the blood-brain barrier in order to be able to deal with 

the cerebral stages of the disease where the need for new drugs is highest; it 

should be active against both T. b. gambiense and T. b. rhodesiense, and also 

against other species of Trypanosoma; there should be a very low tendency for 

the development of resistance against such a drug; lastly, such drug should be 

very cheap (Luscher et al, 2007). Selective toxicity against any microbial 

pathogen can be achieved through selective binding of drug to a specific 

microbial target; through a common target being vital to a pathogen but not to a 

host cell; or through the selective uptake of drugs into the pathogens (Barrett & 

Gilbert, 2006). For a compound to act as a drug, it must be able to inhibit a 

specific target within the parasite (Barrett, 2000). There are a large number of 

trypanosomal enzymes and/or biochemical pathways that have been established 

as possible targets for the development of new trypanocides (Wilkinson & Kelly, 

2009). Some of these possible targets are discussed next. 

1.11.1. Sterol biosynthesis 

Both T. brucei and T. cruzi were found to posses active sterol biosynthetic 

pathways (Hinshaw et al, 2003). Most of the genes that encode enzymes in the 

ergosterol biosynthetic pathway in T. cruzi have been identified and 
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characterized (Wilkinson & Kelly, 2009); hence, inhibitors of oxidosqualene 

cyclase were found to be effective against T. cruzi in vitro, though the in vivo 

effects were yet to be determined (Hinshaw et al, 2003). T. brucei can however 

take in cholesterol from the host bloodstream, though it has this pathway 

(Coppens & Courtoy, 2000). 

1.11.2. Cysteine proteases 

A number of trypanosomal cysteine proteases have been identified and 

biochemically characterised, including the cathepsin L-like enzymes cruzipain 

(of T. cruzi) and brucipain (of T. brucei) (Wilkinson & Kelly, 2009), both 

members of the C1 cysteine proteases. These C1 peptidases are either essential 

to the survival of the parasite or important as virulent factors which contribute 

to disease pathogenesis, and are therefore potential serodiagnostic markers, 

vaccine candidates and drug targets (Caffrey & Steverding, 2009). This was 

earlier demonstrated by the killing of T. brucei with the benzyloxycarbonyl-

phenylalanine-alanine diazomethane cysteine protease inhibitor; the target of 

this inhibitor was originally presumed to be brucipain, until it was proved by 

genomic analysis that the actual target was tbcatB, a cathepsin B-like protease 

of T. brucei (Mackey et al, 2004). Hence, tbcatB was the most likely target of 

the protease inhibitor, and as such is a potential target for drug development, 

since it was shown to be very useful in host serum protein degradation by the 

parasite (Mackey et al, 2004). 

1.11.3. Thiol metabolism 

Leishmania and trypanosomes are unique in their employment of 

trypanothione instead of glutathione in the control of their intracellular reducing 

environment (Werbovetz, 2000). Obviously, the presence of trypanothione 

reductase instead of glutathione reductase in trypanosome makes trypanothione 
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an essential cofactor mediating the redox balance in the parasite, and 

trypanothione reductase a potential target for the development of 

chemotherapy (Wang, 1995). A number of compounds found to inhibit 

trypanothione reductase activity have been identified, with some of them 

exhibiting trypanocidal activity (Wilkinson & Kelly, 2009). Similarly, Galarreta 

and co-workers identified three new heteroaromatic frameworks (harmaline, 

pyrimidobenzo thiazine, and aspidospermine) as the basis for inhibition of T. 

cruzi trypanothione reductase. Interestingly, none of the new-found compounds 

inhibited glutathione reductase, a property that qualified them as potential 

trypanocides (Galarreta et al, 2008).  

1.11.4. Polyamine biosynthesis 

The polyamine biosynthetic pathway is unique in being the target of the 

only clinically proven trypanocide with a known mechanism of action (Willert & 

Phillips, 2008). The trypanocidal activity of the ornithine decarboxylase 

inhibitor, eflornithine, has validated polyamine biosynthesis as a target for the 

development of new trypanocides (Taylor et al, 2008). Therefore, in addition to 

ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine 

synthase must also have vital functions in trypanosomes (Fairlamb & Bowman, 

1980), which qualifies them as potential targets for the development of 

chemotherapy, provided they also have unique features for selective inhibition 

(Wang, 1995). In fact, it has been found that ornithine decarboxylase and S-

adenosylmethionine decarboxylase are the most likely rate-limiting steps in 

polyamine biosynthesis (Willert & Phillips, 2008); hence, both are potential drug 

targets, since the polyamine, spermidine must be synthesized by this pathway 

for conjugation to glutathione to form trypanothione (Taylor et al, 2008). 



Anthonius Anayochukwu Eze, 2013   Chapter 1. 38 
 

1.11.5. The glycosome 

The trypanosomes need to switch the variable surface glycoproteins fast 

enough to escape the host antibody response (Donelson & Rice-Ficht, 1985). 

Inhibition of any of the glycosomal glycolytic enzymes should therefore block the 

glycolytic pathway and kill the bloodstream trypanosomes efficiently (Clarkson, 

Jr. & Brohn, 1976). Furthermore, structural comparison of T. brucei brucei 

glycosomal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) against the 

homologous human muscle enzyme showed that in the NAD+ binding region, 

amino acid differences that occur between the two enzymes could provide 

opportunities for the design of selective inhibitors by replacing the 2’ and 3’ 

adenosine ribose hydroxyl group with substituents extending in the direction of 

the changed amino acids (Verlinde et al, 1994). It was found that 2’-deoxy-2’ (3-

methoxybenzamido) adenosine (a derivative of adenosine) inhibited the human 

GAPDH only marginally, but inhibited the parasite enzyme 45-fold when 

compared with adenosine (Verlinde et al, 1994). Although the efficiency of this 

inhibitor still needs considerable improvement, and in vivo testing against 

trypanosomes needs to be done, this finding was a positive step towards the 

design of a new trypanocide (Wang, 1995). The compound, 3 – 

(diethylphosphono) – propenal, with a Ki of 66 µM for T. brucei GAPDH (about 600 

times lower than the Ki for the rabbit-muscle enzyme) was reported to be the 

best inhibitor for the parasite enzyme (Verlinde et al, 2001). It was found to kill 

cultured trypanosomes with a LD100 0.3 µM (Verlinde et al, 2001).  

Finally, facilitated diffusion system was found to be employed by the 

bloodstream form of T. brucei brucei in the uptake of D-glucose from the blood 

of the host (Gruenberg et al, 1978). This membrane transport process was found 

to be the rate-limiting step of glucose metabolism in the trypanosomes 
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(Gruenberg et al, 1978;Eisenthal et al, 1989). Nevertheless, the uptake process 

was found to be very fast, apparently to keep pace with the high rate of glucose 

metabolism in the trypanosomes (Eisenthal et al, 1989). Two different glucose 

transporters were found to be expressed differentially between the bloodstream 

and the procyclic forms; THT1 (for trypanosome hexose transporter) genes are 

expressed in the bloodstream forms, while THT2 genes are expressed in the 

procyclic forms (Bringaud & Baltz, 1993). The glucose transporter system of T. 

brucei also differed from the human transporter in hexose specificity and drug 

sensitivity; hence the parasite glucose transporter could be a target for 

chemotherapeutic intervention (Bringaud & Baltz, 1993). 

1.11.6. RNA Processing 

The rate of transcription during the development of T. brucei brucei is 

not controlled by the employment of specific promoters (Wang, 1995). The 

promoters for the VSG genes and the gene that codes for procyclin (a major 

surface antigen of the procyclic forms of T. brucei brucei) are mostly 

constitutive (Pays et al, 1990). Therefore, control of the stage-specific 

expression of VSG and procyclin genes is not carried out at the transcription 

initiation level, but most probably by interfering with the elongation and 

stability of the specific transcripts (Pays et al, 1990), or the posttranscriptional 

level (Wang, 1995). Many of the transcription units for protein-encoding genes in 

trypanosomes are polycistronic, containing tandemly arranged genes with 

interstitial noncoding spacer regions; thus one of the major roles of trans 

splicing is the production of mature mRNAs from these polycistronic precursors 

(Agabian, 1990). Furthermore, trans splicing serves as the first important step in 

the regulation of gene expression in trypanosomes (Agabian, 1990). Hence, it has 
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been proposed that uniqueness and importance of trans splicing should make the 

process an ideal target for the development of new trypanocides (Wang, 1995). 

1.11.7. The glycolipid anchor for variant surface 
glycoprotein (VSG) 

The VSG of bloodstream African trypanosomes is attached to the cell 

surface by a glycosyl phosphatidylinositol (GPI) anchor that contains myristate as 

its only fatty acid component; hence the trypanosomal VSG differs from 

mammalian GPI-anchored proteins in containing exclusively myristate (14:0, a 

fully saturated 14-carbon fatty acid) in its GPI moiety (Ferguson & Cross, 1984). 

The GPI is synthesized as a precursor, glycolipid A, that is subsequently linked to 

the VSG polypeptide (Masterson et al, 1989). On using a cell-free system for GPI 

biosynthesis, it was found that a product of the system, glycolipid A’ was 

identical to glycolipid A save for the fact that its fatty acids are more 

hydrophobic than myristate; glycolipid A’ was converted to glycolipid A in the 

final phase of trypanosome GPI biosynthesis, through highly specific fatty acid 

remodelling reactions involving deacylation and subsequent reacylation with 

myristate (Masterson et al, 1990). Obstruction of the process of fatty acid 

remodelling or acyl exchange, or the introduction of an analogue to replace 

myristate in GPI may result in suppression of the development of the 

bloodstream form of trypanosomes (Wang, 1995). A study of the utilization of 

heteroatom-containing analogs of myristate in the biosynthesis of GPI in a cell-

free system and in intact trypanosomes showed that the specificity of fatty acid 

incorporation depends on chain length rather than on hydrophobicity (Doering et 

al, 1991). One of the analogues of myristate, 10-(propoxy)decanoic acid was 

highly toxic to bloodstream forms of trypanosomes in culture; it had little effect 
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on cultured procyclic trypanosomes and no effect on mammalian cells (Doering 

et al, 1991). 

1.11.8. The proteasome 

The proteasome is a multi-subunit proteinase complex that plays a critical 

role in intracellular protein degradation (Steverding, 2007). The eukaryotic 

proteasome is a 26S multifunctional proteinase complex composed of the 20S 

core proteolytic particle and the 19S regulatory complex (Coux et al, 1996). The 

20S core particle in which the proteolytic activities reside is a barrel-shaped 

structure made up of four rings; two outer rings consisting of seven distinct α-

subunits and two inner rings made up of seven different β-subunits (Steverding, 

2007). Three of the β-subunits of each inner ring contain the three major 

proteolytic activities of the proteosome, commonly referred to as the peptidyl-

glutamyl peptide hydrolysing activity, the trypsin-like activity, and the 

chymotrypsin-like activity located on the β1, β2, and ββ5 subunits, respectively 

(Steverding, 2007). The proteasome of T. brucei resembles those of mammalian 

cells structurally (Steverding, 2007), however, the T. brucei 20S proteasome 

appears less complex than that of the mammalian cells as it shows fewer protein 

spots in two-dimensional gel electrophoresis than its mammalian homologue 

(Claverol et al, 2002).  

The substrate specificity of the trypanosomal proteasome differs from 

that of mammalian cells (Steverding, 2007). Similarly, inhibitor studies show 

that mammalian proteasome differs from its trypanosomal homologue in its 

response to inhibitors (Steverding, 2007). For instance, two epoxyketones, 

epoxomicin [Ac(methyl)-Ile-Ile-Thr-Leu-EX] and YU101 [Ac-homoPhe-Leu-Phe-

Leu-EX] were tested and found to inhibit the chymotrypsin-like activity of the 

rat proteasome much more strongly than that of the trypanosomal proteasome 
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(Glenn et al, 2004). Epoxomicin also inhibited the trypsin-like activity of the 

trypanosome proteasome very strongly, while YU101 inhibited the same activity 

rather moderately (Glenn et al, 2004). It was therefore suggested that the 

structure of epoxomicin could be altered to produce a more potent trypanocide 

with an improved inhibition of the trypsin-like activity of the trypanosomal 

proteasome (Glenn et al, 2004).  Using fluorogenic peptides as substrates, the 

trypanosomal proteasome was found to possess a high trypsin-like but a low 

chymotrypsin-like activity, while the reverse was found to be the case with the 

mammalian homologue (Hua et al, 1996). This finding suggests that proteasome 

inhibitors could be designed to specifically target the trypsin-like activity of the 

trypanosomal proteasome; such new drugs would rarely be toxic to the host cells 

whose proteasomes have a low trypsin-like activity (Steverding, 2007). 

1.11.9. Purine Salvage 

A unique biochemical feature of parasitic protozoa is their complete 

dependence on the salvage of preformed purines from their vertebrate and 

invertebrate hosts, either in the form of nucleosides or as nucleobases (Landfear 

et al, 2004). The uptake of these purine nucleosides or nucleobases from the 

host system has been identified as the first step in the salvage pathway, and is 

carried out by various nucleoside or nucleobase transporters located in the 

plasma membrane of the parasite (Landfear et al, 2004). All the protozoan 

nucleoside and nucleobase transporters that have been identified were grouped 

as members of the equilibrative nucleoside transporter (ENT) family (Landfear et 

al, 2004). The interest in purine transport arose from the fact that purine 

salvage has been found to be essential to the survival of the parasites, and 

because purine transporters mediate the uptake into the parasites, of a range of 

cytotoxic drugs, many of which are purine analogues (Carter et al, 1995).  
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Twelve transporters of the ENT family (designated TbAT1 and TbNT2 – 

TbNT12) are expressed by the parasite (Ortiz et al, 2009). The TbAT1 gene was 

found to  encode the transport activity previously designated as P2 (Mäser et al, 

1999), which was originally found to transport adenosine and adenine into the 

intact bloodstream form (TbAT1 is actually bloodstream form-specific) of the 

parasite (Carter & Fairlamb, 1993). This  implies that pentamidine transport may 

be mediated by 5 different transporters (TbAT1, HAPT1, LAPT1, TbNT11.1 and 

TbNT12.1) in the bloodstream form, unless future studies prove that HAPT1 and 

LAPT1 are identical to TbNT11.1 and TbNT12.1, respectively (Ortiz et al, 2009). 

TbNT2 – TbNT7 are P1 type nucleoside transporters; TbNT2, TbNT5, TbNT6 and 

TbNT7 were found to be high affinity adenosine/inosine transporters (with Km 

values <5µM), while TbNT5, and to a lesser extent TbNT6 and TbNT7 also 

mediate the transport of hypoxanthine (Sanchez et al, 2002). Ribonuclease 

protection assays showed that TbNT2 – TbNT7 are all expressed in the 

bloodstream form T. brucei, while the TbNT2 and TbNT5 genes are also 

expressed in the procyclic form (Sanchez et al, 2002). 

The procyclic form of T. b. brucei was found to express one high affinity 

purine specific nucleobase transporter (H1), which was described as a 

nucleobase/proton symporter (de Koning & Jarvis, 1997a). The second procyclic 

purine nucleobase transporter (TbNBT1 or H4) however lacks this specificity but 

exhibits a high affinity for all natural purine nucleobases as well as uracil, 

guanosine and allopurinol (Burchmore et al, 2003). Similarly, in the bloodstream 

form, two transporters for hypoxanthine, described as guanosine-sensitive (H2) 

and guanosine-insensitive (H3), were found (de Koning & Jarvis, 1997b). H2 was 

shown to be a proton/hypoxanthine symporter capable of transporting guanosine 
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and some pyrimidine bases, while H3 showed high affinity and selectivity for 

purine nucleobases only (de Koning & Jarvis, 1997b). 

It is quite clear from the above that the bloodstream form of T. brucei, 

like other protozoa, expresses multiple purine transporters with overlapping 

substrate specificities (de Koning et al, 2005). The implication is that it would 

be very difficult to starve the trypanosomes of purines by inhibiting all these 

transporters (Luscher et al, 2007), since trypanosomes have been found to react 

to purine starvation by up-regulation of their purine transporters, and by 

expression of higher-affinity permeases (de Koning, 2001b). It may however be 

useful to consider designing nucleobase or nucleoside analogues that will only be 

recognized by the parasitic enzymes, and whose nucleotide products will turn 

out poisonous to the parasite (Wang, 1995).  

Quite a number of enzymes in the purine salvage pathway can also be 

selectively inhibited by use of specific analogues (El Kouni, 2003). For instance, 

phosphoribosyltransferases play an important role in purine salvage in most 

parasites, and are therefore considered as targets for drug design (El Kouni, 

2003). More importantly, xanthine is a substrate for parasitic purine 

phosphoribosyltransferases, but not for the mammalian host enzyme (Reyes et 

al, 1982). Hence, xanthine analogues may be employed to inhibit the parasitic 

phosphoribosyltransferases selectively in order to interfere with purine salvage 

in the parasite but not the host (El Kouni, 2003). The effect of this interference 

will be potentiated by the common lack of de novo purine biosynthesis in the 

parasites (El Kouni, 2003). In cases where the parasite can salvage the purines 

using other enzymes (for instance, the kinase reaction), then the introduction of 

xanthine analogues as “subversive substrates”, which would be activated to 
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toxic nucleotides only in the parasite, may be preferable to inhibitors of specific 

salvage enzymes (El Kouni, 2003). 

1.11.10. The Kinetoplast 

The existence of dyskinetoplastic or akinetoplastic trypanosomes tends to 

suggest that kDNA is not essential for viability of BSFs and therefore would not 

be a drug target (Roy Chowdhury et al, 2010). Results of some other studies 

however indicate that RNA editing proteins and the A6 subunit of ATP synthase, 

are essential in BSF trypanosomes (Schnaufer et al, 2005), and since the 

compensating mutation (described in 1.5.2) occurs at a low frequency, 

kinetoplast DNA and proteins involved in its replication and expression should be 

valid drug targets in bloodstream forms (Roy Chowdhury et al, 2010). 

1.11.11. The Trypanosome Alternative oxidase 

Since trypanosomes lack lactate dehydrogenase (Wang, 1995), the NADH 

produced in the glycosomal glycolytic pathway must be reoxidized via a 

dihydroxyacetone phosphate (DHAP) α-glycerophosphate (α-GP) shuttle which 

consists of a glycosomal NAD+-dependent α-GP dehydrogenase and a 

mitochondrial α-GP oxidase (Visser & Opperdoes, 1980). The oxidase cannot 

function under anaerobic conditions, causing α-GP, NADH, and ADP to 

accumulate to high concentrations in the glycosome; these accumulated 

metabolites can inhibit the glycerol kinase (GK)-catalyzed conversion of the 

accumulated α-GP and ADP to glycerol and ATP (Visser & Opperdoes, 1980). 

Also, α-GP oxidase can be inhibited by salicylhydroxamic acid (SHAM) to bring T. 

brucei brucei to a condition similar to anaerobiosis; glycolysis can then be 

completely blocked under this condition by inhibiting the GK-catalyzed 

reversible reaction with glycerol, with the resultant lysis of the trypanosomes 

within minutes (Clarkson, Jr. & Brohn, 1976). Mice infected with T. b. 
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rhodesiense were completely cured 24 hours after injection with a combination 

of SHAM and glycerol. The parasites however reappeared in the blood of the 

mice, and killed them a few days later; an occurrence attributed to either the 

existence of a few resistance cells in the initial parasite population, or the 

failure to reach the effective trypanocidal levels of SHAM and glycerol in some 

tissues, resulting in survival of parasites in those tissues (Clarkson, Jr. & Brohn, 

1976). 

1.12. Mechanisms of resistance to trypanocides 

  Resistance is the inheritable, temporary or permanent loss of the 

original sensitivity of a microbial population to a drug; resistance is not usually 

absolute since resistant parasites can still be eliminated at much higher drug 

dosages, but this concentration may be harmful to the host (Matovu et al, 2001). 

Management practice and the nature of the drug are both important factors in 

the induction of resistance. For instance, it is believed that the nature of 

ethidium bromide as a potent mutagen may enhance selection for resistance 

(Matovu et al, 2001). Block treatment is a traditional management practice used 

in the control of nagana; this practice has increased the magnitude of the 

resistance problem in nagana when compared to human trypanosomiasis where 

hospitalization aids adequate drug administration (Matovu et al, 2001). Hence 

drug resistant trypanosomes from animals are far more prevalent in Africa 

(Matovu et al, 2001). 
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Figure 1.9 The distribution of trypanocidal resistance in sub-Saharan Africa. Taken from Matovu 

et al., 2001. 

Studies have shown that drugs must enter the interior of the cell in 

sufficient quantities in order to kill the parasite (Matovu et al, 2001). Sutherland 

and his co-workers (1992) proposed an inverse relationship between ISM uptake 

by trypanosomes and resistance, in which an increase in resistance by parasites 

could be attributed to a reduction in drug accumulation caused by a change in a 

specific cell-surface receptor or transporter and/or the involvement of a drug 

efflux mechanism (Sutherland et al, 1992). It is generally accepted that drug 

accumulation differs between ISM-sensitive and ISM-resistant trypanosomes, with 

reduced net drug uptake enhancing the survival of the latter in the presence of 

drug concentrations which are lethal to the sensitive parasites (Matovu et al, 

2001). This was shown to be true by studies in which sensitive and resistant T. b. 

rhodesiense were cultured in medium with tryparsamide, followed by bioassay of 

supernatants against sensitive trypanosomes. It was found that supernatants in 

which resistant parasites had been incubated was still able to kill susceptible 

trypanosomes, indicating that the former had not absorbed any appreciable 
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quantity of the drug from the medium (Matovu et al, 2001). The implication of 

this model is that the loss of a particular membrane transporter involved in the 

uptake of trypanocides would cause the cross-resistance to the drugs it 

transports; for instance, the loss of the P2 transporter causes a cross-resistance 

between melarsoprol and diminazene aceturate (Delespaux & de Koning, 2007). 

It is therefore not safe to introduce diminazene aceturate for human use since it 

could cause an increase in resistance to melarsoprol, the only approved drug for 

late stage sleeping sickness (Delespaux & de Koning, 2007). 

Reduction of net drug uptake could be as a result of either decreased 

drug import or increased drug export (Mäser et al, 2003). The transporters 

usually involved in the export of drugs are those of the ABC superfamily; large 

membrane proteins with two ATP-binding cassettes per transporter (Mäser et al, 

2003). The best known members of this superfamily are the P-glycoproteins that 

function in the elimination of foreign molecules from the cell (Upcroft, 1994), 

and are therefore useful in the active detoxication of the cytosol (Matovu et al, 

2001). Three ABC transporter genes were identified in T. brucei: TbMRPA, 

TbABC2, and TbABC3; and all three were found to be expressed in both the 

bloodstream and the procyclic forms (Mäser & Kaminsky, 1998). TbMRPA has 

been localized to the plasma membrane in the bloodstream form of T. b. brucei 

(Shahi et al, 2002), and an over-expression of TbMRPA in trypanosomes was 

found to increase resistance to melarsoprol (Shahi et al, 2002). It was 

nevertheless proposed that of the three possible mechanisms of resistance to 

arsenicals and antimonial drugs (loss of uptake, failure to activate the drug and 

active extrusion), the only mechanism relevant to anti trypanosomal drugs 

concerns the loss of uptake (Shahi et al, 2002). Alternative mechanisms of 

resistance, such as failure to undergo apoptosis (as triggered by the 
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trypanocide), have been suggested (Mäser et al, 2003). These different possible 

mechanisms are however not mutually exclusive, and may complement each 

other to produce high levels of resistance (Mäser et al, 2003). 

1.13. Plans for the PhD project 

ISM is the only recommended prophylactic drug, and is widely used in the 

treatment of, and protection against, trypanosome infections in cattle and small 

ruminants across sub-Saharan Africa (Afework et al, 2006). Resistance to ISM 

usually goes with cross-resistance to ethidium bromide (Peregrine et al, 1997), 

and since diminazene aceturate is employed for curative purposes only, as it is 

cleared too rapidly to give longer-term protection (Delespaux et al, 2008), 

resistance to ISM is a serious problem in many parts of sub-Saharan Africa 

(Afework et al, 2006). 

Probably, the main cause of drug resistance in African trypanosomes is 

changes to specific transporters in the plasma membrane that are responsible 

for the internalisation of the drug (Bray et al, 2003). Therefore, the presence of 

a mutation in the nucleotide transporter gene, TbAT1 in T. b. brucei was linked 

to ISM resistance (Afework et al, 2006). However, LAPT1 has been identified as 

the resistance marker for EtBr and ISM, with the TbNT2/P1, TbAT1/P2 and 

HAPT1 transporters making minor contributions to the transport of both drugs 

(Dietrich and De Koning, unpublished). Certainty about this has been hampered 

by lack of specific inhibitors for the diamidine transporters, and LAPT in 

particular. This project therefore aims: 

i. to identify specific inhibitors of the LAPT1 transporter; 

ii. to identify the transporter of ISM in T. b. brucei at the 

biochemical and molecular level; 
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iii. to determine the mechanism of resistance to ISM in T. b. 

brucei. 

 



 
 
 

2. Materials and Methods  
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2.1 Materials. 

2.1.1 In vitro culture of bloodstream forms (BSF) of T. 
b. brucei, transformed yeasts and other cells. 

HMI-9 powder was purchased from Invitrogen, heat-inactivated fetal calf 

serum was from PAA laboratories, Austria while NaHCO3 was purchased from 

BDH. β-mercaptoethanol was a product of Sigma.  For the synthetic complete 

medium minus uracil, D-glucose was purchased from Fisher Scientific while yeast 

nitrogen base without amino acids was bought from Sigma. The amino acids for 

the synthetic complete drop out mix were all purchased from Sigma; while the 

Bacto-agar was bought from BD. Peptone for the yeast extract-peptone-dextrose 

and adenine medium (YPAD) was supplied by Formedium Ltd., England, while 

the yeast extract was a product of Sigma. HOMEM for culturing Leishmania 

promastigotes was purchased from Life technologies corporation, U.K. 

2.1.2 Induction of resistance to isometamidium and 
ethidium bromide in bloodstream forms of T. b. 
brucei. 

Isometamidium used throughout this project was in the form of Samorin 

donated by Merial, while Ethidium bromide was supplied by Sigma. Stock 

solutions of these and most other drugs used in this project were made in 

dimethyl sulfoxide (DMSO) purchased from Sigma. 

2.1.3 Alamar blue and propidium iodide drug 
sensitivity assays 

Resazurin sodium salt and propidium iodide were both purchased from 

Sigma, so also was digitonin. The library of bisphosphonium compounds were 

synthesized by our collaborator, Dr. Christophe Dardonville of Instituto de 
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Quimica Medica, Spain, while the RT compounds were synthesized by Dr Richard 

Tidwell of the University of North Carolina, Chapel Hill, USA. 

2.1.4 In vitro uptake of isometamidium and [
3
H]-

pentamidine 

[3H]-Pentamidine isethionate was supplied by Amersham, and contains 

3.26 TBq/mmol. Unlabelled pentamidine isethionate was however purchased 

from Sigma. The constituents of the assay buffer were purchased as follows: 

Hepes, NaCl, KCl, NaHCO3, MgCl.6H20, MgSO4.7H2O were supplied by BDH, 

NaH2PO4.2H2O by MERCK, while CaCl2.2H2O and MOPS were purchased from 

Sigma. Mineral oil, di-n-butylphthalate and SDS were produced by Sigma, while 

the Optiphase ‘Hisafe’ 2 scintillation fluid was supplied by Perkin Elmer. 

2.1.5 Site-directed mutagenesis of genes of interest. 

Pfu Turbo DNA polymerase was purchased from Stratagene while Dpn I 

restriction enzyme was produced by Promega. 

2.1.6 Transfection of T. b. brucei (BSF), yeasts and 
Leishmania mexicana 

Go Taq polymerase and the dNTPs were bought from Promega, while the 

Luria broth (LB) media and Luria broth agar were supplied by Sigma. The primers 

used in this project were all synthesized either by Sigma or by Eurofins MWG 

Operon. Phusion high fidelity polymerase was produced by New England Biolabs 

while the ultra pure agarose used was supplied by Invitrogen. The Lithium 

acetate, polyethyleneglycol and ethylenediaminetetraacetic acid (EDTA) used 

for yeast transformation were supplied by Sigma while the Tris-HCl was 

produced by MP Bio medicals, Germany. 
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2.1.7 Sequencing of genes of interest. 

pGEM-T Easy vector was purchased from Promega, while the plasmid 

extraction and gel extraction kits were bought from Macherey-Nagel. The 

competent XL1 strains of Escherichia coli were purchased from Stratagene 

initially, but were subsequently prepared in-house using the calcium chloride 

method (Sambrook & Russell, 2001). 

2.1.8 Mitochondrial membrane potential Assays.  

Phosphate buffered saline (PBS) was supplied in tablet form by Sigma. 

Other reagents used namely, tetramethylrhodamine ethyl ester (TMRE), 

valinomycin and Troglitazone were also produced by Sigma. 

2.1.9 Fluorescence microscopy 

Methanol was purchased from Fisher Scientific while vectashield mounting 

medium (containing 4′,6-Diamidino-2-phenylindole dihydrochloride, DAPI) was 

supplied by Vector Laboratories, U. S. A. 

2.2 Methods 

2.2.1 In vitro culture of bloodstream forms (BSF) of T. 
b. brucei, transformed yeasts and other cells. 

Five different published strains of T. b. brucei (BSF) were used in this 

project namely, 1) Trypanosoma brucei brucei 427 wild type from which the 

following other strains were derived; 2) TbAT1/P2 knock out (KO) was derived 

from T. b. b. 427 wt by sequential replacement of both alleles of TbAT1 gene 

with resistance markers for the antibiotics neomycin and puromycin (Matovu et 

al, 2003); 3) TbAT1-KO B48 was derived from TbAT1-KO by selection in 

increasing pentamidine concentrations until these cells also lost the high affinity 
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pentamidium transporter, HAPT1 (Bridges et al, 2007); 4) 2T1 cells were derived 

from T.b.b.427 wt by the incorporation of a T7 RNA polymerase driven by an 

inducible ribosomal RNA; 2T1 also displays an improved transfection efficiency 

compared to T.b.427 wt (Alsford et al, 2005); 5) RNAi of ATE1 in 2T1 cells was 

performed by transfecting with the plasmid, pHDK02 to knock down the 

expression of ATE1 gene (Teka, 2011). These trypanosome strains were all 

maintained in vitro in HMI-9 medium (Hirumi & Hirumi, 1989) containing 10% 

fetal calf serum (FCS) and 14.3 µl of β-mercaptoethanol per litre at pH 7.4. The 

parasites were incubated at 37 oC under 5% CO2 and sub-cultured every 48 hours. 

The Saccharomyces cerevisiae strain MG887-1 (fcy2-) used in this project 

was made to be auxotrophic for uracil by Gillissen and colleagues by the excision 

of truncated URA3 gene with EcoRI and SmaI from pΔura3 (Gillissen et al, 2000). 

S. cerevisiae MG887-1 was grown on solid YPAD medium plates (see Appendix A) 

at 30 oC and sub-cultured to a fresh plate once a week. Transformed S. 

cerevisiae MG887-1 was plated on synthetic complete medium minus uracil (see 

Appendix A). 

Leishmania mexicana (L. mexicana) promastigotes (M379) were grown in 

HOMEM medium (pH 7.4) supplemented with 10% heat-inactivated fetal calf 

serum (FCS) at 27 oC. Cultures were passaged into fresh medium twice weekly.  

Competent XL1 strains of Escherichia coli, used for cloning of T. b. brucei 

genes of interest after they have been subcloned into the appropriate plasmid 

vectors, were stored as glycerol stabilates at -80 oC. After transformation, XL1 

cells were cultured overnight in LB broth containing 100 µg/ml ampicillin at 37 

oC. 

Stabilates were regularly prepared from all parasitic strains used in this 

project for long term storage. Cell cultures of density between 106 and 2 x 106 
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were diluted in a 1:1 proportion by a 30% glycerol mixture in the corresponding 

culture medium, thus ending up with cells in a 15% glycerol/media mix. 1 ml 

aliquots of this mix was transferred into properly labelled cryo vials and kept at 

-80 oC for at least 24 hours before transferring to liquid N2 storage. 

Cells from stabilates were returned to culture by thawing at room 

temperature. The entire 1 ml of thawed stabilate was added to 10 ml of warm 

medium, incubated on the appropriate incubator and passaged the next day or 

as necessary. 

2.2.2 Induction of resistance to isometamidium and 
ethidium bromide in blood stream forms of 
Trypanosoma brucei brucei. 

Induction of resistance to ISM or EtBr in Tb427 wt was started from a 

concentration of 0.05 nM for either drug in complete HMI-9 media after this 

concentration was arrived at using halving dilutions in 96-well plates to 

determine the concentration at which trypanosomes can survive in the drug. This 

halving dilution for the determination of start concentration was done with ISM 

alone, starting from its IC50 of 23.4 nM, since the IC50 of ISM is much lower than 

that of EtBr. Trypanosomes were incubated in the drug-containing media, while 

the concentration of each drug was slowly increased; the ISM concentration was 

increased to 1 µM before the first set of clones was selected by plating out 

(designated ISMR1). Similarly, the EtBr concentration was raised to 4 µM before 

individual clones were generated. These were named EBR4. ISMR clones were 

generated as ISM concentration was raised until the last set of clones were 

generated from 15 µM ISM and was named ISMR15. 
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2.2.3 Alamar blue and propidium iodide drug 
sensitivity assays. 

Alamar blue end point assays were used to estimate the cytotoxicity of 

drugs and potential drugs candidates to parasitic cells in vitro (Räz et al, 1997). 

Viable parasites are able to reduce the dye (converting resazurin to the 

fluorescent resorufin) to the fluorescent metabolite which is measured. Since a 

linear correlation exists between the strength of the fluorescence and the 

density of viable cells (Räz et al, 1997), the amount of living cells can be 

estimated from the fluorescence values. Sigmoidal dose-response curves with 

variable slopes were generated using the GraphPad Prism software to plot the 

fluorescence values against the logarithm of drug concentration, and the EC50 

values (effective concentration that inhibits growth by 50%) were estimated 

automatically. 

 Alamar blue dye was prepared by dissolving 12.5 mg of Resazurin sodium 

salt in 100 ml of phosphate buffered saline (PBS) at pH 7.4. The mixture was 

filter-sterilized and stored at -20 oC in foil-wrapped tubes to shield from 

exposure to light. Test compounds were diluted to 200 µM in the corresponding 

medium, starting from a 20 mM stock solution in DMSO (water or ethanol if the 

compound is insoluble in DMSO). 200 µl of this solution was added to the first 

well of the 96-well plate, while 100 µl of fresh medium was added to the 

remaining wells. Halving dilution was done by taking 100 µl from the first well 

into the second, mixing well by pipetting up and down several times before 

moving 100 µl from the second to the third well, and so on. The last well was 

left drug-free. 100 µl of 2 x 105 cells (trypanosomes) or 2 x 106 cells (leishmania) 

was introduced to all wells, giving a final concentration of 100 µM in the first 

wells and 105 cells (trypanosomes) in all wells. 20 µl of alamar blue dye was 
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added to all wells after incubating at 37 oC and 5% CO2 for 48 hours, and the 

plate was read 24 hours later in the Fluostar Optima at 530 nm and 590 nm, 

excitation and emission respectively. For Leishmania promastigotes, the dye was 

added after 72 hours from the start of the assay, and the plate was read 48 

hours after. A modified alamar blue assay was employed to magnify the 

difference in ISM sensitivity between Tb427 wt and Tb427 wt cells expressing 

mutated ATPase γ gene. In the modified assay, 5 x 103 cells/ml final cell density 

was used, and the assay was incubated at 37oC and 5% CO2 for 72 hours before 

addition of alamar blue dye, and the plates were read 18 hours after.  

Propidium iodide real time assay measures fluorescence over 250 cycles (8 

hours) and was used to estimate how quickly a drug kills trypanosomes. 

Propidium iodide binds to nucleic acids to produce fluorescence, and this 

happens when the test agent causes the cell to lyse. 500 µM of each drug was 

prepared in HMI-9 medium and 200 µl of it introduced into the first wells. 

Halving dilutions were performed, as in alamar blue, up till the 9th wells while 

100 µl of 40 µM digitonin in HMI-9 (positive control) was added to the 10th. 100 µl 

of fresh media was added to the 11th wells while the addition of 200 µl of 5 x 106 

cells was alternated with 200 µl of fresh media on the last column. Two rows 

were prepared for each drug as described above; 100 µl of 107 cells in 18 µM 

propidium iodide was introduced into the first 11 wells of the first row (the 12th 

already contains 200 µl 5 x 106 cells/ml in HMI-9). 18 µM propidium iodide in 

HMI-9 was also added to the first 11 wells of the 2nd row for the same drug (the 

12th already holds 200 µl of HMI-9 medium). Hence, the final concentrations of 

each drug were from 250 µM to 0.98 µM, 9 µM of propidium iodide and 5 x 106 

cells/ml. Plates were then read in the plate mode using the Fluostar Optima 
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(BMG Labtech) at 544 nm and 620 nm, excitation and emission respectively. 

EC50 values were subsequently determined using the prism software. 

2.2.4 Harvesting and purification of cells for uptake 
assays 

Trypanosome cultures of between 300 ml and 600 ml were set up in order 

to achieve the cell density of the order of 108 cells/ml needed for uptake assays. 

After 48 hours of incubation (in HMI-9, at 37 oC and 5% CO2), parasites were 

harvested while in the mid-log phase of growth by centrifugation at 1100 x g for 

10 min, followed by a double wash in assay buffer (pH 7.3) before a final 

resuspension and adjustment of density to ~ 108 cells/ml in assay buffer. Cells 

were usually left for 20 – 30 minutes on the bench (with intermittent gentle 

shaking) before use to allow them to adapt to the conditions of the experiment. 

Leishmania cells for uptake were grown up in cultures of between 150 ml and 

300 ml, and were harvested in much the same way as for trypanosomes, after 72 

hours of incubation. 

Yeast culture for uptake was initiated as a starter culture in 5 ml 

synthetic complete medium minus uracil (SC-URA) which was incubated for 6 

hours at 30 oC in a shaker-incubator before the addition of an extra 45 ml of the 

same medium followed by incubation overnight. Cells were harvested by 

centrifugation at 1100 x g for 10 minutes at 4 oC, followed by a double wash of 

the pellet in assay buffer (without glucose). The cells were then re-suspended in 

assay buffer at a density of about 108 cells/ml, and the cell suspension divided in 

three tubes which were kept on ice. Each tube was used for one set of 

triplicates after being left on the bench for 15 minutes to return to room 

temperature. 
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2.2.5 In vitro uptake of isometamidium, [
3
H] 

pentamidine and [
3
H] diminazene. 

Uptake of ISM was monitored using the innate fluorescence as described 

for DB829, other diamidines and ethidium bromide (Ward et al, 2010). A 20 µM 

solution of ISM was prepared in the appropriate medium, and 100 µl of this 

solution was layered on 100 µl of oil mix (1:7 mixture of light mineral oil and di-

n-butylphthalate) in a microfuge tube and mixed with 100 µl of trypanosome 

suspension in the same media. This mixture was incubated on the bench for the 

appropriate time before uptake was stopped by centrifugation at 12500 x g for 1 

min. The oil and media were carefully removed with a 200 µl pipette tip 

attached to a vacuum pump before incubation of pellet in 50 µl (1:8) 0.1N 

HCl/methanol buffer for 1hr at room temp. Fluorescence was thereafter 

measured in the Fluostar Optima at 355 nm and 620 nm, excitation and emission 

respectively (Wilkes et al, 1995).  

Assay for the uptake of [3H]-pentamidine and [3H]-diminazene was carried 

out using the general uptake assay technique as described by De Koning (2001b). 

The concentration of the permeants was adjusted to suit the affinity of the 

transporter of interest for the particular permeant. For instance, HAPT1 with a 

Km value of 36 ± 6 nM (De Koning, 2001b) is fully saturated by 1 µM of permeant; 

hence HAPT1-mediated uptake was usually measured using 30 nM [3H] permeant 

concentrations or less. On the other hand, LAPT1 with a Km value of 56 ± 8 µM 

(De Koning, 2001b) requires millimolar concentrations to saturate, and so LAPT1-

mediated uptake was usually measured at 1 µM [3H] permeant concentrations. 

When HAPT1 activity was studied in s427 wt, 1 mM unlabelled adenosine was 

usually added to saturate the P2 transporter (Bridges et al, 2007). All uptake 

assays were performed in triplicate and all parameters were determined 
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independently at least three times unless stated otherwise. 100 µl of [3H] 

permeant solution (containing 2 x the desired permeant concentration in assay 

buffer) was layered on 300 µl of oil mix in a microfuge tube. Uptake assays were 

then initiated by adding 100 µl of cell suspension at ~ 108 cells/ml, followed by 

incubation on the bench for a pre-determined time. Uptake was stopped by the 

addition of 1 ml of 1 mM unlabelled permeant in assay buffer and subsequent 

centrifugation at 12500 x g for 45 seconds. The tubes were then flash frozen in 

liquid nitrogen and the bottom (containing the cell pellet) cut off and collected 

in numbered scintillation vials containing 300 µl of 2% sodium dodecyl sulphate 

(SDS). Vials were incubated at room temperature for 30 minutes to solubilise the 

pellets before the addition of 3 ml Optiphase ‘Hisafe’ 2 scintillation fluid. 

Scintillation count was determined on the 1450 Microbeta Liquid Scintillation 

and Luminescence Counter (PerkinElmer Lifesciences) after an overnight 

incubation at room temperature.  

2.2.6 Molecular procedures utilized 

2.2.6.1 Genomic DNA extraction 

Genomic DNA extraction for polymerase chain reaction (PCR) was done 

using the Nucleospin tissue kit (Macherey-Nagel) and the standard protocol for 

human or animal tissue and cultured cells. DNA concentrations were measured 

on the NanoDrop ND 1000 spectrophotometer, and DNA samples were stored at -

20oC. 

2.2.6.2 Primer design 

The primers were designed to flank the gene of interest, one 

complementary to the sequence upstream of the 5’ end and the other 

complementary to the sequence downstream of the 3’ end. Primers may be 
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designed to incorporate restriction sites when it will subsequently be ligated into 

a specific vector. Whenever possible, primer sequences were designed to have 

between 50 to 60% GC content and to have a G or C at both ends. 

Primers for site-directed mutagenesis PCR were designed to be 

complementary to each other so they could anneal to the opposite strands of the 

sequence of interest. They were designed to be between 25 and 45 nucleotides 

in length with the desired mutation in the middle and about 10 to 15 nucleotides 

of correct sequence on both sides. They were also designed to begin and end in 

C or G nucleotides and to have at least 40% GC content. 

Primer use                          Primer sequence                                                                                   Fragment size 

TbAT-1 

forward. 

TbAT-1 

reverse 

             5’-CTCGAGATGCTCGGGTTTGACTCA-3’  

             5’-GGATCCCTACTTGGGAAGCCCCTC3-’                          

1404 bp 

Forward,ATE 

 

Reverse,ATE 

5’-GCCGTTGTGTGGGGTGTC 

 

5’-TATTAGCGCCATCCCGCC 

~750 bp 

TbATA 

forward. 

TbATA 

reverse 

5’-ACTCAAAGGTGTGCTGGCTG-3’                               

5’-CGGCGGTGTCAAAATCCAAG-3’ 

1500 bp 
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ATPase γ 

Forward 

ATPase γ 

Reverse 

5’CGGCGGCCGCATGTCAGGTAAACTTCGTCTTTACAAAG 

 

5’-ATAGGATCCCTACTTGGTTACTGCCCCTTCCCAG 

937 bp 

Fwd: ATPase 

γ 

mutagenesis 

Rev: ATPase 

γ 

mutagenesis 

    5’-CTTTCTGCTATGAGTTAGTTGGAGGCAATGCG-3’ 

 

    5’CGCATTGCCTTCCAACTAACTCATAGCAGAAAG-3’ 

5567 bp 

A6 Forward 

A6 Reverse 

     5’-AAAAATAAGTATTTTGATATTATTAAAG-3’ 

     5’-TATTATTAACTTATTTGATC-3’ 

381 bp 

ND4 Forward 

ND4 Reverse 

     5’-TGTGTGACTACCAGAGAT-3’ 

     5’-ATCCTATACCCGTGTGTA-3’ 

256 bp 

ND5 Forward 

ND5 Reverse 

     5’-TGGGTTTATATCAGGTTCATTTATG-3’ 

     5- CCCTAATAATCTCATCCGCAGTACG-3’ 

395 bp 

ND7 Forward 

ND7 Reverse 

       5’-ATGACTACATGATAAGTA-3’ 

       5’- CGGAAGACATTGTTCTACAC-3’ 

161 bp 
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Forward: 

Actin  

Reverse: 

Actin  

           5’-CCGAGTCACACAACGT-3’ 

 

           5’-CCACCTGCATAACATTG-3’ 

456 bp 

Fwd: TbAT1 

Screen in 

yeast  

Rev: TbAT1 

Screen in 

yeast  

        5’-CTCGAGATGCTCGGGTTTGACTCA-3’ 

 

          5’-CATCGCCTCCGTGGGGGTC-3’ 

789 bp 

Fwd: pDR195 

screen in 

yeast, REF: 

TbAT1 

Rev: pDR195 

screen in 

yeast, REF: 

TbAT1 

           5’-GCGGCATTTTGCCTTCCTGT-3’ 

 

 

     5’-CCAATGCTTAATCAGTGAGGCACC-3’ 

815 bp 

Fwd: ATA-1,  

ATA-6 screen 

in yeast  

Rev: ATA-1, 

ATA-6 screen 

in yeast  

            5’-GGATGCTTGGCTTCGGTTCT-3’ 

 

            5’CTGTGACTCATCTTTCGGGA-3’ 

1404 bp 
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Fwd: pDR195 

screen in 

yeast, REF: 

ATA1, ATA6. 

Rev: pDR195 

screen in 

yeast, REF: 

ATA1, ATA6. 

             5’-CGTAGAACCAGCCGCACA-3’ 

 

 

           5’-AAAGGGGGATGTGCTGCAAG-3’ 

1780 bp 

Fwd: pDR195 

screen in 

yeast, REF: 

ATE1, ATE2. 

Rev: pDR195 

screen in 

yeast, REF: 

ATE1, ATE2. 

 

5’-GCGGCATTTTGCCTTCCTGT 

 

 

5’-CCAATGCTTAATCAGTGAGGCACC 

~810 bp 

 

Table 2.1 List of primers used in this project. Restriction endonuclease recognition sequences 

and mutated nucleotides are shown in colour. 

2.2.6.3 Polymerase chain reactions (PCR) 

PCR was employed in the amplification of DNA sequences for various 

purposes in the course of this project work. Go Taq polymerase was used for 

routine PCR screening, Phusion polymerase was employed when high fidelity 

amplification was necessary and Pfu Turbo DNA polymerase (QuickChange Site-

Directed mutagenesis kit) was used for the site-directed mutagenesis. The 
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thermal cycler used was a product of G-STORM. PCR with Go Taq polymerase 

was done using 1 unit of the enzyme in 20 µl, and following the manufacturer’s 

instruction. Similarly, PCR with Phusion polymerase was done using 1 unit of 

Phusion DNA polymerase in 50 µl of PCR reaction, also following the 

manufacturer’s instruction. 

 

2.2.6.4 Site-directed mutagenesis 

The endogenous replacement construct for the site-directed mutagenesis 

of ATPase γ was based on the pEnT6-GFP tagging plasmids generated by Kelly et 

al, (2007), and the wildtype ATP synthase gamma version of the construct was 

generated and supplied by Matt Gould and Achim Schnaufer (University of 

Edinburgh). PCR primers were designed to amplify the WT ATP synthase gamma 

gene from genomic DNA, with a NotI-recognition sequence immediately 5' and a 

BamHI-recognition sequence immediately 3' of the open reading frame. A 260 bp 

region of the ATP synthase gamma 3' Untranslated Region (UTR) was also 

amplified with HindIII and NotI recognition sequences at the 5' and 3' ends, 

respectively. The pEnT6B-GFP vector (B means blast) was restriction enzyme 

digested with HindIII and BamHI to remove the GFP and TY tag sequence. The 

PCR products were also digested with their respective restriction enzymes and 

ligated in a single reaction into the pEnT6-Blast vector backbone to give one 

circular plasmid.  

Templates for site-directed mutagenesis were supercoiled double 

stranded DNA plasmids bearing the gene of interest. The desired mutation was 

incorporated in the primers, so that the PCR replicates the plasmid to carry the 

mutation. The non-mutated parental DNA templates were sourced from 

Escherichia coli and were therefore methylated. PCR for site-directed 
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mutagenesis was done with 2.5 units of Pfu Turbo DNA polymerase in 50 µl of 

PCR reaction, following the manufacturer’s instruction. 

 
Dpn I was thereafter employed to selectively digest the methylated 

template plasmids as follows: 10 units of DpnI restriction enzyme and 10 µl 

Promega buffer B were added to the above PCR product which was then pipetted 

up and down to mix and centrifuged for a few seconds before it was incubated 

at 37 oC for 1 hour. The mutated, circular, nicked double-stranded DNA plasmid 

was subsequently transformed into XL1 blue E. coli as described below in 

2.2.6.5. Transformed E. coli cells were plated out on ampicillin-containing agar 

plates (100 µg/ml ampicillin) and incubated overnight at 37 oC. Next day, 

colonies were selected, streaked on fresh ampicillin-containing agar plates 

(numbered and incubated at 37 oC overnight) while the residual bacteria on the 

tips were used to grow up overnight cultures on a 37 oC shaker. Cultures were 

miniprepped using the Nucleospin plasmid kit from Macherey-Nagel, and plasmid 

concentration measured on the Nano-drop spectrophotometer. The plasmids 

were then sent for sequencing to check for the presence of the desired 

mutation. Sequencing was done by Eurofins MWG, and a colony bearing plasmids 

with the desired mutation was grown up in ampicillin-containing LB broth, 

overnight on a 37 oC shaker. Mutated plasmids were extracted the next day and 

used for the transfection of trypanosomes as described below in section 2.2.7.1. 

The pEnT6B-GFP vector was linearized with NotI to enhance integration into the 

trypanosome genome. The linearized plasmid was purified using the Nucleospin 

PCR clean up kit from Macherey-Nagel, and concentrated using the ethanol 

precipitation method as follows: Twice the volume of 100% ethanol and 0.1 

times volume of 3 M NaCl were added to the DNA solution and mixed. DNA 

appeared as a white fluff and was removed to a new tube with a pipette tip, 
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washed twice in 1ml 70% ethanol, air-dried and re-suspended in a suitable 

volume of sterile distilled water. 

2.2.6.5 Generation of a TbAT-1 yeast expression vector. 

2.2.6.5.1 Copying of gene of interest and sub-cloning into pGEMT. 

The primers for 3’ and 5’ ends of TbAT-1 were designed to incorporate a 

BamHI restriction enzyme site and an XhoI site respectively, to facilitate the 

insertion of the gene into the final vector. The PCR reaction was done using the 

Phusion DNA polymerase, and the PCR product was A-tailed to facilitate 

insertion into the pGEMT Easy vector, as follows: 1 µl 10 mM dATP, 10 µl Go Taq 

reaction buffer and 1 unit of Go Taq polymerase were added to the PCR product 

and incubated at 72oC for 15 minutes. Loading dye was then added to the 

reaction and it was separated on an agarose gel electrophoresis, using 1% 

agarose gel and visualized with SYBR safe. The correct band (1404 base pairs) 

was identified under ultraviolet light, cut out and purified using the Macherey-

Nagel gel and PCR purification kit. Purified DNA was sub-cloned into pGEMT easy 

vector as follows: 5 µl 2 x buffer, 3 units of T4 ligase and 0.5 µl pGEM-T vector 

were added to 3.5 µl gel-extracted DNA and incubated for 1 hour at room 

temperature. 

2.2.6.5.2 Transformation into competent E. coli cells. 

TbAT-1 in the pGEMT vector was transformed into XL1-blue E. coli as 

follows: An aliquot of XL1-blue E. coli was defrosted on ice; 5 µl of TbAT1 

ligation in pGEMT was put in an eppendorf tube followed by 50 µl of XL1-blue 

cells; the transformation was incubated on ice for 30 minutes, heat-shocked for 

45 seconds at 42 oC and incubated again for 2 minutes on ice. This was followed 

by the addition of 100 µl of LB broth and 45 minutes incubation at 37 oC with 
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shaking. The transformation was finally spread on an ampicillin-containing agar 

plate (100 µg/ml ampicillin) and incubated at 37 oC overnight. 

2.2.6.5.3 PCR screen of colonies 

The following day, colonies were screened by PCR; bacterial colonies 

were picked from the agar plate with sterile 200 µl pipette tips, streaked on a 

new LB agar plate, numbering each streak and dipping each tip thereafter in the 

PCR tube bearing the corresponding number. The new agar plate was incubated 

at 37 oC overnight and PCR using the universal primers, M13F and M13R, was 

done followed by electrophoresis on 1 % agarose gel. Positive colonies were 

identified and overnight cultures were set up from the numbered streaks on the 

new agar plate. An overnight culture of pDR195-transformed E. coli was also set 

up, and both cultures were mini-prepped the next day using the Nucleospin 

plasmid kit from Macherey-Nagel.  

2.2.6.5.4 Digestion of DNA with restriction enzymes 

Test restriction digest of TbAT-1 in pGEMT was done with the restriction 

enzymes, BamHI and XhoI and subsequently electrophoresed on agarose gel to 

confirm that the restriction enzymes will cut out the right size of product. 

Cultures that gave the correct size of drop out were restriction-digested along 

with the yeast expression vector (pDR195) as follows: 45 µl of mini-prepped DNA 

was placed in an eppendorf tube together with 7 µl of 10 x bovine serum 

albumin, 7 µl Promega buffer C, 30 units of XhoI, 30 units of BamHI and 

incubated overnight at 37oC on a heat block. Digest reactions were 

electrophoresed the next day, and the bands for TbAT-1 obtained from pGEMT 

and linearised pDR195 expression vector were both gel-extracted.  
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2.2.6.5.5 Ligation of digested DNA into the final vector. 

This was followed by the ligation of TbAT-1 and pDR195 expression vector 

in a 10 µl ligation reaction made up of 1 µl 10 x buffer, 3 units of T4 ligase, 2 µl 

pDR195 vector backbone and 6 µl TbAT-1 insert in a sterile eppendorf tube. The 

ligation was incubated at 4oC overnight, and then transformed into XLI blue E. 

coli as described above. Colonies were screened by PCR as stated earlier 

(section 2.2.6.5.4) and positive colonies were test-digested with the 

corresponding restriction enzymes, and colonies which dropped out correct size 

of band were sequenced to confirm that start and stop sites were present 

correctly. The correct colony was then grown up in an overnight culture, mini-

prepped as before, and plasmid DNA used to transform Saccharomyces cerevisiae 

MG887-1. 

2.2.7 Transfection of T. b. brucei (BSF), yeasts and 
Leishmania mexicana 

TbAT1 KO B48 cells were transfected with TbATE1, TbATE2, A728G-

TbATE2, TbAQP2 (all sub-cloned into pHD1336) and empty pHD1336 vector; 

Tb427 wt cells were transfected with wt ATPase γ and C851A (S284*) ATPase γ, 

both sub-cloned into pEnT6B-GFP vector (B = blasticidin); Saccharomyces 

cerevisiae MG887-1 was transformed with TbATA1, TbATA3, TbATA6, TbATE1, 

TbATE2 and TbAT1/P2 (all sub-cloned into pDR195) and empty pDR195; L. 

mexicana promastigotes (M379) were transfected with TbATA1, TbATA3, 

TbATA6, TbATE1 and TbATE2 (all sub-cloned into pNUS-HCN vector) and pNUS-

HCN empty vector (Tetaud et al, 2002).  
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2.2.7.1 Transfection of T. b. brucei 

10 µg of pHD1336-based plasmid DNA and 2 x 107 trypanosome cells were 

used for each transfection. Cells were counted and the volume of culture 

required for transfection was removed and centrifuged at 1500 x g for 10 

minutes. The supernatant was completely removed and the cell pellet was re-

suspended in the pre-determined volume of T-cell buffer. 10 µg of plasmid was 

placed in each labelled cuvette, while distilled water was placed in the control 

cuvette. 100 µl of cell suspension in T-cell buffer was transferred to each 

plasmid-containing cuvette and also to the control, and the cuvettes were all 

pulsed in Amaxa Nucleofection machine with program X-001. Cells were 

transferred into pre-warmed HMI-9 medium and allowed to recover for 8 – 16 

hours at 37 oC and 5% CO2. Relevant antibiotics were then added before the cells 

were diluted out for clones.  

2.2.7.2 Transfection of Leishmania mexicana 

Each transfection was performed on 107 cells Leishmania mexicana M379 

WT cells using 10 µg of pNUS-HcN-based plasmid DNA (Tetaud et al, 2002). Cells 

were counted and the volume of culture needed for the plasmids removed and 

centrifuged at 1000 x g for 10 minutes. The supernatant was removed, and cells 

were washed in 5 ml HOMEM medium, centrifuged again at 1000 x g for 10 

minutes before the supernatant was removed completely and the cell pellet re-

suspended in the pre-determined volume of T-cell buffer. 10 µg of plasmid was 

placed in each labelled cuvette, while distilled water was placed in the control 

cuvette. 100 µl of cell suspension in T-cell buffer was transferred to each 

plasmid-containing cuvette and also to the control, and the cuvettes were all 

pulsed in Amaxa Nucleofection machine with program U-033. The cuvettes were 

subsequently placed on ice for 10 minutes before the parasites were transferred 
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into 10 ml pre-warmed HOMEM medium and allowed to recover for 16 – 18 hours. 

G418 (50 µg/ml) was then added before the cells were diluted out for clones. 

2.2.7.3 Transformation of yeast cells 

5 ml YPAD medium was inoculated with an MG887-1 yeast colony, and 

grown overnight at 30 oC. Next day, cells were sub-cultured into 30 ml fresh 

medium at 2 x 106 cells/ml and incubated to 2 x 107 cells/ml (takes about 5 

hours at 30oC). 25 ml of culture at 2 x 107 cells/ml were centrifuged at 1100 x g 

for 10 minutes, washed in 10 ml sterile distilled water, re-centrifuged, re-

suspended in 1ml sterile distilled water and transferred to a 1.5 ml sterile 

microfuge tube. The cells were centrifuged again at 2700 x g, re-suspended in 1 

ml sterile 1 x TE/LiAc, and centrifuged one final time at 2700 x g before being 

re-suspended in 0.25 ml 1 x TE/LiAc at a final density of 4 x 109 cells/ml. 100 µl 

of this cell suspension was mixed with 5 µl of plasmid DNA and 2 µl single 

stranded carrier DNA (10 mg/ml salmon sperm DNA, boiled and quick-chilled on 

ice) in a 1.5 ml sterile microfuge tube. The mixture was incubated for 10 

minutes at room temperature followed by the addition of 300 µl sterile 

PEG/LiAc/TE and subsequent incubation at 30 oC for 60 minutes with shaking. 43 

µl of DMSO was added and mixed before the tube was heat-shocked at 42 oC for 

5 minutes. This was followed by centrifugation at 2700 x g and a wash in 1 ml 1 x 

TE, another centrifugation and a final re-suspension in 500 µl of 1 x TE. The cells 

were then plated on a synthetic complete medium minus uracil agar. Incubation 

was at 30 oC for between 24 and 48 hours, until colonies were visible. 
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2.2.7.4 Dilution of transformed trypanosomes (L. mexicana) 
and selection for clones 

After transformation, trypanosomes or L. mexicana were cloned by 

dilution in HMI-9 or HOMEM medium as shown below in 50 ml centrifuge tubes. 

 

  Figure 2.1 Dilution of trypanosomes and L. mexicana for clones. Dilution was done at about 16 

hours after transfection (immediately after introducing the selective antibiotic). Antibiotic 

selection combines with dilution to produce clonal lines.  

Each dilution was then plated out in 96 well plates at 200 µl per well. 

Hence plate 1 (containing dilution 1) would be at 1/24 times dilution, while 

plates 2 and 3 would be at 1/288 and 1/576 times dilution respectively. Clones 

were usually obtained from plates 2 and 3. 

2.2.8 Sequencing of genes of interest. 

Each gene for sequencing was duplicated by PCR with Phusion DNA 

polymerase. The PCR product was a-tailed and subsequently sub-cloned into the 

pGEMT easy vector as described above in section 2.2.6.5.1. The resulting ligation 

was transformed into XLI blue E. coli and colonies of transformed bacteria were 

screened for the presence of the DNA insert. PCR to screen for all DNA inserted 
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in pGEMT was with standard primers M13F and M13R. Overnight cultures of 

positive colonies were grown, miniprepped and test-digested with the relevant 

restriction enzyme. DNA samples that dropped out the correct size of band were 

sent to be sequenced either by Source BioScience or Eurofins MWG Operon. 

Sequences were ultimately aligned with CLC genomic workbench 5.5.1. 

Sequencing of PCR products was also carried out following a PCR clean-up 

step with the Nucleospin PCR clean up kit from Macherey-Nagel. Samples for 

sequencing were sent to Eurofins MWG Operon.  

2.2.9 Mitochondrial membrane potential assays. 

Fluorescence Activated Cell Sorting Technology (FACS) was employed in 

the determination of the change in mitochondrial membrane potential (MMP) 

due to exposure of trypanosomes to isometamidium, valinomycin and 

troglitazone in culture. Valinomycin (100 nM) and trolitazone (10 µM) were 

employed as negative and positive controls respectively. MMP was evaluated 

using tetramethylrhodamine ethyl ester (TMRE) at 25 nM conc (Ibrahim et al, 

2011). 

Cell cultures were centrifuged and the density adjusted to 106 cells/ml in 

fresh HMI-9 media. Four different cultures were set up for each cell line as 

follows: drug-free, isometamidium (500 nM), valinomycin (100 nM) and 

troglitazone (10 µM). After incubation of these cultures for a predetermined 

time (at 37 oC and 5% CO2), 1 ml of cells (106 cells/ml) was centrifuged for 10 

min at 1500 x g (room temp.). The pellet was re-suspended in 1 ml of PBS 

containing 25 nM TMRE and incubated at 37 °C for 30 min in the absence of the 

test compounds. Samples were subsequently placed on ice for at least 30 
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minutes before analysis by flow cytometry using the FL2-Height detector and 

CellQuest software. 

2.2.10 Fluoresence microscopy. 

Fluoresence microscopy was employed to visualize the presence or 

absence of kinetoplasts in the isometamidium resistant clones. Trypanosome 

cultures were counted and the density adjusted to 5 x 105 cells/ml in fresh HMI-9 

media. 50 µl of this cell suspension was spread out on a microscope slide and 

allowed to dry. The slides were placed in ice-cold methanol overnight at -20 oC 

to fix the parasites to the slides. Slides were subsequently removed from the 

methanol, dried in a fume hood and stored at 4 oC. Rehydration of the slide was 

done by gently putting 1 ml of PBS on the slide and allowing to stand for 5 min. 

The PBS was gently removed by inclining the slide on a soft tissue, and a drop of 

vectashield mounting medium containing DAPI (4′,6-Diamidino-2-phenylindole 

dihydrochloride) was placed on the slide before covering with a cover slip. The 

slide was then viewed under the Delta vision microscope. 

2.2.11 Infectivity studies in mice. 

Infectivity study was done with the clones generated for ISM resistance to 

test their ability to mount and sustain an infection. Twenty female ICR mice 

were procured from Harlan, UK. They were allowed 7 days to acclimatize before 

being used for the experiment. The study was done in 4 groups of 5 mice, and 

each group was inoculated with one of Tb427 wt, ISMR1 clone 3, ISMR15 clone 1 

and Tb427 wt + S284* ATPase γ clone 3. 200,000 trypanosome cells in phosphate-

buffered saline, PBS were inoculated per mice via the intra peritoneal route. 

Blood was drawn from tail puncture and diluted 1:10 in lysis buffer for counting.



 
 

 

 

3. Isometamidium shares at least 1 transporter with 

pentamidine: Analysis of issues and 

possibilities. 
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3.1. Introduction. 

It is now banal to state that new drugs are needed for the treatment of 

African trypanosomiasis. Few drugs are available for the treatment of this 

disease both in man and in livestock even though chemotherapy is the main 

method of control. Development of new drugs can however be achieved through 

the elucidation of the mode of action and the underlying mechanisms of 

resistance to existing drugs (Carter et al, 1995). The identification of the 

membrane transporters responsible for the uptake of the available trypanocides 

will enhance the development of new methods of diagnosis and improve the 

treatment of drug-resistant sleeping sickness (Mäser et al, 1999), since the 

development of resistance to most trypanocides has been linked to a reduction 

in drug accumulation. Hence, alterations to the P2 aminopurine transporter have 

been implicated in resistance of trypanosomes to melaminophenyl arsenicals 

(Carter & Fairlamb, 1993) and to diamidines (Carter et al, 1995). Some reports 

also found a role for the P2 transporter in isometamidium transport in T. b. 

brucei (Afework et al, 2006;Mäser et al, 1999), although the level of 

contribution to this process was not quantified. We have investigated these 

claims, and also assessed the contribution of other closely related pentamidine 

transporters to the uptake of isometamidium in T. b. brucei.   

This chapter presents the results of studies on the membrane transport of 

isometamidium. These studies aimed to identify the transporters of 

isometamidium in Trypanosoma brucei brucei in order to determine their 

contribution to the uptake, and resistance to the trypanocide. Three candidate 

transporters were studied, namely: the P2 aminopurine transporter encoded by 

the TbAT1 gene (Mäser et al, 1999;Stewart et al, 2010), the TbAT-E1 allele and 
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the TbAT-A genes. Each was expressed either in yeast or Leishmania mexicana, 

and the contribution to isometamidium uptake measured. 

Finally, the contribution of drug efflux by ABC transporters to ISM 

resistance was investigated. These transporters are known to use the energy of 

ATP to export drugs from cells against a concentration gradient (Mäser et al, 

2003) Hence, clinical drug resistance cases experienced during the treatment of 

many diseases have been attributed to the activities of these multidrug 

resistance proteins, MRPs (Deeley et al, 2006). Expression of some efflux pump 

genes in E. coli produced a multidrug resistance phenotype (Swick et al, 2011), 

while some inhibitors of microbial efflux pumps significantly enhanced the 

antimicrobial effects of cationic phenothiazinium dyes on Staphylococcus aureus 

(Tegos et al, 2008). Similarly, antimony resistance in Leishmania donovani 

promastigotes was attributed to the activity of multidrug resistance-associated 

protein (MRP)-like pumps that were in resistant isolates (Mandal et al, 2009), 

and efflux pumps were also found to expel pentamidine from the cytosol of 

resistant Leishmania mexicana while the cytosolic pentamidine in the wild type 

cells was accumulated in the mitochondria, driven by the high mitochondrial 

membrane potential (Basselin et al, 2002). Since it had been found that the 

trypanosome genome contains three ABC transporter genes, all of which are 

expressed in both the bloodstream and procyclic forms (Mäser & Kaminsky, 

1998), we studied the possible contribution of drug efflux to ISM resistance in 

the ISMR clones.  

3.2. Expression of TbAT1 in yeast cells. 

The TbAT1 gene was sub-cloned into the pGEMT vector to create sticky 

ends needed for ligation into the final expression vector. The size of the TbAT1 
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gene is 1404 bp; hence, sub-cloning into pGEMT generated a product of about 

1600 bp (figure 3.1). 

 

Figure 3.1 Agarose gel electrophoresis of TbAT1 subcloned in pGEMT vector. Bands represent the 

PCR screen of XLI blue E. coli colonies using M13F and M13R primers, after transformation with 

TbAT1 subcloned in pDR195 plasmid. 

TbAT1 was cut out of pGEMT using XhoI and BamHI restriction enzymes. 

The same restriction enzyme pair was used to linearize the pDR195 expression 

vector (figure 3.3), cutting out the sequence between the restriction sites, 

before TbAT1 was ultimately ligated into the yeast expression vector pDR195. 

After ligation into pDR195, a test restriction digest was performed to check for 

correct ligation. The bands at ~6 kb (figure 3.2) represent the empty pDR195 

vector, while the bands at ~1.5 kb represent TbAT1 genes dropped out of the 

expression vector by the restriction enzymes. 
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Figure 3.2 Agarose gel electrophoresis of BamHI/XhoI dropout of TbAT1 from pDR195 vector. 

TbAT1 was excised from TbAT1/pDR195 plasmid, after ligation, to check for correct insertion 

into the plasmid. Bands at ~6kb represent linearised pDR195 plasmid, while bands at ~ 1.5kb 

represent TbAT1 restriction drop out. The single band at ~ 8kb represents intact TbAT1/pDR195 

plasmid. 

TbAT1 in pDR195 was subsequently sequenced to ensure that start and 

stop sites are present correctly before the construct was used to transform yeast 

cells. The transformed yeast was then screened by PCR using primers that copied 

a segment of the TbAT1 (789 bp, figure 3.4). The presence of the plasmid was 

also demonstrated by PCR with primers that copied a section of the Ampicillin 

resistance gene (815 bp; figure 3.4). Primer sequences were presented in table 

2.1. 
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Figure 3.3 Vector map of TbAT1 in pDR195 expression vector. This was generated by subcloning 

TbAT1 into the XhoI/BamHI site in pDR195 plasmid. 

 

Figure 3.4 Agarose gel electrophoresis of PCR screen for TbAT1 in yeast. Band 1: TbAT1 gene in 

TbAT1-expressing yeast; 2: pDR195 vector in TbAT1-expressing yeast; 3: pDR195 in empty vector 

control yeast; 4: 1 kb ladder. The nucleotide sequences of the primers used were presented in 

table 2.1.   
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3.3. Isometamidium uptake through the P2 
transporter. 

Yeast cells expressing TbAT1 showed a clear increase in the amount of 

isometamidium (ISM) taken up, which was significant from the 6th minute of 

uptake, compared to cells expressing the empty pDR195 vector (figure 3.5). 
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Figure 3.5 Uptake of ISM by MG887-1 yeast cells expressing TbAT1 and empty pDR195. Assay was 

performed in triplicate with 9 x 107 cells/ml of TbAT1 expressing yeast and 1.026 x 108 cells of 

pDR195-transformed yeast (control) in assay buffer at room temperature; [ISM] = 10 µM. Yeast 

cells were harvested from culture as described in section 2.2.4, and ISM uptake monitored using 

the same method described for trypanosomes in section 2.2 5. 

Next, the rate of ISM uptake was determined in TbAT1 KO cells (TbAT1(-/-) 

or wild type Tb427 cells from which the TbAT1 gene has been deleted) When the 

rate of uptake in the wild type Tb427 was however compared to that in TbAT1 

KO cells (TbAT1(-/-)), no significant difference was found (figure 3.6). This 

suggests that the contribution to the uptake of ISM by TbAT1 or P2 in T. b. 

brucei is very minimal. The rate of ISM uptake was only 20% lower when the 

TbAT1 gene was deleted (figure 3.6). Hence the contribution to the in vitro 

uptake of ISM by the P2 transporter may be put at just 20 %. However, it must be 
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remembered that the P2 expression level is very low in cultured cells, compared 

to in vivo levels (Ward et al, 2011), thus the real contribution of P2-mediated 

ISM uptake may be much higher.  

Tubercidin sensitivity in T. brucei can be used as an indicator for TbAT1 

expression levels (Geiser et al, 2005;Munday et al, 2013). The significant cross 

resistance to tubercidin in ISM resistant clone 3 (ISMR1 clone 3 is an ISM resistant 

trypanosome line selected by growing in the presence of ISM; sections 2.2.2 & 

4.2 ) is a further strong indication that ISM is transported by the P2 transporter, 

as P2 expression appears to be much-reduced in the ISM-resistant strain (figure 

3.7). The significant difference between the IC50 found for ISMR1 clone 3 and 

that found for the TbAT1 knock out may be an indication that the P2 transporter 

is still partly functional in the resistant clone whereas it has been deleted in the 

TbAT1 KO. Consistent with this interpretation, the TbAT1 open reading frame 

from ISMR1 was cloned and sequenced, but no mutations in the coding sequence 

were found (appendix C). 
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Figure 3.6 Uptake of ISM by Tb427 wt and TbAT-1 KO. Assay was performed in triplicate with 

1.48 x 108 cells/ml of Tb427 wt and 1.08 x 108 cells/ml of TbAT1(-/-) in complete HMI-9 medium 
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(+ 10% fetal bovine serum) at room temperature; [ISM] = 10 µM. ISM uptake was measured as 

described in section 2.2.5. Experiment shown is representative of three independent assays 

performed in triplicate and showing similar outcomes. 
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Figure 3.7 Sensitivity to tubercidin in ISM resistant clone, ISMR1 clone 3. IC50 values were 

determined from alamar blue assays with tubercidin, using 105 cells/ml of each cell line (section 

2.2.3). Each bar represents the average of three independent assays; errors bars are SEM. ***P < 

0.01, one way ANOVA with Turkey’s correction, using Graphpad prism 5.0. 

3.4. Expression of TbAT-E1 and TbAT-E2 in 
Yeast and Leishmania mexicana. 

3.4.1. Expression of TbAT-E1 and TbAT-E2 in yeast 
cells. 

Cloning of TbAT-E1 into pDR195 (figure 3.8) was performed by Dr Jane 

Munday. The expression of this gene in yeast was done by Dagmara Wiatrek, an 

exchange student from Poland; TbAT-E2 was cloned and expressed in yeast by 

Mounir El Mai, a student from France (both with my involvement and 

supervision). Yeast cells expressing TbAT-E1 were found to display a significantly 

higher uptake of ISM compared to the empty vector-expressing control (P<0.05 

even before the 2nd minute of uptake; figure 3.9). Figure 3.9 is a graph of the 
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mean of four independent uptake assays. TbAT-E2 expression in yeast also 

increased the uptake of ISM significantly but only in the 6th minute of uptake 

(figure 3.10), and to a lesser extent compared to TbAT-E1. Figure 3.10 is a graph 

of a single assay performed in triplicate.  

 

Figure 3.8 Vector map of TbAT-E1 in pDR195 expression vector. This was generated by subcloning 

TbAT-E1 into the XhoI/BamHI site in pDR195 plasmid. 
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Figure 3.9 ISM uptake by MG887-1 yeast cells expressing TbAT-E1; [ISM] = 10 µM. Graph is a plot 

of the mean of 4 independent assays. Each of the assays was performed in triplicate with ~ 108 
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cells/ml of TbAT-E1 expressing yeast and pDR195-transformed yeast (control), respectively, in 

assay buffer at room temperature; [ISM] = 10 µM. Yeast cells were harvested from culture as 

described in section 2.2.4, and ISM uptake monitored using the same method described for 

trypanosomes in section 2.2 5. 

.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

ISM uptake, AT-E2

ISM uptake, pDR195

*

*P = 0.0073, unpaired
student's t-test.

Time (min)

in
tr

a
c
e
ll
u

la
r 

IS
M

 [
u

M
]

 

Figure 3.10 ISM uptake by MG887-1 yeast cells expressing TbAT-E2. Assay was performed in 

triplicate with 6.32 x 107 cells/ml of TbAT-E2 expressing yeast and 7.96 x 107 cells of pDR195-

transformed yeast (control) in assay buffer at room temperature; [ISM] = 10 µM. Yeast cells were 

harvested from culture as described in section 2.2.4, and ISM uptake monitored using the same 

method described for trypanosomes in section 2.2 5. 

Primers used for PCR to check for the presence of the inserted genes in the 

transformed yeast were presented in table 2.1. TbAT-E1 and TbAT-E2 were each 

amplified to give a PCR product of ~750 bp (figure 3.11). A segment of the 

ampicillin gene sequence was amplified (~810) to demonstrate the presence of 

pDR195 plasmid (figure 3.11). 
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Figure 3.11 Agarose gel electrophoresis of PCR screen of MG887-1 yeast cells.transformed with 

TbAT-E2 and TbAT-E1 Band 1 and 4: TbAT-E2 and TbAT-E1 respectively, amplified from TbAT-E2 

and TbAT-E1 transformed yeast cells; 2 and 5: pDR195 vector in E2 and E1 expressing yeasts 

respectively; 3 and 6: pDR195 vector in empty vector yeasts. The primers used were presented 

in table 2.1 

 

3.4.2. TbAT-E1 and TbAT-E2 Expression in Leishmania 
mexicana 

TbAT-E1 and TbAT-E2 were both cloned into pNUS-HcN vector (Tetaud et 

al., 2002) by Dr Jane Munday who also did the expression of TbAT-E1 in L. 

mexicana. The expression of TbAT-E2 in L. mexicana was however done by me. 

The expression of TbAT-E1 did not increase the susceptibility of L. mexicana to 

pentamidine. Susceptibility to ISM was however increased significantly by TbAT-

E1 expression in L. mexicana, (P<0.05; figure 3.12). This correlates with the 

increased ISM uptake found for AT-E1 expression in yeast (figure 3.9). In addition 

to TbAT-E1, TbAT-E2, TbAT-A1 and TbAT-A3 all increased diminazene sensitivity 

when expressed in Leishmania mexicana (figure 3.12). Amphotericin-B was 

included as control. 
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Figure 3.12 Sensitivity of TbAT-E and TbAT-A transfomed L. Mexicana promastigotes to 

Pentamidine, Diminazene and ISM. EC50 (IC50) values were determined from alamar blue assays 

using 106 cells/ml of each cell line (section 2.2.3). Each bar represents the average of at least 

three independent assays; errors bars are SEM *P<0.05, ***P<0.01(one way ANOVA with Turkey’s 

correction, using Graphpad prism 5.0); 1P = 0.049, 2P = 0.04 (unpaired students’t-test). 
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3.5. Expression of TbAT-A1, TbAT-A3 and 
TbAT-A6 in yeast and Leishmania mexicana. 

 TbAT-A was found to have multiple copies in Trypanosoma brucei. These 

were cloned in pDR195 and pNUS vectors and expressed in yeast and L. mexicana 

respectively by Dr. Jane Munday and a Masters student, Luke Woodford. The rate 

of ISM uptake was increased on the expression of TbAT-A1 and TbAT-A6 in 

MG887-1 yeast; however significant increase in ISM uptake was found only for 

AT-A1 expression, from the first full minute of uptake onwards (figure 3.13). 

Expression of each of TbAT-A1, TbAT-A3 and TbAT-A6 in L. mexicana led 

to an increase in susceptibility to ISM, though not statistically significant except 

for TbAT-A3 (figure 3.12), while TbAT-A6 was the least sensitive to ISM. This is 

not a surprising observation since TbAT-A6 has about 44 nucleotides missing from 

its sequence when compared to TbAT-A1 and TbAT-A3. 
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Figure 3.13 ISM uptake by yeast cells expressing TbATA-1 and TbATA-6. Graph is the average of 2 

independent repeats. Each of the assays was performed in triplicate with ~ 108 cells/ml of TbAT-

A1 expressing yeast, TbAT-A6 expressing yeast and pDR195-transformed yeast (control), 

respectively, in assay buffer at room temperature; [ISM] = 10 µM. Yeast cells were harvested 

from culture as described in section 2.2.4, and ISM uptake monitored using the same method 

described for trypanosomes in section 2.2 5. 



Anthonius Anayochukwu Eze, 2013   Chapter 3. 90 
 

Screen of transformed yeast cells was done by PCR using primers that 

amplify TbAT-A1 and TbAT-A6 (~1400 bp each; figure 3.14). Amplification of the 

URA3 gene was employed to demonstrate the presence of the pDR195 expression 

vector (~1800 bp; figure 3.14). An additional PCR reaction to amplify the PMA1 

promoter + the downstream sequence (~1000 bp; figure 3.14) was done on the 

empty vector yeast. 

 

Figure 3.14 Agarose gel electrophoresis of PCR screen of TbAT-A1 and TbAT-A6 in transformed 

MG887-1 yeast cells. Bands 1 and 2, TbAT-A1 and TbAT-A6 respectively amplified from TbAT-A1 

and TbAT-A6 transformed yeast cells; 3, 4 and 5, URA3 gene in TbAT-A1, TbAT-A6 and empty 

vector expressing yeast cells respectively; 6, pDR195 vector in empty vector expressing yeast 

cells. The primers used were presented in table 2.1. 

3.6. RNAi of TbAT-E in 2T1 

RNA interference, RNAi was used to decrease the cellular levels of TbAT-E 

expression in 2T1 cells. The 2T1 strain was generated to eliminate the problems 

created by variable expression levels at different rRNA spacer loci. Hence, 2T1 

enhances integration at a tested and marked locus, thereby eliminating the need 

to screen multiple recombinant clones to identify those that display desirable 

features (Alsford & Horn, 2008). RNAi of AT-E was performed by my colleague, 

Ibrahim Teka, a former PhD student in our group (Teka, 2011). RNAi of AT-E 

caused an average reduction in the rate of uptake of ISM to 45 % of the original 

rate on the induction of RNAi (Fig. 3.15). This reduction was however found to 

be statistically insignificant (p=0.070; figure 3.16) in an unpaired t-test due to 
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variations between individual experiments which may be due to variations in the 

phase of life of the parasites at the time of mobilization for uptake or 

differences in the room temperature value on the individual experiment days 

(each assay was performed at room temperature). However, in a paired t-test, 

the reduction was found to be significant (p = 0.04; figure 3.16), suggesting that 

the difference between samples within the individual experiments was 

consistently significant. 
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Figure 3.15 Uptake of ISM by RNAi of AT-E in 2T1 Tetracycline at 1 µg/ml final concentration was 

added to the culture 48 hours before ISM uptake to induce RNAi of AT-E. Assay was performed in 

triplicate with ~ 108 cells/ml of induced and non-induced cell lines in complete HMI-9 medium (+ 

10% fetal bovine serum) at room temperature; [ISM] = 10 µM. ISM uptake was measured as 

described in section 2.2.5. Experiment shown is representative of three independent assays 

performed in triplicate and showing similar outcomes. The slope of each line represents the rate 

of uptake (µM/min). 
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Figure 3.16 Summary of repeats for ISM uptake by 2T1 RNAi of AT-E. Bar graphs represent 

average of rate of ISM uptake and SEM obtained from 3 independent assays done in triplicate, 

and represented by the graph in figure 3.15.  

3.7. Drug efflux by ABC transporters is not 
involved in ISM resistance in T. brucei brucei. 

It was recently found that a combination of ISM with tetracycline or 

enrofloxacin killed resistant trypanosomes much more effectively than ISM alone 

(Delespaux et al, 2010). This finding supports the hypothesis that tetracycline 

can inhibit ABC transporters (Chopra & Roberts, 2001;Warburton et al, 2013) 

thus compromising the activity of these transporters, thereby reducing the rate 

of efflux and hence reversing the drug resistance (Delespaux et al, 2010). We 

investigated the relevance of this hypothesis in our resistant clones by carrying 

out a series of ISM uptake in the presence or absence of tetracycline.  



Anthonius Anayochukwu Eze, 2013   Chapter 3. 93 
 

0 15 30 45 60 75 90 105 120
0

100

200 ISM uptake
by Tb427 wt, + tet

ISM uptake by
Tb427 wt, no tet

wash after
60 min point

ISM uptake by ISMR15 cl.1
+Tet

ISM uptake by ISMR15 cl.1 no
Tet

Time (min)

in
tr

a
c
e
ll
u

la
r 

IS
M

 [
u

M
]

 

Figure 3.17 Uptake of ISM by Tb427 wt and ISMR15 clone 1 Assay was performed in triplicate with 

1.50 x 108 cells/ml of Tb427 wt and 2.13 x 108 cells/ml of ISMR15 clone 1 in complete HMI-9 

medium (+ 10% fetal bovine serum) ± 40 µM (17.78 µg/ml) tetracycline at room temperature 

(fluorescence was normalised for different cell densities); [ISM] = 10 µM. ISM uptake was 

measured essentially as described in section 2.2.5, except that cells were washed, after the 60th 

minute time point, by centrifuging for 5 minutes at 2600 rpm and 4oC (to remove ISM) and 

subsequently resuspended in ISM-free media to continue the assay.  

Though we were able to clearly demonstrate ISM efflux after washing out 

the drug and placing the cells in fresh medium, there was no difference in the 

rate of efflux of ISM in ISMR15 clone 1 in the presence or absence of 

tetracycline, as evidenced by the overlapping graphs of uptake (figure 3.17). 

This indicates that tetracycline-inhibitable ABC transporters are not involved in 

drug extrusion in ISM resistant T. brucei brucei.  Also, the drop in the level of 

intracellular ISM after the 60th minute wash and re-suspension in tetracycline-

containing media is uniform in both the wild type and resistant lines (figure 3.18). 

This clearly demonstrates that ABC transporter activity may not be involved in ISM 

resistance.  
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Figure 3.18 Uptake of ISM by Tb427 wt, ISMR1 clone 3 and ISMR15 clone 1 Assay was performed in 

triplicate with 2.04 x 108 cells/ml of Tb427 wt, 2.68 x 108 cells/ml of ISMR1 clone 3 and 2.62 x 

108 cells/ml ISMR15 clone 1 in complete HMI-9 medium (+ 10% fetal bovine serum) + 40 µM (17.78 

µg/ml) tetracycline at room temperature (fluorescence was normalised for different cell 

densities); [ISM] = 10 µM. ISM uptake was measured essentially as described in section 2.2.5, 

except that cells were washed, after the 60th minute time point, by centrifuging for 5 minutes at 

2600 rpm and 4oC (to remove ISM) and subsequently re-suspended in tetracycline-containing ISM-

free media to continue the assay.  

Next, Tb427 wt, ISMR1 clone 3 and ISMR15 clone 1 were all exposed to 

either 5 µM ISM alone, or 5 µM ISM in the presence of 40 µM (17.78 µg/ml) 

tetracycline, for six hours, after which they were all washed and re-suspended in 

fresh, drug-free HMI-9 media and the rate of recovery and multiplication 

monitored by 12 hourly cell count (figure 3.19). The resistant clones exposed to 

ISM + tetracycline did not become more sensitive to ISM compared to those 

exposed to ISM alone (figure 3.19). This demonstrates that tetracycline-sensitive 

ABC transporters are not involved in resistance to ISM in T. brucei brucei.  
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Figure 3.19 Effect of tetracycline on rate of ISM efflux from cells and on the growth rate of 

ISMR1, ISMR15 and s427wt. Each cell line at 2 x 104 cells/ml was exposed to either 5 µM ISM 

alone or 5 µM ISM + 40 µM (17.78 µg) tetracycline for six hours before centrifugation and 

resuspension in fresh, drug-free HMI-9 medium. Cells were subsequently counted every 12 

hours.Each graph is the average of two independent growth measurements 

Since tetracycline had no effect on the efflux of intracellular ISM in T. 

brucei brucei, we screened a number of compounds known to either inhibit ABC 

transporters directly or compromise energy transduction within the cells, as the 

ABC transporters are ATP-dependent. Uptake of 10 µM ISM was measured in the 

presence or absence of 50 µM concentration of each inhibitor (1 µM for 
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valinomycin). Carbonyl cyanide m-chlorophenylhydrazone (CCCP), valinomycin 

and oligomycin reduced ISM uptake to 60%, 59.5% and 49.6% respectively. 

Though these reductions were not statistically significant (P~0.06; figure 3.20), 

we decided to investigate the effect of oligomycin on ISM uptake since it had 

earlier been demonstrated that oligomycin specifically inhibits the F1F0-ATPase 

of the trypanosomes (Schnaufer et al, 2005). Our findings on the contributions of 

the F1F0-ATPase to ISM uptake and sensitivity are presented in chapters 4 and 5. 

Pentamidine did not inhibit ISM uptake at 50 µM (figure 3.20). This observation 

goes contrary to our hypothesis that at least part of the ISM uptake in T. brucei 

brucei is mediated by a pentamidine transporter.  

IS
M

 1
0µ

M

IS
M

+5
0µ

M
 E

nro
flo

xa
ci

n

IS
M

+5
0µ

M
 V

er
ap

am
il

IS
M

+5
0µ

M
 T

FP
diH

C
l

IS
M

+5
0µ

M
 P

ro
ch

lo
rp

er
az

in
e

IS
M

+5
0µ

M
 C

C
C
P

IS
M

+1
µM

 V
al

in
om

yc
in

IS
M

+5
0µ

M
 K

C
N

IS
M

+5
0µ

M
 N

aN
3

IS
M

+5
0µ

M
 P

hlo
re

tin

IS
M

+5
0µ

M
 O

lig
om

yc
in

M
P
en

ta
m

id
in

e



IS
M

+5
0

0

20

40

60

80

1 2
3

1 - P = 0.0667
2 - P = 0.0676
3 - P = 0.0615;
unpaired student's t-test

in
tr

a
c
e
ll
u

la
r 

IS
M

 [
u

M
]

 

Figure 3.20 Uptake of ISM by Tb427 wt (from culture) in the presence of inhibitors of ABC 

transporters. Assay was performed in triplicate with ~108 cells/ml of Tb427 wt in complete HMI-9 

medium (+ 10% fetal bovine serum) at room temperature; [ISM] = 10 µM and inhibitor 

concentrations are as indicated. ISM uptake was measured as described in section 2.2.5; 

incubation was for 20 minutes. Each bar represents the average of 3 independent repeats; error 

bars represent the SEM. 
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Therefore, in order to investigate this finding further, we increased both 

the concentration of pentamidine and the incubation time (figure 3.21). On 

increasing the pentamidine concentration from 50 µM to 100 µM, a 13% inhibition 

of uptake was achieved while a 26% inhibition of uptake was found with 333 µM 

pentamidine (figure 3.21). There was a 100% ISM uptake in the presence of 333 

µM of adenosine (which saturates TbAT1/P2) while 100 µM and 333 µM 

diminazene significantly reduced uptake of ISM to 62% and 50.2% respectively 

(figure 3.21). 
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Figure 3.21 Inhibition of ISM uptake by 100 µM and 333 µM concentrations of pentamidine (PENT), 

diminazene (DIM) and adenosine (ADO). Assay was performed in triplicate with ~108 cells/ml of 

Tb427 wt in complete HMI-9 medium (+ 10% fetal bovine serum) at room temperature; [ISM] = 10 

µM. ISM uptake was measured as described in section 2.2.5; Incubation was for 30 minutes Each 

bar represents the average of 3 independent experiments. (ISM-free control experiment was 

done once, also in triplicate); error bars represent the SEM. 

3.8. Discussions  

TbAT1 encodes the P2 transporter that transports adenosine, adenine, 

melaminophenyl arsenicals, and diamidines (Carter & Fairlamb, 1993;Matovu et 
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al, 2003;de Koning et al, 2004). However, when this gene was expressed in yeast 

it mediated the uptake of adenosine which was strongly inhibited by 

isometamidium and the melaminophenyl arsenicals (melarsoprol and melarsen 

oxide) but insensitive to pentamidine and diminazene aceturate (Mäser et al, 

1999). But P2 mediates pentamidine uptake in T. b. brucei, and adenosine 

uptake in T. b. brucei was found to be strongly inhibited by pentamidine (Carter 

et al, 1995;de Koning & Jarvis, 1999). Hence the insensitivity of TbAT1 

expression in yeast to pentamidine was attributed to the possible absence of a 

trypanosomal cofactor or modification required for diamidine recognition (Mäser 

et al, 1999). 

 

Figure 3.22 Summary of drug uptake routes in T. b. brucei. Equilibrative diffusion (facilitated or 

simple) is shown by double-headed arrows; suspected active transport is shown by single-headed 

arrows. R = low-density lipoprotein receptor; S = suramin molecule. Figure taken from De 

Koning, 2001.  

Currently, P2 is the only pentamidine transporter in the trypanosomes 

that has been fully characterized at both the biochemical and molecular levels 

(figure 3.22). The current situation is that research findings suggest that 3 

pentamidine transporters exist in T. brucei brucei, namely the P2 transporter, 
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the High affinity pentamidine transporter (HAPT1) and the Low affinity 

pentamidine transporter (LAPT1); however, the genes encoding either the HAPT1 

or the LAPT1 are yet to be found and the most likely candidates for these roles 

are the closely related genes, TbAT-E, TbAT-A and TbATG (de Koning et al, 

2005). 

Our findings indicate that P2 transporter activity accounts for about 20% 

of ISM uptake in T. b. brucei, but this just failed to reach a significant level 

(figure 3.6). Inhibition studies were not done on the uptake in yeast, but there 

was a significant increase in uptake of ISM due to the expression of TbAT1 in 

yeast. The significant insensitivity to tubercidin found in the ISMR1 resistant 

clone (figure 3.7) also suggests that a reduced expression or activity of TbAT1 

contributes to ISM resistance. ISM uptake through the P2 transporter should 

however be sensitive to inhibition by both adenosine and diminazene. But only 

diminazene was able to inhibit this uptake significantly in our wild type T. b. 

brucei (P < 0.01, student’s t-test; figure 3.21).  

ISM uptake assays in yeast cells expressing TbAT-E1 indicate that the 

transporter encoded by the TbAT-E1 makes a major contribution to the uptake 

of ISM in T. b. brucei (figures 3.9). This is evidenced by the significantly 

increased ISM accumulation (P < 0.05) due to expression of the gene in yeast. 

Similarly, significantly increased susceptibility (P < 0.05) to ISM was observed 

with the expression in Leishmania mexicana (figure 3.12). The second allele of 

TbAT-E, the TbAT-E2 also produced a significantly increased ISM uptake in yeast, 

but this assay was done only once. Conversely, the expression of TbAT-E2 in L. 

mexicana did not produce a significantly increased sensitivity to ISM (figure 

3.12). 
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Furthermore, TbAT-A was also expressed in yeast and tested for ISM 

uptake. TbAT-A1 and TbAT-A6 are two alleles (copies) of this gene and both 

were tested for ISM uptake. TbAT-A1 expression produced a significantly 

increased uptake of ISM in yeast (figure 3.13). TbAT-A was expressed in null 

mutants of Leishmania deficient in purine nucleoside or nucleobase uptake and 

was found to be a high affinity purine transporter, designated TbNT11.1 and 

TbNT11.2 (Ortiz et al, 2009). TbNT11.1 was also able to transport pentamidine 

when expressed in Xenopus oocytes (Ortiz et al, 2009). However, when we 

expressed each of the three sequences for TbAT-A, namely TbAT-A1, TbAT-A3 

and TbAT-A6 in L. mexicana, there was no significant difference in pentamidine 

sensitivity between each of them and the empty vector expression (figure 3.12). 

Furthermore, the alignment of the nucleotide sequences for TbAT-A1, TbAT-A3, 

TbNT11.1 and TbNT11.2 could not give a clear picture of which of the two 

alleles, TbNT11.1 or TbNT11.2 corresponds to either TbAT-A1 or TbAT-A3 

because each one varied with about the same number of nucleotides from the 

other (see appendix). TbAT-A1 differed from TbNT11.1 and TbNT11.2 by 9 and 

10 nucleotides, respectively, while TbAT-A3 differed from both TbNT11.1 and 

TbNT11.2 by 10 nucleotides each. Since TbAT-A1 also varies from TbAT-A3 by 8 

nucleotides, it is therefore possible that either could be the TbNT11.1. Similarly, 

TbAT-E, designated TbNT12.1 in the same paper, was expressed in Xenopus 

oocytes and was found to mediate the uptake of both adenine and pentamidine 

(Ortiz et al, 2009). The nucleotide sequence for TbNT12.1 also differed from 

TbAT-E1 and TbAT-E2 by 15 and 16 nucleotides, respectively, and since the 

variation between TbAT-E1 and TbAT-E2 is about 16 nucleotides, it is not clear 

which of them will be the TbNT12.1. Our findings on pentamidine uptake by 

TbAT-E1 will be presented in chapter 6. 
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Finally, our findings suggest that drug efflux by ABC transporters is not 

involved in the resistance of T. b. brucei to ISM.  This contradicts the findings by 

Delespaux et al (2010), that the antibiotics tetracycline and enrofloxacin 

potentiated the effects of isometamidium against ISM-resistant T. congolense 

strains; the explanation given was that both antibiotics are substrates for ABC-

transporters (Delespaux et al, 2010) and thus competititvely inhibit ISM-efflux. 

However, we did not find any effects of tetracycline on the growth of T. b. 

brucei, either in the presence or absence of isometamidium (figure 3.19). In 

addition, the inability of verapamil or enrofloxacin to produce a significant 

reduction in ISM uptake supports our conclusion that, at least in T. brucei, ABC 

transporters do not seem to be involved in ISM efflux (figure 3.20). Earlier 

reports of inability of verapamil to reverse resistance to ISM in T. b. brucei and 

in T. congolense are consistent with our findings (Wilkes et al, 1997;Kaminsky & 

Zweygarth, 1991). Furthermore, assuming that the theory of up-regulation of 

ABC transporters in resistance was true for T. b. brucei, then intracellular ISM 

levels in the resistant clones should be near constant after wash and re-

suspension in 40 µM tetracycline, instead of rapidly decreasing (figure 3.18). 

3.9. Conclusion 

ISM uptake is transporter-mediated in T. b. brucei and is not the result of 

diffusion as figure 3.22 suggests. The balance of evidence suggests that P2 

mediates the uptake of ISM in T. b. brucei, but may not facilitate a large 

proportion of the flux. Similarly, the TbAT1-like gene TbAT-E1 also expresses a 

transporter that is able to transport ISM. It is also clear that the efflux 

mechanism does not contribute to ISM resistance in T. b. brucei.



 
 

 

4. Development and characterization of clonal lines 

resistant to 1 µM and 15 µM isometamidium 

respectively. 
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4.1 Introduction 

The control of African trypanosomiasis relies solely on chemotherapy in 

the absence of large-scale vector control programmes or any hope for a vaccine 

against the disease in the near future (Delespaux & de Koning, 2007). Most of 

the drugs currently in use against African trypanosomiasis (sleeping sickness in 

humans; Nagana in cattle) have been in use for a very long time and are 

threatened by resistance. In many ways, the situation is worse for the treatment 

of the veterinary condition as there is widespread resistance to the only two 

drugs available to treat the condition in sub-Saharan Africa, namely diminazene 

aceturate and isometamidium (Sow et al, 2012;Jamal et al, 2005;Matovu et al, 

1997;Geerts et al, 2001). Hence, nagana is still a major constraint to the 

development of livestock in thirty-seven countries of sub-Saharan Africa (Geerts, 

2011). In addition, domestic animals and livestock are able to act as reservoirs 

for the human infective species of T. brucei (Hide et al, 1994), particularly in 

the case of T. b. rhodesiense. There is thus an urgent need to improve on the 

control measures against African Animal Trypanosomiasis. This can be achieved 

partly by increasing the effectiveness of the few available drugs through 

reducing the rate of development of drug resistance in the field. It is therefore 

important that the mechanism of resistance to isometamidium and other 

veterinary trypanocides be fully elucidated to help develop a method for its 

resolution and also for the easy identification of resistant trypanosomes. We 

induced resistance to isometamidium in our 427 laboratory strains, and 

characterized the resistant phenotype at the biochemical and molecular levels.   

4.2 Induction of resistance 

It took a period of nine months to adapt the wild type T. brucei brucei 

427 wt to survive and multiply in 1 µM concentration of ISM and an additional 
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three months to raise this level of resistance to 15 µM ISM. Cells were incubated 

in the designated ISM concentration for at least 14 passages (not shown on 

graph) before being cloned out to ensure complete viability in ISM at that conc. 

The clones produced from 1 µM were designated ISMR1 while those produced at 

15 µM were called ISMR15. 

 

Figure 4.1 Selection for resistance to ISM in concentration/passages. Cells were cultured in 

increasing concentrations of ISM, starting from 0.05 nM ISM, in HMI-9 medium. Cells were 

cultured in a particular ISM concentration for > 10 passages before cloning out (or moving to the 

next ISM concentration; section 2.2.2). Cloning out was done in drug-free medium, and clones 

were maintained in drug-free HMI-9 medium. 

4.3 In vitro measurement of rate of 
multiplication 

Analysis of the rate of growth of ISMR1 clone 3 and ISMR15 clone 1 using 

the one way ANOVA found no significant difference between their growth rate 

and that of the wild type T. b.427. However it should be noted that Tb427 wt 

was able to attain the stationary phase of growth after 48 hours of growth while 

both resistant clones reached the same phase after 72 hours of growth (figure 

4.2).  
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Figure 4.2 Rate of growth of the Tb427 wt compared with the resistant clones. Cultures were 

initiated in drug-free HMI-9, starting from a seeding density of 2 x 104 cells/ml for each cell line. 

Cells were subsequently counted every 12 hours to monitor the cell density.  

4.4 Assay for cross resistance to related 
trypanocides 

ISMR1 clone 3 was found to be 44-fold resistant to ISM compared to the 

wild type control while ISMR15 clone 1 was 121-fold resistant (figure 4.3).  

 

Figure 4.3 Sensitivity of the ISMR clones to trypanocides. EC50 values were determined from 

alamar blue assays using 105 cells/ml of each cell line and incubating the assay at 37oC and 5% 
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CO2 for 48 hour before addition of alamar blue dye. Fluorescence was measured 24 hours after 

addition of dye. (section 2.2.3). Each bar represents the average of at least three independent 

assays; errors bars are SEM; *P < 0.01, unpaired Student’s t-test. 

Both clones were in addition significantly cross resistant to pentamidine, 

diminazene and to ethidium bromide (figure 4.3; p < 0.01, unpaired Student’s t-

test). Only a minor increase in ethidium EC50 values was observed for the two 

strains, whereas slightly higher cross-resistance for pentamidine (33-fold; n = 5) 

and diminazene (9-fold; n = 5) were observed in ISMR1, clone 3. Interestingly, 

the further adaptation to 15 µM ISM only did not increase resistance to any of 

the other drugs tested.  

4.5 Uptake studies and kinetic 
characterization 

Uptake of [3H] pentamidine was characterized in the ISMR clones in order 

to check whether any of the known pentamidine transporters have been altered 

in the clones. 

 

Table 4.1 Kinetic parameters of pentamidine uptake in different Trypanosoma brucei clones. 

[3H]-Pentamidine uptake was monitored as described in section 2.2.5. Km (µM) and Vmax 

(pmol/10e7 cells/s) values were subsequently derived from the Michaelis-Menten.saturation 

curve. ISMR1 clone 3 showed a significantly reduced LAPT1 activity (P < 0.05, unpaired Student’s 

t-test) compared to the same transporter activity in Tb427 wt. Values of Km and Vmax shown are 

averages of at least 3 independent determinations. 

The Vmax of LAPT1 was significantly reduced in ISMR1 clone 3 (P = 0.043, 

unpaired Student’s t-test). This suggests a decrease in the number of LAPT1 
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molecules on the plasma membrane of the trypanosomes. The significantly 

reduced Km (P = 0.018, unpaired student’s t-test) means that the organism 

balances reduced expression of the LAPT1 with an increased affinity (lower Km) 

for pentamidine. Since pentamidine is not the physiological ligand for this 

transporter, it suggests that pentamidine shares at least some functional 

group(s) with the physiological substrate and it is for this functional group that 

the affinity was increased.  

Similarly, ISM uptake measured by the innate fluorescence was 

significantly reduced in ISMR1 (P < 0.01; figure 4.4), compared to the wild type.  

 

Figure 4.4 Isometamidium uptake in Tb427 wt and resistant T. brucei. Assay was performed in 

triplicate with ~108 cells/ml of Tb427 wt and ISMR1 clone 1 in complete HMI-9 medium (+ 10% 

fetal bovine serum) at room temperature; [ISM] = 10 µM. ISM uptake was measured as described 

in section 2.2.5. Experiment shown is representative of three independent assays performed in 

triplicate and showing similar outcomes. The slope of each line represents the rate of uptake 

(µM/min). 
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4.6 Sequencing and analysis of AT-like genes 
from resistant clones. 

AT-like genes sequenced include TbAT1, TbAT-E and TbAT-A. Each gene 

was amplified from the ISMR1 and ISMR15 clones and Tb427 wt by PCR with 

Phusion polymerase using the specific primers listed in table 2.1, A-tailed, sub-

cloned into pGEMT easy vector and sent for sequencing.  

10 colonies each transformed with TbAT1 gene from Tb427 wt and ISMR15 

clone 1, respectively, and 9 from ISMR1 clone 3 were sequenced. The sequences 

from the two clones were identical to those from Tb427 wt, except for a single 

G to A nucleotide substitution at position 1127 (found in only 2 of the 10 colonies 

from ISMR15 clone 1). This substitution changes the codon TGC (for cysteine, 

uncharged but polar) to TAG (for tyrosine, also uncharged but polar) resulting in 

a conservative mutation. The sequence alignment result is presented in appendix 

C. 

Five colonies transformed with TbAT-E gene from ISMR15 clone 1 were 

sequenced, and none had any unique nucleotide change (all nucleotide changes 

found in these colonies were also present in either TbAT-E1 or TbAT-E2). Three 

of the colonies were identical to TbAT-E1 while the remaining two differed from 

TbAT-E1 by 5 nucleotide changes (they were however identical to TbAT-E2 at 

those 5 positions). TbAT-E2 however differed from all the sequenced colonies 

and from TbAT-E1 by possessing some 8 unique nucleotide changes (appendix C). 

Twelve colonies transformed with TbAT-A from ISMR15 clone 1 and 15 

colonies from ISMR1 clone 3 were sequenced, but none showed any unique 

nucleotide change when aligned with wild type sequences for TbAT-A1 to 6. The 

44 nucleotide deletion characteristic of TbAT-A5 and TbAT-A6 were present in 

five of the sequences from ISMR15 clone 1 and in six from ISMR1 clone 3, 
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suggesting that these two main types of sequences for TbAT-A (complete and 

incomplete) can co-exist in a single clone. None of the sequenced colonies had 

the TbAT-A3 allelle, since none had the distinguishing adenine nucleotide at 

position 327. All the other alleles of TbAT-A and all the sequenced colonies had 

a G nucleotide at that position (appendix C). 

4.7 Assay for sensitivity to oligomycin and 
FCCP 

Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) is a proton 

ionophore known to uncouple oxidative phosphorylation by transporting protons 

across the phospholipid bilayer membrane of the mitochondria (Benz & 

McLaughlin, 1983). Oligomycin on the other hand, inhibits F1F0 ATPase activity 

by causing a conformational change in the F0 portion of the complex that is 

transmitted to F1, resulting in an impaired binding of the substrate in the 

catalytic sites (Penefsky, 1985). It causes this change in conformation by binding 

to the OSCP (oligomycin sensitivity conferral protein) subunit of F0 (Schnaufer et 

al, 2005). 

 

Figure 4.5 Alamar blue assay with oligomycin and FCCP on ISMR clones and Tb427 wt. EC50 values 

were determined from alamar blue assays using 105 cells/ml of each cell line (section 2.2.3). 
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Each bar represents the average of at least 3 independent repeats and SEM; ***P < 0.001, 

unpaired Student’s t-test. 

Alamar blue was initially done with a number of compounds that either 

inhibit ATP production or directly inhibit ABC transporters. Compounds such as 

enrofloxacin, verapamil, TFP diHCl, prochlorperazine, CCCP, FCCP, valinomycin, 

oligomycin, potassium cyanide and sodium azide were tested on the ISMR clones 

and Tb427 wt. FCCP and oligomycin are the only ones of the inhibitors tested 

(full results not presented) that gave EC50 values differing significantly (P < 

0.001, unpaired Student’s t-test) between the ISMR clones and Tb427 wt (figure 

4.5). ISMR1 clone 3 and ISMR15 clone 1 were both 5-fold more resistant to 

oligomycin than the control Tb427 wt. This relative insensitivity to oligomycin 

led us to the prediction that the F1F0 ATPase complex has been compromised, 

since it was found that the insensitivity of T. evansi to oligomycin was due to its 

possession of an altered F1F0 ATPase complex (Schnaufer et al, 2005). Similarly, 

our theory of a compromised F1F0 ATPase in ISMR clones explains the increase in 

susceptibility to FCCP. The wild type F1F0 ATPase is fully functional and utilizes 

the energy of ATP to maintain the mitochondrial membrane potential (MMP) in 

Tb427 wt by pumping out protons; this explains why Tb427 wt has a significantly 

higher EC50 for the proton ionophore than the resistant lines with a dysfunctional 

proton pump (P < 0.001, unpaired Student’s t-test). The ISMR clones, whose F1F0 

ATPase is impaired and cannot pump protons out as quickly as FCCP activity 

allows them into the mitochondria, cannot maintain the MMP and these strains 

are thus more sensitive to FCCP. Therefore, we next assessed whether the MMP 

was different in the resistant clones. 
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4.8 Measurement of the mitochondrial 
membrane potential. 

Time point measurement of the MMP was done for Tb427 wt, ISMR1 clone 

3 and ISMR15 clone 1 after 1 h, 3 h and 5 h incubation in 0.5 µM ISM. The first 

hour results are presented in figure 4.6. The untreated control MMP value for 

both ISMR1 clone 3 and ISMR15 clone 1, representing their steady-state MMP, was 

found to be highly significantly reduced (P < 0.001, unpaired Student’s t-test) 

when compared to the value for the untreated control Tb427 wt. Similarly, the 

1h MMP value for the ISM-treated ISMR1 and ISMR15 clones was significantly 

lower (P < 0.01, unpaired Student’s t-test) than the value for ISM-treated Tb427 

wt. Comparing the MMP values for the ISM-treated versus the non-treated Tb427 

wt at the third and fifth hours (figure 4.7), the values for the ISM-treated cells 

were found to be significantly reduced (P < 0.001, unpaired student’s t-test). 

This indicates strongly that ISM is responsible for the significant reduction in the 

MMP values of the ISMR clones; i.e. incubation with ISM over several hours 

reduced the MMP, as the positively charged drug accumulates inside the 

mitochondrion, and one adaptation seems to be the lowering of the MMP, 

reducing the driving force for ISM uptake across the mitochondrial membrane. 
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Figure 4.6 MMP measurement in Tb427 wt, ISMR1 clone 3 and ISMR15 clone 1 after 1h incubation 

in 0.5 µM ISM in HMI-9 at 37oC and 5% CO2 (control cells were incubated for 1h in drug-free HMI-9 

medium). Cells were also incubated in 100 nM valinomycin and 10 µM troglitazone for 30 minutes 

as control (details in section 2.2 9) Each bar represents the average of at least 3 independent 

repeats and SEM; ***P < 0.001, **P < 0.01, unpaired Student’s t-test 

  

Figure 4.7 MMP at 1h, 3h and 5h time points for Tb427 wt exposed and unexposed to 0.5 µM ISM. 

106 Tb427 wt cells were incubated in HMI-9(drug free control) and in 0.5 µM ISM dissolved in HMI-

9 medium, respectively, at 37 oC and 5% CO2 for 1h, 3h and 5h before the MMP values were 

determined (details in section 2.2.9). ***P <0.001, unpaired Student’s t-test 
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4.9 Investigating the presence of kDNA in ISM-
resistant clones 

The function of generating the MMP by the F1F0 ATPase is still essential in 

the bloodstream form Tb427 wt, despite the stripped-down mitochondrial 

function in this life cycle stage (Schnaufer et al, 2005). The F1F0 ATPase complex 

is partially encoded in the mitochondrial DNA (Schnaufer et al, 2005), and 

oligomycin sensitivity is a conclusive marker for the presence of a functional 

kinetoplast DNA and a mitochondrial system for protein synthesis (Opperdoes et 

al, 1976). After finding that the ISMR clones had lost both their MMP and 

oligomycin sensitivity we therefore investigated the presence of kinetoplast DNA 

in these clones. 

 

Figure 4.8 Fluorescence microscopy showing the absence of kinetoplast DNA in ISMR clones; 

Tb427 wt is included as control. N = nucleus, K = kinetoplast. ISMR1 and ISMR15 were both 

selected for resistance to ISM by incubating in 1 µM and 15 µM ISM, respectively (figure 4.1). Both 
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clones lost their kDNA (kinetoplast DNA) during the selection process, as demonstrated above. 

The cells were not exposed to ISM as part of the fluorescence microscopy.  

Fluorescence microscopy using DAPI stain to view the DNA content of the 

cells showed that the ISMR clones have lost their kinetoplast DNA (figure 4.8). 

This finding was confirmed by PCR for some maxi circle markers (figure 4.9). 

Maxi circle genes in the mitochondria encode ATPase subunit 6 (A6) and NADH 

dehydrogenase subunits, ND4, ND5 and ND7 (Bhat et al, 1990;Vondruskova et al, 

2005). These mitochondrial genes are located in the kinetoplast and are usually 

intact in Tb427 wt which serves as the positive control. Also, actin which is a 

nuclear gene was also used as an internal control (to demonstrate presence of 

the nuclear DNA). Hence, the presence or absence of these maxi circle genes 

demonstrated by PCR reactions can serve as conclusive evidence of the presence 

or loss of these genes (and their loss indicates that the kDNA may have been 

compromised) as shown in figure 4.9. 

 

Figure 4.9 PCR showing the loss of maxi circle markers in ISMR clones. The nuclear-encoded gene 

Actin was included as a control. A6 = ATPase subunit 6; ND4, ND5, ND7 = NADH dehydrogenase 

subunits 4, 5 & 7 respectively. 
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The result of the DAPI staining and the PCR together led us to the 

conclusion that the ISMR clones must have lost their kinetoplast which contains 

the kDNA, and since ATPase subunit 6 (A6) gene is in the kDNA and is essential 

for their survival, we looked at the possibility that they have developed a 

compensation mutation (Schnaufer et al, 2005). 

4.10 Sequencing and analysis of the ATP 
synthase gamma gene from the ISMR clones. 

Schnaufer and colleagues (2005) suggested that the loss of the 

mitochondrial gene products (especially A6 which is a subunit of the F1F0 

ATPase) must be compensated for by mutation of the ATP synthase γ subunit to 

enable dyskinetoplastic trypanosomes to survive the loss of their kinetoplast 

(Schnaufer et al, 2005). These mutations alter the F1F0 ATPase complex and 

compensate for the loss of the mitochondrial gene products (Schnaufer et al, 

2005), hence they are called compensating mutations. The γ subunit is the 

central part of the F1 domain that protrudes from the membrane into the matrix 

and contains the nucleotide binding and catalytic sites (Atwal et al, 2004). ATP 

synthase γ gene from the ISMR clones and Tb427 wt was amplified with Phusion 

polymerase, A-tailed and sub-cloned into pGEMT easy vector and sequenced to 

check for the presence of mutations. The mutations identified are presented in 

figures 4.10 and 4.11. 
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Figure 4.10 Sequence of the ATPase gamma gene from Tb427 wt, ISMRI clone 3 and ISMR15 clone 

1. ATPase γ gene from each cell line was amplified by PCR, sub-cloned in pGEMT and cloned in 

XLI blue E. coli; plasmids extracted from colonies of transformed E. coli were subsequently 

sequenced (details in section 2.2.8). Mutation G37A replaces a negatively charged glutamic acid 

(E13) with a positively charged lysine (K13), and is therefore a non-conservative mutation of the 

central subunit of the F1 (catalytic) domain of the F1F0 ATPase. 

The first mutation, G37A (E13K) replaced a glutamic acid (acidic amino 

acid, GAG) with a lysine (basic amino acid, AAG). This mutation is clearly 

heterozygous (only one of the two alleles was mutated) since it appeared in 

about half of the colonies sequenced for each of the ISMR clones while the other 

half bore the wild type GAG codon (figure 4.10).  
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Figure 4.11 Sequence of the ATPase gamma gene from Tb427 wt, ISMRI clone 3 and ISMR15 clone 

1 (Sequencing was done exactly as described in legend to figure 4.10). Mutation C851A (S284*) 

replaces a serine residue with a stop codon, thereby truncating the γ-subunit of the F1 domain 

at a point 22 amino acids upstream the actual stop codon. 

The second mutation, C851A replaced a serine residue (TCG) with a stop 

codon (TAG), and is clearly homozygous (both alleles were mutated) since the 

point mutation appeared in all the colonies sequenced for each ISMR clone 

(figure 4.11). This point mutation terminates the amino acid sequence of the γ-

subunit prematurely, cutting off the last 22 amino acids (at the carboxyl 

terminal) before the actual stop codon for the gene. We assessed the 

significance of this sequence truncation by introducing this exact mutation into 

Tb427 wt and found that this mutation C851A-ATPase has a significant effect on 

the function of T. brucei brucei F1F0 ATPase since it was able to make the 

organism significantly resistant to ISM and EtBr (findings are presented in 

chapter 5).  
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4.11 Discussion 

Our results suggest that the rate of cell division in Tb427 was reduced on 

the induction of resistance to ISM (figure 4.2). This is consistent with the finding 

that ISMR clones have lost much of their MMP since it is MMP that drives the 

import into the mitochondria of proteins encoded by nuclear genes (Schnaufer et 

al, 2005). Therefore, since the mitochondrion needs to grow and divide as part 

of the cell division programme, and this growth depends on the insertion of 

newly synthesized constituents, resulting in expansion of the various 

compartments of each mitochondrion (Neupert, 1997), a reduction in MMP 

should reduce the rate of this transport of proteins, mitochondrial growth and 

ultimately cell division. Similarly, infectivity is a direct function of cell 

multiplication since every trypanosome cell can synthesize only a single variant 

surface glycoprotein (VSG) antigen (due to transcriptional control of gene 

expression); hence, antigenic variation is maintained by the differential and 

successive expression of a large number of different antigen genes (Pays, 1985). 

This suggests that infectivity is therefore indirectly dependent on MMP in T. b. 

brucei (findings from infectivity studies in mice are presented in chapter 5).  

Apart from the very high resistance to ISM in the ISMR clones, cross 

resistance was also developed to the related phenanthridine, ethidium bromide 

and to the diamidines, pentamidine and diminazene (figure 4.3). Cross 

resistance to diminazene is consistent with the cross resistance to tubercidin 

(figure 3.7) which is a marker for a defective P2 transporter; it is also consistent 

with the reduction of rate of ISM uptake to half by 333 µM diminazene (figure 

3.21). When all these are put together with the cross resistance to pentamidine 

(figure 4.3) and the inhibition of ISM uptake by pentamidine (figure 3.21; 

statistically insignificant), we can say that ISM is transported by a pentamidine 
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transporter that also transports diminazene, and that can only be the P2 

transporter (de Koning et al, 2004;Stewart et al, 2010). This builds on the 

observations reported in Chapter 3 and is further evidence that P2 is partly 

responsible for ISM uptake. The reduction in Vmax found for the low affinity 

pentamidine transporter, LAPT1 in ISMR1 clone 3 indicates that the expression of 

this transporter was down-regulated in the resistant line. This piece of evidence 

suggests a role for LAPT1 in ISM uptake as well. Part of the difficulty in studying 

ISM uptake seems to be that multiple transporters contribute to the process, 

none of them contributing a very major part of the total flux.  

FCCP works against the F1F0 ATPase complex by creating a channel to 

return protons into the mitochondria as the enzyme pumps them out to create 

the essential MMP. Oligomycin on the other hand is a specific inhibitor of the F0 

subunit of the F1F0 ATPase complex (Coustou et al, 2003b); it binds to the OSCP 

(oligomycin sensitivity conferral protein) subunit of F0 (Schnaufer et al, 2005). 

Hence, the loss of sensitivity to oligomycin is an indication that the F1F0 ATPase 

complex has been altered as is the case in dyskinetoplastid and akinetoplastid 

trypanosomes that have lost the F0 subunit (section 1.5.2). Figure 4.12 

summarizes our understanding of the effect of oligomycin and FCCP on ISM 

uptake and MMP. It is clear from the investigation that the high level of ISM 

resistance was multi-factorial, with adaptations reducing total drug uptake 

through TbAT1/P2 and probably through LAPT1, and the loss of kinetoplast and 

MMP, enabled by the mutation in the γ-subunit of the mitochondrial ATPase. 
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Figure 4.12 Model for explanation of the effects of oligomycin and FCCP on F1F0 ATPase. The 

F1F0ATPase uses the chemical energy of ATP to pump out protons from the mitochondrial matrix, 

creating a membrane potential, Ψm which facilitates ISM uptake. This potential can be wastefully 

dissipated in the presence of FCCP which creates a channel for the movement of protons back 

into the matrix. 

4.12 Conclusion  

ISM is transported into the trypanosomal mitochondria, down the MMP 

which is created and maintained by the F1F0 ATPase complex. This MMP is critical 

to the biogenesis of the mitochondria since it aids the import of proteins and 

other factors synthesized in the cytosol into the mitochondria.



 
 

5. ISM resistant clones are dyskinetoplastic; 

evidence for a new resistance marker 
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5.1  Introduction 

The knowledge of drug targets within the parasites is absolutely necessary 

for the judicious use of drugs especially when one is faced with resistance to a 

particular trypanocide and is trying to determine the best choice of drug to 

administer (Matovu et al, 2001). This knowledge is also very vital in making the 

choice of a drug pair to administer together as a combination therapy. In this 

case, a sound knowledge of the mechanism of action of the different drug 

candidates will certainly help in the selection of the pair that acts on different 

metabolic targets so that their combination produces a synergy (Matovu et al, 

2001). The intracellular target of ISM is yet to be elucidated. The results 

presented in chapter 4 have so far been correlative. Hence, we have 

demonstrated the loss of the mitochondrial DNA and mitochondrial membrane 

potential, and a set of mutations in the ATPase gamma gene of our resistant 

clones which are missing in the wild type strain. In this chapter, we demonstrate 

the importance of these changes to ISM resistance by reconstructing the 

resistance phenotype in the wild type Tb427.  

5.2 Site-directed mutagenesis of the wild type 
ATP synthase gamma gene to introduce the 
compensating mutation 

Of the two mutations identified in the ISM resistant clones, the nonsense 

mutation (S284*, C851A) was chosen for analysis because we believe that this 

mutation should have a greater impact on the ATP synthase gamma gene since it 

introduced a stop codon within the open reading frame of the gene, thus 

truncating the expected gene product. Site–directed mutagenesis was carried 

out on the construct, pEnT6-Blast + wt ATPase γ, as outlined in section 2.2.6.4 

and colonies of E. coli transformed with the mutated plasmid, pEnT6-Blast + 
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S284* ATPase γ were sequenced to check that the mutation was correctly 

introduced. One of the colonies found to have been transformed with the 

correctly mutated plasmid was grown in an overnight culture and mini-prepped 

to extract the mutated plasmid which was subsequently linearised with the NotI, 

purified with the Macherey-Nagel PCR clean up kit and concentrated by 

precipitation with ethanol. The resulting DNA sample was quantified on a nano-

drop Spectrophotometer and the volume containing 10 µg of DNA was used to 

transfect Tb427 wt cells. Three clones were subsequently selected under drug 

pressure, namely T.b.427 wt + pEnT6-Blast-S284*-ATPase γ clones 1, 2 and 3 (will 

be referred to as Tb427 wt + S284* ATPase γ clones in this chapter). ATP 

synthase gamma from the selected clones were generated by PCR, sub-cloned 

into pGEMT easy vector and sent to be sequenced to check for the presence of 

the compensating mutation, correct integration of the plasmid and to determine 

the genotype after the mutation (whether only one or both of the alleles of the 

ATP synthase was replaced by the mutated plasmid). 

                                                                                                                                                                                                  

Figure 5.1 Sequence of the ATPase gamma gene from Tb427 wt + S284* ATPase γ clones, 

immediately after transformation with pEnT6-Blast + C851A. ATPase γ. ATPase γ gene from each 

cell line was amplified by PCR, sub-cloned in pGEMT and cloned in XLI blue E. coli; plasmids 

extracted from colonies of transformed E. coli were subsequently sequenced (details in section 
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2.2.8). Mut1.3 used in the figure means E. coli colony number 3 of those transformed with ATP 

synthase gamma gene from Tb427 wt + S284* ATPase γ clone 1, etc. (figure 5.18 shows the 

position of the gamma subunit in the F1F0 ATPase complex). 

The mutation (C851A) can be seen to be visibly present in all the colonies 

sent for sequencing except in colony 1 of those picked for Tb427 wt + S284* 

ATPase γ clone 1 (mut1.1) which bears the wild type C nucleotide (figure 5.1). 

This result clearly indicates that Tb427 wt + S284* ATPase γ clone 1 is 

heterozygous for the C851A mutation (only one allele of the ATP synthase 

gamma was replaced by the mutated plasmid) while Tb427 wt + S284* ATPase γ 

clones 2 and 3 were both homozygous for the same mutation (both alleles of the 

ATP synthase gamma were replaced by the mutated plasmid). Thus, Tb427 wt + 

S284* ATPase γ clone 1 still has one copy of the wild type gene while Tb427 wt + 

S284* ATPase γ clones 2 and 3 carry the compensating mutation on both alleles 

of their ATP synthase gamma gene. To assess the effect of the introduced 

mutation on the wild type cell function, we measured the sensitivity to selected 

trypanocides, as well as the mitochondrial membrane potential. We also did 

fluorescence microscopy (DAPI staining) to check for the presence of the 

mitochondrial DNA. 
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Figure 5.2 Sensitivity of Tb427 wt + S284* ATPase γ clones to selected trypanocides in 

comparison to Tb427 wt + wt ATPase γ. EC50 values were determined by a modified alamar blue 
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assay; plates were seeded with 5 x 103 cells/ml density of all cell lines, incubated at 37oC and 5% 

CO2 for 72 hours before addition of alamar blue dye. Fluorescence values were measured 18 

hours after the addition of dye (details in section 2.2.3). WT = Tb427 wt; +WT ATPase = Tb427 wt 

+ wt ATPase γ; +S284* cl1 = Tb427 wt + S284* ATPase γ clone 1; etc. *P < 0.05, **P < 0.01, ***P < 

0.001, one way ANOVA using Graphpad prism 5.0 (n = 4).  

 The alamar blue assay protocol was modified to amplify differences in 

drug sensitivity between the clones. This amplification was achieved by 

incubating the cells in ISM or EtBr long enough for them to lose their kDNA (72 

hours was found to be sufficient for the cells to lose their kinetoplasts). Hence, 

the seeding density was reduced from 105 cells/ml to 5 x 103 cells/ml; alamar 

blue dye was added after 72 hours of incubation and the fluorescence was 

measured exactly 18 hours after. All three clones, Tb427 wt + S284* ATPase γ 

clones 1, 2 and 3 were significantly more resistant to ISM, diminazene and 

pentamidine  than both controls Tb427 wt and Tb427 wt + wt ATPase γ, when 

analysed by one way ANOVA, using the PRISM software (figure 5.2). All three 

clones were much more resistant to ISM (at least 100 folds) and EtBr (at least 

240 folds) than to diminazene (5 folds) and oligomycin (5 folds), when compared 

to Tb427 wt + wt ATPase γ; resistance to pentamidine amounted to only about 2 

folds in all the clones (figure 5.2). The cross-resistance to oligomycin directly 

indicates that the γ-subunit of the organisms’ F1F0-ATPase has been 

compromised. 
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Figure 5.3 Sensitivity of Tb427 wt + S284* ATPase γ clones to oligomycin. EC50 values were 

determined by a modified alamar blue assay; plates were seeded with 5 x 103 cells/ml density of 

all cell lines, incubated at 37oC and 5% CO2 for 72 hours before addition of alamar blue dye. 

Fluorescence values were measured 18 hours after the addition of dye (details in section 2.2.3). 

WT = Tb427 wt; +WT ATPase = Tb427 wt + wt ATPase γ; +S284* cl1 = Tb427 wt + S284* ATPase 

clone 1; etc. ***P < 0.001, one way ANOVA using Graphpad prism 5.0 (n = 4).  
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Figure 5.4 Mitochondrial membrane potential assay for Tb427 wt + S284* ATPase clones. Cells 

were incubated in 0.5 µM ISM for 1h, in 100 nM valinomycin or 10 µM troglitazone for 30 minutes; 

all samples were then centrifuged at 1500 x g and resuspended in 25nM TMRE 

(tetramethylrhodamine ethyl ester; section 2.2.9). All control cells were incubated for 1h in 

fresh HMI-9 media. Tb427 wt control cells were used to calibrate the flow cytometer to 50% 

before measurements are made for other cell types (more details in section 2.2.9). *P < 0.05, **P 

< 0.01, ***P < 0.001, unpaired Student’s t-test (n = 3). 

A measurement of the mitochondrial membrane potential of the Tb427 wt 

+ S284* clones indicates that significant reductions in the mitochondrial 

membrane potential have already occurred. Though the individual mitochondrial 

membrane potential values are not as low as those found for the ISMR clones; 

the significantly reduced mitochondrial membrane potential values at this stage 

indicate that a reduced mitochondrial potential may be necessary for ISM 

resistance. 
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Figure 5.5 Fluorescence microscopy images showing DAPI stain of cellular DNA of Tb427 wt + 

S284* ATPase γ clones 1 and 2. S284* clone 1 = Tb427 wt + S284* ATPase γ clone 1, etc. 

When the fluorescence microscopy images of DAPI stained cells were 

taken, it was found that the kinetoplasts were still intact. Hence, the 

compensating mutation we had introduced does not cause the spontaneous loss 

of the kinetoplast, i.e. without selective pressure. 

5.3 Exposure of Tb427 wt + S284* clones to 
Isometamidium or Ethidium 

To demonstrate the selective advantage that possession of the 

compensating mutation confers on the trypanosomes, the Tb427 wt + S284* 

clones were exposed at a density of 103 cells/ml to 20 nM ISM or Ethidium 

bromide (EtBr), with Tb427wt cells as control, to demonstrate their relative 

insensitivity to either ISM or ethidium bromide. Cell counts were also taken 

every 12 hours and plotted (figure 5.6). Tb427 wt + S284* clones were all able to 

multiply in 20 nM ISM or ethidium bromide though they have no previous contact 

with either drug. Tb427 wt cells were however unable to multiply in either ISM 

or ethidium bromide. This is direct evidence that the C851A mutation adapts the 
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parasites for survival under drug pressure and so this mutation confers a 

selective advantage to the trypanosomes for survival in ISM or ethidium bromide. 
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Figure 5.6 In vitro mearsurement of rate of multiplication of Tb427 wt + S284* ATPase clones in 

ISM or EtBr. Assay was started with a 103 cells/ml seeding density for all cell lines, in the 

presence of 20 nM ISM or EtBr. Cell density was measured by counting on a haemocytometer 

once every 24 hours. All cell lines were sub-cultured to 103 cells/ml after the 4th day count. 
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5.3.1 In vitro measurement of resistance to 
trypanocides 

Next was the re-assessment of the sensitivity to the trypanocides after 

incubation for a total of about 12 days in ISM or EtBr. The same protocol for 

modified alamar blue outlined in section 5.2 was used. 
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Figure 5.7 Cross-resistance to pentamidine in Tb427 wt + S284* ATPase clones before and after 

incubation in 20 nM ISM or EtBr. EC50 values were determined by a modified alamar blue assay; 

plates were seeded with 5 x 103 cells/ml density of all cell lines, incubated at 37oC and 5% CO2 

for 72 hours before addition of alamar blue dye. Fluorescence values were measured 18 hours 

after the addition of dye (details in section 2.2.3; ISMR clones were included for comparism). 

+WT ATPase = Tb427 wt + wt ATPase γ; +S284* cl1I = Tb427 wt + S284* ATPase clone 1 cells after 

incubation in 20 nM ISM; +S284* cl1E = Tb427 wt + S284* ATPase clone 1 cells after incubation in 

20 nM EtBr; etc. *P < 0.05, **P < 0.01, ***P < 0.001, unpaired Student’s t-test (n ≥ 3). Tb427 wt + 

S284* ATPase clones were compared with Tb427 wt + wt ATPase γ while the ISMR clones were 

compared with the untransformed Tb427 wt.  
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Figure 5.7 shows that resistance to pentamidine was significant in all 

three Tb427 wt + S284* ATPase γ clones before incubation in ISM or EtBr (figure 

5.7, consistent with figure 5.2). This resistance was generally reduced after 

about 12 days incubation in ISM or pentamidine (Tb427 wt + S284* ATPase γ 

clone 2E is actually significantly more sensitive to pentamidine than Tb427 wt + 

wt ATPase!). The trend in figure 5.7 (also considering ISMR1 clone 3 and ISMR15 

clone 1) when combined with data for resistance to ISM after ISM or EtBr 

incubation strongly suggests a reciprocal relationship between pentamidine and 

ISM resistance. 
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Figure 5.8 Resistance to ISM and cross-resistance diminazene in Tb427 wt + S284* ATPase clones 

before and after incubation in 20 nM ISM or EtBr (experiment was performed as described in the 

legend to figure 5.7, ISMR clones were included for comparism). +WT ATPase = Tb427 wt + wt 

ATPase γ; +S284* cl1I = Tb427 wt + S284* ATPase clone 1 cells after incubation in 20 nM ISM; 

+S284* cl1E = Tb427 wt + S284* ATPase clone 1 cells after incubation in 20 nM EtBr; etc.  

***P<0.05, **P < 0.01, P < 0.001, unpaired Student’s t-test (n ≥ 3). Tb427 wt + S284* ATPase 

clones were compared with Tb427 wt + wt ATPase γ while the ISMR clones were compared with 

the untransformed Tb427 wt. 
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Resistance to diminazene remained fairly constant across the clones after 

the incubation in ISM or EtBr. The point of interest however is that the large 

difference in level of resistance to either ISM or diminazene between the Tb427 

wt + S284* ATPase γ clones and the ISMR clones seems to suggest that there are 

other factors contributing to ISM and diminazene resistance in the drug-adapted 

clones ISMR1 and ISMR15 (difference in the rate of uptake and accumulation is in 

fact another important factor, which we have discussed in chapter 3). The 

reverse however seems to be the case for EtBr and oligomycin (figure 5.8). The 

similarity in the level of resistance to these two compounds in both the Tb427 wt 

+ S284* ATPase γ clones and the ISMR (drug-adapted) clones seems to suggest 

that the mechanism of resistance to oligomycin and EtBr depends on mutating 

the γ-subunit of the F1F0-ATPase alone. 
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Figure 5.9 Cross-resistance to EtBr and oligomycin in Tb427 wt + S284* clones before and after 

incubation in 20 nM ISM or EtBr (experiment was performed as described in the legend to figure 

5.7, ISMR clones were included for comparism). +WT ATPase = Tb427 wt + wt ATPase γ; +S284* 

cl1I = Tb427 wt + S284* ATPase γ clone 1 cells after incubation in 20 nM ISM; +S284* cl1E = Tb427 

wt + S284* ATPase γ clone 1 cells after incubation in 20 nM EtBr; etc.  **P < 0.01, ***P < 0.001, 

one way ANOVA using Graphpad prism 5.0 (n ≥ 3). Tb427 wt + S284* ATPase γ clones were 
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compared with Tb427 wt + wt ATPase γ while the ISMR clones were compared with the 

untransformed Tb427 wt.  

5.3.2 The mitochondrial membrane potential 

The mitochondrial membrane potential (MMP) was further reduced in the 

Tb427 wt + S284* ATPase γ clones after they were incubated in ISM and EtBr 

(figure 5.10). 
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Figure 5.10 Mitochondrial membrane potential (MMP) of Tb427 wt + S284* ATPase clones, drug-

free and after 1h incubation in 0.5 µM ISM, to determine the effect of 72 hours incubation in 

20nM ISM or EtBr on the MMP of mutant cells (experiment was performed as described in the 

legend to figure 5.4). +WT ATPase = Tb427 wt + wt ATPase γ; +S284* cl1I = Tb427 wt + S284* 

ATPase γ clone 1 cells after incubation in 20 nM ISM; +S284* cl1E = Tb427 wt + S284* ATPase γ 

clone 1 cells after incubation in 20 nM EtBr; etc.  **P < 0.01, ***P < 0.001, one way ANOVA test 

using Graphpad prism 5.0.  

Generally, for the three clones of Tb427 wt + S284* ATPase γ incubated 

for about 12 days in 20 nM ISM or EtBr, the trend in figure 5.10 suggests that 

incubation in 20 nM ISM seems to reduce the MMP more than 20 nM EtBr. 
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5.3.3 Fluorescent microscopy 

Fluorescence microscopy of DAPI-stained cells showed that Tb427 wt + 

S284* ATPase γ clones I and E may have lost their kinetoplasts in the 12 days of 

incubation in ISM or EtBr. 

 

Figure 5.11 Fluorescent microscopy of DAPI-stained images of Tb427 wt + S284* ATPase γ clones 

1I and 1E, showing apparent loss of kinetoplast. 

 

Figure 5.12 Fluorescent microscopy of DAPI-stained images of Tb427 wt + S284* ATPase γ clones 

3I and 3E, showing apparent loss of kinetoplast. 
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5.3.4 Loss of Kinetoplast PCR. 

Considering that Tb427 wt + S284* ATPase γ clone 1 was heterozygous for the 

mutation S284* before the incubation in ISM or EtBr (figure 5.1), we next 

used PCR to further ascertain if some or all the markers for the mitochondrial 

DNA was lost. 

 

Figure 5.13 PCR showing the loss of maxi circle markers in Tb427 wt + S284* ATPase γ clones 1E 

and I, and clones 3E and I. The nuclear-encoded gene Actin was included as a control. A6 = 

ATPase subunit 6; ND4, ND5, ND7 = NADH dehydrogenase subunits 4, 5 & 7 respectively. 

The PCR of kinetoplast DNA indicates that the markers checked for were 

lost in Tb427 wt + S284* ATPase γ clones 3E and 3I while Tb427 wt + S284* 

ATPase γ clone 3, the unexposed mutant from which these clones were derived 

showed the presence of all the markers. On the other hand, Tb427 wt + S284* 

clone 1I was found to have lost only some of the markers for mitochondrial 

genome while Tb427 wt + S284* ATPase γ clones 1E seems to have lost all the 

markers. This would seem to suggest that the homozygous status of Tb427 wt + 

S284* ATPase γ clone 3 with respect to the compensating mutation aided the loss 

of its kinetoplast on exposure to ISM or EtBr. Tb427 wt + S284* ATPase γ clone 1 

however being heterozygous with one wild-type unreplaced ATPase gamma gene 
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may have been slower to lose kinetoplast DNA. We conclude that the 

introduction of the S284* mutation (and thus truncating the gene for the γ-

subunit of the F1F0-ATPase) rendered the mitochondrial genome non-essential 

under the experimental conditions, explaining the ease by which it is lost on 

exposure to EtBr (Lai et al, 2008;Chen & Clark-Walker, 1999). This is an 

indication of the efficiency with which EtBr (ISM) produces dyskinetoplastic 

trypanosomes once the mutation has been introduced in the γ-subunit of the 

F1Fo-ATPase.The γ-subunit of the Tb427 wt + S284* ATPase γ clones 1, 1E and 1I 

clones were re-sequenced to verify whether the heterozygous status of these 

Tb427 wt + S284* clones 1 was retained after the incubation in ISM or EtBr. 

5.4 Sequencing of Tb427 wt + S284* clones 1I 
& 1E 

ATPase gamma gene from Tb427 wt + S284* ATPase γ clones 1, 1E and 1I was 

amplified by PCR using Taq polymerase, employing the primers for ATPase γ 

forward and reverse (table 2.1). PCR products were purified using the Macherey-

Nagel Nucleospin gel and PCR clean-up kit, and sent for sequencing. The 

sequence results are presented below.  

 

Figure 5.14 Sequence of the γ-subunit of the F1F0-ATPase from Tb427 wt + S284* clone 1 showing 

the trace data. The trace data at the point of mutation (conflict) shows that the alleles of this 

gene in Tb427 wt + S284* clone 1 are heterozygous for this mutation  
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Figure 5.15 Sequence of the γ-subunit of the F1F0-ATPase from Tb427 wt + S284* clone 1I showing 

the trace data. The trace data at the point of mutation (conflict) shows that the alleles of this 

gene in Tb427 wt + S284* clone 1I remained heterozygous for this mutation after 72 hours 

incubation in ISM. 

Tb427 wt + S284* ATPase γ clone 1 sequence (figure 5.14) shows a C to A 

mutation that is distinctively heterozygous from the trace data which at that 

point displays two clear peaks, a higher green peak (for Adenosine nucleotide) 

under which there is a clear smaller blue peak (for cytosine nucleotide).  

 

Figure 5.16 Sequence of the γ-subunit of the F1F0-ATPase from Tb427 wt + S284* clone 1E 

showing the trace data. The trace data at the point of mutation (conflict) shows that the alleles 

of this gene in Tb427 wt + S284* clone 1E remained heterozygous for this mutation after 72 hours 

incubation in EtBr.  
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The trace data for Tb427 wt + S284* clones 1I and 1E (figures 5.15 and 

5.16) retained the double peak for cytosine and adenosine nucleotides, 

suggesting that the heterozygous status of both clones was not lost during the 

incubation in ISM or EtBr. 

5.5 Infectivity of ISMR and S284* clones in 
mice 

ISMR and S284* ATPase γ clones were used to infect mice to verify if these 

clones are still able to establish and sustain infection. Tb427 wt was used as the 

positive control. 
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Figure 5.17 Study of infectivity of ISMR and S284* ATPase γ clones in mice; plot of logarithm of 

average cell density for each group. Each group consists of 5 mice, each of which was inoculated 

with 200,000 trypanosomes via the intraperitoneal route to start the experiment. Blood was 

drawn from tail puncture daily, starting after 24 hours, to monitor parasitemia. Each bar 

represents the average density of trypanosome per group per day and SEM. Experiment was 

terminated after the 5th day count. 
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Each group was composed of 5 mice. 100 % of the group inoculated with 

Tb427 wt progressed to the terminal stage of the disease in 3 days while 60 % of 

the group infected with Tb427 wt + S284* ATPase γ clone 3 reached the terminal 

stage in the same length of time and 80 % progressed to the terminal stage on 

the 4th day. The average plotted for Tb427 wt + S284* ATPase γ clone 3 on the 

5th day was for the two surviving mice. None of those inoculated with ISMR1 

clone 3 or ISMR15 clone 1 reached the terminal stage of the disease within the 

duration of the experiment, and parasitaemia was much lower than in wild type 

controls, not exceeding 104 cells/ml compared to > 106 cells/ml in the wild type. 

The surviving mice were euthanized on the fifth day to end the experiment. 

5.6 Discussions 

The reconstruction of resistance phenotypes by transformation of the 

sensitive wild type cells has been emphasized as the most acceptable proof of 

the mechanism of resistance (Borst & Ouellette, 1995). Hence, the mechanism 

can only be considered as resolved if after the transformation, the wild type 

strain attains the same level of resistance as the resistant strain (Borst & 

Ouellette, 1995). We have reconstructed ISM resistance in wild type Tb427 cells 

by transforming them with replacement plasmids bearing a mutated 

Trypanosoma brucei brucei ATPase gamma gene. Both alleles of this gene were 

replaced in Tb427 wt + S284* ATPase γ clones 2 and 3 while only one was 

replaced in Tb427 wt + S284* ATPase γ clone 1. However, this mutation proved 

to be a dominant mutation since the same level of phenotypic difference 

occurred in heterozygous (clone 1) and homozygous (clones 2 and 3) clones. Each 

clone was significantly more resistant (p < 0.01, unpaired student’s t-test) than 

the control transformed the wild type ATPase gamma gene in the same vector 

(figure 5.2). The introduction of this mutation, though truncating the ATPase 
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gamma gene, did not cause a spontaneous loss of the kinetoplast in the 

transformed parasites (figure 5.5). However, the presence of this mutation 

seems to hasten the ease of loss of the kinetoplast, since the kinetoplast was 

found to have disappeared on only the 3rd day of incubation in 20 nM ISM or EtBr. 

 

Figure 5.18 Diagram showing the two domains of the F1F0 ATPase and the position of the γ 

subunit in the oligomer Taken from http://www.lycera.com/approach-bioenergetics.php. 

 Similarly, the mitochondrial membrane potential of the transformed 

parasites, though significantly lower than the wild type potential (p < 0.001, one 

way ANOVA) was only lost after incubation in ISM or EtBr. The large difference in 

the resistance to ISM between the Tb427 wt + S284* ATPase γ clones and the 

ISMR clones should be accounted for by the contribution made by reduced 

uptake to ISM resistance. The long adaptation to very high levels of ISM clearly 

http://www.lycera.com/approach-bioenergetics.php
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produced multi-factorial resistance. Hence, Tb427 wt + S284* ATPase γ clones 

are at a lower level of resistance to ISM because only one mechanism of 

resistance operates in these parasites, namely S284* mutation of the ATPase 

gamma gene. In the case of resistance to EtBr and oligomycin acquired  by 

transformation with the defective ATPase subunit (figure 5.9, figure 5.18) the 

ATPase gamma gene mutation is the sole mechanism of resistance to these drugs 

since the introduction of this mutation to the wild type Tb427 was enough to 

bring them to the same level of resistance as the ISMR clones.  

Maintenance of normal MMP seems to depend on the presence of a 

functional kinetoplast. Since the mitochondrial F1F0-ATP synthase was found to 

be responsible for the maintenance of this potential (Nolan & Voorheis, 1992), 

and subunit A6, which is encoded by a maxicircle gene, is part of the F0 

component of this enzyme (Schnaufer et al, 2002). Hence the loss of kinetoplast 

DNA would be expected to deprive the cell of its usual mechanism of using an 

F1F0-ATPase working in reverse to maintain its MMP (Schnaufer et al, 2005). This 

is consistent with our finding that the MMP of the S284* ATPase γ clones did not 

decrease to the level found in the ISMR clones until after the loss of their 

kinetoplasts (after incubation in ISM/ethidium bromide). Our finding that the 

loss of the kDNA is enhanced only in the presence of a compensating mutation 

(figures 5.6, 5.10 and 5.11) is consistent with earlier findings that suggest that 

the kinetoplast is essential to the bloodstream form T. brucei (Timms et al, 

2002). Also, because of the essential requirement of the mitochondria for 

procyclic life, it is believed that Dk and Ak parasites may have lost the ability to 

survive as procyclics in the tsetse fly due to their inability to carry out oxidative 

phosphorylation (Schnaufer et al, 2002), and so these organisms may have 

gained the resistant phenotype at a great cost.   
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5.7 Conclusion 

We can conclude at this point that S284* mutation of Tb427 wt ATPase γ 

gene is a reproducible resistance marker in T. b. brucei. This mutation is 

dominant and is the only mechanism of resistance to EtBr and oligomycin. In ISM 

resistance however, this mutation is aided by a reduction in the uptake of the 

drug. Our findings also lead to the conclusion that loss of kinetoplast DNA 

correlates with, and coincides with, the loss of the MMP observed in our clones. 

Finally, resistance to ISM due to loss of MMP and ATPase γ-subunit mutations 

produces various levels of cross resistance to EtBr, diminazene, oligomycin and 

pentamidine. Resistance to pentamidine however seems to disappear as the 

level of resistance to ISM increases.



 
 

 

6. Aquaporin-2 expression enhances 

pentamidine but not ISM uptake: An 

investigation into the genetic identity of the 

High Affinity Pentamidine Transporter 

(HAPT1). 
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6.1. Introduction 

The biggest problem facing chemotherapy as a means of control of African 

trypanosomiasis is the problem of resistance (Teka et al, 2011). Since an 

understanding of the mechanism of resistance is necessary for either the 

reversal or prevention of this problem, knowledge of the mechanisms of 

resistance is therefore as important as the development of new drugs (Bridges et 

al, 2007). Resistance to pentamidine can be attributed to changes in the 

intracellular drug target, reduced uptake of the drug or active extrusion from 

the cell by an ABC-type efflux pump (Bridges et al, 2007), though reduction in 

drug uptake seems to be the most important mechanism of arsenical and 

diamidine resistance in African trypanosomes. Indeed, the High Affinity 

Pentamidine Transporter, HAPT1 has been identified as the major determinant 

for high-level arsenical-diamidine cross-resistance in African trypanosomes 

(Bridges et al, 2007).  

It has already been established that pentamidine is salvaged by three 

distinct transport activities in bloodstream trypanosomes, the P2 aminopurine 

transporter responsible for the adenosine sensitive uptake; the high-affinity 

pentamidine transporter (HAPT1) and the low-affinity pentamidine transporter 

(LAPT1) that both mediate adenosine-insensitive uptake (de Koning, 

2001b;Matovu et al, 2003). It was also demonstrated that the TbAT1, an ENT 

gene expresses the P2 transporter (Mäser et al, 1999), but the gene responsible 

for either the HAPT1 or the LAPT1 is unknown. Since pentamidine is transported 

efficiently by bloodstream forms in the absence of P2, and the deletion of TbAT1 

alone confers only a minimal level of resistance to pentamidine, it is therefore 

important to identify and characterize the non–P2-mediated uptake systems 

(Teka et al, 2011). This is even more important since it had been demonstrated 
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that TbAT1(-/-) trypanosomes were still sensitive to diamidines at concentrations 

close to 1 µM in vitro (Matovu et al, 2003). Both the HAPT1 and the LAPT1 have 

been fully characterized biochemically in both the procyclic and the 

bloodstream forms of the trypanosomes (de Koning, 2001b). We attempt in this 

chapter to identify the gene responsible for the HAPT1 activity in bloodstream 

form T. brucei brucei. Very recently a further determinant for drug 

sensitivity/resistance in T. brucei was identified; using a fully validated RNAi 

library, a genome-wide screen for pentamidine resistance turned up fragments 

of the Aquaporin 2 (AQP2) gene(Alsford et al, 2012). We subsequently found that 

the wild type copy of this gene had been lost in our pentamidine-resistant line 

B48, which instead contained a novel chimeric gene consisting of parts of AQP2 

and the adjacent gene AQP3, possibly arising from a cross-over event. B48 is a 

standardised cell line which has been shown to have lost both the HAPT1 and the 

P2 transporter, and so possesses only the LAPT1 activity. This strain did still 

contain wild-type copies of AQP1 and AQP3. In addition, we mentioned in 

chapter 3 that TbAT-E is the most closely related gene to TbAT1 and a likely 

candidate for the role of HAPT1 (de Koning et al, 2005). We therefore 

considered it necessary to assess the ability of both genes to take up 

pentamidine (when expressed in an appropriate T. b. brucei background or in a 

heterologous expression) and hence determine if either of them would display 

similar (or the same) kinetic parameters already published for HAPT1 (de Koning, 

2001b). Therefore, the contributions of TbAT-E and TbAQP2 to pentamidine 

uptake and sensitivity were investigated and are reported here. 
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6.2. Uptake of [
3
H]-pentamidine by Tb427 

TbAT-E dKO cells. 

The deletion of both alleles of TbAT-E from Tb427 wt was done by Dr. 

Jane Munday. The effect of this deletion on [3H]-pentamidine uptake was 

assessed and the result showed that the deletion of TbAT-E did not affect [3H]-

pentamidine uptake (figure 6.1). HAPT1 (inhibited by propamidine) and LAPT1 

activities (propamidine insensitive; approx. 20% of uptake) were both still 

present after TbAT-E deletion as shown in figure 6.1. This suggests that TbAT-E 

may not be responsible for the HAPT1 activity, or indeed for the LAPT1 activity. 
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Figure 6.1 Uptake of 30 nM [3H]-pentamidine by TbAT-E-dKO in Tb427 and Tb427 wt control. Rate 

of uptake was determined by incubating ~ 107 cells per experiment in the presence of 30 nM 

[3H]-labelled Pentamidine at room temperature (section 2.2.5). Experiment shown is 

representative of three identical but independent assays, each performed in triplicate and 

showing virtually identical outcomes. 

6.3. Effect of TbAT-E1 and TbAQP2 expression 
on drug sensitivity in T. b. brucei.  

TbAT-E1 and TbAQP2 were cloned into pHD1336 and separately expressed 

in B48 cell line by Dr Jane Munday. Their sensitivity to some important 

trypanocides was tested, and the results presented in figure 6.2 and 6.3. B48 
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cells showed a much higher susceptibility to ISM, compared to the wild type 

Tb427 (Figure 6.2). This is surprising, since the B48 cells have been 

characterised and found to have lost both the P2 and the HAPT1 transporters 

(Bridges et al, 2007) and indeed ISM uptake was significantly lower in this cell 

line than in the control wild-type strain (Figures 6.9 and 6.10; P < 0.01). This 

susceptibility is somewhat reduced by the expression of aquaporin 2 gene in the 

B48 cells (though this did not amount to statistical significance, figure 6.2); this 

again is an observation that is quite difficult to explain but certainly shows that 

ISM resistance is not solely the result of different uptake rates. 
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Figure 6.2 Overview of drug sensitivity in a few selected cell lines compared to T. b. 427 wt. 

Sensitivity was determined by alamar blue assay, using 105 cells/ml of each cell line, and 

incubating the assay at 37oC and 5% CO2 for 48 hour before addition of alamar blue dye. 

Fluorescence was measured 24 hours after addition of dye. ***P < 0.001; **P < 0.01; *P < 0.05 

(One way ANOVA using Graph pad prism 5.0). 
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Expression of TbAQP2 in B48 cells completely reversed the resistance of 

the B48 cells to pentamidine (figure 6.2) and cymelarsan (figure 6.3), returning 

the cells to wild type sensitivity to each drug. TbAT-E1 expression in B48 on the 

other hand had no effect on pentamidine sensitivity (figure 6.2). It also could 

not reverse B48 resistance to cymelarsan (this assay was done only once, and is 

not shown on the graph). 
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Figure 6.3 Effect of AQP2 expression on the sensitivity of B48 to cymelarsan. Sensitivity was 

determined by alamar blue assay, using 105 cells/ml of each cell line, and incubating the assay 

at 37oC and 5% CO2 for 48 hour before addition of alamar blue dye. Fluorescence was measured 

24 hours after addition of dye. ** P < 0.01; * P < 0.05 (One way ANOVA using Graph pad prism 

5.0). 

6.4. [
3
H]-Pentamidine uptake by TbAQP2 

expression in B48. 

TbAQP2 was sub-cloned into pHD1336 and expressed in B48 cells by Dr. 

Jane Munday. Uptake of 50 nM and 1 µM [3H]-pentamidine was subsequently 

assessed in the resultant clones with B48 as control. As stated earlier, B48 cells 

have lost both the P2 transport activity (which was deleted, since B48 was 
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derived from TbAT1(-/-)) and the HAPT1 but still has the low affinity pentamidine 

transport (LAPT1) activity. Hence our prediction was that the rate of LAPT1-

mediated [3H]-pentamidine uptake would be similar in B48, TbAT1(-/-) and B48 + 

AQP2 (figure 6.4). 
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Figure 6.4 Low affinity [3H]-pentamidine timecourse uptake by TbAQP2 expression in B48. Rate 

of uptake was determined by incubating ~ 107 cells per experiment in the presence of 1 µM [3H]-

labelled Pentamidine at room temperature (section 2.2.5). Saturability was verified in the 

presence of 1mM unlabelled permeant. Experiment shown is representative of three identical 

but independent assays, each performed in triplicate and showing virtually identical outcomes. 

 

Figure 6.5 Summary of LAPT-mediated [3H]-Pentamidine uptake. Each bar is the average of 3 

independent [3H]-Pentamidine uptake assays represented by figure 6.4, error bar is SEM. Data 

was analyzed with 1-way ANOVA/Tukey’s test using GraphPad Prism 5.0.  **P<0.02. 
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However, the summary of pentamidine transport in these cell lines (figure 

6.5) shows that the rate of 1 µM [3H]-pentamidine uptake is significantly up-

regulated in B48 + AQP2 (P < 0.02, 1 way ANOVA using the PRISM software) when 

compared to the B48. However, this increase in LAPT1 activity is not significant 

when compared to the TbAT1(-/-) control (figure 6.5). While uptake of 1 µM 

labelled pentamidine is routinely used as a marker for low affinity pentamidine 

uptake, it does obviously contain within it the high affinity uptake component as 

well, though it saturates this activity. Thus, the results presented here do not 

necessarily indicate increased LAPT1 activity, but could also indicate a very 

substantial increase in HAPT1 activity. 
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Figure 6.6 High affinity [3H]-pentamidine timecourse uptake by TbAQP2 expression in B48. Rate 

of uptake was determined by incubating ~ 107 cells per experiment in the presence of 50 nM 

[3H]-labelled Pentamidine at room temperature (section 2.2.5). Saturability was verified in the 

presence of 1mM unlabelled permeant. Experiment shown is representative of three identical 

but independent assays, each performed in triplicate and showing virtually identical outcomes. 
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Figure 6.7 Summary of HAPT-mediated [3H]-Pentamidine uptake. Each bar is the average of 3 

independent [3H]-Pentamidine uptake assays represented by figure 6.6, error bar is SEM. Data 

was analyzed with 1-way ANOVA/Tukey’s test using GraphPad Prism 5.0.  **, P<0.02; ***, P<0.01 

Indeed, the re-expression of TbAQP2 in B48 seems to return the lost 

HAPT1 activity to this line (figures 6.6 & 6.7). A summary of the rate of high 

affinity pentamidine uptake shows that the rate in B48 + AQP2 is significantly 

higher than in B48 (P < 0.02, 1 way ANOVA using the PRISM software). This result 

is in agreement with the finding that TbAQP2 expression in B48 increases the 

sensitivity to pentamidine of the B48 line to the level of the wild type 

trypanosomes (figure 6.8). B48 was significantly more resistant than the wild 

type control (p<0.01) while B48 + AQP2 was not significantly different from the 

control.A similar trend was observed when comparing the sensitivities of AQP2 

KO (AQP2 deletion from 2T1) and AQP2+3 dKO (AQP2 and AQP3 deletion from 

2T1) (Baker et al, 2012). Both AQP2 KO and AQP2+3 dKO were significantly more 

resistant to pentamidine than the parental 2T1 (p < 0.0001, unpaired Student’s 

t-test; figure 6.8). However, AQP2+3 dKO was not significantly more sensitive to 

pentamidine that AQP2 KO, indicating that the contribution of AQP3 to 

pentamidine sensitivity is minimal. Deletion of AQP3 alone was not done.  
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Figure 6.8 Effect of TbAQP2 expression on pentamidine sensitivity. Sensitivity was determined by 

alamar blue assay, using 105 cells/ml of each cell line, and incubating the assay at 37oC and 5% 

CO2 for 48 hour before addition of alamar blue dye. Fluorescence was measured 24 hours after 

addition of dye. Data was analyzed with unpaired Student’s t-test using GraphPad Prism 5.0. 

***P<0.0001. 

6.5. The contribution of the TbAQP2 to ISM 
uptake in T. b. brucei 

TbAT1 KO cells (TbAT1(-/-)) were derived from s427wt by a deletion of the 

TbAT1 gene (Matovu et al, 2003). B48 cells were in turn derived from the TbAT1 

KO cells by adapting them to higher levels of pentamidine resistance leading to 

the loss of the high affinity pentamidine transporter (HAPT1) activity in the B48 

cells (Bridges et al, 2007). Hence B48 cells lack both the P2 and HAPT1 transport 

activities. We therefore expressed the AQP2 gene in B48 and studied ISM uptake 

in this cell line, compared with ISM uptake in the B48 line. Hence any difference 

in ISM uptake between them can be attributed to the activity of the protein 

expressed by the TbAQP2 gene. 
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Figure 6.9 Timecourse uptake of ISM by some selected cell lines; [ISM] = 10 µM. Assay was 

performed in triplicate with ~108 cells/ml of each cell line in complete HMI-9 medium (+ 10% 

fetal bovine serum) at room temperature; [ISM] = 10 µM. ISM uptake was measured as described 

in section 2.2.5. The slope of each line represents the rate of uptake (µM/min). Experiment 

shown is representative of four identical but independent assays, each performed in triplicate 

and showing virtually identical outcomes. 
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Figure 6.10 Summary of repeats for ISM uptake by some selected cell lines. Each bar is the 

average of 4 independent ISM uptake assays represented by figure 6.9; error bar is SEM. *P < 

0.05, **P < 0.01, one way ANOVA with Turkey’s correction, using the Graphpad prism 5.0. 
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However, the expression of Aquaporin 2 in B48 cells did not increase the 

rate of ISM uptake (there was no significant difference between uptake rate in 

B48 and B48 + Aquaporin 2; figure 6.10). 

6.6. Effect of TbAQP2 expression on 
sensitivity to adenosine analogues 

Sensitivity to adenosine analogues was determined to test the hypothesis 

that HAPT1 is an adenosine-insensitive route of uptake. This is to say that 

candidate genes for the HAPT1 should be those that their expression does not 

increase the uptake of adenosine and those compounds similar to it. Hence, 

AQP2 expression in B48 or its deletion from 2T1 should not affect the sensitivity 

to this class of drugs. 
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Figure 6.11 Sensitivity of various T. b. brucei lines to adenosine analogues. A: Tubercidin, B: 

Cordycepin, C: 5’-deoxyadenosine; Pentamidine (D) was used as a control. Sensitivity was 

determined by alamar blue assay, using 105 cells/ml of each cell line, and incubating the assay 

at 37oC and 5% CO2 for 48 hour before addition of alamar blue dye. Fluorescence was measured 

24 hours after addition of dye. All data shown are the average and SEM of at least three 

independent determinations. ***P<0.001, 1-way ANOVA/Tukey’s test using GraphPad Prism 5.0. 

Figure 6.11 shows that aqp2 null cells have exactly the same sensitivity to 

tubercidin, cordycepin and 5’-deoxyadenosine as the 2T1 cells. This is the exact 

prediction for these drugs, since AQP2 is not their route of entry into the 

parasite, hence, AQP2 deletion should not affect their toxicity to the organism. 

The much higher resistance (which is uniform to that for B48 + EV) displayed by 

B48 + AQP2 is explained by the fact that AQP2 was derived from TbAT1(-/-), and 
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hence has lost its P2 activity. Re-expression of TbAT1 in B48 (B48 + TbAT1) 

reverses this resistance completely and uniformly for all three drugs (figure 

6.11). 

6.7. [
3
H]-pentamidine uptake by 2T1 TbAQP2 

KO 

The AQP2 gene was deleted from the 2T1 cell line to generate the aqp2 

null clones. Deletion was done by Dr Jane Munday while the [3H]-Pentamidine 

uptake was characterised by me.  
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Figure 6.12 Uptake of 30 nM [3H]-pentamidine by aqp2 null and wild-type control cells. Rate of 

uptake was determined by incubating ~ 107 cells per experiment in the presence of 30 nM [3H]-

labelled Pentamidine and different concentrations of unlabelled permeants at room temperature 

(section 2.2.5). Experiment shown is representative of four identical but independent assays, 

each performed in triplicate and showing virtually identical outcomes. 

Figure 6.12 shows that aqp2 null cells have lost their HAPT1 activity. This 

result is in agreement with our earlier results and strongly supports the theory 

that TbAQP2 encodes the high affinity pentamidine transporter, HAPT1. 

Furthermore, AQP2 KO was significantly more resistant to pentamidine than the 

wild-type (P < 0.0001, unpaired t-test using GraphPad Prism 5.0; figure 6.8). This 

is also consistent with TbAQP2 being the gene for HAPT1. 
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6.8. Expression of synthetic aquaporin 
constructs in bloodstream forms of the 
aqp2/aqp3 double null line. 

The sequence of the AQP2 gene that was replaced with matching AQP3 

sequence in the crossover event that generated AQP2/3 chimera contains most 

of the selectivity filter that is believed to be responsible for the distinct 

permeation profiles of aquaporins (Baker et al, 2012). As the chimeric aquaporin 

found in B48 did not appear to have the TbAQP2 functionality with respect to 

pentamidine and melarsoprol sensitivity, we investigated whether the cross 

resistance between pentamidine and melarsoprol is determined principally by 

the few amino acids of the selectivity filter (structural element responsible for 

determining what passes through the channel). Synthetic genes of AQP2/3 

chimera and of TbAQP3 were used, each with a TbAQP2 selectivity filter 

(chAQP2/3sf2 and AQP3sf2, respectively). These were cloned into the pRPaiGFPx 

(Alsford & Horn, 2008) vector to allow expression analysis using the GFP-tag and 

expressed in the 2T1 aqp2/aqp3 null cell line. Expression was induced by the 

addition of 1 μg/mL of tetracycline (TET) 24 h before setting up the plates for 

the assay, and each transformed cell line was tested in the presence and 

absence of TET.  

Analysis of the drug sensitivity phenotype for the resultant lines showed 

that the transplantation of the amino acid residues likely to determine AQP2 

selectivity to AQP3 did not result in an AQP2-type phenotype with respect to 

drug sensitivity: EC50 values for cymelarsan, diminazene and PAO were all 

identical to the aqp2/aqp3 null background in which the construct was 

expressed, but sensitivity to pentamidine was significantly increased from the 

aqp2/aqp3 null background, though it was also significantly different from a line 

expressing WT AQP2 in the same background (Figure 6.13). However, the TET-
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induced cell line containing the chAQP2/3sf2 construct was significantly more 

sensitive to both pentamidine and cymelarsan than the non-induced control or 

the aqp2/aqp3 null background, reaching wild-type sensitivity to cymelarsan. 

Similarly, the induction significantly increased its sensitivity to pentamidine 

compared to the aqp2/aqp3 null background, but the level of sensitivity attained 

was still less than achieved with the TbAQP2 expression in the same background 

(Figure 6.13). This appears to indicate that the selectivity filter change alone 

was sufficient to produce the melaminophenyl arsenical (MPA) (Cymelarsan or 

Melarsoprol)-sensitizing phenotype in chAQP2/3 but not in AQP3. Clearly, the 

selectivity filter helps to determine the highly unusual permeation phenotype of 

AQP2, but is not the sole structural determinant. Considering the relative size of 

pentamidine and MPAs compared to classical substrates of aquaglyceroporins 

(Baker et al, 2013), the pore size of the channel must be larger in TbAQP2 than 

in TbAQP3. 

 

Figure 6.13 Expression of synthetic aquaporin constructs in bloodstream forms of the aqp2/aqp3 

double null line. Sensitivity was determined by alamar blue assay, using 105 cells/ml of each cell 

line, and incubating the assay at 37oC and 5% CO2 for 48 hour before addition of alamar blue dye. 

Fluorescence was measured 24 hours after addition of dye. All data are the average of at least 3 

independent determinations; error bars are SEM. There were significant differences between 
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groups 4 and 5. Statistical significance was determined using a one-way ANOVA with Tukey’s 

correction (Prism 5.0); **, P<0.02; ***, P<0.01  

6.9. [
3
H]-pentamidine uptake by TbAQP2 

expression in Leishmania mexicana. 

TbAQP2 was sub-cloned into the pNUS-HcN expression vector by Becca 

Lee, an M.Res. student. The expression in L. mexicana and the subsequent 

characterization of the new phenotype were done by me. The expression of 

TbAQP2 in L. mexicana resulted in a significant increase in the uptake of 

pentamidine (p < 0.001, one-way ANOVA; figure 6.16). Uptake was very rapid 

and linear, with a rate of 0.032 ± 0.002 pmol(107 cells)-1s-1 in the first 15 seconds 

and (r2 = 0.98, figure 6.15) equilibrating thereafter (figure 6.14). High affinity 

pentamidine transport was not detectable in L. mexicana promastigotes 

expressing either TbAQP3 or empty pNUS vector (control) as shown by almost 

horizontal lines depicting uptake in these clones (figure 6.14). Hence, high 

affinity uptake of [3H]-pentamidine was not characterized further in these 

clones.  
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Figure 6.14 Timecourse uptake of 50 nM [3H]-pentamidine (HAPT1 uptake kinetics is studied 

below 1 µM pentamidine concentration), over 30 s, using L. mexicana promastigotes transformed 

with TbAQP2, TbAQP3 and empty pNUS vector. Rate of uptake was determined by incubating ~ 



Anthonius Anayochukwu Eze, 2013   Chapter 6. 160 
 
107 cells per experiment in the presence of 50 nM [3H]-labelled Pentamidine at room 

temperature (section 2.2.5). Saturability was verified in the presence of 1mM unlabelled 

permeant. 
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Figure 6.15 Timecourse uptake of 50 nM [3H]-pentamidine (HAPT1 uptake kinetics is studied 

below 1 µM permeant concentration), over 15 s, using L. mexicana promastigotes transformed 

with TbAQP2 in the presence (□) and absence (■) of 1 mM unlabelled pentamidine. Rate of 

uptake was determined by incubating ~ 107 cells per experiment in the presence of 50 nM [3H]-

labelled permeant at room temperature (section 2.2.5). Saturability was verified in the presence 

of 1mM unlabelled permeant. Uptake at 50 nM pentamidine was linear (r2 = 0.98) and rapid, as 

shown by the rate of uptake, 0.032 ± 0.002 pmol(107 cells)-1s-1, compared with 0.00026 ± 

1.8×10-6 pmol(107 cells)-1s-1 in the presence of 1 mM pentamidine. 
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Figure 6.16 Specific uptake of 100 nM [3H]-pentamidine (HAPT1 uptake kinetics is studied below 

1 µM pentamidine concentration) over 5 minutes in L. mexicana promastigotes transformed with 

empty pNUS vector (control); promastigotes transformed with TbAQP2; and with TbAQP3. In 

each case mediated uptake at 100 nM radiolabel was compared with total association of [3H]-

pentamidine with the cell pellet in the presence of saturating (1 mM) unlabelled pentamidine. 

The data shown are the average of three independent assays done in triplicate, and SEM. ***, 

P<0.001 by 1-way ANOVA, compared to all other data sets. 

-9 -8 -7 -6 -5 -4 -3

0.00

0.01

0.02

0.03

0.04

log[Inhibitor] (M)

P
e
n

ta
m

id
in

e
 u

p
ta

k
e

(p
m

o
l(

1
0

7
 c

e
ll

s
)-1

s
-1

)

 

Figure 6.17 Characterization of 20 nM [3H]-pentamidine uptake in L. mexicana promastigotes 

expressing TbAQP2, in the presence of various concentrations of unlabelled inhibitor: 

pentamidine (●), propamidine (▲) and diminazene (♦).Rate of uptake was determined by 
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incubating ~ 107 cells per experiment in the presence of 20 nM [3H]-labelled Pentamidine and 

different concentrations of unlabelled permeants (inhibitors) at room temperature (section 

2.2.5). Experiment shown is representative of four identical but independent assays, each 

performed in triplicate and showing virtually identical outcomes. 

Full characterization of the high affinity uptake was done on the uptake 

of 20 nM [3H]-pentamidine in L. mexicana promastigotes expressing TbAQP2. Km 

and Vmax values of 0.055 ± 0.004 µM and 0.123 ± 0.025 pmol/10e7 cells/s 

respectively (figure 6.18) were found. Inhibition by unlabelled pentamidine, 

propamidine and diminazene was dose-dependent (Figure 6.17) and followed 

Michaelis-Menten kinetics. Ki values were also found to be equal to 8.1 ± 0.8 µM 

and 100.47 ± 20.87 µM for the inhibition of [3H]-pentamidine uptake by 

propamidine and diminazene respectively. 
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Figure 6.18 Michaelis-Menten saturation plot of 20 nM [3H]-pentamidine uptake; conversion of 

pentamidine inhibition plot in figure 6.17.  
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6.9.1. Effect of expression of T. brucei aquaporins on 
drug sensitivity of Leishmania mexicana. 

The effect of the expression of TbAQP2 and TbAQP3 on the sensitivity of 

L. mexicana promastigotes to pentamidine, cymelarsan and other trypanocides 

was assessed by the alamar blue assay, with empty pNUS vector expression in L. 

mexicana as control (figure 6.19). Both clones of L. mexicana + AQP2 showed a 

40-fold increase in pentamidine sensitivity and more than 1000-fold increase in 

cymelarsan sensitivity in comparison to the empty vector control. There was also 

a 10-fold sensitization to diminazene (Fig. 6.19), but not to amphotericin B 

(figure 6.19), isometamidium, and ethidium (figure 6.20). Insensitivity of L. 

mexicana + AQP2 to ISM correlates with our earlier observation that AQP2 

expression in B48 had no effect on the uptake of ISM in these cells (figure 6.9). 

 Expression of TbAQP3 in two independent clones led to minor (1.5 - 3-

fold) sensitization to pentamidine which amounted to statistical significance 

(P<0.001, figure 6.19).  This effect was far weaker than with TbAQP2 and 

appears to indicate a small increase in the general permeability of the plasma 

membrane in the TbAQP3-expressing promastigotes, sufficient to lead to a small 

increase in pentamidine uptake over the 5 days of the Alamar blue assay used to 

determine IC50 values in these cells. This is in agreement with the observation 

that uptake of 100 nM [3H]-pentamidine in TbAQP3-transformed promastigotes 

was not different from control when measured over 5 minutes, whereas 

pentamidine uptake in TbAQP2 expressing cells was increased almost 15-fold 

(figure 6.16). However, since TbAQP3 was able to cause this small but significant 

sensitivity to pentamidine alone and at a relatively high concentration of this 

drug, we began to wonder if TbAQP3 may turn out to be the gene encoding the 

LAPT1. This question will be addressed at the end of this chapter (Section 6. 12).  
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Figure 6.19 Effect of expression of T. brucei aquaporins on drug sensitivity of Leishmania 

mexicana. TbAQP2 and TbAQP3 were expressed in promastigotes using the pNUS vector. Two 

independent clones of each resulting cell line, and the promastigotes transfected with the 

‘empty’ pNUS vector, were tested for sensitivity to (A) pentamidine, (B) cymelarsan, (C) 

diminazene, and (D) amphotericin B, using the Alamar blue fluorimetric assay. Bars are averages 

of 3 - 8 independent determinations; error bars are SEM. *P<0.05; **P<0.01; ***P<0.001 by one-

way ANOVA with Tukey’s correction (Prism 5.0). 
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Figure 6.20 Effect of expression of T. brucei aquaporins on sensitivity to ISM and Ethidium 

bromide in Leishmania mexicana. Sensitivity was determined by alamar blue assay, using 106 

cells/ml of each cell line, and incubating the assay at 27oC for 72 hour before addition of alamar 

blue dye. Fluorescence was measured 48 hours after addition of dye. Bars are averages of 5 - 8 

independent determinations; error bars are SEM. 

Finally, to buttress the point that only the expression of TbAQP2 is able to 

cause sensitivity to pentamidine at concentrations around 100 nM, we set up 

cultures of L. mexicana promastogotes expressing AQP2, AQP3, TbAT-E1 or 

empty pNUS expression vector. Each cell line was cultured in fresh HOMEM 

media, starting at a uniform density of 104 cells/ml, in the presence and absence 

of 100 nM pentamidine. Only the L. mexicana cells expressing the AQP2 gene 

showed an observable difference between cells growing in pentamidine and 

those growing in free media (figure 6.21). In fact, the cell density of L. mex. + 

AQP2 cells growing in pentamidine was below 104 cells/ ml from the 2nd day to 

the 6th day of cell count.  
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Figure 6.21 Demonstration of the effect of AQP genes on the sensitivity of L. mexicana to 

pentamidine. Rate of growth or increase in cell density was determined as a measure of 

sensitivity to Pentamidine. Assay was started with 104 cells/ml seeding density for all cell lines, 

in the presence (or absence) of 100 nM pentamidine. Cell density was measured by counting on a 

haemocytometer once every 24 hours. 

6.10. Combination of Pentamidine and SHAM 
for synergistic studies. 

Trypanosome alternative oxidase (TAO) is the sole terminal oxidase of the 

mitochondrial electron transport chain in the bloodstream forms of T. brucei; its 

function is to re-oxidize the reducing equivalents produced during glycolysis, 

transferring electrons from ubiquinol (the glycerol-3-

phosphate/dihydroxyacetone phosphate shuttle) to oxygen, thus forming water 

(Chaudhuri et al, 2006). Hence, TAO activity is essential to the generation of 

ATP in bloodstream forms of Trypanosoma brucei. TAO inhibition by 

salicylhydroxamic acid (SHAM) creates an anaerobic-similar condition in which 

ATP production is halved with concomitant generation of equal amounts of 

pyruvate and glycerol (Chaudhuri et al, 2006). 
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We found our laboratory-generated B48 cell line to be significantly more 

sensitive to SHAM (P<0.02, Student’s t-test) than the wild type T. b.427. 

Furthermore, when SHAM IC50 values (from figure 6.22) are plotted on the same 

axis with pentamidine IC50 values (from figure 6.8), it was found that increase in 

resistance to pentamidine correlates with increase in sensitivity to SHAM (figure 

6.23). We therefore studied the effect of combination of pentamidine and SHAM 

on our laboratory strains of Trypanosoma brucei. A case of synergy will present 

if a slight increase in pentamidine concentration reduces the SHAM IC50 

significantly, while SHAM IC50 would be expected to remain relatively unchanging 

with slight increase in pentamidine concentration. Antagonism between the two 

compounds was not an expected possibility. A clear case of synergy between 

pentamidine and SHAM was found only in B48 + AQP2 (table 6.1). This finding is 

in complete agreement with the role of TbAQP2 as the gene encoding the 

HAPT1, as the expression of this gene in B48 ensures that sub-nanomolar 

concentrations of pentamidine are taken up into the organism, where it acts on 

a different target from that acted on by SHAM, to produce synergy.   
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Figure 6.22 Sensitivity of selected cell lines to SHAM Sensitivity was determined by alamar blue 

assay, using 106 cells/ml of each cell line, and incubating the assay at 37oC and 5% CO2 for 48 

hour before addition of alamar blue dye. Fluorescence was measured 24 hours after addition of 



Anthonius Anayochukwu Eze, 2013   Chapter 6. 168 
 
dye. Bars are averages of at least 3 independent determinations; error bars are SEM. *P < 0.02, 

unpaired Student’s t-test  

0.0 0.2 0.4
20

40

60

80
SHAM IC50

Pentamidine IC50

S
H

A
M

 I
C

5
0

 

Figure 6.23 Correlation between SHAM and pentamidine IC50 values. IC50 values for SHAM from 

figure 6.22 were plotted against Pentamidine IC50 values from figure 6.8 for all the cell lines 

represented. The higher the resistance level to pentamidine, the more susceptible the strain 

becomes to inhibition of alternative oxidase by SHAM. 

        

WT               

Penta  SHAM IC50 (uM)      

[nM] 1 2 3 4  AVG SE 

0.3 58.1 107 57.25 57.84  70.0 10.7 

0.9 48.44 79.6 55.4 61.43  61.2 5.8 

3 39.48 71.1 58.25 61.7  57.6 5.7 

9 16.48 40.8 71.64 73.01   50.5 11.7 

        

        

B48        

Penta  SHAM IC50 (uM)     

[nM] 1 2 3 4  AVG SE 

270 6.57 20.3 8.496   11.8 3.5 

90 14.7 24.7 10.86   16.8 3.4 

30 17.5 25.2 12.81   18.5 2.9 

9 14.2 22.8 11.1   16.0 2.9 

        

        

P1000        

Penta  SHAM IC50 (uM)     

[nM] 1 2 3 4  AVG SE 

900   46.69   46.7 0.0 

270 21.6 17.3 23.28   20.7 1.5 

90 23.5 19.5 22.11   21.7 1.0 
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30 23.04 17.7 21.53   20.8 1.3 

9 16.5 15.8 23.95   18.8 2.1 

        
TbAT1 
KO        

Penta  SHAM IC50 (uM)     

[nM] 1 2 3 4  AVG SE 

0.3 44.9 41.5 47.32 25.49 31.85 38.2 3.7 

0.9 38.9 35.9 52.39 24.23 29.94 36.3 4.3 

3 33.9 23.04 39.29 20.13 23.52 28.0 3.3 

9 8.4 0.73 32.72   14.0 7.9 

        

        

B48 + AQP2             

Penta  SHAM IC50 (uM)      

[nM] 1 2 3 4  AVG SE 

0.3 18.5 26.46 23.85 20.66  22.4 1.5 

0.9 11.9 24.6 23.63 21.12  20.3 2.5 

3 5.8 10.55 14.46 5.984  9.2 1.8 

9 0.82 1.055 2.709 0.9418   1.4 0.4 

 

Table 6.1 SHAM IC50 values in the presence of various concentrations of pentamidine; Doubling 

dilutions of SHAM (starting 780 µM) was employed in alamar blue assays in the presence of 

indicated pentamidine concentrations (constant pentamidine concentration per assay). Alamar 

blue dye was added as usual (after 48 hours incubation at 37oC and 5% CO2), and fluorescence 

measured after subsequent incubation for 24 hours. 

6.11. Sensitivity of High Affinity Pentamidine 
Uptake to inhibition by ionophores.  

To further characterize the high affinity uptake of pentamidine in 

Trypanosoma brucei, uptake of 25 nM [3H]-pentamidine was measured in the 

presence of 1 mM adenosine (to block uptake of pentamidine through the P2 

transporter). Uptake of [3H]-pentamidine was found to be sensitive to inhibition 

by specific ionophores known to dissipate plasma membrane proton gradient 

(CCCP, Nigericin; figure 6.25) but relatively insensitive to valinomycin known to 

specifically disrupt the mitochondrial membrane potential (figures 6.25 and 

6.26) (Munday et al, submitted). These findings correlate with an earlier finding 
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that uptake of 12.5 nM [3H]-Pentamidine by HAPT1 in procyclic forms was 

similarly inhibited by CCCP, with 10 μM inhibiting >90% of the uptake (de Koning, 

2001b)  

 

Figure 6.24 High affinity pentamidine uptake in T. b. brucei is sensitive to ionophores. Uptake 

of 25 nM [3H]-pentamidine in s427WT bloodstream forms was measured in the presence of 

various ionophores at the indicated concentrations in μM, over 5 min. Accumulation of 

radiolabel was expressed as a percentage of control, being a parallel incubation in the 

absence of any ionophore. Bars represent the average of 3 independent determinations, each 

performed in triplicate, and SEM. 
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Figure 6.25 Effect of different concentrations of ionophores on the MMP in T. b. brucei. 106 

Tb427 wt cells were incubated in HMI-9(drug free control) and in the indicated concentrations of 

individual ionophores (in HMI-9 medium) at 37 oC and 5% CO2 for 30 minutes before the MMP 

values were determined (details in section 2.2.9). Bars represent the average of 3 independent 

determinations and SEM. ***P<0.001; **P<0.01; *P<0.05 by one way ANOVA, compared to the 

drug-free control, using the Graphpad prism 5.0. 

6.12. Does the TbAQP3 gene also express a 
pentamidine transporter? 

It seems appropriate to end this chapter with an assessment of the 

transport capability of the TbAQP3. The expression of this gene in L. mexicana 

promastigotes increased pentamidine sensitivity by about 2-fold (p<0.001, one-

way ANOVA using the Graphpad prism 5.0) (figure 6.19). We therefore measured 

[3H]-pentamidine uptake in aqp2/aqp3 double null cells (in the presence of 1 mM 

adenosine) to determine whether the LAPT1 activity had been compromised (due 

to the additional deletion of AQP3, since aqp2 null cells still have a functional 
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LAPT1; see figure 6.12). Figure 6.26 shows that aqp2/3 double null cells still 

possess a functional LAPT1 activity, and this activity was found to be identical to 

the LAPT1 activity in B48 (figure 6.27).   

Inhibition plot for uptake of [ 3H]-Penta in aqp2/3 null and B48

 [3H]-Penta = 1 M; incubation time = 120s.
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Figure 6.26 Inhibition and Michaelis-Menten plots for the Low affinity [3H]-Pentamidine uptake in 

aqp2/3 double null and B48. Rate of uptake was determined by incubating ~ 107 cells per 

experiment in the presence of 1 µM [3H]-labelled Pentamidine (HAPT1 is inhibited and LAPT1 

kinetics are studied at 1 µM Pentamidine concentration) and different concentrations of 

unlabelled pentamidine at room temperature (section 2.2.5). 
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Figure 6.27 Summary of uptake kinetics for aqp2/3 double null and B48. Km and Vmax were 

determined from the Michaelis Menten saturation curve for these cell lines (figure 6.26). Neither 

Km nor Vmax differed significantly between the two cell lines. 

6.13. Discussion 

We found that the deletion of both alleles of the TbAT-E from Tb427 wt 

had no effect on the activity of HAPT1 in these cells (figure 6.1): a functional 

HAPT1 activity was still present in TbAT-E double knockout cells. Similarly, the 

expression of the TbAT-E1 in B48 did not increase the sensitivity to pentamidine 

in this cell line as would be expected if TbAT-E1 encodes HAPT1 (figure 6.2). 

These results suggest that the TbAT-E is not the gene that encodes for the 

HAPT1 activity in Trypanosoma brucei. 

In contrast, TbAQP2 was able to reverse the resistance to both 

pentamidine and cymelarsan in B48 (figures 6.2 and 6.3) when expressed in this 

cell line. In addition, a deletion of TbAQP2 rendered wild type 2T1 cells 

significantly pentamidine resistant (figure 6.8). More important however is the 

fact that HAPT1 activity was not detectable in aqp2 null cells (figure 6.12). Re-

expression of TbAQP2 in aqp2/3 double null cell line reversed the resistance of 

this cell line to both pentamidine and cymelarsan completely, returning it to 

wild type sensitivity (figure 6.13).  Adenosine analogues such as tubercidin, 

cordycepin and 5’-deoxyadenosine were not taken up through TbAQP2; B48 + 
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AQP2 cells were insensitive to these analogues since they lack the P2 transporter 

through which they could be taken up (figure 6.11). This finding indicates that 

TbAQP2 is indeed a transporter with specificity for a range of ligands, and not 

just a non-saturable channel that is permeable to the diffusion of right sized 

molecules, as suggested recently (Bassarak et al, 2011). Also, a synergistic 

effect found for the combination of pentamidine and SHAM on B48 + AQP2 out of 

all cell lines tested (including Tb427 wt; table 6.1) suggests that there is an 

enhanced uptake of pentamidine even at very low nanomolar concentrations 

(which can only be due to the activity of the HAPT1).   

Furthermore, the heterologous expression of TbAQP2 in Leishmania 

mexicana promastigotes resulted in a highly significant increase in sensitivity to 

both pentamidine and cymelarsan, compared to the control L. mexicana cells 

expressing the empty pNUS-HcN vector (figure 6.19). Again, the fact that 

inhibition studies carried out with pentamidine, propamidine and diminazene on 

the uptake of [3H]-pentamidine gave a kinetic profile that is fully consistent with 

the T. b. brucei HAPT1 activity (figure 6.17) was very important. This finding, in 

addition to the finding that HAPT1 activity in wild type T. b. brucei (which is lost 

on deletion of TbAQP2 and is only present on the expression of wild type TbAQP2 

gene) is sensitive to agents such as CCCP and nigericin (figure 6.24) that are 

known to act by specifically dissipating the plasma membrane proton gradient, 

leads us to accept that TbAQP2 indeed expresses the HAPT1 of bloodstream 

trypanosomes which uses the proton-motive force to drive pentamidine uptake.  

6.14. Conclusion 

We conclude, based on the findings presented in this chapter, that 

TbAQP2 is responsible for the HAPT1 activity in bloodstream form T. b. brucei. 

Hence, kinetoplastid aquaporins have extended their traditional role of acting 
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only as bifunctional channels through which water and other uncharged solutes 

pass into the cell (Beitz, 2005), to the saturable transport of neutral and 

positively charged drugs with a substantially higher molecular weight. 



 
 

 

7. Test of a library of Bisphosphonium 

compounds for inhibitors of the Low Affinity 

Pentamidine Transporter (LAPT1). 
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7.1. Introduction 

The World Health Organisation puts the number of people at risk of being 

infected by the human African trypanosomiasis at above 60 million (W.H.O., 

1998). While this figure is outrageous, the report claims that it may even be 

lower than the actual figure since less than 4 million people are under 

surveillance, and hence only 10% of new infections are diagnosed and treated 

(W.H.O., 1998). On the other hand, nagana which is caused by a wider range of 

trypanosome species is most always the greater epidemic across Africa and 

carries a more direct economic burden (Baral, 2010). One hundred years after 

this disease was first discovered, trypanosomiasis remains one of the major 

parasitic diseases for which control is not in sight (Baral, 2010). Control of both 

the human and animal trypanosomiasis relies heavily on chemotherapy, but with 

the few drugs currently available and the increasing reports of resistance to 

these few drugs, coupled with severe toxic effects of most HAT drugs, the need 

for new drugs cannot be over-emphasized (Baral, 2010). The currently available 

treatment schemes can however be made more effective if the mechanism of 

resistance could be elucidated so that future cases of resistance can easily be 

reversed and infections treated. Of all the proposed mechanisms of resistance, 

reduction of net drug uptake seems to be the most implicated with regards to 

trypanocidal resistance, and this mechanism most frequently implies mutations 

in transporters since most trypanocides are translocated across the plasma 

membrane by these transporters (Mäser et al, 2003). One approach to resolving 

the molecular mechanisms of trypanosomal drug resistance is therefore to 

identify candidate drug transporters and to investigate whether such 

transporters are mutated in drug-resistant trypanosomes (Mäser et al, 2003). 

HAPT1 and LAPT1 activities have both been identified and characterised in most 
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laboratory adapted cell lines of T. b. brucei (de Koning, 2001b;Matovu et al, 

2003), and HAPT1 has been implicated in the uptake and resistance to 

diamidines and melaminophenyl arsenicals (Bridges et al, 2007). It was in fact 

demonstrated that loss of both TbAT1 and HAPT1 leads to high levels of cross 

resistance to pentamidine and melaminophenyl arsenicals (Bridges et al, 2007). 

Our recent demonstration that TbAQP2 encodes the HAPT1 (chapter 6) leaves us 

with only the LAPT1 as the major pentamidine transporter in T. b. brucei whose 

gene sequence is yet to be identified. 

 Preliminary work on the uptake of ISM, done in our group, before the 

start of my project, possibly implicated LAPT1 in the uptake of this drug in 

Trypanosoma brucei brucei. Our finding that the Vmax was significantly reduced 

(P = 0.043, unpaired student’s t-test; chapter 4) in our ISM resistant clone, ISMR1 

clone 3, is consistent with this. The problem however, is that a pentamidine 

concentration of about 1 mM is usually needed to completely inhibit this 

transporter and some other trypanocides, especially diminazene is not soluble in 

assay buffer at 1 mM (we usually prepare drugs for uptake initially at 4 times the 

final conc., that means that we make an initial 4 mM when the final conc. is 1 

mM; diminazene cannot be dissolved at this conc.). Lack of specific inhibitors 

has been the biggest constraint to the study of this transporter and there is an 

urgent need to identify such inhibitors (250 µM maximum) so as to overcome this 

limitation on the study of the characteristics of LAPT1. We therefore screened a 

library of bisphosphonium compounds and drew up a short-list of LAPT1 

inhibitors. We also tested (when possible) for selective inhibition of LAPT1 over 

HAPT1.  
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7.2. Bisphosphonium compounds as inhibitors 
of Pentamidine uptake through the LAPT1. 

 Phosphonium salts bearing hydrophobic functional groups are lipophilic 

cations with a delocalized charge, and this affords specific properties to these 

molecules such as the capacity to cross biological membranes driven by 

electrical potential (Taladriz et al, 2012). Bisphosphonium salts are therefore 

the symmetrical, higher molecular weight members of this group of compounds. 

They all tend to accumulate in organelles with high inside-negative membrane 

potential such as mitochondria, aided by their ability to cross the mitochondrial 

inner membrane without the assistance of ionophores or carrier proteins but 

solely driven by the MMP (Ross et al, 2005). On the contrary, hydrophilic 

inorganic or organic cations such as Na+ and pentamidine, respectively, cannot 

cross biological membranes except when facilitated by a transport protein (Ross 

et al, 2005). Since an increase in the level of lipophilic shielding around the 

phosphonium cation(s) correlates with increased levels of activity against 

Trypanosoma and Leishmania species, it was suggested that this class of 

compounds is most probably transported by diffusion into the parasites (Taladriz 

et al, 2012). This line of argument was supported by the fact that no correlation 

was found between the antiparasitic activity and inhibition of the known T. 

brucei transporters, namely, P2, HAPT1 and LAPT1 (Taladriz et al, 2012). Hence 

in tables 7.2, 7.3, and 7.4, there is no difference in the IC50 values of these 

compounds for cells known to have lost one or two drug transporters, such as the 

TbAT1(-/-) and the B48 cells respectively, when compared to the IC50 for the wild 

type. Also, most of the bisphosphonium compounds were considered too large to 

be a substrate for these transporters (though they could still be good inhibitors, 

as suggested by their high affinities for HAPT1 and LAPT1, table 7.1 and figure 
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7.1) since their molecular weights range between 800 and 1300, compared to 

340 for pentamidine (Taladriz et al, 2012). 
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Figure 7.1 Percentage inhibition of 1 µM [3H]-pentamidine uptake by Tb427 wt in the presence of 

of bisphosphonium compounds (synthesized by our collaborator, Dr Christophe Dardonville, 

Instituto de Quimica Medica, Madrid). Uptake was determined by incubating ~ 107 cells per 

experiment in the presence of 1 µM [3H]-labelled Pentamidine (HAPT1 is inhibited and LAPT1 

kinetics are studied at 1 µM Pentamidine concentration) and indicated concentrations of 

bisphosphonium compounds at room temperature (section 2.2.5). 

The lack of correlation between antiparasitic activity and inhibition of the 

known T. brucei transporters confirms that these compounds are not dependent 

on the transporters for their antiparasitic action. Hence, these compounds bind 

to the transporters but may not be transported and so inhibit further transport 

activity. However, the data presented in tables 7.2, 7.3 and 7.4 is enough to 

rule out uptake of bisphosphonium compounds by either the P2 or the HAPT1, 

since the absence of either transporter did not affect sensitivity of trypanosomes 

to these compounds.  
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Compound Ki HAPT1 (±SE) (µM) Ki LAPT1 (±SE) (µM) 

Pentamidine1 0.036 ± 0.006 56.2 ± 8.3 

CDIV31 (18a) >250 >250 

CD38 (24a) 5.2 ± 0.9 2.2 ± 0.4 

CRMI-46 (25a) Not done 25 ± 6 

AHI-16 (25b) Not done 9.5 ± 0.5 

AHI-15 (25c) 53 ± 13 7.2 ± 4.0 

CDIV33 (26a) Not done 39 ± 7.0 

EFpI-1 (35a) Not done 19 ± 6 

CDIV20 (36a) Not done 49 ± 6 

AHI-10 (38b) Not done 20 ± 4 

AHI-43 (45e) 9.2 ± 1.3 3.6 ± 0.4 

AT-5 (55) Not done 25 ± 11 

 

Table 7.1 Affinity of Selected Phosphonium compounds (synthesized by our collaborator, Dr 

Christophe Dardonville, Instituto de Quimica Medica, Madrid) on the HAPT1 and LAPT1 diamidine 

transporters of T. b. brucei. Affinity was determined by mearsuring the uptake of 30 nM (for 

HAPT1) or 1 µM (for LAPT1) concentration of [3H]-Pentamidine in the presence of different 

concentrations of each bisphosphonium compound. Each value is an average of at least 3 

independent experiments, performed in triplicates (Assigned compound number in tables 7.2, 

7.3 and 7.4 for each compound is in bracket). 1Taken from De Koning (2001) 

 

It may be argued that LAPT1 cannot transport bisphosphonium compounds 

because they are at least two times larger than pentamidine (Taladriz et al, 

2012), the standard ligand for this transporter; however this argument is not 

completely persuasive. A similar argument was raised against the TbAQP2 gene 

as a candidate for the gene encoding the HAPT1. Melarsoprol and pentamidine 

with molecular masses of 398 Da and 340 Da, respectively were considered 
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substantially larger than glycerol (the natural substrate of TbAQP2) at 92 Da, 

which led to the suggestion that AQP2 may indeed not transport these drugs 

directly but could indirectly regulate HAPT1 expression or function (Baker et al, 

2013). However, it was earlier demonstrated that Leishmania major AQP1 

transports trivalent arsenic and antimony (Figarella et al, 2007). In addition, we 

have been able to demonstrate that TbAQP2 is indeed the long-sought HAPT1 

(Chapter 6; manuscript accepted), and can directly transport pentamidine and 

cymelarsan (chapter 6). Therefore, data presented in tables 7.1 (low Ki values), 

7.2, 7.3, 7.4 (corresponding low IC50 values) are in support of the LAPT1 being 

the route of entry for bisphosphonium compounds, perhaps alongside diffusion. 

Either way, these compounds are able to inhibit the transport of pentamidine 

through the LAPT1 as demonstrated by the low Ki values (concentration required 

to produce half maximum inhibition) found for most of these compounds (table 

7.1). Also, the high Ki value found for CDIV31 (compound 18a) is quite consistent 

with the high EC50 presented for this compound in table 7.2. This suggests that 

CDIV31 is actually not a good substrate for the LAPT1.
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Screening of this library of bisphosphonium compounds was done in order 

to select good inhibitors of LAPT1 that inhibit this transporter at lower 

concentrations than pentamidine. Interest in this class of compounds was 

awakened when the extensive trypanocidal activity of the lead bisphosphonium 

compound (CD-38 or compound 24a) was observed. CD-38 was initially followed 

up and screened as a trypanocidal drug candidate, but it was dropped after it 

was found to have a very low selectivity index (it was quite toxic to human cell 

lines, table 7.2). Subsequently, a library of bisphoshonium compounds was 

synthesized, patterned on CD-38 by altering functional groups or the linker group 

(figure 7.2). 

 

 

Figure 7.2 General structure of benzophenone-derived bisphosphonium salt derivatives with 

antileishmanial and antitrypanosomal activity. Taken from Taladriz et al (2012).
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7.3. Time-dependent toxicity of selected 
bisphosphonium compounds to 
trypanosomes. 

Since this is not a screen for potential drug candidates, we are not looking 

for compounds that will give the lowest EC50; rather we are interested in 

compounds with a low Ki for [3H]-pentamidine uptake by LAPT1 coupled with a 

relatively high EC50 for most of the trypanosome strains. The high EC50 values are 

important to avoid cell lysis or cell damage during the uptake assay time.  Hence 

the compounds listed in table 7.1 were initially selected from the library of 

bisphosphonium compounds for having Ki values for LAPT1 that were less than 

56.2 ± 8.3 µM reported for pentamidine (de Koning, 2001b). Selected compounds 

were subsequently screened using propidium iodide real time assay. This assay 

measures fluorescence produced by propidium iodide on binding to nucleic acid; 

this binding is assumed to occur after cell lysis, or at least after the plasma 

membrane has ceased to be a barrier, as propidium iodide is otherwise unable to 

enter the cells. Hence, level of fluorescence is directly proportional to amount 

of nucleic acid available for binding, and also directly proportional to the 

number of dead cells. Fluorescence readings are taken for 8 hours, after cells 

are added at zero time. The next best inhibitor of LAPT1 after CD-38 is AHI-43 

(compound 45e) with a Ki of 3.6 ± 0.4 µM for LAPT1. This compound did not 

cause the lysis of trypanosomes within the first 15 minutes of incubation in 125 

µM which is about 31 times the Ki (figure 7.4). AHI-43 was therefore selected as 

the best bisphosphonium inhibitor of LAPT1. However, the extraordinarily fast 

action on trypanosome viability and integrity makes these compounds less than 

perfect as pharmacological inhibitors of uptake of other drugs. 
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Figure 7.3 Propidium iodide real time assay showing the rate at which the selected 

bisphosphonium compounds kill trypanosomes. Assay was performed by incubating 5 x 105 

trypanosomes in 9 µM propidium iodide at different concentrations (doubling dilutions) of each 

compound and at 37 oC and 5% CO2 for about 8 hours (250 cycles; with fluorescence being 

measured every 150 seconds in a FLUOstar OPTIMA fluorimeter. Note that AT5 is a 

monophosphonium compound. 
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Figure 7.4 More propidium iodide real time assays, showing the rate at which selected 

bisphosphonium compounds kill trypanosomes. Assay was performed by incubating 5 x 105 

trypanosomes in 9 µM propidium iodide at different concentrations (doubling dilutions) of each 

compound and at 37 oC and 5% CO2 for about 8 hours (250 cycles; with fluorescence being 

measured every 150 seconds in a FLUOstar OPTIMA fluorimeter. 
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Figure 7.5 structures of selected bisphosphonium compounds.  
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7.4. Discussion 

LAPT1 is a high capacity transporter with a Km of 56 ± 8 µM for 

pentamidine uptake for which no practical inhibitors have been identified to 

date (de Koning, 2001b). LAPT1 and HAPT1 of the bloodstream forms of T. b. 

brucei were demonstrated to be kinetically identical to LAPT1 and HAPT1 of 

procyclic forms (Teka et al, 2011). Conclusive determination of the genetic 

identity of the two transporters is however necessary for a definitive proof that 

these transporters are identical in both lifecycle stages (Teka et al, 2011). We 

found recently that the HAPT1 is encoded by the AQP2 gene (Chapter 6; 

manuscript submitted). On the other hand, lack of specific inhibitors has 

hindered a thorough study of the kinetics and pharmacological importance of 

LAPT1. It takes about 1 mM of pentamidine to completely inhibit uptake through 

this transporter, yet no substrate or inhibitor with higher affinity than 

pentamidine has been identified for this transporter (Teka et al, 2011). We 

therefore tested a library of bisphosphonium compounds as possible inhibitors of 

this transporter. 
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Table 7.2 Antitrypanosomal activity of bisphosphonium salts having aliphatic and phenyl substituents (18a = 

CDIV31, 24a = CD38, 25a = CRMI-46, 25b = AHI-16, 25c = AHI-15, 26a = CDIV33, 35a = EFpI-1). Taken from 

Taladriz et al (2012). aT. b. rhodesiense STIB900 trypomastigotes. bRat skeletal myoblast L6 cells. cT. b. brucei 

s427 trypomastigotes. dT. b. brucei knockout strain lacking a functional P2-transporter and resistant to 

diminazene aceturate. eResistance factor compared to WT. fThe B48 strain is a mutant, derived from the TbAT1-

KO strain, with a nonfunctional high affinity pentamidine transporter (HAPT). This strain is resistant to 

diminazene, pentamidine and melaminophenyl arsenicals. gHuman embryonic kidney (HEK) cells. hSelectivity 

index = [EC50(HEK cells)/EC50(T. b .brucei WT)]. iSelectivity index = [EC50(L6-cells)/EC50(T. b. rhodesiense)]. jNot 

determined. 
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Table 7.3 Antitrypanosomal activity of bisphosphonium salts having substituted phenyl substituents (36a = 

CDIV20, 38b = AHI-10, 45e = AHI-43). Taken from Taladriz et al (2012). aT. b. rhodesiense STIB900 

trypomastigotes. bRat skeletal myoblast L6 cells. cT. b. brucei s427 trypomastigotes. dT. b. brucei knockout 

strain lacking a functional P2-transporter and resistant to diminazene aceturate. eResistance factor compared to 

WT. fThe B48 strain is a mutant, derived from the TbAT1-KO strain, with a nonfunctional high affinity 

pentamidine transporter (HAPT). This strain is resistant to diminazene, pentamidine and melaminophenyl 

arsenicals. gHuman embryonic kidney (HEK) cells. hSelectivity index = [EC50(HEK cells)/EC50(T. b .brucei WT)]. 

iSelectivity index = [EC50(L6-cells)/EC50(T. b. rhodesiense)]. 
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Table 7.4 Antitrypanosomal activity of monophosphonium salts (55 = AT-5). Taken from Taladriz 

et al (2012). aT. b. rhodesiense STIB900 trypomastigotes. bRat skeletal myoblast L6 cells. cT. b. 

brucei s427 trypomastigotes. dT. b. brucei knockout strain lacking a functional P2-transporter 

and resistant to diminazene aceturate. eResistance factor compared to WT. fThe B48 strain is a 

mutant, derived from the TbAT1-KO strain, with a nonfunctional high affinity pentamidine 

transporter (HAPT). This strain is resistant to diminazene, pentamidine and melaminophenyl 

arsenicals. gHuman embryonic kidney (HEK) cells. hSelectivity index = [EC50(HEK cells)/EC50(T. b 

.brucei WT)]. iSelectivity index = [EC50(L6-cells)/EC50(T. b. rhodesiense)].
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 Most of the compounds presented in table 7.1 are better inhibitors of the 

LAPT1 than pentamidine, and therefore most likely to be transported by this 

transporter. Our finding that AQP2 can transport pentamidine irrespective of the 

large difference in size between pentamidine and other ligands transported 

through this transporter suggests that, in some cases, molecular size may be of 

secondary importance when considering their suitability to be transported by a 

particular transporter; this is especially true when screening for inhibitors rather 

than substrates. Though most of the bisphosphonium compounds are much larger 

molecules than pentamidine, which is the only known substrate for this 

transporter, the low Ki values found for the inhibition of pentamidine uptake by 

these compounds coupled with their equally low EC50 values for all trypanosome 

strains that have the LAPT1 leads us to conclude that these compounds could 

indeed be good substrates for the LAPT1. However, a plot of Ki (LAPT) against 

Tb427 wt EC50 values gave an R2 (correlation coefficient) value of 0.16, 

indicating a lack of correlation. Hence, these bisphoshonium compounds may be 

inhibiting the uptake of [3H]-pentamidine, without being transported, by the 

LAPT1. It had been demonstrated that good inhibitors of transporters do not 

always turn out to be good substrates, and may even not be transported at all. 

Compounds that were good inhibitors of adenosine uptake through the P2 

transporter were found to still be effective against TbAT1-null trypanosomes 

that lack the P2 transporter (Stewart et al, 2004), thus suggesting that uptake 

through the P2 transporter is not taking place at all or is not important to their 

activity against trypanosomes. Finally, apart from compound 35a that gave an 

EC50 value of 65.8 µM with rat skeletal myoblast L6 cells, most of the selected 

bisphosphonium compounds gave EC50 values of less than 10 µM with the same 

skeletal myoblast L6 cells (tables 7.2 and 7.3), indicating that these compounds 

are not only toxic to the trypanosomes but can also be toxic to the tissues. 
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Tissue toxicity is an unwanted attribute of any agent being considered for use as 

a pharmacological tool, hence these bisphosphonium compounds may not be 

very useful drug candidates against trypanosomes. 



 

 

8. General Discussion 
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Control of veterinary trypanosomiasis in poor rural African communities 

relies heavily on the use of trypanocidal compounds such as ISM and diminazene 

(Delespaux et al, 2008). Diminazene serves mostly for chemotherapy while ISM is 

used mainly as a prophylactic agent, providing an average of 3 months’ 

protection against trypanosome infection (Delespaux et al, 2008). Since the 

value of the African veterinary trypanocide market is considered too low to 

attract pharmaceutical companies’ investment in new drugs, the only option left 

is to make the best use of the available drugs (Delespaux et al, 2008). The major 

factor militating against the continued use of these few existing trypanocides is 

the development of resistance to these drugs in trypanosomes. Though the 

development of resistance to a drug can be prevented or the rate reduced by 

strict control of drug usage (not practicable in rural central Africa), a reversal of 

resistance would normally require a complete understanding of the mechanism 

involved in the development of resistance. In addition, A PCR-based test could 

be developed as a convenient tool for fast, large-scale testing of livestock for 

resistant trypanosomes. Development of such a test requires the identification 

of genetic markers for isometamidium chloride resistance in livestock-infective 

trypanosomes (Delespaux et al, 2005). One of such resistance markers was a GAA 

codon insertion (coding for an extra lysine) in the gene for a putative ABC 

transporter in resistant clones of Trypanosoma congolense (Delespaux et al, 

2005). However, the non-universality of this ISM resistance marker was indicated 

by the presence of five resistant isolates not possessing the GAA insertion, 

though all the sensitive strains characterised in the study were found to be GAA 

positive (Delespaux et al, 2005). Recently, and in support of the above finding, 

is the hypothesis that inhibitors of ABC transport could reverse resistance to ISM 

in Trypanosoma congolense; tetracycline and oxy-tetracycline were able to 
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significantly re-sensitize ISM resistant trypanosomes (T. congolense) to ISM 

(Delespaux et al, 2010). Our findings presented in chapter 3 however suggest 

that ABC transport activities do not contribute to ISM resistance in Trypanosoma 

brucei brucei, that efflux of ISM could not be inhibited by any of the established 

inhibitors of ABC transport, and the effect of ISM on ISM-resistant trypanosomes 

was not potentiated by any of such inhibitors.  

This does not necessarily disprove the T. congolense hypothesis, however. 

It is rapidly becoming clear that drug transport in T. brucei spp and in T. 

congolense is very different. We recently published a study proving that T. 

congolense does not have an equivalent of TbAT1/P2 (Munday et al, 2013). In 

addition, T. congolense does not have an equivalent of HAPT1 either (Munday 

and De Koning, unpublished observations). We therefore have to conclude that it 

is far from certain that ISM uptake, efflux and resistance models of either 

trypanosome species will be predictive for the other. 

Pentamidine, diminazene, ISM and EtBr have all been reported to act on 

the kinetoplast DNA (kDNA) by inhibiting the trypanosomal topoisomerase II, 

thereby creating linearized minicircle DNA in Trypanosoma equiperdum, leading 

to the disruption of the kDNA structure and, potentially, to the generation of 

dyskinetoplastic trypanosomes (Shapiro & Englund, 1990). However, it is 

important to note that actual loss of kinetoplast has only been demonstrated in 

T. equiperdum, after in vivo treatment with ethidium bromide or acriflavine 

(Riou et al, 1980). However, it was subsequently reported that dyskinetoplastic 

T. evansi and T. equiperdum display identical sensitivity to isometamidium as 

kinetoplastid clones of the same species (Kaminsky et al, 1997). Moreover, the 

dyskinetoplastic trypanosomes did not lose infectivity or viability (Riou et al, 

1980). Yet, it has been amply demonstrated by fluorescence microscopy that 
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isometamidium predominantly accumulates in, and associates with, the 

kinetoplast (Wilkes et al, 1995;Ardelli & Woo, 2001;Boibessot et al, 2002).  

 A subsequent report upholds the accumulation of ISM in the kinetoplast, 

and in addition proposes that resistance to ISM is a function of reduced 

mitochondrial membrane potential; however this report found no link between 

ISM resistance and ABC transport activities (Wilkes et al, 1997). We also found 

that ISM exposure leads to the generation of dyskinetoplastic trypanosomes. In 

fact, ISM-resistant clones of T. b. brucei generated in our laboratory had lost 

their kDNA as well as their mitochondrial membrane potential (MMP). We linked 

this loss of MMP to the F1Fo-ATPase, and demonstrated that the kDNA loss was 

enabled by two distinct point mutations on the nuclearly-encoded γ-subunit of 

the F0F1-ATPase. One of the two point mutations was characterised. It changed a 

serine residue to a stop codon, hence truncating the gene sequence at the point 

C851A (S284*). This mutation was found to be dominant when it was introduced 

into the wild type Trypanosoma brucei brucei; the introduction of this mutation 

made the wild type trypanosomes significantly resistant to ISM (>80 folds) and 

significantly cross resistant to EtBr (>250 folds), diminazene (about 5 folds) and 

oligomycin (6.8 folds), indicating that the effect of this mutation is fully 

reproducible. Since the S284* mutant has not lost its kDNA until after exposure 

to phenanthridines, these observations seem to prove that it is the mutation in 

the γ-subunit of the F1Fo-ATPase, and the resultant loss in mitochondrial 

membrane potential (MMP) that is responsible for the phenanthridine resistance, 

rather than the loss of kDNA per se. However, in trypanosomes carrying the γ-

subunit mutation the kDNA is no longer essential and thus rapidly lost under 

(further) selective pressure with isometamidium. This conclusion is completely 

in agreement with previously reports that ISM elicits its linearizing effects on 
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minicircles through inhibition of mitochondrial Topoisomerase II (Shapiro & 

Englund, 1990;Shapiro, 1993). Indeed, Delespaux et al (Delespaux et al, 2007) 

could find no evidence that point mutations in T. congolense topoisomerases are 

involved in isometamidium resistance - all indicating that the loss of kinetoplast 

DNA is not critical for (but a by-product) of ISM resistance. 

We found that our ISM-resistant T. b. brucei clones displayed a reduced 

ISM accumulation. This reduction was earlier attributed to the reduction in MMP 

(Wilkes et al, 1997). We were also able to demonstrate that although the 

mutation of the γ-ATPase was sufficient to make the wild type trypanosomes 

significantly resistant to ISM, exposure to ISM (or EtBr) is necessary for the loss 

of the kDNA and the MMP. Exposure to 20 nM ISM or EtBr for 72 hours was all that 

was required for mutant trypanosomes (trypanosomes transfected with 

replacement plasmids bearing C851A γ-ATPase) to lose their kDNA. Wild type 

trypanosomes (and wild type clones transfected with plasmids bearing wild type 

γ-ATPase) did not survive this exposure at the concentration stated. Thus, the 

expression of the compensating mutation clearly enables the loss of kDNA. 

Considering the speed at which kDNA is lost under in vitro drug pressure of 

trypanosomes with the enabling mutation, this is highly likely to give these 

trypanosomes an enhanced survival or growth rates compared to trypanosomes 

that continue to carry the full kDNA complement. We speculate that the binding 

of isometamidium to kDNA continues to drive uptake of the drug into 

mitochondria, even with a much-reduced membrane potential. Thus, the loss of 

kDNA removes the last driving force that enabled mitochondrial uptake, and 

leaves isometamidium free in the cytoplasm, from which it is available for 

efflux.  
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We also found a >35-fold cross resistance and about 5.5 fold cross 

resistance to diminazene in our ISM-resistant clones and in our γ-ATPase mutant 

clones respectively. A similar pattern of cross resistance between ISM and 

diminazene was earlier reported in the field (Sinyangwe et al, 2004;McDermott 

et al, 2003;Clausen et al, 1992). However, cross resistance to ethidium bromide 

in ISM resistance seems to be more wide-spread (Peregrine et al, 

1997;Schonefeld et al, 1987;Codjia et al, 1993;Gray & Peregrine, 1993), and this 

correlates with at least 540-fold cross resistance to EtBr found in our ISM 

resistant clones and at least 270-fold cross resistance to EtBr in our S284* γ-

ATPase strains. This trend seems to suggest that EtBr resistance in T. brucei 

brucei is controlled solely by the γ-ATPase mutation while ISM resistance is 

multifactorial.  

At the start of my project, ISM uptake was attributed to the P2 

transporter and resistance to ISM was found to correlate with the presence of six 

point mutations on the TbAT1 sequence (Afework et al, 2006). These point 

mutations were however absent from our ISM resistant clones, though we found 

some reduction in uptake of ISM in T. b. brucei cells expressing RNAi of TbAT1 

and in the TbAT1 KO cells. Also, the expression of TbAT1 in yeast increased ISM 

uptake significantly, compared to the yeast expression of the empty pDR195 

vector. In addition, ISMR1 clone 3 displayed a significant cross resistance to 

tubercidin, compared to parental Tb427 wt. This resistance to tubercidin 

strongly suggests the involvement of the P2 transporter in ISM uptake. We were 

however unable to compare P2 activity in our ISM resistant clones (by means of 

[3H]-Adenosine uptake) with that in Tb427 wt because though P2 activity was 

greatly reduced in our ISM resistant clones, the same activity was also low in the 

wild type cells. This low activity was attributed to the low level of TbAT1 



Anthonius Anayochukwu Eze, 2013   Chapter 8. 203 
 

expression by Tb427 wt when grown in culture. We therefore passaged both the 

Tb427 wt and our ISM resistant clones in rats. However, though both the wild 

type cells and the resistant clones were both able to establish infection in rats 

(confirmed by microscopy), only Tb427 wt was able to sustain infection. This line 

of investigation was therefore inconclusive, although the balance of evidence 

suggests that P2 does mediate part of the isometamidium flux, and its loss can 

contribute to high-level multi-factorial resistance. This is consistent with the 

high affinity of P2 for isometamidium, for which it displays a Ki value of just 0.22 

± 0.05 µM (de Koning, 2001a). 

Other AT-like transporters, TbATE and TbATA (de Koning et al, 2005) were 

also assessed for the ability to mediate ISM uptake. TbATE and TbATA were 

named TbNT12.1 and TbNT11.1, respectively, by the Landfear group, and their 

characterization after expression in Xenopus oocytes showed that both 

transporters were capable of mediating pentamidine uptake (Ortiz et al, 2009). 

However, neither transporter significantly increased sensitivity to pentamidine 

when expressed in Leishmania mexicana (Chapter 3). Also expression of TbATE in 

B48 cells did not increase pentamidine sensitivity significantly compared to the 

empty vector expression. On the other hand, TbATE1 expression in yeast 

increased ISM uptake significantly, and the expression of TbATE1 in L. mexicana 

also increased sensitivity to ISM significantly. In addition, RNAi of ATE in 2T1 

caused a reduction in ISM uptake (although this did not amount to statistical 

significance). These findings together suggest strongly that TbATE1 expression 

mediates ISM uptake in T. brucei brucei. A re-expression of TbATE1 in B48 did 

not increase ISM uptake (assay done once and not shown). This may be because 

TbATE1 was not first deleted before the re-expression was done; moreover, the 

level of AT-E1 over-expression in these cells was not known. Similarly, the 



Anthonius Anayochukwu Eze, 2013   Chapter 8. 204 
 

expression of TbATA in yeast was assessed for the ability to mediate ISM uptake. 

Only the expression of TbATA1 in yeast was able to increase ISM uptake 

significantly; however TbATA1 expression in Leishmania mexicana did not cause 

a significant sensitization to ISM. Finally, we observed a significantly reduced 

average Vmax for LAPT1 activity in ISMR1 clone 3 (0.32 ± 0.06) compared to Tb427 

wt (0.85 ± 0.15). Vmax reduction could be the result of a down-regulation of 

expression of the gene that encodes this protein. We were however unable to 

check expression levels of the LAPT1 because we do not know the gene involved. 

Also at the start of my project, the only pentamidine transporter that was 

characterized at both the biochemical and molecular level was the P2 

aminopurine transporter (Mäser et al, 1999;Barrett & Fairlamb, 1999;Carter et 

al, 1995), encoded by the TbAT1 gene. The gene responsible for either the 

HAPT1 or the LAPT1 was unknown. We found that the AQP2 gene is responsible 

for the HAPT1 activity in Trypanosoma brucei brucei. This finding correlates with 

recent findings that describe aquaporins as conduits for drugs, such as arsenic 

and antimony, and other metabolites such as lactate (Sanders et al, 1997;Liu et 

al, 2002;Gourbal et al, 2004b;Tsukaguchi et al, 1998). These reports are 

together unique because they define new roles for aquaporins that differ from 

their original function as transmembrane proteins that act as pores for the 

movement of water, glycerol, urea (and in some cases, glycine) in and out of 

cells (Gonen & Walz, 2006). The identification of AQP2 as the genetic basis for 

the HAPT1 opens the door for the study of the actual contribution of this 

transporter to pentamidine and diamidine resistance in trypanosomes, especially 

in the field. Hence, the function and the presence of this gene in other 

trypanosome species can now be checked to see if this gene is universally 

present in other Trypanosoma species and to find out if their expression is also 
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responsible for a HAPT1 (or similar) activity. It will also be interesting to study 

the functions of aquaporins in other members of the Kinetoplastida, since 

comparing them to the function of aquaporins in trypanosomes will certainly 

help in the understanding of how the sequence and other structural variations 

that occur in this ubiquitous protein across species and genera have come to 

shape its function. Also, the presence (absence or alteration) of this gene in 

resistance or susceptibility can now be studied in field isolates from different 

locations to further confirm (or contradict) the earlier assigned roles of HAPT1 in 

trypanocide resistance (Teka et al, 2011;Matovu et al, 2003). Indeed, very 

recent results from the Mäser group at the Swiss Tropical Institute confirm 

genetic changes in the TbAQP2 locus of melarsoprol-resistant T. b. gambiense 

isolates (Graf et al., manuscript submitted). Thus, simple tests to show the 

presence or absence of the wild type AQP2 gene can now be designed for use in 

the field as a tool for the detection of pentamidine and melarsoprol resistance, 

allowing the presence or absence of pentamidine resistant trypanosomes to be 

established before commencement of treatment.  

We were also able to demonstrate that HAPT1 (AQP2) activity depends on 

the plasma membrane proton gradient, since HAPT1 activity was found to be 

abolished by agents that dissipate the plasma membrane proton gradient but 

insensitive to ionophores specific for disruption of the mitochondrial membrane 

potential. This finding suggests that pentamidine uptake through the HAPT1 is 

driven by proton motive force (PMF). And this correlates with other transport 

systems described earlier (de Koning & Jarvis, 1997b;Hasne & Barrett, 2000). 

The HAPT1 in this regard is therefore an expression of a most unique aquaporin 

since one of the fundamental properties of aquaporins is that they strictly 

prevent the conduction of protons (Gonen & Walz, 2006), exactly to prevent the 
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dissipation of proton gradients. An alternative interpretation of the ionophore 

data is that these reagents not only reduce the PMF but, equally, the plasma 

membrane potential that forms a large part of the PMF, especially in 

bloodstream trypanosomes (De Koning et al., 1998). Even, if the HAPT1/AQP2 

transporter is not acting as a proton symporter, the depolarisation of the 

negative-inside plasma membrane potential removes much of the driving force 

for the rapid entry of the dicationic pentamidine. 
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Appendices 

Appendix A: General buffers, solutions and media 

Assay buffer (pH 7.3) 

D-Glucose                                       2.53g 

HEPES                                             8.0g 

MOPS                                              5.0g 

NaHCO3                                          2.0g 

KCl                                                 347.5mg 

MgCl.6H2O                                      62.5mg 

NaH2PO4.2H2O                                913.5mg 

CaCl2.2H2O                                      40.7mg 

MgSO4.7H2O                                    19.9mg 

NaCl                                               5.7g 

 

These were dissolved in 1 litre of ddH2O, allowed to stir for 2 hours before 

the pH was adjusted to 7.3 and the buffer stored at 4 oC. 

2% SDS 

10g of sodium dodecyl sulphate (SDS) was weighed out and dissolved in 

500ml of distilled water. 

Oil mixture 

50 ml of mineral oil was mixed with 350 ml di-n-butyl phthalate.  

Alamar blue solution 

12.5mg resazurin sodium salt was weighed and dissolved in 100 ml of PBS. 

The solution was stirred for about 2 hours while wrapped in aluminium foil. It 

was then filter-sterilized, stored at -20 oC and away from light. 

 

 

 



  Appendices. 208 
 
Tb-BSF-buffer 

Stock solutions include 0.5M Na-PO4, pH 7.3 (77.4 ml of 0.5M Na2HPO4 + 

22.6 ml of 0.5M NaH2PO4; pH adjusted with pH-metre), 0.3M KCl, 0.5M HEPES 

(pH 7.3; adjusted with KOH) and 50 mM CaCl2. 

To prepare Tb-BSF-buffer, 1.8 ml of Na-PO4, 1.66 µl of KCl, 1ml of HEPES 

and 30 µl of CaCl2 were added to 7 ml of ddH2O, giving a final concentration of 

90 mM, 5 mM, 50 mM and 0.15 mM respectively. The buffer was stored at 4 oC. 

Acidified Methanol (lysis buffer for ISM uptake) 

0.1 N HCl                             50 ml 

Methanol                              400 ml 

Lysis buffer was stored at room temperature. 

HMI-9 media (+ 5 % FCS) 

A pack of HMI-9 powder was emptied into a 5-litre capacity beaker, 

followed by 4.5 litres of ddH2O and 15g of NaHCO3. After stirring for some time 

on a magnetic stirrer (about an hour), 500ml of FCS and 71.5 µl of β-

mercaptoethanol were added and the solution left to stir overnight at 4 oC. The 

pH was adjusted to 7.4 the next day, and the media filtered into 10 sterile 500 

ml reagent bottles and stored at 4 oC.  

LB (Luria Bertani) broth and LB agar 

10 g of LB powder was used to prepare 400 ml of LB media while 14 g of 

LB agar powder was used to prepare 400 ml of LB agar. In each case, the 

appropriate amount of powder was added to 400 ml of ddH2O in 500 ml capacity 

reagent bottles, swirled to mix and autoclaved. After autoclaving, LB media was 

stored at room temperature. LB agar was however cooled down midway before 

400 µl of 100 mg/ml ampicillin was added, swirled to mix and 20 ml was 

pipetted into petri dishes for storage at 4 oC until when needed. 
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Synthetic complete medium minus uracil (SC-URA). 

Synthetic complete drop out mix was first prepared from the following 

components in the proportions shown: 

Adenine hemisulphate             2 g 

Arginine HCl                            2 g 

Histidine HCl                           2 g 

Isoleucine                              2 g 

Leucine                                  4 g 

Lysine HCl                               2 g 

Methionine                             2 g 

Phenylalanine                         3 g 

Homoserine                            6 g 

Tryptophan                            3 g 

Tyrosine                                2 g 

Valine                                   9 g 

Then, SC-URA was prepared by dissolving 4 g of yeast nitrogen base 

without amino acids, 12 g of glucose and 0.5 g of the synthetic complete drop 

out mix in 600 ml of ddH2O and the pH adjusted to 5.6 with 10 M NaOH.10 g of 

bacto-agar is added if solid medium is required and the medium is sterilized by 

autoclaving. 

Yeast Extract-Peptone-Dextrose and Adenine (YPD) Medium 

YPD medium was prepared by dissolving 6 g of yeast extract, 12 g of 

peptone, 12 g of glucose and 60 mg of adenine hemisulphate (10 g of bacto-agar 

if solid medium is desired) in 600 ml of ddH2O and adjusting the pH to 6.0 before 

autoclaving and subsequent storage at 4 oC. 
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TE/LiAc and PEG/LiAc/TE was each prepared from 50% PEG (w/v; Polyethylene 

glycol) solution, 10 X TE (Tris-EDTA; 0.1 M Tris-HCl + 0.01 M EDTA, pH 7.5) and 

10 X LiAc (1M LiAc, pH adjusted to 7.5 with dilute acetic acid). 

1 X TE/LiAc was therefore prepared by adding 1 ml of 10 X TE and 1 ml of 

10 X LiAc to 8 ml of ddH2O, while PEG/LiAc/TE contained 40% PEG in 1 X TE and 

1 X LiAc. 
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Appendix B:  Mitochonrial membrane potential 

graphics. 
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Appendix C: DNA sequencing alignment of TbAT-A, 
TbAT-E, TbAT1 and ATPase γ from ISMR clones. 

TbAT-A sequences from ISMR1 clone 3 and ISMR15 clone 1. 
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TbAT-E sequences from ISMR15 clone 1. 
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TbAT1 sequences from ISMR1 clone 3, ISMR15 clone 1 and Tb427 wt. 
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ATPase γ sequences from ISMR1 clone 3, ISMR15 clone 1 and Tb427wt. 
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